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Preface to the Second Edition

Observation of a gravitational wave is the most spectacular recent application of a

laser (published in Physical Review Letters, February 2016). Four Nobel Prizes in

the last four years for achievements in physics and chemistry (see Sect. 1.9 of the

book) demonstrate the significance of lasers for scientific research. There is a steady

development of lasers and of their use in scientific research in physics, chemistry,

engineering, biophysics, medicine, and technical applications. Important progress

has been made in the last years in the development and application of infrared and

far-infrared free-electron lasers, and of X-ray free-electron lasers. X-ray free-electron

lasers are opening new possibilities in scientific research and in application.

The first edition of the textbook Basics of Laser Physics presented a modulation

model of a free-electron laser, illustrating dynamical processes in a free-electron

laser. The second edition gives a modified treatment of the model. The model

provides analytical expressions for the gain and for the saturation field of radiation

in a free-electron laser. The results drawn from the modulation model are consistent

with the results of theory that is based on Maxwell’s equations; main results

of theory arise from numerical solutions of Maxwell’s equations. In accord with the

modulation model is a description of the active medium of a free-electron laser as a

quantum system, already discussed in the first edition: an electron, which performs

an oscillation in a spatially periodic magnetic field, may be describable as an

electron occupying an energy level of an energy-ladder system; accordingly,

electronic transitions between the energy levels are origin of spontaneous and

stimulated emission of radiation.

In order to stress features that are common to a conventional laser and a

free-electron laser or show differences, various points are clearly structured in the

new edition, such as the role of dephasing between a radiation field and an oscillator

or Lorentzian-like functions (denoted as “Lorentz functions”) describing frequency

dependences of gain near or outside resonances. The second edition contains

additionally: classical oscillator model of a laser (van der Pol equation of a laser);

onset of laser oscillation of a titanium–sapphire laser; discussion of differences

between a conventional laser and a free-electron laser; and a modification of the

description of the yet hypothetical Bloch laser.
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Additional problems should provide a deepening of the understanding of lasers.

Furthermore, errors are corrected. The principle of the overall representation

remains unchanged: this book is designed in a way that a student can study many

of the chapters without special knowledge of the preceding chapters. In most

chapters, the content develops from a more general aspect to specific aspects. Let

me mention a particular point-concerning notation. I am using, besides the letter

N for the number of particles per unit volume, the letter Z for the number (=Zahl,

German) of photons per unit volume, instead of common combinations of a Latin

and a Greek letter, or of an upper- and a lower-case letter.

I am indebted to Manfred Helm for a number of very helpful comments to the

first edition and Joachim Keller for discussions of basic questions concerning the

free-electron laser. I would like to thank Sergey Ganichev, Rupert Huber, Alfons

Penzkofer, Willli Prettl, and Stephan Winnerl for discussions. It is a pleasure to

acknowledge encouragement by Claus Ascheron and the friendly collaboration with

Adelheid Duhm and Elke Sauer at Springer Verlag. I thank Sameena Begum Khan

and her production team at Springer Verlag for the commitment to the preparation

of the book. Finally, I would like to thank my wife Marianne for her patience.

Regensburg, Germany Karl F. Renk
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Part I

General Description of a Laser
and an Example



Chapter 1

Introduction

We will ask and partly answer a few questions. What is the difference between a

laser and a light bulb? In which frequency ranges are lasers available? Which are the

sizes and the costs of lasers? Why is it necessary to have different types of lasers in

the same frequency range? We will also mention some specific lasers and we will

discuss the concept of the book.

1.1 Laser and Light Bulb

The spatial and temporal coherence makes the difference between a laser and a light

bulb (Fig. 1.1). While a lamp emits uncorrelated wave trains into all spatial directions,

a laser generates coherent waves and the waves can have a high directionality. Which

are the possibilities of generation of spatially and temporally coherent waves? A laser

can generate a coherent continuous wave or a coherent pulse train. Extreme cases of

generation of visible radiation are as follows:

• The continuous wave laser (cw laser) emits a continuous electromagnetic wave.

The field is spatially and temporally coherent.

• The femtosecond laser emits an electromagnetic wave consisting of a pulse train;

the duration of a single pulse of a train can be as short as 5 fs (1 fs = 1 femtosecond

= 10−15 s). The field of a pulse train is spatially and temporally coherent too.

Besides continuous wave lasers and femtosecond lasers, there are pulsed lasers pro-

ducing laser pulses with durations in the picosecond, nanosecond, microsecond, or

millisecond ranges. We use the abbreviations:

• 1 ms = 1 millisecond = 10−3 s

• 1μs = 1 microsecond = 10−6 s

• 1 ns = 1 nanosecond = 10−9 s

• 1 ps = 1 picosecond = 10−12 s

© Springer International Publishing AG 2017
K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-50651-7_1
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Fig. 1.1 Continuous wave (cw) laser, femtosecond (fs) laser and light bulb

• 1 fs = 1 femtosecond = 10−15 s

• 1 as = 1 attosecond = 10−18 s

The acronym LASER means: Light Amplification by Stimulated Emission of

Radiation. It developed to laser = device for generation of coherent electromagnetic

waves by stimulated emission of radiation. The maser (=microwave laser) makes

use of microwave amplification by stimulated emission of radiation.

1.2 Spectral Ranges of Lasers and List of a Few Lasers

Figure 1.2 shows wavelengths and frequencies of spectral ranges of the electromag-

netic spectrum—from X-rays over the ultraviolet (UV), the visible, the near infrared

(NIR), the far infrared (FIR) spectral ranges to microwaves and radiowaves. The

frequency ν of an electromagnetic wave in vacuum obeys the relation

ν = c/λ, (1.1)

where c (= 3 × 108 m s−1) is the speed of light and λ the wavelength. Abbreviations

of frequencies are as follows:

• 1 MHz = 1 megahertz = 106 Hz

• 1 GHz = 1 gigahertz = 109 Hz

• 1 THz = 1 terahertz = 1012 Hz

• 1 PHz = 1 petahertz = 1015 Hz

The visible spectral range corresponds to a frequency range of about 430–750 THz

(wavelength range about 400–700 nm). Optics and light refer to electromagnetic

waves with vacuum wavelengths smaller than about 1 mm, i.e., with frequencies

above 300 GHz. Lasers are available in the ultraviolet, visible, near infrared, far

infrared, and microwave regions. Lasers of the range of X-rays are being developed.

The spectral ranges in which lasers are available extend from the GHz range over

the THz range to the region above 1,000 THz.

The ancient Greeks understood μ ǫ γ α (mega) as something that was exceeding

all measurable things, γ ι γ α (giga) had to do with the giants, τ ǫ ρ a (tera) included
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Fig. 1.2 Spectral ranges of lasers

Table 1.1 Laser wavelengths, frequencies, and quantum energies

Laser λ ν(THz) hν(10−19 J) Pout

HeNe 633 nm 474 3.1 1–10 mW

CO2 10.6 μm 28 0.18 1 W to 1 kW

Nd:YAG 1.06 μm 283 1.9 2 W

TiS 830 nm 360 2.4 100 mW to 5 W

Fiber 1.5 μm 200 1.3 1 W

Semiconductor 840 nm 357 2.4 10–100 mW

QCL 5 μm 60 0.25 10–100 mW

their gods, and π ǫ τ a (peta) was the largest one could imagine—world, giants, gods,

and all spheres together. The notation “terahertz” was introduced shortly after the

discovery of the helium–neon laser, which emits coherent radiation at a frequency

of 474 THz (wavelength 633 nm).

Table 1.1 shows data of a few continuous wave lasers. The data concern: λ =

laser wavelength; ν = laser frequency; hν = quantum energy of the photons of a

laser field (= photon energy); h = 6.6 × 10−34 J s; Pout = output power.

• Helium–neon laser (HeNe laser). It generates red laser light of a power in the

milliwatt range. Helium–neon lasers emitting radiation at other wavelengths are

also available.

• CO2 laser (carbon dioxide laser). It produces infrared radiation of high power at

wavelengths around 9.6 and 10.6 μm.

• Neodymium YAG laser (Nd:YAG laser; YAG = yttrium aluminum garnet). The laser

is a source of near infrared radiation (wavelength 1.06μm).

• Titanium–sapphire laser (TiS laser). The laser operates as a continuous wave laser

or as a femtosecond laser. The cw titanium–sapphire laser is tunable over a very

wide spectral range (650–1080 nm).

• Fiber laser. Fiber lasers ( = lasers with glass fibers doped with rare earth ions)

operate in the wavelength range of about 0.7–3 μm.

• Semiconductor laser. Semiconductor lasers (more accurately: bipolar semiconduc-

tor lasers) are available in the entire visible, the near UV, and the near infrared. The
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Table 1.2 Pulsed lasers

Laser λ tp Wp Pulse power νrep Pav

Excimer 351 nm 50 ns 1 J 20 MW 10 Hz 10 W

Nd:YAG 1.06 μm 6 ns 100 mJ 16 MW 100 Hz 10 W

TiS 780 nm 10 fs 10 nJ 1 MW 50 MHz 0.5 W

wavelength and the power (from the nW range to the 100 mW range) of radiation

generated by a semiconductor laser depend on its design. A stack of semiconductor

lasers can produce radiation with a power up to the kW range.

• Quantum cascade laser (QCL). A QCL is a type of semiconductor laser that

produces radiation in the infrared or in the far infrared. The laser wavelength of a

quantum cascade laser depends on its design.

Table 1.2 shows data of a few pulsed lasers: tp = pulse duration = halfwidth of

a pulse on the time scale=FWHM= full width at half maximum; Wp = energy

of radiation in a pulse=pulse energy; pulse power= Wp/tp; νrep = repetition rate;

Pav = average power.

• Excimer laser. It is able to produce UV radiation pulses of high pulse power;

the wavelength given in the table is that of a laser operated with XeF excimers.

Excimers with other materials generate radiation at other wavelengths (XeCl, λ =

308 nm; KrF, 248 nm; ArF, 193 nm).

• Neodymium YAG laser. Depending on the design of a pulsed neodymium YAG

laser, the pulse duration can have a value between 5 ps or a value that is larger than

that given in the table. The average power can be larger than 10 W.

• Titanium–sapphire femtosecond laser. The power is large during very short time

intervals.

A laser system, consisting of a laser oscillator and a laser amplifier, can generate

radiation pulses of much larger pulse power levels (Sect. 16.8).

1.3 Laser Safety

Laser safety has to be taken very seriously: a laser emitting visible radiation of 1 mW

power leads to a power density in the focus (area λ2) of a lens—for instance, in

the focus of the lens of an eye—of the order of 109 W m−2 (105 W cm−2). Such a

power density can lead to damage of an eye. Dear reader, please take care of the

corresponding safety rules when you experiment with a laser!

http://dx.doi.org/10.1007/978-3-319-50651-7_16
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1.4 Sizes of Lasers, Cost of Lasers, and Laser Market

There are lasers of very different size.

• A gas laser or a solid state laser has a typical length of 1 m (down to 10 cm). The

price of a laser is between 100 US dollars and 1 million dollars.

• A free-electron laser has a typical length of 10 m (not taking account of a much

larger accelerator). The price of a free-electron laser lies, depending on its prop-

erties, between 10 million and billions of dollars.

• The smallest lasers are semiconductor lasers with sizes ranging from about 1 mm

to smaller sizes. Microlasers with dimensions of the order of 10μm can be fab-

ricated; nanolasers—with extensions below 1μm—may be suitable for special

applications. Mass production (at a price of 10 dollars per laser or much less)

resulted in a great variety of applications of semiconductor lasers.

The laser market (Fig. 1.3a) is strongly growing. The development may be similar

as for the computer market. After the discovery of the transistor in 1946, it took

about 50 years until the transistor became widely distributed—as the essential basis

of a computer. The main breakthrough was due to miniaturization realized in the

microelectronics and due to integration of transistors in large systems. The laser,

with its first operation 14 years after the transistor, is beginning to be widely spread

Fig. 1.3 Laser market. a General development. b Industrial lasers (in 2010). c Places of installation
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as a part of devices of the daily life. The integration of the lasers in other devices and

in large systems became possible by the development of the semiconductor lasers

and their miniaturization.

The laser market offers a large variety of different lasers designed for particu-

lar applications. The laser field is in a rapid development; improvements of laser

designs, new types of lasers, and new applications make the field strongly growing.

We mention here the industrial lasers, machines suitable for various applications.

In 2009, the main contributions to the turnover in the market of industrial lasers

(Fig. 1.3b) came from the CO2 lasers, the excimer lasers, and the solid state lasers

(including a small portion of semiconductor lasers). Among the solid state lasers,

there are different types, namely rod lasers, disk lasers, and fiber lasers. Industrial

lasers find use in materials processing—cutting, welding, marking, engraving, and

microprocessing; today (2016), disk lasers reach high output power levels and are

developing as simple powerful industrial lasers. A main application of excimer lasers

concerns structuring of semiconductors. The overall turnover of industrial lasers was

about nine billion dollars in 2010. Most installations of industrial lasers (Fig. 1.3c)

are in Asia, Europe, and North America.

Lasers are the basis of photonics ( = photoelectronics) and optics. Optoelectron-

ics—the counterpart at optical frequencies to electronics at radio and microwave

frequencies—and integrated optics refer to optical systems used in optical commu-

nications, signal processing, sensing with radiation, and other fields. A characteristic

of optoelectronics is the extension of methods of electronics to the range of optical

frequencies.

Semiconductor lasers used in data communications and in consumer applications

are produced at a rate of more than one million in a week (at a prize of about 1 US $ per

piece); these lasers are mainly edge-emitting lasers (Sects. 20.5 and 25.4). More than

one million lasers per month are produced for the telecommunication market. The

lasers for the telecommunication market have a higher level of sophistication and are

produced in 2011 at a price of about $10 per piece; the lasers used in telecommunica-

tion systems are mainly vertical-cavity surface-emitting lasers, VCSELs (Sect. 22.7).

1.5 Questions about the Laser

In this book, we will answer a number of questions about the laser. Here we list some

questions answered in different chapters of the book.

• What is common to all lasers?

Answer: common to all lasers is the generation of radiation of high directionality;

the generation is due to stimulated emission of radiation either by quantum systems

such as atoms and molecules or by oscillating free-electrons.

• What is the working principle of the free-electron laser?

• How can we generate monochromatic radiation?

http://dx.doi.org/10.1007/978-3-319-50651-7_20
http://dx.doi.org/10.1007/978-3-319-50651-7_25
http://dx.doi.org/10.1007/978-3-319-50651-7_22
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• How can we generate femtosecond pulses?

• What is the role of diffraction in a laser? We will see that diffraction plays an

important and favorable role: diffraction can suppress unwanted radiation.

• What is the angle of divergence of laser radiation? The angle of divergence is in

general not determined by diffraction but by a kind of natural beams—Gaussian

beams—that fit perfectly to resonators with two spherical mirrors. A laser is able

to generate a Gaussian beam.

• How can we produce laser radiation in different ranges of the electromagnetic

spectrum?

• What is the difference between a laser and a classical oscillator?

Laser physics connects optics with atomic physics, molecular physics, solid state

physics (including semiconductor physics), and, of course, quantum mechanics, and

furthermore with engineering, chemistry, biology, and medicine.

1.6 Different Types of Lasers in the Same Spectral Range

Why do we need different types of lasers for the same spectral range? Different types

of lasers fulfill different tasks.

• If we need lasers of CD (compact disk) or blue ray players, semiconductor lasers,

with small sizes and low power consumption, fulfill the task.

• To cut metal plates, a high power laser as the CO2 laser is suitable. The efficiency of

conversion of electric power to radiation power of a CO2 laser is large (larger than

10%). The CO2 laser emits radiation in the infrared spectral region. High power

disk lasers (pumped with semiconductor lasers) emitting near infrared radiation

have also high efficiencies for conversion of electric energy to radiation. These

lasers may become able (2016) to compete with CO2 lasers.

• To generate femtosecond optical pulses, with durations from 100 to 5 fs, only few

of the many lasers have appropriate properties. The most prominent femtosecond

laser is the titanium–sapphire femtosecond laser.

Large progress came with the miniaturized semiconductor lasers but also with

the high-power semiconductor lasers—that can be applied, for example, as pump

sources of other lasers.

1.7 Concept of the Book

Figure 1.4 gives a survey of the main topics treated in the book.

General description of a laser and an example. We will describe main properties

of a laser and of the components, namely the active medium and the resonator. We

will introduce the laser as an oscillator: an active medium drives the oscillation of
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Fig. 1.4 Concept of the
book

an electromagnetic field in a resonator. Early in the book we will discuss a particular

laser (the titanium–sapphire laser) in some detail. This allows us to be specific, if

necessary, during a treatment of the theory and the discussion of the operation of a

laser.

Theory of the laser. To describe the interaction of light with matter, we introduce

the Einstein coefficients. A theoretical treatment of the laser oscillation yields the

laser threshold condition and other important properties.

Operation of a laser. We will mention different techniques of operation of a laser

as a continuous wave laser or as a pulsed laser. We will begin this part with a treatment

of the properties of resonators and the description of Gaussian waves.

Lasers except semiconductor lasers

• Gas lasers. The active medium consists of atoms, ions, or molecules in gases. Gas

lasers are available in the UV, visible, NIR, FIR, and microwave ranges. Two of

the most important industrial lasers (the excimer and the CO2 laser) are gas lasers.

• Solid state lasers (except semiconductor lasers). The active medium consists of ions

in a dielectric solid; the solid is a host for ions. Solid state lasers, operated at room

temperature, are available in the visible and the near infrared. Stimulated transitions

between electronic states of ions give rise to generation of laser radiation. Besides

crystals, other condensed matter materials—glasses, polymers, and liquids—are

also suitable as host materials of ions, atoms, or molecules.

• Free-electron lasers. The basis is the emission of radiation by oscillating free-

electrons. The electrons are passing at a velocity near the speed of light through

a spatially periodic magnetic field. Free-electron lasers are available in the vis-

ible, infrared, and far infrared; free-electron lasers generating X-rays are being

developed.

Semiconductor lasers (bipolar semiconductor lasers and quantum cascade lasers).

Semiconductor lasers are solid state lasers that use conduction electrons in semicon-

ductors. Semiconductor lasers are available in the visible, near UV, and NIR spectral

ranges and are being developed for the FIR. Stimulated transitions are either due

to electronic transitions between the conduction band and the valence band of a
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semiconductor—in bipolar lasers—or between subbands of a conduction band—in

quantum cascade lasers. Preparation of mixed semiconductor materials and of het-

erostructures makes it possible to realize new, artificial materials that are used in

quantum well, quantum wire, quantum dot, and quantum cascade lasers. The laser

wavelength is adjustable through an appropriate design of a heterostructure. We will,

furthermore, present the idea of a Bloch laser ( = superlattice Bloch laser = Bloch

oscillator) that may become suitable for generation of FIR radiation.

Laser-related topics

• Optical communications. This is an important field of applications of semicon-

ductor lasers.

• Light emitting diode (LED). The LED is the basis of many different kinds of

illumination. The development of LEDs is going on in parallel to the development

of semiconductor lasers. The organic LED (OLED) is suited to realize simple large

area light sources.

• Nonlinear Optics. We will give a short introduction to the field of Nonlinear Optics.

Our main aspect will be: how can we convert coherent laser radiation of one

frequency to coherent radiation of other frequencies?

We will discuss various applications in connection with different topics.

1.8 References

References cited either at the end of a chapter or in the text include: textbooks on

lasers; textbooks on optoelectronics and integrated optics; books on lasers and nonlin-

ear optics; textbooks on other fields (optics, electromagnetism, atomic and molecular

physics, quantum mechanics, solid state physics; microwave electronics, mathemat-

ical formulas; and to a small extent original literature). Original literature about

lasers is well documented in different textbooks on lasers [1–11, 308]. Introductions

to quantum optics are given, for instance, in [12, 13], or, to quantum electronics

[309]. In connection with mathematical functions, see, for instance, [14–20].

1.9 A Remark About the History of the Laser

Data concerning the history of lasers

1865 James Clerk Maxwell (King’s College, London): Maxwell’s equations.

1888 Heinrich Hertz (University of Karlsruhe): generation and detection of elec-

tromagnetic waves.

1900 Max Planck (University of Berlin): quantization of radiation in a cavity.

1905 Albert Einstein (Patent office Bern): quantization of radiation.
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1905 Niels Bohr (University of Copenhagen): quantization of the energy states of

an atom.

1917 Einstein (then in Berlin): interaction of radiation with an atom, spontaneous

and stimulated emission.

1923 Henryk A. Kramers: influence of stimulated emission on the refractive index

of atomic gases containing excited atoms (a theoretical study).

1928 Rudolf Ladenburg (Kaiser Wilhelm Institute, Berlin): observation of an influ-

ence of stimulated emission on the refractive index of a gas of neon atoms

excited by electron collisions in a gas discharge.

1951 Charles H. Townes (Columbia University): idea of a maser.

1954 Townes: ammonia maser (frequency 23.870 GHz, wavelength 1.25 cm);

Nicolai Basov, Aleksandr Prokhorov (Lebedev Physical Institute, Moscow):

idea of a maser in parallel to the development in the USA and realization of

an ammonia laser.

1956 Nicolaas Bloembergen (Harvard University): proposal of the three-level

maser (leading to solid state masers in various laboratories).

1958 Arthur L. Schawlow, Townes: proposal of infrared and optical masers (lasers)

including the formulation of the threshold condition of laser oscillation;

Prokhorov: general description of the principle of optical masers (lasers).

1959 Basov: proposal of the semiconductor laser.

1960 Theodore Maiman (Hughes Research Laboratories): ruby laser (694 nm).

1960 Ali Javan (Bell laboratories): helium-neon laser (1.15μm, later 633 nm).

1961 L. F. Johnson, K. Nassau (Bell Laboratories): neodymium YAG laser.

1962 Robert N. Hall (General Electric Research Laboratories): semiconductor

laser.

1963 Herbert Kroemer (University of California Santa Barbara): proposal of the

heterostructure laser.

1964 C. Kumar N. Patel (Bell Laboratories): carbon dioxide laser; W. Bridges

(Bell Laboratories): argon ion laser.

1966 Peter P. Sorokin (IBM Yorktown Heights) and Fritz P. Schäfer (Max-Planck-

Institut für Biophysikalische Chemie, Göttingen): dye laser.

1968 William T. Silfvast (Bell Laboratories): metal vapor laser.

1975 Basov: excimer laser.

1977 John Madey, Luis Elias and coworkers (Stanford University): free-electron

laser.

1979 J. C. Walling (Allied Chemical Corporation): alexandrite laser (first tunable

solid state laser).

1982 P. Moulton (Schwartz Electro-Optics): titanium–sapphire laser.

1991 M. Haase and coworkers (3M Photonics): green diode laser (based on ZnSe).

1994 Federico Capasso, Jérome Faist, and coworkers (Bell laboratories): quantum

cascade laser.

1997 Shuji Nakamura (Nichia Chemicals, Japan): blue diode laser (based on GaN).

For references concerning the history of lasers, see [20–24] and also Sects. 9.10

and 19.13. The acronym laser was introduced by Gordon Gould (Columbia Uni-

http://dx.doi.org/10.1007/978-3-319-50651-7_9
http://dx.doi.org/10.1007/978-3-319-50651-7_19
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versity) at the Ann Arbor Conference on Optical Pumping in 1959. In his thesis

(Moscow 1940—unknown until 1959) Vladimir Fabrikant discussed amplification

of optical radiation by stimulated emission of radiation.

In 1951, Charles Townes, searching for an oscillator generating microwave radi-

ation at higher frequencies than other microwave oscillators (magnetron, klystron)

available at the time, had the idea of a maser [21]—based on three aspects (see

Sect. 2.1): stimulated emission of radiation by an atomic system; creation of a pop-

ulation inversion (in a molecular beam); feedback of radiation by use of a resonator.

The realization of the first maser (1954) stimulated the development of other types

of masers, particularly of the solid state three-level maser. In 1958, Schawlow and

Townes published an article on “infrared and optical masers.” This paper described

the conditions of operation of a laser (Chap. 8) and initiated the search for a concrete

laser. Maiman was the first to operate a laser, the ruby laser, in May 1960. Later in

the year, Javan reported operation of a helium–neon laser.

The application for a laser patent in mid-1958 by Bell Laboratories, with

Schawlow (at Bell Laboratories) and Townes (Columbia University) as inventors,

led to the first US patent on a laser, issued in 1960. A student, Gordon Gould, then

working in a group at Columbia University on his PhD thesis, wrote in several note-

books (from 1958 on after the circulation of preprints of the 1958 paper of Schawlow

and Townes) ideas about lasers, which later were the basis of patent applications.

After many court cases, Gould succeeded to obtain patents on various aspects of

lasers. Since it took a very long time to be issued (in 1976, 1978, 1988, and 1989),

the patents allowed Gould and several companies he co-founded to get back the

money (several tens of millions of dollars). For this purpose, laser companies were

forced by further court cases to pay license fee.

The theoretical basis of the laser was the “old quantum mechanics” developed

(1900–1917) by Planck, Bohr, and Einstein. The main results of the “old quantum

mechanics” obtained a consequent founding by the quantum mechanics (developed

1925–1928). Why did it last about 40 years until maser and laser were operating?

This question will be discussed in Sect. 9.13.

Nobel Prizes in the field of lasers

1964 Charles Townes, Nicolay Basov, Aleksandr Prokhorov: fundamental work

in the field of quantum electronics, which has led to the construction of

oscillators and amplifiers based on the maser-laser principle.

1966 Alfred Kastler: optical pumping.

1971 Dennis Gabor: holography.

1981 Nicolas Bloembergen, Arthur Schawlow: nonlinear optics and laser spec-

troscopy.

1989 Norman F. Ramsey: maser and atomic clocks.

1997 Steven Chu, Claude Cohen-Tannoudji, William D. Phillips: methods of cool-

ing and trapping of atoms by using laser light.

1999 Ahmed Zewail (Chemistry): study of chemical reactions by using femtosec-

ond laser pulses.

http://dx.doi.org/10.1007/978-3-319-50651-7_2
http://dx.doi.org/10.1007/978-3-319-50651-7_8
http://dx.doi.org/10.1007/978-3-319-50651-7_9
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Problems

1.1 Physical constants. Remember numerical values of physical constants (in units

of the international system, SI).

(a) c = speed of light.

(b) h = Planck’s constant.

(c) � = h/(2π).

(d) e = elementary charge.

(e) m0 = electron mass.

(f) µ0 = magnetic field constant.

(g) ε0 = electric field constant.

(h) k = Boltzmann’s constant.

(i) NA = Avogadro’s number.

(j) R = gas constant.

(k) L0 = Loschmidt’s number.

[Hint: in examples in the text and in the Problems, an accuracy of several percent of

a quantity is in most cases sufficient.]

1.2 Frequency, wavelength, wavenumber, and energy scale. It is helpful to char-

acterize a radiation field on different scales: frequency ν; wavelength λ; wavenumber
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ν̃ = ν/c = 1/λ ( = number of wavelengths per unit of length = spatial frequency); and

photon energy hν in units of Joule or eV. Express each of the following quantities

by the corresponding quantities on the three other scales.

(a) λ = 1μm.

(b) ν = 1 THz.

(c) λ = 1 nm.

(d) ν̃ = 1 m−1.

(e) hν = 1 eV.

1.3 Express the following values on different scales:

(a) kT for T = 300 K (T = temperature); (b) 1 meV; (c) 1 cm−1; (d) 10 cm−1.

1.4 Power of the sun light and of laser radiation. The intensity of the sun light

on earth (or slightly outside of the atmosphere of the earth) is 1,366 W m−2.

(a) Evaluate the power within an area of 1 cm2.

(b) Estimate the power density ( = intensity) if the radiation incident on a 1 cm2 area

is focused to an area of 100μm diameter; focusing to a smaller diameter is not

possible because of the divergence (5 mrad) of the radiation from the sun.

(c) Determine the power density of the radiation of a helium-neon laser (power 1

mW, cross sectional area 1 cm2) focused to an area that has a diameter of 1 μm.

1.5 Determine the time it takes light to propagate

(a) A distance that corresponds to the diameter of an atom.

(b) A distance of 1 cm.

(c) From a point of the surface of the earth to a point on the surface of the moon (at

a distance of 174,000 km).



Chapter 2

Laser Principle

A laser (=laser oscillator) is a self-excited oscillator. A self-excited oscillator starts

oscillation by itself and maintains an oscillation. Laser radiation is generated by

stimulated transitions in an active medium. The active medium is a gain medium—

propagation of radiation in the active medium results in an increase of the energy

density of the radiation. The active medium in a laser experiences feedback from

radiation stored in a laser resonator. A portion of radiation coupled out of the resonator

represents the useful radiation.

In this chapter, we characterize an active medium by a population inversion in an

ensemble of two-level atomic systems. We formulate the threshold condition of laser

oscillation. We solve the resonator eigenvalue problem and find possible frequencies

of laser oscillation. We also show that the buildup of steady state oscillation of a

laser takes time—the oscillation onset time.

To describe a coherent electromagnetic wave, we make use of the model of a

quasiplane wave—a parallel beam of coherent radiation. A quasiplane wave is char-

acterized by a well-defined propagation direction, a finite spatial extension perpen-

dicular to the propagation direction, and a constant field amplitude within the beam.

The model is very useful for a basic description of the field in a laser oscillator. Later

(in Chap. 11) we will introduce a modified description of a coherent electromagnetic

wave.

In later chapters, we will specify the two-level atomic systems. A two-level atomic

system can belong to various states: electronic states of an atom or an ion (in a gas,

crystal, glass, or liquid); electronic, vibrational, or rotational states of a molecule;

electronic states of electrons in a semiconductor or a semiconductor heterostructure.

We will introduce (Chap. 4) still another type of active medium—an active medium

containing energy-ladder systems rather than two-level systems.
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Fig. 2.1 A laser

2.1 A Laser

A laser (Fig. 2.1) emits coherent radiation of an output power Pout. A laser has the

following parts.

• Active medium (=gain medium = laser medium). The active medium is able to

amplify electromagnetic radiation. The active medium, located inside a resonator,

fills out a resonator partly or completely.

• Pump system. It “pumps” the active medium. Methods of pumping are: optical

pumping with another laser or a lamp; pumping with a gas discharge; pumping with

a current through a semiconductor or a semiconductor heterostructure; chemical

pumping.

• Laser resonator. The laser resonator has the task to store a coherent electromag-

netic field and to enable the field to interact with the active medium—the active

medium experiences feedback from the coherent field. We will describe resonators

that consist of two mirrors—one is a reflector of a reflectivity R1 near 1, and the

other is a partial reflector serving as output coupler. The output coupling mir-

ror has a reflectivity (R2) that also can have a value near 1 but that can be much

smaller; semiconductor lasers can have reflectors with R1 = R2 ∼ 0.3. Each type

of laser requires its own resonator design. There is a main criterion concerning

reflectivities of resonators: a laser should be able to work at all. Depending on the

task of a laser, other criteria can be chosen—for instance, that a laser should have

optimum efficiency of conversion of pump power to laser output power.

2.2 Coherent Electromagnetic Wave

We describe a coherent electromagnetic wave generated by a continuous wave laser

as a quasiplane wave (=parallel beam of coherent light),

E(z, t) = A cos[ω(t − t0) − k(z − z0)]. (2.1)

E is the electric field at time t and location z, A is the amplitude, ω = 2πν the angular

frequency, ν the frequency, and k the wave vector of the wave; t0 defines a time
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coordinate and z0 a spatial coordinate. The direction of E (and A) is perpendicular

to the direction of the propagation direction (z direction). The dispersion relation,

ω = ck, (2.2)

relates the frequency and the wave vector. The quasiplane wave has a finite lateral

extension. We suppose that the amplitude of the field does not vary, at a fixed z, over

the cross section and that it is independent of z. The quasiplane wave is a section of a

plane wave (which has infinite extensions in the plane perpendicular to the direction

of propagation).

If we choose t0 = 0 and z0 = 0 to describe a quasiplane wave propagating in free

space, we can write

E(z, t) = A cos(ωt − kz). (2.3)

The instantaneous energy density, uinst, in the electromagnetic field is

uinst = ε0 A2 cos2(ωt − kz), (2.4)

where ε0 is the electric field constant. The energy density u of the electromagnetic

field, that is, the instantaneous energy density averaged over a temporal period T =

2π/ω, is equal to

u =
1

2
ε0 A2. (2.5)

The quasiplane wave transports energy in z direction. The power P of the wave is

P =
1

2
cε0 A2a1a2, (2.6)

where a1a2 is the cross-sectional area of a beam of rectangular shape. The intensity

(= power per unit area = energy flux density) is

I =
P

a1a2

=
1

2
cε0 A2. (2.7)

We interpret the transport of radiation energy as a flux of photons along the

z direction and introduce the average number of photons per unit of volume, the

photon density Z , by the relation

u = Zhν = Z� ω. (2.8)

The energy density is equal to the photon density times the photon energy hν.

Simplifying further, we describe a light beam of laser light as a parallel bundle of

light rays (Fig. 2.2). To characterize the propagation of light within a parallel light

bundle, we introduce the disk of light. It is a section of a light bundle and has the

length δz; we assume that δz is much larger than the wavelength of the radiation,
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Fig. 2.2 Parallel light

bundle and disk of light

δz ≫ λ. The disk of light propagates along the z direction with the speed of light.

The energy density in a disk of light is u(ν, z) and the photon density is equal to

Z(ν, z) =
u(ν, z)

hν
. (2.9)

We will make use of the complex notation of the field. A complex field Ẽ corre-

sponds to a real field according to the relation

E = Re[Ẽ] =
1

2
(Ẽ + Ẽ∗) =

1

2
Ẽ + c.c., (2.10)

where Re[Ẽ] is the real part of Ẽ . The real field is equal to the sum of Ẽ /2 and its

conjugate complex (c.c.) Ẽ∗/2.

The real part of a complex field, which is the product of a complex quantity Ã

and another complex quantity K̃ , is

E = Re[Ẽ] =
1

2
( Ã∗ K̃ + ÃK̃ ∗) =

1

2
Ã∗ K̃ + c.c. (2.11)

The complex field Ẽ = A ei(ωt−kz), with the real amplitude A, corresponds to the real

field E = A cos(ωt − kz). It follows that the energy density in an electromagnetic

field is

u =
ε0

2
Ẽ Ẽ∗ =

ε0

2
|Ẽ |2 =

ε0

2
A2. (2.12)

The photon density is given by

Z =
ε0

2hν
Ẽ Ẽ∗ =

ε0

2hν
|Ẽ |2 =

ε0

2hν
A2. (2.13)

Accordingly, the amplitude of the field is

A =
√

2hνZ/ε0. (2.14)

More generally, we can characterize a quasiplane wave by

E = A cos[ω(t − t0) − kz + ϕ0], (2.15)
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Fig. 2.3 Amplification of radiation in an active medium

where the time t0 defines the time axis and ϕ0 the z axis. The corresponding complex

field is

Ẽ = A ei[ω(t−t0)−kz+ϕ0]. (2.16)

If a wave propagates in a dielectric medium (dielectric constant ε), then ε0 has to be

replaced by εε0 in the expressions concerning u, Z , A, and intensity.

The transit of coherent radiation through an active medium (Fig. 2.3) results in an

increase of the photon density,

Z = G1 Z0, (2.17)

and of the energy density,

u = G1u0. (2.18)

G1 (>1) is the single-pass gain factor. Z0 is the photon density and u0 the energy

density in the incident beam. Z is the photon density and u the energy density in the

beam after passing through the active medium. We write

G1 = eαL , (2.19)

where α is the gain coefficient of the active medium and L the length of the active

medium. It follows that

α =
1

L
ln G1 =

1

ln 10

1

L
log G1 = 0.43

1

L
log G1. (2.20)

The transit of radiation through an absorbing medium results in a decrease of

energy density and of photon density,

u = Ḡ1u0, (2.21)

Z = Ḡ1 Z0, (2.22)

where Ḡ1 < 1 is the absorption factor (=Z/Z0). We write

Ḡ1 = e−αabs L . (2.23)

αabs is the absorption coefficient of a medium. It follows that

αabs =
1

L
ln Ḡ1 = 0.43

1

L
log Ḡ1. (2.24)
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Fig. 2.4 Frequency

dependence of the gain

coefficient of an active

medium. a Gain coefficient

at frequencies around a

resonance frequency. b Gain

coefficient at frequencies

around a transparency

frequency

We can interpret the absorption coefficient as a negative gain coefficient; for units of

gain, see Sect. 16.11.

An active medium can have a gain coefficient that has a maximum αmax at a

resonance frequency ν0 (Fig. 2.4a). The gain coefficient decreases toward smaller

and larger frequencies and remains positive. However, an active medium can have

a gain coefficient that changes sign (Fig. 2.4b). Such a medium has a transparency

frequency νtr— the active medium is amplifying at frequencies ν < νtr but absorbing

at frequencies ν > νtr.

2.3 An Active Medium

An atom (or molecule) used in a laser has two laser levels, besides other energy

levels. We ignore for the moment the other levels and describe an atom as a two-level

atomic system (Fig. 2.5) and accordingly an ensemble of atoms as an ensemble of

two-level atomic systems. We introduce the following notation.

• Level 2 (energy E2) = upper laser level.

• Level 1 (energy E1) = lower laser level.

• E21 = E2 − E1 = energy difference between the two laser levels = transition

energy.

• N2 = population of level 2 = density of excited two-level atomic systems =

number density (number per unit volume) of excited two-level atomic systems.

• N1 = population of level 1 = density of unexcited two-level atomic systems.

• N2 − N1 = population difference.

• N1 + N2 = density of two-level atomic systems.

Monochromatic electromagnetic radiation of frequency ν can interact with a two-

level atomic system if Bohr’s energy-frequency relation

hν = E21 = E2 − E1 (2.25)

http://dx.doi.org/10.1007/978-3-319-50651-7_16
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Fig. 2.5 Two-level atomic system and ensemble of two-level atomic systems

Fig. 2.6 Absorption and

stimulated emission

holds, that is, if the photon energy hν of the photons of the radiation field is equal

to the energy difference E21. But because of lifetime broadening of the upper level,

a two-level atomic system can also interact if hν is unequal to E21.

Two processes are competing with each other in a laser, absorption and stimulated

emission of radiation. In an absorption process (Fig. 2.6), a photon is converted to

excitation energy of a two-level atomic system by a 1 → 2 transition. An excited two-

level atomic system transfers by a stimulated emission process its excitation energy

to the light field. Einstein showed: Radiation created by stimulated emission has the

same frequency, direction, polarization and phase as the stimulating radiation.

If the active medium is an ensemble of two-level systems, the strength of stimu-

lated emission is proportional to N2, and the strength of absorption is proportional

to N1. We will later (Sect. 6.5) show, for an ensemble of identical two-level systems,

that the factor of proportionality is the same for both processes. The net effect is

proportional to the population difference N2 − N1. Stimulated emission prevails if

N2 − N1 > 0 while absorption prevails if N2 − N1 < 0. In an active medium, the

population difference N2 − N1 is larger than zero,

N2 − N1 > 0. (2.26)

Alternatively, we can write:

N2 > N1; (2.27)

in an active medium the population of the upper laser level is larger than the population

of the lower laser level. Stimulated emission and absorption compensate each other if

N2 = N1. In this case, the medium is transparent. We can formulate the transparency

condition:

N2 − N1 = 0. (2.28)

http://dx.doi.org/10.1007/978-3-319-50651-7_6
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(If the lower laser level has the degeneracy g1 and the upper laser level the degen-

eracy g2, the criterion of population inversion is

g2 N2 − g1 N1 > 0. (2.29)

We assume, for convenience, in the following that g1 = g2.)

It is useful, in particular with respect to the treatment of semiconductor lasers, to

make use of occupation numbers. We introduce the (relative) occupation number

fi =
Ni

∑

Ni

, (2.30)

where Ni is the population of level i and
∑

Ni is the sum of the populations of all

levels of an ensemble of atomic systems. The sum of the relative occupation numbers

of an ensemble is unity,
∑

fi = 1. The relative occupation number fi is equal to the

probability that level i is occupied.

The relative occupation number of the upper laser level (Fig. 2.7) is equal to

f2 =
N2

N1 + N2

, (2.31)

and the relative occupation number of the lower laser level is

f1 =
N1

N1 + N2

. (2.32)

The sum of the relative occupation numbers is unity,

f2 + f1 = 1. (2.33)

The occupation number difference (that is the difference between two probabilities) is

f2 − f1 =
N2 − N1

N1 + N2

. (2.34)

The occupation number difference is the ratio of the population difference N2 − N1

and the density N1 + N2 of two-level atomic systems. Thus, the population difference

is equal to the occupation number difference times the density of two-level atomic

systems,

N2 − N1 = ( f2 − f1)(N1 + N2). (2.35)

Fig. 2.7 Relative occupation

numbers of a two-level

atomic system
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It follows that the strength of stimulated emission of radiation is proportional to

f2, and that the strength of absorption of radiation is proportional to f1. The net

effect—the difference between the strength of stimulated emission and absorption—

is proportional to f2 − f1. Stimulated emission prevails if

f2 − f1 > 0, (2.36)

while absorption prevails if f2 − f1 < 0. The condition f2 − f1 > 0 is again the

condition of gain. We can write the transparency condition in the form:

f2 − f1 = 0; (2.37)

a medium is transparent if the occupation number difference (more accurately: the rel-

ative occupation number difference) is zero. The corresponding density of two-level

atomic systems in the upper laser level is the transparency density Ntr (= N2,tr).

A population inversion corresponds to a nonequilibrium state of an ensemble of

two-level atomic systems. At thermal equilibrium, the population N2 of an ensemble

of two-level atomic systems is always smaller than the population N1.

Thermal equilibrium of many media containing an ensemble of atomic systems

is governed by Boltzmann’s statistics. If Boltzmann’s statistics holds, the ratio of the

population of the upper level and the population of the lower level is given by

N2

N1

= e−(E2−E1)/kT , (2.38)

where k (= 1.38 × 10−23 J K−1) is Boltzmann’s constant and T the temperature of

the ensemble. At thermal equilibrium, the population difference is always negative,

N2 − N1 < 0; the net effect of stimulated emission and absorption of radiation results

in damping of radiation at the frequency ν ∼ (E2 − E1)/h. For an ensemble of two-

level atomic systems, which obeys Boltzmann’s statistics, the occupation number of

the upper level is equal to

f Boltz
2 =

N2

N1 + N2

=
1

exp[(E2 − E1)/kT ] + 1
(2.39)

and the occupation number of the lower level is

f Boltz
1 =

N1

N1 + N2

=
1

exp[−(E2 − E1)/kT ] + 1
. (2.40)

At thermal equilibrium, the relative occupation number of the lower level is always

larger than the relative occupation number of the upper level, f Boltz
1 − f Boltz

2 > 0,

that is, at thermal equilibrium, absorption always exceeds stimulated emission.
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In the case that the energy levels of an ensemble governed by Boltzmann’s statistics

are degenerate, the relative occupation number of level i is given by

f Boltz
i =

gi exp [Ei/kT ]
∑

gi exp [Ei/kT ]
. (2.41)

In atomic physics and thermodynamics, the occupation number of an atomic level

concerns the total number of atoms. To describe laser media, it is convenient to make

use of number densities and of relative occupation numbers. In order to avoid a

confusion, we mark total numbers by the suffix “tot.” If an ensemble of two-level

systems is distributed in the volume V , we are dealing with the following quantities:

• N1 = density of atoms in level 1.

• N2 = density of atoms in level 2.

• N1,tot = N1 × V = occupation number of level 1 = total number of two-level

systems in level 1.

• N2,tot = N2 × V = occupation number of level 2 = total number of two-level

systems in level 2.

• Ntot= (N1 + N2) × V = total number of two-level atomic systems.

• f2 = N2/(N2 + N1) = N2,tot/Ntot × V = relative occupation number of level 2.

• f1 = N1/(N2 + N1) = N1,tot/Ntot × V = relative occupation number of level 1.

• f2 − f1 = (N2 − N1)/(N2 + N1) = (N2,tot − N1,tot)/Ntot = occupation number

difference (=difference of the relative occupation numbers).

We will use the notation “occupation number” instead of “relative occupation num-

ber.”

2.4 Laser Resonator

The Fabry–Perot resonator (Fig. 2.8) consists of two plane mirrors arranged in par-

allel at a distance L; the Fabry–Perot resonator is an open resonator—it has no

sidewalls. We consider a Fabry–Perot resonator with reflectors of rectangular shape.

We choose cartesian coordinates with the z axis parallel to the resonator axis; laser

Fig. 2.8 Fabry–Perot

resonator
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radiation propagates along z. Characteristic quantities of a Fabry–Perot resonator

are:

• a1 = width of the resonator (along x).

• a2 = height of the resonator (along y).

• L = length of the resonator (along z).

• z = 0 = location of mirror 1.

• z = L = location of mirror 2.

• R1 = reflectivity of mirror 1.

• R2 = reflectivity of mirror 2.

We assume for the mirrors are perfectly reflecting (R1 = R2 = 1) and describe

the laser field within a resonator as a quasiplane standing wave composed of two

waves of equal amplitude and opposite propagation directions:

E =
1

2
A cos[ωt − (kz − ϕ0)] +

1

2
A cos[ωt + (kz − ϕ0)]. (2.42)

The field E and the amplitude A have an orientation along a direction (e.g., the

x direction) perpendicular to the z direction. Using the relations cos (α ± β) =

cos α cos β ∓ sin α sin β, we can write (2.42) in the form

E = A cos(kz − ϕ0) cos ωt, (2.43)

which describes a standing wave. To find k, ω, and ϕ0, we make use of three condi-

tions:

• The solution of the resonator eigenvalue problem provides discrete values of the

wave vector.

• The dispersion relation for electromagnetic radiation then yields the resonance

frequencies of a resonator.

• Two boundary conditions for electromagnetic fields provide the phase.

The resonator eigenvalue problem reads: after a round trip transit through the

resonator, the field at a location z at time t + T is the same as the field at time t ,

E(z, t + T ) = E(z, t). (2.44)

This leads to the condition

2kL = l × 2π; l = 1, 2, 3, . . . . (2.45)

The integer l is the order of a resonance. The change of phase per round trip transit

is 2kL = 2π . Accordingly, the wave vector has discrete values,

kl = l ×
2π

2L
. (2.46)
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Fig. 2.9 Resonance frequencies of the Fabry–Perot resonator

We obtain, with k = ω/c,

ωl = l ×
2πc

2L
, (2.47)

or

νl = l ×
c

2L
. (2.48)

The resonance frequencies (= eigenfrequencies) νl of a Fabry–Perot resonator are

multiples of c/2L . The resonance frequencies νl are equidistant. Next near resonance

frequencies have the frequency distance (Fig. 2.9)

νl − νl−1 =
c

2L
. (2.49)

The round trip transit time—the time it takes the radiation to perform a round trip

transit through the resonator—is

T = 1/ν1 = 2L/c. (2.50)

The resonance wavelengths of radiation in a Fabry–Perot resonator are given by the

relation

l × λl/2 = L; (2.51)

the length of the Fabry–Perot resonator is a multiple of λl /2. To determine the res-

onance wavelengths of a Fabry–Perot resonator containing a medium of refractive

index n, we have to take into account that the speed of light in a medium is c/n and

the wavelength is λ/n, where λ is the wavelength of light in vacuum.

Taking account of the boundary conditions and the dispersion relation, we obtain:

E = A cos(kl z − ϕ0) cos ωl t. (2.52)

The boundary conditions are: E = 0 at z = 0 and z = L . We obtain the phase

ϕ0 = π/2. Thus, the standing wave has the form

E = A sin kl z cos ωl t. (2.53)
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Fig. 2.10 Standing wave in a Fabry–Perot resonator. a Field E(z). b Phase of the field in the zy

plane. c Field lines in the xy plane for E ‖ x . d Field lines in the xy plane for E ‖ y

A resonance characterized by a frequency ωl = 2πνl and a wave vector kl corre-

sponds to a resonator mode, that is, to a particular pattern of the amplitude of the

electromagnetic wave within the resonator. Figure 2.10a shows the electric field E(z)

for t = 0 and T/2. At a fixed time, the field varies sinusoidally along the resonator

axis according to the variation of the phase kz. The sign of the field varies in z direc-

tion (Fig. 2.10b). The polarization of the electric field has a direction perpendicular

to the z axis—along the x axis (Fig. 2.10c) or along the y axis (Fig. 2.10d). We

now summarize the main properties of a quasiplane standing wave in a Fabry–Perot

resonator.

• Amplitude. The amplitude A is a constant everywhere within the Fabry–Perot

resonator.

• Phase variation along the z axis. The phase varies along the z axis.

• Phase variation perpendicular to the z axis. The phase does not vary in directions

perpendicular to the z axis.

• Polarization of the radiation. The field is oriented perpendicular to z.

Two waves propagating in opposite directions add to the field, now written in

complex form,

Ẽ =
1

2
A ei[ωt−(kz−ϕ0)] +

1

2
A ei[ωt+(kz−ϕ0)]. (2.54)
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The energy density of the field at a location z in the resonator averaged over a period

of time is equal to

u(z) =
1

2
ε0 A2 sin2 kl z (2.55)

and the photon density (also averaged over a period of time) is

Z(z) =
ε0 A2

2hν
sin2 kl z. (2.56)

The average taken over a wavelength of the radiation yields the average energy

density u of the electromagnetic field in the resonator

u =
1

4
ε0 A2 (2.57)

and the average photon density

Z =
u

hν
=

ε0

4hν
A2. (2.58)

If a resonator has two reflectors both with R = 1, light within the resonator travels

without loss; it performs an infinite number of round trip transits. But the number

of round trip transits is finite if one of the reflectors is a partial reflector acting as

output coupling mirror. Then, a reflection at the output coupling mirror corresponds

to a reduction of the energy density within the resonator. How long does a photon

remain in a resonator? We consider the energy density u at a fixed location within

the resonator (Fig. 2.11). After one round trip of the radiation, the energy density is

V u, where the V factor describes how much of the energy remained in the resonator

after one round trip transit; accordingly, the photon density Z is reduced to V Z after

one round trip of the radiation. The V factor is a measure of loss.

• V factor = fraction of radiation energy that remains in the resonator after a round

trip transit = fraction of the number of photons remaining in the resonator after

one round trip = survival probability of a photon after a round trip transit through

the resonator.

• V = 1, there is no loss.

• V < 1, there is loss.

Fig. 2.11 Resonator with loss
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The photon density develops as follows:

t = 0; Z0.

t = T ; one round trip transit, Z = V Z0.

t = sT ; s round trip transits,

Z(s) = V s Z0. (2.59)

Replacing s by the continuous variable t/T , we write

Z(t) = Z0V t/T . (2.60)

Using the identity ax = ex ln a , we obtain

Z(t) = Z0 e−κt = Z0 e−t/τp , (2.61)

where

κ =
1

τp

=
− ln V

T
(2.62)

is the loss coefficient of the resonator and

τp =
T

− ln V
(2.63)

is the photon lifetime (= average lifetime of a photon in the resonator = decay time

of the energy density of radiation in the resonator). We write the V factor as

V = e−T/τp = e−κT . (2.64)

The energy density decreases exponentially with the same decay constant as the

photon density,

u = u0 e−t/τp = u0 e−κt , (2.65)

where u0 is the initial energy density.

If the loss is due to both output coupling loss (described by Vout) and internal loss

in the resonator (Vi), the total V factor is equal to

V = VoutVi. (2.66)

Then the loss coefficient of a resonator is

κ = κout + κi , (2.67)
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where

• κout is the decay coefficient due to output coupling of radiation and

• κi is the loss coefficient due to internal loss.

Diffraction at the reflectors, for instance, causes internal loss.

The relative decrease of the energy density after one round trip transit is

(u − V u)/u = 1 − V . (2.68)

The quantity 1 − V is the loss per round trip transit.

Example A resonator has the V factor V = 0.9. This means:

• There remain, after one round trip of the radiation, 90% of the photons in the

resonator.

• The loss per round trip is 10%.

• The photon lifetime is τp = T/(− ln V ) = 9.5T .

• The survival probability of a photon after a round trip through the resonator is 0.9.

2.5 Laser = Laser Oscillator

The laser (=laser oscillator) is a self-excited oscillator (=self-sustained oscillator). It

is characteristic of a self-excited oscillator that it starts oscillation itself and maintains

oscillation as long as pump energy is supplied by an external energy source.

We mention a classical self-excited oscillator. A string of a violin is excited to

an oscillation during a continuous motion of the bow. The string together with the

bow, which steadily delivers energy to the oscillation, is a self-excited oscillator. The

length of the string determines the fundamental frequency.

We will now formulate the condition of laser oscillation and also show that the

buildup of a steady state oscillation takes time.

2.6 Radiation Feedback and Threshold Condition

Radiation in a resonator containing an active medium is repeatedly propagating

through the active medium. The active medium experiences feedback from the radi-

ation that is stored in the resonator.

We now assume that population inversion and gain are suddenly turned on at time

t = 0. At the start of a laser oscillation, the energy density of the radiation is u.

The energy density is equal to V Gu after one round trip (Fig. 2.12). G is the gain



2.6 Radiation Feedback and Threshold Condition 33

Fig. 2.12 Balance of energy in a laser

factor per round trip transit. It is equal to the product of the single-pass gain factors

(G = G2
1). The energy density increases if

V Gu > u (2.69)

or

GV > 1. (2.70)

The energy in a resonator increases with time if the product of the gain factor and

the V factor is larger than unity. Without loss (V = 1), the energy density after one

round trip is Gu. The relative increase of the energy density after one round trip is

Gu − u

u
= G − 1. (2.71)

The quantity G − 1 is the gain per round trip. If gain and loss are present, we can

write the condition of net gain in the form

Gu − u

u
>

u − V u

u
(2.72)

or

G − 1 > 1 − V, (2.73)

gain per round trip > loss per round trip. We did not differ between radiation

propagating in the resonator in clockwise or counterclockwise direction: we supposed

that propagation in both directions leads to gain.

We assume that V does not change with time. Can we also assume that the gain

factor G is independent of time? If G would be constant, the energy in the laser

would permanently increase and reach an infinitely large value. But this is not the

case if V < 1. Then the energy in a laser resonator becomes finite—G decreases

during the buildup of the light field in the laser resonator. We have the condition that

V G∞u = u at steady state or

G∞V = 1; (2.74)

at steady state oscillation, the product of the gain factor G∞ and the V factor is 1.
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Fig. 2.13 Gain during onset of laser oscillation

We describe the following case: an active medium is suddenly turned on at time

t = 0. The initial gain factor is G0 (Fig. 2.13). The gain factor remains nearly constant

and then decreases to the steady state value G∞. The transition from G0 to G∞ occurs

at the onset time ton, which is a measure of the time it takes to build up a steady state

oscillation. G0 is the small-signal gain factor and G∞ the large-signal gain factor. The

two conditions lead to the threshold condition of laser oscillation (= laser condition):

GV ≥ 1. (2.75)

The condition implies that during the buildup of a laser field, G is larger than at

steady state oscillation. We can also interpret the threshold condition as follows:

an oscillation builds up if G0 is only slightly larger than G∞. In the extreme case

that G0 → G∞, reaching a steady state takes infinitely long time (ton → ∞). In this

sense, we introduce the threshold gain factor,

G th = G∞. (2.76)

The small-signal gain factor G0 is always larger than the large-signal gain factor G∞

(= G th). At steady state oscillation, the gain factor is clamped at

G∞ = V −1. (2.77)

We will treat onset of oscillation in more detail (Sects. 2.9, 8.4, and 9.7; Fig. 9.6).

A laser is a regenerative amplifier: at steady state oscillation, radiation lost during a

round trip transit through the resonator is regenerated after the round trip.

The energy density of radiation in a lossless resonator of a continuously pumped

laser increases to infinitely large values—but optical damage limits the energy density

(Sect. 16.10).

http://dx.doi.org/10.1007/978-3-319-50651-7_8
http://dx.doi.org/10.1007/978-3-319-50651-7_9
http://dx.doi.org/10.1007/978-3-319-50651-7_9
http://dx.doi.org/10.1007/978-3-319-50651-7_16
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2.7 Frequency of Laser Oscillation

At steady state oscillation, the electric field at a fixed location in the laser resonator

reproduces itself after each round trip transit through the resonator; this is the res-

onator eigenvalue problem in the case that a resonator contains an active medium.

The electric field in a resonator (Fig. 2.14) has to obey the condition

G̃EṼE exp(−i(2kL − ∆φ − ϕ3 + ϕR1 + ϕR2)) Ẽ = Ẽ . (2.78)

The quantities concern a round trip transit through the active medium.

• G̃E = GEeiϕ1 = complex gain factor with respect to the field.

• ṼE = VEeiϕ2 = complex loss factor with respect to the field.

• 2kL = geometric phase shift.

• ϕR1 = phase shift due to reflection at one of the mirrors.

• ϕR2 = phase shift due to reflection at the other mirror.

• ϕ3 = phase shift due to dispersion in the resonator (Sect. 13.3).

• ∆φ = Gouy phase shift = additional phase shift occuring for radiation propagating

in a resonator with curved mirrors (Sect. 11.7); the Gouy phase shift of radiation

in a Fabry–Perot resonator is zero.

We obtain the condition

GEVE exp−i(2kL − ∆φ − ϕ3 − ϕ1 − ϕ2 + ϕR1 + ϕR2) = 1. (2.79)

The factor to the exponential has to be equal to unity, and the sum of all phases has

to be a multiple of 2π . It follows that GEVE = 1 and, with G2
E = G and V 2

E = V ,

that GV = 1 as already derived in the preceding section. The second condition is

2kL − ∆φ − ϕ3 + ϕR1 + ϕR2 = l × 2π, (2.80)

where l is an integer. The sum of all changes of phase after a round trip transit has

to be a multiple of 2π . Since k = ω/c, the condition provides the eigenfrequencies

ωl = 2πνl . In the special case that all additional phases—but not the geometric

phase shift kz—are zero, we obtain the eigenfrequencies νl = lc/(2L), with l = 1,

2, …; otherwise the resonance frequencies are shifted.

Fig. 2.14 Field in a laser

http://dx.doi.org/10.1007/978-3-319-50651-7_13
http://dx.doi.org/10.1007/978-3-319-50651-7_11
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Electromagnetic radiation propagating in a medium of refractive index n has the

wave vector k = nω/c. It depends on the properties of the resonator and of the active

medium at which resonance frequency (or frequencies) a laser oscillates.

We will discuss the origin of phase shifts of electromagnetic wave propagating in

an active medium in Chap. 9 and phase shifts of an electromagnetic wave in a laser

resonator in Chap. 11 and Sect. 13.4.

2.8 Data of Lasers

Table 2.1 shows data of continuous wave lasers. The data concern the quantities (see

also Fig. 2.15):

• L = resonator length.

• d = diameter in case of a circular resonator.

• a1 = width and a2 = height of a rectangular resonator.

• Resonator volume = π(d/2)2 L of a circular-mirror resonator and a1a2 L of a

rectangular resonator.

• G = gain factor per round trip of the radiation; G1, per single transit.

• V = V factor per round trip; it indicates the reduction of the photon density in the

resonator per round trip transit, and V1 loss per single transit.

• Pout = output power.

By modifying a laser (e.g., by choosing an other cross sectional areas), it can be

possible to obtain a larger or a smaller output power. The lasers generate radiation at

wavelengths listed in the table but also at other wavelengths. The length of the active

medium of a gas laser is about equal to the length of the resonator. The length of the

active medium of a solid state laser is smaller than the resonator length. The length

of the active medium of a semiconductor laser is about equal to the resonator length.

Semiconductor lasers have much smaller sizes than other lasers.

• Helium–neon laser. The gain is small. Therefore, the V factor has to be close to

unity—the reflectivities of the resonator mirrors have to be near unity

Table 2.1 Data of lasers

Laser λ L(m) Resonator

d(m), or

a1 (m); a2 (m)

Volume

(m3)

G [or G1] V [or V1] Pout (W)

HeNe 633 nm 0.5 2 × 10−3 5 × 10−5 1.02 0.99 10−2

CO2 10.6 µm 0.5 2 × 10−2 5 × 10−3 3 0.95 70

Nd:YAG 1.06 µm 0.5 2 × 10−2 5 × 10−3 50 0.9 2

TiS 830 nm 0.5 2 × 10−2 5 × 10−3 50 0.9 5

Fiber 1.5 µm 10 10−5 10−9 100 0.5 1

SC 810 nm 10−3 10−6; 10−4 10−13 [12] [0.3] 10−1

QCL 5 µm 10−3 10−5; 10−4 10−12 10 0.9 10−3

http://dx.doi.org/10.1007/978-3-319-50651-7_9
http://dx.doi.org/10.1007/978-3-319-50651-7_11
http://dx.doi.org/10.1007/978-3-319-50651-7_13
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Fig. 2.15 Various lasers

(e.g., R1 = 0.998 and R2 = 0.99). A glass plate covered on the front surface with

a highly-reflecting multilayer coating and on the back surface with anantireflecting

dielectric coating is a high-reflectivity mirror (Sect. 25.7). The front surface with

its coating acts as resonator mirror while the back surface is outside the resonator.

The glass tube that contains the laser gas is closed by Brewster windows.

• CO2 laser. The gain is large. One of the reflectors is a metal mirror; a metal mirror

has a reflectivity near unity for radiation at wavelengths larger than about 5 µm.

The output coupling mirror has a reflectivity that is noticeably smaller than unity

(e.g., R1 = 1; R2 = 0.95). The output coupling mirror is a dielectric plate (e.g.,

a germanium plate) covered on the resonator side with a dielectric multilayer

coating and on the other side with a dielectric antireflecting coating; a metal film

is not suitable as a partial reflector because of a very high absorptivity for radiation

passing through a metal film (Problem 25.18).

• Neodymium YAG laser (Nd:YAG laser). The gain is large. The length of the active

medium is much smaller than the length of the resonator. Both mirrors (e.g., R1 ∼ 1

and R2 = 0.95) consist of dielectric multilayers on glass plates. The Nd:YAG

crystal surfaces are obliquely oriented relative to the beam axis so that the angle of

incidence of the radiation is the Brewster angle and radiation traverses the crystal

surfaces without loss.

• Titanium–sapphire laser. The active medium also fills a small portion of the res-

onator. The gain is large (mirror reflectivities are, e.g., R1 ∼ 1 and R2 ∼ 0.95). The

titanium–sapphire crystal surfaces are obliquely oriented relative to the beam axis

so that the angle of incidence of the radiation is the Brewster angle and radiation

traverses the crystal surfaces without loss.

• Fiber laser. The active medium is a doped fiber of small diameter and large length.

The output power can reach several hundred watt.

• Bipolar semiconductor laser (SC). The gain can be large already at a small length

of an active medium. It is possible to use the semiconductor surfaces as reflectors.

http://dx.doi.org/10.1007/978-3-319-50651-7_25
http://dx.doi.org/10.1007/978-3-319-50651-7_25
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Fig. 2.16 Brewster angle

Then each of the surfaces has the reflectivity R1 = R2 = R = (n − 1)2/(n + 1)2,

where n is the refractive index of the semiconductor laser material. The resonator

material of a GaAs semiconductor laser has the refractive index n = 3.6, and the

reflectivity has a value (R = 0.32) that is markedly smaller than unity.

• Quantum cascade laser. The gain is also large at small length of the gain medium.

Radiation passing at normal incidence through an interface between air and a

medium experiences loss due to reflection, while radiation of the appropriate polar-

ization direction passes the interface under the Brewster angle without reflection

loss. The Brewster angle follows from Snell’s law

sin α2

sin α1

=
n1

n2

, (2.81)

where α1 is the angle of incidence, α2 the angle of the transmitted beam, n1 (∼ 1)

the refractive index of air, and n2 the refractive index of the dielectric material.

The reflectivity is zero if the electric field vector lies within the plane of incidence

(p polarization) and if the angle of incidence is equal to the Brewster angle αB

(Fig. 2.16). The Brewster angle is determined by the relation

tan αB = n2/n1. (2.82)

The diffracted and the reflected beam (that has no power) are perpendicular to

each other. Radiation of a polarization perpendicular to the plane of incidence

(s polarization) is partly reflected and is therefore attenuated by a Brewster win-

dow. Accordingly, the radiation of a laser that contains Brewster windows is polar-

ized.

2.9 Oscillation Onset Time

The threshold condition does not specify the value of the initial energy density of the

electromagnetic field. However, there is a physical limit: if there is no electromagnetic

energy in the resonator, nothing can be amplified. Already one photon in the resonator
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can initiate laser oscillation if the threshold condition is fulfilled. One photon in a

resonator corresponds to a photon density of Z0 = (a1a2 L)−1, where a1a2 L is the

volume of the resonator. After the round trip transit time, the density of the photons

is V G0 and after s round trip transits, the density of the photons in the resonator is

Z(s) = Z0(V G0)
s . (2.83)

To estimate the onset time, we assume that the gain, described by the round trip

gain factor G0, is turned on at t = 0, then remains constant, and suddenly decreases

at t = ton to G∞ (Fig. 2.17, upper part). It follows that the photon density increases

exponentially from the initial value Z0 until it reaches at t = ton the steady state value

Z∞ (= density of photons in the resonator at steady state oscillation). We write

(V G0)
son = Z∞/Z0, (2.84)

where son is the number of round trip transits necessary to reach the steady state. It

follows that the oscillation onset time, ton = sonT , is given by

ton = T
ln(Z∞/Z0)

ln(V G0)
. (2.85)

The onset time is proportional to the round trip transit time and to the natural logarithm

of Z∞/Z0. And it is inversely proportional to the natural logarithm of the product

V G0.

We replace s by the continuous variable t/T and write

Z(t) = Z0 (V G0)
t/T . (2.86)

Fig. 2.17 Onset of laser

oscillation: gain factor and

photon number
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With the identity ax = ex ln a , we obtain

Z = Z0 eln(V G0)t/T . (2.87)

The number of photons increases exponentially until, at t = ton, a steady state oscil-

lation is established.

It follows, for 1 − V ≪ 1 and G0 − 1 ≪ 1, that ln(V G0) = ln V + ln G0 =

(G0 − 1) − (1 − V ) = gain minus loss per round trip. Then we can write

ton =
T

(G0 − 1) − (1 − V )
ln(Z∞/Z0). (2.88)

If the gain is small compared to unity, (G0 − 1) ≪ 1, the oscillation onset time is

large compared to the round trip time, ton ≫ T .

Example A helium–neon laser (length 0.5 m; cross-sectional area 1 mm2; output

power 1 mW; gain = G − 1 = 0.02; loss 1 − V = 0.01) starts with one photon in

the laser mode (Z0a1a2 L = 1) and contains, at steady state oscillation, Z∞a1a2 L =

Poutτp = 1010 photons, where τp = T/(1 − V ) = 3.3 × 10−7 s is the photon life-

time. The density of photons in the resonator at t = 0 is Z0 = (a1a2 L)−1 =

106 m−3. The density of photons at steady state oscillation is Z∞ ∼ 1016 m−3. The

round trip transit time is T = 3.3 × 10−9 s. It follows that the onset time is ton ∼ 8 µs.

The buildup of steady state oscillation of a helium–neon laser requires that the radi-

ation performs about thousand round trip transits through the resonator. The photon

density (Fig. 2.17, lower part) increases exponentially during the onset time (t < ton)

and has a constant value for t > ton.

References [1–11, 26–28].

Problems

2.1 Photon density. Calculate the density Z of photons in a radiation field (wave-

length 1 µm, 1 nm, or 1 mm) of an energy density of 1 J m−3.

2.2 Amplitude of a field in a resonator containing a medium of the dielectric con-

stant ε = 1 at the laser wavelength.

(a) Determine the amplitude of a field that corresponds to radiation of an energy

density of 1 J/m3.

(b) Evaluate the photon density Z , the field amplitude, and the energy density in a

laser resonator (size 1 cm3) if the resonator contains 1 photon and if the energy

of a photon corresponds to a wavelength of 1 µm.

(c) Evaluate the photon density, the field amplitude, and the energy density in a laser

resonator (size 0.4 µm × 100 µm × 500 µm) if it contains 1 photon (photon

wavelength 1 µm).
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2.3 Thermal occupation number of an atomic system governed by Boltzmann

statistics.

(a) Show that f Boltz
1 − f Boltz

2 > 0 for an ensemble of two-level atomic systems in

thermal equilibrium.

(b) Estimate the thermal occupation number difference f Boltz
2 − f Boltz

1 for an ensem-

ble of two-level atomic systems (at 300 K) at level separations that correspond

to visible radiation (wavelength of 600 nm).

(c) Calculate the occupation number difference at level separations that correspond

to far infrared radiation (λ = 300 µm).

2.4 Threshold condition of laser oscillation.

(a) Show that the threshold condition (expressed for the power of radiation) is the

same for light propagating in −z direction as for light propagating in +z direc-

tion.

(b) Show that the threshold condition is also the same for two electromagnetic fields

propagating in ± z directions if G2 �= G1, where the gain factors correspond to

the single-pass gain factors for the two propagation directions.

2.5 Brewster angle. Determine the Brewster angles of materials used in lasers as

windows or as active materials.

(a) Helium–neon laser (633 nm); quartz glass, n = 1.4.

(b) CO2 laser; NaCl crystal, n = 1.5.

(c) Nd:YAG laser; YAG, n = 1.82.

(d) Titanium–sapphire laser; sapphire, n = 1.76.

2.6 Photon lifetime and oscillation onset time. Determine the photon lifetime and

the oscillation onset time of lasers mentioned in Table 2.1.

2.7 Fresnel coefficients.

Derive the Brewster angle by use of the Fresnel coefficients:

r⊥ =
E

(r)
⊥

E
(i)
⊥

=
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2

, (2.89)

t⊥ =
E

(t)
⊥

E
(i)
⊥

=
2n1 cos θ1

n1 cos θ1 + n2 cos θ2

, (2.90)

r|| =
E

(r)
||

E
(i)
||

=
n2 cos θ1 − n1 cos θ2

n1 cos θ1 + n2 cos θ2

, (2.91)

t|| =
E

(t)
||

E
(i)
||

=
2n1 cos θ1

n1 cos θ1 + n2 cos θ2

. (2.92)

• r⊥ = Fresnel coefficient of reflection, with the electric field direction perpendicular

to the plane of incidence.
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• r|| = Fresnel coefficient of reflection, with the electric field direction in the plane

of incidence.

• θ1 = angle of incidence.

• θ2 = angle of the refracted beam.

• n1 = refractive index of medium 1.

• n2 = refractive index of medium 2.

The coefficients r⊥ and r|| are the corresponding Fresnel coefficients of transmission.

2.8 Fresnel coefficients of normal incidence.

(a) Show that r|| = r⊥ = r = (n1 − n2)/(n1 + n2) and t|| = t⊥ = t = 2n1/

(n1 + n2) and determine the reflectivity R and the transmissivity T.

(b) Show that r21 = −r12 and that t12t21 − r12r21 = 1.

2.9 Relate the intensity of radiation to the photon density.

2.10 Photon flux. The photon flux is equal to the number of photons per second

per unit area.

(a) Relate to other quantities that characterize a plane wave, namely photon density,

energy density, intensity, and amplitude.

(b) Determine the photon flux for the radiation fields mentioned in Problem 2.1.

(c) Determine the photon flux for the output of the lasers mentioned in Table 2.1.

2.11 Determine the Brewster angle for laser materials mentioned in Table 6.1.

2.12 Radiation of a helium-neon laser (power 1 mW, wavelength 633 nm) is focused

to an area of diameter 10 µm2. Determine the intensity, the photon density, the energy

density and the amplitude of the electric field in the focus.

2.13 Circularly polarized radiation.

(a) Characterize the field of circularly polarized radiation.

(b) Show that circularly polarized radiation can be obtained by sending a plane wave

through a quarter-wave plate; a quarter-wave plate consists of an anisotropic

crystal with different refractive indices for the ordinary and the extraordinary

beam propagating in the same direction.

http://dx.doi.org/10.1007/978-3-319-50651-7_6


Chapter 3

Fabry–Perot Resonator

The main topics of this chapter concern the characterization of a resonator mirror,

of the Fabry–Perot interferometer, and of the Fabry–Perot resonator.

In the 1890s, Charles Fabry and Alfred Perot (Marseille, France) introduced the

Fabry–Perot interferometer. It consists, in principal, of two partial mirrors that have

infinitely large lateral extensions. We will determine the transmissivity of a Fabry–

Perot interferometer. The transmission curve (Airy curve) exhibits, at high reflectiv-

ities of the mirrors, narrow resonances with Lorentzian shape.

A Fabry–Perot resonator consists of two partial mirrors of finite lateral exten-

sions. The spectral transmission curve of a Fabry–Perot resonator is—for quasiplane

waves—the same as that of a Fabry–Perot interferometer. We will show that the

transmission curve narrows when a gain medium is inserted into a Fabry–Perot res-

onator.

We mention different types of laser resonators and then discuss properties of a

Fabry–Perot resonator. We introduce the ideal mirror and determine the transmission

curves of the Fabry–Perot interferometer and of the Fabry–Perot resonator.

The Fabry–Perot resonator, together with the description of radiation as a quasi-

plane waves, represents a model resonator that is well suited to study basic properties

of a resonator and of a laser. We will later (Sect. 11.6) show that the Fabry–Perot

resonator differs from the Fabry–Perot interferometer, particularly for radiation that

propagates at an angle to the resonator axis. There is another very important differ-

ence: radiation in a Fabry–Perot resonator experiences diffraction (Sect. 11.8) while

diffraction plays no role in a Fabry–Perot interferometer.

3.1 Laser Resonators and Laser Mirrors

There are different types of resonators:

• Resonator with curved mirrors as reflectors (Chap. 11). The resonators are suitable

for most of the gas and solid state lasers as well as for free-electron lasers.
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• Fabry–Perot resonator (this chapter). It has two plane reflectors. This resonator

represents an ideal model resonator suitable for the study of basic properties of a

resonator and of a laser. This type of resonator is used in vertical-cavity surface-

emitting lasers (Sect. 22.7).

• Waveguide Fabry–Perot resonator. It has two plane reflectors oriented parallel to

each other. Within the Fabry–Perot resonator, the light is guided by an optical

waveguide structure. This type of resonator is used in edge–emitting semiconduc-

tor lasers (Sect. 20.5) and fiber lasers (Sect. 15.7).

• Cavity resonator (Chap. 10). The cavity resonator has metallic walls. It is used as

resonator of semiconductor lasers of the far infrared and of microwave lasers.

• Photonic crystal resonator (Chap. 25). A reflector of a photonic crystal resonator

can consist of periodically arranged materials of different refractive indices. The

photonic crystal resonator can be a Fabry–Perot-like resonator or a cavity-like

resonator. Photonic crystal resonators are becoming more and more important of

a variety of lasers, e.g., of microlasers and nanolasers.

The design of mirrors of a laser resonator depends on the availability of materials of

mirrors. We mention a few types of mirrors:

• Ideal mirror (Sect. 3.4). The ideal mirror is lossless; its thickness is infinitely

small; it is able to divide an incident wave in a reflected and a transmitted wave.

We can choose the reflectivity of this model mirror. We will make use of the model

mirror to describe main properties of a Fabry–Perot resonator (this chapter) and

of resonators with curved mirrors (Chap. 11).

• Crystal surface. A crystal surface is able to divide, without loss, an optical wave in

a reflected and a transmitted wave. However, the reflectivity at normal incidence

is much smaller than unity. GaAs crystal surfaces are nevertheless suitable as

reflectors of semiconductor lasers (Sect. 20.5).

• Dielectric multilayer mirror (Sect. 25.7). A stack of dielectric quarter-wavelength

layers represents a dielectric multilayer mirror that can be designed as an almost

lossless reflector with a reflectivity very near to unity (e.g., R = 0.999) for vis-

ible radiation or as a lossless partial reflector with a reflectivity that we can

choose.

• Metal mirror. A metal mirror has a relatively low reflectivity and large absorp-

tivity for visible radiation and is not suitable as mirror of a laser that generates

visible radiation—a silver mirror shows a reflectivity of 0.95 and an absorptivity

of 5% for red light. Metal reflectors are in use as reflectors of infrared radiation

at wavelengths larger than several micrometers. Metal films are not suitable as

partial reflectors because the absorptivity of a metal film is much larger than the

transmissivity (see Problems 25.17 and 25.18).

In Chap. 25, we will discuss various mirrors and methods used for realization of

feedback and we will describe a method which is suitable to calculate properties of

multilayer reflectors. In this chapter we treat the Fabry–Perot resonator.

http://dx.doi.org/10.1007/978-3-319-50651-7_22
http://dx.doi.org/10.1007/978-3-319-50651-7_20
http://dx.doi.org/10.1007/978-3-319-50651-7_15
http://dx.doi.org/10.1007/978-3-319-50651-7_10
http://dx.doi.org/10.1007/978-3-319-50651-7_25
http://dx.doi.org/10.1007/978-3-319-50651-7_11
http://dx.doi.org/10.1007/978-3-319-50651-7_20
http://dx.doi.org/10.1007/978-3-319-50651-7_25
http://dx.doi.org/10.1007/978-3-319-50651-7_25
http://dx.doi.org/10.1007/978-3-319-50651-7_25
http://dx.doi.org/10.1007/978-3-319-50651-7_25
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3.2 V Factor and Related Quantities

We first study an empty Fabry–Perot resonator that has a reflector (reflectivity = 1)

and a partial reflector (reflectivity R) as described in Sect. 2.4. Radiation starting at

time t = 0 and performing many round trip transits through a resonator propagates

during the time t over a total distance d = ct . We can write

Z(d) = Z0 e−d/ lp . (3.1)

Z is density of photons after propagation over the distance d, Z0 is the photon density

at d = 0 and

lp = cτp =
2L

− ln V
(3.2)

is the average path length of a photon in the resonator. During its lifetime in the

resonator, a photon propagates over the distance lp. We introduce the effective number

seff = lp/2L of round trip transits of a photon. After seff round trip transits, the photon

density decreases to Z0/e. We obtain the relations

seff =
lp

2L
=

1

− ln V
=

τp

T
. (3.3)

Besides Z and u, also the total number Za1a2 L of photons in the resonator and

the total energy Za1a2 Lhv in the resonator decrease exponentially with the photon

lifetime τp.

The quality factor Q (=Q factor =Q value) of a resonator is equal to 2π times the

ratio of the energy stored in the resonator and the energy loss per oscillation period.

It follows that the Q factor of a Fabry–Perot resonator is given by

Q = 2πl ×
u × a1a2 L

u × a1a2 Lτ−1
p × T

= ωτp =
ωT

− ln V
=

2πl

− ln V
= 2πlseff . (3.4)

The Q factor is equal to the product of the order l of the resonance and the effective

number of round trip transits of a photon through the resonator, multiplied by 2π .

We summarize the relations of the V factor and other quantities:

• τp = T/(− ln V ) = lifetime of a photon in the resonator.

• lp = 2L/(− ln V ) = path length of a photon in the resonator.

• seff = 1/(− ln V ) = number of round trip transits of a photon within the resonator.

• Q = 2πl/(− ln V ) = Q factor.

T is the round trip transit time, L the length of the resonator, and l the order of

resonance. If V has a value near unity (1 − V ≪ 1), the expansion of ln V in a

http://dx.doi.org/10.1007/978-3-319-50651-7_2
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Table 3.1 Lifetimes of photons in laser resonators

Laser λ L (m) T (s) V ; [V1] τp (s)
τp

T

[

τp

T/2

]

HeNe 632 nm 0.5 3.3 ×10−9 0.99 3.3 × 10−7 100

CO2 10 µm 0.5 3.3 ×10−9 0.9 3.3 ×10−8 10

Nd:YAG 1.06 µm 0.5 3.3 × 10−9 0.9 3.3 × 10−8 10

TiS 830 nm 0.5 3.3 × 10−9 0.9 3.3 × 10−8 10

Fiber 1.5 µm 10 6.7 × 10−8 0.5 10−7 1.4

SC 840 nm 10−3 2.4 × 10−11 [0.33] 2.4 × 10−11 [0.9]

QCL 5 µm 10−3 2.4 × 10−11 0.9 2.4 × 10−10 10

Taylor series yields

− ln V = 1 − V . (3.5)

In the case that the output coupling loss is the main loss and that only a small

portion of radiation is coupled out per round trip transit, 1 − R ≪ 1, we obtain the

relations:

• V = R.

• τp = T/(− ln R) = T/(1 − R) = lifetime of a photon in the resonator.

• lp = 2L/(− ln R) = 2L/(1 − R) = path length of a photon in a resonator.

• seff = 1/(− ln R) = 1/(1 − R) = number of round trip transits.

• Q = 2πl/(− ln R) = 2πl/(1 − R) = Q factor.

Table 3.1 shows data of lifetimes of photons in different laser resonators. The

lifetimes differ by several orders of magnitude and correspond to ten to hundred

round trip transits through a resonators. There is an exception: a semiconductor

laser is, in principle, able to operate if the surfaces of a semiconductor act as laser

mirrors. A reflectivity of R = 0.33 of each of the surfaces (of a GaAs semiconductor

crystal) corresponds to a photon lifetime τp = 0.9T/2. The V factor at a single transit

is V1 = 0.33 and the laser threshold condition V1G1 = 1 requires a threshold gain

factor G1 = 3 at a single transit of the photons through the resonator.

3.3 Number of Photons in a Resonator Mode

The energy of radiation in a mode of a resonator is quantized (Fig. 3.1) and assumes

the values

En = n × hν, (3.6)
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Fig. 3.1 Number of photons

in a mode

Fig. 3.2 Laser mirror

with n = 0, 1, 2, . . .; we neglect the zero point energy. The occupation number n

is equal to the total number of photons in a single-mode resonator. The photon

occupation number of a mode of a rectangular Fabry–Perot resonator is Za1a2 L ,

where Z is the average photon density.

3.4 Ideal Mirror

We characterize a mirror by the complex reflection coefficient r̃ and the complex

transmission coefficient t̃ (Fig. 3.2). A plane wave

Ẽ (i) = A ei(ωt−kz) (3.7)

incident on a mirror is partly reflected and partly transmitted. The reflected field is

Ẽ (r) = r̃ A ei(ωt+kz) (3.8)

and the transmitted field is

Ẽ (t) = t̃ A ei(ωt−kz). (3.9)

We introduce an ideal mirror as a mirror of negligible thickness. The reflectivity of

the mirror is

R =
|Ẽ (r)|2

|Ẽ (i)|2
= |r̃ |2 (3.10)
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and the transmissivity of the mirror is

Tm =
|Ẽ (t)|2

|Ẽ (i)|2
= |t̃ |2. (3.11)

The sum of reflectivity and transmissivity of a lossless mirror is unity, R + Tm = 1.

(We use the subscript m to characterize the mirror transmissivity Tm to avoid a

confusion with the round trip transit time T .) We can write the reflection coefficient

in the form r̃ = reiϕ , where r =
√

R is the amplitude reflection coefficient and ϕ the

phase between reflected and incident wave. A reflector with the reflectivity R = 1

has a reflectivity coefficient r̃ = eiπ = −1, i.e., the field at z = 0 (location of the

mirror) has opposite direction relative to the incident field. Radiation that is reflected

from a partial mirror, with a reflectivity smaller than unity and a finite transmissivity,

shows a phase shift ϕR that differs from π .

3.5 Fabry–Perot Interferometer

A Fabry–Perot interferometer (Fig. 3.3) consists of two plane parallel partial

reflectors—of infinite lateral extensions—at a distance L . We consider an inter-

ferometer with two equal mirrors at z = 0 and z = L. Due to multiple reflections

within the interferometer, a plane wave incident on the interferometer is split into an

infinite number of plane waves. We treat the case that the propagation direction of

the radiation is parallel to the interferometer axis. Then, the partial waves transmitted

by the interferometer add to the transmitted field

Ẽ (t) = Ẽ1 + Ẽ2 + Ẽ3 + . . . = eikL t̃ t̃
(

1 + r̃2eiδ + r̃4e2iδ + . . .
)

Aei(ωt−kz), (3.12)

where

δ = k × 2L + 2ϕ = 2ωL/c + 2ϕ (3.13)

Fig. 3.3 Fabry–Perot interferometer
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is the phase difference between two successive partial waves and ϕ is the phase

change due to reflection at a mirror. The partial waves (described by a geometric

series) add to the plane wave

Ẽ (t) =
t̃ t̃

1 − r̃2eiδ
A ei[ωt−k(z−L)]. (3.14)

The transmissivity of the Fabry–Perot interferometer is given by

TFP =
|Ẽ (t)|2

|Ẽ (i)|2
=

T 2
m

1 + R2 − 2R cos δ
, (3.15)

where E (i) = A ei(ωt−kz) is the incident plane wave, Tm is the transmissivity, and R

the reflectivity of a mirror. With cos δ = 1 − 2 sin2 δ/2, we obtain the Airy formula

TFP =
T 2

m

(1 − R)2

1

1 + 4R(1 − R)−2 sin2(δ/2)
. (3.16)

The maximum transmissivity is equal to

TFP,max =
T 2

m

(1 − R)2
, (3.17)

obtained for

δl = l × 2π; l = 1, 2, . . . . (3.18)

The maxima appear at the frequencies

νl = l ×
c

2L
+

ϕ

2π

c

2L
; l = 1, 2, . . . . (3.19)

The frequency distance between next–near maxima is the free spectral range

∆ν1 =
c

2L
. (3.20)

The halfwidth (full width at half maximum; FWHM) of the Airy curve is equal to

∆νres =
νl

l F
=

1 − R

π
√

R
×

c

2L
. (3.21)
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The quantity

F =
π

√
R

1 − R
(3.22)

is the finesse of the Fabry–Perot interferometer. The halfwidth is independent of the

order of resonance.

In the case that the Fabry–Perot mirrors are lossless, Tm = 1 − R, the maximum

transmissivity is unity and the transmissivity of a Fabry–Perot interferometer is given

by

TFP =
1

1 + 4R(1 − R)−2 sin2 δ/2
. (3.23)

Figure 3.4 shows the transmissivity of the Fabry–Perot interferometer for different

values of the reflectivity R.

• R = 0.1. This case corresponds to a simple plane parallel plate, R = (n − 1)2

(n + 1)−2 = 0.1 for n = 1.9; application: low-Q resonator, suitable for wavelength

selection of a single-mode laser (Sect. 12.3).

• R = 0.3. This case corresponds to a GaAs plate for radiation at a wavelength

of 800 nm (n = 3.6; R = 0.33); application: low-Q resonator of semiconductor

lasers.

• R = 0.8. Such a Fabry–Perot interferometer shows already Lorentzian resonance

curves (see next section).

A Fabry–Perot interferometer can be used as an optical frequency analyzer. The

Fabry–Perot interferometer mainly transmits radiation of frequencies around νl , νl+1,

… and mainly reflects radiation at frequencies in the ranges between the resonances.

At resonance, the transmissivity is unity. The resolving power,

Fig. 3.4 Transmissivity of a Fabry–Perot interferometer

http://dx.doi.org/10.1007/978-3-319-50651-7_12
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νres

∆νres

=
λres

∆λres

= l F, (3.24)

is equal to the product of the order of resonance and the finesse; νres is a resonance

frequency, ∆νres the halfwidth of the transmission curve on the frequency scale,

λres = νres/c the resonance wavelength, and ∆λres the halfwidth on the wavelength

scale. The free spectral range (on the frequency scale) is equal to c/2L .

3.6 Resonance Curve of a Fabry–Perot Resonator

We can consider a Fabry-Perot interferometer as a Fabry-Perot resonator with two

equal mirrors. The resonance frequencies are

νl = l ×
c

2L
; l = 1, 2, . . . . (3.25)

The halfwidth

∆νres =
νl

l F
=

1 − R

π
√

R
×

c

2L
(3.26)

of the resonance curve is, as already mentioned, independent of the order of reso-

nance. If the reflectivity is near unity,
√

R ≈ 1, the halfwidth is given by

∆νres =
1 − R

πT
=

1

2πτp

. (3.27)

T = 2L/c is the round trip transit time of the radiation and

τp =
T

2(1 − R)
(3.28)

is the photon lifetime. If R ≈ 1, the Q factor is equal to

Qres =
νl

∆νres

=
πl

1 − R
= ωlτp. (3.29)

The values of τp and of Qres are half the corresponding values of a Fabry–Perot

resonator that consists of a reflector with a reflectivity of unity and another reflector

with a reflectivity R.

We consider the transmissivity of a Fabry–Perot resonator at frequencies in the

vicinity of a resonance. We expand the sine function in the denominator of (3.23),

sin (δ/2) = lπ(ν − νl)/νl . We find
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TFP =
∆ν2

res

4

1

(ν − νl)2 + (∆ν2
res/4)

, (3.30)

which we write as

TFP =
π∆νres

2
gL(νl), (3.31)

where

gL(ν) =
∆νres

2π

1

(ν − νres)2 + (∆νres/2)2
(3.32)

is the Lorentzian function (=Lorentz resonance function). It has the properties:

• νres = resonance frequency.

• ∆νres = halfwidth of the resonance curve.

• gL(ν0) = 2(π∆νres)
−1 ≈ 0.64/∆νres.

•
∫ ∞

0
gL(ν)dν = 1.

Our treatment shows that the resonance curve of a Fabry–Perot resonator (for R

near unity) is a Lorentzian, and that the halfwidth of the resonance curve is ∆νres =
1/2πτp. The width of the resonance curve is determined by the lifetime of a photon

in the resonator.

There is an essential difference between a Fabry–Perot interferometer and a Fabry–

Perot resonator:

• A Fabry–Perot interferometer has an infinite lateral extension.

• A Fabry–Perot resonator has finite lateral extensions, with the consequence that

specific mode patterns occur (Sect. 11.6) and that diffraction plays an important

role (Sect. 11.8).

3.7 Fabry–Perot Resonator Containing a Gain Medium

The field transmitted by a Fabry–Perot resonator containing a gain medium is given by

Ẽ (t) = eikL t̃ t̃G1,E

(

1 + G2
1,Er2eiδ + G4

1,Er4e2iδ + · · ·
)

Aei(ωt−kz). (3.33)

G1,E is the single-pass gain factor of the field. We assume that G1,E is real and that

G1 R = G2
1,Err∗ = GR is smaller than 1. We obtain the transmissivity of a Fabry–

Perot resonator containing an active medium:

T ∗
FP =

G(1 − R)2

(1 − GR)2
×

1

1 + 4GR
[

(1 − GR)−2 sin2 (δ/2)
] . (3.34)

http://dx.doi.org/10.1007/978-3-319-50651-7_11
http://dx.doi.org/10.1007/978-3-319-50651-7_11
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Fig. 3.5 Fabry–Perot

resonator containing an

active medium

The transmissivity (for 1 − R ≪ 1) is given by

T ∗
FP = T ∗

FP,max

(∆ν∗
res/2)2

(ν − νl)2 + (∆ν∗
res/2)2

. (3.35)

The transmission curve has Lorentzian shape. The halfwidth is equal to

∆ν∗
res =

1 − GR

π

c

2L
=

1 − GR

πT
. (3.36)

The maximum transmissivity (for δ = l × 2π ) is given by

T ∗
FP,max =

G(1 − R)2

(1 − GR)2
. (3.37)

The maximum transmissivity of a Fabry–Perot resonator containing an active

medium (Fig. 3.5) is larger than unity. Incident radiation is amplified. The transmis-

sivity becomes infinitely large for GR → 1. The halfwidth of the resonance curve

decreases with increasing GR and approaches zero for GR → 1. If GR > 1, a Fabry–

Perot resonator with an active medium is able to perform a self-excited oscillation—

an oscillation starts from noise and is self-sustained. We will show later (Sect. 8.9)

that the halfwidth of the spectral distribution of radiation generated in a resonator

containing an active medium can be very small but is always nonzero.

We mention that a quasiclassical oscillator can also generate radiation with

Lorentzian lineshape (Chap. 31, Fig. 31.3b).

Example Fabry–Perot resonator (R1 = R2 = R = 0.9) containing a gain medium

(G = 1.1). The peak transmissivity is T ∗
FP,max = 120 and the width ∆ν∗

res = 0.01/πT

in comparison to ∆νres = 0.1/πT .

References [1, 8, 9, 26, 28–30, 310].

http://dx.doi.org/10.1007/978-3-319-50651-7_8
http://dx.doi.org/10.1007/978-3-319-50651-7_31
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Problems

3.1 Number of modes of a resonator. How many modes of a Fabry–Perot resonator

of 1 cm length belong to the visible spectral range?

3.2 Photon lifetime. A resonator (length 10 cm) has loss due to output coupling

via a partial mirror (R = 0.9). Determine: V factor; number of round trip transits of

the radiation in the resonator; lifetime of a photon in the resonator; path length of a

photon during the lifetime in the resonator; Q factor of the resonator.

3.3 Resonator with air. A Fabry–Perot resonator of a length L = 0.5 m operates,

for visible radiation near 600 nm, in vacuum or in air (refractive index n = 1.00027).

(a) Evaluate the frequency difference between next–near resonances.

(b) Determine the change of the mode separation if the resonator, originally in

vacuum, is flooded with air.

3.4 Energy density of radiation in a Fabry–Perot resonator.

(a) Evaluate the average energy density of a quasiplane standing wave in a Fabry–

Perot resonator.

(b) Show that the average energy density is twice the energy density (averaged over

time and space) of two beams of light propagating in opposite directions.

3.5 Laser with two output coupling mirrors. A resonator with two output coupling

mirrors (reflectivities R1 = R2 = R, with R − 1 ≪ 1) emits radiation in two opposite

directions. Determine the V factor and the photon lifetime.

3.6 Photon density. Relate the average density of photons in a Fabry–Perot res-

onator and the average density of photons in the light beam outside the resonator for

the following two cases.

(a) R1 = 1 and R2 = R.

(b) R1 = R2 = R.

3.7 Evaluate the reflectivity of a symmetric lossless Fabry–Perot interferometer

(R1 = R2 = R).

3.8 Determine the transmissivity (Airy formula) of an asymmetric Fabry–Perot

interferometer.

3.9 Fabry–Perot interferometer with absorbing mirrors.

(a) Determine the transmissivity (Airy formula) and the maximum transmissivity

of a symmetric Fabry–Perot interferometer with two absorbing mirrors.

(b) What is the condition, with respect to the absorptivity of the mirrors, that the

maximum transmissivity of the Fabry–Perot interferometer is larger than 0.98?

[Hint: the sum of the transmissivity Tm, the reflectivity R, and the absorptivity

Am of a mirror is unity.]
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3.10 Fabry–Perot interferometer at obliquely incident radiation.

(a) Determine the resonance condition of a symmetric Fabry–Perot interferometer

if the direction of incident radiation has an angle θ relative to the interferometer

axis.

(b) Determine the resonance condition assuming that the interferometer is a plane

parallel plate.

3.11 Determine the reflectivity of a plane surface of a dielectric medium from Fres-

nel’s formulas of normal incidence (see Problems to Chap. 2).

3.12 Determine the mode spacing for different Fabry–Perot resonators: L = 1 m

(n = 1); L = 10 cm (n = 1); L = 10 µm (n = 3.6).

3.13 A Fabry–Perot interferometer with nonabsorbing mirrors has, for radiation at

a resonance frequency, a transmissivity of 1 although the entrance mirror can have,

for itself, a reflectivity of, for instance, 99%. Why do the boundary conditions of the

incident wave not require that a portion of radiation is reflected at the entrance mirror?

[Hint: sketch the incident field and the field that propagates within the interferometer

for a moment of strong field strength at the position of the entrance mirror and

compare the situation with the case that radiation is reflected at a single mirror rather

than at a resonator.]

3.14 Resonance frequencies of a Fabry–Perot interferometer. Determine the

resonance frequencies of a Fabry–Perot interferometer, taking account of phase

changes at the mirrors; suppose that radiation is propagating along the axis of the

interferometer.

(a) Show that the resonance condition leads to the frequencies ν ′
l = νl(1 + ϕR/2π),

where ϕR = 2π − (ϕR1 + ϕR2) and ϕR1 and ϕR2 are the phase changes due to

reflection at the two mirrors (R1 and R2).

(b) Show that the frequency distance between next-nearest modes is the same for

ϕR 	= 0 as for ϕR = 0.

(c) Show that the resonance wavelengths are equal to multiples of λ.

http://dx.doi.org/10.1007/978-3-319-50651-7_2


Chapter 4

The Active Medium: Energy Levels

and Lineshape Functions

We present a characterization of active media with respect to energy levels and line

broadening. We make a distinction between two-level based lasers and energy-ladder

based lasers.

In a two-level based laser, stimulated transitions occur between two levels of an

atomic system. A two-level system of a particular atom or molecule is a subsystem

of the energy levels of the atom or the molecule. We characterize the two-level based

lasers as: four-level lasers; three-level lasers; two-level lasers; two-band lasers; and

quasiband lasers. All presently operating lasers except free-electron lasers can, in

principle, be described as two-level based lasers.

In an energy-ladder based laser, stimulated transitions occur between levels of

energy-ladder systems. The (yet hypothetical) Bloch laser (Chap. 32) belongs to this

type. We will make use (Chap. 19) of the concept of an energy-ladder based laser to

illustrate properties of free-electron lasers.

Line broadening can be due to homogeneous or inhomogeneous broadening. We

discuss the Lorentzian and Gaussian lineshape functions. We describe the classical

oscillator model of an atom and the natural line broadening.

Finally, we introduce low-dimensional active media. In a low-dimensional

medium, the free motion of electrons is spatially restricted. There are two-dimensional

media, with electrons moving along a plane, or one-dimensional media, with elec-

trons moving along a line. The strongest restriction occurs in a zero-dimensional

medium—all three dimensions are restricted (like in an atom). The classification

as three-, two-, one-, and zero-dimensional media concerns semiconductor lasers.

The most important semiconductor lasers—quantum well lasers—operate with two-

dimensional active media.
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Fig. 4.1 Types of laser.

a Two-level based laser.

b Energy-ladder based laser

4.1 Two-Level Based and Energy-Ladder Based Lasers

A two-level based laser contains two-level atomic systems. Coherent radiation is

generated by stimulated transitions between the upper and the lower laser levels of

two-level systems (Fig. 4.1a). Quantities characterizing a two-level system are:

• E2 = energy of the upper laser level

• E1 = energy of the lower laser level

• E2 − E1 = transition energy

• ν0 = (E2 − E1)/h = transition frequency = atomic resonance frequency

The laser frequency has a value at or near the transition frequency,

νL ∼ ν0. (4.1)

We will characterize the two-level based lasers according to the number of different

levels involved in transitions in a laser medium (Sects. 4.2 and 4.3). A two-level

system is a subsystem of the energy level system of an atom or a molecule. All

presently operating lasers—except free-electron lasers—are two-level based lasers.

An energy-ladder based laser contains energy-ladder systems. A free-electron in

a spatially periodic field executes oscillations (free-electron oscillations). According

to an energy level description, an oscillating free-electron forms an energy-ladder

system and occupies one of the levels of the energy-ladder system. Stimulated emis-

sion of a photon by the oscillating electron corresponds to a stimulated transition

between next-near energy levels of the energy-ladder system (Fig. 4.1b). The energy

levels are equidistant,

El = l E0, (4.2)

where l is an integer, Quantities characterizing an energy-ladder system are:

• E0 = energy distance between next-near levels = transition energy.

• ν0 = E0/h = transition frequency = resonance frequency of the electron oscilla-

tion.
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The laser frequency νL of an energy-ladder based laser is slightly smaller than the

resonance frequency,

νL < ν0. (4.3)

We will describe the (yet hypothetical) superlattice Bloch laser (Sect. 32.8) as an

energy-ladder based laser. We will furthermore show that the free-electron laser can,

in principle, be interpreted as an energy-ladder based laser (Sect. 19.17).

4.2 Four-Level, Three-Level, and Two-Level Lasers

In a four-level laser (Fig. 4.2), a pump excites atoms, molecules, or other atomic

systems from the ground state level (level 0) to an excited state level (level 3 = pump

level). Relaxation leads to population of the upper laser level (level 2). Stimulated

emission by 2 → 1 transitions results in a population of the lower laser level (level 1).

Depopulation of the lower level occurs by relaxation to the ground state. We have

three relaxation processes, namely 3 → 2, then 2 → 1, and 1 → 0. We assume that

the relaxation 3 → 2 is very fast. We ignore other relaxation processes (e.g., 2 →
0). Continuous pumping maintains a permanent population inversion (N2 > N1) if

the relaxation time τ ∗
rel of the upper laser level is larger than the relaxation time τrel

of the lower laser level,

τ ∗
rel > τrel. (4.4)

Without stimulated emission, the population of the upper level is equal to the product

of the pump rate r and the relaxation time τ ∗
rel,

N2 = rτ ∗
rel. (4.5)

Pumping of a four-level laser medium creates two-level atomic systems; a two-

level atomic system is either in its ground state (level 1) or in its excited state (level 2).

Fig. 4.2 Four-level laser

(principle)

http://dx.doi.org/10.1007/978-3-319-50651-7_32
http://dx.doi.org/10.1007/978-3-319-50651-7_19
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Table 4.1 Relaxation times of laser levels

Laser λ τ ∗
rel τrel

HeNe 633 nm 100 ns 10 ns

CO2 10.6 µm 5 s < 5 s

Nd:YAG 1.06 µm 230 µs ≪ 230 µs

TiS 790 nm 3.8 µs 10−12 s

QCL 5 µm 10−11 s 10−12 s

The density of two-level atomic systems, N2 + N1, increases with increasing pump

strength. Population inversion in the active medium of a four-level laser medium

occurs already at the smallest pump rate.

The maximum efficiency of conversion of a pump quantum (energy E3 − E0) to

a laser light quantum (energy hν) is the quantum efficiency

ηq =
hν

E3 − E0

=
E2 − E1

E3 − E0

. (4.6)

The quantum efficiency is very small (ηq ≪ 1) if E2 − E1 ≪ E3 − E0. Then, a large

portion of the pump energy is converted to relaxation energy and therefore to heat

(or to radiation produced by spontaneous emission). The quantum efficiency is near

unity if the pump level lies only slightly above the upper laser level and if, at the

same time, the lower laser level lies only slightly above the ground state level.

Table 4.1 shows values of relaxation times of upper and lower laser levels of a few

laser materials. The relaxation times differ by many orders of magnitude. The relax-

ation 2 → 1 can be due to spontaneous emission of radiation or due to nonradiative

relaxation. Relaxation of the lower level can also be due to spontaneous emission

of radiation or due to nonradiative relaxation, that is, by a radiationless transition.

We will specify the relaxation processes later in connection with the discussion of

specific lasers. The lasers mentioned in the table can operate as continuous wave

lasers (τ ∗
rel > τrel).

Optical transitions between two discrete energy levels lead to fluorescence lines

and absorption lines that have finite linewidths (Sect. 4.4); the notation fluorescence

is used for photo luminescence (=optically excited luminescence).

Many laser media have levels with energy distributions. A pump band has, in

comparison to a single pump level, the advantage that a lamp that emits radiation in

a broad spectral range can pump a laser. In the case of pumping with another laser,

radiation of different frequencies is suitable for pumping.

Examples of four-level lasers: neodymium YAG laser; titanium–sapphire laser.

We are dealing with a three-level laser if the pump level coincides with the upper

laser level (Fig. 4.3a). This type of three-level laser is a special case of the four-level

laser. For another type of three-level laser (Fig. 4.3b), the lower laser level is identical

with the ground state level. We denote it as ruby laser type. Population inversion

requires that more than half of the atoms are in the excited state. Accordingly, the

transparency density of a ruby laser type is given by
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Fig. 4.3 Three-level lasers. a Three-level laser with coinciding pump and upper laser level. b Ruby

laser type

Ntr = N0/2. (4.7)

N0 is the density of impurity ions in a crystal.

In a two-level laser only two atomic energy levels play a role.

Example of a two-level laser: the ammonia (NH3) maser [32]. To obtain popula-

tion inversion, long-lived excited molecules are permanently injected into a resonator

where stimulated emission processes occur. The molecules leave the resonator spa-

tially. The upper laser level is 35 µeV above the ground state level. Ammonia gas in

a box contains NH3 molecules in the ground state and in the excited state. A hole in a

box with NH3 gas at room temperature is the source of a molecular beam consisting

of excited and nonexcited NH3 molecules. The molecular beam traverses an atomic

filter that separates the excited molecules and the nonexcited molecules. The atomic

filter consists of an inhomogeneous field (an electric quadrupole field) that exerts

forces on the molecules due to their electric dipole moments. The magnitude of the

dipole moment of a molecule in the excited state differs from that in the ground state.

Therefore, the forces lead to a spatial separation of the molecules. The excited mole-

cules pass the resonator and deliver, via stimulated emission, the excitation energy

to the laser field in the resonator. The ammonia laser was the first microwave maser

(frequency near 24 GHz).

4.3 Two-Band Laser and Quasiband Laser

A two-band laser medium has (besides other energy levels or energy bands) a lower

energy band (band 1) and an upper energy band (band 2), separated by an energy

gap (Fig. 4.4a). The gap energy is Eg. Without pumping, almost all energy levels

belonging to the lower band are full and all energy levels of the upper band are

empty. We suppose that Eg is much larger than kT so that thermal excitation from

the lower to the upper band can be ignored.

Pumping—injection of electrons into the upper band and extraction of electrons

from the lower band (Fig. 4.4b)—results in a quasithermal population of energy

levels in the upper band and in empty levels of the lower band. The electrons in the
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Fig. 4.4 Two-band laser. a Energy bands. b Laser principle

Table 4.2 Relaxation times of laser levels of two-band laser media and quasiband laser media

Laser λ (µm) τ ∗
rel τintra (s)

Semiconductor 0.4–2 1–5 ns 10−13

Fiber 1–2 10−2 s 10−13

upper band undergo fast intraband relaxation. The population in the upper band is

in a quasithermal equilibrium, which is determined by the lattice temperature of the

active medium. The populated levels have energies near the minimum of the upper

band. The width of the energy distribution of populated levels is ∼ kT (or larger at

strong pumping). Energy levels near the energy minimum of the upper band have

the largest population. The energy distribution of populated levels in the upper band

is governed by Fermi’s statistics.

The population in the lower band is also in a quasithermal equilibrium, corre-

sponding to the lattice temperature of the active medium. The empty levels have

energies near the maximum of the lower band. The width of the energy distribution

of empty levels is ∼ kT (or larger at strong pumping). Energy levels near the maxi-

mum of the lower band have the lowest population. Fermi’s statistics determines the

energy distribution of populated levels in the lower band too.

Quasithermal means that the population within an energy band has a thermal

distribution according to the lattice temperature of the active medium—but that the

population of the upper energy band is, relative to the population in the lower energy

band, far out of equilibrium. Stimulated transitions from occupied levels in the upper

band to empty levels in the lower band are the source of laser radiation. Establishment

of a quasiequilibrium in the upper band and establishment of a quasiequilibrium in

the lower band are due to the interaction of electrons with phonons, that is, due to

electron–phonon scattering.

Table 4.2 shows relaxation times: the intraband relaxation time τintra is much

smaller than the interband relaxation time τ ∗
rel. Interband relaxation in an active

medium is mainly due to spontaneous emission of radiation.
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Fig. 4.5 Quasiband laser. a

Quasiband. b Laser principle

The quasiband laser represents a model of a glass fiber laser. The active medium

(Fig. 4.5a) contains excited-impurity quasiparticles in a quasiband. The quasiband

lies ∼ 1 eV above a vacuum level. The width of a quasiband of an impurity-doped

glass can have a value of 10–100 meV. Optical pumping via transitions from the

vacuum level to the quasiband creates quasiparticles (Fig. 4.5b). Annihilation of

quasiparticles via stimulated transitions from the quasiband to the vacuum level is

the origin of laser radiation. The quasiparticles in the quasiband have a quasithermal

distribution determined by Fermi’s statistics; for relaxation times, see Table 4.2. The

quasiband model will be described in Chap. 18.

Examples Two-band lasers: all bipolar semiconductor lasers.

Quasiband lasers: erbium-doped fiber laser; other fiber lasers and fiber amplifiers

(Sect. 15.7 and Chap. 18).

Two-quasiband lasers (with the active medium having a lower and an upper quasi-

band): organic and polymer lasers (Sect. 34.4).

4.4 Lineshape: Homogeneous and Inhomogeneous Line

Broadening

We use the notation “lineshape” in different ways:

• Lineshape of a luminescence line.

• Lineshape of an absorption line = absorption profile = shape of an absorption coef-

ficient = slope of αabs(ν).

• Lineshape of a gain curve = gain profile = shape of a gain coefficient = shape of

α(ν).

We characterize the lineshape of a line that is due to transitions between two levels

of an atomic system by:

• ν0 = center frequency of a line.

• ∆ν0 = linewidth = halfwidth = full width at half maximum (FWHM).

• The lineshape function g(ν) with the normalization
∫ ∞

0
g(ν)dν = 1 or, alterna-

tively, ḡ(ν) with the normalization ḡ(ν0) = 1.

http://dx.doi.org/10.1007/978-3-319-50651-7_18
http://dx.doi.org/10.1007/978-3-319-50651-7_15
http://dx.doi.org/10.1007/978-3-319-50651-7_18
http://dx.doi.org/10.1007/978-3-319-50651-7_34
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Fig. 4.6 Homogeneous and inhomogeneous line broadening

There are many different mechanisms responsible for lineshapes. Accordingly,

there is a large number of different lineshapes. We divide the lineshapes as lineshapes

due to homogeneous broadening and lineshapes due to inhomogeneous broadening.

A homogeneous line broadening occurs if all two-level atomic systems have the

same lineshape function ghom(ν)= g(1) = g(2) = . . . = g(N ), where N is the number

of atomic systems (Fig. 4.6, left). The atomic resonance frequency ν0 is the same for

all two-level atomic systems.

In the case that a line is inhomogeneously broadened (Fig. 4.6, right), each two-

level atomic system of an ensemble has its own resonance frequency. The linewidth

of the ensemble is larger than the transition linewidth of a single two-level atomic sys-

tem. We can regard an inhomogeneously broadened line (with the lineshape function

ginh and the center frequency ν0) as composed of homogeneously broadened lines

with the frequencies ν0,1, ν0,2, . . ., ν0,N of different two-level systems.

Examples of homogeneous line broadening: collision broadening in gases

(Sect. 14.2) and vibronic line broadening of the transition in Ti3+:Al2O3 used for

operation of the titanium–sapphire laser (Chap. 5; Sects. 7.6 and 15.2; Chap. 17).

Example of inhomogeneous broadening: Doppler broadening of transition lines

in gases (Sect. 14.1).

4.5 Lorentz Functions

An important lineshape function is the Lorentz resonance function (Fig. 4.7),

gL(ν) = gL,res(ν) =
∆ν0

2π

1

(ν0 − ν)2 + ∆ν2
0/4

, (4.8)

http://dx.doi.org/10.1007/978-3-319-50651-7_14
http://dx.doi.org/10.1007/978-3-319-50651-7_5
http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_15
http://dx.doi.org/10.1007/978-3-319-50651-7_17
http://dx.doi.org/10.1007/978-3-319-50651-7_14
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Fig. 4.7 Lorentz resonance function (Lorentzian lineshape function)

where ν0 is the resonance frequency and ∆ν0 the halfwidth (full width at half maxi-

mum, FWHM). We suppose that we are dealing with a narrow line. Then, the integral

over the Lorentz resonance function, from zero to infinite, is approximately equal to

unity,
∫ ∞

0

gL,res(ν)dν = 1. (4.9)

The maximum value is equal to

gL,res(ν0) =
2

π∆ν0

≈
0.64

∆ν0

. (4.10)

The peak value of the Lorentz resonance curve is equal to the inverse of the

halfwidth of the curve (times 2/π ); with decreasing halfwidth, the Lorentz resonance

curve narrows.

gL,disp(ν) =
1

π

ν0 − ν

(ν2
0 − ν2)

2 + ∆ν2
0/4

=
ν0 − ν

∆ν0/2
gL,res(ν). (4.11)

We write the Lorentz resonance function, normalized to unity at the line center,

in dimensionless units:

ḡL,res(ν/ν0) =
(∆ν0/ν0)

2/4

(1 − ν/ν0)2 + (∆ν0/ν0)2/4
. (4.12)

The corresponding Lorentz dispersion function is equal to

ḡL,disp(ν/ν0) =
(ν0 − ν)(∆ν0/2)

(ν0 − ν)2 + (∆ν0)
2/4

=
1 − ν/ν0

∆ν0/2ν0

ḡL,res(ν/ν0). (4.13)

The Lorentz resonance curve (Fig. 4.8, upper part) is symmetric with respect to the

resonance frequency ν0, while the Lorentz dispersion curve (Fig. 4.8, lower part) is

antisymmetric. The Lorentz dispersion curve is zero at ν =ν0 and has extrema at the

frequencies ν0 ± ∆ν0/2. The extrema of ḡL,disp are equal to ± 0.5.
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Fig. 4.8 Lorentz functions. a Lorentz resonance function. b Lorentz dispersion function

The Lorentz resonance function on the ω scale is given by

gL,res(ω) =
∆ω0

2π

1

(ω0 − ω)2 + ∆ω2
0/4

. (4.14)

We have the relation, because of g(ω)dω = g(ν)dν, ω = 2πν and
∫

g(ω)dω = 1,

gL,res(ν) = 2πgL,res(ω). (4.15)

On the ω scale, the Lorentz resonance function, normalized to unity at the line center,

has the form

ḡL,res(ω) =
π∆ω0

2
gL,res(ω) =

∆ω2
0/4

(ω0 − ω)2 + ∆ω2
0/4

. (4.16)

The corresponding Lorentz dispersion function is

ḡL,disp(ω) =
π∆ω0

2
gL,disp(ω) =

(ω0 − ω)∆ω0/2

(ω0 − ω)2 + ∆ω2
0/4

. (4.17)

The Lorentz resonance function on the energy scale is given by

gL,res(hν) =
∆E0

2π

1

(E21 − hν)2 + ∆E2
0/4

, (4.18)
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Fig. 4.9 Lorentz resonance function on the energy scale

where we have the quantities:

• ∆E0 = ∆ E21 = h∆ν0 = halfwidth of the line on the energy scale.

• E21 = E2 − E1 = transition energy.

• ν0 = E21/h = (E2 − E1)/h = transition frequency.

• hν = quantum energy of the photons in a radiation field of frequency ν.

The relation gL,res(ν)dν = gL,res(hν)d(hν) leads to

gL,res(hν) =
1

h
gL,res(ν). (4.19)

Because of line broadening, the photon energy hν (Fig. 4.9) does not need to coincide

with the transition energy E21.

The Lorentz functions we presented describe narrow resonance lines, ∆ω0 ≪ ω0.

Otherwise we have functions that we call general Lorentz functions. The general

Lorentz resonance function is given by

GL,res(ω) =
ω∆ω0

(ω2
0 − ω2)2 + (ω∆ω0)2

. (4.20)

The general Lorentz resonance function normalized to 1 at the line center is equal to

ḠL,res(x) =
a2x

(1 − x2)2 + a2x2
, (4.21)

where x = ω/ω0 = ν/ν0 and a = ∆ω0/ω0 = ∆ν0/ν0 = ∆E0/E0. The Lorentz res-

onance function increases proportionally to frequency at small frequencies, ω ≪ ω0,

and decreases inversely proportional to the third power of the frequency at large fre-

quencies, ω ≫ ω0 (Fig. 4.10, upper part); the relative halfwidth of the curves in the

figure is a = 0.03.
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Fig. 4.10 Lorentz resonance function and Gaussian distribution function

4.6 Gaussian Lineshape Function

Line broadening can lead to a Gaussian lineshape described by

gG(ν) =
2

∆ν0

(

ln 2

π

)1/2

exp

[

−
ln 2 (ν − ν0)

2

∆ν2
0/4

]

, (4.22)

where ν0 is the center frequency and ∆ν0 the half width. The maximum value is

gG(ν0) =
2

∆ν0

√

ln 2

π
≈

0.94

∆ν0

. (4.23)

The lineshape function is normalized,
∫ ∞

0
gG(ν)dν = 1. The Gaussian lineshape

function normalized to unity at the line center is

ḡG(ν) = exp

[

−
ln 2 (ν − ν0)

2

∆ν2
0/4

]

. (4.24)

A Gaussian line (Fig. 4.10, lower part) and a Lorentzian line of the same relative

halfwidth shows only small differences to at frequencies around the line center. But

there are essential differences in the wings. The Gaussian line decreases exponentially

and has negligibly small values at frequencies a few halfwidths away from the center

frequency; see the double logarithmic plots (Fig. 4.10, right). The Gaussian line has
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Table 4.3 Linewidths

Laser λ ν (THz) ∆ν0 (GHz) ∆νnat τsp

HeNe 633 nm 474 1.6 1.2 MHz 100 ns

CO2 10.6 µm 28 (0.07–500) 0.03 Hz 5 s

Nd:YAG 1.06 µm 280 140 1 kHz 230 µs

finite values around the center frequency, while the Lorentzian line (with the same

linewidth) extends far into the wings.

Examples of Gaussian lines: Doppler broadened lines (Sect. 14.1) are inhomo-

geneously broadened; the line of Ti3+:Al2O3 used for operation of the titanium–

sapphire laser is homogeneously broadened (Sect. 17.4).

4.7 Experimental Linewidths

Table 4.3 shows values of the linewidth ∆ν0 of 2 → 1 transition lines together with

values of the natural linewidth ∆νnat. The halfwidth ∆νnat of the upper laser level

follows from the relation ∆νnat = (2πτsp)
−1, where τsp is the lifetime with respect

to 2 → 1 spontaneous transitions (Sect. 4.9). Various methods of determination of

linewidths are available. We mention a few methods.

• Helium–neon laser. The fluorescence line is inhomogeneously broadened (due to

Doppler broadening). The linewidth can be calculated by use of the expression of

Doppler broadening (Sect. 14.1).

• CO2 laser. The 2 → 1 fluorescence line is Doppler broadened at low gas pressure

and collision broadened at high pressure.

• Nd:YAG laser. A fluorescence experiment provides the linewidth.

A lower limit of the linewidth of a transition is the natural linewidth. Active media

of lasers operated at room temperature show linewidths of the atomic transitions that

are always larger than the natural linewidth as a study of the specific lasers shows

(see the chapters beginning with Chap. 14).

4.8 Classical Oscillator Model of an Atom

An atom consists of a nucleus and an electron cloud (Fig. 4.11a). In the classical

oscillator model of an atom, the electron cloud is replaced by an electron located

at the center of the electron cloud, that is, at the position of the nucleus. In equilib-

rium, the electron does not move. When it is brought out of its equilibrium position

(Fig. 4.11b), it performs an oscillation with a displacement x(t) and an amplitude

x0. The oscillation of the electron (charge q = −e) corresponds to an oscillation of

http://dx.doi.org/10.1007/978-3-319-50651-7_14
http://dx.doi.org/10.1007/978-3-319-50651-7_17
http://dx.doi.org/10.1007/978-3-319-50651-7_14
http://dx.doi.org/10.1007/978-3-319-50651-7_14


70 4 The Active Medium: Energy Levels and Lineshape Functions

Fig. 4.11 Classical oscillator model of an atom. a Electron cloud and nucleus of an atom. b

Oscillation of an electron around the equilibrium position x = 0. c Excited atom as an oscillating

dipole

Fig. 4.12 Damped oscillator (left) and shape of the fluorescence line (right)

a dipole with the dipole moment p = qx = −ex (Fig. 4.11c). An oscillation of a

classical electric dipole (=Hertzian dipole) gives rise to emission of radiation. Here,

we describe the model of the atomic oscillator (= dipole oscillator model = classical

oscillator model of an atom = Lorentz model of an atom); later (in Chap. 9), we will

make use of the model to derive the gain coefficient of radiation propagating in an

active medium.

We consider the atomic oscillation as a damped oscillation. The equation of motion

is given by

ẍ + β ẋ + ω2
0x = 0, (4.25)

where x is the displacement from the equilibrium position (x = 0), ω0 is the reso-

nance frequency, and β the damping constant. We chose the resonance frequency so

that �ω0 = E2 − E1, where E1 is the energy of the ground state, E2 the energy of

the excited state of the two-level atom, and E21 = E2 − E1 is the transition energy.

The solution to the equation of motion has, for β ≪ ω0, the form

x̃ = x0e− 1
2
βt e−iω0t , (4.26)

where x0 is a displacement at t = 0; the displacement is 0 for t < 0. The time of

decay of the amplitude of the oscillation is 2τ (Fig. 4.12, left), and the time of decay

of the energy of the atomic oscillation is the lifetime τ = 1/β.

http://dx.doi.org/10.1007/978-3-319-50651-7_9
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Connected with an oscillation is an electric field

Ẽ = A e− 1
2
βt e−iω0t . (4.27)

The initial value A of the amplitude of the field corresponds to the initial value of

the displacement. The field is not monochromatic but has a frequency distribution

(Fig. 4.13, right) that follows by Fourier transformation,

Ẽ(ω) =
A

√
2π

∫ ∞

−∞
Ẽ(t)eiωt dt, (4.28)

which leads, with β = ∆ω0, to

Ẽ(ω) =
A

√
2π

∫ ∞

−∞
exp i[(ω − ω0)t + i(β/2)t]dt

=
−A
√

2π

1

i(ω − ω0) + ∆ω0/2
. (4.29)

Accordingly, the oscillating electron emits an electromagnetic wave with an intensity

distribution that corresponds to a Lorentzian line (Fig. 4.12, right),

I (ω)/I0 = ḡL,res(ω). (4.30)

I0 is the intensity at the line center. The linewidth ∆ω0 is equal to τ−1.

In the classical oscillator model description of an atom, the nonoscillating state

corresponds to the atomic ground state, and an oscillating state corresponds (inde-

pendent of the value of the amplitude of the oscillation) to the excited state of the

atom.

4.9 Natural Line Broadening

The finite lifetime of the upper level of a two-level atomic system with respect to

spontaneous emission of radiation by 2 → 1 transitions leads to a line broadening

described by the natural lineshape function

gnat(ν) =
∆νnat

2π

1

(ν0 − ν)2 + ∆ν2
nat/4

, (4.31)

where ν0 is the resonance frequency,

∆νnat =
1

2πτsp

(4.32)
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is the natural linewidth, and τsp the lifetime of the upper level with respect to sponta-

neous emission of radiation by 2 → 1 transitions. We designate τsp as the spontaneous

lifetime of level 2. The maximum value of the lineshape function,

gnat(ν0) = 4τsp =
2

π∆νnat

, (4.33)

is proportional to the spontaneous lifetime, that is, inversely proportional to the

natural linewidth.

4.10 Energy Relaxation

We describe energy relaxation in the classical model of an atom. An atomic dipole

loses energy due to damping. The amplitude of the oscillation decreases exponentially

(Fig. 4.13a). The decay time of the amplitude is 2T1 and the decay time of the energy

content in the oscillator is equal to the energy relaxation time. The linewidth of the

frequency distribution of radiation emitted by a dipole oscillator is equal to

∆ω0 =
1

T1

. (4.34)

The halfwidth of the frequency distribution of radiation emitted by a dipole is equal

to the reciprocal of the energy relaxation time.

We will later study an ensemble of dipole oscillators. The decay of the energy

contained in an ensemble of dipole oscillators occurs also with the energy relaxation

time T1.

[In an ensemble of electrons, the decay of the energy content is joined with the

decay of the polarization with the time T1, which is then called longitudinal relaxation

time of the polarization; see next section and Sect. 9.9].

Fig. 4.13 Change of an oscillation. a Energy relaxation. b Dephasing

http://dx.doi.org/10.1007/978-3-319-50651-7_9
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4.11 Dephasing

External forces can have the effect that a dipole oscillator randomly changes the

phase while the amplitude x0 and the resonance frequency ω0 remain unchanged.

The average time between two successive changes of the phase is the dephasing time

T2 (Fig. 4.13b). Radiation emitted by an oscillator consists of a series of subsequent

wave trains E(t) of constant amplitude A. The average duration of a wave train is

equal to T2. A Fourier analysis shows that the power spectrum has a Lorentzian

lineshape. The center frequency is an average frequency, the lineshape function is a

Lorentz resonance function and the linewidth (halfwidth) is given by

∆ω0 =
1

T2/2
=

2

T2

. (4.35)

Examples Line broadening due to collisions of atoms and molecules in gases

(Sect. 14.2); line broadening due to an elastic collision of an ion in a crystal with a

phonon (Sect. 15.9).

We will later study an ensemble of dipole oscillators that are prepared in such a

way that all elementary atomic oscillators are oscillating with the same phase. The

sum of all atomic dipole moments per unit volume is the dielectric polarization.

Due to randomly occurring dephasing processes of the atomic dipole oscillators, the

dielectric polarization decays also with the dephasing time T2. In connection with the

decay of the polarization, T2 is called phase relaxation time or transverse relaxation

time (Sect. 9.8).

We will (in Chaps. 19 and 32) find dephasing processes characteristic of monopole

oscillators (next section).

4.12 Dipole Oscillator and Monopole Oscillator

A dipole oscillator (Sect. 4.8) consists of a negative charge and a positive charge

oscillating against each other. Interaction of a dipole oscillator with the surrounding

can lead to loss of energy and to change of the phase of the oscillation. We are using

the dipole oscillator as a classical model of a two-level atomic system (Sect. 4.8).

A monopole oscillator consists of an oscillating single charge. Interaction of the

charge with the surroundings can change the phase of the oscillation but not the

amplitude. An electron traversing a spatially periodic magnetic field represents an

example of a monopole oscillator. An electron crossing a spatially periodic electric

field is another example.

The monopole oscillation of an electron propagating at a relativistic velocity

through a transverse periodic magnetic field is the elementary excitation occurring

in a free-electron laser (Chap. 19); interaction of a high frequency electric field with

an ensemble of the electron-monopole oscillators leads to gain for the high frequency

field in the free-electron laser.

http://dx.doi.org/10.1007/978-3-319-50651-7_14
http://dx.doi.org/10.1007/978-3-319-50651-7_15
http://dx.doi.org/10.1007/978-3-319-50651-7_9
http://dx.doi.org/10.1007/978-3-319-50651-7_19
http://dx.doi.org/10.1007/978-3-319-50651-7_32
http://dx.doi.org/10.1007/978-3-319-50651-7_19
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Monopole oscillation of an electron occurs also in the (hypothetical) Bloch laser

(Chap. 32). An electron in a periodic potential formed by a semiconductor superlattice

executes, under the action of a static electric field, an oscillation (Bloch oscillation);

a superlattice consists, in the simplest case, of two different semiconductor layers in

turn. The Bloch oscillation is the elementary excitation of a Bloch laser.

A laser based on monopole oscillations as the elementary excitations in an active

medium can be regarded as an inversionless laser.

An electron that performs a Bloch oscillation can, alternatively, be described as an

electron that occupies an energy level of an energy-ladder system. The energy ladder

consists of equidistant energy levels. In the picture of the energy-ladder system, the

Bloch laser is a laser with population inversion in the active medium (Sect. 32.7).

Radiation is generated by stimulated transitions between energy levels of the energy-

ladder systems.

It is a question whether an electron propagating through a transverse periodic mag-

netic field can also be characterized by an energy-ladder system. If such a description

would be possible, a free-electron laser would be describable as a laser with a popu-

lation inversion, alternatively to the description as an inversionless laser (Chap. 19).

Interaction of radiation with an active medium based on dipole oscillators leads

to a gain coefficient that has the shape of a Lorentz resonance curve (see Chap. 9).

Interaction of radiation with a monopole oscillator results in a gain coefficient that

has the shape of a Lorentz dispersion curve (Chaps. 19 and 32).

4.13 Three-Dimensional and Low-Dimensional Active

Media

We classify media used in lasers as three-dimensional (3D) and low-dimensional

media. A low-dimensional active medium is either two-dimensional (2D), one-

dimensional (1D), or zero-dimensional (0D). This classification is useful with respect

to semiconductor lasers. Semiconductor lasers make use of low-dimensional media.

Low-dimensional media are realized by means of semiconductor heterostructures.

The dimensionality concerns solely the question whether electrons move freely

(between two collisions) in three dimensions, in two dimensions, in one dimension,

or cannot move freely at all. In this sense, an atom is a 0D system.

Figure 4.14 gives a survey of active media of different dimensionality:

• 3D active medium. The electrons move freely in three dimensions. The unit of the

density N of electrons is m−3.

Example electrons in a 3D bipolar semiconductor.

• 2D active medium. The electron motion is bound to a plane. The unit of the two-

dimensional density (area density = sheet density) N 2D of electrons is m−2.

Example electrons in a quantum film (in a quantum well laser).

http://dx.doi.org/10.1007/978-3-319-50651-7_32
http://dx.doi.org/10.1007/978-3-319-50651-7_32
http://dx.doi.org/10.1007/978-3-319-50651-7_19
http://dx.doi.org/10.1007/978-3-319-50651-7_9
http://dx.doi.org/10.1007/978-3-319-50651-7_19
http://dx.doi.org/10.1007/978-3-319-50651-7_32
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Fig. 4.14 Three-dimensional and low-dimensional active media

• 1D active medium. The electron motion is bound to a line. The unit of the one-

dimensional density (=line density) N 1D of electrons is m−1.

Example Electrons in a quantum wire (in a quantum wire laser).

• 0D active medium. The electrons are imprisoned. An ensemble of 0D active media

forms a 3D active medium.

Example electrons in a quantum dot (in a quantum dot laser); we can regard a

quantum dot as an artificial atom.

Ensembles of atoms, molecules, or ions are three-dimensional media. Each atom

(or molecule or ion) is for itself a quantum system. Boltzmann’s statistics governs

the populations of the energy levels in an ensemble of atoms because the interaction

(for instance, by collisions in gases) between the atoms is weak. An electron gas

(=ensemble of the electrons) in the upper band in a bipolar semiconductor laser

forms a quantum system. The electron gas (=ensemble of the electrons) in the lower

band forms another quantum system. The two coexisting electron gases obey, each

for itself, Fermi’s statistics and have different Fermi energies (called quasi-Fermi

energies).

References [1–4, 31, 32].

Problems

4.1 Lineshape functions. At which frequency distance from the central line (ν0 =
4 × 1014 Hz; ∆ν0 =1 GHz) does the lineshape function decrease by a factor of 100

(a) if the line has Lorentzian shape and (b) if the line has Gaussian shape?

4.2 Absolute number of two-level atomic systems. Determine the absolute number

Ntot of two-level atomic systems for systems of different dimensionality.

(a) Three-dimensional medium with a density N = 1024 m−3 of two-level systems

and a volume of 1 mm × 1 mm × 1 mm.

(b) Two-dimensional medium with an area density N 2D = 1016 m−2 and an area of

1 mm × 1 mm.

(c) One-dimensional medium with a line density N 1D = 107 m−1 and a length of

1 mm.
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4.3 Relate the lineshape function on the frequency scale and the lineshape function

on the wave number scale.

4.4 Relate the dimensionless variables of the Lorentz resonance function expressed

on the frequency scale and those expressed on the angular frequency scale.

4.5 Area under a Gaussian or Lorentzian curve.

(a) Show that the width of a rectangular curve, which has the same height as a

Gaussian curve and encloses the same area, is equal to

∆ν0/(2
√

ln 2) ≈ 1.06 × ∆ν0 ≈ ∆ν0.

(b) Show that the width of a rectangular curve, which has the same height as a

Lorentzian curve and encloses the same area, is approximately equal to

(π/2)∆ν0 ≈ 1.57 × ∆ν0.

4.6 Show that the integral over a narrow Lorentzian curve is approximately unity.

4.7 Derive the maximum value, Eq. (4.10), for the Lorentz resonance function.

4.8 Show that the width of a rectangular shape that has the same height and the

same area as a Gaussian ∆ν0/(2
√

ln 2) ≈ 1.06 × ∆ν0, and, correspondingly, for a

Lorentzian shape by (π/2)∆ν0 ≈ 1.57 × ∆ν0.



Chapter 5

Titanium–Sapphire Laser

As an example of a laser, we describe the titanium–sapphire laser.

Titanium–sapphire (=titanium-doped sapphire) has a broad pump band, a long-

lived upper laser level, and a distribution of short-lived lower laser levels. The broad

pump band allows for pumping with a lamp or a laser. The broad distribution of

lower laser levels makes it possible to operate the laser as a tunable continuous wave

laser or as a femtosecond laser.

A continuous wave titanium–sapphire laser is tunable over a large frequency

range—extending from the red to the infrared spectral region. A titanium–sapphire

femtosecond laser generates ultrashort light pulses with a duration between about 5

and 100 fs (depending on the special arrangement).

In a simplified description, we characterize the titanium–sapphire laser as a four-

level laser with a broad distribution of pump levels, a sharp upper laser level, a broad

distribution of lower laser levels, and a sharp ground state level.

In this chapter, we discuss the principle of the titanium–sapphire laser, and we will

give a short description of the design. Additionally, we will present absorption and

fluorescence spectra of titanium–sapphire. We will obtain more information about

the titanium–sapphire laser in later sections and chapters (particularly in Sect. 7.6,

Chap. 13, Sect. 15.2, and Chap. 17).

5.1 Principle of the Titanium–Sapphire Laser

A titanium–sapphire (Ti3+:Al2O3) crystal contains Ti3+ ions replacing Al3+ ions in

a sapphire (Al2O3) crystal. The density (number density) of Ti3+ ions in Al2O3 is

typically 1×1025 m−3, corresponding to a doping concentration of 0.03% by weight

Ti2O3 in Al2O3.

Figure 5.1a shows the energy level diagram of a Ti3+ ion in Al2O3. Above the

ground state level (energy E = 0), there is a continuum of energy levels (the vibronic

levels of the ground state). Above the lowest excited state level (at E ∼ 2.0 eV), there

is another continuum of energy levels (the vibronic levels of the excited state). The

© Springer International Publishing AG 2017
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Fig. 5.1 Titanium–sapphire laser. a Energy level diagram and transitions. b Simplified energy level

diagram

lowest excited state level and the vibronic energy levels of the excited state have

a long lifetime (∼3.2 µs) with respect to relaxation to the ground state level or to

vibronic levels of the ground state; the lifetime is mainly due to spontaneous emission

of radiation (spontaneous lifetime ∼3.8 µs). Optical pumping and fast nonradiative

relaxation lead to population of the lowest excited state level. Laser radiation is

generated by stimulated transitions to vibronic levels of the ground state—to levels

well above the ground state level. The vibronic levels of the ground state then relax

by nonradiative relaxation processes. Relaxation within the excited state levels and

within the ground state levels occurs in relaxation times of the order of 10−13 s.

Absorption processes are mainly due to transitions from the ground state to levels

that lie, in comparison to the value of kT at room temperature, far above the lowest

excited state level.

We describe the titanium–sapphire laser, which is a vibronic laser, for simplicity, as

a four-level laser (Fig. 5.1b)—with a pump level (that has a broad energy distribution),

a sharp upper laser level, a lower laser level (that has a broad energy distribution too),

and a sharp ground state level.

We will discuss vibronic systems in more detail in Sect. 15.2 and Chap. 17.

All Ti3+ ions in Al2O3 have the same energy level distribution: optically pumped

titanium–sapphire is an active medium with a homogeneously broadened 2 → 1

fluorescence line (Sect. 17.4).

The titanium–sapphire laser operates as a cw laser or as femtosecond laser. The

laser frequency of a cw laser—and thus the energy of the lower laser level—is

mainly determined by the resonance frequency of the laser resonator, which itself is

adjustable by the use of appropriate frequency selective elements within the resonator.

In a femtosecond laser, with a broadband resonator, transitions occur at the same time

into a large number of lower laser levels; in this case, the resonator contains elements

controlling the phases of the electromagnetic waves of different frequencies that are

present in the resonator at the same time.

http://dx.doi.org/10.1007/978-3-319-50651-7_15
http://dx.doi.org/10.1007/978-3-319-50651-7_17
http://dx.doi.org/10.1007/978-3-319-50651-7_17
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5.2 Design of a Titanium–Sapphire Laser

Pumping of a titanium–sapphire laser is possible by use of a discharge lamp or of

another laser. If a laser is pumped by use of a lamp, light of the lamp is focused on

the crystal leading to an almost homogeneous excitation of the crystal. Pumping with

a laser is possible by transverse or longitudinal pumping. In the case of transverse

pumping, the pump radiation irradiates the titanium–sapphire crystal from the side.

In the case of longitudinal pumping (Fig. 5.2), the pump radiation passes a

dichroitic mirror and is then absorbed in the titanium–sapphire crystal. The dichroitic

mirror is transparent for the pump radiation but is a reflector for the laser radiation.

By inserting into the resonator an element indicated as “black box” in the figure,

the laser operates in different ways.

If the black box is a dispersive element (e.g., a prism or a diffraction grating), the

laser generates

• cw radiation; tuning range from about 650–1200 nm on the wavelength scale (250–

460 THz on the frequency scale).

If the black box is a mode coupler, the laser generates

• ultrashort pulses; pulse duration 5–100 fs.

Heat produced by nonradiative relaxation processes leaves the titanium–sapphire

crystal by heat transfer mainly via the mechanical support of the crystal. Heating

effects can strongly be reduced if only a small portion of a Ti3+:Al2O3 crystal rod

is optically pumped. The pump volume is, for example, a cylindrical volume of a

diameter of 0.5 mm in a Ti3+:Al2O3 rod of 1 cm diameter. The heat produced in the

optically pumped region is distributed over the whole crystal. This results in a much

smaller temperature enhancement than in the case that the crystal is homogeneously

pumped. Thus, much larger populations of the upper laser level or a much larger

output power can be obtained. Al2O3 has a large heat conductivity. This favors a fast

heat escape from the active volume.

Fig. 5.2 Titanium–sapphire laser
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5.3 Absorption and Fluorescence Spectra

of Titanium–Sapphire

Spectra of the absorption cross section and fluorescence spectra of Ti3+:Al2O3 are

known from experimental studies [33]. Figure 5.3 (upper part, left) shows the absorp-

tion cross section σabs(λ) of a Ti3+ ion in sapphire. The absorption cross section

follows from the relation

αabs(λ) = N0 σabs(λ), (5.1)

where αabs is the experimental absorption coefficient and N0 the density of Ti3+ ions.

The absorption band extends from the blue to the green spectral region. Sapphire is

an anisotropic crystal. Therefore, the optical properties depend on the orientation

of the direction of the electric field E of the electromagnetic wave relative to the

direction of the optic axis (c axis) of the crystal. The absorption lines for E || c (π

polarization) and E ⊥ c (σ polarization) have different strengths but the same shape.

Figure 5.3 (lower part) shows the fluorescence spectrum. Sλ(λ) is the spectral

distribution of the fluorescence radiation on the wavelength scale and Sλ,max is the

maximum of the spectral distribution. The fluorescence spectrum extends from the

red to the near infrared. The fluorescence lines for E || c and E ⊥ c have different

strengths but the same shape. The large linewidth and especially the long infrared

tail of the fluorescence band are the basis of the broadband tunability of a titanium–

sapphire laser and of the operation as femtosecond laser. The range of laser oscillation

(dashed in Fig. 5.3) extends far into the range of the infrared tail of the fluorescence

curve.

Fig. 5.3 Absorption and gain cross sections and fluorescence spectra of Ti3+:Al2O3
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The occurrence of a broad range of laser oscillation is a consequence of the special

properties of Ti3+ in Al2O3. We will discuss these properties later (in Sect. 15.2).

We will also show (in Sect. 17.4) that almost all excited Ti3+ ions contribute to

gain, and that each of the excited Ti3+ ions contributes equally, i.e., all excited Ti3+

ions contribute equally to generation of radiation in a continuous-wave laser or to

generation of femtosecond pulses in a femtosecond titanium–sapphire laser.

There remains the question: how can we determine, from the fluorescence spec-

trum, the gain cross section and especially the frequency dependence of the gain

cross section? This will be discussed in Sect. 7.6. We anticipate the result. Figure

5.3 (upper part, right) shows the gain cross section σgain of an excited Ti3+ ion as

derived from the fluorescence spectrum and by taking into account the spontaneous

lifetime of an excited Ti3+ ion. The gain cross section has a maximum near 830 nm.

The maximum value of the gain cross section of excited Ti3+ is about 4 times larger

than the absorption cross section of Ti3+; a possible reason for the difference will be

discussed at the end of Sect. 17.2. In comparison to the gain profile, the fluorescence

curve decreases strongly with wavelength because of the wavelength dependence of

spontaneous emission.

5.4 Population of the Upper Laser Level

Without laser oscillation, the population of the upper laser level (Fig. 5.4) increases

with increasing pump power P linearly with P at small P (dashed line) and less

than linearly at large P . The population saturates at very large P , where the N2

population approaches the density N0 of Ti3+ ions. The population difference varies

according to N2 − N1 = K (P/Psat)(1 + P/Psat)
−1, where K is a constant and Psat

the saturation-pump power. At the saturation pump power the absorption coefficient

αabs(ν) is half of its value at weak pumping. A population inversion (N2 > N1)

occurs already at the smallest pump power.

Fig. 5.4 Population of the

upper laser level of

Ti3+:Al2O3

http://dx.doi.org/10.1007/978-3-319-50651-7_15
http://dx.doi.org/10.1007/978-3-319-50651-7_17
http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_17
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5.5 Heat and Phonons

Nonradiative relaxation processes in active media produce heat. Therefore, cooling

of an active medium is necessary. Cooling occurs via heat conduction and heat

transfer. In solids, phonons play an important role in relaxation processes; phonons

are quanta of lattice vibrations, i.e., of vibrations of the atoms of a solid. After a

relaxation process, a phonon decays into heat. Phonons are treated in textbooks on

solid state physics. As a standard book of heat conduction and heat transfer, see [34].

References [1–4, 7, 33, 34]

Problems

5.1 Geometrical length of the resonator. Determine the optical length of a res-

onator (distance between reflector and an output coupling mirror 50 cm) that contains

a titanium–sapphire crystal (length 1 cm; refractive index n = 1.76).

5.2 Photon density. The diameter of a laser beam at the output coupling mirror

is 10 cm. The laser generates visible radiation of a power of 1 W and fluorescence

radiation of a power of 1 W too.

(a) Estimate the power of laser radiation from the active medium of the laser passing

through an area of 1 cm diameter in a distance 10 m away from a laser that emits

radiation into a cone with a cone angle of 0.1 mrad.

(b) Estimate the power of fluorescence radiation from the active medium of the laser

passing through the same area.

5.3 What is the prescription of conversion of the shape of a narrow fluorescence

spectrum on the wavelength scale into the shape of the spectrum on the frequency

scale? [Hint: for the answer, see Sect. 7.6.]

5.4 Population of the upper laser level. A Ti3+:Al2O3 crystal of a length of 1 cm

is optically pumped in a cylindrical volume of 0.2 mm diameter.

(a) Estimate the pump power necessary to excite a tenth of the Ti3+ ions into the

excited state.

(b) Determine the absolute number of excited Ti3+ ions.

(c) Determine the energy stored as excitation energy and the corresponding energy

density per liter.

(d) Estimate the pump power necessary to excite a tenth of the Ti3+ ions into the

excited state in the case that the population disappears every 300 ns. [Why may

it be possible that the population disappears regularly?]

http://dx.doi.org/10.1007/978-3-319-50651-7_7
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Chapter 6

Basis of the Theory of the Laser:

The Einstein Coefficients

According to Bohr’s atomic model (1911), which is based on spectroscopic investi-

gations, transitions between discrete energyd levels of an atom can lead to emission

or absorption of radiation of a frequency that fulfills Bohr’s energy-frequency rela-

tion. In an absorption process, a photon is absorbed. In an emission process, a photon

is emitted. Einstein found that the emission of a photon is possible by two different

processes, spontaneous and stimulated emission, and that the coefficients describing

the three processes—absorption, stimulated and spontaneous emission—are related

to each other (Einstein relations).

Making use of Planck’s radiation law, we derive the Einstein relations. We also

show that stimulated emission of radiation is a process that occurs permanently

around us. There remains the question: what is, in addition to the stimulated emission,

a specific property of a laser?

Einstein coefficients can be extracted from results of experimental studies of

optical properties of matter at thermal equilibrium. In this chapter, we consider an

ensemble of two-level systems in thermal equilibrium determined by Boltzmann’s

statistics. Later (in Chap. 21), we will treat ensembles that obey Fermi’s statistics.

6.1 Light and Atoms in a Cavity

How does light interact with a two-level atomic system? We will study this question

in three steps:

• We describe the thermal equilibrium between the radiation in a cavity and the

walls of the cavity.

• We describe the thermal equilibrium between an ensemble of two-level atomic

systems in a cavity and the walls of the cavity.

• We consider a cavity that contains an ensemble of two-level atomic systems and

radiation.

© Springer International Publishing AG 2017
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Fig. 6.1 A cavity and Planckian distribution of radiation

A cavity (Fig. 6.1, left) contains blackbody radiation. The spectral distribution of

the energy density ρ(ν) of the radiation depends on the temperature T of the walls

of the cavity. The spectral energy density is determined by Planck’s radiation law

ρ(ν) =
8πν2

c3

hν

ehν/kT − 1
, (6.1)

where k is Boltzmann’s constant. The frequency distribution is shown in Fig. 6.1

(right). The frequency νmax of the maximum of the distribution is directly proportional

to the temperature according to the relation

hνmax ∼ 2.8 kT . (6.2)

If the walls are at room temperature (T = 300 K), the maximum of the distribution

lies in the infrared (νmax = 1.8 × 1013 Hz). The spectral density increases as ν2 at

small frequency (ν ≪ νmax) and decreases as ν3e−hν/kT at large frequency. Thermal

equilibrium is established by absorption of radiation by the walls of the cavity and

by emission of radiation from the walls into the cavity.

The energy density of radiation in the frequency interval ν, ν + dν is

u(ν) = ρ(ν) dν. (6.3)

We now treat a cavity containing an ensemble of two-level atomic systems in thermal

equilibrium, which is determined by Boltzmann’s statistics,

N2/N1 = e−(E2−E1)/kT . (6.4)

The population ratio is near unity if E2 − E1 ≪ kT . It decreases exponentially

with the energy difference E2 − E1. Thermal equilibrium is established by colli-

sions of the two-level atomic systems with each other and with the walls of the

cavity.
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Impurity ions in a solid have fixed locations. The populations of the energy levels

of different ions are in thermal equilibrium with the solid due to absorption and

emission of phonons. The populations are governed by Boltzmann’s statistics.

Einstein showed [38] that the thermal equilibrium in a gas of atoms can also

be established by the direct interaction of the radiation with the atoms and that

three processes of interaction between radiation and atoms must occur: absorption,

spontaneous emission and stimulated emission.

Using Bohr’s energy-frequency relation,

hν0 = E2 − E1, (6.5)

where ν0 is the transition frequency, we can write

N2/N1 = e−hν0/kT . (6.6)

We will now characterize the three processes by the three Einstein coefficients.

6.2 Spontaneous Emission

Excited atoms (Fig. 6.2) can emit photons spontaneously, i.e., without external cause.

The radiation emitted spontaneously is incoherent and the emission occurs into all

spatial directions. The change dN2 of the population N2 of the upper level, within a

time interval dt , is proportional to N2 and to dt ,

dN2 = −A21 N2dt. (6.7)

A21 is the Einstein coefficient of spontaneous emission. The population of the upper

level decays exponentially,

N2(t) = N2(0) e−A21t = N2(0) e−t/τsp . (6.8)

Fig. 6.2 Spontaneous

emission
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Fig. 6.3 Stimulated transitions. a Absorption and b stimulated emission

N2(0) is the density of excited two-level atomic systems at t = 0 and τsp is the average

lifetime of an excited two-level atomic system with respect to spontaneous emission

(=spontaneous lifetime). We have the simple relation

A21 = 1/τsp. (6.9)

The Einstein coefficient A21 is equal to the reciprocal of the spontaneous lifetime.

6.3 Absorption

Photons of a light field can be absorbed (Fig. 6.3a) by 1 → 2 transitions. The

change dN1 of the population N1 of the ground state, within a time interval dt , is

proportional to the population of the ground state itself, to the spectral energy density

ρ of the radiation field and to dt ,

dN1 = −B12ρ(ν0)N1dt. (6.10)

B12 is the Einstein coefficient of absorption and ρ(ν0) is the spectral energy density

of radiation at frequencies around ν0. Absorption is only possible in the presence of

a field—the absorption is a stimulated process.

6.4 Stimulated Emission

Stimulated emission (Fig. 6.3b), by 2 → 1 transitions, is caused (stimulated, induced)

by a radiation field. The change dN2 of the population of atoms in the excited state,

within a time interval dt , is proportional to the population N2, to the spectral energy

density of radiation at frequencies around ν0 and to dt ,

dN2 = −B21ρ(ν0)N2dt. (6.11)
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B21 is the Einstein coefficient of stimulated emission. The radiation created by stim-

ulated emission has the same frequency, direction, polarization and phase as the

stimulating radiation.

6.5 The Einstein Relations

We are looking for relations between the Einstein coefficients. As discussed, the

interaction of a two-level atomic system with radiation occurs (Fig. 6.4) via absorp-

tion, stimulated and spontaneous emission. We describe the three processes by rate

equations that correspond to differential equations of first order:

• The rate of change of the population N1 due to absorption is given by

(dN1/dt)abs = −B12 ρ(ν0) N1; (6.12)

the temporal change of the population N1 due to absorption is proportional to

ρ(ν0) and to N1.

• The rate of change of the population N2 due to stimulated emission is equal to

(dN2/dt)stim = −B21 ρ(ν0) N2; (6.13)

the temporal change of the population N2 due to stimulated emission is proportional

to ρ(ν0) and to N2.

• The rate of change of the population N2 due to spontaneous emission is

(dN2/dt)sp = −A21 N2; (6.14)

the temporal change of the population N2 due to spontaneous emission of radiation

is proportional to N2.

We consider a cavity with an ensemble of two-level atomic systems and radiation

in thermal equilibrium. In the time average, the ratio N2/N1 is a constant. Therefore,

the absorption rate has to be equal to the emission rate,

(dN1/dt)abs = (dN2/dt)sp + (dN2/dt)stim. (6.15)

Fig. 6.4 Absorption,

stimulated emission, and

spontaneous emission
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This leads to the relation

B12ρ(ν0)N1 = A21 N2 + B21ρ(ν0)N2. (6.16)

It follows that

ρ(ν0) =
A12/B21

(B12/B21)N1/N2 − 1
. (6.17)

The Boltzmann factor determines the ratio N1/N2. The comparison with Planck’s

radiation law provides the Einstein relations

B21 = B12, (6.18)

A21 =
8πν2

c3
hνB21. (6.19)

The frequency ν (replacing ν0) follows from Bohr’s relation hν = E2 − E1. We have

the result:

• The same Einstein coefficient governs both stimulated emission and absorption.

• There is a connection between the coefficients of spontaneous and stimulated

emission.

• The Einstein coefficient A21 increases strongly with frequency.

Figure 6.5 shows the spontaneous lifetime for different transition frequencies

ν = (E2 − E1)/h at a fixed value of B21 (= 1018 m3 J−1 s−2); the spontaneous lifetime

is of the order of 10−6 s at a transition frequency (5 ×1014 Hz) in the visible, 100 s at a

transition frequency (1012 Hz) in the far infrared, and 10−15 s at a transition frequency

(1017 Hz) in the X-ray range. Spontaneous lifetimes at X-ray transition frequencies

are very short. Therefore, operation of an X-ray laser is difficult (Sect. 16.4).

If energy levels are degenerate, Boltzmann’s statistics yields

N2

N1

=
g2

g1

e−(E2−E1)/kT , (6.20)

where g1 is the degree of degeneracy of level 1 and g2 the degree of degeneracy of

level 2. The treatment of the equilibrium between the atomic populations and the

radiation in a cavity leads to the relations

Fig. 6.5 Natural lifetime

http://dx.doi.org/10.1007/978-3-319-50651-7_16
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B12 =
g2

g1

B21 (6.21)

and (as in the nondegenerate case)

A21 =
8πν2

c3
hνB21. (6.22)

In the following, we will treat the case of nondegenerate energy levels (g1 = g2 = 1).

If two-level atomic systems are embedded in a medium of refractive index n, the

speed of light in vacuum has to be replaced by the speed of light in the medium. The

Einstein relations then are

B21 = B12, (6.23)

A21 =
8πν2

(c/n)3
hνB21, (6.24)

and

B21 =
(c/n)3

8πhν3
A21. (6.25)

In this form, the Einstein relations are valid if a medium is optically isotropic. If a

medium is optically anisotropic, the relation between A21 and B21 has to be modified.

Table 6.1 shows values of Einstein coefficients determined by the use of exper-

imental or theoretical methods. A few methods are mentioned in the following:

• Measurement of τsp (by a luminescence experiment) provides A21 and (via the

Einstein relations) B21 too. Example Nd:YAG.

• Measurement of the absorption coefficient provides (Chap. 7) B21 and (via the

Einstein relations) A21.

• An analysis of the luminescence spectrum yields A21; Example bipolar semicon-

ductor lasers (see chapters on semiconductor lasers).

• Theoretical studies of the transition rates provide B21; Example QCL.

Table 6.1 Einstein coefficients

Laser λ n τsp A21(s−1) B21 (m3 J−1 s−2)

HeNe 633 nm 1 100 ns 107 1.5 × 1020

CO2 10.6µm 1 5 s 0.2 1.4 × 1016

Nd:YAG 1.06µm 1.82 230µ s 4.3 × 103 5.1 × 1016

TiS (E ‖ c) 830 nm 1.74 3.8µ s 2.6 × 105 1.7 × 1018

Fiber 1.5µm 1.5 10 ms 102 6.6 × 1015

Semiconductor 810 nm 3.6 3 × 109 3.7 × 1021

QCL 5µm 3.6 4 × 1021

http://dx.doi.org/10.1007/978-3-319-50651-7_7
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The Einstein coefficients of different systems differ by many orders of magnitude.

If the spectral energy density is given on the angular frequency scale, ρ = ρ(ω),

the Einstein coefficient Bω
21 is smaller by the factor 2π , Bω

21 = B21/2π . The Einstein

relations then are Bω
12 = Bω

21 and A21 =
(

�ω3/π2c3
)

Bω
21.

6.6 Einstein Coefficients on the Energy Scale

If the spectral energy density is given on the energy scale,

ρ(hν) = ρ(ν)/h, (6.26)

the Einstein coefficients of stimulated and spontaneous emission are

B̄21 = Bhν
21 = h B21, (6.27)

Ā21 = A21 =
8π(hν)3

h3(c/n)3
B̄21 =

8πν3

(c/n)3
B̄21. (6.28)

B̄21 is given in units of m3 s−1.

6.7 Stimulated Versus Spontaneous Emission

Stimulated emission is a general phenomenon that does not only occur in lasers.

Stimulated emission is a permanent process, for instance, in the lecture hall.

The thermal occupation number of a mode of a cavity is given by the Bose-Einstein

factor (Fig. 6.6)

Fig. 6.6 Thermal

occupation number of a

photon mode at frequency ν
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n̄ =
1

ehν/kT − 1
. (6.29)

At room temperature, T = 300 K, the thermal occupation number has very different

values in different spectral regions:

• n̄ ≪ 1 for hν ≫ kT (visible).

• n̄ ∼ 1 for hν ≈ kT (infrared).

• n̄ ≫ 1 for hν ≪ kT (far infrared and microwaves).

The approximation for small frequencies, n̄ = kT/hν, shows that n̄ increases to

infinitely large values (n̄ → ∞) for ν → 0). At a frequency ν = 1011 Hz, the thermal

occupation number is large, n̄ ≈ 100.

We return to Planck’s radiation law and write it in the form

ρ(ν)dν = D(ν)dν × n̄(ν) × hν, (6.30)

where we have the quantities:

• ρ(ν) = spectral energy density of radiation at the frequency ν.

• ρ(ν)dν = energy density in the frequency interval ν, ν + dν.

• D(ν) = 8πν2/c3 =mode density =density of states of photons =density of modes

per unit of volume and unit of frequency (Sect. 10.4).

• D(ν)dν = number of modes per unit of volume in the frequency interval ν,

ν + dν.

• hν = quantum energy of a photon (=photon energy).

We can formulate Planck’s radiation law as follows: the energy density of blackbody

radiation is equal to the product of mode density, thermal occupation number, and

energy of a photon.

A two-level atomic system (Fig. 6.7a) in equilibrium with thermal radiation can

emit radiation either by spontaneous emission at an emission rate per excited atomic

system of τ−1
sp = A21 or by stimulated emission at an emission rate per atomic system

of τ−1
stim = ρ(ν)B21. The stimulated emission dominates

Fig. 6.7 Stimulated and spontaneous emission of radiation. a The two processes and b regions of

their dominance

http://dx.doi.org/10.1007/978-3-319-50651-7_10
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τ−1
stim

τ−1
sp

=
ρ(ν)B21

A21

=
ρ(ν)

D(ν)hν
= n̄(ν) > 1, (6.31)

if the occupation number of the modes at the frequency ν is larger than unity. In

thermal equilibrium of an ensemble of two-level atomic systems with radiation

(Fig. 6.7b), the transitions 2 → 1 are:

• Mainly due to stimulated emission at small frequencies (hν ≪ kT ).

• Mainly due to spontaneous emission at large frequencies (hν ≫ kT ).

Stimulated transitions between energy levels at a transition frequency of 1011 Hz

occur, at room temperature, almost 100 times faster than spontaneous transitions!

Not only the walls of a lecture hall but also the persons in the hall permanently emit

1011-Hz radiation mainly by stimulated emission.

What is specific about a laser? A thermal system contains radiation with portions

in all spatial directions. Stimulated emission of radiation propagating in a direction

compensates absorption of radiation propagating in exactly the opposite direction.

In a lecture hall, we have permanently stimulated emission due to the interaction of

the thermal radiation with the persons in the hall and with the walls. The situation

is completely different in a laser. Pumping of produces an active medium, which is

in a nonequilibrium state. The active medium experiences feedback from radiation

stored in the laser resonator and therefore emits, by stimulated emission, radiation

only in the direction of the stimulating radiation—i.e., the active medium is able to

emit radiation in a single mode only.

6.8 Transition Probabilities

We express the transition rates by transition probabilities. The transition probability

for spontaneous emission, i.e., the transition rate per two-level system per second, is

given by

w21,sp = A21. (6.32)

The transition probability for stimulated emission is equal to

w21,stim = B21,stim ρ(ν0) (6.33)

and the transition probability for absorption is given by

w21,abs = B12,abs ρ(ν0). (6.34)
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The transition probability per unit time for a stimulated emission process in an atomic

two-level system is given by Fermi’s golden rule

w21,stim =
2π

�
|µ21|

2, (6.35)

where µ21 is the matrix element for the stimulated transition 2 → 1 (Sect. 6.9).

6.9 Determination of Einstein Coefficients

from Wave Functions

The stimulated emission of radiation by a two-level atomic system, characterized by

the wave function ψ1 of the lower level and ψ2 of the upper level, is determined (for

an electric dipole transition) by the dipole matrix element

µ21 = −

∫

ψ∗
2 erψ1dV, (6.36)

where d V denotes a volume element. The Einstein coefficient of stimulated emission

is equal to

B21 =
2π2|µ21|

2

3ε0h2
, (6.37)

where the spectral energy density of the field that stimulates the transition is given

on the frequency scale, ρ = ρ(ν). The Einstein coefficient of absorption is

B12 = B21. (6.38)

Quantum mechanics taking account of the quantization of the electromagnetic field

shows that spontaneous emission is caused by vacuum fluctuations of the electro-

magnetic field. Theory yields the Einstein coefficient of spontaneous emission

A21 =
16π3ν3|µ21|

2

3ε0hc3
. (6.39)

The Einstein relations are satisfied. Quantum theory thus provides a foundation of

the old quantum mechanics.

References [1–4, 6, 31, 35–38].
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Problems

6.1 Photon density. Estimate the density of photons, present in a lecture room, in

a frequency interval of 1 MHz

(a) At a microwave frequency of 1 GHz.

(b) At a terahertz frequency of 1 THz.

(c) At a frequency (500 THz) in the visible.

6.2 Number of thermal photons in a mode of a laser resonator. Calculate the

average number of thermal photons in a mode of a laser resonator at room tempera-

ture, for different lasers.

(a) Titanium–sapphire laser (frequency 400 THz).

(b) CO2 laser (30 THz).

(c) Far infrared laser (1 THz).

6.3 Einstein coefficients. Determine the Einstein coefficients from spontaneous

lifetimes of laser media mentioned in Table 6.1:

(a) Helium–neon laser; τsp = 100 ns.

(b) CO2 laser; τsp = 5 s.

(c) Nd:YAG laser; τsp = 230 µs.

6.4 Einstein coefficient. Relate the Einstein coefficients Bω
21 (for ρ on the ω scale)

and Bν
21 (for ρ on the ν scale).

6.5 Write Planck’s radiation law on the wavelength scale.

6.6 Radiation laws. Derive from Planck’s radiation law other laws:

(a) Wien’s displacement law on the frequency scale; νmax(T )

(b) Wien’s displacement law on the wavelength scale. λmax(T )

(c) Rayleigh–Jeans law (hν ≪ kT ).

(d) Wien’s law (hν ≫ kT ).

(d) Stefan–Boltzmann law. [Hint:
∫

x3(ex − 1)−1dx = π4/15.]

6.7 Maximum of the Planckian distribution.

(a) The spectrum of the cosmic background radiation has a Planck distribution cor-

responding to a temperature of 2.7 K. Determine the frequency νmax of the max-

imum of the distribution on the frequency scale and the wavelength λmax of the

distribution on the wavelength scale. [Hint: λmax 
= νmax/c.]

(b) Determine νmax and λmax for blackbody radiation emitted by a blackbody at a

temperature of 300 K.

6.8 Determine the number of photons contained in a cavity with walls at tempera-

ture T. [Hint:
∫ ∞

0
x2(ex − 1)−1dx = 2.40.]

6.9 Derive (6.2) from (6.1).

6.10 Determine the matrix elements for optical transitions of media characterized

in Table 6.1.



Chapter 7

Amplification of Coherent Radiation

In the preceding chapter, we discussed the interaction of broadband radiation with an

ensemble of two-level atomic systems. Here, we treat the interaction of monochro-

matic radiation with an ensemble of two-level atomic systems. We will show that

the photon density in a disk of light traveling in an active medium increases expo-

nentially with the traveling path length. The gain coefficient of an active medium is

proportional to the Einstein coefficient of stimulated emission and to the population

difference. We express the gain coefficient as the product of the gain cross section

of a two-level system and the population difference.

The largest gain cross section is obtainable for an active medium with a naturally

broadened 2 → 1 fluorescence line. Then the gain cross section at the line center is

equal to the square of the wavelength of the radiation divided by 2π ; we assume that

the medium is optically isotropic. The broadening of a transition line of an active

medium operated at room temperature is always due to another mechanism (and

not by natural broadening). Therefore, the gain cross section of atoms in an active

medium at room temperature is smaller than the square of the wavelength of the

radiation divided by 2π .

In the case that an active medium is a two-band medium, it is convenient to

introduce an effective gain coefficient. It is related to the difference of the density of

electrons in the upper band and the transparency density.

We compare gain coefficients and gain cross sections of different active media

and discuss, in particular, the gain coefficient of titanium–sapphire.

A two-dimensional active medium can interact with a light beam, which is three

dimensional, in two ways: it can propagate along the two-dimensional medium or it

can cross the two-dimensional medium. In the case that radiation propagates along an

active medium, it is useful to introduce a modal gain coefficient, which is related to the

average density of atomic two-level systems within a photon mode—the populations

of atomic two-level systems still underly the laws governing the two-dimensional

medium. In the case that radiation crosses an active medium, a description by use of

the gain factor of radiation (rather than a gain coefficient of the active medium) is

adequate.

© Springer International Publishing AG 2017
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7.1 Interaction of Monochromatic Radiation

with an Ensemble of Two-Level Systems

In a laser, monochromatic radiation acts on an ensemble of two-level atomic systems.

Which are, in this case, the rate equations?

We characterize monochromatic radiation (Fig. 7.1) by a spectral energy density

ρ(ν) that has a constant value within a frequency interval ν, ν + dν and is zero

outside this interval. The energy density u(ν) of the monochromatic radiation is

u(ν) = ρ(ν)dν. (7.1)

We assume that the spectral width of the monochromatic radiation is small compared

to the linewidth Δν0 of the atomic transition,

dν ≪ Δν0. (7.2)

If only natural line broadening is present, then dν ≪ Δνnat.

(We treat dν as a small but finite physical quantity; dν appears also as a differential

in differential equations or integrals. The two aspects—to consider dν as a finite

quantity or as a differential—are compatible with each other, see [20].)

We ignore, for the moment, spontaneous emission. Stimulated emission processes

depopulate the upper level and absorption processes populate it. The temporal change

of the population of the upper level is

dN2/dt = −B21ρ(ν)g(ν)dνN2 + B12ρ(ν)g(ν)dνN1, (7.3)

where g(ν)dν is the portion of the transition probability in the interval ν, ν + dν and

g(ν) is the lineshape function.

Justification: Broadband radiation with a constant spectral density in the frequency

region of the spectral line leads to the temporal change of population of the upper

level.

Fig. 7.1 Monochromatic

radiation
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dN2

dt
= −B21ρ(ν)N2

∞
∫

0

g(ν ′)dν ′ + B12ρ(ν)N1

∞
∫

0

g(ν ′)dν ′. (7.4)

This is, because of
∫

gdν = 1, equal to the result of the preceding chapter.

(We assumed that B21 is independent of ν.)

We continue the discussion of the interaction of monochromatic radiation with

an ensemble of two-level atomic systems and write, with B12 = B21, the decay rate

in the form

dN2/dt = −B21ρ(ν)g(ν)dν(N2 − N1). (7.5)

It follows, with u = u(ν) = ρ(ν)dν, that the temporal change of the population of

the upper level is given by

dN2/dt = −B21u g(ν)(N2 − N1). (7.6)

The transitions 2 → 1 dominate (dN2/dt < 0) if N2 − N1 > 0. The change dN2

of the population N2 is connected with a change du of the energy density of the

radiation,

du = − dN2 × hν. (7.7)

Thus, we obtain

du/dt = hνg(ν)B21(N2 − N1) u. (7.8)

We replace the energy density u by the photon density, Z = u/hν, and obtain the

temporal change of the population of the upper level

dN2/dt = − hν g(ν)B21(N2 − N1) Z , (7.9)

and the change of the photon density

dZ

dt
= −

d(N2 − N1)

dt
. (7.10)

It follows that

dZ/dt = b21(N2 − N1)Z , (7.11)

where

b21 = hνB21g(ν) (7.12)
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is the growth rate constant, which is a measure of the strength of stimulated emission.

The growth rate constant b21(ν) is equal to the product of the photon energy hν, the

Einstein coefficient of stimulated emission and the value of the lineshape function

at frequency ν. We have the result: the growth rate (dZ/dt) of the photon density is

proportional to the population difference and the photon density.

According to the equation

dN2/dt = −b21 Z(N2 − N1), (7.13)

we also can interpret b21 as the decay rate for stimulated decay of the population N2,

per unit of the photon density and per unit of population difference.

We replace the population difference by the occupation number difference,

N2 − N1 = (N2 + N1)( f2 − f1), and write

dN2/dt = −b21(N1 + N2)( f2 − f1)Z . (7.14)

The decay rate of the population of the upper laser level is proportional to the den-

sity N1 + N2 of two-level atomic systems and to the occupation number difference

f2 − f1. The net decay rate of the decay of a single two-level atomic system in an

ensemble of two-level atomic systems is equal to

r21(ν) = −hνB21g(ν)( f2 − f1)Z . (7.15)

Alternatively, we can write

r21(hν) = r21(ν) = −hν B̄21g(hν)( f2 − f1)Z , (7.16)

where the lineshape function g is now expressed on the energy scale and where

B̄21 = h B21.

7.2 Growth and Gain Coefficient

The temporal change of the photon density is equal to

dZ/dt = γ Z , (7.17)

where

γ = hνB21g(ν)(N2 − N1) = b21(N2 − N1) (7.18)

is the growth coefficient of an active medium.
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Fig. 7.2 Monochromatic

radiation in an active

medium

If we suddenly turn on, at time t = 0, the population inversion, then the density

of photons increases exponentially,

Z = Z0eγ t . (7.19)

Z0 is the photon density at t = 0.

The radiation in a disk of light (thickness δz) propagating in an active medium

(Fig. 7.2) is amplified. On the path from z to z + dz, the change of the photon density

within the disk of thickness δz ≪ dz is

dZ = b21(N2 − N1)Zdt, (7.20)

where

dt = dz/(c/n) (7.21)

is the time the disk of light takes to travel the distance dz. We can write

dZ = α(ν) Z dz, (7.22)

where

α(ν) =
γ (ν)

c/n
=

b21(ν)

c/n
(N2 − N1) =

hν

c/n
B21g(ν)(N2 − N1) (7.23)

is the gain coefficient (=small-signal gain coefficient) of an active medium. The gain

coefficient is proportional to b21 and to the population difference.

(If the energy levels are degenerate, the gain coefficient is given by

α(ν) =
γ (ν)

c/n
=

b21(ν)

c/n

(

N2 − N1

g2

g1

)

=
hν

c/n
B21g(ν)

(

N2 − N1

g2

g1

)

. (7.24)

In the following, we consider nondegenerate two-level systems.)

The photon density increases exponentially with the traveling path length,

Z(z) = Z(z0) eα(ν)(z−z0). (7.25)
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If N2 < N1, then α(ν) is negative, and we obtain the absorption coefficient

αabs = −α = (n/c)hνB21g(ν)(N1 − N2). (7.26)

In this case, the photon density decreases exponentially according to the Lambert–

Beer law

Z(z) = Z(z0)e
−αabs(z−z0). (7.27)

We continue the discussion of gain. We can replace the population difference by

the product of the occupation number difference and the density of two-level atomic

systems, N2 − N1 = ( f2 − f1)(N1 + N2), and obtain

α(ν) = (n/c)hνB21g(ν) (N1 + N2) ( f2 − f1). (7.28)

The gain coefficient is proportional to the density of two-level atomic systems and

to the occupation number difference f2 − f1. We introduce the gain bandwidth Δνg

as the halfwidth of the gain curve α(ν). If B21 is independent of frequency, Δνg is

determined by the halfwidth of the lineshape function g(ν).

If the lineshape function is given on the energy scale, then

α(ν) = α(hν) = (n/c)hν B̄21g(hν) (N1 + N2) ( f2 − f1). (7.29)

If a line has Lorentzian shape, we can write the gain coefficient in the form

α(ν) =
hν

c/n
B21

2

π Δν0

ḡL,res(ν) (N2 − N1), (7.30)

or

α(ν) = (n/c)hνB21

2

π Δν0

ḡL,res(N1 + N2) ( f2 − f1), (7.31)

where ḡL,res is the lineshape function normalized to unity at the line center.

In a light beam propagating through an active medium of length L , the photon

density increases from the value Z0 to the value

Z = Z0eα(ν)L . (7.32)

The single-path gain factor is equal to

G1(ν) = eα(ν)L . (7.33)



7.2 Growth and Gain Coefficient 103

The single-path gain is

Z − Z0

Z0

=
u − u0

u0

= G1(ν) − 1 = eα(ν)L − 1. (7.34)

If α(ν)L ≪ 1, then

G1(ν) − 1 = α(ν)L , (7.35)

i.e., the single-path gain G1 − 1 is equal to the product of the gain coefficient and

the length of the active medium.

7.3 Gain Cross Section

We write the gain coefficient of an active medium (containing two-level atomic

systems) in the form

α(ν) = N2σ21 − N1σ12, (7.36)

where σ21 is the gain cross section of a two-level atomic system and σ12 the absorp-

tion cross section. The cross sections are equal, σ12 = σ21. It follows that the gain

coefficient of an active medium containing an ensemble of two-level atomic systems

is given by

α = (N2 − N1) σ21, (7.37)

where

σ21(ν) =
b21

c/n
=

hν

c/n
B21g(ν). (7.38)

The gain cross section at the frequency ν is proportional to ν, to the Einstein coef-

ficient of stimulated emission, and to the value of the lineshape function at the

frequency ν.

In the case that a line is naturally broadened, we can use the Einstein relations

and the relation A21 = τ−1
sp . We then find

σ21(ν) =
c2 A21

8πn2ν2
gnat(ν) =

c2

8πn2ν2

1

τsp

gnat(ν). (7.39)

The largest gain cross section of an isotropic two-level atomic system in an active

medium is obtainable if the 2 → 1 line is naturally broadened. Then g(ν0) = 4τsp

and
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Fig. 7.3 Gain cross sections

σnat = σ21,nat(ν0) =
c2

2πn2ν2
0

=
(λ/n)2

2π
, (7.40)

where λ = c/ν0 is the wavelength of the radiation in vacuum, n is the refractive

index of the active medium at the frequency ν0, and ν0 = (E2 − E1)/h. The gain

cross section of a two-level system with a naturally broadened line increases with

the square of the wavelength (Fig. 7.3, solid line).

We will see later, when we will discuss specific lasers (Chaps. 14–16 and chap-

ters on semiconductor lasers), that the active media of all lasers operated at room

temperature show 1 → 2 absorption lines and the 2 → 1 fluorescence lines that are

not broadened by natural broadening, but that other mechanisms dominate the line

broadening. Therefore, the gain cross section of radiation propagating in an active

(isotropic) medium at room temperature is smaller than (λ/n)2/2π .

If the gain coefficient curve is a Lorentz resonance curve, we can write

σ21(ν) =
hν

c/n
B21 gL,res(ν) =

2

πΔν0

hν

c/n
B21 ḡL,res(ν). (7.41)

The gain cross section at the center of a Lorentzian gain curve (with the halfwidth

Δν0) is

σ21,L(ν0) =
Δνnat

Δν0

σnat(ν0) =
Δνnat

Δν0

(λ/n)2

2π
. (7.42)

The gain cross section of radiation at the line center of a Lorentzian line is by the

factor Δνnat/Δν0 smaller than in case of a naturally broadened line.

http://dx.doi.org/10.1007/978-3-319-50651-7_14
http://dx.doi.org/10.1007/978-3-319-50651-7_16
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Table 7.1 Gain bandwidths and gain cross sections

Laser λ n Δνg Δνg/ν0 σ21 (m2) [σeff

(m2)]

HeNe 633 nm 1 1.5 GHz 3 × 10−6 1.4 × 10−16

CO2 10.6 μm 1 69 MHz–500 GHz 2.5 × 10−6–

1.7 × 10−2
1.2 × 10−20

Nd:YAG 1.06 μm 1.82 140 GHz 1.4 × 10−4 8.1 × 10−22

TiS (E || c) 830 nm 1.74 110 THz 0.3 2.3 × 10−23

TiS (E ⊥ c) 8 × 10−24

Fiber 1.5 μm 1.5 5 THz–12 THz 2.5–6 × 10−2 2 × 10−25–

[6× 10−25]

Semiconductor 840 nm 3.6 10 GHz–1 THz 3 × 10−5–

3 × 10−3
[3 × 10−19]

QCL 5 μm 3.4 10 GHz–1 THz 2 × 10−4–

1.6 × 10−2
10−16

The gain cross section of radiation at the center of a Gaussian line is

σ21,G(ν0) =
Δνnat

Δν0

√
π ln 2 σnat(ν0) ∼ 1.48

Δνnat

Δν0

(λ/n)2

2π
. (7.43)

Table 7.1 shows values of gain bandwidths and gain cross sections (and of effec-

tive gain cross sections, see next section and Sect. 18.7). Different halfwidths, men-

tioned in the following, are: Δνg = gain bandwidth = halfwidth of the gain curve;

Δν0 = halfwidth of an absorption line; Δνfluor = halfwidth of the fluorescence line,

measured on the frequency scale.

• Helium–neon laser. The gain bandwidth is equal to the halfwidth of the 2 → 1

fluorescence line, Δνg = Δνfluor = Δν0.

• CO2 laser. Δνg = Δνfluor = Δν0.

• Nd:YAG laser. Δνg = Δνfluor = Δν0.

• Titanium–sapphire laser. The gain bandwidth is very large (Sect. 7.6). In the table,

the crystal anisotropy of Ti3+:Al2O3 is taken into account. An average gain cross

section is σ21 = 1
3
(σ1 + 2σ2), where σ1 is the gain cross section for E || c and σ2

is the gain cross section for E ⊥ c. The experimental fluorescence curves indicate

that σ2 ∼ 3σ1 and that therefore σ1 ∼1.8 σ21 and σ2 ∼0.6 σ21.

• Fiber laser. The gain bandwidth depends on the pump strength (Chap. 18).

• Bipolar semiconductor laser. The gain bandwidth changes if the strength of the

pumping (i.e., the current flowing through the active semiconductor medium)

changes (Chaps. 21 and 22).

• Quantum cascade laser. The gain bandwidth varies if the strength of the pumping

changes. The gain bandwidth of an active medium of a specific quantum cascade

laser can be obtained by a detailed analysis of the properties of the active medium

(Chap. 29).

http://dx.doi.org/10.1007/978-3-319-50651-7_18
http://dx.doi.org/10.1007/978-3-319-50651-7_18
http://dx.doi.org/10.1007/978-3-319-50651-7_21
http://dx.doi.org/10.1007/978-3-319-50651-7_22
http://dx.doi.org/10.1007/978-3-319-50651-7_29
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The gain bandwidths of the different active media differ by five orders of magnitude.

The titanium–sapphire laser has by far the largest gain bandwidth, corresponding to

30% of the center frequency. The gain cross section (see also Fig. 7.3) differs by nine

orders of magnitude. The helium–neon laser and the quantum cascade laser have

large values of the gain cross section. The bipolar semiconductor lasers have smaller

values. CO2 lasers and solid state lasers have still smaller values.

7.4 An Effective Gain Cross Section

We consider a two-band laser with an active medium containing N0 two-level atomic

systems per unit volume. Without pumping, all levels in the lower band are occupied

and all levels of the upper band are empty (Fig. 7.4a); we assume that E2,min −
−E1,max ≫ kT . Pumping leads to a population in the upper band and to empty

levels in the lower band. The population in the upper band and the population in

the lower band are in a nonequilibrium relative to each other. At weak pumping,

the population N2 (=N ) in the upper band is small and the density N1 (=N ) of

empty levels in the lower band is also small. Accordingly, the relative occupation

number f2 (at energies near the minimum of the upper band) is small ( f2 ≪ 1), the

relative occupation number f1 (at energies near the maximum of the lower band)

is only slightly smaller than unity and absorption of radiation prevails. The width

of the energy distributions of each of the populations is of the order of kT . With

increasing N , f2 increases and f1 decreases until N reaches the transparency density

Ntr, where f2 − f1 = 0 (Fig. 7.4b). The width of the energy distributions of each

of the populations is still of the order of kT . The largest population in the upper

band occurs at energies near the band minimum (energy E2,min) and the smallest

population in the lower band at energies near the band maximum (energy E1,max).

Fig. 7.4 Two-band laser. a Population without pumping. b Quasi-thermal distributions of the

populations for N = Ntr . c Quasi-thermal distributions of the populations for N > Ntr
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Fig. 7.5 Gain coefficient of a two-band laser medium. a Frequency dependence of the gain coef-

ficient. b Dependence of the maximum gain coefficient on the population N in the upper band

If N > Ntr (i.e., f2 > f1), the medium is a gain medium and the gain increases

with increasing N . The gain bandwidth increases with increasing band filling and

becomes larger than kT at large filling (Fig. 7.4c); then the widths of the distributions

are larger than k T .

The gain coefficient α depends on different parameters: temperature of the active

medium; Einstein coefficient B21; electron density N ; energy distributions in the

levels of the lower and the levels in the upper band. The α(ν) curve can have a

complicated shape (Fig. 7.5a). Gain occurs if the maximum αmax of the α(ν) curve

becomes (for N = Ntr) positive. With increasing N , αmax increases and the gain

bandwidth increases too. Figure 7.5b (solid line) shows αmax versus N for values of

N around the transparency density. The expansion of αmax leads to

αmax = σeff × (N − Ntr), (7.44)

where the differential cross section

σeff = (∂αmax/∂ N )N=Ntr
(7.45)

is an effective gain cross section. The effective gain cross section (Fig. 7.5b, dashed)

corresponds to the slope of αmax(N ) near Ntr. The effective gain cross section is

the gain cross section related to the density of two-level systems excited in addition

to the two-level systems that are, at the transparency density, already in the excited

state. We will discuss later (in Chaps. 21 and 22) how we can determine the effective

gain cross sections and αmax as well as gain bandwidths of bipolar semiconductor

lasers; a value of an effective gain cross section is given in Table 7.1.

We will introduce two other effective gain cross sections in connection with the

discussion of gain coefficient of a doped fiber (Sect. 18.7).

http://dx.doi.org/10.1007/978-3-319-50651-7_21
http://dx.doi.org/10.1007/978-3-319-50651-7_22
http://dx.doi.org/10.1007/978-3-319-50651-7_18
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7.5 Gain Coefficients

The gain coefficients of different laser media differ markedly (Table 7.2 and Fig. 7.6—

they differ by eight orders of magnitude. The gain coefficient is small for the helium–

neon laser, it is large for the CO2 laser and for solid-state lasers. It is very large for the

(bipolar) semiconductor laser and the quantum cascade laser. The gain coefficient

of a medium can be obtained by an analysis of the properties of an active medium

or from the study of the laser thershold. The length L ′ of an active medium is about

1 mm or smaller for a semiconductor laser and lies between several centimeters and

about 1 m for the other lasers. We can ask whether it is possible to increase N2 − N1

in order to obtain larger gain coefficients. The answer is different for the different

lasers.

Table 7.2 Gain coefficients

Laser λ α (m−1) L ′ (m) G σ21 N2 − N1

(G1) [σeff ] [N − Ntr]
(m2) (m−3)

HeNe 633 nm 0.014 0.5 1.014 1.4 × 10−16 1014

CO2 10.6 μm 5 0.5 3 1.2 × 10−20 1.5 × 1018

Nd:YAG 1.06 μm 20 0.1 50 8.1 × 10−22 1 × 1023

TiS E ||c 830 nm 20 0.1 50 2.3 × 10−23 8 × 1023

Fiber 1.5 μm 0.7 10 (103)
[

6 × 10−25
]

1.2 × 1024

Semiconductor 840 nm 1,500 10−3 (4.5) [3 × 10−19] [6 × 1021]
QCL 5 μm 1,000 10−3 2.7 10−16 1019

Fig. 7.6 Gain coefficient of

different laser media
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• Helium–neon laser. The excited neon atoms have a large gain cross section. How-

ever, the population difference N2 − N1 that can be reached is very small.

• C O2 laser. The value of the population difference given in the table is obtained at a

discharge in a gas of 5 mbar pressure. Higher population differences are obtainable

at higher gas pressures (e.g., at a gas pressure of 1 bar in pulsed lasers), which

emit pulses of high power. The gain coefficient α at the line center does not change

with N2 − N1 because of collision broadening (Sects. 14.2 and 14.8).

• Nd:YAG laser. The population difference N2 − N1 increases in case of stronger

pumping. However, it is preferable to make use of stronger pumping to increase the

laser output power rather than to enhance the population difference

(Chap. 8).

• Titanium–sapphire laser. The population difference cannot increase much further,

it has already a value near 10% of the density of Ti3+ ions (at a doping level of

1025 m−3). A further increase of N2 − N1 leads to saturation of the pump rate

(Sect. 5.4).

• Fiber laser. An increase of the population difference (at stronger pumping) by

a factor of 10 is possible; the impurity concentration, N0 = 7 × 1025 m−3, is by

about an order of magnitude larger than for crystals. The transparency density is

Ntr ∼ N0/2.

• Bipolar semiconductor laser. An increase of the population difference N − Ntr

and of α by less than an order of magnitude is possible.

• Quantum cascade laser. Whether the population difference can be increased

depends on the specific design.

While the gain coefficient curves of gas lasers follow directly from atomic properties

of gases and of solid-state laser media from atomic properties of impurity ions in

solids, the situation is completely different for semiconductor and quantum cascade

lasers: it is possible to choose the center frequency ν0 of a gain coefficient curve

through the choice of an appropriate semiconductor material and an appropriate

heterostructure. Designing bipolar semiconductor lasers is possible for almost all

frequencies of radiation in the near UV, the visible and the near infrared (150–

800 THz). Designing quantum cascade lasers is possible for all frequencies in the

range 11–150 THz or, as cooled quantum cascade lasers operating at a temperature

of 80 K, in the range 1–5 THz.

7.6 Gain Coefficient of Titanium–Sapphire

In the preceding section, we presented gain data of titanium–sapphire. Here, we

show how we can obtain the data. The fluorescence band extends over a large wave-

length range. Therefore, we have to take into account that the Einstein coefficient of

spontaneous emission varies strongly with frequency. We now determine the spectral

distribution Sν(ν) on the frequency scale from the spectral distribution Sλ(λ) on the

wavelength scale, represented in Fig. 5.3 (Sect. 5.3). We use the relation

http://dx.doi.org/10.1007/978-3-319-50651-7_14
http://dx.doi.org/10.1007/978-3-319-50651-7_14
http://dx.doi.org/10.1007/978-3-319-50651-7_8
http://dx.doi.org/10.1007/978-3-319-50651-7_5
http://dx.doi.org/10.1007/978-3-319-50651-7_5
http://dx.doi.org/10.1007/978-3-319-50651-7_5
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Sν(ν)|dν| = Sλ(λ)|dλ|, (7.46)

where dν is a frequency range near the frequency ν and dλ the corresponding wave-

length range near the wavelength λ = c/ν. With ν = c/λ and |dν| = |dλ|/λ2, we

obtain

Sν =
1

|dν/dλ|
Sλ =

λ2

c
Sλ. (7.47)

Sν is proportional to g(ν) and to A21(ν), i.e.,

g(ν) = K1

Sν(ν)

A21(ν)
= K2 λ5 Sλ. (7.48)

K1 and K2 are constants. Multiplying Sλ (Fig. 5.3) by λ5 and normalizing the maxi-

mum of the lineshape function to 1, we obtain the gain profile ḡ(ν) shown in Fig. 7.7

(solid line). The curve yields the center frequency ν0 (∼ 360 THz) and the gain band-

width Δνg (∼110 THz). The ratio of the gain bandwidth and the center frequency is

about 0.3. The gain coefficient α(ν) has a Gaussian-like profile. At small frequencies

(ν < ν0), the decrease of the ḡ(ν) curve is less steep than for a Gaussian lineshape

(dotted). A Gaussian-like gain profile, with a deviation from a Gaussian profile at

small frequencies, is consistent with the vibronic character of the energy levels as we

will discuss later (in Chap. 17)—the deviation is a consequence of the anharmonicity

of the lattice vibrations of sapphire. We attribute the line broadening to homogeneous

broadening (Sect. 17.4).

Figure 7.8 (upper part) shows the absorption coefficient of Ti3+:Al2O3 and, fur-

thermore, the gain coefficient of excited Ti3+:Al2O3 in the case that 8% of the tita-

nium ions (in a crystal containing 1025 Ti3+ ions per m3) are in the excited state. The

maximum gain coefficient follows from the relation αmax = Nσmax, where N2 is the

density of excited Ti3+ ions. We find that the maximum cross section of stimulated

emission is equal to

σmax = a
√

π ln 2
Δνnat

Δν0

σnat(ν0) ∼ 1.48a
Δνnat

Δν0

(λ/n)2

2π
, (7.49)

Fig. 7.7 Gain profile of

Ti3+:Al2O3

http://dx.doi.org/10.1007/978-3-319-50651-7_5
http://dx.doi.org/10.1007/978-3-319-50651-7_17
http://dx.doi.org/10.1007/978-3-319-50651-7_17
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Fig. 7.8 Absorption and gain coefficients of Ti3+:Al2O3

where Δνnat is the natural linewidth, Δν0 the gain bandwidth, σnat(ν0) the cross

section corresponding to a naturally broadened line and n (=1.74) the refractive

index of sapphire; the factor
√

π ln 2 takes account of the difference of a Gaussian

and a Lorentzian profile and the factor a (∼2) of crystal anisotropy.

7.7 Gain Coefficient of a Medium

with an Inhomogeneously Broadened Line

We can decompose an inhomogeneously broadened line, e.g., a Gaussian line, into

homogeneously broadened lines. We introduce:

• νc = center frequency of an inhomogeneous broadened line.

• ginh(ν, νc) lineshape function describing the inhomogeneous broadening.

• ν0 = resonance frequency of a specific two-level atomic system; each two-level

atomic system has its own resonance frequency.

• ghom(ν, ν0) = lineshape function describing the homogeneous broadening of a

two-level atomic system that has the resonance frequency ν0.

• dN
dν0

2 = N2ginh(ν0, νc)dν0 = density of two-level atomic systems in the upper

laser level that have the resonance frequency in the frequency interval ν0, ν0 + dν0.

• dN
dν0

1 = N1ginh(ν0, νc)dν0 = density of two-level atomic systems in the lower

laser level that have the resonance frequency in the frequency interval ν0, ν0 + dν0.

The temporal change of the population difference is given by

d(N2 − N1)/dt = −γ Z , (7.50)
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and the temporal change of the photon density is

dZ/dt = γ Z , (7.51)

where

γ (ν) =
∞

∫

0

hνghom(ν − ν0)B21(N2 + N1)( f2 − f1)ginh(ν0)dν0 (7.52)

is the growth coefficient. We have used the relation N2 − N1 = (N2 + N1)( f2 − f1).

The gain coefficient is α = (n/c)γ . Two-level atomic systems that have different

resonance frequencies ν0 contribute to the gain coefficient at frequency ν. The Ein-

stein coefficient B21 can depend on frequency. A special case of (7.52) is the Voigt

profile (Problem 14.2b).

7.8 Gain Characteristic of a Two-Dimensional Medium

There are two possibilities to arrange a two-dimensional active medium in a light

beam. The propagation direction of the light can be parallel to the plane of the medium

or perpendicular. We treat here the first case and the second case in the next section.

We consider the propagation of a parallel light beam that contains a two-

dimensional active medium (Fig. 7.9). The propagation direction of the light is paral-

lel to the plane of the medium. We introduce the average density of two-level atomic

systems in the light beam,

Nav =
N 2D

a2

, (7.53)

where a2 is the extension of the beam perpendicular to the film plane—the height of

the photon mode—and N 2D is the two-dimensional density of two-level systems in

the two-dimensional medium. If N 2D
2 − N 2D

1 is the population difference, the average

population difference in the light beam is

(N2 − N1)av =
N 2D

2 − N 2D
1

a2

. (7.54)

The average density is independent of the thickness of the two-dimensional active

medium. It follows that the temporal change of the photon density in a disk of light

is equal to

dZ

dt
= b21

N 2D
2 − N 2D

1

a1

Z . (7.55)

http://dx.doi.org/10.1007/978-3-319-50651-7_14
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Fig. 7.9 Two-dimensional

medium in a light beam

Our procedure is justified because it does not matter at which position within the

photon mode the two-level atomic systems are located. As an essential condition, we

assumed that the photons in the light beam belong to a single mode.

The growth coefficient is equal to

γ = b21

N 2D
2 − N 2D

1

a2

. (7.56)

Taking into account that b21 = (c/n)σ21, we find the gain coefficient

α = σ21

N 2D
2 − N 2D

1

a2

. (7.57)

The gain coefficient α is inversely proportional to the extension of the photon mode

perpendicular to the plane of the two-dimensional medium and is called modal

gain coefficient. The single-path gain factor of radiation transversing a medium of

length L is

G1 = eαL . (7.58)

We introduce the two-dimensional gain characteristic

H 2D(ν) = σ21(ν)(N 2D
2 − N 2D

1 ), (7.59)

as the product of the gain cross section and the difference of the two-dimensional

populations. The modal gain coefficient is given by

α =
1

a2

H 2D (7.60)
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and the modal growth coefficient by

γ =
c

na2

H 2D. (7.61)

The two-dimensional gain characteristic completely describes the active medium

while the gain coefficient and the growth coefficient depends not only on the proper-

ties of the active medium but also on the extension of the photon mode perpendicular

to the plane of the two-dimensional medium. Thus, a modal gain coefficient refers to

a hypothetical medium: the hypothetical medium has the height of the photon mode;

it contains a homogeneous distribution of two-level systems; the density of two-level

systems in the hypothetical medium is equal to the density of two-level systems in

the two-dimensional medium divided by the height of the photon mode.

Example GaAs quantum well in a light beam in a quantum well laser

(Chaps. 21 and 22).

7.9 Gain of Light Crossing a Two-Dimensional Medium

In the case that a light beam is crossing a two-dimensional active medium (Fig. 7.10),

it is convenient to make use of the gain factor rather than the gain coefficient. The

average population difference in a disk of light is

(N2 − N1)av =
N 2D

2 − N 2D
1

δz
, (7.62)

where δz is the length of the disk. The change of the photon density within the

interaction time δt = nδz/c is

δZ =
N 2D

2 − N 2D
1

δz
b21 Z δt. (7.63)

It follows that

δZ

Z
= σ21(N 2D

2 − N 2D
1 ) (7.64)

and, with G1 − 1 = δZ/Z , that

G1 − 1 = σ21(N 2D
2 − N 2D

1 ) = H 2D(ν). (7.65)

The single-path gain G1 − 1 of radiation crossing a two-dimensional medium is

equal to the two-dimensional gain characteristic.

Example a light beam crossing a GaAs quantum well in a quantum well laser

(Chaps. 21 and 22).

http://dx.doi.org/10.1007/978-3-319-50651-7_21
http://dx.doi.org/10.1007/978-3-319-50651-7_22
http://dx.doi.org/10.1007/978-3-319-50651-7_21
http://dx.doi.org/10.1007/978-3-319-50651-7_22


7.9 Gain of Light Crossing a Two-Dimensional Medium 115

Fig. 7.10 Light beam

crossing a two-dimensional

active medium

References [1–4, 6, 31, 35–37].

Problems

7.1 Amplification of radiation in titanium–sapphire. Given is an active titanium–

sapphire medium with a population difference N2 − N1 = 1024 m−3.

(a) Determine the gain coefficient at the frequency of maximum gain.

(b) Determine the single-path gain factor at the frequency of maximum gain when

the crystal has a length of 10 cm.

(c) Determine the gain coefficient and the single path gain factor of radiation at a

wavelength in vacuum of 1μm.

7.2 Gain cross section of Ti3+ in titanium–sapphire. Compare the gain cross

section of an excited Ti3+ ion with the gain cross section of a two-level system

that has a naturally broadened line at the frequency of maximum gain coefficient of

titanium–sapphire.

7.3 Two-dimensional gain medium. The two-level systems of a two-dimensional

gain medium have a gain cross section σ21 = 1.5 × 10−19 m2. The population differ-

ence is equal to N 2D
2 − N 2D

1 = 1016 m−2.

(a) Estimate the modal gain coefficient in the case that radiation propagates along

the active medium and that the mode has a height of 800 nm.

(b) Estimate the gain for radiation traversing the medium.

7.4 Anisotropic media.

(a) We manipulate the two-level atomic systems of an active medium (for example,

by applying a magnetic field, so that the atomic dipoles have an orientation

mainly in one direction instead of a random orientation); we assume that A21

does not change. Determine B21 and σ21 for radiation of different orientations

of the electric field vector of electromagnetic radiation.
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(b) We assume that we orient the two-level systems with their dipoles in a plane.

Determine B21 and σ21 for radiation polarized either parallel or perpendicular to

the plane.

7.5 Oscillator strength. The classical oscillator model of an atom provides the clas-

sical absorption cross section of an atom, σcl(ν) = e2/(4ε0m0c)gL,res(ν), according

to (9.67)

(a) Show that the classical absorption strength is

Scl ≡
∫

σcl(ν)dν =
e2

4 ǫ0 m0c
. (7.66)

(b) Show that the quantum mechanical absorption strength is equal to

S ≡
∫

σ21(ν)dν =
n

c
hνB21 =

c2 A21

8πn2ν2
=

c

8πn2ν2τsp

. (7.67)

(c) We introduce the oscillator strength f via the relation

S = Scl × f. (7.68)

Estimate the oscillator strengths, which correspond to the absorption and to the

gain cross sections of titanium–sapphire.

(d) Show that in case of a narrow line

S =
λ2

0

8πn3τsp

, (7.69)

where λ0 = c/ν0.

7.6 Fluorescence line and absorption cross section.

(a) Show that we can write, in case of a narrow line caused by transitions in an

ensemble of two-level atomic systems,

1

τsp

≈
8πcn2

λ4
0

∫

σ12(λ)dλ, (7.70)

where λ0 is the center wavelength, n the refractive index and σ12 the absorption

cross section.

(b) Show that this leads to the relation

σ12(λ) =
λ4

0

8πn2τsp

S(λ)dλ
∫

S(λ)dλ
, (7.71)

http://dx.doi.org/10.1007/978-3-319-50651-7_9
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where S(λ)dλ is the fluorescence intensity in the wavelength interval dλ at

the wavelength λ and
∫

S(λ)dλ is the total fluorescence intensity. This relation

is sometimes called Füchtbauer-Ladenburg relation; in the 1920s, Füchtbauer

studied absorption lines [48] and Ladenburg (see Sect. 9.10) fluorescence lines

of atomic gases.

7.7 Gain saturation. We consider a four-level laser medium and take into account

both pumping and relaxation. Instead of (7.13), we write

dN2/dt = r − b21 Z(N2 − N1) − N2/τ
⋆
rel, (7.72)

where r is the pump rate (per unit of volume). We assume that τrel ≪ τ ⋆
rel and therefore

N2 ≪ N2, and find

N2 = N2,0(1 + b21τ
⋆
rel Z). (7.73)

We introduce the intensity I = cZhν. It follows that the large-signal gain coeffi-

cient is

αI = α/(1 + I/Is), (7.74)

where

Is = c/
(

B21g(ν)τ ⋆
rel

)

(7.75)

is the saturation intensity.

(a) Sketch gain curves for I/Is = 0; 1; 10. [Hint: in the case of homogeneous broad-

ening, the whole line saturates.]

(b) Determine the saturation intensity For Nd:YAG.

(c) Determine the saturation intensity For titanium–sapphire.

7.8 Saturation of absorption.

(a) Consider an ensemble of two-level atomic systems and show that the large-signal

absorption coefficient is

αabs,I = αabs/(1 + I/Is), (7.76)

where αabs = −(n/c)hνB12g(ν)(N2 − N1) is the small-signal absorption coef-

ficient, I = cZhν the intensity of radiation, and

Is = c/
(

2B12g(ν)τ ⋆
rel

)

(7.77)

the saturation intensity. [Hint: begin with (7.26); take into account that the total

population density Ntot = N2 + N1 is constant; introduce the population dif-

ference ΔN , with ΔN = N2 − N1; then derive the differential equation for

http://dx.doi.org/10.1007/978-3-319-50651-7_9
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d(ΔN )/dt and determine the steady state solution; because the lower level

remains populated, the saturation intensity is smaller (by a factor two) than

in case of a four-level system with a short lifetime of the lower laser level (Prob-

lem 7.7).]

(b) Determine ΔN , N2, and N1 for I = Is.

(c) Sketch absorption curves of a transition for I/Is = 0; 1; 10.

(d) Why is the saturation intensity in case of saturation of absorption and in case of

gain saturation independent of the populations of the two-level systems?

7.9 Show that the transition probability for stimulated emission induced by mono-

chromatic radiation in a frequency band dν is given by

w21stim = B21ρ(ν)g(ν)dν.

7.10 The photon flux in a beam of monochromatic radiation is Φ = cZ , where Z

is the photon density.

(a) Show that the transition probability for stimulated emission for an atom in the

beam is equal to w21(ν) = σ(ν)Φ.

(b) Determine the photon flux that is necessary to reach w21 = 10−9 s for the laser

materials mentioned in Table 7.1.

7.11 Relate the transition probability for stimulated emission to the growth coeffi-

cient and to the gain coefficient.

7.12 Test of equations. Compare the dimensions of left and right side of the fol-

lowing equations:

(7.18), (7.23), (7.38), and (7.52).

[Hint: for the dimension of B21, see (6.11) or Table 6.1.]

7.13 Determine B12 for the transition that is responsible for the absorption band of

titanium–sapphire for E || c (Fig. 7.7).

7.14 Optical thickness and self-absorption. The optical thickness of a material is

defined as the product αL , where α is the absorption coefficient and L the length of

the material; a material is optically thick if αL ≫ 1 and optically thin if αL ≪ 1.

(a) Determine the length of a titanium-sapphire crystal for which αL = 1 in the

center of the pump band of a TiS laser. [Hint: make use of Fig. 7.8]

(b) Determine the thickness of a TiS crystal at which self-absorption of fluorescence

radiation strongly influences the fluorescence spectrum.

http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_6
http://dx.doi.org/10.1007/978-3-319-50651-7_6


Chapter 8

A Laser Theory

In this chapter, we present simple laser equations describing the dynamics of laser

oscillation. The equations are coupled rate equations relating the populations of the

laser levels and the photon density.

The laser equations provide the threshold condition, the pump threshold, and

the threshold population difference. The solutions to the equations indicate that, at

steady state oscillation, clamping of the population difference occurs. Pumping with

a pump power exceeding the pump threshold results in generation of laser radiation.

The analysis of the laser equations allows us, furthermore, to determine the oscillation

onset time and to calculate the optimum output coupling efficiency of a laser.

During the onset of laser oscillation, the interplay of the active medium with the

field in a laser resonator can lead to oscillations (relaxation oscillations) of both

the density of photon in the resonator and the population difference. We derive

a criterion of the occurrence of relaxation oscillations. The relaxation oscillations

have frequencies in the GHz range.

We perform an estimate of the laser linewidth. It is finite because of the influ-

ence of noise on laser oscillation. Amplification of radiation, which is either due to

spontaneous emission by the active medium or due to thermal radiation in the laser

resonator is the origin of the finite linewidth of laser radiation.

In the next chapter, we will extend the theory taking into account that laser oscil-

lation is joined with a high frequency polarization of the active medium.

8.1 Rate Equations

To describe dynamical processes occurring in a laser, we make use of a rate equation

theory; the rate equations correspond to differential equations of first order. We treat

the four-level laser. The theory applies, without modification, also to the three-level

laser (with the pump level coinciding with the upper laser level).

In the center of the four-level laser (Fig. 8.1) is a two-level atomic system with

the upper laser level 2 and the lower laser level 1. An ensemble of two-level atomic
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Fig. 8.1 Four-level laser

systems interacts with the laser radiation by stimulated emission and absorption of

radiation. The upper laser level can relax (relaxation time τ ∗
rel) by transitions to the

lower laser level. Pumping into the pump level (level 3) and fast relaxation leads to

a population of the upper laser level. The population rate r is a measure of the pump

strength. The lower laser level is depopulated by relaxation (relaxation time τrel). We

assume that further processes, like the relaxation 3 → 1 or 2 → 0, are negligibly

week.

We describe the dynamics of the four-level laser by the laser rate equations:

dN2

dt
= r −

N2

τ ∗
rel

− b21 Z(N2 − N1), (8.1)

dN1

dt
= −

N1

τrel

+
N2

τ ∗
rel

+ b21 Z(N2 − N1), (8.2)

dZ

dt
= b21 Z(N2 − N1) −

Z

τp

. (8.3)

These laser equations take into account the following processes:

• The upper laser level is populated by pumping with the pump rate r . It is depopu-

lated by relaxation with the relaxation rate N2/τ
∗
rel and by the net effect of stimu-

lated emission and absorption with the rate b21 Z(N2 − N1).

• The lower laser level is depopulated by relaxation to the ground state with the rate

N1/τrel. It is populated by the relaxation of the upper laser level and the net effect

of stimulated emission and absorption.

• The photon density increases according to the net effect of stimulated 2 → 1

transitions and absorption processes and decreases due to loss of photons in the

resonator.

The three equations are nonlinear differential equations relating N1, N2, and Z . We

list the quantities used for description of the four-level laser:

• N2 = population of the upper laser level = density of two-level atomic systems

in the upper laser level = number density (=number per m3) of two-level atomic

systems in the upper laser level.

• N1 = population of the lower laser level = density of two-level atomic systems

in the lower laser level.

• N2 − N1 = population difference.
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• N1 + N2 = density of two-level atomic systems.

• τ ∗
rel = lifetime of the upper laser level with respect to 2 → 1 relaxation.

• τrel = lifetime of the lower laser level with respect to 1 → 0 relaxation.

• r = pump rate (per unit volume) = number of two-level atomic systems in the

upper laser level that are excited per m3 and s.

• E21 = E2 − E1 = energy difference of the laser levels = transition energy.

• ν = frequency of the laser radiation.

Because of line broadening effects, the quantum energy hν of a laser photon is not

necessarily equal to the transition energy E21. We are describing a laser that oscillates

on one mode. We characterize the light in the laser resonator by the quantities:

• Z = photon density (=number of photons per m3).

• τp = photon lifetime = average lifetime of a photon in the resonator.

• κ = κi + κout (=1/τp) = photon loss coefficient of the resonator.

• κi = internal loss coefficient describing loss of photons within the resonator.

• κout = loss coefficient describing loss of photons by output coupling of radiation.

• b21(ν) = hνB21g(ν) = growth rate constant.

• σ21 = nb21/c = gain cross section.

• n = refractive index of the active medium at the laser frequency.

• c = speed of light in vacuum.

8.2 Steady State Oscillation of a Laser

At steady state oscillation, the populations and the photon density are independent

of time,

dN2/dt = 0; dN1/dt = 0; dZ/dt = 0. (8.4)

We obtain the three laser equations

r − N2/τ
∗
rel − b21 Z(N2 − N1) = 0, (8.5)

−N1/τrel + N2/τ
∗
rel + b21 Z(N2 − N1) = 0, (8.6)

b21 Z(N2 − N1) − Z/τp = 0. (8.7)

(In the case that the laser levels are degenerate, we have to replace N2 − N1 by N2 −
N1g2/g1. Population inversion then corresponds to the condition N2 > N1g2/g1;

g1 = degree of degeneracy of level 1 and g2 = degree of degeneracy of level 2. In

the following, we treat an ensemble of two-level atomic systems, g1 = g2 = 1.)

At steady state oscillation, the photon density is unequal to zero (Z �= 0) and we

can eliminate Z from the first two equations and find

N1,∞/τrel = r. (8.8)
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The relaxation rate of the lower laser level is equal to the pump rate. This result is

obvious (see Fig. 8.1): at steady state, the pumping compensates the loss of two-level

atomic systems.

Equation (8.7) yields the threshold condition:

(N2 − N1)th = (N2 − N1)∞ =
1

b21τp

=
κi + κout

hνB21g(ν)
. (8.9)

(N2 − N1)th is the threshold population difference. The population difference at

steady state oscillation is equal to the threshold population difference,

(N2 − N1)∞ = (N2 − N1)th. (8.10)

The population difference is independent of the pump rate and is “clamped” to the

threshold population difference (N2 − N1)th. The population difference is equal to

the reciprocal of the product of the growth rate constant and the lifetime of a photon

in the resonator. The threshold decreases with increasing growth rate constant and

with increasing photon lifetime. The threshold condition is also discussed in the next

section.

We find, with

(N2 − N1)∞ = (N2,∞ − N1,∞), (8.11)

that

N2,∞ = N1.∞ +
1

b21τp

. (8.12)

Both N2,∞ and N1,∞ increase linearly with the pump rate while the difference expe-

riences clamping.

It follows from (8.5) and (8.6) that the photon density is given by

Z∞ = r

(

1 −
τrel

τ ∗
rel

)

τp −
(N2 − N1)∞τp

τ ∗
rel

. (8.13)

The photon density at steady state oscillation increases linearly with the pump rate

(Fig. 8.2). The threshold pump rate rth follows from the last equation, for Z∞ = 0,

rth =
(N2 − N1)∞

τ ∗
rel(1 − τrel/τ

∗
rel)

. (8.14)

The threshold pump rate (=pump rate at laser threshold) compensates the loss of N2

population that is due to 2 → 1 relaxation processes.

Equation (8.13) shows that the photon density Z∞ becomes infinitely large if

τp = ∞, i.e., if the lifetime of the photons is not limited by loss of photons by

escape from the resonator or by loss within the resonator. A laser without any loss,

κi = κout = 0, would contain an infinitely large number of photons.
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Fig. 8.2 Photon density at

steady state oscillation

We now consider the case that the relaxation time of the lower level is small

compared with the relaxation time of the upper laser level, τrel ≪ τ ∗
rel. Then the

threshold pump rate is equal to

rth =
(N2 − N1)∞

τ ∗
rel

=
1

b21τ
∗
relτp

=
κi + κout

b21τ
∗
rel

(8.15)

and the photon density at steady state oscillation is

Z∞ = (r − rth)τp =
(

r

rth

− 1

)

1

b21τ
∗
rel

. (8.16)

Without output coupling loss (κout = 0) but with internal loss, the threshold pump

rate is equal to

rth,i =
κi

b21τ
∗
rel

(8.17)

and the photon density is

Z∞,i =
r

κi

−
1

b21τ
∗
rel

. (8.18)

8.3 Balance Between Production and Loss of Photons

We will express the threshold condition in different ways. All formulations are

equivalent.

The condition of steady state oscillation is the following: the rate of photon pro-

duction is equal to the rate of photon loss:

b21(N2 − N1)∞ Z∞ =
Z∞

τp

. (8.19)

Dividing by Z∞, we obtain

1

b21(N2 − N1)∞
= τp. (8.20)



124 8 A Laser Theory

On the left side, we have the time it takes, in the time average, to produce one

photon and on the right side, we have the average lifetime of a photon in the laser

resonator. We can interpret the steady state: during its lifetime in the resonator,

a photon reproduces itself by a stimulated emission process exactly once.

Alternatively, we can write

(N2 − N1)∞ =
1

cτpσ21

=
1

lpσ21

. (8.21)

The threshold population difference is inversely proportional to the product of the

path length lp of a photon in the resonator and of the gain cross section σ21. We can

also write

(N2 − N1)∞σ21lp = 1. (8.22)

This means: On its multiple path through the resonator, a photon induces exactly

one photon by a stimulated emission process. Or, on its multiple path through the

resonator, a photon reproduces itself before it leaves the resonator. Finally, we write

(N2 − N1)∞ =
1

σ21lp

. (8.23)

By replacing the photon path length lp = 2nL/(− ln V ), we obtain the threshold

population difference

(N2 − N1)∞ =
− ln V

2nLσ21

. (8.24)

The threshold population difference tends to zero if the V factor approaches unity.

8.4 Onset of Laser Oscillation

We assume that we suddenly, at time t = 0, turn on a population difference (N2 −
N1)0. The temporal change of the photon density Z in the laser resonator is, for

small Z , given by the equation

1

Z

dZ

dt
= b21(N2 − N1)0 −

1

τp

. (8.25)

The solution is

Z(t) = Z0 e(γ0−κ)t . (8.26)
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Z0 is the photon density at t = 0,

γ0 = b21(N2 − N1)0 (8.27)

is the small-signal growth coefficient, and κ = 1/τp is the decay coefficient of the

resonator with respect to the decay of a photon.

To estimate the onset time ton, we now assume that the population difference

remains constant during the buildup of laser oscillation and changes suddenly to the

steady state value (N2−N1)∞. Under this assumption, the density Z of photons in the

resonator increases exponentially until it reaches the steady value Z∞. Accordingly,

we find

Z∞ = Z0 e(γ0−κ)ton . (8.28)

It follows that the oscillation onset time is equal to

ton =
ln(Z∞/Z0)

γ0 − κ
. (8.29)

This is the same result as derived earlier (in Sect. 2.9) since the gain factor is G0 =
eγ0T and the V factor is V = e−κT , where T is the round trip transit time; see (2.85).

According to our description of the buildup of laser oscillation, the photon density

increases exponentially (Fig. 8.3) until it reaches, at the onset time ton, the steady state

value Z∞. The population density decreases at the onset time ton from (N2 − N1)0 to

Fig. 8.3 Onset of laser oscillation

http://dx.doi.org/10.1007/978-3-319-50651-7_2
http://dx.doi.org/10.1007/978-3-319-50651-7_2
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(N2 − N1)∞. We will later (in Sect. 9.7) show that the population difference N2 − N1

and the photon density Z are smoothly going over into their steady state values

(dashed curves in Fig. 8.3).

In our discussion of the onset of laser oscillation, we assume that the relaxation

time of the upper laser level is much smaller than the onset time, τ ∗
rel ≪ ton. In this

case, the population N2 reaches a constant value at t = 0, immediately after the

start of the pumping, as indicated in Fig. 8.3. Together with the population N2, the

population N1 reaches a constant value immediately after the start of pumping too.

The helium–neon laser belongs to the lasers that fulfill the condition of a fast

relaxation in comparison with the oscillation onset time. The relaxation time τ ∗
rel of

many other laser media (for instance, of titanium–sapphire) is much larger than the

oscillation onset time. Then the population and the photon density show dynamic

effects, which we will discuss later (Sects. 8.8 and 9.8).

8.5 Clamping of Population Difference

The population difference at steady state oscillation is clamped to the threshold

population difference. What does this mean with respect to the occupation number

difference f2 − f1? It follows from the laser equations of the steady state that the

density of two-level atomic systems increases with increasing pump rate according to

(N1 + N2)∞ =
1

b21τp

+ 2rτrel. (8.30)

Both N1,∞ and N2,∞ increase,

N1,∞ = rτrel, (8.31)

N2,∞ =
1

b21τp

+ rτrel. (8.32)

The occupation number difference is given by

( f2 − f1)∞ =
(N2 − N1)∞

(N2 + N1)∞
=

1

(N2 + N1)∞
×

1

b21τp

. (8.33)

The solid lines of Fig. 8.4 illustrate our result concerning a laser oscillating above

threshold. With increasing pump rate, the density N2 + N1 of two-level atomic

systems increases and the population difference (N2 − N1)∞ remains constant while

the occupation number difference f2− f1 decreases; below threshold, the populations

N2 and N1 as well as f2 − f1 increase linearly with the pump rate (dashed lines). In a

four-level laser, the occupation number difference f2 − f1 decreases with increasing

pump rate. An increaasing pump rate corresponds to an increasing density of two-

level systems in the active medium.

http://dx.doi.org/10.1007/978-3-319-50651-7_9
http://dx.doi.org/10.1007/978-3-319-50651-7_9
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Fig. 8.4 Populations and

occupation number

difference of a four-level

laser

If the lifetime of the lower laser level is very small, τrel ≪ τ ∗
rel, the two-level atomic

systems are mainly in their excited states because the population of level 1 is small

compared to the population of level 2 (N1 ≪ N2). Then the population difference

is nearly equal to the density of the two-level atomic systems, N2 − N1 ≈ N2 + N1.

Accordingly, the occupation number difference is near unity, ( f2 − f1)∞ ∼ 1.

We will later find (Chaps. 21 and 22) that for a two-band laser, clamping occurs for

the occupation number difference f2 − f1. The reason is that the density of twolevel

systems in a two-band medium is constant and does not depend on the pump strength.

8.6 Optimum Output Coupling

How can we obtain optimum laser output? We have two limiting cases:

• If we choose an output coupling mirror of reflectivity R = 1, a strong laser field

builds up. The laser, however, does not emit radiation.

• If we choose an output coupling mirror of a reflectivity allowing laser oscillation

to occur just at threshold, then the laser field in the resonator is extremely weak.

The output power of the laser is negligibly small too.

Optimum output corresponds to an intermediate case. We can choose the reflectivity

of the output coupling mirror of a laser and thus the output coupling coefficient κout

(Fig. 8.5a). We are now looking for the value of κout that leads to optimum output; we

assume that τrel ≪ τ ∗
rel. We introduce the photon output coupling rate rout. At steady

state, the output coupling rate (=number of photons coupled out from the resonator

per m3 and per s) is

rout = κout Z∞ =
κout

κi + κout

(r − rth). (8.34)

http://dx.doi.org/10.1007/978-3-319-50651-7_21
http://dx.doi.org/10.1007/978-3-319-50651-7_22
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Fig. 8.5 Output coupling of radiation. a Output coupling coefficient. b Output coupling efficiency

for two different pump rates

The output coupling rate is proportional to the difference of pump rate and threshold

pump rate. We can write

rout = Z∞κout =
rκout

κout + κi

−
κout

b21τ
∗
rel

. (8.35)

We define the output coupling efficiency by

ηout = rout/r, (8.36)

where r is the pump rate. A straightforward calculation yields

ηout =
1

K

(K − 1)κout/κi − κ2
out/κ

2
i

1 + κout/κi

, (8.37)

where the parameter

K = r/rth,i (8.38)

is a measure of the pump rate. By differentiating ηout with respect to κout and equating

to zero, we find that optimum output coupling occurs if

(κout/κi)opt =
√

K − 1. (8.39)

The output coupling efficiency depends on the pump rate parameter K (Fig. 8.5b).

At a fixed pump rate (e.g., corresponding to K = 3), the efficiency increases at weak

output coupling (κout < κi) linearly with κout, reaches a maximum and decreases to

zero at the threshold value of κout.

The maximum output coupling efficiency (Fig. 8.6) increases, for K > 1, with K

according to

ηout,max = (
√

K − 1)2/K . (8.40)
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Fig. 8.6 Dependence of the

maximum output coupling

efficiency on the pump rate

parameter K

Fig. 8.7 Output coupling

efficiency and density of

photons in a laser resonator

(for K = 10)

When a laser is pumped far beyond threshold,
√

K ≫ 1, the optimum efficiency ηout

approaches unity. In this case, the pump power is converted into energy of relaxation

and energy of photons in the laser mode; almost all photons are coupled out. The

intrinsic loss of photons (e.g., due to diffraction or due to absorption of radiation

within the laser resonator) becomes negligibly small.

Which is the density Z∞ of photons in the laser resonator? Using the relation

κout Z∞ = rout = ηoutr, (8.41)

we obtain, after a simple calculation,

Z∗
∞ =

Z∞

rth,i/κi

=
(K − 1)

1 + κout/κi

, (8.42)

where the ratio rth,i/κi = (b21τ
∗
rel)

−1 is a quantity that characterizes a two-level

atomic system and where Z∗
∞ is the photon density in units of this quantity.

Figure 8.7 shows, for K = 10, the output coupling efficiency and the density of

photons in the laser resonator. At optimum output coupling, the number of photons

in the resonator is by far smaller than at weak output coupling. The analysis shows

that optimum output coupling corresponds to a compromise between a high density

of photons in the resonator and a large output coupling efficiency.
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The total output coupling rate is rout,tot = routa1a2 L , where a1a2 is the cross-

sectional area of the laser mode and L the length of the active medium. The total

output coupling rate corresponds to an output power Pout = rout,tothν.

8.7 Two Laser Rate Equations

We will replace equations (8.1) and (8.2) by one equation. By subtracting (8.2) from

(8.1), we obtain, with the approximation N1 ≪ N2,

d

dt
(N2 − N1) = r +

N1

τrel

−
2(N2 − N1)

τ ∗
rel

− 2b21 Z(N2 − N1) (8.43)

and by addition of the two equations,

d

dt
(N2 + N1) = r −

N1

τrel

= 0. (8.44)

Addition of (8.43) and (8.44) leads to the differential equation

d

dt
(N2 − N1) = 2r −

2(N2 − N1)

τ ∗
rel

− 2b21 Z(N2 − N1). (8.45)

We investigate the case that the population difference is suddenly turned on. At

t = 0, immediately after the production of the population inversion, the photon

density Z is negligibly small. It follows that

(N2 − N1)0 = rτ ∗
rel. (8.46)

The population difference (N2 − N1)0 at time t = 0 is equal to the pump rate

multiplied by the lifetime of the upper laser level. By replacing r , we obtain (instead

of originally three equations) two laser rate equations:

d

dt
(N2 − N1) =

2(N2 − N1)0

τ ∗
rel

−
2(N2 − N1)

τ ∗
rel

− 2b21 Z(N2 − N1), (8.47)

dZ

dt
= b21(N2 − N1)Z −

Z

τp

. (8.48)

At steady state, d(N2 − N1)/dt = 0, the population difference is given by

(N2 − N1)∞ =
(N2 − N1)0

1 + b21τ
∗
rel

Z∞ =
(N2 − N1)0

1 + Z∞/Zs

, (8.49)
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where

Zs =
1

b21τ
∗
rel

(8.50)

and where Zs is the saturation density. The decrease of the population difference

during onset of laser oscillation corresponds to a decrease of gain (gain saturation).

At the steady state, the large-signal gain coefficient is equal to

α∞ =
b21

c/n

(N2 − N1)0

1 + Z∞/Zs

=
α0

1 + Z∞/Zs

, (8.51)

where α0 is the small-signal gain coefficient, i.e., the gain coefficient in at Z ≪ Zs .

We relate the initial population, the population at steady state and the photon

density at steady state. We assume again that τrel ≪ τ ∗
rel. We find, from (8.9), (8.15)

and (8.46) and with cσ21 = b0
21, the relations

(N2 − N1)0

(N2 − N1)∞
=

r

rth

= 1 + cτ ∗
relσ21 Z∞ = 1 + τ ∗

relb
0
21 Z∞. (8.52)

Now, the questions remain how N2 − N1 develops in the time region t ≈ ton from

the initial value (N2 − N1)0 to (N2 − N1)∞ and how the photon density changes from

the exponential increase at t ≪ ton to the constant value Z∞. To study the transition

from the initial to the steady state, it is necessary to know more about the role of the

active medium. This question is a topic of the next chapter.

We obtain a connection to the next chapter by considering the energy content

of a laser. A laser contains three forms of energy: energy of excitation of two-level

atomic systems uex = (N2 − N1)∞(E2 − E1) = hν/cσ21τp; electromagnetic field

energy u = ε0 A2
∞/4; and polarization energy of density upol. A goal of the discussion

presented in Chap. 9 will be to find out the relations between the three forms of energy

during the buildup of laser oscillation as well as at steady state—we will find that,

at steady state, the polarization energy density is equal to the field energy density.

8.8 Relaxation Oscillation

A relaxation oscillation can occur during the buildup of a laser oscillation. We

search for an oscillation of the population difference and of the photon density at

time t = ton. We use the ansatz

(N2 − N1) = (N2 − N1)∞ + Nosc, (8.53)

Z = Z∞ + Zosc. (8.54)

http://dx.doi.org/10.1007/978-3-319-50651-7_9
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Nosc ≡ (N2 − N1)osc is the oscillating portion of the population difference and

Zosc the oscillating portion of the photon density. We assume, for simplicity, that

Nosc ≪ (N2 − N1)∞ and Zosc ≪ Z∞. It follows from the laser equations that

dNosc

dt
= −

2

τp

Zosc − 2rb21τp Nosc (8.55)

and

dZosc

dt
=

(

r

rth

− 1

)

Nosc

τ ∗
rel

. (8.56)

We neglected the terms with the product Nosc Zosc and made use of the relations

(N2 − N1)∞ = 1/(b21τp) and Z∞ = (r/rth − 1)/(b21τ
∗
rel), and supposed that τ ∗

rel ≪
τp. By differentiating the first of the two equations and using the second equation,

we find

d2 Nosc

dt
+

2

τ ∗
rel

r

rth

dNosc

dt
+

2

τpτ
∗
rel

(

r

rth

− 1

)

Nosc = 0. (8.57)

This is the equation of a damped harmonic oscillation with the solution

Nosc = Nosc(0) e(t−ton)/τdamp cos (ωosc(t − ton)) . (8.58)

Nosc(0) is an initial value of the oscillating portion of the population difference at

time t = ton. The ansatz yields the frequency of the relaxation oscillation

ωosc =
1

τ ∗
rel

√

2τ ∗
rel

τp

(

r

rth

− 1

)

−
(

r

rth

)2

(8.59)

and the damping (relaxation) time

τdamp =
rth

r
τ ∗

rel. (8.60)

A relaxation oscillation occurs if

(

r

rth

)2

<

(

r

rth

− 1

)

2τ ∗
rel

τp

. (8.61)

Otherwise, the relaxation oscillation is overdamped, i.e., there is no relaxation oscil-

lation.

At a pump rate r = 2 × rth, a relaxation oscillation is expected if τp ≤ τ ∗
rel.

This is plausible. An instantaneously large population difference leads to a large
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Fig. 8.8 Relaxation

oscillation

photon density. This causes a strong decrease of the population difference. Since the

photons leave the resonator quickly, the population can build up again and the process

of decrease and enhancement of population is repeats until the damping suppresses

relaxation oscillation. If the photons have a long lifetime (τp ≥ τ ∗
rel), an instantaneous

accumulation of a population difference is not possible and there is no relaxation

oscillation.

A helium–neon laser fulfills the condition τp ≥ τ ∗
rel; it shows no relaxation oscil-

lation. The photon lifetime of solid-state lasers and semiconductor lasers is shorter

than the relaxation time of the upper laser level, which is a condition of occurrence

of relaxation oscillations.

Example Relaxation oscillation in a bipolar semiconductor laser (Fig. 8.8).

• r/rth = 2; τ ∗
rel = 4 ns; τp = 10−11 s.

• ωosc = 7 × 109 Hz; νosc = 1.1 GHz; ν−1
osc = 0.9 ns.

• τdamp = 8 ns.

A bipolar semiconductor laser driven by a modulated current emits radiation pulses.

The modulation frequency has to be smaller than the oscillation frequency. Otherwise,

instabilities can occur. We will discuss in Sect. 9.9 how we can calculate the dynamics

of such instabilities.

8.9 Laser Linewidth

Due to spontaneous emission, a laser line has a finite spectral width. To estimate

the laser linewidth, we make use of results with respect of a Fabry–Perot resonator

containing an active medium (Sect. 3.7). The power P of radiation emitted by a

Fabry–Perot resonator (containing an active medium) at a frequency ν in the vicinity

of a resonance frequency νl is given by

P(ν) =
K

(1 −
√

G∞V )2 + 4
√

G∞V sin2[2π(ν − νl)L/c]
. (8.62)

K is a measure of the maximum power of a particular laser. It follows that the

linewidth (=laser linewidth [FWHM] is given by) is

http://dx.doi.org/10.1007/978-3-319-50651-7_9
http://dx.doi.org/10.1007/978-3-319-50651-7_3
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∆νL =
1 −

√
G∞V

π
√

G∞V

c

2L
. (8.63)

The linewidth is zero if G∞V = 1 but finite if G∞V is smaller than unity. We

consider the case that G∞V is slightly smaller than unity. We can approximate, with

(1 −
√

a)(1 +
√

a) = 1 − a and 1 +
√

a ≈ 2, the laser linewidth by

∆νL =
1 − G∞V

2π

c

2L
. (8.64)

We will now show that G∞V is slightly smaller than unity because of spontaneous

emission. We modify the rate equation of the photon density. The change of the

density of photons during a round trip transit is the sum of the change due to stimulated

and spontaneous emission,

dZ

dt
=

GV − 1

T
Z + A21g(ν)∆ν

1

D(ν) ∆ν1a1a2 L
N2. (8.65)

The frequency range of spontaneous emission, covered by a mode, is ∆ν1 = c/2L =
1/T and the probability of spontaneous emission of radiation into one mode is the

inverse of the density of states of photon modes in the resonator volume a1a2 L within

the frequency interval ∆ν1. The condition of steady state oscillation, dZ/dt = 0,

leads to the relation

(1 − G∞V ) Z∞ = T b21 N2,th

1

a1a2 L
(8.66)

or

∆νL =
b21 N2,th

2πa1a2 L Z∞
. (8.67)

We relate the photon density and the power of the laser radiation,

Z∞a1a2 Lhν

τp

= Pout. (8.68)

It follows, with the resonator linewidth ∆νres = (2πτp)
−1, that

∆νL =
hν

Pout

∆νresb21 N2,th. (8.69)

Using the threshold condition that is still approximately valid,

(N2,th − N1,th) b21 = N2,th

N2,th − N1,th

N2,th

b21 =
1

τp

, (8.70)
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we find the Schawlow-Townes formula [39]

∆νL =
2πhν(∆νres)

2

Pout

N2,th − N1,th

N2,th

. (8.71)

We define the quality factor QL of the laser radiation as the ratio of the laser frequency

and the halfwidth of the laser line. It follows, with Pout = Z tot × hν/τp, where Z tot

is the total photon number in the resonator, that

QL =
ν

∆νL

= Z tot Qres

N2,th − N1,th

N2,th

= Z tot Qres

f2 − f1

f2

. (8.72)

Qres = ν/∆νres = 2πντp is the Q factor of the resonator and τp the lifetime of

a photon in the resonator. The quality factor of the laser radiation is proportional

to: the number of photons in the resonator, the quality factor of the resonator, and

the occupation number difference divided by the relative occupation number of the

upper laser level. If f1 ≪ f2, we have ( f2 − f1)/ f1 = 1. Then the quality factor of

the laser radiation is equal to the product of the number of photons in the resonator

and the quality factor of the resonator,

QL = Z tot Qres. (8.73)

Since we are considering a single mode laser, Z∞ is equal to the occupation number

n of the photons in the laser resonator mode.We obtain the simple relationship:

∆νL =
∆νres

n
(8.74)

the halfwidth of the laser line is equal to the halfwidth of the resonance curve of the

laser resonator divided by the occupation number of the mode that is excited in the

laser resonator!

In the case that a laser is started by thermal radiation, i.e., if hν ≪ kT , the quality

factor of the laser radiation is smaller by the factor hν/kT ,

QL = Z tot Qres

hν

kT
. (8.75)

Example helium–neon laser; ν = 5 × 1014 Hz; ∆νres = 1 MHz; Pout = 1 mW;

theoretical laser linewidth ∆νL = 10−3 Hz. A laser linewidth of 0.1 Hz has been

realized by thermal and mechanical stabilization. The experimental laser linewidth

corresponded to a relative frequency width of the laser radiation of ∆νL/ν ∼ 10−14.

The frequency width of laser radiation can be very narrow as a consequence of

the feedback an active medium experiences from the radiation in the laser resonator.

Because of thermal and mechanical fluctuations, stabilization of a continuous-wave
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laser, in order to use it as a frequency standard, is extremely difficult. Femtosecond

lasers are more suited to develop a frequency standard (Sect. 13.7).

References [1–4, 6, 8, 31, 35–37, 39].

Problems

8.1 Threshold condition. Evaluate the threshold condition of a titanium–sapphire

laser operated as cw laser. The data of the laser: Fabry–Perot resonator L = 10 cm,

filled with the active titanium-sapphire crystal (gain cross section σ21 = 3 ×
10−23 m2; frequency ν = 360 THz); reflectivity of the output coupling mirror

R = 0.98; cross-sectional area of the laser beam a1a2 = 0.5 mm2.

8.2 Photon density, output power and efficiency. Determine the density of pho-

tons in the laser resonator and the laser output power of the laser described in Prob-

lem 8.1, for a pump power that is 10 times larger than the threshold pump power.

Evaluate the efficiency of conversion of a pump photon into a laser photon.

8.3 Oscillation onset time.

(a) Show that the oscillation onset time is always large compared to the period 2π/ω

of the laser field. [Hint: make use of the data of Table 7.1.]

(b) Estimate the oscillation onset time of the titanium-sapphire laser (described in

Problem 8.1).

8.4 Formulate the threshold condition in the case that the length L ′ of the active

medium is smaller than the length of the laser resonator. Is the condition GV = 1

still valid?

8.5 Estimate the laser linewidth of a semiconductor laser of a wavelength of 0.8µm

and an output power of 1 mW; loss factor V1 = 0.3 and volume of the active

medium = 10−13 m3.

8.6 Coherence length. Monochromatic laser radiation consists of radiation of a

line (halfwidth ∆λ) at the laser wavelength λ.

(a) Determine the coherence length lcoh. [Hint: use as criterion that the number of

wavelengths of radiation at λ − ∆λ/2 and λ + ∆λ/2 differs by 1.]

(b) Determine the coherence length of radiation generated by a semiconductor laser.

(c) Determine lcoh of radiation generated by a highly stabilized helium–neon laser.

(d) Determine the coherence length of the radiation of a hypothetical continuous

wave laser at a frequency of 4×1014 Hz that is stabilized with a relative accuracy

of 10−16.

http://dx.doi.org/10.1007/978-3-319-50651-7_13
http://dx.doi.org/10.1007/978-3-319-50651-7_8
http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_8


Chapter 9

Driving a Laser Oscillation

We investigate the role of electric polarization of a laser medium in order to obtain

further insight into dynamical processes occurring in a laser. The reader, who does

not wish to interrupt the description of a laser and its operation, may skip over this

chapter.

We study interaction of a medium with a high frequency field by use of Maxwell’s

equations. We derive five coupled differential equations of second order. Applying

the slowly varying amplitude approximation, we can reduce the equations to five

nonlinear differential equations of first order. The equations relate: population dif-

ference; amplitude of the field; phase of the field; amplitude of the polarization; and

phase of the polarization.

We can reduce the five differential equations to three in the case that transverse

relaxation of the polarization is absent and that the three relevant frequencies—

laser frequency, atomic transition frequency, and resonance frequency of the laser

resonator—coincide with each other. The three equations relate population differ-

ence, amplitude of the field, and amplitude of the polarization. The solutions yield the

temporal development of population difference, amplitude of the field, and amplitude

of the polarization during onset of laser oscillation.

We finally derive, in the slowly varying amplitude approximation, the laser equa-

tions in the case that transverse relaxation is present and that the laser frequency is

equal to the resonance frequency of the resonator but differs from the atomic transi-

tion frequency. We obtain five nonlinear coupled differential equations of first order

(Lorenz–Haken equations).

This chapter begins with an introduction of the electric polarization of a medium.

We make use of the classical oscillator model of an atom. We derive a classical expres-

sion of the dielectric susceptibility, which relates the field in a medium and the polar-

ization of the medium. We determine the classical absorption coefficient of a medium.

Comparing the classical absorption coefficient with the absorption coefficient derived

earlier by quantum mechanical arguments, we obtain a quantum mechanical expres-

sion of the dielectric susceptibility. The susceptibility of an active medium depends

© Springer International Publishing AG 2017
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linearly on the population difference. We mention the Kramers–Kronig relations,

which relate real and imaginary part of a physical response function—the polariza-

tion of a medium is the response to an external field and the dielectric susceptibility

is the corresponding response function.

According to Maxwell’s equations, a laser oscillation can be driven either by a

high frequency electric polarization or by a high frequency current.

9.1 Maxwell’s Equations

To describe the response of a medium to an electromagnetic field, we make use of

Maxwell’s equations,

∇ × H = j +
∂ D

∂t
, (9.1)

∇ × E = −
∂ B

∂t
, (9.2)

∇ · E = 0, (9.3)

∇ · B = 0. (9.4)

∇ = (∂/∂x, ∂/∂y, ∂/∂z) is the del operator (=Nabla operator), E the electric field,

D the displacement field, j the electric current density of a high frequency electric

current carried by free-electrons, H the magnetic field and B the magnetic induction.

We exclude, with ∇ · E = 0, local charge accumulations. Material equations provide

further relations:

D(E) = ε0 E + P(E), (9.5)

j = j(E), (9.6)

B = µ0 H, (9.7)

where ε0 = 8.86 × 10−12 A s V−1 m−1 is the electric field constant, µ0 = 4π ×
10−7 V s A−1 m−1 the magnetic field constant and ε0µ0 = c−2. We ignore, using the

relation B = µ0 H , magnetic effects. The displacement field is the sum of the field

(times ε0) and the high frequency polarization P , which itself depends on the field.

The current density depends on the field. The quantities E, P and j can depend on

time and location. We can write the first Maxwell equation in the form

∇ × H = j + ε0

∂ E

∂t
+

∂ P

∂t
. (9.8)

We now assume that the response is linear and introduce the dielectric suscepti-

bility χ̃ , the dielectric constant ε̃ and the conductivity σ̃ by the relations:
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P = ε0 χ̃ E, (9.9)

D = ε0 ε̃ E, (9.10)

ε̃ = 1 + χ̃ , (9.11)

j = σ̃ E. (9.12)

The function χ̃ is a linear response function. It characterizes the linear response

of the polarization of a dielectric medium to a high frequency electric field. Corre-

spondingly, ε̃ is the linear response function for the dielectric displacement while σ̃

is the linear response function for the current density.

The first Maxwell equation describing linear response is given by

∇ × H = j + ε0

∂(ε̃ E)

∂t
= σ̃ E + ε0

∂ε̃

∂t
E + ε0 ε̃

∂ E

∂t
. (9.13)

When a medium is in thermal equilibrium, then, ∂ε̃/∂t = 0. But, the dielectric con-

stant can be time-dependent, ∂ε̃/∂t �= 0, for an active medium—which is always in

a nonequilibrium state.

The first Maxwell equation contains the displacement current density

jd =
∂ D

∂t
= ε0

∂ E

∂t
+

∂ P

∂t
, (9.14)

which is the sum of the displacement current density ε0∂ E/∂t and the polarization

current density ∂ P/∂t . The polarization current density corresponds to the portion

of the displacement current density that is due to polarization of a medium.

We assume that high frequency field, polarization and current are oriented along

x . A field

Ẽ = A eiωt , (9.15)

gives rise to a polarization

P̃ = ε0χ̃ Ẽ = P1 − i P2 = ε0χ1 A cos ωt − i ε0χ2 A sin ωt, (9.16)

with

χ̃ = χ1 − i χ2. (9.17)

The real part of the polarization,

P1 = ε0χ1 A cos ωt, (9.18)

has the same phase as the field. The imaginary part −iP2, where
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P2 = ε0χ2 A sin ωt (9.19)

has a phase of 90◦ relative to the field. We will see that gain occurs if χ2(ω) is negative.

Note: throughout the book, we discuss, for convenience, the negative imaginary part

(e.g., χ2) of a complex quantity, which characterizes a material property, rather than

the imaginary part (−χ2) itself.

The polarization is phase shifted relative to the field,

P = ε0χ A cos [ωt + ϕ(ω)], (9.20)

where

χ =
√

χ2
1 + χ2

2 (9.21)

is the absolute value of the susceptibility and where ϕ is the phase between polar-

ization and field. The phase is given by the relation

tan ϕ = χ2/χ1. (9.22)

We now describe the linear response of a conductive gain medium. A high fre-

quency field

Ẽ(ω) = A eiωt (9.23)

gives rise to a high frequency current of current density

j̃ = σ̃ Ẽ, (9.24)

where σ̃ is the complex high frequency conductivity,

σ̃ = σ1 − i σ2. (9.25)

The current density,

j̃ = j1 − i j2 = σ1 A cos ωt − iσ2 A sin ωt, (9.26)

has a real part

j1 = σ1 A cos ωt (9.27)

that has the same phase as the field. We will see that gain occurs if σ1(ω) is negative.

The (negative) imaginary part

j2 = σ2 A sin ωt (9.28)
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has a phase of 90◦ relative to the field and corresponds to a lossless current. The

current is phase shifted relative to the field,

j = σ A cos [ωt + ϕ(ω)], (9.29)

where

σ =
√

σ 2
1 + σ 2

2 (9.30)

is the absolute value of the conductivity and where ϕ is the phase between current

density and field. The phase is given by the relation

tan ϕ = σ2/σ1. (9.31)

We can introduce a generalized dielectric constant ε̃gen and a generalized con-

ductivity σ̃gen. We write the first Maxwell equation in different ways:

∇ × H = j +
∂ D

∂t
= σ̃ Ẽ + ε0ε̃

∂ E

∂t
= (σ̃ + iωε0ε̃) E = σ̃gen E = iωε0ε̃gen E.

(9.32)

We obtain the relation

σ̃gen = σgen,1 − iσgen,2 = i ωε0ε̃gen (9.33)

or, alternatively,

ε̃gen = εgen,1 − iεgen,2 =
σ̃gen

iωε0

. (9.34)

It follows that

εgen,1 = ε1 −
σ2

ωε0

, (9.35)

εgen,2 = ε2 +
σ1

ωε0

. (9.36)

This formulation is useful for determination of optical constants and other optical

properties of a medium in thermal equilibrium or of an active medium too. The

complex refractive index n1 − in2 follows from the relation

(n1 − in2)
2 = εgen,1 − iεgen,2. (9.37)
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We obtain

n1,2 =
√

1

2

(

εgen,1 ±
√

ε2
gen,1 + ε2

gen,2

)

. (9.38)

9.2 Possibilities of Driving a Laser Oscillation

It follows from Maxwell’s equations, with

∇ × (∇ × E) = ∇ · ∇ · E − ∇2 E, (9.39)

that

∂2 E

∂t2
−

1

µ0ε0

∇2 E = −
1

ε0

∂2 P

∂t2
−

1

ε0

∂ j

∂t
. (9.40)

On the right side, we have two terms, the second derivative of the polarization and

the derivative of the electric current density with respect to time. There are two

possibilities to obtain gain:

• A high frequency polarization can be the origin of gain or

• A high frequency electric current can be the origin of gain.

In the following sections (Sects. 9.3–9.6), we will present a model of a dielectric

medium. The model is suited to study basic properties of lasers (Sects. 9.7–9.10).

The model describes a dielectric medium that shows a homogeneously broadened

narrow line.

We will begin with a derivation of the classical susceptibility and the classical

absorption coefficient αcl of an ensemble of classical oscillators. A comparison of

the classical absorption coefficient with the quantum mechanical expression of the

absorption coefficient αabs (Sect. 7.2) will lead to a procedure that allows us to change

from classical expressions of the susceptibility to quantum mechanical expressions.

The model yields the complex susceptibility of a dielectric medium consisting of an

ensemble of two-level atomic systems.

We will show later (in Chaps. 19 and 32) how a high frequency electric current

carried by free-electrons can give rise to gain.

9.3 Polarization of an Atomic Medium

We make use of the classical oscillator model to describe the interaction of an atom

with an electromagnetic field. An electric field

http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_19
http://dx.doi.org/10.1007/978-3-319-50651-7_32
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E = Re [Ẽ] =
1

2
(Aeiωt + c.c.) = A cos ωt, (9.41)

excites an oscillator to a forced oscillation described by the equation of motion

d2x

dt2
+ β

dx

dt
+ ω2

0x =
q

m0

E, (9.42)

where q = −e is the electron charge (e = elementary charge), m0 the electron mass,

and β the damping constant with respect to the energy; the decay constant with

respect to the amplitude is β/2. We write the displacement as a complex quantity

x = Re[x̃] =
1

2
(x̃eiωt + c.c.), (9.43)

where x̃(ω) is a frequency-dependent complex amplitude of the oscillation. We

assume that the amplitude (envelope) is slowly varying, |dx̃/dt | ≪ ω|x̃ | (slowly

varying envelope approximation, SVEA) and find, with β = ∆ω0, the solution

x̃ = −
e

m0

1

ω2
0 − ω2 + iω∆ω0

A. (9.44)

(We can write

x̃ = −
e

m0

G̃L(ω) A, (9.45)

where

G̃L(ω) =
1

ω2
0 − ω2 + iω∆ω0

(9.46)

is the complex Lorentz response function in general form; see Sect. 9.11.

In the following, we assume that β ≪ ω0, i.e., that ∆ω0 ≪ ω0 and we restrict the

frequency ω to a range around ω0 so that |ω − ω0| ≪ ω0. We obtain from (9.44),

with ω2
0 − ω2 = 2ω0(ω0 − ω), the solution

x̃ = −
e

2m0ω0

1

ω0 − ω + i∆ω0/2
A. (9.47)

An oscillating electron is connected with an oscillating electric dipole moment

p̃ = −ex̃ . (9.48)
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It follows that

d2 p

dt2
+ β

d p

dt
+ ω2

0 p =
e2

m0

E . (9.49)

The ansatz

p =
1

2
( p̃ eiωt + c.c.), (9.50)

with the complex amplitude p̃ of the dipole moment, leads to

p̃ =
e2

2m0ω0

1

ω0 − ω + i∆ω0/2
A. (9.51)

The dipole moment shows, as the displacement, a resonance at the frequency ω0.

A medium consisting of an ensemble of two-level atomic systems of density N

experiences, under the action of an electric field, the electric polarization

P =
N

∑

i=1

pi , (9.52)

where pi is the electric dipole moment of the i th two-level atomic system and N

the number of two-level systems per unit volume. Without a high frequency electric

field, the dipole moments are zero, pi = 0, and there is no polarization. Under the

action of a high frequency field, atomic dipole moments and polarization can oscillate

synchronously to the field.

The differential equation

d2 P

dt2
+ β

dP

dt
+ ω2

0 P =
Ne2

m0

E, (9.53)

that follows from the equation of motion of a single dipole relates a high frequency

polarization P and a high frequency electric field. The ansatz

P = Re [P̃] =
1

2
(P̃ eiωt + c.c.), (9.54)

where P̃ is the complex amplitude of the polarization, yields

P̃ =
Ne2

2m0ω0

1

ω0 − ω + i∆ω0/2
A. (9.55)
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The polarization has the same frequency as the electric field. The amplitude is pro-

portional to the amplitude of the field that produces the polarization. The polarization

has a resonance at ω0. We find the electric susceptibility

χ̃ =
Ne2

2ε0m0ω0

1

ω0 − ω + i∆ω0/2
. (9.56)

The real part and the (negative) imaginary part of the susceptibility are

χ1(ω) =
Ne2

2ε0m0ω0

ω0 − ω

(ω − ω0)2 + (∆ω0)2/4
=

ω0 − ω

∆ω0/2
χ2(ω), (9.57)

χ2(ω) =
Ne2

2ε0m0ω0

∆ω0/2

(ω − ω0)2 + (∆ω0)2/4
=

Nπe2

2ε0m0ω0

gL,res(ω), (9.58)

where gL,res(ω) is the Lorentz resonance function. To obtain the susceptibility on the

frequency scale, we replace gL,res(ω) by (1/2π)gL,res(ν) and ω0 by 2πν0. We find

χ1(ν) =
ν0 − ν

∆ν0/2
χ2(ν), (9.59)

χ2(ν) = N
e2

8πε0m0ν0

gL,res(ν). (9.60)

We assumed in our derivation of the susceptibility that all atomic dipoles have the

same resonance frequency and the same damping constant. This corresponds to

homogeneous line broadening. The damping can be due to emission of radiation

(resulting in natural line broadening) or due to other energy relaxation processes that

lead to a Lorentzian line.

9.4 Quantum Mechanical Expression of the Susceptibility

of an Atomic Medium

We characterize a dielectric medium, which we assume to be optically isotropic, by

the complex displacement field

D̃ = ε0 Ẽ + P̃ = ε0 Ẽ + ε0χ̃ Ẽ = ε̃ Ẽ, (9.61)

where ε = ε1 − iε2 is the complex dielectric constant. The real part is ε1 = 1 + χ1

and the imaginary part ε2 = χ2. We obtain the complex refractive index n1 − in2

from the relation

(n1 − in2)
2 = ε1 − iε2. (9.62)
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The wave vector of a plane wave travelling in z direction is

k = (n1 − in2)
ω

c
, (9.63)

where n1 ≡ n is the refractive index. The complex field of the plane wave is

Ẽ = A ei(ωt−kz) = A e−(n2ω/c)z ei[ωt−(n1ω/c)z]. (9.64)

In the vicinity of the center of a Lorentzian line, the imaginary part of the refractive

index is n2 ≈ 1
2
χ2. At frequencies around the resonance frequency ω0, the energy

density in the wave is

u = u0e−αclz, (9.65)

where u0 = 1
2
ε0 A2 is the energy density at z = 0 and

αcl(ω) =
πe2 N

2ε0m0c
gL,res(ω) (9.66)

is the classical absorption coefficient. The absorption coefficient on the frequency

scale is given by

αcl(ν) = N
e2

4ε0m0c
gL,res(ν). (9.67)

We now compare this formula with the quantum mechanical expression for the

absorption coefficient, which follows from (7.23),

αabs(ν) =
1

c
hνB12gL,res(ν)(N1 − N2). (9.68)

The two expressions of αcl(ν) and αabs(ν) are in accord with each other if we replace

Ne2

4ε0m0

→ (N1 − N2)hνB12, or, respectively, (N1 − N2)hωBω
12 (9.69)

on the ω scale. The replacement in the expressions of the susceptibility leads to

χ1(ω) =
ω0 − ω

∆ω0/2
χ2(ω), (9.70)

χ2(ω) = (N1 − N2)
2π

ω0

b21(ω), (9.71)

http://dx.doi.org/10.1007/978-3-319-50651-7_7
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where ∆ω0 is the halfwidth of the atomic transition and where

b21(ω) = �ω0 Bω
21gL,res(ω). (9.72)

The complex susceptibility χ̃ = χ̃1 − iχ̃2 is equal to

χ̃(ω) = 2�Bω
21(N1 − N2)

1

ω0 − ω + i∆ω0/2
. (9.73)

The susceptibilities on the frequency scale are given by

χ1(ν) =
ν0 − ν

∆ν0/2
χ2(ν) = h B21(N1 − N2) gL,disp(ν), (9.74)

χ2(ν) = (N1 − N2)
1

ν0

b21(ν) = h B21(N1 − N2) gL,res(ν), (9.75)

where b21(ν) = hνB21gL,res(ν).

The susceptibilities of an inactive medium (Fig. 9.1a) indicate that the interaction

of an electric field with a medium is strongest at resonance, where χ2 has a maximum

and χ1 is zero. Absorption of radiation is strongest at the transition frequency ω0.

In comparison with a nonactive medium, the susceptibilities of an active medium

(Fig. 9.1b) have opposite signs. The gain coefficient of an active medium will be

largest if the frequency of the radiation is equal to the transition frequency.

We have the important result: the imaginary part of the susceptibility of a medium

that shows a homogeneously broadened transition caused by energy relaxation has

the shape of a Lorentz resonance function while the real part has the shape of a

Lorentz dispersion function.

The replacement of the classical expressions of the susceptibilities by the quantum

mechanical expressions in (9.53) leads to the differential equation

Fig. 9.1 Dielectric susceptibilities a of an inactive medium and b of an active medium
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d2 P

dt2
+ ∆ω0

dP

dt
+ ω2

0 P =
2

π
ε0�ωBω

21(N1 − N2)E . (9.76)

P and E are real quantities.

At the center of a resonance line, at the frequency ω0, the real part of the suscep-

tibility is zero. In the vicinity of ω0, the real part of the susceptibility is proportional

to the frequency difference,

χ1 =
8

∆ω0

�Bω
21(N1 − N2)(ω0 − ω). (9.77)

It follows that the refractive index varies with frequency—i.e., the medium shows

dispersion—and that the refractive index is approximately given by

n(ω) = n(ω0) + (dn/dω)ω0
(ω0 − ω). (9.78)

Differentiation of n2
1 − n2

2 = 1 + χ1 leads to 2n1dn1/dω = ε0dχ1/dω and where we

wrote n instead of n1. Differentiation of n2 = 1 + χ1 leads to 2n dn/dω = dχ1/dω

and to

(

dn

dω

)

0

= −
4

n∆ω2
0

�Bω
21(N1 − N2), (9.79)

where ∆ω0 is the atomic linewidth.

On the frequency scale, the change of the refractive index is

(

dn

dν

)

0

=
−2

nπ∆ν2
0

h B21(N1 − N2). (9.80)

Example Dispersion of an active medium. We estimate the dispersion of optically

pumped titanium–sapphire (N2 − N1 = 1024 m3; Bω
21 = 2π × 1.7 × 1018 m3 J−1

s−2). In comparison with a Lorentzian line caused by natural broadening, dn/dω

is reduced by a factor ∆ω0/(1.48∆ωnat) = 4 × 1010; ∆ωnat = 2.6 × 105 s−1 and

∆ω0 = 2π × 100 THz. It follows that dn/dω = 4 × 10−11 s.

We summarize here the results with respect to the complex susceptibility that

characterizes a resonance line whose shape is determined by energy relaxation. The

complex susceptibility is given by

χ̃ = aωG̃L, (9.81)

where a = 4(N1 − N2)�B12 is a measure of the strength of the transition and where

G̃L = GL,disp − iGL,res =
1

ω2
0 − ω2 + iω∆ω0

(9.82)
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is the (general) complex Lorentz function. At frequencies around a narrow Lorentzian

resonance, the susceptibility is χ̃ = a′g̃L , where a′ = a/2 and

g̃L = gL,disp − igL,res =
1

ω0 − ω + i∆ω0/2
. (9.83)

Many textbooks treat the theory of classical dispersion (see preceding section) or

present quantum mechanical derivations of the susceptibility; see, for instance,

[5, 6].

9.5 Polarization of an Active Medium

A field E = A cos ωt in a medium produces a polarization. In the special case that

the frequency of the field is equal to the resonance frequency of the atomic transition

(ω = ω0), we obtain

P = ε0χ2 sin(ω0t)A =
2π ε0

ω0

(N1 − N2) b21(ω0) sin(ω0t)A. (9.84)

The polarization of an inactive medium (Fig. 9.2a) is delayed (by π/2 for ω = ω0)

with respect to the field that creates the polarization while the polarization of an

active medium (Fig. 9.2b) is advanced (by π/2) with respect to the field.

An external electric field in a nonactive medium delivers energy to an ensemble

of two-level atomic systems. The power transferred to a single two-level system is

equal to

force times path

time
= q E ẋ = E ṗ. (9.85)

The power, averaged over time, a field (frequency ω = ω0) delivers to a medium of

polarization P = (N1 − N2)p is equal to

W = < E
dP

dt
>t=

1

2
ε0χ2(ω0)A2 = (N1 − N2)

πε0

ω0

b21(ω0)A2. (9.86)

Fig. 9.2 Polarization and electric field at resonance a of an inactive medium and b of an active

medium
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The power is negative, W < 0, if a medium is active: then the polarization delivers

energy to the field. The polarization is maintained by pumping of the active medium.

Thus, the polarization mediates gain of the field. Pump power is converted—via the

polarization—to power of the high frequency field.

If an active medium interacts with radiation at a frequency that is not the resonance

frequency (ω �= ω0), the phase shift between field and polarization is

tan ϕ(ω) = χ2(ω)/χ1(ω) (9.87)

and the power is

W (ω) = W0 sin ϕ, (9.88)

where

W0 = (N1 − N2)
πε0

ω0

b21(ω0)A2 (9.89)

is the power delivered by the field for ω = ω0. Accordingly, the power transfer is

smaller at frequencies outside the resonance frequency, that is, the gain in a laser

medium is largest for radiation at the resonance frequency.

In an active medium of a laser, after a sudden turning on of the population differ-

ence (at t = 0), the atomic dipole moments oscillate with arbitrary phases relative

to each other and therefore the polarization is zero (Fig. 9.3, left). An electric field

of small amplitude A(t = 0) produces a weak polarization and this enhances the

field. The amplitude of the field and the amplitude of the polarization grow together

by the mutual interaction of field and polarization until a steady state oscillation is

established (right).

The interplay of the radiation and the atomic dipoles results in the growth of both

the field and the polarization. With increasing field, the atomic dipole oscillations

become more and more synchronized to the field. Accordingly, the polarization

becomes more and more able to deliver energy to the field. The energy necessary

for the buildup of the field originates from the excitation energy of the ensemble

of two-level atomic systems. The initial field that starts oscillation can be due to

spontaneous emission of radiation by the ensemble of two-level atomic systems (in

the visible, UV, and X-ray range) or due to thermal radiation (in the far infrared

spectral region).

Fig. 9.3 Polarization of an active medium in a laser immediately after generation of population

inversion and at steady state oscillation of the laser
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At steady state oscillation, synchronization of the field and the polarization is

maintained. Loss of polarization is compensated by pumping. The field synchronizes

the atomic dipole oscillations that are produced by the pumping.

A high frequency polarization is characteristic of a large variety of excitations

used in lasers:

• Electronic excitations of atoms, molecules, or ions.

• Electronic excitations by interband transitions in bipolar semiconductor lasers.

• Electronic excitations by intersubband transitions in quantum cascade lasers.

• Vibrational excitations of molecules.

• Rotational excitations of molecules.

The origin of electric dipole moments are oscillating charges in electronic and vibra-

tional excitations and rotating charges in rotational excitations.

Before we treat the question how the amplitudes of the field and of the polarization

build up during the onset of laser oscillation, we introduce the polarization current.

9.6 Polarization Current

If transverse relaxation is absent, we can introduce the polarization current charac-

terized by the polarization current density

jpol = Nqẋ = dP/dt. (9.90)

The polarization current density is equal to the rate of change of the polarization. By

differentiation of (9.53) with respect to time and multiplication of the equation by

Nq, we obtain (with q = −e)

d2 jpol

dt2
+ β

d jpol

dt
+ ω2

0 jpol = Re

[

iω
Ne2

m0

Aeiωt

]

. (9.91)

With jpol = Re[ j̃pol] and the ansatz

j̃pol = σ̃ pol Ẽ, (9.92)

we find the complex polarization conductivity

σ̃ pol =
Ne2

2m0

1

ω0 − ω + i∆ω0/2
. (9.93)

We write

σ̃ pol = σ
pol

1 − iσ
pol

2 . (9.94)
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Making use of (9.69), we obtain quantum mechanical expressions of the real and

imaginary parts of the polarization conductivity,

σ
pol

1 (ω) = ε0ωχ2(ω) = (N1 − N2) × 2πε0b21(ω), (9.95)

σ
pol

2 (ω) = ε0ωχ1(ω) =
ω0 − ω

∆ω0/2
σ1(ω). (9.96)

The polarization conductivities on the frequency scale are

σ
pol

1 (ν) = (N1 − N2) × ε0b21(ν), (9.97)

σ
pol

2 (ν) =
ν0 − ν

∆ν0/2
σ1(ν). (9.98)

We can also write

σ
pol

1 (ω) = 2πε0ω0 Bω
21(N1 − N2) gL,res(ω), (9.99)

σ
pol

2 (ω) =
ω0 − ω

∆ω0/2
σ1(ω) = 2πε0ωBω

21(N1 − N2) gL,disp(ω), (9.100)

or

σ
pol

1 (ν) = 2πε0ν0 B21(N1 − N2) gL,res(ν), (9.101)

σ
pol

2 (ν) =
ν0 − ν

∆ν0/2
σ1(ν) = 2πε0ν0 B21(N1 − N2) gL,disp(ν). (9.102)

The real part of the polarization conductivity of a nonactive medium (Fig. 9.4a)

is positive and has a Lorentzian shape. The (negative) imaginary part is positive

for ω < ω0 and negative for ω > ω0. The polarization conductivities are dynamical

conductivities (=high frequency conductivities). The real part of the polarization

conductivity shows a resonance curve with the maximum at ω0. The signs of the

polarization conductivities are reversed in case of an active medium (Fig. 9.4b).

Fig. 9.4 Polarization conductivities a of an inactive medium and b of an active medium
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Fig. 9.5 Polarization current and field at resonance a of an inactive medium and b of an active

medium

Thus, we found that the real part of the polarization conductivity of a medium with

a homogeneously damped resonance transition has the shape of a Lorentz resonance

function and the imaginary part has the shape of a Lorentz dispersion function.

We consider the special case that ω = ω0 and that therefore σ2 = 0. With E =
A cos ω0t , we obtain

jpol = σ
pol

1 (ω0)E = (N1 − N2) × 2πε0b21(ω0) cos(ω0t) A. (9.103)

The polarization current of a nonactive medium has the same phase as the field

(Fig. 9.5a) and jpol E is positive at any moment. The field experiences damping. Power

of the field is converted to heat due to relaxation of the polarization. The polarization

current of an active medium has a phase of π relative to the field (Fig. 9.5b). The

product jpol E is negative at any moment. The field is amplified. Pump power is

converted to power of the field. Amplification is mediated by the polarization current.

An electric field delivers to an oscillating charge q the

power =
work

time
= q E ẋ (9.104)

and to an ensemble of electrons the power jpol E . The time average of the power

transferred from the field to the polarization current is given by

(N1 − N2)σ1(ω0)A < cos2 ω0t >t= (N1 − N2) × πε0b21(ω0)A2. (9.105)

To describe the resonance interaction of a medium with radiation, we will make

use of both the polarization and the polarization current. The polarization is the

fundamental quantity. The use of the polarization current density—in the case that

transverse relaxation can be neglected—has the advantage that we can write some

expressions in a simpler form, particularly in the special case that ω = ω0; then the

phase between current and field is either zero or π .
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9.7 Laser Oscillation Driven by a Polarization

We now treat the case that the polarization is the origin of gain and that the active

medium is a purely dielectric medium ( j = 0). The wave equation has the form

1

c2

∂2 E

∂t2
− ∇2 E = −

1

ε0

∂2 P

∂t2
. (9.106)

We assume, for simplicity, that the active medium is optically isotropic and fills a

Fabry–Perot resonator completely. We also assume that the field does not vary over

the cross-sectional area of the resonator. We can write

∂2 E(z, t)

∂t2
− c2 ∂2 E(z, t)

∂z2
= −

1

ε0

∂2 P(z, t)

∂t2
. (9.107)

The field in the resonator represents a standing wave

E(z, t) = E(t) sin kz. (9.108)

This leads, with k2 = ω2
res/c2, where ωres is the resonance frequency of the resonator,

to the differential equation

(

d2 E

dt2
− ω2

res E

)

sin kz = −
1

ε0

d2 P(z, t)

dt2
. (9.109)

The polarization has the same z dependence as the field. Therefore, we can divide

by sin kz, except at the positions where E(z) = 0. Thus, we obtain, with P(z, t) =
P(t) sin kz and P = P(t), the differential equation:

d2 E

dt2
− ω2

res E = −
1

ε0

d2 P

dt2
. (9.110)

In our derivation of the wave equation, we did not include damping of the field

that is, for instance, due to output coupling of radiation. We now introduce damping

by use of the differential equation of the empty resonator:

d2 E

dt2
+ κ

dE

dt
+ ω2

res E = 0, (9.111)

where κ is the damping coefficient of the resonator. We assume that κ ≪ ωres, i.e.,

that the field in the empty resonator is given by

E = A0e− 1
2
κt cos ωrest. (9.112)
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A0 is the amplitude at t = 0. Now, the differential equation describing a field in a

Fabry–Perot resonator containing an active medium is given by

d2 E

dt2
+ κ

dE

dt
+ ω2

res E = −
1

ε0

d2 P

dt2
. (9.113)

We now assume that transverse relaxation of the polarization is absent and treat

the particular case that all three frequencies—laser frequency, transition frequency

and resonance frequency of the resonator—coincide with each other,

ω = ωres = ω0. (9.114)

We therefore can replace the second derivative of the polarization by the first deriv-

ative of the polarization current,

d2 P

dt2
=

d jpol

dt
, (9.115)

and obtain the differential equation

d2 E

dt2
+ κ

dE

dt
+ ω2 E = −

1

ε0

d jpol

dt
. (9.116)

At a sudden turning on of an initial population difference, the amplitude of the

field is time dependent,

E(t) = A(t) cos ωt. (9.117)

Immediately after starting the pumping, the polarization current density is

jpol = σ
pol

1,0 E, (9.118)

where

σ
pol

1,0 = −ε0b0
21(N2 − N1)0 (9.119)

is the small-signal polarization conductivity, (N2 − N1)0 is the initial population

difference, and

b0
21 = b21(ω0) = �ω0 Bω

21gL,res(ω0) (9.120)

is the growth rate constant at the transition frequency ω0. It follows that

d2 E

dt2
+ (−γ0 + κ)

dE

dt
+ ω2

0 E = 0, (9.121)
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where

γ0 = γ (ω0) = −
1

ε0

σ
pol

1,0 = b0
21(N2 − N1)0 (9.122)

is the growth coefficient of the active medium at ω0 and

α0 = α(ω0) =
γ0

c/n
= −

n

cεε0

σ
pol

1,0 =
n

c
b0

21 (N2 − N1)0 (9.123)

is the gain coefficient at ω0. If γ0 ≪ ω, the solution of (9.121) is given by

E = A0 e
1
2
(γ0−κ)t cos ωt. (9.124)

A0 is the amplitude of the starting field. A very small field e.g., a field corresponding

to one photon in the resonator mode, can initiate the oscillation. The amplitude of

the field increases exponentially.

We now investigate the large-signal behavior. We assume that the amplitude A(t)

is a slowly varying function, i.e., that the envelope of the function E(t) varies slowly

(slowly varying envelope approximation). This means: the temporal change of the

amplitude during one period of the oscillation period is negligibly small,

|dA/dt | ≪ ω|A(t)|, (9.125)

|d2 A/dt2| ≪ ω|dA/dt | ≪ ω2|A(t)|. (9.126)

Thus, we obtain

dE

dt
=

dA

dt
cos ωt − ωA sin ωt, (9.127)

d2 E

dt2
= −2ω

dA

dt
sin ωt − ω2 A cos ωt. (9.128)

In the last equation, we omitted the term (d2 A/dt2) cos ωt . Making use of the last

two equations, we find from (9.116) the differential equation

−2ω
dA

dt
sin ωt − κωA sin ωt = −

1

ε0

d jpol

dt
. (9.129)

We neglected the term κ(dA/dt) cos ωt in accordance with the condition |dA/dt | ≪
ω|A(t)|.

We write the polarization current density in the form

jpol = −J (t) cos ωt. (9.130)
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J (t) is the time-dependent amplitude of the polarization current density. This leads

to the differential equation

dA

dt
+

κ

2
A =

1

2ε0

J. (9.131)

This differential equation relates the amplitude of the field and the amplitude of

the polarization current density. From jpol = σ
pol

1 E , we find immediately a relation

between the amplitude of the current density and the population difference,

J = ε0b0
21(N2 − N1)A. (9.132)

Another relation follows from the energy conservation law: the change of the pop-

ulation difference by stimulated emission and by relaxation from level 2 to level

1 compensates the power, which the polarization current transfers to the field. We

assume that the population of the lower level is negligibly small compared with the

population of the upper level. Then we can write

[

d

dt
(N2 − N1) +

(N2 − N1)

τ ∗
rel

−
(N2 − N1)0

τ ∗
rel

]

hν = jpol E . (9.133)

Neglecting the rapidly varying term in jpol E and averaging over the temporal and

spatial variation,

< jpol E >t,z = J A < cos2 ωt >t < sin2 kz >z =
1

4
J A, (9.134)

we obtain three laser equations

dA

dt
+

κ

2
A =

1

2ε0

J, (9.135)

J = ε0b0
21(N2 − N1)A, (9.136)

d

dt
(N2 − N1) +

(N2 − N1)

τ ∗
rel

−
(N2 − N1)0

τ ∗
rel

= −
1

4hν
J A. (9.137)

These relate the amplitude of the field, the amplitude of the current density and the

population difference.

By eliminating J and N2 − N1 from the two first equations and from the first and

the third equation, respectively, we obtain

dA

dt
+

κ

2
A =

b0
21

2
(N2 − N1)A, (9.138)

d

dt
(N2 − N1) +

N2 − N1

τ ∗
rel

−
(N2 − N1)0

τ ∗
rel

= −
ε0

2hν
A

dA

dt
−

ε0κ

4hν
A2. (9.139)
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From the first of these equations, we obtain

N2 − N1 =
2

b0
21

1

A

dA

dt
+

κ

b0
21

(9.140)

and, by differentiation,

d

dt
(N2 − N1) =

2

b0
21

d

dt

(

1

A

dA

dt

)

. (9.141)

By elimination of d(N2 − N1)/dt and of N2 − N1 from (9.138), (9.139), and (9.141),

we find

a
dA

dt
+

[

κ

2
−

b0
21(N2 − N1)0

2

]

A +
ε0b0

21τ
∗
relκ

8hν
A3 = 0. (9.142)

The abbreviation

a = 1 +
ε0b0

21τ
∗
rel

4hν
A2 + τ ∗

rel

1

A

dA

dt
, (9.143)

contains two terms that are small compared to 1, so that we obtain

dA

dt
+

1

2
(−γ0 + κ)A +

ε0b0
21τ

∗
relκ

8hν
A3 = 0. (9.144)

The amplitude A increases at small times exponentially and approaches at large times

the steady state value

A∞ = 2

√

(γ0 − κ)hν

ε0b0
21τ

∗
relκ

. (9.145)

The differential (9.144) has the solution

A(t) =
A∞

√

1 + (A∞/A0)2e−(γ0−κ)t
. (9.146)

A0 = A(t = 0) is the initial amplitude of the field. According to (9.131), the ampli-

tude of the polarization current density is

J = ε0κ A + 2ε0

dA

dt
. (9.147)

It follows from (9.138) that the population difference is equal to
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N2 − N1 =
1

ε0b0
21

J

A
. (9.148)

Multiplication of the differential (9.144) by 2A leads to

d

dt
(A2) + (−γ0 + κ)A2 +

ε0b0
21τ

∗
relκ

4hν
A4 = 0. (9.149)

Taking into account that the energy density of the field is Zhν = 1
4
ε0 A2, we obtain

dZ

dt
= (γ0 − κ)Z − b0

21τ
∗
relκ Z2. (9.150)

The equation describes the initial exponential increase of Z as well as transition to

the steady state. The photon density at the steady state is

Z∞ =
γ0 − κ

b0
21τ

∗
relκ

= (r − rth)τp, (9.151)

where τp = κ−1 is the lifetime of a photon in the resonator, rth = (N2 − N1)th/τsp

is the threshold pump rate and r = (N2 − N1)0/τsp is the pump rate. The expression

of (9.151) is the same as (8.16), derived earlier.

The differential equation (9.150) has, with Z(t = 0) = Z0 ≪ Z∞, the solution

Z(t) =
Z∞

1 + Z∞/Z0 e−(γ0−κ)t
. (9.152)

We define the oscillation onset time as the time where

Z(ton) = Z∞/2 (9.153)

and find a value,

ton =
ln(Z∞/Z0)

γ0 − κ
, (9.154)

which we derived in Sects. 2.9 and 8.4 by simple arguments; see (2.85) and (8.29).

Figure 9.6 shows the buildup of laser oscillation at a sudden turning on of the

population difference; the numbers concern a helium–neon laser (see next example).

The curves of the figure indicate the following:

• The initial population difference (produced at t = 0) remains almost constant and

decreases near ton smoothly to the steady state value.

• The amplitude of the polarization current increases exponentially, shows a maxi-

mum at the time t = ton and then decreases to the steady state value.

http://dx.doi.org/10.1007/978-3-319-50651-7_8
http://dx.doi.org/10.1007/978-3-319-50651-7_2
http://dx.doi.org/10.1007/978-3-319-50651-7_8
http://dx.doi.org/10.1007/978-3-319-50651-7_2
http://dx.doi.org/10.1007/978-3-319-50651-7_8
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Fig. 9.6 Onset of laser

oscillation: population

difference; amplitude of the

polarization current density;

amplitude of the electric

field; and photon density

• The amplitude of the field increases exponentially at t < ton and reaches, at t > ton,

the steady state value.

• The photon density reaches half the steady state value at t = ton.

It follows from the preceding equations that the steady state amplitude of the polar-

ization current density is equal to

J∞ = ε0 A∞/τp (9.155)

and that the energy density of the polarization is

upol =
1

4
J∞ A∞τp =

ε0

4
A2

∞ = u. (9.156)

At steady state oscillation, the polarization energy density is equal to the energy

density of the electric field. During the buildup of laser oscillation, the polarization

energy exceeds the electric field energy; the polarization energy is largest at the onset

time ton.

The ratio of the initial population difference and the steady state population dif-

ference is given by

(N2 − N1)0

(N2 − N1)∞
= 1 + b0

21τ
∗
rel Z∞. (9.157)

During the buildup of laser oscillation, the polarization conductivity changes from

the small-signal value
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σ
pol

1,0 = −(N2 − N1)0ε0b0
21 (9.158)

to the large-signal value

σ
pol

1,∞ = −(N2 − N1)∞ε0b0
21. (9.159)

The ratio of the small-signal and the large-signal polarization conductivities is equal

to the corresponding ratios of the susceptibilities and gain coefficients,

σ
pol

1,0

σ
pol

1,∞
=

χ1,0

χ1,∞
=

α0

α∞
=

(N2 − N1)0

(N2 − N1)∞
= 1 + b0

21τ
∗
rel Z∞. (9.160)

Example Helium–neon laser: output power 3 mW; π(d/2)2 L = 10−6 m3; L =
0.5 m; gain cross section σ21 = 1.4 × 10−16 m2; τ ∗

rel = 100 ns; τp = 1.8 × 10−7 s.

We find the following values:

• Pout = Z∞π(d/2)2 L hν/τp; Z∞ = 1.6 × 1015 m−3.

• Z∞ = ε0 A2
∞/4 hν; A∞ = 1.5 × 104 V m−1.

• (N2 − N1)0/(N2 − N1)∞ = 1 + cτ ∗
relσ21 Z∞ = 4.1.

• (N2 − N1)∞ = (τpb0
21)

−1 = 1.2 × 1014 m−3; b0
21 = cσ21.

• σ
pol

1,0 /σ
pol

1,∞ = χ1,0/χ1,∞ = α0/α∞ = (G0 − 1)/(G∞ − 1) = 4.1.

• G∞ = 1.02; G0 = 1.08.

• J∞ = ε0 A∞/τp = 0.68 A m−2.

• Z0 = 106 m−3; Z∞/Z0 = 1.6 × 109.

• ton = T ln(Z∞/Z0)/ ln(G0V ) = 22 T = 720 ns.

A current density-field curve (Fig. 9.7a) is a straight line with a negative slope

described by the relation

jpol(t) = σ
pol

1 E(t). (9.161)

It follows from the negative slope that jpol(t) and E(t) have opposite phases. During

the onset of laser oscillation, the negative polarization conductivity varies with time

(Fig. 9.7b). The variation is very slow, i.e., σ
pol

1 is nearly constant during a cycle of

the field. The absolute value of the polarization conductivity is large at t = 0 and

decreases with increasing amplitude of the field until it reaches the steady state value

|σ pol

1,∞| = ε0κ .

That the magnitude of the polarization conductivity σ
pol

1 changes with time is the

consequence of the quantum mechanical origin of gain: during the buildup of the

laser field, the population difference decreases and therefore the magnitude of σ
pol

1

decreases.
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Fig. 9.7 Interplay of polarization current and field. a A current density-field curve and time-

dependent current and field. b Current density-field curves during buildup of laser oscillation

9.8 Relaxation of the Polarization

Relaxation of the polarization occurs in ensembles of excited two-level systems. We

consider the case that all atomic oscillators in a medium oscillate, under the action of

a laser field, at the same frequency and with the same phase. We suppose that energy

relaxation is absent. Then, the dipole moment of each of the oscillators is

pi = p0 cos (ωt + ϕ0), (9.162)

where

p0 = q x0 (9.163)

is the amplitude of the dipole moment, +q and –q the oscillating charges, and x0

the amplitude of the oscillation. The polarization is defined as the dipole moment

density,

P =
∑N0

i=1
pi = P0 cos (ωt + ϕ0). (9.164)
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N0 is the number of atomic oscillators per unit volume and

P0 = N0 p0 = N0 q0x0 (9.165)

is the amplitude of the polarization.

We now assume that we suddenly turn off the laser field. Then, dephasing

processes can destroy the polarization. We assume that dephasing processes occur

randomly in time. The number of oscillators that undergo dephasing in a small time

interval dt is

dN =
N

T2

dt. (9.166)

N is the number of coherently oscillating dipoles per unit volume and T2 is the

dephasing time. It follows that

N (t) = N0 e− t/T2 . (9.167)

Accordingly, the polarization decreases exponentially,

P(t) = P0 e− t/T2 . (9.168)

The polarization decays with the dephasing time T2, which is called, in connection

with the decay of the polarization, transverse relaxation time or phase relaxation

time.

We assumed that the population of excited two-level systems remained constant,

i.e., that T2 was much smaller than the energy relaxation time T1 of the upper energy

level, T2 ≪ T1. In the case that T2 ≫ T1, the change of coherently oscillating dipoles

is

dN =
N

2T1

dt. (9.169)

Now, the polarization is related to the amplitude of the oscillation that decays with

the time constant 2T1 (while the energy content in the oscillator decays with T1).

In the intermediate case, T2 ≈ T1, the polarization decays according to

P(t) = P0 exp

[(

−
1

2T1

+
1

T2

)

t

]

. (9.170)

In connection with the polarization, the time T1 is called longitudinal relaxation time

(of the polarization).
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9.9 Laser Equations

We study the laser oscillation of a more general case (assuming again that the pop-

ulation difference is suddenly turned on):

• ω �= ωres �= ω0; i.e., laser frequency, resonance frequency of the resonator and

transition frequency have different values.

• The polarization undergoes both longitudinal and transverse relaxation.

Our goal is to find differential equations that relate the field, the polarization and the

population difference. We make use of the quantities:

• ω = laser frequency.

• ωres = resonance frequency of the laser resonator.

• ω0 = transition frequency; ω0 = (E2 − E1)/�.

• Ã = amplitude of the field.

• B̃ = amplitude of the polarization.

• ∆N = N2 − N1 = population difference.

• ∆N0 = (N2 − N1)0 = initial population difference.

• κ/2 = 1/(2τp); 2/κ = lifetime of the field in the laser resonator.

• T1 = spontaneous lifetime of the population difference = longitudinal relaxation

time.

• T2 = transverse relaxation time.

• ∆ω0/2 = 1/(2T1) + 1/T2; 2/∆ω0 = relaxation time of the polarization.

• b0
21 = �ω0 Bω

21g(ω0) = growth rate constant at ω0.

The energy conservation law requires: the change of the population difference

times the quantum energy of a photon is equal to the change of the average density

of the energy contained in the field and the polarization,

(

d∆N

dt
+

∆N − ∆N0

T1

)

�ω = − < E
dP

dt
>t,z; (9.171)

the average is taken over a temporal and a spatial period of the field. Atomic excitation

energy is converted to field and polarization energy.

We have seen (in Sect. 9.7) that a polarization can drive a laser oscillation. We

now assume that we inject into the laser resonator of an oscillating laser an external

high frequency electric field E1. The external field acts as an additional source term

κ1dE1/dt , where κ1 is a coupling constant.

We make use of laser equations of second order, namely of (9.113) with the

additional source term and of (9.76). We then have, together with (9.171), the laser

equations:
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d2 E

dt2
+ κ

dE

dt
+ ω2

res E = −
1

ε0

d2 P

dt2
+ κ1

dE1

dt
, (9.172)

d2 P

dt2
+ ∆ω0

dP

dt
+ ω2

0 P = −
2

π
ε0�ωBω

21(N2 − N1)E, (9.173)

(

d∆N

dt
+

∆N − ∆N0

T1

)

= −
1

�ω
< E

dP

dt
>t,z . (9.174)

The equations are the semiclassical laser equations (also called neoclassical laser

equations): the atomic states are quantized while the field is treated classically. The

equations are suited to describe the dynamics of a laser oscillator.

We make use of the ansatz:

E =
1

2
[ Ã eiωt + c.c.], E1 =

1

2
[F̃ eiω1t + c.c.], P =

1

2
[B̃ eiωt + c.c.].

(9.175)

The slowly varying envelope approximation

∣
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∣
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∣

∣
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∣

∣
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∣

∣
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∣

d Ã
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∣

∣

∣

∣

∣

, (9.176)

d B̃

dt
≪ ω

∣

∣

∣B̃

∣

∣

∣ and

∣

∣

∣

∣

∣

d2 B̃

dt2

∣

∣

∣

∣

∣

≪ ω

∣

∣

∣

∣

∣

d B̃

dt

∣

∣

∣

∣

∣

, (9.177)

and the restriction to frequencies around ω0 so that

ω2 − ω2
0 = (ω + ω0)(ω − ω0) ≈ 2ω(ω − ω0), (9.178)

leads to the laser equations:

d Ã

dt
+

[κ

2
+ i(ω − ωres)

]

Ã = −
iω

2ε0

B̃ +
κ1

2
F̃, (9.179)

d B̃

dt
+

[

∆ω0

2
+ i(ω − ω0)

]

B̃ = ε0b0
21∆N Ã, (9.180)

d∆N

dt
+

∆N − ∆N0

T1

= −
1

4�
( Ã B̃∗ − Ã∗ B̃). (9.181)

The laser equations are coupled differential equations relating: amplitude of the field,

phase of the field; amplitude of the polarization, phase of the polarization; population

difference. The equations take into account the dephasing of the polarization by

transverse relaxation.
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We introduce amplitudes and phases,

Ã(t) = A(t)eiϕ(t), F̃(t) = F(t)eiϕ1(t), P̃(t) = [C(t) − iS(t)]eiϕ(t). (9.182)

and obtain five laser equations (in slowly varying envelope approximation):

dA

dt
+

κ

2
A =

ω

2ε0

S +
κ1

2
F cos(ϕ − ϕ1), (9.183)

dϕ

dt
+ ω − ω0 = −

ω

2ε0

C

A
−

κ1

2

F

A
sin(ϕ − ϕ1), (9.184)

(

d

dt
+

∆ω0

2

)

C +
(

dϕ

dt
+ ω − ω0

)

S = 0, (9.185)

(

d

dt
+

∆ω0

2

)

S −
(

dϕ

dt
+ ω − ω0

)

C = − ε0b0
21∆N A, (9.186)

d∆N

dt
+

∆N − ∆N0

T1

= −
1

4�
AS. (9.187)

These five equations describe dynamical processes in laser oscillators.

Example Injection locking of a laser. Injection locking (=frequency locking=phase

locking) of a self-excited oscillator means that an external high frequency field,

injected into the resonator of the oscillator, forces the oscillator to assume the fre-

quency of the external field rather than to execute an oscillation at its “natural”

frequency of the free running laser. At the same time, the field in the resonator has

a fixed phase relative to the external field. Injection of an external field (frequency

ωL ) of a small amplitude can force a laser (natural frequency ωL) to oscillate at ω1.

The natural frequency is not necessarily the frequency of maximum gain but is the

frequency that is determined by the corresponding condition (2.80). The small-power

laser acts as “seed” laser (=master oscillator) of the large-power laser (=slave laser)

as shown in Fig. 9.8a. The frequency of the seed laser can be chosen in a range around

the frequency of maximum gain (Fig. 9.8b). The power of the frequency-locked laser

is the same as that of the free running laser. Injection of a monochromatic field results

in a large occupation number of photons of frequency ω1. Thus, the laser starts oscil-

lation at ω1 rather than at ω0. If a laser is already oscillating at ωL and the seed laser

starts, the laser frequency “jumps” to ω1. Injection locking by use of a frequency

stabilized small-power laser can result in a stabilization of the large-power laser with

respect to frequency and output power. The minimum power necessary for phase

locking and the locking range can be derived by use of the five laser equations; a

detailed treatment of injection locking can be found in [1].

Frequency locking of an oscillator is a general phenomenon. Two mechanical

oscillators that are weakly coupled can force themselves to oscillate at a fixed phase.

In 1865, Huygens observed phase locking of two pendulum clocks fixed at a wall

and mechanically coupled via the wall. Injection locking of an electrical classical

self-excited oscillator (Sect. 31.8) is well-known: a high frequency current flowing

through the active element of a self-excited classical oscillator is superimposed with

http://dx.doi.org/10.1007/978-3-319-50651-7_2
http://dx.doi.org/10.1007/978-3-319-50651-7_31
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Fig. 9.8 Injection locking. a Seed laser (master oscillator) and laser. b Gain curve, free-running

laser, external source, and frequency-locked laser

an external high frequency current. Frequency locking of a laser oscillator occurs via

the influence of the electric field on the polarization of the active medium according

to (9.172).

In the following, we consider the case that an external field is absent and that

the laser frequency is equal to the resonance frequency of the resonator (ω = ωres)

and, furthermore, that the phase relaxation time is much smaller than the energy

relaxation time. We obtain the equations

d Ã

dt
= −

Ã

2τp

−
iω

2ε0

B̃, (9.188)

d B̃

dt
= −

B̃

T2

+ i(ω − ω0)B̃ + ε0b0
21∆N Ã, (9.189)

d

dt
∆N = −

1

T1

(∆N − ∆N0) −
i

4�
( Ã B̃∗ − Ã∗ B̃). (9.190)

We introduce dimensionless variables.

• τ = t/T2 = dimensionless time.

• x̃ = Ã/KE = dimensionless amplitude of the field.

• ỹ = B̃/KP = dimensionless amplitude of the polarization.

• z = (∆N0 − ∆N )/KN; ∆N0/KN = dimensionless initial population inversion;

∆N/K3 = dimensionless population inversion.



168 9 Driving a Laser Oscillation

With

KE =
1

T2

√
ε0 B21

, KP =
1

ωτpT2

√

ε0

B21

, KN =
1

�ωT2τp B21

, (9.191)

b = T2/T1, σ = T2/2τp, δ = i(ω − ω0)T2, and r = ωT2τpb0
21∆N0, we find the

Lorenz-Haken equations

dx̃

dτ
= −σ x̃ + σ ỹ, (9.192)

d ỹ

dτ
= −(1 − iδ)ỹ + r x̃ − x̃ z, (9.193)

dz

dτ
= −bz + Re[x̃∗ ỹ]. (9.194)

Edward Lorenz derived the equations to describe the dynamics of a convective fluid of

the atmosphere and Hermann Haken derived the equations to describe laser dynamics.

The equations are the basis of studies of laser dynamics, including chaotic behavior

[41–45].

9.10 Laser-van der Pol Equation

According to the last section, we can characterize laser oscillation (if transverse

relaxation is absent) in slowly varying envelope approximation by the equations:

E(t) = A(t)cos ωt , (9.195)

dA

dt
−

1

2
(γ0 − κ)A +

ε0b0
21τ

∗
rel

κ

8hν
A3 = 0. (9.196)

This is the laser-van der Pol equation. It is a nonlinear differential equation of first

order for the amplitude A.

We have found in Sect. 9.7 that the laser equations lead, in slowly varying envelope

approximation, to analytical expressions for the time dependences of the amplitude

of field, (9.161) and, furthermore of the amplitude of the polarization and of the

polarization-current density

jpol = −ε0κ A(t) cos ωt (9.197)
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and of the population difference and the population difference

N2 − N1 =
κ

b0
21

1

A(t)
. (9.198)

Thus, the analytical solution of (9.169) for A(t), equation (9.146), provides also

analytical expressions for the polarization current (and therefore of the polarization)

and of the population difference.

The laser-van der Pol equation is always applicable for description of a laser

oscillation (if transverse relaxation is absent). The reason is the following: for

all lasers, the gain per period T of the laser field is small compared with unity,

(γ0 − κ)T ≪ 1. This is the condition for the applicability of the slowly varying

envelope approximation.

We have derived the laser-van der Pol equation by using the condition that laser

frequency, atomic transition frequency, and resonance frequency of the resonator

coincide with each other. The equation is, however, also applicable for a high fre-

quency field composed of fields of different frequencies if the frequencies have values

near the frequency of maximum gain and near the eigenfrequency of the laser res-

onator, i.e., if the gain curve is sufficiently broad and the Q value of the laser resonator

is sufficiently small. The van der Pol equation of the laser is suitable to describe, for

instance, mode beating in a laser that oscillates on two modes at the same time; see,

for instance, [5, 40–42]. It can also be applied to treat frequency locking.

The van der Pol equation in slowly varying amplitude approximation,

dA

dt
−

1

2
(γ0 − κ)A + β A3 = 0, (9.199)

is a differential equation of first order. It describes an oscillation of the quantity

y = A(t)cos ωt, where A(t) is a slowly varying amplitude, γ0 is a growth coefficient,

κ is a damping term, and β is a term that follows from the mechanism responsible for

oscillation. The equation has two solutions. One of the solutions is A = 0. It follows

that the occurrence of oscillation supposes an initial amplitude that is nonzero. A

small initial amplitude causes exponential growth of the amplitude. The A3 term is

responsible for limitation of the amplitude. In a laser, the initial amplitude of the

laser field stems from spontaneous emission of radiation by the active medium. The

equation holds only if the net gain per oscillation period is small compared with 1,

that is, if (γ0 − κ)T ≪ 1, as already mentioned.

The three equations (9.196) through (9.198) are the most simple laser equations

but represent a complete set of laser equations.

The differential equation (9.196) is also suitable, to analyze oscillation of a classi-

cal model oscillator if (γ0 − κ)T ≪ 1. In a classical oscillator model, the parameters

γ0, κ , and β represent quantities, which characterize mechanisms that differ com-

pletely from the mechanisms in a laser (see Chap. 31). The equation (9.196) is the

slowly varying envelope approximation of the (general) van der Pol equation that

is a nonlinear differential equation of second order (see Sect. 31.8 and Problems to

http://dx.doi.org/10.1007/978-3-319-50651-7_31
http://dx.doi.org/10.1007/978-3-319-50651-7_31
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this chapter). In contrast to laser oscillators, classical oscillators work in most cases

with a much larger gain per period. Thus, a laser oscillator is the application of the

classical van der Pol equation in slowly varying envelope approximation. (The van

der Pol oscillator has been reported by van der Pol [243] long before the invention

of the laser.)

9.11 Kramers–Kronig Relations

The Kramers–Kronig relations relate the real part of a linear response function and

the imaginary part. If the real part of a linear response function is known for all

frequencies, then the imaginary part can be calculated for all frequencies. And if

the imaginary part of a quantity is known for all frequencies, the real part can be

calculated for all frequencies. The Kramers–Kronig relations for the complex sus-

ceptibility are

χ2(ω) = −
2ω

π

∫ ∞

0

χ1(ω
′)

ω′2 − ω2
dω′, (9.200)

χ1(ω) = −
2

π

∫ ∞

0

ω′χ2(ω
′)

ω′2 − ω2
dω′. (9.201)

Example If a susceptibility has the form of a complex (general) Lorentz function

χ̃ (ω) = χ1 − iχ2 = aωG̃L(ω), (9.202)

where a is a measure of the strength of the corresponding transition and

G̃L(ω) =
1

(ω2
0 − ω2) + iω∆ω0

=
ω2

0 − ω2

(ω2
0 − ω2)2 + (ω∆ω0)2

+ i
ω∆ω0

(ω2
0 − ω2)2 + (ω∆ω0)2

, (9.203)

is the complex general Lorentz function. An electric field Ẽ = Aeiωt causes a polar-

ization P̃ = ε0(χ1 − iχ2)Ẽ . The susceptibilities χ1 and χ2 are related according to

(9.200) and (9.201).

The Kramers–Kronig relations are a consequence of causality. The Dutch physi-

cists Kramers [46] and Kronig [47] derived the relations independently from each

other. The relations are treated in many textbooks on Solid State Physics and Optics;

see, for instance, [59, 177, 179, 180, 184, 297, 302].
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9.12 Lorentz Functions: A Survey

As already mentioned, in mathematics, the Lorentzian function is defined as

fL(x) =
1

π

∆x0/2

(x0 − x)2 + ∆x2
0/4

, (9.204)

∫ ∞

−∞
fL(x)dx = 1. (9.205)

Besides the normalization condition, the values of x0 and ∆x0 are not restricted.

For a narrow resonance function, with ∆x0 ≪ x0, the integral from zero to infinity

is approximately unity. We use this approximation of the Lorentzian function to

describe narrow resonances in physical systems and designate the function as Lorentz

resonance function, gL,res(x).

In the case that a resonance is not narrow, we use the function that we call gen-

eral Lorentz resonance function. The Kramers–Kronig relations connect the general

Lorentz resonance function with the general Lorentz dispersion function.

In the book, we use the following functions.

• G̃L = GL,res − i GL,disp, general complex Lorentz function.

• GL,res, general Lorentz resonance function (= real part of the general Lorentz func-

tion).

• GL,disp, general Lorentz dispersion function (= imaginary part of the general

Lorentz function).

• ḠL,res, normalized general Lorentz resonance function.

• ḠL,disp, “normalized” general Lorentz dispersion function; normalized is the cor-

responding real part.

• g̃L = gL,res − i gL,disp, complex Lorentz function.

• gL,res, Lorentz resonance function.

• gL,disp, Lorentz dispersion function.

• ḡL,res, normalized Lorentz resonance function.

• ḡL,disp, “normalized” Lorentz dispersion function; normalized is the corresponding

Lorentz resonance function.

Table 9.1 gives the functions on the ω scale.

The Lorentz resonance function describes the frequency dependence of the gain

coefficient of active media based on dipole oscillators (Table 9.2), i.e., of conven-

tional lasers containing two-level atomic systems as the elementary systems. The

Lorentz dispersion function describes the gain coefficient of an active medium in

a free-electron laser containing monopole oscillators, or in a quantum mechanical

description, containing energy-ladder systems. The monopole oscillations in a free-

electron laser (Chap. 19) are narrow-band oscillations.

The elementary systems in a Bloch laser (Chap. 32) are energy-ladder systems,

or, in a classical description, monopole oscillations of electrons. The gain function

http://dx.doi.org/10.1007/978-3-319-50651-7_19
http://dx.doi.org/10.1007/978-3-319-50651-7_32
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Table 9.1 Lorentz functions

Resonance function Dispersion function

GL
ω ∆ω0

(ω2
0 − ω2)2 + (ω ∆ω0)2

ω2
0 − ω2

(ω2
0 − ω2)2 + (ω ∆ω0)2

ḠL

ω2∆ω2
0

(ω2
0 − ω2)2 + (ω ∆ω0)2

(ω2
0 − ω2) ω ∆ω0

(ω2
0 − ω2)2 + (ω ∆ω0)2

gL
1
π

∆ω0/2

(ω0 − ω)2 + ∆ω2
0/4

1

π

(ω0 − ω)

(ω0 − ω)2 + ∆ω2
0/4

ḡL

∆ω2
0/4

(ω0 − ω)2 + ∆ω2
0/4

(ω0 − ω) ∆ω0/2

(ω0 − ω)2 + ∆ω2
0/4

Table 9.2 Shape of gain curves of different types of lasers

Type of laser Elementary system Classical model

gL,res Conventional lasers Two-level systems Dipole oscillation

ḡL,disp free-electron laser Energy-ladder system Monopole oscillations

of electrons

ḡL,disp − K (ω) Bloch laser Energy-ladder system Monopole oscillations

of electrons

is a modified Lorentz dispersion function, ḡL, disp − K (ω). This function takes into

account that the response of an active medium of a Bloch laser is composed of a

dynamic part, described by ḡL, disp, and a term, K (ω), which takes into account that

a direct current is always present in a Bloch laser.

9.13 A Third Remark About the History of the Laser

We come back to the question: why did it take—after the discovery of stimulated

emission by Einstein—40 years until the maser and the laser were invented? The

laser is an apparatus developed by experimentalists. We consider the development

of spectroscopy after stimulated emission became known. In the time from 1900

to 1930, Berlin was a center of spectroscopy, with two outstanding spectroscopists:

Heinrich Rubens (1865–1922) and Rudolf Ladenburg (1882–1952). Rubens devel-

oped methods suited to study the far infrared spectral range. His result (1900) with

respect to the spectral distribution of radiation emitted by a thermal radiation source

was a basis of the derivation of Planck’s radiation law. One of Rubens’ Ph.D stu-

dents, Marianus Czerny (1896–1985), studied the (far infrared) rotational spectrum

of HCl [49]; he found that the positions of the absorption lines did not agree with

predictions of classical physics. Richard Tolman (Caltech, Pasadena) analyzed in

1924 [50] Czerny’s data (that he knew before publication by Czerny) with respect to

the strength of absorption, taking into account thermal populations of energy levels,
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which had transition energies of the order of kT . Tolman included in his analysis

stimulated emission (then called “negative absorption”). Tolman discussed in his

lectures about quantum mechanics the three processes described by Einstein. Thus,

stimulated emission was known in the physics community (see [22]).

Based on the quantum theory of Einstein and making use of the correspondence

principle, Hendrik A. Kramers [51] developed a theory of the refractive index of

gases taking account of stimulated emission. He showed that the refractive index

in the vicinity of a resonance line of an atomic gas is expected to decrease if a

portion of atoms is in the excited state, i.e., if the population difference is reduced.

The effect that is due to stimulated emission was called “negative dispersion”. In

1928, Rudolf Ladenburg and coworkers [52–56] found experimentally that stimu-

lated emission resulted in a reduction of the refractive index of excited neon. Making

use of an interferometric technique combined with a spectral analysis, Ladenburg

and coworkers measured the change of refractive index of a gas (neon), contained in

a long tube, that was excited by a gas discharge. The refractive index in the neigh-

borhood of lines decreased, at strong current, with increasing discharge current, i.e.,

with increasing excitation. Thus, Ladenburg and coworkers performed experimental

studies of energy levels of gases in nonequilibrium states. Ladenburg studied (begin-

ning in 1908) atomic gases by analyzing emission spectra excited by gas discharges.

He emigrated in 1928 to the USA (becoming professor at Princeton University).

In Germany, the activities in the field of experimental spectroscopy were strongly

reduced after the stock market crash in 1929 and when Hitler came to power. In the

U.S.A. and other countries, the Great Depression resulted in a reduced investment

in physics. It seems that atomic physics was in principal understood at the end of

the 1920s. During the 1930 s and especially after the discovery of nuclear fission,

the field of nuclear physics became most attractive for physicists. Great interest

in spectroscopy (including microwave spectroscopy) began with the discovery of

masers and lasers.

Townes writes in his memoirs [22]: “By the 1950s, then, the idea of getting

amplification by stimulated emission of radiation was already recognized here and

there, but for one reason or another, nobody really saw the idea’s potency or pub-

lished it, except for me and the Russians [Basov and Prokhorov], whose work was

then unknown for me.” The essential new idea, besides the idea to make use of

atomic transitions in a system with population inversion, was the idea—introduced

by Townes—to use a resonator in order to realize a self-excited oscillator. The next

step, toward the optical maser (laser), was the idea to use an optical resonator, i.e., a

resonator without sidewalls.

Was there a chance to invent the laser already in the late 1920s? In his first paper

mentioning negative dispersion [52], Ladenburg reported the formula of the refractive

index of a gas near a resonance line but outside the range of absorption,

n1 − 1 =
λ5

0

λ − λ0

1

16πc
A21

(

g2

g1

N1 − N2

)

, (9.206)
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Fig. 9.9 A comparison. a Ladenburg’s arrangement used for measurement of negative dispersion

of a neon gas. b Helium–neon laser

where g1 is the degeneracy of the lower level, g2 the degeneracy of the upper level, λ

the wavelength of the radiation, and λ0 = c/ν0. Equation (9.206) follows from (9.77)

if degeneracy of energy levels is taken into account. Ladenburg wrote (translated from

German): “It is one of the most important tasks to detect experimentally Kramers’

negative dispersion, whose theoretical importance is unquestionable.”

Ladenburg and coworkers used an arrangement [53] shown in Fig. 9.9a. The opti-

cal arrangement consisted of a Jamin interferometer. One arm of the interferometer

contained a tube filled with neon gas (at low pressure) and the other arm contained

an evacuated reference tube. A beam of white light from an arc discharge lamp was

divided into two beams (one traversing the tube with the gas and the other traversing

the empty tube). Then the two beams were superimposed and passed a diffraction

grating. The interference pattern on a photo plate contained information on the fre-

quency dependence of the refractive index. At large current, both the lower and the

upper level of a resonance transition were occupied. The results [54–56] indicated

that the refractive index decreased as predicted by theory. The relative population

difference (N1 − N2g1/g2)/N1 was most likely between ten and forty percent. The

arrangement had similarities to that of a helium–neon laser (Fig. 9.9b). The dimen-

sion of the helium tube, the gas pressure, and the strength of current were similar.

There are two important differences: the helium–neon laser contains, in addition to

neon, also helium and the gas tube is enclosed between highly reflecting mirrors;

additionally, the gas tube of a laser is closed by Brewster windows. The helium is

essential to obtain a population inversion and the high-reflectivity mirrors are nec-

essary to reach laser threshold. The effect of energy transfer from helium to neon

atoms was not known at Ladenburg’s time and highly reflecting dielectric mirrors

were not available. A helium–neon laser generating visible light was realized in

1962. If Ladenburg or somebody else would have had the idea of a neon laser, a

more elaborated investigation of gas discharges and of laser mirrors would have

been necessary.
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In the 1920 s and the beginning 1930s, there was not yet much knowledge about

optical properties of dielectric crystals, of doped dielectric crystals and of semicon-

ductors. Therefore, a solid state laser would not have been a reachable goal at the

time. Research in the field of solid state physics grew strongly between 1920 and

1960 [57].

References [1, 4–6, 12, 13, 22, 35, 36, 40–58, 177–181, 184, 243, 297, 302].

Problems

9.1 Susceptibilities and polarization conductivities. Instead of our ansatz of an

electromagnetic wave, Ẽ = Aei(ωt−kz), we could use the ansatz Ẽ = Aei(kz−ωt). Show

that the imaginary part of the susceptibility changes sign but that the real field and the

real polarization are the same in both cases. Discuss the corresponding polarization

conductivity.

9.2 Linear dispersion.

(a) Determine the linear dispersion dn/dω of titanium–sapphire at a population

difference N2 − N1 = 1024 m−3.

(b) Determine the shift of the resonance frequencies of a Fabry–Perot resonator

(length 0.5 m) due to optical pumping of a crystal of 1 cm length, i.e., at a change

of the population difference N2 − N1 = 0 to N2 − N1 = 1024 m−3.

9.3 Nonlinear dispersion of optically pumped titanium–sapphire.

(a) Determine the nonlinear dispersion d2n/dv2 around the center frequency ω0.

(b) Determine the nonlinear dispersion in the case that N2 − N1 = 1024 m−3.

(c) How large is the change of the refractive index in the frequency range ν0 −
∆ν0/2, ν0 and in the range ν0, ν0 + ∆ν0/2?

(d) Determine the shift of the resonance frequencies (due to nonlinear dispersion

of a crystal of 1 cm length of a Fabry-Perot resonator (length 0.5 m) due to

optical pumping, i.e., at a change of the population difference N2 − N1 = 0 to

N2 − N1 = 1024 m−3.

9.4 Drude theory. We obtain the Drude theory of the electric transport if we treat

the electrons in a solid as free-electrons, i.e., if we set ω0 = 0 in (9.42) and introduce

the electron velocity v = dx/dt . Then β−1 = τ is the relaxation time of an electron:

an electron (accelerated at time t = 0) by an electric field loses its energy after the

time τ .

(a) Derive the high frequency conductivities σ1(ω) and σ2(ω).

(b) Determine the real part and imaginary of the high frequency mobility µ̃(ω);

ṽ(ω) = µ̃(ω)Ẽ(ω).
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(c) Determine the corresponding frequency-dependent susceptibilities and dielectric

constants (=dielectric functions).

9.5 Perfect conductor of high frequency currents. We define a perfect conduc-

tor of high frequency currents as a conductor with free-electrons that have an infi-

nitely long relaxation time. [A superconductor at temperatures that are small com-

pared to its superconducting transition temperature Tc can be a perfect conductor of

high frequency currents at frequencies where hν < 2∆; 2∆ is the superconducting

energy gap; Tc = 7 K for lead and 90 K for the high temperature superconductor

YBa2Cu3O7.]

(a) Derive the high frequency conductivity of a perfect conductor.

(b) Determine the dielectric function.

(c) Calculate the values of σ2 of an ideal conductor that contains free-electrons of a

density N = 1028 m3; N = 1025 m3; N = 1022 m3.

9.6 Show that the slowly varying amplitude approximation is valid if the change

of the amplitude within a quarter of the period of a high frequency field is small

compared to the amplitude of a high frequency field.

9.7 Rabi oscillation. An ensemble of two-level atomic systems that interact with a

strong electric field can show an oscillation of the population inversion and, synchro-

nously, an oscillation of the polarization. We assume that the frequency of the field

is equal to the atomic resonance frequency and that transverse relaxation is absent.

We furthermore assume that the only relaxation process is spontaneous emission of

radiation but that the spontaneous lifetime T1 is much larger than the period of the

field. We describe the dynamics of the polarization by,

d2 P

dt2
+ ∆ω0

dP

dt
+ ω2

0 P =
2

π
ε0�ω0 Bω

21∆N E . (9.207)

An electric field E = A cos ω0t causes a polarization P = B sin ω0t that is 90◦ phase

shifted relative to the field. We find, in slowly varying amplitude approximation, the

equation

dB

dt
+

∆ω0

2
B(t) =

1

π
ε0�ω0 Bω

21 A∆N (t). (9.208)

The time dependence of the population difference is determined by the differential

equation:

d∆N (t)

dt
+

∆N (t) − ∆N0

T1

=
1

2�ω0

AB(t); (9.209)

the change of the population difference averaged over a period of the field, multiplied

by the energy of a photon, is equal to AB/2.
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(a) Show that, under certain conditions, these two equations are equivalent to two

second-order differential equations,

d2 B/dt2 + ω2
R B = 0, (9.210)

d2∆N/dt2 + ω2
R∆N = 0, (9.211)

where

ω2
R = ε0b0

21/(4�ω0)A2 (9.212)

and ωR is the Rabi frequency and, furtheremore, ωR ≪ ω0; this condition allows

for application of the slowly varying envelope approximation. The differential

equations are approximately valid if ωR ≫ ω0. The solutions are

B = B0 sin ωRt, (9.213)

∆N = ∆N0 cos ωRt. (9.214)

The amplitude of the polarization and the population difference oscillate with

the Rabi frequency. The Rabi frequency is proportional to the amplitude of the

electric field.

(b) Make a draft of the time dependences of the population difference ∆N and the

amplitude of the polarization.

(c) Calculate the Rabi frequencies for a medium with a naturally broadened line, with

T1 = 10−2 s. What is the minimum field amplitude necessary for the occurrence

of a Rabi oscillation? (For more information about Rabi oscillations, see, for

instance, [1, 5, 40]).

9.8 Start of laser oscillation.

Show, by use of the van der Pol (vdP) equation of a laser, that laser oscillation cannot

start without an initial field [Hint: the vdP equation has two different solutions,

depending on the initial conditions].

9.9 Write the van der Pol equation of a laser in dimensionless units, as well as the

solution for the electric field.

9.10 Derive the van der Pol equation from the Lorenz-Haken equations.

9.11 The van der Pol equation.

Derive the van der Pol equation of a laser from the (general) van der Pol equation

d2y

dτ 2
+ ε(−1 + y2)

dy

dτ
+ y = 0,

where y is the dimensionless field, ε (>0) is a parameter, and τ the dimensionless

time [Hint: Make use of SVEA; see Problem 31.4].
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9.12 Determine the amplitude of the polarization of a helium–neon laser medium

that carries a polarization-current of 0.68 A m−2 (see Example to Fig. 9.6).

9.13 Phase portrait.

(a) Characterize onset of laser oscillation by a phase portrait. Hint: Make use of

the solution A(t) of the van der Pol equation of a laser. The phase portrait is

obtained for a plot of Ȧ (on the y axis) versus A (on the x axis), with the time t

as a parameter that varies from t = 0 to t → ∞.

(b) Draw the phase portrait of a laser oscillation for the case that the gain is suddenly

turned off.



Part III

Operation of a Laser



Chapter 10

Cavity Resonator

After a basic description of a laser in the first parts of the book, we now are dealing

with the question how we can operate a laser. For this purpose, we will first discuss

laser resonators. In this chapter, we treat the cavity resonator, which is a closed

resonator. In the next chapter, we will study the open resonator.

We solve the wave equation for electromagnetic radiation in a metallic rectangular

cavity and determine the eigenfrequencies and the field distributions of modes of a

cavity resonator. A cavity resonator has a low frequency cutoff. The cutoff frequency,

determined by the geometry of the resonator, corresponds to a resonance of lowest

order. The field of a mode is a standing wave.

Standing waves composed of two waves that propagate in opposite directions

along one of the three axes of a rectangular resonator are forbidden modes. A long

resonator has modes that are composed of waves that propagate nearly parallel to the

long axis. We express the frequency separation of these modes in a simple way by

the use of the Fresnel number; we will later see that Fresnel numbers are important

parameters of the theory of diffraction.

We finally calculate the mode density that corresponds to frequencies, which are

large compared to the cutoff frequency. This leads to the expression of the mode

density we used in connection with the discussion of Planck’s radiation law and the

Einstein coefficients (Sect. 6.7).

10.1 Cavity Resonators in Various Areas

Max Planck used the model of a cavity resonator (=“hohlraum” resonator) to derive

the radiation law.

Microwave oscillators (Chap. 31) and far infrared semiconductor lasers (Chap. 29)

make use of cavity resonators.

© Springer International Publishing AG 2017

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,

DOI 10.1007/978-3-319-50651-7_10

181

http://dx.doi.org/10.1007/978-3-319-50651-7_6
http://dx.doi.org/10.1007/978-3-319-50651-7_31
http://dx.doi.org/10.1007/978-3-319-50651-7_29


182 10 Cavity Resonator

High-Q microwave cavities that are able to store electromagnetic fields of large

amplitude are suited to accelerate particles in accelerators.

10.2 Modes of a Cavity Resonator

We discuss properties of a rectangular metallic cavity resonator (Fig. 10.1). All walls

are metallic. We assume that the walls are ideal conductors, i.e., that reflection of

radiation at the walls occurs without absorption loss. The extensions of the cavity

resonator are: a1 = width (along x axis); a2 = height (along y); L = length (along z).

Coupling of radiation into a resonator is possible, for instance, by means of a hole in

one of the walls. We treat the interior of the resonator as a vacuum space, ignoring

the effect of air (or of another medium).

To describe the electromagnetic field in the resonator, we make use of Maxwell’s

equations

∇ × H = ∂ D/∂t, (10.1)

∇ × E = −∂ B/∂t, (10.2)

∇ · E = 0, (10.3)

∇ · B = 0. (10.4)

E is the electric field, B the magnetic induction, H the magnetic field, D the dielectric

displacement, ε0 the electric field constant, and μ0 the magnetic field constant. A

field in vacuum is characterized by

μ0 H = B, (10.5)

D = ε0 E. (10.6)

The boundary conditions for electromagnetic fields require continuity of the tangen-

tial component Et of the electric field at a boundary and continuity of the normal

component Hn of the H field. The tangential component of the electric field is zero

Fig. 10.1 Rectangular cavity resonator
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everywhere on the walls of an ideal conductor,

Et(wall) = 0. (10.7)

Forming ∇ × (∇ × E + ∂ B/∂t) = 0, and with ∇ × (∇ × E) = ∇ × ∇ × E −
∇2

E, we obtain the wave equation

∇2
E −

1

μ0ε0

∂2
E

∂t2
= 0. (10.8)

This corresponds to three equations, concerning the field component Ex , Ey and Ez:

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

Ex −
1

c2

∂2 Ex

∂t2
= 0, (10.9)

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

Ey −
1

c2

∂2 Ey

∂t2
= 0, (10.10)

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

Ez −
1

c2

∂2 Ez

∂t2
= 0, (10.11)

where c = 1/
√

ε0μ0 is the speed of light in vacuum. The ansatz

Ex = f (x) g(y) h(z) cos ωt (10.12)

leads to the equation

1

f

∂2 f

∂x2
+

1

g

∂2g

∂y2
+

1

h

∂2h

∂z2
+

ω2

c2
= 0. (10.13)

By separation of the variables,

f −1∂2 f/∂x2 = k2
x , (10.14)

g−1∂2g/∂y2 = k2
y, (10.15)

h−1∂2h/∂z2 = k2
z , (10.16)

we obtain

ω = c

√

k2
x + k2

y + k2
z . (10.17)

The solutions concerning the field components, the wave vector k, and the

eigenfrequency ω are given by the following equations:



184 10 Cavity Resonator

Ex (r, t) = Ax cos kx x sin ky y sin kzz cos ωt, (10.18)

Ey(r, t) = Ay sin kx x cos ky y sin kzz cos ωt, (10.19)

Ez(r, t) = Az sin kx x sin ky y cos kzz cos ωt, (10.20)

k = kmnl =
(

m
π

a1

, n
π

a2

, l
π

L

)

, (10.21)

ω = ωmnl = c

√

(

m
π

a1

)2

+
(

n
π

a2

)2

+
(

l
π

L

)2

. (10.22)

Ax , Ay , and Az are the amplitudes of the three field components, r = (x, y, z) is a

location, m, n, and l are integers. With the exception that at least two of the three

numbers are nonzero, these can have the values

m = 0, 1, 2...; n = 0, 1, 2...; l = 0, 1, 2, ... .

We thus obtained the modes of a resonator. A mode is characterized by the number

triple mnl and a discrete eigenfrequency ωmnl. The electric field fulfills the condition

of transversality, ∇ × E = 0, or

k × E = 0 (10.23)

corresponding to

kx Ax + ky Ay + kz Az = 0. (10.24)

The 101 mode has the frequency

ν101 =
c

2

√

1

a2
1

+
1

L2
. (10.25)

The electric field of the 101 mode is

Ey = Ay sin
πx

a1

sin
π z

L
cos ωt. (10.26)

The field (Fig. 10.2a) is oriented along the y axis. The field strength has the largest

value in the center of the cavity.

The 011 mode has the frequency

ν011 =
c

2

√

1

a2
2

+
1

L2
. (10.27)

The field of the 011 mode is oriented along x. In the case that a1 = a2, the 011 mode is

degenerate with the 101 mode, i.e., the modes have the same frequency but different

field patterns. Microwave cavities often have a side ratio close to a2/a1 = 1/2.
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Fig. 10.2 Modes of a cavity resonator. a Field lines of the 101 mode at a fixed time. b Frequency

distribution

The frequency distribution of the modes (Fig. 10.2b) shows that there is a forbidden

frequency range between ν = 0 and ν101 (for a2 < a1). The lowest frequency is the

cutoff frequency of the resonator. The corresponding cutoff wavelength (of free-

space radiation) is λ = c/ν101. The cutoff wavelength of a cubic cavity resonator is

λ = a
√

2.

Example a1 = 1 cm, a2 = 0.5 cm, L = 1 cm; ν101 = ω101/2π = (c/2)

√

a−2
1 + L−2

∼ 21.2 GHz. The corresponding free-space wavelength of the radiation is about

1.42 cm.

The solutions (10.18) through (10.20) describe standing waves. As an example,

we consider a n01 mode

Ey = Ay sin kx x sin kzz cos ωt. (10.28)

We can consider the field as composed of two waves propagating in +z and −z

direction,

Ey =
1

2
Ay sin(kx x)

(

cos
(

ωt − kzz −
π

2

)

+ cos
(

ωt + kzz +
π

2

))

. (10.29)

The two waves have the same amplitude, but the amplitude varies along the x

direction. Alternatively, we can describe the n01 wave as composed of two waves

propagating in x and −x direction,

Ey =
1

2
Ay sin(kzz)

(

cos
(

ωt − kx x −
π

2

)

+ cos
(

ωt + kx x +
π

2

))

. (10.30)

In this description, the amplitude varies along the z direction.
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In conclusion, the amplitude of the field of a standing wave in a rectangular cavity

resonator varies along either two or three axes of the resonator.

10.3 Modes of a Long Cavity Resonator

We study modes corresponding to wave vectors that have small angles with respect

to the axis of a long resonator (L ≫ a, with a1 = a2 = a). The modes fulfill the

conditions:
m

a
≪

l

L
; kx ≪ kz, (10.31)

n

a
≪

l

L
; ky ≪ kz .

The frequency of a mode is

νmnl =
c

2

l

L

(

1 +
m2 + n2

l2

L2

a2

)1/2

. (10.32)

A Taylor expansion yields

νmnl ≈
c

2L

(

l + m2 L2

2la2
+ n2 L2

2la2

)

. (10.33)

The frequency distance of the modes with high order in l and low order in m and n

(Fig. 10.3) is equal to

Δνm = νl,m+1,n − νl,m,n =
c

2L

(

m +
1

2

)

L2

4la2
. (10.34)

A simple calculation yields

Δνm = Δνl

m + 1
2

F
, (10.35)

Fig. 10.3 Frequency

spectrum of modes of a long

resonator
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where Δνl = c/2L is the frequency distance between neighboring 00l modes (that

are forbidden modes) at the frequencies νl = l × c/(2L) and where

F =
(a/2)2

Lλ
(10.36)

is the Fresnel number. If F = 1, the frequency separation between the 0nl mode

and the 1nl mode is Δνm=0 = Δνl/2. If F ≫ 1, the frequency distance, Δνm=0 =
Δνl/(2F), is small compared to Δνl . The Fresnel number combines geometric quan-

tities (the area of the reflectors and the distance L between the reflectors) and the

wavelength of the radiation; see also Sect. 10.5.

10.4 Density of Modes of a Cavity Resonator

The k vectors of the modes of a cavity resonator have discrete values. In k space

(Fig. 10.4), the k values are

k =
(

m
π

a1

, n
π

a2

, l
π

L

)

, (10.37)

where m, n, and l are integers. The numbers are positive, the k vectors lie in one

quadrant of the k space. There is one allowed k point in the k-space volume

V1 =
π

a1

×
π

a2

×
π

L
. (10.38)

A spherical shell of radius k and thickness dk has the k-space volume

V =
1

8
× 4πk2dk. (10.39)

Fig. 10.4 Modes in k space
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Fig. 10.5 Electromagnetic waves in a cavity of large volume. a Dispersion relation. b Mode density

At large k, the number of k values in the interval k, k + dk is equal to

D̄(k)dk =
V

V1

=
a1a2 L

2π2
k2dk. (10.40)

The density of modes in k space, i.e., the density of allowed k values, is equal to

D̄(k) =
a1a2 L

2π2
k2. (10.41)

It follows from the dispersion relation for light (Fig. 10.5a),

ν =
c

2π
k, (10.42)

that the frequency interval

dν =
c

2π
dk (10.43)

contains as many modes as the corresponding interval dk. Taking into account that

there are two waves of different polarization for each k vector, we obtain

D̄(ν)dν = 2D̄(k)dk (10.44)

or

D̄(ν) =
2D̄(k)

dν/dk
. (10.45)

This leads to the mode density on the frequency scale (=number modes per unit

frequency),

D̄(ν) = a1a2 L
8πν2

c3
. (10.46)

We have, for frequencies large compared to the cutoff frequency, i.e., for a resonator

that has extensions large compared to the wavelength of radiation, the result: the
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density of the modes of a cavity resonator increases proportionally to the square of

the frequency (Fig. 10.5b). It also increases proportional to the volume of the cavity.

The mode density per unit volume is given by

D(ν) =
1

a1a2 L
D̄(ν) =

8πν2

c3
. (10.47)

Accordingly, D(ν)dν is the number of modes (per unit volume) in the frequency

interval ν,ν + dν.

The density of modes in a cavity resonator containing an optically isotropic

medium (refractive index n) is equal to

D(ν) =
8πν2

(c/n)3
. (10.48)

Due to the smaller wavelength, i.e., the larger wave vector of radiation of frequency

ν, the density of modes of a cavity containing a dielectric medium with the refractive

index n is by the factor n3 larger than the density of modes of the cavity without a

medium.

The density of modes (per unit volume) in free space is the same as the density

of modes (per unit volume) in a cavity resonator (Problem 10.7).

10.5 Fresnel Number

The Fresnel number (Sect. 10.3)

F =
a2

4λL
=

a/2

λ
×

a/2

L
(10.49)

is a combination of resonator extensions (width a, height a, length L) and wave-

length λ. The Fresnel number is dimensionless. Many properties of optic apparatus

of different size depend solely on F ; the Fresnel number plays an important role in

the characterization of diffraction occurring in laser resonators (Sect. 11.8).

We introduce the Fresnel number in a different way. We consider (Fig. 10.6) the

widening of a light beam by diffraction at an iris diaphragm (diameter a). The angle

of diffraction is approximately given by

θ ≈
λ

a
. (10.50)

A mirror (also of diameter a) at distance L from the iris reflects a portion of the

radiation. The Fresnel number is

http://dx.doi.org/10.1007/978-3-319-50651-7_11
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Fig. 10.6 Fresnel number

F =
intensity of the reflected light

intensity of the unreflected light

=
πa2/4

π(a/2 + Lθ)2 − πa2/4
=

a2/4

a2/4 + aLθ − a2/4
=

a2

4λL
. (10.51)

The mirror reflects half of the light if F = 1 and most of the light if F ≫ 1. The

intensity of the reflected beam is

Ir = I0

F

1 + F
, (10.52)

where I0 is the intensity of the incident beam.

10.6 TE Waves and TM Waves

We choose the z axis of a rectangular cavity resonator as a preferred axis. Then we

can divide the waves, with respect to the z axis, in TE and TM waves:

• TE wave (=transverse electric wave). The electric field is transverse to z. The

magnetic field has a z component as well as an x or a y component. Or it has z, x ,

and y components. (A TE wave is also called H wave or magnetic wave.)

• TM wave (=transverse magnetic wave). The magnetic field is transverse to z. The

electric field has a z component and an x or a y component. Or it has z, x , and y

components. (A TM wave is also called E wave or electric wave.)

To calculate the fields of different modes, we have to take into account that the bound-

ary conditions for electromagnetic fields at the boundary of a perfect conductor are

Et(wall) = 0 and Hn(wall) = 0. It turns out that a mode of a rectangular cavity res-

onator is either a TE mode or a TM mode; i.e., if a mode is excited, the corresponding

wave is a TE wave or a TM wave. (For calculations of amplitudes of electric and

magnetic fields, see Problems).
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Fig. 10.7 Rectangular cavity resonator: electric field lines (solid) and magnetic field lines (dashed)

Example (Fig. 10.7). The magnetic field of the 101 mode can be calculated by use

of (10.2) and (10.5). We obtain (with Ay = E0):

Ey = E0 sin
πx

a2

sin
π z

L
cos ωt, (10.53)

Hx =
√

ε0

μ0

λ

2L
E0 sin

πx

a2

cos
π z

L
sin ωt, (10.54)

Hz =
√

ε0

μ0

λ

a2

E0 cos
πx

a2

sin
π z

L
sin ωt, (10.55)

where λ = c/ν = 2πc/ω is the free-space wavelength; the parameter
√

μ0/ε0 =
377
 is the impedance of free space. The 101 mode is a TE mode, which we can

design as TE101 mode.

10.7 Quasioptical Arrangement

Microwave radiation generated by a microwave oscillator (Chap. 31) can be guided

by means of waveguides. Emission of radiation into free space is possible by the

use of an antenna. An antenna mediates the excitation of a wave in free space. A

free-space wave excited by an antenna consists of a mixture of radiation belonging

to different modes of free space. The strongest portion of radiation can belong to the

fundamental (Gaussian) mode (next chapter). However, radiation belonging to other

modes (corresponding to a power of radiation of the order of 1%) cannot be avoided.

Vice versa, it is not possible to completely convert radiation belonging to a single

mode of the free space to radiation of a single mode of a waveguide. The combination

of microwave and optical techniques leads to quasioptical arrangements [63].

References [59–62].

http://dx.doi.org/10.1007/978-3-319-50651-7_31
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Problems

10.1 Modes of a cubic cavity. Determine the frequencies of the four modes of

lowest frequencies of a cubic cavity resonator (side length a = 1 cm).

10.2 Degeneracy of modes of a rectangular cavity resonator.

(a) Determine the degree of degeneracy of the 011, 110, and 101 modes if a1 =
a2 = L .

(b) Determine the degree of degeneracy of the 011, 110, and 101 modes if a1 =
a2 �= L .

(c) Determine the degree of degeneracy of the 011, 110, and 101 modes if a1 �=
a2 �= L .

(d) Determine the degree of degeneracy of the 111 mode.

10.3 Density of modes of a cavity resonator. Determine the density of modes of a

cubic cavity resonator of 1 cm side length at a frequency corresponding to a vacuum

wavelength λ = 700 nm for the following cases.

(a) If the cube (with metallic walls) is empty,

(b) If the cube contains an Al2O3 crystal (refractive index n = 1.8) and fills the

cavity completely,

(c) If the cube contains a GaAs crystal (n = 3.65) that completely fills out the cube.

10.4 Number of modes. Determine the number of modes of a cubic cavity (side

length 1 cm) in the frequency interval 1 × 1014 Hz, 1.1 × 1014 Hz.

10.5 Mode density on different scales. Determine the relations between the mode

density on the frequency scale and on different other scales:

(a) scale of photon energy hν; (b) ω scale; (c) scale of vacuum wavelength λ.

10.6 Variation of the resonance frequency of a mode. By changing the length L

of a resonator, the resonance frequencies change. Determine the dependence of the

frequency ν of the 101 mode on the change δL of the length L of a long resonator

(L ≫ a1).

10.7 Density of modes in free space. Determine the density of modes of electro-

magnetic waves in free space. [Hint: make use of periodic boundary conditions.]

10.8 Energy of a field in a cavity resonator.

(a) Determine the energy of a field in the 101 mode of a rectangular cavity resonator

(width a1, height a2, length L; field of amplitude A).

(b) Determine the energy content in the case that a1 = 1 cm, a2 = 0.5 cm, L = 2 cm,

A = 1 V cm−1.
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10.9 Magnetic field in a rectangular cavity resonator.

(a) Derive the wave equations describing the H field.

(b) Solve the wave equations. [Hint: the normal component Hn of the magnetic field

is zero everywhere on the walls, Hn (wall) = 0.]

10.10 TEmnl modes of a rectangular cavity resonator.

(a) Determine the fields of a TEmnl mode.

(b) Express the amplitudes of the field components by the amplitude of the z com-

ponent of the H field. [Hint: take into account that k × E = 0 and k × H = 0.]

10.11 TM mode of a rectangular cavity resonator.

(a) Determine the fields of a TMmnl mode.

(b) Express the amplitudes of the field components by the amplitude of the z com-

ponent of the E field.

10.12 Field components of different modes of a rectangular cavity resonator.

(a) Determine the magnetic field components of the 101 mode. [Solutions are given

in (10.54) and (10.55).]

(b) Determine the electric and magnetic field components of the 011 mode.

(c) Determine the electric and magnetic field components of the TE111 mode and

the TM111 mode.

(d) Show that the 101, 011 and 110 modes exist only as TE modes.

(e) Show that the TEmnl and TMmnl modes are degenerate if none of the three

numbers is zero.

10.13 Rectangular waveguide. If we omit in a rectangular resonator the two walls

perpendicular to the z axis, we obtain a rectangular waveguide.

(a) Characterize the TE mode of lowest order.

(b) Characterize the TM mode of lowest order.

10.14 Show that the number of (short-wavelength) cavity modes in a frequency

interval dν for a rectangular cavity is given by (8π/λ3) Vc dν/ν, where V c is the

cavity volume and λ the free-space wavelength. Show that the number of modes in

a spherical cavity is given by the same expression.



Chapter 11

Gaussian Waves and Open Resonators

A large number of gas and solid state lasers as well as free-electron lasers make use

of an open resonator.

Before discussing open resonators, we introduce the Gaussian wave (=Gaussian

beam). It is a kind of a natural mode of electromagnetic radiation in free space. A

Gaussian wave is a paraxial wave, that is a wave with a well-defined propagation

direction along the beam axis (z axis) and a small divergence. The amplitude of the

field perpendicular to the beam axis has a Gaussian distribution. A Gaussian beam

traveling from z = −∞ to z = ∞ has a beam waist. Accordingly, the diameter of

the beam shows a minimum at the beam waist.

A Gaussian wave is a solution of the wave equation—which we use in the form of

the Helmholtz equation—and an appropriate boundary condition: the energy trans-

ported by the wave through a plane perpendicular to the propagation direction is

finite. Besides the Gaussian mode (=fundamental Gaussian mode), the wave equa-

tion provides higher order Gaussian modes.

A Gaussian wave fits to a resonator with spherical mirrors—a longitudinal mode

of an open resonator is a standing wave composed of two Gaussian waves propagating

in opposite directions. Higher order Gaussian modes lead to transverse modes of a

resonator. A laser with a spherical-mirror resonator is able to generate a Gaussian

wave.

The analysis of resonators having mirrors of various curvature shows that there are

stable and unstable resonators. The confocal, the concentric, and the plane parallel

resonator are three special types of resonators.

We describe the effect of diffraction that can be used to suppress laser oscillation

on transverse modes and to operate a laser on longitudinal modes only.

We introduce the ray matrix (ABCD matrix) to describe the propagation of paraxial

optical rays in free space and in optical systems. We show that a Gaussian beam can

be focused by a lens to an area of a diameter that is equal to about a wavelength of

the radiation.
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The wavelength of a monochromatic Gaussian wave is a constant far outside the

beam waist but shows a (small) variation in the range of the waist. As a consequence,

the resonance frequencies of a resonator with spherical mirrors are not multiples

of a minimum frequency but are shifted toward higher frequencies. The change of

wavelength in a beam waist corresponds to a change of phase that has been pre-

dicted and experimentally demonstrated by L. G. Gouy in 1891 and experimentally

demonstrated also recently by the use of femtosecond pulses. The Gouy phase shift

influences the frequency spectrum of optical frequency combs (Sect. 13.4).

We begin this chapter with a characterization of laser radiation generated by the

use of a resonator with spherical mirrors.

11.1 Open Resonator

Figure 11.1a shows a design of a laser (e.g., of a titanium-sapphire laser). The laser

resonator consists of spherical mirrors (diameter 1 cm) at a distance of 1 m. The active

medium has a diameter of 1 cm. The diameter of the laser wave is about 1 mm. The

spherical mirrors have the extraordinary property to concentrate the radiation within

the resonator at the resonator axis. The radiation circulates within the resonator. A

portion of radiation, coupled out via the partial reflector, has a small beam divergence

Fig. 11.1 Laser with a spherical-mirror and modes of the resonator. a Laser. b Open resonator.

c Longitudinal mode. d Transverse mode

http://dx.doi.org/10.1007/978-3-319-50651-7_13
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(e.g., 1 mrad). Diffraction of the wave at the reflector and the partial mirror has (in

the laser design shown in the figure) almost no effect on the wave—except that

diffraction plays an important role with respect to elimination of radiation belonging

to unwanted modes (Sect. 12.2).

We give here a short characterization of a spherical-mirror resonator: it is an

open resonator—it has no sidewalls (Fig. 11.1b). The length L of the resonator is

much larger than the wavelength of the radiation. We characterize the modes of the

resonator by the use of a cartesian coordinate system; we choose the direction of the

resonator axis as z axis. We now blow up the lateral extension of the wave in order

to visualize different modes. The simplest type is a longitudinal mode (Fig. 11.1c).

The phase of the field varies along the resonator axis. The field amplitude has the

largest value on the resonator axis and decreases in directions perpendicular to the

resonator axis. Figure 11.1d shows a transverse mode: the phase of the field varies

in axial direction (as for a longitudinal mode); however, the amplitude of the field is

zero at the resonator axis and changes the sign in x direction. There are many other

types of transverse modes as we will see.

We will show that longitudinal and transverse modes of a resonator with spherical

mirrors correspond to standing waves in accord with the wave equation and with

appropriate boundary conditions. A standing wave in a spherical-mirror resonator

consists of two Gaussian waves propagating in +z and −z direction. The waves are

Gaussian waves (=Gaussian beams). Before treating resonators, we will introduce

Gaussian waves as solutions of the wave equation describing electromagnetic waves

in free space (see the next two sections). A Gaussian wave is a paraxial wave: it has

a well-defined propagation direction and a small beam divergence. We will see that

Gaussian waves in free space can also be divided into longitudinal and transverse

modes. A Gaussian (or higher-order Gaussian) mode of the free space is characterized

by the propagation direction (z direction) and a number pair mn, where m is the

number of changes of the sign of the amplitude in x direction and n is the number

of changes in y direction.

The electric field of a Gaussian wave in free space is transverse or nearly transverse

to the z direction. The direction of the magnetic field (that has always a direction

perpendicular to the electric field) is also transverse or nearly transverse to the z

direction. A Gaussian wave characterized as

TEMmn wave

means that the electric and magnetic fields of the wave are transverse or nearly

transverse to the z direction (Problem 11.6). A TEMmn wave can be a longitudinal

or a transverse mode.

• Longitudinal mode=00 mode=axial mode=Gaussian mode= fundamental

Gaussian mode= lowest-order Gaussian mode—the longitudinal mode appears

under different names which will become clear during this chapter. The phase

of the field in a longitudinal mode varies in the axial (=longitudinal) direction.

The sign of the amplitude does not change in the directions perpendicular to the

resonator axis.

http://dx.doi.org/10.1007/978-3-319-50651-7_12
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• Transverse mode (=higher-order Gaussian mode). The phase of a transverse mode

varies in the axial direction and the sign of the amplitude varies in one or two

directions perpendicular to the resonator axis. We will introduce the Hermite–

Gaussian modes.

Paraxial electromagnetic waves are transverse electromagnetic (TEM) waves

(=transversely polarized electromagnetic waves), whether they belong to longitudi-

nal or transverse modes. The active medium of a laser resonator is able to excite a

standing Gaussian mode in the resonator and—if one of the spherical mirrors is a

partial mirror—also a Gaussian wave propagating in free space.

A Gaussian mode or a higher-order Gaussian mode within a resonator is a

TEMmnl mode.

The index l indicates the number of half wavelengths of the field in a resonator.

The electric and magnetic fields of a Gaussian wave in a resonator are transverse or

nearly transverse to the z direction. Each number triple corresponds to a mode of the

electromagnetic field, i.e., to a particular pattern of the field in a resonator.

A polarized electromagnetic wave in a mode mn of free space or on a mode mnl

of a resonator can be polarized in one of two directions perpendicular to each other

(and perpendicular to the propagation direction). The direction of the polarization of

laser radiation can be chosen by inserting a polarizer or other elements (for instance,

a Brewster window) into the laser resonator.

The characterization of modes as longitudinal or transverse modes is of practical

interest: most lasers generate radiation belonging mainly to longitudinal modes.

11.2 Helmholtz Equation

We make use of a simple wave optics, first described by Helmholtz. We start with

the equation

∇2
E −

1

c2

∂2
E

∂t2
= 0, (11.1)

which represents three wave equations, one for each of the three components of the

field vector E. Ignoring the polarization of the electric field, we can reduce the three

wave equations to one equation,

∇2 E −
1

c2

∂2 E

∂t2
= 0. (11.2)

E is the field treated as a scalar quantity. We consider a monochromatic wave

E(x, y, z, t) = ψ(x, y, z) eiωt . (11.3)
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The time independent part of the field, ψ(x, y, z), obeys the Helmholtz equation

∇2ψ + k2ψ = 0, (11.4)

where k = ω/c. The energy density of the field is u(x, y, z) = 1
2
ε0|ψ(x, y, z)|2.

Among the many solutions of the Helmholtz equation are two simple cases.

Plane wave. The solution is

E = A ei(ωt−kz), (11.5)

where

k = ω/c (11.6)

is the wave vector and c the speed of light. The wave vector is independent of x , y,

and z. The phase of the wave assumes constant values,

ϕ(t, z) = ωt − kz = const. (11.7)

The condition ∂ϕ/∂t =0 yields the phase velocity vph =dz/dt = ω/k = c. The

condition ∂ϕ/∂z =0 yields the group velocity vg = dz/dt = c. Group and phase

velocities are equal to the speed of light. The wavelength λ=2π/k, i.e., the spatial

period, is independent of x, y, and z. The amplitude A of a plane wave is the same

everywhere in space. The phase kz is a constant in planes of fixed z.

The wave has no angular spread. We can decompose the phase,

ϕ(t, z) = ϕt (t) − ϕz(z), (11.8)

where ϕt (t) is the time-dependent portion of the phase and ϕz(z) is the position-

dependent portion. The temporal change of ϕt (t) is the angular frequency,

dϕt/dt = ω, (11.9)

and spatial change of ϕz(z) is the wave vector (=2π× saptial frequency),

dϕz/dz = k. (11.10)

Spherical wave. A spherical wave has the form

E =
K

s
ei(ωt−ks). (11.11)

K is a measure of the strength of a wave. Inserting (11.11) in (11.4) yields k =ω/c.

The amplitude decreases inversely proportional to the distance s from a point source.

The phase ks is a constant on spheres around the origin s=0. The phase and group

velocities are equal to the speed of light. The direction of the phase and of the group
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velocity is radial away from the source point s =0. The wavelength λ=2π/k is

independent of x, y, and z.

The plane wave and the spherical wave cannot be realized experimentally. We

will now look for paraxial waves. These have a well-defined propagation direction

(along z) and a small angular spread. We describe the waves by the ansatz

ψ = f (x, y, z) e−ikz . (11.12)

We suppose that f changes only weakly with z. We can therefore neglect the second

derivative of f with respect to z and obtain the Helmholtz equation of paraxial waves,

∂2 f

∂x2
+

∂2 f

∂y2
− 2ik

∂ f

∂z
= 0. (11.13)

Gaussian waves and waves in optical resonators are described in many textbooks;

see REFERENCES at the end of the chapter. Studies of mode patterns began in 1961

[67–69]. We will study various aspects of Gaussian waves. We will begin with the

discussion of a solution of the Helmholtz equation, following [40].

11.3 Gaussian Wave

A Gaussian wave (=Gaussian beam) is a paraxial wave. We solve the Helmholtz

equation of paraxial waves by use of the ansatz

f (x, y, z) = G(z) e−(x2+y2)/F(z). (11.14)

G and F are complex functions that change only weakly with z.

Differentiation yields

d2 f

dx2
=

(

−
2G

F
+ 4x2 G

F2

)

e−(x2+y2)/F , (11.15)

d f

dz
=

(

dG

dz
+

x2 + y2

F2
G

dF

dz

)

e−(x2+y2)/F . (11.16)

The Helmholtz equation leads to an equation

−
2

F(z)
− ik

1

G(z)

dG(z)

dz
+

x2 + y2

F2(z)

(

2 − ik
dF

dz

)

= 0, (11.17)

which includes two conditions,
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2 − ik
dF

dz
= 0, (11.18)

−
2

ik F
−

1

G

dG

dz
= 0. (11.19)

Integrating (11.18) yields

F(z) =
2

ik
(z + C1). (11.20)

The integration constant C1 is a complex quantity. We suppose that the wave front

at z = z0 is a plane, i.e., that the phase of f (x, y, z) is independent of x and y. Then

F(z0) is real. By writing F(z0)=w2
0, we find

C1 =
ik

2
w2

0 − z0 (11.21)

and

F = w2
0 +

2

ik
(z − z0). (11.22)

We separate 1/F in real and imaginary part,

1

F
=

k2w2
0 + 2ik(z − z0)

k2w4
0 + 4(z − z0)2

=
1

w2
+

ik

2R
, (11.23)

where

w = w0

√

1 +
4(z − z0)2

k2w4
0

, (11.24)

R = z − z0 +
k2w4

0

4(z − z0)
. (11.25)

We obtain, with r2 = x2 + y2, the solution

f (z, r) = G(z) e-r2/w2(z) e−ikr2/2R(z). (11.26)

We will see that w = w(z) is the beam radius and R = R(z) is the radius of curvature

of the beam at the location z. The beam radius has the smallest value for z = z0, i.e.,

the beam has a waist at z = z0, where the radius of the beam is equal to w0. That R is

the radius of curvature follows from the relation (Fig. 11.2):

2(z − z0)r
2

k2w4
0 + 4(z − z0)2

=
r2

2R
. (11.27)
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Fig. 11.2 Curvature of the

wave front of a Gaussian

wave

Making use of (11.22) and (11.19) we obtain the differential equation

1

G

dG

dz
= −

1

z − z0 + ikw2
0/2

. (11.28)

We write

G(z) = K (z) eiφ(z). (11.29)

K =|G| is the absolute value of G and φ is a phase, the Gouy phase. We obtain the

differential equation

1

G

dG

dz
=

1

K

dK

dz
+ i

dφ

dz
= −

z − z0

(z − z0)2 + k2w4
0/4

+
ikw2

0/2

(z − z0)2 + k2w4
0/4

.

(11.30)

Separation of real and imaginary part provides two differential equations,

1

K

dK

dz
=

z − z0

(z − z0)2 + k2w4
0/4

, (11.31)

dφ

dz
=

kw2
0/2

(z − z0)2 + k2w4
0/4

. (11.32)

The solutions are

K =
2C2

kw2
0

, (11.33)

φ(z) = tan−1 2(z − z0)

kw2
0

or tan φ(z) =
2(z − z0)

kw2
0

. (11.34)

C2 is an integration constant, which is real. (Instead of the notation tan−1, the notation

arctg can be used). It follows that the field is

ψ(z, r) =
C3

w(z)
e−r2/w2(z) e−i[kz−φ(z)+kr2/2R(z)]. (11.35)
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C3 =2C2/kw0 is a constant. The phase shows a change according to propagation and,

additionally, due to the Gouy phase shift φ(z). The amplitude of the field decreases in

propagation direction inversely proportional to the beam radius. The field amplitude

at a fixed z decreases from its value on the axis (r = 0) to 1/e at the beam radius w(z).

The solution contains two integration constants, w0 (contained in the expression of

w) and C3. The values of w0 and C3 of a particular Gaussian wave can be determined

experimentally—for instance by determination of the beam diameter of the intensity

distribution at a fixed location z (e.g., at z0) and determination of the power of the

wave. In the beam waist, i.e., at the location of minimum beam diameter, the field

distribution is equal to

ψ(z0, r) =
C3

w0

e−r2/w2
0 e−i[kz0−φ(z0)]. (11.36)

We can write

G(z) =
C2

z + C1

=
C2

ik F(z)/2
(11.37)

and therefore

ψ(z, r) =
2C2

ik F(z)
e−r2/w2(z) e−i[kz−φ(z)+kr2/2R(z)], (11.38)

where
1

F(z)
=

1

w2(z)
+

ik

2R(z)
. (11.39)

The propagation of a Gaussian wave is completely described by the beam radius w(z)

and the radius of curvature R(z) or, alternatively, by the complex beam parameter

F(z). It is convenient to introduce another complex beam parameter

q̃(z) =
ik

2
F(z). (11.40)

(We omit in this section the tilde sign of complex quantities, except of the beam

parameter q̃). It follows that

1

q̃(z)
=

1

R(z)
−

2i

kw2(z)
=

1

R(z)
−

iλ

πw2(z)
. (11.41)

We can write the field in the form

ψ(z, r) =
2C2

ik F
exp

(

−ikz −
r2

F

)

=
C2

q̃
exp

(

−ikz −
r2

2q̃

)

. (11.42)

We now discuss the solution in more detail. The field is equal to
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E(z, r) =
C3

w(z)
e−r2/w2(z) ei(ωt−[kz−φ(z)+kr2/2R]). (11.43)

The spatially dependent part is

ψ(z, r) =
C3

w(z)
e−r2/w2(z) e−i[kz−φ(z)+kr2/2R]. (11.44)

We write

ψ(z, r) = A(z, r) e−iϕ(z,r). (11.45)

The amplitude of the Gaussian wave is

A(z, r) =
C3

w(z)
e−r2/w2(z) (11.46)

and the phase is

ϕ(z, r) = kz − φ(z) +
r

2R(z)
kr. (11.47)

The expression contains two terms that depend on z only and another term that

depends additionally on r ; this term vanishes on the beam axis. The field distribution

has the following properties (Fig. 11.3 and Table 11.1):

Fig. 11.3 Gaussian wave. a Rays and lateral distribution of the amplitude. b Rayleigh range.

c Divergence. d Gouy phase



11.3 Gaussian Wave 205

Table 11.1 Properties of field and energy density of a Gaussian beam propagating from z =−∞
to z=+∞

z=−∞ z = z0 z = (z0 + zR) z → ∞
Radius (field) w0

√
2 w0 w0(z − z0)/zR

A(r = 0) A0 A0/
√

2 A0zR/(z − z0)

φ −π/2 0 π/4 π/2

Wave front Spherical Plane Curved Spherical

Radius (energy) ru,0=w0/
√

2
√

2ru,0 ru,0(z − z0)/zR

u(r=0) u0z2
0/(z − z0)

2 u0 u0/2 u0z2
0/(z − z0)

2

• ψ(r, z) is circularly symmetric around the beam axis.

• The amplitude of the wave decreases laterally according to the Gaussian function

and is, on the beam axis, inversely proportional to the beam radius w(z).

• The wave has a waist. The beam radius of the waist is w0. In the waist, the wave

front is a plane and the field amplitude distribution is given by

A(z0, r) =
C3

w0

e−r2/w2
0 = A0 e−r2/w2

0 . (11.48)

A0 is the amplitude of the wave on the beam axis (r=0) at z=z0.

• If z �= z0, the wave front is curved and the beam radius increases with increasing

|z − z0|.
• For large |z − z0|, namely for |z − z0| ≫ kw2

0/2, the curvature is R(z)=z − z0 and

the beam radius is w(z)=2kw0(z − z0). Both the curvature and the beam radius

increase linearly with |z − z0|.
• The Rayleigh range is equal to

zR = kw2
0/2 = πw2

0/λ. (11.49)

The beam diameter increases in the range z0, z0 + zR by the factor
√

2. In the range

z0 − zR, z0 + zR the Gaussian wave remains almost parallel. This range is the near-

field (or Fresnel) range. The range |z − z0| > zR is the far-field (Fraunhofer) range.

We can express the three parameters w, R, and φ of a Gaussian wave by the beam

waist w0 and the Rayleigh range zR,

w(z) = w0

√

1 +
(z − z0)2

z2
R

, (11.50)

R(z) = z − z0 +
z2

R

z − z0

, (11.51)

φ(z) = tan−1 z − z0

zR

. (11.52)
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The distance 2zR between the points z0 − zR and z0 + zR is the confocal parameter

or depth of focus.

• Gouy phase. The Gouy phase—inherent to a Gaussian wave—describes a phase

that is associated with the spatial and the temporal change of the curvature of the

wave front (Sect. 11.7).

• Change of phase. When a wave front with the field distribution ψ(z1, r) propagates

from z1 to z2, the phase ϕ changes according to

ϕ(z2) − ϕ(z1) = [kz2 − φ(z2)] − [kz1 − φ(z1)]. (11.53)

φ(z2)−φ(z1) is the Gouy phase shift. When the wave front propagates through

the beam waist from a far-field location z1 ≪ z0 to a far-field location z2 ≫ z0,

the phase ϕ changes by

ϕ(z2) − ϕ(z1) = kz2 − kz1 − π. (11.54)

The propagation through the beam waist changes the phase of the wave by −π , in

addition to the geometrical phase change kz2 − kz1. When the wave front travels

from z1=−zR to z2=zR, the change of phase is (for z0 = 0) equal to

ϕ(zR) − ϕ(−zR) = kzR − π/2. (11.55)

• The field of a Gaussian wave is given by

E(z, r, t) = A0

w0

w
e−r2/w2(z) cos

[

ωt − (kz − φ + kr2/2R)
]

. (11.56)

A0=C3/w0 is the amplitude in the center of the beam waist (at z = 0 and r = 0).

• The energy density, averaged over a temporal period, is

u(z, r) =
1

2
ε0 A2

0

r2
u,0

r2
u

e−r2/r2
u , (11.57)

where ru=w/
√

2 is the beam radius with respect to the energy density distribution.

The radius of the energy distribution at the beam waist is ru,0=w0/
√

2. At the

beam waist, the energy density decreases within the radius ru,0 to 1/e relative to

the energy density on the beam axis.

• Divergence. At large |z − z0|, the angle of divergence of the field is given by

θ0 =
w0

zR

=
λ

πw0

. (11.58)

The product of the far-field aperture angle θ0 and the diameter at the beam waist

is a constant,

2w0 × θ0 = 2λ/π. (11.59)
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The angle of divergence, with respect to the energy density, is θu,0 = θ0/
√

2. The

product

2ru,0θu,0 = λ/π (11.60)

is by a factor of two smaller than the product with respect to the field amplitude.

• Radiance of a Gaussian wave. The radiance of a paraxial beam is defined as the

power of radiation passing through an area (oriented perpendicular to the beam

direction) divided by the area and the solid angle of the beam. To estimate the

radiance of a Gaussian beam, we approximate exp (−r2/r2
u ) by a rectangular radial

distribution of diameter 2ru and find that the power of radiation passing through

the beam waist is approximately given by

P = Lu × area × Ω, (11.61)

which is the product of the area of the beam in the beam waist, the solid angle Ω

of the beam, and the radiance (=brightness) Lu. We can write:

Lu =
P

area × Ω
. (11.62)

For small values of θu,0, the solid angle of the beam is Ω = πθ2
u,0. This leads to

Lu =
P

πr2
u,0 × πθ2

u,0

. (11.63)

Taking into account the relation (11.60), we find that the radiance of a Gaussian

beam is equal to the power divided by (λ/2)2.

Example P=1 W; λ=0.5 μm; Lu=1.6 × 1013 W m−2 sr−1.

Is it possible to realize a Gaussian wave? The answer is: a laser with appropriately

arranged spherical mirrors as resonator mirrors is able to produce a Gaussian wave.

We will begin the discussion of spherical-mirror resonators by treating a particular

spherical-mirror resonator, the symmetric confocal resonator.

11.4 Confocal Resonator

A confocal resonator consists of two spherical mirrors, which have the same focus.

We discuss the symmetric confocal resonator. It has two equal mirrors.

Two spherical mirrors arranged at a distance L=R form a (symmetric) confocal

resonator (Fig. 11.4, left). We choose z=0 as the location of the center of one of

the mirrors. We will show that a Gaussian wave can fit to a confocal resonator. The

symmetry of the arrangement requires that the beam waist lies at z0 = L/2. We choose

zR = L/2 and obtain, by using (11.49) and (11.50), the radius of curvature
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Fig. 11.4 Confocal resonator

R =
L

2

(

1 +
k2w4

0

L2

)

(11.64)

and the beam radius (=mode radius) with respect to the field amplitude in the waist

w0 =
√

Lλ

2π
. (11.65)

With respect to the energy density, the mode radius in the beam waist is ru,0 =√
Lλ/4π .

The Gaussian mode within the resonator (Fig. 11.4, right) has the beam waist w0.

The beam radius on each of the mirrors is w0

√
2. The distance between the center

of the resonator and a mirror is equal to the Rayleigh range. In the far-field range,

outside the resonator—with one of the spherical mirrors being a partial reflector—the

field has the divergence angle θ0=2λ/(πw0).

The field in the resonator corresponds to a Gaussian standing wave, i.e., to two

Gaussian waves propagating in opposite directions,

E(z, r) =
1

2
A(z, r) ei[ωt−ϕ(z,r)+ϕ0] +

1

2
A(z, r) ei[ωt+ϕ(z,r)−ϕ0]. (11.66)

The field at the axis is equal to

E = A0

w0

w
e−r2/w2

cos[kz − φ(z) − ϕ0] cos ωt. (11.67)

We obtain the resonance frequencies by the use of the resonance condition (2.80),

namely that the change of the phase of a field propagating in the resonator is, at a

round trip transit, a multiple of 2π (that is the resonator eigenvalue problem). The

Gouy phase shift per round trip transit is

∆φ = φ(z2) − φ(z1) + φ(z2) − φ(z1) = 2 (φ(z2) − φ(z1)) = π (11.68)

This leads to the condition

2kL − ∆φ = 2kL − π = l × 2π (11.69)

http://dx.doi.org/10.1007/978-3-319-50651-7_2
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Fig. 11.5 Resonance frequencies

or

kl L =
(

l +
1

2

)

π; l = 1, 2, ... (11.70)

The resonance frequencies are (Fig. 11.5)

νl =
c

2L

(

l +
1

2

)

= l ×
c

2L
+ νGouy, (11.71)

where νGouy = c/4L is the Gouy frequency shift for the symmetric confocal res-

onator. In comparison with a Fabry–Perot interferometer of the same length, the res-

onance frequencies are shifted towards higher frequencies. However, the frequency

separation between adjacent modes is the same,

νl+1 − νl =
c

2L
. (11.72)

The phase ϕ0 is determined by the choice of the origin (z=0) of the z axis. We

have chosen the position of one of the reflectors as z = 0. The boundary conditions,

namely that the field on the mirror (assumed to have a reflectivity near 1), has to be

zero, requires that

ϕ0 + φ(0) = ϕ0 − π/4 = 3π/4 (11.73)

and therefore ϕ0 = π/2. Thus, we obtain the field at the axis:

ψ = A0

w0

w
e−r2/w2

sin[kz − φ(z)] cos ωt. (11.74)

The energy density, averaged over both a temporal period and a spatial period, is

u =
ε0

4
A2

0

r2
u,0

r2
u

e−r2/r2
u = u0

r2
u,0

r2
u

e−r2/r2
u , (11.75)
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Table 11.2 Beam waist and mode volume of confocal resonators of different lengths suitable for

radiation of wavelength λ=0.6 μm

L(m) ru,0 =
√

Lλ/4π V00 (m3)

0.1 69 μm 1.5 × 10−8

0.5 155 μm 3.5 × 10−8

10 0.69 mm 1.5 × 10−5

where u0 = (ε0/4)A2
0 is the energy density at r=0 at the beam waist (z=z0).

The energy contained in a mode is given by

∫ L

0

dz

∫ ∞

0

u(r) × 2πrdr = u0

∫ L

0

dz
r2

u,0

r2
u

∫ ∞

0

2πrdre−r2/r2
u = u0πr2

u,0 L .

(11.76)

What is the volume V0 of a (hypothetical) mode, which contains the same radi-

ation energy as the 00 mode, but with a constant energy density? We can write

u0V00=u0πr2
u,0 L and interpret V00 as the mode volume. Thus, the mode volume of

the 00 mode of a confocal resonator is equal to

V00 = πr2
u,0 L . (11.77)

The mode volume of the 00 mode of a confocal resonator is equal to the product of

the cross sectional area of the beam waist (with respect to the energy distribution)

and the length of the resonator. Table 11.2 shows values of beam waists and mode

volumes for radiation of a fixed wavelength.

The confocal resonator is suitable as resonator of, for instance, a helium–neon

laser or a free-electron laser.

• Helium–neon laser (λ= 633 nm). The small gain of the active medium requires a

large length (typically 0.5 m) of the resonator. The mechanism of the relaxation

of the excited neon atoms makes it necessary to use a tube with a small diameter;

the neon atoms relax by collisions with the walls (Sect. 14.3).

• Free-electron laser. A free-electron laser requires a resonator of a length of typ-

ically 10 m. The Gaussian wave in a confocal resonator has a large overlap with

an electron wave that propagates along the axis of the resonator (Sect. 19.1).

Other resonator configurations will be discussed in the next section.

11.5 Stability of a Field in a Resonator

There are a large number of different resonators. However, not all have stable modes.

We treat a resonator with two spherical mirrors (Fig. 11.6) that have different radii (R1

and R2) of curvature. A Gaussian mode, fitting to the resonator, can be determined

http://dx.doi.org/10.1007/978-3-319-50651-7_14
http://dx.doi.org/10.1007/978-3-319-50651-7_19
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Fig. 11.6 Resonators with

spherical mirrors

by means of the conditions for the radii of curvature:

R1 = z0

(

1 +
z2

R

z2
0

)

= −R1(0), (11.78)

R2 = (L − z0)

(

1 +
z2

R

(L − z0)2

)

, (11.79)

where z0 is the location of the beam waist; z=0 and z=L are the positions of the two

mirrors. From the two relations, we find

z0 =
(1 − g1)g2 L

g1 + g2 − 2g1g2

, (11.80)

z2
R =

(1 − g1g2)g1g2 L2

(g1 + g2 − 2g1g2)2
, (11.81)

w2
0 =

Lλ

π

√
(1 − g1g2)g1g2

g1 + g2 − 2g1g2

, (11.82)

w2
i =

Lλ

πgi

√

g1g2

1 − g1g2

, (11.83)

where wi (i=1, 2) is the beam radius at the mirror 1 or 2, respectively, and where

g1 = 1 − L/R1, (11.84)

g2 = 1 − L/R2 (11.85)

are the mirror parameters. The mode diameters wi are infinitely large if the product

g1g2 = 1. There is no real solution if g1g2(1 − g1g2)
−1 is negative. This leads to the

stability criterion: a stable mode can be realized if

0 ≤ g1g2 ≤ 1. (11.86)

Fig. 11.7 shows the resonator stability diagram. Stable resonators have mirror para-

meters in the shadowed regions.
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Fig. 11.7 Resonator stability diagram

Fig. 11.8 Types of resonators; confocal and semiconfocal (left); near-concentric and semiconcen-

tric (center); planar and near-planar (right)

There are limiting cases.

• R1 = R2 = ∞; g1 = g2 = 1; plane parallel (=Fabry-Perot) resonator.

• R1 + R2 = 2L; g1 + g2 − g1g2 = 0; confocal resonator (general case).

• R1 = R2 = L; g1 = g2 = 0; symmetric confocal resonator.

• R1 + R2 = L; g1g2 = 1; concentric resonator (general case).

• R1 + R2 = L; g1 = g2 = −1; symmetric concentric resonator.

The different types of resonators (Fig. 11.8) have advantages and disadvantages.

• The confocal resonator. It has the lowest diffraction loss (Sect. 11.8). Correspond-

ing to the stability criterion, the confocal resonator is at the limit of stability. To

reach stability, the distance between the mirrors should be slightly smaller than

the radius of curvature of the mirrors. In comparison with other resonators, this

resonator can easily be adjusted.

• A semiconfocal resonator consists of a spherical mirror and a plane mirror at the

distance R/2, where R is the radius of curvature of the spherical mirror—the plane

mirror is located at the position of the beam waist of a corresponding confocal

resonator.

• The concentric resonator (=spherical resonator) has a beam waist of w0 = 0 and

an infinitely large divergence. It is therefore not realizable.

• The near-concentric resonator has the smallest mode volume.
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• A semiconcentric resonator (=hemispheric resonator) consists of a spherical mir-

ror and a plane mirror at the distance R/4—the plane mirror is located at the

position of the beam waist of a corresponding confocal resonator.

• The plane parallel (=Fabry-Perot) resonator has, in comparison with all other

resonators, the largest mode volume. It is difficult to adjust.

• The near-planar resonator (=superconfocal resonator) has one or two mirrors

with a radius of curvature that is much larger than the length of the resonator. This

resonator has the advantage, in comparison with the plane parallel resonator, that

it is easier to adjust. In comparison with the confocal resonator, the near-planar

resonator has a larger mode volume at the same resonator length. In special cases,

larger laser output power is obtainable. The beam radius of a near-planar resonator,

with R1=R2=R ≥ L , is almost constant along the resonator axis,

w2
0 = w2

1 = w2
2 =

λL

π

√

R

2L
. (11.87)

The change of the phase of a Gaussian wave propagating in a near-planar res-

onator during a single transit through a resonator is small, since φ(z=0) ≈ φ(z0) ≈
φ(z=L) ∼ 0. This follows from the expression φ = tan−1 (z − z0)/zR.

In the general case of a stable resonator, the change of the Gouy phase shift per round

trip transit is given by

∆φ = 2[φ(L) − φ(0)] = 2

(

tan−1 L − z0

z2
R

− tan−1 −z0

z2
R

)

= 2 cos−1(±√
g1g2).

(11.88)

We made use of the relations tan−1 x + tan−1 y = tan−1
(

[x + y][1 − xy]−1
)

and

tan−1 x=cos−1(1/
√

1 + x2). (Note that the inverse trigonometric function

cos−1 x ≡ arccos x .) The condition

2kL − ∆φ = l × 2π, l = 1, 2, ... (11.89)

leads to the resonance frequencies

νl =
c

2L

[

l +
1

π
cos−1(±√

g1g2)

]

, (11.90)

where the plus sign has to be chosen if g1 and g2 are positive while the minus sign

has to to be chosen if g1 and g2 are negative. Limiting cases are as follows:

• Fabry–Perot resonator. g1, g2 → 1; cos−1 √
g1g2 → 0.

• Confocal resonator; g1, g2 → 0; cos−1 √
g1g2 → π/2.

• Concentric resonator; g1, g2 → −1; cos−1
√±g1g2 → π .

The frequency difference between adjacent modes is



214 11 Gaussian Waves and Open Resonators

Fig. 11.9 Resonance frequencies of different resonators

νl+1 − νl = c/(2L). (11.91)

This is an important result: the Gouy phase shift of radiation propagating within a

resonator causes a shift of the resonance frequencies of the resonator toward higher

frequencies. The shift is the same for all resonance frequencies. But the frequency dis-

tance between neighboring resonances remains uninfluenced by the Gouy phase shift.

Figure 11.9 shows the frequencies of the modes of different resonators. The Gouy

frequency is zero for a Fabry-Perot resonator, c/4L for a symmetric confocal res-

onator, and c/2L for a symmetric concentric resonator.

11.6 Transverse Modes

We use the ansatz

f (x, y, z) = X (x) Y (y) G(z) e−(x2+y2)/F(z), (11.92)

where X depends on x only, Y on y only, F and G on z only. Differentiation yields

∂2 f

∂x2
=

(

X ′′ −
4x

F
X ′ −

2

F
X +

4x2

F2

)

XYGe−r2/F , (11.93)

∂ f

∂z
=

[

G ′ +
GF′

F2
(x2 + y2)

]

XYe−r2/F , (11.94)

with X ′ = dX/dx , Y ′ = dY/dy and G ′ = dG/dz. The Helmholtz differential equa-

tion leads to

X ′′

X
−

4x

F

X ′

X
+

Y ′′

Y
−

4y

F

Y ′

Y
−

4

F
− 2ik

G ′

G
+ 2

x2 + y2

F2
(2 − ik F ′) = 0. (11.95)
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We obtain again the condition that 2 − ik F ′=0. With the same arguments used earlier,

we find again that F(z)=w2
0 + 2/(ik)(z − z0). Furthermore, we obtain differential

equations for X and Y ,

X ′′

X
−

4x

F

X ′

X
+

4m

F
= 0, (11.96)

Y ′′

Y
−

4y

F

X ′

X
+

4n

F
= 0, (11.97)

where m and n are dimensionless numbers. We introduce the dimensionless variable

ζ = x
√

2/F . Then the differential equation for X becomes

d2 X

dζ 2
− 2ζ

dX

dζ
+ 2m X = 0. (11.98)

This is Hermite’s differential equation. The solutions are the Hermite polynomi-

als Hm(ζ ); Hm is the Hermite polynomial of mth order. We list a few Hermite

polynomials.

• m = 0 ; H0(ζ ) = 1.

• m = 1 ; H1(ζ ) = 2ζ .

• m = 2 ; H2(ζ ) = 4ζ 2 − 2.

• m = 3 ; H3(ζ ) = 8ζ 3 − 12ζ .

The Hermite function H0 is an even function with respect ζ , H1 is an odd function,

H2 an even function and so on. The Hermite polynomials obey the recursion formula

Hm+1(ζ ) = 2ζ Hm(ζ ) − 2m Hm−1(ζ ). (11.99)

The solutions of (11.96) and (11.97) are

X (x) = Hm

(
√

2

F
x

)

and Y (y) = Hn

(
√

2

F
y

)

. (11.100)

We obtain from (11.95) by separation of the variables the differential equation

G
′

G
=

2i

k

1 + m + n

F
= −

1 + m + n

z + C1

. (11.101)

We write

Gmn(z) = |Gmn(z)| eiφmn(z). (11.102)

Separation in real and imaginary part leads to two differential equations for |G| and

φ. The solution for |G| is



216 11 Gaussian Waves and Open Resonators

|G(z)| = |Gmn(z)| =
C3,mn

w
, (11.103)

where

C3,mn =
C2

(kw0/2)1+m+n
(11.104)

and where C2 is an integration constant, which is real. The solution for φ is

φmn(z) = (1 + m + n) φ(z). (11.105)

φ(z) is the same as in the case m = n = 0. Thus, we have the solution

ψmn(x, y, z) = Hm

(
√

2

F
x

)

Hn

(
√

2

F
y

)

C3,mn

w(z)
e−i(kz−φmn+kr2/2R). (11.106)

The Gouy phase increases with increasing m and increasing n. Each number pair mn

corresponds to a mode of radiation in free space. We design the paraxial modes with

mn=00 (=fundamental Gaussian modes=Gaussian modes) as longitudinal modes

and the paraxial modes with mn �=00 as transverse modes (=Hermite-Gaussian

modes=higher-order Gaussian modes).

Figure 11.10a shows the amplitudes of the fields of a few modes together with

field lines. The amplitudes of longitudinal and transverse modes have different spatial

distributions.

• 00 mode. The field amplitude ψ has the largest value at the beam axis.

• 10 mode. In x direction, the amplitude changes once the sign and has two extrema—

according to the Hermite polynomial H1(x). The field amplitude is zero at the beam

axis.

• 20 mode. In x direction, the amplitude changes twice the sign and has three

extrema.

The transverse modes mnl have the same beam diameter and the same radius of cur-

vature as the longitudinal mode 001. A transverse mnl mode has, along the z axis, the

same number of field maxima as the longitudinal 00l mode (compare with Fig. 11.1c

and d). Figure 11.10b shows different mode patterns as they can be observed for the

intensity distribution of laser radiation outside a laser resonator; special filters placed

in a laser resonator can select a particular mode at which a laser oscillates.

The phase shift per round trip transit of radiation in a mode mnl has to obey the

resonator eigenvalue condition

2kL − (1 + m + n)∆φ = l × 2π, (11.107)

where

∆φ = φ(z2) − φ(z1) + φ(z2) − φ(z1) = 2 (φ(z2) − φ(z1)) , (11.108)
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Fig. 11.10 Longitudinal and transverse modes. a Amplitude distributions and field lines. b Intensity

distributions

φ(zi ) = tan−1 zi − z0

zR

, (11.109)

and where z1=0 and z2=L . We obtain the resonance frequencies

νlmn =
c

2L

[

l +
1 + m + n

π
cos−1(±√

g1g2)

]

. (11.110)

The frequency separations between longitudinal and transverse modes depend on

the values of g1 and g2. The frequency separation between two neighboring modes

mn(l + 1) and mnl is always c/(2L).

Figure 11.11 shows special cases that follow from (11.110).
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Fig. 11.11 Resonance frequencies of longitudinal (L) and transverse (T) modes

• The frequencies of the transverse modes mnl of a near-planar resonator lie near

the frequency of the longitudinal mode 00l, at slightly larger frequencies.

• A confocal resonator has a transverse mode for which the sum m + n is an odd

number is degenerate with an l mode, as it follows from cos−1 0 = π/2; a trans-

verse mode for which the sum m + n is an even number has a frequency between

two frequencies of longitudinal modes.

• A near-concentric resonator has transverse modes mnl at frequencies slightly

smaller than the frequency of the 00(l-1) longitudinal modes, as it follows from

cos−1(−1) = π .

We note that the solution (11.106) can also be written in a form,

ψmn(x, y, z) = Hm

(
√

2

F
x

)

Hn

(
√

2

F
y

)

C3,mn

(ik F/2)1+m+n
e−i[kz−(x2+y2)/F],

(11.111)

that contains the complex beam parameter F(z), which is the same as for a funda-

mental Gaussian wave.

In our study of Gaussian waves, we have made use of Cartesian coordinates.

The solution to the Helmholtz equation of paraxial waves provides the fundamental

Gaussian waves and the Hermite-Gaussian waves. The number pair mn describes

the variation of the sign of the amplitude along the x and the y axis. Solutions to the

Helmholtz equation are Laguerre-Gaussian modes too. These are also characterized

by a number pair mn, however m now describes the variation of the sign of the

amplitude in radial direction and n the variation in azimuthal direction. The waves

are also TEM waves. The Laguerre-Gaussian modes are obtained by solving the

Helmholtz equation written in cylinder coordinates. Depending on the experimental

arrangement of a laser, either type of higher-order Gaussian mode can be observed.
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11.7 The Gouy Phase

The field of a Gaussian wave is given by

E(z, r, t) = A0

w0

w
e−r2/w2

cos
(

ωt − [k(z − z0) − φ + kr2/2R]
)

. (11.112)

A0 is the amplitude, w0 the beam radius in the beam waist, z0 the position of the

beam waist, w(z) the beam radius at the position z, k the wave vector of the radiation,

φ the Gouy phase and kr2/2R(z) a phase in lateral direction that is zero on the beam

axis; we have chosen the phase ϕ0 so that the beam waist lies at z0. The beam

radius is

w(z) = w0

√

1 +
(z − z0)2

z2
R

, (11.113)

where

zR = kw2
0/2 = πw2

0/λ (11.114)

is the Rayleigh range. The Gouy phase (Fig. 11.12, upper part) is given by

φ(z) = tan−1 z − z0

zR

. (11.115)

The curvature of the wave front is

R(z) = z − z0 +
z2

R

z − z0

. (11.116)

The derivative of the time-dependent portion ϕt of the phase yields the frequency,

dϕt/dt = ω. (11.117)

From the position-dependent portion of the phase,

ϕz = k(z − z0) − φ, (11.118)

we obtain, by differentiation, the effective wave vector

keff = k − dφ/dz. (11.119)

The effective wavelength is

λeff =
2π

keff

=
λ

1 − k−1dφ/dz
=

λ

1 − λ/(2π)dφ/dz
, (11.120)
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Fig. 11.12 Gaussian beam: Gouy phase; variation of the Gouy phase; spatial part (dashed) of the

phase and total phase (solid); effective wavelength; wavefronts

where λ=2π/k is the wavelength of the radiation far outside the beam waist.

The effective wave vector and the effective wavelength depend on the position z.

The Gouy phase shows the strongest change in the Rayleigh range and the derivative

dφ

dz
=

1/zR

1 + (z − z0)2/z2
R

(11.121)

has a maximum at the center of the beam waist. We consider a wave front, which

propagates through the beam waist from a far-field location z1 to a far-field location

z2 (Fig. 11.12, third panel). The phase far outside the beam waist, at z1 − z0 < 0, is

given by

ϕ(z1) = k × (z1 − z0) + π/2, (11.122)

and for the range far outside the beam waist at z2 − z0 > 0 by

ϕ(z2) = k × (z2 − z0) − π/2. (11.123)
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The Gouy phase shift at a transit of radiation through the beam waist, from a far-

field location to a location in the other far-field is equal to −π . In the range of the

beam waist, the effective wavelength (Fig. 11.12, lower panels) is larger than λ. In

the center of the beam waist, the effective wavelength is equal to λeff = λ + λ/(4π).

The wave fronts have the largest distance in the center of the beam waist. The sum

of all differences λeff − λ at a transit of radiation through the beam waist is equal to

λ/2.

We now discuss the Gouy phase shift of radiation in a resonator. The field of a

standing wave of an open resonator is

E(z, r, t) = A0

w0

w
e−r2/w2

cos[k(z − z0) − φ + kr2/2R] cos ωt. (11.124)

The resonance condition requires that

2kL − ∆φ = l × 2π; l = 1, 2, ..., (11.125)

where l is the order of resonance and ∆φ the Gouy phase shift per round trip. At

resonance, the phase change 2kL per round trip transit is larger than 2π because of

the Gouy phase shift,

2kL = l × 2π + ∆φ. (11.126)

It follows that the resonance frequencies are

νl = l ×
c

2L
+ νGouy, (11.127)

where νGouy is the Gouy frequency,

νGouy =
∆φ

2π
×

c

2L
. (11.128)

The resonance frequencies of an open resonator (Fig. 11.13) are multiples of c/2L

but shifted toward higher frequencies by the Gouy frequency.

Figure 11.14 and Table 11.3 show values of Gouy frequencies of stable resonators.

The Gouy frequency is zero for a Fabry–Perot resonator and has the largest value

Fig. 11.13 Low-order resonance frequencies of an open resonator
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Fig. 11.14 Gouy frequency

of a stable resonators

Table 11.3 Gouy phase shift and Gouy frequency of resonators

Resonator ∆φ νGouy

Fabry-Perot 0 0

Symmetric confocal π 0.5 c/(2L)

Semiconfocal π/2 0.25 c/(2L)

Symmetric concentric 2π c/(2L)

for a concentric resonator. The Gouy frequency of a symmetric confocal resonator

is νGouy = (1/2)c/2L .

Example The Gouy phase shift of a symmetric confocal resonator of a length of 0.5 m

is ∆φ = π and the Gouy frequency is 0.5c/(2L)=150 MHz; for a semiconfocal

resonator of the same length, the Gouy phase shift is π/2 and the Gouy frequency is

75 MHz.

In 1891, Louis Gouy (Lyon, France) found that an electromagnetic wave changes

the phase by π if it propagates through a focus point—besides the phase change due

to spatial propagation [70–72]. Gouy studied an interference pattern of two beams

(arising from the same white light source), which were reflected from two plane

mirrors, and observed an additional phase shift when he replaced one of the mirrors

by a spherical mirror that produced a focus point in one of the beams; Gouy derived

the phase shift from an analysis of the focusing process by use of Huygens’ principle.

Various studies in the years shortly after 1900 confirmed the results (see [73]).

The Gouy phase shift has also been observed by means of coherent waves—

waves with well-defined amplitudes and phases. Experiments have been performed

with microwaves [74], near infrared radiation [75] and far infrared radiation [76]. We

describe the far infrared experiment (Fig. 11.15). The radiation consisted of single-

cycle terahertz radiation wave packet, generated with a small-area source. The radi-

ation was made parallel with a lens and focused with another lens to a small-area

detector. The detector monitored the time dependent amplitude and phase of the radi-

ation at the position of the detector. Alternatively, two additional lenses produced
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Fig. 11.15 Measurement of the Gouy phase shift

a focus point between source and detector. Signals were measured at different time

delays relative to the starting time of a pulse. The experiment showed that the phase

of a wave packet changed by π when the wave propagated through the focus; we will

describe the method of measuring phases and amplitudes of electromagnetic fields

in Sect. 13.5.

We can ask: is the group velocity of radiation traversing a beam waist smaller than

the speed of light? The answer is no: the change of phase by π causes a reversal of

the direction of the electric field of the wave. The group velocity remains therefore

unchanged.

11.8 Diffraction Loss

Up to now, we have neglected loss by diffraction at the resonator mirrors. The dif-

fraction loss depends on the resonator type. Figure 11.16 shows examples of the

diffraction loss δ (=loss per round trip) for resonators of different Fresnel num-

bers (F).

• The diffraction loss of radiation in a confocal resonator is (for F ≥ 0.5) much

smaller than the diffraction loss of radiation in a planar resonator.

• Longitudinal modes have a smaller diffraction loss than transverse modes.

• The diffraction loss decreases strongly with increasing Fresnel number.

The theory of Kirchhoff (1882) allows for determination of diffraction loss. We give

here a short sketch of the theory. We are looking for a solution of the wave equation

in the form of the Helmholtz equation,

∇2ψ + k2ψ = 0. (11.129)

Originally, Kirchhoff formulated the theory assuming that a parallel light wave is

incident on an iris diaphragm (Fig. 11.17a). The boundary condition is the following:

in the open part of the iris, the field has the same value ψ as without iris. According to

Huygens’ principle, spherical waves are leaving from each point in the open part of

http://dx.doi.org/10.1007/978-3-319-50651-7_13
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Fig. 11.16 Diffraction loss per round trip

Fig. 11.17 Diffraction. a Diffraction at an iris diaphragm. b Multiple diffraction at iris diaphragms

in series

the iris. The field amplitude at a point (x2, y2) is the sum of all partial waves arriving

from all points x1, y1 in the open part of the iris. The summation yields

ψ(x2, y2) =
ik

4π

∫

(1 + cos θ)
eiks

s
ψ(x1, y1) dx1dy1. (11.130)

The amplitude depends on the distance s between the iris and the point (x2, y2) and on

the angle θ between the central axis and the direction between the iris and the point;

s is large compared to the diameter of the open part of the iris. The solution obeys

the Helmholtz equation. The factor i to the integral (11.130) implies the occurrence

of the Gouy phase shift.

Radiation in a resonator undergoes multiple reflection with diffraction, illustrated

in Fig. 11.17b for iris diaphragms in series. The calculation starts with an arbitrarily

assumed field distribution ψ1(x1, x2), for instance, a constant distribution over one



11.8 Diffraction Loss 225

of the mirrors. A first integration provides the distribution at the second mirror—at

a single transit through the resonator. The numerical calculation of ψn+1 from ψn ,

where n is the number of passes through the resonator, leads to the following results.

• Stable resonator. After a field has performed a certain number of transits through

the resonator, the field obeys the relation

ψn+1(x, y) = η ψn(x, y), (11.131)

where η (< 1) is a number. The shape of the field distribution is reproduced, but

there is a loss at each reflection.

• Instable resonator. The distribution ψ(x, y) does not stabilize.

We have seen that in the far field of a fundamental Gaussian wave the product of

the beam diameter and the angle of aperture is a constant,

D0 × θ0 =
4

π
λ. (11.132)

D0=2w0 is the diameter of the field distribution at the beam waist. If diffraction at

the output coupling mirror or at another optical element in a laser resonator enhances

the angle of aperture, the beam diameter D can be larger than D0 and the angle θ

can be larger than θ0. The product can be written as

D × θ = M2 D0θ0. (11.133)

The M factor is a measure of the quality of a beam. M = 1 corresponds to a Gaussian

beam.

11.9 Ray Optics

We characterize an optical ray (Fig. 11.18) at a the point z, r by the vector

r =
(

r

r ′

)

, (11.134)

Fig. 11.18 Paraxial optical

beam
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where r is the distance of the ray from the beam axis and r ′ = dr/dz is the slope of

the ray. The slope of a paraxial ray is approximately equal to the angle between the

ray and the optical axis. Therefore, we can make use of the approximation dr/dz =
sin α ≈ α.

We describe the trajectory of an optical ray propagating from a location r1 to a

location r2 by

r2 =
(

A B

C D

)

r1, (11.135)

where

(

A B

C D

)

is the ray matrix (=ABCD matrix).

The propagation of an optical ray in an optical system with s optical elements in

series is described by the matrix product

(

A B

C D

)

=
(

As Bs

Cs Ds

)

...

(

A2 B2

C2 D2

) (

A1 B1

C1 D1

)

. (11.136)

We illustrate the method by various examples (Fig. 11.19).

• Propagation in free space;

(

A B

C D

)

=
(

1 L

0 1

)

.

Fig. 11.19 Optical rays in different systems
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Fig. 11.20 Optical beam passing lenses in series (upper part) and periodicity interval (lower part)

• Snell’s law;

(

A B

C D

)

=
(

1 0

0 n1/n2

)

.

• Thin lens with a focus length f ;

(

A B

C D

)

=
(

1 0

− f −1 1

)

.

• Spherical mirror;

(

A B

C D

)

=
(

1 0

−2R−1 1

)

=
(

1 0

f −1 1

)

. The radius has a posi-

tive sign (R > 0) for a concave mirror and a negative sign (R < 0) for a convex

mirror.

We derive, by the use of ray optics, the stability criterion for resonators. A spherical

mirror and a thin lens are equivalent optical elements. Accordingly, we can replace

a two-mirror resonator by a series of lenses with the focus lengths f1=R1/2 and

f2=R2/2 (Fig. 11.20). The periodicity interval of the series of lenses includes a half-

lens with the focus length 2 f1=R1, a lens with the focus length f2 = R2/2 and

another half lens with the focus length 2 f1 = R1. A round trip through the resonator

corresponds to the path through the periodicity interval in the lens system from r1

to r2, where

r2 =
(

1 0

−(2 f1)
−1 1

) (

1 L

0 1

) (

1 0

− f −2
2 1

) (

1 L

0 1

) (

1 0

−(2 f1)
−1 1

)

r1. (11.137)

We obtain, with the mirror parameters g1 = 1 − L/R1 and g2 = 1 − L/R2, the

ABCD matrix

r2 =
(

2g1g2 − 1 2g2 L

−2g1(g1g2 − 1)L−1 2g1g2 − 1

)

r1. (11.138)

We are looking for rays that remain unchanged after the propagation through a

periodicity interval. A stable trajectory requires that

(

A B

C D

)

r1 = η r1 (11.139)
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and |η| = 1. The eigenvalue equation

(

A − η B

C D − η

) (

r1

r ′
1

)

= 0 (11.140)

leads to
∣

∣

∣

∣

A − η B

C D − η

∣

∣

∣

∣

= 0, (11.141)

η2 − 2(2g1g2 − 1)η + 1 = 0, (11.142)

ηa,b = 2g1g2 − 1 ±
√

(2g1g2 − 1)2 − 1. (11.143)

There are two possibilities.

• ηa and ηb are real if g1g2 ≥ 1. This corresponds to instable resonators because,

after N round trip transits through the resonator and N → ∞, the vector

(

rN

r ′
N

)

= ηN

(

r1

r ′
1

)

(11.144)

diverges.

• ηa and ηb are imaginary if g1g2 < 1. This is the stability criterion. We obtain

ηa,b = exp(±ϕ), where cos ϕ = 2g1g2 − 1. After N round trip transits, the vectors

(

rN

r ′
N

)

< |ηa,b|e±iϕ

(

r1

r ′
1

)

(11.145)

remain stable because |ηa| = |ηb| < 1. In our derivation of the stability criterion,

we did not specify the values of r1 and r ′
1. Thus, the result is valid for all paraxial

rays.

It is possible to describe the propagation of a Gaussian beam through an optical

system by the use of the ABCD matrix of the optical system. We have found, see

(11.41) and (11.42), that a Gaussian beam can be characterized by the complex beam

parameter q̃(z). We now make use of this complex beam parameter: if the complex

beam parameter q̃1(z1) is known, then q̃2(z2) follows from the relation

q̃2 =
Aq̃1 + B

Cq̃1 + D
(11.146)

or
1

q̃2

=
C + D/q̃1

A + B/q̃1

=
1

R(z2)
−

iλ

πw2(z)
. (11.147)

We mention two examples.
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Fig. 11.21 Focusing of a

Gaussian beam by a lens

Example propagation of a Gaussian beam from the location z0 (beam waist) to a

location z. The elements of the ABCD matrix for propagation in free space are A = 1,

B = z − z0, C =0, and D=1. At the beam waist, we have R(z0) = ∞, w(z0) = w0,

and 1/q̃1 = −iλ/πw2
0. It follows, for z = z2, that

−iλ(πw2
0)

−1

1 − iλ(πw2
0)

−1(z − z0)
=

1

R(z)
−

iλ

πw2(z)
. (11.148)

Equating real and imaginary parts leads to expressions for w(z) and R(z) that we

derived (in Sect. 11.3) by the use of the Helmholtz equations; see (11.24) and (11.25).

The agreement may be seen as a justification of the relation (11.146).

Example focusing a Gaussian beam by a thin lens (Fig. 11.21). A thin lens is

located in the beam waist of a Gaussian beam. The ABCD matrix describing propa-

gation through a thin lens at z0 and then over a distance z − z0 is

(

A B

C D

)

=
(

1 z − z0

0 1

) (

1 0

− f −1 1

)

=
(

1 − (z − z0) f −1 z

− f −1 1

)

. (11.149)

We find, with 1/q̃1 = −i/zR = −iλ/(πw2
0) and

− f −1 − iz−1
R

1 − (z − z0) f −1 − i(z − z0)z
−1
R

=
1

R(z)
− i

λ

πw2(z)
, (11.150)

the values

1

R(z)
=

− f −1 + (z − z0)( f −2 + z−2
R )

1 − (z − z0)2 f −2 + (z − z0)2z−2
R

, (11.151)

λ

πw2(z)
=

z−1
R

(1 − (z − z0)2 f −2 + (z − z0)2z−2
R

. (11.152)

At the focus point of the lens, z = zf , the curvature R(zf) is infinitely large. It follows

that

zf − z0 =
f

1 + f 2z−2
R

(11.153)
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or, for f ≪ zR, that zf − z0 ≈ f . The radius of the beam in the focus of the lens is

wf =
λ f

πw0

. (11.154)

With respect to the energy distribution, the beam radius is ru,f = wf/
√

2 and the

angle of divergence is Θu,f = w0/( f
√

2). The radiance in the focus of the lens,

Lu =
P

π2r2
u,fθ

2
u,f

, (11.155)

is the same as in the incident Gaussian beam, namely P/(λ/2)2 in units of Wm−2 sr−1.

When a Gaussian beam traverses more than one optical element and all optical

elements in the beam produce ideal images (without optical aberration and without

diffraction), the radiance is the same at any location along the beam.

The diameter of the wave (with respect to the energy density) is

2ru,f =
λ

π

f

w0

. (11.156)

A lens of focal length f = πw0 focuses the radiation of a Gaussian beam to an area

with a diameter that is about equal to the wavelength of the radiation. If we choose

a lens of diameter D = 2w0, the diameter of the focused beam is equal to

2ru,f =
2λ

π

f

D
∼ λ

f

D
. (11.157)

The beam diameter is λ, i.e., 2ru,f = λ, if the f-number of the focusing lens is f/D =
π/2 ∼ 1.6. It follows that a lens with an f-number of 1.6 can focus a Gaussian beam

to an area π(λ/2)2 ≈ λ2. The light intensity in the focus is

If =
P

λ2
, (11.158)

where P is the power of the radiation.

We mention another radiometric quantity, the brilliance of a beam:

B =
rp

Ω∆ν
. (11.159)

The brilliance of an optical beam is equal to the photon flux rp (number of photons

per second and m2) divided by the solid angle of the beam and by the bandwidth

of the radiation. For a detailed discussion of radiometric (physical) quantities and

photometric quantities (how the human eye records radiation), see [29].

References [1–4, 6–11, 26, 29, 40, 64–76].
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Problems

11.1 Gaussian wave.

(a) Determine the energy that is contained in a sheet (perpendicular to the beam

axis) of thickness δz at the position z.

(b) Calculate the portion of power of radiation passing an area that has the beam

radius ru,0 = r0.

(c) Evaluate the radius rp of the area passed by radiation of a portion p of the total

power of the Gaussian wave.

(d) Evaluate rp if p = 95%.

(e) Evaluate rp if p = 99%.

(f) Determine the power of the radiation that passes an area of radius rp ≪ r0.

11.2 Determine the minimum diameter of the tube of a helium–neon laser (λL

=633 nm) that is necessary to keep, per round trip, 99% of the radiation within a

confocal resonator (L =0.5 m).

11.3 Angle of divergence. Determine the angle of divergence of a Gaussian beam

generated by a helium–neon laser (resonator length 0.5 m; radius of the energy density

distribution at the beam waist ru,0=0.16 mm; wavelength 633 nm).

11.4 Photon density in a Gaussian wave. An argon ion laser (length 1 m; radius of

the beam waist 1 cm; wavelength 480 nm; power 1 Watt) emits a Gaussian wave. By

the use of a telescope, the angle of aperture diminishes by a factor of 10. Estimate the

number of photons arriving each second at a detector of 2 cm diameter at different

distances between laser and detector.

(a) 100 km.

(b) 374,000 km (distance earth-moon).

11.5 ABCD matrix. Determine the effective focal length of an arrangement of two

thin lenses (focal lengths f1 and f2) in contact.

11.6 Transversality of the radiation of a Gaussian wave. If a polarizer is located

in a parallel beam of polarized radiation, the amplitude of the field transmitted by the

polarizer is A = A0 cos θ , where θ is the angle between the direction of polarization

of the incident wave and the direction of the radiation for which the polarizer is

transparent. (We assume that the transmissivity of the polarizer is 1 for θ = 0.)

Determine the loss of power of a Gaussian wave passing a polarizer (that is assumed

to be thin compared to the Rayleigh range z0 if the polarizer is located at different

positions.

(a) In the beam waist at z0.

(b) At z = z0/2.

(c) At z = z0.

(d) At z ≫ z0.
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(e) Estimate the contribution of the polarizer to the V factor of a confocal laser

resonator of 1 m length if the polarizer has a thickness of 1 cm and is located in

the center of the resonator.

11.7 Hermite-Gaussian wave. Given is a 10l Hermite–Gaussian wave.

(a) Determine the radius of the wave at the beam waist and the angles of divergence

in the far-field.

(b) Compare the results with corresponding values of a 00l Gaussian wave.

11.8 Calculate the Gouy phase of a Gaussian wave (λ=0.6 μm; w0 = 1 mm) for

propagation from the center of the beam waist over a distance of one wavelength;

1 mm; 1 cm; and 1 m.

11.9 Calculate the Gouy phase per round trip transit through a resonator of a

Gaussian wave (λ=0.6 μm).

(a) If the resonator is a near-planar resonator with two mirrors (radius of curvature

R1 = R2 = 7 m; resonator length = 1 m).

(b) If the resonator is a near-confocal resonator (radius of curvature R1 = R2 =
1.10 m; resonator length= 1 m).

11.10 Show that a concentric resonator is not realizable. [Hint: consider the beam

waist and the angle of divergence.]

11.11 Show that (11.44) is a solution of the Helmholtz equation.

11.12 Derive ray matrices for different optical arrangements.

(a) Reflection of radiation at a plane surface of a dielectric medium.

(b) Propagation of radiation through a thin lens.

(c) Focusing of radiation by a spherical mirror. [Hint: for solutions, see Sect. 11.9.]

11.13 Show that the intensity of radiation in a Gaussian beam averaged over an

optical period is I = c ǫ0 A2πw2
0/2 and that

I (z, r) =
2P

πw2(z)
e−2r2/w2(z), (11.160)

where P = 2π
∫

I (z, r)rdr is the power of the radiation.

11.14 Estimate radiance and brilliance of radiation of a helium-neon laser (power

10 mW; angle of divergence 1 mrad; beam waist in the laser 0.5 mmm; bandwidth

1 kHz) and compare the values with those of a light bulb (electric power 10 W).

11.15 Heisenberg uncertainty principle

Show that a photon in a Gaussian beam obeys the Heisenberg uncertainty relation

∆y∆py ≥ �, where ∆y is the uncertainty of the position y and ∆py the uncertainty

of the momentum py of the photon. [Hint: Show that the full width at half maximum
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of the lateral energy density in the waist is equal to D =
√

2 ln 2 w0 and that the

full angle of divergence, related to the full width at half maximum of the lateral

energy density in the far-field, is equal to ϑ = (
√

2 ln 2/π )λ/w0. It follows that the

product is Dϑ = (2 ln 2/π)λ. Now, determine the wave vector spread, according to

ϑ = ∆ky/kx. It follows, with ∆y = D and ∆py = �∆ky that ∆y∆py = (4 ln 2) �.

11.16 Gaussian beam in a medium.

Show that a Gaussian beam in a medium with the refractive index n (> 1) has a

smaller divergence than in free space if the beam radius in the waist is the same.

11.17 Confined Gaussian beam.

A medium with a radial dependence of the refractive index of the form n(r) = n0 −
a r2, with a > 0, is able to guide a wave without divergence. Show that the Helmholtz

equation has the solution ψ(z, r) = ψ0 exp (−r2/w2
1 + i λ z/w2

1
),where the beam

radius w1 is given by w2
1 = λ/(π

√
2a) and where λ is the vacuum wavelength.

[Hint: make use of (11.4) and (11.13), with the relation k = n ω/c.]



Chapter 12

Different Ways of Operating a Laser

In this chapter, we describe techniques used to operate lasers as continuous wave

lasers or as pulsed lasers—in the next chapter we will treat femtosecond lasers.

We discuss single mode lasers. We mention spectral hole burning, occurring in

lasers that operate with inhomogeneously broadened transitions. We give a short

introduction to various methods of Q-switching of lasers used to generate laser pulses.

Furthermore, we describe two applications of continuous wave lasers—optical

tweezers and gravitational wave detector.

12.1 Possibilities of Operating a Laser

Lasers can operate as continuous wave lasers, as pulsed lasers, or as femtosecond

lasers. Lasers operated in different ways at different wavelengths have various appli-

cations in physics, chemistry [77, 78], biology, and medicine [79–82, 127–129, 332].

An early application was the holography [83, 84].

There are continuous wave lasers and different types of pulsed lasers:

• The cw (continuous wave) laser. Continuous pumping maintains the laser oscilla-

tion.

• Pulsed laser. A pump pulse generates a population inversion. Or more general:

each laser that delivers pulses is a pulsed laser.

• Q-switched laser. In the Q-switched laser, the quality factor Q of the laser resonator

varies with time. The Q factor is small for most of the time and large for a short

time. During the time of small Q, population in the upper laser level is collected.

During the time of large Q, laser oscillation occurs and the population of the upper

laser level is strongly reduced.
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• Giant pulse laser. This is a Q-switched laser with an upper laser level that has a

very long lifetime (for instance 1ms); pumping leads to a large concentration of

atoms in the upper laser level.

• Femtosecond laser (Chap. 13). The pumping is continuous. For most of the time,

the Q factor of the resonator is small but it is large during short time intervals that

follow each other periodically. The laser emits a coherent pulse train.

12.2 Operation of a Laser on Longitudinal Modes

A mode diaphragm eliminates transverse modes. The transverse modes suffer

stronger diffraction than longitudinal modes and cannot reach the threshold condi-

tion. This mode selection makes it possible to operate a laser on longitudinal modes,

00l, 00(1+1), . . . .

There are different possibilities of the operation of a laser on longitudinal modes:

• Single line laser, operated on a few neighboring longitudinal modes at frequencies

in a narrow frequency range.

• Single mode laser, operated on a single longitudinal mode.

• Mode-locked laser, operated on a large number of longitudinal modes with fre-

quencies in a large frequency range—the phases of the electromagnetic fields of

different longitudinal modes are coupled (locked) to each other (Chap. 13).

12.3 Single Mode Laser

Many lasers (e.g., the helium–neon laser) have narrow gain profiles, but oscillate

on a few modes (Fig. 12.1). By inserting an etalon (a plane parallel plate) into

the resonator, selection of a single mode is possible. An etalon represents a low-Q

resonator of the resonance wavelength

λs =
2nd

s
cos θ, (12.1)

where n is the refractive index, d the thickness of the etalon, and θ the angle between

the laser beam within the etalon and the normal to the etalon; s (an integer) is the

order of resonance. Rotation of the etalon changes the angle θ and the resonance

wavelength λs .

Example Without an etalon in the resonator, a helium–neon laser oscillates on about

three modes at once (Fig. 12.1, lower part) but with an etalon on a single mode.

http://dx.doi.org/10.1007/978-3-319-50651-7_13
http://dx.doi.org/10.1007/978-3-319-50651-7_13
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Fig. 12.1 Mode selection with an etalon; arrangement and result for a helium–neon laser (λ =

633 nm, ν = 474 THz)

12.4 Tunable Laser

A laser with a broadband gain profile oscillates on a single line if the laser resonator

contains an appropriate wavelength selective element. We mention three wavelength

selective elements suited to force a laser with a broad gain profile to emit a single

line.

• Prism (Fig. 12.2a). A prism in the resonator selects the laser wavelength. The

laser is tunable; rotation of the prism changes the wavelength. With an etalon

additionally inserted into the resonator, a laser is able to oscillate on a single

mode.

• Echelette grating (Fig. 12.2b). An echelette grating acts as one of the two reflectors

of a laser resonator. In the Littrow arrangement, radiation that is incident on the

echelette grating is diffracted in first order. The diffracted beam has the reverse

direction relative to the incident beam. A rotation of the grating changes the wave-

length of the backward diffracted radiation and thus the laser wavelength. A mirror

telescope extends the diameter of the beam in order to obtain a higher resolving

power and, furthermore, to reduce the field strength at the surface of the echelette

grating thus avoiding damage of the grating. With an etalon that is additionally

inserted into the resonator, a laser is able to oscillate on a single mode.

• Birefringent filter (Fig. 12.2c). The frequency selective element is a birefringent

plate (e.g., a crystal of KDP = potassium dihydrogen phosphate) located between

two polarizers in the laser resonator. The optic axis of the birefringent plate is

oriented along the surface of the plate. The birefringent plate splits a beam of

polarized radiation, incident under the Brewster angle, into an ordinary and an

extraordinary beam. Behind the plate, the radiation has elliptical polarization and
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Fig. 12.2 Tunable laser. a Line selection with a prism. b Line selection with a grating. c Line

selection with a birefringent filter

the second polarizer causes loss. There is no loss if the change of the phase between

the ordinary and extraordinary beam is a multiple of π ,

2π

λ
(ne − no)lp = s × π, (12.2)

where ne is the refractive index of the extraordinary beam, no the refractive index

of the ordinary beam, lp the length of the plate along the beam direction, and s is an

integer. By rotating the plate while keeping the angle of incidence at the Brewster

angle, the direction of the optic axis relative to the direction of the electric field vector

(E) changes, leading to changes of ne and of λ.

12.5 Spectral Hole Burning in Lasers Using

Inhomogeneously Broadened Transitions

The oscillation behavior of a continuous wave laser depends on the type of line

broadening.

A cw laser based on a homogeneously broadened line oscillates at the frequency of

maximum gain (Fig. 12.3). When the population inversion begins, laser oscillation at

the line center—where the gain coefficient α has its maximum—builds up. The onset

of laser oscillation leads to a reduction of the population difference, from (N2 − N1)0

to (N2 − N1)th for frequencies at the line center. Accordingly, the gain coefficient
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Fig. 12.3 Continuous wave laser based on a homogeneously broadened transition (upper part) or

an inhomogeneously broadened transition (lower part)

changes from the small-signal gain coefficient to the threshold gain coefficient αth for

frequencies at the line center. Then the population difference and the gain coefficient

are not sufficient for laser oscillation at frequencies in the wings of the line.

Examples of continuous wave lasers based on transitions with homogeneous line

broadening: Nd:YAG laser; titanium–sapphire laser.

If laser oscillation is based on an inhomogeneously broadened line, a cw laser can

oscillate on all modes that reach the threshold gain. Laser oscillation on one mode

does not directly influence the population of two-level atomic systems that contribute

to oscillation on other modes.

Examples of lasers based on transitions with inhomogeneous broadening: helium–

neon laser; cw CO2 laser.

The gain curve α(v) of a laser operated with an inhomogeneous broadened line

shows ‘holes” (see Fig. 12.3)—the effect is a manifestation of spectral hole burning.

Irradiation of a medium with laser radiation can lead to a hole in the absorption

spectrum of a medium. (Generation of a spectral hole in a medium by using a pulsed

laser and the probing of the spectrum with cw radiation or with probe pulses allows

for the measurement of the lifetime of a spectral hole; different methods of spectral

hole burning are widely used in physics and chemistry for studying spectral properties

of various media.)

12.6 Q-Switched Lasers

We discuss a few methods of Q-switching.

• Mechanical Q-switching (Fig. 12.4a). The reflector of the laser resonator rotates

(for example with an angular frequency of 100 turns per second). The resonator

has a high Q factor only during a short time in which the rotating mirror is oriented

parallel to the output coupling mirror. During the time of a low Q factor, the upper

laser level is populated and during the time of large Q, it is depopulated.
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Fig. 12.4 Q-switching. a Mechanical and b electro-optic Q-switching

Example Generation of pulses (duration 100 ns) with a Q-switched CO2 laser.

• Electro-optic Q-switch making use of the Pockels effect (Fig. 12.4b). A Pockels

cell switches the Q factor of the laser resonator from a low to a high value. An

optically isotropic crystal becomes birefringent when a static voltage (U ) across

the crystal is applied and produces a static field Es in the crystal. Then the refractive

indices for a light field E are different for the polarization directions parallel and

perpendicular to the static field. The difference of the refractive indices is given by

n(E||Es) − n(E⊥Es) = aU, (12.3)

where a is a material constant. A Pockels cell with applied voltage rotates the

polarization direction of the light after two transits through the cell by π/2. A

polarizer blocks the radiation. When the voltage is quickly turned off, the crystal

is no longer blocking the radiation—a laser pulse builds up in the resonator. The

Pockels effect is large for KDP (for a specific crystal orientation). A voltage of

about 25kV is necessary for Q-switching with a crystal of 5mm height and 5 cm

length.

• Electro-optic Q-switch making use of the Kerr effect. In a Kerr cell, an isotropic

medium becomes birefringent under the action of a static field. The difference

between the refractive indices of the ordinary and the extraordinary beam varies

quadratically with the voltage,

n(E||Es) − n(E⊥Es) = b U 2. (12.4)

A static field orients the molecules in a Kerr cell giving rise to birefringence. The

effect is especially large for liquid nitrobenzene (C6H5NO2). A voltage of about

10 kV is necessary at a cell size of 1 cm height and 1 cm length.

• Q-switching with a saturable absorber (Fig. 12.5a). As an example of Q-switching

with a saturable absorber, we discuss Q-switching with a dye solved in a liquid. The
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Fig. 12.5 Q-switching with

a saturable absorber.

a Saturation process for dye

molecules. b Arrangement.

c Number of photons in the

laser resonator

ground state of a dye molecule is a singlet state (S0). The two lowest excited states

are a singlet state (S1) and a triplet state (T), at a smaller energy. By transitions S0 →

S1, laser radiation is absorbed and by nonradiative transitions S1 → T, molecules

are transferred into the triplet state. A triplet state has a long lifetime (0.1–1 µ s);

the decay of a triplet state occurs mainly via nonradiative transitions. A Q-switched

laser based on a saturable absorber (Fig. 12.5b) is continuously pumped. At the start

of the pumping, a laser field begins to build up. The buildup of a laser field occurs

slowly because of absorption of radiation by the dye molecules. The absorption

saturates the dye molecules, then almost all dye molecules are in the triplet state

and the dye cell becomes transparent giving rise to generation of a strong laser

pulse (Fig. 12.5c). During the buildup of a pulse, the population of the upper laser

level becomes reduced to a low value. Due to relaxation of the dye molecules to

their ground state, absorption sets in and the Q value becomes small. The buildup

of a laser field begins again. Pumping is possible with radiation of another laser.

We will later (in Sect. 13.2) discuss other methods of Q-switching. Dye molecules

are discussed in more detail in Sect. 16.1.

12.7 Longitudinal and Transverse Pumping

An active medium can be obtained by longitudinal or transverse pumping.

• Examples of longitudinal pumping: pumping with a gas discharge, with the elec-

tric field being parallel to the laser beam (Chap. 14); optical pumping with laser

radiation whose propagation direction is along the laser beam (Sect. 5.2).

• Examples of transverse pumping: pumping with a gas discharge, with the elec-

tric field, which drives the discharge, oriented perpendicular to the laser beam

(Sect. 14.8); optical pumping with a gas discharge lamp.

http://dx.doi.org/10.1007/978-3-319-50651-7_13
http://dx.doi.org/10.1007/978-3-319-50651-7_16
http://dx.doi.org/10.1007/978-3-319-50651-7_14
http://dx.doi.org/10.1007/978-3-319-50651-7_5
http://dx.doi.org/10.1007/978-3-319-50651-7_14
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12.8 An Application of CW Lasers: The Optical Tweezers

The optical tweezers are suitable for optical trapping of single biomolecules solved

or suspended in a liquid. The optical tweezers have many applications especially in

biology and chemistry.

• Biology. Spectroscopy of trapped single molecules (e.g., red blood cells); study of

properties of DNA; sorting of cells.

• Chemistry. Spectroscopy of trapped single organic macromolecules.

Figure 12.6a illustrates the principle of the optical tweezers. A glass pearl (diam-

eter 1–10 µm), which is transparent for light, is trapped in the focus of a laser beam.

The beam (power ∼ 1 mW) is strongly focused. When the glass pearl has a position

below the focus, the pearl acts as a lens and the light leaves the pearl at an angle of

aperture that is smaller than the angle under which it enters the pearl. Accordingly,

the light gains momentum in the direction of the light beam, namely downward, and

therefore the pearl gains momentum toward the focus.When the pearl has a position

above the focus, it acts as a diverging lens and the force on the pearl is downward.

The light leaves the pearl under the same angular distribution as it enters the pearl

and there is no momentum transfer. When the glass pearl is located at the height of

the focus but shifted to the left, the light beam is deflected to the left and the pearl

moves toward the focus. Finally, when the pearl is on the right side of the focus,

there is a force toward the left. Thus, the stable location of the pearl is the focus of

the lens.

Fig. 12.6 Optical tweezers. a Trapping of a glass pearl in a focused laser beam. b Arrangement



12.8 An Application of CW Lasers: The Optical Tweezers 243

An optical tweezers system can be realized as a modified microscope (Fig. 12.6b).

The object lens produces a strongly focused beam of laser radiation. A camera mon-

itors reflected radiation. The optical tweezers are able to trap a macromolecule in a

solvent. Investigation of a trapped molecule is possible by using spectroscopic tech-

niques, e.g., by studying fluorescence radiation. Applications in biology are described

in [79].

12.9 Another Application: Gravitational Wave Detector

An extraordinary ambitious project concerns the goal to detect gravitational waves

(see, for instance, [85]). The collapse of a big star generates (according to the general

theory of gravitation) a gravitational wave, propagating with the speed of light. The

wavelength of a gravitational wave is of the order of the extension of the collapsing

star. A gravitational wave is expected to compress the space in a direction perpen-

dicular to the propagation direction and to dilate the space in the other direction

perpendicular to the propagation direction. At present, gravitational wave detectors

based on the Michelson interferometer are built and tested at many places.

The center of the gravitational wave detector (Fig. 12.7) is a Michelson interfer-

ometer with a laser light source. The Michelson interferometer has two arms arranged

perpendicular to each other. A beam splitter divides the laser beam into two beams.

A gravitational wave pulse traversing the Michelson interferometer is expected to

shorten one arm and to lengthen the other arm. Estimates of the effect suggest that the

path length difference may only be of the order of 10−22 m for L1 = L2 = 1 km. The

experiment requires an extremely high stability of the laser and of the arrangement

and, furthermore, an extremely high sensitivity of detection. To have a chance to

observe a signal, the arms have to be very long (of the order of 1 km or much longer).

Making use of satellites, very large arms are realizable. The arms have slightly dif-

ferent lengths (L1 − L2 = λ/4, where λ is the wavelength of the laser radiation) in

order to have a high sensitivity of detection.

In 2016, observation of a gravitational wave has been reported [311].

References [1–4, 6, 77–85, 127–129, 310, 311].

Fig. 12.7 Gravitational

wave detector



244 12 Different Ways of Operating a Laser

Problems

12.1 Resonance condition for a planparallel plate. Derive the resonance condition

(12.1) for a planparallel plate. [Hint: Determine the difference of the optical path of a

beam directly reflected at the surface of the plate and a beam reflected at the backside

of the plate.]

12.2 Michelson interferometer. A Michelson interferometer operates with a par-

allel laser beam (wavelength λ = 580 nm; P0 = power of the laser radiation).

(a) Calculate the intensity I (x) at the detector for a length difference x when one

arm has the length L and the other arm the length L + x .

(b) Determine the path difference δx for values of x in the interval x0 ≤ x ≤ x0 + λ

for x0 = 1 km that leads to the largest signal-to-noise ratio for the signal.

(c) Estimate the change of the signal if one of the arms changes its length by δL/L =

10−15 and the other arm by δL/L = −10−15. [Hint: The beam splitter in the

Michelson interferometer splits an incident electromagnetic field into two fields.]

12.3 It is possible to reduce suddenly the reflectivity of the output mirror of a laser.

Show, qualitatively, that this “cavity dumping” results in a much stronger laser pulse

than without cavity dumping.
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Femtosecond Laser

Mode locking allows a laser with a broad gain bandwidth to generate femtosecond

pulses. A mode-locked laser oscillates at the same time on a large number of modes.

The fields of all modes are phase-locked to each other.

We describe the principle of mode locking, techniques of mode locking, and

a method of determination of the duration of femtosecond pulses. We explain the

pump-probe method, which is suited to take ultrashort snapshots during dynamical

processes in an atomic system. Additionally, we study the onset of oscillation of a

femtosecond laser.

The femtosecond laser is the basis of a great variety of new areas of research

and applications. We discuss: femto-chemistry; optical frequency analyzer; tera-

hertz time domain spectrometer; and attosecond pulses—that is an area of nonlinear

optics with very strong optical fields. Other applications concern surgery and material

processing.

An optical frequency analyzer makes use of an optical frequency comb.

A titanium–sapphire laser generates a frequency comb with a frequency distribution

that extends over about an octave. We show in this chapter that the exact position of

the frequencies of a frequency comb generated with a femtosecond laser are deter-

mined by: the optical length of the resonator; the Gouy phase shift; dispersion of the

active medium; and dispersion of the optical elements. Making use of methods of

nonlinear optics, the distribution can be broadened—a frequency comb can consist of

fields at equally spaced frequencies corresponding to radiation from the near infrared

to the near ultraviolet. The position of the frequencies generated by a particular laser

can be determined with a very high accuracy (Sect. 35.7).

We will introduce (Sect. 13.1) the mode locking without taking account of Gouy

phase shift and dispersion. In Sect. 13.4, we will discuss the role of the Gouy phase

shift and of dispersion.
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13.1 Mode Locking

The secret of the femtosecond laser is the mode locking: the laser oscillates at the

same time on a large number of longitudinal modes—with equal frequency separation

between next-near modes—and all oscillations have fixed phases relative to each

other.

We choose an active medium with a broad gain coefficient profile (Fig. 13.1a)

that has a Gaussian shape. The spectral profile F2(ω) for a particular femtosecond

laser depends on parameters of the laser. For a first treatment of a femtosecond laser,

we assume that the profile has a rectangular shape and that the width is equal to the

gain bandwidth (Fig. 13.1b). Accordingly, the amplitude A of the field components

is constant within the frequency range ω0 − ∆ωg/2, ω0 + ∆ωg/2 and zero outside

this range. The frequency distribution represents an optical frequency comb: the

frequency distribution consists of equally spaced peaks. The frequency separation

between next-near peaks is equal to

Ω = 2π/T = 2πc/2L = πc/L , (13.1)

where T = 2L/c is the round trip transit time. The number of modes with frequencies

in the gain bandwidth ∆ωg is

N = ∆ωg/Ω. (13.2)

Fig. 13.1 Mode locking. a Gain coefficient profile. b Spectral intensity profile with a rectangular

shape. c Spectral intensity profile with a Gaussian shape
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The instantaneous electric field at a fixed location z in the laser resonator is given by

Ẽ(t) = A

N−1
∑

s=0

ei[(ω1+sΩ)t+ϕs ], (13.3)

where ϕs is the phase of the mode s and ω1 = s1ω is the lowest frequency of the

oscillating modes; s1 is an integer. Without mode coupling, the fields of the different

modes have different phases (which fluctuate with time). Therefore, the field fluctu-

ates very strongly. The laser emits laser radiation in a broad frequency band (∆ωg);

the radiation propagates along the resonator axis. The average intensity of the laser

radiation is

Iincoh =
1

2
cε0NA2; (13.4)

A is the amplitude of the field components.

Mode locking forces the fields to oscillate in phase,

ϕs(t) = ϕs = ϕ. (13.5)

We choose the timescale so that

ϕs(0) = ϕs = 0. (13.6)

A round trip transit changes the phase of the fields at fixed z by 2π (Fig. 13.2). The

field at a fixed location z in the resonator is given by

Ẽ = A

N−1
∑

s=0

ei(ω1+sΩ)t = A

N−1
∑

s=0

eisΩt eiω1t . (13.7)

This is a geometric series. With r = eiΩt , we have

Ẽ = A(1 + r + r2 + ... + r N−1)eiω1t = A
1 − r N

1 − r
eiω1t = A

1 − eiNΩt

1 − eiΩt
eis1Ωt .

(13.8)

Fig. 13.2 Field of different

modes and total field at a

fixed position z in a laser
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We introduce the carrier frequency ωc. The carrier frequency is a multiple of the

round trip transit frequency (see Fig. 13.1c) and lies in the vicinity of the center

frequency ω0. We can write

Ẽ = A
e−i 1

2
NΩt − ei 1

2
NΩt

e−i 1
2
Ωt − ei 1

2
Ωt

ei[ω1t+(N/2−1/2)Ωt] = A
sin ( 1

2
NΩt)

sin( 1
2
Ωt)

eiωct . (13.9)

The carrier frequency is given by

ωc = ω1 + (N/2 − 1/2) Ω (13.10)

if N is an odd number and by

ωc = ω1 + (N/2) Ω (13.11)

if N is an even number. The carrier frequency is a multiple of the frequency separation

between next-near peaks,

ωc = lc × Ω, (13.12)

where lc is an integer. The femtosecond pulse train does not change if we add another

integer to lc (or subtract another integer from lc) as long as this number is small

compared to lc.

The real part of the field is

E = Re[Ẽ] = A
sin( 1

2
NΩt)

sin( 1
2
Ωt)

cos ωct. (13.13)

We write

E = A(t) cos ωct, (13.14)

where

A(t) = A
sin( 1

2
NΩt)

sin( 1
2
Ωt)

(13.15)

is a time-dependent amplitude. The amplitude has the form sin(N x)/ sin x , where

x = 1
2
Ωt . The electric field consists of a series of wave packets with the pulse

repetition rate

fr =
Ω

2π
=

c

2L
. (13.16)

The carrier frequency νc =ωc/2π is a multiple of c/2L , i.e., of the pulse repetition

rate.
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Fig. 13.3 Amplitude of the wave train of femtosecond pulses and field of a pulse

Fig. 13.4 Femtosecond pulse train on the timescale (at a fixed location) and in space (at a

fixed time)

The amplitude of the field (Fig. 13.3) shows main maxima and side maxima.

• Main maxima occur for Ωt/2 = s × π . Main maxima appear at the times

t = sT with s = 0, 1, 2, ... . (13.17)

The temporal distance between next-near pulses is equal to the round trip transit

time of radiation in the laser.

• The first point, t1, of zero amplitude follows from the relation NΩt1/2 = π , lead-

ing to t1 = 2π/(NΩ) = T/N .

A femtosecond pulse train is coherent. It consists of periodically repeated wave

packets. The amplitude A(t) is the envelope of the electric field curve E(t).

The intensity I (t) of a femtosecond pulse train (Fig. 13.4, upper part) has main

maxima and side maxima. The peak intensity,

Ipeak =
1

2
cε0 A2 N 2, (13.18)

is proportional to the square of the number of oscillating modes; in case of a mea-

surement (outside the laser resonator), the peak intensity is smaller according to the
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output coupling strength. As a measure of the pulse duration tp, we take the halfwidth

of the main peak,

tp = 1/∆νg. (13.19)

The mode locking corresponds to a synchronization of fields of different fre-

quencies (belonging to different modes). The synchronization is possible because all

frequencies are multiples of the same fundamental frequency Ω = 2π/T according

to the resonance condition ωl = l × Ω; the phase of each field component has, after

each round trip transit through the resonator, the same value (ϕl =ϕ =0).

An active medium with a homogeneously broadened 2 → 1 fluorescence line

is most favorable as an active medium of a mode locked laser. Then all excited

two-level atomic systems contribute to generation of radiation.

Because of frequency dependent loss, which we describe by a loss coefficient

β(ω), we obtain an effective gain curve

αeff(ω) = α(ω) − β(ω). (13.20)

The optical properties of the coatings of the optical elements (including the res-

onator mirrors) in the laser resonator depend on the wavelength. Therefore, also the

loss factor depends on the wavelength. The gain medium together with the coatings

determine the actual carrier frequency—the carrier frequency can be smaller or larger

than ω0. Thus, the carrier frequency can be chosen by making use of appropriate opti-

cal elements.

Mode locking is possible by active mode locking or passive mode locking. We

will describe techniques of mode locking in the next section.

Before, we should mention that the field E(t) is the Fourier transform of the

frequency spectrum F(ω) and vice versa:

E(t) =
1

2π

∫ +∞

−∞

F(ω)eiωt dω (13.21)

and

F(ω) =

∫ +∞

−∞

E(t)e−iωt dt. (13.22)

Figure 13.5 (upper part) shows a rectangular spectral intensity profile F2(ν). The

lower part shows E(t), obtained by a Fourier transformation of F(t), together with

the envelope function A(t). The product of the pulse duration and the gain bandwidth

is equal to unity, tp∆νg = 1.

Example titanium–sapphire laser (see Fig. 13.4, lower part). Width of the gain

profile ∆νg = 1.1 × 1014 Hz (Sect. 7.6); length of the resonator 1.5 m; pulse duration

tp = 9 fs; spatial length of a single pulse ctp =3µm; distance between subsequent

pulses ∼ 3 m. The number of phase-locked modes is N ∼ 1 × 1014 Hz/108 Hz ∼ 106.

The round trip transit time of a light pulse is T = 10 ns and the pulse repetition rate

fr = 100 MHz.

http://dx.doi.org/10.1007/978-3-319-50651-7_7
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Fig. 13.5 A frequency comb: the spectral intensity profile (of rectangular shape) and the field

We mention here also Gaussian pulses [86]. A Gaussian pulse is characterized by

the following quantities.

• Spectral intensity profile F2(ω)= exp[−4 ln 2(ω − ω0)
2/∆ω2

g];∆ωg =gain band-

width (FWHM).

• Fourier transformation of E(ω) yields the time-dependent amplitude A(t) and thus

the temporal intensity profile I (t)/Ip = A2(t)/A2, where Ip is the peak intensity.

• Temporal intensity profile I (t)/Ip = exp[−4 ln 2t2/t2
p ]; tp = 4 ln 2/∆ωg = pulse

duration (FWHM)

For a Gaussian profile of the spectral-intensity envelope, the pulse duration bandwidth

product is, with ∆νg = ∆ωg/2π equal to

tp∆νg =
2 ln 2

π
= 0.441. (13.23)

According to the gain bandwidth of titanium–sapphire, pulses with a pulse duration

as short as ∼4 fs should be attainable; pulses of a duration of ∼5 fs have indeed been

observed [87]. (Note: in comparison with a rectangular shape of the intensity profile,

a Gaussian shape with the same gain bandwidth has a broader spectral distribution

of the amplitudes and leads therefore to shorter pulses.)

13.2 Active and Passive Mode Locking

An acousto-optic modulator (Fig. 13.6a) is suitable for active mode locking. The

switch consists of a periodically in time-varying diffraction grating. An ultrasonic

wave in a crystal modulates spatially the mass density of the crystal and therefore the

refractive index. Every half period of the ultrasonic field, the modulation disappears

during a short moment. Therefore, there is no diffraction pattern for a short moment

and a light pulse passes the modulator without diffraction loss. Laser pulses pass the

modulator without diffraction at twice the ultrasonic frequency fs . The frequency of
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Fig. 13.6 Mode locking.

a Acousto-optic switch and

b Kerr lens mode locking

the ultrasonic wave is 2 fs = 1/T . A laser of length 1.5 m, 1/T = c/2L = 108 Hz

(100 MHz), requires an ultrasonic wave of a frequency of 50 MHz.

Kerr lens mode locking is a method of passive mode locking. The refractive index

of a material depends on the radiation intensity I,

n(x, y, t) = n0 + n2 I (x, y, t), (13.24)

where n0 is the refractive index and n2 the Kerr coefficient.

Figure 13.6b shows the principle of the Kerr lens mode locking: a strong laser

pulse produces a Kerr lens in the Kerr medium due to self-focusing of the radiation

(Sect. 35.6). The Kerr lens is a transient lens; it exists only during the passage of the

laser pulse through the Kerr medium. Focusing does not occur for radiation belonging

to the wings of the temporal distribution of the intensity. Therefore, the Kerr lens cuts

radiation in the wings of the temporal distribution of the intensity. At steady state

oscillation of a femtosecond laser, a pulse lengthening during a round trip transit

through the laser resonator is compensated by the action of the Kerr lens.

The active medium itself, a Ti3+:Al2O3 crystal, is suitable as a Kerr lens in a

titanium–sapphire laser. The Kerr coefficient of sapphire has the value n2 = 3 ×

10−20 m2 W−1; for an estimate of n2, see Sect. 35.6 and Problem 35.3. To reach a

change of the refractive index (n = 1.74) by an appreciable amount (for example, by

0.3), the power density of the radiation has to be very large (∼ 1019 W m−2).

The titanium–sapphire femtosecond laser (Fig. 13.7a) contains a chirped mirror

that compensates different optical path lengths of radiation of different wavelengths;

a chirped mirror consists of an antireflecting surface layer and of multilayers com-

posed of layers of different thicknesses. The orientation of the crystal surfaces of the

titanium–sapphire crystal correspond to the Brewster angle. A pump laser produces

population inversion. The spectral distribution of the radiation emitted by a femtosec-

ond titanium–sapphire laser (Fig. 13.7b) corresponds (for pulses with a duration of

about 5 fs) to a frequency width (110 THz), which is about a third of the carrier

frequency (360 THz). Femtosecond pulse operation is possible at different carrier

frequencies; however, a modification that corresponds to an effective spectral gain

coefficient leads to a narrowing of the spectral gain coefficient profile and therefore

to a lengthening of the femtosecond pulses.

http://dx.doi.org/10.1007/978-3-319-50651-7_35
http://dx.doi.org/10.1007/978-3-319-50651-7_35
http://dx.doi.org/10.1007/978-3-319-50651-7_35


13.2 Active and Passive Mode Locking 253

Fig. 13.7 Titanium–

sapphire laser.

a Arrangement; R, chirped

mirror. b Spectral intensity

distribution of laser radiation

of a mode locked

titanium–sapphire laser

Another technique of mode locking makes use of a saturable absorber. A laser

pulse saturates the absorption. After each transit of a pulse through the saturated

absorber, the pulse is amplified in the gain medium and the population of the upper

laser level is strongly reduced. After each transit of a pulse, the population builds

up again. Dye molecules solved in a solvent are suitable as saturable absorbers of

visible radiation (Sect. 12.6).

Later, we will discuss a further technique of passive mode locking, namely mode

locking via an intensity-dependent reflectivity of a mirror (Sect. 15.6).

13.3 Onset of Oscillation of a Mode-Locked

Titanium–Sapphire Laser

We now discuss onset of oscillation of a mode-locked titanium–sapphire femtosec-

ond laser. After turning on the optical pumping of the titanium–sapphire crystal,

spontaneous emission of radiation (fluorescence radiation) initiates oscillation of the

laser.

The gain coefficient of titanium–sapphire has its maximum at a frequency ν0 ≈

350 THz (Fig. 13.8), while the maximum of the spectrum of spontaneous emission

lies at a higher frequency; gain curve and fluorescence curve of titanium–sapphire

are studied in Sects. 5.3 and 7.6, and in Chap. 17. Spontaneously emitted radiation

emitted in the low frequency wing of the fluorescence spectrum initiates oscillation.

The shape of the fluorescence spectrum deviates strongly from a Gaussian: emission

of radiation is still very strong in the low frequency wing of the fluorescence line.

Therefore, initial radiation is available in the whole range in which the gain coefficient

is sufficiently large for building up laser oscillation. Finally, a radiation field is build

up that corresponds to the shape of the gain coefficient (supposed that the elements in

the laser resonator work appropriately in a very broad frequency band). At the onset of

oscillation of the laser, spontaneous emission produces an initial photon distribution

centered at ν0 + ∆ν0/2. Amplification shifts the spectrum toward smaller frequencies

http://dx.doi.org/10.1007/978-3-319-50651-7_12
http://dx.doi.org/10.1007/978-3-319-50651-7_15
http://dx.doi.org/10.1007/978-3-319-50651-7_5
http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_17
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Fig. 13.8 Gain coefficient

and fluorescence spectrum of

titanium–sapphire

and can have, at steady state oscillation of the laser, the same Gaussian shape as the

gain coefficient curve.

A femtosecond laser, which operates with an active medium whose gain coefficient

has a Gaussian profile, can have a spectral intensity profile that can also have a

Gaussian shape (see Fig. 13.1). How is this possible? In order to answer this question,

we study a titanium–sapphire femtosecond laser containing a Kerr lens.

We discuss the corresponding requirement with respect to the Q-switch. In the

steady state of an oscillating Q-switched laser, a field component Es (oscillating

on mode s) reproduces itself after a round trip transit of the radiation through the

resonator. This leads to the condition

Vout Vs(ν) G(ν) = 1,

where G(ν) is the gain factor for the field at frequency ν, Vout is the V factor

describing output coupling loss, and Vs(ν) is the V factor describing intrinsic loss

(Sect. 2.4). Vs(ν) should have a value near unity at frequencies of large gain. (While

the gain factor is large during the time a pulse passes through the active medium and

small in the time between two subsequent pulses, the loss factors do not depend on

time.) If the gain factor is only slightly larger than unity, 2α(ν)Lac ≪ 1, then we

can write G(ν) = 1 − 2α(ν)Lac and find

Vout Vi(ν) = 1 − 2α(ν)Lac.

Lac is the length of the active medium. Thus, in the special case described by the

last equation, the gain curve has the same shape as the gain coefficient curve.

13.4 Optical Frequency Comb

In the preceding section, we assumed that the mode-locked fields have frequencies

that are multiples of the repetition rate. We neglected three effects—Gouy phase

shift; phase shift due to dispersion of the active medium; and phase shift due to

dispersion of the optical elements.

http://dx.doi.org/10.1007/978-3-319-50651-7_2
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We first discuss the influence of the Gouy phase shift on the wave packets gener-

ated by a femtosecond laser. Instead of (13.7), the field is equal to

Ẽ = A

N−1
∑

s=0

ei[(ω1+sΩ)t+ωGouyt] = A

N−1
∑

s=0

eisΩt ei(ω1+ωGouy)t , (13.25)

where ωGouy = 2πνGouy is the Gouy angular frequency. It follows, from a calculation

according to (13.10)–(13.15), that the field is given by

E = A(t) cos(ωc + ωGouy)t, (13.26)

A(t) = A
sin( 1

2
NΩt)

sin( 1
2
Ωt)

. (13.27)

While ωc is still a multiple of the repetition rate Ω , the frequency ωc + ωGouy is

not a multiple of Ω (except for the Gouy phase zero). Taking into account that

ωGouy ≪ ωc, we can write

E = A(t) cos[ωct + ϕce(t)], (13.28)

where

ϕce(t) = 2πνGouyt = ∆φ t/T (13.29)

is a time-dependent phase, the carrier envelope phase, and ∆φ the Gouy phase shift

per round trip transit. The carrier envelope phase varies slowly in comparison with

the phase ωct . A variation by 2π occurs in a time distance that corresponds to many

periods of the carrier frequency.

A frequency comb (Fig. 13.9a) is characterized by:

• νc = ωc/2π = carrier frequency (near the frequency ν0 of maximum gain);

• fr = c/2L = 1/T = Ω/2π = pulse repetition rate (=pulse repetition frequency);

• fo = offset frequency;

• νl = l × fr + fo = frequencies of the frequency comb;

• νl+1 − νl = Ω/2π = c/2L = frequency distance between next-near peaks.

The halfwidth of a peak is determined by the pulse duration. The field (Fig. 13.9b)

shows that there is a jitter between the A(t) curve and the cos(ωct + ϕce) curve. A(t)

is periodic with the period 1/T . The cos(ωct + 2πνGouyt) term changes continuously

its phase from 2πνGouyt = 0 to 2π but remains, in the time average, synchronous to

A(t); the fields E1(t), E2(t), E3(t)and E4(t) (Fig. 13.9b) are the fields at the times

t , t + f −1
o /4, t + f −1

o /2 and t + 3 f −1
o /4, respectively.

Example of an offset frequency due to the Gouy phase shift. A femtosecond

titanium–sapphire laser (confocal resonator of length L = 0.5 m; fr = 300 MHz;

Gouy phase shift φGouy = π ) shows an offset frequency fo = νGouy = 150 MHz.

We now discuss the influence of dispersion of an active medium. We character-

ize the active medium by the gain coefficient α(ω) (Fig. 13.10a). We assume that
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Fig. 13.9 A frequency comb influenced by the Gouy phase shift. a Frequency offset.

b Amplitude of the femtosecond pulses and field curves at different times

Fig. 13.10 Influence of dispersion in the active medium on a frequency comb. a Gain coefficient.

b Change of refractive index. c Frequency comb (dashed) with a frequency shift due to dispersion

of the active medium
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the refractive index increases linearly with frequency (Fig. 13.10b), as expected for

frequencies around the frequency ω0 of maximum gain (Sect. 9.4, Example). Above

the center frequency ω0, the change of the refractive index is positive, causing an

increase of the resonance frequencies of the laser resonator. Below ω0, the change

of the refractive index is negative, causing a decrease of the resonance frequencies

of the resonator. The frequency separation between next-near modes has a constant

value (Fig. 13.10c) because the frequency shift is proportional to ω − ω0. Without

dispersion, the separation between next-near modes is

Ω =
2πc

2L
. (13.30)

With dispersion of the active medium (of length L ′), the separation between next-near

modes follows from

Ω ′ =
2πc

2L + 2L ′dn/dωΩ
=

2πc

2L

(

1 −
L ′

L

dn

dω
Ω

)

= Ω

(

1 −
L ′

L

dn

dω
Ω

)

.

(13.31)

The frequency difference is

Ω − Ω ′ = Ω
L ′

L

dn

dω
Ω. (13.32)

Dispersion of the active medium reduces the frequency distance between next-near

resonances. The field at a fixed position in the laser resonator is given by

Ẽ = A

N−1
∑

s=0

ei(ω1+sΩ ′)t = A

N−1
∑

s=0

eisΩ ′t eiω1t . (13.33)

In comparison with (13.7), Ω ′ replaces Ω . The summation leads to

E = A(t) cos ωct, (13.34)

where

A(t) = A
sin( 1

2
NΩ ′t)

sin( 1
2
Ω ′t)

(13.35)

is the time-dependent amplitude. The repetition rate of the pulses is

fr = 2π/Ω ′. (13.36)

The carrier frequency ωc is not a multiple of the repetition rate but of Ω = 2πc/2L ,

ωc = lcΩ, (13.37)

http://dx.doi.org/10.1007/978-3-319-50651-7_9
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where lc is an integer. We write

ωc = ω′
c + ωo, (13.38)

where

ω′
c = l ′cΩ

′ (13.39)

now is a carrier frequency that is a multiple of the repetition rate Ω ′, l ′c is an integer

and where

ωo = lcΩ − l ′cΩ
′ (13.40)

is a carrier offset angular frequency. It follows that the field is

E = A
sin( 1

2
NΩ ′t)

sin( 1
2
Ω ′t)

cos
[

ω′
ct + ϕce(t)

]

, (13.41)

where

ϕce(t) = ωot (13.42)

is the carrier envelope phase. We find the carrier offset angular frequency

ω′
o = lcΩ − l ′cΩ

′ = l ′cΩ
L ′

L

dn

dω
Ω − (l ′c − lc)Ω. (13.43)

We obtain, with l ′cΩ ∼ ω0, an estimate of the offset angular frequency,

ω′
o = Ω

L ′

L

dn

dω
ω0 − (l ′c − lc)Ω, (13.44)

and thus of the offset frequency,

fo =

(

L ′

L

dn

dω
ω0 − (l ′c − lc)

)

c

2L
. (13.45)

We choose l ′c so that fo is positive but not larger than c/2L ,

fo ≤
c

2L
. (13.46)

Example of an offset frequency due to dispersion of an active medium. A fem-

tosecond titanium–sapphire laser (active medium: population difference N2 − N1

= 1022 m−3, dn/dω = 1 × 10−13 s−1, crystal length L ′ = 1.5 cm; resonator length

L = 0.5 m; pulse repetition rate fr = 100 MHz) shows an offset frequency due to

dispersion of fo = 400 MHz; the offset frequency due to dispersion of the active
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medium depends on the density of excited two-level states and depends therefore on

the pump strength.

A third effect contributes to the carrier envelope offset phase: dispersion of the

optical elements in the resonator of a femtosecond laser. Depending on the sign of

dn/dω, of an optical element (for instance, of a reflector), the corresponding change

of phase can lead to an increase or a decrease of the frequency separation between

next-near peaks of the frequency comb.

Thus, the offset frequency of a femtosecond laser is the sum of the offset fre-

quencies that are caused by Gouy phase shift, dispersion of the active medium, and

dispersion of the optical elements.

The field of a frequency comb has peaks the frequencies

νl = l fr + fo. (13.47)

To find exact values of the frequencies of a frequency comb, we have to determine

three parameters: order l; pulse repetition rate fr; and frequency offset fo. For a

particular laser, all three quantities can be determined experimentally with a high

accuracy (Sect. 35.7) by the use of techniques based on nonlinear optics.

Nonlinear dispersion, occurring in addition to linear dispersion, disturbs each

pulse during a round trip transit through the laser resonator. This disturbance would

continuously deform the shapes of the pulses. However, it is strongly suppressed

from pulse to pulse by the Kerr lens. Due to the pulse shaping by the Kerr lens, the

round trip transit time is strictly periodic: the pulses propagate within the resonator

with the group velocity described by the envelope function A(t + T ) = A(t). The

carrier wave (at the frequency ωc), on the other hand, propagates with the phase

velocity.

It is possible to broaden a frequency comb in the frequency space by the use

of techniques of nonlinear Optics (Sect. 35.7). A broad frequency comb, extending

over the entire visible spectral range, represents white light. Focusing ultrashort light

pulses onto a transparent material (a solid, a liquid or a gas) can lead to generation

of a white light continuum (with a spectral super broadening of the femtosecond

pulses—the origin is the interplay of short pulses with a dispersive medium; for

more information, see for instance [86]).

13.5 Optical Correlator

How can we determine the duration of femtosecond pulses? In an autocorrelator

(Fig. 13.11a), a beam splitter divides the laser beam into two beams. The paths of the

two beams are different but join each other after passing another beam splitter. A lens

focuses the beams to a frequency doubler, which produces second harmonic radia-

tion. A filter behind the frequency doubler blocks the radiation of the fundamental

frequency. Another lens focuses the second harmonic radiation on a detector. The

detector signal is a measure of the strength of the second harmonic radiation. The

http://dx.doi.org/10.1007/978-3-319-50651-7_35
http://dx.doi.org/10.1007/978-3-319-50651-7_35
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Fig. 13.11 Optical autocorrelator. a Arrangement. b Signal

two second-harmonic pulses arriving at the frequency doubler have equal strength.

The detector has a large response time and monitors the average power of the sec-

ond harmonic radiation. It is not necessary that the detector is able to resolves the

single pulses temporally. A KDP crystal, which has a high nonlinearity of second

harmonic generation, is suitable as a frequency doubler. The delay time between the

two pulses is

td = 2x/c, (13.48)

where x is the shift of the movable mirror and where x = 0 corresponds to equal path

lengths of the two pulses. The detector signal (Fig. 13.11b) has a maximum if the

delay time is zero. The pulse duration follows from the shape of the signal curve. The

intensity of the second harmonic radiation increases quadratically with the intensity,

I (2ω, t, td) = K |I1(t) + I2(t + td)|
2 . (13.49)

K is a constant and I1 and I2 are the intensities of the two beams. The integration

with respect to time yields the signal as a correlation

S(td) =
K

τdet

∫ τdet

0

I (2ω, td)dt, (13.50)

where τdet is the integration time of the detector (or of a following electronic moni-

toring device). If the intensities are equal, we expect the signal

S(td) =
K

τdet

[

2 < I 2(t) > + 4 < I (t)I (t + td) >
]

. (13.51)

The signal caused by a beam with a Gaussian shape of the temporal distribution

is, for td = 0, about three times the signal caused by the corresponding two pulses

arriving at large delay (td ≫ tp).

We will treat the mechanism of frequency doubling later (Sect. 35.3). Besides the

measurement of the intensity autocorrelation, which we described here, there are

various other techniques of autocorrelation measurements (e.g., measurement of the

field autocorrelation; see books on femtosecond lasers).

http://dx.doi.org/10.1007/978-3-319-50651-7_35
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Fig. 13.12 Pump-probe experiment. a Principle. b Arrangement. c Signal

13.6 Pump-Probe Method

The femtosecond pulses are suited to investigate the dynamics of fast processes.

Examples are the studies of short-lived excited states of atoms, molecules or solids.

Applications lie in fields of physics, chemistry, biology and medicine.

In a pump-probe experiment (Fig. 13.12a), a pump pulse (of large pulse energy)

and a probe pulse (of small pulse energy) are passing a sample containing, for exam-

ple, molecules. The pump pulse excites molecules into an excited state. The probe

pulse excites molecules further to an energetically higher lying state, which decays

by emission of fluorescence radiation. The second excitation is only possible dur-

ing the lifetime (τ ) of the excited state. A pump-probe arrangement (Fig. 13.12b)

consists of a femtosecond laser, a beam splitter and a delay section. To measure the

fluorescence radiation, a detector with a large response time (large compared to the

temporal separation of two subsequent pulses) is suitable. The detector signal S(td),

determined for different time delays td, yields the lifetime τ of the first excited state

(Fig. 13.12c); the delay time is td = 2x/c, where x = 0 corresponds to the situa-

tion that probe and pump beam passed the same path length when they reach the

sample.

The pump-probe method provides ultrashort snapshots.

13.7 Femtosecond Pulses in Chemistry

In 1999, the Egyptian scientist Ahmed H. Zewail at the California Institute of Tech-

nology in Pasadena (USA) received the Nobel Prize in chemistry for his “Outstand-

ing research on the transition states of chemical reactions with the femtosecond

spectroscopy.” Zewail and coworkers and other research groups developed methods

(femtochemistry) allowing for an investigation of the dynamics of chemical reactions.

Here, we discuss an experiment.
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Fig. 13.13 Dissociation of an ICN molecule and fluorescence signal of the (CN)∗ fragment

In a reaction process (Fig. 13.13, left), the molecule ICN (iodine cyanide) is

brought, by excitation with a femtosecond pump pulse (frequency ν1), into an excited

state (ICN)∗. This state is antibonding and decays into I (iodine) atom and a CN rad-

ical. How long does it take until the CN radical forms by the dissociation of ICN in

I and CN? To study this question, a probe pulse (frequency ν2) following the first

pulse excites CN radicals. Fluorescence radiation (Fig. 13.13, right) from excited CN

radicals (CN)∗ indicates that it takes about 200 fs until CN forms.

13.8 Optical Frequency Analyzer

In 2005, the Nobel Prize in physics was donated to Roy Glauber, John Hall, and

Theodor Hänsch for pioneering work in quantum optics and laser spectroscopy.

Glauber performed theoretical investigations in the field of quantum optics. Hall and

Hänsch received the Nobel Prize “for their contribution to the development of laser-

based precision spectroscopy, including the optical frequency comb”. The frequency

comb is the basis of an optical frequency analyzer and, in future, most likely of a

new frequency standard.

The main part of an optical frequency analyzer (Fig. 13.14a) is a frequency comb.

It consists of radiation at discrete frequencies (νl , νl+1, νl+2, ...). The frequency dis-

tribution extends from the near infrared to the near ultraviolet. The optical frequency

analyzer serves for determination of the frequency ν of a monochromatic radiation

source (for instance of a highly stabilized continuous wave laser). The measurement

of the beat frequency

fbeat = νl − ν, (13.52)

yields the value of ν. The beat frequency is measured by frequency mixing of radiation

at the frequencies νl and ν in a photodiode (Fig. 13.14b). The beat frequency can be

in the range of 1–10 GHz.

The frequencies νl are equally spaced. The exact position of a frequency νl is

influenced by the Gouy phase and by dispersion effects (Sect. 13.4). In order to

determine νl of a particular laser and to reach a high accuracy (1:10−16) of the

frequency measurement, the operation of an optical frequency analyzer makes use

of nonlinear optical effects (Sect. 35.7).

http://dx.doi.org/10.1007/978-3-319-50651-7_35
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Fig. 13.14 Optical frequency analyzer. a Frequencies involved in the frequency analyzer.

b Arrangement

13.9 Terahertz Time Domain Spectroscopy

Thetime domain spectroscopy [92–96] is a new spectroscopic method—it allows

for the simultaneous measurement of the time dependences of both the amplitude

and phase of an electromagnetic wave. The method is particularly suited to per-

form spectroscopic investigations with coherent terahertz and sub-terahertz waves,

in the frequency range from about 0.1 to 100 THz (wavelength range 3 µm–0.3 mm).

Applications lie in fields of physics, chemistry and biophysics. Optical properties of

materials such as solids, liquids, chemicals and biomaterials can be determined.

A THz time domain spectrometer (Fig. 13.15a) consists of a THz field generator

and a THz field detector both operated by the use of the same femtosecond laser

(pulse duration 10 fs; repetition rate 50 MHz). The beam of the femtosecond laser is

split into a main beam (used for generation of the THz field) and a reference beam

(for detection). The main beam passes a generator crystal and the reference beam

passes, after a time delay, a detector crystal. The generator crystal emits coherent THz

radiation pulses; their duration is much larger than the duration of the femtosecond

pulses. THz radiation reflected from a sample is focused to the detector crystal. The

reference beam serves for the measurement of the instantaneous strength of the THz

field at the location of the detector crystal. Under the action of the THz field, the

detector crystal becomes birefringent and rotates the polarization direction of the

optical radiation. Therefore, the radiation is able to pass a polarizer and to give rise

to a signal by a photodetector; without THz field, the polarizer blocks the optical

radiation.

The signal S(x) of the photodetector corresponds, with td = 2x/c, to the signal

S(td) for different time delays td (Fig. 13.15b). S(td) is a measure of the time depen-

dence of the THz field. A Fourier analysis of the S(td) curve yields (Fig. 13.15c) both

the spectrum F(ν) of the amplitude and the spectrum ϕ(ν) of the phase of the THz

field. From these informations, the complex reflectivity coefficient and thus real and

imaginary parts of the dielectric response function of the sample can be extracted.
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Fig. 13.15 Time domain THz spectroscopy. (a) Time domain THz spectrometer. (b) Detector

signal. (c) Amplitude and phase spectra

The Fourier coefficients provide the connection between F(ν) and φ(ν), on one side,

and the real part χ1(ν) and the imaginary part χ2(ν) of the susceptibility, on the other

side.

The origin of generation of a THz field is the difference frequency generation:

nonlinear frequency mixing of the field components contained in a femtosecond

pulse results in generation of a THz field. Femtosecond pulses with a spectral width

of 100 THz lead to difference frequencies of all different field components from zero

frequency to 100 THz. The difference frequency generation makes use of the non-

linear polarization (Sect. 35.4). GaSe has a large nonlinear coefficient for difference

frequency generation.

Electrooptic crystals with large coefficients of THz field induced birefringence

(used for detection) are GaSe and ZnTe.

The method makes it possible, as mentioned, to determine amplitudes and phases

of THz fields. Thus, the real and imaginary parts of the susceptibility of materials

can be determined. Almost all solid or liquid materials have excitations in the fre-

quency range 1–100 THz. In this range, electrons, phonons and magnetic excitations

determine optical properties of solids and biomolecules.

Time-domain spectroscopy began with a fast switch, the Auston switch [97–100]

(Fig. 13.16a). Irradiation of semi-insulating GaAs with a 100-fs pulse results in gen-

eration of charge carriers. A static field produced with a static voltage (for instance

80 V across a GaAs crystal of 50 µm thickness) accelerates the electrons giving

rise to generation of radiation. The spectrum of the radiation is determined by the

temporal change of the current, dI/dt . The device acts as a Hertzian dipole. The

spectrum of the radiation extends from ∼100 GHz to several THz with a maximum

at a wavelength around 1 mm (i.e., the radiation covers a range of sub-THz and THz

frequencies). Another switch can be used as an antenna for measuring the instanta-

neous strength of a THz field (Fig. 13.16b). The THz field accelerates Free-electrons

that are created by means of a femtosecond pulse. Variation of the delay between the

femtosecond pulse and the THz pulse at the detector makes it possible to determine

http://dx.doi.org/10.1007/978-3-319-50651-7_35
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Fig. 13.16 Time domain sub-THz/THz spectrometer. a THz field generator. b THz field detector.

c Arrangement

Fig. 13.17 Attosecond pulses. a Arrangement for generation of attosecond pulses. b Femtosecond

pulse and a neon atom. c A neon atom and electrons in the femtosecond field. d Accelerated electrons

corresponding to an instantaneous current I and attosecond pulse

amplitude and phase of the THz field. THz radiation reflected by an object can be

detected (Fig. 13.17c). The signal obtained from the detector contains information

on the surface region of an object.

13.10 Attosecond Pulses

Figure 13.17a illustrates a method of generation of attosecond pulses. An intense

femtosecond pulse (duration 2.5 fs) of visible radiation focused on a box containing

noble gas atoms (for instance neon) generates an attosecond pulse. The attosecond

pulse (duration 80 as) represents an X-ray flash. The spectral distribution of the

radiation lies mainly in the 10–20 nm range. Figure 13.17b shows an optical field

pulse and a neon atom. The field excites electrons so strongly that they separate

from the positive core (Fig. 13.17c). The field of a femtosecond pulse accelerates the
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electrons further and then decelerates them. The decelaration and the recombination

of the electrons with the core results in the emission of attosecond radiation. The

electron motion corresponds to a current I with a fast temporal change dI/dt giving

rise to emission of an electromagnetic field (Fig. 13.17d). The process corresponds

to a nonlinear polarization of the atoms (Sect. 35.2); see, for instance, [101–103].

References [1–4, 7, 10, 86–105]

Problems

13.1 Ultrashort pulses. Estimate the pulse duration of a mode locked laser operated

in a spectral range from ν0 to 1.1 ν0 for lasers in different frequency ranges.

(a) If ν0 = 30 THz (range of the CO2 laser; only a frequency region of 5% width

relative to the frequency has been realized in experiments).

(b) If ν0 = 1 THz (far infrared).

(c) If ν0 = 3 ×1017 Hz (X-rays of a wavelength of 1 nm).

13.2 Femtosecond titanium–sapphire laser. Estimate the output pulse power, the

average power and the energy of a train of pulses emitted by a femtosecond titanium–

sapphire laser (pulse duration 10 fs; pulse repetition rate 100 MHz; length of the

crystal L ′ = 1 cm; beam area a1a2 = 0.25 mm2; pump rate r = 3 × 1028 m−3 s−1).

13.3 Attosecond pulses. Determine the pulse power of an attosecond pulse (dura-

tion 100 as) consisting of 108 photons of radiation at an average wavelength of 10 nm.

13.4 Unstabilized femtosecond laser. A femtosecond laser that is highly stabilized

generates a train of pulses of duration of 10 fs. In the case that the laser is not

sufficiently stabilized, the temporal separation of subsequent pulses varies due to

fluctuations of the length of the laser resonator. The pulses can be described as

pulses with an average amplitude A(t) that has a Gaussian shape on the timescale.

(a) Give an expression of frequency spectrum.

(b) Determine the frequency spectrum if the pulse duration is equal to 100 fs.

13.5 Stabilization of a femtosecond laser. Determine the requirement of length

stabilization of a femtosecond laser that produces pulses of a duration of 5 fs (repe-

tition rate 100 MHz).

13.6 Acousto-optic switch.

(a) Relate the frequency of the ultrasonic wave and the length of the optical resonator.

(b) What is the condition that determines the length of the quartz plate?

http://dx.doi.org/10.1007/978-3-319-50651-7_35
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13.7 Heisenberg’s uncertainty principle.

(a) Show that a photon in a femtosecond pulse that has a Gaussian temporal profile

obeys Heisenberg’s uncertainty relation ∆x∆px ≥ �, where ∆x is the uncer-

tainty of the position x and ∆px is the uncertainty of the momentum px . The

pulse propagates along the x direction. [Hint: make use of (13.23); the result is

∆x∆px = (4 ln 2) �.]

(b) Compare the result with the result of an analysis of a Gaussian beam of mono-

chromatic radiation (Problem 11.15).

http://dx.doi.org/10.1007/978-3-319-50651-7_11
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Chapter 14

Gas Lasers

A gas laser contains atoms or molecules. Stimulated transitions occur in atoms

between electronic states and in molecules between rotational, vibrational or elec-

tronic states. We describe various gas discharge lasers: helium–neon laser; metal

vapor laser; argon ion laser; excimer laser; nitrogen laser; CO2 laser; and optically

pumped gas lasers.

The excimer laser and the CO2 laser are two important industrial lasers. The

excimer laser generates intense UV radiation pulses. The CO2 laser is a source of

infrared radiation. It has a high efficiency of conversion of electric power to power of

laser radiation. The CO2 laser is very versatile—it operates as continuous wave laser

or as pulsed laser. Optically pumped gas lasers (pumped with CO2 laser radiation)

are suitable for generation of far infrared radiation.

We first treat two line broadening mechanisms that play a role in gas lasers: the

Doppler and the collision broadening. Then we discuss different gas lasers.

14.1 Doppler Broadening of Spectral Lines

Doppler broadening is a main broadening mechanism of spectral lines for gases at

low pressure. The frequency of the radiation that is due to transitions between two

discrete energy levels of an atom (or a molecule) is

ν = ν0 + (vz/c) ν0, (14.1)

where ν0 is the frequency of the radiation emitted by the atom at rest and vz is the

velocity component in z direction. The atoms in a gas have a Maxwellian velocity

distribution

f (vx , vy, vz) =
( m

2πkT

)3/2

exp
(

−
m

2kT
(v2

x + v2
y + v2

z )

)

. (14.2)
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T is the temperature of the gas, m the mass of an atom (or molecule), and

f (vx , vy, vz)dvx dvydvz is the probability to find an atom with a velocity vx , vy, vz in

the velocity element dvx dvydvz . The integral over the distribution is equal to unity,

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f dvx dvydvz = 1. (14.3)

How large is the probability to find an atom in the velocity interval vz, vz + dvz

(Fig. 14.1a)? It is

f (vz)dvz =
( a

π

)3/2

e−av2
z dvz

∫ ∞

−∞
e−av2

x dvx

∫ ∞

−∞
e−av2

y dvy, (14.4)

where a = m/2kT is an abbreviation. It follows, with

∫ ∞

−∞
e−av2

x dvx = (πa)−1/2, (14.5)

that

f (vz) =
√

m

2πkT
exp

(

−
m

2kT
v2

z

)

. (14.6)

Fig. 14.1 Doppler broadening. a Maxwellian velocity distribution. b Gain coefficient of a medium

with a Doppler broadened line
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How large is the probability g(ν)dν of a transition in the frequency interval ν, ν + dν?

The answer is

g(ν)dν = f (vz)dvz . (14.7)

With

dvz =
c

ν0

dν, (14.8)

we obtain

g(ν) =
2

ΔνD

(

ln 2

π

)1/2

exp

[

− ln 2
(ν − ν0)

2

(ΔνD/2)2

]

, (14.9)

where

ΔνD = 2ν0

√

2kT ln 2

mc2
(14.10)

is the Doppler linewidth. It depends on the temperature and the atomic mass of

the atoms and is independent of the gas pressure. The Doppler broadening leads to a

Gaussian line. The Doppler broadening is an inhomogeneous broadening mechanism

because atoms of different velocities have emission lines (and absorption lines) at

different frequencies.

The gain coefficient α(ν) of an active medium with a Doppler broadened transition

is proportional to the population difference N2 − N1 (Fig. 14.1b). The halfwidth of

the gain curve is independent of N2 − N1.

Example Helium–neon laser; λ = 633 nm; mNe = 20 mp; mp = proton mass; k =
1.38 × 10−23 J K−1; ΔνD = 1.5 × 109 Hz.

14.2 Collision Broadening

According to a classical description of collision broadening (= pressure broadening)

in gases, a collision of an excited atom with another (nonexcited) atom changes the

phase of the sinusoidal oscillation of the excited atom. Therefore, collisions change

the phase of radiation emitted by the atom (Fig. 14.2a); see also Sect. 4.11. The time

τc between two collisions is a dephasing time. Between two collisions, an electron of

the excited atom performs, in the picture of the classical oscillator model, (Sect. 4.8),

an oscillation with the transition frequency.

A Fourier analysis of the electric field emitted by the atom leads to a Lorentzian

line

gL,res(ν) =
Δνc

2π

1

(ν0 − ν)2 + Δν2
c /4

. (14.11)

http://dx.doi.org/10.1007/978-3-319-50651-7_4
http://dx.doi.org/10.1007/978-3-319-50651-7_4


274 14 Gas Lasers

Fig. 14.2 Collision broadening. a Collision time. b Absorption coefficient

The linewidth is equal to

Δνc =
1

πτc

. (14.12)

The theory of collision broadening provides, in accordance with experimental results,

a relation between linewidth and collision time,

Δνc =
√

8

π

σ 2
c√

mkT
× p = K × p. (14.13)

The linewidth is proportional to the pressure. K is a characteristic constant of a gas,

σc is the cross section of collisions, m the mass of the gas molecules (or atoms) and

p the gas pressure. At room temperature, K ∼ 1 GHz/p, where p is measured in

units of bar; K has values between 0.3 and 2.5 GHz/p, depending on the atoms or

molecules.

The collision broadening corresponds to a homogeneous broadening mechanism

because all atoms are submitted to collisions. The absorption coefficient of radiation

interacting with a pressure broadened transition is equal to

αabs(ν) = (hν/c)B12gL(ν)N1. (14.14)

N1 is the (number) density of molecules (atoms). The density is proportional to pres-

sure. The maximum of the lineshape function is inversely proportional to pressure.

Therefore, the absorption coefficient at line center is independent of pressure while

the linewidth increases linearly with pressure (Fig. 14.2b).

The gain coefficient of an active medium consisting of molecules with a collision

broadened line is equal to

α(ν) = (hν/c)B12gL(ν) × (N2 − N1). (14.15)

Example CO2 laser operated at large gas pressure (Sect. 14.8).
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14.3 Helium–Neon Laser

The helium–neon laser belongs, besides the ruby laser, to the two first lasers and is

still in use. In the helium–neon laser, Ne atoms are excited into s states (Fig. 14.3a).

Laser transitions are s → p transitions. The helium–neon laser is a three-level laser

type. Accidentally, the second lowest excited state of a helium atom (21S state) has

almost the same energy as the 5s state of Ne. This coincidence allows for a selective

excitation of the 5s state of Ne:

• In a gas discharge, electrons excite helium atoms; the excited helium atoms have

very long lifetimes.

• Atomic collisions between excited He and Ne atoms lead to a transfer of excitation

energy from He to Ne atoms.

• Stimulated 5s → 3p transitions result in generation of laser radiation of a wave-

length of 633 nm.

• The 3p levels are depopulated by spontaneous emission of radiation (wavelength

near 450 nm) by 3p → 3s transitions. The 3s state has a very long lifetime. Relax-

ation is possible via collisions of the neon atoms in the 3s state with the wall of

the tube that contains the gas; it is a process of nonradiative relaxation. To obtain

a sufficiently fast relaxation, a narrow gas tube is favorable.

• The lifetime of the 5s state is about 100 ns and the lifetime of the 3p state about

10 ns.

• Stimulated 5s → 4p transitions lead to generation of laser radiation of a wavelength

of 3.4 µm.

The lowest excited state level of He (23S state) almost coincides with the 4s level

of neon; the energy difference (∼40 meV) is equal to ∼2kT . Helium atoms, excited

by electron collisions to their lowest excited state, transfer the excitation energy to

neon atoms resulting in a population of the 4s level of neon. Stimulated 4s → 3p

transitions lead to generation of laser radiation at a wavelength of 1.15 µm.

Fig. 14.3 Helium–neon laser. a Principle. b Arrangement
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The helium–neon laser (Fig. 14.3b) contains a gas mixture of helium and neon

(ratio 5:1; pressure ∼5 mbar) in a glass tube (typical length 0.5 m; diameter 1–2 mm).

Brewster windows close the tube. Radiation of the appropriate polarization passes

the windows without reflection loss (see Fig. 2.16). A gas discharge (voltage ∼2 kV;

current ∼10 mA) leads to a laser output power (∼1 mW at 633 nm), which corre-

sponds to an efficiency of the order of 0.01%. There are different reasons that the

efficiency is small: the quantum efficiency is small and the pump process is not very

efficient in the helium–neon gas. The laser resonator (especially the coating on the

dielectric reflectors) determines the wavelength of a helium–neon laser.

Table 14.1 shows data of different helium–neon lasers; Δνg is the gain bandwidth.

The electronic configuration of Ne is 1s22s22p6. Excited states have the con-

figurations 1s22s22p5—3s, 3p, 4s etc. The 3s, 3p, . . . levels are split because of the

interaction of an excited electron with the hole in the 2p shell (spin-orbit interaction).

The s levels are split into 4 sublevels and the p levels into 10 sublevels. Due to the

level splitting, a large number of transitions are available as laser transitions—about

a hundred laser lines (many of them in the infrared and far infrared) are known. The

first helium–neon laser operated in the infrared (wavelength 1.15 µm).

Figure 14.4 indicates a possible labeling of the energy levels of Ne. The 3s2 sub-

level is the highest 3s level; the sublevels have the numbers 2 . . . 5. The highest 2p

Table 14.1 Helium–Neon lasers

λ Transition Δνg (GHz) α (m−1) Power (mW)

543 nm 3s2 → 2p10 1.75 0.005 1

594 nm 3s2 → 2p8 1.60 0.005 1

612 nm 3s2 → 2p6 1.55 0.017 1

633 nm 3s2 → 2p4 1.50 0.1 1–10

1.15 µm 2s2 → 2p4 0.83 1

1.52 µm 2s2 → 2p1 0.63 1

3.39 µm 3s2 → 3p4 0.28 100 10

Fig. 14.4 Sublevels of Ne

http://dx.doi.org/10.1007/978-3-319-50651-7_2
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sublevel is 2p1 and the lowest 2p level is 2p10. In this notation (Paschen notation),

the Ne+ core is considered as an effective potential and the states of the additional

electron are 1s, 2s, 2p, etc. An alternative, more detailed analysis uses the Racah

notation: an excited neon atom has the configuration 1s22s22p5 plus an additional

state with one electron (the outer electron). In the Racah notation, an energy level

(for instance a 5s sublevel) is characterized by 5s[K]J or 5s′[K]J, where the symbols

indicate the following:

• 5s or 5s′; configuration of the outer electron.

• K; quantum number of the sum of the total angular momentum Jc (quantum

number j) of the core electrons and the orbital momentum L (quantum number l)

of the outer electron.

• J = K ± 1
2
, where 1

2
is the quantum number of the spin of the outer electron.

The coupling leads to 4 sublevels of s states (Fig. 14.4); s is attributed to a state with

K = 3/2 and s′ to a state with K = 1/2. A p state has 10 sublevels; 3p[K] configura-

tions ( j = 3/2) are possible with K = 1/2, 3/2 and 5/2 while 3p′[K] configurations

are possible with K = 1/2 and 3/2. The coupling corresponds to intermediate cou-

pling ( j − l coupling). The energy levels (energy values, lifetimes, and assignment

to appropriate quantum states) have been studied long before the arrival of the laser;

for discussions of Ne levels used in lasers, see [116–118].

Applications. The helium–neon laser generates monochromatic radiation with a

small beam divergence. The laser serves for various applications (e.g., holography),

which need a high coherence and low beam divergence.

14.4 Metal Vapor Laser

A metal vapor laser operates with copper, gold, lead, or cadmium vapor. In the copper

vapor laser (Fig. 14.5), Cu atoms are excited by electron collisions from the ground

state 3d104s to the 3d104p state, giving rise to stimulated transitions to 3d94s2 states.

Fig. 14.5 Copper vapor laser
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The level splitting is due to spin–orbit interaction. The levels are labeled according

to the LS coupling (Russel-Saunders coupling); a level 2S+1LJ corresponds to a state

with the quantum number L of the orbital momentum, the quantum number S of the

spin, and the quantum number J = L + S of the total momentum. 2S + 1 is the spin

multiplicity and the S, P, D states correspond to states with L = 0, 1, 2.

A copper vapor laser consists of a ceramic tube (with Brewster windows) in the

laser resonator. The tube contains a little piece of metallic copper. The laser oscilla-

tion depends very sensitively on the gas pressure and therefore on the temperature.

There is only a narrow temperature window (1,500 ◦C ± 20 ◦C) in which the laser

operates. Population inversion is produced by electric pulses (duration 20 ns; pulse

energy 10 mJ; repetition rate 3 kHz). An electric pulse causes a pulsed discharge and

excitation of copper atoms via electron collisions. The lifetime of the upper laser level

is smaller than the lifetime of the lower laser level. Therefore, continuous oscillation

is not possible; the laser is a self-terminating laser.

The copper vapor laser has a large gain coefficient (7 m−1), and it has an excellent

beam quality because of a large diameter of the active medium and of the resonator.

The efficiency of conversion of electric pump energy to energy of laser radiation is

about 1%.

Copper vapor lasers generate radiation at the wavelengths 510 and 578 nm and

gold vapor lasers at 628 and 312 nm.

Applications lie in medicine, particularly in the detection and destruction of tumors

by the photodynamic therapy. Today, metal vapor lasers are competing with semi-

conductor lasers.

14.5 Argon Ion Laser

In the argon ion laser (Fig. 14.6), subsequent electron collisions lead to ionization

of argon atoms and to excitation of argon ions. The electron configurations are the

following:

Fig. 14.6 Argon ion laser
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• Ar 1s2 2p6 3s2 3p6; argon.

• Ar+ 1s2 2p6 3s2 3p5; argon ion.

• (Ar+)∗ 1s2 2p6 3s2 3p4 4p; excited argon ion.

Different 4p → 4s transitions between the 3p44p and 3p44s levels (split due to spin–

orbit interaction) give rise to cw laser emission in the blue and green, with strong

emission lines at 488 and 514.5 nm.

A gas discharge in a ceramic tube (diameter 1–2 mm; length 1 m; cooled with

water) containing the argon gas (pressure 0.1 mbar) pumps the argon ion laser.

Because of the twofold excitation, the efficiency of the argon ion laser is propor-

tional to the square of the current density in the gas discharge. At a high electric

power (current 10 A; voltage 5 kV), the output power is large (20 W). The efficiency

of the laser is small (≤ 0.1%).

The krypton ion laser operates in the same way as the argon ion laser; it emits radi-

ation at other wavelengths (between 406 and 676 nm). An important application of

the argon and the krypton ion lasers is the optical pumping of other lasers, especially

of the titanium–sapphire laser (and before this laser existed, the optical pumping of

dye lasers). Today, semiconductor lasers serve as pump lasers.

14.6 Excimer Laser

We now treat an important industrial laser. The excimer laser makes use of the KrF

excimer or of other excimers. The following processes occur in a KrF excimer laser

(Fig. 14.7).

• A gas discharge in a mixture of krypton and fluorine gas produces (KrF)∗ mole-

cules, i.e., KrF molecules in an excited electronic state. The lifetime of the excited

state is of the order of 10−9 s.

• Stimulated transitions take place to nonbonding KrF states. After a transition, the

Kr atom and the F atom repel each other and separate spatially. Therefore, the

lower laser level has a shorter lifetime than the upper laser level. During an optical

transition in a KrF excimer, the nuclear distance RKr−F between the nucleus of Kr

and the nucleus of F does not change (Franck–Condon principle)—the transition

corresponds to a vertical line in the energy-nuclear distance diagram.

Fig. 14.7 KrF excimer laser
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• The excitation occurs by electron collisions with Kr and by a chemical reaction,

respectively, Kr + e− → Kr∗ + e− and Kr∗ + F2 → (KrF)∗ + F:

An excimer (excited dimer) is a molecule with two equal atoms, which undergo

chemical bonding in the excited state but not in the ground state.

Examples of excimers: Ar∗2 (emission at 126 nm); Kr∗2 (146 nm); Xe∗
2 (172 nm). An

exciplex (excited state complex) is denoted as excimer too.

Examples of exciplexes (excimers) and laser lines: ArF (193 nm); KrF (248 nm);

XeCl (308 nm); XeF (351 nm); KrBr (206 nm); ArBr (161 nm); NeF (108 nm).

The excimer laser is a TEA laser (transversely excited atmospheric laser). We will

describe a TEA laser arrangement in connection with the CO2 laser (Sect. 14.8). The

laser gas of a krypton fluoride excimer laser has the composition: He (= buffer gas,

pressure ∼1 bar); Kr (10%); and F2 (0.1%). At a large pump power density (200 MW

per liter gas volume), the gain is about 10% per cm (gain coefficient α = 10 m−1).

Data of an excimer laser: pumping by electric discharge pulses (voltage ∼1 MV,

current 10 kA, pulse duration 30 ns, electric energy per pulse 100 J); laser pulse energy

1 J; efficiency 1%; repetition rate 1–50 Hz.

Applications of the excimer laser are: labelling (of semiconductor chips, glasses,

polymers, etc.) during mass production; structuring of materials by means of UV

lithography—in 2011, semiconductor structures of lateral size of 45 nm are prepared

by the use of the ArF laser (wavelength 193 nm).

14.7 Nitrogen Laser

The nitrogen laser is a prototype of a vibronic laser (Fig. 14.8). The electronic energy

depends on the distance RN−N between the nitrogen nuclei. A vibronic energy level

of N2 has electronic and vibrational energy,

En,v = En +
(

v +
1

2

)

hνvib. (14.16)

Fig. 14.8 Nitrogen laser
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En is the electronic energy in the nth state; n = 1, ground state; n = 2, 3, . . .,

excited states; (v + 1/2)hνvib is the vibrational energy; v = 0, 1, 2, . . . are the vibra-

tional quantum numbers; and νvib (= 70.8 THz) is the vibrational frequency. Electron

collisions in a gas discharge excite N2 molecules to vibronic states belonging to the

n = 3 electronic state. Stimulated transitions to vibronic levels of the n = 2 electronic

level (energies E2,v) produce laser radiation in the near UV (near 337 nm). The life-

time (40 ns) of the upper laser level is shorter than the lifetime of the lower laser level.

Therefore, continuous operation is not possible; the laser is a self-terminating laser.

Suitable for pumping are very short gas discharge pulses (duration 1 ns). Optical

transitions obey the Franck–Condon principle.

14.8 CO2 Laser

The CO2 laser is of great importance:

• It has a high efficiency (10–50%) for conversion of electrical power to power of

laser radiation.

• Different ways of operation are possible; in particular, cw operation, pulsed oper-

ation, and TEA laser operation.

• The cw CO2 laser generates cw radiation of a large power (100 W at a length of

the active medium of about 1 m, and up to 1,000 W or even more at very large

length of the active medium).

• The TEA (transversely excited atmospheric) CO2 laser produces pulses (duration

∼100 ns) of high peak power (100 kW).

Applications of CO2 lasers concern material processing (cutting, welding, hardening

of metal surfaces, shock hardening at power densities of 109 W/cm2) and medicine.

The CO2 laser (Fig. 14.9a) makes use of vibrational-rotational levels,

E = Evib(v1, v2, v3) + Erot(J ). (14.17)

Evib is the vibrational energy and Erot the rotational energy (J = quantum number

of the rotation). The vibrational energy is

Evib =
(

v1 +
1

2

)

hν1 +
(

v2 +
1

2

)

hν2 +
(

v3 +
1

2

)

hν3, (14.18)

where the oscillation frequency ν1 (= 41.6 THz) corresponds to the symmetric

valence vibration, ν2 (=20.0 THz) to the bending vibration, and ν3 (=70.5 THz)

to the antisymmetric valence vibration (Fig. 14.9b); v1, v2, and v3 are the vibrational

quantum numbers; v1 = 0, 1, 2, . . .; v2 = 0, 1, 2, . . .; v3 = 0, 1, 2, . . .. We denote a

state with the quantum numbers v1, v2, and v3 as v1v2v3 state.

Electron collisions in a gas discharge can excite CO2 molecules. More effi-

cient is the indirect excitation. Electron collisions produce excited N2 molecules
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Fig. 14.9 CO2 laser. a Vibrational levels of CO2 and N2. b Vibrations of the CO2 molecule.

c Vibrational-rotational transitions in CO2

(in the lowest vibrational state); an excited N2 molecule in the lowest vibrational state

has a very large lifetime. Energy transfer processes by collisions between excited N2

molecules and nonexcited CO2 molecules lead to population of the 001 state of CO2

molecules. This state has a very long lifetime (∼4 s) with respect to spontaneous

emission of radiation that is due to 001 → 100 and 001 → 100 transitions. There

are two groups of laser transitions corresponding to two wavelength regions:

• 10.6 µm; transitions 001 → 100; frequencies near 28 THz.

• 9.6 µm; transitions 001 → 020; frequencies near 31 THz.

The transitions between different types of vibrations are allowed due to the anhar-

monicity of the vibrations. The depopulation of the lower states occurs by collisions

of the molecules with walls (nonradiative relaxation). A vibrational transition in a

CO2 molecule is associated with a change of the rotational energy (Fig. 14.9c), where

one of the selection rules

ΔJ = ±1 (14.19)

must be fulfilled. The selection rule ΔJ = +1 corresponds to laser lines in the P

branch and the selection rule ΔJ = −1 in laser lines in the R branch. The rotational

energy is (approximately)

Erot = B J (J + 1); B =
�

2

2Θ
. (14.20)

B (∼15 GHz times h) is the rotational constant that is a measure of the rotational

energy and Θ is the moment of inertia of a CO2 molecule; each J state is 2J + 1

fold degenerate.

Not all rotational quantum numbers lead to allowed states. The CO2 molecule is

a Boson (more exactly, the 12C16O2 molecule). Interchange of the two O atoms must

leave the total wave function of the molecule unchanged—the wave function must
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Fig. 14.10 CO2 laser. a Laser lines. b Continuous wave CO2 laser. c TEA (transversely excited

atmospheric) CO2 laser. d Profile of the electrodes of a TEA laser, together with discharge needles

causing UV pre-ionization at the arrival of an electric pulse

be an even function. The electronic wave function of the electronic ground state of

the molecule is even as well as the wave function of the nuclei (the nuclear spins of
12C and of 16O are zero). It follows: J is odd for an antisymmetric vibration, J is

even for a symmetric vibration.

The frequency distance between two neighboring lines is 2 × 2B/h = 4B/h.

Because of centrifugal distortion, the distance between two neighboring lines is not

exactly 4B/h but depends on the vibrational quantum number and on the rotational

quantum number. About twenty discrete laser lines belong to each of the four branches

(Fig. 14.10a). The distance between next—near lines is ∼60 GHz, or less because of

the centrifugal distortion.

A gas discharge pumps the cw CO2 laser (Fig. 14.10b). The gas, a mixture of

CO2, N2, and He (at a ratio of about 1:1:8), can have a pressure of about 1 mbar. The

glass tube (diameter 1 cm) that contains the laser gas is closed by Brewster windows

(NaCl crystal plates). The spherical output coupling mirror consists of crystalline

germanium. The outer side of the germanium mirror is covered with an antireflecting

dielectric multilayer coating. Thus, standing waves in the output coupling mirror

are avoided. The other surface, covered with another dielectric multilayer coating,

has a reflectivity (∼95%) that is appropriate to reach optimum output coupling.
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Fig. 14.11 Broadening of

vibrational-rotational lines of

CO2

An echelette grating in the expanded beam is the reflector of the laser resonator. By

rotating the echelette grating, the laser resonator is adjusted to different lines.

In the TEA CO2 laser (Fig. 14.10c), the direction of the gas discharge (at a pres-

sure of ≈1 bar) is transverse to the laser beam. Two Brewster windows (NaCl plates)

are closing a box containing the laser gas. The resonator mirrors are outside the box.

A power supply charges a Marx generator (a capacitor bank with many capacitors in

parallel and in series). An electric switch starts the discharge leading to high-power

electric pulse (voltage 100 kV; current 100 A; duration 20 ns). The electric pulse,

guided to one of the electrodes, causes a transverse discharge between the elec-

trodes. The electrodes (distance 1 cm, length 40 cm) of the TEA laser (Fig. 14.10d)

have a special profile (Rogowski profile) providing a homogeneous discharge. Arc

discharges between the tips of metal needles initiate the discharge. The arc dis-

charges produce UV radiation, which causes pre-ionization of molecules in the vol-

ume between the main electrodes. A gas discharge between pairs of needles, arranged

along the electrodes (on both sides of the discharge volume), occurs when a high

voltage pulse arrives at the electrodes. The TEA laser is a multi-mode laser; a single

pulse consists of radiation at several modes (longitudinal and transverse modes).

At small gas pressure, Doppler broadening of the vibrational-rotational lines

of CO2 determines the width of the lines (Fig. 14.11). Collision broadening dom-

inates at pressures between 5 mbar and about 1,000 mbar; in this pressure range,

the gain bandwidth increases proportionally to pressure. At still higher pressure,

the vibrational-rotational lines overlap partly and above a pressure of 20 bar the sin-

gle vibrational-rotational lines overlap completely. Then the gain profile of each of

the four branches is continuous and has a width of about 500 GHz. A mode locked

high-pressure CO2 laser operating on one of the four branches produces picosecond

pulses (duration ∼1 ps) consisting of radiation around a frequency of 30 THz.

14.9 Other Gas Discharge Lasers and Optically Pumped

Far Infrared Lasers

Beside CO2 lasers, there are other infrared and far infrared gas discharge lasers

(Fig. 14.12). Laser oscillation is due to stimulated emission of radiation by transitions

between vibrational-rotational levels (CO laser) or between rotational levels (D2O

and HCN lasers) in the vibrational ground state or an excited vibrational state.
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Fig. 14.12 Gas discharge lasers in the 1–100 THz range ( far infrared range)

Fig. 14.13 Optically pumped CH3F laser. a Principle. b CH3F vibration. c Arrangement

The CO2 laser is suitable for optical pumping of other gas lasers. Lasers operated

with gases of CH3F, D2O, and alcohol molecules (and many other organic molecules)

emit far infrared radiation at a large number of wavelengths.

Figure 14.13a shows an example of an optically pumped gas laser. Radiation of

a CO2 laser excites CH3F from the vibrational ground state to an excited vibra-

tional state. The vibration of the CH3F molecule corresponds to a vibration of CH3

against F (Fig. 14.13b). Stimulated rotational transitions (J = 13 → J = 12) gen-

erate far infrared laser radiation (wavelength 496 µm, frequency near 605 GHz).

A lens focuses the radiation of a CO2 laser into a glass tube that contains the gas

(Fig. 14.13c). A filter absorbs CO2 laser radiation passing the tube.

Optical pumping is also possible if the CO2 laser line and the absorption line of

CH3F do not completely coincide. Then stimulated Raman scattering (Sect. 35.8)

results in generation of far infrared radiation. A variation of the CO2 laser frequency

leads to a variation of the frequency of the far infrared laser. The tuning range,

however, is small (about 0.1% relative to a far infrared laser line).

The optically pumped gas lasers emit, depending on the gas and the wavelength

of the CO2 pump laser, radiation at a very large number of frequencies (about ten

thousand laser lines have been reported). A gas laser pumped by a TEA laser generates

intense far infrared radiation pulses (pulse power about 1 kW [119]).

In comparison with optically pumped cw far infrared gas lasers, quantum cascade

lasers (Chap. 29) are becoming important alternatives. In comparison with far infrared

http://dx.doi.org/10.1007/978-3-319-50651-7_35
http://dx.doi.org/10.1007/978-3-319-50651-7_29
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gas lasers optically pumped by TEA CO2 lasers, free-electron lasers (Chap. 19) pro-

duce tunable single mode radiation.

References [1–4, 6, 35, 106–119].

Problems

14.1 Helium–neon laser: line broadening and gain cross section. Show that

Doppler broadening is the dominant broadening mechanism for a helium–neon laser

operated at 633 nm. Compare the different linewidths that are caused by different

effects.

(a) Doppler broadening.

(b) Collision broadening (pressure 0.5 mbar).

(c) Natural line broadening.

(d) Line broadening due to the finite lifetime of the lower laser level (3p).

(e) And estimate the gain cross section σ21.

14.2 Helium–neon laser: threshold condition, output power and oscillation

onset time. A helium–neon laser is characterized by: length of the active medium

L = 0.5 m; cross section a1a2 = 4 mm2; reflectivity of the output coupling mirror

R = 0.98; reflectivity of the reflector R = 0.998. Determine the following quantities:

(a) Threshold population difference per m3.

(b) Absolute value of the threshold population difference.

(c) Output power at a pump rate that is 10 times stronger than at threshold.

(d) Oscillation onset time.

14.3 Doppler effect in the helium-neon laser and Lamb dip.

(a) Calculate the frequency difference of the emission line at 633 nm for a neon

atom that moves with a velocity of 500 m/s toward an observer and of an atom

that moves with the same velocity away from the observer.

(b) In which velocity range do the emission lines overlap?

(c) Discuss the consequence for the gain in a helium–neon laser: the gain shows

a minimum at the line center of the gain curve (= Lamb dip, according to

W. Lamb).

14.4 CO2 laser (length L = 1 m; cross-sectional area a1a2 = 1 cm2; reflectivity of

the output coupling mirror R = 0.7; lifetime of the upper laser level with respect

to spontaneous emission of radiation by 2 → 1 transitions, τ ∗
rel = 4s; gas pressure

10 mbar).

(a) Calculate: Doppler linewidth; gain cross section; threshold condition; pump rate

(relative to the threshold pump rate) that is necessary to obtain an output power

Pout = 60 W.

http://dx.doi.org/10.1007/978-3-319-50651-7_19
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(b) Discuss the onset of laser oscillation taking into account that the upper laser

level has a long lifetime with respect to spontaneous emission and that there are

many rotational levels belonging to the excited state.

(c) Estimate the maximum gain coefficient of an excited CO2 gas and the corre-

sponding small-signal gain factor of radiation in a cw CO2 laser. [Hint: the

maximum gain coefficient is determined by the density of CO2 molecules that

are available in a gas at low pressure.]

(d) Show that the gain coefficient of an excited CO2 gas in a TEA laser or in a high

pressure CO2 laser (pressure 20 bar) is about the same as in a cw laser at a gas

pressure of 10 mbar. Why is the pulse power of a TEA laser or of a high pressure

laser much larger than the power of the cw laser? Estimate the radiation energy

of a pulse within a TEA laser.

(e) Estimate the oscillation onset time of a TEA laser.

14.5 Optical radar.

Determine the frequency difference between the frequency of radiation emitted by

a helium–neon laser and the frequency of radiation reflected by a car traveling at a

velocity of 60 km per hour.

14.6 CO molecule.

(a) Estimate the isotope shift of the vibrational frequency of CO (frequency ν̃ =
2,170 cm−1) if 16O is replaced by 18O.

(b) Next-near lines that are due to transitions between vibrational-rotational levels

have a frequency separation of 3.86 cm−1. Determine the rotational constant

B̃ = B/(hc). Which of the rotational levels has the highest occupancy at room

temperature?

14.7 Rotational levels at thermal equilibrium.

(a) Which of the J levels of a CO2 molecule in the vibrational ground state has the

largest occupancy in a gas at room temperature?

(b) Determine the excitation energy and the occupancy of the v = 0, J = 1 state of

a nitrogen molecule (N–N distance = 0.1 nm) in a gas at room temperature.

14.8 Estimate the density of neon atoms, the density of excited neon atoms, and the

corresponding absolute numbers of nonexcited and excited neon atoms in a helium–

neon laser.

14.9 Explain the nomenclature used to characterize: (a) the two lowest excited states

of He; (b) the ground state and the four lowest excited states of Cu; (c) the states of

Ar, Ar+ and (Ar+)⋆.

14.10 Spatial hole burning and diffusion of excited molecules in a CO2 laser.

On the one hand, the excitation of CO2 molecules in a gas discharge occurs homo-

geneously in the gas discharge tube. On the other hand, the amplitude of the stand-

ing wave field in the laser resonator shows a sinz dependence along the resonator
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axis. The stimulated emission is therefore spatially inhomogeneous. Show that—

nevertheless—all excited CO2 molecules can contribute to stimulated emission.

Study the problem in case of a cw CO2 laser (length 0.7 m; gas pressure 5 mbar;

ratio He:Ne:CO2 = 6:1:1; spontaneous lifetime of an excited CO2 molecule τsp ∼
5s; reflectivity of the output mirror R = 0.95; efficiency of conversion of pump power

to power of laser radiation ∼ 20%).

(a) Determine the density of CO2 molecules.

(b) Determine the density of excited CO2 molecules.

(c) Estimate the diffusion constant D = v̄λm/3, where v̄ is an average velocity and

λm (∼ 100 µm) the mean free path of a CO2 molecule with respect to a collision

with another atom or molecule in the gas mixture of a CO2 laser.

(d) Estimate the time τesc it takes an excited CO2 molecules to escape from a region

of weak field strength to a region of large field strength. [Hint: replace the

cosine squared field distribution by a rectangular distribution and apply a one-

dimensional diffusion equation to describe the dynamics of the local density Nloc

of excited CO2 molecules, dNloc/dt = Dd2 Nloc/dx2.]

14.11 Collision cross sections of molecules in a CO2 laser. Estimate the cross

sections of collisions of CO2 molecules with other CO2 molecules, with N2 mole-

cules and with helium atoms. [Hint: Use the hard-sphere approximation of the cross

section, σc = π/4(d1 + d2)
2, where d1 and d2 are the diameters of the two colliding

molecules; treat the CO2 molecule as a sphere (diameter 0.4 nm) as well as the N2

molecule (diameter 0.2 nm).]

14.12 Voigt profile. A Voigt profile is observed when collision and Doppler broad-

ening influence the spectral broadening of an optical transition. Atoms of velocity

v have a transition frequency ν = ν0 + ν0v/c. The lineshape function describing

optical transitions in these atoms with the transition frequency ω′
0 is

g(ω′
0, ω) =

Δω0

2π

1

(ω′
0 − ω)2 + Δω2

0/4
. (14.21)

where Δω0 is the halfwidth of a transition. The probability of a transition in the

frequency interval ω′
0, ω

′
0 + dω′

0 is equal to

P(ω′
0)dω′

0 =
2
√

In2
√

πΔωc

exp(−
In2(ω′

0 − ω0)
2

Δω2
c/4

)dω′
0. (14.22)

where Δωc is the halfwidth and ω0 the center frequency of the Gaussian profile. We

obtain the spectral profile of a line by averaging,

S(ω) =
∫ ∞

0

g(ω′
0, ω)P(ω′

0)dω′
0. (14.23)
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It follows that

S(ω) =
Δω0

π3/2Δωc

∫ ∞

0

1

(ω′
0 − ω0)2 + Δω2

0/4
exp(−

In2(ω′
0 − ω0)

2

Δω2
c/4

)dω′
0. (14.24)

The equation has to be solved numerically.

(a) Show that the limits of the Voigt profile are the Lorentzian or the Gaussian

profile, depending on the ratio of the two halfwidth Δω0 and Δωc.

(b) Show that (14.24) is consistent with (7.52).

14.13 Characterize a carbon dioxide laser that operates with 12C17O2 or with
13C16O2.

14.14 A cw CO2 laser beam (power 100 W, diameter 10 mm) hits a stone. How long

does it take until the stone is glowing? Assume that the hot range has an extension

of 1 mm.

14.15 Diffusion.

Describe diffusion of particles in an infinitely long rectangular slab. At t = 0, the

particles are homogeneously distributed over the cross section at x = 0, with the

two-dimensional particle density N0. [Hint: Apply the one-dimensional diffusion

equation ∂ρ/∂t = D∂2ρ/∂x2 where ρ is the three-dimensional particle density.]

(a) Show that it has the solution N0/(2
√

2Dt) exp(−x2/4Dt).

(b) Determine the variance and the halfwidth (FWHM) of the distribution.

(c) Choose as an example N0 = 1022 m−2 and D = 10−2 m2 s−1. Determine the

halfwidth of the distribution for the time at which the two-dimensional particle

density at x = 0 decreased to one half of its original value.

http://dx.doi.org/10.1007/978-3-319-50651-7_7


Chapter 15

Solid State Lasers

We discuss solid state lasers that make use of electronic states of impurity ions in a

dielectric crystals or in glasses—other types of solid state lasers, namely semicon-

ductor lasers that are based on electrons in energy bands of semiconductors, will be

treated in later chapters.

We describe the principle of the ruby laser. We treat the titanium–sapphire laser

in more detail than in an earlier chapter. We mention other broadband solid state

lasers. Then we present a description of the neodymium-doped YAG laser, of other

neodymium lasers, and of other YAG lasers. We describe disk lasers and fiber lasers.

We give a short survey of solid state lasers with respect to host materials and impu-

rities. Finally, we describe line broadening processes occurring in solid state laser

media.

The active medium of a disk laser has the form of a disk rather than the form of

a rod. A disk laser pumped with a semiconductor laser has a high beam quality.

Glass lasers are used for generation of near infrared radiation of different wave-

lengths. The neodymium-doped glass laser can produce intense radiation pulses at

a wavelength at 1.05 µm. Doped glass fiber lasers generate radiation in the wave-

length range 0.7–3 µm. Fiber lasers are robust and flexible. They are suitable for

applications in many areas (material processing, biophysics, medicine); fiber lasers

are able to generate continuous wave radiation or picosecond pulses.

15.1 Ruby Laser

A ruby laser (Fig. 15.1) uses Cr3+ ions in an Al2O3 (sapphire) crystal with a doping

concentration of typically 0.05% by weight Cr2O3; the density of Cr3+ ions is N0 =

1.6 × 1025 m−3. An excited Cr3+ ion in Al2O3 has two long-lived energy levels with

a small energy separation. The lifetime of the levels with respect to spontaneous

emission of radiation is about 3 ms. Two broad energy bands are suited as pump

bands. The optical transitions between the long-lived levels and the ground state

level occur at two slightly different wavelengths (R1 fluorescence line at 694.3 nm
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Fig. 15.1 Ruby laser

(principle)

and R2 line at 692.8 nm). The level splitting is due to a week trigonal crystalline

field that is present, in addition to a cubic crystalline field, at the sites of the Cr3+

impurity ions in sapphire). The ground state level is identical with the lower laser

level. By optical pumping into a pump band and fast nonradiative relaxation, the

upper laser levels are populated. At sufficiently strong pumping, the populations

of the upper laser levels are larger than the population of the ground state level.

The gain cross section (at the center frequencies of the two lines) has the value

σ21 = 2.5 × 10−24 m2.

The further development of the ruby laser, after its first operation (in 1960 [120]),

stimulated the development of special high-power discharge lamps (continuously

working lamps and pulsed flash lamps too). Today, pumping of a ruby laser is possible

with radiation of another laser. The long lifetime of the upper laser level makes it

possible to excite almost all Cr3+ ions in a ruby crystal and to produce, by Q-

switching, pulses of very large pulse energy.

15.2 More About the Titanium–Sapphire Laser

In an earlier chapter we have already introduced the titanium-sapphire laser (Ti:Al2O3

laser). Here, we discuss the laser in more detail.

We can describe the energy level diagram of Ti3+ in Al2O3 (Fig. 15.2, left) in a

formal way. We introduce the configuration coordinate Q. It describes an average

distance between a Ti3+ ion and neighboring ions. The energy of a level depends

on Q. The energy curve E(Q) indicates that the ground state is accompanied by

vibronic levels. The energy of a vibronic level is composed of electronic and vibra-

tional energy. Q0 is the configuration coordinate at which the energy minimum of

the electronic ground state occurs. Correspondingly, the E∗(Q) curve indicates that

the excited state of Ti3+ is accompanied by vibronic energy levels too. The configu-

ration coordinate Q∗

0 at which the energy minimum of excited Ti3+ occurs is larger

than Q0.

Figure 15.2 (right) illustrates the four-level description of the titanium-sapphire

laser:
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Fig. 15.2 Titanium–sapphire laser (principle)

Fig. 15.3 Ti3+ in Al2O3. a Surrounding of a Ti3+ ion. b Crystal field splitting of the 3d state of

Ti3+. c Vibronic energy levels due to coupling to a phonon

• In an optical absorption process, a Ti3+ ion is excited from the ground-state level

(level 0) to a vibronic level (level 3) of the electronically excited state.

• Fast nonradiative relaxation (relaxation time ∼10−13 s) leads to population of the

lowest excited-state level (level 2) of Ti3+.

• An optical transition occurs to a vibronic level of the electronic ground state.

• After fast relaxation (relaxation time ∼10−13 s), the Ti3+ ion is in its ground state.

Optical transitions are governed by the Franck–Condon principle: optical transitions

occur without a change of the atomic distances.

We now discuss the origin of the vibronic energy levels of Ti3+ in Al2O3. The

Ti3+ ion has the electron configuration 1s22s22p63s23p63d. It has filled shells (like

an argon atom) and an external electron in the 3d shell. The 3d state of the free Ti3+

ion is fivefold degenerate according to the quantum number (l = 2) of the orbital

momentum.

A Ti3+ ion in an Al2O3 crystal (Fig. 15.3a) is surrounded by an octahedron of

oxygen ions (O2− ions). In the field of the ions (crystal field), the 3d state splits
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(Fig. 15.3b) into two states, one shows a threefold and the other a twofold degeneracy

with respect to the electron orbital. The threefold degenerate state is the ground state

of Ti3+ in Al2O3 and the twofold state is the lowest excited state; the energy level

splitting is about 3 eV. These two electronic states are the basis of the titanium–

sapphire laser.

An oscillation of the oxygen octahedron is associated with an oscillating electric

field at the site of a Ti3+ ion. The field influences the orbital of the 3d electron

and therefore the electron states. An oscillation of the octahedron couples to lattice

vibrations of the whole crystal. Vice versa, all lattice vibrations of the Al2O3 crystal

couple to an oxygen octahedron and therefore to the electronic states of a Ti3+ ion.

The coupling gives rise to a distribution of electronic ground state levels as well as of

excited state levels. The energy of the electronic ground state of Ti3+ is (Fig. 15.3c)

E = E0,e + Evib. (15.1)

E0,e is the electronic energy of Ti3+ without oscillation and Evib the energy levels.

The levels are vibronic (=vibro-electronic) energy levels. The corresponding states

are vibronic states.

The energy of the electronically excited state of Ti3+ is

E∗
= E∗

0,e + Evib. (15.2)

E∗

0,e is the electronic energy of the excited state and Evib again the vibrational energy.

E∗ is the energy of a vibronic state of excited Ti3+.

A single vibration of an Al2O3 crystal has the vibrational energy

Evib =

(

v +
1

2

)

hνvib, (15.3)

where νvib is a vibrational frequency, v the vibrational quantum number of this vibra-

tion, and 1
2
hνvib the zero point energy of the vibration.

An Al2O3 crystal has a large number of vibrational frequencies; the number of

different lattice vibrations is of the order of 1022 for a crystal volume of 1 cm3.

Therefore, the vibronic levels have a continuous energy distribution. The different

energy levels of Ti3+ in Al2O3 are:

• E0 = E0,e+ zero point energy of all vibrations = energy of the ground state level.

• E2 = E∗

0,e+ zero point energy of all vibrations = lowest energy of the excited

state.

• E1 = E0 + Evib = lower laser levels, having a broad energy distribution.

The spontaneous lifetime of a vibronic level of an excited Ti3+ ion is ∼3.8 µs.

Our discussion shows that the occurrence of a broad distribution of pump levels

and of a broad distribution of lower laser levels in titanium–sapphire is a consequence

of the vibronic character of the energy levels of Ti3+ in Al2O3. We will derive the
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gain profile of Ti3+:Al2O3 in Sect. 17.2. Vibronic energy levels are the basis of many

other lasers.

15.3 Other Broadband Solid State Lasers

We compare the titanium–sapphire laser with other broadband tunable solid state

lasers (Table 15.1): alexandrite laser; Cr:LiSAF laser (chromium-doped lithium

strontium aluminum fluoride laser); and Cr:LiCaF laser (chromium-doped lithium

calcium fluoride laser). The wavelength λ given in the table is the wavelength of

maximum gain coefficient. Titanium–sapphire has the largest gain bandwidth Δνg.

The alexandrite laser was the first solid state laser that was tunable over a wide

wavelength range (700–820 nm). In alexandrite (BeAl2O4 crystal doped with Cr3+),

the Cr3+ ions (concentration 3 × 1025 m−3) replace about 0.1% of the Al3+ ions. The

energy levels of Cr3+ in alexandrite, used in the laser, are (Fig. 15.4) the following:

• 0; ground state. Q0 is the configuration coordinate of the energy minimum of the

vibronic ground state levels.

• 1A; vibronic band of the ground state.

• 2A; vibronic band of excited Cr3+; spontaneous lifetime 1.5 ms.

• 2B; another vibronic band of excited Cr3+, 70 meV above the 2 A band; sponta-

neous lifetime of 1.5 µs. Q⋆
0 is the configuration coordinate of the energy minimum

of this vibronic band.

Table 15.1 Tunable lasers

Lasers λ (nm) τsp (µs) σ21 (m2) Δνg (THz) Tuning range

(nm)

TiS 790 3.8 3 × 10−23 110 660–1,180

alexandrite 760 260 10−24 50 700–820

Cr:LiSAF 850 70 5 × 10−24 80 780–1,010

Cr:LiCaF 780 170 13×10−24 60 720–840

Fig. 15.4 Alexandrite laser

http://dx.doi.org/10.1007/978-3-319-50651-7_17
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• 2; upper laser level (belonging to 2B); spontaneous lifetime 1.5 µs.

• 1; lower laser level (vibronic level belonging to 1A).

• 3; pump levels (belonging to 2B), pumped with radiation around 680 nm.

Optical pumping and fast relaxation result in populations of the 2A and the 2B

vibronic bands. The population of each of the vibronic bands is in thermal equilibrium

and the populations of the two bands are in thermal equilibrium with each other. The

equilibrium is determined by the crystal temperature. To obtain a large population

of 2B levels, the crystal is kept at an elevated temperature (60 ◦C or higher). Laser

transitions occur around a wavelength of 760 nm within a width of about 100 nm.

The energy levels of Cr3+ in LiSAF and LiCaF are similar to the energy levels of

Cr3+ in alexandrite. There is, however, an important difference: the energy minimum

of the 2B band lies below the minimum of the 2 A band. Therefore, heating of the

crystals is not necessary.

Alexandrite, Cr3+:LiSAF, and Cr3+:LiCaF lasers can be used for the same tasks as

the titanium–sapphire laser. Titanium–sapphire has the advantage that the crystalline

material has a larger hardness and a higher heat conductivity.

15.4 YAG Lasers

A Nd:YAG laser (YAG = Y3Al5O12 = yttrium aluminum garnet) can have a high

beam quality and can be operated as a cw or as a pulsed laser. Applications:

• Material processing: drilling, point welding, marking.

• Medicine: surgery, (Nd:YAG laser radiation can be guided with a glass fiber into the

interior of a body and focused by a lens); eye surgery; applications in dermatology,

see, for instance [127–129].

A neodymium YAG laser (Fig. 15.5a) makes use of energy levels of Nd3+. The

Nd atom has the electron configuration 4f35s25p66s2. The free Nd3+ ion has the con-

figuration 4f25s25p6; the two lowest energy levels are 4I9/2 and 4I11/2. The crystalline

Fig. 15.5 YAG lasers. a Neodymium-doped YAG laser. b Ytterbium-doped YAG laser
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Table 15.2 YAG lasers

Laser λ λpump (nm) τsp (µs) Δνg σ21 (m2)

Nd:YAG 1.06 µm; 808 230 140 GHz 3 × 10−22

Yb:YAG 1.03 µm; 941

968

960 1.7 THz 2.1 × 10−24

Pr:YAG 1.03 µm 941

Er:YAG 2.94 µm 800

970

electric field causes a splitting of these levels (not shown in the figure). Energetically

higher lying levels serve for optical pumping. Optical pumping and fast relaxation

leads to population of the long-lived 4F3/2 level (spontaneous lifetime 230 µs). The

laser transition 4F3/2 →
4I11/2 corresponds to a wavelength of 1.064 µm (frequency

∼300 THz).

YAG crystals can be prepared in a very high crystal quality. Nd3+ ions can replace

about 1% of the Y3+ ions. Optical pumping of a neodymium YAG laser is possible

with a lamp or with a semiconductor laser. Depending on the size of a laser crystal,

a neodymium YAG laser can produce laser radiation at power levels of 1–10 W or

more. Operated as a giant pulse laser, a Nd:YAG laser can generate pulses of an

energy of 1 J.

Other laser frequencies of the Nd3+:YAG laser lie at 0.914 µm.

(4F3/2 →
4I9/2 transitions) and at 1.35 µm (4F3/2 →

4I13/2 transitions).

Table 15.2 shows a list of various other YAG lasers.

• Ytterbium-doped YAG laser (Fig. 15.5b). The ytterbium-doped YAG laser (Yb:YAG

laser) emits at 1.03 µm, it is pumped with radiation (at 940 nm) of a semiconductor

laser (InGaAs laser) by transitions between 7 F3/2 sublevels and 7 F5/2 sublevels.

The Yb3+ ions can replace 6% of the Y3+ ions in YAG. The ytterbium-doped YAG

laser is becoming a competitor of the neodymium-doped YAG laser. Due to a high

concentration of impurity ions, ytterbium-doped YAG crystals are especially suited

as active media of lasers of small length (namely disk lasers, Sect. 15.6).

• Praseodymium-doped YAG laser. Pr3+ ions replace Y3+ ions. The doping can be

extraordinarily high; it is possible to replace about 26% of the Y3+ ions by Pr3+

ions. The Pr:YAG laser, pumped with radiation of a semiconductor laser, emits

infrared radiation.

• Erbium-doped YAG lasers (Fig. 15.6). The free erbium (Er) atom has the configura-

tion [Xe]4f125s25p66s2. Removing three electrons leads to Er3+ with the electronic

configuration [Xe]4f115s25p6. The Er3+ ion, doped into a solid, has a long-lived

excited state 4I11/2. Laser transitions, 4I11/2 →
4I13/2, generate infrared radiation

(wavelength 2.94 µm). Pumping of the erbium-doped YAG laser, via the narrow
4I11/2 or 4I9/2 levels, is possible with a semiconductor laser (at 980 nm or 800 nm);

it is possible to operate an erbium-doped YAG laser at 1.54 µm as a three-level

laser (of ruby laser type).



298 15 Solid State Lasers

Fig. 15.6 Erbium-doped YAG lasers

The erbium-doped YAG laser with emission of radiation at 2.94 µm is of interest for

biomedical applications.

15.5 Different Neodymium Lasers

Various other solids doped with Nd3+ are suitable as active media (Table 15.3).

• The Nd:YVO4 laser emits at the same wavelength (1.064 µm) as the Nd3+:YAG

laser. With respect to applications, the Nd3+:YVO4 laser competes with the

Nd3+:YAG laser.

• Nd:YLF laser (= Nd:LiYF4 = neodymium-doped lithium yttrium fluoride laser).

The laser emits at 1.047 µm and 1.053 µm. Pumping is possible with a semicon-

ductor laser (pump band at 804 nm, halfwidth 4 nm). The laser is also an alternative

to the Nd:YAG laser.

• Neodymium-doped glass laser. In glass, Nd3+ ions occupy sites with different

surroundings and different crystal fields. This leads to an inhomogeneous broad-

ening of the excited-state levels. The halfwidth of the corresponding line (∼6 THz)

allows for generation of picosecond pulses. There are broad pump bands around

750 and 810 nm.

The lasers can generate radiation at power levels in the 10–100 W range.

Table 15.3 Neodymium-doped solid state lasers

Laser λ (µm) λpump (nm) τsp (µs) Δνg σ21 (m2)

Nd:YAG 1.064 808 230 140 GHz 2.8 × 10−22

Nd:YVO4 1.06 809 90 210 GHz 1.1 × 10−22(π)

4.4 × 10−23(σ )

Nd:YLF 1.047

1.053

804 480 200 GHz 1.8 × 10−23

1.2 × 10−23

Nd:glass 1.05 300 6 THz 3 × 10−24
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15.6 Disk Lasers

A disk laser is a compact, highly efficient laser. It produces radiation of high power

(1 kW or more). Applications lie in fields (cutting, welding, labeling), in competition

with the Nd:YAG laser.

A disk laser (Fig. 15.7) consists of a disk (thickness 100–200 µm), pumped with

a semiconductor laser. Because of the large diameter, the disk laser has a high beam

quality. A large concentration of Yb3+ ions in Yb3+:YAG allows for a compact design

of the laser. We described the laser principle in the preceding section.

In comparison with a laser medium with a rod shape, the disk laser has a larger

ratio of cooling area and active volume. The temperature distribution within the

active medium has a nearly homogeneous radial distribution. This leads to a high

beam quality.

A Nd:YVO4 laser can be operated as miniature picosecond laser (Fig. 15.8).

A semiconductor laser (808 nm) pumps the laser, which emits radiation at 1,064 nm.

The laser can generate picosecond pulses (duration 10 ps) at a high repetition rate

(e.g., 30 GHz). Mode locking is possible by use of a mirror with a reflectivity that

depends on the radiation intensity. The reflectivity is small at small intensity and large

at high intensity. The mirror is a semiconductor saturable absorber mirror (SESAM).

A Nd:GdVO4 laser has similar properties as the Nd:YVO4 laser.

Fig. 15.7 Disk laser

Fig. 15.8 Picosecond disk

laser
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15.7 Fiber Lasers

Fiber lasers are important glass lasers. Fiber lasers have many applications in fields of

material processing, chemistry, medicine, biology. The second harmonic radiation of

glass fiber lasers serves for pumping of other lasers, e.g., of disk lasers. In comparison

with other solid state lasers, fiber lasers are flexible and simple with respect to

adjustment (or may not need adjustment at all).

The active medium of a fiber laser is a glass that is doped with rare earth ions. We

describe here main features of a fiber laser (Fig. 15.9a):

• Glass fiber (length 1–10 m, or longer; diameter 5 µm), doped with ions.

• Dichroitic end mirror. It is highly reflecting for the laser radiation and transparent

for the pump radiation.

• Output coupling mirror. In order to reach optimum efficiency, the reflectivity of

the output coupling mirror is chosen appropriately.

• A fiber laser can be pumped with a semiconductor laser.

The pump waveguide either coincides with the laser waveguide (Fig. 15.9b) or has a

larger diameter (Fig. 15.9c).

Fiber lasers are available in the 0.7–3 µm wavelength range. Rare earth ions in a

glass occupy sites of different strength of the crystalline electric field. Therefore, the

energy levels of the electronic states of ions in a glass are energetically distributed and

the gain curves are broader than for rare earth ions in a crystal. The gain bandwidth

can have a value of 10% of the center frequency of the gain curve.

Table 15.4 shows a list of fiber lasers:

• Ytterbium-doped glass laser (Yb3+ fiber laser). This laser generates radiation in a

wavelength range near 1 µm.

Fig. 15.9 Fiber laser. a Arrangement. b Fiber with coinciding pump and laser waveguide. c Fiber

with pump and laser waveguide of different diameters
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Table 15.4 Fiber lasers

Laser λ (µm) Doping % per weight

Yb3+ fiber 1.02–1.2 4

Yb3+/Er3+ fiber 1.5–1.6 8/1

Yb3+/Er3+ fiber 2.7–2.8 8/8

Tm3+ fiber 1.85–2.1 4

Ho3+ fiber 2.1 and 2.9 3

Fig. 15.10 Fiber lasers. a 1.5-µm erbium-doped fiber laser. b 2.8-µm erbium-doped fiber laser

• 1.5-µm erbium-doped fiber laser (Pr3+/Er3+ fiber laser). The erbium-doped fiber

laser makes use of the three energy levels 4I15/2 (ground state), 4I13/2 and 4I11/2 of

Er3+ (Fig. 15.10a). The 1.5-µm erbium-doped fiber laser is based on stimulated
4I13/2 →

4I15/2 transitions. The absorption coefficient for pump radiation is much

larger if a glass contains, in addition to Er3+ ions, a large concentration of Yb3+

ions; the concentration can be ten times larger than the Er3+ concentration. The 2F4

level of Pr3+ coincides with the energy level 4I11/2 of Er3+. Optical pumping and

resonant energy transfer from Pr3+ ions to Er3+ ions leads to population inversion

in the Er3+ ion ensemble. Co-doping with ytterbium enhances the absorptivity and

allows for a more efficient optical pumping. The additional doping with ytterbium

has only a small influence on the energy levels of the Er3+ ions.

• 2.8-µm erbium-doped fiber laser (Pr3+/Er3+ fiber laser). The laser is pumped

via Pr3+ ions. Above a concentration of about 1.5%, an excited Er3+ ion can

transfer the excitation energy to a neighboring excited Er3+ ion by an upconversion

process, leading to population of 4I9/2 states (Fig. 15.10b). Laser radiation is due

to 4I9/2 →
4I11/2 transitions.

• 2-µm thulium-doped fiber laser (Tm3+ fiber laser). Pumping results in popula-

tion of 3H4 levels (Fig. 15.11, left).Cross relaxation leads to population of 3F4

levels; in a cross relaxation process, excitation energy is transferred to a neighbor-

ing unexcited ion (Fig. 15.11, center). Stimulated emission occurs by 3F4 →
3H6
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Fig. 15.11 2-µm thulium-doped fiber laser

transitions. Relaxation processes (Fig. 15.11, right) from 3H4 to 3F4 contribute

additionally to population of the 3F4 level.

• 2.1-µm and 2.9-µm Ho3+ doped fiber laser. Pumping is possible with radiation

at 1.15 µm. The two laser transitions make use of the three lowest energy levels,

namely the 5I8 (ground state), the 5I7, and 5I8 states of Ho3+.

We mention the energy transfer processes:

• Resonant energy transfer.

• Upconversion.

• Cross relaxation.

• Phonon-assisted energy transfer (Chap. 18).

Transfer of the excitation energy from an ion to another ion determines the micro-

scopic dynamics of fiber laser media. We will treat the basis of energy transfer and

the role of energy transfer processes in the microscopic dynamics of fiber media in

Chap. 18. The treatment of the dynamics will provide the gain coefficient.

It is possible to use optically pumped fibers as amplifiers of radiation (Sect. 16.9

and Chap. 18). A special amplifier is the erbium-doped fiber amplifier—used in the

optical communications. It is also possible to pump the active medium of an erbium-

doped fiber amplifier with radiation at a wavelength (1.48 µm) that is only slightly

smaller than the wavelengths (1.52–1.56 µm) of the range of gain (Chaps. 18 and

33.4).

15.8 A Short Survey of Solid State Lasers and Impurity

Ions in Solids

The basic solid (a crystal or a glass) of a solid state laser (Fig. 15.12) is transparent for

pump and laser radiation. The solid acts as a host of impurity ions. The electric field

(crystal field) at the site of an impurity ion in a crystal or in glass mainly determines

the energy levels of an impurity ion.

http://dx.doi.org/10.1007/978-3-319-50651-7_18
http://dx.doi.org/10.1007/978-3-319-50651-7_18
http://dx.doi.org/10.1007/978-3-319-50651-7_16
http://dx.doi.org/10.1007/978-3-319-50651-7_18
http://dx.doi.org/10.1007/978-3-319-50651-7_18
http://dx.doi.org/10.1007/978-3-319-50651-7_33
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Fig. 15.12 Solid state laser:

energy levels

Table 15.5 Maximum doping concentrations

Laser λ (µm) wt.% N0 (m−3)

Nd:YAG 1.06 1 1.4 × 1026

Nd:YVO4 1.06 1 1.5 × 1026

Nd:YLF 1.05 1 1.3 × 1026

Nd:glass 1.05 3.8 3.2 × 1026

Yb:YAG 1.06 6.5 9 × 1026

Pr:YAG 1.03 26 2.7 × 1028

Er:YAG 2.8 0.7 1 × 1026

Er:glass 1.5 3 2 × 1026

Cr:Al2O3 0.69 0.05 1.6 × 1025

Cr:LiSAF 0.9 15 1.5 × 1027

Cr:LiCAF 0.8 15 1.5 × 1027

Ti:Al2O3 0.83 0.1 3.3 × 1025

Table 15.5 shows a list of few host crystals and impurity ions. The maximum

concentration of impurity ions in a solid depends on the properties of the both solid

and the impurity ions. Maximum doping concentrations lie between 0.1% by weight

(Ti3+ in Al2O3) and 26% by weight (Pr3+ in YAG):

• Sapphire (Al2O3). The crystal field splitting of the 3d state of Ti3+ and the inter-

action of the electronic states with the lattice vibrations (phonons) are the basis of

the titanium–sapphire laser.

• YAG (yttrium aluminum garnet = Y3Al5O12). This material grows in a very high

crystal quality. Doping with all three-valid rare earth ions is possible. Doping ions

replace Y3+ ions. The doping concentration has a value of about 1% for all but

two rare earths: the doping with Pr3+ can be exceptionally high (25%) and also

the doping with Yb3+ can be very high (6%).

• YVO4 (yttrium vanadium oxide). This host material became available in the last

years as a high-quality crystalline material.

• CaWO4, CaF2, LaF3 doped with rare earths can also be used as laser media.

• LiYF4, LiSAF, LiCaF (Sect. 15.5).

• Alkali halides in color center lasers.
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Doping of a solid with impurity ions creates the basic electronic states used in

active media. Another possibility is the use of color centers. The following list gives

a short survey of defect centers (ions and color centers) contained in various laser

media:

• Ions with valence electrons. The ions of the transition metals (Ti3+, Cr3+, V3+)

have 3d electrons, which are strongly influenced by the crystalline electric field.

The energy levels are vibronic levels.

• Rare earth ions. Three-valid ions (Nd3+, Er3+, Ho3+, Pr3+) as well as two-valid

ions are suitable as impurity ions of laser media. The ions of the rare earths have

closed external shells (5s25p6) and (internal) 4f states. A crystal field leads to

a splitting of the 4f levels. The gain bandwidth of rare earth doped crystals at

room temperature is of the order of 100 GHz (Sect. 15.9). The rare earth ions are

excited via 4f levels or other energy levels. The crystal field splitting depends on

the symmetry of the site of an impurity ion in a host material and on the lattice

parameters of the host. Therefore, the wavelength of laser radiation, which is due

to transitions between two particular energy levels of impurity ions, depends on

the host material.

• Color centers. There are many different color centers. A color center can be an F

center, which is an electron on an empty halide ion site in an alkali halide crystal,

replacing the negative ion in an ionic crystal (LiF, NaF, KF, NaCl, KCl, CsCl).

However, F centers that can be produced by irradiating a crystal with X-rays are

not suitable as defect centers of active media. Suitable as laser media are alkali

halides that contain F+

2 centers. An F+

2 center consists of two adjacent empty halide

ion sites occupied with one electron. An F+

2 center may be compared with an H+

2

molecule. The electronic energy levels of an F+

2 center are strongly influenced by

the crystal surrounding: the electronic states of an F+

2 center are vibronic states; for

a discussion of vibronic lasers, see Chap. 17. The color center lasers are tunable.

Different host crystals lead to different emission bands in the near infrared (from

0.8 to 4 µm). Most of the color center lasers require cooling to liquid nitrogen

temperature. Today, color center lasers cannot compete with semiconductor lasers.

The laser medium can have, as we already mentioned, various geometrical shapes:

• Circular cylindric rod. There is a temperature gradient perpendicular to the rod

axis; the rod is cooled mainly via the cylindric surface. The gain factor can be

large.

• Disk. There is a temperature gradient perpendicular to the disk axis; the disk is

cooled mainly via one of the plane surfaces.

• Fiber; Sect. 15.7 and Chap. 18.

Table 15.6 shows a selection of doping ions. The energy levels of the transition

metals have electrons in 3d states. These are strongly influenced by the crystalline

electric field giving rise to strong splitting of the energy levels and to strong vibronic

sidebands (Chap. 17). A crystalline electric field splits the energy levels of a rare

earth ion, too. However, the splitting energy is much smaller and vibronic sidebands

are weak.

http://dx.doi.org/10.1007/978-3-319-50651-7_17
http://dx.doi.org/10.1007/978-3-319-50651-7_18
http://dx.doi.org/10.1007/978-3-319-50651-7_17
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Table 15.6 A selection of ions

Atomic number Element Ion Configuration

22 Titanium Ti3+ 3d 2D3/2

24 Chromium Cr3+ 3d3 4F3/2

59 Praseodymium Pr3+ 4f2 3H4

60 Neodymium Nd3+ 4f3 4I9/2

64 Gadolinium Gd3+ 4f3 8S7/2

68 Erbium Er3+ 4f11 4I15/2

69 Thulium Tm3+ 4f12 3H6

70 Ytterbium Yb3+ 4f13 2F7/2

Fig. 15.13 Energy levels of Nd3+

As an example of crystal field splitting of energy levels of a rare earth ion, we

show energy levels of Nd3+ (Fig. 15.13):

• Free Nd3+ ion. The 4f3 state splits into states with different total angular momentum

(quantum number J), due to spin–orbit interaction. The ground state is 4I9/2. Optical

transitions are forbidden.

• Nd3+:YAG. The crystalline electric field splits a level with the quantum number

J into (2J + 1)/2 sublevels (Stark splitting); a rare earth ion with an odd num-

ber of 4f electrons shows a twofold degeneracy (Kramers degeneracy)—see, for

instance, [121]. The splitting of the sublevels has values in the range of several

meV to about 100 meV [122–126]. Optical transitions are allowed due to spin–

orbit interaction or due to the interplay of spin–orbit interaction and crystalline

electric field. The strongest transition is a transition between a 4F3/2 sublevel and

a 4I11/2 sublevel. The corresponding line (at 1.064 µm) has a linewidth of 12 GHz
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Table 15.7 Gain data of Nd3+:YAG and Nd3+:glass

Laser λ (µm) Δνg τsp (µs) σ21 (m2)

Nd3+:YAG 1.064 140 GHz 230 3 × 10−22

Nd3+:glass 1.054 7 THz 300 7 × 10−24

at room temperature. The values of the crystal field splitting of levels of Nd3+ in

other crystals are of the same order.

• Nd3+:glass. Because of the great variety of the crystal field acting on ions at dif-

ferent sites in a glass, the energy of a sublevel differs strongly for ions at different

sites—we obtain a continuous energy distribution of sublevels. The strongest tran-

sition is again a transition between a 4F3/2 sublevel and a 4I11/2 sublevel. The

corresponding line (with the center near 1.054 µm) has a linewidth (7–10 THz)

that is large and depends on the composition of the glass.

Table 15.7 shows data of Nd3+:YAG and Nd3+:glass. The gain cross section of an

Nd3+ ion in a glass is 40 times smaller than the gain cross section of an Nd3+ ion in

a YAG crystal.

15.9 Broadening of Transitions in Impurity Ions in Solids

Various broadening mechanisms can be responsible for the shape of the gain profile

of an active medium based on optical transitions between two levels of an impurity

ion in a solid:

• Line broadening due to phonon Raman scattering. An electronic transition is

accompanied by a phonon Raman scattering process, i.e., by inelastic scattering

of a phonon during the emission of a photon (Fig. 15.14). This process is frozen

out at low crystal temperature (e.g., at 4 K or 77 K) but is the main broadening

mechanism of many transitions in impurities in crystals at room temperature.

Phonon Raman scattering leads to homogeneous line broadening. Fluorescence as

well as absorption line have Lorentzian shape. We can interpret the mechanism as

line broadening due to elastic collisions of an atom with phonons.

Fig. 15.14 Optical

transition accompanied with

phonon Raman scattering
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Examples 1.06-µm line of Nd3+:YAG at room temperature; the R1 and R2 lines

of ruby at room temperature.

• Line broadening due to the Stark effect. Due to the Stark effect, the energy levels

of ions at different sites of impurity ions in a glass have an energy distribution—

and the transition energies too. Phonon-assisted energy transfer processes create

a quasiband of excited ions (Chap 18).

At low temperature, the Stark effect of impurity ions in a solid (crystal or glass)

leads to inhomogeneous broadening of absorption lines. An impurity ion occupies

not exactly the position of an ion that it replaces. The strength of the crystal field at

different impurity ion sites is slightly different. Due to the Stark effect, the energy

levels and transition energies of the ions at different sites are different. The lineshape

can be Gaussian.

Examples almost all lines that are due to transitions between 4f states of ions in

crystals at low temperature (e.g., at 4 K); the R lines of ruby at low temperature; all

lines of impurity ions in glasses at low temperature.

References [1–4, 6, 11, 31, 120–126].

Problems

15.1 Ruby laser.

(a) The crystal of a Q-switched ruby laser is optically pumped by the use of a flash

lamp so that almost all Cr3+ ions are excited. Estimate the energy and the power

of a laser pulse of 100 ns duration. [Hint: ignore oscillations that could cause a

temporal structure in the pulse shape].

(b) Laser oscillation is possible with a ruby crystal cooled to low temperature (4 K)

with two plane parallel surfaces as reflectors (refractive index of ruby n = 1.76).

Estimate the threshold pump power of a laser with a ruby crystal (length 1 cm)

pumped in a volume of 0.2 mm diameter by another laser (pump wavelength

530 nm); at low crystal temperature, the R1 and R2 lines are 100 times narrower

than at room temperature.

15.2 Gain cross sections. Determine, by use of the data of linewidths and sponta-

neous lifetimes, the ratio of the gain cross section of the 1.06 µm line of Nd3+:YAG

and of the gain cross section at the line center of Ti3+:Al2O3.

15.3 Titanium–sapphire laser. Why is the energy distribution of vibronic energy

levels of Ti3+ in Al2O3 continuous while the vibronic energy levels of N2 are discrete?

15.4 Laser tandem pumping. A femtosecond titanium–sapphire laser can be

pumped with the frequency-doubled radiation of a Nd3+:YVO4 laser, which itself is

pumped by use of a semiconductor laser.

http://dx.doi.org/10.1007/978-3-319-50651-7_18
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(a) Estimate the quantum efficiency of such an arrangement if the frequency dou-

bling has a power conversion of 50%.

(b) What is the advantage of the tandem pumping in comparison with the direct

pumping of the titanium–sapphire laser with a semiconductor laser?

15.5 Fiber laser. Estimate the efficiency of an erbium-doped fiber laser pumped

with a pump power twice the threshold pump power.

15.6 Explain the nomenclature (4I9/2, 4I11/2, 7F7/2 etc.) used for characterization of

atomic states.



Chapter 16

Some Other Lasers and Laser Amplifiers

We present further types of lasers: dye laser; chemical laser; X-ray laser; organic

laser. And we discuss the principle of laser amplifiers. Another topic concerns optical

damage.

16.1 Dye Laser

The dye laser was the first laser with a broad gain profile. The dye laser operates as a

tunable cw laser or as picosecond laser (pulse duration ∼1 ps). The tuning range of

a dye laser is about 5% relative to the laser frequency. By the use of different dyes,

the entire visible spectral range can be covered with laser radiation.

The dye laser is a vibronic laser (Fig. 16.1a). Transitions involve vibronic energy

levels of the ground state (S0) and of the first excited singlet state (S1). The spatial

extension of a molecule in the S1 state is larger than in the S0 state. Spontaneous

emission of radiation determines the lifetime (2–5 ns). The vibronic levels are due

to interaction of the electronic states with molecular vibrations. Optical pumping

and fast nonradiative relaxation leads to population of the S1 state. Laser radiation is

generated by stimulated transitions from the lowest S1 state of excited molecules to

vibronic S0 states. An optical transition is governed by the Franck–Condon principle.

In a dye laser (Fig. 16.1b), the solvent (water or an alcohol) that contains the dye

molecules can continuously be pressed through a nozzle leading to a jet. The laser

radiation passes the jet under the Brewster angle. The laser can be optically pumped

with another laser (e.g., an argon ion laser) or with a lamp.

As an example of a dye molecule, we mention 7-hydroxycoumarin. The molecule

has a benzene-like molecular structure (Fig. 16.1c). A corresponding laser contains

coumarin solved in water (0.1 molar solution).

The S0 → S1 absorption band of 7-hydroxycoumarin (Fig. 16.2) lies in the

blue (450–470 nm) and the emission band in the green (580–600 nm). The fluo-

rescence band (= fluorescence line) has a Gaussian-like shape. We attribute the

line broadening to homogeneous broadening (Sect. 17.4). The linewidth of the
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Fig. 16.1 Dye laser. a Principle. b Arrangement. c A dye molecule (7-hydroxycoumarin)

Fig. 16.2 Absorption and fluorescence of 7-hydroxycoumarin (left) and fluorescence bands of

different dyes (right)

fluorescence line is about 20 THz. Dyes suitable as active media of dye lasers are

available for the whole visible spectral range and also for the near UV and the near

IR. The following list shows characteristic data.

• λ0 = 0.3–1.5 µm = wavelength of the line center of the gain curve; depending on

the dye.

• τsp = 2–5 ns.

• ∆νg = 10–20 THz.

• σ21 = 5 × 10−21 to 5 × 10−19 m2.

• Concentration 10−4–10−3 molar (N0 = 0.1–1 ×1025 m−3).

Active media with dye molecules can have high gain coefficients (Problem 16.1).

Other applications of dyes. Dye molecules solved in water or in alcohol are

saturable absorbers suitable for Q-switching of lasers (Sect. 12.6). Dye molecules find

applications in medicine: dye molecules are suitable as markers in the photodynamic

diagnosis and as active species in the photodynamic therapy of cancer [127–129].

http://dx.doi.org/10.1007/978-3-319-50651-7_12
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16.2 Solid State and Thin-Film Dye Laser

The active medium of solid state dye laser can consist of a solid matrix, for instance

polymethylmethacrylate, containing dye molecules. Suitable as pump sources are

semiconductor lasers or diodes.

A thin-film dye laser consists of a thin film of dye molecules (embedded in a solid

matrix) on a plane solid surface. A grating on the surface of the thin film can act as

distributed feedback reflector (Sects. 25.4 and 34.4).

16.3 Chemical Laser

The basis of a chemical laser is a chemical reaction. In an HF laser, a gas discharge

drives the reactions

F + H2 → H + (HF)∗, (16.1)

F2 + H → F + (HF)∗. (16.2)

The (HF)∗ molecules are in excited vibrational-rotational states and emit radiation

in the 3-µm range by transitions between vibrational-rotational states.

A chemical reaction changes the enthalpy H of a system. The two reactions

described by (16.1) and (16.2) are exothermic reactions—producing reaction energy

(= reaction heat ∆H ). In the first reaction, (16.1), the reaction heat is ∆H =

1.3 eV/molecule (132 kJ/mole). A portion of the reaction heat is transferred to

energy of excitation of vibrational-rotational states of the v = 0, 1, 2 vibrational

levels (Fig. 16.3). The second reaction, (16.2), has a larger reaction heat (∆H =

4.0 eV/molecule) and results in excitation of vibrational-rotational energy levels up to

the v = 6 vibrational level. The population of the different vibrational-rotational lev-

els is a nonequilibrium population. Therefore, many laser transitions between dif-

ferent vibrational-rotational states can occur. The laser wavelengths are in the range

between 2.7 and 3.3 µm.

Fig. 16.3 Chemical laser:

principle of pumping

http://dx.doi.org/10.1007/978-3-319-50651-7_25
http://dx.doi.org/10.1007/978-3-319-50651-7_34
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The HF laser operates as a continuous wave laser (driven by a gas discharge) or

as TEA laser. The continuous wave laser can generate radiation of a power of 10 kW.

The TEA laser pulses (of about 100 ns duration) have pulse energies of several kJ.

The energy of a pulse corresponds to the energy of 100 J of laser radiation that can

be generated per liter of the active material.

Other chemical lasers operating with other gases produce laser radiation in slightly

different wavelength regions (DF, 3.5–4.5 µm; HCl, 3.5–4.1 µm; HBr, 4.0–4.7 µm).

16.4 X-Ray Laser

There are first steps toward a table-top X-ray laser. Figure 16.4a shows the principle

of an X-ray laser [131–133]. Two strong visible laser pulses, focused onto a titanium

plate, pump an X-ray laser in a two-step excitation.

• A laser pulse 1 (wavelength around 600 nm; pulse energy 20 J; duration 1 ns)

produces a plasma with a large concentration of Ti12+ ions; the configuration of a

Ti12+ ion corresponds to a [Ne] configuration (2p6).

• A laser pulse 2 (frequency around 600 nm; 4J; 1 ps) excites the plasma further.

Then hot electrons in the plasma produce, by electron collisions, a population

inversion, giving rise to stimulated emission of X-ray pulses.

In the second step, electrons collide with Ti12+ leading to excited Ti12+ ions in

2p53s states (Fig. 16.4b). Transitions 3s → 2p result in laser radiation at 18.2 nm

(pulse energy 30 µJ, repetition rate 1 s−1). The 2p states decays by fast radiative

transitions.

X-ray lasers with other solids (Ge, Pd, Ag, etc.) generate radiation pulses at other

wavelengths (6–40 nm) in the soft X-ray region.

The X-ray laser presented here is a mirrorless laser, there is no feedback with a

resonator. Laser radiation is generated by amplified spontaneous emission (ASE).

During propagating through the plasma, spontaneously generated radiation is ampli-

fied by stimulated emission of radiation.

Fig. 16.4 X-ray laser. a Arrangement. b Laser transition in Ti12+
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16.5 Random Laser

A random laser can consist of an optical powder, for example a powder of Nd3+:YAG

crystallites. Due to light scattering at the powder particles, the light emitted sponta-

neously is amplified by stimulated emission; for information about solid state random

lasers, see [134].

16.6 Optically Pumped Organic Lasers

We will treat optically pumped organic lasers in a later chapter (Sect. 34.4); then we

will have available concepts, described in Chap. 18 and in chapters on semiconductor

lasers, that are useful to explain how gain of radiation in an organic medium can occur.

16.7 Laser Tandem

A laser tandem is suitable for generation of laser radiation of high beam quality.

A semiconductor laser, with a high efficiency of conversion of electric power to laser

radiation, pumps a solid state laser. The frequency doubled radiation of this laser

pumps a third laser. A semiconductor laser has a low beam quality. The combination

of both type of lasers is most favorable: the use of a semiconductor laser as pump

laser of a solid state laser allows for an efficient conversion of electric energy to high

quality laser radiation.

Example A semiconductor laser pumps a Nd:YAG laser, then the radiation is

frequency-doubled. The frequency doubled radiation finally pumps a titanium–

sapphire laser.

16.8 High-Power Laser Amplifier

In a high-power laser system (Fig. 16.5) consisting of a laser and a laser amplifier,

the laser beam is expanded by the use of a telescope in order to avoid optical damage

of the active medium of the amplifier. The (single-pass) gain factor G1 of a laser

amplifier can have a value of the order of 10. By the use of laser amplifiers in

series, very large power levels can be obtained. Table 16.1 shows data of three high-

power laser systems (tp = pulse duration; Wp = pulse energy; P = pulse power;

νrep = repetition rate).

• Femtosecond titanium–sapphire laser amplifier. The radiation of a femtosecond

titanium–sapphire laser can be amplified with a laser amplifier containing optically

http://dx.doi.org/10.1007/978-3-319-50651-7_34
http://dx.doi.org/10.1007/978-3-319-50651-7_18
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Fig. 16.5 Laser amplifier

Table 16.1 High-power laser systems

Laser λ tp Wp P(W ) νrep

TiS 780 nm 100 fs 1 mJ 10 GW 1 kHz

Nd:glass 1.06 µm 1 ns 10 kJ 10 TW 1 h

TEA CO2 10.6 µm 100 ns 1 J 10 MW 10 Hz

pumped titanium–sapphire as the active material. An optical switch can reduce

the pulse repetition rate (which is of the order of 100 MHz) of the radiation of a

femtosecond titanium-sapphire laser to a value of, for example, 1 kHz.

• Neodymium glass laser amplifier. By amplification of a light pulse of a neodymium-

doped glass laser with glass laser amplifiers, a pulse of extremely high pulse energy

can be generated. The beam emitted by a glass laser is widened and amplified by

a first amplifier, then widened and amplified by a second amplifier and so on.

(It is possible to produce glass in cylinders of large diameter.) A radiation pulse

generated by a laser amplifier system (or pulses generated by systems in parallel),

focused on a target containing deuterium and tritium can heat up the target to a

temperature at which nuclear fusion processes can occur (laser fusion); a laser

pulse can produce a plasma of a temperature of the order of 100 million degrees.

16.9 Fiber Amplifier

Fiber amplifiers consisting of glass doped with rare earth ions are suitable for ampli-

fication of radiation in the 1–3 µm range; fiber amplifiers make use of the same rare

earth-doped glasses as fiber lasers (Sect. 15.7 and Chap. 18). By the use of amplifiers,

radiation at kW power levels can be generated.

The erbium-doped fiber amplifier—that is of great importance for long-distance

optical communications—will be treated in Chap. 18.

16.10 Optical Damage

A strong radiation field in a transparent solid material can lead to optical damage.

Different materials have different damage thresholds. The damage threshold of a

material depends strongly on the wavelength of the radiation. The damage threshold

is orders of magnitude larger for pulses of 10 fs duration than for pulses of 1 ns

http://dx.doi.org/10.1007/978-3-319-50651-7_15
http://dx.doi.org/10.1007/978-3-319-50651-7_18
http://dx.doi.org/10.1007/978-3-319-50651-7_18
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duration. Accordingly, the optical-damage threshold can have values between 10 kW

per cm (or smaller) and 20 MW per cm.

Optical damage can be caused by interband transitions of electrons and subse-

quent impact ionization processes [135, 136]. An interband transition in a crystal

in a strong electromagnetic field can be due to a multiphoton transition. Interband

transitions excite electrons into the conduction band. Subsequently, the electrons in

the conduction band gain energy by absorption processes, i.e., due to acceleration

of the conduction electrons by the optical field. Highly excited conduction electrons

excite, by impact ionization, further electrons from the valence band to the conduc-

tion band. The impact ionization is an avalanche process that can lead to optical

breakdown associated with crystal damage.

16.11 Gain Units

The power of a light beam that traverses an amplifier increases from P0 to P . We can

characterize the increase in different ways, assuming that the gain does not change

along the path of the beam:

• G = P/P0 = gain factor.

• G = eαL , where α is the gain coefficient (in m−1) and L (in m) the length of the

gain medium.

• 1 dB (= 1 dB) = 10 × log(P/P0) = 10 × 0.43 × αL = 4.3 × αL .

• (1 B = 1 Bel = 10 dB).

• 1 dB/m = L−1
× 10 × log(P/P0) = 4.3α.

• 1 dB m = 1 dB mW = 1 dB × 1 mW = a unit of gain of an amplifier.

Example erbium fiber amplifier; α = 0.5 m−1 and L = 14 m; gain = 2.15 dB/m;

G = 103.

References [127–136].

Problems

16.1 Dye laser (length of the active medium 1 mm; beam diameter 0.2 mm; reflec-

tivity of the output coupling mirror R = 0.7; frequency 500 THz).

(a) Determine the threshold condition.

(b) Determine the output power at pumping 10 times above threshold.

16.2 Laser amplifier. To amplify femtosecond pulses emitted by a titanium-

sapphire laser, an optical switch reduces the pulse repetition rate to 1 kHz. By passing

through two amplifier stages (optically pumped titanium-sapphire crystals), each with

a single path gain of 10, intense laser pulses are generated. Determine (by use of the

data of Problem 13.2) the pulse power and the average power after amplification.

http://dx.doi.org/10.1007/978-3-319-50651-7_13
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16.3 Momentum of a photon and radiation pressure.

(a) When an atom at rest emits a photon, then the atom experiences a recoil. Estimate

the velocity of a neon atom that was originally at rest and emitted a photon

(wavelength 632 nm).

(b) Estimate the average velocity of a spherical target (diameter 0.2 mm) consisting

of frozen deuterium that absorbed an intense light pulse (energy 100 J, wave-

length 1.05 µm).

16.4 Radiation of a titanium sapphire laser amplifier system (pulse power 1 GW,

wavelength 780 nm, pulse duration 100 fs) is focused to an area of diameter 10 µm2.

Determine the intensity, the photon density, the energy density, the amplitude of the

electric field in the focus.

16.5 Magnetic field of a light wave.

Determine for the example of the preceding problem the amplitude of the magnetic

field of the electromagnetic wave in the focus. Compare the amplitude with Earth’s

magnetic field. The amplitude of the magnetic field of a plane wave is B0 = (1/c)A,

where A is the amplitude of the electric field. The magnitude of Earth’s magnetic

field on the surface ranges from 25 to 65 µT.

16.6 Material processing.

The radiation of a high power laser with amplifier (pulse duration 1 ps, pulse power

1 MW, diameter 0.02 mm) is used to drill a hole in a metal foil (thickness 0.2 mm).

How many shots are necessary?



Chapter 17

Vibronic Medium

We study the origin of gain of radiation in a vibronic medium. We find that the

gain coefficient of a vibronic medium like optically pumped titanium-sapphire has

a Gaussian-like shape.

We introduce a one-dimensional model of a vibronic medium that illustrates the

occurrence of vibronic transitions and we describe the results of theoretical investiga-

tions. The energy of an atomic state of a vibronic medium, i.e., the energy of a vibronic

state, is composed of electronic energy of an impurity ion and of vibrational energy

of the host crystal. The broad frequency distribution of lattice vibrations (phonons)

of a crystal together with the possibility that many phonons can be involved in an

optical transition lead to two broad vibronic sidebands of the zero-phonon line. One

of the bands is observable as absorption band and the other as fluorescence band.

In a laser, the absorption band is used for optical pumping and the other band for

stimulated transitions.

In a classical description of vibronic transitions, we make use of the classical

oscillator model of an atom to describe the electronic transition in an impurity ion

and attribute a vibronic transition to an atomic oscillation experiencing frequency

modulation by a vibration of the host crystal.

A vibronic laser like the titanium-sapphire laser is based on a homogeneous broad-

ening mechanism, which determines the optical transitions.

17.1 Model of a Vibronic System

We first illustrate, by the use of a simple model, the origin of vibronic coupling.

We consider a TiO2 molecule (Fig. 17.1a); x0 is the TiO distance. We describe the

potential of the 3d electron of the Ti3+ ion in a TiO2 molecule by a one-dimensional

square well potential of infinite height (Fig. 17.1b). We make use of the Schrödinger

equation
[

−
�

2

2m0

d2

dζ 2
+ Epot(ζ )

]

χ(ζ ) = E χ(ζ ), (17.1)
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Fig. 17.1 Electronic excitation of a TiO2 molecule. a TiO2 molecule. b Electron in a one-

dimensional potential well. c Excited electron in the potential well

where m0 is the electron mass, ζ the spatial coordinate, and χ the wave function.

The energy eigenvalue of the electronic ground state is equal to (Sect. 30.1)

Ee =
π2

�
2

8m0x2
0

, (17.2)

where 2x0 is the width of the well. The first excited state has the energy

E∗
e =

4π2
�

2

8m0x2
0

. (17.3)

We assume that an excitation of the 3d electron extends the TiO2 molecule, i.e.,

that the TiO distance increases. The width 2x∗
0 of the potential well corresponding to

the excited state is larger than 2x0 and the energy of the excited state is smaller than

E∗
e (Fig. 17.1c); δ is the increase of TiO distance and ∆ is the decrease of energy.

The symmetric valence vibration of the TiO molecule causes a variation of the

width of the potential well. The energy of the electronic ground state depends on the

displacement x − x0 according to the relation

E(x) = Ee +
1

2
f (x − x0)

2
=

π2
�

2

8m0x2
+

1

2
f (x − x0)

2
= E(x − x0), (17.4)

where f is a spring constant and (1/2) f (x − x0)
2 is the elastic energy.

The energy of the excited state also depends on the TiO distance and therefore on

the displacement x − x∗
0 ,

E∗(x) = E∗
e +

1

2
f (x − x∗

0 )2
=

4π2
�

2

8m0s2
+

1

2
f (x − x∗

0 )2
= E∗(x − x∗

0 ), (17.5)

where x∗
0 is the TiO distance in the excited state. We assume, for simplicity, that f

has the same value as in the electronic ground state. But we take into account that

the TiO distance is larger than in the case that the Ti ion is in the ground state.

http://dx.doi.org/10.1007/978-3-319-50651-7_30
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Fig. 17.2 Model of a vibronic system. a Vibronic energy levels. b Transitions between vibronic

levels

Figure 17.2a (solid lines) shows parabolas describing the energy of the electronic

ground state and of the excited state. The parabola describing the excited state is

shifted toward larger x . According to the Franck–Condon principle, an electronic

transition from the ground state to the excited state takes place without a change

of the TiO distance—indicated in Fig. 17.2b as a “vertical” transition. A transition

occurs to an energy that corresponds to the minimum of a parabola (dashed) that

shifted in energy by the excitation energy of an electron in a rigid potential well.

This energy is equal to

E∗(x − x0) =
4π2

�
2

8m0x2
0

+
f

2
(x − x0)

2. (17.6)

We assume that the change of the distance between the oxygen ions is small,

x∗
0 − x0 ≪ x0. Then we can write (Problem 17.1)

E∗(x − x0) = E∗
0 − ∆ +

f

2
(x − [x0 + δ])2. (17.7)

∆ is a relaxation energy and δ is the increase of the TiO distance. After an absorption

process, the TiO molecule relaxes to the equilibrium position of the excited state.

Emission of a photon occurs to a vibronic state of the ground state. Another relaxation

process takes the system back to the ground state.

17.2 Gain Coefficient of a Vibronic Medium

Vibronic systems have been studied in detail by the use of appropriate quan-

tum mechanical methods [137]. The configuration diagram (Fig. 17.3a) illustrates

the role of lattice vibrations. The configuration coordinate Q replaces x of our

one-dimensional model. Q0 describes, in principal, the TiO distance of the oxygen
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Fig. 17.3 Vibronic transitions in a crystal at low temperature. a Vibronic transitions and gain curve.

b Wave functions

ions if Ti3+ is in its electronic ground state. Q∗
0 describes the distance if Ti3+ is

excited. Q − Q0 is a measure of the displacement due to lattice vibrations; the con-

figuration coordinate takes into account that a large number of lattice vibrations

(phonons) of a crystal can couple to an electronic transition.

We discuss the gain coefficient of Ti3+:Al2O3 at zero temperature. We make use

of results obtained for vibronic transitions in Cr3+:Al2O3 [137]. We assume that

Ti3+:Al2O3 shows a similar vibronic coupling strength as Cr3+:Al2O3 as a compari-

son of the widths of the vibronic absorption bands suggests. Both Ti3+ and Cr3+ are

transition metal ions; Ti3+ has one electron and Cr3+ two electrons in the 3d shell.

If the E(Q − Q0) and E∗(Q − Q∗
0) curves have parabolic slopes (Fig. 17.3a),

the gain coefficient α(ν) is expected to have a Gaussian shape. Optical pumping

leads to a population of the lowest excited-state level. Gain is due to transitions to

vibronic levels of the ground state. The maximum of the gain curve corresponds,

with respect to a single emission process, to emission of a photon and creation of

about ten phonons of an average frequency of 7.5 THz. The halfwidth of the gain

curve is about 10 times the average phonon energy. The density of states D1(νvib)

of the phonons of Al2O3 extends from νvib = 0 to a maximum vibrational frequency

hνmax of about 15 THz. The Gaussian shape of the gain curve reflects the Gaussian

shape of the wave function of the lowest excited state (Fig. 17.3b). According to the

Franck–Condon principle, the distance does not change during an optical transition

from the excited state to a vibronic state of the electronic ground state.

In an optically pumped crystal at room temperature, transitions occur also from

thermally populated vibronic states (Fig. 17.4a). The population is determined by the

crystal temperature. Because of additional transitions, in comparison with low tem-

perature, the gain curve shifts to higher energy and the halfwidth is larger than at low

temperature (by a factor of 1.2 according to theory [137]). Figure 17.4b shows the

E(Q − Q0) and E∗(Q − Q∗
0) curves together with the shape of the gain coefficient

α. The gain coefficient has a Gaussian shape. Due to anharmonicity of the lattice

vibrations, the E(Q − Q0) deviates from a parabolic shape at Q > Q0 (dashed). This

is most likely the main reason of the deviation of the gain curve from a Gaussian
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Fig. 17.4 Vibronic medium at room temperature. a Vibronic transitions. b E(Q) curves and gain

curves

curve at frequencies below the center frequency (see Fig. 7.7). Anharmonicity, occur-

ring at room temperature, can lead to a broadening of the gain curve; the halfwidth

(110 THz), derived from fluorescence data (Sect. 7.6), corresponds to about 15 times

the average energy of a phonon in Al2O3.

While the gain curve deviates from a Gaussian shape at small frequencies, the

experimental absorption curve deviates at large frequencies (see Fig. 7.8). This is

in accordance with a deviation (Fig. 17.4, dotted) of the shape of the E∗(Q − Q∗
0)

curve from a parabolic shape due to anharmonicity for Q < Q∗
0. A structure in the

absorption line, indicated in Fig. 7.8, is due to a splitting—caused by the Jahn-Teller

effect [138]. The Jahn-Teller effect is most likely responsible that the absorption

cross section of a Ti3+ ion in the ground state is by about a factor of 4 smaller than

the gain cross section of an excited Ti3+ ion (see Fig. 5.3, upper part).

The maximum quantum efficiency of titanium-doped sapphire is about 80% [139].

17.3 Frequency Modulation of a Two-Level System

Instead of describing a vibronic state as a state with electronic and vibrational com-

ponents, we can choose an alternative view.

http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_5
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Fig. 17.5 Frequency modulation of an atomic oscillation by a lattice vibration. a Electric field

without frequency modulation. b Frequency modulated electric field. c Luminescence spectrum at

weak modulation. d Luminescence spectrum at strong modulation

We consider transitions between two discrete energy levels of a two-level system

(with the upper level 2 and the lower level 1) of an impurity ion in a crystal at low

temperature. We make use of the classical oscillator model of an atom (Sect. 4.9) and

describe the electric field connected with an oscillating electron by (Fig. 17.5a)

E = A cos ω0t. (17.8)

A is the amplitude of the field at the position of the electron and ω0 the transition

frequency; we assume, for simplicity, that the spontaneous lifetime is infinitely large.

We now assume that a lattice vibration (frequency Ω) is present in the crystal.

The vibrational wave modulates the crystalline field at the position of the impurity

ion and therefore modulates the transition frequency of the electronic transition—

corresponding to a frequency modulation. The instantaneous transition frequency is

equal to

ωinst = ω0 + a cos Ωt, (17.9)

http://dx.doi.org/10.1007/978-3-319-50651-7_4
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where a is the maximum change of frequency toward larger and toward smaller

frequency with respect to the “carrier” frequency ω0. Due to frequency modulation,

the instantaneous frequency varies periodically with time (Fig. 17.5b). It follows that

the electric field is given by

E(t) = A

∫ t

0

cos(ω0 + a cos Ωt ′)dt ′
= A cos(ω0t + m sin Ωt), (17.10)

where

m = a/Ω (17.11)

is the modulation degree; m ≪ 1 corresponds to weak modulation and m ≫ 1 to

strong modulation. We make use of the relation [15]:

cos(α + m sin β) =

∞
∑

n=−∞

Jn(m) cos(α + nβ). (17.12)

Jn is the Bessel function of nth order . A Fourier transformation leads to the spectrum

of the frequency modulated field [15],

E(ω) =
A

2

∞
∑

n=−∞

Jn(m) (δ(ω − ω0 − nΩ) + δ(ω + ω0 + nΩ)) . (17.13)

The fluorescence spectrum is given by

S(ω) = K E2(ω), (17.14)

where K is a constant that depends on the electronic properties of the impurity

ion and on the experimental arrangement. If the modulation is weak, the spectrum

(Fig. 17.5c) consists mainly of a strong zero-phonon line at ω0 and a weak satellite

line at ω0 − Ω . If the coupling is strong (Fig. 17.5d), we obtain a vibronic spectrum

with many lines (in principle an infinitely large number). The lines around ω0 − mΩ

are strongest; now the spectral weight of the zero-phonon line is small. We omitted

in Fig. 17.5c, d the sidebands at frequencies larger than ω0, according to the situation

of a crystal at low temperature that does not contain thermally excited phonons. At

low temperature, the transition frequency is modulated due to the creation of phonon

waves during emission of radiation. Taking into account that we have a continuous

frequency distribution of phonons, we obtain a continuous multiphonon sideband

(of Gaussian shape). For information on the zero-phonon line of Ti3+ in Al2O3,

see [138].
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17.4 Vibronic Sideband as a Homogeneously Broadened

Line

In an active medium of a vibronic laser like the titanium–sapphire laser, all impurity

ions contribute in the same way to stimulated emission of radiation. A titanium–

sapphire laser can therefore be seen as a laser that operates on a homogeneously

broadened transition.

References [31, 137–139].

Problem

17.1 Determine the dependencies of ∆ and δ in (17.7) on x0 and f .



Chapter 18

Amplification of Radiation

in a Doped Glass Fiber

We study the dynamics of gain of fiber amplifiers and fiber lasers. We present a

model—the quasiband model—that allows for derivation of an analytical expression

for the gain coefficient of an optically pumped doped glass fiber. We concentrate

the discussion mainly on the erbium-doped fiber amplifier. We will however discuss

other fiber amplifiers and fiber lasers too.

A glass fiber of the worldwide optical fiber network contains, about every 50 km,

an erbium-doped fiber amplifier. This amplifier operates in a frequency band (width

∼5 THz) around 195 THz (1.54 µm). It is possible to pump the erbium-doped fiber

amplifier with radiation of a semiconductor laser at a frequency (∼202 THz) that

lies just outside the range of gain. Alternatively, pumping with radiation at a much

larger frequency is possible.

While an excited atom in a gas, a liquid, or a crystal keeps its excitation until a

stimulated emission process takes place, the situation is completely different for a

fiber glass medium. In a glass, an excited ion loses its excitation to another ion and

this to a third ion and so on—the excitation migrates within the glass. The origin of the

migration of excitation are phonon-assisted energy transfer processes. An excitation

travels over a very large number of ions before a stimulated emission process takes

place. The migration of excitation plays an essential role in the dynamics of gain

of radiation in fiber amplifiers. We will introduce a model (quasiband model) that

takes account of the migration of energy and that enables us to calculate the gain

coefficient of a fiber.

We will begin this chapter with a short survey of the erbium-doped fiber amplifier:

we first describe the gain coefficient and the quasiband model. Later in the chapter,

we will justify the model and derive the gain coefficient. In the last section of the

chapter, we will show that the quasiband model is in accord with experimental results

of absorption, fluorescence, and gain measurements. We will also discuss three-level

laser models often used for description of fiber lasers and amplifiers.
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18.1 Survey of the Erbium-Doped Fiber Amplifier

Figure 18.1 shows the gain coefficient of an erbium-doped fiber amplifier; the gain

coefficient was calculated (Sect. 18.6) under the assumption that ∼60% of the erbium

ions are in the excited state. The amplifier operates in a wavelength range near

1.54 µm (frequency 195 THz); see also Table 18.1. The gain bandwidth of about

40 nm (∼5 THz) corresponds to ∼2.5% of the center frequency. Radiation of a

semiconductor laser serves as pump laser (pump wavelength 1.48 µm, frequency

∼203 THz). According to the small difference between pump and laser wavelength,

it is possible to reach a high quantum efficiency of conversion of pump radiation to

laser radiation. The model of a glass fiber amplifier, presented in this chapter, has

been published in 2010 [145].

We begin with mentioning few data of an erbium-doped fiber amplifier:

• Density of SiO2 glass = 2.3 × 103 kg m−3, corresponding to an SiO2 number

density of 2.3 × 1028 m−3.

• N0 = 7 × 1025 m−3 = density of Er3+ ions, corresponding to one Er3+ ion per

330 SiO2 units; molar concentration of Er2O3 in quartz glass = 1,500 ppm = 1%

by weight Er2O3 in SiO2 glass.

• N = density of excited Er3+ ions.

• ∆νg = 5 THz = gain bandwidth.

• Wavelength of maximum gain; λ = 1.54 µm (frequency 195 THz).

• Refractive index of quartz glass; n = 1.5.

Fig. 18.1 Gain coefficient of an erbium-doped fiber

Table 18.1 Erbium-doped fiber amplifier

λ ν (THz) Energy (meV)

Gain region 1.52–1.56 µm 193–197 799–815

Center of gain region 1.54 µm 195 807

Gain bandwidth 40 nm 5 20

Pump 1.48 µm 203 840
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Fig. 18.2 Principle of the

erbium-doped fiber amplifier

• τsp∼10 ms = spontaneous lifetime of the upper laser levels.

• α = 9 m−1 = maximum gain coefficient at a density of excited Er3+ ions of N = 4

×1025 m−3.

• Effective gain cross section at the wavelength of maximum gain σ21 = 3 ×
10−25 m2; see Sect. 18.7.

• Gain factor for a fiber of 10 m in length G = 3 × 103; this correspond to a gain of

3.5 dB m−1.

• Pump rate

r = N/τsp ∼ 4 × 1027 m−3 s−1; (18.1)

this corresponds to a pump power P = r × V × hν ∼20 mW if a fiber of 10

µm diameter and 0.5 m length, volume V is pumped with radiation at 1.48 µm.

Figure 18.2 illustrates the principle of the erbium-doped fiber amplifier (=Er3+:

glass amplifier) as we will explain in the following sections. Pump radiation cre-

ates excited-impurity quasiparticles in a quasiband via optical transitions from a

vacuum level to the upper part of the quasiband. Stimulated emission of radiation

by transitions from the lower part of the quasiband to the vacuum level gives rise to

amplification of radiation. The width (∼50 meV) of the quasiband is small compared

to the center energy (819 meV); the width of the quasiband depends on the type of

glass and differs by a factor 2–3 for glasses of different composition. Pumping via

higher levels has already been discussed (see Fig. 15.10a).

The erbium-doped fiber laser at room temperature is a quasiband laser (Sect. 4.3)—

the intraband relaxation time (10−13 s) is much smaller than the relaxation time of

energy levels with respect to relaxation to the ground state (τ ∗
rel = 10−2 s). Intraband

relaxation is a nonradiative relaxation. Population inversion occurs if the occupation

number difference is larger than zero, f2 − f1 > 0. Because the halfwidth of the

quasiband is comparable to kT , population inversion requires that about half of the

erbium ions are in the excited state (Sect. 18.6).

http://dx.doi.org/10.1007/978-3-319-50651-7_15
http://dx.doi.org/10.1007/978-3-319-50651-7_4
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18.2 Energy Levels of Erbium Ions in Glass

and Quasiband Model

An energy level of a free Er3+ ion (Fig. 18.3) is characterized by the quantum number

J of the total angular momentum; J = 15/2 in the ground state (4I15/2) and J = 13/2 in

the first excited state (4I13/2). A crystalline electric field splits a level into a multiplet

of J + 1/2 sublevels; because of Kramers degeneracy [121], a state with an odd J does

not experience the complete lifting of the 2J + 1 fold degeneracy. The splitting of

the ground state level is larger than the splitting of the excited-state level as indicated

in the figure for Er3+ ions in a LaF3 crystal [146, 147].

In a glass, the Er3+ ions are randomly distributed on sites of different crystalline

electric field. Boltzmann’s statistics determines the occupancy of the sublevels of

an ion; thermal equilibrium of the sublevel population of an ion is established via

spin-lattice relaxation; at room temperature, nonradiative relaxation by spin-lattice

relaxation processes lead to a fast establishment of thermal equilibrium in an erbium-

doped glass as long as pump radiation is absent.

Multiplet splitting and crystal field variations suggest widths of energy distri-

butions (∼50 meV for the ground state levels and ∼25 meV for the excited-state

levels), which are of the order of kT at room temperature (T = temperature; k =
Boltzmann’s constant). In a laser medium consisting of a doped crystal, an excited

ion loses its excitation energy mainly via a stimulated optical transition. But in a

doped-glass medium, an ion excited via a pump process transfers its excitation to

another ion, this again to another ion and so on. On average, a laser transition process

occurs only after 1011 transfer processes.

As an example of a glass, we discuss a quartz glass (=SiO2 glass). A two-

dimensional structural model (Fig. 18.4) illustrates the structure of glass. The SiO2

glass consists of silicon ion and oxygen ions. The silicon and oxygen ions do not form

Fig. 18.3 Energy levels of free Er3+ ions, Er3+ ions in LaF3, Er3+ ions in a glass and a pump and

a laser transition (arrows)
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Fig. 18.4 Microscopic

structure of glass

Fig. 18.5 A phonon-assisted

energy transfer process and

its reverse process

a periodic structure: the Si-O distance varies within the glass and the atomic arrange-

ment shows no symmetry. Er3+ ions occupy different sites and therefore experience

different crystal line fields. The energy of the ground state level, the energy of the

excited state level, as well as the transition energy are different for erbium ions at

different sites.

To discuss the role of energy transfer, we describe, for simplicity, an Er3+ ion as a

two-level atomic system consisting of a ground state level and an excited-state level.

An excited two-level system at site (i) with a transition energy Ei can transfer its

excitation to a neighboring unexcited two-level system at site (j) that has a transition

energy Ej (Fig. 18.5, left). The energies of the ground state levels differ by δij. Energy

conservation in a phonon assisted energy transfer process requires that

Ei + hνp1 = Ej + hνp2 + δij, (18.2)

where νp1 is the frequency of a phonon and νp2 is the frequency of another phonon.

The energy transfer rate depends on the concentration of impurity ions and the

temperature of the glass. In the reverse process (Fig. 18.5, right), the sum of the

energy of excitation of the ion at site (j), the energy of a phonon, and the energy of

position is transferred to energy of excitation of ion (i) and of another phonon.

Energy transfer processes between rare earth ions in a glass at room tempera-

ture, with involvement of two phonons, first discussed in theoretical investigations

[148, 149], are very efficient as experimental studies indicated [150, 151]. The micro-

scopic process of energy transfer can be due to Coulomb interaction between two

impurity ions.

Besides the two-phonon-assisted energy transfer, there are other energy transfer

processes: resonant energy transfer (without the involvement of a phonon); energy
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Fig. 18.6 Quasiband model of excited-impurity quasiparticles

transfer with involvement of one phonon; cross relaxation—an impurity ion in an

upper level is excited to a higher level by transfer of energy from another ion that is in

an excited state. The Förster mechanism (resonant energy transfer by dipole-dipole

interaction) was first discussed in 1949 [152]. Some transfer processes are illustrated

in Sect. 15.7.

A spectral hole burning study showed [153] that the broadening of an energy level

of an excited Er3+ ion in a glass at room temperature corresponds to a lifetime of the

order of 10−13 s (at a concentration of 1% Er2O3 by weight in glass). We associate

the broadening to phonon-assisted energy transfer.

Now, we attribute the transition energies, sorted according to their values, to a

quasiband (Fig. 18.6).

• D(E) = density of states of the levels in the quasiband = number of levels per

unit of volume and energy.

• D(E)dE = number of levels within the energy interval E, E + dE per unit of

volume.

• N0 = density of impurity ions = density of two-level atomic systems = number

of impurity ions per unit of volume = number of lower levels per unit of volume

(=number of upper levels per unit of volume).

• N = N2 = density of excited ions.

• N0 − N = number of empty lower levels per unit of volume.

• N/N0 = band filling factor.

• f2(E) = relative occupation number of level E = probability that the level with

the energy E is occupied.

• f1 = 1 − f2(E) = relative occupation number of the lower level = probability

that the lower level, which belongs to the upper level of energy E , is occupied.

• f2 − f1 = 2 f (E) − 1 = occupation number difference.

• f2(E)D(E)dE = density of occupied levels in the energy interval E, E + dE .

The integral over the density of states is equal to the density of impurity ions,

∫ ∞

0

D(E)dE = N0. (18.3)

http://dx.doi.org/10.1007/978-3-319-50651-7_15
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Fig. 18.7 Steady state of a gas of impurity-quasiparticles

We describe, for simplicity, the density of states by a Gaussian distribution,

D(E) = N0 ×
√

4 ln 2

π

1

∆E
exp

[

−
ln 2 × (E − Ec)

2

∆E2/4

]

. (18.4)

Ec is the center and ∆E the halfwidth of the distribution.

Because of the phonon-assisted energy transfer processes, the quasiparticles inter-

act with each other and couple to the thermal bath. The coupling to the thermal bath

gives rise to the formation of a thermal equilibrium of the population in the quasi-

band (Fig. 18.7). At steady state, the average number of quasiparticles is constant.

Continuous optical pumping compensates the loss of quasiparticles that is due to

relaxation (mainly caused by spontaneous emission of radiation) and due to the net

effect of stimulated emission and absorption of radiation.

Our model does not take into account that the ground state as well as the excited

state of a single Er3+ ion are multiplets (due to crystal field splitting). Without

pumping, the population in a multiplet of the ground state is in thermal equilibrium.

This equilibrium is established via spin-lattice relaxation processes. During optical

pumping, the ensemble of occupied ground state levels is not in a thermal equilibrium.

18.3 Quasi-Fermi Energy of a Gas of Excited-Impurity

Quasiparticles

An energy level of the quasiband is, according to the Pauli principle, either empty or

occupied with one quasiparticle. We apply to the ensemble of quasiparticles Fermi’s

statistics and describe the average occupation number of an energy level by the

Fermi–Dirac distribution function

f2(E) =
1

exp [(E − EF)/kT ] + 1
. (18.5)

EF is the quasi-Fermi energy of the quasiparticle gas and T the temperature of the

glass. The quasi-Fermi energy follows from the condition that
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∫ ∞

0

f2(E)D(E)dE = N . (18.6)

N is the density of quasiparticles. The probability to find a quasiparticle in a level of

energy E is f2(E). The probability that the ground state level, which corresponds to

the excited-state level of energy E , is occupied, is f1 = 1 − f2.

We introduce dimensionless variables x = E/kT , a = EF/kT , b = Ec/kT , w =
∆E/kT and write (assuming a Gaussian distribution of the density of states) the

condition (18.6) in the form

∫ ∞

0

exp
[

−4 ln 2(x − b)2/w2
]

dx

exp (x − a) + 1
= 1.06 w

N

N0

. (18.7)

If b ≫ 1 (Ec ≫ kT ), which is the case for glass amplifiers and lasers, a numerical

analysis of (18.7) yields a quasi-Fermi energy that does not depend on w; the integral

is finite only in a small range of x around b and zero otherwise. The quasi-Fermi

energy EF (Fig. 18.8) increases with increasing filling factor N/N0 and is equal to

Ec at half filling; EF is −∞ at zero quasiband filling (N = 0) and +∞ at complete

filling (N = N0). The quasi-Fermi energy EF depends linearly on N/N0 in a large

range of the filling factor,

EF = Ec + 4.44 × (N/N0 − 0.5) kT . (18.8)

Figure 18.9 shows the occupation number difference f2 − f1 for quasiparticles at

the center of the quasiband (E = Ec). The occupation number difference is −1 for

N = 0. With increasing N , f2 − f1 increases, becomes zero at half filling of the qua-

siband and increases further. At complete filling (N = N0), the occupation number

difference is unity. The occupation number difference shows a linear dependence on

the filling factor,

f2 − f1 ≈ 2.22 (N/N0 − 1/2), (18.9)

with small deviations near N/N0 = 0 and N/N0 = 1.

Fig. 18.8 Dependence of the quasi-Fermi energy on the filling factor of a quasiband
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Fig. 18.9 Occupation number difference for quasiparticles in the center of the quasiband

At the center of the quasiband, the occupation number difference (see Fig. 18.9)

increases linearly over almost the whole range of the filling factor,

f2(Ec) − f1 = 2 f2(Ec) − 1 = 2.22 × (N/N0 − 0.5). (18.10)

The linear dependence of the occupation number difference on the filling factor, for

E = Ec, appears to be characteristic for a Gaussian shape of the density of states of

the quasiband; there are only small deviations from the linear dependence, occurring

at N/N0 near 0 and 1. The linear slope is slightly (11%) larger than for an ensemble

of two-level systems that all have the same transition energy. We will show that

f2 − f1 ≥ 0 corresponds to gain and f2 − f1 ≤ 0 to absorption.

A Fourier expansion of f2(E) around Ec indicates that the linear dependence of

the occupation number difference f2(Ec) − f1 on N/N0 follows directly from the

linear dependence of the quasi-Fermi energy EF on N/N0 (Problem 18.3). The linear

dependence of f2(Ec) − f1 extends, however, over a much larger range of the filling

factor than the linear dependence of the quasi-Fermi energy.

18.4 Condition of Gain of Light Propagating in a Fiber

Electromagnetic radiation (frequency ν) that has a continuous energy distribution

around the photon energy hν = E interacts with a quasiparticle in a level of energy

E (Fig. 18.10) by absorption, stimulated and spontaneous emission. The transition

rate (=number of transitions per s and m3) of stimulated emission is given by

rem(hν) = B̄21 f2ρ(hν) (18.11)

and the rate of absorption by

rabs(ν) = rabs(hν) = B̄12 f1ρ(hν). (18.12)
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Fig. 18.10 Radiative

transitions between an

energy level of a quasiband

and the vacuum level

We use the quantities:

• E = transition energy.

• B̄21 = Einstein coefficient of stimulated emission (in units of m3 s−1); B̄21 = h B21

(Sect. 6.6).

• B̄12 = Einstein coefficient of absorption; B̄12 = B̄21.

• f2 = probability that the upper level is occupied.

• f1 = 1 − f2 probability that the lower level is occupied.

• ρ(hν) = spectral energy density of the radiation on the energy scale.

It is convenient to express the energy density on the energy scale.

The difference between the rates of stimulated emission and absorption is

r(hν) = B̄21( f2 − f1)ρ(hν). (18.13)

Stimulated emission prevails if f2 − f1 > 0 or f2 > 1/2. This is the condition for

gain of light propagating in a fiber. The spontaneous emission rate is

rsp = A21 f2. (18.14)

A21 is the Einstein coefficient of spontaneous emission.

18.5 Energy Level Broadening

The phonon-assisted energy transfer processes cause a broadening of the levels of

the quasiband (Fig. 18.11). We describe the broadening of a level of energy E by a

lineshape function g(hν − E) that has a halfwidth δE and is normalized,

∫

g(hν − E) d(hν) = 1. (18.15)

The integral over all contributions g(hν − E)d(hν) in the photon energy interval

hν, hν + d(hν) is unity. The net transition rate of monochromatic radiation, i.e., of

radiation with ρ(hν) 	= 0 in the energy interval hν, hν + d(hν), where d(hν) ≪ δE ,

is given by

http://dx.doi.org/10.1007/978-3-319-50651-7_6
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Fig. 18.11 Energy level broadening

(rem − rabs)hνd(hν) = B̄21g(hν − E)( f2 − f1)ρ(hν)d(hν). (18.16)

Supposing that the lineshape function is a Lorentzian, we can write

g(hν − E) =
δE

2π

1

(hν − E)2 + (δE/2)2
, (18.17)

where δE is the halfwidth of the level broadening. The net transition rate is

r(ν) = r(hν) = rem − rabs =
∫

B̄21g(hν − E)( f2 − f1)ρ(hν)d(hν). (18.18)

Introducing the energy density u =
∫

ρ(hν)d(hν) = Zhν, where Z is the density of

photons, leads to the net transition rate

r(ν) = hν B̄21g(hν − E)( f2 − f1)Z . (18.19)

The net transition rate is proportional to the occupation number difference

f2 − f1 = 2 f2 − 1 and to the photon density Z . The condition of gain is the same

as derived for the case of neglected energy level broadening,

f2 − f1 = 2 f2(E) − 1 > 0 or f2(E) > 1/2; (18.20)

gain occurs for radiation of quantum energies

hν < EF. (18.21)

Optical pumping is possible by using radiation of a quantum energy hν that is

larger than the quasi-Fermi energy EF. The mechanism leading to the quasi-Fermi

distribution is the intraband relaxation. Due to phonon-assisted energy transfer, the

excited two-level atomic systems lose a portion of their excitation energy to phonons.

This leads, at room temperature, to the formation of the quasi-Fermi distribution in
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the quasiband. After the formation of a quasithermal equilibrium, the excited two-

level atomic systems still interact with phonons. Accordingly, each upper level is

energetically broadened due to energy transfer processes. The width of a broadened

energy level is δE ≈ �/τin, where τin is the scattering time, i.e., the time between

two energy transfer events. The scattering time τin depends on temperature. At room

temperature, the occupation number of thermal phonons is large at phonon ener-

gies kT ∼25 meV. Thus, a few energy transfer events (per excited two-level system)

establish a quasiequilibrium after a few scattering events. Therefore, we regard τin

as the intraband relaxation time.

The intraband relaxation time (∼10−13 s) of Er3+:glass at room temperature is

much shorter than the lifetime (of the order of 10 ms) of an upper level with respect

to spontaneous emission of a photon. The width of the broadening of an upper level,

�/τin∼4 meV, is small compared to the range (∼ kT ) of populated levels.

18.6 Calculation of the Gain Coefficient of a Doped Fiber

The temporal change of the density of excited ions due to stimulated transitions is

dN

dt
= −hν

∫

B̄21g(hν − E)( f2 − f1)D(E) dE × Z , (18.22)

It follows that the temporal change of the photon density Z is given by the relation

dZ/dt = −dN/dt = γ Z , (18.23)

where

γ = hν

∫

B̄21 D(E)( f2 − f1) g(hν − E) dE (18.24)

is the growth coefficient of radiation of frequency ν. With dt = ndz/c, where z is

the direction of propagation of the radiation (along the fiber axis), c is the speed of

light in vacuum, n (∼1.5) the refractive index of the fiber glass, we find

dZ/dz = αZ , (18.25)

where

α =
n

c
hν

∫

B̄21 D(E)( f2 − f1) g(hν − E) dE (18.26)

is the gain coefficient. The level broadening due to energy transfer is small com-

pared to kT . Therefore, we can replace g(hν − E) by a delta-function, δ(hν − E),

and find

α(ν) = (n/c)hν B̄21 D(E)( f2 − f1), (18.27)

where ( f2 − f1) = 2 f2(E) − 1 and E = hν.
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Fig. 18.12 Gain coefficient at different band filling factors N/N0 (in steps of 0.1)

Under the assumption that B21 is the same for all two-level systems and does

therefore not depend on E , the peak gain coefficient is

αp = (n/c)hνc B̄21 D(Ec). (18.28)

Then the slope of the gain coefficient curves is given by the simple expression

α(ν)/αp = f2 − f1 = 2 f2(E) − 1; E = hν. (18.29)

Gain coefficient curves (Fig. 18.12) show that the range of gain increases with

increasing quasiband filling according to the increase of the frequency

νF = EF/h. (18.30)

The frequency νF is a transparency frequency. At complete filling, the gain coefficient

has the same slope as the density of states and reaches the peak gain coefficient αp at

the center frequency νc = Ec/h. If the quasiband is empty, the absorption coefficient

has the same profile as the density of states.

From the peak gain coefficient, we obtain a peak gain cross section according to

the relation

αp = N0 σp. (18.31)

We find

σp =
n

c
hν B̄21 D(Ec)/N0 = 1.48

∆νhom

∆ν

(λ/n)2

2π
, (18.32)

with the quantities: ∆ν =∆E/h; A21 = 8πν3(n/c)−3 B̄21 = Einstein coefficient of

spontaneous emission; λ = c/νc. Thus, σp has the same value as the peak gain cross

section of an ensemble of noninteracting two-level systems with transitions cline of

Gaussian shape.
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The condition of gain

( f2 − f1) = 2 f2(E) − 1 ≥ 0 with E = hν (18.33)

means that gain occurs at frequencies

ν < νF(N/N0) = EF(N/N0)/h (18.34)

and that α(νF) = 0. It follows that the transparency density Ntr is, in a large range

of the filling factor, given by

Ntr

N0

= 0.5 +
EF − Ec

4.44 kT
= 0.5 +

νF − νc

4.44 kT/h
. (18.35)

Example Gain coefficient of a fiber doped with 1% Er2O3 by weight (N0 = 7 ×
1025 m−3) at a filling factor N/N0 = 0.6 (see Fig. 18.1).

• A21 = 100 s−1; ∆νhom = A21/(2π) ∼16 s−1.

• B̄21 = 4.0 × 10−18 m3 s−1.

• Ec = 819 meV; νc∼198 THz.

• c/n = 2 × 108 m s−1.

• ∆E = 50 meV = 8 × 10−21 J; ∆ν ∼12 THz.

• D(Ec) = 8.3 × 1045 m−3 J−1.

• αp = 22 m−1; σp =3.2 × 10−25 m2.

The gain coefficient (at a filling factor of 0.6) is positive below a frequency that

is slightly larger than νc while a range of absorption follows at higher frequency;

the maximum gain coefficient (∼9 m−1) is slightly smaller than half the peak gain

coefficient αp.

Figure 18.13 illustrates our result. Gain occurs up to the transparency frequency

νF = EF/h. The quasi-Fermi energy EF and thus νF increase with increasing band

filling.

According to the linear dependence of the occupation number difference at the

center of the quasiband on the filling factor (see Fig. 18.9), we find

α(νc)/αp ≈ 2.22 (N/N0 − 1/2); (18.36)

Fig. 18.13 Quasi-Fermi energy and transparency frequency
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Fig. 18.14 Gain coefficient

of an erbium-doped fiber at

the center frequency

νc = Ec/h; αp = N0 σp,

N0 = 7 × 1025 m−3, and σp

= 3.2 × 10−25 m2

the gain coefficient at the frequency νc = Ec/h increases linearly with the filling

factor (Fig. 18.14).

18.7 Different Effective Gain Cross Sections

Here, we introduce three different effective gain cross sections: effective gain cross

section σ ; effective gain cross section σ̄eff ; effective gain cross section σeff .

Figure 18.15 shows gain coefficients (solid lines) at different quasiband filling

factors. The maximum gain coefficient αmax (dashed) depends on the filling factor.

We can relate the maximum gain coefficient and the density of quasiparticles (i.e.,

the density of excited ions),

αmax = N σ ; (18.37)

the effective gain cross section σ (Fig. 18.6, dashed) increases with increasing filling

factor, from zero for the empty quasiband to σp at complete quasiband filling.

The effective gain cross section

σ̄eff = (dαmax/dN )N/N0
(18.38)

Fig. 18.15 Gain coefficient at different filling factors
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Fig. 18.16 Effective gain

cross sections of Er3+ in an

erbium-doped fiber

describes the change of αmax with N . With increasing N/N0, the effective gain

cross section σ̄eff (Fig. 18.16, solid line) increases from zero near N/N0 = 0, shows

a maximum (∼2σp) for N/N0 ∼ 0.6, then decreases and approaches zero near

N/N0 = 1.

We can introduce another effective gain cross section, σeff , writing

α(νc) ≈ 2.22(N/N0 − 1/2)(n/c)hν B̄21 D(Ec) = (N − N0/2) σeff (18.39)

and find

σeff ≈ 2.22 (n/c)hν B̄21 D(Ec) = 2.22 σp. (18.40)

The effective gain cross section σeff (Fig. 18.16, dotted) has a constant value (2.22

σp) over a large range of the filling factor, from N/N0 = 0.5 to nearly N/N0 = 1,

where it decreases to 2σp. At complete filling, σeff = 2σp; the factor 2 is due to the

different reference values, N/N0 − 0.5 an N , respectively. At smaller band filling,

σeff exceeds 2σp because band filling in the center of the quasiband leads to stronger

gain than filling in the wing of the band for N/N0 → 1.

The effective gain cross section

σeff = (dα/dN ) (18.41)

describes, for radiation of frequency νc, the gain cross section related to the two-

level systems that are excited above half filling; N0/2 is the transparency density for

radiation of frequency νc.

Here, we can ask: does the gain coefficient curve show a narrowing near complete

quasiband filling, i.e., when almost all erbium ions (for instance 90%) are in the

excited state? In this case, the energy transfer processes strongly slow, particularly

in the wings of the quasiband.
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18.8 Absorption and Fluorescence Spectra

of an Erbium-Doped Fiber

The shape of an absorption curve is given by

ᾱabs = αabs(ν)/αp = f1 − f2 = 1 − 2 f2(E), (18.42)

where E = hν and where αp is the absorption coefficient at the frequency νc at zero

quasiband filling. The shape of a fluorescence curve is given by

S̄ν(ν) = Sν(ν)/Sν,p = f2(E); E = hν. (18.43)

Sν(ν) is the spectral distribution of the fluorescence radiation. Sν,p is the peak inten-

sity, namely the intensity at the frequency νc in the case of complete quasiband

filling. We neglect the frequency dependence of the Einstein coefficient of sponta-

neous emission.

Figure 18.17 shows an absorption curve and a fluorescence curve both for week

quasiband filling (N/N0 = 0.1). The absorption curve is slightly blue-shifted with

respect to the absorption curve for zero quasiband filling. The fluorescence curve is

red-shifted. The absorption and the fluorescence curves have different shapes. The

shapes of the curves as well as the frequencies of their maxima depend on the filling

factor.

The filling factor relates the absorption coefficient and the shape of the fluores-

cence curves according to the expression

S̄ =
f2

1 − 2 f2

× ᾱabs. (18.44)

Fig. 18.17 Shapes of an absorption and a fluorescence curve of a fiber medium at the filling factor

N/N0 = 0.1
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At week quasiband filling (N/N0 ≪ 1), the relation is

S̄ = f2 × ᾱabs =
1

exp[(E − EF)/kT ] + 1
× ᾱabs. (18.45)

In this case, the shape of the fluorescence curve is determined by the product of the

Fermi–Dirac distribution function and the absorption coefficient.

It is possible to modify the quasiparticle model taking into account that B21 can

have different values for ions at different sites in a glass and that the density of states

does not have a Gaussian shape. An analysis of absorption and fluorescence spectra

measured for different filling factors N/N0 (and different sample temperatures) may

provide detailed information on B21(ν) and D(ν).

There remains the question how to take account of the multiplet splitting, espe-

cially of the occupied sublevels of the ground state. During optical pumping, the

population of the ensemble of sublevels of the nonexcited ions is not in thermal

equilibrium as already mentioned.

18.9 Experimental Studies and Models of Doped Fiber

Media

The gain coefficient curves at different filling factors (see Fig. 18.12) and the absolute

values of the gain coefficients (see Fig. 18.1) are, in principle, in accord with exper-

imental results. However, experimental studies of the shape of absorption curves,

gain curves, and fluorescence curves of erbium-doped fibers indicate the following:

• The profiles of absorption spectra and of fluorescence spectra are non-Gaussian

[154]; this shows that the densities of states of quasiparticles have non-Gaussian

profiles and that—most likely—B21 does not have a constant value.

• The profiles depend on the composition of a fiber glass; fibers can consist of various

types of glasses (silicate, phosphate, germanite, fluorite, fluorozirconate glass).

• The fluorescence spectrum is red-shifted relative to the absorption spectrum—in

accord with the results (see Fig. 18.17) obtained with the quasiparticle model.

We mention two other models that are mostly used to describe fluorescence,

absorption, and gain curves of fiber media:

• Three-level laser model (Fig. 18.18a). It describes gain and absorption of an

erbium-doped fiber amplifier [155, 156]; numerical simulations provide gain coef-

ficient curves that show a similar behavior as the gain curves (Fig. 18.12) obtained

by the analytical expression (18.29).

• Three-level laser medium of the ruby laser type (Fig. 18.18b). It describes ampli-

fiers and lasers, which are strongly pumped via high-lying pump levels [157, 158].
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Fig. 18.18 Models of fiber amplifiers and lasers. a Three-level laser model of the erbium-doped

fiber amplifier. b Ruby laser type model of an erbium-doped fiber laser

These models assume a quasithermal equilibrium of the population of the ground

state levels. Although the assumption is not fully justified, the models provide a basis

of the description of optical properties of a fiber.

The quasiband model should also be applicable to analyze active media of fiber

lasers and amplifiers strongly pumped via high-lying energy levels mentioned in

Sect. 15.7:

• 1.05-µm ytterbium-doped fiber laser [159].

• 1.5-µm ytterbium/erbium-doped fiber amplifiers [160].

• Thulium-doped fiber laser [161, 162].

• 2.1-µm holmium-doped fiber laser [163].

• 3-µm ytterbium/erbium-doped fiber laser [164, 165].

The quasiparticle model predicts a narrowing of the gain curve at nearly complete

population inversion. When nearly all impurity ions are in the excited state, the rate

of phonon-assisted energy transfer processes slows down; at complete population

inversion, energy transfer processes are no longer possible.

References [140–165].

http://dx.doi.org/10.1007/978-3-319-50651-7_15
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Problems

18.1 Fiber laser. Estimate the efficiency of an erbium-doped fiber laser pumped

with a pump power twice the threshold pump power if the laser is pumped with

1480-nm radiation or if it is pumped with 980-nm radiation.

18.2 A glass contains erbium ions of a density N0 = 7 × 1025 m−3.

(a) Determine the average distance r0 between neighboring erbium ions.

(b) Estimate the number of neighbors of an erbium ion that lie in spherical shells

(thickness r0) with the radii r0 and 2r0; 2r0 and 3r0; 3r0 and 4r0; furthermore

with the radii sr0 and sr0 + r0 with s ≫ 1.

18.3 Occupation number difference in an erbium-doped fiber amplifier.

(a) Show that the occupation number difference at the energy Ec for Fermi energies

in the vicinity of Ec is given by f2 − f1 = 2 f (Ec) − 1 ≈ (EF − Ec)/2kT .

(b) How large is f2 − f1 if EF = Ec + kT ?

(c) Determine the percentage of energy levels of the quasiband lying in the energy

range Ec − ∆E/2, Ec + ∆E/2.

18.4 Discuss why the following lasers do not belong to the type “quasiband laser”:

(a) Titanium–sapphire laser, alexandrite laser; and, generally, vibronic lasers.

(b) Helium–neon laser.

(c) Continuous wave CO2 laser and TEA CO2.

18.5 Density of states. We consider the following case: the density of states of

quasiparticles in an erbium-doped fiber is the sum of two densities of state, D =
D1 + D2; the center frequencies have a frequency distance of 4kT (T = 300 K); the

halfwidth of both densities of states is 2kT .

(a) Estimate the maximum gain coefficient αmax.

(b) Estimate the maximum gain coefficient in the case that the center frequencies

have a frequency distance of kT .

18.6 Present arguments that show that it is most likely that the spontaneous lifetime

τsp of the 4I13/2 level of erbium ions in a glass fiber depend on the quasiband filling

factor.

18.7 Einstein coefficients. Consider an impurity-doped fiber with a Gaussian shape

of the density of states of quasiparticles.

(a) Design a dependence B21(E) that leads to a double peak in the gain curve.

(b) Then discuss the dependence of τsp on the filling factor.

18.8 Temperature coefficient. Make use of the quasiparticle model to estimate the

temperature coefficient (in units of dB/◦C) of an erbium-doped fiber amplifier of

10 m length for the temperature ranges 10–20, −50 to −40 and 50–60 ◦C:



Problems 345

(a) If the frequency of the radiation is equal to the center frequency.

(b) If the frequency of maximum gain occurs at a filling factor of 0.6.

18.9 Fiber laser and fiber amplifier. Determine the gain of radiation passing

through an erbium-doped fiber (length 16 m) pumped at twice the transparency den-

sity; for data, see Sect. 18.6.

18.10 Why is the population of the multiplet levels of the ground state of Er3+ not

in thermal equilibrium during optical pumping?

18.11 Spectral diffusion and quasiband model.

Describe diffusion of excitation energy in an infinitely long rectangular slab of a glass

containing a large concentration of Er3+ ions. At time t = 0, excitation energy Ec at

the center of the Gaussian quasiband is homogenously deposited over the slab, with

the quasiparticle density N0. [Hint: apply the one-dimensional diffusion equation

∂ f/∂t = DE∂2 f/∂ E2, where f (E − Ec, t) is the distribution function and DE the

spectral diffusion constant, and replace the Gaussian shape of the density of states

by a constant.]

(a) Show that f (E − Ec, t) = N0/(2
√

2DEt) exp(−(E − Ec)
2/4DEt).

(b) Determine the variance and the halfwidth (FWHM) of the distribution at time t .

(c) Determine the average frequency range over which excitation energy of a two-

level system traveled in a random walk after z (≫1) inelastic scattering processes.

(d) Estimate the spectral diffusion constant, assuming that the average energy trans-

ferred in a spectral diffusion process according to (18.2) is δ = 0.1 meV. [Hint:

the spectral diffusion constant is DE = (1/3) ∨2
E /τ, where ∨E = δ/τ is the

velocity in the energy space and τ (≈ 10−13s) the lifetime of an excited state

level with respect to an energy transfer process.]

(e) How many scattering events are necessary to distribute the energy over the whole

width of a quasiband of a width of 50 meV? Show that the corresponding time

is still much shorter than the spontaneous lifetime of an excited state. (This is an

essential condition for the applicability of the quasiband model.) [Hint: neglect

the influence of thermal effects.]

(f) Determine, for the given numbers, the value of the maximum of the distribution

function for the case that the energy is distributed over the whole quasiband.

18.12 Range of validity of the quasiband model.

The quasiband model is applicable for glass laser materials at room temperature.

Cooling of the material leads to a slowing down of the energy transfer processes.

Determine the temperature at which the quasiband model is no longer applicable

if the lifetime of an excited state level with respect to an energy transfer process

is inversely proportional to temperature. [Hint: make use of data of the preceding

problem.]
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18.13 Spectral-spatial diffusion in an active glass medium.

In a fiber laser, the laser field as well as the pump field is non-uniform over the cross

section. Redistribution occurs by both spatial and spectral diffusion. It is the purpose

of this problem to study the speed of redistribution by spectral-spatial diffusion.

(a) Describe spectral-spatial diffusion by a one-dimensional differential equation

for the distribution f (x, E ,t).

(b) Solve the equation for the following case: The fiber has a quadratic cross section.

At time t = 0, excitation energy is deposited at the center of a Gaussian quasi-

band with a homogenous distribution over the cross section at x = 0. The two-

dimensional quasiparticle density for t = 0 and x = 0 is N0; x is the direction of

the fiber.

18.14 Spectral-spatial diffusion in an erbium-doped glass fiber laser.

Apply the results of the preceding problem to a cw erbium-doped fiber laser assuming

that the pump radiation is homogeneously distributed in the fiber. Assume that the

laser field has a nearly Gaussian distribution within the fiber.

(a) How broad is the spatial hole?

(b) Estimate the time it takes to fill the spatial hole.

(c) Estimate the time it takes to fill the spectral hole.

(d) How deep is the spectral hole?

18.15 Formulate the formulas describing spectral-spatial diffusion (a) in dimen-

sionless units and (b) in the frequency space ν = E/h instead of the energy space.



Chapter 19

Free-Electron Laser

In a free-electron laser (FEL), free-electrons of a velocity near the speed of light are

passing through a periodic transverse magnetic field. Due to the Lorentz force, the

electrons perform oscillations (free-electron oscillations) with displacements trans-

verse to the propagation direction. Stimulated emission of radiation by the oscillating

electrons is the origin of free-electron laser radiation. The frequency of the radiation

increases quadratically with the electron energy. Frequency tuning over a large fre-

quency range is possible by changing the electron energy; the range of the electron

energy is determined by the particle accelerator that produces an external electron

beam used to operate a free-electron laser.

Infrared and far infrared free-electron lasers generate pulses of radiation of high

power; one type of the presently operating far infrared free-electron lasers generates

quasi-continuous radiation.

Single-pass free-electron lasers, i.e., mirrorless lasers, are able to generate optical

pulses of extremely large pulse power. An important single-pass free-electron laser

is the SASE (self-amplified spontaneous emission) free-electron laser. It generates

optical pulses by amplification of spontaneously emitted radiation. X-ray SASE free-

electron lasers are successfully applied in many fields.

The equation of motion of an electron traversing a spatially periodic magnetic

field provides the oscillation frequency (resonance frequency) ω0 of the free-electron

oscillation; ω0 depends on the energy of the electron as well as on the period and the

strength of the magnetic field.

Classical theory describes the dynamics of a free-electron laser by using Maxwell’s

equations together with classical laws for the generation of radiation by moving

charges. Translational energy of electrons is converted to energy of optical radiation.

Gain for radiation occurs at frequencies slightly below ω0. Theory shows that the

amplitude of the high frequency electric field in a free-electron laser medium is lim-

ited; even if the high frequency field in a laser resonator has no loss, the field cannot

exceed a saturation field—conventional lasers do not have such a limitation. Numer-
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ical simulations provide solutions of Maxwell’s equations that allow for complete

characterization of a free-electron laser.

This chapter contains an introduction to free-electron lasers. Instead of applying

Maxwell’s theory, we present a model of the free-electron laser, which we call mod-

ulation model of the free-electron laser. The transverse oscillation of an electron at

the frequency ω0 is joined with a transverse current at ω0. The modulation model

describes the interaction of an electron with a high frequency electric field of fre-

quency ω as a phase modulation of the oscillation of the electron. Phase modulation

results in another current, the modulation current at the frequency ω. The modula-

tion leads, in an ensemble of electrons, to a modulation current density that mediates

gain for the high frequency electric field; energy of translation of the electrons is

transferred to energy of the high frequency electric field. An ensemble of electrons

represent the active medium in a free-electron laser. The modulation model contains

a numerical parameter, which is a measure of the strength of interaction of the elec-

tron oscillation and the high frequency electric field. We choose the parameter by

comparison with experimental data of free-electron lasers. The modulation model

provides analytical expressions for the saturation field amplitude and for the gain

coefficient of the free-electron laser medium. The model allows, furthermore, for an

analysis of the onset of oscillation, with the onset being initiated by radiation spon-

taneously emitted by oscillating electrons. The modulation model illustrates main

properties of a free-electron laser. According to the modulation model, saturation

of the amplitude of high frequency electric field is due to a transition of the active

medium from a state of gain to a state in which absorption compensates stimulated

emission of radiation.

We attribute, additionally, discrete energy levels, namely an energy-ladder system,

to an oscillating electron; the energy levels are equidistant and have a next near

energy level distance of �ω0. In this description, radiation is generated by stimulated

electronic transitions between discrete energy levels.

In the energy-ladder description of the elementary excitations in a free-electron

laser medium, the free-electron medium is an active medium with a population inver-

sion. In the description by classical Maxwell theory and also in the modulation model,

the free-electron laser is a laser with an active medium without population inversion.

We will not discuss a radiation source—also called free-electron laser—that is

operating at very large electron currents. In this type of free-electron laser, electron–

electron interaction gives rise to charge density domains. Electromagnetic radiation

interacts with a collective of electrons. These free-electron lasers, which are single-

pass free-electron lasers, are also able to produce radiation of very large power;

however, the radiation is not monochromatic.

19.1 Principle of the Free-Electron Laser

In a free-electron laser (Fig. 19.1), a beam of electrons (energy Eel,0) traverses a peri-

odic magnetic field (period λw). Due to the Lorentz force, the electrons execute trans-
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Fig. 19.1 Free-electron laser

verse oscillations. The oscillating electrons form an active medium ( free-electron

laser medium = FEL medium). Stimulated emission of radiation by the free-electron

oscillators gives rise to buildup and maintenance of a high frequency field in a laser

resonator. Laser radiation (output power Pout) is coupled out via a partial mirror.

The relativistic energy of an electron, which enters a periodic magnetic field with

the velocity vz,0, is given by

Eel,0 = γ m0c2, (19.1)

where m0 is the electron mass and

γ =
1

√

1 − v2
z,0/c2

(19.2)

is the Lorentz factor; γ measures the relativistic energy of an electron in units of

m0c2; γ = EMeV/0.51 MeV. The oscillation frequency of a free-electron oscillation

is equal to

ν0 =
1

1 + K 2
w/2

2cγ 2

λw

. (19.3)

Kw (= wiggler parameter) is the dimensionless wiggler strength. We will show (in

Sect. 19.3) that it is given by

Kw =
eBwλw

2πm0c
. (19.4)

Bw is the maximum strength of a magnetic field assumed to vary sinusoidally along

the wiggler axis; a value K 2
w = 1, for instance, characterizes strong transverse oscil-

lations. On the ω scale, the electron oscillation frequency is given by

ω0 =
1

1 + K 2
w/2

4πcγ 2

λw

. (19.5)
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Interaction of the free-electron oscillations with the high frequency field in the

resonator results in conversion of a portion of power of the electron beam into power

of laser radiation. The laser frequency has a value near the resonance frequency of

the free-electron oscillations,

ν ∼ ν0. (19.6)

But ν is slightly smaller than ν0. It follows that the wavelength of the laser radiation

is about equal to

λ ∼
λw

2γ 2
(1 + K 2

w/2). (19.7)

We describe the free-electron laser in more detail. A beam of relativistic electrons,

produced by the use of an accelerator (Fig. 19.2a), traverses a spatially periodic mag-

netic field and excites a radiation field in the optical resonator. The electron beam,

guided by a bending magnet into the resonator, passes the periodic magnetic field,

which is produced by use of a periodic magnet structure, the wiggler (= undulator).

The electron beam then leaves the resonator by means of a second bending mag-

net. Along the resonator axis (z axis), the magnetic field direction assumes the +y

direction and the −y direction in turn. It varies in the simplest case sinusoidally,

By = Bw sin
2π

λw

z. (19.8)

The length of the wiggler is Lw = Nwλw and Nw is the number of wiggler periods.

Due to the Lorentz force, the electrons execute oscillations perpendicular to the

magnetic field direction (y direction) and perpendicular to the z direction; i.e., the

electrons oscillate with elongations in ±x direction.

The wiggler can consist of two rows of equal magnets, with north poles N and

south poles S arranged periodically (Fig. 19.2b). The magnetization of a magnet and

the distance d between the rows determine the field strength Bw. Magnets prepared

from a samarium-cobalt alloy, which have a high magnetization, are suitable as wig-

gler magnets. Alternatively, the wiggler is a superconducting magnet with a helical

winding of the superconducting wires, leading to a circular sinusoidally varying

transverse magnetic field.

The electron beam in the range between the wiggler magnets constitutes the free-

electron laser medium (Fig. 19.2c). A radiation field propagating in +z direction is

amplified.

The length L of the optical resonator is larger than the length Lw of the wiggler;

z0 is the center of both the optical resonator and the wiggler. We consider the optical

beam as a parallel beam within the active medium.

There are various comprehensive books and articles about free-electron lasers;

see, for instance, [166, 167, 312].
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Fig. 19.2 Characterization of the free-electron laser. a Electron beam and wiggler. b Section of a

wiggler. c Optical resonator with free-electron laser (FEL) medium

19.2 Free-Electron Laser Arrangements

Operation of a free-electron laser places great demands on the accelerator.

• High current density. The current density of a quasi-continuous free-electron laser

should lie in the range 1–10 A. At smaller current, the gain is too small to reach laser

threshold. At larger current, electron interaction (Coulomb repulsion) destroys the

quality of the electron beam. The current density can be much larger in the case

that the pulses are very short—1 kA for instance or even more for electron pulses

of 0.1 ps duration.

• High quality of the electron beam. The energy distribution in the electron beam

should be narrow, for instance 0.1–1% of Eel,0. The divergence of the electron

beam should be small.

Almost all free-electron lasers make use of electron pulses, produced by linear accel-

erators, and therefore generate radiation pulses. There is one exception: free-electron

lasers at the University of California, Santa Barbara (United States) produce quasi-

continuous radiation.

The first free-electron lasers was operated at Stanford University [168, 169] and

the second at the research center in Santa Barbara. After the first demonstrations of

free-electron lasers, many research centers began to develop free-electron lasers.
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Fig. 19.3 Electrostatic

accelerator with energy

recovering and free-electron

laser

The free-electron lasers in Santa Barbara operate very successful with respect

to the study of excitations of condensed matter. An electrostatic accelerator with

a design of high originality drives a free-electron laser (Fig. 19.3). The accelerator

(6 MeV) is a pelletron (a modified van de Graaff accelerator), which allows for

a high charging current (current strength 100 µA). Metal cylinders (length about

10 cm, diameter 10 cm) move from the anode to the cathode and back. Metal tips

on the low-voltage side extract electrons from the anode and metal tips on the high-

voltage side extract electrons from the metal cylinders. Free-electrons, produced

with an electron gun at the cathode, are accelerated, pass through laser resonator and

are then recovered by a deceleration system. The recovery of the electrons makes

it possible that, during a certain time (∼30 µs), a constant current of high strength

(∼2 A) is flowing through the free-electron laser. A voltage (∼50 kV), produced

with a generator and a power supply at the cathode, accelerates the electrons to

compensate energy loss due to generation of radiation in the free-electron laser. The

wiggler consists of samarium-cobalt magnets. Radiation pulses of 30 µs duration

are generated at a repetition rate of few Hz. The radiation has a very high degree of

monochromaticity. The free-electron lasers generate millimeter wave and far infrared

radiation of a power up to 10 kW. The free-electron lasers are continuously tunable.

The free-electron laser laboratory in Santa Barbara is available as user facility.

Another user facility, available in a laboratory in Dresden (Germany), pro-

duces pulsed far infrared and infrared radiation also by using several free-electron

lasers. These free-electron lasers are driven by linear accelerators (LINACs) with

15–45 MeV electron energy and peak currents up to 100 A. The lasers generate radi-

ation pulses (duration 0.1 ps or longer) with pulse powers of 100 kW to 1 MW.

The SASE free-electron laser principle has been successfully demonstrated [170]

for visible (wavelength 530 nm) and near ultraviolet radiation (385 nm); operation of

SASE free-electron lasers generating radiation of GW power of VUV radiation in

the 100 nm range (tuned in the range 95–105 nm) [171] and of radiation at 32 nm

[172–174] has been reported. A SASE free-electron laser is a mirrorless laser;

SASE = self-amplified spontaneous emission.

Presently (2016), X-ray SASE free-electron lasers experience an exciting devel-

opment. X-ray SASE free-electron lasers are operating at wavelengths from 100 nm



19.2 Free-Electron Laser Arrangements 353

to less than 0.1 nm; for surveys, see [312, 313]. The lasers produce pulses of a few

to 100 fs duration and peak powers of 10–100 GW. There is a wide field of applica-

tions in physics, chemistry, and biology. An example is the study of nonlinear X-ray

excitation of atoms [314, 315]. X-ray SASE free-electron lasers generate radiation

with transverse coherence. Longitudinal coherence is absent according to the ini-

tial process of spontaneously generated radiation; in comparison, in a free-electron

laser, spontaneously generated radiation also initiates oscillation, however, feedback

of radiation during the onset of laser oscillation by the laser resonator results in

complete coherence of the free-electron laser radiation.

Seeded free-electron lasers, another type of single-pass free-electron lasers, pro-

vide fully coherent radiation; in a seeded free-electron laser, a coherent radiation

pulse is injected, together with an electron pulse, into a first wiggler of a series of

many wigglers in turn. Operation of seeded free-electron lasers has been demon-

strated. High harmonic radiation pulses of mode locked titanium-sapphire lasers

have been used to generate radiation at discrete frequencies in the 20–100 nm range

[313, 317–321].

Extension of the wavelength of free-electron lasers by using harmonics of the

fundamental frequency of a free-electron laser is, in principle, possible by operation

of a free-electron laser at a harmonic of the fundamental oscillation frequency of the

electrons in a laser; for recent studies, see [322, 323].

During the flight through a wiggler, an electron permanently loses energy due

to stimulated emission of radiation. Therefore, the oscillation frequency decreases

along the wiggler. In a tapered wiggler, the oscillation frequency is kept constant.

A constant oscillation frequency can be achieved either by reducing, along the +z

direction, the wiggler period or by increasing the distance d between the wiggler

magnets. Light guiding in the active medium of a SASE free-electron laser avoids

spreading of the radiation beam.

The radiation of free-electron lasers is suitable for research (e.g., in solid state

physics and biophysics), for technical applications (e.g., structuring).

19.3 Free-Electron Oscillation: Resonance Frequency

and Spontaneously Emitted Radiation

In this section, we relate the resonance frequency of the free-electron oscillation

and the electron energy. We will obtain, additionally, the spectrum of spontanously

emitted radiation. We will proceed in three steps.

• First step: we study generation of spontaneously emitted radiation and take the

relativistic Doppler effect into account. We will obtain the oscillation frequency

of the free-electron oscillations,

ν0 =
2cγ 2

λw

, (19.9)
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and a spectrum of spontaneously emitted dipole radiation, centered at ν0.

• Second step: we interpret the emission of radiation as relativistic Compton scat-

tering. We will find that the analysis also leads to the frequency ν0.

• Third step: we determine the modified resonance frequency ν0 as it occurs in

free-electron lasers.

An oscillating free-electron moving at a relativistic velocity emits radiation at a

frequency according to the relativistic Doppler effect. The radiation observed in the

laboratory frame has an extreme forward direction.

The motion of an electron through a wiggler takes the time (Fig. 19.4)

t = Nwλw/v. (19.10)

Nw is the number of wiggler periods, λw the wiggler period, and v the electron velocity

along the wiggler. In the same time in which an electron traverses the wiggler, the

electron emits an electromagnetic wave packet with Nw oscillation cycles. A wave

packet of radiation emitted in z direction has the spatial length

(c − v)t = Nwλw(1 − β)/β, (19.11)

where β = v/c. Since (c − v)t = Nwλ, where λ is the wavelength of the radiation,

it follows that

Nwλ = Nwλw(1 − β)/β (19.12)

or, with β ≈ 1,

λ ≈ (1 − β)λw. (19.13)

With 1/
√

1 − β2 = γ and

1

1 − β2
=

1

(1 − β)(1 + β)
≈

1

2(1 − β)
= γ 2, (19.14)

we find

Fig. 19.4 Path of an electron through a wiggler field and dipole radiation
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λ =
λw

2γ 2
. (19.15)

The number of oscillation cycles in a wave packet is Nw. The rectangular envelope

of the field has the temporal length

Δt = Nwλ/c. (19.16)

It follows that the power spectrum of the spontaneously emitted radiation has the

shape

Sω(ω)/Smax =
∣

∣

∣

∣

∫ Δt

0

e−i(ω−ω0)t dt

∣

∣

∣

∣

2

=
∣

∣

∣

∣

sin[2π Nw(ω − ω0)/(2ωo)]
2π Nw(ω − ω0)/(2ω0)

∣

∣

∣

∣

2

=
∣

∣

∣

∣

sin X/2

X/2

∣

∣

∣

∣

2

. (19.17)

Sω(ω) is the spectral distribution of the radiation, Smax the maximum of the spectral

distribution, ω0 = 2πc/λ the resonance frequency, and

X = 2π Nw

(

ω

ω0

− 1

)

. (19.18)

The halfwidth of the [sin(X/2)/(X/2)]2 curve (Fig. 19.5) is equal to δX0 = 5.7. This

yields an expression for the halfwidth Δω0 of the spectrum of spontaneously emitted

radiation,

Δω0

ω0

≈
1

Nw

. (19.19)

The halfwidth corresponds, for Nw = 100, to 1% of ω0. The oscillations of the

electrons are not synchronized to each other. Therefore, the phases of the wave

packets, emitted by different electrons, are statistically distributed. A pulse containing

Np electrons leads to an average amplitude that is proportional to
√

N p. The power

is proportional to Np, which itself is proportional to the strength I of the electron

current. Thus, the power of spontaneously emitted radiation is proportional to the

current strength. Since the electrons are moving at a relativistic velocity near the

speed of light, the emission occurs into a narrow cone directed along the direction

of the electron beam.

In the first step, we obtained an important result with respect to a beam of electrons,

which have a narrow energy distribution. A beam of electrons traversing a periodic

transverse magnetic field generates radiation by spontaneous emission:
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Fig. 19.5 Spectral

distribution of radiation

spontaneously emitted by

relativistic electrons in a

periodic magnetic field of

small strength (Kel = 1)

• The spectrum of spontaneously emitted radiation has a maximum at the frequency

ν0 = 2cγ 2/λw; this is the oscillation frequency (resonance frequency) of the free-

electron oscillations if Kw << 1.

• The spectrum shows a frequency distribution varying as (sin X/X)2, where

X = Nw(ν − ν0)/ν0.

• The relative width of the spectrum is 1/Nw.

In the second step, we attribute the origin of free-electron laser radiation to Comp-

ton scattering. We perform a relativistic transformation from the laboratory frame to

the electron frame. We then describe the Compton scattering in the electron frame.

The relativistic transformation back into the laboratory frame yields the wavelength

of the radiation (Fig. 19.6);

• Laboratory frame (a). An electron has the velocity v and moves toward the wiggler

field of wavelength λw.

• Electron frame, before scattering (b). The electron experiences an electromag-

netic field of the wavelength λ′ = λw/(2γ ). The wavelength λ′ is smaller than λw

because of the relativistic length contraction. The factor 1/2 occurs since the wig-

gler field in the laboratory frame is a static field (Weizsäcker-Williams theorem

[59]).

• Electron frame, scattering process (c). Compton scattering of the electromagnetic

radiation at the electrons reverses the direction of the electromagnetic field. There-

fore, the wavelength λ′ is the same before and after scattering (supposed that the

recoil energy of an electron can be neglected).

• Laboratory frame (d). The transformation back into the laboratory frame leads,

due to the relativistic contraction of length, to the wavelength λ = λw/(2γ 2).

In the first two steps, we assumed that an electron has almost no energy of trans-

verse motion and that an electron in the wiggler has therefore the γ value of a

free-electron. We come to the third step. We assume that the average energy of longi-

tudinal motion of an electron in the wiggler is notably reduced, in comparison with

the free flight, because of the occurrence of transverse oscillations. The equation of

motion in x direction is given by:

γ m0

dvx

dt
= qvz By ≈ qcBw sin

(

2π

λw

z

)

. (19.20)



19.3 Free-Electron Oscillation: Resonance Frequency … 357

Fig. 19.6 Stimulated

Compton scattering

The value of γ is a constant for electrons in the magnetic field; it is slightly smaller

than for the electrons outside the magnetic field. Integration leads to

vx =
qcBwλw

2πγ m0

cos

(

2π

λw

z

)

=
−Kwc

γ
cos

(

2π

λw

z

)

, (19.21)

vz = c

√

1 −
1

γ 2
−

v2
x

c2
≈ v̄z −

K 2
wc

4γ 2
cos

(

4π

λw

z

)

, (19.22)

where

v̄z = c

(

1 −
1 + K 2

w/2

2γ 2

)

(19.23)

is an average velocity in z direction and Kw = eλw Bw/2πm0c; the equations (19.20)

through (19.23), are treated in Problems to this chapter. The average velocity in z

direction decreases with increasing wiggler parameter. The average velocity deter-

mines the effective Lorentz parameter,

γ̄ =
1

√

1 − v̄2
z/c2

=
γ

√

1 + K 2
w/2

. (19.24)

The transverse velocity is equal to

vx = v0 cos ω0t. (19.25)

The peak velocity of the transverse motion,

v0 = cKw/γ, (19.26)

is small compared with the speed of light. We will discuss the velocities in more

detail in Sect. 19.5.
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Spontaneously emitted radiation plays an important role at the onset of laser oscil-

lation; the spectrum of spontaneously emitted radiation determines the frequency

distribution of laser radiation at steady state oscillation (Sect. 19.12).

19.4 Data of a Free-Electron Laser

We present data of a free-electron laser (Table 19.1). The data, oriented at infrared

free-electron lasers, are concerning the laser resonator, the high frequency field (=
optical field) in a resonator, the electron beam and the free-electron laser medium.

We choose the laser wavelength λ = 5 µm (laser frequency ν = 6 × 1013 Hz;

photon energy hν = 0.25 eV). A resonator of length L = 10 m is suitable as laser

resonator; the beam waist has a radius ru,0 = 3.5 mm. The lifetime of a photon in

the resonator is τp = (2L/c)/(1 − R). We assume that the reflectivity of the output

coupling mirror is R = 0.9.

We assume that the wiggler has a length of Lw = 1.2 m and a period of λw =
2.4 cm and that the number of wiggler periods is Nw = 50. The time it takes the

electrons and the radiation to pass through the wiggler field is the transit time ttr =
Lw/c (= 4 ns). The resonance frequency ν0 of the free-electron oscillations is only

slightly larger than the laser frequency ν. The gain bandwidth is 6 × 1011 Hz. A

current Iel = 100 A corresponding to a current density j = Iel/(πr2
u,0ec) = 6.6 ×

104 A m−2, an electron density N0 = jdc/(ec)= 8 × 1016 m−3, and a rate of electrons

traversing the active medium rel = I/e (= 1.2 × 1019 s−1). We assume that the small-

signal gain is G − 1 = 0.5.

We assume that the output power Pout has a value of ∼1 MW and that this output

power corresponds to laser oscillation at saturation of the high frequency field within

the laser resonator. Accordingly, the saturation of the high frequency field within

the laser resonator. Accordingly, the saturation field amplitude is Asat = A∞ ∼
4 × 107 V m−1 and the density of photons in the resonator is Z∞ = ε0 A2

∞/2hν (∼2 ×
1022 m−3). The total photon output coupling rate is rph = Pout/hν = (2.5 × 1025 s−1).

The output power,

Pout =
Z∞

τp

πr2
u,0 Lhν = (1/2)πr2

u,0(1 − R)A2
∞, (19.27)

of a free-electron laser is independent of the length of the active medium—because

of field saturation. This is a main difference between a free-electron laser and a

conventional laser: the density Z∞ of photons in the resonator of a conventional

laser and Pout increase if we increase the length of the active medium (and double

the total pump strength).

Each electron traversing the active medium generates a large number of photons:

the number of photons generated (per electron) by stimulated emission is sstim. The

time between two stimulated emission processes is τstim = ttr/sstim (= 2 × 10−14 s).
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Table 19.1 Data of a free-electron laser

Quantity Value Notation

λ 5 µm Laser wavelength

ν 6 × 1013 Hz Laser frequency

hν 0.25 eV Photon energy

L 10 m Resonator length

τp = (2L/c)/(1 − R) 7 × 10−7 s Lifetime of a photon in the

resonator

ru,0 3.5 mm Radius of the optical beam

waist = Radius of the electron

beam

Lw 1.2 m Length of wiggler

λw 2.4 cm Wiggler period

Nw 50 Number of wiggler periods

ν0 6 × 1013 Hz Resonance frequency

Δνg = ν0/2Nw 6 × 1011 Hz Gain bandwidth

ttr = Lw/c 4 × 10−9 s Transit time

Kw 0.7 Wiggler strength

Iel 100 A Current strength

jel = I/πr2
u,0 2.5 × 106 A m−2 Current density

N0 = jel/ec 5 × 1016 m−3 Electron density

rel = I/e 6 × 1020 s−1 Electron rate

G − 1 0.5 Small-signal gain

R 0.9 Reflectivity of output mirror

G∞ − 1 = 1/R − 1 0.1 Steady state gain

A∞ = Asat 4 × 107 V m−1 Amplitude of saturation field

in the resonator

Pout =
(1/2)(1 − R)cǫ0 A2

∞πr2
u,0

1 MW Output power

rph = Pout/hν 2.5 × 1024 s−1 Photon output coupling rate

sstim 2.1 × 105 Emission processes per

electron

τstim = ttr/sstim 2 × 10−14 s Time between two stimulated

emission processes

Eel,0 50 MeV Initial electron energy

Pel = rel Eel,0 5 × 109 W Power of electron beam

ηP = Pout/Pel 2 × 10−4 Power conversion efficiency

Eel,0 − Eel,∞ = sstimhν 10 keV Loss of energy of an electron
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A free-electron laser for generation of radiation in the range around 5 µm can

be realized by using a beam of electrons of an initial energy Eel,0 near 50 MeV (at

a wiggler period λw = 2.4 cm). The power efficiency, ηP = Pout/Pel on the order of

0.1%. The loss of energy of an electron, Eel,0 − Eel,∞ = sstimhν (= 500 keV) due to

stimulated emission corresponds to 10−2 Eel,0. [The loss cannot be larger, because

an electron cannot contribute to gain if its energy loss relative to the initial energy

is larger than 1/(2Nw). There is another limitation: the saturation field is limited, see

Sect. 19.8.]

The data of Table 19.1 characterize a pulsed laser and correspond to peak values.

We obtain an average output Pout,av = Pouttprp, where tp is the pulse duration and rp

the pulse repetition rate; for example, tp = 0.1 ps, rp = 107 s−1 and Pout,av = 2 W.

Laser operation requires that the amplitude of the high frequency field in the

resonator is smaller than the damage field of the laser mirrors. A short pulse duration

is therefore necessary to reach the amplitude A∞.

19.5 Rigid Coupling of Transverse and Longitudinal

Oscillation of an Electron

Entering the wiggler, an electron is submitted to the Lorentz force of the transverse

magnetic field. The electron starts a transverse oscillation. The transverse oscillation

is rigidly coupled to a longitudinal oscillation (Fig. 19.7a). The orbit of the electron

has the shape of an “eight” (see Problem 19.14). The x component, vx , of the velocity

of the electron is rigidly coupled to the z component, vz . The coupling is mediated

by the Lorentz force. The x component is given by (19.21) and the z component by

(19.22). The longitudinal velocity oscillates twice as fast as the transverse velocity

(Fig. 19.8b).

The transverse velocity of an electron is small compared with the speed of light.

We can therefore describe the transverse motion nonrelativistically. An observer in

Fig. 19.7 Rigidly coupled transverse and longitudinal motion of an electron. a Displacements in

the x, z plane see Problems to this chapter. b Temporal variations of transverse and longitudinal

velocities



19.5 Rigid Coupling of Transverse and Longitudinal … 361

Fig. 19.8 Transverse

oscillation of an electron;

velocity, energy, and

displacement

the laboratory system registers the following (Fig. 19.8). During the flight through

the wiggler, an electron performs a transverse oscillation with the electron oscillation

frequency

ω0 =
1

1 + K 2
w

4π cγ 2

λw

. (19.28)

The transverse velocity is equal to

v = v0 cos ω0 t; v0 = c Kw/γ. (19.29)

(We omit the subscript x .) The energy of transverse motion is equal to

ǫ =
m

2
v2 = ǫm cos ω2

0t, (19.30)

where

ǫm =
m0

2
v2

0 =
m0c2 K 2

w

γ 2
(19.31)

is the maximum kinetic energy of oscillation. It is proportional to the square of the

wiggler parameter and inversely proportional to the square of the Lorentz parameter.

It follows from the velocity that the trajectory for the transverse displacement is given

by

ξ = −ξ0 sin ω0 t, (19.32)
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where

ξ0 =
vp

ω0

=
cKw

ω0γ
(19.33)

is the amplitude of the transverse oscillation. The electron oscillates around the

straight path, which it would take if a magnetic field were absent.

Example When ν0 = 6 × 1013 Hz, Kw = 0.7, γ = 100, then vp = 7 × 10−3c and

ξ0 = 11 nm. The maximum energy is ǫm = 2.2 × 19−18 J (∼14 eV). The photon

energy is �ω = 4 × 10−20 J (∼0.25 eV).

19.6 High Frequency Transverse Currents

Two different types of transverse currents (both oscillating in ±x direction) are

characteristic of the active medium of a free-electron laser. We now introduce two

types of currents.

• Transverse electron current Ie(ω0). The transverse electron current is joined with

the transverse oscillation of a single electron in the wiggler field, Ie = −ev =
−ev0 cos ω0t, where v0 = cKW/γ is the amplitude of the transverse current and

ω0 the oscillation frequency.

• Transverse modulation current Imod(ω). The modulation current is a consequence

of the interaction of the electron oscillation with a high frequency electric field of

frequency ω. The interaction is due to phase modulation of the electron oscillation.

The modulation current of an electron leads to a transverse dynamical conductivity

of an ensemble of electrons in a free-electron laser medium.

A high frequency electric field (oriented along x) of frequency ω and amplitude

A,

Ẽ(ω) = A eiωt , (19.34)

exerts an electric force on an electron. This causes a change of the trajectory of the

electron in the wiggler. We will describe the action of the field as a phase modulation

of the transverse velocity v (and accordingly of the transverse current Ie). The phase

modulated oscillation of the electron leads to a transverse modulation velocity

vmod(ω) ≡ ṽ(ω) = v1(ω) − iv2(ω) (19.35)

at the frequency ω of the high frequency electric field. The modulation velocity

depends linearly on the electric field:

ṽ(ω) = η̃(ω) Ẽ(ω), (19.36)
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where η̃(ω) is the complex dynamical mobility of an electron for transverse motion

under the action of a high frequency electric field. We can characterize an ensemble

of electrons performing modulated oscillations at the frequency ω by a transverse

current density j̃(ω). Assuming that electrons of an ensemble are oscillating syn-

chronously, we obtain a transverse current density at a location of a free-electron

laser medium that is given by

j̃(ω) = N0 q ṽ(ω) = N0 q η̃(ω) Ẽ(ω) (19.37)

or

j̃(ω) = σ̃ (ω) Ẽ(ω). (19.38)

N0 is the electron density, σ̃ (ω) = N0 q η̃(ω) is the transverse dynamical conductiv-

ity of the free-electron laser medium at the frequency ω, and q = (−e) is the electron

charge.

We thus describe the linear response of the free-electron laser medium to a high

frequency electric field by the transverse modulation current density in the free-

electron laser medium (Fig. 19.9b),

The linear response is characterized by the complex high frequency conductivity

σ̃ (ω) = σ1(ω) − i σ2(ω). (19.39)

The current density,

j̃(ω) = j1(ω) − i j2(ω) = σ1(ω)A cos ωt − iσ2(ω)A sin ωt, (19.40)

has a real part

j1(ω) = σ1(ω)A cos ωt (19.41)

Fig. 19.9 Response of a free-electron laser medium to a high frequency field. a Free-electron laser

medium: ensemble of free-electron oscillators. b Field and current density
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that has the same phase as the field. Gain occurs if σ1(ω) < 0. The (negative) imag-

inary part

j2(ω) = σ2(ω)A sin ωt (19.42)

has a phase of 90◦ relative to the field and corresponds to an inductive current. The

current is phase shifted relative to the field,

j (ω) = σ(ω)A cos[ωt + ϕ(ω)], (19.43)

where

σ =
√

σ 2
1 + σ 2

2 (19.44)

is the absolute value of the conductivity and where ϕ is the phase between current

density and field. The phase follows from the relation

tan ϕ = σ2/σ1. (19.45)

We assume that the optical beam has the same lateral extension as the electron

beam and that the electron density N0 and the amplitude A of the high frequency

field do not vary over the cross section. Our goal is to derive σ1(ω) and σ2(ω). gain

coefficient. From the real part of the high frequency transverse conductivity, we

obtain the (small-signal) gain coefficient:

α(ω) = −
1

ε0c
σ1(ω). (19.46)

Here, we give a short description, how a free-electron laser works according to

the modulation model presented in the next section. Single electrons in the wiggler

perform oscillations at the resonance frequency ω0. A high frequency electric field

of frequency ω modulates the oscillations. The modulation results in a transverse

modulation current density j̃(ω) at the frequency of the electric field. The electric

field can be amplified or damped-depending on the phase between the modulation

current density and the field. In the case that amplification occurs, i.e., if σ1(ω) is

negative, then the gain coefficient α(ω) is positive and the free-electron laser medium

is an active medium. If the threshold condition for laser oscillation is satisfied, a free-

electron laser starts oscillation itself and maintains oscillation as long as electrons

are propagating through the wiggler. A weak high frequency electric field initiates

oscillation of a free-electron laser. Mutual interaction of the field and the transverse

modulation current leads to growth of both the field and the modulation current. The

initial high frequency electric field is created by spontaneous emission of radiation

by the transversely oscillating electrons.
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Since the transverse dynamical conductivity is a local quantity, the gain coefficient

α(ω) is also a local quantity. It is a goal to determine the dependence of the gain

coefficient α on frequency, location, and on time.

Introduction of a modulation current density for characterization of an active

medium of a free-electron laser medium that is based on monopole oscillations of

electrons is equivalent to the introduction of a polarization (Chap. 9) for characteri-

zation of an active medium of a laser that is based on dipole oscillations in an active

medium (containing two-level atomic systems).

19.7 Modulation Model of the Free-Electron Laser

An electron that entered the wiggler performs a transverse oscillation, in x direction,

with the transverse velocity

v = v0 cos ω0t, (19.47)

where

v0 =
cKw

γ
(19.48)

is the amplitude of the transverse velocity and ω0 the frequency of the oscillation.

We now assume that an oscillating electron travels along z together with the high

frequency field E , which is oriented along x ,

E(ω) = A cos ωt. (19.49)

A is the amplitude and ω the frequency of the field. The high frequency field causes

a phase modulation of the electron oscillation. The electron has an instantaneous

frequency

ωinst = ω0 + κ A cos ωt, (19.50)

where κ is the coupling strength. We will show that κ is proportional to the wiggler

parameter Kw. We relate the instantaneous frequency to a phase according to the

relationship ω = ∂ϕ/∂t . Integration leads to the instantaneous phase

ϕinst = ω0(t − t0) + μ(sin ωt − sin ωt0), (19.51)

where t0 is a starting time of the oscillation. The instantaneous transverse velocity is

given by

vinst(t, t0) = v0 cos [ω0(t − t0) + μ(sin ωt − sin ωt0)], (19.52)

http://dx.doi.org/10.1007/978-3-319-50651-7_9
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where

μ =
κ A

ω
(19.53)

is the modulation index. It is proportional to the coupling strength and to the amplitude

of the high frequency electric field, and inversely proportional to the frequency. The

modulation index is a measure for the deviation of the instantaneous phase from the

phase ω0t.

In the case that ω < ω0, the electron oscillates faster than the field (Fig. 19.10).

Accordingly, the phase between the electron oscillation and the field increases con-

tinuously with time—we denote this as dephasing. The continuous increase of the

phase difference can be interrupted by a stimulated emission process. A stimulated

emission process occurs preferentially when the phase between velocity and elec-

tric field is zero. A stimulated emission process changes the phase of the electron

oscillation. After a stimulated emission process, the phase difference grows until

a new stimulated emission process takes place. The time between two subsequent

stimulated emission processes is the dephasing time τ ; we suppose that the elec-

tron follows the Lorentz force by the static magnetic field adiabatically. Stimulated

emission of a photon by an oscillating electron does not change the frequency ω of

the high frequency field and the frequency ω0 of the electron oscillation is the same

before and after stimulated emission of a photon. The amplitude v0 of the transverse

velocity remains also unchanged. Stimulated emission processes in turn lead to syn-

chronization of the electron oscillation to the electric field. We thus find that the

transverse oscillation of the electron mediates gain for the field. Energy of transverse

motion is converted to energy of radiation.

The free-electron oscillation of a free-electron in a periodic magnetic field repre-

sents a monopole oscillation (Sect. 4.12). Interaction with an external high frequency

field changes the phase of the oscillation but not the amplitude.

Fig. 19.10 Electric field and transverse velocity of an electron; star, stimulated emission process;

τ , dephasing time

http://dx.doi.org/10.1007/978-3-319-50651-7_4
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The probability that an oscillating electron does not undergo a stimulated emission

process in the time interval t − t0, t is given by

p(t, t0) = e− (t−t0)/τ , (19.54)

where τ is the dephasing time. The temporal average over all starting times yields

the transverse modulation velocity

vmod(t) = v0

1

τ

∫ t

−∞
p(t, t0)v(t, t0)dt0. (19.55)

The modulation-velocity varies periodically with the period T = 2π/ω of the high

frequency field. A Fourier transformation [15] yields the amplitude of the real part

of the modulation-velocity:

v1 = v0

+∞
∑

n=−∞
Jn(μ)

(ω0 + nω)τ

(ω0 + nω)2τ 2 + 1
. (19.56)

Jn is the Bessel function of nth order.

The modulation velocity shows resonances for n = −1,−2,−3, . . ., i.e., if

ω = ω0/|n|. (19.57)

In the following, we will study free-electron lasers that operate on the fundamental

resonance (n = −1). We will not treat higher order resonance free-electron lasers;

these are working on higher order resonances (n = −2,−3, . . .).

Using the relationship J−1 = J1, we obtain, for n = 1, the real part of the mod-

ulation velocity

v1 = −2v1,m ḡL,disp(ω), (19.58)

where

v1,m = (v0/2)J1(μ) (19.59)

is the maximum modulation velocity, J1(μ) is the Bessel function of first order with

the argument μ, and

ḡL,disp =
(ω0 − ω)Δω0/4

(ω0 − ω)2 + Δω2
0/4

(19.60)
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is the “normalized” Lorentz dispersion function; normalized is the corresponding

normalized Lorentz resonance function:

ḡL,res(ω) =
Δω2

0/4

(ω0 − ω)2 + Δω2
0/4

. (19.61)

The halfwidth of the resonance function is determined by the dephasing time accord-

ing to the relationship

Δω0 =
2

τ
. (19.62)

The real part of the modulation velocity provides the real part of the mobility, η1 =
∨1/E . It follows that the modulation current density of an ensemble of electrons is

equal to

σ1(ω) = 2σ1,mḡL,disp(ω), (19.63)

σ1,m =
N0qv0 J1(μ)

2A
. (19.64)

The gain coefficient for radiation propagating through an ensemble of oscillating

electrons is equal to

α′(ω) = −
1

c ε0

σ1(ω) = 2α′
m

(ω0 − ω) Δω0/4

(ω0 − ω)2 + Δω2
0/4

, (19.65)

where (with ∨0 = c Kw/γ and q = −e)

α′
m =

σ1,m

c ε0

=
N0 e Kw

2 ε0 γ
×

J1(μ)

A
(19.66)

is the maximum gain coefficient. The dash indicates that α′ is the gain coefficient of

the electron ensemble in the electron frame. According to the dimension (m−1) of α′,
we find for the gain coefficient α in the laboratory frame the relationship α = γ α′

or

α(ω) = 2αm

(ω0 − ω) Δω0/4

(ω0 − ω)2 + Δω2
0/4

, (19.67)

where

αm ≡ αmax =
N0 e Kw

2 ε0

×
J1(μ)

A
. (19.68)
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Fig. 19.11 Gain coefficient of a free-electron laser medium

We can expand the Bessel function, J1(μ) = μ/2 for μ ≤ 1 and find

αm =
N0 e Kw

4 ε0

×
μ

A
. (19.69)

The maximum gain coefficient is proportional to the ratio μ/A. The maximum gain

coefficient is independent of Δω0.

The gain coefficient curve (Fig. 19.11) is, in the vicinity of the resonance fre-

quency, antisymmetric with respect to the resonance frequency ω0; we suppose that

Δω0 << ω0. Gain occurs if ω < ω0 and loss if ω > ω0. The frequency distance

between the extrema of the gain curve is equal to Δω0. We will later show that laser

oscillation occurs in a range (dashed) between ω1 and ω0 that has the width Δω0.

The center frequency of the range of laser oscillation is equal to ωc. In a continu-

ous wave free-electron laser, the laser frequency lies in the range < ω1, ω0 >. In a

pulsed laser, all modes in the frequency range < ω1, ω0 > are excited. (At small and

large frequencies, the Lorentz dispersion function has to be replaced by the general

Lorentz dispersion function. The dotted curve indicates the shape near ω = 0.)

We can replace N0 by the electron current density jel by using the relationship

jel = N0 e c (19.70)

and find

αm =
eKw jel

4 ε0 e c
×

μ

A
. (19.71)

With the current strength

Iel = jel amode, (19.72)

we can write

αm =
Kw Iel

4 c ε0 amode

×
μ

A
. (19.73)
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We have assumed that the electron beam and the optical beam have the same

cross section and that the electrons and the energy density in the optical beam have

the same rectangular lateral distribution. If the distribution of the area of the optical

beam is larger than the area of the electron beam, then αm is the maximum modal

gain coefficient, i.e., the gain coefficient related to the lateral size of the optical mode.

In the following, we will omit the index “m,modal” when we are dealing with the

modal gain coefficient,

α ≡ αm,modal =
Kw Iel

4 c ε0 amode

×
μ

A
. (19.74)

(Interaction of the high frequency electric field occurs with single electrons and

the response is linear. If the mode area of the optical mode is larger than the area

of the electron beam, then the modal gain coefficient is almost independent of the

shape of the distribution of the electrons in the electron beam; we suppose that the

center of the electron beam coincides with the center of the optical beam.)

The Bessel function (Fig. 19.12, upper part) has a maximum (for μ = 1.8). In the

range of the modulation degree between μ ≈ 1 and μ = 1.8, the gain coefficient

has to be replaced by the differential gain coefficient

αd(ω) = αd,mgL,disp, (19.75)

where

αd,m ≡ αd,max =
N0 e Kw

2 ε0 A
×

dJ

dμ
(19.76)

is the maximum differential gain coefficient (Fig. 19.12, lower part). The maximum

differential gain decreases strongly above μ ≈ 1, becomes zero for μ = 1.8 and

negative for μ > 1.8. The amplitude of the high frequency electric field at which the

gain coefficient is zero is given by the relationship A(μ = 1.8) = 1.8 ω0/κ.

Fig. 19.12 Modulation index and maximum gain coefficient of a free-electron laser medium.

a Bessel function and maximum differential gain coefficient; μc, critical modulation index and

Asat, saturation field amplitude. b Transition to the saturation state
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We will introduce (in the next two sections) a saturation field amplitude Asat

and attribute the saturation field amplitude to a critical modulation index μc. We

will choose μc = 1. If, at the onset of oscillation of a free-electron laser, the sat-

uration field amplitude and thus the critical modulation index is reached, then the

active medium goes over into the state of saturation (Fig. 19.12b). The maximum

gain coefficient αm is almost constant up to μc. Therefore, αm is the small-signal

gain coefficient as well as the large-signal gain coefficient. (However, we will differ

between small-signal gain and large-signal gain; see, Sect. 19.12.)

19.8 Saturation Field and Energy of Distortion

In this section, we present a criterion that allows for an estimate of the saturation

field amplitude Asat. We study a free-electron laser at steady state oscillation. The

field at a location in the laser resonator has the amplitude Asat,

E = Asat cos ωt. (19.77)

We consider the case that the phase between the velocity of an electron and the

electric field is equal to zero,

v = v0 cos ω0t ; v0 = c Kw/γ. (19.78)

We ask the question: which is the maximum rate at which energy can be exchanged

between an oscillating electron and an optical field? We introduce the criterion:

The work done by an electron during an oscillation cycle has an upper limit. At the

upper limit, the work results in a strong distortion of the electron oscillation.

The work done by an electron under the action of the high frequency field has a

maximum value if the phase between field and velocity of the electron oscillation is

zero. Then, the work is given by

W1,φ=0 = −ev0 Asat

∫ T

0

cos(ω0t) cos(ωt) dt (19.79)

The solution is, with ω0 ≈ ω, equal to

W1,φ=0 = −π e v0 Asat/ω. (19.80)

We now assume that distortion occurs if the work is equal to the distortion energy

E∗, i.e., if

W1,φ=0 = −E∗. (19.81)

Comparison of (1980) and (1981) provides the saturation field amplitude
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Asat =
E∗ω

π e v0

=
(E∗/e) γ ω

π c Kw

. (19.82)

The saturation field amplitude Asat is proportional to the distortion energy, to

the Lorentz factor, and to the frequency. It is inversely proportional to the wiggler

parameter Kw. The frequency dependence corresponds to an ω3/2 dependence.

A process leading to distortion changes the phase of the oscillation by π. After

a change of the phase, the reversed process occurs: the field transfers energy to the

electron. The work is given

W1,φ=π = +ev0 Asat

∫ T

0

cos(ω0t) cos(ωt) dt = + π ev0 Asat/ω, (19.83)

or,

W1,φ=π = +E∗. (19.84)

Our analysis implies that a process that causes distortion is accompanied by stim-

ulated emission of radiation and that the reversed process is accompanied by absorp-

tion of radiation. Absorption of radiation during a cycle of the electron oscillation

follows on stimulated emission during the preceding cycle of the electron oscillation.

At steady state oscillation of a free-electron laser, there is, in the saturation region of

the wiggler, no net energy transfer of energy from the electrons to the field and vice

versa, from the field to the electrons: absorption compensates stimulated emission

of radiation. Analysis of free-electron laser data (Sect. 19.10) on basis of the ideas

presented in this section suggest that a process causing distortion involves more than

one photon per electron oscillation cycle. This corresponds to a fast cascade of stim-

ulated emission of photons during one cycle of the electron oscillation. The reversed

process involves the same number of photons and corresponds to a fast cascade of

absorption processes during one cycle of the electron oscillation. The processes are

also discussed in Sects. 19.13, 19.17, and 19.19.

We will treat the distortion energy as a parameter that can be determined from

experimental data of free-electron lasers. We expect that the distortion energy

depends on the wiggler parameter. We will show that experimental data for exist-

ing free-electron lasers are consistent with a distortion energy on the order of 1

eV (E∗/e ≈ 2 V); see also Problem 19.16 suggesting a derivation of the distortion

energy.

Example 5µm FEL (see Sect. 19.10). ν = 60 THz, Eel = 37 MeV, γ = 74,

Kw = 0.7, and E∗/e = 2 V. We find Asat = 4 × 107 V m−1.

The power, Pres, of electromagnetic radiation in the resonator of a free-electron

laser at steady state operation is given by

Pres =
1

2
c ε0 A2

sat amode, (19.85)
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where amode is the cross sectional area of the area of the waist of the optical beam. If

the beam is a Gaussian beam, then amode = π r2
u , where ru is the radius of the beam

waist with respect to the distribution of the energy density of the electromagnetic

radiation. The output power of a free-electron laser is given by

Pout = (1 − R)Pres =
1

2
c ε0 (1 − R) amode A2

sat, (19.86)

where 1 − R is the portion of power of radiation coupled out from the laser resonator.

19.9 Critical Modulation Index

The modulation index depends, according to its definition, on the coupling strength,

μ =
κ A

ω
. (19.87)

We introduce the critical modulation index μc by the relationship

μ

μc

=
A

Asat

or
μ

A
=

μc

Asat

. (19.88)

The critical modulation index, a dimensionless number, corresponds to the modula-

tion index that is reached if the amplitude of the high frequency electric field is equal

to the saturation field amplitude Asat.

In order to find out the value of μc, we consider the phase difference between the

transverse oscillation of an electron and the high frequency electric field,

φ(x) = x − μ sin ax, (19.89)

where x = ω0t is the phase for μ = 0 and a = (ω0 − ω)/ω0 is the difference of

the frequencies of the electron oscillation and the high frequency electric field,

divided by ω0. Without modulation (μ = 0), the phase φ increases linearly with

time. In the case that a high frequency electric field modulates the electron oscil-

lation, the phase difference oscillates around the φ = x line. The amplitude of this

oscillation increases with increasing μ. The phase difference φ increases continu-

ously with time as long as μ < 1. However, for μ > 1, the same phase difference

can be obtained for two different times. The change from the continuous increase

to the more complicated behavior occurs at the critical modulation index μc. We

find the value of μc from the condition that the derivative dφ/dx is zero, that is,

dφ/dx = 1 − μ a = 0, which leads to

μc =
1

a
≈ 1 (19.90)

for 1 − a << 1, i.e., if ω0 − ω << ω0.
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The critical modulation index, a dimensionless number, corresponds to the mod-

ulation index that is reached if the amplitude of the high frequency electric field is

equal to the saturation field amplitude

Asat =
(E∗/e)γω

πcKw

. (19.91)

We find the coupling strength

κ =
ω μc

Asat

=
π c Kw

(E∗/e) γ
. (19.92)

The modal gain coefficient is equal to

α =
Kw Iel

4 c ε0 amode

×
1

Asat

=
π K 2

w Iel

4ε0 (E∗/e) amode γ ω
. (19.93)

The modulation model thus leads to the result (Fig. 19.13) that, at fixed frequency,

the coupling strength κ increases as proportional to the wiggler parameter Kw, the

saturation field amplitude Asat is inversely proportional to Kw, and the gain coefficient

α is proportional to the square of the wiggler parameter.

The coupling strength κ ω−1/2, the saturation field increases, with increasing fre-

quency, as ω3/2, and the maximum gain coefficient decreases as ω−3/2. The coupling

strength and the maximum gain coefficient are inversely proportional to the distor-

tion energy E∗, while the saturation field amplitude is proportional to the distortion

energy.

We find the relationship

α Asat =
Kw Iel

4 c ε0 amode

. (19.94)

Fig. 19.13 Dependencies of

coupling strength, saturation

field, and maximum gain

coefficient on the wiggler

parameter
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The product of the modal gain coefficient and the saturation field amplitude is

proportional to the wiggler parameter Kw and to the modal current density. It is

independent of frequency and of the distortion energy E∗.
In the case that the diameter of the electron beam is equal to the diameter of the

optical beam, both supposed to be parallel beams, we obtain the saturation field (that

is independent of the electron density)

Asat(ω) =
(E∗/e) γ ω

π c Kw

(19.95)

and the gain coefficient

α(ω) = 2αm(ω) ḡL,disp(ω); with αm(ω) =
π c e K 2

w N0

4ε0(E∗/e) γ ω
. (19.96)

The expressions on the frequency scale are:

Asat(ν) =
2(E∗/e) γ ν

c Kw

(19.97)

and

α(ν) = 2αm(ν) ḡL,disp(ν); with αm(ν) =
c e K 2

w N0

8 ε0(E∗/e) γ ν
. (19.98)

19.10 Modulation Model and Data of Free-Electron Lasers

In this section, we compare results of the modulation model with free-electron laser

data. The data concern free-electron lasers operating in the infrared, the far infrared

and millimeter wave regions covering a wavelength range of 9 octaves (from 1.6 µm

to 3 mm); tuning over more than one octave is possible with one device.

The saturation field is given by

Asat =
(E∗/e) γ ω

π c Kw

(19.99)

and the (maximum) modal gain coefficient by

α =
π K 2

w Iel

4ε0(E∗/e) amode γ ω
. (19.100)

In order to obtain a survey of the saturation field amplitude and the modal gain

coefficient, we chose the following parameters.



376 19 Free-Electron Laser

Kw = 0.7, wiggler parameter.

λw = 4 cm, wiggler wavelength.

Iel = 100 A, electron current strength.

amode = 0.3 cm2, area of beam waist; corresponding to a beam waist of ru = 3 mm

for a Gaussian beam; the quantities relate to the lateral distribution of the power.

E∗/e = 2 V, energy of distortion/e.

Further quantities are:

Asat, saturation field amplitude.

α, modal gain coefficient; we omit the index m (for maximum).

tp, pulse duration.

Pres, power of optical radiation in the laser resonator; peak power for a pulsed

laser.

Pout, output power; Pout = (1 − R) Pres.

L res, resonator length.

With ω = 2πν and ν = 1012 νTHz, we find Asat, in units of V m−1,

Asat = 2 × 105 (νTHz)
3/2 (19.101)

and α, in units of m−1,

α =
1.7 × 103

(νTHz)3/2
. (19.102)

The solid lines of Fig. 19.14 show the saturation field amplitude and the maxi-

mum gain coefficient in a large frequency range, including millimeter waves and

far infrared and infrared wavelengths.

Which are practical operation conditions?

• G − 1 ≈ 1. Free-electron lasers operate preferably at a gain of about 100% per

transit of radiation through the resonator. This corresponds, at a wiggler length of

1 m, to αm = 0.7 m−1. The gain coefficient is adjustable to a large extent, mainly

by changing the current strength Iel and the mode area amode, i.e., by changing the

modal current density. The gain coefficient can be varied, in comparison to the

values of the solid curve for constant current density, given in the figure, by orders

of magnitude.

• Asat. Variation of the saturation field is only possible to a small extent.

• Pres. The power of optical radiation in the laser resonator can be increased, espe-

cially in the range of large gain coefficient, by choosing a large area of the cross

section of the optical mode. The output power increases accordingly.

Changing the wiggler parameter allows for a further modification of the gain coeffi-

cient (and of the saturation field amplitude).
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Fig. 19.14 Modulation model and laser data; upper part saturation field amplitude according to

the modulation model for Kw = 0.7 (solid line) and laser data (dots); lower part gain coefficient

according to the modulation model for Kw = 0.7, Iel = 100 A, and ru = 3 mm (solid line) and laser

data (square dots) for different lasers, operated at different current densities, and the corresponding

values (triangles) supposing Kw = 0.7, Iel = 100 A, and ru = 3 mm; dotted line corresponding to

α = 0.7 m−1 or a gain of 100% per transit of radiation through the wiggler

Points in Fig. 19.14 represent data extracted from information about free-electron

lasers in three laboratories. We will characterize a free-electron laser by one of the

operation wavelengths. For some of the examples, the magnitude of the mode area

is a guess.

• 1.6 µm FEL (JNFAF); pulsed laser. Free-electron laser at the Thomas Jefferson

National Acceleration Facility, Newport News, USA. A systematic experimental

study (published in 2007 [326]) was accompanied by a theoretical analysis via

simulation studies based on Maxwell’s equations.

• 5 µm FEL and further FELs (Dresden); pulsed lasers. Tunable free-electron lasers

at the Helmholtz Zentrum Dresden (https://www.hzdr.de/).

• 30 µm FEL and further FELs (UCSB); quasi-continuous working lasers. Tunable

free-electron lasers at the University of California, Santa Barbara

(http://sbfel3.ucsb.edu/).

We mention here only very few experimental data. The data concern:

in Example 1 experimental gain and power, but amode fitted;

in Example 2 experimental gain and power for operation at maximum output

power, but amode fitted;

in Examples 2–6 design parameters (with known amode).

https://www.hzdr.de/
http://sbfel3.ucsb.edu/
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Example 1 1.6 µm FEL (JNFAF); ν = 188 THz, hν = 0.8 eV, Eel = 115 MeV,

γ = 230, Nw = 30, Lw = 1.65 m, λw = 5.5 cm, Kw = 0.64, Iel = 100 A,

L res = 30 m, 1 − R = 0.1, tp = 150 fs, G − 1 = 0.7, Pout = 2 × 108 W.

We find the modal gain coefficient αm = 0.3 m−1 and, assuming that the radius of

the waist of the beam (in a near concentric resonator) was ru = 2 mm, the saturation

field amplitude is given by Asat = 2 × 108 V m−1. The experimental value for the

gain G − 1 and for the average output power (12 kW) agreed (within few percent)

with theoretical values determined by a three-dimensional simulation [326]. The

FEL emitted pulses at a repetition rate of 37 MHz (corresponding to the resonator

length). For determination of the pulse power, we took into account that the pulses

had Gaussian shape.

Example 2 5 µm FEL (Dresden), pulsed laser; ν = 60 THz, hν = 0.25 eV, Eel =
37 MeV, γ = 74, Kw = 0.7, Nw = 68, tp = Nw/ν = 1 ps, Lw = 2 m,

Iel = 100 A, 1 − R = 0.07, G − 1 = 0.7; Pout = 2 MW. We find α = 0.4 m−1

and, assuming a mode diameter of ru = 2 mm, Asat = 4 × 107 V m−1.

Example 3 30 µm FEL (UCSB); quasi-continuous wave laser. ν = 10 THz, hν =
40 meV, Eel = 6 MeV, γ = 12.74, Kw = 0.78, λw = 1.85 cm, Lw = 2.3 m,

Nw = 122, I0 = 2 A, amode = 0.4 cm2, G − 1 ≈ 1, Pres = 89 kW,1 − R =
0.07, Pout = 6 kW. We find α = 0.3 m−1 and Asat = 1.2 × 106 V m−1.

Example 4 63 µm FEL (UCSB); quasi continuous wave laser. ν = 4.7 THz,

hν = 19 meV, Eel = 6 MeV, γ = 12.7, Kw = 0.13, λw = 2 cm, Lw = 3 m,

Nw = 150, Iel = 2 A, amode = 1 cm × 1 cm, G − 1 = 0.7, Pres = 370 kW,

1 − R = 0.03, Pout = 11 kW. We find α = 0.2 m−1 and Asat = 5 × 106 V m−1.

Example 5 300 µm FEL (UCSB). ν = 1 THz, hν = 4 meV, Eel = 6 MeV, γ =
12.7, Kw = 0.7, λw = 2 cm, Lw = 3 m, Nw = 150, Iel = 2 A, amode = 0.8 cm2,

1 − R = 0.01, G − 1 = 1.7, Pres = 163 kW, 1 − R = 0.04, Pout = 7 kW. We

find α = 1 m−1 and Asat = 1.1 × 106 V m−1.

Example 6 1 mm FEL (UCSB). ν = 0.33 THz, hν = 1.4 meV, Eel = 2 MeV, γ =
4, Kw = 0.73, λw = 3 cm, Lw = 0.48 m, Nw = 16, Iel = 2 A, a = 2 cm2, L res

= 0.58 m, 1 − R = 0.07, G − 1 = 0.8, Pout = 3 kW. We find αm = 2.5 m−1

and Asat = 1.0 × 105 V m−1.

The efficiency η = Pout/ [(Eel/e) Iel] of the free-electron lasers for conversion of

translational energy of the electrons to radiation energy can reach values on the order

of 0.1%.

The far infrared lasers (Examples 3–5) are using hybrid resonators. A hybrid

resonator consists of a parallel plate resonator combined with an optical resonator.

The arrangement results in a mode volume that is larger than for a purely Gaussian

beam resonator. Radiation is coupled out from a free-electron resonator via a hole

in one of the optical mirrors. (Broadband dielectric mirrors are not available for
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radiation at wavelengths below a few micrometer. Metal film mirrors are not suitable

as partially transparent mirrors because of a strong absorptivity in comparison to the

transmissivity.) Diffraction of radiation in a resonator at a hole in a mirror causes

internal loss. This loss is frequency dependent. Accordingly, the net gain and the

output power of free-electron lasers operating at wavelengths below a few micrometer

can strongly depend on frequency. In our discussion of the laser power, we consider

maximum values reported, since these occur when internal loss has a small influence

on gain and power.

We conclude from the analysis that an electron generates 104–107 photons during

the flight through the wiggler at steady state oscillation of a free-electron laser.

Accordingly, in the last part of the gain region of the wiggler, more than one photon

per period of electron oscillation is generated.

Thus, the modulation model provides data for the saturation field amplitude that

are, in principle, in accord with laser data known from experimental and design

parameters. Experimental data for gain coefficients are in accord with the modulation

model if we take account of the appropriate values of the current strength and the mode

area of different lasers. We summarize results obtained by applying the modulation

model.

• The gain coefficient varies as ω−3/2 (for fixed Kw and λw and fixed current density).

• The saturation field amplitude varies as ω3/2 (for fixed Kw and λw).

• The modulation model contains a parameter, the distortion energy E∗, which we

adjust to experimental data or design data of free-electron lasers; for a derivation

of the distortion energy, see Problem 19.16.

• The product of the gain coefficient and the saturation field amplitude is a constant

that contains only the wiggler parameter and the modal current density; the constant

is independent of frequency and of the distortion energy.

• At steady state oscillation of a free-electron laser, the orbit of an electron undergoes

a transition into a distorted oscillation state if the electron traverses the saturation

range of the wiggler.

• The modulation model seems to be applicable for characterization of lasers as well

as of SASE free-electron lasers, that is, from millimeter waves to X-rays—see next

section.

19.11 Modulation Model and SASE Free-Electron Lasers

In this section, we ask the question whether the modulation model is suitable to

describe SASE free-electron lasers. There are worldwide many SASE free-electron

lasers in operation or in planning. We will compare data following from the modu-

lation model with experimental or design data of two SASE free-electron lasers:

SASE free-electron laser FLASH, operating at DESY, Hamburg, see

https://flash.desy.de/ and [331].

https://flash.desy.de/
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SASE free-electron laser, simulation data, published in 2007 [173], see also https://

portal.slac.stanford.edu for information about operating free-electron lasers at

SLAC National Accelerator Laboratory, Stanford.

According to the modulation model, the gain coefficient is given by

α =
π K 2

w Iel

4ε0 (E∗/e) amode γ ω
, (19.103)

and the saturation field amplitude by

Asat =
(E∗/e) γ ω

π c Kw

. (19.104)

We choose the same value for the distortion energy E∗ as for the free-electron lasers

discussed in the preceding section; the saturation field amplitude is most likely vary-

ing less strongly with frequency as discussed in Problem 19.17.

Example 1 5.8 nm SASE FEL (Flash, Hamburg).ν = 5 × 1016 Hz, hν = 200 eV,

Eel = 1.1 GeV, γ = 2.1 × 103, Lw = 27 m, λw = 2.7 cm, Kw = 1.1,

Iel = 80 A, tp = 20 fs, Pout = 1 × 109 W. The Flash FEL produces radiation of a

relative spectral width of 1%. The wiggler consists of periodically arranged magnets

at constant period. During the transit through the wiggler, an electron loses 1% of

its initial energy, corresponding to 11 MeV. We conclude that an electron generates

5 × 104 photons by stimulated emission, i.e., that the gain of radiation is equal to

G = 5 × 104. The number of photons in a pulse is equal to Z = Pout/hν= 3 × 1011.

Thus, the initial number of spontaneously emitted photons is of the order of 107.

It follows from the value of the gain that the modal gain coefficient is equal to

α = 0.4 m−1. This value follows from (19.103) for E∗/e = 2 V if we assume a

radiation beam diameter of ru = 0.06 mm. The power generated by the SASE FEL

is much smaller than the saturation field (Asat = 1012 V m−1), which follows from

(19.104).

Example 2 0.15 nm SASE-FEL [173]; ν = 2 × 1018 Hz, hν = 8 keV,

Eel = 13.6 GeV, γ = 2.7 × 104, Lw = 110 m, λw = 5.5 cm, Nw = 3.7 × 103,

Kw = 3.5, Iel = 3.4 kA, α = 0.23 m−1. The modulation model provides the same

gain coefficient if we assume the values E∗/e = 2 V and ru = 0.9 mm. However,

a gain of G = exp(αLw) cannot be realized because the output power of radiation

would exceed the input power contained in the electron beam. We estimate the power

in a different way. We assume that 1% of the energy of an electron is converted to

radiation by stimulated emission of radiation. This corresponds to an optical power

of P = 460 GW. An electron pulse, assumed to have a duration of δt = 100 fs, con-

tains Ielδt/e (= 2 × 109) electrons. The number of photons in an optical pulse is

given by the relationship Ptp = Zhν. We assume that the optical pulse duration is

equal to the electron pulse duration, tp = δt , and find Z = 4 × 1013. It follows that

the gain is equal to G = 2 × 104. Each electron produces, by stimulated emission

of radiation, 2 × 104 photons. The saturation field that follows from (19.104) cannot

https://portal.slac.stanford.edu
https://portal.slac.stanford.edu
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be reached because the corresponding power would exceed the initial power of an

electron pulse.

An X-ray pulse in a SASE free-electron laser is guided by the electron beam

according to the enhanced refractive index (Sect. 19.14) in the range of the electron

beam.

In conclusion, the modulation model may, in principle, be applicable for an illus-

tration of properties of a SASE free-electron laser. However, the modulation model

cannot replace an adequate simulation based on Maxwell’s equations.

19.12 Onset of Oscillation of a Free-Electron Laser

In this section, we discuss the onset of oscillation of a free-electron laser. We will

find that the spectrum of radiation generated by a free-electron laser at steady state

oscillation is determined by the dynamics during the onset of oscillation. We consider

a continuous wave laser.

The gain coefficient of the free-electron laser medium is time dependent:

α (ω, t) = 2αm ḡL,disp(ω, t) = 2αm

(ω0 − ω) Δω0(t)/2

(ω0 − ω)2 + Δω2
0(t)/4

. (19.105)

The maximum gain coefficient, αm, is independent of time. However, Δω0 depends

on time.

The first electron pulses propagating through the wiggler at time t = 0 excite,

by spontaneous emission of radiation, modes of the laser resonator according to the

spectrum of spontaneously emitted radiation (Fig. 19.15). Stimulated emission of

radiation sets in at time t ≈ 0. The initial rate of stimulated emission processes is very

small. Therefore, at t ≈ 0, the width Δω0 of the gain coefficient curve is very narrow.

Accordingly, initial stimulated emission of radiation occurs in a narrow frequency

range near ω0; the gain coefficient has the shape of the normalized general Lorentz

dispersion function. With increasing number of transits of the radiation through

the wiggler, the rate τ−1 (= τ−1
stim) of stimulated emission processes increases. An

increasing stimulated emission rate leads to broadening of the gain curve and a shift

of the maximum of the gain coefficient curve (and of the maximum of the frequency

distribution of radiation generated by stimulated emission) toward smaller frequency.

At the oscillation onset time, ton, the amplitude of the high frequency electric field is

equal to the saturation field amplitude Asat. During the onset of laser oscillation, the

center frequency of the radiation in the resonator shifts from a value near ω0 to the

frequency of maximum gain, assumed to be near the center frequency ωc of the laser

oscillation range < ω1, ω0 >. The lower limit of the laser oscillation range occurs

because spontaneous emission at ω1 is absent. In the vicinity of this frequency, the

spontaneous emission is too week to initiate strong laser oscillation, i.e. there is a

bottleneck in the spontaneous emission of radiation at frequencies around ω1 and at

smaller frequencies.



382 19 Free-Electron Laser

Fig. 19.15 Onset of oscillation of free-electron lasers. Left part, spectrum of spontaneously emitted

radiation and gain coefficient. Center, onset of oscillation of a single line free-electron laser. Right,

onset of oscillation of a pulsed (mode locked) free-electron laser

In a pulsed laser, the spectral width of the frequency distribution grows during the

buildup of laser oscillation and corresponds to about Δω0/2 ≈ ω0/2Nw. The width

Δω0 of the gain coefficient curve characterizing an ensemble of electrons increases

exponentially with time (Fig. 19.16). If the critical modulation index is reached,

the ensemble loses its conductivity. Then stimulated emission and absorption of

radiation determine the behavior of the electron ensemble. Accordingly, during the

initial propagation of electron pulses through the wiggler, the width Δω0 of the

radiation field increases with time until it reaches a value that is slightly smaller than

ω0/Nw.

The gain per transit of radiation through the active medium is equal to

G − 1 = exp(α Leff) − 1. (19.106)

G is the gain factor, G − 1 the gain, α the modal gain coefficient, and Leff is an effec-

tive length. The effective length changes during the onset of oscillation (Fig. 19.17):

G − 1 = exp(α Lw) − 1, small-signal gain; Leff = Lw.

G − 1 = exp(αLw/2) − 1, intermediate gain (at t = ton); Leff = Lw/2.

G∞ = exp(αLw/3), large-signal gain at steady state oscillation of the laser; Leff =
Lw/3.

At begin of the onset of laser oscillation (at t ≈ 0), radiation is amplified along the

whole wiggler length. In the intermediate range, the modulation current density is
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Fig. 19.16 Width Δω0 of

the gain coefficient curve for

electron ensembles

propagating, in turn, through

the wiggler during the onset

of oscillation of a

free-electron laser

Fig. 19.17 Gain during

onset of oscillation of a

free-electron laser

built up in the first half of the wiggler and mediates gain mainly in the second half.

At steady state oscillation, the modulation current density is built up in the first third

of the wiggler and mediates gain mainly in the second third of the wiggler. In the

third part of the wiggler, the saturation field amplitude is reached.

The threshold condition,

GV ≥ 1 or G − 1 ≥
1

V
− 1, (19.107)

is, of cause, a necessary condition for laser oscillation (V , V factor and V −1 − 1,

loss per transit of radiation through the resonator).

The saturation field amplitude,

Asat =
(E∗/e) γ ω

π c Kw

, (19.108)

does not depend on the length of the wiggler. Doubling of the current strength results

in shortening of the oscillation onset time (Fig. 19.18).
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Fig. 19.18 Onset of

oscillation of a free-electron

laser operated with currents

of different strength

We estimate the oscillation onset time,

ton = T
ln (Z∞/Z0)

ln (V G0)
. (19.109)

T is the period of the high frequency electric field and Z is the number of photons

in the resonator; Z0 (= 1) is the initial number of photons in the laser resonator and

Z∞ the photon density in the laser resonator at steady state oscillation. V = R is the

V factor of the resonator; internal loss is ignored.

Example 1.6 µm FEL; ν = 188 THz, Eel = 115 MeV, γ = 230, Nw = 30,

1 − R = 0.1, V = 0.9, Asat = 3 × 108 V m−1, L = 30 m; T = 2L/c = 0.2 µs,

Gm = 2, Ep = Pres tp = 6 × 10−4 J, Z∞ = Ep/hν = 5 × 1015, Z0 = 1; I0 =
100 A, ton = 35 T = 7 µs; I0 = 50 A, ton = 17 T = 14 µs.

19.13 Phase Between Electron Oscillation and Optical Field

Dephasing between an electron oscillation in a free-electron medium and a high

frequency electric field occurs because the frequency ω0 of the electron oscillation

is different from the frequency ω of the field.

Instead of the velocity v, we consider, by reason of convenience, the transverse

current I = −e∨ connected with the transverse oscillation of an electron. The phase

difference

φ I = ϕ0 − ϕE = ω0t − ωt =
Δω

ω0

ω0t (19.110)

between the phase ϕ0 = ω0t of the current and the phase ϕE = ωt of the electric field

increases linearly with time (Fig. 19.19a) and is proportional to the relative frequency

difference Δω/ω0. A stimulated emission process, which occurs preferably if φ ≈
π, causes a change of the phase (Fig. 19.19b). With increasing amplitude of the

high frequency electric field, stimulated emission processes follow each other rapidly

(Fig. 19.19c). In the case that the amplitude of the high frequency electric field is equal

to the saturation field amplitude, a transition to a distorted oscillation state occurs by

emission of a fast cascade of a large number of photons (Fig. 19.19d). Immediately
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Fig. 19.19 Phase φI between the transverse current Iel of an oscillating electron and the high

frequency electric field. a Continuous dephasing due to continuous increase of φI. b Dephasing

interrupted by a stimulated emission process (star). c Dephasing interrupted by stimulated emission

processes, occurring in turn. d Saturation: stimulated emission of a cascade of photons (double star)

followed by a cascade of absorption processes (triangle), in turn; T = 2π/ω, period of the optical

field

after generation of photons, a fast cascade of photon absorption processes follows.

Fast cascades of stimulated emission and absorption of photons occur in turn. On

time average, the work done by an electron during one period of oscillation is equal

to E∗ and the work done by the high frequency field during the following period is

also equal to E∗. The phase difference jumps between 0 and π : the phase between

the current and the field is zero after a fast cascade of stimulated emission processes

and π after a fast cascade of absorption processes. The temporal average of the

phase difference is < φ > = π/2. There is, on average, no energy transfer from

the electron to the field or, vice versa, from the field to the electron. Stimulated

emission and absorption compensate each other. That is, if absorption compensates

stimulated emission in the saturation region of the wiggler, then the modulation

model is not applicable for describing the active medium in the saturation range, but,

the active medium assumes a new type of state. This will be discussed in Sects. 19.17

and 19.18.

Example For Δω = Δω0/2 = ω0/Nw, the phase difference grows by π during

a transit of an electron through the wiggler; the phase grows by π/Nw during the

period T = 2π/ω of oscillation, if a high frequency field is absent.
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Fig. 19.20 Propagation of an ensemble of electrons through the wiggler at steady state oscillation

of a free-electron laser. a Wiggler and b Current density

We consider an ensemble of electrons propagating through the wiggler at steady

state oscillation of the laser (Fig. 19.20); we suppose that the field in the laser res-

onator is (at least in the saturation region) equal to the saturation field. There are

three regions, each of a length of a third of the wiggler length:

• Synchronization region. After entering the wiggler, an electron oscillates at the

frequency ω0. Interaction of the electron with the high frequency electric field

(frequency ω) results in a modulation of the electron oscillation. In an ensemble

of electrons, interaction with the high frequency electric field results in the buildup

of a modulation current density. The electron oscillations become synchronized

to the high frequency electric field.

• Gain region. Interaction of the modulation current density with the high frequency

electric field leads to growth of the modulation current density itself and to ampli-

fication of the optical radiation field; amplification during a transit of a radiation

pulse through the laser resonator compensates internal loss and loss due to output

coupling of radiation, occurring in the preceding transit of the radiation pulse.

• Saturation region. A modulation current is absent. The electrons are in a state

in which stimulated emission of radiation during one cycle of the high frequency

electric field is compensated by absorption of radiation during the following cycle.

There is no net transfer of energy from the electrons to the field or, vice versa,

from the field to the electrons.

The transverse modulation conductivity of an ensemble of electrons is a local quan-

tity and changes during the propagation of the ensemble through the wiggler. Cor-

respondingly, the gain coefficient of an ensemble of electrons is a local quantity

and changes during the flight of the ensemble through the wiggler according to the

change of the modulation conductivity.
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19.14 Optical Constants of a Free-Electron Laser Medium

The modulation model provides the real part of the dynamical conductivity of a

free-electron laser medium. In order to determine the imaginary part, we apply the

Kramers-Kronig relations (Sect. 9.11). If the shape of the real part of a physical

response function is a general Lorentz dispersion function, then the shape of the

imaginary part is a general Lorentz resonance function. In the case that ωτ << 1,

we can approximate, in the vicinity of a resonance, the general complex Lorentz

function G̃L(ω) by the complex Lorentz function g̃L(ω). Accordingly, we find

σ2(ω) = −2σ1,m

Δω2
0/4

(ω0 − ω)2 + Δω2
0/4

. (19.111)

Real and imaginary part of the dynamical conductivity are shown in Fig. 19.21. The

real part of the high frequency conductivity shows a dispersive behavior as derived

in Sect. 19.7. The imaginary part shows a “negative” peak with the peak value −2σm

at the resonance frequency and with the halfwidth Δω0.

It follows that the components of the complex refractive index ñ = n1 − in2 are

given by

n1 = 1 + δn ḡL,disp(ω), (19.112)

n2 = δn ḡL,res(ω), (19.113)

δn ≈
cαm

π ω0

. (19.114)

The real part of the refractive index, n1, shows a resonance at ω0 and is slightly larger

than unity (Fig. 19.22). The free-electron laser medium can act as light guide for

radiation propagating in +z direction; for the radiation propagating in −z direction,

the refractive index is unity and the free-electron laser medium does not influence

the radiation. The imaginary part of the refractive index has the shape of a Lorentz

dispersion curve, with negative values below the resonance frequency.

Example 1.6 µm FEL. ν = 188 THz, αm = 0.6 m−1, δn = 1 × 10−7.

Fig. 19.21 Real and

imaginary part of the

transverse dynamical

conductivity of a

free-electron laser medium

http://dx.doi.org/10.1007/978-3-319-50651-7_9
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Fig. 19.22 Real and imaginary part of the refractive index of a free-electron laser medium

19.15 Mode Locked Free-Electron Laser

Figure 19.23 shows the result of our study of the onset of laser oscillation. At steady

state oscillation, the spectral intensity profile F2(ω) of the laser radiation extends

from ω1 = ω0 − Δω0 to ω0. The center frequency is ωc. The spectral intensity profile

shows a maximum near ωc. The halfwidth of the spectral distribution is equal to

Δω ≈ Δω0/2. All resonator modes with frequencies in the laser oscillation range

(of width ω0/Nw) oscillate synchronously.

A sequence of electron pulses is driving a laser oscillation. Each pulse of the

sequence propagates only once through the wiggler. Interaction of an electron pulse

with the high frequency electric field in the laser resonator modifies the electron

pulse. We now will specify the modifications. We suppose that the electron beam

and the optical beam have the same Gaussian shape in time and, furthermore, the

same Gaussian shape in the plane perpendicular to the beam axis (=resonator axis).

We assume, for simplicity, that the beams are parallel beams. For a treatment of

the dynamics, we simplify further: we replace the Gaussian shape by a rectangular

shape.

An optical pulse circulates in the resonator and propagates at the same time

through the wiggler as an electron pulse (Fig. 19.24a). The repetition rate of the elec-

tron pulses is equal to the reciprocal of the round trip transit time of the optical pulse

within the laser resonator. An electron pulse and an optical pulse have lengths that are

small compared with the wiggler length. An optical pulse, which propagates slightly

faster than a corresponding electron pulse, enters the wiggler immediately after the

corresponding electron pulse (Fig. 19.24b). The two pulses overlap completely at the

center of the wiggler. The electron pulse leaves the wiggler immediately after the

optical pulse leaves. An electron pulse in the wiggler represents the active medium.

The active medium propagates through the wiggler with a velocity near the speed

of light. During the flight of the active medium (i.e., of an electron pulse) through

the wiggler, the optical pulse propagates through the active medium. Interaction of
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Fig. 19.23 Mode locked free-electron laser at steady state oscillation

Fig. 19.24 Mode locked free-electron laser. a Principle of arrangement. b Electron and optical

pulse before entering and after leaving the wiggler

the high frequency electric field of the optical pulse and the electrons of an electron

pulse occurs during the whole flight of the two pulses through the wiggler. At the

end of the wiggler, the interaction finishes, because of absence of a spatially periodic

magnetic field.

A portion of radiation is coupled out from the laser resonator by means of an output

coupling mirror. The radiation generated by the mode locked free-electron laser is

a coherent pulse train. Each time an electron pulse travels through the wiggler, the

optical pulse is amplified: at steady state oscillation of the mode locked free-electron

laser, the optical gain per single transit is equal to the loss per round trip transit

through the resonator.

At steady state oscillation of a mode locked free-electron laser, different modi-

fications of the pulses occur in three regions of the wiggler, each with a length of

about one third of the wiggler length:

• Synchronization region. The high frequency electric field synchronizes the trans-

verse oscillations of the electrons.
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• Gain region. The synchronized electron oscillations mediate gain for the high

frequency electric field; loss is due to output coupling of radiation.

• Saturation region. The active medium interacts strongly with the optical radiation.

Absorption compensates stimulated emission of radiation.

The duration of a pulse in a pulse train is equal to

tp ≈
1

Δν0

≈
Nw

ν0

= NwT . (19.115)

The pulse duration is equal to the product of the number of wiggler periods and the

period of the high frequency field; ω0 = 2πν0; Δω0 = 2πΔν0; ν0 = 1/T .

Example For ν = 60 THz, Nw = 70, we find tp ≈ 1 ps.

The pulse train of a mode locked free-electron laser consists of short pulses. When

a Gaussian beam interacts with an electron beam, then the Gaussian beam experiences

a self-focusing (light guiding) effect during the flight through the gain region of the

electron pulse. Spreading of the optical pulse with respect to the temporal and the

lateral shape during a transit through the free-electron medium is repaired by the

following transits; the electron beam acts as an aperture in a conventional phase

locked laser. The Gouy phase shift changes the temporal shape of a pulse in a pulse

train, each time a pulse propagates through the wiggler.

19.16 Electron Bunching

Synchronization of the transverse oscillations to the high frequency electric field leads

also to synchronization of the longitudinal oscillations according to the rigid coupling

of the transverse and the longitudinal oscillation of an electron. It follows that the

transverse modulation current of an electron is joined with a longitudinal modulation

current of the electron. In an ensemble of electrons, a longitudinal modulation current

density is built up in the synchronization region of the wiggler. Accordingly, the

electrons form bunches (microbunches) along the z direction. At a fixed location in

the wiggler, the electron distribution, N (t), is enhanced in temporal distances of half

the period of the optical field and reduced in the regions in between (Fig. 19.25).

This corresponds to bunching along the z axis, with two electron bunches every

wavelength of the optical field.

At steady state oscillation of a free-electron laser, electrons enter the wiggler

at different times. The high frequency electric field, which propagates through the

electron beam, leads to buildup of bunches within the first third of the wiggler. In

the second third of the wiggler, the electron bunches become more pronounced and

mediate gain for the optical field. In the third part of the wiggler, electron bunches

persist. Then, stimulated emission and absorption of radiation compensate each other.



19.17 Energy-Level Description of a Free-Electron Laser Medium 391

Fig. 19.25 Electron microbunches

19.17 Energy-Level Description of a Free-Electron Laser

Medium

At begin of this section, we introduce the hypothesis: A transverse oscillation of a

free-electron propagating through a spatially periodic magnetic field can be described

as a quantum system, namely as an energy-ladder system. Characteristic of an energy-

ladder system is the equidistance of the energy levels. An electron occupies one level

of the corresponding energy-ladder system. (A motivation for the thesis will be given

at the end of this section.)

Characteristic of an energy-ladder system (Fig. 19.26a), are the energy levels

El = l E0, (19.116)

where l is an integer and

E0 = hν0 (19.117)

is the transition energy, i.e., the energy distance between two next-near energy lev-

els. Electromagnetic radiation interacts via spontaneous emission, absorption, and

stimulated emission according to the Einstein coefficients. However, absorption and

stimulated emission processes have the same transition probability (Fig. 19.26b).

Therefore, the average rate of absorption processes is the same as the average rate of

stimulated emission processes if the phase of the radiation is equal to the resonance

frequency, i.e., if ν = ν0. The description as a phase modulation (Sect. 19.7) indicates

that stimulated emission prevails if ν < ν0 and absorption if ν > ν0. Accordingly,

the gain coefficient curve is not a Lorentz resonance curve but a Lorentz dispersion

curve.

In a strong electromagnetic field, transitions between next near levels are also

allowed as multiphoton transitions (Fig. 19.26c) corresponding to the condition

nhν = hν0; n = 1, 2, ... . (19.118)

This corresponds to transverse velocity components of higher order according to

(19.53).
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Fig. 19.26 Energy levels of an electron in a periodic magnetic field and transitions. a Energy

ladder. b Absorption and stimulated emission. c Two-photon transitions. d Stimulated emission and

absorption for hν < E0. e Absorption and stimulated emission for hν > E0

We have the following possibilities.

• A radiation field experiences a population inversion if hν < E0 (see Fig. 19.26d).

In a stimulated emission process by radiation at the frequency ν by an l → l − 1

transition, the transition energy E0 is converted to photon energy hν and distortion

energy, Edist, connected with a single-photon transition:

E0 = hν + Edist. (19.119)

The distortion energy Edist for a transition is much smaller than the distortion

energy E∗ occurring if the amplitude of the high frequency electric field is equal

to the saturation field amplitude,

Edist <<< E∗. (19.120)

Absorption does not occur since the states of distortion are almost unpopulated,

i.e., the upper laser level has an occupation number of nearly unity, f2 ≈ 1, and

the lower level of nearly zero, f1 ≈ 0. After a stimulated emission process, the

weak distortion is repaired under the action of the Lorentz force of the wiggler.
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• A radiation field does not experience population inversion if hν > E0 (Fig. 19.26e).

In an absorption process, a photon is converted into excitation energy E0 and energy

of distortion,

hν = E0 + Edist. (19.121)

The reverse process, namely stimulated emission by an l + 1 → l process, does

not occur since the states of distortion are almost unpopulated, i.e., the upper level

has the occupation number of nearly zero, f2 ≈ 0, and the lower laser level of

nearly unity, f1 ≈ 1.

• If hν = E0, upward and downward transitions are equally strong and there is no

net energy transfer from the field to the electrons and vice versa.

The states belonging to an energy-ladder system are transient states according to the

finite time of flight of an electron through the wiggler. However, the time of flight of

an electron through the wiggler is by many orders of magnitude larger than the period

of a free-electron oscillation. A description of a transversely oscillating electron by

an energy-ladder system may therefore be justified.

We are using of the following quantities:

• E0 = transition energy = resonance energy.

• ν0 = E0/h = transition frequency = resonance frequency.

• ν = laser frequency (slightly smaller than the resonance frequency).

• τstim = time between two subsequent stimulated emission processes.

Figure 19.27 illustrates, in the energy-level description, the principle of the free-

electron laser at steady state oscillation. An electron of energy Eel,0 injected into

the wiggler forms an energy ladder system. A stimulated emission process leads to

a weakly distorted state that becomes an undistorted state. A cascade of stimulated

Fig. 19.27 Cascade of stimulated emission processes in an energy-ladder system (in the gain region

of the wiggler); τsim, time between two subsequent stimulated emission processes
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transitions in the energy-ladder system contributes to amplification of radiation. The

electron leaves the gain region of the wiggler (and enters the saturation region) at

an energy Eel,tr. The energy difference Eel,0 − Eel,tr corresponds to the energy of

the number sstim of photons generated by stimulated emission. During the flight of

an electron through the gain region of the wiggler, energy of longitudinal motion

is converted to energy of the high frequency field; amplification occurs only for

radiation propagating in +z direction. A stimulated transition from a level l of an

energy-ladder system occurs to the high-energy wing of the level l − 1 of the same

energy-ladder system.

The energy of an electron after transit through the gain region is equal to

Eel,tr = Eel,0 − sstimhν. (19.122)

In an infrared free-electron laser, the number sstim of stimulated emission processes

is very large (on the order of 105).

We estimate the Einstein coefficients of stimulated emission and of absorption

from the expression of the gain coefficient

α(ν) = 2αm ḡL,disp(ν) (19.123)

by comparison with an expression, (7.31), derived earlier for a two-level atomic

system,

α(ν) = (1/c)hνB21

2

πΔν0

ḡL,res(ν)(N1 + N2)( f2 − f1). (19.124)

We replace the normalized Lorentz resonance function ḡL,res by the (normalized)

Lorentz dispersion function ḡL,disp and obtain, by replacing N1 + N2 by N0 and with

f2 − f1 = 1, the Einstein coefficient of stimulated emission

B21 =
πec2 K 2

w

32ε0(E∗/e) Q0γ hν0

. (19.125)

The Einstein coefficient of stimulated emission is proportional to the square of the

wiggler parameter Kw. And it is inversely proportional to the distortion energy E∗,

to the Lorentz parameter γ , to the resonance frequency ν0, and to the quality factor

Q0 = Nw = ν0/Δν0 of the electron oscillation.

Spontaneous emission of radiation of electrons moving with a velocity near the

speed of light occurs into a cone with a cone angle 1/γ . In comparison with emission

into all spatial directions, the reduction of the density of states available for sponta-

neous emission is therefore reduced by the factor 1/(4γ 2). We obtain the Einstein

coefficient of spontaneous emission

A21 =
1

4γ 2

8πhν3
0

c3
B21. (19.126)

http://dx.doi.org/10.1007/978-3-319-50651-7_7
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Table 19.2 Einstein coefficients of a free-electron laser medium

Value

ν0 6 × 1013 Hz Resonance frequency

Δν0 = ν0/Nw 1.2 × 1012 Hz Width of resonance

γ 100 Lorentz parameter

Kw 1 Wiggler parameter

E∗/e 2 V Distortion energy

Q0 = Nw = ν0/Δν0 50 Quality factor

B21 2 × 1023 m3 J−1 s−2 Einstein coefficient

A21 100 s−1 Einstein coefficient

τsp 10 ms Spontaneous lifetime

The spontaneous lifetime is given by

τsp = 1/A21. (19.127)

Table 19.2 shows values of Einstein coefficients characterizing transitions between

energy-ladder levels of a free-electron laser medium. The data are obtained for a

free-electron laser presented in Sect. 19.6 (Table 19.1). The Einstein coefficient of

stimulated emission is larger than that of active media of conventional lasers (for a

comparison, see Table 6.1 in Sect. 6.5).

The gain cross section σ21(ω) has the same frequency dependence as the gain

coefficient. The maximum gain cross section is σ21,m = αm/N0 (= 2 × 10−18 m2).

In comparison, a naturally broadened two-level system propagating with a velocity

corresponding to a Lorentz factor γ̄ would have a gain cross section 4γ̄ 2λ2/2π

(∼10−7 m2).

The states belonging to an energy-ladder system are transient states according to

the finite time of flight of an electron through the wiggler. However, the time of flight

is by many orders of magnitude larger than the period of a free-electron oscillation.

An illustration of a free-electron medium as an ensemble of energy-ladder sytems

may therefore be justified.

Figure 19.28 is a modified version of the preceding figure. A beam of electrons

of energy Eel,0 enters the wiggler. In the synchronization region, each electron loses,

on average, a small amount of energy due to synchronization by stimulate emission

of radiation. The electrons then enter the gain region with nearly the original energy.

In the gain region, an electron loses energy of longitudinal motion due to a cas-

cade of stimulated emission processes. In the saturation region, the electron energy

remains almost unchanged although the transition rate of electronic transitions is

large: a fast cascade of absorption processes follows on a fast cascade of stimulated

emission processes. Absorption compensates stimulated emission. A fast cascade of

stimulated emission processes occurs during a period of the electron oscillation and

a fast cascade of absorption processes during the following period. A fast cascade

of stimulated emission processes is joined with a distorted state of an electron. The

reversed process leads back to the undistorted state.

http://dx.doi.org/10.1007/978-3-319-50651-7_6
http://dx.doi.org/10.1007/978-3-319-50651-7_6
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Fig. 19.28 Propagation of an electron beam through the synchronization region, the gain region,

and the saturation region of the wiggler (with a fast cascade of absorption processes following on

a fast cascade of stimulated emission processes, in turn)

In order to discuss the saturation behavior, we estimate the time between two

stimulated emission processes. The electron transit rate is equal to rel = Iel/e. The

power of an electron is given by Pel = U Iel, where U is the voltage that corresponds

to the electron energy. The power of the radiation emitted by the laser is equal to

Pout = ηPel, where η is the efficiency of the laser. The rate of photon emission is given

by rph = Pout/(hν). The average time between two stimulated emission processes is

equal to

τstim =
rel

rph

ttr =
(hν/e) ttr

ηU
, (19.128)

where ttr is the transit time, i.e., the time an electron takes for a transit through the

wiggler.

Example 1.6 µm FEL, pulsed laser; ν = 188 THz, hν = 0.8 eV, U = 115 MV,

Lw = 2 m, ttr = 6 ns, Iel = 100 A, η = 2 × 10−2, Pout = 200 MW. We find

τstim = 2 × 10−15s.

The time given in the example is about equal to half the period of the electron

oscillation. Since the time τstim is an average taken over the time of flight of an electron

through the whole wiggler, the time between two stimulated emission processes is

much shorter in the final part of the gain region and, accordingly, in the saturation

region. Thus, the assumption of a fast cascade of stimulated emission processes

within one period of an electron oscillation cycle appears to be justified. The work

E∗ done by an electron in a cascade corresponds to stimulated emission of a number

of photons. We can estimate this number n of photons involved in a cascade process

within the saturation region of the wiggler assuming that the distortion energy is about

equal to the energy of the phonons, n hν ≈ E∗. The number n (≈ E∗/hν ≈ 3 for

the 1.6 µm FEL and for E∗ = 2 V) increases with decreasing frequency. If the energy

of a photon is larger than E∗, then saturation is expected if τstim is smaller than the

period of the electron oscillation. According to (19.127), the time τstim increases
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proportional to U . Therefore, saturation of a SASE X-ray free-electron laser does

not occur: τstim is larger than the period of the electron oscillation. This result is in

accord with the conclusion that the saturation field cannot be reached in a SASE

X-ray free-electron laser (Sect. 19.11).

Here, we discuss the motivation for the introduction of an energy-ladder system.

It is known that a free-electron in a crystal propagating through a periodic electric

potential can be described as a quantum system. The energy levels of the electron form

an energy-ladder system, a Wannier-Stark ladder [274]. The levels are energetically

equidistant.

There is a formal connection between a theoretically well studied superlattice

Bloch laser and a free-electron laser:

• The active medium of a superlattice Bloch laser (Chap. 32) consists of an ensemble

of free-electrons in a spatially periodic electric potential. The electrons execute,

under the action of a static electric field and the periodic potential, free-electron

oscillations. An electromagnetic field modulates the free-electron oscillations,

which leads to a synchronization of the free-electron oscillations to the field and

to gain for the field. The gain coefficient curve is a Lorentz dispersion curve.

The states of an electron subject to both a periodic potential and a static field are

quantum mechanical describable as Wannier–Stark states. The energy levels of

an electron form a Wannier–Stark ladder—i.e., an energy-ladder with equidistant

energy levels [175, 274]. An electron occupies one of the levels. A stimulated

transition occurs from the occupied Wannier–Stark level to an intermediate level

that corresponds to the distorted level of the energetically next near level of lower

energy (Sect. 32.7 and [272]).

• The active medium of a free-electron laser consists of an ensemble of Free-

electrons that execute, under the action of a periodic magnetic field, free-electron

oscillations. An electromagnetic field modulates the free-electron oscillations,

which leads to a synchronization of the free-electron oscillations to the field and

to gain of the field. The gain coefficient curve is a Lorentz dispersion curve. We

introduced—on the basis of the similarity of the formal description of the free-

electron oscillations in a free-electron laser and the free-electron oscillations in a

Bloch laser as monopole oscillations—an energy-ladder description.

The transverse oscillation of an electron in a free-electron laser and a Bloch

oscillation of an electron in a semiconductor superlattice have in common that the

oscillations are monopole oscillations. An external perturbation can change the phase

of the oscillation of a monopole oscillator, but not the amplitude. In comparison, an

external perturbation can change the amplitude and the phase of a dipole oscillator.

We used a dipole oscillator as a classical model of a two-level system. In an analogous

way, a monopole oscillator may be seen as a classical model of an energy-ladder

system. It is an open question, whether it is possible to develop a theory of transient

energy states for relativistic electrons in a spatially periodic magnetic field.

http://dx.doi.org/10.1007/978-3-319-50651-7_32
http://dx.doi.org/10.1007/978-3-319-50651-7_32
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19.18 Aspects of Free-Electron Laser Theory

Quantum effects taking account of the recoil of an electron due to emission of a

photon are expected to be important for free-electron lasers generating radiation at

short X-ray wavelengths. Theoretical aspects have been treated in various studies,

for instance in [175, 176, 325, 326].

Analysis of a free-electron laser is possible on basis of Maxwell’s equations

together with laws of classical equations describing interaction of an accelerated

or decelerated relativistic electron with an electromagnetic field. The equations are

solvable by using methods of numerical simulation; for a treatment of a free-electron

laser by a three-dimensional simulation, see, for instance, [326].

The equations of motion of electrons in the limit of negligibly small electromag-

netic fields can approximately solved in a one-dimensional description and provide

the gain [5, 166, 312]:

G0 − 1 = (G0
m−1)g(X), (19.129)

where

X = 2π Nw

(

ω

ω0

− 1

)

(19.130)

and

g(X) = −
d

dX

(

sin(X/2)

X

)2

= −
1

X3

(

1 − cos X −
X

2
sin X

)

. (19.131)

The gain curve (Fig. 19.29) is antisymmetric with respect to the resonance frequency

X = 0; there is no gain at the resonance frequency ω0. The gain curve shows a

modulation according to the finite time of flight of the electrons through the wiggler.

Fig. 19.29 Small-signal gain derived from equations of motion
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The lineshape function g(X) is equal to the derivative of the function that describes

the spectral distribution of spontaneously emitted radiation. (This is sometimes called

“Madey theorem”.) Maximum gain, G0
m − 1, occurs at a frequency (Xm ≈ − 2.6)

slightly smaller than the resonance frequency. The frequency distance (ΔX0 ≈ 5.2)

between the largest maximum and the corresponding minimum is given by

Δω0

ω0

≈
1

Nw

. (19.132)

The halfwidth of the largest peak (ΔX ≈ −2.5) corresponds to a bandwidth

Δω

ω0

≈
1

2Nw

. (19.133)

G0
m − 1 is given by [166, 312]

G0
m − 1 =

0.84 jel Lw N 2
w

ε0 (m0 c2/e)

K 2
wλw

c γ 3
. (19.134)

In comparision, the modulation model provides the maximum gain

GMM
m − 1 =

0.79 jel Lw

ε0 (E∗/e)

K 2
w

γ ω
. (19.135)

The comparison shows that the frequency dependence is the same. Replacing the

Lorentz factor, we find the expressions

G0
m − 1 =

37 N 2
w

ε0 (m0 c2/e)
Lw

Iel

amode

c1/2

λ1/2
w

K 2
w

(1 + K 2
w/2)3/2

ω−3/2 (19.136)

and

GMM
m − 1 = αmLw =

2.8

ε0 (E∗/e)
Lw

Iel

amode

c1/2

λ1/2
w

K 2
w

(1 + K 2
w/2)1/2

ω−3/2. (19.137)

In comparison, the small-signal gain derived on basis of the equations of motion is

proportional to N 2
w while the small-signal gain following from the modulation model

is inversely proportional to the distortion energy E∗. (There is also a difference in the

dependence on the wiggler parameter.) The two expressions lead to the same mag-

nitude of the gain for Nw = 140. Thus, the gain determined by the two expressions

is, for wiggler periods of the order of 100, on the same order of magnitude.

Example 1.6 µm FEL, see, Example 1, Sect. 19.10. ν = 188 THz, Eel =
115 MeV, γ = 230, Nw = 30, Lw = 1.65 m, λw = 5.5 cm, Kw = 0.64, Iel =
100 A, L res = 30 m, 1 − R = 0.1, L res = 30 m, ru = 2 mm. We find GMT

m − 1 =
0.012 and GMM

m − 1 = 0.7.
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The gain G0
m − 1 is proportional to the length of the wiggler Lw and, additionally,

proportional to the square of the number Nw of wiggler periods. This dependence

corresponds, for a free-electron laser driven by short electron pulses, to a gain that

is proportional to Lw and additionally, to Nw since the width of the laser oscillation

interval decreases as 1/Nw. The gain GMM
m − 1 is also proportional to the length of

the wiggler. But it shows no additional dependence on Nw. This corresponds to a

gain coefficient that is a local quantity. During the onset of laser oscillation GMM
m − 1

remains constant while the spectrum of radiation broadens, joined with a shift of the

maximum.

An experimental study [168] (performed in the High Energy Physics Laboratory,

Stanford University) provided a gain curve that is in accordance with the theoretical

curve (Fig. 19.31). In the experiment, CO2 laser radiation (wavelength 10.6 µm)

propagated through a spatially periodic magnet field (strength 0.24 T, period 3.2 cm,

wiggler length 5.2 m) and interacted with an electron beam (24 MeV) that consisted

of pulses (peak current 0.1 A). The electron energy was swept through a range in the

vicinity of 24 MeV. The gain (during an electron pulse) was 7%. The power of the

transmitted radiation increased by a value (4 × 103 W), which was 109 times larger

than the power of spontaneously emitted radiation.

Shortly after the observation of amplification, the same laboratory published the

first successful operation of a free-electron laser [169]. The arrangement was the

same as for the amplification experiment, with two differences: the electrons had

a larger energy (43 MeV) and radiation was stored in a laser resonator. Infrared

radiation (wavelength 3.4 µm, relative spectral width 10−2) had a power of 5 × 105

W within the resonator (output mirror transmissivity 1.5%) that was much larger than

the power of the CO2 laser radiation used for the amplification experiment. [John

Madey once explained me (K.F.R.) in his laboratory in Stanford: a laser experiment

is much easier to perform than an amplification experiment.]

Now, we mention the pendulum model of the free-electron laser. The model fol-

lows as a one-dimensional approximation of the equations of motion of an elec-

tron in a periodic magnetic field and a high frequency electric field: the equa-

tions of motion are given in the Problems to this chapter. The pendulum model

(not treated in this book) provides a saturation field amplitude APM
sat that corre-

sponds to the criterion: in a passage through the wiggler, an electron can lose

the maximum energy leading to a relative shift of the resonance frequency by

(Δω0/2)/ω0 = 1/2Nw. This corresponds to an efficiency of conversion of elec-

tron energy to radiation power of η = 1/2Nw. Accordingly, the maximum power

generated by a free-electron laser is equal to P = (1/2)cε0(APM
sat )2πr2

u (1 − R). With

P = ηUl, we find APM
sat = (2Ul)1/2(ηcε0πr2

u (1 − R)−1/2. This saturation field ampli-

tude increases with the current strength.
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Here, we summarize aspects treated by different models.

• Maxwell’s theory together with theorems treating interaction of relativistic elec-

trons with electromagnetic fields; provides a complete description of a free-

electron laser.

• Gain G0
m − 1 (often called small-signal gain of a free-electron laser) applies for

negligibly small fields; it corresponds to gain following from the equations of

motion at weak high frequency field.

• The pendulum model provides an ultimate upper limit of the saturation field;

however, the field cannot be reached because the model ignores strong changes of

the electron orbits in connection with saturation.

• The modulation model provides small-signal gain and saturation field and describes

onset of laser oscillation; the model assumes that stimulated emission of a photon

results in a change of the phase of the electron oscillation and that saturation is

due to strong distortions of the electron orbits. A determination of the distortion

energy E∗ is performed by an analysis of free-electron laser data (Sect. 19.10).

Problem 19.16 presents a study that provides the magnitude of E∗ and the depen-

dence on the strength of the wiggler field and on the wiggler wavelength.

19.19 Comparison of a Free-Electron Laser

with a Conventional Laser

We illustrate dynamical processes occurring in a conventional laser and a free-

electron laser. We will use the two different aspects, one of them based on a quantum

mechanical description and the other based on classical oscillator models.

We consider, in the quantum mechanical description of a conventional laser, a

two-level system (Fig. 19.30a). A pump process leads to population of the upper

level. After a stimulated emission process and subsequent fast relaxation, the two-

level system is unpopulated. A new pumping process leads again to population of

the upper level. The processes occur repeatedly. Population inversion in an ensemble

of two-level systems, which constitute the active medium of a laser, is a necessary

condition of laser oscillation.

In the quantum mechanical description of the free-electron laser (Fig. 19.30b), an

electron occupies a level of an energy-ladder system. A stimulated emission process

leads to occupation of a distorted state at an energy slightly larger (by the distortion

energy Edist) than the energy of the next lower energy level. Stimulated emission

processes occur repeatedly. Population inversion in an ensemble of energy-ladder

systems, which constitute an active medium of a free-electron laser, is a necessary

condition of free-electron laser oscillation.

We now discuss classical oscillator models of the active medium in a laser and of

the active medium in a free-electron laser. In a conventional laser, the polarization

current of a dipole oscillator oscillates, at a phase of π, synchronously to the high

frequency electric field (Fig. 19.31a). After a stimulated emission process (indicated
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Fig. 19.30 Energy level based description of a conventional laser and of a free-electron laser.

a Two-level system, with repeated processes of pumping, stimulated emission of a photon, and

relaxation of the population of the lower level. b Energy-ladder system,

by a star) and subsequent relaxation of the lower level of the corresponding two-

level system, the dipole oscillator disappears. A pumping excitation of the upper

level results again in a dipole oscillation with the polarization current oscillating,

at the phase of π, synchronously to the field. In a free-electron laser, an electron

performs a monopole oscillation at the resonance frequency that is slightly larger

than the frequency of the high frequency field in the laser resonator (Fig. 19.31b).

Accordingly, the phase between the electric current of an electron oscillator and the

high frequency field increases with time. This dephasing is an inherent property of a

free-electron laser medium.

In a conventional laser, gain is mediated by a dielectric polarization of the active

medium; during onset of laser oscillation the high frequency polarization grows

together with the field. In a free-electron laser, gain is mediated by a high frequency

electric current density; during onset of laser oscillation the high frequency current

density grows together with the field.

In our classical treatment of a conventional laser, we related quantum mechanical

dipole transitions and classical dipole oscillators, octroying the effect of population

inversion by an appropriate adjustment of the phase between a field and a dipole oscil-

lator (Chap. 9). In our treatment of the free-electron laser, we reversed the procedure.

We introduced electron-monopole oscillators as elementary oscillators in a free-

electron laser medium and, then, the energy-ladder system as a quantum mechanical

description.

http://dx.doi.org/10.1007/978-3-319-50651-7_9
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Fig. 19.31 Conventional laser and free-electron laser in classical model descriptions (with the star

indicating stimulated emission of a photon). a Electric field and polarization current of a dipole

oscillator in an active medium of a laser. b Electric field and transverse electric current of an

electron-monopole oscillator in an active medium of a free-electron laser

Table 19.3 summarizes the comparison of a conventional laser with a free-electron

laser.

Table 19.3 Conventional laser and free-electron laser: a comparison

Conventional laser Free-electron laser

Elementary system Two-level system Energy-ladder system

Classical model Dipole oscillator Monopole oscillator

Effect of an optical field Induced dipole moment Frequency modulation

Energy source Pumping energy Translational energy

Gain mediator Dielectric polarization Electric current density

Shape of gain coefficient Lorentz resonance function Normalized Lorentz dispersion

function

Saturation field No Yes

Population inversion Yes Yes (quantum mechanical

picture)

No (modulation model)

No (Maxwell’s theory)
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Fig. 19.32 Comparison of

the saturation behavior, a of

a two-level system showing a

Rabi like oscillation and b of

an energy-ladder system in a

free-electron laser

We finally compare the saturation behavior of a two-level system in a high fre-

quency electric field and an energy-ladder system in a high frequency electric field.

We assume that relaxation of the lower state of the two-level systems is absent

(Fig. 19.32a). A transition from the upper level to the lower level by stimulated emis-

sion of a photon follows a transition from the lower to the upper level by absorption

of a photon. Stimulated emission and absorption follow each other. This behavior is

consistent with the gain coefficient that is proportional to the population difference

N2 − N1 of an ensemble of two-level systems (Chap. 9). It is therefore also consis-

tent that the phase between polarization current and field is equal to π if a two-level

system is in the upper state and that it is zero if the two-level system is in the lower

state. In the case that a strong high frequency coherent field saturates an ensemble of

two-level systems, the polarization and thus the polarization-current density follow

the field coherently (see Problems to Chap. 9). Figure 19.32b illustrates saturation of

a free-electron laser. A fast cascade of stimulated emission processes promotes an

electron from a state with population inversion to a distorted state without population

inversion. In the reversed process, a fast cascade of absorption processes promotes

the electron back to the original level. Emission followed by absorption of radiation

at a large amplitude of the high frequency electric field resembles the Rabi oscillation

that is due to interaction of two-level systems with a strong high frequency electric

field. (An analogy of the saturation behavior of a free-electron laser with a Rabi

type of oscillation has already been suggested in connection with an analysis of a

free-electron laser on basis of the pendulum model [312].)

Table 19.4 indicates the main difference between a conventional laser and a free-

electron laser: the elementary excitation of a conventional laser medium, on one hand,

can be characterized as a two-level system and the elementary system of a free excita-

tion of a free-electron laser medium, on the other hand, as an energy-ladder system.

http://dx.doi.org/10.1007/978-3-319-50651-7_9
http://dx.doi.org/10.1007/978-3-319-50651-7_9
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Table 19.4 Conventional laser and free-electron laser: a comparison

Conventional laser Free-electron laser

Elementary excitation Two-level system Energy-ladder system

Susceptibility, imaginary part ḡL,res ḡL,disp

Susceptibility, real part ḡL,disp ḡL,res

Saturation field No Yes

Accordingly, the response functions of the polarization—the susceptibilities—are

different:

• Conventional laser medium. The shape of the imaginary part of the response func-

tion is a Lorentz resonance function and the real part is a Lorentz dispersion func-

tion. The amplitude of the high frequency field is not limited (besides limitations

by the pump strength and due to optical damage).

• Free-electron laser medium. The shape of the imaginary part of the response

function is a Lorentz dispertion function and the shape of the real part is a Lorentz

resonance function. The amplitude of the high frequency field shows an intrinsic

limitation.

The lasers have in common that the laser field synchronizes the elementary oscil-

lations to the laser field, and that a population inversion between energy levels of a

quantum system occurs.

19.20 Remark About the History of the Free-Electron

Laser

We mention a few data concerning the history of the free-electron laser.

1933 P. Kapiza and P. Dirac discussed the possibility of stimulated Compton

scattering.

1951 H. Motz (Oxford) proposed to use a wiggler configuration for generation

of incoherent radiation.

1971/76 J. Madey (Stanford University) proposed a free-electron laser and realized

the first free-electron laser (50 MeV LINAC; superconducting helical coil

as wiggler magnet; wavelength of the radiation 3.4 µm).

1983 Petroff (Orsay) used radiation of a storage ring (150 MeV; the laser gen-

erated visible radiation (wavelength 650 nm).

1983 Stanford; 1 GeV LINAC.

1983 Los Alamos; 1 GeV LINAC.

1985 L. Elias et al. developed the free-electron laser in Santa Barbara, with a

6 MeV static accelerator; the laser was the first tunable far infrared laser.
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1992 FELIX (Rijnhuizen, The Netherlands); pulsed infrared and far infrared

laser.

2006 Rossendorf (near Dresden, Germany); pulsed infrared laser.

Presently, free-electron lasers in more than 30 laboratories worldwide are operating

or are in planing.

References [5, 12, 166–176, 312–331].

Problems

19.1 Acceleration energies. Given is wiggler (λw = 2.4 cm and K = 1). [Hint:

make use of data of Table 19.1 to solve this and the following problems.]

(a) Determine the electron energy necessary to drive a terahertz FEL at 1 THz and

determine the change of energy necessary to change the frequency by 1%

(b) Determine the electron energy necessary to drive an X-ray at a wavelength of

10 nm and determine the change of energy necessary to change the frequency

by 1%

19.2 Frequency tuning. Relate a small change of energy relative to the energy E

to the relative change of frequency and to the relative change of wavelength of a

free-electron laser.

19.3 Show that the inhomogeneous broadening of the gain profile of a free-electron

laser due to energy smearing is negligibly small if the condition Δγ ≪ γ /(2Nw) is

fulfilled.

19.4 Refractive index of a free-electron laser medium.

(a) Estimate the frequency shift of a mode of a free-electron laser resonator that

occurs when a free-electron laser is switched on.

(b) Determine the speed of light in a free-electron medium.

(c) Estimate the difference of the time it takes light and the time it takes an electron

to propagate through the wiggler.

19.5 Determine the absolute number of electrons present in an active medium of a

free-electron laser.

19.6 Estimate the time of onset of laser oscillation in a free-electron laser.

19.7 Determine characteristic quantities of the spectrum of spontaneously emitted

radiation on the angular frequency scale: resonance frequency, halfwidth, frequency

of the first minima, distance between this frequency and the resonance frequency.

19.8 Show that, on the time average, an electromagnetic field cannot exchange

energy with an electron in free space.
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19.9 Continuous wave free-electron laser. How is it possible to operate a contin-

uous wave free-electron laser at the frequency of maximum gain although the initial

gain at the frequency of maximum gain at steady state oscillation is negligibly small?

[Hint: Consider the onset of oscillation.]

19.10 Energy spread of the electrons in an electron beam that enters a free-

electron laser. (a) Estimate the inhomogeneous broadening of the frequency distri-

bution of the radiation emitted by a mode locked free-electron laser due to a finite

energy distribution of the electrons in the electron beam. (b) Estimate the broadening

of the pulse duration. (c) If you would plan a mode locked free-electron laser for a

wavelength optimized at a wavelength of 3µm, what tolerance would you allow for

the energy spread of the electrons? [Hint: the accelerator is the most expensive part

of a free-electron laser; an answer like energy spread should be small compared with

a value that you find by analyzing laser operation is not sufficient.]

19.11 X-ray SASE FEL. Show that an electron pulse (duration 100 fs) and a pulse

of radiation do not separate in an X-ray SASE FEL (wavelength 0.1 nm) at a wiggler

length of 100 m.

19.12 Relativistic electron in a periodic magnetic field. We describe, in the lab-

oratory frame, the motion of an electron moving at a relativistic velocity (along the

z axis).

(a) Which is the Lorentz force, assuming that an electric field is absent?

Answer: The Lorentz force is equal to F = qv × B, where q(= −e) is the elec-

tron charge.

(b) Determine the equation of motion of an electron (mass m0) moving at a relativis-

tic velocity in a periodic magnetic field; assume that an optical field is absent

and that loss of energy due to spontaneous emission of radiation is negligibly

small.

Answer:
d

dt
(γ m0v) = qv × B. (19.138)

Since the electron does not lose energy, the Lorentz factor is a constant and we

can write γ dv/dt = qv × B.

(c) Write the equation of motion for the x component and the z component of the

velocity for the case that the magnetic field is oriented along the y direction,

namely B = (0, B, 0) and B = Bw sin kwz, where kw = 2π/λw and λw is the

period of the wiggler. Answer: γ m0dvx/dt = qvz B and γ m0dvz/dt = qvx B.

(d) Replace in the equations of motion the term kwz by the corresponding time

dependent term.

Answer. We suppose that vx << vz so that z ≈ vz t and define Ω0 = kwvz . We

find γ m0dvx/dt = qvz Bw sin Ω0t and γ m0dvz/dt = qvx Bw sin Ω0t .
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(e) Determine the solutions.

Answer:

vx =
qcBwλw

2πγ m0

cos(Ω0t) = −
Kwc

γ
cos(Ω0t). (19.139)

Using this expression, we find the differential equation

dvz

dt
= −

q KwcBw

γ 2m0

sin Ω0t cos Ω0t = −
q KwcBw

2γ 2m0

sin 2Ω0t. (19.140)

The solution is

vz = v̄z −
K 2

wc

4γ 2
cos 2Ω0t, (19.141)

where v̄z = c
(

1 − 1+K 2
w/2

γ 2

)

is an average velocity for propagation along z and

where Kw =
eλw Bw

2πm0c
is the wiggler parameter.

Instead of using the differential equation for vz , we can make use of the Lorentz

factor, γ =
1

√

1 − (v2
x + v2

z )
. From this relation we find the same expression for

vz .

(f) Determine the effective Lorentz factor (that is the Lorentz factor related to v̄z)

for Kw = 1 and γ = 100.

(g) Show that the wiggler parameter can be written as the ratio of two energies. One

energy term is equal to ecλw Bw/2π and the other is the rest energy m0c2 of the

electron; determine the value of λw Bw for Kw = 1.

(h) Determine the orbit of the electron.

Answer. Integration of the velocity components leads to

x(t) = −
Kwλw

2πγ
sin Ω0t, (19.142)

z(t) = z̄(t) −
K 2

wλw

8πγ 2
sin 2Ω0t, (19.143)

with z̄(t) = v̄z. The vector (z − z̄, x) describes the form of an “eight” in the z, x

plane (see Fig. 19.7). The x component oscillatees with the frequency Ω0 and the

y component with 2Ω0. The frequency Ω0 ≈ kwc is determined by the wiggler

period. It is independent of γ and thus of the kinetic energy of the electron;

Ω0 = 2 × 107s−1 for λw = 1cm.

19.13 Lorentz factor. Relate the relativistic momentum and the relativistic energy

with the Lorentz factor.
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Answer. The Lorentz factor is given by

γ =
1

√

1 − v2/c2
. (19.144)

The relativistic momentum is equal to

p = γ m0v (19.145)

and the relativistic energy

E =
√

m2
0c2 + c2p2. (19.146)

19.14 Relativistic electron submit to both a periodic magnetic field and a high

frequency electric field. We describe, in the laboratory frame, the motion of an

electron that propagates at a relativistic velocity through a periodic static magnetic

field and is submit to a high frequency electric field. Which is the Lorentz force?

Answer: The Lorentz force is equal to

F = q(E + v × B). (19.147)

The electric field, which is oriented along the x direction, is given by

E = A cos ωt (19.148)

and the magnetic field, which is oriented along y, is equal to

B = Bw cos Ω0t. (19.149)

The Lorentz force is oriented along x and is approximately given by

F = q(E + cB). (19.150)

The frequency ω is much larger than Ω0.

19.15 Critical field—a speculation. We speculate that a distortion of the electron

orbit can occur when the amplitude of the electric force is equal to the amplitude of

the magnetic force. We denote the corresponding electric field amplitude as critical

field amplitude A∗.

(a) Determine the critical field amplitude A∗.

Answer.

A∗ = cBw. (19.151)

The critical field amplitude is determined by the amplitude of the wiggler field.

In the case that Bw = 1 T, the critical field amplitude is equal to A∗ = 3 ×
108 V m−1.
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19.16 Modulation model: an estimate of the distortion energy.

We assume that the critical field amplitude A∗ plays a role for distortion of an electron

orbit that we described in connection with the modulation model.

Characteristic of the modulation model is the distortion energy E∗. We now

attribute the distortion energy a critical frequency ω∗ by the relationship

�ω∗ = E∗. (19.152)

If an electron performs the work E∗, then, stimulated emission of radiation can result

in a strong distortion of the electron orbit. We will differ between two cases:

• ω0 ≤ ω∗; the electron oscillation frequency ω0(≈ ω) is smaller or equal to the

critical frequency.

• ω0 >> ω∗; the electron oscillation frequency is large compared with the critical

frequency (see Problem 19.17).

Here, we consider the case that the electron oscillation frequency is equal or smaller

than the critical frequency, ω0 ≤ ω∗. We ask for the work performed by an electron

submitted to the critical field using the relation

q

∫ T

0

Evxdt = −
eA∗cKw

γ ∗ω∗ = −E∗, (19.153)

where γ ∗ is the Lorentz factor that corresponds to the energy of the electrons driving

a free-electron laser at the frequency ω∗. We find, with A∗ = cBw, the distortion

energy

E∗ =
ec2 Bw Kw

γ ∗ω∗ . (19.154)

We find, from (19.152) and (19.154), using the relation between frequency and

Lorentz factor,

ω∗
0 =

1

1 + K 2
w/2

4πc(γ ∗)2

λw

, (19.155)

the critical frequency

ω∗ = (4π)1/5(e/�)2/5cB2/5
w λ−1/5

w K −1/5
w (1 + Kw/2)1/5. (19.156)

The distortion energy is equal to

E∗ =
[

4π�
3e2c5 B2

w(1 + Kw/2)

λw Kw

]1/5

, (19.157)

where Kw =
ecBwλw

4πm0c2
. Accordingly, the distortion energy depends on the strength

of the wiggler field Bw and the wiggler wavelength λw.
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(a) Determine E∗ and ω∗ for Bw = 1 T and λw = 1 cm; Kw ≈ 1.

Answer.

E∗ = 1eV. The calculated value of the distortion energy is comparable with the

value (2 eV) that we extracted, using the modulation model, from experimental

data of infrared and far infrared free-electron lasers. The critical frequency is

equal to ω∗/2π = 2.5 × 1014 Hz.

(b) Determine the distortion energy and the critical frequency for the limits Kw << 1

and Kw >> 1.

(c) Determine the coupling strength κ that describes, in the modulation model, the

coupling between the electron oscillation and the high frequency electric field.

Answer. The coupling strength is equal to

κ =
π4/5e3/5

41/5�3/5

λ1/5 K
6/5
w

B
2/5
w (1 + Kw/2)1/5

. (19.158)

It depends on the strength of the wiggler field and on the wiggler wavelength.

(d) Determine the distortion energy, the critical frequency, and the coupling strength

in the limits Kw << 1 and Kw >> 1.

(e) What is the reason that many expressions imply complicated dependences on

the parameters; see, for instance the dependence of the distortion energy on the

wiggler field and the wiggler wavelength.

Answer. Complicated dependences stem mainly from the dependence of the laser

frequency on the Lorentz factor, ω0(γ ).

(f) What is the process that leads, according to the modulation model, to strong

distortion of the electron orbit at saturation of the laser field?

Answer. At saturated laser field, the work done by an electron during one period

of the electron oscillation is equal to the distortion energy. During a period

of the electron oscillation, one photon is generated if the electron oscillation

frequency is about equal to the critical frequency, ω0 ≈ ω∗. Many photons are

generated by a cascade process if the electron oscillation frequency is small

compared with the critical frequency. Then, the number n of photons generated

in a cascade process is given by the relationship nω0 ≈ ω∗. At saturated laser

field, an absorption process in a period of the electron oscillation follows a

stimulated emission process occurring in the preceding period.

Thus, the condition of saturation implies that stimulated emission and absorption

processes follow each other at a period that is twice the period of the electron

oscillation (= period of the laser field).

19.17 Saturation of the X-ray SASE free-electron laser. The laser frequency and

thus the electron oscillation frequency of an X-ray SASE free-electron laser is much

larger than the critical frequency, ω0 >> ω∗. Stimulated emission of a photon is

joined with a large distortion of the electron orbit. However, this distortion is repaired

as long as an absorption process does not occur. Saturation does occur if the amplitude
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of the laser field is so strong that stimulated emission and absorption processes follow

each other at a period that is twice the period of the electron oscillation.

(a) Determine the saturation field amplitude Asat for an X-ray SASE free-electron

laser. Show that Asat shows an ω dependence; the amplitude increases, for fre-

quencies ω >> ω∗, less strong than assumed in Sect. 19.11, equation (19.97),

showing approximately a ω3/2 dependence.

(b) Which is the gain coefficient for radiation in an X-ray SASE free-electron laser?

This is a yet open question. It may decrease, with increasing frequency, less

strongly than discussed in Sect. 19.11, equation (19.96). If we assume that the

product of the saturation field amplitude and the gain coefficient α is independent

of frequency as at small frequencies, we would expect that α is proportional to

ω−1 rather than proportional to ω−3/2.

19.18 Discuss the general equation of motion. The generals equation of motion,

(19.146), takes into account that the Lorentz factor depends on time. Due to stimulated

emission of radiation by an electron, the Lorentz factor decreases. We can write

m0v
dγ

dt
+ γ m0

dv

dt
= q(E + v × B). (19.159)

This differential equation is treated in many books and is used to derive the pendulum

model of the electron motion that leads to the expression (19.127) for the small-signal

gain; see, for instance, [5, 166, 312].

19.19 One-electron FEL. We consider a hypothetical one-electron free-electron

laser. The FEL is driven by electron pulses, each pulse containing one electron. The

pulse repetition rate is equal to the round trip transit rate of the optical pulses in

the laser resonator. We assume that the laser resonator shows no loss. We choose

the following data. Laser wavelength 1.6 µm; ν = 188 THz, Eel = 115 MeV, γ =
230, Nw = 100, Lw = 1 m, λw = 1 cm, Bw = 1T, Kw = 1, E∗ = 2 eV, L res = 30 m,

mode radius of the near concentric resonator r = 2 mm. Describe the dynamics

by using the modulation model; instead of Gaussian distributions of the optical

pulse we describe the pulse by a rectangular distributions of the high frequency field

perpendicular to the beam and along the beam.

(a) Estimate the power of a radiation pulse in the laser resonator.

(b) Determine the oscillation onset time of the laser.

(c) Discuss the dynamics of the FEL during the oscillation onset and at steady state

oscillation.

(d) Make clear that the one-electron FEL shows main features of a free-electron

laser.
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Chapter 20

An Introduction to Semiconductor Lasers

Beginning with this chapter, we will treat semiconductor lasers—that are solid state

lasers with active media based on semiconductor materials. We will concentrate our

discussion on diode lasers (=laser diodes), that is, of current pumped semiconductor

lasers and, in particular, on diode lasers operating at room temperature. These are

presently the most important semiconductor lasers with respect to applications.

There are two families of semiconductor lasers: the bipolar semiconductor lasers

and the unipolar semiconductor lasers.

The bipolar semiconductor lasers are two-band lasers. In a bipolar semiconductor

laser, stimulated transitions between occupied electron levels in the conduction band

and empty electron levels in the valence band generate the laser radiation. The photon

energy of the laser radiation is about equal to the gap energy of the semiconductor.

The unipolar semiconductor lasers, realized as quantum cascade lasers, belong to

the three-level laser type. Electrons are performing transitions between three energy

levels in three different subbands of the conduction band. The photon energy of the

laser radiation is much smaller than the gap energy.

We describe an electron in the conduction band of a semiconductor as a free

electron, i.e., as an electron that can freely move (between two collisions) within a

semiconductor. Accordingly, a hole in the valence band is a free hole. The free motion

of an electron or a hole is either three-dimensional (in a bulk crystal), two-dimensional

(in a quantum film), one-dimensional (in a quantum wire) or zero-dimensional (in a

quantum dot); in a quantum dot, free motion of an electron is not possible, an electron

is imprisoned in the quantum dot. The free motion of an electron in a direction is

restricted if the extension of a semiconductor in the direction is, for a semiconductor

at room temperature, about 10 nm or smaller.

The waveguide Fabry–Perot resonator, with reflectors formed by semiconductor

surfaces only, is suitable as laser resonator for all types of bipolar lasers. Later

(Chap. 25) we will discuss other types of resonators that can be used in semiconductor

lasers.
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We present the further program concerning semiconductor lasers. We will treat

bipolar semiconductor lasers of different types: junction lasers, double heterostruc-

ture lasers, quantum well lasers, quantum wire lasers and quantum dot lasers. The

active media of the junction and double heterostructure lasers are three-dimensional

semiconductors while the active media of the other types of bipolar lasers are semi-

conductors of lower dimensions.

We also give a short survey of the frequency ranges of the different semiconductor

lasers and mention the energy band engineering as the basis of the great variety of

semiconductor lasers.

In comparison with other lasers, semiconductor lasers are unique with respect to

their small sizes and, particularly, with respect to the possibility to design a semicon-

ductor laser for a specific frequency—for any frequency in the near UV, visible and

infrared. Realization of small-size semiconductor lasers is possible because both the

Einstein coefficient B21 of stimulated emission and the density of two-level systems

in an active semiconductor can have large values at the same time; in active media

of other lasers, only one of the two quantities, either B21 or the density of two-level

systems, has a large value.

20.1 Energy Bands of Semiconductors

We characterize (Fig. 20.1) a semiconductor by a conduction band c and a valence

band v separated from each other by an energy gap:

• Ec = energy minimum of the conduction band.

• Ev = energy maximum of the valence band.

• Eg = Ec − Ev = gap energy.

Fig. 20.1 Conduction band and valence band
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We describe the electron states of the conduction band by free-electron waves

ψ(k, r) = A ei[kr−(E/�)t)], (20.1)

where the quantities are:

• ψ = wave function.

• ψ∗(r)ψ(r)dV = probability to find an electron in the state ψ at the location r in

the volume element dV .

• A = amplitude of the electron wave.

• k = wave vector of the electron wave.

• r = spatial coordinate.

• E = energy.

• t = time.

We characterize the relation between the energy and the k vector by a parabolic

dispersion relation

E = Ec + ǫc, (20.2)

where

ǫc =
�

2k2

2me

(20.3)

is the energy within the conduction band, me the effective mass of a conduction band

electron, and 1/mc the curvature of the dispersion curve in the energy minimum at

k = 0. We can interpret ǫc as the kinetic energy of a conduction band electron.

With respect to the valence band, we are only interested in the range near the

band maximum. We describe the wave function of a valence band electron also as a

free-electron wave, however with another dispersion relation,

E = Ev − ǫv, (20.4)

where

ǫv =
�

2k2

2mh

(20.5)

is the energy of a valence band electron state measured from the top of the valence

band, k is the wave vector, and mh the effective mass of a valence band electron at

the top of the valence band.

We denote an empty level in the valence band as a hole. The energy of a hole is

equal to the energy of an electron in the valence band in the case that the electron

occupies the empty level. The effective mass of a hole is equal to the effective mass

of a valence band electron.
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Example Effective masses of electrons and holes in GaAs at room temperature.

• me = 0.07m0 = effective mass of a conduction band electron.

• m0 = 0.92 × 10−30 kg = electron mass.

• mh = 0.43 m0 = effective mass of a hole (in the valence band) = mass of a valence

band electron (on top of the valence band).

• mh ∼ 6 me; the effective mass of a hole is about six times the effective mass of a

conduction band electron.

We utilize notations that are in use in semiconductor physics. A “free-electron” in

a crystal is a conduction band electron (=electron in the conduction band) or a valence

band electron (=electron in the valence band). We denote an ensemble of electrons

in the conduction band as electron gas in the conduction band and, accordingly, an

ensemble of electrons in the valence band as electron gas in the valence band.

20.2 Low-Dimensional Semiconductors

In a bulk semiconductor crystal, electrons move freely in space; we have a three-

dimensional semiconductor (Fig. 20.2). The restriction of the free motion in one

direction leads to a two-dimensional semiconductor realized as quantum well (=

quantum film). The further restriction results in the one-dimensional semiconductor

(quantum wire) and, finally, to the zero-dimensional semiconductor (quantum dot).

Electrons in a quantum dot cannot move freely at all. The density of states (=level

density) of electrons depends on the dimensionality of a semiconductor.

• Three-dimensional density of states = number of states per unit of energy and unit

of volume:

D3D(ǫ) =
1

2π2

(

2m

�2

)3/2

ǫ1/2; (20.6)

relevant to the junction laser and the double-heterostructure laser.

Fig. 20.2 Three-dimensional and low-dimensional semiconductors
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• Two-dimensional density of states (=number of states per unit of energy and unit

of area):

D2D(ǫ) =
m

π�2
; (20.7)

relevant to quantum well lasers.

• One-dimensional density of states (=number of states per unit of energy and unit

of length):

D1D(ǫ) =
1

π�

√

2m

ǫ
; (20.8)

relevant to quantum wire lasers.

• Density of states of a zero-dimensional system = D0D(ǫ); the energy levels are

discrete; relevant to quantum dot lasers.

The spin degeneracy (allowing each k state to be occupied with two electrons of

opposite spin) is taken into account. The density of states concern:

• Electrons in the conduction band; then ǫ = ǫc is the energy within the conduction

band and m = me is the effective mass of a conduction band electron.

• Electrons or holes in the valence band near the top of the band; then ǫ = ǫv is

the energy within the valence band and m = mh is the effective mass of a valence

band electron (=effective mass of a hole in the valence band).

20.3 An Estimate of the Transparency Density

The effective mass of an electron in the conduction band and the effective mass of

an electron in the valence band are quite different. Therefore, the density (=level

density) for the of states in the conduction band differs strongly from the density of

states for the valence band. We expect, according to the criterion used to determine

the transparency density (Sect. 2.3), that the transparency density has a value between

N ∗
tr,c =

1

2

∫ kT

0

Dc(ǫ)dǫ (20.9)

and

N ∗
tr,v =

1

2

∫ kT

0

Dv(ǫ)dǫ. (20.10)

Table 20.1 shows the lower limit (N ∗
tr,c) of the transparency density and the upper limit

(N ∗
tr,v) together with the transparency density Ntr calculated by taking into account

the appropriate occupation numbers. We will present a method for calculation of

Ntr in the next two chapters. Our estimated limiting values indicate the orders of

magnitudes of the values of the transparency density of GaAs semiconductors in

http://dx.doi.org/10.1007/978-3-319-50651-7_2
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Table 20.1 Transparency density

N∗
tr,c N∗

tr,v

(

N∗
tr,c N∗

tr,v

)1/2
Ntr

3D 0.39 ×1026 m−3 5.9 ×1026 m−3 1.5 × 1026 m−3 1.2 × 1026 m−3

2D 0.82 × 1016 m−2 4.9 × 1016 m−2 2 × 1016 m−2 1.4 × 1016 m−2

1D 0.69 × 108 m−1 1.7 × 108 m−1 1.1 × 108 m−1

different dimensions. The geometric averages (N ∗
tr,c N ∗

tr,v)
1/2 are not far from the

calculated values. (However, we cannot provide a real justification for taking the

geometric average.)

20.4 Bipolar and Unipolar Semiconductor Lasers

In a bipolar semiconductor laser (Fig. 20.3a), the active medium contains nonequi-

librium electrons in the conduction band and empty electron levels in the valence

band. A current leads to injection of electrons into the conduction band and, at the

same time, to extraction of electrons from the valence band. The electrons injected

into the conduction band occupy mainly energy levels near the bottom of the con-

duction band—while empty electron levels that occur due to extraction of electrons

from the valence band accumulate at the top of the valence band. The electrons in the

conduction band are in a quasithermal equilibrium at the temperature of the semi-

conductor, and the electrons in the valence band are in a quasithermal equilibrium

at the temperature of the semiconductor too. But the population of the conduction

band is far out of equilibrium with respect to the population of the valence band.

Stimulated transitions of electrons in the conduction band to empty electron levels

in the valence band lead to generation of laser radiation. There is a distribution of

transition energies E21. The smallest transition energy is the gap energy:

E21 = E2 − E1 ≥ Eg. (20.11)

The range of transition energies is small compared to the gap energy. Accordingly,

the photon energy of laser radiation generated by a bipolar semiconductor laser is

comparable to the gap energy,

hν ∼ Eg. (20.12)

To cover the spectral ranges from the UV to the infrared with radiation of semicon-

ductor lasers, semiconductors with quite different values of Eg are necessary. Thus,

almost all semiconductors are candidates as basic materials of bipolar semiconductor

lasers.

But to be suitable as an active semiconductor medium, a semiconductor has to

fulfill an important condition: the semiconductor must be a direct gap semiconductor.
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Fig. 20.3 Semiconductor lasers. a Bipolar semiconductor laser. b Quantum cascade laser

Table 20.2 Einstein coefficients of electronic transitions in GaAs-based semiconductor hetero-

structures used in lasers

Laser λ (µm) A21 (s−1) B21 (m3 J−1 s−2) B
||

21 (m3 J−1 s−2)

Quantum well 0.8 3 × 109 2.2 × 1021 1.5 B21

Quantum wire 0.8 3 × 109 2.2 × 1021 3 B21

Quantum dot 0.8 3 × 109 2.2 × 1021

QCL 100 2 × 1021

Silicon and germanium have indirect gaps and are therefore not suitable as active

media of bipolar semiconductor lasers. Most of the group III–V and group II–VI

semiconductors have direct gaps and are usable as laser media. In a direct gap semi-

conductor, the conduction band minimum occurs at the same k value as the valence

band maximum.

In a unipolar semiconductor laser (Fig. 20.3b), electronic transitions between sub-

bands of the conduction band of a semiconductor heterostructure generate the laser

radiation. Now, the design of the heterostructure mainly determines the transition

energy. There is again a distribution of transition energies. The transition energies

are smaller than the gap energy,

E21 = E2 − E1 ≪ Eg, (20.13)

and consequently, the laser frequencies are small compared to the gap frequency,

hν ≪ Egap. (20.14)

The unipolar laser realized as quantum cascade laser is available in frequency ranges

of the infrared and far infrared.

Table 20.2 shows data of Einstein coefficients for GaAs-based semiconductor

heterostructures. The values of B21 for bipolar semiconductor structure follow from

A21 (known from fluorescence studies). Due to anisotropy of a heterostructure, the

Einstein coefficient B21 is different for different orientations of the electromagnetic
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field relative to the heterostructure. If a laser field is oriented parallel to a quantum

well or a quantum wire, B
||

21 can be larger than B21 (Sect. 22.8). The value of the

Einstein coefficient of stimulated emission for a QCL medium can be derived from

theory.

20.5 Edge-Emitting Bipolar Semiconductor Lasers

A edge-emitting bipolar semiconductor laser emits radiation from one of the edges

of a device (or from two edges), see Fig. 20.4. The resonator corresponds (in the

simplest case) to a Fabry–Perot resonator with two uncovered semiconductor surfaces

as reflectors. A central layer sandwiched between two other layers contains the active

media. The central layer has a slightly larger refractive index (n0) than the adjacent

layers (refractive index n1). The field is confined to the central layer, the laser light is

index guided (=refractive index guided). The central layer has a thickness (a2) that

is equal to half a wavelength or larger than half a wavelength of the laser radiation

in the resonator. The reflectivity of a single surface is

R1 = R2 =
(n0 − 1)2

(n0 + 1)2
. (20.15)

The refractive index of a GaAs-based semiconductor is ∼3.6 (or smaller) and the

reflectivity of the surfaces R1 = R2 ∼ 0.3. The V factor characterizing the loss

per single transit through the resonator is V1 ∼ 0.3. The laser threshold condition,

G1V1 ≥ 1, requires that the gain factor at a single transit of radiation through a laser

resonator must have a value G1 ≥ V −1
1 (∼3) that is noticeably larger than unity.

Laser radiation leaves the resonator via both ends of the resonator.

Example Resonator consisting of a semiconductor (GaAlAs) with n0 = 3.5.

• L = 1 mm.

• T/2 = nL/c = 1.2 × 10−11 s = half of the round trip transit time.

• V1 = 0.3 = V factor related to a single transit of radiation through the resonator.

• lp = 0.8 mm; an average path length of a photon in the resonator.

• τp = 1 × 10−11 s; lifetime of a photon in the resonator.

Fig. 20.4 Edge-emitting bipolar laser with a waveguide Fabry–Perot resonator

http://dx.doi.org/10.1007/978-3-319-50651-7_22
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The lifetime of a photon is slightly smaller than the time of flight (T/2) of the light

through the resonator. We will show later that waveguide Fabry–Perot resonators are

nevertheless suitable for operation of bipolar lasers.

20.6 Survey of Topics Concerning Semiconductor Lasers

We will introduce (Fig. 20.5), on the basis of the properties of semiconductors and

semiconductor heterostructures, the bipolar semiconductor lasers and the unipolar

semiconductor lasers. We characterize the different types of the two families as types

as follows.

• Junction laser (=homojunction laser = homostructure junction laser). The active

medium is the junction region between an n-doped and a p-doped part of a crystal.

This was the first semiconductor laser type.

Example GaAs junction laser, containing an n GaAs/p GaAs junction.

• Double heterostructure laser. The active medium is an undoped film embedded

in n- and p-doped materials. The undoped film is a well for electrons and holes.

The thickness of the film is so large that the electrons move as free-electrons in all

spatial directions. With this type, the laser design making use of heterostructures

began.

Example GaAs/GaAlAs laser, containing the layers n GaAlAs/GaAs/p GaAlAs.

• Quantum well laser. The active medium is an undoped quantum film. Adjacent to

the quantum film, there is on one side n-doped material and on the other side p-

doped material. The materials act as injectors of electrons and holes, respectively.

Quantum well lasers are available for the visible, near infrared, and near UV spec-

tral ranges and dominate presently the semiconductor laser field with respect to

applications.

Fig. 20.5 Survey of topics concerning semiconductor lasers
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Example GaAs quantum well laser, containing layers of n GaAlAs-2/n GaAlAs-

1/GaAs/p GaAlAs-1/p GaAlAs-2; the numbers 1 and 2 refer to different

compositions.

• Quantum wire laser. Quantum wire lasers, with quantum wires embedded in injec-

tor material, are in the first stage of realization.

• Quantum dot laser. This type of a bipolar semiconductor laser is being developed.

• Quantum cascade laser (QCL). This laser type is presently in a very active state

of development. The radiation of quantum cascade lasers covers large wavelength

ranges of the infrared and the far infrared (2–28µm) and, as cooled QCL, wave-

length ranges of the far infrared (70–300µm).

• Superlattice Bloch laser (=Bloch laser = Bloch oscillator). This type of laser

exists only as an idea on the basis of theoretical studies. The active element is a

doped semiconductor superlattice. The superlattice is composed of two different

semiconductor materials, for instance, GaAs and AlAs. An electron that propagates

along the superlattice axis experiences a periodic potential. The energy is confined

to a miniband of a width that is much smaller than the gap energy of the two

semiconductors. In a strong static electric field (Es), the states of an electron in a

miniband form an energy-ladder system. An electron occupies one of the levels in

an energy-ladder system. Stimulated transitions between energetically next-year

levels in the energy-ladder systems give rise to gain. Bloch lasers—if realizable—

should operate at room temperature and cover a frequency range beginning at a

frequency below 1 THz up to several THz.

We will begin in the next section with a discussion of a bipolar laser and then con-

centrate the discussion during several chapters—because of its great importance—on

the quantum well laser.

20.7 Frequency Ranges of Semiconductor Lasers

The frequency range covered by different semiconductor lasers extend from the near

UV to the far infrared (Fig. 20.6).

• Quantum well lasers; 0.3–2µm.

• Junction lasers (cooled); 2–30µm.

• Quantum cascade lasers; from 2–28µm and as cooled quantum cascade lasers,

70–300µm.

• Superlattice Bloch laser (hypothetical); ∼100 µm–1 mm.

In the wavelength range covered by quantum well lasers, there are other bipolar

lasers such as quantum wire lasers, quantum dot lasers, double heterostructure lasers,

and junction lasers.

At present, there is a gap with respect to semiconductor based oscillators operating

at room temperature; the gap (“terahertz gap”) extends from about 30 µm to 3 mm

(Sect. 28.7). The cooled quantum cascade lasers cover a part of the gap.

http://dx.doi.org/10.1007/978-3-319-50651-7_28
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20.8 Energy Band Engineering

An important tool used to design semiconductor lasers is the energy band engineering

(tailoring of semiconductors), based on two principles.

• The use of mixed crystals. The energy gap of a mixed crystal is different from the

gaps of the single components.

• The preparation of heterostructures. Heterostructures are spatial structures con-

sisting of different semiconductor materials.

20.9 Differences Between Semiconductor Lasers

and Other Lasers

Semiconductor lasers (=diode lasers = laser diodes) have a series of extraordinary

properties.

• The transition energies can have, for different materials, very different values.

Accordingly, lasers can be designed for the UV, visible, infrared, and far infrared

spectral regions.

• The use of alloys of semiconductors makes it possible to design semiconductor

lasers for each wavelength in the range from the near UV to the infrared.

• The use of heterostructures leads to an extraordinary extension of the possibility

of designing lasers.

A laser diode

• Converts electric current directly to light.

• Has a high gain coefficient (e.g., 10 cm−1 or more), in comparison with the helium–

neon laser (10−3 cm−1) or the CO2 laser (0.05 cm−1), see Fig. 7.6.

• Can reach a high efficiency (50% or more).

• Operates as cw or pulsed laser.

• Can be tailored for a given wavelength.

Fig. 20.6 Frequency ranges of semiconductor lasers; solid lines, lasers operated at room tempera-

ture and dotted lines, lasers operated at liquid nitrogen temperature

http://dx.doi.org/10.1007/978-3-319-50651-7_7


426 20 An Introduction to Semiconductor Lasers

• Has a small dimension (typical sizes of a quantum well laser: 200µm × 1µm ×

500 µm (edge-emitting laser) and 10µm × 100µm × 100µm down to 10µm ×

10µm × 10µm or a corresponding circular area (vertical-surface emitting laser).

• Can be manufactured by mass production.

The combination of the radiation of a large number of semiconductor lasers leads

to a high-power semiconductor laser; the radiation is monochromatic but not coher-

ent.

The other lasers have, in comparison with semiconductors, other advantages:

they are suitable for generation of radiation of high directionality and of high mono-

chromaticity; some of the lasers allow for generation of ultrashort pulses; some are

suitable as giant pulse lasers.

The Einstein coefficient B21 of transitions used in semiconductors is large and

density of two-level atomic systems, which contribute to a laser oscillation, is large

too. This has different reasons. A three-dimensional semiconductor can carry a large

density of electrons contributing to the gain. A Low-dimensional semiconductor, with

a large two-dimensional density of electrons contributing to gain, can be integrated

in a integrated in a resonator of small size so that the so that the average density of

two-level atomic systems in a photon mode has a large value too. In comparison with

active media of semiconductor lasers, only one of the quantities of an active medium

of other laser has a large value—either the Einstein coefficient B21 or the density of

two-level atomic systems (Sects. 7.3 and 7.5).

References [177–186].

Problems

20.1 De Broglie wavelength. Estimate the ratio of the de Broglie wavelength of a

conduction band electron in GaAs and a free-electron in vacuum that move at the

same velocity.

20.2 Number of states. Evaluate the number of states in the conduction band of

GaAs (me = 0.07 m0) that are available at the energy Eg + 26 meV in an energy

interval of 1 meV for different cases.

(a) The semiconductor is three-dimensional.

(b) The semiconductor is Two-dimensional.

(c) The semiconductor is One-dimensional.

20.3 Frequency distance of the longitudinal modes of a waveguide Fabry–

Perot resonator. Evaluate the frequency distance of longitudinal modes of a GaAs

waveguide Fabry–Perot resonator (n = 3.6) of a length of 1 mm.

http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_7


Chapter 21

Basis of a Bipolar Semiconductor Laser

We treat the basis of bipolar semiconductor lasers. We discuss: condition of gain;

joint density of states; gain coefficient; laser equations; bipolar character of the active

medium. And we derive, by use of Planck’s radiation law, the Einstein coefficients

for an ensemble of two-level systems that is governed by Fermi’s statistics.

The first part of this chapter is dealing with three-dimensional semiconductors.

Another part, Sects. 21.8 and 21.9, concerns quantum well lasers. Instead of following

through these two sections, a reader may solve the Problems 21.5 and 21.6, or jump

to the next chapter that contains, in a short form, the main conclusions with respect

to quantum well lasers.

The active medium of a bipolar semiconductor laser is a semiconductor containing

electrons in the conduction band and empty electron levels (holes) in the valence band.

Permanent pumping (via a current delivered by a voltage source) leads to injection

of electrons into the conduction band and to extraction of electrons from the valence

band. The active medium carries no net charge. The density N of electrons in the

conduction band is equal to the density of empty electron levels in the valence band.

Laser radiation occurs due to stimulated transitions of electrons in the conduction

band to empty levels in the valence band. The electrons in the conduction band have

a Fermi distribution, f2, corresponding to a quasi-Fermi energy EFc. The electrons in

the valence band have another Fermi distribution, f1, corresponding to a quasi-Fermi

energy EFv.

We derive the condition of gain: gain occurs if the occupation number difference

is larger than zero, f2 − f1 > 0. This is equivalent to the condition that the density of

conduction band electrons is larger than the transparency density (N > Ntr). And it is

also equivalent to the condition that the difference of the quasi-Fermi energies is larger

than the gap energy, EFc − EFv > Eg. Gain occurs for photons of a quantum energy

that is smaller than the difference of the quasi-Fermi energies, hν < EFc − EFv.

The range of gain increases with increasing density of nonequilibrium electrons in

the conduction band (and a corresponding increasing density of empty levels in the

valence band).
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We determine the reduced density of states (=joint density of states), taking

into account that energy and momentum conservation laws have to be obeyed in a

radiative transition. We derive expressions describing stimulated and spontaneous

emission. Furthermore, we formulate laser equations. Their solutions provide the

threshold condition, particularly the threshold current. The solutions reveal clamping

of occupation number difference f2 − f1 and accordingly, clamping of the quasi-

Fermi energies.

To combine, for calculation of gain, a quantum well that is a two-dimensional

semiconductor with a radiation field that is three-dimensional, we use appropriate

average densities. We introduced the method earlier (in Sects. 7.8 and 7.9 about gain

mediated by a two-dimensional active medium). The topics we will treat with respect

to the quantum well laser concern: condition of gain; quasi-Fermi energies; reduced

mass; transparency density; gain characteristic; gain mediated by a quantum well

oriented along the direction of a light beam; gain of radiation traversing a quantum

well; laser equations and their solutions.

21.1 Principle of a Bipolar Semiconductor Laser

A bipolar semiconductor laser contains an electron gas in the conduction band and

another electron gas in the valence band (Fig. 21.1a). The electron gas in the conduc-

tion band is in a quasithermal equilibrium with the thermal bath. The quasithermal

Fig. 21.1 Principle of a bipolar semiconductor laser. a Dynamics. b Quasi-Fermi energies and

transparency frequency

http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_7
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equilibrium with the thermal bath, i.e., with the crystal lattice, is established via

electron–phonon scattering. The electron gas in the valence band is also in a qua-

sithermal equilibrium with the thermal bath. The quasithermal equilibrium with

the thermal bath is also established via electron–phonon interaction. However, the

two electron gases are far out of equilibrium with each other. Electron injection into

the conduction band and electron extraction from the valence band maintain the

nonequilibrium state.

We will characterize the electron gas in the conduction band by the quasi-Fermi

energy EFc and the electron gas in the valence band by the quasi-Fermi energy EFv

(Fig. 21.1b, left). The gain coefficient α of an active medium (Fig. 21.1b, right) is

positive for radiation in the frequency range between νg, and νF , where νg = Eg/h

is the gap frequency, Eg the gap energy, and where νF corresponds to the difference

of the quasi-Fermi energies according to the relation

νF = (EFc − EFv)/h. (21.1)

This will be shown in the next sections.

21.2 Condition of Gain of Radiation in a Bipolar

Semiconductor

We consider (Fig. 21.2) two discrete energy levels, a level 2 (energy E2) in the

conduction band and a level 1 (energy E1) in the valence band. Radiative transitions

between the two levels can occur by the three processes: absorption, stimulated

and spontaneous emission. The transition rate of absorption (=number of transitions

per m3 and s) is equal to

r12(ν) = r12(hν) = B̄12 f1(1 − f2)ρ(hν). (21.2)

Fig. 21.2 Radiative transition in a bipolar semiconductor medium
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We use the following quantities:

• Ec = energy of the bottom of the conduction band.

• Ev = energy of the top of the valence band.

• E2 = energy of the upper laser level.

• E1 = energy of the lower laser level.

• E21 = E2 − E1 = transition energy.

• B̄12 = Einstein coefficient of absorption (in units of m3 s−1); B̄12 = h B12 (Sect. 6.6).

• B̄21 = Einstein coefficient of stimulated emission.

• A21 = Einstein coefficient of spontaneous emission.

• f1 = f1(E1) = probability that level 1 is occupied; 1 − f1 = probability that level

1 is empty.

• f2 = f2(E2) = probability that level 2 is occupied.

• (1 − f2) = probability that level 2 is empty.

• ρ(hν) = spectral energy density of the radiation on the energy scale.

It is convenient to choose the energy scale. Consequently, the Einstein coefficients

of absorption and stimulated emission, B̄12 and B̄21, differ from B12 and B21.

The rate of stimulated emission processes is equal to

r21(hν) = B̄21 f2(1 − f1)ρ(hν). (21.3)

The spontaneous emission rate is equal to

r21,sp(hν) = A21 f2(1 − f1). (21.4)

The occupation probability of level 2 is given by the Fermi–Dirac distribution

f2 =
1

exp [(E − EFc)/kT ] + 1
. (21.5)

EFc is the quasi-Fermi energy of the electrons in the conduction band and T is the

lattice temperature. The occupation probability of level 1 is

f1 =
1

exp [(E − EFv)/kT ] + 1
. (21.6)

EFv is the quasi-Fermi energy of the electrons in the valence band.

At thermal equilibrium, the transition rates of upward and downward transitions

are equal,

r12 = r21 + r21,sp, (21.7)

and the Fermi energies coincide,

EFc = EFv = EF. (21.8)

http://dx.doi.org/10.1007/978-3-319-50651-7_6
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It follows that

ρ(hν) =
A21 f2(1 − f1)

B̄12 f1(1 − f2) − B̄21 f2(1 − f1)
(21.9)

must be equal to the expression given by Planck’s radiation law (now with the energy

density given on the energy scale),

ρ(hν) =
8πn3ν3

c3

1

ehν/kT − 1
. (21.10)

The comparison yields

A21 = 8πn3ν3c−3 B̄21 (21.11)

and

B̄12 = B̄21. (21.12)

We find again the Einstein relations. If a semiconductor is optically anisotropic, the

value of B̄12 (=B̄21) depends on the direction of the electromagnetic field relative to

the orientation of the semiconductor. Then a modification of the Einstein relations

is necessary.

At nonequilibrium, the quasi-Fermi energies are different, EFc �= EFv, i.e., the

electrons in the conduction band are not in an equilibrium with respect to the electrons

in the valence band. However, the electrons within the conduction band form an

electron gas that is in a quasiequilibrium with the lattice at the temperature T —

and the electrons within the valence band form another electron gas that is in a

quasiequilibrium with the lattice at the temperature T . In a bibpolar semiconductor

laser nonequilibrium state consists of two electron gases that are far out of equilibrium

relative to each other.

The net rate of stimulated emission and absorption by transitions between the two

energy levels of energy E1 and E2 is equal to

r21 − r12 = B̄21( f2 − f1)ρ(hν). (21.13)

Stimulated emission prevails if the occupation number difference is larger than zero,

f2 − f1 > 0. (21.14)

This condition corresponds to

EFc − EFv > Eg. (21.15)

A bipolar medium is an active medium if the difference of the quasi-Fermi energies

is larger than the gap energy. The injection of electrons leads to a density N of

electrons in the conduction band. The extraction of electrons from the valence band
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leads to a density P of empty levels in the valence band (=density of holes in the

valence band). Because of neutrality, the two densities are equal, N = P .

The quasi-Fermi energy of the electrons in the conduction band follows from the

condition that the density of occupied levels in the conduction band is equal to the

density N of nonequilibrium electrons in the conduction band,

∫ ∞

−∞
f2(E)Dc(E)dE = N . (21.16)

The quantities are:

• Dc(E) = density of states in the conduction band (in units of m−3 J−1).

• f2(E)Dc(E)dE = density of occupied levels in the conduction band in the energy

interval E, E + dE .

• N = density of electrons = density of electrons injected into the conduction band

(in units of m−3).

The density of unoccupied electron levels in the valence band is

∫ ∞

−∞
(1 − f1)Dv(E)dE = P (=N ), (21.17)

where the quantities are:

• Dv(E) = density of states in the valence band.

• f1(E)Dv(E)dE = density of occupied levels in the valence band within the energy

interval E , E + dE .

• (1 − f1)Dv(E)dE = density of empty levels in the valence band within the energy

interval E , E + dE .

• P = density of empty levels in the valence band (=density of holes).

We can use the last two equations to determine, for a given electron density N , the

quasi-Fermi energies EFc and EFv.

The description of the electronic states takes into account that the electrons in the

conduction band obey the Pauli principle. Each of the states can be occupied with

two electrons (of opposite spin). A Fermi distribution function describes the filling

of the conduction band. With increasing electron density N , the quasi-Fermi energy

EFc increases. Correspondingly, the extraction of electrons from the valence band

leads, with increasing density N of empty levels, to a decrease of the quasi-Fermi

energy EFv. The difference of the quasi-Fermi energies, EFc − EFv, increases with

increasing N . The difference becomes equal to the gap energy,

EFc − EFv = Eg if N = Ntr. (21.18)

Ntr is the transparency density. At this electron density, the Fermi functions have,

for E2 − E1 = Eg, the same values, f2(E2) = f1(E1). Furthermore, the rates of

stimulated emission and absorption are equal. Accordingly, the semiconductor is
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transparent for radiation of the photon energy hν = E2 − E1 = Eg. Gain occurs if

the electron density exceeds the transparency density. The range of gain increases

with increasing N − Ntr. We can express the result in other words: the range of

gain increases with increasing filling of the conduction band with electrons and the

simultaneous extraction of electrons from the valence band (i.e., with the filling of

the valence band with holes).

21.3 Energy Level Broadening

We study transitions involving monochromatic radiation in the energy interval hν,

hν + d(hν) taking into account energy level broadening (Fig. 21.3). The net transition

rate is equal to

(r21 − r12)hv d(hν) = B̄21g(hν − E21) ( f2 − f1) ρ(hν)d(hν), (21.19)

where g(hν − E21) is the lineshape function that corresponds to the 1 → 2 absorption

line. The lineshape function is normalized,

∫

g(hν − E21) d(hν) = 1; (21.20)

the integral over all contributions g(hν − E21)d(hν) is unity. If the lineshape function

is a Lorentzian, we can write

g(hν − E21) =
δE21

2π

1

(hν − E21)2 + δE2
21/4

. (21.21)

δE21 is the linewidth of the transition.

Fig. 21.3 Energy level broadening
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If the radiation is monochromatic, d(hν) ≪ δE21, then the net transition rate of

transitions between level 2 and level 1 is given by

r21 − r12 =
∫

(r21 − r12)hνd(hν) =
∫

B̄21g(hν − E21)( f2 − f1)ρ(hν)d(hν).

(21.22)

With u =
∫

ρ(hν)d(hν) and the energy density u = Zhν, we can write

r21 − r12 = hν B̄21g(hν − E21) [ f2(E2) − f1(E1)] Z . (21.23)

The transition rate is proportional to the occupation number difference f2 − f1 and to

the photon density Z . The condition of gain remains the same, f2(E2) − f1(E1) > 0,

as derived without taking account of energy level broadening. At the transparency

density, where f2(E2) − f1(E1) = 0, there is no contribution to gain of radiation of

the quantum energy hν by 2 → 1 transitions—whether hν lies in the line center or

in the wing of the line. We thus have obtained the condition of gain:

f2(E2) − f1(E1) > 0 (21.24)

or

EFc − EFv > Eg, (21.25)

which corresponds to

hν < EFc − EFv. (21.26)

The photon energy can have a value that is smaller than the gap energy Eg because of

the energy level broadening. An electron level (in the conduction band as well in the

valence band) has a finite lifetime due to inelastic scattering of electrons at phonons

(electron–phonon scattering).

The condition of gain, hν < EFc − EFv, is sometimes called Bernard–Duraffourg

relation according to the authors of a corresponding publication [201].

21.4 Reduced Density of States

Because of momentum conservation, a radiative transition from a particular level

2 can only occur to a particular level 1. Vice versa, a radiative transition from the

lower level 1 can only occur to the corresponding upper level 2. The momentum

�k2 of a conduction band electron involved in an emission process must be equal to

the momentum �k1 of the electron in the valence band (after the transition) plus the

momentum �qp of the photon created, or

k2 = k1 + qp. (21.27)
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We assume, for simplicity, that

|qp| ≪ |k1|, |k2|. (21.28)

It follows that

k1 = k2. (21.29)

A radiative transition corresponds in the energy-wave vector diagram (see Fig. 21.2)

to a “vertical” transition. The radiative transitions between the conduction and the

valence band occur between states that have the same wave vector, i.e., radiation

interacts with electrons in radiative pair levels. We consider a radiative transition

from a level 2 of energy

E2 = Ec +
�

2

2me

k2, (21.30)

to a level 1 of energy

E1 = Ev −
�

2

2mh

k2. (21.31)

A conduction band level and a valence band level belonging to states with the same

wave vector have the energy difference

E21 = E2 − E1 = Eg +
�

2

2mr

k2, (21.32)

where
1

mr

=
1

me

+
1

mh

(21.33)

is the reciprocal of the reduced mass mr. Using the expressions of the energy of an

electron in the conduction band (Fig. 21.4),

Fig. 21.4 Reduced density

of states
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ǫc = E2 − Ec =
�

2

2me

k2, (21.34)

and of the energy of the corresponding level in the valence band,

ǫv = Ev − E1 =
�

2

2mh

k2. (21.35)

We can write

E21 = Eg + ǫc + ǫv. (21.36)

By elimination of k2, we obtain the relations

ǫc =
mr

me

(E21 − Eg) (21.37)

and

ǫv =
mr

mh

(E21 − Eg). (21.38)

How many radiative pair levels are available in the energy interval E21, E21 +
dE21? The number of states, Dr(E21)dE21, is equal to the corresponding number of

levels in the conduction band,

Dr(E21)dE21 = Dc(ǫc)dǫc. (21.39)

Thus, the reduced density of states (=joint density of states = density of states of

radiative pair levels) is given by

Dr(E21) =
Dc(ǫc)

dE21/dǫc

=
mr

me

Dc(ǫc). (21.40)

Dc is the density of states in the conduction band. Correspondingly, we can write

Dr(E21) =
mr

mh

Dv(ǫh). (21.41)

Dv is the density of states in the valence band. The reduced density of states is smaller

than the density of states in the conduction band and also smaller than the density of

states in the valence band. The reason is the spreading of the energy scale:

dE21 = dǫc + dǫv. (21.42)

As a result, we find that radiative transitions occur within radiative pairs of electron

states. A radiative pair of electron states consists of a state of the conduction band

and a state of the valence band that have the same wave vector. A transition can only

occur when one of the states is occupied and the other is unoccupied.
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21.5 Growth Coefficient and Gain Coefficient

of a Bipolar Medium

The temporal change of the density N of conduction band electrons due to stimulated

transitions is equal to

dN

dt
= −hν

∫

B̄21g(hν − E21)( f2 − f1)Dr(E21)dE21 Z . (21.43)

It follows that the temporal change of the photon density is

dZ/dt = −dN/dt = γ Z , (21.44)

where

γ = hν

∫

B̄21 Dr(E21)( f2 − f1)g(hν − E21)dE21 (21.45)

is the growth coefficient of the semiconductor and, with dt = (n/c)dz, that

dZ/dz = αZ , (21.46)

where n is the refractive index, c the speed of light, and

α =
n

c
hν

∫

B̄21 Dr(E21)( f2 − f1)g(hν − E21) dE21 (21.47)

is the gain coefficient of the semiconductor.

Figure 21.5 shows electron distributions for T = 0 and for a high temperature. At

T = 0, all conduction band levels between Ec and EFc are occupied and all valence

band levels between Ev and EFv are empty. Gain occurs, for T = 0, in the range

Fig. 21.5 Quasi-Fermi energies
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Eg ≤ hν < EFc − EFv. (21.48)

At finite temperature, the electrons in the conduction band are distributed over a larger

energy range and the quasi-Fermi energy EFc is smaller than in the case that T = 0.

The empty levels in the valence band are distributed over a larger range too and the

quasi-Fermi energy FFv has a larger value than for T = 0. At high temperatures,

the energy levels broaden due to electron–phonon scattering. Therefore, the photon

energy can be smaller than Eg and the condition of gain is

hν < EFc − EFv. (21.49)

For hν < Eg, the gain coefficient decreases with decreasing quantum energy accord-

ing to the lineshape function g(hν − E21).

If N ∼ Ntr, the maximum gain coefficient is equal to (Sect. 7.4)

αmax = σeff × (N − Ntr), (21.50)

where

σeff = (∂αmax/∂ N )N=Ntr
(21.51)

is the effective gain cross section. It follows that the growth coefficient is

γmax = beff × (N − Ntr) (21.52)

and that

beff = (c/n)σeff (21.53)

is the effective growth rate constant.

If thermal broadening of the energy levels is negligible, the gain coefficient is

α = (n/c)hν B̄21 Dr(E21)[ f2(E2) − f1(E1)], (21.54)

where E21 = hν. It follows, for N ∼ Ntr, that

σeff =
n

c
hν B̄21 Dr(E21) × d, (21.55)

where

d = (∂ F/∂ N )N=Ntr
(21.56)

is the expansion parameter of F with respect to N − Ntr and where F = f2 − f1 is

an abbreviation of the occupation number difference.

Electrons injected into the conduction band have an energy that is larger than the

quasi-Fermi energy EFc. The mechanism leading to the quasi-Fermi distribution is

the intraband relaxation of the electrons. The electrons lose energy by the emission

http://dx.doi.org/10.1007/978-3-319-50651-7_7
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of phonons. At finite temperature, emission and absorption of phonons leads to the

establishment of the quasi-Fermi distribution of the electrons in the conduction band.

After the establishment of a quasithermal equilibrium, the conduction band electrons

still scatter permanently at phonons. Accordingly, each electron level is broadened.

The width of a broadened energy level in the conduction band is ΔE2 ≈ �/τin, where

τin is the inelastic scattering time of an electron, i.e., the time between two inelastic

scattering events. The scattering time τin depends on temperature.

The main process of electron–phonon scattering is the interaction with polar optic

phonons; the energy of polar optic phonons of GaAs is about 40 meV. The inelastic

scattering time (∼10−13 s) of a conduction electron in GaAs at room temperature

is much shorter than the lifetime (of the order of 1 ns) with respect to a radiative

transition to the valence band by spontaneous emission of a photon. The width of

broadening of a level in the conduction band is �/τin ∼ 6 meV.

The extraction of valence band electrons from the active region leads to the estab-

lishment of a quasi-Fermi distribution of the valence band electrons. Due to the non-

radiative relaxation, the valence band, nearly filled with electrons, has empty states

(holes) near the maximum of the band, as characterized by the quasi-Fermi energy

EFv. The electrons in the valence band scatter also at phonons and the strength of the

scattering is about the same as for the electrons in the conduction band. Accordingly,

an electron level in the valence band has approximately the same lifetime with respect

to inelastic scattering at phonons as an electron state in the conduction band—and

the width of an energy level in the valence band is ΔE1 ≈ �/τin too.

Taking into account broadening of both the energy level in the conduction band

and energy level in the valence band, which are involved in a radiative transition,

we attribute to the transition a Lorentzian function g(hν − E21) of a width that is

by a factor of
√

2 larger than the value of the width of a level in a single band. The

halfwidth of radiative transitions in GaAs is δE21 ∼ 10 meV.

21.6 Spontaneous Emission

Spontaneous emission of radiation is the origin of luminescence radiation. The rate of

spontaneous emission of photons by transitions in the energy range hν, hν + hdν is

Rsp,hνhdν =
∫

g(hν − E21)hdν × A21 Dr(E21) f2(1 − f1)dE21. (21.57)

Rsp,hν is the spontaneous emission rate per unit of photon energy (and per unit of

volume). The integration takes account of the contributions of all electrons in the

conduction band and of the corresponding empty levels in the valence band. It follows

that

Rsp,hν =
∫

A21 Dr(E21) f2(1 − f1)g(hν − E21)dE21. (21.58)
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Spontaneous emission can also occur at photon energies hν < Eg. This is the conse-

quence of the broadening of the energy levels due to the finite lifetimes of the con-

duction band and valence band states with respect to inelastic scattering at phonons.

The total spontaneous emission rate is

Rsp =
∫ ∫

A21 Dr(E21) f2(1 − f1)g(hν − E21)dE21d(hν). (21.59)

The lifetime of an electron in the conduction band with respect to spontaneous

emission is

τsp =
1

Rsp/N
. (21.60)

N is the density of electrons in the conduction band. If g(hν − E21) is a narrow

function, we obtain

Rsp,hν = A21 Dr(E21) f2(1 − f1). (21.61)

The total spontaneous emission rate is

Rsp =
∫

A21 Dr(E21) f2(1 − f1)d(hν) (21.62)

and the decay constant is equal to

1

τsp

= A21

∫

Dr(E21) f2(1 − f1)d(hν)

N
. (21.63)

The occupation numbers of a continuously pumped crystal at zero temperature

are f2 = 1 in the region of populated energy levels and f1 = 0 in the region of empty

levels; the integral is equal to N . In this case, τ−1
sp = A21.

At finite temperatures, transitions from an occupied electron level in the conduc-

tion band to an occupied electron level in the valence band cannot occur. Therefore,

the decay constant is smaller than the Einstein coefficient of spontaneous emission,

τ−1
sp < A21. The value of τ−1

sp depends on the electron density N and on the temper-

ature.

21.7 Laser Equations of a Bipolar Semiconductor Laser

The laser equations (in the form of rate equations) of a continuously pumped single-

mode bipolar laser are two coupled differential equations:
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dN

dt
= r −

N

τsp

− γ Z , (21.64)

dZ

dt
= γ Z −

Z

τ p
. (21.65)

The quantities are:

• dN/dt = temporal change of the electron density (=temporal change of the density

of electrons in the conduction band = temporal change of the density of holes in

the valence band).

• dZ/dt = temporal change of the density of photons.

• r = pump rate = number of electrons injected into the conduction band per m3

and s (=number of electrons extracted from the valence band).

• N/τsp = loss of conduction band electrons due to spontaneous transitions to the

valence band.

• τp = lifetime of a photon in the resonator.

• Z/τp = loss of photons from the resonator (e.g., due to output coupling of radia-

tion).

• −γ Z = rate of change of the density of electrons in the conduction band due to

the net effect of stimulated emission and absorption of radiation.

• γ Z = rate of change of the photon density in the resonator due to the net effect of

stimulated emission and absorption of radiation.

• γ =
∫ ∞

0
hν B̄21g(hν − E21)( f2 − f1)Dr(E21)dE21 = growth coefficient.

• f2(E2) − f1(E1) = occupation number difference.

• E21 = E2 − E1 = energy difference of radiative pair levels (=transition energy).

• Dr(E21) = reduced density of states = density of states of radiative pair levels.

• g(hν − E21) = lineshape function describing level broadening due to inelastic

scattering of electrons at phonons.

At steady state, dN/dt = 0 and dZ/dt = 0, the second equation yields the thresh-

old condition

γth = 1/τp; (21.66)

the photon generation rate is equal to the photon loss rate. This condition allows for

determination of the threshold density Nth. We can write the threshold condition also

in the form

αth L =
nL

c
γth =

nL

cτp

(21.67)

where L is the resonator length. The first laser equation leads to the photon density

Z∞ in the laser resonator at steady state,

Z∞ = (r − rth)τp, (21.68)

where

rth = Nth/τsp (21.69)
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Fig. 21.6 Bipolar laser

diode. a Device.

b Dependence of the electron

density and the photon

density on the current.

c Laser and luminescence

radiation

is the threshold loss rate (in units of m−3 s−1). The loss is due to spontaneous tran-

sitions of electrons from the conduction band to the valence band; we ignore other

loss processes like the nonradiative recombination of electrons and holes.

In a bipolar semiconductor laser diode (Fig. 21.6a), the current I is flowing via

the large area (a1L) through the active volume (height a2). Below threshold, the

electron concentration N increases (Fig. 21.6b) with increasing current strength until

the current reaches the threshold current

Ith = rthea1a2 L = Nthea1a2 L/τsp. (21.70)

The threshold current density is

jth =
Ith

a2 L
=

Ntha1e

τsp

. (21.71)

At stronger pumping, the carrier density remains at the value Nth. This means clamp-

ing of the following quantities: populations in the conduction and valence band;

quasi-Fermi energy of the electrons in the conduction band; quasi-Fermi energy of

the electrons in the valence band. Pumping above threshold leads to conversion of

the additional pump power into photons and energy of relaxation. Above threshold,

the rate of photon generation is equal to the additional rate of electron injection. The

photon density in the laser resonator increases linearly with I − Ith.

The luminescence spectrum (Fig. 21.6c) is broad while the spectrum of the laser

radiation is narrow.

At weak pumping (below threshold), luminescence radiation becomes stronger

with increasing pump strength. Above threshold, clamping of luminescence occurs

together with the clamping of the quasi-Fermi energies.

We can describe operation of a laser near the transparency density by the laser

equations
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dN/dt = r − N/τsp − beff(N − Ntr)Z , (21.72)

dZ/dt = beff(N − Ntr)Z − Z/τp. (21.73)

It follows that the threshold density is given by

Nth − Ntr =
1

beffτp

=
1

σeff lp

(21.74)

and that the photon density is again Z = (r − rth)τp, with rth = Nth/τsp.

If g is a narrow function, we obtain:

dN/dt = r − N/τsp − hν B̄21 Dr(E21)( f2 − f1)Z , (21.75)

dZ/dt = hν B̄21 Dr(E21)( f2 − f1)Z − Z/τp. (21.76)

Then, the threshold occupation number difference is then given by

( f2 − f1)th =
1

hν B̄21 Dr(E21)τp

(21.77)

and the photon density by

Z = (r − rth)τp. (21.78)

21.8 Gain Mediated by a Quantum Well

In two earlier sections (Sects. 7.8 and 7.9), we treated the question how we can com-

bine a two-dimensional active medium with a light beam, which is three-dimensional.

We introduced the two-dimensional gain characteristic H 2D and showed how we

can determine the modal gain coefficient of radiation propagating along a two-

dimensional gain medium and how we can determine the gain, G1 − 1, of radiation

crossing a quantum well. The topic of this section concerns the following questions.

• How can we determine semiconductor properties of an active quantum well (quasi-

Fermi energies; strength of spontaneous emission of radiation; two-dimensional

transparency density; two-dimensional gain characteristic)?

• How can we determine gain of radiation interacting with an active quantum well

(according to the concepts presented in Sects. 7.8 and 7.9)?

Instead of proceeding with this section, a reader may jump to Sect. 21.10 and

then work out Problem 21.5 (gain mediated by a quantum well) and Problem 21.6

(quantum well laser).

The quasi-Fermi energy of a two-dimensional gas of conduction electrons in a

two-dimensional semiconductor follows from the condition

http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_7
http://dx.doi.org/10.1007/978-3-319-50651-7_7
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∫

f2 D2D
c dE = N 2D (21.79)

and the quasi-Fermi energy of the electrons in the valence band from

∫

(1 − f1)D2D
v dE = P2D = N 2D, (21.80)

where we have the quantities:

• D2D
c = two-dimensional density of levels in the conduction band.

• D2D
v = two-dimensional density of levels in the valence band.

• N 2D = two-dimensional density of electrons in the conduction band.

• P2D = two-dimensional density of empty states in the valence band = two-

dimensional density of holes.

• P2D = N 2D, due to neutrality.

The k vector of an electron is a vector in the plane of the two-dimensional semi-

conductor. The requirement of energy and momentum conservation leads to the

two-dimensional reduced density of states

D2D
r (E21) =

mr

me

D2D
c (ǫc). (21.81)

The two-dimensional density of upper laser levels that contribute to stimulated radia-

tive transitions in the energy interval E21, E21 + dE21 is

dN 2D
2 = f2(1 − f1)D2D

r (E21)dE21 (21.82)

and the corresponding density of electrons in the lower laser levels, which contribute

to absorption, is

dN 2D
1 = f1(1 − f2)D2D

r (E21)dE21, (21.83)

where f2 = f2(E2) and f1 = f1(E1) and E21 = E2 − E1. The spontaneous emission

rate per unit of photon energy is given by

R2D
sp,hν =

∫

A21 D2D
r (E21) f2(1 − f1)g(hν − E21) dE21. (21.84)

The spontaneous emission rate per unit of volume is equal to

R2D
sp =

∫ ∫

A21 D2D
r (E21) f2(1 − f1)g(hν − E21)dE21d(hν). (21.85)

The spontaneous lifetime of an electron in the condition band is

τsp = N 2D/R2D
sp . (21.86)
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Fig. 21.7 Light beam

propagating along a quantum

well

If g is a narrow function, then

R2D
sp,hν = A21 D2D

r (E21) f2(1 − f1) (21.87)

and

R2D
sp =

∫

A21 D2D
r (E21) f2(1 − f1)d(hν). (21.88)

The two-dimensional densities D2D
2 and D2D

1 are completely determine the reduced

density of states D2D
r (E21). The occupation numbers f2 and f1 depend on the two-

dimensional density N 2D of electrons and the temperature.

To describe the interaction of the two-dimensional active medium with the three-

dimensional radiation field, we consider two cases, namely that the propagation

direction of the light is parallel to the plane of the two-dimensional active medium

and that the propagation direction is perpendicular to the plane.

If the propagation direction is parallel to the plane of the active medium (Fig. 21.7),

the average electron density in a photon mode is

Nav = N 2D/a2, (21.89)

where a2 is the height of the mode. The temporal change of the average density is

dNav/dt = −Nav Z = −(c/na2)H 2D Z (21.90)

and

H 2D = (n/c)

∫

hν B̄21g(hν − E21)( f2 − f1)D2D
r (E21)dE21 (21.91)

is the two-dimensional gain characteristic. The expression of H 2D indicates: a two-

dimensional semiconductor is a gain medium if f2 > f1. The condition is satisfied if

the difference of the quasi-Fermi energies is larger than the gap energy, EFc − EFv >

Eg. There is no net gain (H 2D = 0) if, at the two-dimensional transparency density

N 2D
tr , the occupation number difference is zero, f2 − f1 = 0. This corresponds to the

condition EFc − EFv = Eg. Thus, the condition of gain, f2 − f1 > 0, is the same as

in the three-dimensional case.
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The temporal change of the photon density in a photon mode is

dZ/dt = γ Z , (21.92)

where

γ = (c/n)H 2D/a2 (21.93)

is the modal growth coefficient. The spatial change of the photon density is

dZ/dz = αZ , (21.94)

where

α =
H 2D

a2

(21.95)

is the modal gain coefficient. The modal growth coefficient and the modal gain

coefficient are inversely proportional to the lateral extension of the laser resonator

mode.

If N ∼ Ntr, we can write

γmax = beff

N 2D − N 2D
tr

a2

, (21.96)

where

beff =
(c/n)

a2

(

∂ H 2D

∂ N 2D

)

N 2D=N 2D
tr

(21.97)

is the effective growth rate constant and, furthermore,

αmax = σeff

N 2D − N 2D
tr

a2

, (21.98)

where

σeff =
1

a2

(

∂ H 2D

∂ N 2D

)

N 2D=N 2D
tr

=
(

∂αmax

∂ N 2D

)

N 2D=N 2D
tr

(21.99)

is an effective gain cross section (Sect. 7.4).

If g is a narrow function, we obtain

H 2D = hν B̄21 D2D
r (E21)( f2 − f1), (21.100)

with E21 = hν. It follows that the modal growth coefficient is given by

γ =
(c/n)

a2

hν B̄21 D2D
r (E21)( f2 − f1) (21.101)

http://dx.doi.org/10.1007/978-3-319-50651-7_7


21.8 Gain Mediated by a Quantum Well 447

and the modal gain coefficient by

α =
1

a2

hν B̄21 D2D
r (E21)( f2 − f1). (21.102)

Growth coefficient and gain coefficient are proportional to the occupation number

difference.

In the case that f2 − f1 ≪ 1, we can expand F with respect to N 2D,

F = f2 − f1 = d2D × (N 2D − N 2D
tr ), (21.103)

where

d2D =
(

∂ F

∂ N 2D

)

N 2D=N 2D
tr

(21.104)

is the expansion coefficient of the occupation number difference with respect to

N 2D − N 2D
tr . The expansion leads to

γ = beff

N 2D − N 2D
tr

a2

= beff(Nav − Ntr,av) (21.105)

and

beff = hν B̄21 D2D
r (E21)d

2D. (21.106)

The modal growth coefficient is proportional to the difference of the density of

excited electrons and inversely proportional to the height of the photon mode. The

unit of beff is the same as in the three-dimensional case since the product D2Dd2D

has the same unit as the corresponding product in the three-dimensional case.

It follows that the modal gain coefficient is equal to

α = σeff

N 2D − N 2D
tr

a2

, (21.107)

where

σeff = hν B̄21 D2D
r (E21)d

2D. (21.108)

In a disk of light traversing a two-dimensional bipolar medium (Fig. 21.8), the

temporal change of the photon density is given by (see also Sect. 7.9):

δZ

δt
= −

δNav

δt
=

c

na2

H 2D Z , (21.109)

where δt = nδz/c is the time it takes the disk of length δz to propagate over the

medium (that has zero thickness). It follows that the gain of light traversing a two-

dimensional bipolar medium is

http://dx.doi.org/10.1007/978-3-319-50651-7_7
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Fig. 21.8 Light beam

traversing a quantum well

G1 − 1 =
δZ

Z
= H 2D. (21.110)

If g is a narrow function, we obtain

G1 − 1 = hν B̄21 D2D
r (E21)( f2 − f1). (21.111)

Now, the gain, G1 − 1, is proportional to ( f2 − f1).

21.9 Laser Equations of a Quantum Well Laser

The laser equations of a quantum well laser, with light propagating along the quantum

well, are given by:

dNav

dt
= rav −

Nav

τ sp

− (c/na2)Hav Z , (21.112)

dZ

dt
= (c/na2)Hav Z −

Z

τp

. (21.113)

Nav = N 2D/a2 is the average electron density in the laser mode, Hav = H 2D/a2 is

the average gain characteristic—averaged over the laser mode volume. Furthermore,

rav = r2D/a2 (21.114)

is the pump rate averaged over the volume of the resonator, r2D the two-dimensional

pump rate (=pump rate per m2) and a2 the height of the resonator mode.

The solution describing steady state oscillation provides the threshold condition

H 2D
th = na2/τp (21.115)

or, with τp = nlp/c,
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H 2D
th =

a2

lp

. (21.116)

H 2D
th is inversely proportional to the ratio of photon path length and extension of

the resonator mode perpendicular to the plane of the active medium. A small value

of H 2d
th corresponds to a small occupation number difference ( f2 − f1 ≪ 1) and to

an electron density that is only slightly larger than the transparency density (N 2D −
N 2D

tr ≪ N 2D
tr ).

Equation (21.112) yields the photon density Z∞ in the laser resonator at steady

state oscillation,

Z∞ =
(

r2D

a2

−
r2D

th

a2

)

τp, (21.117)

where

r2D
th =

N 2D
th

τsp

(21.118)

is the two-dimensional threshold loss rate (=loss per s and m2). The threshold current

is

Ith =
eN 2D

th a1a2 L

a2

×
1

τsp

=
eN 2D

th a1L

τsp

(21.119)

and the threshold current density

jth =
eN 2D

th

τsp

. (21.120)

In the case that g is a narrow function, the laser equations are

dNav

dt
= rav −

Nav

τsp

−
1

a2

hν B̄21 D2D
r (E21)( f2 − f1)Z , (21.121)

dZ

dt
=

1

a2

hν B̄21 D2D
r (E21)( f2 − f1)Z −

Z

τp

. (21.122)

It follows that the threshold occupation number difference is equal to

Fth = ( f2 − f1)th =
c/n

hν B̄21 D2D
r lp/a2

. (21.123)

If g is a narrow function and the threshold density is only slightly larger than the

transparency density, Nth − Ntr ≪ Ntr, we can write
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dNav

dt
= rav −

Nav

τsp

− beff (Nav − Ntr,av) Z , (21.124)

dZ

dt
= beff (Nav − Ntr,av) Z −

Z

τp

, (21.125)

where rav = r2D/a2 is the average pump rate (averaged over the resonator volume),

r2D the pump rate per m2, beff = hν B̄21 D2D
r (E21)d

2D is the effective growth rate

constant, and where

d2D =
(

∂ F

∂ N 2D

)

N 2D=N 2D
tr

. (21.126)

F = f2 − f1 is the occupation number difference. It follows that

N 2D
th − N 2D

tr =
a2

beffτp

=
1

σeff lp/a2

, (21.127)

N 2D
th − N 2D

tr

a2

=
1

σeff lp

. (21.128)

The average density difference plays the same role as the density difference in a

three-dimensional active semiconductor medium.

A laser containing a quantum well that is oriented perpendicular to the laser beam

will be discussed in Sect. 22.7.

21.10 What Is Meant by “Bipolar”?

Instead of discussing empty electron states in the valence band of a bipolar laser

medium, we can use the picture of holes: an empty level in the valence band is a hole

in the valence band. Accordingly, a current leads to injection of electrons into the

conduction band and to injection of holes into the valence band. In the electron–hole

picture, the current is carried by electrons in the conduction band and by holes in the

valence band—the current is carried by negatively charged quasiparticles (electrons)

and positively charged quasiparticles (holes); the discussion that now follows can be

in [236].

Involved in a radiative transition (Fig. 21.9) are an electron (in the conduction

band) and a hole (in the valence band). In an absorption process, an electron and a

hole annihilate recombine and create a photon. Conservation of momentum requires

that the momentum before an emission process is equal to the momentum after the

process,

�ke + �kh = �qp, (21.129)

where ke is the wave vector of the electron, kh the wave vector of the hole, and qp

the wave vector of the photon. If qp ≪ ke, kh, then

http://dx.doi.org/10.1007/978-3-319-50651-7_22
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Fig. 21.9 Bipolar laser in an

electron–hole picture

kh = −ke. (21.130)

In the electron–hole picture, the wave vector conservation ke + kh = 0 corresponds

to the wave vector conservation kce = kve in the electron picture. The momentum of

an empty electron state of the valence band is −�kve while �kve is the momentum

of an electron that occupies this state. Accordingly, the wave vector kh of a hole (in

the valence band) is

kh = −kve. (21.131)

Electron and hole have opposite wave vectors. A radiative pair—an electron–hole

pair consisting of an electron and a hole of opposite wave vector—can annihilate

(=recombine) by spontaneous or stimulated emission of a photon. Laser radiation

in a bipolar laser is due to stimulated electron–hole recombination. The energy of a

radiative pair is

E = Eg +
�

2k2

2me

+
�

2k2

2mh

= Eg +
�

2k2

2mr

, (21.132)

where mr is the reduced mass, me the electron mass, and mh the hole mass.

The occupation number of a hole state is

fh = 1 − f1. (21.133)

It follows that the quasi-Fermi energy EFh of the holes is equal to the quasi-Fermi

energy EFv of the valence band electrons,

EFh = EFv (21.134)

and that

fh =
1

exp (EFv − E)/kT + 1
. (21.135)

Figure 21.10 illustrates the connection between the electron picture and the

electron–hole picture:
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Fig. 21.10 Quasi-Fermi distributions of electrons and holes

• Electron picture. The conduction band contains an electron gas characterized by

the quasi-Fermi energy EFc and the energy distribution f2(E). The valence band

contains an electron gas characterized by the quasi-Fermi energy EFv and the distri-

bution f1(E). The condition of gain requires that f2 − f1 > 0. Optical transitions

occur between radiative pair levels.

• Electron–hole picture. The conduction band contains an electron gas character-

ized by EFc and the distribution f2 = fe (as in the electron picture). The valence

band contains a hole gas characterized by the quasi-Fermi energy EFv and the

distribution fh = 1 − f1. The condition of gain now requires that

fe + fh − 1 > 0. (21.136)

Optical transitions occur by recombination (annihilation) of radiative electron–

hole pairs.

Because of bipolarity and charge neutrality of an active medium, the knowledge

of the density N of electrons in the conduction band is sufficient for a complete

characterization of a particular active medium (if the density of states of electrons

and holes as well as the temperature are known).

The bipolarity of a medium manifests itself in the dependence of the spontaneous

lifetime on the densities of positive and negative charge carriers. It turns out (analyz-

ing Rsp) that the rate τ−1
sp of spontaneous transitions of electrons in a semiconductor

at room temperature is, for very small values of N , approximately proportional to

the product of the density N of electrons and the density P = N of holes,

1

τsp

= K N 2. (21.137)

K is a constant. At large values of N , the decay rate τ−1
sp is nearly independent of N .

The behavior is characteristic of a bipolar system.

References [1–4, 6, 187–201].
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Problems

21.1 Wave vector of nonequilibrium electrons in GaAs.

(a) Calculate the wave vector k of electrons in GaAs that have an energy of 100;

10; and 1 meV. Compare the values with the wave vector qp of a photon with the

energy hν = Eg (me = 0.07 m0; m0 = 0.9 × 10−30 kg; Eg = 1.42 eV; n = 3.6).

(b) Determine the energies ǫc and ǫv if qp = k.

21.2 Wave vector of radiative pair levels. We supposed that the wave vector of

a photon involved in a radiative transition is small compared to the wave vector of

the electron and the hole that are involved in a radiative transition. Show that this is

justified for electrons and holes of sufficient energies.

21.3 Electron and holes in an undoped GaAs quantum film in thermal equilib-

rium.

(a) What is the condition with respect to the quasi-Fermi energies that the electron

gas and the hole gas are in thermal equilibrium?

(b) What is the corresponding condition with respect to ǫFc and ǫFv?

(c) Estimate the electron density N 2D
thermal of subband electrons (=density of subband

holes) in a quantum film at temperature T . Show that N 2D
thermal is by many orders of

magnitude smaller than the transparency density N 2D
tr of electrons in the quantum

film.

21.4 Condition of gain. Show that the condition of gain, EFc − EFv > E21 = E2 −
E1, follows from the condition f2 − f1 > 0.

21.5 Gain mediated by a quantum well. Given are the following quantities:

• D2D
c = two-dimensional density of states of electrons in the conduction band.

• D2D
v = two-dimensional density of states of electrons in the valence band (=two-

dimensional density of states of holes).

• N 2D = two-dimensional density of nonequilibrium electrons in the conduction

band (assumed to be equal to the two-dimensional density of nonequilibrium holes

in the valence band).

• g(hν − E21) = lineshape function.

• a2 = height of a photon mode that contains the quantum well; the plane of the

quantum well is oriented parallel to the propagation direction of the radiation.

• F ≡ f2 − f1 = d2D × (N 2D − N 2D
tr ); this expansion implies that the quantum

well is operated near the transparency density.

Formulate equations, which are suited to determine the following quantities:

(a) EFc = quasi-Fermi energy of electrons in the conduction band.

(b) EFv = quasi-Fermi energy of electrons in the valence band.

(c) N 2D
tr = two-dimensional transparency density.
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(d) R2D
sp,hν = spontaneous emission rate per unit photon energy in the cases that the

lineshape function is broad or narrow.

(e) R2D
sp = total spontaneous emission rate (at a broad or a narrow lineshape function).

(f) τsp = lifetime of the nonequilibrium electrons with respect to spontaneous emis-

sion of radiation.

(g) H 2D = two-dimensional gain profile.

(h) γ = modal growth coefficient.

(i) α = modal gain coefficient.

(j) beff = effective growth rate constant.

(k) σeff = effective gain cross section.

(l) G1 − 1 = gain of light traversing a quantum well.

The answers are found in Sect. 21.8.

21.6 Quantum well laser. Given are the quantities:

• H 2D = two-dimensional gain profile of a quantum well.

• a2 = extension of the resonator perpendicular to the quantum well.

• a1 = width of the resonator.

• a1 × L = area of the quantum well.

• L = length of the resonator.

• N 2D = two-dimensional density of nonequilibrium electrons.

• r2D = two-dimensional pump rate.

• f2 − f1 = d2D × (N 2D − N 2D
tr ); operation near the transparency density.

• beff = growth rate constant.

• σeff = nbeff/c = effective gain cross section.

(a) Formulate the laser equations (rate equations).

(b) Derive the threshold condition.

(c) Determine the threshold current and the threshold current density.

(d) Formulate the threshold condition of a quantum well laser operated at an electron

density near the transparency density; neglect lineshape broadening. The answers

can be found in Sect. 21.9.

21.7 Determine the de Broglie wavelength λdB = h/p of electrons of an energy of

10 meV that are propagating (a) in free space and (b) as conduction electrons in a

GaAs crystal.

21.8 A three-dimensional GaAs semiconductor at zero temperature contains non-

equilibrium electrons of a density that corresponds to a quasi-Fermi energy ǫFe =
25 meV. Determine the following quantities.

(a) Density of electrons in the conduction band.

(b) Fermi momentum kF, i.e., the momentum of the electrons at the Fermi surface.

(c) The de Broglie wavelength of the electrons that have Fermi momentum.

(d) Quasi-Fermi energy ǫFh of the nonequilibrium holes in the valence band assum-

ing crystal neutrality.
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(e) Fermi momentum of the nonequilibrium holes.

(f) The de Broglie wavelength of the holes that have Fermi momentum.

21.9 Answer the questions of the preceding problem with respect to a

two-dimensional GaAs semiconductor at zero temperature containing nonequilib-

rium electrons of a density that corresponds to a quasi-Fermi energy ǫFe = 25 meV.

21.10 Answer the same questions with respect to a one-dimensional GaAs semi-

conductor at zero temperature containing nonequilibrium electrons of a density that

corresponds to a quasi-Fermi energy ǫFe = 25 meV.
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GaAs Quantum Well Laser

As an example of a bipolar semiconductor laser, we treat the GaAs quantum well

laser (wavelength around 800 nm). In later chapters, we will study quantum well

lasers consisting of other materials and bipolar lasers of other types.

We describe a quantum well by an electron subband and a hole subband (the heavy

hole subband); we will, in a later chapter (Chap. 26), slightly modify the description

of a quantum well laser by taking into account another hole subband (the light hole

subband).

To characterize an active quantum well, we calculate the quasi-Fermi energies

of electrons and holes; because the densities of states of electrons and holes have

constant (energy-independent) values, we obtain analytic expressions of the quasi-

Fermi energies. We consider a GaAs quantum well (at low temperature and at room

temperature) carrying nonequilibrium electrons of different densities N 2D. We deter-

mine the quasi-Fermi energy, the occupation number difference f2 − f1 and the two-

dimensional gain characteristic H 2D. We discuss modal growth and gain coefficients.

We introduce the material gain coefficient; the material gain coefficient corresponds

to a three-dimensional description of the quantum film, but with a two-dimensional

density of states.

The quantum well laser consists of a heterostructure composed of at least five

semiconductor layers. These have the tasks: to form a quantum well; to provide a

light guide effect; to allow for injection of electrons and holes into the quantum well

by means of a current. We describe the principle and the design of the edge emitting

GaAs quantum well laser. We derive the laser threshold condition and determine the

threshold current. The solutions to the rate equations of a quantum well laser indicate

clamping of the quasi-Fermi energies of the electron and hole gases.

A multi-quantum well laser, containing several quantum wells in parallel, has

a larger gain and a larger output power than a quantum well laser containing one

quantum well only.

The arrangement of many laser diodes in a linear array or in a stack of arrays results

in a high-power semiconductor laser. The radiation of a high-power semiconductor

laser is not a single coherent wave but is composed of different coherent waves, which
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permanently change the relative phase to each other. The radiation has, however, a

high degree of monochromaticity.

Besides the edge emitting quantum well laser, we discuss the vertical-cavity

surface-emitting laser (VCSEL). The importance with respect to applications—of

both edge emitting quantum well laser and vertical-cavity surface-emitting laser—

has already been discussed (in Sect. 1.4).

We finally point out that the laser radiation of an edge-emitting laser can be

polarized, with the electric field vector of the laser radiation lies in the plane of the

quantum well. As a last point, we determine the spectrum of luminescence radiation

emitted by a quantum well laser in addition to laser radiation.

22.1 GaAs Quantum Well

A GaAs quantum well (Fig. 22.1) consists of a thin GaAs film embedded in

GaAlAs. Electrons can assume lower energies in the GaAs layer than in GaAlAs and

holes can assume higher energies. Because of the lateral restriction, free-electron

motion is only possible along the film plane. The two-dimensional free-electron

motion of a conduction band electron is characterized by the electron subband.

Correspondingly, the two-dimensional free-electron motion of a valence band elec-

tron is characterized by a hole subband. The gap energy E2D
g of the two-dimensional

semiconductor is slightly larger than the gap energy Eg of the corresponding bulk

semiconductor because of the zero point energy associated with the electron and the

hole confinement.

Example GaAs quantum well (at room temperature).

• Eg ∼ 1.42 eV; gap energy.

• Ga0.85Al0.15As; Eg ∼ 1.51 eV (that is 90 meV larger than for GaAs).

• Ga0.75Al0.25 As; Eg ∼ 1.60 eV (that is 180 meV larger than for GaAs).

• E2D
g = 1.45 eV (that is 30 meV larger than for bulk GaAs); two-dimensional gap

energy of a quantum well of 10 nm thickness (Sect. 26.4).

• ν2D
g = E2D

g /h ∼ 359 THz; gap frequency.

• λ2D
g = c/ν2D

g ∼ 836 nm; vacuum wavelength corresponding to the gap frequency.

• me ∼ 0.07 m0; m0 = 0.92 × 10−30 kg = electron mass.

Fig. 22.1 GaAs quantum

well

http://dx.doi.org/10.1007/978-3-319-50651-7_1
http://dx.doi.org/10.1007/978-3-319-50651-7_26
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• mh = 0.43 m0.

• mr ∼ 0.06 m0.

• D2D
c = me/(π�

2) = 2.0 × 1036 J−1 m−2; density of states of electrons in the

conduction band.

• D2D
v = me/(π�

2) = 12 × 1036 J−1 m−2; density of states of holes = density of

states of electrons in the valence band.

• D2D
r = 1.7×1036 J−1 m−2 = reduced density of states for E21 ≥ E2D

g ; see (21.81).

22.2 An Active Quantum Well

Injection of electrons into the conduction band (i.e., into the electron subband) and

extraction of electrons from the valence band (i.e., injection of holes into the hole

subband) results in an active quantum well (Fig. 22.2). An electron in the conduction

band has the energy

Ec = E2D
c + ǫc, (22.1)

where E2D
c is the minimum of the electron subband and ǫc is the energy within the

conduction band. An electron level in the valence band has the energy

Ev = E2D
v − ǫv, (22.2)

where E2D
v is the maximum of the hole subband and ǫv is the energy within the

valence band. The conduction band electrons have a Fermi–Dirac distribution with

the quasi-Fermi energy EFc and the electrons in the valence band have a Fermi–Dirac

distribution with the quasi-Fermi energy EFv. We can write

Fig. 22.2 An active quantum well and energy scales

http://dx.doi.org/10.1007/978-3-319-50651-7_21
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EFc = E2D
c + ǫFc, (22.3)

EFv = E2D
v − ǫFv, (22.4)

where ǫFc is the quasi-Fermi energy of the conduction band electrons relative to the

energy E2D
c of the conduction band minimum and ǫFv the quasi-Fermi energy of the

valence band electrons relative to the energy E2D
v of the valence band maximum.

At zero temperature, all conduction band levels between E2D
c and the quasi-Fermi

energy EFc are occupied while all valence band levels between E2D
v and EFv are

completely empty. The quasi-Fermi energies at T = 0 are

EFc = E2D
c + N 2D/D2D

c = E2D
c + ǫFc, (22.5)

EFv = E2D
v − N 2D/D2D

v = E2D
v − ǫFv. (22.6)

EFc increases linearly with N 2D and EFv decreases linearly with N 2D. Because of the

larger density of states in the valence band, the energy range EFc − E2D
c of occupied

energy levels in the conduction band is larger than the energy range Ev − EFv of

empty levels in the valence band.

At finite temperature, the Fermi distributions are broader. The quasi-Fermi energy

of the electrons in the conduction band follows from the expression

∫

f2 D2D
c dE = N 2D (22.7)

and the quasi-Fermi energy of the electrons in the valence band from

∫

(1 − f1)D2D
v dE = N 2D, (22.8)

where

f2 =
1

exp [(E − EFc)/kT ] + 1
=

1

exp [(ǫc − ǫFc)/kT ] + 1
(22.9)

is the quasi-Fermi distribution of the electrons in the conduction band and

f1 =
1

exp [(E − EFv)/kT ] + 1
=

1

exp [(ǫFv − ǫv)/kT ] + 1
(22.10)

is the quasi-Fermi distribution of the electrons in the valence band. Because the den-

sities of states are constants, the quasi-Fermi energies can be expressed analytically.

Taking into account that

∫ ∞

0

dx

1 + ex−a
= ln

ex

1 + ex
= a + ln(1 + e−a), (22.11)
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we find the quasi-Fermi energies

ǫFc = kT ln
(

−1 + exp[N 2D/D2D
c kT ]

)

, (22.12)

ǫFv = kT ln
(

−1 + exp[N 2D/D2D
v kT ]

)

. (22.13)

The difference of the quasi-Fermi energies is given by

(Ec − EFv)/kT = (ǫFv + ǫFc)/kT = ln
(

−1 + exp[N 2D/D2D
c kT ]

)

+ ln
(

−1 + exp[N 2D/D2D
v kT ]

)

. (22.14)

We now discuss a GaAs quantum well at room temperature (T = 300 K), which

contains different electron densities N 2D (Fig. 22.3). The quasi-Fermi energy EFc of

the electrons in the conduction band has a value of −∞ at zero electron density. With

increasing electron density the quasi-Fermi energy increases, reaches the minimum

E2D
c of the conduction band (where EFc = E2D

c ), and increases further. At large

electron density the quasi-Fermi energy EFc increases proportionally to the electron

density. The quasi-Fermi energy EFv of the electrons in the valence band is +∞ at

Fig. 22.3 Quasi-Fermi energies and their difference for a GaAs quantum well at room temperature

(solid lines) and at zero temperature (dashed)
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N 2D = 0, decreases with increasing N 2D, reaches the maximum of the valence band

(where EFv = E2D
v ), and decreases further.

The difference of the quasi-Fermi energies (Fig. 22.3, lower part) increases

with increasing electron density. The difference is 0 at thetransparency density

N 2D
tr (=1.2 × 1016 m−2). Gain occurs if EFc − EFv > E2D

g . The difference of the

quasi-Fermi energies reaches a value of 100 meV at an electron density of about

3 × 1016 m−2. For a GaAs quantum well at zero temperature, EFc − EFv is always

larger than E2D
g (dashed curves).

The energy difference between radiative pair levels is

E2 − E1 = E2D
g + ǫ, (22.15)

where

ǫ = E2 − E1 − E2D
g = ǫc + ǫv (22.16)

is the energy difference E2 − E1 minus the gap energy and where

ǫc =
mr

mc

ǫ, (22.17)

ǫv =
mr

mh

ǫ. (22.18)

The difference between the occupation number of the upper level and the occu-

pation number of the lower level is (with mh = 6me for GaAs):

f2(E2) − f1(E1) = f2(ǫc) − f1(ǫv) = f2

(

6

7
ǫ

)

− f1

(

1

7
ǫ

)

. (22.19)

To discuss the occupation number difference, we first consider the energy range

in which gain occurs, i.e., where f2 − f1 > 0. Figure 22.4 shows the occupation

number difference concerning a GaAs quantum well at room temperature for different

electron densities. With increasing electron density N 2D, the difference f2 − f1

increases and approaches, near E2 − E1 = Eg, at very large N 2D, the saturation

Fig. 22.4 Occupation

number difference for a

GaAs quantum well at room

temperature
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value f2 − f1 = 1. The range of gain increases with increasing electron density.

When f2 − f1 is known, we can determine the different quantities describing gain.

• H 2D(ν) = (n/c)hν B̄21 D2D
r (E21)( f2 − f1) = two-dimensional gain characteristic.

• α(ν) = (1/a2)H 2D(ν) = (n/c)hν B̄21(D2D
r /a2)( f2 − f1) = modal gain coefficient

(=gain coefficient related to a mode); α depends on the extension of the radiation

mode perpendicular to the propagation direction; D2D
r /a2 is the average density

of states of radiative pairs levels within a mode of the radiation.

• γ (ν) = (c/na2)hν B̄21 D2D
r ( f2 − f1) = modal growth coefficient; it also depends

on the extension a2 of the mode perpendicular to the quantum well.

For completeness, we write the gain coefficient in the form

α = αmat × Γ, (22.20)

where

αmat(ν) =
1

s
H 2D =

n

c
hν B̄21

D2D
r

s
( f2 − f1) (22.21)

is the material gain coefficient, i.e., the gain coefficient of the quantum well that is

now described as a three-dimensional system, with the two-dimensional density of

states averaged over the quantum well thickness s, and where

Γ = a2/s (22.22)

is the ratio of the height of a photon mode and the quantum well thickness, sometimes

called confinement factor. The material gain coefficient depends on the thickness of

the quantum well while the modal gain coefficient is independent of the quantum

well thickness but depends on the height of the photon mode.

Example Gain mediated by a GaAs quantum well, with a nonequilibrium electron

density N 2D = 2 × 1016 m−2 corresponding to ( f2 − f1 = 0.25), for radiation of

frequency ν = ν2D
g = E2D

g /h.

• ν2D
g = 3.6 × 1014 Hz; n = 3.6.

• A21 = 3 × 109 s−1; B21 = 2.2 × 1021 m3 J−1 s−2; B̄21 = h B21.

• H 2D = 1.5 × 105.

• γ = 7.4 × 1011 s−1 for a2 = 200 nm.

• α = 8.9 × 103 m−1 for a2 = 200 nm.

• αmat = 1.8 × 105 m−1 for s = 10 nm.

We now determine the occupation number difference f2 − f1 for ǫ = 0 (E2 −

E1 = E2D
g ). The occupation number difference (Fig. 22.5) is −1 for N 2D = 0.

With increasing electron (and hole) density, f2 − f1 increases, becomes zero at

the transparency density and increases further. At very large electron density, it

approaches +1. If the electron density has values near N 2D
tr , we can approximate the

occupation number difference by
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Fig. 22.5 Occupation

number difference at the

transition energy

E2 − E1 = E2D
g for a GaAs

quantum well at room

temperature

f2 − f1 = d2D × (N 2D − N 2D
tr ), (22.23)

where d2D = 3.8 × 10−17 m2. The gain characteristic is then given by

H 2D(ν2D
g ) = hν2D

g B̄21 D2D
r (E2D

g )d2D × (N 2D − N 2D
tr ). (22.24)

The modal gain coefficient is equal to

α(ν2D
g ) =

H 2D(ν2D
g )

a2

= σeff(Nav − Ntr,av) (22.25)

and the modal growth coefficient

γ (ν2D
g ) =

cH 2D(ν2D
g )

na2

= beff(Nav − Ntr,av), (22.26)

where a2 is the height of the photon mode, beff = hν B̄21 D2D
r (E21)d

2D is the effective

growth constant, σeff = (n/c)beff is the effective gain cross section, Nav = N 2D/a2

the average electron density in the photon mode volume and Ntr,av = N 2D
tr /a2 the

average transparency density.

Example Gain, mediated by a GaAs quantum well (at room temperature), for

radiation of frequency ν2D
g .

• N 2D − N 2D
tr = 0.1 N2D

tr .

• N 2D
tr = 1.4 × 1016 m−2.

• N 2D − N 2D
tr = 1.4 × 1015 m−2.

• d2D = 3.8 × 10−17 m2; σeff = 2.7 × 10−19 m2.

• H 2D = 3.2 × 10−4.

• γ = 1.6 × 1011 s−1 for a2 = 200 nm.

• α =1.9 × 103 m−1 for a2 = 200 nm.

• αmat = 3.8 × 104 m−1 for s = 10 nm.

We finally discuss the effect of thermal level broadening of energy levels

(Fig. 22.6). Due to inelastic scattering of the electrons at phonons, the gain character-

istic broadens and the maximum gain becomes smaller. The change of the gain curve

is strongest in the range near the two-dimensional gap energy E2D
g . The transparency
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Fig. 22.6 Two-dimensional gain characteristic of a GaAs quantum well at room temperature with-

out and with level broadening due to electron–phonon scattering

Fig. 22.7 Difference of the quasi-Fermi energies and transparency frequency for a GaAs quantum

well at room temperature

density does not depend on the thermal broadening since the population difference

f2(E2) − f1(E1) is determined by the energy difference E21 = E2 − E1, i.e., by the

energy difference between the center of level 2 and the center of level 1 rather than

by the photon energy hν. Due to the thermal broadening, the maximum gain medi-

ated by a quantum well at room temperature is reduced by a factor of about two, in

comparison with the case that the thermal broadening is not taken into account. (This

factor is compensated because of the anisotropy of a quantum well; see Sects. 22.8

and 26.8.)

Figure 22.7 shows the density of states of radiative electron-hole pairs and a modal

gain coefficient of a GaAs quantum well at room temperature. Gain occurs at quantum

energies up to

hνF = EFc − EFv. (22.27)

The gain coefficient (in the case that inelastic scattering is neglected) is given by

α(hν)/αp = f2(E2) − f1(E1), with E = E2 − E1 = hν, (22.28)

and with the peak gain coefficient

αp = n/(ca2)hν B̄21 D2D
r (E). (22.29)

http://dx.doi.org/10.1007/978-3-319-50651-7_26
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E is the energy of a radiative electron-hole pair composed of a conduction band

electron of energy E2 and a valence band hole of energy E1, D2D
r (E) is the density of

states of radiative electron-hole pairs, f2 is the occupation number of the conduction

band electrons, and f1 the occupation number of the valence band electrons. With

increasing band filling, i.e., with increasing νF, the range of gain increases and the

maximum absorption coefficient αmax (< αp) increases. If ν = νF, annihilation

and creation of electron-hole pairs compensate each other; νF is the transparency

frequency.

22.3 GaAs Quantum Well Laser

The GaAs quantum well laser (Fig. 22.8) consists of a heterostructure with two

different n-doped GaAlAs layers, the GaAs quantum layer, and two different p-doped

GaAlAs layers. Under the influence of a voltage, electrons from the n-doped region

and holes from the p-doped region drift into the quantum film. Stimulated transitions

from occupied levels in the conduction band to empty levels in the valence band

give rise to generation of laser radiation. The quantum film has no net charge, the

two-dimensional densities of nonequilibrium electrons and nonequilibrium holes

are equal. The quantum well laser contains at least five different semiconductor

layers. An n-doped GaAs substrate (n+ GaAs substrate) supports the layers. The

layer sequence can be, for instance, the following (beginning with the substrate).

• n+ GaAs substrate.

• n Ga0.75Al 0.25As.

• n Ga0.9Al 0.1As.

Fig. 22.8 GaAs quantum well laser (principle)
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• GaAs quantum well (QW).

• p Ga0.9Al 0.1As.

• p Ga0.75Al 0.25As.

The layers fulfill the following different tasks.

• Quantum well (QW): GaAs.

• Waveguide: the Ga0.9Al0.1As and Ga0.75Al 0.25As layers together.

• Electron injector: both n-doped GaAlAs layers together.

• Hole injector: both p-doped GaAlAs layers together.

The heavily doped substrate (n+ GaAs) and an adjacent epitaxial n+ GaAs layer

are doped with silicon atoms and contain free-electrons of a concentration of (1–2)

× 1019 m−3; n+ indicates a high n-doping concentration. The Fermi level EFn lies

within the conduction band of GaAs. The concentration of excess electrons is smaller

(by about two orders of magnitude) in the n GaAlAs layers. The Fermi level of the

valence band electrons in the p-doped GaAs layers lies within the valence band.

The photon mode of a laser diode (Fig. 22.9) has submillimeter size (e.g., 100µm

× 0.2µm × 500µm). Metal films on top of the heterostructure and on the backside

of the substrate serve as electrical contacts. Under the action of a voltage (U ), a

current (I ) is flowing through the heterostructure. Electrons in the n-doped region

and holes in the p-doped region carry the current. Electrons and holes recombine

within the quantum well. Stimulated electron-hole pair recombination drives the

laser oscillation. The laser is an edge-emitting laser.

Fig. 22.9 GaAs quantum well laser; five semiconductor layers; refractive index profile; principle

of the design
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Example of a light guiding structure (at room temperature).

• GaAs; n = 3.60 for radiation with hν = 1.42 eV.

• Ga0.9Al 0.1As; refractive index n = 3.52.

• Ga0.75Al 0.25As; n = 3.41.

The refractive is n(Ga1−x Alx As) ≈ 3.60 − 0.71x . Across the heterostructure, the

refractive index has the largest value in the very thin GaAs quantum layer. The

refractive index is larger in the Ga0.75Al0.25As layers than in the Ga0.9Al0.1As layers.

This leads to a light guide effect. The light is concentrated in the Ga0.9Al0.1As layers,

which together have an optical thickness between one and two wavelengths. The

GaAs film has a thickness (of the order of 10 nm) that is much smaller than the

thickness of the adjacent Ga0.9Al0.1As layers. Accordingly, only a small portion of

the field overlaps with the quantum well.

The current through a quantum well corresponds to a migration of electrons from

the n+ substrate to the quantum well and, at the same time, to the migration of holes

from the p-doped layers to the quantum well. The injection of electrons into the

quantum well (see Fig. 22.8) leads to a nonequilibrium population of electrons in

the electron subband, characterized by the quasi-Fermi energy EFe. The injection of

holes into the quantum well leads to a nonequilibrium population of holes in the hole

subband, characterized by the quasi-Fermi energy EFv. Under the action of a voltage

U across the heterostructure, an electron migrating through the heterostructure loses

its potential energy eU mainly due to the processes: relaxation within the electron

subband; transition to the hole subband by stimulated emission of a photon; and

energy necessary for extraction of the electron from the hole subband. The extrac-

tion of an electron from the hole subband corresponds to injection of a hole from

the p-doped region into the hole subband accompanied with relaxation of the hole.

Accordingly, we find the quantum efficiency

ηq =
(EFn − E2) + (E2 − EFp)

hν
=

FFn − EFp

hν
, (22.30)

where hν = E2 − E1 and where E2 − E1 is the energy difference of energy levels that

contribute to stimulated emission of radiation at frequency ν, EFn is the Fermi energy

of the n GaAs contact layer, EFP is the Fermi energy of the p GaAs contact layer.

The energy levels of energy E2 belong to the lower part of the electron subband and

the energy levels of energy E1 to the upper part of the hole subband. The quantum

efficiency can reach a value larger than 0.9.

The efficiency of a GaAs quantum well laser is

η = ηq × ηloss, (22.31)

where ηloss is an efficiency factor that takes account of loss.
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22.4 Threshold Current of a GaAs Quantum Well Laser

To estimate the laser threshold condition of a GaAs quantum well laser at room

temperature, we choose the simplest description.

• We ignore thermal broadening of the energy levels. The gain characteristic is then

equal to

H 2D(ν) = H 2D(hν) = (n/c)hν B̄21 D2D
r (E21) [ f2(E2) − f (E1)] , (22.32)

where E21 = E2 − E1 = hν.

• We choose E21 = E2D
g .

• We assume that the threshold density has a value near the transparency density.

Then we can write

f2(E2) − f1(E1) = d2D × (N 2D − N 2D
tr ), (22.33)

where d2D = 3.8 × 10−17 m2.

• The modal growth coefficient is

γ =
(n/c)H 2D

a2

= beff ×
N 2D − N 2D

tr

a2

, (22.34)

where a2 is the height of the mode and

beff = hν B̄21 D2D
r d2D (22.35)

is the effective growth rate constant.

The photon generation rate at the steady state osciallation of the laser is equal to

the photon emission rate,

beff(Nav,∞ − Ntr,av)Z =
Z

τp

. (22.36)

Nav,∞ = N 2D
∞ /a2 is the average threshold electron density and Ntr,av = N 2D

tr /a2 the

average transparency density in the laser resonator. This leads, with N 2D
∞ = N 2D

th

(=threshold density) and beff = (c/n)σeff , to

N 2D
th − N 2D

tr =
1

σeff lp/a2

, (22.37)

where σeff is the effective gain cross section and lp is the photon mean free path in

the resonator. The threshold current is, for N 2D
th − N 2D

tr ≪ N 2D
tr , equal to

Ith = N 2D
tr La2e/τsp (22.38)
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and the threshold current density (with e = elementary charge) is

jth = N 2D
tr e/τsp. (22.39)

Example GaAs quantum well laser.

• hν = E2D
g .

• L = 1 mm; a1 = 100 µm; a2 = 0.2 µm.

• lp = 1.2 mm; lp/a2 ∼ 7 × 103.

• N 2D
tr = 1.4 × 1016 m−2.

• σeff = 2.7 × 10−19 m2.

• N 2D
th − N 2D

tr = 1 × 1015 m−2.

• αth = 700 m−1.

• τsp = 2 × 10−9 s.

• jth = 1 × 106 A m−2; Ith = 100 mA.

Because of the small height of the active volume, the ratio lp/a2 has a large value.

We can write the laser threshold condition in the form

αthlp = 1, (22.40)

where

αth = σeff

N 2D
th − N 2D

tr

a2

(22.41)

is the threshold gain coefficient.

Or we can write

αth = σeff

N 2D
th − N 2D

tr

s
× Γ = αmat,th × Γ, (22.42)

where we have the quantities:

• s = thickness of a quantum well.

• N 2D/s = electron density within the quantum well described as a three-dimensional

system.

• Γ = s/a2 = confinement factor.

• αmat,th = threshold material gain coefficient.

It follows for our example that αth ∼ 103 m−1 and that Γ = 1/20 and αmat,th =

104 m−1 at a quantum well thickness of s = 10 nm.

To determine the threshold current, we have taken into account the loss due to

spontaneous emission of radiation. We ignored loss that is due to other processes

such as nonradiative transitions of electrons from the conduction band to the valence

band and loss of photons within the semiconductor materials.
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Fig. 22.10 Multi quantum well laser

Fig. 22.11 Laser array and laser bar (high-power semiconductor laser)

22.5 Multi-Quantum Well Laser

A laser diode can contain (Fig. 22.10) more than one quantum well (e.g., five to

ten quantum wells), arranged in parallel. This leads to a larger output power and a

smaller threshold current. The radiation of a multi-quantum well laser is coherent.

22.6 High-Power Semiconductor Laser

A high-power semiconductor laser consists of laser diodes arranged in an array or as

a bar of laser arrays (Fig. 22.11). A laser array contains 10–100 laser diodes. The laser

diodes are kept at room temperature by the use of a cooler, which itself is cooled with

air or via the mechanical support. Each single laser diode emits coherent radiation.

However, the oscillations of different laser diodes are not in phase. Therefore, a

high-power semiconductor laser generates a beam of incoherent monochromatic

radiation. Depending on the number of arrays, a high-power semiconductor laser

produces radiation with a power in the watt to kW range.

A diode array of laser diodes, each with a microlens collimating the radiation,

emits radiation that has a divergence of ∼10◦ in the plane of the array and 1◦ per-

pendicular to the plane; without lenses, the divergence is 10◦ in the plane and 40◦

perpendicular to the plane.
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Fig. 22.12 Surface-emitting

semiconductor laser

22.7 Vertical-Cavity Surface-Emitting Laser

In a vertical-cavity surface-emitting laser (=VCSEL), the reflector and the output

coupling mirror are parallel to the quantum film (Fig. 22.12). The condition of steady

state oscillation,

beff(Nav,∞ − Ntr,av)Z =
Z

τp

, (22.43)

leads, with Nav = N 2D/L , to the threshold condition

N 2D
th − N 2D

tr =
1

σeff lp/L
, (22.44)

where τp is the mean lifetime of a photon in the resonator and lp = (c/n)τp the

length of the path of a photon within the resonator. In order to obtain a large ratio

lp/L , the quality factor of the laser resonator has to be large. For a high-Q resonator,

with a reflector (reflectivity = 1) and a partial reflector (reflectivity R), the threshold

condition can be written, with lp/L = 1/(1 − R), in the form

N 2D
th − N 2D

tr =
1 − R

σeff

, (22.45)

or

1 − R =
(

N 2D
th − N 2D

tr

)

σeff . (22.46)

Example Surface-emitting GaAs quantum well laser, with N 2D
th ∼ 2N 2D

tr .

• L = 10 µm; a1 = 10 µm; a2 = 10 µm.

• σeff = 2.7 × 10−19 m2.

• N 2d
th − N 2D

tr = 1.4 × 1016 m−2.

• τsp = 4 × 10−9 s.

• 1 − R = 1 × 10−3.

• jth = 5 × 105 A m−2.

• Ith = 50 µA.
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To describe a case of stronger pumping, we use the laser equation involving the

occupation number difference and find

( f2 − f1)th =
c/n

hν B̄21d2Dlp/L
. (22.47)

As we have seen, the occupation number difference f2 − f1 saturates at large electron

densities. Therefore, an increase of N 2D to values much larger than a few times N 2D
tr

does not lead to noticeably larger values of f2 − f1 (Problem 22.4).

In comparison with the edge emitting laser, the vertical-cavity surface-emitting

laser requires, as shown, a resonator with a high Q factor. The vertical-cavity surface-

emitting laser has advantages:

• The radiation is less divergent.

• The size can be much smaller.

• The threshold current can be much smaller.

The lower threshold current results in a smaller heating effect.

22.8 Polarization of Radiation of a Quantum Well Laser

A quantum film is optically anisotropic. More detailed studies show that the Einstein

coefficient B⊥
21, i.e., with the electric field being perpendicular to the film plane, is

zero and therefore B
||

21 = 1.5B21. Accordingly, the radiation of an edge emitting

bipolar laser—that generates radiation due to recombination of electrons and heavy

holes—is polarized and the direction of the electric field of the electromagnetic

wave is parallel to the plane of the quantum well. However, emission of radiation of

well-defined polarization direction is limited to a narrow frequency range near the

two-dimensional gap frequency. Toward higher frequency, light holes (Sect. 26.3)

can give rise to generation of radiation of a less defined polarization direction.

It is a further consequence of the anisotropy that the Einstein relations have to be

modified: A21 is related to an average value between B
||

21 and B⊥
21.

22.9 Luminescence Radiation from a Quantum Well

Figure 22.13 (solid line) shows a luminescence spectrum calculated by the use of

(21.61), modified corresponding to the two-dimensional density of states of electrons

and holes in a quantum well, for a GaAs quantum well at room temperature contain-

ing electrons in the electron subband of a density of about twice the transparency

density. S/Smax is equal to the ratio of the luminescence intensity at the frequency

ν and the maximum luminescence intensity at the two-dimensional gap frequency

http://dx.doi.org/10.1007/978-3-319-50651-7_26
http://dx.doi.org/10.1007/978-3-319-50651-7_21
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Fig. 22.13 Luminescence

radiation from a quantum

well

ν2D
g = E2D

g /h, calculated without taking into account thermal level broadening. In

comparison, a luminescence curve (dashed), which takes account of thermal level

broadening, is wider and the maximum occurs at a larger frequency. The halfwidth

of the luminescence curve is larger than kT . The luminescence radiation is emitted

into the whole solid angle.

References [1–4, 6, 187–200].

Problems

22.1 Quasi-Fermi energies. A quantum film contains nonequilibrium electrons

and holes. Determine the electron density at which the difference of the quasi-Fermi

energies is 3kT (T = 300 K). [Hint: make use of the figure concerning the Fermi

energies.]

22.2 Quantum well laser. A GaAs quantum well laser (length 0.5 mm, width

0.2 mm, resonator height 500 nm) contains 3 quantum wells and is operated at room

temperature. Estimate the threshold electron density, threshold current density and

threshold current. [Hint: neglect thermal broadening of the gain curve.]

22.3 Photons in a quantum well laser. A GaAs quantum well laser (length 0.5 mm,

width 0.2 mm, resonator height 500 nm) contains 3 quantum wells, is operated at room

temperature and emits, in two directions, laser radiation of a power of Pout = 1 mW

into each of the directions.

(a) Determine the photon density in the resonator.

(b) Determine the total photon number Z tot in the resonator.

(c) Compare Z tot with the total number of nonequilibrium electrons in the quantum

film.

22.4 Vertical-cavity surface-emitting laser. A vertical-cavity surface-emitting

laser contains a GaAs quantum well and another laser contains five quantum wells;

( f2 − f1)th = 0.5 and τsp = 8 × 10−9 s. Determine the following quantities:

(a) Threshold reflectivity of the output coupling mirror.

(b) Threshold current.

(c) Threshold current density.
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Semiconductor Materials

and Heterostructures

We give a survey of semiconductor materials suitable for preparation of semicon-

ductor lasers. The materials are compounds of elements of the third and fifth group

of the periodic table or compounds of elements of the second and the sixth group.

The compounds have energy gaps corresponding to gap frequencies ranging from

the infrared to the near UV.

We describe the zinc blende crystal structure that is common to many of the

semiconductor laser materials and introduce the monolayer as an important structural

element of heterostructures. Heterostructures are suitable for the design of artificial

materials with spatially varying energy bands.

We shortly mention the methods of preparation of semiconductor heterostructures.

After a survey of the different materials, we will concentrate the discussion on

heterostructures composed of GaAs and AlAs.

We will present dispersion curves of electrons in GaAs and AlAs. And we will

discuss absorption coefficients of GaAs and AlAs, characterizing absorption due to

interband transitions in a direct semiconductor (GaAs) and an indirect semiconductor

(AlAs).

23.1 Group III–V and Group II–VI Semiconductors

Group III–V semiconductors—materials composed of group III and group V ele-

ments of the periodic table—are well suitable for preparation of laser diodes.

Figure 23.1 shows a section of the periodic table. The III–V semiconductors are

the materials of laser diodes from the UV to the infrared. The III–V semiconductors

consisting of atoms of small masses have large bandgaps and III–V semiconductors

consisting of atoms of large masses have small bandgaps. AlN has a large bandgap

and InSb a small one. The group IV semiconductors diamond, silicon, germanium

and gray tin are indirect semiconductors. These are not suitable as active materials

of bipolar semiconductor lasers. Group III–V semiconductors are known since 1952

[202].

© Springer International Publishing AG 2017

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,

DOI 10.1007/978-3-319-50651-7_23
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Fig. 23.1 Section of the

periodic table of the elements

Table 23.1 Energy gaps and gap wavelengths of III–V and II–VI semiconductors (at 300 K)

Semiconductor Eg (eV) λg

InSb Indium antimonide 0.17 7.3µm

InAs Indium arsenide 0.36 3.4µm

GaSb Gallium antimonide 0.72 1.7µm

GaAs Gallium arsenide 1.42 873 nm

InN Indium nitride 1.8 690 nm

AlAs Aluminum arsenide [2.2]

GaP Gallium phosphide [2.3]

GaN Gallium nitride 3.4 370 nm

AlN Aluminum nitride 6.2 200 nm

CdTe Cadmium telluride 1.56 795 nm

CdSe Cadmium selenide 1.8 690 nm

CdS Cadmium sulfide 2.42 510 nm

ZnSe Zinc selenide 2.7 460 nm

ZnS Zinc sulfide 3.8 330 nm

The group II–VI semiconductors, composed of elements of the sixth group (S,

Se, Te) and elements of the second main group (Mg) or of a side group of the second

group (Zn, Cd), are direct semiconductors. Heterostructures of mixed crystals of

II–VI semiconductors can be used to prepare green laser diodes.

Table 23.1 shows energy gaps and gap wavelengths λg = h/Eg of semiconductors

at room temperature. The semiconductors listed in the table are direct gap semicon-

ductors, except AlAs and GaP that are indirect gap semiconductors. The values of

Eg of AlAs and GaP correspond to the k = 0 gap (Sect. 23.8).

The crystal structure of most of the group III–V semiconductors used to prepare

lasers is the zinc blende structure (Sect. 23.3). GaN can crystallize not only in the

zinc blende structure but also in the wurtzite structure.

Table 23.2 shows effective masses of group III-V semiconductors; me = effective

mass of a conduction band electron; mh (≡ mhh) = effective mass of a heavy hole in

the valence band; m lh = effective mass of a light hole (Sect. 26.2).

http://dx.doi.org/10.1007/978-3-319-50651-7_26
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Table 23.2 Effective masses

me mh mlh

GaAs 0.067 0.43 0.09

InP 0.077 0.6 0.12

InAs 0.027 0.34 0.027

InSb 0.014 0.34 0.016

GaN 0.20 1.4

Fig. 23.2 Energy gap of Ga1−x Alx As mixed crystals. a Dependence of the gap energy on the

composition. b Relation between gap energy and lattice constant

23.2 GaAlAs Mixed Crystal

It is possible to prepare Ga1−x Alx As mixed crystals of each mixing ratio x . In

a GaAlAs crystal, Al atoms replace Ga atoms. The energy gap of Ga1−x Alx As

(Fig. 23.2a) varies continuously with the mixing ratio, from the energy gap of GaAs

(x = 0) up to the k = 0 gap of AlAs (x = 1); Ga1−x Alx As is a direct gap semiconduc-

tor for x < 0.32 and an indirect gap semiconductor for larger x . For the region of the

direct gap, the energy gap (in units of eV) of a mixed GaAlAs crystal (at room tem-

perature) follows from the relation Eg (Ga1−x Alx As) = 1.424 + 1.247 x − 0.14 x2.

A GaAs crystal and an AlAs crystal have a special property in common: they

have nearly the same lattice constant. The cubic lattice constants (of crystals at room

temperature) are:

• GaAs d = 0.565326(2)nm.

• AlAs d = 0.5660 nm.

The difference between the lattice constants of GaAs and AlAs is only about a tenth

of a percent and smaller for the Ga1−x Alx As (x = 0 . . . 1) mixed crystals. Therefore,

GaAs is an ideal substrate for deposition of Ga1−x Alx As layers, independently of

the value of x . The lattice constant d increases, from the value of GaAs to the value

of AlAs, linearly with x (Fig. 23.2b).



478 23 Semiconductor Materials and Heterostructures

Fig. 23.3 Ga sublattice of a GaAs lattice and GaAs monolayer

23.3 GaAs Crystal and Monolayer

The GaAs crystal lattice has the zinc blende crystal structure. The GaAs crystal

contains a Ga sublattice (Fig. 23.3, left) and an As sublattice (not shown). The Ga

sublattice is a face centered cubic lattice; the As sublattice, which is a face centered

cubic lattice too, is shifted by ( 1
4
, 1

4
, 1

4
)d relative to the Ga sublattice. The GaAs crystal

can be described as a sequence of Ga layers and of As layers in turn (Fig. 23.3, right).

We introduce the GaAs monolayer, it has a lattice period a that is half the cubic lattice

constant of GaAs,

a =
1

2
d. (23.1)

23.4 GaAs/GaAlAs Heterostructure

A Ga1−x Alx As/GaAs heterostructure (Fig. 23.4a) consists of a Ga1−x Alx As layer

adjacent to a GaAs layer. A GaAs substrate (a GaAs crystal) supports the layers.

The GaAs lattice structure of the substrate is continued in the heterostructure. The

lattice matching between the Ga1−x Alx As layer and the GaAs substrate is nearly

perfect because the lattice constants of GaAs and AlAs are only slightly different

from each other. For x = 1, the lattice mismatch, measured relative to the monolayer

thickness, is ∼10−3. It is smaller at smaller x (preceding section). Across an undoped

GaAlAs/GaAs heterostructure (in 100 direction or x direction), there is a change of

the values of various energies measured relative to a vacuum level of an electron, as

illustrated in the figure:

• Evac = vacuum level of an electron.

• EF = Fermi energy.

• Ec = conduction band minimum.

• Ev = valence band maximum.

• δc = conduction band offset.

• δv = valence band offset.
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Fig. 23.4 GaAlAs/GaAs heterostructure. a Heterostructure and change of energy values across the

heterostructure. b Conduction band offset

The Fermi-level of an undoped crystal has a value between Ec and Ev. We introduce:

• The conduction band profile Ec(x) = minimum of the conduction band along the

coordinate x across the heterostructure.

• The valence band profile Ev(x) = maximum of the valence band across the het-

erostructure.

The gap energy Eg = Ec − Ev of GaAs is smaller than that of GaAlAs. The change

δEg of the gap energy across the GaAlAs/GaAs interface is partly due to the con-

duction band offset and partly due to the valence band offset. Both vary linearly

with the composition x . The mixed crystal is, as already mentioned, a direct gap

semiconductor for x < 0.32 and an indirect gap semiconductor for larger x . The

conduction band offset (Fig. 23.4b) is δc(x) = 0.67δEg(x) and the valence band off-

set is δv(x) = 0.33δEg(x).

23.5 Preparation of Heterostructures

There are two basic techniques of preparation of heterostructures, the molecular

beam epitaxy (MBE) and the metal oxide chemical vapor deposition (MOCVD),

which is a special method of chemical vapor deposition (CVD).

Molecular beam epitaxy is performed in a chamber with ultrahigh vacuum (pres-

sure <10−10 mbar). To grow a heterostructure containing GaAs and GaAlAs, the

elements Ga and Al are evaporated from effusion cells. The chamber contains As

at a very low pressure. The GaAs substrate has a temperature that is favorable for
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epitactic growth—for the growth of atomic layers with the same lattice constant as

the substrate. Silicon (for n-doping) or phosphorus (for p-doping) are evaporated

from appropriate effusion cells. The molecular beam epitaxy is suitable for grow-

ing heterostructures of atomic accuracy, in particular for preparation of GaAs and

InP-based heterostructures for infrared bipolar lasers and quantum cascade lasers.

In the chemical vapor deposition process, a gas mixture of organic metal oxides

containing the constituents (e.g., Ga and N) flows over a substrate. Near the sub-

strate surface, the organic metal oxides decompose and the new material (GaN)

grows on the substrate. The chemical vapor deposition is used to prepare GaN-

based heterostructures. Doping materials of GaN-based semiconductors are silicon

(n-doping) or magnesium (p-doping). In comparison with the molecular beam epi-

taxy, the chemical vapor deposition needs less technical effort and allows for a higher

speed of production of heterostructures.

23.6 Preparation of Laser Diodes

To prepare laser diodes, a wafer covered with a heterostructure is laterally structured.

Different steps of structuring include photolithography, chemical etching or plasma

etching, and the preparation of ohmic contacts.

23.7 Material Limitations

Bipolar semiconductor lasers are realizable in a wide frequency range. There are

limitations at large frequencies and at small frequencies.

The direct gap semiconductor with the widest gap (used to prepare semiconductor

lasers) is AlN. The gap energy (6.2 eV) corresponds to a gap frequency of 1.5 ×

1015 Hz (wavelength 200 nm).

At small frequencies, bipolar lasers operated at room temperature are limited to

frequencies of about 1.3 × 1014 Hz (vacuum wavelength 2µm), corresponding to

an energy gap of 0.6 eV. At smaller frequencies (smaller gap energies) nonradiative

transitions between conduction band and valence band become strong and population

inversion is not possible. By cooling, the nonradiative transitions slow down and

laser oscillation at smaller frequencies is possible. With cooled lead salts, bipolar

semiconductor lasers up to frequencies of about 8 THz (wavelength 40µm) can be

produced (Sect. 28.4).

http://dx.doi.org/10.1007/978-3-319-50651-7_28
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23.8 Energy Bands and Absorption Coefficients

of GaAs and AlAs

Figure 23.5 shows dispersion curves of electrons in GaAs and AlAs crystals, with

the k vector oriented along the 100 direction. The energy bands are periodic with the

period 2π/(d/2), where d is the cubic lattice constant; the Brillouin zone extends in

the 100 direction from −2π/d to 2π/d.

The energy maximum (Ev) of the valence band of GaAs occurs at the same k

vector as the energy minimum (Ec) of the conduction band—GaAs is a direct gap

semiconductor (Fig. 23.5, left). Accordingly, the electronic transitions between the

two bands of GaAs are strong at frequencies ν > νg; GaAs is transparent for ν < νg .

The absorption coefficient αabs of GaAs (Fig. 23.6, left) reaches a value of the order

of 104 cm−1. Population inversion results in a gain coefficient that can, in principle, be

of the same order of magnitude. That means that a crystal with an inverted population

Fig. 23.5 Dispersion curves for electrons in GaAs and AlAs, with the wave vector oriented along

the (100) direction; the arrows indicate direct transitions (in GaAs) and indirect transitions (in AlAs)

Fig. 23.6 Absorption coefficients of GaAs and AlAs
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can have a gain factor G = eαL
= e = 2.6 already at a length of 1 µm. The large

coefficient of absorption due to interband transitions, with a corresponding large gain

coefficient, in case of a population inversion is the basis of the bipolar semiconductor

lasers.

In an absorption process, a photon (momentum �qphoton) is absorbed and an elec-

tron (momentum �k1) in the valence band is excited to the conduction band where

it has the momentum �k2. Momentum conservation requires that

�k1 + �qphoton = �k2. (23.2)

The sum of the momentum �k1 of a valence band electron and the momentum �qphoton

of a photon has to be equal to the momentum �k2 of the conduction band electron

after the excitation. Since the momentum of a photon is small compared to the wave

vector at the Brillouin zone boundary, �qphoton ≪ 2π/d, the condition of an electronic

transition is

�k1 ≈ �k2. (23.3)

In the energy-wave vector diagram, the transition appears as “vertical” transition

(=direct transition).

AlAs is an indirect gap semiconductor: the minimum of the conduction band

occurs at a k vector that differs from the k vector at which the maximum of the

valence band occurs (see Fig. 23.5, right). A transition between a state of maximum

energy in the valence band and a state of minimum energy in the conduction band is

possible only by the involvement of a phonon. Momentum and energy conservation

require that

�k1 + �qphonon = �k2, (23.4)

E1 + �ωphonon = E2, (23.5)

where �qphonon is the momentum, �ωphonon the energy of a phonon, E1 is the energy of

the valence band electron before excitation, and E2 is the energy of the electron in the

conduction band (after excitation); the momentum of the photon is negligibly small.

The transitions at photon energies near the indirect gap energy, Eg,ind = Ec − Ev, of

AlAs are indirect. The absorption coefficient for these processes is very small (see

Fig. 23.6, right). Accordingly, the gain of radiation of a frequency near the indirect

gap frequency νg,ind = (Ec − Ev)/h would be very small even at a strong population

inversion.

References [1–4, 6, 187–200, 202–204].

Problems

23.1 Wave vectors of light and of electrons. Compare the wave vector of visible

light with the wave vector of electrons in GaAs at the Brillouin zone boundary.
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23.2 Indirect gap semiconductor. An indirect gap semiconductor can absorb or

emit light by the involvement of phonons; however, the processes are much weaker

than the direct processes (processes without phonons). Formulate the energy and

momentum conservation laws for the indirect processes:

(a) Absorption of a photon and simultaneous generation of a phonon.

(b) Emission of a photon and simultaneous generation of a phonon.

23.3 Determine the absorption coefficient in the vicinity of the gap frequency (a)

of bulk GaN and (b) of a GaN quantum well.

23.4 Determine the transparency density of a GaN quantum well at room

temperature.

23.5 A GaN VCSEL has a diameter of 10µm and contains 10 quantum wells.

Determine the reflectivity of the output coupling mirror that is necessary to reach

laser threshold. Calculate the threshold current.
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Quantum Well Lasers from the UV

to the Infrared

Quantum well lasers are available in a large wavelength range, extending from the

near UV to the near infrared. Basic materials are: GaN for UV and blue lasers; GaAs

for red lasers; InP for near infrared lasers; GaN, GaAs or ZnSe for green lasers. We

will discuss the design of different lasers.

24.1 A Survey

Figure 24.1 shows a selection of quantum well materials, together with barrier and

substrate materials. At each wavelength in the range of 0.3–2µm, a laser diode

is in principle available. The materials used for preparing a laser diode must have

appropriate energy gaps. There are further requirements.

• Red and infrared laser diodes. The materials must have a very good lattice match-

ing. This condition requires the use of binary, ternary and quaternary compounds.

Suitable substrates are GaAs and InP. Heterostructures are prepared by molecular

beam epitaxy.

• Blue and UV laser diodes. The material basis is GaN. The lattice matching is not

critical. Sapphire has a large lattice mismatch to GaN, but it is nevertheless suitable

as a suited. Heterostructures can be prepared by chemical vapor deposition (CVD).

• Green laser diodes. The basic materials are GaN, GaAs, or ZnSe.

24.2 Red and Infrared Laser Diodes

By mixing GaAs with the heavier InAs, all energy gaps between the gap of

GaAs (1.4 eV) and the gap of InAs (0.4 eV) are available (Fig. 24.2a). All ternary

Ga1−x Inx As (x = 0 . . . 1) compounds are direct semiconductors. InP is an appropri-

ate substrate material. As a rule of determination of a property a (like gap energy or

© Springer International Publishing AG 2017
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Fig. 24.1 Quantum well lasers: materials and wavelength regions

Fig. 24.2 Energy gaps a of GaAs-based and b of GaN-based semiconductors

lattice constant) of a semiconductor consisting of the compounds A, B, and C, we

can use the relation a(A1−x Bx C) = (1 − x) × a(AC) + x × a(BC).

The following materials are lattice matched to InP.

• InP and Ga0.52In0.48As (a combination of a binary and a ternary semiconductor).

The energy gap of Ga0.52In0.48As has the value Eg = 0.75 eV and the refractive

index is n = 3.56 while the refractive index of InP is n = 3.16 at the gap energy

(1.2 eV) of InP.

• InP and Ga1−x Inx As1−yPy (a combination of a binary and a quaternary III–V

compound); Ga is partly replaced by the heavier In and As by the lighter P.

These materials, together with InP substrates, are suitable for the preparation of a

variety of lasers.

• Ga1−x Inx As/GaAs laser; wavelength in the range 900–1100 nm; application: pump

lasers.

• Ga0.8In0.2As/GaAs; 980 nm; application: pump laser of the Er3+: glass fiber laser

and amplifier.

• Ga1−x Inx As1−yPy /GaInAsP; 1.2–1.6 µm.

• GaInAs/GaInAlAs; 1.8–2.1 µm.
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The following materials, lattice matched to InP, are suited to prepare lasers used in

optical communications.

• λ = 1.32 µm; Ga0.27In0.73As0.58P0.42.

• λ = 1.55 µm; Ga0.42In0.58As0.9P0.1.

Lasers with GaAs substrates.

• GaInP (quantum layer)/AlGaInP; wavelength λ ∼ 630–700 nm; pump laser of

other lasers.

• Ga1−x Alx As/Ga1−yAlyAs; 720–850 nm; pump lasers.

24.3 Blue and UV Laser Diodes

In 1997, S. Nakamura and coworkers at a small Japanese company (Nichia Chemicals)

succeeded in preparing blue diode lasers [196, 203, 204]. In 2014, Nakamura

received, together with H. Amano and I. Akasaki, the Nobel Price in Physics. The

basic materials are nitrides (Fig. 24.2b), belonging to the group III–V

semiconductors:

• GaN; Eg = 3.4 eV (λg = 365 nm).

• AlN; Eg = 6.2 eV.

• InN; Eg = 1.8 eV.

Ga1−x Alx N and Ga1−x Inx N mixed materials are most suitable for preparation of

blue and near UV laser diodes. Although sapphire (Al2O3) has a large mismatch

(16%) to GaN, it serves as a substrate; SiC is suitable as substrate too.

An example of a GaN-based laser diode is shown in Fig. 24.3a. The laser diode

(emitting at a wavelengths of 413 nm) consists of the following layers.

• InGaN quantum well layers (thicknesses 3 nm).

• GaN barrier layers.

• GaAlN (p type) electron blocking layer; it acts as a reflector of electrons.

• GaAlN layers, n-doped on one side and p-doped on the other side of the GaN layer.

At a wavelength of 400 nm, the refractive index of GaN is n = 2.55, while the

refractive index of AlGaN is smaller. Doping with silicon leads to n-type conductivity

and doping with magnesium to p-type conductivity.

The design of a blue laser diode is shown in Fig. 24.3b. The different layers

are (beginning at the Al2O3 substrate): a very thin undoped GaN layer (e.g., of

a thickness of 50 nm) as buffer layer; an n-doped AlGaN cladding layer; then the

layers embedding the layers containing the multi-quantum wells (MQWs); finally,

a p-doped AlGaN cladding layer. The pump current flows from the metallic anode

through the heterostructure to the metallic cathode.
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Fig. 24.3 Blue laser diode. a Principle. b Design. c Dependence of the current and the laser output

power on the voltage across the diode

The current-voltage (I –V ) curve (Fig. 24.3c) shows that current flow sets in at

a voltage above 5 V. At a voltage of 7 V, the threshold current Ith is reached. In the

range I > Ith, the current increases strongly due to generation of laser radiation. The

laser output power Pout increases almost proportionally to I − Ith.

24.4 Group II–VI Materials of Green Lasers

As already mentioned, green laser diodes consist of GaAs-, GaN- or ZnSe-based

materials. The ZnSe-based mixed materials have energy gaps between 2 and 4 eV

(Fig. 24.4a). There are various possibilities to prepare mixed crystal materials com-

posed of elements of group II and group VI in the periodic table.

• Binary II–VI semiconductors: ZnS, ZnSe, CdSe ….

• Ternary II–VI semiconductors: ZnSSe, ZnSeTe, CdSSe, CdZnSe with energy gaps

between 3.8 eV (ZnS) and 1.8 eV (CdSe); lattice matched to GaAs (substrate).

The layer sequence of a ZnS-based laser diode [205, 206] is shown in Fig. 24.4b. On

an n-doped GaAs substrate, first a GaAs buffer layer is grown in order to obtain a

perfect crystal structure to which the further layers are added. The different tasks of

the layers are as follows:
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Fig. 24.4 Green semiconductor laser. a Energy gaps. b Device

• CdZnSe (quantum well).

• p ZnSSe/p ZnSe/CdZnSe/ n ZnSe/ n ZnSSe (light guide).

• p-doped layers (hole injector).

• n-doped layers; electron injector.

• An indium film on the heterostructure serves as anode and a gold film on the

backside of the highly doped substrate as cathode.

Heterostructures of group II–VI semiconductors are not as stable as those of group

III–V semiconductors.

24.5 Applications of Semiconductor Lasers

We mention a few applications of semiconductor lasers: optical storage (e.g., compact

disc; blue ray disc); color projection; laser printer; sensor devices; micro controllers.

In comparison with a red laser, a blue laser emits radiation of smaller wavelength.

Therefore, a blue laser allows for a higher storage density.

References [1–4, 6, 187–201, 203–206].
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Problems

24.1 GaN quantum well. The effective mass of (m∗
∼ 0.2 m0) of conduction elec-

trons in GaN is about three times the effective mass of conduction electrons in GaAs.

(a) Compare the density of states of electrons in a GaN quantum well with the

density of states of electrons in a GaAs quantum well.

(b) Compare the condition of gain mediated by a GaN quantum well with the con-

dition of gain mediated by a GaAs quantum.



Chapter 25

Reflectors of Quantum Well Lasers

and of Other Lasers

We discuss different reflectors: distributed feedback reflector; Bragg reflector and

photonic crystal reflector; total internal reflector leading to whispering gallery modes.

The reflectors are suited as reflectors not only in quantum well lasers but also in

quantum wire and quantum dot lasers (Chap. 27). Depending on the type of reflector,

it is possible to design semiconductor lasers of submillimeter size down to (10 µm)3.

In connection with photonic crystals, we mention the photonic crystal fiber as a

dielectric light guiding structure. The one-dimensional photonic crystal reflector

( = Bragg reflector = multilayer reflector) is in use for almost all types of lasers.

We consider propagation of electromagnetic waves in layered materials (stratified

media) in the special—but important—case that radiation is propagating in the direc-

tion perpendicular to the layers. We introduce the plane-wave transfer matrix that

describes transfer of a wave from one side of an interface to the other side—and the

propagation matrix, which characterizes propagation of a wave within a medium. The

plane-wave matrix method is based on the boundary conditions for fields at an inter-

face. We treat: thin film between two media; dielectric multilayer; one-dimensional

photonic crystal. We will apply (Sect. 30.3) the plane-wave matrix method also to

investigate electron waves passing through an interface of two semiconductor media.

25.1 Plane Surface

We have already discussed the edge-emitting quantum well laser with two uncovered

crystal surfaces as reflectors. Cleaving a substrate (together with the layers on the

substrate) results in a plane surface and cleaving along two parallel planes results

in a resonator. Disadvantages and advantages of an edge-emitting laser with cleaved

surfaces (Fig. 25.1a) are the following:

• The reflectivity, determined by the refractive index of the cleaved semiconductors

material has a fixed value.
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Fig. 25.1 Resonators of semiconductor lasers. a Resonator with cleaved surfaces. b Resonator

with a coated and an uncoated surface. c Resonator with an external reflector. d Resonator with

distributed feedback. e Resonator with a distributed Bragg reflector. f Resonator with two distributed

Bragg reflectors

• Emission occurs into two directions.

• The laser beam has a large angle of aperture in the plane perpendicular to the active

layer.

• It is easy to prepare a cleaving surface.

We now will discuss other possibilities to realize laser resonators of semiconductor

lasers.

25.2 Coated Surface

By deposition of a dielectric coating on a surface (Fig. 25.1b), one of the reflectors

has a high reflectivity (HR). The other surface can remain without coating. Thus, the

laser emits radiation in one direction only.
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25.3 External Reflector

An external reflector (Fig. 25.1c) makes it possible to realize a tunable semiconductor

laser. The reflector is an echelette grating in Littrow arrangement. Rotation of the

grating results in a change of the wavelength of the laser radiation. Resonances

between the surface and the grating are avoided by the use of an antireflecting coating

(a coating with a low reflectivity, LR) on one of the surfaces of the laser diode. The

length of the external resonator limits the tuning range—up to about 50 GHz—for

tuning on one mode.

25.4 Distributed Feedback Reflector

The integration of a grating into the light guiding structure (Fig. 25.1d) leads to

distributed feedback. The wavelength of the laser radiation is mainly determined

by the period of the distributed reflector. Distributed feedback together with coated

cleaved surfaces makes it possible to optimize the laser output of distributed feedback

edge-emitting semiconductor lasers.

Distributed feedback reflectors are also suitable as reflectors of solid state dye

lasers and organic and polymer lasers (Sect. 34.4).

25.5 Distributed Bragg Reflector

A distributed reflection grating separated from the gain region is a distributed Bragg

reflector (Fig. 25.1e). A distributed Bragg reflector acts as output coupler. The surface

opposite to the Bragg reflector is highly reflecting.

By the use of two distributed Bragg reflectors (Fig. 25.1f ), a high reflectivity at

one end of the active region and an optimized output coupler at the other end can be

realized.

Distributed Bragg reflectors are well suitable as reflectors of bipolar semiconduc-

tor lasers.

25.6 Total Reflector

Internal total reflection in a circularly shaped solid results in a resonator with a very

high Q factor. Light is propagating in a whispering gallery mode (Fig. 25.2). Output

coupling of radiation is possible by positioning a prism near the surface, resulting in

frustrated total reflection in a small region of the resonator. The distance d between

the prism and the surface of the resonator regulates the output power. The quality

factor can be of the order of 106.

http://dx.doi.org/10.1007/978-3-319-50651-7_34


494 25 Reflectors of Quantum Well Lasers and of Other Lasers

Fig. 25.2 Whispering gallery mode

Fig. 25.3 Bragg reflector

25.7 Bragg Reflector

A very successful type of reflector is the Bragg reflector (=dielectric multilayer

reflector = 1D photonic crystal reflector); it can consist of a multilayer coating on a

transparent substrate.

A Bragg reflector (Fig. 25.3, left) consists of dielectric layers of two different

materials of different refractive indices. Each layer has a thickness that is equal to

a fourth of the wavelength of radiation in the corresponding material; a material

(refractive index n1) has the thickness λ/(4n1) and the other material (n2) has the

thickness λ/(4n2). With increasing number of quarter-wavelength layers (of two

materials in turn) the reflectivity increases and can reach a value very near unity. A

Bragg reflector can have a high reflectivity R over nearly one octave of the spectrum

(Fig. 25.3, right) around a central frequency νBragg. The transmissivity T of the Bragg

reflector is T = 1 − R. Radiation incident on a Bragg reflector is either reflected or

transmitted. Bragg reflectors are essential for operation of vertical-cavity surface-

emitting lasers (VCSELs). A Bragg reflector can consist of quarter-wavelength layers

of two semiconductors—for instance, of GaAs and AlAs for red and infrared lasers.

Bragg reflectors (=dielectric mirrors) consisting of other materials (e.g., layers

of two glass types with different refractive indices) can be used as reflectors and as

partial reflectors of almost all types of lasers (Chaps. 14–19).

http://dx.doi.org/10.1007/978-3-319-50651-7_14
http://dx.doi.org/10.1007/978-3-319-50651-7_19
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25.8 Photonic Crystal

A medium that has a spatially periodic dielectric constant is a photonic crystal. A

medium consisting of a periodic metal structure with holes or dielectric inclusions

can be a photonic crystal too. All photonic crystals have in common that the light

propagation is anisotropic and that there can be a photonic bandgap—radiation of a

frequency that lies in the bandgap cannot propagate in a photonic crystal. There are

three types of photonic crystals (Fig. 25.4, upper row):

• 1D (one-dimensional) photonic crystal. A 1D photonic crystal is, with respect to

the optical properties, periodic in one direction and has no structure along the

two other directions; the 1D photonic crystal is a three-dimensional medium. The

frequency spectrum ω(k) can have a gap for electromagnetic waves propagating

along the direction of periodicity (Sect. 25.14).

• 2D (two-dimensional) photonic crystal. The 2D photonic crystal is periodic in two

directions and has no structure along the third direction; the 2D photonic crystal

is a three-dimensional medium. The frequency spectrum ω(k) can show gaps for

electromagnetic waves with wave vectors in the plane, which contains the two

directions of periodicity.

• 3D (three-dimensional) photonic crystal. The 3D photonic crystal is periodic in

three directions. The frequency spectrum ω(k) can show gaps for electromagnetic

waves in all three spatial directions.

Fig. 25.4 Photonic crystals without and with a defect
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Fig. 25.5 Elementary cells of 2D photonic crystal lattices

A photonic crystal of finite length can act as a partial reflector for radiation of a

photon energy in the photonic gap: radiation incident on a photonic crystal of finite

thickness is partly reflected and partly transmitted.

If a single layer of a one-dimensional crystal is missing (Fig. 25.4, lower row), the

photonic crystal contains a defect (d∗). A photonic crystal with a defect represents a

resonator—it is a Fabry–Perot resonator. A two-dimensional photonic crystal with a

defect can act as a light guide. A three-dimensional crystal with a defect represents a

cavity-like resonator. In all the three cases (1D, 2D, or 3D photonic crystal), a defect

can also consist in the modification of more than one structural element.

Common to all photonic crystals (assumed to have infinite extensions in all three

directions) is the translational symmetry. A 1D photonic crystal contains a structural

element that periodically repeats in one direction. There is no structure in the lateral

directions. A 2D photonic crystal has two axes of periodicity and a 3D photonic

crystal has three axis of periodicity.

A 2D photonic crystal can have one of the five different types of lattices (Fig. 25.5):

square lattice; rectangular lattice; centered rectangular lattice; hexagonal lattice and

parallelogram lattice.

A 3D photonic crystal can have one of 14 different lattice types. The simplest

three-dimensional lattice is the (primitive) cubic lattice.

25.9 Photonic Crystal Fiber

A photonic crystal fiber (Fig. 25.6) can consist of a fiber with an internal two-

dimensional photonic crystal (e.g., a hexagonal two-dimensional lattice). The struc-

ture is composed of two different glass materials, one with a higher dielectric con-
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Fig. 25.6 Photonic crystal fiber

stant than the other. A defect allows for propagation of light (along the defect).

A photonic bandgap for propagation of radiation along a direction perpendicu-

lar to the axis of the two-dimensional photonic crystal avoids spreading of the

radiation.

25.10 Remark About Photonic Crystals

In 1887, Lord Rayleigh explained an experiment, which indicated that a periodic

dielectric multilayer stack showed a spectral range of high reflectivity [217], cor-

responding to a stop-band of radiation. Such multilayer stacks (later called Bragg

reflectors or photonic crystals) are widely studied and applied as reflectors or par-

tial reflectors. The term “photonic crystal” describing inhomogeneous but periodic

structures was introduced by E. Yablonovitch [218] in 1987.

Reflectors of the two-dimensional photonic crystal type were first used as reflec-

tors of microwave Fabry–Perot interferometers in 1957 [219] and of far infrared

Fabry–Perot interferometers up to frequencies of several THz in 1962 [220]; a far

infrared reflector consists of a thin metal mesh and a Fabry–Perot interferometer of

two meshes in parallel.

25.11 Plane-Wave Transfer Matrix Method Characterizing

an Optical Interface

We consider the interface of two optically isotropic, nonabsorbing, and nonmagnetic

materials (Fig. 25.7). The refractive indices of the two media are n1 and n2. We study

the special case of monochromatic radiation (frequency ω) propagating along the x

or −x direction. The field in medium 1 is
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Fig. 25.7 Amplitudes of

electromagnetic plane waves

at an interface

E1 = E+
1 + E−

1 = A1ei(ωt−k1x) + B1ei(ωt+k1x) (25.1)

and the field in medium 2 is

E2 = E+
2 + E−

2 = A2 ei(ωt−k2x) + B2 ei(ωt+k2x). (25.2)

A1, B1, k1, −k1 and A2, B2, k2, −k2 are the amplitudes and the wave vectors of the

waves in medium 1 and medium 2 in x and −x direction, respectively.

We assume that the electric field is oriented along the y axis and that, according to

Maxwell’s equations, H is therefore oriented along the z direction. It follows from

Maxwell’s equation

H =
i

μ0ω
∇ × E (25.3)

that the magnetic field strength is given by

Hn =
i

μ0ω

dE

dx
. (25.4)

The boundary conditions for the electromagnetic fields (continuity of Et and Hn)

require that E and dE/dx are continuous at the boundary (x = 0),

E1 = E2 at x = 0, (25.5)

dE1/dx = dE2/dx at x = 0, (25.6)

or

A1 + B1 = A2 + B2, (25.7)

k1 A1 − k1 B1 = k2 A2 − k2 B2. (25.8)

We can write

M1

(

A1

B1

)

= M2

(

A2

B2

)

, (25.9)

where, with l =1, or 2,

Ml =
(

1 1

kl −kl

)

, (25.10)
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(

A1

B1

)

= M−1
1 M2

(

A2

B2

)

= M12

(

A2

B2

)

, (25.11)

and

M12 =
( 1

2
(1 + k2/k1)

1
2
(1 − k2/k1)

1
2
(1 − k2/k1)

1
2
(1 + k2/k1)

)

. (25.12)

The matrix M12 is the plane-wave transfer matrix. It relates the amplitudes of elec-

tromagnetic plane waves in medium 1 and the amplitudes of electromagnetic plane

waves in medium 2.

25.12 Thin Film Between Two Media

A thin film (thickness a) located between two media (Fig. 25.8) has two boundaries.

The boundary conditions lead to

(

A1

B1

)

= M−1
1 M2

(

A2

B2

)

= M12

(

A2

B2

)

, (25.13)

(

A′
2

B ′
2

)

= P2

(

A2

B2

)

=
(

eiϕ2 0

0 e−iϕ2

) (

A2

B2

)

, (25.14)

(

A2

B2

)

= M−1
2 M3

(

A3

B3

)

= M23

(

A3

B3

)

, (25.15)

where ϕ2 = k2a and K2 = n2ω/c. The matrix

P2 =
(

eiϕ2 0

0 eiϕ2

)

(25.16)

is the propagation matrix taking into account the phase change due to propagation.

Fig. 25.8 Thin film (refractive index n2, thickness a) between two extended media
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25.13 Dielectric Multilayer

We study a dielectric multilayer system (Fig. 25.9, upper part) for radiation propagat-

ing along the axis (x axis) that is perpendicular to the layers. We consider a system

of N layers (nl = refractive index and dl = thickness of the lth layer) on a substrate

(refractive index ns). The multilayer system is covered with a medium of refractive

index n0. We apply the matrix method and find:

(

Al

Bl

)

=
(

M11 M12

M21 M22

)(

Al+1

Bl+1

)

, (25.17)

(

M11 M12

M21 M22

)

= M−1
0

[

N
∏

l=1

Ml Pl M−1
l

]

Ms, (25.18)

Pl =
(

eiϕl 0

0 e−iϕl

)

, (25.19)

ϕl = klal . (25.20)

Making use of the dispersion relations

kl = nlω/c, (25.21)

and with Bs = 0, we can determine the reflectivity and the transmissivity of the

multilayer system (A0, B0, As = amplitudes of incident, reflected, transmitted field):

Fig. 25.9 Dielectric multilayer reflector (Bragg reflector) and reflectivity
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R = (B0/A0)
2, (25.22)

T = (As/A0)
2. (25.23)

In the special case that the multilayer system consists of a sequence of two layers

(refractive indices n1 and n2 that have quarter-wavelength thicknesses d1 = λ0/(4n1)

and d2 = λ0/(4n2) for radiation of wavelength λ0, the reflectivity at λ0 is given by

R =
(

1 − (ns/n0)(n2/n1)
2N

1 + (ns/n0)(n2/n1)2N

)2

, (25.24)

where N is the number of double-layers. The reflectivity approaches unity if N

becomes very large.

Figure 25.9 (lower part) shows the reflectivity of a GaAs/AlAs Bragg reflector.

25.14 One-Dimensional Photonic Crystal

We consider a stratified periodic medium consisting of a series of double layers

(Fig. 25.10). A double layer consists of a layer 1 (refractive n1, thickness a1) and a

layer 2 (refractive n2, thickness a2). The stratified medium is spatially periodic, the

spatial period is

a = a1 + a2. (25.25)

The unit cell consists of a double layer. We suppose that we have an infinite number

of cells, numbered l = . . . − 1, 0, 1, . . ..

We study the propagation of a monochromatic plane wave (frequency ω). Our

goal is to find the dispersion relation ω(k). We use the ansatz (Boch theorem):

Fig. 25.10 One-dimensional photonic crystal
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E(x) = Ak(x) ei(ωt−kx), (25.26)

where k is the wave vector and Ak(x) an amplitude that is a periodic function,

Ak(x + a) = Ak(x). (25.27)

The field E(x) is a Bloch wave. The amplitude varies within a periodicity interval.

However it is, for a particular k, lattice-periodic. The propagation of the plane wave

over the distance x causes, as it is typical for plane waves, a change kx . The wave

vector k of the plane wave depends on the frequency, k = k(ω), or

ω = ω(k). (25.28)

The field in the lth cell is

E(x) = Ale
ik1(x−la) + Ble

ik1(x−la) in layer 1 of cell l, (25.29)

E(x) = Cle
ik2(x−la) + Dle

ik2(x−la) in layer 2 of cell l, (25.30)

with k1 = n1ω/c and k2 = n2ω/c.

We relate, in a first step, the electric fields in three neighboring cells (see

Fig. 25.10):

(

Al

Bl

)

= M−1
1 M2 P1

(

Cl

Dl

)

, (25.31)

(

Cl

Dl

)

= M−1
2 M1 P2

(

Al+1

Bl+1

)

, (25.32)

P1 =
(

eik1a1 0

0 e−ik1a1

)

, (25.33)

P2 =
(

eik2a2 0

0 e−ik2a2

)

. (25.34)

P1 is the propagation matrix for layer 1 and P2 is the propagation matrix for layer 2.

Matrix multiplication yields

(

Al

Bl

)

=
1

2

(

eik1a1(1 + k2/k1) e−ik1a1(1 − k2/k1)

eik1a1(1 − k2/k1) e−ik1a1(1 + k2/k1)

)(

Cl

Dl

)

(25.35)

and

(

Cl

Dl

)

=
1

2

(

eik2a2(1 + k1/k2) e−ik2a2(1 − k1/k2)

eik2a2(1 − k1/k2) e−ik2a2(1 + k1/k2)

)(

Al+1

Bl+1

)

. (25.36)
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We write
(

Al

Bl

)

=
(

A B

C D

) (

Al+1

Bl+1

)

, (25.37)

where

A = eik1a1

[

cos k1a1 +
1

2
i

(

k2

k1

+
k2

k2

)

sin k1a1

]

, (25.38)

B = e−ik1a1

[

1

2
i

(

k2

k1

−
k1

k2

)

sin k1a1

]

, (25.39)

C = eik2a2

[

−
1

2
i

(

k2

k1

−
k1

k2

)

sin k2a2

]

, (25.40)

D = e−ik2a2

[

cos k2a2 −
1

2
i

(

k2

k1

+
k1

k2

)

sin k2a2

]

. (25.41)

We have the relation

AD − BC = 1. (25.42)

It follows that the amplitude in the lth cell and the amplitude in the zeroth cell are

related:
(

Al

Bl

)

=
(

A B

C D

)−1 (

A0

B0

)

(25.43)

or
(

Al

Bl

)

=
(

D −B

−C A

) (

A0

B0

)

. (25.44)

If we specify A0 and B0, all amplitudes can be calculated.

We make use of the periodicity of the multilayer system and write

(

Al+1

Bl+1

)

= e−ika

(

Al

Bl

)

, (25.45)

leading to
(

A B

C D

) (

Al+1

Bl+1

)

= eika

(

Al+1

Bl+1

)

. (25.46)

The phase factor exp(ika) is the eigenvalue of the matrix ABCD. We find

eika =
1

2
(A + D) ±

√

1

4
(A + D)2 − 1. (25.47)

The sum A + D is real. It follows, with

eika = cos ka + i sin ka, (25.48)
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that

cos ka =
1

2
(A + D) (25.49)

and

sin ka = ±
√

1 −
1

4
(A + D)2. (25.50)

We obtain, with

ξ = k1/k2 = n1/n2, (25.51)

the dispersion relation

cos ka = cos(k1a1) cos(k2a2) −
1

2

(

ξ +
1

ξ

)

sin(k1a1) sin(k2a2) (25.52)

or

cos ka = cos
(

n1

ω

c
a1

)

cos
(

n2

ω

c
a2

)

−
1

2

(

n2

n1

+
n1

n2

)

sin
(

n1

ω

c
a1

)

sin
(

n2

ω

c
a2

)

.

(25.53)

We discuss the dispersion relation in the special case that the optical paths in layer

1 and layer 2 are equal,

n1a1 = n2a2. (25.54)

The dispersion relation has the form

cos ka = cos2
(

n1

ω

c
a1

)

−
1

2

(

n2

n1

+
n1

n2

)

sin2
(

n1

ω

c
a1

)

(25.55)

or

k =
1

a
cos−1

[

cos2(n1

ω

c
a1) −

1

2

(

n2

n1

+
n1

n2

)

sin2(n1

ω

c
a1)

]

. (25.56)

The frequency increases proportionally to the wave vector k at long waves (ka ≪ 1):

k = neff

ω

c
, (25.57)

where

neff =
√

n1n2 (25.58)

is an effective refractive index. The appearance of an effective refractive index with

a value between n1 and n2 is a consequence of the reflection of the radiation at the

interfaces. There are frequency gaps for
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k = ±
π

a
, ±

3π

a
, . . . . (25.59)

Because of the periodicity,

ω

(

k +
2π

a

)

= ω(k), (25.60)

we can restrict the k values to the first Brillouin zone,

−
π

a
< k ≤

π

a
. (25.61)

The values −π/a and π/a are the Brillouin zone boundaries.

The curve k = neffω/c reaches the Brillouin zone boundary at the Bragg frequency

ωBragg =
πc

neffa
, (25.62)

which corresponds to the Bragg wavelength

λBragg = 2neffa. (25.63)

For radiation of this vacuum-wavelength, the multilayer system represents a stack of

quarter-wavelength layers. Bragg reflection of the radiation at wavelengths around

λBragg is responsible for the occurrence of a frequency gap.

It follows that the field in layer 1 of the lth cell is given by

E(x) =
[

A0 ein1(ω/c)(x−la) + B0 ein1(ω/c)(x−la)
]

ei(ωt−lka). (25.64)

Example Dispersion relation of radiation in a GaAs/AlAs photonic crystal

(Fig. 25.11); n1 = 3.3; n2 = 2.9; a1 = 152 nm; a2 = 173 nm; a = 325 nm; n1a =
n2b; neff = 3.09.

25.15 Bragg Reflection as Origin of Energy Gaps

The occurrence of energy gaps is a consequence of the ability of radiation to undergo

Bragg reflection. Bragg reflection occurs for radiation with discrete values of the

wave vector, namely for k = kBragg. In the case of a one-dimensional crystal, kBragg =
π/a. A two-dimensional photonic crystal has Bragg vectors that lie on a plane. A

two-dimensional photonic crystal can show a photonic bandgap (frequency gap) for

radiation of all k vectors in a plane. A three-dimensional photonic crystal has Bragg

vectors in the three-dimensional k space. A three-dimensional photonic crystal can

have energy gaps for k vectors of all spatial directions.
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Fig. 25.11 One-dimensional photonic crystal: dispersion relation of radiation, with the propagation

direction parallel to the axis of a periodic multilayer structure

We come back to Fig. 25.11. The speed of light is equal to c/neff for long wave-

lengths, i.e., for small frequencies. The speed of light is almost constant at small

wave vectors, decreases at large wave vectors and becomes zero for k = π/a. A

photonic crystal is thus able to slow down an electromagnetic wave.

References [26, 28, 177, 207–220].

Problems

25.1 Bragg reflection. Formulate the conditions for the occurrence of Bragg reflec-

tion of Bragg reflection of electromagnetic radiation in different systems. (a) A 1D

photonic crystal, (b) 2D photonic crystal, (c) 3D photonic crystal.

25.2 Bragg reflection of X-rays.

(a) Formulate the conditions for the occurrence of Bragg reflection of X-rays.

(b) Why are Bragg peaks at X-rays extremely sharp?

(c) Estimate the width of an energy gap expected for X-rays. [Hint: estimate the

refractive index of X-rays—it is slightly smaller than unity—and describe a

crystal (e.g., with respect to the 100 direction) as a 1D photonic crystal with the

electrons distributed in thin layers perpendicular to the propagation direction of

the X-rays.]
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25.3 One-dimensional photonic crystal.

(a) Estimate the widths of forbidden frequency bands in the case that n2 − n1 ≪ 1.

(b) Estimate, for radiation of the vacuum wavelength 1µm, the widths of forbidden

frequency bands in the case that the photonic crystal consists of a stack of

GaAs/AlAs quarter-wavelength films.

25.4 One-dimensional photonic crystal consisting of freestanding plates.

(a) Determine the effective refractive index, the Bragg frequency and the Bragg

wavelength of thin freestanding silicon plates (thickness 1µm, refractive index

n = 4) separated by air under the assumption that the plates and the space

between two plates have the same optical thickness.

(b) Calculate the dispersion relation of radiation in such a one-dimensional photonic

crystal.

25.5 How many quarter-wavelength films of GaAs and AlAs films on a GaAs sub-

strate are necessary to obtain reflectivities R ∼ 70, 80, 90, 95 or, 99, 99.9%?

25.6 Antireflecting coating.

(a) Show, by use of the matrix method, that the reflectivity of the surface of an

optical substrate (refractive index ns) covered with a quarter-wavelength film,

thickness λ/(4n), is zero if the refractive index n of the film satisfies the condition

ns − n2 = 0. [Hint: assume that the substrate has infinite thickness, so that no

reflection from the end surface of the substrate occurs.]

(b) Show that the multiple beam method (introduced in Sect. 3.5) yields the same

result. [Hint: add all beams reflected by the two surfaces of the film, taking

multiple reflection into account.]

25.7 Determine the Airy formula (Sect. 3.5) by use of the matrix method.

25.8 Double-resonator. We consider a double-resonator (Fabry–Perot resonator)

with three lossless mirrors of equal reflectivity R. The distance between mirror 1

and mirror 2 is L1 and the distance between mirror 2 and mirror 3 is L2. Derive,

by the use of the matrix method, the transmission curve of a double resonator for

(a) L1 = L2; (b) L2 ≪ L1, (c) L1 = λ/2. (d) Choose R = 0.95 and λ = 1 µm for a

discussion of the results.

25.9 Boundary between two dielectric media.

(a) Show that the boundary conditions for normal incidence are consistent with the

requirement that the energy flux density is the same in medium 2 as in medium

1. [Hint: describe the energy flux density by the Poynting vector P = E × H .]

(b) Derive the Fresnel coefficient of reflection for normal incidence by the use of

the matrix method.

25.10 Bloch theorem.. Derive the Bloch theorem for the one-dimensional pho-

tonic crystal, i.e., justify the ansatz (25.26). [Hint: make use of periodic boundary

conditions.]

http://dx.doi.org/10.1007/978-3-319-50651-7_3
http://dx.doi.org/10.1007/978-3-319-50651-7_3
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25.11 Propagating of radiation in a one-dimensional crystal. Discuss the depen-

dence of group and phase velocity on the wave vector of radiation belonging to the

two lowest branches of the dispersion curves shown in Fig. 25.11.

25.12 Determine, by use of the matrix method, the halfwidth of the resonance curve

of a Fabry–Perot resonator (Sect. 3.6) that has a reflector of a reflectivity of unity and

a partial reflector.

25.13 Derive the Airy formula for a Fabry–Perot resonator containing an active

medium (Sect. 3.7), by the use of the matrix method. [Hint: assume that one of the

mirrors has a reflectivity of unity.]

25.14 Reflection of radiation by a perfect conductor.

(a) Show that the reflectivity of a perfect conductor is 1.

(b) The radiation penetrates into the conductor. Derive an expression of the pene-

tration depth of the electric field and of the radiation energy.

(c) Calculate the penetration depth of radiation reflected by a perfect conductor,

which contains electrons of a concentration N = 1028 m3, for radiation of of

1 mm and of 0.5 µm wavelength.

25.15 A perfect mirror. A thin film consisting of a perfectly conducting material

can act as a partial mirror. [Hint: a perfect conductor for currents at microwave

frequencies is superconducting lead at a temperature well below the superconducting

transition temperature of 7 K.]

(a) Determine the complex transmission coefficient t̃ , the complex reflection coeffi-

cient r̃ , the phase ϕ of the reflected beam, the phase ϕt of the transmitted beam,

transmissivity T and the reflectivity R (see Sect. 3.4). [Hint: make use of the

matrix method; treat the film as a free-standing film surrounded by air].

(b) Design partial mirrors that have reflectivities R ∼ 70, 80, 90, 95, 99, 99.9% for

radiation of 1 mm wavelength, assuming that the mirror is perfectly conducting

and contains electrons of a concentration N = 1028 m3.

(c) Calculate, for a Fabry–Perot resonator resonator formed by two (perfect) partial

mirrors as reflectors, the change of phase per round trip transit of radiation of

1 mm wavelength in the case that the reflectivity of each mirror is R = 0.9.

25.16 Methods of describing the field in a resonator. Show that the three methods

of describing a field in a resonator lead to the same result:

(a) The method of multiple reflection (Sect. 3.5).

(b) The method directly based on the boundary conditions (this chapter).

(c) A method directly based on the boundary conditions but that immediately intro-

duces the complex transmission coefficient t̃ = B1/A1 and the complex reflec-

tion coefficient r̃ = B2/A1 of a mirror; use this method to derive the Airy for-

mula.

25.17 Bulk metal. We study the optical properties of a metal like copper (free-

electron concentration N = 1028 m−3, relaxation time τ = 10−13 s).

http://dx.doi.org/10.1007/978-3-319-50651-7_3
http://dx.doi.org/10.1007/978-3-319-50651-7_3
http://dx.doi.org/10.1007/978-3-319-50651-7_3
http://dx.doi.org/10.1007/978-3-319-50651-7_3
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(a) Determine, by use of the complex optical constants, the frequency dependence

of the reflectivity.

(b) Compare the reflectivity of the metal with the reflectivity of a perfect conductor

that contains electrons of the same density.

(c) Determine the optical constants and the reflectivity of a metal for radiation of

long wavelengths (i.e., for ω ≪ ωp =
√

Ne2/ǫ0m0 = plasma frequency).

25.18 Metal film. Study optical properties of a metal film (e.g., a copper film).

Restrict the discussion to long wavelengths.

(a) Determine the dependence of transmissivity T , reflectivity R and absorptivity

A of a metal film on the thickness of the film by use of the matrix method.

(b) Show that there is a film thickness where T = R = 0.25 and A = 0.5, and that

T ≪ A for thicker films.



Chapter 26

More About the Quantum Well Laser

We continue the discussion of subbands with a description of wave functions and

energy bands of electrons in a quantum well. We also show how light holes modify

the gain profile. Furthermore, we discuss the influence of inhomogeneous broadening

on the properties of a quantum well laser.

26.1 Electron Subbands

Electrons can move freely in the GaAs plane (y, z plane) of a GaAs quantum well

(Fig. 26.1, left). The motion perpendicular to the plane, along the x direction, is

spatially limited. The potential energy Epot(x, y, z) of electrons (Fig. 26.1, center) is

equal to the conduction band profile Ec(x, y, z).

We treat the GaAs layer as an infinitely extended layer. The Schrödinger equation

of an electron in the GaAs quantum layer (quantum film) has the form

[

−
�

2

2me

∇2 + Epot(x)

]

Ψ = i�
∂Ψ

∂t
. (26.1)

We assume that the effective mass of an electron in a quantum well is the same as

for bulk GaAs (me = 0.07 m0). To determine the wave function Ψ , we use an ansatz

of stationary states,

Ψ (x, y, z, t) = ψ(x, y, z)e−i(E/�)t . (26.2)

E is the energy of a stationary state. We obtain

[

−
�

2

2me

∇2 + Epot(x)

]

ψ = Eψ. (26.3)
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Fig. 26.1 Quantum well

The ansatz

ψ = χ(x) η(y, z), (26.4)

leads to the differential equation

[

−
�

2

2me

∂2

∂x2
+ Epot(x)

]

ηχ −
�

2

2me

(

∂2

∂y2
+

∂2

∂z2

)

ηχ = Etot ηχ. (26.5)

By dividing by ηχ , we obtain

1

χ

(

−
�

2

2me

∂2

∂x2
+ Epot(x)

)

χ +
1

η

(

−
�

2

2me

)(

∂2

∂y2
+

∂2

∂z2

)

η = Etot. (26.6)

The two terms on the left side must have constant values. The total energy is given by

Etot = E⊥ + E||, (26.7)

where

• E⊥ is the energy of electron motion perpendicular to the layer and

• E|| is the energy of electron motion along the film plane.

The Schrödinger equation describing motion along the layer plane is

−
�

2

2me

(

∂2

∂y2
+

∂2

∂z2

)

η = E||η. (26.8)

As a solution, we obtain the wave function

η = Ceik|| r || . (26.9)
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C is a constant and

• k|| = (ky, kz) = k is the wave vector parallel to the film plane and

• r || = (y, z) is a location in the plane of the quantum layer.

The differential equation yields the energy

E|| =
�

2

2me

k2. (26.10)

The Schrödinger equation of the electron motion perpendicular to the quantum layer,

[

−
�

2

2me

∂2

∂x2
+ Epot(x)

]

χ(x) = E⊥χ(x), (26.11)

is the equation of an electron in a one-dimensional square well potential. The energy

eigenvalues of a quantum well with infinitely high walls are given by

E (n)
c =

π2
�

2

2mes2
n2; n = 1, 2, . . . , (26.12)

where s is the thickness of the quantum film. The quantized motion leads to discrete

energy eigenvalues E1
c , E2

c , …. The energy E1
c is the zero point energy of the electron

in the quantum well. The wave functions χn(x) are cosine and sine functions within

the film and are zero at the borders of the film and outside the film.

The energy values of wells with walls of finite height are smaller than in the

case that the potential walls are infinitely high. The wave functions are cosine and

sine shaped within the well and decrease exponentially outside the quantum well

(Fig. 26.1, right).

The zero point energy of a quantum well with infinitely high walls varies as 1/s2

(Fig. 26.2, solid line). A quantum well, like a GaAs quantum well has walls of finite

height. Therefore, the zero point energy is smaller (Fig. 26.2, dashed) but decreases

also strongly with increasing layer thickness. A calculation of the zero point energy in

the case that the potential walls have finite height is possible by applying appropriate

boundary conditions taking into account the different effective masses of GaAs and

AlAs (Sect. 30.5).

Fig. 26.2 Zero point energy

of an electron

(me = 0.07 m0) in a

one-dimensional square well

potential

http://dx.doi.org/10.1007/978-3-319-50651-7_30
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Fig. 26.3 Subbands of electrons in a quantum film

The energy of an electron is given by

E = E (n)
c + E||, (26.13)

where n is the number of a subband. The conduction band of a quantum layer consists

of electron subbands. Figure 26.3 (left) shows the zero point energy and the first and

the second electron subband. The energy of the motion perpendicular to the layer

is discrete while the motion within the quantum layer corresponds to the motion

of a free-electron. The density of states in a subband (Fig. 26.3, right) is a constant

(Problem 27.1):

D2D
c (ǫ) =

me

π�2
. (26.14)

The total density of states is the sum of the densities of states in the different subbands.

That the density of states of electrons in a quantum film is independent of the

thickness of the film is plausible: the film thickness determines the zero point energy,

which is due to the lateral confinement of an electron, while the dispersion relation

for electrons in a two-dimensional semiconductor determines the propagation along

the plane.

The quantum confinement of an electron in a quantum film has consequences:

• Subbands.

• Discrete energy values for motion perpendicular to the quantum layer.

• Zero point energy (E (1)
c ). The value of E (1)

c depends on the thickness s of the

quantum film.

• The electrons move freely along the plane of the quantum film.

• The depth of the quantum well depends on the composition of the GaAlAs layers.

• The wave functions χ1 and χ2 have cosine and sine shapes within the GaAs

film material and extend into the confinement material GaAlAs. Their amplitudes

decrease exponentially with the distance from the GaAs film.

http://dx.doi.org/10.1007/978-3-319-50651-7_27
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26.2 Hole Subbands

GaAs and other group III–V semiconductors have three hole bands (Fig. 26.4): the

heavy hole band; the light hole band; the split-off band. In a laser diode, the split-off

band is completely populated and does not play any role. However, the light holes

(m lh ∼ 0.08 m0) influence the gain coefficient curves.

In a quantum well, the zero point energy of a heavy hole,

E (1)
v =

π2
�

2

2mhs2
, (26.15)

is by the factor mh/me smaller than the zero point energy of an electron in the

conduction band while the zero point energy E
(1)
v,lh of the light hole is comparable

with the zero point energy of a conduction band electron since m lh ∼ me. There is an

energy range, between E (1)
v and E

(1)
v,lh, without light hole energy levels. The density

of states of light holes is much smaller than that of heavy holes.

The conduction band states of GaAs have their origin in s-like hybrid states

composed of s-states of Ga and As atoms. The s-like hybrid states overlap spatially.

This leads to electron waves extended over the whole crystal and to the conduc-

tion band (Sect. 30.2); the dispersion relation E(k) characterizes the states of the

conduction band. The valence band states stem from hybrid states composed of

p-states (i.e., px , py, pz states) of Ga and As atoms. The three p-state components

give rise to three different energy bands and dispersion relations—i.e., a wave func-

tion of a valence band state can assume, for the same k vector, three different energy

values. At the Brillouin zone center (k = 0), two of the dispersion curves have the

same energy value indicating energy degeneracy; however, the two dispersion curves

have completely different shapes described by the different effective masses,

mh ≡ mhh = (d2 Ehh/d2k)k=0, (26.16)

Fig. 26.4 Energy bands of electrons in GaAs: conduction band; heavy hole band; light hole band;

split off band

http://dx.doi.org/10.1007/978-3-319-50651-7_30
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m lh = (d2 Elh/d2k)k=0. (26.17)

The third band, the split off band, is shifted to smaller energies relative to the two

other valence bands due to spin-orbit interaction.

26.3 Modification of the Gain Characteristic by Light

Holes

The quasi-Fermi energy of the electrons in the conduction band is determined by the

density of nonequilibrium electrons in the electron subband. The quasi-Fermi energy

of the electrons in the hole subbands follows from the condition

∫

f1(D2D
v + D2D

v,lh)dE = N 2D, (26.18)

where D2D
v is the density of states of heavy holes, D2D

v,lh is the density of states of light

holes and f1 is the Fermi function of the electrons in the heavy hole and light hole

subbands. The equation yields the quasi-Fermi energy of the valence band electrons.

In our earlier treatment of quantum wells, we ignored the light hole band. Now, we

discuss, qualitatively, the modification of a quantum well laser at room temperature

that is due to the light hole band. Figure 26.5 shows (qualitatively) the occupation

number difference f2 − f1 for a GaAs quantum well at room temperature, with

N 2D = 2 × 1016 m−2. In comparison with the case of a single hole subband, we

have a different situation:

• There are two peaks in the gain characteristic H 2D , which is proportional to

f2 − f1.

• The gain curve has a larger width and the maximum of the gain characteristic has

a smaller value.

• The actual threshold current density is larger because the holes are distributed

over two subbands. Since the density of states of the light holes is smaller than the

density of states of the heavy holes, the increase of the threshold current density

for laser oscillation is less than a factor of two.

The theoretical expressions presented in Chap. 21 are suited to perform a quantitative

analysis. However, we do not deepen the discussion of the gain characteristic.

Fig. 26.5 Occupation

number difference for a

GaAs quantum well at room

temperature

http://dx.doi.org/10.1007/978-3-319-50651-7_21
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26.4 Gap Energy of a Quantum Well

Taking into account the zero point energy of electrons and holes, we find that the gap

energy of a quantum well of infinitely high potential walls is equal to

E2D
g = Eg +

π2
�

2

2mr s2
. (26.19)

Example GaAs quantum film (thickness s = 10 nm) at room temperature

(� = 1.04 × 10−34 J s; m0 = 0.9 × 10−30 kg).

• Eg = 1.42 eV = gap energy of bulk GaAs.

• E2D
g = Eg + 61 meV; energy gaps of a GaAs quantum well in the case of infinitely

high walls.

• νg = 344 THz; λg = 872 nm.

• ν2D
g = 358 THz; λ2D

g = 838 nm.

The actual zero point energy is smaller because of the finite height of the walls.

Through the choice of the composition of the quantum film and of the barrier material

as well as of s, different values of the gap energy E2D
g (> Eg) can be realized .

26.5 Temperature Dependence of the Threshold Current

Density of a GaAs Quantum Well Laser

The electrons occupy energy levels in the electron subband in the range from E2D
c

to EFc, with a spread of kT . The holes in the heavy hole subband occupy energy

levels between E2D
v and EFv. With increasing temperature, the energy distribution of

the electrons in the electron subband broadens. The energy distribution of the holes

in the heavy hole subbands broadens too. It follows that the threshold current of a

quantum well laser operating at room temperature is much larger than the threshold

current of a quantum well laser operating at low temperature.

26.6 Gain Mediated by a Quantum Well

with Inhomogeneous Well Thickness

When the thickness of a quantum film is different at different positions of the film,

interband transitions are inhomogeneously broadened. Both the zero point energies

E (1)
c and E (1)

v show variations. We obtain an energy gap distribution of a width ΔE2D
g

that is given by the relation
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ΔE2D
g

E
(1)
c + E

(1)
v

= −
2Δs

s
, (26.20)

where Δs is an average variation of the thickness.

Example GaAs quantum well of thickness s = 10 nm and an inaccuracy of the well

thickness of 0.1 nm. We obtain E (1)
c + E (1)

v ∼ 49 meV and ΔE2D
g ∼ 1 meV. This is,

for a GaAs quantum well at room temperature, smaller than the broadening (10 meV)

that is due to the inelastic scattering of the electrons at phonons.

26.7 Tunability of a Quantum Well Laser

A single-mode quantum well laser operating at room temperature emits radiation

at a laser frequency that is determined by the gain characteristic and the resonance

frequency of the laser resonator. The position of the energy gap, the frequency of

the maximum of the gain characteristic, and the refractive index of a semiconductor

depend on temperature. Therefore, the frequency of laser oscillation depends on

temperature. The temperature of a laser diode changes if the temperature of the

surrounding or if the current through the diode is varied. A shift of several percent of

the frequency of a quantum well laser can be achieved. Tuning over a small frequency

range is possible by the use of an external resonator (Sect. 25.3).

26.8 Anisotropy of a Quantum Well

The quantum theory of the optical transitions in a quantum well shows that transitions

in which heavy holes are involved are only allowed if the electric field vector of the

electromagnetic field lies in the plane of the quantum well. If light holes are involved,

transitions for the field vector parallel and perpendicular to the quantum well are

allowed too.

References [187–192].

Problems

26.1 Two-dimensional density of states. Determine the density of states of a two-

dimensional electron gas.

26.2 Subpicosecond quantum well laser. Is it possible to generate subpicosecond

pulses with a quantum well laser? Divide the procedure of answering this question

into three parts.

http://dx.doi.org/10.1007/978-3-319-50651-7_25
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(a) Is it in principle possible to generate subpicosecond pulses with a quantum well

laser?

(b) Is it possible to use a quantum well laser of 1 mm length, supposed that the

reflector on one side is a SESAM reflector?

(c) Discuss a semiconductor laser that uses an external broadband reflector.
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Quantum Wire and Quantum Dot Laser

The next steps of spatial restriction of free motion of electrons in a semiconductor

lead to quantum wire lasers and quantum dot lasers.

A quantum wire is a carrier of electrons, which can move freely in one dimension

only. The electronic levels form subbands. The density of states of electrons and

of holes are now characteristic of a one-dimensional semiconductor. We study gain

mediated by quantum wires and the quantum wire laser.

In a quantum dot, electrons cannot perform a free motion. The motion of an

electron is limited by a potential, which is formed by the boundary of a semicon-

ductor material. (A comparison with electrons in an atom shows: the electrons in

an atom cannot perform a free motion; the limitation of the motion is due to the

atomic potential.) We discuss the energy levels of radiative electron-hole pairs in a

quantum dot and their use in quantum dot lasers. A large number of quantum dots.

A single quantum dot in a photonic crystal (at low temperature) could be the basis

of a nanolaser.

27.1 Quantum Wire Laser

In the quantum wire laser (Fig. 27.1a), the active medium consists of a quantum

wire, with a one-dimensional conduction band (the electron subband) and a one-

dimensional valence band (the hole subband). Stimulated transitions of electrons in

the conduction band to empty levels of the valence band are the origin of gain. The

quantum wire (Fig. 27.1b) is embedded in an undoped semiconductor layer, which

itself is sandwiched between an n-doped layer and a p-doped layer. The undoped layer

serves as light guide. Under the action of a static voltage, electrons migrate from the n-

doped layer through the undoped layer into the quantum wire. Correspondingly, holes

migrate from the p-doped layer into the quantum wire. The direction of the quantum

wire is perpendicular to the propagation direction of the electromagnetic field.

The use of a series of parallel quantum wires leads to an enhancement of gain.

© Springer International Publishing AG 2017
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Fig. 27.1 Quantum wire laser. a Principle. b Arrangement

27.2 Quantum Wire

We write the wave function of an electron in a quantum wire of rectangular cross

section in the form

ψ = χ(x) η(y) ζ(z). (27.1)

The wave function

χ(x) = C exp (i(ǫc/�)t − ikx) (27.2)

characterizes the free-electron motion along the direction x (direction of the wire);

k is the wave vector for propagation along the wire. The wave functions η(y) and

ζ(z) describe the electron states of the two other degrees of freedom of an electron.

If infinitely high walls limit the quantum wire, the wave functions perpendicular to

the wire are standing waves and the energy of an electron is

En1n2

c + ǫc =
π2

�
2

2me

(

n2
1

s2
1

+
n2

2

s2
2

)

+ ǫc. (27.3)

En1n2
c is the energy due to the confinement (n1 = 1, 2, . . .; n2 = 1, 2, . . .), s1 and s2

are the widths of the quantum wire and

ǫc =
�

2

2me

k2 (27.4)

is the energy of free motion of a conduction band electron. We assume, for simplicity,

that the quantum wire is infinitely long and introduce periodic boundary conditions,

χ(x + Lp) = χ(x). (27.5)
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Lp is the periodicity interval. We obtain discrete k values,

k = 0, ± 2π/Lp, ± 4π/Lp, . . . . (27.6)

The one-dimensional density of states (per unit of length) in k space is equal to

D1D
c (k) =

1

2π
. (27.7)

Taking into account that each orbital state can contain two electrons of opposite spin,

we find, with 2D1D
c (k)dk = D1D

c (ǫc)dǫ,

D1D
c (ǫc) =

1

π�

√

me

2ǫc

. (27.8)

The one-dimensional density of states is independent of the lateral extensions of the

quantum wire. The density of states of electrons in a quantum wire varies as 1/
√

ǫc.

It becomes infinitely large for ǫc = 0.

The energy of a level in the valence band is given by

En1n2

v − ǫv =
π�

2

2mh

(

n2
1

s2
1

+
n2

2

s2
2

)

− ǫv, (27.9)

where ǫv = �
2k2/2mh is the energy of free motion of a hole. The density of states in

the valence band is

D1D
v (ǫv) =

1

π�

√

mh

2ǫv

. (27.10)

The reduced density of states is given by

D1D
r (ǫ) =

1

π�

√

mr

2ǫ
, (27.11)

where

ǫ = ǫc + ǫv =
�

2k2

2mr

(27.12)

is the sum of the energies of free motion of the electron and the hole belonging to

a radiative electron-hole pair and mr is the reduced mass. The energy separation

between the levels belonging to the k = 0 states is

En1n2 = Eg + En1n2 + En1n2

v = Eg +
π2

�
2

2mr

(

n2
1

s2
1

+
n2

2

s2
2

)

. (27.13)
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Eg is the gap energy of the bulk. The energy difference between the lowest level of

the conduction band and the highest level of the valence band is the gap energy of

the one-dimensional semiconductor,

E1D
g = Eg +

π2
�

2

2mr

(

1

s2
1

+
1

s2
2

)

. (27.14)

It is the sum of the gap energy of the bulk, the zero point energy of the electron, and

the zero point energy of the hole.

We now discuss radiative transitions. We assume that we have an ideal quantum

wire (without a variation of the thicknesses s1 and s2). We consider a quantum wire

cooled to low temperature and assume that the only level broadening is due to spon-

taneous radiative transitions. A radiative transition between a particular level of the

electron subband and a level of the hole subband results in a broadened luminescence

line. The linewidth is the natural linewidth ΔEnat (=Δǫnat). The largest number of

states within an energy interval Δǫnat lies in the energy interval 0, Δǫnat. Making use

of the integral
∫

dx/
√

x = 2
√

x , we obtain the density of radiative pair levels within

the interval 0, Δǫnat,

n1D
nat,0 =

∫ Δǫnat

0

D1D
r (ǫ)dǫ =

2

π�

√

2mrΔǫnat. (27.15)

The density of radiative pair levels within the natural linewidth Δǫnat has a maximum

value for ǫ = 0, i.e., for hν = E1D
g . The maximum density is n1D

nat,0. Toward higher

energies, the density of levels within the natural linewidth decreases.

Example Subband of a GaAs quantum wire, in the limit of infinitely high potential

walls.

• mr = 0.06 m0.

• s1 = s2 = 10 nm.

• E11 = 122 meV = zero point energy (of electrons and holes together).

• E21 = 305 meV.

• E1D
g = Eg + E11 = (1.42 + 0.12)eV = 1.54 eV.

• νg = E1D
g /h = 373 THz.

• λg = c/νg = 804 nm.

• τsp = 1/A21 = 3 × 10−10 s; spontaneous lifetime (at low temperature).

• A21 = 3 × 109 s−1.

• Δνnat = (2πτsp)
−1 = 6 × 108 Hz; natural linewidth (due to spontaneous recom-

bination of radiative pairs).

• ΔEnat = hΔνnat = 3.6 × 10−25 J = 2 µeV; natural linewidth on the energy scale.

• n1D
nat,0 = 1.3 × 106 m−1.

Because of the finite height of the walls, the actual zero point energy of electrons

in a quantum wire and the value of E21 are smaller than we calculated for infinitely

high potential walls.
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27.3 Gain Mediated by a Quantum Wire

The average electron density in a disk of light (height a1, length δz) crossing a

quantum wire (see Fig. 27.1b) is equal to

Nav =
N 1D

a1δz
. (27.16)

The temporal change of the photon density is given by

δZ

δt
= −

δNav

δt
=

(c/n)H 1D

a2δz
Z , (27.17)

where

H 1D =
c

n
hν B̄21 D1D

r (E21)( f2 − f1) (27.18)

is the one-dimensional gain characteristic. The gain is, with δt = n
c
δz, equal to

G − 1 =
δZ

Z
=

H 1D

a2

=
n

c
hν B̄21

n1D
nat,0

a1Δǫnat

( f2 − f1). (27.19)

The gain increases with decreasing height of the photon mode.

Example GaAs quantum wire embedded in GaAlAs with an ideal quantum wire at

zero temperature.

• ν1D
g = 373 THz.

• f2 − f1 = 0.1.

• a1 = 0.2µm; n = 3.5.

• B21 = 2.2 × 1021 m3 J−1 s−2; B̄21 = h B21.

• G1 − 1 = 7 × 10−2.

Figure 27.2a shows the reduced density of states at energies near the bandgap (ǫ = 0).

Figure 27.2b exhibits the gain mediated by a weakly pumped quantum wire at zero

temperature. The gain G − 1 is drawn versus the energy ǫ. The photon energy is

equal to hν = E1D
g + ǫ. In the case that ǫ = 0, the frequency is equal to the one-

dimensional gap frequency ν1D
g . The gain bandwidth has a width (2 µeV) that is due

to natural line broadening.

The electrons and holes in a quantum wire at room temperature have quasithermal

energy distributions. The energy levels broaden due to inelastic scattering. We choose

as inelastic scattering time a value (τin = 10−12 s), which is by an order of magnitude

smaller than that of a quantum well; a smaller value is expected because of the smaller

density of states of the electrons, leading to a smaller probability of inelastic scattering

of electrons at phonons. The corresponding halfwidth ΔEin ∼ 1 meV is 500 times

larger than Δǫnat. The density of radiative pair levels, which contribute to transitions
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Fig. 27.2 GaAs quantum

wire. a Density of states of

radiative pair levels. b Gain

mediated by a quantum wire

at zero temperature. c Modal

gain coefficient of a

multi-quantum wire device

at room temperature

within the energy range E1D
g , E1D

g + ΔEin, is equal to n1D
in,0 = (ΔEin/Δǫnat)

1/2n1D
nat,0.

It follows that the gain in a quantum wire laser at room temperature, for f2 − f1 =
0.1, is G1 − 1 = 3 × 10−3.

27.4 Multi Quantum Wire Laser

A much larger gain is obtainable for a series of quantum wires (Fig. 27.3), arranged

in parallel (within a plane). The average electron density in a photon mode is

Nav =
n1D

nat,0

pa2

, (27.20)

where p is the period of the quantum wires, i.e., the distance between neighboring

quantum wires, arranged in parallel in a plane. The modal gain coefficient at the gap

frequency (ν1D
g ) is, for T = 0, given by

αnat(ν
1D
g ) =

n

c
hν1D

g B̄21

n1D
nat,0

pa2Δǫnat

( f2 − f1). (27.21)

Example For p = 100 nm, a2 = 200 nm, and zero temperature, the modal gain coef-

ficient is α(ν1D
g ) = 7 × 105 m−1. It follows, with f2 − f1 = 0.1, that the modal gain

coefficient of the quantum wires at room temperature is α(ν1D
g ) = 3.1 × 103 m−1.

If the wire thickness varies along a quantum wire, the zero point energy varies

too. This causes inhomogeneous broadening of the interband transitions. The relative

broadening (for s1 = s2 = s) is equal to
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Fig. 27.3 Multi quantum

wire laser

ΔE1D
g /E11 = 4Δs/s, (27.22)

where Δs/s is the relative variation of the wire thickness. Taking into account inho-

mogeneous broadening, we find the modal gain coefficient

αinh(ν
1D
g ) =

n

c
hν1D

g B̄21

n1D
inh

pa2Δǫinh

( f2 − f1). (27.23)

A variation Δs/s = 5% causes an energy variation of ΔE1D
g /E11

g ∼ 20%, which

corresponds to an inhomogeneous width Δǫinh = ΔE1D
g ∼ 4 meV. This value, which

is larger than the broadening due to inelastic scattering at room temperature, leads

(with the parameters we have chosen in the last example) to α(ν1D
g ) = 1.5 × 103 m−1

(for f2 − f1 = 0.1).

If f2 − f1 ≪ 1, then the threshold density is only slightly larger than the one-

dimensional transparency density. Then, the laser threshold current is (approxi-

mately) equal to

Ith =
L

p

N 1D
th a1e

τsp

, (27.24)

where a2 is the width of the resonator (that is equal to the length of the quantum

wires). The threshold current density is

jth =
N 1De

pτsp

. (27.25)

Example GaAs multi-quantum wire laser at room temperature.

• ν = 373 THz.

• a1 = 100 µm; a2 = 200 nm; L = 1 mm.

• p = 100 nm.



528 27 Quantum Wire and Quantum Dot Laser

Fig. 27.4 Quantum dot

• ΔEinh = 4 meV.

• n1D
inh = (ΔEinh/ΔEnat)

1/2n1D
nat,0 = 3 × 107 m−1.

• f2 − f1 = 0.1.

• N 1D
tr ∼ 108 m−1.

• B21 = 2.2 × 1021 m3 J−1 s−2; B̄21 = h B21.

• α(ν1D
g ) = 1.5 × 103 m−1.

• G1 = 4.5.

• τsp = 10−9 s.

• Ith = 160 µA; jth = 1.6 × 105 A m−2.

Figure 27.2c shows the modal gain coefficient. According to our estimate, the gain

coefficient is large enough for operation of a quantum wire laser at room temperature

as an edge emitting laser (without special coatings on the surfaces).

Because of the anisotropy of a quantum wire, the orientation must be parallel to

the field; the Einstein coefficient B21 and the gain coefficient is larger (by a factor

of 3) than we estimated. (For the orientation of the quantum wire perpendicular to

the field, transitions that involve higher subbands or light holes can occur.)

27.5 Quantum Dot

Quantum dot lasers are currently being developed and may become important for

optical communications (by the use of laser radiation at wavelengths 1.32 and 1.55

µm) and for other applications.

To prepare quantum dots (Fig. 27.4, left), one can make use of the mismatch

between two materials. The deposition of a small amount of GaInAs on a plane

GaAs surface results in formation of GaInAs islands. Further deposition of GaAs

fills up the space between the islands and the GaAs surface becomes plane again. The

result is a layer with a large number of quantum dots. By further deposition of the two

materials, it is possible to obtain further layers with quantum dots. A quantum dot can

have a pyramidal shape (Fig. 27.4, center) of extensions of the order of 10 nm. The

motion of electrons and holes is restricted with respect to all three spatial directions.

Therefore, the energy levels are discrete.
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To understand the main properties of a quantum dot laser, we make a few simpli-

fications.

• We consider a quantum dot of rectangular shape; si is the side length of the ith

side of the dot (i = 1, 2, 3).

• We treat the quantum dot as a three-dimensional quantum box with infinitely high

walls.

The energy levels of an electron are

En1n2n3

c =
π2

�
2

2me

(

n2
1

s2
1

+
n2

2

s2
2

+
n2

3

s2
3

)

, (27.26)

where n1 = 1, 2, . . . ; n2 = 1, 2, . . . ; n3 = 1, 2, . . ..

The lowest conduction band energy level is, for s1 = s2 = s3 = s, equal to

E111
c =

3π2
�

2

2mes2
. (27.27)

The next higher level is E211
c = 1.7E111

c . The energy levels of electron as well as of

holes are discrete (Fig. 27.4, right).

The lowest energy of a radiative electron-hole pair (for s1 = s2 = s3 = s) is the

gap energy of the zero-dimensional system,

E0D
g = Eg +

3π2
�

2

2mrs2
, (27.28)

where mr is the reduced mass.

Example GaAs quantum dot with s1 = s2 = s3 = 20 nm. E111
c ∼ 45 meV; E211

c ∼
90 meV; E111

v ∼ 7 meV; E211
v ∼ 14 meV; E0D

g = Eg + 52 meV.

27.6 Quantum Dot Laser

In the quantum dot laser (Fig. 27.5), electrons migrate from an n-doped region via an

undoped region into the dots. Holes migrate from a p-doped region via the undoped

region into the dots. Stimulated recombination of radiative electron-hole pairs within

the quantum dots is the source of laser radiation. It is possible to prepare a quantum

dot laser as an edge emitting laser or as a surface emitting laser. In the following, we

treat the edge emitting laser.

We consider an array of quantum dots. The number of dots per unit of area is

1/(p1 p2), where p1 and p2 are the periods in x and y direction. Transitions between
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Fig. 27.5 Quantum dot laser

the electron sublevel 111 and the hole sublevel 111 lead to the modal gain coefficient

α =
2N 2D

dot

a1c/n
hν B̄21g(hν − E21) ( f2 − f1). (27.29)

N 2d
dot = 1/(p1 p2) is the two-dimensional density of quantum dots (=number of dots

per m2). The factor 2 accounts for the possibility that two electrons of opposite spin

orientation occupy a level.

Example GaAs quantum dot laser at room temperature.

• B21 = 2.2 × 1021 m3 J−1 s−2; B̄21 = h B21.

• a1 = 100 µm; a2 = 200 nm; n = 3.5.

• ν = 3.5 × 1014 Hz.

• p1 = p2 = 100 nm; N 2D
dot = 1014 m−2.

• Δs1/s1 = Δs2/s2 = Δs3/s3 = 5%.

• ΔEinh = 8 meV.

• g(hν − E21) = 2π/ΔEinh for hν = E0D
g .

• f2 − f1 = 0.5.

• α = 1000 m−1.

• L = 2 mm.

• αL ∼ 2.

• G1V1 = 1.4.

The threshold current is given by

Ith = 2N 2D
dot a1Le/τsp. (27.30)

We find, with τsp = 10−9 s, the threshold current Ith ∼ 3 mA.
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27.7 One-Quantum Dot Laser

We deposit a single quantum dot in a defect of a photonic crystal (Fig. 27.6), which

serves as high-Q resonator. The size of the resonator is a1a2 L . What is the threshold

condition?

The photon generation rate has to be equal to the photon loss rate,

2

a1a2 L
( f2 − f1)hν B̄21g(hν − E21)Z =

Z

τp

. (27.31)

Laser oscillation at the line center (hν = E21), where g(hν − E21) = 2π/ΔE21, is

possible if f2 − f1 > ( f2 − f1)th, where

( f2 − f1)th =
πa1a2 LΔE21

4hν B̄21τp

(27.32)

is the threshold population difference. If ( f2 − f1)th is given, then the minimum

lifetime of a photon necessary to reach the threshold condition is equal to

τp,th =
πa1a2 LΔE21

4hν B̄21( f2 − f1)th

. (27.33)

Example One-quantum dot laser at 4 K.

• a1 = a2 = L = 0.5µm.

• ν = 3.5 × 1014 Hz; n = 3.5.

• τsp = 0.6 ns = A−1
21 .

• ΔEnat = �/τsp = 2 × 10−24 J ∼ 1 µeV.

• B21 = 1.1 × 1021 m3 J−1 s−2; B̄21 = h B21.

• ( f2 − f1)th = 0.2.

• τp,th = 2 × 10−12 s.

• Qmin = 2πντp,th = 4,000.

Operation of a one-quantum dot laser at 4 K requires a Q factor of the order of ten

thousand.

Fig. 27.6 One-quantum dot

laser
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A one-quantum dot laser at low temperature (2 K or 4 K) operates by the use of a

naturally broadened transition line. The laser oscillation involves two levels only.

References [221, 222].

Problems

27.1 Density of states of electrons in a quantum wire. Derive the density of states

of electrons in a quantum wire.

27.2 Absorption by a quantum wire. Estimate the maximum modal absorption

coefficient in the case that monochromatic light propagates in an optical waveguide

of 0.2 µm height and 10 µm width along a quantum wire (n = 3.5). [Hint: assume

that the cross section of the GaAs quantum wire shows no variation and that the

quantum wire has a low temperature (near 0 K); transitions occur if heavy holes are

involved.]

27.3 Calculate the threshold current of a nanolaser that contains one quantum dot

and operates (at low temperature) at an occupation number difference f2 − f1 = 0.8.

27.4 Bipolar semiconductor laser as a two-level laser. We can describe a bipolar

semiconductor laser as a two-level laser. The ground state is the vacuum level Evac,pair

of pairs and the excited states are radiative pair states. The pair levels are populated

by injection of electrons and holes into the active medium.

(a) Characterize the density of states of radiative pairs.

(b) Determine the gain.

(c) Formulate the condition of gain.

(d) Apply the bipolar picture to a single radiative pair level in a quantum dot (at

low temperature) that is continuously pumped. Determine the lineshape of the

radiation emitted by spontaneous electron-hole recombination.

27.5 Laser operating on a naturally broadened line.

(a) Why is the quantum dot laser (operated at low temperature) so special with

respect to line broadening? Is there any other cw laser operating by use of a

naturally broadened transition between two laser levels?

(b) Determine the gain cross section of a quantum dot at low temperature for radia-

tion at a frequency ν = 350 THz.
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A Comparison of Semiconductor Lasers

The simplest heterostructure laser is the double heterostructure laser. A GaAs double-

heterostructure consists of three layers: n-doped GaAlAs; GaAs; p-doped GaAlAs.

It corresponds to two heterostructures, a GaAlAs/GaAs and a GaAs/GaAlAs het-

erostructure that have in common the GaAs layer. The GaAs layer forms a well—not

a quantum well. The well width is so large that the electrons and the holes can, in

principle, move freely in all three dimensions. The double-heterostructure also acts as

a light guide. The successful realization of the double heterostructure laser initiated

the development of the semiconductor lasers with the more complex heterostructures

that we discussed.

The junction laser (=homostructure laser = homojunction laser) was the first

semiconductor laser type. A GaAs junction laser consists of an n-doped GaAs layer

in direct contact to a p-doped GaAs layer. Without applied voltage, the contact

(=junction) region is a depletion layer. The contact region does not contain free-

electrons or free holes. A voltage applied across the junction causes a drift of electrons

from the n-doped GaAs into the depletion layer and, at the same time, a drift of holes

from the p-doped GaAs into the depletion layer. Recombination of electrons and holes

in the depletion layer by stimulated optical transitions is the origin of laser radiation.

The gain region provides a weak light guiding effect. Junction lasers, cooled to liquid

nitrogen temperature, are available in the infrared spectral range up to wavelengths of

about 30 µm. However, quantum cascade lasers are taking over the tasks of infrared

junction lasers.

We show how the laser threshold decreased since the realization of the first semi-

conductor lasers.

Finally, we will present a comparison of different types of semiconductor lasers,

including the quantum cascade laser (that we will discuss in the next chapter). In a

spectral range—called the terahertz gap—semiconductor lasers (quantum cascade

lasers) are presently in development.

Heterostructures made it possible to design artificial, spatially varying energy

bands, which is the basis of the many different types of semiconductor lasers. In 1874,
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Ferdinand Braun introduced the contact between two materials as an important phys-

ical object. He found that the strength of current flowing in one direction through

a contact between a metal and a conducting crystal was different from the strength

of current flowing in the other direction at opposite voltage across the contact. This

effect led to the first device suitable for rectification of high frequency radiation.

Later, a contact between n-doped germanium and p-doped germanium was the basis

of semiconductor junction transistors discovered by Bardeen, Brattain and Shockley.

Making use of heterostructures instead of contacts represented an essential change in

semiconductor physics. This change began by 1960 and resulted in a miniaturization

of electronic devices.

28.1 Gain of Radiation in a Bulk Semiconductor

In the double heterostructure laser and the junction laser, the extensions of the active

medium are large in all three dimensions. The electrons form a three-dimensional

electron gas and the holes a three-dimensional hole gas.

The density of states of a three-dimensional electron gas, including the spin degen-

eracy, is equal to

Dc(ǫc) =
1

2π2

(

2me

�2

)3/2

ǫ1/2
c . (28.1)

The quasi-Fermi energy of a three-dimensional electron gas follows from the relation

1

2π2

(

2me

�2

)3/2 ∫

∞

0

ǫ1/2dǫ

exp [(ǫ − ǫFc)/kT + 1
= N . (28.2)

N is the density of electrons in the conduction band. For T = 0, we have the relation

∫ ǫFc

0

ǫ1/2
c dǫ =

2

3
ǫ

3/2
Fc (28.3)

and the quasi-Fermi energy is given by

ǫFc(T = 0) =
�

2

2me

(3π2 N )2/3. (28.4)

The reduced density of states,

Dr(ǫ) =
1

2π2

(

2mc

�2

)3/2

ǫ1/2, (28.5)
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Fig. 28.1 Reduced density

of states and absorption

coefficient of bulk GaAs

is proportional to
√

E − Eg. The absorption coefficient for T = 0 is

αabs =
n

c
hν B̄21 Dr(E21). (28.6)

Figure 28.1 shows the reduced density of states and the absorption coefficient for

GaAs at T = 0 on the energy scale, with hν = E21 and hνg = Eg. The gain coefficient

of a crystal containing nonequilibrium electrons and holes is equal to

α =
n

c
hν B̄21 Dr(E21)( f2 − f1), (28.7)

where f2 = f (E2), f1 = f1(E1), and E2 − E1 = E21. Injection of electrons into the

conduction band (and of holes into the valence band) of a crystal at room temperature

has to be sufficiently strong to reach the transparency density. The maximum gain

coefficient of GaAs at T = 300 K is

αmax = σeff(N − Ntr), (28.8)

where Ntr ∼ 2 × 1024 m−3 is the transparency density and σeff = 1.5 × 10−20 m2

the effective gain cross section [6]. Already a small increase of N above Ntr results

in a large gain coefficient.

Example Gain coefficient of GaAs at 300 K.

• Ntr = 2 × 1024 m−3.

• σeff = 1.5 × 10−20 m2.

• N − Ntr = 0.1 × 1024 m−3.

• αmax = 1.5 × 103 m−1.
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The difference N − Ntr is chosen so that the gain coefficient αmax corresponds to the

threshold gain coefficient of GaAs in an edge emitting laser. The data show that a

large electron density is necessary to reach transparency. A slightly larger density is

sufficient to operate a laser.

28.2 Double Heterostructure Laser

As a double heterostructure laser we discuss a GaAs/GaAlAs double heterostructure

laser (Fig. 28.2, left). The active zone is a GaAs well (thickness 0.2–1µm) embedded

in n-doped GaAlAs and p-doped GaAlAs. Under the action of a voltage (U ), electrons

migrate from the n-doped side and holes from the p-doped side into the well. This

results in nonequilibrium populations of electrons in the conduction band and of

holes in the valence band. Stimulated recombination of radiative electron-hole pairs

leads to laser radiation.

A double heterostructure laser diode (Fig. 28.2, right) consists of different layers

forming an n GaAlAs/GaAs/p GaAlAs heterostructure grown on a highly doped

GaAs substrate (doped with silicon; electron concentration 2 × 1024 m−3). The GaAs

layer, with a larger refractive index than the neighboring GaAlAs material, acts as a

light guide. The crystal surfaces perpendicular to the light guide serve as reflectors.

The threshold current is, for N ≈ Ntr,

Ith ≈ Ntra1a2 Le/τsp. (28.9)

Example Double heterostructure GaAs laser.

• a1 = 100 µm; a2 = 0.2 µm; L = 0.5 mm.

• G1V = 1.

• τsp ∼ 3 ns.

• Ith ∼ 2.1 A; jth ∼ 2.1 × 107 A m−2.

Fig. 28.2 Double heterostructure laser
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The critical current is much larger than that of a quantum well laser. Below thresh-

old, the double heterostructure emits luminescence radiation (electro-luminescence

radiation). Above laser threshold, the quasi-Fermi energies of electrons and holes

remain at their threshold values. Accordingly, the luminescence spectrum remains

unchanged when the current exceeds the threshold current (Sect. 21.7).

28.3 GaAs Junction Laser

The junction laser (=homostructure junction laser = homojunction laser) contains

nonequilibrium electrons and holes in a junction within a homogenous semiconductor

material.

The GaAs junction laser (Fig. 28.3a, b) consists of a GaAs crystal, with n-doped

GaAs adjacent to p-doped GaAs. A voltage (U ) causes a current flow (strength I ).

Electrons move from one side and holes from the other side into the junction region

where they recombine by emission of laser radiation. The emission wavelength of a

GaAs junction laser lies in the near infrared (860 nm). Without applied voltage, the

Fermi energy EF has everywhere within the crystal the same value (Fig. 28.3c). In

the junction region, there is a depletion zone (thickness ∼1 µm for carrier densities

of 1023 m−3 in the n-doped and the p-doped regions) in which no free carriers are

present. EFc lies above Ec in n GaAs and EFv lies below Ev in p GaAs.

Example GaAs junction laser at 300 K.

• a1 = 100 µm; a2 = 1 µm; L = 1 mm.

• G1V = 1 at α ∼ 1.5 × 103 m−1.

• τsp ∼ 3 ns.

Fig. 28.3 GaAs junction laser. a Principle. b Device. c An n GaAs/p GaAs junction without applied

voltage

http://dx.doi.org/10.1007/978-3-319-50651-7_21
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Fig. 28.4 Frequency regions

of lead salt lasers

• Ith ∼ 10 A.

• jth ∼ 108 A m−2.

A junction laser operating at room temperature requires strong cooling.

In the junction laser, the active layer has a slightly larger refractive index than

the surrounding n-doped GaAs and p-doped GaAs; the difference of the refractive

indices is about 0.02. Therefore, there is a (weak) light guiding effect.

28.4 Junction Lasers in the Infrared

Infrared junction lasers (Fig. 28.4) consist of mixed crystals of lead salts. Lead salts

have small energy gaps (PbS, Eg ∼ 270 meV; PbTe, 170 meV; PbSe, 130 meV).

Mixed crystals of lead salts and tin salts have still smaller gap energies. The lead salt

lasers operate at low temperature, at the temperature of liquid nitrogen or at lower

temperature. In principle, it is possible to build a lead salt laser that generates radi-

ation at a specific wavelength in a large range (4–30µm). Nonradiative relaxation

due to electron-hole recombination via phonons limits the wavelength range of lead

salt lasers at large wavelengths.

A lead salt laser is tunable on a single mode over a very small frequency range

by changing the current and the temperature.

Infrared lasers are especially suitable for detection of spurious gases (e.g., NO,

NO2) in environmental gases. Today, lead salt lasers cannot compete with quantum

cascade lasers.

28.5 Bipolar Semiconductor Lasers: A Comparison

We have seen that all types of bipolar laser media are in principle suitable as active

media of edge emitting lasers operating at room temperature. But there are great

differences.

• The junction laser requires a large total number of electrons to reach the trans-

parency density. Therefore, the threshold current is very large.

• The double heterojunction laser also requires a large total number of electrons.

The light guiding effect is more favorable than for the junction laser.
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Fig. 28.5 A comparison of different bipolar semiconductor lasers at 300 K

• The quantum well laser requires a much lower total number of electrons. Prepara-

tion of quantum well lasers is possible by mass production: quantum well lasers

of a high reliability are available.

• The quantum wire laser is in an early state of development.

• The quantum dot laser is being developed. The quantum dot lasers can at present

not yet compete with the quantum well lasers.

We perform a quantitative comparison of different bipolar lasers operating at room

temperature (Fig. 28.5). We ask how many excited electrons are necessary to drive a

bipolar laser in an edge-emitting arrangement that is the same for each of the laser

types (a1a2 L = 100 µm×200 nm×1 mm = 2 × 10−14 m3). The arrows indicate the

total number Ntot = Ntra1a2 L of electrons necessary to reach transparency density;

the total number of electrons at laser threshold, Nth,tot, is only slightly (10%) larger

than Ntot. We take into account the main broadening mechanisms. The figure shows,

for each type of lasers, the shape of the reduced density of state curves Dr(hν) and

the α(hν) curves. All α(hν) curves have the same α scale and the same hν scale.

The maximum of the gain coefficient curve is equal to threshold gain coefficient.

An increase of the number of excited electrons (for example, to ten times the total

number at transparency) allows laser oscillation to occur at frequencies belonging to

the whole gain bandwidths (=halfwidts of the gain coefficient curves). The survey

indicates the following.

• Double heterostructure laser. Because of the three-dimensionality, a large number

of electrons is necessary for the band filling.
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Table 28.1 Semiconductor lasers (at a frequency around 400 THz)

Laser Ntot Ntr Nth/Ntr − 1 N 2D
dot [N 2D

wire] Δνg (meV) (THz)

Qu well 106 1.4 × 1016 m−2 0.1 30 7

Qu dot 108 0.1 1 × 1014 m−2 22 5

Qu wire 108 1 × 108 m−1 0.1 [5 × 106 m−2] 17 4

Bulk 1010 2 × 1024 m−3 0.1 40 9

• Quantum wire laser. A large reduced density of states (at hν = E1D
g ) is very

favorable. However, inhomogeneous broadening caused by variation of the wire

thickness distroys this advantage. The gain coefficient curve has a small width

(compared to the gain curve of the junction laser and the double heterostruc-

ture laser) because the reduced density of states decreases with increasing photon

energy.

• Quantum dot laser. The gain coefficient increases with frequency because the

multiplicity of the energy levels increases with increasing quantum numbers of the

energy levels. The gain curve is continuous because of inhomogeneous broadening.

• Quantum well laser. The quantum well laser operates with the smallest number of

electrons. Because of the constant two-dimensional density of states, inhomoge-

neous broadening is much less effective than for the quantum wire laser and the

quantum dot laser.

Table 28.1 shows data used to compare different bipolar lasers (frequency 400 THz;

length L = 1 mm; crystal surfaces as reflectors; width of the active medium 100 µm;

height of the photon mode 200 nm); the data have been estimated in the preceding

sections or chapters. The table lists the quantities:

• Ntot = total number of excited electrons necessary to fulfill the threshold condition.

• Ntr = transparency density.

• (Nth − Ntr)/Ntr = threshold density minus transparency density, divided by the

transparency density.

• N 2D
dot = two-dimensional density of quantum dots in a layer of quantum dots.

• N 2D
wire = density of quantum wires in a layer of quantum wires.

• Δνg = gain bandwidth.

28.6 Development of Semiconductor Lasers

The threshold current of semiconductor lasers (Fig. 28.6) has been strongly reduced

since the first operation of a semiconductor laser in 1970. The junction laser needs

the largest threshold current and has to be cooled (with few exceptions) to low

temperature (100 K or lower) in order to suppress relaxation via phonons. The dou-

ble heterostructure laser (since 1980) operates at room temperature. The threshold
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Fig. 28.6 Threshold current of bipolar semiconductor lasers operated at room temperature

Fig. 28.7 Development of semiconductor lasers

current lies in the range of 10–100 mA. The quantum well laser reached a further

remarkable decrease of the threshold current.

Together with the development of lasers of small threshold current, the reliability

increased. Already in 1995, the monthly production rose to about one million laser

diodes.

The development of the current-driven semiconductor lasers (Fig. 28.7) began

with the junction laser. After the operation in the near infrared, the range was extended

by the use of lead salt compounds into the far infrared up to a wavelength near 30µm.

In the near infrared, the junction laser, then the double heterostructure laser and the

quantum well laser were introduced. The wavelength range of the quantum well

laser was extended up to the near UV. In the far infrared, the junction lasers are in a

large part of the spectrum replaced by the quantum cascade lasers, which generate

radiation in the range from about 2–30µm. Quantum cascade lasers, cooled to liquid

nitrogen temperature, generate far infrared radiation (see next section).
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Current-driven semiconductor lasers cover different spectral regions.

• Near UV, visible, near infrared (from about 0.3 to 2µm): quantum well laser.

• Infrared (2–25 µm): quantum cascade laser (QCL).

• Terahertz gap (about 25µm–1 mm; 0.3–10 THz): in this range (that includes the

sub-THz range from 0.3 to 1 THz), there is a gap with respect to semiconductor

laser oscillators and to quasiclassical semiconductor oscillators operating at room

temperature (or more general: there is a gap with respect to the availability of solid

state electronic devices and solid state photonic devices). Quantum cascade lasers

working at 80 K cover a part (60–300µm; 1–5 THz) of the terahertz gap.

28.7 Terahertz Gap

Semiconductor oscillators (Figs. 28.7 and 28.8)—including both laser oscillators

and quasiclassical microwave oscillators—are available from the microwave range

up to the ultraviolet, however, with the exception of the terahertz gap, a frequency

range that extends from a sub-THz frequency of about 300 GHz (wavelength 1 mm)

to about 30 THz. Cooled quantum cascade lases are partly covering the range of the

terahertz gap.

Fig. 28.8 Terahertz gap
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Why are room-temperature quantum cascade lasers not available in the range

between 4 and 30 THz? There are several reasons: The energy difference E2 − E1

is of the order of kT or smaller so that the population difference is smaller than at

low temperature. Relaxation via phonons is stronger at high temperatures than at low

temperatures. If the energy difference E2 − E1 coincides with the energy of polar

optic phonons, relaxation by one-phonon processes occurs, resulting in very short

lifetimes of electrons in the upper subband (subband 2); the energy of a polar optic

phonon of GaAs is 36 meV (corresponding to a frequency of 8.6 THz).

Another type of unipolar semiconductor laser should be mentioned here, the p

germanium laser. This is a unipolar semiconductor laser pumped by a current. It is

operated at temperatures below liquid nitrogen temperature. A current pulse applied

to a p germanium crystal in a magnetic field gives rise to a nonequilibrium hole

population with a population inversion. By feedback with a resonator, laser oscillation

occurs. The laser is tunable over a very wide frequency range (0.3–3 THz). Tuning

is possible by varying the strength of the magnetic field.

There are, furthermore, CO2 laser pumped semiconductor lasers emitting far

infrared radiation; these have also to be cooled to temperatures below liquid nitrogen

temperature. The laser transitions occur between discrete energy levels of impurity

ions in semiconductor crystals.

We mention semiconductor oscillators of the range of electronics at frequencies

above 100 GHz (see Fig. 28.8).

• Gunn oscillator (Sect. 31.2). Gunn oscillators are microwave oscillators, commer-

cially available up to about 200 GHz.

• Semiconductor superlattice oscillator (Sect. 31.3). Semiconductor superlattice

oscillators (up to 200 GHz) are being developed.

• Resonant tunnel diode oscillator (Sect. 31.7). Operation of resonant tunnel diode

oscillators have been demonstrated up to 700 GHz; however, the output power was

very small.

Radiation at frequencies above 100 GHz up to 10 THz can be generated by frequency

multiplication of microwave radiation.

Backword wave oscillators are continuous wave oscillators operating in the range

from 200 GHz to ∼1.5 THz.

References [187–192].

Problems

28.1 Efficiency of bipolar lasers. Compare the efficiency η of different types of

GaAs bipolar lasers (double heterostructure laser, quantum wire laser, quantum dot

laser, quantum well laser) driven at a current that is ten times larger than the threshold

current. Assume, for simplicity, that the quantum efficiency is unity.

http://dx.doi.org/10.1007/978-3-319-50651-7_31
http://dx.doi.org/10.1007/978-3-319-50651-7_31
http://dx.doi.org/10.1007/978-3-319-50651-7_31
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28.2 Explain qualitatively why the refractive index in the active regions of a GaAs

junction laser is smaller than in the adjacent n-doped GaAs and p-doped GaAs

regions.

28.3 Estimate the intensity of luminescence radiation (emitted into the whole space)

of the lasers mentioned in Fig. 28.5.
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Quantum Cascade Laser

A quantum cascade laser contains active regions and conducting regions in turn. An

active region contains three electron subbands. An electron injected into the upper

subband undergoes a stimulated transition to the lower subband and reaches, after a

nonradiative relaxation process, the lowest subband. The electron leaves the lowest

subband by spatial escape to the neighboring conducting region. Then, the elec-

tron is injected into another upper subband, undergoes another stimulated emission

process, relaxes, escapes, and so on. Passing, for example, through a hundred gain

regions, an electron can produce a hundred photons by stimulated transitions. A sin-

gle gain region is in principle a three-level system. An electron performs a cascade

of stimulated emission processes in subsequent three-level systems.

How can we obtain a gain region in a quantum cascade laser and how can we

inject an electron into a gain region and extract an electron from a gain region?

We can realize a gain region by the use of coupled quantum wells. Tunnel splitting

of energy levels leads to appropriate subbands. Superlattices connect next-near gain

regions. Injection of electrons into a gain region and extraction of electrons from a

gain region are due to tunneling processes under the action of a static electric field.

The quantum cascade laser operating at room temperature is a radiation source

of the infrared; it is available at wavelengths just beyond the wavelengths of bipolar

lasers, from about 2–28 µm (11–150 THz). Quantum cascade lasers cooled to liquid

nitrogen temperature operate in the frequency range of about 1–5 THz.

It is expected that terahertz radiation may be of importance for applications in the

areas of communications, the environment, medicine, and security. Pioneering work

is done in infrared and millimeter wave astronomy through the use of oscillators as

local oscillators of heterodyne detectors (that are most sensitive).

© Springer International Publishing AG 2017
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29.1 Principle of the Quantum Cascade Laser

The quantum cascade laser (QCL) is a three-level laser. The three levels (Fig. 29.1a)

belong to subband 0, subband 1, and subband 2. Under the action of a static field

Es, electrons are injected into the subband 2 and perform stimulated transitions to

subband 1. The subband 1 is depopulated by relaxation via the emission of phonons

and the subband 0 is depopulated by the spatial extraction of electrons. In principle,

an electron passing through a subband system with 100 periods can produce 100

photons! Injection occurs by means of a conducting superlattice. In the superlattice

region, the energy of an electron is energetically constrained to a miniband, i.e., to

an energy band that is much smaller than an energy band of a bulk semiconductor.

Extraction occurs to another superlattice. A spatial period is repeated about 100 times

or more (Fig. 29.1b).

An external voltage, leading to a voltage U1 per period, drives the electron through

the cascade system. The voltage per period is approximately

U1 ≈ E2 − E0, (29.1)

where E2, E1, and E0 are levels belonging to the three subbands. The quantum effi-

ciency ηq ≈ (E2 − E1)/(E2 − E0) have a value near 1. The overall power efficiency

can be larger than 0.5.

Fig. 29.1 Quantum cascade laser. a Single period and b three periods (out of a hundred periods)
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Under the action of a static field, an electron propagates through a miniband, then

through a tunnel barrier into the active region with the three subbands and, after an

optical transition and relaxation, into another miniband. The active region contains

two coupled quantum wells. A narrow tunnel barrier between the wells provides the

coupling.

A minigap (a gap between two minibands) prevents the tunneling of electrons out

of the subband 2. Perpendicular to the heterostructure, the electrons can move freely.

The injector consists of a miniband, with a continuously decreasing miniband width,

realized by quantum film layers and quantum well layers in turn (Sect. 29.3).

The heterostructure of a quantum cascade laser can be grown by molecular epitaxy.

29.2 Infrared Quantum Cascade Laser

The infrared quantum cascade laser (Fig. 29.2) consists of a quantum cascade het-

erostructure on a conducting substrate (GaP or GaAs). The heterostructure contains

conduction electrons (∼1022 m−3), introduced into the heterostructure during its

preparation by doping with silicon. An electric power of the order of 1 W (voltage

5 V; current 0.2 A) leads (in a structure of 1 mm length; 100 µm width; 10 µm

thickness) to radiation of a power of several mW.

Room temperature QCLs and low temperature QCLs cover different wavelength

regions.

• 2–28 µm; InGaAs/InAlAs heterostructure grown on GaP substrate; operation at

room temperature; power 1–100 mW.

• 60–360 µm; GaAs/GaAlAs heterostructures grown on a GaAs substrate; operation

at the temperature of liquid nitrogen; power 1–10 mW.

Before discussing the far infrared quantum cascade laser, we introduce superlat-

tices and minibands.

Fig. 29.2 Quantum cascade laser
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29.3 Semiconductor Superlattice and Minibands

Semiconductor superlattices with minibands play an important role for quantum

cascade lasers. We describe here properties of a GaAs/AlAs superlattice.

A GaAs/AlAs superlattice (Fig. 29.3) consists of a periodic sequence of GaAs

layers and AlAs layers. An electron propagating along the superlattice axis experi-

ences the AlAs layers as potential barriers. The periodic potential leads to minibands

separated by minigaps. We characterize the dispersion relation of electrons in the

lowest miniband by:

ǫ = ǫm

(

1

2
−

1

2
cos kx a

)

, (29.2)

where ǫ is the energy, ǫm is the miniband width and kx the wave vector along the

superlattice axis. The dispersion curve is periodic in kx . Therefore, we can restrict

the wave vector kx to the mini-Brillouin zone −π/a < kx ≤ π/a. The calculation

of minibands is possible by the use of a Kronig–Penney model (Chap. 30).

The motion perpendicular to the superlattice axis, within the GaAs layers, corre-

sponds to a free motion of a conduction electron. The energy of a miniband electron

is given by

E = Ec + Ezp + ǫm

(

1

2
−

1

2
cos kx a

)

+
�

2(k2
y + k2

z )

2mc

. (29.3)

Ec is the energy of an electron at the minimum of the conduction band and Ezp the

zero point energy of a miniband electron. The last term corresponds to the energy of

motion perpendicular to the superlattice axis; mc is the effective mass of an electron

in the minimum of the conduction band of GaAs.

The value of ǫm of a GaAs/AlAs superlattice is adjustable by the choice of the

period a of the superlattice and of the width of the AlAs barrier layers. The largest

Fig. 29.3 GaAs/AlAs superlattice and minibands

http://dx.doi.org/10.1007/978-3-319-50651-7_30
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value of the miniband width of a GaAs/AlAs superlattice is ǫm ∼ 0.14 eV, which

corresponds to 10% of the gap energy of GaAs. InGaAs/InGaAlAs superlattices can

have larger miniband widths (up to 0.3 eV) because the effective mass of a conduction

electron in InAs is smaller than in GaAs.

29.4 Transport in a Superlattice

We discuss the electric transport in a superlattice (miniband transport). A static elec-

tric field Es oriented along the superlattice axis accelerates the electrons. Relaxation

gives rise to an ohmic conductivity (Fig. 29.4). The ohmic conductivity is given by

σ =
N0e2τ

m∗
. (29.4)

N0 is the density of electrons in a superlattice, m∗ the effective mass of an electron at

the bottom of the miniband (at kx ≈ 0), and τ is the intraminiband relaxation time; τ

∼ 10−13 s for an electron in a GaAs/AlAs superlattice at room temperature. The value

of the effective mass m∗ depends on the period of the superlattice and the barrier

width. Ohmic conductivity is limited to not too strong static fields (Sect. 32.3).

In a superlattice used in a quantum cascade laser as injector (and as extractor),

the layer thicknesses of GaAs and AlAs—or of InGaAs and InGaAlAs—are varying

along the superlattice axis. Accordingly, the zero point energy, the widths of the

minibands, and the widths of the minigaps are varying as well. An applied voltage

leads to a static field along the superlattice axis. The upper boundary of the miniband

limits the maximum energy an electron can reach in the static field. The first minigap

prevents escape of excited electrons from the gain region as already mentioned.

Miniband transport will be treated in more detail in Sect. 32.3.

Fig. 29.4 Ohmic transport

in a superlattice

http://dx.doi.org/10.1007/978-3-319-50651-7_32
http://dx.doi.org/10.1007/978-3-319-50651-7_32
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29.5 Far Infrared Quantum Cascade Laser

In the far infrared quantum cascade laser (Fig. 29.5), the energy separation between

sublevel 2 and sublevel 1 corresponds to a frequency in the far infrared. The energy

difference between the laser levels is of the order of kT at room temperature. To

reach the threshold population difference, a far infrared QCL has to be cooled, for

instance to the temperature (77 K) of liquid nitrogen.

References [223–225].

Problems

29.1 Determine the frequency (and the wavelength) of laser radiation at which

cooling of the active medium is favorable.

29.2 Estimate the gain (gain coefficient and gain factor per round trip) of radiation

propagating in the active medium of a quantum cascade laser. [Hint: assume that the

Einstein coefficient of stimulated emission is the same as for interband transitions.]

29.3 A quantum cascade laser cannot be realized if the laser transition frequency v1

coincides with the longitudinal optic frequency of the semiconductor material. Then,

fast nonradiative relaxation of the upper laser level, by emission of a longitudinal optic

phonon (frequency vLO) near the Brillouin zone center, makes population inversion

almost impossible. Relaxation is still strong if v1 lies in the vicinity vLO (=8.7 THz

for GaAs).

(a) Determine the frequency range for which the nonradiative lifetime of the upper

laser level is shorter than 10−6 s, assuming that the nonradiative lifetime is

10−12 s at resonance (v1 = vLO) and that the relaxation rate decreases for laser

frequencies around vLO according to a Lorentz resonance function.

(b) Determine the power density in the laser medium that is necessary for reaching

population inversion (B21 = 4 × 1021 m3 J−1 s−2).

Fig. 29.5 Far infrared quantum cascade laser
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(c) Discuss the influence due to thermal broadening of the electron distribution in

the upper laser subband.

29.4 Strong absorption at the transversal optical frequency (=8.0 THz for GaAs)

at the zone center results in damping of optical waves. In which frequency range is

the optical thickness of the laser material (length 1 mm) of a quantum cascade laser

larger than 0.02)? [Hint: assume that the absorption coefficient varies according to a

Lorentz resonance function and that the absorption coefficient has a maximum value

of 105 cm−1.]
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Electron Waves in Semiconductor

Heterostructures

We study electron waves in one-dimensional potentials and in semiconductor

heterostructures.

We will begin with the discussion of the one-dimensional square well potential,

then describe the origin of energy bands for electrons in a one-dimensional periodic

potential. We make use of the tight binding method.

We will introduce the plane-wave transfer matrix method to describe, for an inter-

face of two semiconductors, how a wave function of a semiconductor continues in

the other semiconductor. The requirement that the energy flux through a boundary

is steady provides the boundary conditions for electron waves at an interface of two

different semiconductors. The plane-wave transfer matrix method allows for deter-

mination of the energy bands (minibands) of a superlattice. Finally, we will treat the

quantum well and the double quantum well.

The plane-wave transfer matrix method is the same we used to describe electro-

magnetic plane waves in layered systems (Sect. 25.11). The difference of the results

comes from the different dispersion relations: the wave vector of a free-electron wave

in vacuum (or in a semiconductor) varies with the square root of energy while the

wave vector of an electromagnetic wave in vacuum (or in a homogeneous medium)

shows a linear dependence on frequency.

30.1 Electron in a One-Dimensional Square Well Potential

An electron wave with the wave vector k obeys the dispersion relation

E =
�

2k2

2m0

. (30.1)

E is the energy of an electron and m0 the electron mass. The energy E increases

quadratically with k. We describe free-electrons (in a bulk semiconductor) propagat-

ing in x direction by the use of the time-independent Schrödinger equation

© Springer International Publishing AG 2017
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−
�

2

2m0

d2ϕ

dx2
= Eϕ, (30.2)

where ϕ(x) is the wave function. A solution is

ϕ(x) = Aeikx ; k = +
√

2m0 E/�2. (30.3)

We consider an electron in a one-dimensional square well potential (width a) with

rigid walls (Fig. 30.1a). The Schrödinger equation for |x | < a/2,

−
�

2

2m0

d2ϕ

dx2
= Eϕ, (30.4)

has the general solution

ϕ(x) = A sin kx + B cos kx; k = +
√

2m0 E/�2. (30.5)

The boundary conditions require that ϕ(±a/2) = 0 or

A sin(ka/2) + B cos(ka/2) = 0, (30.6)

−A sin(ka/2) + B cos(ka/2) = 0. (30.7)

Solutions are

• A = 0 and cos(ka/2) = 0 leading to

ϕ(x) = B cos
nπx

a
, n = 1, 3, ... (even solution); (30.8)

• B = 0 and sin(ka/2) = 0 leading to

ϕ(x) = A sin
nπx

a
, n = 2, 4, ... (odd solution). (30.9)

Fig. 30.1 One-dimensional square well potential a with infinitely high walls and b with walls of

finite height
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The energy eigenvalues are

En =
π2

�
2n2

2m0a2
. (30.10)

For a square well potential with finite potential steps (Fig. 30.1b), the Schrödinger

equation is unaltered for |x | < a/2. The wave equation for |x | > a/2,

−
�

2

2m0

d2ϕ

dx2
+ U0ϕ = Eϕ, (30.11)

has the solution

ϕ(x) = Ce−κx + Deκx ; κ = +
√

2m0(U0 − E)/�2. (30.12)

The boundary conditions require that ϕ(x) and dϕ/dx are continuous for x = ±a/2.

The application of the boundary conditions would allow for determination of A, B,

C, D and of the eigenvalues. Instead, we make use of the symmetry of the potential.

The ansatz of the even solutions

ϕ(x) = B cos kx for |x | < a/2, (30.13)

ϕ(x) = Ce−κx for |x | > a/2, (30.14)

and the condition of continuity of ϕ and dϕ/dx at |x | = a/2 lead to

B cos(ka/2) = Ce−κa/2, (30.15)

k B sin(ka/2) = κCe−κa/2 (30.16)

or

k tan(ka/2) = κ. (30.17)

The odd solutions are

ϕ(x) = A sin kx for |x | < a/2, (30.18)

ϕ(x) = Ce−κx for |x | > a/2. (30.19)

The boundary conditions of the odd solutions require that

k cot(ka/2) = κ. (30.20)

The conditions k tan(ka/2) = κ and k cot(ka/2) = κ provide a finite number of

discrete energy eigenvalues En.
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30.2 Energy Bands of Electrons in a Periodic Square

Well Potential

We describe a model (tight binding model) that illustrates the occurrence of energy

bands and of dispersion for electron waves in a periodic potential.

A single isolated square well potential at position xl (Fig. 30.2, upper part) is

characterized by the wave equation

[

−
�

2

2m0

d2

dx2
+ Ul(x − xl)

]

ϕl(x − xl) = E0 ϕl(x − xl). (30.21)

We regard E0 as the energy E1 of the lowest state in a square well potential (Sect. 30.1)

and ϕl = ϕl(x − xl) as the corresponding wave function. The wave function is

normalized,
∫ ∞

−∞
ϕ∗

l (x − xl)ϕl(x − xl)dx = 1. (30.22)

The wave equation of a periodic sequence of identical square well potentials

(Fig. 30.2, center) is

(

−
�

2

2m0

d2

dx2
+ U (x)

)

ψ(x) = Eψ(x). (30.23)

The potential energy is a periodic function,

U (x + a) = U (x), (30.24)

Fig. 30.2 A single square well potential, an infinite series of square well potentials and the differ-

ence between the two potentials
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where a is the period. We describe the wave function of the periodic system by a

linear combination of the wave functions of the single wells,

ψ(x) =
∑

l

cl ϕl(x − xl). (30.25)

Making use of the periodicity, we write

ψ(x) =
1

√
N

N−1
∑

l=0

eikla ϕl(x − la). (30.26)

N is the number of quantum wells in a periodicity interval. We apply periodic bound-

ary conditions, ψ(x + Na) = ψ(a), and find

k =
2πl

Na
; l = 0, 1, ... N − 1. (30.27)

We restrict the k values to the first Brillouin zone

−
π

a
< k ≤

π

a
. (30.28)

Inserting ψ(x) into the wave equation provides

∑

l

eikla [U (x) − E] ϕl = −
∑

l

eikla

(

−
�

2

2m0

d2

dx2

)

ϕl . (30.29)

We add on both sides the term (−Ul(x − xl) + E0)ϕl and obtain

∑

l

eikla [U (x) − Ul(x − xl) − E + E0] ϕl

= −
∑

l

eikla

[

−
�

2

2m0

d2

dx2
− Ul(x − xl) + E0

]

ϕl . (30.30)

The right side is zero. We find

(E − E0)
∑

l

eiklaϕl =
∑

l

eikla [U (x) − Ul(x − xl)] ϕl . (30.31)

We multiply the equation by

ψ∗(x) =
1

√
N

N−1
∑

m=0

e−ikmaϕ∗
m(x − ma) (30.32)
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and integrate over the length L of the periodicity interval. We obtain

(E − E0)
∑

l,m

eik(l−m)a

∫ L

0

ϕ∗
mϕldx =

∑

l,m

eik(l−m)a

∫

ϕ∗
m[U (x) − Ul(x − xl)]ϕldx .

(30.33)

Neglecting the weak overlap of ϕ∗
l and ϕl for l �= m, we obtain for the term on the

left side N (E − E0). Because of the large values of U − Ul (Fig. 30.2, lower part)

at positions of the cells m �= l, we cannot neglect the terms with m �= l on the right

side of the equation. We assume that ϕl(xl − la) decreases strongly at large distance

|x − xl |. Then we can restrict the double sum to terms that correspond to neighboring

cells. We obtain

N × (E − E0) = N ×
∫

ϕ∗
l [U (x) − Ul(x − xl)]ϕldx

+ N × e−ika

∫

ϕ∗
l−1[U (x) − U (x − xl)]ϕldx

+ N × eika

∫

ϕ∗
l+1[U (x) − U (x − xl)]ϕldx . (30.34)

It follows, with

α =
∫

ϕ∗
l [Ul(x − xl) − U (x)]ϕldx (30.35)

and

γ =
∫

ϕ∗
l−1[Ul(x − xl)−U (x)]ϕldx =

∫

ϕ∗
l+1[Ul(x − xn)−U (x)]ϕldx, (30.36)

that the energy is equal to

E = E(k) = E0 − α − γ cos ka. (30.37)

We introduce

ǫ(k) = E0 − E(k) − α − γ. (30.38)

With

ǫm = −2γ (30.39)

we find

ǫ(k) = ǫm

(

1

2
−

1

2
cos ka

)

. (30.40)

We obtain the lowest energy band (Fig. 30.3), with a minimum at k = 0 (width εm),

then an energy gap, and a second band (maximum at k = 0 since γ < 0). We can

interpret E0 − α − γ as zero point energy of an electron in the periodic potential.
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Fig. 30.3 Energy bands

Fig. 30.4 Electron wave at

an interface of two

semiconductors

30.3 Plane-Wave Transfer Matrix Method

of Characterizing a Semiconductor Interface

We consider (Fig. 30.4) propagation of an electron wave through an interface of

two semiconductor materials (for instance GaAs and AlAs). At the interface, the

potential energy and the effective mass of an electron change abruptly. We describe

an electron wave propagating in x direction (perpendicular to the interface) by the

time-independent Schrödinger equation

(

−
�

2

2m(x)

d2

dx2
+ U (x)

)

ψ(x) = E ψ(x), (30.41)

where m(x) is the effective mass and U (x) the potential energy. We look for wave

functions ψ(x) and energies E that satisfy the equation. We describe the wave func-

tions in medium 1 and medium 2 by the ansatz:

ψ1 = A1eik1x + B1e−ik1x , (30.42)

ψ2 = A2 eik2x + B2 e−ik2x , (30.43)
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With

k1 = +
√

2m1 E/�2, (30.44)

k2 = +
√

2m2(E − U0)/�2 (30.45)

being the wave vectors of the waves in medium 1 and medium 2, respectively. A1

and B1 are amplitudes of the waves of opposite directions. We restrict the discussion

to the case that E < U0. Then k2 is imaginary and ψ2 describes a wave with an

increasing term (amplitude A2) and a decreasing term (amplitude B2). We use the

boundary conditions

ψ1 = ψ2 at x = 0, (30.46)

1

m1

dψ1

dx
=

1

m2

dψ2

dx
at x = 0. (30.47)

We write

M1

(

A1

B1

)

= M2

(

A2

B2

)

(30.48)

and find

Ml =
(

1 1

kl −kl

)

; l = 1, 2. (30.49)

It follows that

(

A1

B1

)

= M−1
1 M2

(

A2

B2

)

= M12

(

A2

B2

)

, (30.50)

where

M12 =
( 1

2
(1 + k2/k1)

1
2
(1 − k2/k1)

1
2
(1 − k2/k1)

1
2
(1 + k2/k1)

)

. (30.51)

is the transfer matrix. It has exactly the same form as the transfer matrix for a plane

electromagnetic wave at an interface; see (25.12).

The continuity conditions we used follow from the requirements that the prob-

ability density ρ(x) = ψ∗(x)ψ(x) and the probability current density ∂ρ/∂t are

continuous. The first condition is fulfilled if ψ(x) is continuous. To discuss the

second condition, we replace in the time-dependent Schrödinger equation

−
�

i

∂

∂t
ψ(x) =

(

−
�

2

2m0

∇2 + U (x)

)

ψ(x, t) (30.52)

http://dx.doi.org/10.1007/978-3-319-50651-7_25
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the first term on the right side:

−
�

2

2m0

∂2

∂x2
ψ(x) →

�
2

2

∂

∂x

(

1

m(x)

∂ψ(x)

∂x

)

. (30.53)

Then

∂

∂t
(ψ∗Ψ ) =

i�

2

∂

∂x

(

1

m(x)

∂

∂x
ψ∗

)

ψ

=
i�

2

[

∂

∂x

(

ψ∗ 1

m(x)

∂

∂x
ψ

)

− ψ
1

m

∂

∂x
Ψ ∗

]

= 0. (30.54)

This condition is satisfied at an interface (at x = 0) between two semiconductors if

1

m1

∂ψ

∂x
=

1

m2

∂ψ

∂x
at x = 0. (30.55)

30.4 Minibands

The potential energy of an electron in a superlattice is a periodic function,

U (x + a) = U (x), (30.56)

where a is the period. We describe the wave function of an electron in the periodic

system as a linear combination of the wave functions of the single wells,

ψ(x) =
∑

l

cl ϕl(x − xl). (30.57)

Making use of the periodicity, we write

ψ(x) =
1

√
N

N−1
∑

l=0

eiklaϕl(x − la). (30.58)

N is the number of quantum wells in a periodicity interval. We apply periodic bound-

ary conditions, ψ(x + Na) = ψ(x), and find

k =
2πl

Na
; l = 0, 1, . . . N − 1. (30.59)

We restrict the k values to the first Brillouin zone

−
π

a
< k ≤

π

a
. (30.60)
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We now use the transfer matrix method. We described in the preceding section

the transfer matrix of an electron wave at a boundary. Taking account of propagation,

we find the same equations, (25.31)–(25.34), as for electromagnetic plane waves in

a one-dimensional photonic crystal. The equations lead, as shown in Sect. 25.14, to

the dispersion relation

cos ka = cos k1a1 cos k2a2 −
1

2

(

ξ +
1

ξ

)

sin k1a1 sin k2a2. (30.61)

For an electron wave in a superlattice, the quantities are:

k1 = +
√

2m1 E/�2, (30.62)

ξ =
k1

k2

m2

m1

= −i
k1

κ

m2

m1

, κ = +
√

2m2(U0 − E)/�2. (30.63)

We can write the dispersion relation of a miniband electron in the form

cos ka = cos k1a1 cosh κa2 −
1

2

(

|ξ | +
1

|ξ |

)

sin k1a1 sinh κa2 = f (E). (30.64)

This equation, cos ka = f (E), cannot be solved analytically. However, we can obtain

an approximate solution. We expand f (E) around the eigenvalue E0,n of an isolated

quantum well,

f (E) ≈ f (E0,n) +
(

d f

dE

)

E=E0

× (E − E0). (30.65)

We find

E(k) = E0 − α − γ cos ka, (30.66)

α = f (E0)/(d f/dE)E=E0
, (30.67)

−γ = [(d f/dE)−1]E=E0
. (30.68)

It follows, with −2γ = ǫm, that

ǫ(k) = ǫm

(

1

2
−

1

2
cos ka

)

. (30.69)

Taking into account the free motion perpendicular to the superlattice axis, we

obtain, with k = kx , the total energy

ǫ(k) = ǫm

(

1

2
−

1

2
cos kx a

)

+
�

2

2me

(k2
y + k2

z ), (30.70)

http://dx.doi.org/10.1007/978-3-319-50651-7_25
http://dx.doi.org/10.1007/978-3-319-50651-7_25
http://dx.doi.org/10.1007/978-3-319-50651-7_25
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Fig. 30.5 Minibands

where me is the effective mass of an electron in GaAs in a GaAs/AlAs superlattice

and k = (kx , ky, kz). The energy dispersion curves (Fig. 30.5) indicate minibands

(and minigaps) of electron wave vectors oriented along the superlattice axis. There is

no gap for electrons that have wave vectors with components (ky , kz) perpendicular

to the superlattice axis. The energy E = 0 is equal to the energy of the minimum of

the conduction band of bulk GaAs.

The widths of the minibands and of the minigaps depend on the superlattice

parameters:

• a1 = thickness of a quantum well layer.

• a2 = thickness of a barrier layer.

• a = a1 + a2 = superlattice period.

It is possible to design superlattices for a great range of values of ǫm, namely ǫm =
5–140 meV for GaAs superlattices and ǫm up to 300 meV for GaInAs/GaAlInAs

superlattices.

If we neglect the difference of the effective masses of the superlattice materials,

the matrix method yields the same result as obtained via the superposition of the

wave functions of the single wells (Sect. 30.2).

A remark. The method of superposition of elementary wave functions (tight bind-

ing model) was introduced by Felix Bloch in 1928 [251]. Ralph Kronig and William

Penney [231] introduced (in 1931) the square well potential (Kronig-Penney poten-

tial) and derived the dispersion relation (30.40). Gerard Bastard [232, 233] extended

the model (extended Kronig–Penney model) to describe energy bands of semicon-

ductor superlattices—with different effective masses of an electron in different layers

of a superlattice.
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30.5 Quantum Well

Knowing the boundary conditions for wave functions at the interface of two semi-

conductors, we find the expression that allows for determination of the eigenvalues

of electronic states of a quantum well (Problems):

k tan(ka/2) = −α m2/m1 for even solutions, (30.71)

k cot(ka/2) = −α m2/m1 for odd solutions. (30.72)

30.6 Double-Quantum Well

The energy levels of electrons in a double-well potential (Fig. 30.6) are doublets. The

energy level E1 of the lowest state of isolated potential wells splits into two levels

E+
1 and E−

1 . Correspondingly, the level E2 splits into two levels (E−
2 and E+

2 ); see

Problem 30.2.

References [31, 178, 186, 226–233, 251].

Problems

30.1 Quantum well.

Estimate the eigenvalues E1 and E2 of an electron in an AlAs/GaAs/AlAs quantum

well (barrier height 2.2 eV; mGaAs = 0.07 m0; mAlAs ∼ 3 mGaAs) if the well consists

of films of different thickness.

(a) Film thickness = 14 GaAs monolayers

(b) Film thickness = 2 GaAs monolayers.

Fig. 30.6 Double-well

potential
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30.2 Double-quantum well.

(a) Determine the eigenvalues of a one-dimensional double well, which correspond

to the two lowest energy levels (s =1, 2) of a single one-dimensional double

well. [Hint: make use of the symmetry.]

(b) Determine the energy level splitting E−
1 − E+

1 for the two lowest levels.

(c) Sketch the wave functions that correspond to the four lowest levels.

(d) Calculate the level splitting occurring in an AlAs/GaAs/AlAs/GaAs/AlAs double

quantum well (Fig. 30.6) for a1 = 10 nm and a2 = 2 nm.

30.3 Dispersion of electrons in a periodic potential.

Derive the dispersion relation of electrons in a periodic potential by the use of the

matrix method.

30.4 Interface.

(a) Electrons (energy ǫ) propagate toward a GaAs/AlAs interface and are reflected.

Determine the average penetration depth of electrons. [Hint: take into account

the difference between the penetration depth of the wave function and of the

electrons.]

(b) Determine the penetration depth for ǫ = 10 meV and 100 meV.

(c) Show that the reflectivity is R = |k1 − iκ|/|k1 − iκ1|.
(d) Explain the electron total reflector used in a GaN quantum well laser (Sect. 24.3,

Fig. 24.3a).

30.5 Tunneling.

(a) Determine the transmissivity of an AlAs barrier in a GaAs/AlAs/GaAs het-

erostructure for electrons of energy ǫ.

(b) Determine the transmissivity for electrons of energy ǫ = 10 meV and 100 meV

at a barrier width of 2 monolayers of AlAs and for a barrier of 10 monolayers

of AlAs.

30.6 Resonance state.

(a) Given is a GaAs/AlAs/GaAs/AlAs/GaAs heterostructure. Determine the energy

dependence of the transmissivity for electron waves of different energies.

(b) Design a heterostructure that is transparent for electrons of ǫ = 10 meV.

(c) Design a heterostructure that is transparent for electrons of ǫ 100 meV.

30.7 Injector of a quantum cascade laser.

(a) Design a quantum cascade laser of AlAs/GaAs/AlAs/GaAs/AlAs heterostruc-

tures embedded in chirped GaAs/AlAs superlattices for a quantum cascade laser

that may be able to generate radiation at a frequency of 4 THz.

(b) Estimate the thicknesses of the different layers.

(c) Discuss the role of the superlattice, especially in view of the result of the pre-

ceding problem.

http://dx.doi.org/10.1007/978-3-319-50651-7_24
http://dx.doi.org/10.1007/978-3-319-50651-7_24
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30.8 Semiconductor superlattice.

(a) Determine the effective mass m∗ of an electron in a superlattice (for propagation

along the superlattice axis) for an electron with k ∼ 0.

(b) Determine m∗ of a GaAs/AlAs superlattice with 14 monolayers GaAs and 2

monolayers AlAs (ǫm ∼ 140 meV).

(c) Determine m∗ of a GaAs/AlAs superlattice with 4 monolayers GaAs and 2

monolayers AlAs (ǫm ∼ 40 meV).

(d) Determine the effective mass m∗ of an electron in a superlattice (for propagation

along the superlattice axis) for arbitrary k and discuss the slope m∗(k) and m∗(ǫ).

(e) Determine the group velocity vg(k) and the peak group velocity.

(f ) Sketch the wave functions of the lowest miniband for k ∼ 0 and k = π/a.

(g) Sketch the wave functions of the second miniband for k ∼ 0 and k = π/a.



Chapter 31

A Comparison of Laser Oscillators

and Quasiclassical Solid State Oscillators

We present three types of quasiclassical oscillators that are able to generate microwave

radiation of high frequency: Gunn oscillator (used as source of radiation up to

∼200 GHz); superlattice oscillator (in development, up to 200 GHz); resonant-tunnel

diode oscillator (demonstrated up to 700 GHz). These oscillators are solid state oscil-

lators, driven by active media. An active medium of a solid state oscillator makes

use of the nonlinear transport in a semiconductor (Gunn oscillator) or a semicon-

ductor heterostructure (superlattice oscillator and resonant-tunnel diode oscillator).

The nonlinear transport is due to a negative mobility of conduction electrons. The

origin of negative differential mobility is of quantum mechanical nature. However,

the transport can be described classically.

A laser oscillator and a quasiclassical solid state oscillator have in common that

gain is mediated by a high frequency polarization of an active medium and, addition-

ally, that the active medium experiences a change during the buildup of an oscillation.

What makes the difference between a laser oscillator and a quasiclassical solid

state oscillator? In a laser oscillator, polarization occurs via interaction of a high

frequency field with single particles (atoms, molecules, free-electrons). In a quasi-

classical solid state oscillator, polarization occurs via interaction of a high frequency

field with charge density domains, i.e., with collectives of free-electrons. The forma-

tion of domains and thus of the polarization is due to nonlinear transport properties

of the active medium—and not by a population inversion. A quasiclassical solid state

oscillator shows an upper frequency limit that is determined by a relaxation time; this

is the time it takes the electrons to establish a collective. Oscillation is only possible

if the period of the high frequency field is larger than the relaxation time.

There is, beside the mechanism of interaction of radiation with a medium, a

difference in the techniques used to couple radiation to a medium. The active medium

of a laser fills a resonator partly or completely. A solid state diode that drives a

quasiclassical solid state oscillator can have extensions that are small compared to

the wavelength of the radiation. An antenna serves for coupling of the active medium

to the radiation. It is possible to use an active medium of small volume because the

gain of classical active media can be much larger than the gain of laser media.
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According to Kroemer, there are two types of domains and therefore two modes

of operation of a quasiclassical solid state oscillator—the pure charge accumula-

tion mode and the propagating dipole domain mode. Here, we treat the pure charge

accumulation mode, which is rarely described in textbooks, and we present an exper-

iment that demonstrates the occurrence of the pure charge accumulation mode in a

quasiclassical solid state oscillator.

We will, furthermore, discuss a classical oscillator model—the van der Pol oscil-

lator. The model describes an equivalent circuit containing a nonlinear resistance

that drives a self-excited oscillation in the circuit. The resistance of a van der Pol

oscillator does not undergo a change during the buildup of an oscillation.

The chapter provides a connection to textbooks that treat microwave oscillators.

31.1 Interaction of Radiation with an Active Medium

of a Laser or a Quasiclassical Oscillator

A comparison of a laser oscillator and a quasiclassical solid state oscillator shows

the following.

• A laser oscillator and a quasiclassical oscillator have in common: interaction of an

active medium with a high frequency field results in a high frequency polarization,

which is synchronized to the field; mutual interaction of field and polarization leads

to the buildup of both field and polarization.

• An active medium of a laser is, with respect to the charge distribution ρ, homoge-

neous (Fig. 31.1a). The corresponding material equation has the form ∇ · D = 0.

An active medium of a laser contains high frequency dipole moments carried

by atomic excitations. Interaction of these single-particle excitations with a high

frequency electromagnetic field leads to gain for the high frequency field.

• In the active medium of a solid state oscillator, the charge distribution is inhomo-

geneous, ∇ · D �= 0 (Fig. 31.1b). The periodic buildup and destruction of charge

density domains gives rise to a high frequency polarization of the active medium.

A quasiclassical solid state oscillator shows an upper frequency limit that is deter-

mined by the relaxation time of the electrons, which constitute a domain. The

material properties responsible for the occurrence of charge density domains are

based on quantum mechanical properties of a semiconductor (or a semiconductor

heterostructure).

Fig. 31.1 Active media.

a Laser medium. b Active

medium of a solid state

oscillator



31.2 Solid State Oscillators 569

31.2 Solid State Oscillators

There are various types of solid state oscillators for generation of microwave radia-

tion. We mention three types.

• Gunn oscillator. The active device (active medium and electrodes together) of a

Gunn oscillator is a Gunn diode. We describe a GaAs Gunn diode. The active device

consists of a doped GaAs layer embedded in highly doped GaAs layers carrying

metallic contacts. Nonlinearity is due to transfer of conduction electrons from a

high-mobility state to a low-mobility state in GaAs. The electron transfer, which

is of quantum mechanical nature, gives rise to a negative differential mobility for

voltages larger than a critical voltage. The negative differential mobility causes

formation of charge density domains. Gunn oscillators are available as microwave

oscillators up to frequencies of ∼200 GHz. Gunn oscillators are described in many

textbooks and survey articles; see, for instance, [234–239].

• Semiconductor superlattice oscillator. The basis of the nonlinearity of a semi-

conductor superlattice oscillator is the miniband transport. At voltages across a

superlattice that are larger than a critical voltage, miniband electrons show a neg-

ative differential mobility. The negative differential mobility causes formation of

charge density domains.

• Resonant tunnel diode oscillator. The active medium is a resonant-tunneling diode

(Sect. 31.7).

There are two modes of operation of a Gunn oscillator or of a superlattice oscillator.

• Pure charge accumulation mode [239] (Fig. 31.2a). Under the action of a static

field, a negative differential mobility medium extracts electrons from the cathode.

The excess electrons in the medium and the positive charges at the cathode rep-

resent a dipole domain connected with a quasistatic polarization of the medium.

Under the action of both a static field and a high frequency field, the number of

excess electrons within the medium (and thus the density of positive charge at

the cathode) increases and decreases periodically at the frequency of the high fre-

quency field. The corresponding high frequency polarization P mediates gain. In

the pure charge accumulation mode of operation of an oscillator, negative charge

flows periodically from the cathode into the negative differential mobility medium

and back to the cathode while the positive charge is bound to the cathode.

Fig. 31.2 Dipole domains in

an active medium of a solid

state oscillator. a Dipole

domain caused by pure

charge accumulation.

b Propagating dipole domain



570 31 A Comparison of Laser Oscillators and Quasiclassical …

• Propagating dipole domain mode [239] (Fig. 31.2b). Under the action of a static

field and of a high frequency field, negative and positive charges within the negative

differential mobility medium separate giving rise to dipole domains. A dipole

domain is formed near the cathode, travels through the medium, and disappears at

the anode. The periodic formation and destruction of domains at the frequency of

the high frequency field is joined with a high frequency polarization P of the active

medium. The polarization mediates gain. The formation of propagating domains

requires special boundary conditions for the field at the boundary between cathode

and the negative differential mobility medium.

We will consider a particular solid state oscillator, namely a semiconductor super-

lattice oscillator, operating in a pure charge accumulation mode.

31.3 Semiconductor Superlattice Oscillator

In a semiconductor superlattice oscillator (Fig. 31.3a), a superlattice in a cavity res-

onator drives the oscillation. The superlattice is electromagnetically coupled to the

field in the resonator via an antenna (a metal whisker). The antenna is also connected

Fig. 31.3 Semiconductor superlattice oscillator. a Arrangement. b Emission spectrum. c Threshold

behavior



31.3 Semiconductor Superlattice Oscillator 571

to a bias circuit containing a voltage source (voltage U ), which delivers a direct

current I . A filter in the bias circuit avoids loss of radiation to the bias circuit. Radia-

tion is coupled out from the resonator via the output port that contains a diaphragm.

The oscillator is suited to generate microwave radiation. The emission spectrum

(Fig. 31.3b), of an oscillator generating radiation near a frequency of 64 GHz, shows

a bandwidth (200 kHz) that is determined by the spectrum analyzer used to regis-

ter the spectrum. The emission line is, as indicated by the slope in the far wings, a

Lorentzian line; a small deviation is due to background of the spectrum analyzer. For

description of a superlattice oscillator, we follow [246].

Figure 31.3c (points and solid line) shows the output power Pout of the oscillator

for different strengths η of output coupling loss; a measure of the output coupling

loss η is the ratio of the aperture area and the area of the completely open output port.

At small η, with radiation stored in the resonator, Pout is small. With increasing η,

Pout increases, shows a maximum corresponding to optimum output coupling at ηopt,

and then decreases to zero at the threshold loss ηth. A solid state oscillator shows an

oscillation threshold behavior as a laser oscillator does.

To illustrate the principle of a superlattice oscillator, we consider the current-

voltage (I –V ) curve of a superlattice (Fig. 31.4a). With increasing voltage, the current

increases linearly at small voltage, then less than linearly, reaches a peak value Ip

at a critical voltage Uc, and remains constant for Us > Uc. A static voltage Us > Us

causes the buildup of a high frequency current I (t) and voltage U (t). The active

medium experiences feedback from the high frequency field stored in the resonator,

which results in a reduction δ I of the direct current. The current reduction is equal

to the amplitude of the high frequency current (Fig. 31.4b). The current reduction

occurs stepwise: at increasing Us, the direct current shows plateau-like slopes. A

current reduction, indicating oscillation, can occur already for U < Uc.

Fig. 31.4 Principle of the semiconductor superlattice oscillator. a I –V curve and time-dependent

current and voltage. b I –V curve without and with feedback from radiation
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We conclude from the occurrence of oscillations that the real high frequency

current and high frequency voltage contain components of opposite phases, i.e., that

the high frequency resistance of the superlattice is negative, which that is a condition

of gain. The high frequency resistance is equal to

Rneg = − Û/ Î . (31.1)

Û is the amplitude of the high frequency voltage and Î the amplitude of the high

frequency current.

Example A particular GaAs superlattice (diameter 4 µm; length 0.6 µm; electron

density N0 = 5 × 1022 m−3) has a critical voltage of 0.6 V and a peak current of

10 mA. Oscillation at 65 GHz results in a reduction of the current amplitude of

δ I = Î = 2 mA. The amplitude of the high frequency voltage is Û = 0.9 V (for

Us = 2 Uc). Thus, the negative resistance is equal to Rneg = −450 �. The exper-

imental output power at optimum output coupling is ∼0.5 mW corresponding to an

efficiency of 4% for conversion of electric power to power of microwave radiation.

31.4 Model of a Solid State Oscillator

We follow [234]. We characterize a (quasiclassical) solid state oscillator by an equiv-

alent resonance circuit. The resonance circuit can be a parallel or series resonance

circuit. We choose a parallel resonance circuit.

The equivalent circuit (Fig. 31.5a) describes a high frequency circuit containing

an active device with a negative resistance Rneg, a capacitance C , an inductance L

and a resistance R, which accounts for loss due to emission of radiation. The active

device (i.e., the active medium together with the electrodes) itself has an inductance

Ld and a capacitance Cd. To illustrate the principle of a negative resistance oscillator,

we make use a simplified circuit (Fig. 31.5b).

• If the total resistance is negative, an initial high frequency current in the loop will

grow; thus, we have the oscillation condition: the total resistance must be negative.

Fig. 31.5 Negative resistance oscillator. a Equivalent circuit and b simplified equivalent circuit
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Fig. 31.6 Dependence of

the magnitude of a negative

resistance on the current

amplitude

• At steady state oscillation, the sum of the resistances is zero; during onset of

oscillation, the magnitude of the negative resistance decreases from a small-signal

value to a large-signal value.

• If the total resistance is positive, an initial high frequency current will be damped

and oscillation will not start.

The magnitude of the negative resistance depends on the amplitude of the high

frequency current (Fig. 31.6). The absolute value of Rneg is largest for a small current

amplitude Î and is zero at maximum current amplitude Îmax obtained for R = 0.

The resistance R determines the point of steady state oscillation.

The output power of the oscillator is

Pout = (1/2)R Î 2 (31.2)

if the condition

Rneg + R = 0 (31.3)

is satisfied. An appropriate choice of the value of R—for instance, by an appropriate

choice of the output coupling aperture of the resonator—leads to optimum output

coupling. In the description of an equivalent parallel circuit, the threshold condition

of a solid state oscillator is given by

R < |Rth|; (31.4)

the loss resistance R must be smaller than the absolute value of the threshold resis-

tance Rth.

To maintain a steady state oscillation, the high frequency voltage across the loop

described by the complete equivalent circuit (see Fig. 31.5a) must be zero according

to Kirchhoff’s rules of voltages and currents in an electrical circuit,

I0 (Rneg + i Xd) + I0 (R + i X) = 0. (31.5)
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Xd is the reactance of the device and X = ωL − 1/(ωC) the reactance of the res-

onance circuit. Rneg + i Xd is the device impedance. The real part of the equation

leads to (31.3) and the imaginary part to

X + Xd = ω(L + Ld) −
1

ω

(

1

C
+

1

Cd

)

= 0. (31.6)

This condition provides the oscillation frequency at steady state oscillation.

We consider an oscillator with an active element carrying a high frequency current

(frequency ω) of amplitude Î ,

I (t) = Î cos ωt. (31.7)

The voltage across the active device is given by

U (t) = Rneg Î cos ωt − Xd Î sin ωt; (31.8)

we neglect higher harmonics. Voltage and current have a phase shift of

tan ϕ = −Xd/Rneg. (31.9)

Without loss (R = Rneg = 0), the phase shift between current and voltage is π/2.

We can write the oscillator equation in the form

L
dI

dt
+ RI +

1

C

∫

I dt + U = 0. (31.10)

Inserting (31.7) and (31.8) in (31.10) leads to the conditions of steady state oscillation,

Rneg + R = 0 and ωL − 1/(ωC) + Xd = 0.

A negative resistance device based on nonlinear properties of conduction electrons

in a semiconductor has internal degrees of freedom: the charge density distribution

in an active device (=active medium and electrodes together) can be inhomogeneous.

The degree of inhomogeneity depends nonlinearly on the voltage across the device.

The value of Rneg depends therefore on the internal dynamics.

We consider an oscillator operated at a fixed R = |Rneg|, i.e., at a fixed static

voltage. In the case that the oscillator is submitted to a small additional time dependent

voltage U1(t), the oscillator equation is given by

L
dI

dt
+ RI +

1

C

∫

I dt + U = U1(t). (31.11)

We solve the equation by using the ansatz:

I (t) = Î (t) cos[ωt + ϕ(t)], (31.12)
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where higher harmonic currents are neglected. It follows that the high frequency

voltage is equal to

U (t) = Rneg Î cos[ωt + ϕ(t)] − Xd Î sin[ωt + ϕ(t)]. (31.13)

We assume that Î (t) and ϕ(t) do not vary appreciably over one cycle of the oscillation

(slowly varying envelope approximation) and find the differential equations

dI

dt
= − Î

(

ω +
dϕ

dt

)

sin(ωt + ϕ) +
d Î

dt
cos(ωt + ϕ), (31.14)

∫

I dt =

(

Î

ω
−

Î

ω2

dϕ

dt

)

sin(ωt + ϕ) +
1

ω2

d Î

dt
cos(ωt + ϕ). (31.15)

Using (31.12) and (31.13), multiplying by cos(ωt + ϕ) and sin(ωt + ϕ) and inte-

grating over a period T = 2π/ω, we find from (31.14) and (31.15) two oscillator

equations

(

L +
1

ω2C

)

d Î

dt
+

(

Rneg + R
)

Î =
2

T

∫ t

t−T

U1(t) cos(ωt + ϕ)dt (31.16)

and

(

−ωL +
1

ωC
− X̄

)

−

(

L +
1

ω2C

)

dϕ

dt
=

2

Î T

∫ t

t−T

U1(t) sin(ωt + ϕ)dt.

(31.17)

If an external voltage is absent, these differential equations describe self-excited

oscillation of a quasiclassical solid state oscillator. The description of onset of oscil-

lation and steady state oscillation of a specific oscillator requires knowledge about

the parameters R, L , C of the passive elements and the parameters Rneg( Î ), Cd( Î ),

and Ld( Î ) of the active device. If an external voltage is present, the equations describe

phase locking of a classical oscillator to an external (weak) high frequency voltage

(that is delivered, for instance, by a highly stabilized oscillator).

In comparison with a laser oscillator coupled to an external field—characterized

by five differential equations of first order (Sect. 9.9)—the quasiclassical solid state

oscillator coupled to an external field can be characterized by only two differential

equations of first order, an equation for the amplitude of the current, and another

equation for the phase between current and external field. The equations are coupled

equations that have in common the parameters of the active device.

We can describe the superlattice oscillator as a regenerative amplifier with a res-

onator mediating feedback. Amplification of thermal radiation leads to phase and

amplitude fluctuations and therefore to a noise bandwidth of the oscillator radia-

tion. The spectral distribution of the radiation has a Lorentzian lineshape (Sect. 4.5).

http://dx.doi.org/10.1007/978-3-319-50651-7_9
http://dx.doi.org/10.1007/978-3-319-50651-7_4
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The quality factor for radiation generated in a single mode oscillation is equal to

(Sect. 8.9)

Qrad = Qres Z/Z0. (31.18)

Qres is the quality factor of the resonator, Z the average occupation number of photons

in the resonator mode at steady state oscillation, and Z0 the average occupation

number of thermal photons in the resonator mode without oscillation. Z follows from

the relation Pout = Zhν/τp, where τp = Qres/ω is an average lifetime of a photon

in the resonator. The thermal occupation number is Z0 = kT/hν; k is Boltzmann’s

constant and T the temperature.

Example Superlattice oscillator with a superlattice described in the preceding and

the following example. Frequency ν = 6.5 × 1010 Hz; Qres = 30; output power

Pout = 0.5 mW; Z0 ∼ 100; Z = 2 × 108; Qrad ∼ 108.

A more detailed treatment of noise in solid state oscillators can be found, for

example, in [244, 245].

31.5 Dynamics of Gain Mediated by a Semiconductor

Superlattice

We describe a particular superlattice (Fig. 31.7a). It consists of layers of GaAs and

of AlAs in turn. The superlattice is doped and contains free-electrons. Adjacent to

the superlattice are, on both ends, highly doped GaAs layers (electron concentration

2 × 1024 m−3). One of these layers connects the superlattice to a highly doped GaAs

substrate and the other layer is covered with a metallic contact layer.

Fig. 31.7 Semiconductor

superlattice. a Geometric

structure. b Drift

velocity-field characteristic

for a homogeneous field

along the superlattice axis.

c Experimental I –V curve

(simplified)

http://dx.doi.org/10.1007/978-3-319-50651-7_8
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The drift velocity-field characteristic (Fig. 31.7b) is expected to have the form of

an Esaki-Tsu characteristic:

vET = vET,m

2 Es/Ec

1 + (Es/Ec)2
(31.19)

Es is the static field, vET,m the maximum drift velocity reached at the critical

field Ec. The differential mobility μ = dvET/d Es is equal to the ohmic mobil-

ity μohm = 2vET,m/Ec for fields around Es = 0 and is negative for Es > Ec. The

negative differential mobility has the largest absolute value for E = 1.7 Ec, where

µ = −µohm/8. We will derive the Esaki–Tsu characteristic in Sect. 32.3. We will

show that the critical field is determined by the superlattice period a and a relax-

ation time τ according to Ec = �/eaτ ; the relaxation time indicates how fast an

equilibrium is established in an ensemble of free-electrons in a superlattice.

If the field along the superlattice axis is homogeneous even if the field exceeds

the critical field, we obtain the Esaki–Tsu I –V characteristic, which is given by

IET = Ip

2 Us/Uc

1 + (Us/Uc)2
. (31.20)

Us = Esl is the static voltage across the superlattice, Uc = Ecl is the critical voltage,

and

Ip = πr2 N0evET,m (31.21)

is the peak current; r is the radius of the superlattice and N0 the electron density. The

ohmic resistance around Us = 0 is equal to

Rohm =
Uc

2Ip

. (31.22)

Example of a superlattice (radius r = 2 µm; l = 0.6 µm; electron density N0 =

5.5 × 1022 m−3); vET,m = 105 m s−1; Ip = 11 mA; Ec = 106 V m−1; Uc = 0.6 V; τ ∼

1.5 × 10−13 s; ohmic resistance Rohm = 27 � (around Us = 0) and ohmic mobility

μohm = 0.20 m2 V−1 s−1; ohmic conductivity σohm = 1.8 × 103 �−1 m−1.

Now, the experimental I –V curve (Fig. 31.7c) shows a constant current (peak

current Ip = N0evET,m) at voltages above Uc. The origin of the excess current

Iexc(U ) = Ip − N0evET(E), with U = El, are excess electrons extracted from the

cathode.

A constant current (I = Ip) corresponds to an excess electron density n (Fig. 31.8a)

that increases with Us (>Uc) according to

n(Us) = N0

(

vET,m

vET(Us)
− 1

)

= N0

(1 − Us/Uc)
2

2Us/Uc

. (31.23)

http://dx.doi.org/10.1007/978-3-319-50651-7_32
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Fig. 31.8 Superlattice

biased with a static voltage.

a I –V curve and excess

current at a static voltage Us.

b Charge density and

polarization

The excess electron density is zero at Us = Uc, equal to N0 at Us = 3.7 Uc and

increases linearly with Us at Us/Uc ≫ 1. For Us/Uc ≫ 1, the excess electron den-

sity increases linearly with the static voltage, n = (1/2)N0Us/Uc. We suppose that

the positive charges are distributed on a plane (at the cathode) adjacent to the super-

lattice boundary. The excess charge within the superlattice is equal to the positive

charge at the cathode (Fig. 31.8b, upper part). The density of the excess charge in

the superlattice is -ne and the area density of the charge at the cathode is nel. The

excess charge in the superlattice together with the positive charge at the cathode

form a dipole domain (Fig. 31.8b, lower part). It consists of a charge density domain

within the superlattice and a positive area charge bound to the cathode. In the absence

of current oscillations, a dipole domain is associated with a quasistatic polarization

P(Us) = −n(Us)el/2. The direction of polarization is opposite to the direction of

the direct current Ip.

The density n(Us) increases with increasing Us (Fig. 31.9a). If the voltage across

the superlattice suddenly changes from Us to Us + U1, additional excess electrons

flow into the superlattice until the excess charge density is equal to n(Us + U1) in

the whole superlattice. If the voltage suddenly changes from Us + U1 to Us − U1, all

excess electrons escape from the superlattice. For Us = 2 Uc and U1 = 1.5 Uc, the

characteristic time of a cycle of filling of the superlattice with excess electrons and

their escape is tc ∼ 2 × l/(0.8vET,m). The critical rate of generation of a full domain

and its destruction is

νc = 0.4 vET,m/ l. (31.24)

The critical rate is ∼70 GHz at a superlattice of a length l = 0.6 µm.
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Fig. 31.9 Dynamics of gain.

a I –V curve. b Voltage,

polarization and current

during an oscillation cycle

Under the influence of both a static and a high frequency voltage, the high fre-

quency voltage causes a periodic change of polarization. The temporal change of

polarization is equal to a polarization-current density. A high frequency voltage (fre-

quency νc) of a rectangular shape (Fig. 31.9b) produces a polarization that has, in

a simplified picture, a triangular shape and is phase-shifted by π/2. The current

has a rectangular shape and is phase-shifted by π relative to the voltage. A Fourier

transformation yields the amplitude Û = (4/π) U1 of the high frequency voltage

U = Û cos ωt and the amplitude P̂ = nel/2π of the high frequency polarization

P = P̂ sin ωt . The high frequency polarization current is equal to I = − Î cos ωt ,

where Î = πr2ω P̂ = r2lνne is the amplitude of the current; the high frequency

polarization-current is continued outside the superlattice by a high frequency cur-

rent (flowing through the antenna). For static voltages that are noticeably larger than

Uc, the electrons are not fast enough to follow the high frequency voltage. There-

fore, the effective length leff of an excess charge domain is shorter than l. We write

leff = 0.2vET,m/vc. The product nleff (= 1.2 N0l) and thus P̂ are independent of Us.

We obtain a constant current amplitude

Î = 1.2 r2νl N0e. (31.25)

A constant amplitude of the high frequency current results in a plateau in the I − V

curve for the superlattice in the oscillating state. This is in accord with the experi-

mental result.

An analysis of the large-signal behavior of the amplitude of the high frequency

voltage and the amplitude of the high frequency current leads to a negative differential

resistance of the superlattice operating in the accumulation mode, Racc = −Û/ Î ,

which is equal to
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Racc = −
2πvET,m

ν l

Û

Uc

2
(

Us/Uc + (π/4)Û/Uc

)

(

|1 − Us/Uc − (π/4)Û/Uc|
)2

Rohm (31.26)

for Us ∼ Uc and

Racc = −
1.6πvET,m

ν l

Û

Uc

Rohm. (31.27)

for U 2
s ≫ U 2

c . This analysis is oriented at the I –V curve (see Fig. 31.9a). It is taken

into account that the flow of excess charge takes time and it was made use of (31.20)–

(31.22) and (31.24).

We estimate Racc (Fig. 31.10, solid line), using the values: Û = 0.2 Uc; Us ∼ Uc;

Û = Us − 0.5 Uc for Us > 1.2 Uc. The absolute value of Racc has the largest value

for Us ∼ Uc, has a minimum for Us ∼ 2 Uc, and then increases with increasing Us.

A superlattice without feedback of radiation has, for Us > Uc, a small-signal

negative differential resistance. A high frequency voltage U = Û cos ωt of small

amplitude Û causes the high frequency polarization P = −(el/2)n. This leads, with

dn/dt = (dn/dUs)dUs/dt , to the current amplitude

Î = πr2(el/2)ωÛdn/dUs, (31.28)

where
dn

dUs

=
N0

Uc

U 2
s /U 2

c − 1

2U 2
s /U 2

c

. (31.29)

It follows that the small-signal differential resistance for the superlattice operating

in a pure charge accumulation mode, Racc,0 = −Û/ Î , is given by

Fig. 31.10 Differential resistances of a superlattice; Racc,0, small-signal negative differential resis-

tance of a superlattice operating in the pure charge accumulation mode; Racc, large-signal negative

differential resistance of a superlattice in an oscillator operating in the pure charge accumulation

mode; RET,0, Esaki–Tsu small-signal differential resistance
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Racc,0 = −
2vET,m

πν l

2U 2
s /U 2

c

U 2
s /U 2

c − 1
Rohm. (31.30)

Racc,0 (Fig. 31.10, dashed dotted) is equal to −∞ for Us = Uc and assumes the

constant value −(2vET,m/πνl)(U 2
s /U 2

c )Rohm for U 2
s ≫ U 2

c .

Thermal radiation in a resonator is amplified according to the small-signal negative

resistance Racc,0. Due to fluctuations of amplified thermal radiation, a superlattice

can be promoted into a state of larger negative resistance. If this resistance reaches

Racc, stable oscillation can occur. The resistance Racc corresponds to the threshold

resistance Rth since, for R < |Rth|, feedback is strong enough to start oscillation.

Then at steady state oscillation, the superlattice resistance |Racc| assumes the value

R. Because of fluctuations of the field, i.e., because of noise, oscillation can occur

also for Us < Uc.

It follows from (31.19) that the small-signal Esaki-Tsu differential resistance,

RET,0 = 1/(dI/dUs) is equal to

RET,0 =
(1 + U 2

s /U 2
c )2

1 − U 2
s /U 2

c

Rohm. (31.31)

RET,0 (Fig. 31.10, dashed) is equal to the ohmic resistance Rohm near Us = 0, then

increases and becomes infinitely large for U → Uc. RET,0 is negative for Us ≥ Uc,

varies from −∞ at Us = Uc to a value of −8Rohm for Us ∼ 2Uc and is equal to

−(U 2
s /U 2

c )Rohm for U 2
s /U 2

c ≫ 1.

In the voltage range of oscillation, the small-signal Esaki–Tsu resistance RET,0

is comparable with the large-signal resistance Racc. However, the absolute value of

the large-signal Esaki–Tsu negative resistance RET is smaller than the absolute value

of RET,0 according to the slope of the Esaki–Tsu I –V curve. Therefore, |Racc| is

larger than |RET|. This means that the interaction of the high frequency field with an

electron collective of a pure charge accumulation mode is associated, with respect

to the negative resistance, with a larger nonlinearity than the interaction of the high

frequency field with single electrons in the case that the field in the superlattice is

homogeneous.

31.6 Balance of Energy in a Superlattice Oscillator

The electric field associated with a domain has a triangular shape, with a low-field

value E1 at the anode and a high-field value E2 at the cathode; E1 (<Ec) is also the

field immediately after domain destruction. From the Poisson equation

∇ · Dρ, (31.32)

we obtain the relation ne/2 = ǫǫ0(E2 − E1)/ l. A fully developed dipole domain

carries the field energy πr2lǫǫ0(E2 − E1)
2/2. The field energy of a domain stems
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from the high frequency field in the resonator. During a half cycle of the field, the

domain transfers its field energy to the high frequency field and during the following

half cycle, energy of the high frequency field is used to build up the field of the

domain.

Energy balance requires that the power delivered by the voltage source is equal

to the sum of the losses (we modify a discussion in [236]):

πr2lνN0eUs = πr2lνN0eE1l + Pout + Pdom. (31.33)

The loss terms concern:

• πr2lνN0eE1l = loss due to the current carried by the electrons (of density N0).

• Pout = loss due to output coupling of radiation.

• Pdom = loss due to dissipation caused by relaxation processes during domain for-

mation and destruction.

We find

Us = E1l + Urad + Udom, (31.34)

where Urad = Pout/(πr2lνN0e) and Udom = Pdom/(πr2lνN0e). The static voltage

across the superlattice is equal to the sum of three terms: the voltage necessary to drive

the normal electrons by the field E1; the voltage Urad necessary to compensate loss of

radiation and the voltage Udom necessary for compensation of energy of dissipation

associated with domains. The normal electrons drift with the average velocity v(E1)

through the superlattice. The domains, with the positive charges bound to the cathode,

appear and disappear at the repetition rate ν.

Example (for the superlattice already discussed) For Us = 2 Uc (=1.2 V) and

Prad = Pout at optimum output, the analysis yields the data: E1 = 0.7 Ec; E2 = 4

Ec; E1l = 0.5 V; Urad = 0.25 V; Udom = 0.5 V. Accordingly, the dissipation energy

is, for Us = 2 Uc, equal to half the field energy of a fully developed domain. The

direct current strength is determined by the drift velocity at the lower field and is

given by the expression Idc/Ip = N0ev(E1)/Ip (∼0.8).

The upper limit frequency νlimit is determined by the intraminiband relaxation of

the electrons in a superlattice. It follows from the intraminiband relaxation time (1.5

× 10−13 s) that νlimit is ∼1 THz. The appropriate superlattice length, according to the

relation νc = 0.4 νET,m/ l has a value of ∼10 nm. This means that we are no longer

dealing with a superlattice but with a resonant-tunneling diode like structure (next

section).

A more detailed discussion of the pure charge accumulation mode observed for

superlattice oscillators can be found in [246]. The study presents a method that is

suited to investigate the mechanism of gain of a solid state oscillator. Such studies may

contribute to an improvement of the efficiency of microwave oscillators, particularly

in the range above 100 GHz.
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31.7 Resonant-Tunneling Diode Oscillator

The resonant-tunnel diode oscillator [234, 247] is a quasiclassical solid state oscilla-

tor that reaches very high oscillation frequencies. Because of small radiation power,

resonant-tunneling diode oscillators are not in use.

A resonant-tunneling diode (Fig. 31.11a) consists, for instance, of two AlAs lay-

ers separated by a GaAs layer, embedded in n GaAs. The layers form a quantum

well with a discrete energy level for electron motion perpendicular to the layers.

Under the action of a static voltage Us, electrons tunnel through the quantum well

from one n GaAs region to the other n GaAs region, which results in a current. If the

energy of the tunneling electrons coincides with the energy of the discrete energy

level (Fig. 31.11b), the tunnel current has a maximum as indicated in the I –V curve

(Fig. 31.11c). The I –V curve has, for a voltage above a critical voltage Uc, a neg-

ative slope, which corresponds to a negative differential resistance. The I –V curve

is a hypothetical curve: because of the negative differential resistance, the charge

distribution is inhomogeneous.

The negative differential resistance gives rise to a self-excited oscillation if the

active element is coupled to a resonance circuit; the oscillation frequency is deter-

mined by the resonator. Radiation generated in first order has been observed in

frequency ranges from 10 GHz up to several hundred GHz. The power decreased

strongly at frequencies above 100 GHz. The highest frequency of radiation emitted

Fig. 31.11 Resonant tunnel diode. a Quantum well. b Voltage-biased quantum well. c Hypothetical

I –V curve. d I –V curve in the case of occurrence of feedback from a high frequency field
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by a GaAs/AlAs resonant-tunneling diode oscillator was near 400 GHz [247] and

near 700 GHz for an InAs/AlSb resonant-tunneling diode oscillator [248].

Example InAs/AlAs resonant-tunneling diode [249]. Double barrier structure with

1.5 nm thick undoped barriers separated by a 6.4 nm thick undoped InAs quantum

well; diameter 1.8 µm; current 5 mA; voltage 1.3 V; Ropt ∼ −50 �; power 0.3 µW

at 712 GHz.

The resonant-tunneling diode oscillators operated most likely in the pure charge

accumulation mode.

31.8 Van der Pol Oscillator

We discuss a model of a classical electric oscillator, namely the van der Pol oscillator.

The active device is a resistance that shows a negative differential resistance above

a critical voltage Uc (Fig. 31.12a); the I−V curve resembles the hypothetical I−V

curve of the resonant-tunneling diode. Under the action of a static voltage (bias

voltage U0), with the resistance coupled to a resonant circuit, a self-excited oscillation

can occur. It is characteristic of this classical oscillator model that the current through

the active device and the voltage across the device always follow the I−V curve and

that the curve does not change during buildup of an oscillation.

To study basic properties of a classical oscillator, we introduce an I−V curve

(Fig. 31.12b) that has, around the range of negative shape, a similar slope as the

hypothetical I –V curve of the resonant-tunneling diode and can be described by an

analytical expression,

I (U ) = I0 − a (U − U0) + b (U − U0)
3 = f (U ), (31.35)

Fig. 31.12 Classical

oscillator. a Hypothetical

I –V curve of a tunnel diode.

b I –V curve of a van der Pol

oscillator
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Fig. 31.13 Equivalent circuit of a negative resistance oscillator of the van der Pol type

where a > 0 and b > 0 are constants. The I−V curve has the largest negative slope

for U = U0. The slope of the I−V curve according to (31.35) is unrealistic for

voltages U ≪ U0 and U ≫ U0. In the range around U0, it shows for appropriate

parameters a, b, U0, and I0, the hypothetical characteristic of a tunnel diode.

We consider a parallel equivalent circuit (Fig. 31.13) containing a negative resis-

tance Rneg, an inductance L , a capacitance C , and a loss resistance R, which describes

loss due to emission of radiation. The high frequency currents through the capaci-

tance (Ic), through the inductance (IL), and through the resistance (IR) are related to

the high frequency voltage UHF between the points 1 and 2,

IC = C
dUHF

dt
; IL =

1

L

∫

UHFdt; IR =
UHF

R
. (31.36)

The sum of the total current in point 1 of the circuit must be zero,

IC + IL + IR + Id = 0. (31.37)

Id is the current through the nonlinear device. The signs follow from Kirchhoff’s

rules for voltages and currents in a circuit taking into account that the instantaneous

voltage UHF(t) across the active element has a sign that is opposite to the sign of

the high frequency current flowing through the resistance. The sum of all currents

through a knot is zero and the sum of all voltages in a loop is zero according to

Kirchhoff’s rules. By differentiation, we obtain

C L
d2UHF

dt2
+ UHF +

L

R

dUHF

dt
= −L

dId

dt
. (31.38)

The current, i.e., the derivative of the current with respect to time, is the source of

the high frequency voltage.

We can write
dId

dt
=

dId

dU

dU

dt
=

d f

dU

dU

dt
. (31.39)
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Then (31.36) assumes the form

C L
d2U

dt2
+ L

(

1

R
+ f ′(U0 + U )

)

dU

dt
+ U = 0. (31.40)

We omitted the subscript HF. We find, with ω2
0 = 1/LC , the differential equation

d2U

dt2
+ (−γ + κ)

dU

dt
+ ω2

0U = 0, (31.41)

where

γ = γ (U ) = −C−1

(

∂ Id

∂U

)

U

(31.42)

is the growth coefficient and

κ = 1/RC (31.43)

the damping coefficient. In the active element of a classical oscillator, the growth

coefficient γ depends on the instantaneous voltage U (t) at time t .

Using the analytical form (31.20) of the I –V curve, we can write

IHF = −aUHF + bU 3
HF. (31.44)

It follows that
(

∂ I

∂U

)

U

= −a + 3bU 2; (31.45)

we again omit the subscript HF. We find the growth coefficient

γ = −a/C + 3b/C U 2 (31.46)

and obtain the differential equation (van der Pol equation) for the high frequency

voltage

d2U

dt2
+

(

−γ0 + κ +
3b

C
U 2

)

dU

dt
+ ω2

0U = 0. (31.47)

The differential equation describes a self-excited oscillator with the small-signal

growth coefficient

γ0 =
a

C
(31.48)

and two damping terms. The first damping term, κ , characterizes output coupling of

electromagnetic radiation and the second term intrinsic loss in the active element.

This loss is zero for U = 0 and increases proportionally to the square of U . The van

der Pol equation describes an oscillation that is strongly nonlinear, except in the case

that the net gain is small,
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γ0 − κ ≪ ω0. (31.49)

In this case the van der Pol equation has a solution that corresponds to a nearly

harmonic oscillation. With the ansatz

U = A(t) cos ω0t, (31.50)

where A(t) is a slowly varying function, γ0 − κ ≪ ω0, we obtain

dU

dt
=

dA

dt
cos ω0t − ω0 A sin ω0t, (31.51)

d2U

dt2
= −2ω0

dA

dt
sin ω0t − ω2

0 A cos ω0t. (31.52)

The differential equation leads, with (γ0 − κ)
∣

∣

dA
dt

∣

∣ ≪ ω0

∣

∣

dA
dt

∣

∣ (SVEA), to

−2ω0

dA

dt
sin ω0T − (−γ0 + κ)ω0 A sin ω0t −

3bω0

C
A3 cos2 ω0t sin ω0t = 0.

(31.53)

Using the relation

cos2 α sin α =
1

2
(1 + cos 2α) sin α = −

1

4
sin α +

1

4
sin 3α (31.54)

and neglecting the higher order term sin 3α, we find

dA

dt
+

1

2
(−γ0 + κ)A +

3b

8C
A3 = 0. (31.55)

This differential equation has exactly the same form as the differential equation

(9.144) derived for the amplitude of the field in a laser oscillator. The solution is

A(t) =
A∞

√

1 + (A∞/A0)2 e−(γ0−κ)t
. (31.56)

A0 = A(t = 0) is the initial amplitude of the voltage and

A∞ = 2
√

(γ0 − κ)C/3b (31.57)

is the amplitude of the high frequency voltage at steady state oscillation. After a

sudden turning on of the active element, a small high frequency voltage initiates the

buildup of an oscillation. The initial high frequency voltage stems from noise in the

resonance circuit.

http://dx.doi.org/10.1007/978-3-319-50651-7_9
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Fig. 31.14 The van der Pol

oscillator at a small net gain

The van der Pol oscillator of small net gain γ0 − κ is driven in a range of the

voltage amplitude that corresponds to the range of almost constant negative slope of

the I –V curve (Fig. 31.14). At small amplitude of the voltage, the intrinsic damping

is negligibly small. At large amplitude and steady state oscillation, the intrinsic

damping becomes efficient during each cycle at instantaneous voltages in the ranges

U ≈ ±A. This leads, as our analysis shows, to the same form of the first-order

differential equation for the amplitude of the voltage in the classical oscillator as we

found for the amplitude of the field in a laser oscillator, although the nonlinearities

have completely different origins.

The van der Pol oscillator represents a model oscillator of a negative-resistance

oscillator that is discussed in many textbooks; see, for instance, [250].

References [240–243].

Problems

31.1 Equivalent circuit.

(a) Replace the equivalent circuit of Fig. 31.5 by a parallel resonant circuit; the active

device has the negative admittance Gd and the loss resistor the admittance G.

(b) Derive the differential equation for the high frequency voltage.

(c) Discuss the dependence of the negative admittance of the device on the voltage

across the device.

(d) Show that the output power of the oscillator is Pout = (1/2)GÛ 2, where G +

Gneg = 0 is the condition of steady state oscillation.

31.2 Electric polarization.

(a) Determine the electric polarization of a dipole domain consisting of a positive

area charge ρle at x = 0 and a negative charge of density ρ in the range 0, l.
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(b) Determine the polarization of a dipole domain consisting of a negative charge

of area density ρle at x = x0 and a positive charge of density ρ in the range

x0, x0 + l.

31.3 Van der Pol oscillator.

(a) Evaluate for a van der Pol oscillator (with the data: a = 10−2 �−1; b = 10−2

�−1 V−2; ω0 = 2π × 1010 Hz; C = 1 pF; and G = 1�−1) the small-signal net

growth coefficient and show that it is small compared to ω0.

(b) Determine the voltage amplitude for the steady state oscillation.

(c) Determine the current amplitude for the steady state oscillation. [Hint: make use

the relation cos3 α = 3
4

cos α + 1
3

cos 3α and neglect the term with 3α.]

31.4 Van der Pol equation.

(a) Show that the van der Pol equation can be written in dimensionless units,

d2 y

dτ 2
+ ǫ(−1 + y2)

dy

dτ
+ y = 0,

where y is the voltage in dimensionless units, τ = ω0t the dimensionless time

and ǫ the small-signal net gain coefficient in dimensionless units.

(b) Solve the van der Pol equation for ǫ ≪ 1 at steady state oscillation. [Hint: make

use of the relation cos3 τ = 3
4

cos τ + 1
3

cos 3τ and neglect the term with cos 3τ .]

31.5 Which of the following differential equations describe a self-sustained oscil-

lation?

(a)
d2 y

dt2
+

dy

dt
+ y = 0.

(b)
d2 y

dt2
−

dy

dt
+ y = 0.

(c)
d2 y

dτ 2
+ ε(−1 + y2)

dy

dτ
+ y = 0.

31.6 Compare a classical oscillator and a laser oscillator. (A classical oscillator has

a stable I–V characteristic, Fig. 31.12, while a laser oscillator has a current-density-

field characteristic that varies during onset of oscillation, Fig. 9.7.)

31.7 Show that the impedance Z(ω) of a resonance electrical circuit has Lorentzian

lineshape.

http://dx.doi.org/10.1007/978-3-319-50651-7_9


Chapter 32

Superlattice Bloch Laser: A Challenge

The superlattice Bloch laser (also called Bloch oscillator) exists only as an idea.

We discuss this type of laser for two reasons. First, a superlattice Bloch laser would

provide a semiconductor source of coherent radiation in the 1–10 THz range—with

operation at room temperature. Second, there are, with respect to the formal descrip-

tion of a Bloch laser medium, many similarities to a free-electron laser medium,

although the origin of gain is completely different.

In a superlattice Bloch laser, free-electrons in a semiconductor superlattice per-

form, under the action of a static electric field directed along the superlattice axis,

Bloch oscillations. The oscillation frequency (=Bloch frequency = resonance fre-

quency) is determined by the strength of the static field and the period of the superlat-

tice. A high frequency electric field, also oriented along the superlattice axis, causes

a phase modulation of the Bloch oscillations. This results in a high frequency drift

current along the superlattice axis. Interaction of the high frequency drift current

with the high frequency electric field mediates gain for the high frequency field; gain

is due to transfer of energy of translation of the electrons to energy of the high fre-

quency field. The Bloch frequency increases linearly with the strength of the static

field. Frequency tuning over a large range is possible by changing the static field

strength, that is, the voltage across a superlattice. The amplitude of the high fre-

quency field in an active medium of a Bloch laser medium is limited; even if the high

frequency field in the laser resonator has no loss, the field cannot exceed a saturation

field—conventional lasers do not have such a limitation.

Suitable as an active medium is a semiconductor superlattice submitted to a homo-

geneous static electric field Es of a strength that is larger than a critical field Ec.

However, under this condition, the electrons tend to form charge density domains,

which destroy the homogeneity of the field. We will mention methods that may be

suited to avoid domains.

We study transport properties of a superlattice in a homogeneous electric field—

assuming that the field remains homogeneous even if Es > Ec. We characterize

Bloch oscillations and derive the current-voltage characteristic of a superlattice.

© Springer International Publishing AG 2017
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We derive the small-signal gain coefficient and the saturation field amplitude. Gain

can occur up to the Bloch frequency νB.

We also present an energy-level description of the superlattice Bloch laser. The

energy levels of an electron, which executes Bloch oscillations, form an energy-ladder

system (a Wannier–Stark ladder): the energy levels are equidistant and have a next-

near energy distance of hνB. In this description, radiation is generated by stimulated

transitions of electrons. An electron, which occupies a level of the energy-ladder

system, emits a photon by a transition to a distorted state at an energy slightly above

the next near energy level at lower energy.

32.1 Principle of a Superlattice Bloch Laser

Figure 32.1 illustrates the principle of a superlattice Bloch laser. A voltage source

(voltage Us) produces a direct current (I ) that flows as electron current through an

n-doped semiconductor superlattice. In the superlattice, miniband electrons carry the

current. The miniband electrons execute—under the action of the static field along

the superlattice axis—free-electron oscillations (=Bloch oscillations). The resonance

frequency of a free-electron oscillator is the Bloch frequency

νB =
eaEs

h
. (32.1)

Es is the strength of the static field within the superlattice and a the superlattice

period. The Bloch frequency is proportional to Es and to a.

We assume that a superlattice fills a resonator, which is formed by the metallic

anode, the metallic cathode, and four free surfaces of the superlattice. Interaction of

the electrons, performing Bloch oscillations, with a high frequency electric field can

result in gain (Bloch gain) for the high frequency electric field. Radiation (power

Pout) is coupled out via free surfaces of the superlattice.

The gain coefficient is, approximately, given by (Sect. 32.4):

α(ν) = αp ḡL,disp(ν), (32.2)

Fig. 32.1 Principle of a

superlattice Bloch laser
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where

αp = f (T )
N0e2

4π(c/n)ε0m∗νB

(32.3)

is a peak gain coefficient, f (T ) ≤ 1 a temperature parameter, N0 the electron density,

c/n the speed of light in the superlattice, n the refractive index at the laser frequency,

m∗ the effective mass of an electron at the bottom of the miniband of the superlattice

ḡL,disp(ν) =
ν0 − ν

ΔνB/2
ḡL,res(ν) (32.4)

is the normalized Lorentz dispersion function, and

ḡL,res(ν) =
Δν2

B/4

(νB − ν)2 + Δν2
B/4

(32.5)

the corresponding Lorentz resonance function; it has the halfwidth ΔνB = 1/(πτ),

where τ is the dephasing time of the Bloch oscillations. (Dephasing is mainly due

to energy relaxation. Therefore, the dephasing time is equal to the energy relaxation

time of an electron.)

The gain curve (Fig. 32.2) is antisymmetric with respect to the Bloch frequency

νB, in the vicinity of the Bloch frequency. The gain coefficient is positive for ν < νB.

The maximum small-signal gain coefficient is equal to

αm =
αp

2
= f (T )

N0e2

4π(c/n)ε0m∗νB

. (32.6)

The distance between the frequency of the maximum and the frequency of the

minimum of the gain coefficient curve is equal to ΔνB. The maximum of the gain

coefficient occurs at the frequency νB − ΔνB = 2. The maximum gain coefficient is

proportional to the electron density and inversely proportional to the Bloch frequency.

Fig. 32.2 Calculated gain

coefficient of a

semiconductor superlattice



594 32 Superlattice Bloch Laser: A Challenge

The amplitude of the field in a Bloch laser is limited. The saturation field amplitude

is equal to (Sect. 32.5)

Asat =
hνB

ea
. (32.7)

It follows that the output power is given by

Pout =
ε0 A2

sat a1a2 L

2τp

, (32.8)

where a1a2 L is the volume of the superlattice and τp the lifetime of a photon in the

laser resonator; we assume that emission occurs, for instance, mainly via the two

areas opposite to the long axis of a 101 rectangular resonator.

Table 32.1 shows data used for calculation of the gain coefficient of a particular

GaAs/AlAs superlattice; a superlattice with 14 monolayers of GaAs and 2 monolay-

ers of AlAs per period (a = 4.2 nm). A superlattice with these data can be prepared

with high quality by the use of molecular beam epitaxy. It has the largest miniband

width ǫm (=0.14 eV) that can be achieved for a GaAs/AlAs superlattice; the effective

mass m∗ of a superlattice with these data is almost the same as for bulk GaAs. The

table lists data that concern different quantities.

Table 32.1 Data of a GaAs/AlAs superlattice Bloch laser

Quantity Value

a 4.2 nm Superlattice period

ǫm 140 meV Miniband width

m∗ = 2�
2/εma2 6 ×10−32 kg Effective mass

τ 5 ×10−13 s Relaxation time

ΔνB = 1/πτ 6 ×1011 Hz Width of resonance

QB = νB/ΔνB 8 Quality factor

Δνg ∼ ΔνB/2 6 ×1011 Hz Gain bandwidth

Ec 3 ×105 V m−1 Critical field

ν 4.7 ×1012 Hz Laser frequency

νB 5 ×1012 Hz Bloch frequency

hνB 20 meV

n 3.7 Refractive index

Es 3 ×106 V m−1 Static field strength

v 2.7 ×104 m s−1 Drift velocity

τd = LSL/v 2 ×10−10 s Drift time

Asat = Es 3 ×106 V m−1 Saturation field amplitude

(continued)
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Table 32.1 (continued)

Quantity Value

a1 9 µm Width of superlattice

a2 = LSL = 1.2 × 103 a 5 µm Height of resonator

a3 = L 20 µm Length of resonator

Pout =

(2c/4n)(1 − R) A2
sat a1a2 20 mW Output power (for R=0.9)

rph = Pout/hν 6 ×1018 s−1 Photon emission rate

τstim 4 ×10−12 s Time between two stimulated

emission processes

N0 3 ×1022 m−3 Electron density

I = N0eva1a3 23 mA Current

rel = I/e 1.4 ×1017 s−1 Electron transit rate

rph/rel 50 Photons per electron

U = LSL Es 15 V Voltage across superlattice

Pel = U I 350 mW Electric power

ηP = Pout/Pel 6% Power efficiency

f (300K ) 0.6 Temperature parameter

αm =

f (300 K)N0e2/8πcmε0m∗νB 7 × 104 m−1 Small-signal gain coefficient

σ21 = αm/N0 2 × 10−18 m2 Gain cross section

G1 = exp (αma3) 4 Small-signal gain factor

• Superlattice data: period; miniband width; effective mass; intraminiband relax-

ation time of an electron; resonance bandwidth ΔνB; quality factor of the Bloch

oscillation; gain bandwidth; critical field.

• Data of a Bloch laser for a particular frequency (ν = 4.7 THz): refractive index

of the superlattice material; Bloch frequency leading to maximum gain and the

corresponding static field strength Es; drift velocity of an electron at the field

Es; time (τd) it takes an electron to drift through the superlattice; saturation field

amplitude; LSL = length; and a1 = width of superlattice; L = length of resonator.

• Extensions of the superlattice; output power for an output coupling loss 1 − R for

a reflectivity R = 0.9; photon emission rate; time between subsequent stimulated

emission processes.

• Electron density; current; rate of electron transits through the superlattice; number

of photons generated by an electron.

• Voltage across the superlattice; electric power; power efficiency.

• Temperature parameter (Sect. 32.10) f (T ) = J0(εm/kT )/J1(εm/kT ); J0, Bessel

function of zeroth order and J1, of first order; small-signal gain coefficient of the

superlattice medium; gain cross section of an electron; small-signal gain factor at

the maximum of the gain curve.
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We will show:

• Gain is due to modulation of the Bloch oscillations by the high frequency field.

• A saturation field limits the gain at steady state oscillation.

• An oscillating electron is describable as an energy-ladder system and the active

medium of a Bloch laser as an ensemble of energy-ladder systems.

32.2 Bloch Oscillation

Figure 32.3a shows the dispersion curve ǫ(kx ) of a miniband electron,

ǫ = (1/2)ǫm(1 − cos kx a); (32.9)

ǫ is the energy of propagation along the superlattice axis (=x axis), ǫm the maximum

energy in the miniband and kx the wave vector along the superlattice axis. Around the

minimum, ǫ = 0, where kx a ≪ 1, the dispersion relation is approximately given by

ǫ =
�

2k2
x

2m∗
, (32.10)

where

m∗ =
2�

2

ǫma2
(32.11)

is the effective mass of an electron at the bottom of the miniband.

Fig. 32.3 Bloch oscillation of an electron. a Dispersion curve and Bragg reflection in the k space.

b Group velocity
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We describe an electron propagating in x direction as a wave packet composed

of plane waves of different wave vectors kx that has a central wave vector kx,c. The

central wave vector corresponds to a de Broglie wavelength λdB = 2π/kx,c. In the

following, we consider the temporal change of the central wave vector under the

influence of a force. We omit, for convenience, the subscript “c”.

We first study the motion of an electron under the action of a static electric field

Es along the x axis. The field leads to acceleration of an electron (charge q = −e)

according to the equation of motion

�dkx/dt = q Es. (32.12)

In this semiclassical equation of motion, �kx plays the role of the classical momen-

tum; see, for instance, [179]. The equation (also called acceleration theorem) corre-

sponds to Newton’s equation of motion in classical physics. The solution is

kx = (q Es/�)(t − t0), (32.13)

where t0 is the time the electron starts with the wave vector kx = 0. The wave vector

increases linearly with time. Multiplying kx by a, we find that the phase

kx a = (qaEs/�) (t − t0) (32.14)

increases linearly with time. The group velocity is

vg =
1

�

∂ǫ

∂k
v0 sin[ωB(t − t0)], (32.15)

where

v0 =
ǫma

2�
(32.16)

is the maximum group velocity and ωB the Bloch frequency, which is given by the

relationship

ωB = eaEs/�. (32.17)

The maximum group velocity increases proportional to ǫm. The Bloch frequency

is proportional to the strength of the static field. The energy �ωB is the energy an

electron can gain in the field Es when it travels over of a superlattice period a. An

electron executes Bloch oscillations with the period TB = 2 π/ωB.

An electron starting with k(t0) = 0 is accelerated, reaches the mini-Brillouin zone

boundary after TB/2 (see Fig. 32.3a), experiences a Bragg reflection, is decelerated

until it begins a new oscillation cycle. The group velocity of the electron wave packet

(Fig. 32.3b) varies harmonically with the period TB.

The spatial coordinate ξ =
∫ t

0
vg(t

′)dt ′ also varies periodically (Fig. 32.4a),

ξ = (1/2) ξm (1 − cos[ωB(t − t0)]), (32.18)
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Fig. 32.4 Bloch oscillation of an electron in space. a Displacement. b Bragg reflection

where

ξm =
ǫm

eEs

=
ǫm

�ωB

a (32.19)

is the length of the trajectory. The Bloch oscillation thus corresponds to a periodic

motion of an electron wave packet in space around ξm/2. We suppose that εm ≫ �ωB,

i.e., that the trajectory extends over many superlattice periods (Fig. 32.4b, upper part).

The electron wave packet, periodically accelerated and decelerated, has a large spatial

extension at small central wave vectors and a small extension at large central wave

vectors. The de Broglie wavelength of the electron

λdB =
2π

kx

(32.20)

is infinitely large at the bottom of the miniband and reaches the value 2a at the

mini-Brillouin zone boundary (Fig. 32.4b, lower part). The electron wave undergoes

a Bragg reflection when the de Broglie wavelength is equal to twice the spatial period

of the superlattice.

An electron oscillates around a fixed position. A static field does therefore not

lead to a direct current. Relaxation, however, gives rise to a direct current, as we will

see in the next section.

Example of a Bloch oscillation. 14/2 GaAs/AlAs superlattice (14 monolayers of

GaAs and 2 monolayers of AlAs); a = 14 monolayers (∼4.2 nm); ǫm = 140 meV;

Es = 10 kV/cm; νB = ωB/2π = 1 THz; ξm ∼ 30 a (∼120 nm).
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32.3 Esaki–Tsu Characteristic

A drift of an oscillating electron arises due to intraminiband relaxation. In a relaxation

process, an electron loses energy and reaches another trajectory. The trajectory is,

relative to the original trajectory, shifted along the direction of the electric force

(Fig. 32.5a). The drift velocity is given by

v =
1

τ

∫ 0

−∞

e−t0/τ vg dt0. (32.21)

The exponential is equal to the probability that an electron starting a Bloch oscillation

at time t0 does not undergo a relaxation process in the time interval t0,0. The integra-

tion takes into account that the starting time can have a value between −∞ and 0.

The contribution of starting times t0 ≪ −τ is small in comparison with the contribu-

tions for starting times t0 ∼ −τ . This model supposes that an electron relaxes in an

intraminiband relaxation process to the bottom of the miniband. Integration yields

the Esaki–Tsu drift velocity

vET = vET,m

2ωBτ

1 + ω2
Bτ 2

, (32.22)

where

vET,m =
v0

2
=

ǫma

4�
(32.23)

is the maximum drift velocity. The drift velocity (Fig. 32.5b) varies linearly with the

electric field around zero field and shows a maximum at a critical field

Fig. 32.5 Electron drift of an oscillating electron in a static electric field. a Electron drift. b Drift

velocity-field curve
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Fig. 32.6 Dephasing of a Bloch oscillation by energy relaxation: energy and group velocity of an

oscillating electron; square, intraminiband energy relaxation process joined with a phase relaxation

process

Ec =
�

eaτ
, (32.24)

which corresponds to ωBτ = 1. For E ≫ Ec, the drift velocity decreases inversely

proportional to Es. With increasing Es (> Ec), the number of Bragg reflections per

unit of time increases and therefore the drift velocity decreases.

For Es ≪ Ec, we obtain the ohmic conductivity of a superlattice,

σohm =
N0e2τ

m∗
. (32.25)

Ohmic conductivity takes place only if the relaxation time τ has a finite value, i.e.,

if energy relaxation occurs.

Intraminiband relaxation of an electron, i.e., energy relaxation of an electron,

results in loss of energy of the electron. An intraminiband relaxation process is an

inelastic scattering process: an electron loses potential energy via electron-phonon

scattering. An energy relaxation process that occurs during a Bloch oscillation leads

to a change of the phase of the oscillation (Fig. 32.6). Relaxation of the energy of a

Bloch oscillation from ǫm (at the minizone boundary) to ǫ = 0 (at the zone center)

changes the phase of the group velocity of the electron by π . The time between two

dephasing processes, the dephasing time of the oscillation, is equal to the energy

relaxation time τ . In the case that the relaxation does not lead to ǫ = 0, the change

of the phase is unequal to π . The intraminiband relaxation is mainly due to emission

of longitudinal optical phonons (energy 37 meV for GaAs).
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We assumed that the superlattice has a temperature near T = 0. The thermal

distribution of miniband electrons in a superlattice at temperature T reduces the drift

velocity. The shape of the Esaki–Tsu curve remains unchanged (supposed that the

relaxation time remains unchanged), but the maximum drift velocity is reduced,

vET,m(T ) = f (T )
ǫma

4�
, (32.26)

where f (T ) (<1) is a temperature parameter (Sects. 32.1 and 32.10).

Example GaAs superlattice (at room temperature) with the data of the last exam-

ple; τ ∼ 5 × 10−13 s; ωBτ = 1 occurs for ωB/2π = 0.2 THz. The Bloch oscillation of

a free-electron in a semiconductor superlattice is a monople oscillation (Sect. 4.12).

Intraminiband relaxation changes the phase of the oscillation, but not the amplitude.

32.4 Modulation Model of a Bloch Laser

Under the influence of both a static field Es and a high frequency field (amplitude

A, frequency ω),

E = A cos ωt, (32.27)

oriented along the superlattice axis, a miniband electron is accelerated according to

the equation of motion

�
dkx

dt
= q Es + q A cos ωt. (32.28)

Integration yields the phase

kx a = ωB(t − t0) +
qa A

�ω
(sin ωt − sin ωt0), (32.29)

where t0 is the time at which a Bloch oscillation starts. It follows that the phase kx a

is phase-modulated with the modulation degree

μ =
eAa

�ω
. (32.30)

The instantaneous group velocity is equal to

vg = v0 sin[ωB(t − t0) − μ(sin ωt − sin ωBt0)]. (32.31)

We write vg = v0 sin φ(t) and find the instantaneous frequency

ωinst =
dφ

dt
= ωB + κ A cos ω(t − t0), (32.32)

http://dx.doi.org/10.1007/978-3-319-50651-7_4
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where

κ = ea/� (32.33)

is the coupling strength characterizing the coupling between the Bloch oscillation of

an electron and the high frequency electric field. The coupling strength is proportional

to the superlattice period. The high frequency field causes phase modulation of the

Bloch oscillation.

We now take account of relaxation. The probability that an electron does not

undergo an energy relaxation process in the time interval t − t0, t is

p(t, t0) = e−(t−t0)/τ . (32.34)

The average over all starting times yields a modulation velocity

vmod(t) =
1

τ

∫ t

−∞

p(t, t0)vg(t, t0)dt0 (32.35)

that varies periodically with the period T = 2π/ω of the high frequency field. A

Fourier transformation [15] yields the amplitude of the real part of the modulation

velocity:

v1 = v0

+∞
∑

n=−∞

Jn(μ)
(ωB + nω)τ

(ωB + nω)2τ 2 + 1
. (32.36)

Jn is the Bessel function of nth order. The terms for n = −1,−2,−3, ... describe

resonances at which |n|ω = ωB.

In the following, we will discuss the case n = ±1. Making use of the relation

J−1 = −J1, we obtain

v1 = −v0 J1(μ)

(

(ωB − ω)τ

(ωB − ω)2τ 2 + 1
−

(ωB + ω)τ

(ωB + ω)2τ 2 + 1

)

. (32.37)

We can write, with Δω0 = 2/τ , the last expression in the form

v1 = −v0 J1(μ) [ḡL,disp(ω) − K (ω)], (32.38)

where

ḡL,disp(ω) =
ωB − ω

ΔωB/2
ḡL,res (32.39)

is the (normalized) Lorentz dispersion function and

ḡL,res =
Δω2

B/4

(ωB − ω)2 + Δω2
B/4

(32.40)
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the corresponding normalized Lorentz resonance function. The halfwidth of the

Lorentz resonance function is equal to ΔωB = 2/τ . The quality factor of the Bloch

resonance is

QB = ωBτ/2. (32.41)

The term

K (ω) =
ωB + ω

ΔωB/2

Δω2
B/4

(ωB + ω)2 + Δω2
B/4

(32.42)

contributes strongly to v1 if ωBτ has a value that is not much larger than 1.

We consider the limit of small modulation degree, where J1(μ) = μ/2. We find,

with v0 = ǫma/2�, m = eAa/�ω and m∗ = 2�
2/ǫma2, the amplitude of the velocity:

v1 = −
eA

2m∗ω
[ḡL,disp(ω) − K (ω)]. (32.43)

The real part of the high frequency mobility is equal to

μ1 =
v1

A
= −

e

2m∗ω
[ḡL,disp(ω) − K (ω)] = −

e

2m∗ωB

ωB

ω
[ḡL,disp(ω) − K (ω)].

(32.44)

The factor 1/ω reflects the dependence of the modulation degree on the frequency.

It follows that the high frequency conductivity is given by

σ1(ω) = −σp

2ωBτ(1 + ω2τ 2 − ω2
Bτ 2)

1 + 2ω2τ 2 + ω4τ 4 + 2ω2
Bτ 2 − 2ω2τ 2ω2

Bτ 2 + ω4
Bτ 4

, (32.45)

where

σp =
N0e2

2m∗ωB

(32.46)

is a peak conductivity.

Figure 32.7 shows σ1/σp for a particular Bloch frequency (νB = 5 THz) and two

different values of the relaxation time. At the smaller relaxation time, the transparency

frequency is slightly smaller than the Bloch frequency; the shift of the transparency

frequency is due to the term K (ω).

The small-signal gain coefficient is equal to

α(ω) =
−σ1(ω)

(c/n)ε0

. (32.47)

In Sect. 32.1 (see Fig. 32.2) we already discussed the absorption coefficient α(ω) for

νB = 5 THz and τ = 5 × 10−13 s.

For ωBτ ≫ 1 and ω ∼ ωB, we can neglect K (ω) and obtain the high frequency

conductivity

σ1(ω) = −σp ḡL,disp(ω). (32.48)
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Fig. 32.7 High frequency conductivity of a superlattice in a static electric field corresponding to a

Bloch frequency of 5 THz

In Sect. 9.11, we mention the Kramers–Kronig relations, which relate the real

part of a physical response function and the imaginary part. If the shape of the

imaginary part of a response function is given by a Lorentz resonance function,

the shape of real part of the response function is a Lorentz dispersion function

and vice versa. The Kramers–Kronig relations have been derived for systems in

thermal equilibrium. We now assume that the Kramers–Kronig relations are also

valid for a nonequilibrium system. Accordingly, we find that the imaginary part

of the high frequency conductivity is given, for frequencies around the resonance

frequency, by

σ2(ω) = −σp ḡL,res(ω). (32.49)

(The same result of the small-signal conductivities σ1 and σ2 has been obtained by

a direct analysis of the response of miniband electrons to a high frequency electric

field [258].)

The response function of the current density is the complex conductivity

σ̃ (ω) = − σp

ΔωB/2

i (ωB − ω) + ΔωB/2
. (32.50)

The shape of the real part of the dynamical conductivity corresponds to a Lorentz

dispersion function and the shape of the imaginary part to a Lorentz resonance

function (Fig. 32.8a). The maximum of |σ2| is determined by the peak conductivity

σp. The extrema of σ1 have the values ∓σp/2. The small-signal gain curve (Fig. 32.8b)

is, around the resonance frequency, antisymmetric with respect to ωB.

At finite temperature, the frequency dependences are the same as for the low

temperature case. However, the peak conductivity is reduced by the temperature

factor (Sects. 32.1 and 32.10),

http://dx.doi.org/10.1007/978-3-319-50651-7_9
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Fig. 32.8 Bloch gain for ωBτ ≫ 1. a High frequency conductivities. b Gain coefficient

σp(T ) = f (T )
N0e2

2m∗ωB

. (32.51)

It follows that the small-signal gain coefficient for ωBτ ≫ 1, and therefore K (ω) ∼

0, is given by

α(ω) = αp ḡL,disp(ω); (32.52)

αp = f (T )
N0e2

2(c/n)ε0m∗ωB

. (32.53)

A comparison indicates the following. The real part of the polarization conduc-

tivity of an atomic system with population inversion shows a resonance and the

imaginary part a dispersion like behavior; gain occurs at frequencies around the res-

onance frequency. But the real part of the conductivity of a system of oscillating

free-electrons shows a dispersion-like behavior and the imaginary part a resonance;

gain occurs at frequencies below the resonance frequency.

We summarize the result of the modulation theory with respect to the gain coef-

ficient. The modulation model provides the following results.

• The gain coefficient has an inflection point at the frequency ω∗
B, which is slightly

smaller than ωB.

• ω = ω∗
B. Field and Bloch oscillation interact strongly. In the time average, there

is no net energy exchange between field and Bloch oscillation.

• ω < ω∗
B. The gain coefficient curve is determined by the normalized Lorentz dis-

persion function, modified by K (ω).

• ω > ω∗
B. The gain coefficient is negative, radiation experiences absorption.
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The maximum gain coefficient is given by

αm = αp/2. (32.54)

We write the gain coefficient, supposing f (T ) = 1, in the form

α(ω) = 2αm ḡL,disp(ω), (32.55)

αm =
N0e2

4(c/n) ε0 m∗ωB

. (32.56)

32.5 Saturation Field of a Bloch Laser

We discuss the saturation behavior. We assume, for simplicity, that ωBτ ≫ 1. There-

fore, we can neglect K (ω). Then, the maximum gain coefficient is given by

αm(μ) =
N0e2

2(c/nε0)m∗ωB

J1(μ). (32.57)

The Bessel function J1 increases linearly with the modulation degree μ (Fig. 32.9)

and shows a maximum at μ = 1.8 (and then decreases to zero and becomes negative).

There are two possibilities to find a saturation field. The first possibility follows

from the slope of the gain curve. In an oscillator, gain is, in principle, limited to the

Fig. 32.9 Saturation field of a Bloch laser. a Bessel function and differential gain coefficient.

b Transition to saturation
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amplitude Aμ=1.8. The maximum gain coefficient has to be replaced by the differential

maximum gain coefficient,

αd,m(μ) =
N0e2

(c/nε0)m∗ωB

dJ1(μ)

dμ
. (32.58)

The differential gain coefficient is zero for μ = 1.8. Accordingly, Aμ=1.8 =

1.8hvB/(ea). We find a different value for the saturation field if we apply the criterion

(see also Sect. 19.9):

Saturation of the high frequency electric field occurs if the modulation degree

assumes the critical modulation degree μc = 1.

We consider the phase difference between the transverse oscillation of an electron

and the high frequency electric field,

φ(x) = x − μ sin ax, (32.59)

where x = ωBt is the phase for μ = 0 and a = (ωB − ω)/ωB is the difference of

the frequencies of the Bloch oscillation and the high frequency electric field, divided

by ωB. Without modulation (μ = 0), the phase φ increases linearly with time (if

intraminiband relaxation is ignored). In the case that a high frequency electric field

modulates the electron oscillation, the phase difference oscillates around the φ(t) =

x(t) line. The amplitude of this oscillation increases with increasing μ. The phase

difference φ increases continuously with time as long as μ < 1. However, for μ >

1, the same phase difference can be obtained for two different times. The change

from the continuous increase to the more complicated behavior occurs at the critical

modulation index μc. We find the value of μc from the condition that the derivative

dφ/dx is zero, dφ/dx = 1 − μ a = 0, which leads (for a ≪ 1) to

μc =
1

a
≈1 (32.60)

With this argument, we find the saturation field amplitude

Asat =
�ω

ea
. (32.61)

We supposed that ωBτ ≫ 1. Gain occurs for ω ≈ ωB. We thus find that

Asat = Es.

The amplitude of the saturation field is equal to the strength of the static electric

field Es (Fig. 32.10).

http://dx.doi.org/10.1007/978-3-319-50651-7_19
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Fig. 32.10 Current-field

characteristic of a

superlattice and high

frequency electric field in a

Bloch laser

It is evident that the saturation field based on the criterion that the modulation

degree is limited to unity, leads to a well understandable result. We discuss the

current-field curve together with the high frequency electric field (Fig. 32.10). The

instantaneous field, which is the sum of the static field Es and the high frequency

field E , causes the electrons to perform Bloch oscillations resulting in gain for the

high frequency field. However, if the instantaneous field is smaller than the critical

field Ec, the instantaneous field gives rise to loss of radiation. Therefore, maximum

gain is expected for |A| ≤ Es − Ec. This corresponds, for ωBτ ≫ 1, to the condition

Asat = Es. The quantities in the current-field curve are: Ip, peak current; δ I , excess

current due to laser oscillation; Ec, critical field; Es, static field, corresponding to

the bias voltage Us; E(t), high frequency field; and Asat, saturation field amplitude.

The output power of a Bloch laser is equal to

Pout =
ε0 ε A2

sata1a2 L

2τres.

. (32.62)

The electric power delivered by a voltage source (delivering a direct current at con-

stant voltage) is equal to

Us I = Us I0 + Pout. (32.63)

where Us is the static bias voltage, I the direct current at presence of radiation and

I0 the current at absence of radiation. Laser oscillation results in an enhancement of

the direct current. The power that corresponds to the excess current

δ I ≡ I − I0 = Pout/Us (32.64)

is converted to radiation.

The efficiency for conversion of electric power to radiation is given by

η =
Pout

U I
=

1

1 + P0/Pout

, (32.65)

where P0 = Us I0 is the electric power at absence of a high frequency field.
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Example see Table 32.1.

There is a characteristic difference between a classical solid state oscillator operating

with charge density domains and a Bloch laser. For a classical solid state oscilla-

tion, excitation of a high frequency field results in a reduction of the direct current

(Sect. 31.5); this is a consequence of the domain dynamics. In a (yet hypothetical)

Bloch laser, generation of high frequency radiation leads to an enhancement of the

direct current. The excess current is converted to laser radiation. The excess current

is expected to increase linearly with the power of the high frequency radiation.

32.6 Energy of Distortion in a Bloch Laser

In the state of saturation, a high frequency electric field is present and interacts

strongly with the Bloch oscillations. Accordingly, absorption compensates stimulated

emission of radiation. However, it is not clear, how the state of saturation is realized.

The modulation current may have a phase of π/2 relative to the current as in the

case of resonance absorption. This appears to be unlikely because distortion of the

oscillating state seems to be disregarded.

We rather suggest that the phase between the modulation current of the Bloch oscil-

lation and the high frequency electric field is equal to π or 0. The two corresponding

oscillation states allow for the strongest interaction between Bloch oscillation and

high frequency field. In order to find a possible origin of saturation, we determine the

work done by the electron during a cycle of a Bloch oscillation. The work is given

by

W1,φ=0 = −ev0 Asat

∫ T

0

cos(ωBt) cos(ωt)dt. (32.66)

The solution is, with ω0 ≈ ω equal to

W1,φ=0 = −π ev0 Asat/ω. (32.67)

We now assume that the work results in a distortion of the electron oscillation and

that the distortion occurs if the work is equal to the distortion energy E∗, i.e., we

assume that

W1,φ=0 = −E∗. (32.68)

Comparison of (32.67) and (32.68) provides the saturation field amplitude

Asat =
E∗ωB

πev0

.

http://dx.doi.org/10.1007/978-3-319-50651-7_31
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Since we know Asat, we find the distortion energy,

E∗ =
πev0 Asat

ωB

. (32.69)

It follows that

E∗ = (π/2)ǫm.

The distortion energy is equal to the miniband width (multiplied by π/2). We can

write the condition in the form

e a Asat = (2/π)�ωB. (32.70)

Accordingly, the saturation energy is reached, when the maximum energy gain within

a period a of the superlattice is equal to the quantum energy of a photon (multiplied

by π/2).

The distortion changes the phase of the oscillation by π . After a change of the

phase, the reversed process occurs: the field transfers energy to the electron. The

work is given

W1,φ=π = ev0 Asat

∫ T

0

cos(ω0t) cos(ωt)dt = +πev0 Asat/ω, (32.71)

or,

W1,φ=π = +E∗. (32.72)

A process of repairing a distortion follows on a process that leads to distortion of

an electron oscillation. At saturation, absorption compensates stimulated emission

of radiation. On average, there is no energy exchange between the electrons and the

high frequency field.

The saturation field amplitude does not depend on the length of the Bloch laser

medium. Doubling of the length of the Bloch laser medium results in a shortening

of the oscillation onset time.

32.7 Synchronization of Bloch Oscillations to a High

Frequency Field

The dynamics of synchronization of the high frequency drift current to a high fre-

quency electric field can be analyzed by studying the temporal change of the wave

vector of an electron. The method, leading to phase space bunching (k-space bunch-

ing), has been introduced by Kroemer [258]. We illustrate the result of the gain cal-

culation. Electrons in a static field perform Bloch oscillations at the Bloch frequency.

The oscillations of different electrons are uncorrelated to each other (Fig. 32.11, left).
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Fig. 32.11 Bloch oscillations of miniband electrons under the action of a static field (left), and of

both a static and a high frequency field (right)

Fig. 32.12 k-space bunching. a k-space trajectories of two electrons in a static field. b k-space

trajectories of two electrons submitted to both a static and a high frequency field

The average high frequency current at the Bloch frequency is zero. A high frequency

field (frequency ω) forces the electrons to oscillate with the same average phase rel-

ative to the phase of the field (Fig. 32.11, right). For ω = ωB, the phase between the

current and the field is π /2. There is, in the time average, no net exchange of energy.

For ω < ωB, the phase is larger than π /2 and gain occurs while at ω > ωB, the phase

is smaller than π /2, which corresponds to absorption.

In a static field along the superlattice axis, the wave vector of an electron

increases linearly with time. We restrict the wave vector to the mini-Brillouin zone

(Fig. 32.12a). An electron (with a path represented by the dotted line) that starts with

the initial wave vector k(t0) = 0 experiences a Bragg reflection after half a period

and then after each further period TB = 2π/ωB of the Bloch frequency. An elec-

tron with the initial wave vector k(t0) = −π/a (solid line) undergoes the first Bragg

reflection after one temporal period, the second after two periods and so on. The

k-space trajectories are straight lines.
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Modulation of the Bloch oscillations causes a change of the trajectories.

Figure 32.12b shows the trajectories of the two electrons if a high frequency field

(dashed in the lower part of the figure), which has the same period as the Bloch oscil-

lation (T = TB), is applied in addition to the static field. The electron starting with the

initial wave vector k(t0) = 0 traverses the range of large wave vector (kx ∼ ±π/a)

slower than without modulation while the electron starting with the initial wave vector

k(t0) = −π/a traverses the range of large wave vector faster. Relaxation processes

occur preferably when an electron has a wave vector near the minizone boundary:

due to its large energy, a zone boundary electron can lose energy by interaction with

phonons (particularly optical phonons). The “most stable trajectory” is the trajectory

of the electron with the initial wave vector k(t0) = −π/a. Electrons starting with

other initial wave vectors relax by phonon emission (vertical waved lines) toward

the most stable trajectory. The electrons experience k-space bunching. The k-space

bunching corresponds to synchronization of the Bloch oscillations to the high fre-

quency field.

The k-space bunching causes gain or loss, depending on the frequency of the high

frequency field (for ωBτ ≫ 1):

• ω = ωB. Velocity v1 and high frequency field have a phase of π/2 relative to each

other. The Bloch oscillations of all miniband electrons are perfectly synchronized

to the field. However, there is, on average, no net exchange of energy.

• ω < ωB. The phase between velocity and high frequency field lies between π/2

and 3π/2. The electron oscillations mediate transfer of potential energy to the high

frequency field. The average drift velocity of an electron is increased. Since the

frequencies are different, dephasing occurs permanently. Due to phase relaxation

processes, synchronization occurs again and again.

• ω > ωB. The phase between velocity and high frequency field lies between 0

and π/2 or between 3π/2 and 2π . The electron oscillations mediate transfer of

radiation energy to potential energy of the electrons. The average drift velocity

of an electron is decreased. Since the frequencies are different, dephasing occurs

permanently. Due to energy relaxation processes, synchronization occurs again

and again.

In all three cases, modulation of the Bloch oscillations by the high frequency field

results in a current at the frequency of the high frequency field.

32.8 Energy-Level Description of the Superlattice

Bloch Laser

An electron in a superlattice submitted to a static field occupies a level in an energy-

ladder system (Fig. 32.13a):

El = l E0, (32.73)
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Fig. 32.13 Energy levels of an electron in a superlattice submitted to a static field and optical

transitions. a Energy ladder. b Absorption and stimulated emission. c Two-photon transitions. d

Stimulated emission. e Absorption

E0 = hνB is the energy separation between next near energy levels (=transition

energy). Electronic transitions between next near levels are allowed. Electromagnetic

radiation interacts via spontaneous emission, absorption and stimulated emission

according to the Einstein coefficients. However, absorption and stimulated emission

processes have the same transition probability (Fig. 32.13b). Therefore, the average

rate of absorption processes is the same as the average rate of stimulated emission

processes if the frequency of the radiation is exactly equal to the resonance frequency,

i.e., if ν = νB. The description as a frequency modulation (Sect. 32.4) indicates that

stimulated emission prevails if ν < νB and absorption if ν > νB. Accordingly, the

gain curve is a Lorentz dispersion curve rather than a Lorentz resonance curve.

In a strong electromagnetic field, transitions between next-near levels are also

allowed as multiphoton transitions (Fig. 32.13c) according to the condition

nhν = E0 = hνB; n = 1, 2, . . . . (32.74)

The cases n > 1 correspond to velocity components of higher order according to

(32.37).

Whether a radiation field experiences a population inversion in the Bloch laser

medium, depends on the frequency of the field.

http://dx.doi.org/10.1007/978-3-319-50651-7_32
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• If hν < E0, a radiation field experiences a population inversion (see Fig. 32.13d).

In a stimulated emission process by an l → l − 1 transition, the transition energy

E0 is converted to photon energy hν and distortion energy Edist,

E0 = hν + Edist. (32.75)

A stimulated transition in an energy-ladder system leads to a distortion. Absorption

does not occur as long as the states of distortion are not populated, i.e., as long as

the upper laser level has an occupation number of nearly unity, f2 ≈ 1, and the

lower laser level of nearly zero, f1 ≈ 0.

• If hν > E0 (Fig. 32.13e), a photon is converted into excitation energy E0 and

energy of distortion,

hν = E0 + Edist. (32.76)

The reverse process, namely stimulated emission by an l + 1 → l process, does

not occur as long as the states of distortion are not populated, i.e., as long as the

upper level has the occupation number of nearly zero, f2 ≈ 0, and the lower laser

level of nearly unity, f1 ≈ 1.

• If hν = E0, upward and downward transitions are equally strong and there is no

net energy transfer from the field to the electrons and vice versa.

The distortion energy, joined with a transition, is small compared with the transition

energy.

Figure 32.14 illustrates, in the energy-level description, the principle of the super-

lattice Bloch laser; the figure illustrates the situation during the onset of oscillation

Fig. 32.14 Principle of the Bloch laser in an energy-level description
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Fig. 32.15 Wannier state

of the laser. An electron of energy Eel,0 injected into a superlattice forms an energy-

ladder system. A nonradiative relaxation process (intraminiband relaxation time τ )

leads to formation of a new energy ladder system. A stimulated transition occurs to

a disturbed state; then, the electron forms a new energy-ladder system. Relaxation

processes and stimulated emission processes go on until the electron reaches the cath-

ode. The electron leaves the superlattice with energy Eel,tr. The relaxation processes

are associated with a drift. During the drift of an electron through the superlattice, the

potential energy Us = (Eel,0 − Eel,tr)LSL2 is converted to energy of radiation plus

energy of relaxation.

At saturation of the Bloch laser, an absorption process during a cycle of the

Bloch oscillation follows on the stimulated emission of a photon. In an ensemble of

electrons, the average occupation number of an undisturbed electron state is equal to

one half, f2 = 1/2, and the average occupation number of the distorted state is also

one half, f1 = 1/2. In this case, the time between two stimulated emission processes

is equal to twice the period of the Bloch frequency, τstim = 2/νB. This analysis is

consistent with data of Table 32.1. The time τstim given in the table is an average time

between two stimulated emission processes for the case that radiation is coupled out

from the laser resonator. In a closed resonator without any loss, the saturation field

may be reached in the whole resonator volume and the time τstim may correspond to

twice the period of the Bloch frequency.

(Another possibility of the occurrence of saturation may be connected with the

limit of the quantum theory of the Wannier-Stark states. A strong high frequency

electric field interacts with the Bloch oscillations giving rise to new dynamical cou-

pled states, Floquet states. These are expected to occur for an amplitude of the electric

field that is given by the relationship ea A = 2.4�ωB [333]. The value of A that fol-

lows from this criterion is, however, slightly larger than the value of Asat that follows

from the modulation model.)
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The analysis of the Bloch laser indicates that the saturation behavior differs from

the saturation behavior of a free-electron laser according to the different physical

backgrounds of the two lasers.

We determine the Einstein coefficients of stimulated emission and of absorption

from the expression of the gain coefficient

α(ν) = 2αm ḡL,disp(ν), (32.77)

by comparison with the expression (7.31) derived earlier for an ensemble of atomic

two-level systems,

α(ν) = (n/c)hν0 B21

πΔν0

2
ḡL,res(ν)(N1 + N2)( f2 − f1). (32.78)

We replace the Lorentz dispersion function ḡL,disp by the Lorentz resonance func-

tion ḡL,res and obtain, with N1 + N2 = N0, f2 − f1 = 1, and ν0 = νB, the Einstein

coefficient of stimulated emission

B21 =
e2

8ε0hνB QBm∗
. (32.79)

The Einstein coefficient of stimulated emission is inversely proportional to the effec-

tive mass m∗ of a miniband electron, to the photon energy hνB, and to the quality

factor

QB =
νB

ΔνB

(32.80)

of the Bloch oscillations. The Einstein coefficient of absorption is equal to the Einstein

coefficient of stimulated emission, B12 = B21.

Table 32.2 Einstein coefficients of transitions between Wannier–Stark levels of electrons in a

superlattice

Value

νB 5 × 1012 Hz Bloch frequency

ΔνB 6 × 1011 Hz Width of resonance

Asat 3 × 106 V m−1 Amplitude of saturation

τ 5 × 10−13 Hz Relaxation time

QB = νB/ΔνB 8 Quality factor

m∗ 6 × 10−32 kg Effective mass

B21 = e2/(8ε0hνB QBm∗) 1 × 1023 m3 J−1 s−2 Einstein coefficient

A21 = (8πhν3
B/c3

m ) B21 2 × 109 s−1 Einstein coefficient

τsp 4 × 10−10 s Spontaneous lifetime

http://dx.doi.org/10.1007/978-3-319-50651-7_7
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Table 32.2 shows values of Einstein coefficients. We determined the Einstein coef-

ficient of spontaneous emission by using the corresponding Einstein relation:

A21 =
8πhν3

(c/n)3
B21 =

πe2ν2
B

(c/n)3ε0 QBm∗
. (32.81)

The Einstein coefficient of spontaneous emission is proportional to the square of

the Bloch frequency. It is inversely proportional to the effective mass m∗ and to the

quality factor of the Bloch oscillation. The spontaneous lifetime is τsp = 1/A21. The

Einstein coefficient of stimulated emission has a value that is of the same order of

magnitude as for a quantum cascade lasers of the same frequency range.

The energy-ladder we introduced is a Wannier–Stark ladder. The energy distance

between next-nearest levels is hνB. The wave functions are Wannier functions. A

Wannier function (Fig. 32.15) is spatially localized in the range ξm of a spatial trajec-

tory of a Bloch oscillation. The wave function decreases exponentially outside this

range.

32.9 Possible Arrangements of a Bloch Laser

A possible arrangement of a Bloch laser, already discussed in Sect. 32.1, is shown

in Fig. 32.16a. A large-area superlattice fills out a resonator completely. The reso-

nance frequency of the resonator is determined by the length L , the width a1 of the

resonator, and the optical properties of the superlattice material. Superlattices with

extensions LSL up to ∼10 µm can be grown by molecular epitaxy. The laser fre-

quency is expected to correspond to the lowest order resonance of the resonator. Bias

Fig. 32.16 Possible arrangements of a superlattice Bloch laser. a Large-area superlattice in a

resonator. b Superlattice coupled to a resonator via an antenna
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oscillations should be avoidable by the use of filters in the bias circuit. The output

power is determined by the saturation field amplitude, the output coupling strength,

and the area of two opposite output surfaces; the mismatch between the superlattice

and air should provide sufficient feedback.

Another possible arrangement is shown in Fig. 32.16b. The superlattice is coupled

to a resonator via an antenna. In this case, the resistance of the superlattice has to

be matched to the resonator. The frequency is determined by the geometry of the

resonator and the resistance of the superlattice in the active state. In this arrangement,

superlattices with much smaller extensions and thus less heating would be appro-

priate. However, the preparation of the resonator and the filter would require more

effort.

32.10 References to the Bloch Laser and Discussion

In 1928, Felix Bloch (then a Ph.D. student of Werner Heisenberg) described [251]

a one-dimensional quantum theory of the electric conductivity of crystals and intro-

duced a number of basic concepts that allow for a description of properties of con-

duction electrons in a crystal,

• The (one-dimensional) tight binding method.

• Energy bands.

• The acceleration theorem of conduction electrons.

Bloch also realized that energy relaxation via phonons is a necessary condition for

the occurrence of electric conduction in a crystal. Without energy relaxation, a con-

duction electron interacting with a static electric field is accelerated and decelerated

in turn. On time average, there is no transfer energy from a field to an electron or

vice versa. Zener [252] introduced the term Bloch oscillations for the motion of a

free-electron subject to both a periodic potential and a static field.

Keldish [253] proposed to prepare superlattices by means of very-high frequency

ultrasonic waves (that have wavelenghths of the order of 10 nm). Esaki and Tsu [254]

made the proposal to prepare composite semiconductor superlattices and to study

transport properties of doped superlattices. Ktitorov et al. [255] were the first to

predict Bloch gain. In their theory, based on one-dimensional Boltzmann transport

equations, they included elastic scattering of the electrons and thermal distribution

of electrons in a miniband of a superlattice at finite temperature, leading to the

temperature parameter f (T ); see also [256, 257]. Kroemer [258] showed that Bloch

gain can be attributed to k-space bunching. Bloch gain and k-space bunching have also

been treated in gain calculations using a three-dimensional Monte–Carlo technique

[259, 260].

The method of molecular beam epitaxy made it possible to prepare semiconduc-

tor superlattices, to study transport properties of doped superlattices [261], and to

investigate response of oscillating electrons to a terahertz field [262, 263]. Evidence

of Bloch gain of THz radiation has been reported by Allen et al. [264].
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It is an open question whether it is possible to avoid formation of space charge

domains in a superlattice in order to realize a THz Bloch laser. Proposals concern

the use of weakly doped superlattices [264, 265] and the use of an additional THz

radiation source [266]. A microwave-terahertz double oscillator is another proposal

[246]. The idea is to operate a superlattice as a microwave oscillator (for instance,

at a frequency near 65 GHz) based on domains as described in Sects. 31.3–31.6. The

use of a lossless microwave resonator may lead, during a certain time during each

microwave period, to a homogeneous field distribution that may be associated with

Bloch gain at THz fields. If a superlattice is coupled, at the same time, to a microwave

resonator and to a resonator for a THz field, a THz field may be amplified during a

part of each cycle of a microwave oscillation.

Bloch oscillations of miniband electrons have been observed by the use of fem-

tosecond optical techniques [267, 268]; for surveys, see [269, 270].

Wannier–Stark ladders and Bloch oscillations are discussed in [271]. Willenberg et

al. [272] introduced intermediate states (distorted states) in Wannier-Stark ladders for

calculation of the small-signal gain coefficient. Johannes Stark (1874–1957; born in

Freihung, Bavaria) predicted and observed the Stark effect [273], namely the splitting

of energy levels of atoms and molecules in electric fields. In 1919, he received the

Nobel Prize in Physics. Gregory Wannier (1911–1983; born in Basel, Switzerland)

developed the Wannier functions [274, 275].

Finally, we discuss the question of the upper limit frequency of a Bloch laser. The

limit is determined by the condition that the length of the trajectory of a Bloch oscil-

lation should be larger than a superlattice period. This leads to a limiting frequency,

where ξ = 2 a of ∼15 THz for a GaAs/AlAs superlattice (with a maximum miniband

width of 140 meV) and ∼30 THz of an InGaAs/InAlAs superlattice. Gain can also

occur at larger frequencies via stimulated transitions between Wannier–Stark states

that are localized within a few superlattice periods or within one period [270]. In

the range of infrared active phonons (near 8 THz) intrinsic absorption caused by an

infrared active lattice vibration can be stronger than gain.

References [177, 178, 251–275, 333]

Problems

32.1 High frequency limit frequency of a Bloch laser.

(a) Give a general condition of the high frequency limit of a Bloch laser.

(b) Determine the high frequency limit of a Bloch laser based on a GaAs/AlAs

superlattice with a miniband of a width of 140 meV.

32.2 Large-signal amplitude.

Estimate the large-signal amplitude of a semiconductor superlattice Bloch laser and

compare it with Ec,

http://dx.doi.org/10.1007/978-3-319-50651-7_31
http://dx.doi.org/10.1007/978-3-319-50651-7_31
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(a) for ν = 1 THz and (b) ν = 5 THz. [Hint: choose data of the superlattice described

in the text.]

32.3 Estimate the Bloch frequency of a conduction electron in an energy band

of GaAs in the case that a static field is applied along the (100) crystal direction

and compare it with the Bloch frequency of a miniband electron in a GaAs/AlAs

superlattice. [Hint: Bloch oscillations are not observable for bulk GaAs by various

reasons: intervalley scattering of electrons and impact ionization are extremely strong

for electrons submitted to a strong electric field; furthermore, electrons can reach

higher conduction bands.]

32.4 Determine the absolute number of electrons in an active medium of a super-

lattice Bloch laser described in Sect. 32.1.

32.5 Design a resonator for a superlattice Bloch laser oscillating at 6 THz.

32.6 Estimate the change of the refractive index at the Bloch frequency of the

superlattice of a Bloch laser if the laser is switched on.

32.7 Determine the time of onset of laser oscillation of a Bloch laser.

32.8 Relate the high frequency peak-conductivity σp and the ohmic conductivity of

a superlattice.

32.9 Electric conductivity.

Show the following: Without energy relaxation, a conduction electron (in a crystal)

interacting with a static electric field is accelerated and decelerated in turn, but it is,

on average, not possible to transfer energy from a field to an electron and vice versa.

Electric conduction by materials like copper cables makes use of energy relaxation of

the conduction electrons. [Hint: for demonstration, make use of a one-dimensional

simple conduction band, separated by an energy gap from the next higher conduction

band; see also Fig. 30.3. Assume that the field is not strong enough to cause electron

tunneling between the lowest conduction band and the next-higher band or impact

ionization.]

http://dx.doi.org/10.1007/978-3-319-50651-7_30
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Chapter 33

Optical Communications

An important field of application of lasers is optical communications by means of

glass fibers.

To transfer information over very large distances (e.g., around the world), radiation

of a wavelength of 1.55 µm is most suitable by two reasons. First, glass fibers have

the smallest loss of radiation in a wavelength band around 1.55 µm. Second, a glass

fiber amplifier—the erbium-doped fiber amplifier—allows for amplification of laser

radiation at 1.55 µm. A glass fiber with integrated light amplifier (installed every

100 km) can transport information over any distance on earth.

The transfer of optical waves over shorter distances (up to about 50 km) is possible

with radiation at wavelengths around 1.32 µm. At this wavelength, the absorptivity

of glass fibers is also small and the dispersion is zero (resulting in less distortion of

optical pulses in comparison to pulses of 1.55 µm radiation). However, there is no

efficient light amplifier available for 1.32 µm radiation.

In the past, the transfer rate increased more and more. The use of radiation at many

wavelengths at the same time—corresponding to many frequency bands available

for information transfer—and increase of the modulation bandwidth enhanced the

transfer rate. For long-distance transfer of information via fiber-optic cable networks,

a frequency band of about 5 THz is available; the width of the band corresponds to

about 2.5% of an average frequency (about 200 THz) of radiation of the 1.55 µm

band.

33.1 Principle of Optical Communications

The basis of optical communications is the guidance of light by means of optical

fibers. The principle of optical communications is illustrated in Fig. 33.1. Light,

coupled by means of a transmitter into a fiber, propagates through the fiber to a

receiver. For long-distance transfer, the fiber contains laser amplifiers. The following

components belong to an optical transfer system.

© Springer International Publishing AG 2017
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Fig. 33.1 Optical communications (principle) and glass fiber

• Transmitter. Laser + modulator + coupler.

• Laser. Quantum well laser, a heterostructure of Gax In1−x AsyP1−y material on

n-type or p-type InP, lattice matched for y = 1.2x . The laser wavelengths are

1.55 µm (x = 0.42) for long distance transmittance and 1.32 µm (x = 0.27) for

transmittance up to about 50 km.

• Receiver. Photodetector + demodulator.

Of course, communication with free light waves is also possible. On earth, it is

restricted because of damping of light in the atmosphere and because of the effort

that is necessary for changing the propagation direction of light.

33.2 Glass Fiber

Glass fibers can be prepared with high accuracy from quartz glass. A glass fiber

(Fig. 33.1) consists of two parts.

• Core. Diameter about 10 µm; SiO2 doped with germanium; refractive index

n0 = 1.52.

• Cladding (mantle). Diameter about 80 µm; SiO2; n1 = 1.48.

The basis of the guidance of light is the total reflection. The light is propagating

in the 00 mode of a fiber (monomode fiber). The field distribution is Gaussian like.

The amplitude of the field is large within the core and decreases exponentially in the

mantle. Accordingly, a portion of the light is propagating in the core, another portion

in the mantle. While a Gaussian beam in free space is always divergent, a Gaussian

like beam in a fiber remains confined.
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Fig. 33.2 Damping,

dispersion and refractive

index of light in a glass fiber

Light in a glass fiber experiences damping (Fig. 33.2, upper part). The damping

has two minima at slightly different wavelengths.

• 1.32 µm; damping 0.4 dB/km.

• 1.55 µm; damping 0.2 dB/km.

Toward small wavelengths, the damping increases because of Rayleigh scattering.

This is a consequence of small irregularities at the interface between core and mantle.

Toward large wavelengths the damping increases due to absorption caused by lattice

vibrations (phonons) in glass. OH impurities in glass are responsible for an absorption

line near 1.4 µm. The OH concentration (5 ppm) in a glass fiber corresponds to 1 OH

group per 2 × 108 SiO2 molecules.

33.3 Pulse Distortion Due to Dispersion

A light pulse propagating in a fiber is damped and changes its shape. This is due to

dispersion (Fig. 33.2, center). The dispersion is zero at 1.32 µm. It has a value of

about 15 ps per km and nm at 1.55 µm. The dispersion relation of light in an isotropic

medium (refractive index n) is

ω = vphk =
c

n
k, (33.1)

where ω is the angular frequency, vph the phase velocity, and k the wave vector. The

refractive index of SiO2 glass (Fig. 33.2, lower part) shows in the near infrared a

weak decrease with increasing wavelength and a point of inflection at 1.32 µm. We

can write the dispersion relation in the form
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k =
ω

c
n. (33.2)

To determine the influence of dispersion of glass on the propagation of light pulses,

we calculate the group velocity

vg =
dω

dk
=

1

dk/dω
=

c

n + ωdn/dω
. (33.3)

Propagation of a pulse over a distance L takes the time

τg = L/vg. (33.4)

A light pulse has a frequency width dω (determined by the pulse duration). Because

of dispersion, the relative difference of the time of flight of light of a frequency ω

and a frequency ω + dω is

β2 =
1

L

dτg

dω
=

d

dω

(

1

gg

)

=
d

dω

(

n

c
+

ω

c

dn

dω

)

=
2

c

dn

dω
+

ω

c

d2n

dω2
. (33.5)

The first term of β2 describes a delay of a pulse and the second term a distortion

of the shape of the pulse. The unit of β2 is s m−1 Hz−1.

33.4 Erbium-Doped Fiber Amplifier

In a long distance fiber cable, an erbium-doped fiber amplifier (EDFA) compensates

damping of radiation.

Light is amplified (Fig. 33.3) by stimulated transitions in Er3+ ions that are pumped

with radiation of a semiconductor laser (wavelength 1,480 nm or 980 nm). The

erbium-doped glass amplifier can amplify radiation in the range of 1,520–1,560 nm.

The relative bandwidth (δν/ν ∼ 2.6%) corresponds to a bandwidth δν ∼ 5 THz at

the frequency ν ∼ 2 × 1014 Hz. Thus, the band available near 200 THz for optical

communications has a width of about 5 THz. The mechanism of gain of radiation in

an erbium fiber is discussed in Chap. 18; see, particularly, Fig. 18.1.

A fiber amplifier consists of an erbium-doped region of a long glass fiber cable.

pump radiation of a semiconductor laser is coupled into a fiber via an optocoupler.

An amplifier (length 30 m) has a gain factor of the order of 1,000 (gain 30 dB). In

parallel to a a long-distance fiber cable, there is a current carrying cable delivering

the electric energy necessary to operate the pump laser of the erbium-doped fiber

amplifier.

http://dx.doi.org/10.1007/978-3-319-50651-7_18
http://dx.doi.org/10.1007/978-3-319-50651-7_18
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Fig. 33.3 Erbium-doped fiber amplifier (EDFA)

Fig. 33.4 Silicon pin

photodiode

33.5 Detector

Photodiodes are suitable as detectors of radiation in optical communication systems.

A silicon pin photodiode (Fig. 33.4) consists of a thin p-doped silicon layer, an

intrinsic (1) silicon layer, and an n-doped silicon layer on an n-doped silicon substrate.

A transparent metallic anode film on the p-doped silicon layer and a metal cathode

on the backside of the substrate serve as metallic contacts. A light pulse traversing

the anode film creates electron-hole pairs in the intrinsic layer. A static voltage across

the photodiode accelerates electrons and holes, created by a light pulse, giving rise

to an electric pulse that is registered electronically.

33.6 Transfer Rates

The transfer rates of large-distance communication systems increased permanently.

• Before 1996, a copper cable in the ocean reached a transfer rate of 280 Mbit/s

(about 4,000 phone calls at the same time).

• 1996. An optical cable in the ocean (all-optical cable) reached 2.5 Gbit/s.

• Since 1999. Faster networks are in operation.
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Transfer rates reached in the laboratory are:

• 1993. 10 Gbit/s. Limitation by the conversion of a light signal in an electric signal

and vice versa. TDM, time division multiplexing.

• 2000. 1 Tbit/s; 16 channels (i.e., radiation at 16 wavelengths in parallel).

• 2001. 25 Tbit/s; 1,000 channels (=1,000 wavelengths in parallel); optical broad-

band fiber (DWDM, dense wavelength division multiplexing).

In comparison with copper cables (used in the ISDN, Integrated Services Digital Net-

work; transfer rate 100 kHz) and coaxial cables (transfer rate 300 MHz), the glass

fiber has a much larger bandwidth (5 THz). and allows therefore for a much larger

transfer rate. A fiber with a transfer rate of 40 Gbit/s of light of a single frequency is

presently the basis of the global network (i.e., the global system of mobile commu-

nication). Every year, the number of bytes transferred by the Internet doubles.

References [208–210, 276–282].

Problems

33.1 Estimate the electric power needed to maintain an optical fiber cable with 10

fibers that extends around the earth.
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Light Emitting Diode and Organic Laser

The development of semiconductor lasers is accompanied by the development of

light emitting diodes (LEDs). An LED, based on spontaneous electron-hole recom-

bination, does not require a cavity and can therefore have a simpler design than a

laser. We discuss properties of diodes and mention various areas of applications.

There is a growing market of LEDs as lighting sources. Superluminescent semi-

conductor diodes can reach high efficiencies. Stimulated emission just below laser

threshold is favorable for a high efficiency. In 2014, S. Nakamura, H. Amano, and I.

Akasaki received the Nobel Prize in physics for the invention of efficient blue light

emitting diodes, which has enabled bright and energy-saving light sources.

Besides the LED, the organic LED (OLED) is being developed. The basis of the

OLED is the spontaneous recombination of electrons and holes in molecular crystals

or polymers. Production of OLEDs is possible at low costs as large-area films suitable

for outdoor lighting of large areas.

We will also mention organic lasers.

34.1 LED Preparation and Market

An LED converts electric power into light. Most efficient are LEDs based on direct

semiconductors.

In an LED, electrons and holes recombine giving rise to spontaneous emission of

radiation at frequencies near the gap frequency of a semiconductor. An LED is easier

to prepare than a laser diode. Antireflecting coatings ensure that the active medium

of an LED experiences almost no feedback or only a weak feedback from radiation

reflected at the crystal surfaces. Thus, the light is incoherent. An LED emits the light

into a large solid angle.

Of great importance for the development of the LED market was the discovery

of the blue LED (in 1992); see Sect. 1.9, Nobel Prizes. The lifetime of an industrial

LED lies in the range of 10,000–100,000 h of operation. Already in 2006, about 25

billion LEDs (about 60% InGaN LEDs, 38% AlInGaP LEDs, and 2% LEDs of other

© Springer International Publishing AG 2017
K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
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Fig. 34.1 Superluminescent
LED

materials) have been prepared, mainly by metal oxide chemical vapor deposition

(MOCVD). The size of a chip is typically 250 µm × 250 µm.

The luminous efficiency of LEDs was (by 2006) about 50 lm/W (lumen per watt

electric power). The record in the laboratory was 100 lm/W. The goal of the devel-

opment is a further increase of efficiency. The luminous flux (in units of lm) is

a measure of power of light perceived by the human eye. The power of broadband

visible radiation (e.g., from a blackbody source) of 1 mW corresponds to about 15 lm.

A superluminescent LED is based on stimulated emission below laser threshold.

Figure 34.1 shows the principle of the superluminescent LED (=high-power LED =

laser diode operating below threshold). Under the action of a voltage U (current I ),

electrons migrate from the n-doped material into quantum wells and holes migrate

from the p-doped material into the quantum wells. Radiation is generated by electron-

hole recombination in the quantum wells. Antireflecting coatings on the surfaces

avoid cavity resonances. The superluminescent LED has a broad output spectrum,

like an LED. The power can be as large as that of a corresponding laser diode. The

light has a higher directionality than the light of a normal diode.

The market is permanently growing. More than 100 firms are worldwide active

in the LED industry. In 2005, the LED market had a turnover of 4 billion US $. The

main portion concerned mobile phones. Although prices of LEDs steadily decrease,

it is expected that the turnover would double every five years. The growth rate of

the LED market with respect to the number of LEDs was (2010) ∼50% per year.

The largest growth is expected in various fields—illumination; full color displays;

television and monitor screens; outdoor large-area screens; and projectors.

34.2 Illumination

Besides the use of LEDs for color applications (screens, traffic lights), the generation

of white light is of great importance. We compare different illumination elements.

• Light bulb. Radiative efficiency about 20 lm/W (efficiency of conversion of electric

power into light ∼4%); 1,000 h of operation; for 1US $, one obtains 800 lm.

• Energy-saving lamp. Radiative efficiency ∼50 lm/W. The energy-saving lamp con-

tains mercury, which should be avoided in future. In the energy-saving lamp

(Fig. 34.2, left), a gas discharge excites Hg atoms by collisions with electrons.
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Fig. 34.2 Energy-saving
lamp and LED based white
light source

Excited Hg atoms emit UV radiation (at a wavelength of 254 nm). The UV radia-

tion is absorbed by a phosphor giving rise to luminescence radiation in the visible.

• LED. 50 lm/W (future 200 lm/W). 10,000–100,000 h of operation; for 1 US $, one

obtains 20 lm. [Problem: power supplies have short lifetimes.]

• LED-based white light lamps. A blue LED (Fig. 34.2, right) illuminates a phosphor

on the inner surface of a glass plate.

LED-based illumination should lead to an energy saving of hundreds of billions

US $ per year in the year 2025. Worldwide, the generation of light consumes about

20% of the total electric power. The replacement of bulbs is a worldwide task.

A problem concerns the quality of the white light produced with LEDs. Many

people have the feeling that the light is cold. This feeling has a physical background.

The light emitted by a phosphor, irradiated by an LED, does not have the same

spectrum as the radiation of a light bulb. If white light is generated by three LEDs

emitting radiation in the red, yellow and blue spectral regions, the radiation is, of

course, also quite different from white light of a light bulb.

34.3 Organic LED

It is possible to produce organic LEDs of large areas at a low price per square meter.

The luminous efficiency is about 30 lm/W. There are worldwide efforts to increase

the efficiency and to improve the reproducibility.

The center of an organic LED (OLED) is a molecular layer or a polymer layer

sandwiched between electric contact layers. The organic LED (Fig. 34.3a) consists

in principle of 3 layers on a substrate:

• Metal contact.

• Organic layer.

• Transparent conductor (e.g., indium tin oxide) as a metallic contact.

• Transparent polymer substrate.

Under the action of a static field produced by a voltage (U ) between the metal

contacts, electrons migrate into the organic layer from one side and holes from the

other side. Electron-hole recombination generates light.

In the organic LED, molecular levels (Fig. 34.3b) play an essential role. The

organic layer, which is undoped and isolating, contains π -conjugated molecules or

polymers. The electron states are molecular orbitals. An organic molecule of an
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Fig. 34.3 Organic LED (OLED). a Arrangement. b Energy levels of an organic molecular film and
principle of the organic LED

organic LED has occupied energy levels that have a broad energy distribution and,

separated by a gap, empty levels that have also a broad energy distribution. An

electron excited in a molecule migrates via a hopping process to another molecule.

The holes migrate via hopping processes too. Characteristic energy levels are:

• E1,max = highest energy of occupied energy levels.

• E2,min = lowest energy of empty molecular energy levels.

• E2,min − E1,max = energy gap.

A voltage U forces electrons to drift from the cathode and holes from the anode

through the molecular film. Electron-hole recombination leads to generation of lumi-

nescence radiation. The voltage is equal to the energy difference between the Fermi

energy EF,c of the cathode material and the Fermi energy EF,a of the anode material,

eU = EF,c − EF,a.

Special emphasis lies in the choice of the cathode and anode materials. The cathode

material has a work function Wcathode that has a similar value as E2,min (related to

the vacuum level Evac). The anode material has a work function Wanode ∼ E1,max.

Appropriate materials are the following:

• Cathode materials. Calcium, lithium, magnesium or alloys of these materials.

• Anode materials. Indium tin oxide (InSnO2) film; this is transparent for visible

radiation.

Without voltage, there is a built-in potential, establishing a constant Fermi level over

the whole device. By application of a sufficiently large voltage, a nonequilibrium

state with electrons and holes gives rise to the electron-hole recombination and to

luminescence radiation.
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34.4 Organic and Polymer Lasers

Operation of optically pumped organic lasers and optically pumped polymer lasers

has been demonstrated for wavelengths in the whole visible spectral range [285–

296]. Organic and polymer lasers are bipolar lasers (Fig. 34.4). We can describe a

polymer laser (or an organic laser) as a two-quasiband laser, with an upper quasi-

band and a lower quasiband. The upper quasiband consists of energy levels of excited

molecules. An excited molecule can transfer its excitation energy to a nonexcited,

neutral molecule. Energy transfer is possible via the Förster mechanism and other

energy transfer processes (Sect. 18.2). Optical pumping and intramolecular relax-

ation leads to quasithermal population in the upper quasiband. The density of states

D2(E) = D2(ǫ2), of the levels in the upper quasiband depends on the molecular

properties of the polymer; ǫ2 = E − E2,min is the energy within the upper quasiband.

Injection of electrons leads to band filling, characterized by the quasi-Fermi energy

E2,F (ǫ2,F).

Extraction of electrons from nonexcited molecules results in a nonequilibrium

distribution of empty levels in the lower quasiband. Energy transfer is again possible

via energy transfer processes. Intramolecular relaxation processes are responsible

that the occupied levels if the lower quasiband have also a quasithermal distribution.

The density of states, D1(E) = D1(ǫ1), of the levels of the lower quasiband depends

on the molecular properties too; ǫ1 = E1,max − E is the energy within the lower

quasiband. Extraction of electrons leads to empty levels in the lower quasiband,

characterized by the quasi-Fermi energy E1,F (ǫ1,F).

Fig. 34.4 Organic laser (principle)

http://dx.doi.org/10.1007/978-3-319-50651-7_18
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Fig. 34.5 Organic laser
(arrangement)

Optical pumping creates electrons in the upper quasiband and holes in the lower

quasiband. Stimulated electron-hole recombination is the origin of generation of

laser radiation.

A polymer laser (Fig. 34.5) can consist of a polymer film (thickness of the order

of a wavelength). A distributed Bragg reflector (Sect. 25.4) can be used to produce

feedback.

A challenge is the development of an organic laser driven by a current.

References [31, 283–296].

Problems

34.1 Estimate the quantum efficiency of an OLED.

34.2 The actual efficiency of an OLED can be enhanced if three organic layers are

used instead of one. In this case, the third layer is embedded in two organic layers.

The third layer (e.g., a layer with a dye) has two energy levels in the gap of the

organic layers. The upper level is trap of electrons and the lower level is a trap of

holes. Electron-hole recombination gives rise to fluorescence radiation. Illustrate the

principle of the three-layer system in a sketch.

34.3 Treat the organic laser as a two-quasiband laser. Assume that the density of

states in the upper band as well as the density of states in the lower band have

Gaussian distributions and that the widths of the distributions are equal.

(a) Determine the Fermi energy as a function of the density of excited molecules.

(b) What is the condition of gain?

(c) Estimate the gain coefficient of a system of molecules (N0 = 1024 m−3); spon-

taneous lifetime of excited molecules = 10 ms.

http://dx.doi.org/10.1007/978-3-319-50651-7_25


Chapter 35

Nonlinear Optics

The polarization of a dielectric medium depends nonlinearly on the amplitude of

the electromagnetic field. Nonlinear dielectric media are suitable for frequency con-

version of radiation. Nonlinear media can be crystals, glasses, liquids or vapors. We

discuss: frequency multiplication; difference frequency generation; parametric oscil-

lation; four wave mixing; stimulated Raman scattering. In connection with four-wave

mixing, we show how the frequencies of a frequency comb can be determined.

We will present only a very narrow view on the fascinating field of Nonlinear

Optics. Our main aspect concerns the question: how can we convert coherent radiation

of one frequency to coherent radiation of other frequencies?

35.1 Optics and Nonlinear Optics

In Maxwell’s theory, the matter equations describe the electric properties of a dielec-

tric medium are expressed by the relation between the dielectric polarization P of

the medium and the electric field E in the medium,

P = P(E). (35.1)

In Optics (Linear Optics), the relation is

P = ε0χ
(1)

E, (35.2)

where χ (1) is the (complex) dielectric susceptibility. The susceptibility of an opti-

cally isotropic medium is a scalar. It is a tensor if a medium is anisotropic. The

polarization has the same frequency as the electromagnetic field. The susceptibility

χ (1)(ω) characterizes optical properties of a material. The study of χ (1)(ω) leads to

an understanding of basic microscopic properties of matter.

© Springer International Publishing AG 2017
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Fig. 35.1 Nonlinear

polarization

The basis of Nonlinear Optics is the nonlinearity of the polarization at large

amplitudes of the electric field (Fig. 35.1). We characterize the polarization by the

relation

P = ε0χ
(1)E + ε0χ

(2)E2 + ε0χ
(3)E3 + . . . (35.3)

We make use of two simplifications. We neglect the vector character of E and P

as well as the tensor properties of χ (1), χ (2), χ (3) etc. We assume that the field

is spatially homogeneous in the direction of a light beam—we ignore that the field

changes the phase during propagation. Thus, we neglect phase effects, which can be of

great importance. Nevertheless, the simplified representation of the relation between

polarization and field allows for developing an understanding of the principle of

generation of radiation by means of the nonlinear polarization. Nonlinear polarization

is applicable, for instance, to convert monochromatic radiation to radiation at other

frequencies.

The electric field that causes a polarization can consist of fields of different fre-

quencies. We can write, instead of (35.3),

P = ε0χ
(1)E + ε0χ

(2)E1 E2 + ε0χ
(3)E1 E2 E3 + . . . , (35.4)

where E1, E2, . . . are fields of different frequencies and where E = E1 + E2 + . . .

is the sum of the fields.

35.2 Origin of Nonlinear Polarization

At which amplitude of an electromagnetic field do we expect a nonlinear polarization?

We consider a hydrogen atom in a static electric field. We describe the H atom by

Bohr’s atomic model. In a distance of the Bohr radius (a0 = 0.053 nm) to the nucleus

(proton), an electron experiences the field strength

|Eat| =
e

4πε0a2
0

≈ 1011 V/m. (35.5)
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A static external field polarizes an H atom. The center of the positive charge and the

center of the negative charge do not coincide with each other. Therefore, the H atom

represents an electric dipole. The dipole moment increases with the field strength. At

large field strength, the dipole moment depends nonlinearly on the field strength. The

nonlinearity is extremely large when the field strength is of the order of the internal

field produced by the proton at the site of the electron.

A strong high frequency field with a sinusoidal time dependence applied to a

nonlinear medium leads to a time dependent polarization

P(t) = ε0χ
(1) E(t) + ε0χ

(2)E2(t) + . . . . (35.6)

We describe the nonlinear polarization in the classical model of an atom (Sect. 4.8).

Under the action of a strong electric field, an electron oscillates unharmonically—

leading to a nonlinear dipole moment. Accordingly, the polarization of a medium

depends nonlinearly on the amplitude of the electric field. The time-dependent polar-

ization, which depends nonlinearly on the electric field, contains frequency compo-

nents not only at the driving frequency but also at other frequencies. Therefore, the

nonlinear polarization is the source of electromagnetic radiation at frequencies that

differ from the driving frequency.

Atoms, ions, or molecules in gases, liquids and solids show nonlinear polariza-

tion. The strength of the nonlinearity strongly depends on the specific material. Espe-

cially large nonlinear susceptibilities are known for a variety of crystals (e.g., KDP,

LiNbO3).

We will now discuss applications that are based on the nonlinear polarization.

35.3 Optical Frequency Doubler

A frequency doubler (Fig. 35.2a) converts radiation of frequency ν to radiation at

the doubled frequency (2ν). A filter blocks the radiation of frequency ν that is not

converted. The frequency doubling makes use of the quadratic term of the polariza-

tion,

P = ε0χ
(1)E(ω) + ε0χ

(2)E2(ω). (35.7)

An electric field

E = A cos ωt (35.8)

Fig. 35.2 Optical frequency

doubler. a Principle.

b Elementary process

http://dx.doi.org/10.1007/978-3-319-50651-7_4
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causes a polarization

P = ε0χ
(1) A cos ωt + ε0χ

(2) A2 cos2 ωt. (35.9)

It follows, with cos2 ωt = 1
2

+ 1
2

cos(2ωt), that

P = ε0χ
(1) A cos ωt +

1

2
ε0χ

(2) A2 +
1

2
ε0χ

(2) A2 cos 2ωt. (35.10)

We obtain a polarization at the frequency 2ω that is the source of radiation at the

frequency 2ω. The additional term corresponds to a static polarization (optical recti-

fication). In an elementary process of frequency doubling (Fig. 30.2b), two photons

of the quantum energy hν are annihilated and a photon of energy 2hν is created.

Examples

• A frequency doubler converts infrared radiation to green radiation. As nonlinear

crystals, LiNbO3 or KDP are suitable: the conversion efficiency can reach 40%.

• In a titanium–sapphire laser, a frequency doubler located within the laser resonator

produces frequency-doubled radiation in the violet and green (according to the

tunability of the laser).

• Frequency doubling of green or blue radiation leads to UV radiation.

35.4 Difference Frequency Generator

In a difference frequency generator (Fig. 35.3a), two sinusoidal fields of different

frequencies (ω1 andω2; withω1 > ω2) produce a nonlinear polarization in a nonlinear

crystal. The nonlinear polarization is the source of an electromagnetic field at the

difference frequency (beat frequency)

ω3 = ω1 − ω2. (35.11)

An electric field of frequency ω1

E1 = A1 cos ω1t (35.12)

and another field

E2 = A2 cos ω2t (35.13)

Fig. 35.3 Difference

frequency generator.

a Principle. b Elementary

process

http://dx.doi.org/10.1007/978-3-319-50651-7_30
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superimposed to each other lead to the field

E = E1 + E2. (35.14)

This produces the polarization

P = ε0χ
(1)(A1 cos ω1t + A2 cos ω2t)

+ ε0χ
(2)(A1 cos ω1t + A2 cos ω2t)2. (35.15)

The polarization contains the term

Pω1−ω2
=

1

2
ε0χ

(2) A1 A2 cos(ω1 − ω2)t (35.16)

that is the source of the field at the difference frequency. The polarization and, accord-

ingly, the field at the difference frequency ω1 − ω2 are proportional to the product

of the amplitudes A1 and A2. In an elementary process of difference frequency gen-

eration, a photon (energy hν1) is annihilated, a photon at the energy hν2 and another

photon at the energy hν3 = hν1 − hν2 are created (Fig. 35.3b).

The frequency difference generation obeys the Manley-Rowe rule. A photon of the

quantum energy hν1 can only produce one photon of energy hν3. This corresponds

to the energy conservation law of the elementary process. Thus, the efficiency of

conversion of radiation at frequency ν1 to radiation of frequency ν3 is

ηdiff = ν3/ν1. (35.17)

If the frequency ν3 is much smaller than ν1 (and ν2), only a small portion of the power

of radiation at the frequency ν1 is converted to power of radiation at the difference

frequency.

Application. The superposition of two visible or near infrared laser fields of dif-

ferent frequencies can lead to generation of far infrared radiation.

35.5 Optical Parametric Oscillator

An optical parametric oscillator (OPO) converts radiation of a pump frequency (νp)

to tunable radiation at two other frequencies (ν1 and ν2). Radiation of one of the fre-

quencies ν1 or ν2 (or of both frequencies) is stored in a resonator in order to produce

a feedback to the nonlinear crystal (Fig. 35.4a). The OPO shows threshold behavior.

Above a threshold amplitude of the pump field, optical parametric oscillation sets in.

The oscillation frequency ν1 depends on the resonator. Changing the eigenfrequency

of the resonator leads to a variation of ν2 and ν3.

(Together with the change of the resonance frequency, phase matching of the

fields of different frequencies is a necessary condition for operation of a parametric
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Fig. 35.4 Optical parametric oscillator; OPO. a Principle. b Elementary process

oscillator. Phase matching can be achieved by the choice of an appropriate orienta-

tion of the nonlinear crystal, e.g., of a LiNbO3 crystal; changing the frequency of the

signal wave then requires a rotation of the crystal. Another possibility is the change

of the crystal temperature, suitable for KDP.)

In the photon picture (Fig. 35.4b), the elementary process in the OPO crystal

corresponds to the decay of a photon into two photons of smaller quantum energy.

The energy conservation law holds,

hνp = hν1 + hν2. (35.18)

An optical parametric oscillator, pumped with radiation near 1 µm, is suitable for

generation of tunable infrared radiation with frequencies in the range from 1 THz

to 15 THz; the threshold pump power of a parametric oscillator is of the order of

1 MW/cm2 (for LiNbO3 as the nonlinear crystal).

The notations—νp = pump frequency, ν1 = νs = signal frequency and

ν2 = νi = idler frequency—have originally been introduced in the fields of high fre-

quency technique and of microwave technique. “Parametric” means that the pump

field modulates a parameter and that the parameter gives rise to a frequency con-

verting process. In the OPO, the parameter is the refractive index of the nonlinear

medium.

35.6 Third-Order Polarization

As an example of third-order polarization P (3) = ε0χ
(3)E3, we consider the effect

of a harmonic field E = A cos ωt and find

P (3) =
1

4
ε0χ

(3) A3 cos 3ωt +
3

4
ε0χ

(3) A3 cos ωt. (35.19)

The third-order polarization due to a monochromatic field causes two different

effects, frequency tripling and a change of the refractive at the frequency ω.

The first term is the source of an electric field at the frequency 3ν (Fig. 35.5a).

Radiation of frequency ν is converted to radiation of frequency 3ν. In an elementary

process, three photons of energy hν are annihilated and a photon of energy 3hν is

created (Fig. 35.5b).
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Fig. 35.5 Frequency tripler.

a Principle. b Elementary

process

Fig. 35.6 Self-focusing

The polarization at the frequency ω can be written in the form:

P = ε0χ
1 A cos ωt +

3

4
εχ (3) A3 cos ωt = ε0

(

χ (1) +
3

4
χ (3) A2

)

A cos ωt

= ε0χ
(1)

(

1 +
3χ (3)

4χ (1)
A2

)

A cos ωt. (35.20)

It follows, with n =
√

1 + χ (1), that n = n0 + n2 I , where n0 is the refractive index

and

n2 =
6χ (3)

cχ (1)ε0

(35.21)

is a factor that accounts for the change of the refractive index due to third-order

nonlinearity (Problems 35.2 and 35.3). The intensity-dependent refractive index gives

rise to self-focusing (Fig. 35.6; the Kerr lens mode locking (Sect. 13.2) makes use of

self-focusing).

35.7 Four-Wave Mixing and Optical Frequency Analyzer

In a four-wave mixing experiment (Fig. 35.7a) two fields (frequency ν1 and ν2) pro-

duce fields at two other frequencies (ν3 and ν4). The polarization

P = ε0χ
(3)E1 E2 E3, (35.22)

with E1 = A1 cos ω1t , E2 = A2 cos ω2t and E3 = A3 cos ω3t , is responsible for the

mixing process. The polarization P is the source of a field E4 = A4 cos ω4t . The

nonlinear medium can be a crystal or a glass. The elementary process of the four-wave

mixing (Fig. 35.7b) corresponds to the conversion of two photons (energy hν1 and

hν2) to two other photons (energy hν3 and hν4). Four-wave mixing is a stimulated

process. It occurs at strengths above appropriate threshold fields of E1 and E2.

http://dx.doi.org/10.1007/978-3-319-50651-7_13
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Fig. 35.7 Four-wave

mixing. a Principle.

b Elementary process

Fig. 35.8 Four-wave mixing

of a frequency comb

Four-wave mixing has many applications (see books on nonlinear optics). Here,

we discuss as an example the role of four-wave mixing for the optical frequency

analyzer.

Example four-wave mixing of radiation consisting of an optical frequency comb.

In our earlier treatment of the optical spectrum analyzer, we have seen that the

pulses emitted by a femtosecond laser are not exactly multiples of the round trip

frequency fr of the radiation pulses in the laser, but that the frequencies are shifted

by a frequency offset fo. The frequency of the nth line of the optical frequency comb

is equal to

fn = n fr + fo. (35.23)

We now discuss how the frequencies fr and fo can be determined (Fig. 35.8). A

frequency comb generated by a titanium–sapphire laser is strongly focused to a glass

fiber (inner diameter ∼1 µm). In a four-wave mixing process, the frequency comb

broadens and all lines show the same frequency shift fo. This follows from an analysis

of the polarization. The term cos ω1t cos ω2t cos ω3t of the polarization contains the

angular frequency ω1 + ω2 − ω3 and is the source of a field of frequency

f4 = f1 + f2 − f3 = n4 fr − fo, (35.24)

where n4 = n1 + n2 − n3 is an integer. By the mixing of radiation of different fre-

quencies f1, f2, and f3, the frequency comb becomes very broad. The optical fre-

quency analyzer involves the following frequencies.

• fr = repetition rate of the femtosecond pulses = number of pulses per second,

measured by counting the pulses.

• fo = offset frequency; measured by mixing of frequency-doubled radiation.

• 2 fn = 2n fr + 2 fo = frequencies of frequency-doubled radiation. The mixing of

the frequency-doubled radiation with radiation generated by four-wave mixing

provides the difference frequencies
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2 fn − fm = (2n − m) fr − fo, (35.25)

where n and m are integers. For 2n = m, the difference frequency is fo. By mea-

suring different combinations of (2n − m), also fr can be determined by a mixing

experiment: a photodiode serves as nonlinear device, which produces microwaves

at the difference frequencies.

In an optical frequency analyzer, the frequency fo is kept constant. For this purpose,

the laser resonator of the titanium–sapphire laser is stabilized: the distance between

the resonator mirrors is piezoelectrically controlled. After starting a femtosecond

titanium–sapphire laser and reaching stable operation, the offset frequency fo is kept

constant

35.8 Stimulated Raman Scattering

An efficient way of converting monochromatic radiation into coherent radiation of

another frequency is the stimulated Raman scattering.

In a Raman scattering process (Fig. 35.9), the energy �ω1 of a photon is converted

to energy �ω2 of another photon and internal excitation energy Eint of a medium.

The Raman scattered light is incoherent. Above a threshold pump field, stimulated

Raman scattering results in the generation of a coherent field. Internal excitations

can be phonons in crystals, phonons in glasses, vibrational-rotational excitations, or

rotational excitations in molecular gases.

Example Stimulated Raman scattering of radiation of a CO2 laser at molecules (e.g.,

CH3F molecules in a gas) can lead to coherent far infrared radiation; the internal

excitation is a vibrational-rotational state in a molecular gas (Sect. 14.9).

References [12, 297–307].

Fig. 35.9 Raman scattering

http://dx.doi.org/10.1007/978-3-319-50651-7_14
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Problems

35.1 Two monochromatic optical waves (wavelengths near 600 nm) are focused on

a photodetector. The photodetector generates a microwave signal at beat frequencies.

The smallest beat frequency is 200 MHz. Calculate the wavelength difference of the

two optical waves.

35.2 Nonlinear polarization.

(a) Show that a strong electric field applied to a hydrogen atom gives rise to nonlinear

polarization of any order. [Hint: make use of the Taylor expansion of (1 + x)−2].

(b) Estimate the values of χ (2), χ (3) and χ (4); χ (1) is of the order of unity. [Hint: the

lowest-order correction term P (2) would be comparable to P (1) if the amplitude

A of the field is of the order of the strength of field acting on an electron in an

H atom.]

35.3 Show that (35.21) follows from (35.20). Estimate the value of n2. [Hint: use

the estimate of χ (3) in the preceding problem.]



Solutions to Selected Problems

Problems of Chap. 1

1.1 Physical constants

(a) c = 2.99792458 × 108 m s−1 (exact).
(b) h = 6.6261 × 10−34 J s.
(c) � = 1.0545 × 10−34 J s.
(d) e = 1.6022 × 10−19 C.
(e) m0 = 0.9109 × 10−30 kg.
(f) μ0 = 4π × 10−7 V s A−1 m−1.
(g) ε0 = 1/(μ0c2) = 0.8854 × 10−11 A s V−1 m−1.
(h) k = 1.3807 × 10−23 J K−1.
(i) NA = 6.022 × 1026 molecules per Mole.
(j) R = k NA = 8.315 × 103 J K−1 per Mole.
(k) L0 = 2.687 × 1025 molecules per m3 at 0 ◦C and normal pressure.

1.2 Frequency, wavelength, wavenumber and energy scale

(a) 1µm; 300 THz; 104 cm−1; 1.9878 × 10−20 J; 1.2407 eV.
(b) 300µm; 1 THz; 3300 m−1 = 33.33 cm−1; 6.626 × 10−23 J; 4.136 meV.
(c) 1 nm; 300 PHz; 2.0 × 10−17 J; 1.240 keV.
(d) 1 m−1; 1 m; 300 MHz; 1.24µeV.
(e) 1.2407µm; 241.8 THz; 1.6022 × 10−19 J; 1 eV.

1.3

(a) T = 300 K ≡ kT = 4.142 × 10−21 J ≡ kT/e = 25.85 meV ≡ ν = kT/h =
6.625 THz ≡ kT/(hc) = 208 cm−1 ≡ hc/(kT ) = 48 µm.

(b) 1 meV ≡ 8.06 cm−1 ≡ 0.2418 THz.
(c) 1 cm−1 ≡ 30 GHz.
(c) 10 cm−1 ≡ 1.2408 meV.

1.4 Power of the sun light and laser power

(a) 140 mW. (b) 1.8 kW/cm2. (c) 1.3 kW/cm2.

© Springer International Publishing AG 2017
K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-50651-7
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Problems of Chap. 2

2.1 5.6 × 1022 m−3; 5.6 × 1025 m−3; 5.6 × 1028 m−3.

2.2 Field amplitude

(a) ε0 A2/2 = u; A =
√

2u/ε0; ε0 = 0.89 × 10−11 A s V−1 m−1; A = 4.7 ×
105 V m−1.

(b) Z = 106 m−3; A =
√

2hνZ/ε0 = 6.3 × 10−2 V m−1; u = 2 × 10−14 J m−3.
(c) Z = 2 × 1013 m−3; A = 180 V m−1; u= 1µ J m−3.

2.3 Occupation number

(b) kT = 4.14 × 10−21 J = 25.8 meV; f Boltz
1 − f Boltz

2 ∼ 1.8 × 10−35.
(c) f Boltz

1 − f Boltz
2 ∼ 0.54 − 0.46 = 0.08.

2.4 Oscillation condition

(a) In one case, the condition is G1G1V u/2 = u/2 and in an other case,
V G1G1u/2 = u/2. Show that both cases lead to GV = 1.

(b) For both directions, we obtain the product GV and the same sum of the phases.

2.5 Brewster angle

(a) 54.4◦. (b) 56.3◦. (c) 61.2◦. (d) 60.4◦.

Problems of Chap. 3

3.1 δν/(c/2L) = 2 × 105.
3.2 V = R1 R2; seff = 10; τp = 6.7 ns; lp = 2 m; Q = 63.

3.3 Resonator with air

(a) ν1 = c/(2nL).
(b) δν = c/(2L) − (c/n)/(2L) = c/(2L)(1 − 1/n) = 160 kHz; δν/ν ∼ 3 × 10−9.

3.4 Energy = ε0a1T −1
∫ L

0

∫ T

0 E2(z, t)dzdt = ε0a1a2 A2T −1
∫ L

0

∫ T

0 sin2 kz sin2 ωt

dzdt = ε0a1a2 L A2/4; u = ε0 A2/4.

3.5 V = R1 R2; τp = 1/(1 − V ).
3.6 Photon density

(a) ZFP/τp = Z/T ; ZFP = Q/(2π)Z ; Q = 2πl/(1 − R).
(b) We obtain the same result, but Q = πl/(1 − R).

3.7 RFP = 1 − TFP = 4R(1 − R)−2 sin2 δ/2[1 + 4R(1 − R)−2 sin2 δ/2]−1.
3.8 TFP = 1/[1 + 4R(1 − R)−2 sin2 δ/2], where R =

√
R1 R2.
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3.9 Fabry–Perot interferometer with absorbing mirrors

(a) TFP = (1+(A2
m/T 2

m)−1(1+4R(1−R)−2 sin2 δ/2)−1; TFP,max = (1+A2
m/T 2

m)−1.
(b) 1/(1 + A2

m/T 2
m) < 0.98; Am/Tm < 0.1.

3.10 Fabry–Perot interferometer for obliquely incident radiation

(a) δ = k × 2L cos θ + 2ϕ.
(b) ϕ = 0; δ = k × 2L cos θ = zl × 2π; 2L cos θ = zl × λ.

Problems of Chap. 4

4.2 Absolute number of two-level systems

(a) Ntot = 1015. (b) Ntot = 1010. (c) Ntot = 104.

Problems of Chap. 5

5.1 L + (n − 1)L ′ = 57.6 cm.
5.2 Photon density

(a) The laser beam has only a slightly larger diameter at 10 m distance from the
laser and the laser power is of the order of 1 W.

(b) Assuming that the luminescence radiation is emitted isotropically, the power
reaching an area of 1 cm diameter is Pfluor = P0 × 2π sin2(α/2), where α is
the angle corresponding to the area. It follows that α ∼ 5 × 10−4; Pfluor ∼
P0 × 2π × α2/2 ∼ 0.4 µW.

5.3 g(λ)dλ = g(ν)dν; g(ν) = g(λ)/|dν/dλ|; ν = c/λ; dν/dλ = −c/λ2; g(ν) =
λ2g(λ)/c.
5.4 Population of the upper laser level

(a) r = N2/τ
∗
rel = 3.3 × 1029 m−3 s−1; volume = πr2 L ′ = 7.9 × 10−10 m3;

Ppump = 1.5 × 3.3 × 1029 × 7.9 × 10−10 × 2.4 × 10−19 W = 9.4 W; the factor
1.5 takes account of the quantum efficiency.

(b) Ntot = 1024 × 7.9 × 10−10 = 7.9 × 1014.
(c) Energy = 1024 × 7.9 × 10−10 × 1.5 × 1.6 × 10−19 J = 190 µJ; energydensity =

energy/volume = (Ntot/volume) × hν = 240 kJ/m3 = 240 J per liter.
(d) Ppump = 94 W. [The reason is the stimulated emission (Sect. 8.8).]

Problems of Chap. 6

6.1 Photon density

(a) Z = D(ν)dνn̄ = (8πν2/c3)kT/hν ∼ 6 × 107 m−3.

http://dx.doi.org/10.1007/978-3-319-50651-7_8
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(b) Z = 6 × 1010 m−3.
(c) Z = (8πν2/c3)dν exp(−hν/kT ) = 4 × 10−34 m−3.

6.2 Number of thermal photons in a mode of a laser resonator

(a) n̄ = exp(−hν/kT ) ∼ 2 × 10−29.
(b) n̄ = 1/[exp(hν/kT ) − 1] ∼ 0.25.
(c) n̄ = kT/hν ∼ 6.

Problems of Chap. 7

7.1 Amplification of radiation in titanium–sapphire

(a) α = 8 m−1. (b) G1 − 1 = 0.5.
(c) α(1 µm)/α(λ0) ∼ 0.5; α(1 µm) ∼ 4 m−1; G1 − 1 = 0.25.

7.2 σnat = (λ/n)2/2π = 3.2 × 10−14 m2; τsp = 3.8 µs; Δνnat = 1/2πτsp =
4.2 × 104 Hz; Δν0 = 1.1 × 1014 Hz; σ21/σnat = 1.5Δνnat/Δν0 = 5.7 × 10−10;
σ21 = 1.8 × 10−23 m2.
7.3 Two-dimensional gain medium

(a) α = 2,000 m−1 = 20 cm−1. (b) G1 − 1 = 1.5 × 10−3.

Problems of Chap. 8

8.1 τp = (2nL/c)(1 − R)−1 = 6 × 10−8 s; lp = (c/n)τp = 10 m; (N2 − N1)th =
1/ lpσ21 = 3 × 1021 m−3.
8.2 rth = (N2 − N1)th/τ

∗
rel = 8 × 1026 m−3 s−1;

Z∞ = (10rth −rth)τp = 9rthτp = 4.3×1019 m−3; Pout = Z∞a1a2 Lhν/τp = 9 W;
rout/r = Z∞/(τpr) = 9rth/10rth = 0.9.
8.3 (N2 − N1)0 = 10 × (N2 − N1)th = 3 × 1022 m−3; γ0 = b21(N2 − N1)0 =
1.3×108 s−1; κ = 1/τp = 1.6×107 s−1; Z0 = 1/a1a2 L = 2×107 m−3; ton = 18 ns.
8.4 If the active medium has a smaller length than the resonator, the threshold
condition is (N2 − N1)∞ = − ln V/(2nL ′σ21), where L ′ is the length of the active
medium. It follows for that case that the gain coefficient α = (N2 − N1)σ21 has
to be larger than the reciprocal of the effective photon path length in the crystal,
l ′p = lpL ′/L , α ≥ 1/ l ′p = − ln V/(2nL ′) or 2αL ′ ≥ − ln V. We find, with G =
exp(2αL ′), that the condition of gain, GV ≥ 1, is fulfilled.

Problems of Chap. 10

10.1 ν110 = ν101 = ν011 = c/(
√

2a) = 21.2 GHz; ν111 =
√

3c/(2a) = 26 GHz.
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10.2 Degeneracy of modes of a rectangular cavity resonator

(a) 3. (b) 2. (c) No degeneracy. (d) 2.
10.3 Density of modes of a cavity resonator

(a) D(ν) = 8πn3ν2/c3 = 1.7 × 105 m−3 Hz−1 for ν = 4.3 × 1014 Hz; n = 1.
(b) 1.0 × 106 m−3 Hz−1.
(c) 8.3 × 106 m−3 Hz−1.

10.5 Mode density on different scales

(a) D(ν)dν = D(hν)d(hν); D(hν) = D(ν)dν/d(hν) = D(ν)/h.
(b) D(ν)dν = D(ω)dω; D(ω) = D(ν)dν/dω = D(ν)/(2π).
(c) D(ν)dν = D(λ)dλ; D(λ) = D(ν) × dν/dλ = cD(ν)/λ2.

10.6 ν = (c/2)

√

a−2
1 + L−2 = c/(2a1)

√

1 + a2
1/L2 ∼ c/(2a1)[1 + a1/(2L2)];

dν/dL ∼ −(ca1/(2L3; dν/ν ∼ (a2
1/L2)dL/L .

10.7 Density of modes in free space

We consider a propagating wave E = A exp[i(ωt − kr)]. We apply periodic
boundary conditions: E(x + L , y + L , z + L) = E(x, y, z) for each value of t ; L is
the length of the periodicity interval assumed to be equal in all spatial directions. This
leads to the conditions: exp(ikx L) = 1; exp(iky L) = 1; exp(ikz L) = 1. It follows
that: kx = l ×2π/L; ky = m ×2π/L; kz = n ×2π/L; k2 = (2π/L)2(l2 +m2 +n2),
with l, m, n = 0,±1,±2, . . .. We find, with ω = ck, that ω2 = (2πc/L)2(l2 +m2 +
n2). The mode density in k space is D(k) = (L3/π2)k2 and in ω space D∗(ω) =
ω2 L3/(π2c3). With D∗(ω)dω = D∗(ν)dν, we obtain D∗(ν) = (8πν2/c3)L3.

Problems of Chap. 11

11.1 Gaussian beam

(b) The ratio of the intensity of the radiation within the beam radius r0 to the total
intensity is

∫ r0

0
2πr exp(−r2/r2

0 )dr/

∫ ∞

0
2πr exp(−r2/r2

0 )dr = 1 − 1/e = 0.63.

We used
∫

2xe−x2
dx = − exp(−x2).

(c) rp = Ip/Itot = 1 − exp(−r2
p/r2

0 ); rp/r0 =
√

− ln(1 − p).

(d) rp = 1.52 r0.
(e) rp = 1.73 r0.
(f) A Taylor expansion of p(rp) with respect to rp yields p ∼ 1 − r2

p/r2
0 .

11.2 θ0,u =
√

2λ/(πr0) = 1.3 × 10−3(=4.5 arc minutes)
11.3 The angle of divergence is Θ = 0.1(

√
2/π)λ/r0 = 2 × 10−6.
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11.4 Density of photons in a Gaussian beam. The number of photons emitted per
second by the laser is Pout/(hν) = 6 × 1014 s−1. A detector of diameter D monitors
radiation within the angle ϑ = D/d, where d is the distance from the laser. The
portion of radiation within the angle ϑ is sin2 ϑ/ sin θ2 ∼ ϑ2/θ2. It follows for the
number of photons per second:

(a) ϑ = 10−7;ϑ2/θ2 = 2 × 10−3; 3 × 1011 s−1.
(b) ϑ = 7 × 10−11; ϑ2/θ2 ∼ 10−9; ∼106 s−1.

Problems of Chap. 13

13.1 Ultrashort pulses

(a) tp ∼ 1/Δν0 ∼ 0.3 ps. (b) tp ∼ 10 ps. (c) tp = 30 ps.
13.2 Excited Ti3+ ions are collected during the round trip time T = 10−8 s. The
density of excited Ti3+ is rT = 3 × 1020 m−3. Accordingly, the energy in a pulse is
rT a1a2 L ′ ×hν = 19 nJ and the pulse power = 1.9 MW. The average power is 1.9 W.
13.3 2 × 107 W.

Problems of Chap. 14

14.1 Helium–neon laser: line broadening and gain cross section

(a) ΔνD = 1.5 × 109 Hz. (b) Δνc ∼ 106 Hz. (c) Δνnat = 1.6 × 106 Hz.
(d) Δν0 = 1.6 × 107 Hz. (e) σ21(ν0) = (1/c)hνB21gG(ν0) = 1.0 × 10−16 m2.

14.2 Helium–neon laser: threshold condition, output power and oscillation onset

time

(a) τp = T/(1−R1 R2) = 1.5×10−7 s; lp = cτp = 45 m. (N2−N1)th = 1/(σ21lp) =
2 × 1014 m−3.

(b) (N2 − N1)th × a1a2 L = 2 × 108; number of excited neon atoms in the laser.
(c) rth = (N2 − N1)th × a1a2 L/τ ∗

rel = 2 × 1015 s−1; rout × a1a2 L = 9rtha1a2 L =
2 × 1016 s−1; Pout = rout × a1a2 Lhν = 13 mW.

(d) Z0 = (a1a2 L)−1 = 5 × 105 m−3; Z∞ = routτp = 2.7 × 109 m−3; αth = (N2 −
N1)th × σ21 = 0.02 m−1; γth = cαth = 6 × 106 s−1; κ = 6 × 106 s−1 (because
κ = γth at threshold); γ0 = 10 γth = 6 × 107 s−1; ton = ln(Z∞/Z0)/(γ0 − κ) =
160 ns.

14.3 Doppler effect

(a) ν = ν0(1 ± v/c); δν = (2v/c)ν0 = 3 × 109 Hz.
(b) The homogeneous width of the line due to 2 → 1 spontaneous transitions is

Δν = 1/(2πτrel) = 1.6 × 108 Hz, where τrel is the lifetime of the lower laser
level. This corresponds to a velocity range −v, v or to |v| = cδν/ν0 = 100 m s−1.
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(c) The gain curve has a minimum of a halfwidth of 160 kHz. In the line center, the
gain is smaller than outside because outside (80 kHz away from the center) ions
of the velocity +v contribute to gain in half a round trip and ions of the velocity
−v contribute during the other half round trip. The Lamb dip can be used for
frequency stabilization of a helium–neon laser.

14.4 CO2 laser

(a) ΔνD = 2ν0

√

(2kT/mc2)ln2 = 5.6×107 Hz; m = mC +2mO = 44 mp = 7.3×
10−26 kg; mp = proton mass. σ21(ν0) = 0.94c2 A21/(8πν2ΔνD) = 1×10−21 m2.
G thV = 1; V = 0.7; G th = 1.43; G th = exp[αth × 2L]; αth = ln(G th)/2L =
0.18 m−1. (N2 − N1)th = αth/σ21 = 1.8 × 1020 m−3. rth = (N2 − N1)th/τ

∗
rel =

4.5 × 1019 m−3 s−1; P = ra1a2 Lhν; r = P/a1a2 Lhν) = 3 × 1025 m−3 s−1;
r ∼ 106 rth; the pump rate is about 106 times larger than the threshold pump
rate.

(b) Because of the extremely long lifetime of the upper laser level with respect
to spontaneous emission, the oscillation builds up as soon as the population
difference exceeds (N2 − N1)th. Stronger pumping then leads to generation
of laser radiation. By collisions of the CO2 molecules with each other, a
quasithermal distribution of the populations of the different rotational levels
of the excited state is maintained and the pump energy is converted to laser
radiation (and energy of relaxation).

(c) We treat, for simplicity, the CO2 gas as an ideal gas. At 273 K and normal
pressure, an ideal gas (mole volume 22.4 l) contains 6 × 1023 molecules. This
corresponds to about 3 × 1025 m−3. We use this number for CO2 at room
temperature and normal pressure (1 bar). At a pressure of 10 mbar, the density
of available CO2 molecules is 3 × 1022 m−3. At room temperature, excited CO2

molecules are in different rotational states. About 1% of the molecules are in a
particular rotational state. Thus, about 3 × 1021 molecules per m3 are available
for laser transitions. Assuming that half of the molecules are in an excited
state we find that the density of molecules in a vibrational-rotational state is
1.5 × 1021 m−3. This leads to α ∼ 8 × αth ∼ 1.4 m−1 and to a single path gain
of G1 = exp(αL) = 4.

(d) For a collision-broadened line, the gain cross section is σ21 = c2 A21/(8πν2)

g(ν). With increasing pressure g(ν) broadens and the cross section in the line
center, σ21(ν0) = c2 A21/(8πν2)×2/(πΔνc), is inversely proportional to the gas
pressure p. It follows that α(ν0) is independent of pressure above a pressure of
about 10 mbar. At this pressure, 2Δνc ∼ ΔνD, the gain coefficient we calculated
is the maximum gain coefficient for the TEA and the high-pressure CO2 laser.

In a TEA laser, the pulse duration of the radiation is about 200 ns. It is much
larger than the duration (20 ns) of the electrical excitation pulse. During about 20
round trip transits of the radiation through the active medium, a fast redistribution
occurs for the population of the levels involved in a laser oscillation. If we assume
that about 1% of the excited molecules contribute to the laser oscillation, we find
the pulse energy Epulse = 0.3 J and the pulse power Epulse/tpulse ∼ 1 MW.
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(e) Z0 = (a1a2 L)−1 = 104 m−3; τp = (2L/c)/(1 − R) = 2.2 × 10−8 s; Z∞ =
Poutτp/(a1a2 Lhν) = 1.1 × 1021 m−3; ton = T ln (Z∞/Z0)/(GV ) = 24 ns.

Problems of Chap. 15

15.2 σ21(YAG)/σ21(TiS) =Δν0 (TiS)/Δν0 (YAG)×τsp (TiS)/τsp (YAG)×λ2(YAG)/λ2

(TiS) ∼ 10.
15.3 An N2 molecule consists of two atoms, a molecule has a single vibrational
frequency (and all molecules in an N2 gas have the same frequency) while the Ti3+

ions in Al2O3 belong to a system with a large number of atoms (ions), namely of
N ∼ 1025 m−3, with 3N vibrational frequencies.
15.4 Laser tandem pumping

(a) η = η1 × η2 × η3 × η4 ∼ 25%; η1 ∼ 0.8 (efficiency of a semiconductor
laser); η2 ∼ 0.8 (Nd3+:YVO4 laser); η3 = 0.5 (frequency doubling); η4 =
0.53 µm/0.68 µm = 0.78.

(b) The Nd3+:YVO4 laser produces a laser beam with a small angle of aperture.
Therefore, a column of a small diameter can be excited in titanium–sapphire
allowing generation of a narrow laser beam. Direct pumping with a semiconductor
laser beam, which has a large divergence, leads to excitation of the whole
titanium–sapphire crystal. This results in strong heating.

Problems of Chap. 16

16.1 Dye laser

(a) GV ; V = 0.7; G th = 1.43; G th = exp(αth L ′); αth = (1/L ′) ln G th = 350 m−1;
(N2 − N1)th = αth/α21 = 3.5 × 1021 m−3.

(b) rth = (N2 − N1)th/τ
∗
rel = 7 × 1029 m−3 s−1; rtha1a2 L ′ = 3 × 1019 s−1; Pout =

9rtha1a2 L ′hν = 0.8 W.

16.2 Ppulse = 190 MW; P = 1.9 mW.

Problems of Chap. 19

19.1 Acceleration energies

(a) E =
√

λw/λm0c2 = 2.9 MeV. (b) E = 500 MeV.

19.2 E =
√

λw(1 + k2)8m0c2)/2/
√

λ; dE = dλ =
√

· · ·(−1)/(2λ3/2); dν/ν =
−dλ/λ = 2dE/E .
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Problems of Chap. 20

20.1 λdeBroglie = h/(mv). The ratio is m0 = me = 1/0.07 = 14.
20.2 Number of states

(a) ǫ = 26 meV = 4.2 × 10−21 J; dǫ = 1.6 × 10−22 J; D(ǫ)dǫ = 1.5 × 1023 m−3.
(b) D2D(ǫ)dǫ = 1.0 × 1016 m−2.
(c) D1D(ǫ)dǫ = 7.6 × 107 m−1.

20.3 δν = c/(2nL) = 41.6 GHz.

Problems of Chap. 21

21.1 Wave vector of nonequilibrium electrons in GaAs

k = (1/�)
√

2meǫ = 4.3 × 108 m−1; 1.4 × 108 m−1; 4.3 × 107 m−1; λg = hc/

Eg = 870 nm; gap wavelength (vacuum wavelength); qp = 2nπ/λg = 2.6×107 m−1.
It follows that qp is small compared to k for the first two values of k.

(b) qp = k for ǫ = �
2q2

p/(2me) = 0.4 meV.

21.2 qp ≪ k1 = (1/�)
√

2meǫc; ǫc ≫ �
2q2

p/(2me) = 0.4 meV; qp ≪ k2 =
(1/�)

√
2mhǫv; ǫv ≫ �

2q2
p/(2mh) = 0.4/6 meV.

21.3 Electron and holes in an undoped GaAs quantum film in thermal equilibrium

(a) EFe = EFh = EF.
(b) Since EFe = Ec + ǫFe = EF and EFv = EV − ǫFh = EF, it follows that

Ec + ǫFe = Ev − ǫFh and −ǫFe − ǫFh = Eg. The gap energy is positive because
ǫFe and ǫFh have negative signs for small electron and hole densities.

(c) N 2D
thermal =

√

D2D
e D2D

h kT exp[−E2D
g /(2kT )] = 2 × 104 m−2; with kT = 26 meV;

E2D
g = 1.4 eV; N 2D

thermal is by many orders of magnitude smaller than N 2D
tr =

1.4 × 1016 m−2.

Problems of Chap. 22

22.1 N 2D ∼ 3.3 × 1016 m−2; ǫFv ∼ 6 meV; ǫFc ∼ 84 meV; EFc − EFv ∼ 78 meV.
22.2 Quantum well laser

Average photon path length lp = 0.9L = 0.45 mm; N 2D
th − N 2D

tr = (1/3) ×
1.3(σeff lp/a1)

−1 = 1.3 × 1015 m−2: j = 3N 2D
th e/τsp = 3.1 × 106 A m−2; I = 0.3 A.

22.3 Photons in a quantum well laser

(a) hν = 1.42 eV = 2.3 × 10−19 J; τp = 5 × 10−12 s; Za1a2 Lhν/τp = 2Pout;
Z = 2.0 × 1018 m−3.

(b) Z tot = Za1a2 L = 105.
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(c) Ntot ∼ N 2D
tr a2 L = 1.2 × 109; Z tot is much smaller than Ntot.

Problems of Chap. 23

23.1 qp = 2πn/λg = 2.6 × 107 m−1; π/(a/2) = 1.1 × 1010 m−1 ≫ qp.
23.2 Indirect gap semiconductor

(a) hν = E ind
g + �ωphonon; 0 = 2π/a + qphonon.

(b) E ind
g = hν + �ωphonon; 2π/a = qphonon.

Problems of Chap. 24

24.1 GaN quantum well

(a) D2D(GaN) = 3 × D2D (GaAs).
(b) To obtain the same occupation number difference, the nonequilibrium electron

density has to be larger by a factor of three. If the Einstein coefficient B21 has
the same value, the gain is by a factor ν2 = ν1 larger for GaN (ν2 = frequency
of a laser with a GaN-based quantum well and ν1 = frequency of a laser with a
GaAs-based quantum well).

Problems of Chap. 26

26.1 We consider a two-dimensional plane wave,

Ψ = Ψ0ei[kr−(E/�)t],

where k and r are two-dimensional vectors within the plane. We apply periodic
boundary conditions for the x and y direction, kx L = m × 2π and ky L = n × 2π ,
where m and n are integers and L is the periodicity length (for the directions along
x and y). In k space, the area of a ring of radius k and width dk is 2πk dk. The area
containing one k point is (2π/L)2. The density of k states is D̄2D(k) = kdk/(2π)L2.
The density of states in the energy space follows from the relation D̄2D(ǫ)dǫ =
2D̄2D(k)dk, where the factor 2 takes into account that there are two spin directions
for an electron. Making use of the dispersion relation ǫ = �

2k2/(2m) and of dǫ/dk =
�

2k/m we find D̄2D = 2D̄2D(k) dk/dǫ = m/(π�
2)L2 and D2D(ǫ) = m/(π�

2)

(=density of states per unit of energy and unit of area).
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26.2 Subpicosecond quantum well laser

(a) Yes. It is in principle possible to have a gain profile of a halfwidth of about
50 meV. The necessary frequency width is Δν0 = ΔE0/h = 12 THz; tpulse ∼
1/Δν0 ∼ 10−13 s = 100 fs.

(b) The pulse separation is T = 2nL/c = 2 × 10−11 s. Most likely, the number of
photons available in a pulse is not sufficient for the saturation of a semiconductor
reflector.

(c) If an external reflector is used, an active Q-switching technique should be
applicable and the generation of subpicosecond pulses should be possible.

Problems of Chap. 27

27.1 The periodic boundary condition for a one-dimensional system yields the k

values k = s × 2π/L . The density of states in k space is D̄1D(k) = 2 × L/(2π)

because there are two states (±k) in an interval 2π/L .
ǫ = �

2k2/2m; dǫ/dk = (�/m)k = �
√

2ǫ/m; D̄1D(ǫ) dǫ = 2D̄1D(k) dk;
D̄1D(ǫ) = (2L/π) dk/dǫ = L/(π�)

√
2m/ǫ and D1D = (π/�)

√
2m/ǫ.

27.2 f2 = 0; f1 = 1; G − 1 = (n/a2c)h2vB21n1D
0,nat/Δǫnat = 0.26.

27.3 Ith = 0.8 × Ne/τsp = 0.75 nA.
27.4 Bipolar laser as two-level laser

(a) Dr(E); E = Eg+ǫ = pair level energy; ǫ = ǫ2+ǫ1; ǫ2 and ǫ1 are the energies of
the electron and the hole that constitute a radiative pair. Dr(ǫ) is the 3D, 2D, 1D
or 0D density of states, depending on the dimensionality of the semiconductor.

(b) The gain characteristic H21 is proportional to fp − f̄p , where fp is the probability
that the pair level is occupied and f̄p is the probability that the pair level is empty;
fp − f̄p = 2 fp.

(c) fp − f̄p > 1/2, since the absorption coefficient is proportional to f̄ and the
stimulated emission to f .
The condition must correspond to the condition f2 − f1 = 0 or f2 − f1 =
fe − (1 − fh = 0. It follows that fp − f̄p = f2 − f1 + 1/2 = fe + fh − 1/2. f2

and f1 are the occupation numbers for the electrons in the conduction band and
the valence band and fe and fh are, in the electron-hole picture, the occupation
numbers for the electrons and holes, respectively (see Sect. 21.10).

27.5 Laser operated with a gain medium with a naturally broadened line

(a) To the knowledge of the author: no.

An electron-hole pair can be considered as an occupied single electron pair
level (=occupied upper laser level). The lower laser level is the vacuum level.
The lifetime of the vacuum level is infinitely large (or large compared to the
spontaneous lifetime of the pair). Thus, we have no lifetime broadening of the

http://dx.doi.org/10.1007/978-3-319-50651-7_21
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lower laser level, supposed that the population of the levels of the electron and
the hole, which constitute a radiative electron-hole pair, occurs sufficiently fast.

(b) σ21 = (λ/n)2/2π = 9 × 10−15 m2 for n = 3.6.

Problems of Chap. 31

31.3

(a) A∞ = 0.18 V.
(b) γ0 = a/C = 10 × 109 s−1; κ = G/C = 0.77 × 109 s−1; γ0 − κ = 2.3 × 108 s−1

≪ ω0 = 6 × 1010 s−1.

31.4 Van der Pol equation

(a) The equation follows from (31.47) by introducing ǫ = (γ0 − k)/ω0 and y =
U

√

(3ω0b/C)(γ0 − k)−1.
(b) The ansatz y = A cos τ leads to A = 2.

http://dx.doi.org/10.1007/978-3-319-50651-7_31
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A

ABCD matrix, 226–230
Absorption, 23, 88

band, 80
coefficient, 21, 22, 102, 110, 142, 146,

482, 535
cross section, 103

Acceleration theorem, 597, 618
Accelerator, 351, 352
Acousto-optic modulator, 251
Active medium, 22–26, 58–64
Airy formula, 49
AlAs, 482
Alexandrite laser, 295, 296
AlN, 487
Amplified spontaneous emission, 312, 352
Angle of divergence, 206, 230
Anharmonicity, 110, 320, 321
Anisotropy of a quantum well, 421, 473, 518
Annihilation, 63
Antenna, 191, 570
Antireflecting coating, 37, 493, 507, 630
Applications, 8, 9, 261, 262, 278, 280, 281,

296, 299, 489, 623–627, 637–639,
641

Argon ion laser, 278, 279
Attosecond pulse, 265
Auston switch, 264
Autocorrelator, 259

B

Backword wave oscillator, 543
Beam divergence, 206
Beam waist, 203, 208
Beat frequency, 638
Bernard-Duraffourg relation, 434

Biology, 9, 235, 242, 243, 261, 300, 353
Bipolar

laser medium, 450–452
semiconductor laser, 5, 18, 37, 107, 110,

420–493
Birefringent filter, 237
Blackbody radiation, 86
Bloch

frequency, 592, 597
gain, 601–605
laser, 11, 424, 591–619
oscillation, 397, 596–598, 618
theorem, 502, 507
wave, 502

Blue laser diode, 487, 488
Bohr radius, 636
Bohr’s energy-frequency relation, 22
Boltzmann transport equations, 618
Boltzmann’s statistics, 25, 86
Bose–Einstein factor, 92
Boson, 282
Boundary conditions for

electromagnetic fields, 27, 182, 190, 209,
498, 499

electron waves, 563
Bragg

frequency, 505
reflection of electromagnetic waves, 505
reflection of electrons, 598, 611
reflector, 493, 494, 497, 505

Brewster
angle, 37, 38, 174, 237, 252, 276
window, 37, 198, 275

Brightness, 195
Brilliance, 230
Brillouin zone, 481, 505, 548, 598, 611
Broadband laser, 295
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Buildup of laser oscillation, see Onset of
oscillation

C

Carrier envelope phase, 255
Carrier frequency, 248, 250, 323
Cavity dumping, 244
Cavity resonator, 181–191, 244, 570
Centrifugal distortion, 283
Chemical laser, 311
Chemical vapor deposition (CVD), 479, 485,

630
Chemistry, 9, 235, 239, 242, 261, 263, 300
CH3F laser, 284, 285
Circular polarization, 42
Cladding, 624
Clamping of

gain factor, 34
luminescence, 442
population difference, 122, 126
quasi-Fermi energy, 442

Classical
absorption coefficient, 146
oscillator, 71–75, 572–576, 583–588
oscillator model of an atom, 69–71, 142,

322
Cleaving surface, 491
CO2 laser, 5, 36, 37, 69, 105, 109, 281–284
Coherence length, 136
Coherent wave, 18, 222
Collision broadening, 273, 274
Color center laser, 304
Comparison of lasers, 108, 425, 538–540
Complex

beam parameter, 203, 218, 228
quantities, 20

Compton scattering, 356
Concentric resonator, 212, 213
Condition of gain, 333–339, 429–434, 438,

445
Conduction band, 417
Conductivity, 138
Configuration coordinate, 302
Confinement factor, 463
Confocal

parameter, 206
resonator, 203–213, 221

Contact, 533, 534
Continuous wave laser, 3
Copper vapor laser, 277, 278
Coumarin, 309
Coupling strength, 394, 602

Cr:LiCaF laser, 295
Cr:LiSAF laser, 295
Critical

field, 599
modulation index, 391, 606

Cross relaxation, 301, 302, 329
Crystal surface, 44
Current, 145
Cutoff frequency of a resonator, 185

D

Damping, 154, 586, 625
Data of lasers, 5, 6, 36, 37, 60, 69, 91, 107,

108, 275, 295, 306, 359, 470, 472,
473, 594, 595

De Broglie wavelength, 454, 597, 598
Decibel, 315
Defect centers in solids, 304–306
Degenerate

energy levels, 24, 101
mode, 184

Density of states of
electrons, 418, 419, 534
photons, see mode density

Dephasing, 74, 159, 262, 391, 602, 610
Depletion layer, 533
Depth of focus, 206
Dichroitic mirror, 79
Dielectric

constant, 138
multilayer mirror, 44, 494
polarization, see polarization
susceptibility, 138–145

Difference frequency generation, 264, 638
Differential gain coefficient, 106, 370, 606,

613
Diffraction, 189

loss, 223
Diffusion, 287
Dipole

matrix element, 96
moment, 143
oscillator, 69–72, 164

Direct gap semiconductor, 421, 481
Disk

laser, 8, 299, 304
of light, 19, 101, 112, 114

Dispersion, 148, 254, 255, 257, 259, 625,
626

relation for electromagnetic radiation,
19, 27, 625

relation for electrons, 417, 481, 515, 553,
556, 562, 563
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Displacement current, 139
Distributed

Bragg reflector, 493, 634
distortion energy, 609
feedback laser, 8, 493

Divergence, 206
Domains, 570
Doppler broadening, 271–273
Double heterostructure laser, 423, 534, 536,

539
Drude theory, 175
Dye, 310

laser, 309–311
Dynamical conductivity, 364

E

Echelette grating, 237, 284, 493
EDFA, 626
Edge-emitting laser, 8, 44, 473, 491
Effective

gain cross section, 107, 340, 438, 446,
447, 606

growth rate constant, 438, 450, 469
mass, 417, 477
refractive index, 504
wave vector, 219
wavelength, 219

Eigenfrequency, 28, 70
Eigenvalue problem, 27, 208, 228
Eigenvalues, 555
Einstein

coefficients, 87–95, 334, 391, 394, 421,
429–431, 440, 463, 613, 616

relations, 89–91, 95, 429–431
Electric

current, 142
current dipole, 70
dipole moment, 70, 143
susceptibility, 146, 147, 264
wave, 190

Electro-luminescence, 537
Electromagnetic wave, 18
Electron

bunching, 390
collisions, 275
gas, 75, 418, 428, 429
hole pair, 451, 452, 523, 627
hole recombination, 451, 538, 630, 632,

634
phonon scattering, 62, 429, 438–441, 525
subband, 458, 511–514

Energy

band, 416, 481, 515, 556
band engineering, 425
degeneracy, 515
density of an electromagnetic field, 19,

30
flux density, 19, 507
gap, 416
-ladder based laser, 58
-ladder system, 58, 74, 391–397, 612–

617
level broadening, 334, 433
relaxation, 618
transfer, 301, 302, 330, 633

Erbium-doped
fiber amplifier, 325–343, 626
fiber laser, 63, 301, 327, 343

Er:YAG laser, 297
Esaki–Tsu characteristic, 577, 599
Etalon, 236
Excimer laser, 279, 280
Extended Kronig–Penney model, 563

F

Fabry-Perot
interferometer, 48, 49, 52
resonator, 26–36, 38–40, 43, 45–53, 154,

213, 422
resonator containing a gain medium, 52,

53
Far-field range, 205
Far infrared laser, 285, 538
Far infrared quantum cascade laser, 550
Feedback, 32
FEL, see Free-electron laser
Femtochemistry, 261
Femtosecond laser, 245–266
Fermi-Dirac distribution, 331, 342, 430, 459
Fermi energy, 331, 430
Fiber

amplifier, 302, 314, 325–343, 626
laser, 5, 8, 44, 105, 109, 300, 304, 342,

343
Filling factor, 332, 339
Finesse, 50
Flash lamp, 292
Floquet states, 615
Fluctuations, 581
Fluorescence, 60, 80, 341, 342
Focused Gaussian beam, 228, 230
Forbidden mode, 187
Förster mechanism, 330, 633
Four-level laser, 59
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Four wave mixing, 641–643
Four-level laser, 7, 8
Fourier transform, 250
Franck-Condon principle, 279, 281, 293,

309, 319
Fraunhofer range, 205
Free electron, 415, 424, 514, 533

in a crystal, 418
laser, 10, 210, 348–412
laser medium, 349
oscillation, 349, 424
wave, 417

Free spectral range, 49, 51
Frequency

analyzer, 50, 252, 641, 642
comb, 246, 254, 255, 257–259, 262, 642
doubler, 637, 638
gap, 505
locking, 166
modulation, 320, 322, 323, 365, 391, 602
multiplication, 543
of laser oscillation, 35, 36
tripling, 640

Fresnel
coefficients, 41, 42
number, 187, 189, 223
range, 307

Frustrated total reflection, 493
Füchtbauer–Ladenburg relation, 117
FWHM, see Halfwidth

G

GaAlAs mixed crystal, 477
GaAs, 482

crystal, 477
crystal lattice, 478
monolayer, 478
quantum well, 458
quantum well laser, 457–472

GaAs/AlAs heterostructure, 479
GaAs/GaAlAs heterostructure, 478, 479
Gain, 32, 52, 103, 534

bandwidth, 110
characteristic, 110, 113
coefficient, 21, 100–103, 108, 113, 131,

156, 336–339, 364, 437, 438, 446, 535
cross section, 103–106, 395, 438, 469,

470
factor, 21, 33–36
mediated by a quantum well, 443–448,

464
mediated by a quantum wire, 525

profile, 110, 111, 469, 516
saturation, 117, 131
units, 315

GaN, 487
Gap energy, 416, 517
GaSe, 264
Gaussian

beam, 195–225, 228, 230, 624
distribution of energy levels, 331
line, 68, 69, 105
pulse, 251
wave, 195–230

Generalized conductivity, 141
Generalized dielectric constant, 141
General Lorentz function, 67, 170
Germanium, 283
Giant pulse laser, 236
Glass, 306

fiber, 625
fiber laser, 343
laser, 298, 300
structure model, 328

Gold vapor laser, 278
Gouy

frequency, 214, 221, 222, 255
phase, 35, 202–206, 208, 209, 213, 214,

216, 219, 221–223, 254
Gravitational wave detector, 243
Green laser diode, 488
Group

II-VI semiconductors, 475, 476, 488
III-V semiconductors, 475, 487

Group velocity, 199, 223, 259, 626
Growth

coefficient, 100–103
rate constant, 100, 155

Gunn oscillator, 543, 569

H

Halfwidth, 6, 49, 67
HCN laser, 284
Heat, 60, 82, 87
Heavy hole band, 515
Heisenberg uncertainty principle, 232, 267
Helium-neon laser, 5, 36, 40, 69, 105, 109,

126, 133, 135, 159, 161, 210, 273,
275–277

Helmholtz equation, 198–200
Hermite

-Gaussian modes, 216
polynomials, 215

Hertzian dipole, 70, 264
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Heterostructure, 479
High frequency

current, 138, 142, 362, 586
mobility, 362
polarization, 138

High temperature superconductor, 176
High-power semiconductor laser, 471
High-pressure CO2 laser, 284
History of the laser, 11–14, 172–175
Hohlraum resonator, 181
Hole subband, 458, 515, 516
Holmium-doped fiber laser, 302
Holography, 277
Homogeneous line broadening, 63–64
Homojunction laser, 533
Homostructure laser, 533
Host crystals, 303
Huygens’ principle, 223
H wave, 190
Hybrid states, 515

I

Ideal conductor, 182, 183
Ideal mirror, 44
Idler frequency, 640
Impedance of free space, 191
Impurity ions in solids, 302–306
InAs, 487
Index of refraction, see Refractive index
Indirect gap semiconductor, 482
Industrial lasers, 7, 8
Inelastic scattering of electrons, 434, 438–

441, 465, 525
Inhomogeneous line broadening, 64, 69,

111, 273, 288, 298, 307, 517, 526,
527

Injection locking, 166
InN, 487
Intensity, 19, 230
Interband relaxation, 62
Intermediate coupling, 277
Intraband relaxation, 62, 327, 335, 336, 438
Intraminiband relaxation, 599
Inversionless laser, 74
Ions in solids, 304

J

Jahn-Teller effect, 321
Jamin interferometer, 174
Joint density of states, 436
Junction, 533
Junction laser, 423, 533, 534, 536, 538

K

KDP, 260, 637, 640
Kerr lens, 641
Kerr lens mode locking, 252
Kirchhoff’s diffraction theory, 223
Kirchhoff’s rules, 573, 585
Kramers degeneracy, 305
Kramers–Kronig relations, 170
Kronig-Penney potential, 563
Krypton ion laser, 279
K-space bunching, 612

L

Laguerre–Gaussian mode, 218
Lamb dip, 286
Lambert-Beer law, 102
Large-signal gain coefficient, 131
Large-signal gain factor, 34
Laser

amplifier, 313, 314, 326, 623
equations, 120, 121, 130, 132, 157–159,

161, 164, 165, 167, 168, 440–442, 448–
450

linewidth, 133–135
market, 7
mirror, 44, 47, 491, 493, 494, 496, 497
oscillator, 32, 155–161
resonator, 18, 26–36, 38–40, 43, 45–53,

196–198, 206–223, 225, 349, 352, 358,
422, 441, 442, 446, 469, 472, 492, 493,
496

van der Pol equation, 168
Lattice

constants, 477
vibrations, 82, 110, 292, 294, 317, 319,

619
Lead, 176, 181
Lead salt laser, 538
LED, 629
Level, see Density of staes

broadening, 441
Light guide, 468
Light hole band, 515
LiNbO3, 637, 640
Line

broadening, 63, 65, 67–71, 271–274, 306
Linear response function, 138
Lineshape function, 63
Linewidth, 69
Littrow arrangement, 237, 493
Longitudinal

mode, 197, 198, 216, 223
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pumping, 79
relaxation, 164
relaxation time, 72, 164

Lorentz
dispersion function, 65, 147, 153, 405,

602
factor, 349, 409
functions, 64, 66, 67, 170
model of an atom, 70
resonance function, 52, 64–67, 145, 147,

153, 273, 335, 405, 433, 616
Lorentzian

function, 52, 64
line, 104, 145, 571, 575
lineshape, 306

Lorenz-Haken equations, 168
Loss, 32
Low-dimensional

active medium, 74
semiconductor, 426

Luminescence, 60, 439, 442, 473, 537
Luminous efficiency, 630

M

Magnetic
field constant, 138
wave, 190

Manley–Rowe rule, 639
Maser, 4
Master oscillator, 166
Material

equation, 138, 568
gain coefficient, 463
processing, 245, 281, 291, 296, 300, 316

Matrix element, 95
Maxwellian velocity distribution, 271
Maxwell’s equations, 182
Medicine, 9, 235, 261, 278, 281, 291, 296,

300, 310, 545
Metal

mirror, 44
oxide chemical vapor deposition

(MOCVD), 479, 485, 630
vapor laser, 277, 278

M factor, 225
Michelson interferometer, 243
Microbunches, 347, 368, 390, 391
Microwave

cavity, 182
oscillator, 569, 570

Miniband, 509–511, 546, 548, 561–563
transport, 549, 576

width, 549
Mini-Brillouin zone, 548
Mirrorless laser, 312, 352
Mirror parameters, 211
Mobility of an electron, 365
MOCVD, see Metal oxide chemical vapor

deposition (MOCVD)
Modal gain coefficient, 113
Mode

density, 93, 188, 189
locking, 246–248, 250–255, 257–259,

299
selection, 237
volume, 210

Modulation current, 362
Modulation degree, 601
Modulation index, 323, 391, 602
Molecular beam epitaxy, 479, 485, 618, 630
Monolayer, 478
Monopole oscillator, 73, 74, 403
Monte-Carlo technique, 618
Multi mode laser, 284
Multi quantum well laser, 471
Multilayer

coating, 37, 494
mirror, 44, 494

N

NaCl, 283
Natural linewidth, 72
Nd:YAG laser, 5, 69, 105, 109, 296
Nd:YLF laser, 298
Nd:YVO4 laser, 298, 299
Near-field range, 205
Near-planar resonator, 213
Negative

absorption, 173
gain coefficient, 22
resistance oscillator, 572

Neoclassical laser equations, 165
Neodymium

-doped glass laser, 298
YAG laser, 37

Nitrogen laser, 280
Noise, 53, 576
Nonlinear

dispersion, 175, 259
polarization, 636, 637

Nonradiative
relaxation, 60, 78, 79, 82, 275, 282, 292,

293, 309, 328, 335, 439, 538, 546
transition, 241



Index 673

O

Occupation number, 24, 25
difference, 24–26, 100, 126, 135, 327,

330, 335, 431, 441, 613
of photon modes, 46, 47, 92, 93, 135

Offset frequency, 255, 259, 642
OLED, 631, see Organic LED (OLED)
One-dimensional

active medium, 75
density of states, 419, 523

One-quantum dot laser, 531
Onset

of oscillation, 34, 38, 124, 161, 246, 610
time, 34, 124–126, 159–161, 610

Open resonator, 26, 197
Optical

communications, 8, 487, 528, 623–628
constants, 141, 264
damage, 314
fiber, 623
frequency analyzer, 50, 262, 642, 643
frequency comb, 246, 254, 255, 257–

259, 262, 642
parametric oscillator, 639
phonon, 439
pumping, 18, 78
radar, 287
ray, 225
rectification, 264, 638
spectrum analyzer, 642
thickness, 112

Optically pumped gas laser, 284
Optimum output coupling, 127–130
Optocoupler, 626
Organic

laser, 633, 634
LED, 631

Oscillation frequency, 36, 574
Oscillation onset time, 34, 39, 40, 124, 126,

159–161, 610
Oscillator equations, 575
Oscillator strength, 116, 170
Output coupling, 18, 127–130, 358, 571–

573, 586
Output power, 18, 130, 161

P

Parallel beam, 18
Paraxial

electromagnetic wave, 198
ray, 226
wave, 207

Partial reflector, 18
Paschen notation, 277
Pauli principle, 331, 432
Perfect conductor, 176, 508
Periodic boundary conditions, 522, 557, 561
P germanium laser, 543
Phase

locking, 166, 575
portrait, 178
relaxation, 73, 173
velocity, 199, 259

Phonon assisted energy transfer, 302, 307,
325, 331, 334

Phonon Raman scattering, 306
Phonons, 62, 82, 87, 264, 294, 303, 306, 320,

322, 329, 434, 439, 464, 538, 543,
546, 612, 618, 619, 625, 643

Photodiode, 627, 643
Photodynamic therapy, 278
Photoluminescence, 60
Photon

density, 19, 122
flux, 230
lifetime, 31
number, 46
occupation number, 47

Photonic bandgap, 505
Photonic crystal, 495, 496
Planck’s radiation law, 86, 431
Plane

wave, 199
-wave transfer matrix method, 497–499,

559–561
space bunching, 612

Poisson equation, 581
Polar optic phonon, 439
Polarization, 80, 138, 139, 142–635

current, 151–404
Polarization conductivity, 152, 161
Polymer laser, 633
Population, 22

difference, 22, 24
inversion, 23, 24

Potential well, 317, 513, 554, 564
Poynting vector, 507
Pr:YAG laser, 297
Pressure broadening, 273
Probability

current density, 560
density, 560

Propagating dipole domain mode, 570
Propagation

matrix, 499
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of a Gaussian beam, 228
Pulse distortion due to dispersion, 626
Pulse repetition rate, 248
Pump

band, 81
-probe method, 261
rate, 59

Pumping a laser, 18
Pure charge accumulation mode, 569

Q

Q factor, 45, 51
Quantum

cascade laser, 6, 105, 109, 424, 545–550
dot, 528, 529
dot laser, 529
efficiency, 60, 321
layer, 511
well, 443, 448, 458–465, 511–517, 630
well laser, 424, 448, 450, 457–473, 511–

518
wire, 522–524
wire laser, 424, 521–528

Quarter-wavelength film, 507
Quartz glass, 624
Quasi-Fermi energy, 75, 332, 429, 430, 432,

443, 459–462, 468, 516, 534, 633
Quasiband, 63, 307, 327–333

laser, 63, 327, 633
Quasiclassical oscillator, 53, 568, 573, 575
Quasiequilibrium, 429
Quasiparticle, 63, 331, 450
Quasiplane standing wave, 27
Quasiplane wave, 18
Quasithermal equilibrium, 336, 439

R

Rabi oscillation, 176
Racah notation, 277
Radiance, 230
Radiation pressure, 316
Radiationless transition, 60
Radiative

electron-hole pair, 451, 452
pair level, 435
transition, 333, 429

Random laser, 313
Rare earth ions, 304
Rate equations, 119–121
Ray optics, 225–228, 230
Rayleigh

range, 205

scattering, 625
Recombination, 533
Reduced

density of states, 434, 436, 534
mass, 435, 523

Reflector, 18, 491, 493–505
Refractive index, 38, 42, 91, 141, 146, 467
Regenerative amplifier, 575
Relative occupation number, 24, 330
Relativistic Doppler effect, 354
Relaxation, 72

oscillation, 131–133
time, 59, 78, 120

Resolving power, 50
Resonance frequency, 28, 36, 71, 192, 592
Resonant energy transfer, 301, 302
Resonant tunneling diode, 543, 583, 584
Resonator, 10, 26–32, 36, 43–55, 181, 192,

196–198, 207–225, 492
boundary conditions, 28, 209
eigenvalue problem, 27, 35, 208, 216,

221
mode, 29, 184–197, 207
stability diagram, 211, 227

Response function, 138, 264, 604
Rod laser, 8, 304
Round trip transit time, 28, 246, 249
Ruby

laser, 61, 342
type, 60, 297, 342

Ruby laser, 307
Russel-Saunders coupling, 278

S

Safety, 6
Saturation field, 371–375, 594, 606–608
Saturation of absorption, 117
Schawlow–Townes formula, 135
Schrödinger equation, 554
Schrödinger equation, 317, 511, 512, 553
Seed laser, 166
Self

absorption, 118
-amplified spontaneous emission, 352
-excited oscillator, 32, 173, 568, 584
focusing, 252, 641
-terminating laser, 278

Semiclassical
equation of motion, 597
laser equations, 165

Semiconductor superlattice, 548, 549
oscillator, 543, 569–572, 576, 578, 580–

582
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SESAM, 299
Single mode laser, 236
Slave oscillator, 166
Slowly varying envelope approximation

(SVEA), 143, 156, 165, 166, 575, 587
Small-signal gain

coefficient, 101
factor, 34

Snell’s law, 38, 227
Solid state

lasers, 291–304, 306, 307
oscillator, 569, 572–576

Space charge domains, 619
Spatial

frequency, 14
hole burning, 287

Spatial frequency, 15
Spectral

energy density, 86
hole burning, 238, 330

Spectrum analyzer, 571
Speed of light, 4, 199, 223
Spherical wave, 199
Spin

-lattice relaxation, 328, 331
-orbit interaction, 276, 516

Split-off band, 515
Spontaneous

emission, 71, 87, 90, 98, 172, 439, 440,
444

lifetime, 71, 78, 88, 440
Square well potential, 513, 554, 563
Stability diagram of resonators, 211, 227
Stable resonator, 225
Standing wave, 27, 29, 185, 208
Stark effect, 305, 307
Stimulated

emission, 23, 89, 93, 98
Raman scattering, 285, 643

Stratified periodic medium, 501
Subband, 511–516
Superconductor, 176
Superlattice, 548

Bloch laser, 11, 59, 424, 591, 592, 594–
606, 610, 612, 613, 615–619

oscillator, see Bloch laser
Survey of

lasers, 5, 6, 105, 109, 425
semiconductor lasers, 423–425, 538–543

Susceptibility, 146, 147, 635
SVEA, see Slowly varying envelope

approximation (SVEA)
Synchronization, 144, 150, 151, 612

T

Tailoring of semiconductors, 425
Tandem, 313
Tapered wiggler, 353
TE waves, 190
TEA laser, 280, 281, 284, 311
Telecommunication, 8
Terahertz

gap, 542
radiation, 263–265

Thermal equilibrium, 86, 430
Thin film dye laser, 311
Three-dimensional active medium, 75
Three-level laser, 60, 342
Threshold

condition, 34, 46, 122–124, 441, 448,
469, 470, 472, 571, 573

current, 442, 449, 470, 536
gain factor, 46
pump rate, 122, 123
resistance, 573

Thulium fiber laser, 302, 343
Tight binding model, 556, 563
Time domain spectroscopy, 263, 264
Titanium-sapphire, 148

laser, 5, 77–81, 105, 109–111, 292–295,
319–321, 323, 324, 643

TM waves, 190
Total reflection, 493, 624
Transfer matrix method, 497–499, 559–562
Transition

energy, 22, 67, 121, 393
frequency, 58, 70, 393
metal ions, 304
probability, 98

Transparency
condition, 23, 25
density, 25, 60, 107, 338, 340, 419, 432,

434, 442, 462, 535
frequency, 22, 337, 338, 466, 603

Transverse
electric wave, 190
magnetic wave, 190
mode, 198, 214–217, 223
pumping, 79
relaxation, 73, 163, 164

Tunable
laser, 78–80, 292–296, 352
semiconductor laser, 493, 518

Two-band laser, 61
Two-dimensional

active medium, 75, 112, 114
density of states, 419
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gain characteristic, 113, 445, 462, 463
reduced density of states, 444
semiconductor, 418

Two-level
atomic system, 22, 401, 402
based laser, 58
laser, 61

Two-quasiband laser, 63, 633

U

Ultrashort snapshot, 261
Undulator, see Wiggler
Unipolar semiconductor laser, 421, 543
Unstable resonator, 225
Upconversion, 302
UV laser diode, 487

V

V factor, 30–32
Valence band, 417
Van der Pol

equation, 186, 586
oscillator, 584–588

VCSEL, 472
Vertical-cavity surface-emitting laser, 8, 44,

472, 473, 494
Vibronic

band, 295
energy levels, 77, 294, 302, 319–321, 323
laser, 77, 78, 280, 294–296, 304, 317–

324
states, 294, 319–321, 323

Voigt profile, 112

W

Wannier
function, 617

Wave
equation, 183, 198, 554
function, 417, 511, 512, 522, 554
packet, 248, 249
vector, 18, 19, 199, 219

Waveguide, 193
Fabry-Perot resonator, 422

Wavelength, 4, 191, 199, 220
Whispering gallery mode, 493
White laser light, 259
Wiggler, 350
Work function, 632

X

X-ray
free-electron laser, 352, 353
laser, 312
SASE FEL, see SASE free-electron laser
SASE free-electron laser, 352

Y

YAG lasers, 296–298
Ytterbium-doped fiber laser, 300, 343

Z

Zero
dimensional active medium, 75
phonon line, 323
point energy, 513

ZnSe, 488
ZnTe, 264
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