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Preface

Goals

Multivariable calculus is an essential part of the mathematical education of scientists
and engineers. In the past we relied almost entirely on chalk and blackboard, and
examples that could be done by hand, to convey the key concepts of the subject.
Now the advent of powerful, convenient software makes it imperative to reconsider
how we teach multivariable calculus. In my opinion, the greatest impact of software
is in the areas of graphics and computation.

Color graphics makes it possible to display curves, surfaces, and solids in two
and three dimensions in a way that is both more effective and more engaging for the
student. This is especially important for today’s students, who have not had much
experience with solid geometry. Color can also be used as a fourth dimension to
help locate extreme points, and to display quantities such as temperature, density,
and fluid velocity.

Software also allows us to deal seriously with computation. Traditionally there has
been an unnatural division of analysis and computation into separate compartments
of mathematics. The paper-and-pencil exercises of the typical third-semester calculus
text give valuable experience in manipulating symbols, but they are often quite
contrived. Problems involving arc length, surface, and volume that can be done
by hand are too limited in application and give the unfortunate impression that
mathematicians are interested only in clever solutions of special problems and prefer
to leave practical problems to engineers.

Fortunately, today’s software allows us to bridge the gap between analysis and
computation. I firmly believe that students must see, and be able to implement, some

ix
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of the basic numerical techniques. These techniques should not be hidden in a “black
box” that is used blindly. Numerical methods depend heavily on linear and quadratic
approximation, which are central to calculus. Experience with numerical computa-
tions can be used to reinforce the basic concepts of calculus. Furthermore, students
(and teachers) should be made aware of the limitations of numerical methods and
learn when numerical results are reliable.

This supplement to the traditional third-semester calculus course provides an
opportunity to use the graphics capability and the computational power of a complete
software package to enrich and broaden the teaching of the subject.

Software

I have chosen to use MATLAB as a software package for several reasons. First, for
many of the students taking third-semester calculus, this will be their first exposure
to computer work. The easy syntax of MATLAB makes it possible for them to get
comfortable with the computer quickly. Second, MATLAB graphics are excellent
and easy to use. Third, it is easy to program in MATLAB, making it possible to
do numerical calculations using simple loops. One also has a symbolic capability
in MATLAB, which uses a part of Maple. Finally, MATLAB is becoming the most
popular software package in engineering. Engineering students will see MATLAB
in their other courses. Using the same software package in a mathematics course
allows for the possibility of joint projects.

I have assumed that the student has access to MATLAB 5.0 or higher, because I
introduce inline functions and use some symbolic manipulations. However, one can
write an mfile instead of an inline function, and the use of symbolic manipulations
is not central to the thrust of the text. Thus, this text can be used satisfactorily with
MATLAB 4.x as well.

In this MATLAB companion, I have developed computer-oriented material that
complements the usual topics in multivariable calculus. I do not assume that the
student knows linear algebra. Vectors and matrices are introduced in the first chapter
as arrays of numbers, enough to understand the MATLAB commands. Matrix multi-
plication is not needed except for some material in Chapters 6, 7, and 8.

Much more material is presented than can be used in one semester. The instructor
is free to select the topics most relevant to the course. The main ideas of the
standard topics are given without much detail. The emphasis is on examples of
the use of MATLAB to display graphs and to do numerical calculations. Many
of the examples and exercises are drawn from applications areas such as biology,
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economics, engineering, and physics. The areas are listed in the following Summary
of Contents with the section in which they appear.

The MATLAB examples often contain short bits of code that the student can
modify to do the exercises. In addition, I have written a number of MATLAB
mfiles to implement some of the graphical displays that I feel would be too time
consuming for the beginning student to program. They are available on my Web
page at

www.math.umd.edu/~jec

and at the publisher’s Web site,

www.harcourt-ap.com/mathematics.html

In some cases, students can write larger codes using these mfiles. For example, there
are mfiles that attach arrows in two and three dimensions. These mfiles can be used
in the discussion of tangent vectors to curves and surfaces.

There is also a collection of mfiles that can serve as instructor demos or that can
be used by the student. These mfiles are discussed in the appendix.

Summary of Contents

A brief introduction to MATLAB is given in Chapters 1 and 2. The material
presented there is adequate to get started. Graphing of curves and surfaces in two
and three dimensions is introduced as necessary in later chapters.

Chapter 3 is a warmup chapter dealing with lines and planes. Some of the longer
exercises require the student to construct graphically structures consisting of lines
and planes.

There are a number of sections that present numerical algorithms for solving
problems. In Chapter 4, in computing the arc length of a curve, the numerical
integrator of MATLAB is used. But in addition, students write their own code
to implement the polygonal line approximation. This is needed to compute the
arc length of curves given as a table of coordinates, perhaps as the result of a
computation. Numerical differentiation is introduced and used. Attention is also
paid to the question of estimating the error in these approximations.

In Chapter 5, partial derivatives, directional derivatives, level curves, and tangent
planes are illustrated graphically. Some numerical estimates of the error in the
tangent plane approximation are made in the exercises.
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Graphical tools for displaying level sets of functions of three variables and for
displaying parametric surfaces are developed in Chapter 6.

Chapter 7 is devoted to methods of solving systems of equations symbolically
and numerically. A two-dimensional Newton’s method is presented. An interactive
version of Newton’s method in two dimensions is included in the set of instructor
demos in the appendix.

Chapter 8 has mfiles that permit a student to explore interactively the level curves
of a function of two variables and thereby learn to distinguish geometrically between
local extreme points and saddle points, as well other behavior. This chapter also has
an interactive mfile that can be used to study problems of constrained maxima and
minima. Newton’s method is used to solve systems of equations that determine the
critical points of a function.

In Chapter 9, on multiple integrals, two- and three-dimensional versions of Simp-
son’s rule are implemented and used to compute integrals that cannot be done
symbolically but that are commonplace in applications. This gives the student a
convenient tool to take away from the course. The formula for change of variable
in multiple integrals is illustrated graphically.

In Chapter 10, where surface area is discussed, numerical methods are used to
estimate the usual integrals for the surface area. However, in addition, the ques-
tion of surface area is also addressed using triangular patch approximations, as is
done in computer graphics. This approach is then used to find surfaces of minimal
surface area, which leads naturally to the problem of minimizing a function of many
variables.

Finally, Chapter 11 treats curl, divergence, and the theorems of Green, Gauss, and
Stokes. Here mfiles I have written permit the student to explore interactively the circu-
lation of a vector field in two dimensions, thereby illuminating the notion of curl. Simi-
larly, flux integrals are used to give more intuitive content to the divergence.

Chapter 12 deals with problems from electrostatics and fluid flow. The sections
on fluid flow are fairly advanced and would certainly be optional material.

Chapter 13 is devoted to features of MATLAB not covered in the brief introduction
of Chapters 1 and 2.

Exercises

At the end of each of Chapters 3–12 is a collection of exercises that use MATLAB
to illuminate basic concepts of multivariable calculus and to solve application prob-
lems.
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Application areas are treated in the exercises as follows:

Engineering: 3.4, 3.7, 3.11, 3.12, 3.13, 4.11, 4.12, 6.8, 6.15, 6.17, 7.8, 8.6, 9.6, 10.5,
10.6, 10.7
Economics: 8.15
Physics: 4.5, 4.10, 5.9, 6.3, 6.4, 8.10, 8.14, 9.13, 10.8
Biology: 5.10, 8.16
Animal science: 9.14

Many of the exercises are quite short and can be done in a few lines on the
command line. Nevertheless, the graphs do need some interpretation. Exercises
marked with ✯ require several steps and usually a short mfile. Longer problems,
marked with ✯✯, can serve as computational projects.

Because I believe the student should become comfortable with MATLAB as a
tool to be used easily and frequently, in my own classes I usually assign several
shorter exercises every week and a longer problem every two or three weeks.

If possible, one or two classes during the first week should be conducted in a
computer lab where students can run through the material of the first two chapters
under the guidance of the instructor.

Advanced Matlab

Many books have been written about MATLAB in addition to the manuals prepared
by Mathworks (publishers of MATLAB). They come in various shapes and forms,
from elementary introductions to advanced treatises on MATLAB graphics, which
is a whole subject in itself. Here are two more advanced texts.

MATLAB Guide by Desmond J. and Nicholas J. Higham, SIAM (Society for Indus-
trial and Applied Mathematics), 2000.
Introduction to Scientific Computing, A Matrix-Vector Approach using MATLAB, 2nd
ed., Charles F. Van Loan, Prentice Hall, 1999.

Web page

Additional exercises and programs as they are developed will be posted on the
author’s Web page: www.math.umd.edu/~jec. Readers are encouraged to send
comments and suggestions to the author at jec@math.umd.edu.
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1
Basic MATLAB: The Command Line

In this chapter, we discuss operations that can be performed from the command
line. In Chapter 2, we discuss mfiles and programs.

1.1 First steps

When you invoke MATLAB to begin a session, you see the prompt

>>

When we give instructions for an operation, or request information, following this
prompt, we say that we are working on the command line.

We can do simple arithmetic operations on the command line, such as .2C3:52 �
4 Ð 7/=12,

>> (2+3.5^2 -4*7)/12
ans =
-1.1458

We can also do this calculation by assigning variable names to the quantities:

>> x = 2+3.5^2
ans =
14.2500

>> y = 4*7
ans =
28

>> z = (x-y)/12
ans =
-1.1458

1
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If we do not wish to see the intermediate results, we can suppress the numerical
output by putting a semicolon at the end of the line. Then the sequence of commands
and output looks like this:

>> x = 2+3.5^2;
>> y = 4*7;
>> z = (x-y)/12;
>> z
z =

-1.1458

MATLAB does numerical calculations in double precision, which is 15 digits.
Normally only five digits are displayed. If we want to see all 15 digits, we use the
command format long:

>> format long
>> z
z =
-1.14583333333333

To return to the short format, enter format short.

Error messages

If we enter an expression incorrectly, MATLAB will return an error message, which
sometimes locates the error. For example, in the following, we left out the * in
3*x:

>> x = 4;
>> 3x
??? 3

|
Missing operator, comma, or semicolon.

Another example.

>> 2*(x+y
??? 2*(x+y

|
A closing right parenthesis is missing.
Check for a missing ")" or a missing operator.
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Making corrections

To make corrections, we can, of course, retype the expression. But if the expression
is lengthy, we may make more mistakes by typing a second time. Unfortunately
we cannot move the cursor to the line we wish to repair. Instead we can press the
up-arrow key until we reach the desired line and then the left- and right-arrows until
we reach the offending characters. Type in the correction and enter return.

Exiting

To leave MATLAB enter quit.
If MATLAB gets hung up in calculation or is taking a long time, and you want

to stop the calculation, without exiting MATLAB, enter Ctrl+C.

HELP ! !

Help with most operations is available with a keystroke, thanks to the online help
provided by MATLAB. To get information on a particular command or operation,
simply enter help command name. For example, to get information on how to use
the plotting commands, enter help plot.

1.2 Vectors and matrices

Vectors and matrices are the basic elements of the MATLAB environment. In this
text we shall be using the word vector in two, related ways.

In Chapter 3, we shall speak of vectors as directed line segments in two- and
three-dimensional space, used to represent physical and geometric quantities such
as force and velocity.

In this chapter, we shall use vector to mean an ordered list of numbers, written
either horizontally or vertically. For example,

u D [2; 1:3;
p

2; 8;�4; ³ ]

or

v D

2
664

1
�2
³

4:2

3
775 :

We say that u is a row vector and that v is a column vector.
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A matrix is a rectangular array of numbers. For example,

A D
2
4 1 2 3 9

4 5 6:1 �2
³=2 1=3 4 �1

3
5 :

The dimensions of a matrix are the number of rows and the number of columns,
with the number of rows usually given first. The matrix A here is a 3 ð 4 matrix.
The row vector u is a 1 ð 6 matrix, and the column vector v is a 4 ð 1 matrix. A
single number, such as 5:2, is a scalar and can be considered a 1 ð 1 matrix. The
entries in a matrix often are written ai; j , with i being the row index and j being
the column index. For example, in our matrix A, a2;1 D 4 and a3;2 D 1=3.

The transpose of an m ð n real matrix A is the n ð m matrix that results from
interchanging the rows and columns of A. The transpose matrix is denoted AT . The
transpose of our matrix A is

AT D

2
664

1 4 ³=2
2 5 1=3
3 6:1 4
9 �2 �1

3
775 :

Various operations can be performed on vectors and matrices and we shall illus-
trate them in the context of MATLAB.

Forming vectors and matrices

Matrices can be entered by typing in the elements one at a time. To enter the matrix

A D
�

1 2 3
4 5 6

½
;

we type

>> A = [1 2 3;4 5 6]

A =
1 2 3
4 5 6

Notice that we use a semicolon to separate the rows. Remember, to suppress the
output, put a semicolon after the defining statement. This can be especially important
if the matrix or vector has thousands of elements.
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The transpose of a real matrix is formed by the command A’. If the row vector
x is defined by

>> x = [1 5 4 8 10]

then x is turned into a column vector with the command x’. If the matrix or vector
has complex elements, the command A’ produces the Hermitian transpose, which
is the transpose with the complex conjugate of the elements. For example,

Z =
1+i 2 1
2+5i i 2

>> Z’
Z’=

1-i 2-5i
2 -i
1 2

To get a transpose without taking the complex conjugates, use A.’. Note that we
put a dot before the apostrophe.

To determine the dimensions of a vector or matrix, use the command size, as
follows:

>> size(A)
ans =

2 3

>> size(x)
ans =

1 5

>> size(x’)
5 1

We can view a particular element in a vector or matrix by specifying its location:

>> A(1,2)
ans =

2

>> x(5)
ans =

10
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Often we must deal with vectors or matrices that are too large to enter one element
at a time. If there is some formula or some regular pattern to the elements, we may
be able to use special commands. For example, suppose we want to enter a vector
x consisting of points .0; :1; :2; :3; :4; : : : ; 5:9; 6/. We can use the command

>> x = 0:.1:6 ;

This row vector has 61 elements. Another way to create the same vector is to use
the command linspace (which stands for “linear spacing”):

>> x = linspace(0,6,61);

This is useful when we want to divide an interval into a number of subintervals
of the same length. For example, theta = linspace(0, 2*pi, 41) divides the
interval [0; 2³ ] into 40 equal subintervals, creating a vector of 41 elements.

To create a vector of zeros or of ones of the same dimensions as a given vector
x , there are commands

>> y = ones(size(x));
>> z = zeros(size(x));

The same works for matrices

>> Z = zeros(size(A));
>> Y = ones(size(A))
Y =

1 1 1
1 1 1

We can also specify a matrix of zeros or ones by giving the dimensions:

>> Z = zeros(2,3)

The n ð n identity matrix is produced with the command eye(n). There are special
commands for entering sparse matrices or diagonal matrices. For more information,
enter help sparse or help diag.

1.3 Array operations

Arithmetic of matrices

There is an obvious, natural way to add and subtract matrices:
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>> B = [2 0 -1; 1 2 7];
>> A + B
ans =

3 2 2
5 7 13

Usually, we can add together only matrices having the same dimension. There is
an exception in MATLAB, however, that is very useful. Suppose we want to add the
same number c to each element of a matrix A. This can be done with the command
A + c*ones(size(A)), or more simply, A C c. In particular, if x is a vector, we
can add a scalar t to each component of x with the command x+t.

We can always multiply a matrix by a scalar or divide by a nonzero scalar.

>> 2 * A
ans =

2 4 6
8 10 12

>> A/2
ans =

0.5000 1.0000 1.5000
2.0000 2.5000 3.0000

Array operations

Arithmetic operations can also be performed on matrices, entry by entry. These are
called array operations. Array multiplication is an example. If A and B are two
matrices of the same size with elements ai; j and bi; j , then the command

>> C = A.*B

produces another matrix C of the same size with elements ci; j D ai; j bi; j . For
example, using the same 2 ð 3 matrices A and B we defined earlier, we have

>> C = A.*B
C =

2 0 -3
4 10 42

To raise a scalar to a power, say, 2, we use the command 5^2. If we want the
operation to be applied to each element of a matrix, we use .^2. For example, if
we want to produce a new matrix whose elements are the square of the elements of
the matrix A we enter
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>> A.^2
ans =

1 4 9
16 25 36

There is also a kind of array division for two matrices of the same size that divides
the two matrices element by element:

>> D = [1 3 5; -2 4 -1]
>> A./D
ans =

1.0000 0.6667 0.6000
-2.0000 1.2500 -6.0000

1.4 Matrix multiplication and linear systems

Another kind of multiplication between matrices is motivated by the consideration
of linear systems of equations. Let A be the 2 ð 3 matrix

A D
�

a1;1 a1;2 a1;3
a2;1 a2;2 a2;3

½

and

x D
2
4 x1

x2
x3

3
5 ;

a 3 ð 1 column vector. We define the product Ax to be a 2 ð 1 column vector with
components �

a1;1x1 C a1;2x2 C a1;3x3
a2;1x1 C a2;2x2 C a2;3x3

½
:

With this definition of multiplication of a matrix by a vector, we can write the linear
system of two equations in the three unknowns x1; x2; x3,

a1;1x1 C a1;2x2 C a1;3x3 D b1

a2;1x1 C a2;2x2 C a2;3x3 D b2;

as simply
Ax D b;

where b is the 2 ð 1 column vector �
b1
b2

½
:
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More generally, if A D [ai; j ] is an m ðn matrix and x D [x1; x2; : : : ; xn] is an n ð1
column vector, we define Ax to be the m ð 1 column vector with i th component

nX
jD1

ai; j xj :

In this way, the system of m linear equations in n unknowns xj ,

nX
jD1

ai; j xj D bi ; i D 1; : : : ;m

can be written compactly as
Ax D b: (1.1)

Now let A be an m ð n matrix and B be an n ð p matrix. We label the columns
of B as Bj D [bi; j ]; j D 1; : : : ; p. We define

AB D C; (1.2)

where C is the mð p matrix whose columns are the mð1 column vectors Cj D ABj ,
j D 1; : : : ; p. In terms of the entries,

ci; j D
nX

kD1

ai;kbk; j :

This matrix multiplication AB is only defined for an m ð n matrix A and an n ð p
matrix B. The column dimension of A must equal the row dimension of B.

In MATLAB we can multiply matrices in this fashion with the * symbol. It is very
important to notice that this kind of matrix operation uses the symbol *, without the
dot in front. Remember, we use the symbol .* for array multiplication. We assume
we have matrices of the correct dimensions:

>> A = [1 2; 3 3; 4 5];
>> B = [-1 3; 5 1];
>> C = A*B;
>> C
= 9 5
12 12
21 17
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If A is a square matrix, n ðn, A can be multiplied times itself any number of times.
We use the notation Ak to denote the product of k factors AA : : :A. The MATLAB
command for raising a matrix to a power is A^k. Notice that the command does not
have the dot in front. A.^k means the array operation that raises each element of A
to the kth power.

Given an n ð n matrix A and an n column vector b, the linear system Ax D b
can be solved in several ways. The simplest way is to use the command A\b:

>> A = [1 2 3; 4 5 6; 6 7 9];
>> b = [ 1 0 1]’;
>> x = A\b;
x =

-0.0000
-2.0000
1.6667

The command A\b uses the method of Gaussian elimination with partial pivoting
to solve linear systems.

1.5 MATLAB functions

MATLAB basically has two kinds of functions, numerical functions and symbolic
expressions of functions. A numerical function is really a short program that operates
on numbers to produce numbers. A symbolic expression of a function operates on
symbolic variables to produce symbolic results. These symbolic expressions can be
manipulated with operations such as differentiation and integration. We shall discuss
symbolic expressions of functions in the next section.

MATLAB has the usual built-in numerical functions, such as sin x; cos x; tan x ,
exp x; log x; and

p
x . These functions can take matrices as arguments, in which case

the function is applied to each element of the matrix. We say that such a function
is array-smart. For example, the cosine function can be applied to a matrix:

>> T = [2 3 pi; 8 pi/2 1];
>> cos(T)
ans =

-0.4161 -0.9900 -1.0000
-0.1455 0.0000 0.5403

>> sqrt(A)
ans =

1.0000 1.4142 1.7321
2.0000 2.2361 2.4495
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In addition, many other specialized functions are available. These include the error
function, called with the command erf(x), and Bessel functions of all orders.
There are also functions of linear algebra that find information about matrices, such
as eig(A), which finds the eigenvalues of a matrix A.

Nevertheless, we will often need to build our own numerical functions of one,
two, or three variables. In this section we shall consider only functions of one
variable. Functions of several variables will be discussed in a later chapter.

Prior to version 5.0 of MATLAB, numerical functions could be constructed only
in separate files called mfiles. This way of constructing functions will be covered in
Chapter 2.

Now with versions 5.0 and higher, there is an easy way of constructing a numerical
function on the command line. This kind of numerical function is called an inline
function. Here is a simple example:

>> f = inline(’x^3 +x -1’)

To evaluate f .x/ D x3 C x � 1 at x D 2, enter f(2). If we wish the function to be
array-smart, we must write

>> f = inline(’x.^3 +x -1’)

Here we have used instruction .^ for the array operation. Functions created this
way can accept vectors and matrices as arguments. The function will be applied to
each element of the vector or matrix. For example, if the matrix A is given by

A =
1 2 3
4 5 6

then

>> B = f(A)

B = 1 9 29
67 129 221

We shall need our numerical functions to be array-smart to do many computations
and for the purposes of graphing.

One of the most common mistakes of beginners is to forget to make their
numerical functions array-smart by inserting the dot before the operations *,
/, and ^.

Unfortunately, we cannot add or multiply inline functions to produce a new func-
tion. If we define the inline function g by the command
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>> g = inline(’cos(x) + x’)

we cannot use the command

>> h = f+g

to produce the function f C g. Instead we must define a new inline function

>> h = inline(’x.^3 + 2*x - 1 + cos(x)’)

1.6 Symbolic calculations

Up to this point, we have been using MATLAB on your computer as a large,
sophisticated calculator. For example, if we enter a matrix A of numbers, we can find
its determinant as a number. We have also created numerical functions. However,
MATLAB also has the capability to manipulate expressions symbolically. There are
tools to perform algebraic operations, differentiate and integrate functions, solve
systems of equations, and solve ordinary differential equations. These tools come
from the software program Maple developed at the University of Waterloo, Canada.

Creating symbolic expressions

Variables x; y; z; a; b; c, etc. can be declared symbolic variables with the command

>> syms x y z a b c

This command is a shortcut for the more elaborate command sym(’x’, ’y’, ’z’,

’a’, ’b’, ’c’), or even more deliberately, x = sym(’x’),

y = sym(’y’), . . . . We can then define expressions using these variables, and
these expressions can be manipulated symbolically. For example, a matrix A can
be defined by

>> A = [ a b 1; 0 1 c; x 0 0 ]
A =
[a, b, 1]
[0, 1, c]
[x, 0, 0]

Since A is a symbolic expression, we can calculate its determinant in terms of the
variables a; b; c; x with the usual MATLAB command:

>> d = det(A)
d = x*(b*c-1)
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Functions defined symbolically

A function f .x/ can be defined in terms of a symbolic expression by this kind of
command.

>> f = a*x^2 + b*x +c + 2*cos(x)

Notice that we do not use the array operations .^,.*, ./ in symbolic expressions,
because symbolic expressions are not applied directly to vectors and matrices.

The symbolic expression for this function cannot be evaluated with the simple
command f(2). We will need another set of commands, which are explained a bit
further on.

Now we can differentiate this symbolic expression with the command (and output)

>> diff(f)
ans = 2*a*x+b-2*sin(x)

MATLAB differentiates with respect to the variable closest to x in the alphabet. If
we wish to differentiate f with respect to the variable a, we must specify that in
the command: diff(f,a). If we wish to make further operations on the derivative,
we can give it a name, which will be the name for another symbolic expression:

>> fprime = diff(f)
fprime = 2*a*x+b-2*sin(x)

The second derivative can be computed by differentiating the expression fprime or
by using a variation on the diff operation,

>> diff(f,2)
>> 2*a-2*cos(x)

Higher derivatives are calculated with diff(f,3), diff(f,4), etc.
We can also find the antiderivative of functions defined symbolically. For example,

using the same function just defined, we have

>> int(f)
ans =
1/3*a*x^3 + 1/2*b*x^2 +c*x +2*sin(x)

This operation provides us with an indefinite integral, to which we may add any
constant. To compute the definite integral, over, say, [0; 3], we use the command

>> int(f,0,3)
ans =
9*a +9/2*b +c*c+2*sin(3)
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Here we assumed that we wanted to integrate the expression with respect to the
variable x . If instead, we wanted to consider a as the variable of integration, we
must specify that, with the command

int(f,a)
ans =
1/2*a^2*x^2 +b*x*a +c*a+2*cos(x)*a

Many other variations are possible. To see them, enter help sym/int.m.

Evaluating symbolic expressions

Next, how do we specify the values of the parameters in the expression, and how
do we evaluate the symbolically defined function at a point? This is done using
the substitution command, subs. The syntax is subs(f,old,new), where the old
values of the parameters and variables are replaced by new values.

For example, if we wish to evaluate the function f defined earlier at x D 2,
leaving in the parameters a; b; c, we enter

>> subs(f,x,2)
ans =
9*a+3*b+c+2*cos(3)

The result is still a symbolic expression. If we wish to specify the values of the
parameters, say, a D 2; b D �3; c D 9, we do it this way:

>> g = subs(f, [a b c], [2 -3 9])
g =
2*x^2-3*x+9+2*cos(x)

Now we have a symbolic expression depending on the one variable x . To eval-
uate this function at a particular point, say, x D �1:5, we can make another
substitution, subs(g,x,-1.5), with the answer of 18 + 2*cos(3/2). The result
is still a symbolic quantity. If we wish to convert it to a floating point number
in double precision, we use double(18 + 2*cos(3/2)), or in one command as
double(subs(g,x,-1.5)). Again, many variations are possible. For further infor-
mation, enter help sym/subs.m.

In Chapter 13, we discuss how to convert symbolic expressions to inline functions.
This is important for graphing functions of several variables that arise in symbolic
computations.
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Solving equations symbolically

MATLAB can also solve certain equations symbolically, in terms of parameters in
the equation. For example, to solve the equation ax2 C bx C c D 0 we define the
symbolic variables x; a; b; c and the expression f D ax2 C bx C c with commands

>> syms x a b c
>> f = a*x^2+b*x+c
>> solve(f)
ans =
[ 1/2/a*(-b+(b^2-4*a*c)^(1/2))]
[ 1/2/a*(-b-(b^2-4*a*c)^(1/2))]

Of course, these are the two solutions of the quadratic formula. The command solve

assumes you want to solve the equation f .x/ D 0.
For another example, consider the equation

ln.y/� ln.r � y/ D kt C C:

To solve for y in terms of t; r; k, and C , we can use the symbolic expression for
f D ln.y/� ln.r � y/�kt �C . The command solve(f,y) tells MATLAB to solve
the equation

f .t; y; r; k;C/ D 0

for y in terms of the other variables:

>> syms t y r k C
>> f = log(y) - log(r-y) - k*t - C
>> y = solve(f,y)
y =
r/(1+exp(k*t+C))*exp(k*t+C)

We can then find that value of t such that y D 5, in terms of the other parameters
r; k;C , with the commands

>> solve(y-5,t)
ans =
-(-log(5/(r-5))+C)/k

We shall investigate how to solve systems of equations involving several variables
in later chapters.
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1.7 Two-dimensional graphs

Graphing numerical functions

MATLAB has an excellent set of graphic tools. In this section we will touch on
only some of the most elementary ones. We begin with two-dimensional graphs.
The basic MATLAB graphing procedure in two dimensions is to take a vector of
x coordinates, x D .x1; : : : ; xN /, and a vector of y coordinates, y D .y1; : : : ; yN /,
locate the points .xj ; yj /, and then join them by straight lines. The command is
plot(x,y). The vectors x D .1; 2; 3; 4; 5/ and y D .�1; 2; 3; 1; 5/ plotted this way
produce the picture shown in Figure 1.1.

>> x = [1 2 3 4 5];
>> y = [-1 2 3 1 5];
>> plot(x,y)

We graph a numerical function in the same way. For example, to graph the
function cos x on the interval [�³; ³ ], we first create a vector of x coordinates.
Then we create a vector of y coordinates that are the values of cos x at these points.
Finally, the points are plotted and joined by straight lines:

>> x = linspace(-pi, pi, 51)
>> y = cos(x);
>> plot(x,y)

1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

x axis 

y 
ax

is

Figure 1.1 Plot x versus y for the vectors x D .1; 2; 3; 4; 5/ and y D .�1; 2; 3; 1; 5/.
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If the function f is defined as an inline function, we can graph it with the
command plot(x,f(x)). For example, if we want to plot f .x/ D x3 C x � 1 on
the interval [1; 5], we use the commands

>> f = inline(’x.^3 + x -1’)
>> x = linspace(0,5, 101);
>> plot(x, f(x))

The color of a single curve in MATLAB 5.0 or higher is, by default, blue, but
other colors are possible. The desired color is indicated by a third argument, which
is a character string. For example, red is selected by plot(x,y,’r’). Note the
single quotes around r. The color table is

y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

:

For a complete listing of the combinations of colors and symbols, enter help plot.
There are two ways we can plot several curves on the same graph. Remember, a

curve is determined by a pair of vectors x; y, each with the same dimensions n ð 1
or 1 ð n. Suppose there is another pair of vectors, z;w, with dimensions m ð 1 or
1ðm, where m may differ from n. The first way to plot the two curves on the same
graph is with the command

>> plot(x,y,z,w)

In MATLAB 4.2 the first curve will be in yellow, the second in magenta. In
MATLAB 5.0 and higher, the colors will be blue and green.

Two functions f and g given as array-smart inline functions can be plotted on
[�1; 4] together with exp.x/ by the commands

>> x = -1:.1:4;
>> plot(x,f(x),x,g(x),x,exp(x))

The three curves will be in different colors.
The second way to plot several curves on the same graph uses the command

hold on:
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>> plot(x,y)
>> hold on
>> plot(z,w)
>> hold off

Both curves will now be the same color. The three functions f .x/, g.x/, and ex are
plotted together with these commands:

>> plot(x,f(x))
>> hold on
>> plot(x,g(x))
>> plot(x,exp(x))
>> hold off

The ezplot command

The command ezplot is used primarily to graph functions that are defined symbol-
ically. If f is defined by a symbolic expression and we wish to graph it on the
interval [1; 5], we can do it with the one command, ezplot(f, [1,5]). For
example,

>> syms x
>> f = cos(x)^2*exp(x)
>> ezplot(f, [1,5])

This can be most useful after a symbolic calculation leads to a complicated expres-
sion. Using the function f .x/ D .cos x/2 exp x , if we want to quickly graph the
second derivative of f , we could add the lines

>> g = diff(f,2)
>> ezplot(g, [1,5])

The ezplot command picks its own points for graphing, using more where the
function changes rapidly and fewer where it changes more slowly.

In versions 5.2 and higher of MATLAB, the ezplot feature has been extended
to graph curves given parametrically in two or three dimensions (with animation).
It has also been extended to graph functions of two variables. We shall see these
new features as each topic is considered.

Further graphing features

Labels and a title can be attached to the graph with additional commands, for
example,
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>> xlabel(’ t, time after lift off,
in seconds ’)

>> ylabel(’ h, height above ground in meters ’)
>> title(’ vertical climb of rocket ’)

The axis command. When we use the command plot(x,y), MATLAB auto-
matically plots the curve on the rectangle [xmin; xmax] ð [ymin; ymax]. If we wish
to change this scale, perhaps to expand a portion of the graph, and instead plot on
the rectangle [a; b] ð [c; d], we follow the plot command with axis([a b c d]).
You can return the axis scaling to the automatic (default) mode with the command
axis(’auto’) (alternate form axis auto).

The zoom command. This is another way to enlarge a portion of the graph, using
the mouse. Enter the command zoom on. Then move the pointer to the region of
the graph you want to blow up. Click with the left mouse button. This will enlarge
the portion by a factor of 2. Clicking again enlarges it again by a factor of 2.
Clicking with the right mouse button has the opposite effect. The command zoom

out restores the original figure. zoom off turns off the zoom feature.

1.8 Managing the workspace and getting help

Now that you can solve some equations and graph some functions, you will find
the following utility commands very useful.

Workspace commands

These commands allow you to find what you have in your workspace and how to
clear out unneeded variables.

who lists variables currently in the workspace and their type.
clear clears the workspace; all variables are removed.
clear x y g removes only the variables x; y and the function (either inline or

symbolic) g.
clf clears the figure window.
close closes the figure window.

Getting information

Remember if you know the name of the command or feature and want information
about it, enter help command name. If a command calls an mfile, and you want to
see the code of that mfile displayed on the screen, enter type command name. For
example, the MATLAB feature fzero finds the zeros of a function of one variable.
For information on how to use it, we enter help fzero. To see the code, we enter
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type fzero. To find where in the structure of directories fzero can be found, we
enter which fzero.

Some of the help files and codes are rather long, and they go by on the screen
very quickly. To see them one screen at a time, enter more on before entering any
of the query commands. When you are done, enter more off.

All this information is very accessible if you know the name of the command.
However, suppose you want to know if MATLAB has a command, or several
commands, that deal with a certain kind of problem. In this case we use the command
lookfor. For example, suppose we want to know if MATLAB has a function that
finds the largest element of a vector or matrix. We would enter lookfor largest.
The professional version yields the following listing:

>> lookfor largest

REALMAX Largest positive floating point number.
MAX Largest component.
NNFMC Find largest column vector in matrix.

When we enter help max we find

>> help max

MAX Largest component.
For vectors, MAX(X) is the largest element in X. For
matrices, MAX(X) is a row vector containing the maximum
element from each column. For N-D arrays, MAX(X) operates
along the first non-singleton dimension.

.

.

.
See also MIN, MEDIAN, MEAN, SORT.



2
Basic MATLAB: mfiles

We discuss how to create and edit files in MATLAB. This is followed by a descrip-
tion of function mfiles and script mfiles. We finish the chapter with instructions on
how to save work, print out figures, and prepare documents.

2.1 Creating and editing files in MATLAB

Working in MATLAB from the command line is virtually independent of the type of
machine you are using. The different versions of MATLAB for PC, Mac, and Unix
machines are adapted to run the same way on each of these platforms. However,
when we venture beyond the command line, there are differences. We shall need to
create and edit files, called mfiles, to

1. Create and save more complicated functions

2. Write and record longer sequences of commands

PCs and Macs

On PCs and Macs, MATLAB provides its own editor. In the upper left corner of
the command window, click on the word “File.” This opens the “File” menu. To
write a new mfile, click on the line “New.” This will bring up another window, the
MATLAB Editor/Debugger. After writing your file, usually a sequence of MATLAB
commands, open the “File” menu of the Editor/Debugger window. Then you can
name your file and save it with the “Save as” command. Usually, this will save your
file in the current working directory and MATLAB will be able to find it when you

21
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call for it from the command line. However, if you are working on a shared system,
there may be different arrangements and you must check with the system manager.

After you have saved your file, do not close the Editor/Debugger window. All
too often, there is an error in the sequence of commands and you must return to the
file to change it. With the file still in the Editor/Debugger window, you can make
changes. However, these changes will not be recorded until you again go to the
“File” menu of the Editor/Debugger window and click on “Save.”

Unix machines

Prior to version 5.2, Unix versions of MATLAB did not provide their own editor.
In this case you must use your choice of Unix editor, such as vi, emacs, or pico,
in a separate window into the same working directory. It is possible to work from
the MATLAB command window by entering the command !vi [file name]. In
this case, MATLAB turns over control to the local system until you have finished
editing the file.

With versions 5.2 and higher of MATLAB the command edit brings up the
Editor/Debugger window, and you can use it as if you were working on a PC.

Now you may be impatiently asking, what kind of files will we be writing?

2.2 Mfiles

Mfiles are a very convenient, flexible way of collecting sequences of commands
that may be lengthy or tedious to type over and over again. Mfiles may be saved to
be used at another time. There are two kinds of mfiles: function mfiles and script
mfiles. The names of mfiles always have the extension .m.

Function mfiles

Function mfiles are used mostly to write numerical functions whose expression is
long or complicated and that we want to save for future use.

Suppose we need to compute the values of the function

f .x/ D x exp.� sin x/=.1 C x2/:

We can create a function mfile, called f.m, so that to evaluate f at x D 2, we need
only enter f(2) on the command line. The mfile is a file that should be placed in
the same directory where you are using MATLAB. Here is what the mfile looks
like. Function mfiles always begin with a function statement.

function y = f(x)
y = x*exp(-sin(x))/(1+x^2);
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Written this way, the function can take only scalars for x . However, if we write it
using the symbols for the array operations, like this,

function y = f(x)
y = x.*exp(-sin(x))./(1+x.^2);

the function is now array-smart and can be used on vectors and matrices. Notice, in
the denominator we are adding the scalar 1 to the vector x.^2 to produce another
vector, which then divides in array fashion the factor x.*exp(-sin(x)).

Functions that are defined piecewise may also be constructed in an array-smart
fashion. Consider the example

f .x/ D
8<
:

x x < 0
x2 0 � x < 2
4 x ½ 2

:

The building blocks for this kind of function are the characteristic functions for
intervals of the form .�1; a/ and .a;1/. For example, the characteristic function
for .�1; a/ is c.x/ D 1 for x < a and c.x/ D 0 for x ½ a. We use the MATLAB
logical expression (x < a). When applied to a scalar x , this function returns a 1
if the inequality is true and a 0 if it is false. When applied to an n vector x D
.x1; : : : ; xn/, the logical function (x < a) returns an n vector of 0’s and 1’s, with a
1 whenever the inequality is true and a 0 whenever it is false. The logical functions
(x >a) and (x <=a) work in the same way. An mfile for the characteristic function
of the interval .�1; 3/ would be

function y = c(x)
y = (x < 3);

Check that c.x/ D 1 for x < 3 and c.x/ D 0 for x ½ 3. Now we make an mfile for
f that is array-smart as follows:

function y = f(x)
y1 = x.*(x < 0);
y2 = x.^2.*( (x < 2) - (x < 0) );
y3 = 4*(1 - (x < 2));
y = y1 + y2 + y3;

Finally, we note that the variables used in the mfile to define the function are
“dummy” variables. We can use any variable names to call the function. For example,
for the function f defined here, we can use the statements



24 Basic MATLAB: mfiles

s = -2:.1:4;
r = f(s);

The first command defines the vector s with 61 components, and the second
command computes another vector r with ri D f .si / for i D 1; : : : ; 61.

Summary of function construction

We have now seen three ways to create functions with MATLAB.
Numerical functions are constructed using inline functions (Section 1.5) and func-

tion mfiles (this section).
Symbolic expressions for function are constructed, and manipulated, using the

symbolic operations described in Section 1.6.

Graphing

The command plot works with numerical functions defined in mfiles exactly the
same way it works with inline functions, e.g., plot(x,f(x)) graphs the function
given by the mfile f.m.

However, the command ezplot uses a slightly different call. Remember, for a
function given as an inline function, or defined symbolically, the call is
ezplot(f,1,3). When the function is given in an mfile f.m, the call is
ezplot(’f’, 1,3). Note the single quotes. We shall see this difference often.
ezplot is an example of a function mfile that can operate on other functions.

These function mfiles have the name of a function as an argument in the call. When
the function is given as an inline function, the name of the function is f or g, etc.
When the function is given in an mfile, the name of the function is ’f’ or ’g’, etc.
We give two more examples of this type of function mfile in Section 2.3.

2.3 Function functions

MATLAB has a number of routines that operate on functions, called function func-
tions. These are function mfiles that generally have function names as well as
variables as arguments. We give only a couple of examples that we shall use later.

The root finder fzero finds numerical estimates of the roots of an equation
f .x/ D 0. First we define f in an mfile or as an inline function. If f is continuous
and changes sign in the interval [x0; x1], then there must be a root xŁ of f .x/ D 0
in this interval. When f is defined as an inline function, we can get a numerical
estimate of the root with the call root = fzero(f, [x0, x1]). If f is defined in
an mfile, the call is root = fzero(’f’, [x0, x1]). Note that in the latter case,
we use single quotes around f.
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Example 2.1

The function f .x/ D sin x � x=2 changes sign in the interval [1; 3]. To find the root
of f .x/ D 0 in this interval we use the following commands:

>> f = inline(’sin(x) - x/2’)
>> root = fzero(f, [1,3])

root = 1.8955

There are many options that can be used with fzero. The function function fzero

is discussed further in Chapter 7. See also the online help.
A second important routine that we shall use is a numerical integrator. If f .x/

is given on the interval [a; b], the call quad8(f,a,b) makes a numerical estimate
of

R b
a f .x/dx . Again, when f is defined in an mfile, we must use single quotes in

the call. We shall discuss this numerical integrator more in Chapter 9. Information
is available online with help quad8.

2.4 Script mfiles

Script mfiles are used to collect a sequence of commands that constitute a program.
When we enter the name of the script mfile on the command line, the program will
be executed. Here are two examples.

Example 2.2

Suppose that we wish to plot the functions fn.x/ D xn exp.�nx/ on the interval
[0; 20] for n D 1; : : : ; 10 on the same graph. We could do this by using the plot

command and hold on over and over again on the command line. However, a
better way, which allows us to reproduce the graphs any time, is to write a short
program, call it graphs.m, that performs this sequence of repeated operations. We
shall use the notion of a for loop. Here is the script:

x = 0:.1:20;
for n = 1:10
plot(x, x.^n.*exp(-n*x))
hold on

end
hold off

The command end is needed to close the loop. To run this script, enter the command
graphs on the command line. Do not enter the command graphs.m.
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Example 2.3

In this example, we shall use the root finder fzero to find the four roots of the
equation f .x/ D e�x � sin.x/ D 0 that lie in the interval [0; 10]. Here is a script
that allows us to enter estimates for the four roots at run time and then calculates
the roots:

f = inline(’exp(x) - sin(x)’)
x = linspace(0, 10, 101);
plot(x, f(x), x, 0*x, ’g’)
est = input(’enter the 4 estimates

as a four vector [*,*,*,*] ’)
for n = 1:4

root = fzero(f, est(n))
end

In plotting the graph, we also plotted the function identically equal to zero. This
puts an x axis in green in the figure and makes it easier to see where the roots
are located. After plotting the graph, the program waits for the user to enter four
numbers in the form of a vector [a; b; c; d].

Entering Comments

In a function mfile or a script mfile that involves several steps, it is very helpful
for you, or for another reader, to identify the steps with comment lines. A comment
line begins with the percent sign,%. When a script or function mfile is executed, the
comment lines are ignored. For an example of the use of comment lines, see the
script mfile myexp.m in Section 2.5.

Workspace

An important difference between script mfiles and function mfiles is in the way the
workspace is used. In a script mfile, all definitions of variables and calculations are
made in a workspace that is accessible from the command line. In Example 2.3, the
vector x can be viewed immediately after running the script simply by entering x

on the command line.
By contrast, in a function mfile, the variables are not accessible from the command

line. A function mfile has its own workspace, independent of the command line
workspace. This arrangement allows us to use variable names in a function mfile
that are the same as in other function mfiles with no question of confusion. For
example, practically every function mfile using functions of one variable calls that
variable x .
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2.5 MATLAB documents

Saving your work

You may have to stop a MATLAB session before you have finished a project, and
you might like to keep the work you have done so far. The mfiles will be kept in
your directory for future use. But there may be expressions created on the command
line that you wish to keep. This can be done with the command save. For example,
suppose you have entered some large matrices A;B;C and a symbolic expression
f = a*x^2 + b*x +c in the course of a computation. In the next session, you do
not wish to reenter these matrices or to retype the symbolic expressions. Instead,
you can save them to a file, e.g., hotstuff, with the command save hotstuff.
This will save the values of all the variables you have used. If you only want to
save the values of A;B;C, you can refine the command to save hotstuff A B

C. At your next session, to retrieve these variables, you would use the command
load hotstuff.

Saving figures

To save a figure so that you can do further work on it, put the commands that
generated the figure in an mfile, e.g., fig1.m. When you enter fig1 on the command
line, the figure will be generated.

To print out a figure, click on the “file” button on the upper left of the figure
window and select print. You can also type print on the command line. This
should print out the figure if you are working on a stand-alone machine connected
to a printer. If you are working in a network of machines, you may need additional
instructions. Ask your system manager for help.

To prepare a figure to be included in another document, give the figure a name,
e.g., Fig1, and use the command print -deps Fig1. This will save the figure
in the form of a Encapsulated PostScript file, Fig1.eps, that should be stored in
your current working directory. The figure can also be printed out if your machine
or system can print out PostScript files. For a list of printing options, enter help

print.

Preparing MATLAB documents

It is important to be able to present your MATLAB work in a well-organized,
readable manner. Here are some instructions to help you do this. We illustrate with
an example. Suppose problem 1 in some assignment asks you to sum the power
series for ex with 5 terms, compare with the MATLAB function exp(x), and plot
the results on the interval [�2; 2]. This would be done with a script mfile, which
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we shall call myexp.m. It would consist of the following sequence of commands:

% define the vector of points where the function is to be
% computed and plotted.
x = -2:.2:2;

% the first term in the approx. is set equal to 1.
term = ones(size(x));
y = term;

% add up the terms and store the result in the vector y
for n = 1:4

term = term.*(x/n);
y = y + term;

end

% display the results as column vectors
[x’, y’, exp(x)’, (y-exp(x))’]
maxerror = max(abs(y - exp(x)))
plot(x,y,x,exp(x), ’--’)

Now when you enter the command myexp, you will produce four columns of
numbers on the screen, the number “maxerror” on the screen, and a graph in a
figure window. To record this program to be turned in, together with the output,
you use the diary commands. The command diary file name prepares all the
following output, together with any keyboard commands, to be put in a text file that
can be edited. The command diary off after running the program will actually
write into the file. In our case, you would enter the commands

>> diary problem1
>> myexp
>> diary off

The file problem1 contains the numerical screen output but not the graph. It looks
like this:

>> myexp
ans =

-2.0000 0.3333 0.1353 0.1980
-1.8000 0.2854 0.1653 0.1201
-1.6000 0.2704 0.2019 0.0685

. . . .

. . . .

. . . .
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1.6000 4.8357 4.9530 -0.1173
1.8000 5.8294 6.0496 -0.2202
2.0000 7.0000 7.3891 -0.3891

maxerror =
0.3891

>> diary off

Notice that the commands of the program itself are not put into the file problem1.
To include the program commands as well, use the command type in the sequence

>> diary problem1
>> type myexp
>> myexp
>> diary off

The command type reproduces the code of any MATLAB mfile on the screen.
By editing the file problem1, it is now possible to add labels at the tops of

the columns and to add interpretive comments about the results of the calculations.
Comments about the graphs can also be added here, with reference to Figure 1,
Figure 2, etc. Here is the file problem1, after editing, with the program inserted at
the beginning and a second page for the graph (see Figure 2.1):

Problem 1
This is the program "myexp" used to compute a 5-term

approximation to the exponential function on the interval [-2,2].
x = -2:.2: 2;
term = ones(size(x));
y = term;
for n = 1:4

term = term.*(x/n);
y = y+term;

end
[x’, y’, exp(x)’, (y-exp(x))’]
maxerror = max(abs(y-exp(x)))
plot(x,y,x,exp(x), ’--’)
title(’Figure 1. 5-term approx,

and true exp(x) (dashed line)’)

The values of the approximation are put in the vector y and
compared with the MATLAB exponential. Here are the results:
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x y exp(x) error = y - exp(x)

-2.0000 0.3333 0.1353 0.1980
-1.8000 0.2854 0.1653 0.1201
-1.6000 0.2704 0.2019 0.0685

. . . .

. . . .

. . . .
1.6000 4.8357 4.9530 -0.1173
1.8000 5.8294 6.0496 -0.2202
2.0000 7.0000 7.3891 -0.3891

maxerror =
0.3891

Comments: As we can see from Figure 1 (attached), the
5-term approximation does quite well in the interval [-1, 1].
In fact, from the table, we can see the maximum error over
this interval is .0099.
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Figure 1.  5 term approx, and true exp(x) (dashed line)

Figure 2.1 Figure produced by the script mfile myexp.
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The diary command in Windows

If you are working on a PC with Windows, put the diary into a file with the extension
txt. For example,

diary myexp.txt

A file with the extension txt can be immediately viewed and edited with the
Notepad editor.
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3
Vectors, Lines, and Planes

In this chapter we study some of the elements of “flat geometry,” namely, vectors,
lines, and planes. To help with the graphical displays, we have prepared the following
mfiles to be used in this chapter.

Prepared mfiles used in this chapter

arrow arrow3 plane

3.1 Vectors

Vectors are directed line segments in two- or three-dimensional space, used to repre-
sent velocity, acceleration, forces, etc. They have a point of application, a direc-
tion, and a magnitude. A vector is usually given in terms of three components, as
v D [a; b; c]. The magnitude of the vector is the Euclidean norm of its components,
denoted jjvjj D p

a2 C b2 C c2. The direction of the vector v is the unit vector
u D v=jjvjj. The point of attachment is given by a point P0 D .x0; y0; z0/. Of
course, in two-dimensional space, the vectors and points of attachment have only
two components.

mfiles arrow, arrow3

The mfiles arrow.m and arrow3.m are function mfiles that can be used to display
vectors in two and three dimensions, respectively. For example, if we want to display
vectors v D [1; 2] and w D [�2; 2], both attached at the point P0 D .2; 6/, we can
use the commands

33
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>> P0 = [2 6];
>> v = [1 2];
>> arrow(P0,v)
>> hold on
>> w = [-2 2];
>> arrow(P0,w)
>> arrow(P0,v+w,’r’)
>> axis equal
>> hold off

Note that in the first two calls to arrow, we did not specify the color, and the arrow
will be displayed in the default color of blue. In the third call, we added a third
argument, ’r’, which now specifies the color to be red. In this third call we plotted
the sum vector v C w attached at the same point P0.

The same kinds of commands work in the same way for the mfile arrow3.m.
The next-to-last command, axis equal, makes the units on the axes have the

same physical length on the screen so that the angles between the vectors are as
seen on the screen. The result is shown in Figure 3.1.

The magnitude of a numerical vector v can be computed in a single MATLAB
command, norm(v). If two numerical vectors v and w are entered as row vectors
(1 ð 3 matrices), their scalar product, v Ð w, can be computed with the matrix multi-
plication v*w’. For real vectors, the scalar product is also produced by the command
dot(v,w).

 v w

v + w
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P0 = (2,6)

Figure 3.1 Vectors v D [1; 2], w D [�2; 2], and v C w attached at the point P0 D .2; 6/.
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Note that if we use v’*w, we obtain the 3ð3 matrix with entries viwj . Finally, the
cross product, v ð w, can be computed with the MATLAB command cross(v,w).

Although the norm command cannot be applied to symbolic vectors, the scalar
product and the cross products can be applied to them as shown here:

>> syms a b c x y z
>> v = [a b c]
v = [a, b, c]

>> w = [x y z]
w = [x, y, z]

>> cross(v,w)
ans =
[b*z-c*y,c*x-a*z,a*y-b*x]

>> v*w’
ans =
a*conj(x)+b*conj(y)+c*conj(z)

In the last result, we see that MATLAB is allowing the possibility that the compo-
nents of the vectors are complex, and it computes the complex scalar product. If we
use the command dot(v,w), the result is a bit strange, conj(a)*x + conj(b)*y

+ conj(c)*z, with the conjugates on the first factor rather than on the customary
second factor.

3.2 Plotting lines in two- and three-dimensional space

If we know two points on the line in two-dimensional space, P0 D .x0; y0/ and
P1 D .x1; y1/, we can plot the line using the plot command:

>> plot([x0, x1], [y0,y1])

Similarly, if we have points P0 D .x0; y0; z0/ and P1 D .x1; y1; z1/ in three-
dimensional space, we use the MATLAB command plot3:

>> plot3([x0,x1], [y0,y1], [z0,z1])

To plot a polygonal line, joining the five points Pj D .xj ; yj ; zj /; j D 0; : : : ; 4, use
the commands

>> x = [x0, x1, x2, x3, x4];
>> y = [y0, y1, y2, y3, y4];
>> z = [z0, z1, z2, z3, z4];
>> plot3(x,y,z)
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To plot the points without the lines between them, using an asterisk, for example,
replace the last command by plot3(x,y,z,’*’). To have the lines between the
points and the asterisks at the points, use

>> plot3(x,y,z)
>> hold on
>> plot3(x,y,z,’*’)

Another useful command for graphic display is the fill command. The coordi-
nate vectors x D [x1; x2; x3; x4] and y D [y1; y2; y3; y4] with x4 D x1 and y4 D y1,
trace out the vertices of a triangle in the x; y plane. To fill in this triangle in a single
color, enter fill(x,y,’r’). Here we have taken the color to be red. If the last
vertex is not the same as the first vertex, the fill command will connect up the
last two vertices, thereby filling in a quadrilateral. The same procedure works to fill
in any polygon.

The analog in three-dimensional space is to give three vectors of coordinates, as
we would to plot a polygonal line. Then the command fill3(x,y,z,’r’) fills in
this polygon in space in red. However, the result can depend on the viewing angle.
A consistent result is obtained when the points all lie in the same plane.

Next, we turn our attention to lines described parametrically in two-dimensional
and three-dimensional space. If L D [a; b; c] is a tangent vector to the line and the
line passes through the point P0 D .x0; y0; z0/, then its parametric equations are

x.t/ D x0 C at; y.t/ D y0 C bt; z.t/ D z0 C ct: (3.1)

We can write P.t/ D P0 C tL, and we note that P.0/ D P0.
A line given this way is easily plotted. We must first pick a range of values for

t . For example, we might want to view the line for t1 � t � t2. Then P.t1/ D
.x0 C at1; y0 C bt1; z0 C ct1/ and P.t2/ D .x0 C at2; y0 C bt2; z0 C ct2/ are two
points on the line. We can use the plotting commands just discussed. After entering
values for x0; y0; z0, a; b; c and t1; t2, we enter

>> x = [x0 + a*t1, x0 + a*t2];
>> y = [y0 + b*t1, y0 + b*t2];
>> z = [z0 + c*t1, z0 + c*t2];
>> plot3(x,y,z)

Example 3.1

Another way to plot this same line, which is similar to what we shall do in the next
chapter with curves, is to create a vector of t values and then the corresponding
coordinate values as follows (here t1 D �1 and t2 D 1):
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>> t = -1:.01:1;
>> x = x0 + a*t;
>> y = y0 + b*t;
>> z = z0 + c*t;
>> plot3(x,y,z)
>> hold on
% We attach the tangent vector at P0.
>> L = [a b c];
>> P0 = [x0 y0 z0];
>> arrow3(P0,L,’r’)
>> hold off

The tangent vector attached to the line at P0 indicates the direction of the line.

3.3 Planes

A two-dimensional plane in three-dimensional space can be determined in several
ways. First we suppose we are given a normal direction N D [a; b; c] and a point
P0 D .x0; y0; z0/ that the plane is supposed to contain. The plane with normal
direction N that contains P0 is then defined to be the set of points P D .x; y; z/
such that the vector P � P0 is orthogonal to N. In coordinates, the plane is given
by an equation:

f.x; y; z/ : .x � x0/a C .y � y0/b C .z � z0/c D 0g
or

ax C by C cz D d � ax0 C by0 C cz0: (3.2)

If we are given three points in space, P0 D .x0; y0; z0/, P1 D .x1; y1; z1/, and
P2 D .x2; y2; z2/, these three points uniquely define a plane. We can find the equation
of this plane in the previous form by finding a normal direction N. Let v be the
vector from P0 to P1 and w be the vector from P0 to P2. Componentwise,

v D [x1 � x0; y1 � y0; z1 � z0] w D [x2 � x0; y2 � y0; z2 � z0]:

Now set N D v ð w. N will be orthogonal to both v and w. Using this N and P0
we generate the equation of the plane as before.

If the coefficient c 6D 0, i.e., N does not lie in the x; y plane, then we can solve
for z in Eq. (3.2) and express the plane as the graph of a function of two variables,

z D f .x; y/ D z0 � 1

c
.a.x � x0/C b.y � y0//: (3.3)

In Chapter 5 we shall learn how to graph functions of two variables.
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In the meantime, we shall turn to another means of describing a plane that is the
two-dimensional analog of the parametric equations of a line. The ingredients here
are the point P0 and any two vectors v and w, which are assumed to be orthogonal
to the normal vector N. We also assume that v is not a scalar multiple of w. These
vectors might arise from the knowledge of two other points, P1 and P2, in the plane
as before. Now for s; t 2 R, the vector

u D sv C tw

is said to be a linear combination of the vectors v and w. Any linear combination
of v and w is also orthogonal to N because

N Ð .sv C tw/ D sN Ð v C tN Ð w D 0:

Thus the points P in the plane are given by

P D P0 C sv C tw s; t 2 R: (3.4)

In terms of coordinates, if v D [v1; v2; v3] and w D [w1; w2; w3], then P D .x; y; z/,
where

x D x0 C sv1 C tw1 (3.5)

y D y0 C sv2 C tw2

z D z0 C sv3 C tw3; s; t 2 R:

Equations (3.5) are the parametric equations for the plane. They are the analog of
the parametric equations of the line (3.1).

Equations (3.5) can be used to locate points in a plane. We suppose the values
of x0; y0; z0 for P0 have been entered, as well as the components v1; v2; v3 of v
and the components w1; w2; w3 of w. Then we can display points in the plane with
arrows using a short script file (see Figure 3.2):

P0 = [x0 y0 z0];
v = [v1 v2 v3];
w = [w1 w2 w3];
for s = -1: .5 :1

for t = -1: .5 :1
arrow3(P0, s*v +t*w)
hold on

end
end
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Figure 3.2 Linear combinations of two vectors attached at the origin filling out a plane.

mfile plane

The mfile plane.m is a function mfile that graphs a plane using the parametric
form. Input information consists of the point P0 and the normal direction N. For
example,

>> P0 = [1 2 -1];
>> N = [-5 2 2];
>> plane(P0, N)

The plane is shown in Figure 3.3. The normal direction is indicated with a red arrow.
Notice that the point P0 is located in the center of the planar piece, where the normal
vector is attached. The width of the planar piece in the horizontal direction is 2 and
the width in the other direction is also 2. To get a planar piece of width 2a in the
horizontal direction and width 2b in the other direction, use the longer call

>> plane(P0,N,a,b)

If two planes have normals N1 and N2 that are not multiples of one another, the
planes will intersect. The line of intersection will lie in both planes, and hence a
tangent vector to this line will be orthogonal to both N1 and N2. Thus a tangent
direction to the line of intersection will be given by the cross product

L D N1 ð N2:
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Figure 3.3 Plane through P0 D .1; 2;�1/ with normal N D [�5; 2; 2].

If P0 is any point on the line of intersection, then the line is given in parametric
form as

P D P0 C tL:
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Figure 3.4 Intersection of planes through P0 D .0; 0; 0/ with normals N1 D [�2:5; 1; 1] and N2 D
[1; 1; 1]. View is taken with an azimuth of 68 degrees (third quadrant) and an elevation of 32 degrees.
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Example 3.2

This script graphs the two planes containing P0 D .0; 0; 0/ with normals N1 D
[�2:5; 1; 1] and N2 D [1; 1; 1]. See Figure 3.4. The line of intersection has tangent
vector L D [0; 3:5;�3:5].

P0 = [0 0 0];
N1 = [-2.5 1 1];
N2 = [1 1 1];
plane(P0,N1)
hold on
plane(P0,N2)
L = cross(N1, N2);
arrow3(P0,L)
view(68,32)
hold off

3.4 Viewing three-dimensional graphs

It is often useful to change the viewpoint in a three-dimensional graph. In MATLAB
the viewpoint is specified by a pair of angles, the azimuth and the elevation. Imagine
the origin in three-dimensional space translated to the center of the figure. This
imposes an x axis, y axis, and z axis in the figure. The azimuth and elevation are
determined from these axes. The azimuth is the angle in the x; y plane measured
from the negative x axis, with a positive angle being a counterclockwise rotation.
The elevation is measured from the x; y plane. The default viewpoint, when the
graph first appears, is with an azimuth of �37:5 degrees (in the 4th quadrant) and
an elevation of 30 degrees above the x; y plane. To change the viewpoint to an
azimuth of 45 degrees and an elevation of 60 degrees, enter view(45,60). At any
time to check what the viewpoint is, enter [az,el] = view. In Figure 3.4, the
view is from an azimuth of 68 degrees and an elevation of 32 degrees.

Another way to specify the viewpoint is to enter the components of a vector.
Imagine this vector attached to the translated origin in the center of the figure.
The viewing angle is then down this vector toward the the center of the graph.
For example, view([1 2 1]) specifies the viewing angle to be azimuth 153:4 D
arctan.2/C 90 degrees and elevation 65:9 D arccos.1=

p
6/ degrees.

A third way to get a different viewpoint, is to enter the command rotate3d on.
Then clicking and holding with the left mouse button, we can rotate the figure. The
azimuth and the elevation are displayed on the screen. The command rotate3d

off turns the interactive rotate feature off.
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Exercises

1. Let P0 D .1; 2; 1/ and L1 D [1; 0; 1], L2 D [�1; 2; 0], and L3 D [0; 3; 1]. Plot
the three lines through P0 with these tangent vectors on the same figure using the
hold on command. Add the tangent vector to each line using the function arrow3.
Rotate the figure until you are viewing it from an azimuth of 75 degrees and an
elevation of 60 degrees. Then label the lines l1; l2, and l3 and the axes.

2. Plot the edges of a regular pentagon inscribed in the unit circle. Then modify
the plot to make it a five-pointed star, with the inner points lying on the circle of
radius 0:4. See Figure 3.5.

3. Two forces, F1 and F2, in the x; y plane are applied to an object placed at the
origin. F1 has a magnitude of 10 pounds and is directed at an angle of 30 degrees
above the positive x axis. The force F2 has a magnitude of 5 pounds and is directed
at an angle of 20 below the axis.

a) Find F1 and F2. Plot the two forces in the same figure using the hold on

command and the arrow command. Then find the resultant force F1 C F2, and plot
it as well in the same figure.

b) Now add a third force, F3 D [0; 1; 2]. What is the resultant force? Redo the
figure in 3D, showing all three forces and the resultant using the arrow3 command.
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Figure 3.5 Pentagon inscribed in unit circle, with star inscribed in pentagon.
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4. Refrigerator Perry, who weighs about 400 pounds, sits on a small three-legged
stool. The stool is 2.5 feet high, and the three legs (all of the same length) are
fastened at the middle of the bottom of the seat and reach the circle of radius 1 foot
on the ground.

a) Use MATLAB to make a three-dimensional diagram of the stool.
b) Compute by hand the magnitude and direction of the force on each leg. Put

the force arrows on the diagram with the arrow3 command.

5. Make an mfile with a “for loop” to graph the family of line segments l� through
the origin in three-dimensional space

l� D ft .cos.�/; sin.�/; :7/; �1 � t � 1g;

where � D 2 j³=n; j D 0; : : : ; n. Choose n D 24. What would be the resultant
figure as n ! 1?

6. a) Make an mfile with a “for loop” (Section 2.4) to plot the family of lines la
through the point Pa D .a; 0; 0/ with tangent vector La D [0; cos.a/; sin.a/], with
a D j1a, 1a D ³=20 and j D 0; : : : ; 20. Add the command axis equal to get a
better impression. Rotate the view to view(45,40), and label the axes. This is an
example of a ruled surface, which is a surface constructed from straight lines.

b) Now let a run from a D 0 to a D 4³ , with the same 1a. The surface will
look like a piece of crepe paper twisted along the x axis. Add the x axis with the
command plot3([0 4*pi], [0 0], 0,0]). Use the command axis equal, and
rotate as before. Label the axes.

7. A lever lying in the x; y plane is attached to a vertical shaft that is aligned
with the z axis. The end point of the lever is located at P D .x; y; 0/. A force
F D [a; b; c] is applied to the lever at P . Let r be the vector from the origin to P .
Then the torque at the origin produced by the lever and the force is

T D r ð F:

For simplicity, take P D .1; 0; 0/ so that r D [1; 0; 0].
a) Use arrow3 to plot r, F, and T for various choices of [a; b; c].
b) The z component of the torque is the component that causes rotation about

the z axis. Verify that the z component of torque is greatest in magnitude when the
force F is parallel to the xy plane, and perpendicular to the lever.

c) What is the minimum force needed to produce a torque of magnitude 10, that
would make the lever rotate in a counterclockwise direction (as seen from above)?
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8. a) Let P0 D .1; 2 � 1/, N1 D [2; 1;�1], and N2 D [�1; 1; 3]. Using plane

and hold on, graph both planes through P0 in the same figure.
b) Let L D N1 ð N2. Superimpose the line of intersection on the graph of part

a). Rotate the figure until the line of intersection is clearly visible. Label the axes.

9. Let P1 D .1; 2; 1/, P2 D .2; 5=2; 0/, and N D [1; 1=2;�1].
a) Graph the planes through P0 and P1 with the same normal N in the same

figure.
b) Let P3 D .P1 C P2/=2 and N3 D [0; 1; 1=2]. Add the graph of this third

plane to the previous figure. Rotate the graph so that you can see the intersections
clearly. Label the axes.

10. a) Graph the plane that contains the points P1 D .1; 0; 0/, P2 D .0; 2; 0/, and
P3 D .0; 0; 1/. Take P0 D .P1 C P2 C P3/=3.

b) To see the portion of the plane that lies in the first octant, let x be the
vector of first coordinates of the points P1; P2; P3, let y be the vector of second
coordinates, and let z be the vector of third coordinates. Then use the command
fill3(x,y,z,’b’).

11. Use the command plane and a for loop to construct an array of 8 parallel✯

cooling fins (Figure 3.6). The fins should be square, with side of length 2. They
should be centered on the x axis, making an angle of ³=6 with the y; z plane. The
perpendicular distance between the fins should be one unit. What is the spacing of
the fins in a direction parallel to the x axis? Make the fin at one end of the array
contain the origin.

12. Use the plane command to construct a solid bar of length 10 cm and trian-✯

gular cross section. The cross section should be an equilateral triangle of side 2 cm.
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Figure 3.6 Cooling fins for Exercise 11.
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Figure 3.7 Bar of triangular cross section for Exercise 12.

Place the bottom face of the bar in the rectangle f0 � x � 10; �1 � y � 1g. Choose
the points P0 in the center of each side and the normal direction N appropriately.
Finally, use the command fill3 to fill in the ends of the bar. See Figure 3.7.

13. A TV antenna is mounted on a roof. The roof has a slope of 20 degrees from✯

the horizontal. Three guy wires are to be stretched from the antenna to the roof.
They are attached at a point 25 feet above the roof, and each is to make an angle
of 30 degrees with the pole of the antenna. One of the wires is to be as long as
possible and thus must go in the direction in which the roof slopes down. The other
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Figure 3.8 Antenna on roof for Exercise 13.
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two wires will be shorter and of equal length. When viewed from above, they will
each make an angle of 120 degrees with the first wire, one on either side. Introduce
coordinates by putting the base of the pole at the origin (0,0,0) and the point where
the wires are attached at .0; 0; 25/. Let the roof slope up from negative x to positive
x . See Figure 3.8.

a) Compute by hand the direction Lj of the wire L j , j D 1; 2; 3.
b) What is the length of each wire, and what are the coordinates of the points

P1; P2; P3 of attachment of each wire on the roof?
c) Graph the roof, the antenna, and the three guy wires.



4
Curves in Space

Prepared mfiles used in this chapter

arrow arrow3 frenet

4.1 Parametric representation of curves

Curves in two- and three-dimensional space are often represented as the image of a
vector-valued function of a real variable. This is called a parametric representation.
A parametric representation in two dimensions is provided by two coordinate func-
tions, x.t/ and y.t/, and the vector-valued function t ! .x.t/; y.t//. These curves
are very easy to plot with MATLAB.

Example 4.1

A sequence of commands to plot the circle with center at .1; 3/ and radius r D 2 is

>> t = linspace(0, 2*pi, 101);
>> x = 1 +2*cos(t);
>> y = 3 +2*sin(t);
>> plot(x,y)

We can also use the feature of the inline function to make such plots. An alternate
sequence of commands to graph the circle is

>> x = inline(’1 + 2*cos(t)’);
>> y = inline(’3 + 2*sin(t)’);
>> t = linspace(0, 2*pi, 101);
>> plot(x(t), y(t));

47
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The inline functions x and y defined in the first and second lines are array-smart;
when applied to the vector t, they produce the same vectors as in the second and
third lines of the previous sequence.

Yet a third way of graphing these two-dimensional curves is possible in
MATLAB 5.2 and higher using symbolically defined functions:

>> syms t
>> x = cos(t)
>> y = sin(t)
>> ezplot(x,y)

In this version of the ezplot command, the default range of the parameter t is
0 � t � 2³ . If we wish to specify a different range, such as 1 � t � 5, we use the
longer command ezplot(x,y, [1,5]).

Similarly, curves in three-dimensional space are represented parametrically by
vector-valued functions with three coordinate functions, t ! .x.t/; y.t/; z.t//. A
standard example is the circular helix, which is like a circular coil. One parametric
representation is

x.t/ D cos t; y.t/ D sin t; z.t/ D t=2³; 0 � t � 4³: (4.1)

The graph is shown in Figure 4.1.
To graph curves in three-dimensional space, we use the command plot3. For

example, to graph the circular helix in Figure 4.1, we enter

>> t = linspace(0, 4*pi, 201);
>> plot3(cos(t), sin(t), t/(2*pi))
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Figure 4.1 Circular helix, rising to height z D 2 in two revolutions.
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If the coordinate functions were more complicated, we might prefer to define them
first as inline functions or as mfiles.

Again, in MATLAB 5.2 and higher, there is a command ezplot3, which is
the analog of ezplot. If the coordinate functions x; y; z are symbolically defined
functions, we can graph the curve in three-dimensional space with the command
ezplot3(x,y,z,[0,4*pi]). We shall describe an additional bell and/or whistle of
ezplot3 shortly.

4.2 Tangent vectors and velocity

The notion of the tangent vector to a curve can be motivated by looking at secant
lines, much in the way that we find the slope of the tangent to a curve in one
dimension. Consider the curve parameterized by P.t/ D .x.t/; y.t/; z.t// near t D
t0. Let P0 D P.t0/. The vectors

P.t/� P.t0/

t � t0
D

�
x.t/� x.t0/

t � t0
;

y.t/� y.t0/

t � t0
;

z.t/� z.t0/

t � t0

½

describe the directed line segment from the point P0 on the curve to the point
P.t/, multiplied by .t � t0/�1. In Figure 4.2 we show two of these secant vectors,
v1 D .P1 � P0/=.t1 � t0/ and v2 D .P2 � P0/=.t2 � t0/ with P1 D P.t1/ and
P2 D P.t2/, where t0 < t1 < t2.
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Figure 4.2 Secant vectors v1 and v2 and tangent vector v D [x 0.t0/; y0.t0/; z0.t0/].
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If the coordinate functions x.t/; y.t/; z.t/ are differentiable at t0, the components
of the secant vectors converge to x 0.t0/; y0.t0/; z0.t0/. The vector

v D [x 0.t0/; y0.t0/; z0.t0/]

is a tangent vector to the curve at P.t0/. We say a tangent vector because any
scalar multiple of v is also a tangent vector. See Figure 4.2. If for some reason we
cannot compute the derivatives x 0.t0/; y0.t0/; z0.t0/, we can use the components
of .P.t/� P.t0//=.t � t0/ to approximate the derivatives. This is called numerical
differentiation and is discussed in more detail in Section 4.6.

If P.t/ represents the position of a particle at time t , then the tangent vector
v D [x 0.t/; y0.t/; z0.t/] is interpreted as the velocity of the particle. The speed of the
particle is

jjv.t/jj D
q

x 0.t/2 C y0.t/2 C z0.t/2:

The acceleration of the particle is

a D dv
dt

D [x 00.t/; y00.t/; z00.t/]:

Example 4.2

We can add tangent vectors at several points along the graph of a curve using
the arrow and arrow3 commands. We return to the helix of Figure 4.1, which is
parameterized by Eqs. (4.1). The velocity here is v.t/ D [� sin t; cos t; 1=2³ ]. We
can graph the helix, together with tangent vectors at times t D 0; ³=4; ³=2; : : : ; 4³
with the following script:

t = linspace(0, 4*pi, 101);
x = inline(’cos(t)’);
y = inline(’sin(t)’);
z = inline(’t/(2*pi)’);
plot3(x(t),y(t),z(t))
hold on
for s = linspace(0, 4*pi, 17);

p = [x(s),y(s),z(s)];
v = [-sin(s), cos(s), 1/(2*pi)];
arrow3(p,v,’r’)

end
view(135,40)

In lines 2, 3, and 4, we defined the coordinate functions with the inline feature. We
did not do the same for the derivatives x 0, etc., because we used them only once.
The result is shown in Figure 4.3.
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Figure 4.3 Circular helix with velocity vectors.

The command ezplot3 can be used here, with an additional argument that
causes a red bead to move along the curve from initial point to terminal point. The
call is

>> ezplot3(x,y,z,[0, 4*pi], ’animate’)

The velocity of the bead varies as the velocity .x 0; y0; z0/ varies. If we replace the
parameter t by 2t , the bead moves twice as fast.

Often a curve can have sharp corners, or cusps. For example in two dimensions,
P.t/ D .x.t/; y.t// D .t3; t2/, for jt j � 1 (see Figure 4.4), has a cusp at .0; 0/. We
note here that v.0/ D [x 0.0/; y0.0/] D [0; 0].

A curve C will not have cusps if it can be parameterized by a vector-valued
function t ! P.t/ D .x.t/; y.t/; z.t//; a � t � b, such that x.t/; y.t/, and z.t/ are
continuously differentiable on [a; b] and jjv.t/jj > 0 on [a; b]. The latter condition
says that if P.t/ represents the motion of a particle, the velocity is never zero. If
C has a parameterization P.t/ that satisfies these two conditions, we say that C is
a smooth curve. We say that C is piecewise smooth if it can be parameterized by a
function t ! P.t/; a � t � b, such that P is smooth except at a finite number of
points tj and at each tj , the one-sided derivatives exist. The curve parameterized by
P.t/ D .t3; t2/; jt j � 1, is piecewise smooth. The velocity v D [3t2; 2t] vanishes
at t D 0. Another piecewise smooth curve is the path consisting of the four sides of
a square. Here it would be more convenient to use four different functions, one for
each side.
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Figure 4.4 Graph of curve P.t/ D .t3; t2/ showing cusp at t D 0.

To unify the notation somewhat, we shall adopt the common practice in physics
and engineering of identifying the point P D .x; y; z/ with the vector attached at
the origin with the same components, r D [x; y; z].

Example 4.3

The cycloid curve is an example of a piecewise smooth curve. It is the path followed
by a light attached to the rim of a wheel as it rolls. Let the wheel have radius r .
We assume that the wheel is rolling down the positive axis with angular velocity !.
Since the center of the wheel is always located directly over the point of contact with
the ground, the center of the wheel moves in a horizontal direction with constant
velocity v D r!. Hence the center of the wheel will be located by the vector
r0.t/ D [vt; r ]. Since the wheel is rolling in a clockwise fashion, the light on the
rim moves clockwise about the center. Its motion about the center is given by
r1.t/ D [r cos.!t C Ž/;�r sin.!t C Ž/], where Ž is a phase factor determined by the
position at time t D 0. Hence the position of the light on the wheel rim is given by

r.t/ D r0.t/C r1.t/ D [r!t C r cos.!t C Ž/; r � r sin.!t C Ž/]:

If we specify that the light at t D 0 is to be at the point .0; 0/ (the point of
contact with the x axis), we must take Ž D ³=2. After applying some trigonometric
identities, the equations become

r.t/ D [r.!t � sin!t/; r.1 � cos!t/]:
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Figure 4.5 Cycloid curve with tangent vectors for wheel of radius 1 with angular velocity ! D 1.

The cycloid curve, together with several velocity vectors, is graphed with the script
(see Figure 4.5),

% Graph the cycloid curve
rad = 1; omega = 1;
t = linspace(0, 4*pi, 121);
x = rad*(omega*t -sin(omega*t));
y = rad*(1 - cos(omega*t));
plot(x,y)
hold on

% Add the velocity vectors
for s = linspace(0, 4*pi, 25);

r = [rad*(omega*s -sin(omega*s)),
rad*(1-cos(omega*s)];

u = [rad*omega*(1- cos(omega*s)),
rad*omega*sin(omega*s)];

arrow(r,u,’r’)
end
hold off

Note that the velocity is zero when t D 0; 2³ , and 4³ . These are the points of contact
with the ground, and the curve traced out by the light has a cusp at these points.
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4.3 Arc length

The length of a line segment from point P0 D .x0; y0; z0/ to point P1 D .x1; y1; z1/

is simply the norm of the vector

P1 � P0 D [x1 � x0; y1 � y0; z1 � z0]

and this is

jjP1 � P0jj D
q
.x1 � x0/2 C .y1 � y0/2 C .z1 � z0/2:

Similarly the length of a polygonal path 0 with vertices P0; P1; : : : ; PN is the
sum of the length of the connecting line segments:

length.0/ D jjP1 � P0jj C jjP2 � P1jj C Ð Ð Ð C jjPN � PN�1jj: (4.2)

The fact that we can easily calculate the length of a polygonal path suggests
that we could give meaning to the length of a curve C by approximating the curve
by a polygonal path 0 and then calculating the length of 0. Our procedure is to
select points P0; : : : ; PN on C and then to form the sum (4.2). The polygonal
approximation is illustrated in Figure 4.6.

As we choose more and more points on C , the polygonal path 0 becomes a better
and better approximation to the curve C . When C is piecewise smooth, the lengths
of the approximating polygonal paths converge to a number l.C/, which we shall
take as the length of C . If C is parameterized by r.t/; a � t � b, with velocity
vector v.t/ D [x 0.t/; y0.t/; z0.t/], the length l.C/ is given by the arc length integral

l.C/ D
Z b

a
jjv.t/jj dt D

Z b

a

q
x 0.t/2 C y0.t/2 C z0.t/2 dt:
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Figure 4.6 Polygonal path 0 approximating curve C .
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Because of the square root appearing in jjvjj, there are not many examples where
the integral can be computed by elementary means. There are several alternative
methods, depending on the goal of our computation.

ž If we wish to get a value for the arc length showing the dependence on
parameters, for example, the upper limit of integration b, we might try the
symbolic integration features of MATLAB.

ž If we want only a number for the arc length of a specific curve and we
have an expression for the derivatives x 0; y0; z0, then we can use a numerical
integration routine of MATLAB, such as quad or quad8.

ž Finally, if we are given a parameterization t ! r.t/ but it is difficult to
compute the derivatives x 0; y0; z0, we can compute the length of an approxi-
mating polygonal path.

Example 4.4

Let the curve C be parameterized by r.t/ D [2t; t2; ln.t/], 1 � t � 2. First we
approximate the length of C by making a polygonal approximation. Here is the
script that calculates the sum (4.2):

t = 1:.01:2;
x = 2*t; y = t.^2; z = log(t);
sum = 0;
for j = 1:100

dx = x(j+1) - x(j);
dy = y(j+1) - y(j);
dz = z(j+1) - z(j);
dr = [dx,dy,dz];
sum = sum + norm(dr);

end
disp(’ this is the length of the polygonal approx

using 100 segments ’)
sum

Now we instead calculate the speed by hand. We have

jjv.t/jj D
q

4 C 4t2 C .1=t/2 D 2t C 1=t:

The arc length integral is trivial to compute by hand, but we illustrate how to use
the numerical integrator quad8. Use the following commands:
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>> speed = inline(’2*t + 1./t’)
Inline function :
speed(t) = 2*t + 1./t

>> quad8(speed, 1,2)
ans =

3.6931

If speed were defined by an mfile rather than an inline function, the integration
command would be quad8(’speed’, 1,2). Note the single quotes.

Finally we make a symbolic calculation, with the upper limit of integration being
a parameter b:

>> syms t b
>> r = [2*t, t^2, log(t)]
>> v = diff(r)
v =
[2, 2*t, 1/t]
>> speed = sqrt(v(1)^2 + v(2)^2 + v(3)^2))
speed =
(4 +4*t^2 +1/t^2)^(1/2)
>> int(speed, t, 1, b)
ans =
(((1+2*b^2)^2/b^2)^(1/2)*b^3+
((1+2*b^2)^2/b^2)^(1/2)*b*log(b)-1-2*b^2)/(1+2*b^2)

The command pretty(ans) brings this mess into a more intelligible form:

>> pretty(ans)

/ 2 4 \1/2 / 2 4 \1/2
|4 b + 4 b + 1| 3 |4 b + 4 b + 1| 2
|---------------| b + |---------------|b log(b) - 1 - 2 b
| 2 | | 2 |
\ b / \ b /
------------------------------------------------------------

2
1 + 2 b

Of course, this last expression can be simplified to b2 � 1 C ln.b/.

4.4 The geometry of curves

To focus on the geometric aspects of the curve C , independent of the parameteri-
zation, we shall factor out the speed, retaining only the changing direction of the



4.4 The geometry of curves 57

velocity. We set

T.t/ D v.t/
jjv.t/jj D [x 0.t/; y0.t/; z0.t/]p

x 0.t/2 C y0.t/2 C z0.t/2
: (4.3)

T is the unit tangent vector.
The changes in direction of the unit tangent vector as the point P.t/ moves along

the curve tell us how the curve is twisting and turning in space. Since jjT.t/jj D 1
for all t , we have

T0.t/ Ð T.t/ D 0:

Hence

N.t/ D T0.t/
jjT0.t/jj (4.4)

is a unit vector orthogonal to T.t/. N.t/ is called the principal normal vector to C
at the point P.t/. Finally, a third orthogonal vector is defined by

B.t/ D T.t/ð N.t/: (4.5)

B is called the binormal. These three mutually orthogonal unit vectors constitute the
Frenet frame at each point P.t/ on the curve where T0.t/ 6D 0. Finally we define
the scalar function

�.t/ D jjT0.t/jj
jjv.t/jj : (4.6)

� is called the curvature.
The unit tangent vector is not too difficult to compute. We can compute N, B,

and � in terms of T; v; and a with the following expressions:

N D a � .a Ð T/T
jja � .a Ð T/Tjj (4.7)

The numerator in the expression for N is the projection of the acceleration a onto
the plane orthogonal to T. Then it can be shown that

B D v ð a
jjv ð ajj (4.8)

and

� D jjv ð ajj
jjvjj3 : (4.9)



58 Curves in Space

The plane spanned by T and N, with normal B, is called the osculating plane.
The circle with radius 1=� lying in the osculating plane is the circle that makes
the best fit with the curve at that point. Osculating comes from the Latin word for
“kissing.”

From the alternative expression (4.8) for B we see that both v and a lie in the
osculating plane. Hence a can be resolved into a tangential component and a normal
component,

a D aT T C aN N; (4.10)

aT D a Ð T; aN D a Ð N:

aT has the alternate expression that may be easier to compute,

aT D djjv.t/jj
dt

:

mfile frenet

To help visualize the Frenet frame at points along a curve, we can use the mfile
frenet.m. It displays the vectors T;N;B at a chosen point along a curve in the
figure, and on the screen displays a matrix frame of which the first column is
T, the second column is N, and the third column is B. The curvature � is also
computed and displayed. To use frenet, the coordinate functions x.t/; y.t/; z.t/
must be defined either in mfiles or as inline functions. If they are defined in mfiles,
the call is

>> frenet(’x’, ’y’, ’z’)

The user will then be asked to input t values where the Frenet frame is to be
computed. This can be done four times. If the coordinates are defined by inline
functions, we do not need the single quotes, and the call is

>> frenet(x,y,z)

Example 4.5

The following sequence of commands was used to produce Figure 4.7.

>> x = inline(’2*t’)
>> y = inline(’t.^2’)
>> z = inline(’t.^3/2’)
>> t = 0:.01:2;
>> plot3(x(t), y(t), z(t))
>> axis equal
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Figure 4.7 Graph of r.t/ D [2t; t2; t3=2]; 0 � t � 2, showing the Frenet frame at t D
0; 0:8; 1:4; 1:8.

>> hold on
>> frenet(x,y,z)
enter value of t
0
enter the value of t
.8
enter the value of t
1.4
enter the value of t
1.8

Notice that at t D 0, both T and N lie in the x; y plane, which in this case is the
osculating plane. As we advance along the curve, it is twisting, and the osculating
plane rolls in a clockwise direction, as we can see by observing the orientation of B.

4.5 Rotations in the plane

Rotations about a point in the x; y plane play an important role in the geometry of
planar curves. Let the point .x; y/ be represented by the column vector v D [x; y].
This vector can be rotated about the origin by a matrix multiplication. Let � be an
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angle, 0 � j� j < 2³ . The following 2 ð 2 matrix is called a rotation matrix:

R D
�

cos � � sin �
sin � cos �

½
: (4.11)

The vector w D Rv is the image of v produced by this rotation. In terms of compo-
nents,

w D [x cos � � y sin �; x sin � C y cos � ]: (4.12)

The point .x; y/ is mapped into the point with the components of w. In particular,
note that the point .1; 0/ goes into the point .cos �; sin �/ and the point .0; 1/ goes
into .� sin �; cos �/. See Figure 4.8.

What is the image of a curve under rotation? Suppose the curve C is parameterized
by r.s/ D [x.s/; y.s/]; a � s � b. Then the image curve QC is parameterized by
q.s/ D Rr.s/. To find the components, use Eq. (4.12) on [x.s/; y.s/] for each s.
We have

q.s/ D [x.s/ cos � � y.s/ sin �; x.s/ sin � C y.s/ cos � ]: (4.13)

The tangent vectors of C and QC are also related. If we differentiate the components
of q.s/, we find that a tangent vector to QC has components

q0.s/ D [x 0.s/ cos � � y0.s/ sin �; x 0.s/ sin � C y0.s/ cos � ] (4.14)

By referring to Eq. (4.12) we see that q0.s/ D Rr0.s/, which may be shortened to
Qv.s/ D Rv.s/.

Angle q

 i

 Ri

 j

 Rj

Figure 4.8 Vectors i D [1; 0] and j D [0; 1] attached at the origin and rotated through an angle � .
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Figure 4.9 Original ellipse (dashed line) and rotated ellipse (solid line), angle of rotation � D ³=3.

Example 4.6

We show how to rotate a shape (see Figure 4.9). Let us parameterize the ellipse

x2

9
C y2

4
D 1

with r.s/ D [3 cos s; 2 sin s]; 0 � s � 2³ . The following script rotates this ellipse
through an angle � in a counterclockwise direction when � > 0. We use Eq. (4.13):

theta = input(’ enter the rotation angle ’)
s = linspace(0, 2*pi, 101);
x0 = 3*cos(s); y0 = 2*sin(s);
% First we plot the ellipse with no rotation
plot(x0,y0)
hold on
% Now rotate and plot again
x = cos(theta)*x0 -sin(theta)*y0;
y = sin(theta)*x0 + cos(theta)*y0;
plot(x,y); axis equal

4.6 Numerical differentiation

As we saw in the discussion of the tangent vector to a curve, it is possible to
approximate the derivative of a function by difference quotients. Note that in the
mfile frenet, the input functions are only the coordinate functions x.t/; y.t/; z.t/.
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However, to compute T, N, and B we need the first and second derivatives of
these functions. Since these additional functions are not provided, the derivatives
are approximated using numerical differentiation.

Recall from one-dimensional calculus that a function with two continuous deriva-
tives can be approximated by a linear (strictly speaking, affine) function. The linear
approximation is given by the first two terms of the Taylor expansion, with an error
expressed in terms of the second derivative:

f .t C h/ D f .t/C f 0.t/h C f 00.¾/
2

h2 (4.15)

where ¾ is some point between t and t Ch. This equation can be used to approximate
the derivative f 0 in terms of the function values with an error proportional to h,

f 0.t/ D f .t C h/� f .t/

h
C E (4.16)

where

E D � f 00.¾/
2

h:

The quotient on the right of Eq. (4.16) is called the forward difference approxima-
tion to f 0.t/. If we replace h by �h in (4.16) we obtain the backward difference
approximation to f 0.t/,

f 0.t/ D f .t/� f .t � h/

h
C E :

If we assume that f has three continuous derivatives, we can make a longer
Taylor expansion,

f .t C h/ D f .t/C f 0.t/h C f 00.t/
2

h2 C f 000.¾/
6

h3: (4.17)

Then we can make a more precise expression for the error in the forward and
backward difference approximations,

f 0.t/ D f .t C h/� f .t/

h
� f 00.t/

2
h � f 000.¾/

6
h2: (4.18)

and, replacing h by �h in Eq. (4.18),

f 0.t/ D f .t/� f .t � h/

h
C f 00.t/

2
h � f 000.�/

6
h2: (4.19)



4.6 Numerical differentiation 63

If we add together Eqs. (4.18) and (4.19) and divide by 2, we are taking an average
of the forward and backward difference approximations. This average will be more
accurate because the f 00.t/h term will drop out, leaving error terms involving h2.
The result is called the centered difference approximation,

f 0.t/ D f .t C h/� f .t � h/

2h
C E : (4.20)

The error E of the centered difference approximation is proportional to h2.
We can extend the Taylor expansion (4.17) to the next term, which involves h4, if

we assume f has four continuous derivatives. Then replacing h by �h, and adding
the two expansions we see that the terms f 0.t/h and f 000.t/h3=6 both drop out.
Dividing by h2, we obtain the centered difference approximation for f 00.t/,

f 00.t/ D f .t C h/� 2 f .t/C f .t � h/

h2
C E (4.21)

where the error term E is proportional to h2.
Formulas (4.20) and (4.21) with h D 10�6 are used to approximate the compo-

nents of v and a in the mfile frenet.

Exercises

1. Let the curve C be parameterized by P.t/ D .1 � cos t; 1 C 2t C t2/.
a) Calculate by hand a tangent vector to the curve at P.0/.
b) Use MATLAB to compute secant vectors .P.t/�P.0//=t for t D :2; :1; :05.

The error in the secant approximation is

P.t/� P.0/

t
� P 0.0/:

By what factor is the error in each component decreased when t is cut in half?
c) Plot the curve for 0 � t � 1 and use the arrow feature to plot each of these

secant vectors as well as the tangent vector computed in part a). Attach all of the
vectors to the point P.0/ D .0; 1/.

2. a) Use the parameterization x.t/ D 2 cos t; y.t/ D sin t , 0 � t � 2³ , to graph✯

the ellipse x2=4 C y2 D 1 in the x; y plane.
b) Calculate by hand the velocity, speed, and acceleration. Where is the speed

greatest, and where is the speed the smallest?
c) Use the command arrow to attach the velocity vectors at the points P.t/

for the times t D 0; ³=3; ³; 3³=2. See Example 4.2.
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d) Calculate the curvature by hand. Then write the speed and curvature as inline
functions and graph them together on [0; 2³ ]. Where are maximum and minimum
values of the speed attained? Same questions for curvature.

e) Use MATLAB to approximate the arc length using a polygonal approxi-
mation with 100 segments (see Example 4.4). Then use quad8 to estimate the arc
length integral of the speed. See Example 4.4. In both cases, check your method of
calculation on a circle to see if it is working correctly.

3. Let the curve C be parameterized by

r.t/ D ..cos t/3; .sin t/3/; 0 � t � 2³:

a) Plot the curve. Does it have cusps? Where do you expect the speed to be
zero?

b) Calculate by hand the speed jjvjj D jjr0jj. Is the speed zero where you expect
it to be from your graph of part a)?

c) Calculate by hand the curvature. The formula for a planar curve simplifies to

� D jx 00y0 � y00x 0j
jjvjj3 :

Where does � have singularities? Does this also agree with your graph?

4. The curve C of Exercise 3 is piecewise smooth. To make a smooth curve, let✯

us modify r. Let CŽ be parameterized by

rŽ.t/ D 1

1 C Ž
..cos t/3 C Ž cos t; .sin t/3 C Ž sin t/:

a) Plot this curve for values of Ž D 0:5; 0:2; 0:1. See how as Ž ! 0, CŽ
provides a smooth approximation to C .

b) Calculate the speed and curvature of rŽ and graph on [0; 2³ ]. This is a good
opportunity to use the symbolic manipulations of MATLAB and ezplot. Let Ž and
t be symbolic variables and define x and y in terms of them. Then calculate the
speed and the curvature in terms of t and Ž. Finally, substitute various values of Ž
and use ezplot to graph the speed and curvature together.

5. A projectile with mass m D 1 is fired at an angle � from the horizontal with a
speed v0. The components of its motion are

r.t/ D [v0t cos �; v0t sin � � gt2=2]:

We are using units of feet and seconds, so g D 32 ft/sec/sec. Let v0 D 50 ft/sec.
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a) Let t = 0:.01:5. Use the two-dimensional plotting command plot to plot
the trajectories for � D 10; 20; 30; 40; 50; 60; 70; 80 degrees. You will need the
formula

radians D .degrees=180/ð ³:

Plot all these curves on the same graph using the command hold on. Use the
command axis([0 80 0 50]) to cut them off when they hit the ground.

b) By making further experiments, find that value of � that yields the maximum
range. Then make an analytic calculation to confirm your result. What is the
maximum range? Find a formula for the maximum range in terms of the initial
speed v0.

6. Consider a space curve r.t/ D [3 cos.t/; 3 sin.t/; z.t/]. This is a circular helix
of radius r D 3 with an unspecified “rise” function z.t/.

a) Calculating by hand or symbolically, show that the third component of
a � .a Ð T/T is

9z00.t/
jjv.t/jj2 :

b) Using Eq. (4.7) show that when z.t/ D ct for some constant c, the vector
N is always parallel to the x; y plane.

c) Now let z.t/ D t 2=2³ . Plot the curve for 0 � t � 2³ . Use the mfile
frenet.m to add the Frenet frame at the points P.t/ for t D 0; ³=2; ³; 3³=2,
following Example 4.5 as a model. By looking at the figure, determine if the third
component of N is positive or negative. Does this agree with the calculation of
part a)?

d) Same questions for z.t/ D t 1=2, 0 � t � 2³ , and points P.t/ with t D
0:1; ³=2; ³; 3³=2.

7. A plane takes off at time t D 0. Its flight path for 0 � t � 2³ is the (elliptical)
helix

x.t/ D 2 cos.t/; y.t/ D 3 sin.t/; z.t/ D t:

a) Plot the curve.
b) Add the Frenet frame at various points. Where is aN greatest? Where is aN

least?

8. In this exercise we shall construct a “helix” over the curve C of Exercise 3.✯

Assume Þ ½ 0 and let 0 be the curve parameterized by

q.t/ D ..cos t/3; .sin t/3; Þt/; 0 � t � 2³:
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a) Plot the curve using inline functions and plot3 for several values of Þ. Is
the curve smooth whenever Þ > 0? Can you explain this by a calculation of the
velocity or speed?

b) Now change the z component, and set

p.t/ D ..cos t/3; .sin t/3; cos.2t//:

This curve is known as the astroid. Plot this curve using inline functions and plot3

on 0 � t � 2³ . Are there cusps present? Make a hand calculation of the velocity.
Where is it zero? Calculate the curvature using the symbolic manipulator. Where
does it have singularities?

c) After all this work, you should have some fun. Define the components of p
as symbolic expressions. Use the command ezplot3(x,y,z,’animate’). Notice
how the bead slows down at the cusps.

9. A 20-foot boat is sitting on the z axis with the stern at z D 0 and the bow✯

at z D 20. The cross sections of the boat are parabolas in x , y D .2x=a.z//2 for
jx j � a.z/, where the coefficient a.z/ D �0:0166z 2 C 0:2245z C 2:25. There are 21
ribs equally spaced (see Figure 4.10).

a) Plot the rib cross sections for z D 0; 8; 12; 20 in the same two-dimensional
figure.
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Figure 4.10 Boat hull with 21 ribs.
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b) If each of the ribs is to be made of steel tubing, how many feet of tubing are
needed for the 21 ribs? Calculating by hand, you can find a formula for the length
of each rib. Then add them up using a for loop.

10. In this exercise, we shall construct the orbit of a moon circling a✯

planet. The planet in turn follows the elliptical orbit parameterized by r0.t/ D
[3 cos.t/; 2 sin.t/; 0]. The method is similar to that of Example 4.3.

a) Calculate the normal N of the planet’s orbit by hand, and show that the
binormal B D [0; 0; 1].

b) The moon circles the planet in an orbit with radius ². It makes 20 complete
orbits of the planet in the time the planet completes one elliptical orbit. We use the
normal and binormal vectors to describe the moon’s position relative to the planet.
For convenience, let n D �N. n is the normal vector to the ellipse that points to the
exterior. Assume that at time t D 0, the moon starts at the position r D r0.0/C ²n.
From the point of view of someone on the planet, the motion of the moon is
described by the rotation

r1.t/ D ² cos.20t/n C ² sin.20t/B:

Write out by hand the components x.t/; y.t/; z.t/ of the combined motion r.t/ D
r0.t/C r1.t/.

c) Write a script to graph the orbit of the planet and of the moon with ² D 0:2.

11. In this exercise we shall describe and graph the motion of a cam and the part✯

that follows the cam. We shall assume the cam in the original position is bounded
by a simple closed curve C that goes around the origin. C is parameterized by
s ! [x.s/; y.s/], where x and y have period 2³ . This means that x.s C2³/ D x.s/,
and y.s C 2³/ D y.s/ for all s. The cam follower is the part that moves with the
cam and lies along the x axis to the right of the cam (see Figure 4.11). We assume
that for any angle of rotation � , the cam follower touches the cam in only one point.
Let l.�/ be the x coordinate of this point of contact. At this point the tangent vector
to the rotated cam has a zero x component. From Eq. (4.14), we see that at the point
of contact,

x 0.s/ cos � � y0.s/ sin � D 0 (4.22)

If this equation can be solved for s as a function � , yielding a function s.�/, then
l.�/ is given by

l.�/ D x.s.�// cos � � y.s.�// sin �:

a) Let the cam be given by the circle of radius 1, centered at the point .0:5; 0/.
Parameterize the boundary curve C . Use Eq. (4.13) to write a parameterization of
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Figure 4.11 Cam and cam follower in original position (dashed line), cam and cam follower with
� D ³=3 (solid line).

the cam rotated through an angle � . Note that the circle will not be rotated about
its center.

b) Using Example 4.6, write a script that rotates the cam through an angle �
about the origin. Plot the cam in the original position and in the rotated position for
� D ³=3; ³=2; ³ . Label each position and the axes.

c) Solve Eq. (4.22) for s in terms of � , and find the function l.�/.

12. Continuation of Exercise 11. We consider cams given parametrically by✯✯

x.s/ D c C a cos s; y.s/ D b sin s:

a) Show that Eq. (4.22) becomes s.�/ D � arctan..b=a/ tan �/ and that the
expression for l.�/ becomes

l.�/ D .c C a cos s.�// cos � � b sin s.�/ sin �:

b) Write a MATLAB script that takes as input the three parameters a; b; c
and graphs the function l.�/. You will have to adjust values of s.�/ in the interval
[³2 � � � 3³=2] to make l.�/ continuous.

c) Let a D 1; b D 1=2; c D 1=2. By studying the graph of l, find the angles
� for which the cam follower is at its leftmost point in the cycle. These angles
produce the minimum values of l.�/.
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Functions of Two Variables

Prepared mfiles used in this chapter

qsurf xslice yslice mslice

5.1 Defining numerical functions of several variables

Numerical functions of several variables are defined by mfiles and inline functions
in the same way as numerical functions of one variable.

Example 5.1

Let f .x; y/ D x C yex2Cy2
. This function can be defined in an mfile f.m,

function z = f(x,y)
z = x + y.*exp(x.^2 + y.^2);

Notice that we have made the function array-smart by using .* and .^. For graphing
purposes it is important that f be able to operate on matrices.

When we define f by an inline function, we must indicate that f is a function
of both variables by listing them in single quotes:

f = inline(’x + y.*exp(x.^2 +y.^2)’, ’x’, ’y’)

Mfiles provide a convenient way of writing complicated functions that arise by
composition. Suppose the function is f .x; y/ D sin u exp.u2 � v2/, where u D
x C y=2 and v D cos.x � y/. An mfile for this function can be written

69
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function z = f(x,y)
u = x+.5*y;
v = cos(x-y);
z = sin(u).*exp(u.^2 - v.^2);

5.2 Graphing numerical functions of two variables

In this chapter we discuss graphing a numerical function f .x; y/ over a rectangle
in the x; y plane, a � x � b; c � y � d. For these graphs, the plotting variables
are a matrix X of the x coordinates and a matrix Y of the y coordinates. These
matrices are constructed as follows. We construct a mesh or grid over the rectangle
by selecting a step size in the x direction, 1x , and a step size in the y direction,
1y. Then construct vectors x and y with the commands x = a:delx:b and y =

c:dely:d. The next command creates two matrices: [X,Y] = meshgrid(x,y). If
1x D .b � a/=n and 1y D .d � c/=m, then x has length n C 1 and y has length
m C 1. Both matrices X and Y are .m C 1/ð .n C 1/. The m C 1 rows of X are all
equal to x, and the n C 1 columns of Y are all equal to y.

Example 5.2

Let a D �1, b D 1, c D 0, and d D 4. We choose 1x D 1y D :4 so that n D 5
and m D 10. The resulting 11 ð 6 coordinate matrices are displayed here.

>> x = -1:.4:1; y = 0:.4:4;
>> [X,Y] = meshgrid(x,y)

X =
-1.0000 -0.6000 -0.2000 0.2000 0.6000 1.0000
-1.0000 -0.6000 -0.2000 0.2000 0.6000 1.0000
-1.0000 -0.6000 -0.2000 0.2000 0.6000 1.0000
-1.0000 -0.6000 -0.2000 0.2000 0.6000 1.0000
-1.0000 -0.6000 -0.2000 0.2000 0.6000 1.0000
-1.0000 -0.6000 -0.2000 0.2000 0.6000 1.0000
-1.0000 -0.6000 -0.2000 0.2000 0.6000 1.0000
-1.0000 -0.6000 -0.2000 0.2000 0.6000 1.0000
-1.0000 -0.6000 -0.2000 0.2000 0.6000 1.0000
-1.0000 -0.6000 -0.2000 0.2000 0.6000 1.0000
-1.0000 -0.6000 -0.2000 0.2000 0.6000 1.0000

Y =
0 0 0 0 0 0
0.4000 0.4000 0.4000 0.4000 0.4000 0.4000
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0.8000 0.8000 0.8000 0.8000 0.8000 0.8000
1.2000 1.2000 1.2000 1.2000 1.2000 1.2000
1.6000 1.6000 1.6000 1.6000 1.6000 1.6000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.4000 2.4000 2.4000 2.4000 2.4000 2.4000
2.8000 2.8000 2.8000 2.8000 2.8000 2.8000
3.2000 3.2000 3.2000 3.2000 3.2000 3.2000
3.6000 3.6000 3.6000 3.6000 3.6000 3.6000
4.0000 4.0000 4.0000 4.0000 4.0000 4.0000

Notice that the top row of the Y matrix corresponds to the mesh points on the
bottom edge of the rectangle. See Figure 5.1.

Now that we have a mesh, we can graph a function f .x; y/ over the rectangle.
The graph of f will consist of triples .xj ; yi ; f .xj ; yi //, i D 1; : : : ;m C 1; j D
1; : : : ; nC1. We shall create an .m C1/ð.nC1/ matrix Z , with Z.i; j/ D f .xj ; yi /.
To be specific, we take

f .x; y/ D 10x2 C y2:

We define an inline function f and calculate the matrix Z :

>> f = inline(’10*x.^2 + y.^2’, ’x’, ’y’)
>> Z = f(X,Y)

(−1.0) (1.0)

(1.4)(−1.4)

Figure 5.1 Mesh points in the rectangle.
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Z =
10.0000 3.6000 0.4000 0.4000 3.6000 10.0000
10.1600 3.7600 0.5600 0.5600 3.7600 10.1600
10.6400 4.2400 1.0400 1.0400 4.2400 10.6400
11.4400 5.0400 1.8400 1.8400 5.0400 11.4400
12.5600 6.1600 2.9600 2.9600 6.1600 12.5600
14.0000 7.6000 4.4000 4.4000 7.6000 14.0000
15.7600 9.3600 6.1600 6.1600 9.3600 15.7600
17.8400 11.4400 8.2400 8.2400 11.4400 17.8400
20.2400 13.8400 10.6400 10.6400 13.8400 20.2400
22.9600 16.5600 13.3600 13.3600 16.5600 22.9600
26.0000 19.6000 16.4000 16.4000 19.6000 26.0000

The graph is made with the command

>> surf(X,Y,Z)

We could also combine commands, using surf(X,Y,f(X,Y)). The result is shown
on the left in Figure 5.2. The mesh we have used is rather coarse. To make a
smoother graph, we use a finer mesh, setting 1x D 1y D :2. The result is on the
right in Figure 5.2.

>> x = -1:.2:1;
>> y = 0:.2:4;
>> [X,Y] = meshgrid(x,y);
>> surf(X,Y,f(X,Y))
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Figure 5.2 Graphs of f .x; y/ D 10x2 C y2, course mesh on the left, finer mesh on the right.
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mfile qsurf

This short mfile (quick surf) makes the graphing of numerical functions over a
rectangle a bit faster, in that the user does not need to construct a meshgrid.
The call is qsurf(f,corners,n) when f is an inline function, and qsurf(’f’,

corners,n) when f is given in an mfile. corners is a four vector, [a; b; c; d] that
defines the rectangular domain R D fa � x � b; c � y � dg, and n is the number
of subdivisions in the mesh in each direction. If the argument n is omitted in the
call, the default 50 ð 50 mesh is constructed, which is usually about right. In the
case in which n is omitted, the code is essentially this:

function out = qsurf(f, corners)
a = corners(1); b = corners(2);
c = corners(3); d = corners(4);
x = linspace(a,b,51);
y = linspace(c,d,51);
[X,Y] = meshgrid(x,y);
Z = feval(f, X,Y);
surf(X,Y,Z)

The only command you have not seen already is feval. It is explained in
Chapter 13.

The surf command fills in the facets of the surface and leaves on the straight-
line segments connecting the points on the graph above the mesh points in the x; y
plane. To make a smoother-looking surface, follow the surf command by shading

flat or shading interp. The result is shown on the left of Figure 5.3. If we wish
to see through the surface, we can use an alternate command, mesh(X,Y,f(X,Y)),
which makes a wire frame type of graph, shown on the right of Figure 5.3.

MATLAB uses color to indicate the z coordinate of a surface. You will note that
the lowest point on the graph is dark blue, while the highest point is red. This
assignment of colors is called a colormap. The default colormap is called jet. It
is a variant of the colormap hsv (hue-saturation value). There are many different
colormaps, suitable for different purposes. To change the colormap to color the
graph in shades of gray, use the command colormap(gray). To color the graph in
a shading black-red-yellow-white, use colormap(hot). For more information, enter
help colormap.

Graphing a numerical function in polar coordinates

Often we may wish to graph a function, not over a rectangle but over a disk. To do
this we must make one extra step in the construction of the mesh. The first three
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Figure 5.3 Graphs of f .x; y/ D 10x2 C y2, shading flat on the left, wire frame on the right.

lines in the following script create a meshgrid of r; � coordinates. The fourth and
fifth lines convert the r; � mesh into a curvilinear mesh in the x; y plane.

Example 5.3

The following script shows how to graph the function f .x; y/ D x � 1 C y2 over
the disk f.x � 1/2 C .y � 3/2 D 4g:

% First make a meshgrid in r, theta coordinates
r = linspace(0,2,21);
theta = linspace(0, 2*pi, 41);
[R,TH] = meshgrid(r,theta);

% Now convert into a curvilinear meshgrid in x,y
% coordinates
X = 1 + R.*cos(TH);
Y = 3 + R.*sin(TH);
Z = X-1 + Y.^2;
surf(X,Y,Z)
hold on

% add the plane z = -5 with the curvilinear
% meshgrid

surf(X,Y,-5+0*Z)
hold off
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Figure 5.4 Graph of x � 1 C y2 over the disk .x � 1/2 C .y � 3/2 D 4.

The result is shown in Figure 5.4. The r; � meshgrid is displayed on the plane
z D �5.

For a function g D g.r; �/, we can proceed in the same way.

Example 5.4

We graph g.r; �/ D .r=2/ sin.�/ C r3 cos.3�/ over the unit disk, centered at the
origin (see Figure 5.5).
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Figure 5.5 Graph of g.r; �/ D .r=2/ sin.�/C r3 cos.3�/ over the unit disk.
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r = linspace(0,1,21);
theta = linspace(0, 2*pi, 41);
[R,TH] = meshgrid(r,theta);
X = R.*cos(TH);
Y = R.*sin(TH);
Z = .5*R.*sin(TH) + R.^3.*cos(3*TH);
surf(X,Y,Z)

5.3 Level curves

The set of points .x; y/ where a function takes on a given value is called a level set
of the function. If the function is f .x; y/, we write

Sc D f.x; y/ : f .x; y/ D cg:
Often these sets are curves in the x; y plane, called level curves. In many contexts,
the level curves are called contour lines. We can visualize how the level curves
are generated by slicing the graph of f with a plane z D c. The intersection of
this plane with the graph is usually a curve in this plane. The level curve is the
projection of this curve down on the x; y plane. We illustrate these ideas with the
same function we used in Example 5.2: f .x; y/ D 10x2 C y2. In Figure 5.6 (left)
horizontal planes at heights z D 6; 12; 18 intersect the graph of f . In Figure 5.6
(right) the corresponding level curves are displayed.
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Figure 5.6 On the left, graph of f .x; y/ D 10x2 C y2 intersecting planes of height z D 6; 12; 18.
On the right, corresponding level curves.
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MATLAB has a command that generates level curves of a function. First construct
a mesh over some rectangle with [X,Y] = meshgrid(x,y). The basic command
contour(X,Y,f(X,Y)) plots several contour lines of f over the rectangle in colors
that correspond to the colormap. The basic command can be refined in several ways.
contour(X,Y,f(X,Y),n,’k’) divides the interval [min f;max f ] into n C1 equal
subintervals min f < c1 < c2 < Ð Ð Ð < cn < max f and plots n contour lines
corresponding to the n values c1 < c2 < Ð Ð Ð < cn . The last argument, ’k’, says that
all the contour lines will be plotted in black. Other colors are possible, using the
color abbreviations that were listed for the plot command. Finally, we can choose
the values of the level curves by substituting a vector of values for the number n. For
example, if we wish to plot the level curves for f .x; y/ D 1:5; 2; 2:5; 4, we define
the vector levels = [1.5, 2, 2.5, 4]. These values do not need to be equally
spaced. Then make the call contour(X,Y,f(X,Y),levels,’k’). This last method
is good for refining a particular area of the contour map where we already know
a range of function values. There are further variations on the contour command,
which can be found by entering help contour.

We can also make a coloring of the x; y plane that corresponds to the colors in
the colormap. This provides another visual key to the behavior of the function. The
command is pcolor(X,Y,f(X,Y)). The contour command and this command can
be combined very effectively.

Example 5.5

Let
f .x; y/ D 6e�3x2�y2 C x=2 C y: (5.1)

We display 10 contour lines, in black, of f in the rectangle [�2; 2] ð [�2; 3] with
the following script (see Figure 5.7). The contour lines are superimposed on a pcolor
map.

x = -2:.05:2; y = -2:.05:3;
[X,Y] = meshgrid(x,y);
f = inline(’6*exp(-3*x.^2-y.^2)+.5*x +y’,’x’,’y’)
Z = f(X,Y);
pcolor(X,Y,Z)
hold on
contour(X,Y,Z,10,’k’)
xlabel( ’ x axis ’)
ylabel( ’ y axis ’)
hold off
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Figure 5.7 Level curves of f .x; y/ D 6 exp.�3x2 � y2/C x=2 C y.

5.4 Graphing techniques for symbolically defined functions

As noted earlier, MATLAB 5.2 and higher versions include graphing commands for
symbolically defined functions of two variables. They include

ezsurf
ezmesh
ezcontour

A symbolic expression for a function of two variables is given as follows. First
we declare x and y as symbolic variables, and then we construct the expression.
Here is an example, which includes a graphing command.

>> syms x y
>> f = cos(x)*exp(x-y^2)
>> ezsurf(f)

When no domain is specified, the graph is made over the default domain f�2³ �
x; y � 2³g. To specify the domain, use the call ezsurf(f,corners), where, as
before, corners is a four vector [a; b; c; d] that defines the rectangle R D fa �
x � b; c � y � dg. ezmesh and ezcontour work the same way. These commands
are especially useful if we take a complicated function and then want to graph some
function of the derivatives, e.g., the magnitude of the gradient.
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A bug At present, in the Student Version of MATLAB 5.3 (release SR-11),
published by the Mathworks, the commands ezsurf, ezmesh, and ezcontour do
not work the same way as in the professional version. In the Student Version, when
operating on a symbolic expression, the command that works is ezsurf(char(f)).
The same holds true for ezmesh and ezcontour. Presumably this difficulty will be
corrected in the near future.

5.5 Partial derivatives and the directional derivative

To measure rates of change of a function f .x; y/, we consider the restrictions of
f to lines parallel to the x axis and parallel to the y axis. This means that we fix
one variable, thereby reducing f to be a function of the one remaining variable.
For example, the restriction of f to a line parallel to the x axis is x ! f .x; y0/,
and the restriction of f to a line parallel to the y axis is y ! f .x0; y/. See
Figure 5.8.

Now, we can measure the rate of change of f in a direction parallel to the x
axis by differentiating x ! f .x; y0/, and we can measure the rate of change of f
in a direction parallel to the y axis by differentiating y ! f .x0; y/. The resulting
derivatives are called the partial derivatives of f . More specifically we write

@ f

@x
.x0; y0/ and

@ f

@y
.x0; y0/

x axis 

y axis

(x 0, y0)

Figure 5.8 Lines of restriction.
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for .d=dx/ f .x; y0/ evaluated at x0 and .d=dy/ f .x0; y/ evaluated at y0. The precise
definition of the partial derivatives is

@ f

@x
.x0; y0/ D lim

x!x0

f .x; y0/� f .x0; y0/

x � x0
(5.2)

and
@ f

@y
.x0; y0/ D lim

y!y0

f .x0; y/� f .x0; y0/

y � y0
(5.3)

when these limits exist.
Geometrically, we can see @ f=@x.x0; y0/ as the slope at x D x0 of the curve that

is the intersection of the graph of f and the vertical plane y D y0. On the other
hand, @ f=@y.x0; y0/ is the slope at y D y0 of the curve that is the intersection of
the graph of f with the vertical plane x D x0.

mfiles xslice, yslice

The mfiles xslice and yslice slice the graph of a function with a plane y D y0
(xslice) and a plane x D x0 (yslice). We assume that f has already been graphed
over a rectangle [a; b] ð [c; d]. The call is xslice(’f’,x,y0) when f is given in
an mfile, and xslice(f,x,y0) when f is given as an inline function. x is a vector
of x coordinates, ranging from a to b, and y0 is a number. For the other slicer,
we use yslice(’f’,x0,y) or yslice(f,x0,y), and y is a vector of coordinates
ranging from c to d.

Example 5.6

Let f .x; y/ D 1 � .x2 C y2/=2. We graph f over the square f0 � x; y � 2g using
qsurf and then slice it with the plane y D 1, using the following script. The result
is the left figure of Figure 5.9.

f = inline(’1- .5*(x.^2 +y.^2)’,’x’,’y’)
qsurf(f, [0 2 0 2]); shading flat
hold on
x = linspace(0,2,51)
xslice(f,x,1)
hold off

From Figure 5.9, it is clear that @ f=@x.1; 1/ < 0 and @ f=@y.1; 1/ < 0. The right
figure was made with yslice.
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Figure 5.9 On the left, plane y D 1 slicing the graph of 1 � :5.x2 C y2/; on the right, plane x D 1
slicing the same graph.

The directional derivative

More generally we can compute the rate of change of f at .x0; y0/ in any direction.
Let u D [u1; u2] be a unit vector. The directional derivative in the direction u is
defined to be

Du f .x0; y0/ D lim
h!0

f .x0 C hu1; y0 C hu2/� f .x0; y0/

h
(5.4)

when this limit exists. We see from Eqs. (5.2) and (5.3) that the partial derivatives
@ f=@x and @ f=@y are just the special cases u D [1; 0] and u D [0; 1]. In fact, once
we have computed @ f=@x.x0; y0/ and @ f=@y.x0; y0/, we can compute the directional
derivative Du f .x0; y0/ in any direction u, using the formula

Du f .x0; y0/ D u1
@ f

@x
.x0; y0/C u2

@ f

@y
.x0; y0/: (5.5)

Equation (5.5) shows that Du f can be expressed as a scalar product of u with
another vector. We define the gradient vector of f at the point .x; y/ as the vector

r f .x; y/ D
�
@ f

@x
.x; y/;

@ f

@y
.x; y/

½
: (5.6)

Hence we can write
Du f .x; y/ D r f .x; y/ Ð u: (5.7)
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It follows immediately that for all directions u,

�jjr f .x; y/jj � Du f .x; y/ � jjr f .x; y/jj:

In particular, the maximum rate of change of f is found in the direction u D
r f .x; y/=jjr f .x; y/jj.
mfile mslice

The prepared mfile mslice (multislice) displays the behavior of f in the direction
u by intersecting the graph of f with a piece of the vertical plane (parallel to the
z axis) .x � x0/u2 D .y � y0/u1. The call is mslice(’f’, P) when f is given in
an mfile, and mslice(f,P) when f is defined as an online function. P D .x0; y0/

is the point where the directional derivative is to be calculated.
When the mfile mslice is called, the graph of the function is plotted over the

square jx � x0j � 1; jy � y0j � 1. The script then pauses to allow you to enlarge the
window and perhaps rotate the figure to see the surface better. Then enter return.
A second figure will appear that is a plot in the x; y plane of the point P and
three level curves of the function. One of them is the level curve through P . Now
move the mouse arrow to a point near P , call it Q, and click. This script will place
an arrow in the lower figure from P to Q. In the upper figure, the script shows
a vertical plane that stands over the arrow from P to Q. It is part of the larger
plane with equation .x � x0/u2 D .y � y0/u1. From the curve of intersection of the
graph and the plane you can see whether the function is increasing or decreasing in
the direction u, indicated by an arrow in red on the plane. Finally, the script uses
finite difference approximations to calculate the directional derivative Du f at P .
The direction u and Du f are displayed on the screen. You can see the displays for
five directions.

Example 5.7

Let f .x; y/ D x2 C y and fix the point P D .1; 2/. We apply the mfile mslice.
One of the pairs of figures is shown in Figure 5.10. The plane in the upper figure
corresponds to the arrow pointing down along the level curve in the lower figure.

f = inline(’x.^2 +y’,’x’,’y’)
P = [1 2]
mslice(f,P)

return
u = [.7809 .6247]
Duf = 2.1864
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Figure 5.10 Graph of f .x; y/ D x2 C y and slice at P D .1; 2/.

u = [-.2747 .9615 ]
Duf = .4121

.

.

.

5.6 The gradient vector and level curves

Given a function f .x; y/, we define a vector v D r f .x; y/ at each point .x; y/ of
its domain. This is the gradient vector field. From the definition of the directional
derivative it can be seen that Du f .x; y/ D 0 when u is orthogonal to r f .x; y/.
This leads us to believe, and it can be proved using the chain rule, that at each point
.x; y/, the gradient vector is orthogonal to the level curve through .x; y/.
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To display the gradient vector field, we can turn to the MATLAB feature quiver.
First we write mfiles for each of the partial derivative fx and fy , or we define them
as inline functions. Then we construct a meshgrid over some rectangular region.
Finally we call quiver(X,Y,fx(X,Y),fy(X,Y)). The command quiver will place
an arrow at each point of the mesh. If there are too many points in the x; y mesh,
the arrows will overlap and be hard to distinguish. To display both level curves and
gradient vectors, we may need to use a coarse mesh for the arrows and a finer mesh
for the level curves.

Example 5.8

Let f .x; y/ D xy � x3=3. Then fx.x; y/ D y � x2 and fy D x . We shall display the
gradient vector field and the level curves of f over the square [�2; 2] ð [�2; 2].
See Figure 5.11.

f = inline(’x.*y - (x.^3)/3’, ’x’, ’y’)
fx = inline(’y - x.^2’, ’x’, ’y’)
fy = inline(’x’, ’x’, ’y’)
x = -2:.05:2; y = x;
% this is the fine mesh for the level curves.
[X,Y] = meshgrid(x,y);
Z = f(X,Y);
% We choose the level curves
levels = [-6:.5:6];
contour(X,Y,Z,levels)
hold on
xx = -2:.2:2; yy = xx;
% This is the coarse mesh for the arrows
[XX,YY] = meshgrid(xx,yy);
U = fx(XX,YY); V = fy(XX,YY);
quiver(XX,YY,U,V)
axis equal

In the next example we use the symbolic tools of MATLAB, in particular the
graphing tools ezsurf and ezcontour of MATLAB 5.2 and higher. This example
comes from economics.

Example 5.9

In a monopolist situation, the revenue a firm realizes from the sale of a product or
service depends on the production level z. The revenue is an increasing function of z
but tends toward an asymptote as the market becomes saturated. Let us suppose that
the revenue function R.z/ D z2=.1 C z2/. The production level in turn depends on
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Figure 5.11 Gradient vector field and level curves of f .x; y/ D xy � x3=3.

the amount of capital invested, x , and the amount of labor employed, y. A typical
production model is the Cobb–Douglas production function z D K x Þyþ , where
ÞC þ D 1. Let us suppose Þ D þ D :5 and K D 1. Finally, there is a cost function
C.x; y/, and we will assume C.x; y/ D :04x C :06y. Then the profit function

³.x; y/ D R.z.x; y//� C.x; y/:

We shall use the symbolic tools of MATLAB to graph the profit function ³.x; y/
and ³x.x; y/, the marginal profit with respect to capital:

>> syms x y
>> z = (x^.5)*(y^.5);
>> revenue = (z^2)/(1+z^2);
>> cost = .04*x + .06*y;
>> profit = revenue - cost;
>> profitx = diff(profit, x);
>> ezsurf(profit, [0 6 0 4])
>> ezcontour(profit, [0 6 0 4])
>> ezsurf(profitx, [0 6 0 4])
>> view, [10, 40]

In Figure 5.12 we display the graphs produced by this sequence of commands. From
an inspection of the contours of the profit function, we suspect that there is probably
a maximum of the profit function near .x; y/ D .3; 2/.
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Figure 5.12 On the top, graph of profit function ³.x; y/ of Example 5.9; middle, contours of ³.x; y/;
bottom, graph of ³x.x; y/.

5.7 The tangent plane approximation

It is often important to be able to approximate complicated, nonlinear functions by
simpler linear functions, at least locally. This can be done by the tangent plane
approximation.

Let f .x; y/ be a function and .x0; y0/ be a point in the domain of f . Let P0 D
.x0; y0; f .x0; y0// be the point of the graph of f over .x0; y0/. We shall approximate
f by a linear (strictly speaking, affine) function in a region close to .x0; y0/.

The curve of intersection of the vertical plane y D y0 with the graph of f .x; y/
can be parameterized by

t ! r.t/ D .x0 C t; y0; f .x0 C t; y0//:

r.0/ D P0 and the tangent vector to the curve at this point is

v D r0.0/ D [1; 0; fx.x0; y0/]:
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Similarly, the curve of intersection of the plane x D x0 is

t ! q.t/ D .x0; y0 C t; f .x0; y0 C t//;

with tangent vector
w D q0.0/ D [0; 1; fy.x0; y0/]:

The plane containing P0 and the vectors v and w is given in parametric form by

.x; y; z/ D P0 C sv C tw; s; t 2 R:

Using the chain rule it can be shown that if p.t/ is any curve on the graph with
p.0/ D P0, the tangent vector p0.0/ lies in this plane. For this reason the plane
spanned by v and w is called the tangent plane to the graph of f at the point P0
(see Figure 5.13).

A normal vector to the tangent plane is

N D v ð w D [� fx .x0; y0/;� fy.x0; y0/; 1]:

The equation for the tangent plane, which is

.P � P0/ Ð N D 0;
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Figure 5.13 Tangent vectors and tangent plane to the graph of f .x; y/ D .1 � y2/ cos x over the
point .x0; y0/ D .:2;�:4/.
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can be rewritten as

z D f .x0; y0/C fx.x0; y0/.x � x0/C fy.x0; y0/.y � y0/: (5.8)

For points .x; y/ near .x0; y0/, the tangent plane provides an approximation to the
graph of f . If f has continuous second order partial derivatives, we can show that
for .x; y/ close to .x0; y0/,

f .x; y/ D f .x0; y0/C fx.x0; y0/.x � x0/C fy.x0; y0/.y � y0/C E; (5.9)

where jE j � K maxfjx � x0j2; jy � y0j2g. K is a constant determined by the second
derivatives of f . The right-hand side of this equation is the first three terms of the
Taylor expansion of f at the point .x0; y0/.

Example 5.10

We find the tangent plane approximation to f .x; y/ D .1 � y2/ cos x at the point
.x0; y0/ D .:2;�:4/. The partial derivatives are fx.x; y/ D �.1 � y2/ sin x and
fy.x; y/ D �2y cos x . Hence the tangent plane to f at P0 D .:2;�:4; f .:2;�:4//
is

z D l.x; y/ D f .:2;�:4/C f x.:2;�:4/.x � :2/C fy.:2;�:4/.y C :4/

D :8233 � :1699.x � :2/C :7841.y C :4/;

which has normal vector

N D [� fx.x0; y0/;� fy.x0; y0/; 1] D [:1699;�:7841; 1]:

Now we graph f over the square f�1 � x; y � 1g and attach the tangent plane. We
graph the tangent plane over the smaller square fjx � :2j; jy C :4j � :5g, and use a
coarser mesh to make it more visible.

>> f = inline(’(1-y.^2).*cos(x)’, ’x’, ’y’)
>> l = inline(’.8233 - .1699*(x-.2) + .7841*(y+.4)’, ’x’, ’y’)
>> qsurf(f, [-1,1 -1 ,1])
>> hold on
>> qsurf(l, [-.3, .7, -.9, .1], 10)
>> hold off

Figure 5.13 shows the graph of f with the approximating tangent plane and its
normal vector N.

Let Qh be the square centered at .x0; y0/, Qh D fjx � x0j; jy � y0j � hg. We
want to estimate the error E in Eq. (5.9) over Qh and see how it depends on h. We
estimate the maximum of jE j over Qh , with h D :2, with the commands
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>> x = linspace(0, .4, 101);
>> y = linspace(-.6, -.2, 101);
>> [X,Y] = meshgrid(x,y);
>> E = f(X,Y) - l(X,Y);
>> max(max(abs(E)))
ans = .0619

The double max command first finds the maximum in each column of a matrix and
then finds the maximum over these column maxima. If we repeat this estimate over
Qh with h D :1, we get the answer .0156. Thus by cutting h in half, we reduce
the maximum error by a factor of approximately one-fourth, as predicted by the
statement following Eq. (5.9).

5.8 More about colormaps

A colormap is a way of assigning colors to the graph of a function. Typically
a colormap is a spectrum of colors. The default colormap of MATLAB 5.0 is
jet, which ranges from dark blue to bright red, going through shades of green,
yellow, and orange. When we use the command surf, the colors are assigned to
the graph with the lowest part of the graph colored deep blue, and the highest part
colored bright red. To see the range of colors in the colormap and the assignment of
numerical values in the z coordinate, enter the command colorbar. The colormap
color assignment allows us to use color to pick out the maximum and the minimum
points of the function over the mesh.

Another colormap is gray. We switch colormaps with the command
colormap(gray). In this colormap, the lowest point on the graph is black, and
the highest point is white, with shades of gray in between. colorbar will display
the shades and the numerical range.

So far, we have used the colormap to indicate the height of the graph above the
lowest point on the graph. However, we can also use the colormap to display other
features of the graph. This can be done with a fourth argument to the surf command.
Suppose that Z = f(X,Y) for some function f and some meshgrid [X,Y] and that
we wish to indicate on the graph where r f is large and where it is small. With fx
and fy given in mfiles or as inline functions, we set

W = sqrt(fx(X,Y).^2 + fy(X,Y).^2)

Then the command surf(X,Y,Z,W) will assign the colormap colors according to
the values of jjr f .x; y/jj.
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Figure 5.14 Graph of f .x; y/ D x C y C 3 exp.�x2 � y2/, with colormap gray determined by the
magnitude of r f .

Example 5.11

Let f .x; y/ D x C y C 3 exp.�x2 � y2/ so that fx D 1 � 6x exp.�x2 � y2/ and
fy D 1 � 6y exp.�x2 � y2/. In this example, the colormap is determined by the
magnitude of the gradient. See Figure 5.14.

[X,Y] = meshgrid(-1:.1:2);
f = inline(’x + y + 3*exp(-x.^2 -y.^2)’, ’x’, ’y’)
fx = inline(’1 - 6*x.*exp(-x.^2 -y.^2)’, ’x’, ’y’)
fy = inline(’1 - 6*y.*exp(-x.^2 -y.^2)’, ’x’, ’y’)
Z = f(X,Y);
W = sqrt(fx(X,Y).^2 + fy(X,Y).^2);
surf(X,Y,Z,W); colormap(gray); shading interp;

With this colormap, the critical points, where r f D 0, are in the darkest regions.

5.9 Cutting off a graph

Often when graphing functions in two and three dimensions, we run into the situation
where the function takes on very large values, either positive or negative, in a small
region. When this happens the vertical scale of the graph is such that most of the
detail is lost. Here are some ways to “cut off” the function values to get a graph
that shows more detail.

In two-dimensional graphs, we can use the axis command.
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Figure 5.15 Graph of f .x/ D cos x C [.x � ³/2 C :01]�1 with vertical scale of �20 � y � 120.

Example 5.12

Let f .x/ D cos x C [.x �³/2 C :01]�1]. This function peaks at x D ³ . If we graph
it on the interval 0 � x � 2³ , we lose all the oscillatory detail. See Figure 5.15.

Now we cut off the graph with the command axis([0 2*pi -2 4]). The result
is shown in Figure 5.16.

Cutting off graphs in three dimensions can also be accomplished with the analo-
gous version of the axis command, but the results are not as successful. In particular,
the colormap still uses the maximum and minimum values of the function, so the
cut-off graph may be all the same color.

Another way is possible that gives better results. This approach uses the char-
acteristic function of a half interval. Remember that the function described by the
expression (z < 2) is 1 when the inequality is true and 0 when it is false.

Example 5.13

Let

f .x; y/ D cos.
q

x2 C y2/C 1=.x2 C y2 C :01/

D cos.r/C 1=.r2 C :01/:

We graph f over the square [�2³; 2³ ] ð [�2³; 2³ ] with the commands
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Figure 5.16 Graph of f .x/ D cos x C [.x � ³/2 C :01]�1 cut off to vertical interval �2 � y � 4.

>> f = inline(’cos(sqrt(x.^2 + y.^2)) +
(x.^2 +y.^2 + .01).^(-1)’, ’x’, ’y’)

>> [X,Y] = meshgrid(-2*pi:.1:2*pi);
>> Z = f(X,Y);
>> surf(X,Y,Z);

The result is shown in Figure 5.17.
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Figure 5.17 Graph with sharp peak at .0; 0/ and no detail.
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Figure 5.18 Same graph as in Figure 5.17, but cut off to show detail.

Now we cut this graph off at the height z D 4 using the characteristic function
multiplied times the matrix Z :

>> W = (Z-4 < 0).*(Z-4) +4;
>> surf(X,Y,W)

The matrix W is obtained from Z first by shifting the level z D 4 to the level z D 0
by the operation Z ! Z � 4. Then multiplication by the characteristic function sets
each positive element of Z �4 to zero. Finally, we shift back to the original level by
adding on the constant 4 to each element. The result of this sequence of operations
is to set all of the elements of Z that are greater than or equal to 4 as equal to 4.
This gives the graph the flat top. See Figure 5.18.

5.10 The subplot command

Often we want to put several graphs in the same figure. This can also save on
printing costs. MATLAB accomplishes this with the command subplot. We think
of the figure rectangle as broken up into a collection of smaller rectangles by drawing
vertical and horizontal lines. Suppose we want to combine six graphs in the same
figure, arranging them in three rows of two each. We think of this as a 3 ð 2 array,
and we number the smaller rectangles 1,2 across the first row, 3,4 in the second
row, and 5,6 in the third row. The command subplot has three arguments. The
first two are the dimensions of the array, in this case 3 ð 2. The third argument is
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the number of the subrectangle. Thus to plot in the first subrectangle in the second
row, we use the command subplot(3,2,3).

Example 5.14

Let
f .x; y/ D ce�.x�1/2�2y2 C .1 � c/e�.xC1/2�y2

:

We display the graphs of f for six different values of c. The result is shown in
Figure 5.19.

f = inline(’c*exp(-(x-1).^2 -2*y.^2) +
(1-c)*exp(-(1+x).^2 -y.^2)’, ’x’, ’y’, ’c’)

[X,Y] = meshgrid(-2:.2:2);
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Figure 5.19 Example of the use of the subplot command.
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subplot(3,2,1)
surf(X,Y,f(X,Y,1))
title(’c = 1’)

subplot(3,2,2)
surf(X,Y,f(X,Y,.4))
title(’c = .4’)

subplot(3,2,3)
surf(X,Y,f(X,Y,.8))
title(’c = .8’)

subplot(3,2,4)
surf(X,Y,f(X,Y,.2))
title(’c = .2’)

subplot(3,2,5)
surf(X,Y,f(X,Y,.6))
title(’c = .6’)

subplot(3,2,6)
surf(X,Y,f(X,Y,0))
title(’c = 0’)

colormap(cool)

Exercises

1. Following Example 5.2, set up a mesh on the square f�2 � x; y � 2g, with
1x D 1y D :1. Graph each of the following functions over this square. For each
function, make a short script mfile that defines the function as an inline function,
constructs the mesh, and graphs the function. Label the axes. Then try the command
qsurf on one of them with different values for the mesh parameter n.

a) f .x; y/ D x2 � y2.
b) f .x; y/ D sin.x C y/.
c) f .x; y/ D cos.x2 C y2/.

2. Graph the function f .r; �/ D r sin.2�/ over the disk fx2 C y2 � 4g.
Follow Example 5.4.

3. Write an mfile g.m for the function

g.x; y/ D 2e�.x�1/2�.y�1/2 C 1:8e�5.xC1/2�3y2 � e�2.x�1/2�3.yC:5/2:

a) Use the meshgrid for the square f�2 � x; y � 2g that you made in Exer-
cise 1. Make a graph of g. From the figure you can see that the graph of g has two
hills and one valley. To see what the level curves will look like, enter hold on and
then surf(X,Y,0*X +1). You will see the plane of height 1 intersecting the graph
of g. The curve of intersection, projected down in the x; y plane, is the level curve
g.x; y/ D 1. Enter hold off. Label the axes.
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(b) To see the contours in the x; y plane, use the contour command, as in
Example 5.5, with 20 contour lines. Use the contour map to estimate the coordinates
of the two peaks and of the bottom of the valley.

4. Write an mfile, or define as an inline function, the function

h.x; y/ D .x2 � y2/=.x2 C y2/:

a) Graph h on the same square as in Exercise 1. From the graph determine the
limits

lim
x!0

h.x; 0/ and lim
y!0

h.0; y/:

b) Now use the contour command. What are the level curves of h? Show that
for each a 2 R, the line y D ax is a level curve of h. What is the limiting value of
h along this line as .x; y/ ! .0; 0/? Is h continuous at .0; 0/?

5. Let
f .x; y/ D x

2
C e�4.x�1/2�.y�1/2:

Write an mfile f.m for f . We shall compute numerical approximations to the partial
derivatives of f using the forward difference approximation (see Section 4.6).

fx.a; b/ ³ f .a C1x; b/� f .a; b/

1x

fy.a; b/ ³ f .a; b C1y/� f .a; b/

1y
;

with 1x D 1y D :01. Thus an approximation to the partial derivatives at .a; b/ D
.1; 1/ can be computed by

>> fx = (f(1.01,1) - f(1,1))/.01
>> fy = (f(1,1.01) - f(1,1))/.01

Compare these approximate values for fx and fy with the exact values computed
by hand. How does the error in this approximation decrease as 1x and 1y get
smaller? If we replace 1x by 1x=10, does the error decrease by a factor of 10?

6. We continue with the function f .x; y/ of Exercise 5. Graph f on the square
f0 � x; y � 2g with the commands

qsurf(f, [0 2 0 2])
colormap(gray); shading interp
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a) Use the mfile xslice to slice the graph of f with a vertical plane parallel
to the x axis with equation y D 1. If necessary, rotate the figure so that you can
clearly see the curve of intersection. For what x is fx.x; 1/ > 0 ? For what x is
fx.x; 1/ < 0 ? From the concavity of this curve determine where fxx.x; 1/ > 0 and
where fxx.x; 1/ < 0.

b) Now use the mfile yslice to slice the graph of f with the plane x D 1.
From the curve of intersection, determine where f .1; y/ is increasing and where
decreasing. From the concavity of this curve, determine where fyy.1; y/ > 0 and
where fyy.1; y/ < 0.

7. Let f .x; y/ D x jyj.
a) Graph this function on the square [�1; 1] ð [�1; 1].
b) Use the mfile xslice at y D �:5; 0; :5. Verify that fx.x; y/ exists.

Compute fx.x; y/ by hand.
c) Use the mfile yslice at x D �:5; 0; :5. By looking at the slopes of the

line of intersection of the graph with the slice, deduce that fy.x; y/ D x for y > 0
and fy.x; y/ D �x for y < 0.

d) Using the yslices explain why fy.x; 0/ does not exist for x 6D 0. What about
fy.0; 0/? Check the y slice though .0; 0/, and compute fy.0; 0/ from difference
quotients.

8. Let f .x; y/ D sin.y � x2/. Apply the mfile mslice to this function at the point
P D .1; 1/ as in Example 5.7.

a) In which direction u is Du f .1; 1/ largest? Does this agree with the direction
of r f .1; 1/?

b) In which directions u is Du f .1; 1/ D 0? Is this direction tangent to the level
curve at that point?

9. Write an mfile u.m for the function✯

u.x; y/ D .�4x3 C 3x2 C 1/.y � y2/:

u.x; y/ is the temperature at a point .x; y/ in the unit square Q D f0 � x; y � 1g.
The heat flux at each point is the negative of the gradient vector, �ru.x; y/ D
�[ux .x; y/; uy.x; y/].

(a) Verify by hand that ux.0; y/ D 0 and that u D 0 on the other edges of Q.
This means that the left edge is insulated and that the temperature is held at zero
on the other three edges.

(b) Put a mesh on Q with 1x D 1y D :05. Plot u on Q using the command
surf(X,Y,u(X,Y)). Note where the highest temperature appears to be and the
appearance of the surface on the edge x D 0.
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(c) Compute the gradient of u by hand or symbolically. Write mfiles for ux
and uy or define them as inline functions. Then enter the commands

>> U = u(X,Y);
>> Ux = ux(X,Y);
>> Uy = uy(X,Y);
>> contour(X,Y,U,20)
>> hold on
>> quiver(X,Y,-Ux,-Uy)

The last command puts arrows at each point of the meshgrid to represent the vector
field of the heat flux, .x; y/ ! .�ux .x; y/;�uy.x; y//.

What is the direction of the heat flux with respect to the level curves? Where is
the hot spot, and which way is the heat flowing?

What is the angle at which the level curves meet the edge x D 0? What is
the direction of the heat flux at that edge of the square? How do you explain this
physically?

Why are the flux vectors perpendicular to the other edges?

10. Diffusion of a solute, such as salt, in a liquid medium is governed by Fick’s✯

law of diffusion. If c.x; y; t/ denotes the concentration of the solute at the point
.x; y/ and time t , the flux vector is �krc D �k[cx ; cy]. k is the diffusion constant.
As in the case of heat flow, the flux vector points in the opposite direction of the
gradient, and the solute flows from areas of high concentration to low concentration.
It can be shown that the concentration c.x; y; t/ satisfies the diffusion equation

ct � k.cxx C cyy/ D 0:

Let
c1.x; y; t/ D e�.5=4/t sin x sin.y=2/;

c2.x; y; t/ D e�.25=4/t sin.2x/ sin.3y=2/;

and
c.x; y; t/ D :2c1.x; y; t/C c2.x; y; t/:

c.x; y; t/ is a solution of the diffusion equation, with k D 1. We shall observe the
diffusion process on the square Q D [0; ³ ] ð [0; ³ ]. The concentration of the solute
is assumed zero outside the square.

a) Verify by hand that c solves the diffusion equation with k D 1.
b) Make an mfile for c, c.m, as a function of three variables, x; y; t .
c) We can view the concentration at a time t with the commands
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[X,Y] = meshgrid(0:.1:pi);
C = c(X,Y,t);
pcolor(X,Y,C); shading flat; colorbar
hold on
contour(X,Y,C, 20,’k’)
hold off

Using the subplot command, make a two-column display of the concentration at
times t D 0; :1; :2; :3; :4; :5.

d) Through which sides of the square does the solute appear to be flowing?
At each time, what is the point of greatest concentration?

11. Let f .x; y/ D x2 C 3y2.
a) Graph f over the square f�2 � x; y � 2g using qsurf.
b) Compute by hand the tangent plane approximation to f at the point

.x1; y1/ D .�1; 1/. Call this linear approximation l1.x; y/. Do the same at the
point .x2; y2/ D .1:5; :5/. Call the approximation l2.x; y/.

c) Use qsurf as in Example 5.10 to attach the tangent planes to the graph
of f over the points .x1; y1/ and .x2; y2/. Graph the tangent planes over squares of
side length :6.

12. Let f .x; y/ D exp.x/ cos.x C y/.✯

a) Compute by hand the tangent plane approximation to f at the point .�1; 1/.
Call this linear approximation l.x; y/.

b) Graph both f and l over the square f�2 � x � 0; 0 � y � 2g using qsurf.
Try to estimate max jE j D max j f .x; y/� l.x; y/j over the square by examining the
height between the graphs.

c) Now write an mfile that repeats the error estimating procedure of Example
5.10. Estimate the maximum error f .x; y/�l.x; y/ over squares Qh D fjx�x0j; jy�
y0j � hg, where .x0; y0/ D .�1; 1/ for h D :5; :25; :125. When h is halved, by what
factor is the error reduced?
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6
Functions of Three Variables and

Parametric Surfaces

Prepared mfiles used in this chapter

arrow3 plane impl

Functions f .x; y; z/ of three variables can be defined as inline functions, in
mfiles, and as symbolic expressions, just as for functions of one or two variables.
The graph of a function of three variables is a three-dimensional surface in four-
dimensional space, which we cannot visualize. One way to describe functions of
three variables is in terms of their level surfaces. On the other hand, many surfaces
in three-dimensional space are specified as level surfaces. We also discuss ways to
display surfaces that are given parametrically.

6.1 Level sets and surfaces

When f is a function of three variables f .x; y; z/, the level sets

Sc D f.x; y; z/ : f .x; y; z/ D cg

usually consist of one or more two-dimensional surfaces called level surfaces. If we
can graph the level sets of a function, we can get important information about its
properties.

The level surfaces of quadratic functions of x; y; z are called quadric surfaces.
Here are four important examples.

101
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ž A paraboloid is a level surface of the function

f .x; y; z/ D z � x 2 � y2:

A level surface of f is

Sc D f.x; y; z/ : z � x 2 � y2 D cg
and it is the graph of the function z D g.x; y/ D x 2 C y2 C c.

ž A hyperbolic paraboloid is a level set of

f .x; y; z/ D z � x 2 C y2:

A level surface here is the graph of g.x; y/ D x2 � y2 C c (several shown in
Figure 6.1).

ž A hyperboloid is a level surface of the function

f .x; y; z/ D x 2 C y2 � z2:

For c ½ 0, Sc D f f .x; y; z/ D cg is a hyperboloid of one sheet; for c < 0, it
is a hyperboloid of two sheets. See Figure 6.2.

ž An ellipsoid is a level surface of the function

f .x; y; z/ D x2

a2
C y2

b2
C z2

c2
:

A special case is the sphere, when a D b D c.
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Figure 6.1 Hyperbolic paraboloids z � x 2 C y2 D c for c D �4; 0; 4.
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Figure 6.2 Hyperboloids, level surfaces of f .x; y; z/ D x 2 C y2 � z2.

The level surfaces of these functions can all be graphed by solving for z and then
using the usual commands for graphing functions z D g.x; y/. In some cases, such
as the hyperboloids and the ellipsoids, the surfaces are not the graphs of a single
function. For example, the sphere of radius a > 0 may be expressed as the union
of the graphs of the two functions

gC.x; y/ D
q

a2 � x2 � y2

g�.x; y/ D �
q

a2 � x2 � y2

over the disk fx2 C y2 � a2g.
In the general case, we may not be able to solve for one of the variables in terms

of the other two in the equation for the level set, f .x; y; z/ D c. The following mfile
constructs the level set by fixing a value of z D z0 and uses the contour commands
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to find the level curves of f .x; y; z0/ D c in the plane z D z0. These level curves
are then graphed together for a range of values of z0 to generate the level set as a
family of curves parallel to the x; y plane.

mfile impl.m impl is short for implicit, because the level set is given implicitly
by the equation f .x; y; z/ D c. This mfile was written by Jonathan Rosenberg of
the Department of Mathematics, University of Maryland.

The ingredients for the use of this mfile are a function f .x; y; z/ given in an mfile,
or as an inline function, a set of coordinates defining a rectangular three-dimensional
region, and a value c. The region is defined by a 6-vector corners, which is equal to
[xmin; xmax; ymin; ymax; zmin; zmax]. The call is then impl(f,corners,c) when
f is given an inline function and impl(’f’, corners,c) when f is given in an
mfile.

Example 6.1

Consider f .x; y; z/ D x 2 C y2 � z2, whose level sets are the hyperboloids shown
in Figure 6.2. We show how the same surfaces can be constructed using impl. The
results are shown in Figure 6.3.

f = inline(’x.^2 + y.^2 - z.^2’, ’x’, ’y’, ’z’)
corners = [-2 2 -2 2 -2 2];
subplot(2,2,1)
impl(f, corners, 1)

subplot(2,2,2)
impl(f, corners, .1)

subplot(2,2,3)
impl(f,corners, 0)

subplot(2,2,4)
impl(f,corners, -.5)

Example 6.2

We take f .x; y; z/ D x 2 C y2 C y3 C z2 and display the level sets f .x; y; z/ D 1
and f .x; y; z/ D :1. See Figure 6.4.

f = inline(’x.^2 + y.^2 + y.^3 + z.^2’, ’x’, ’y’, ’z’)
corners = [-2 2 -2 2 -2 2]
subplot(1,2,1)

impl(f, corners, 1)
subplot(1,2,2)

impl(f, corners, .1)
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Figure 6.3 Level sets of f .x; y; z/ D x 2 C y2 � z2.

Notice that in both Figures 6.3 and 6.4, for some values of c, the level sets can
have more than one component. We shall see in Chapter 8 that level sets can be
useful in determining maxima and minima of functions.

6.2 Color slices of a solid

A second way to gain information about a function f .x; y; z/, which complements
the graphing of level sets, is to slice through its domain with planes parallel to the
coordinate axes and show the values of f on these planes with color. This is very
helpful when it is difficult to solve for the level sets. This technique can also be
used to make rough guesses of the location of local maxima and minima.

To illustrate these ideas we imagine a solid material heated to a temperature that
depends on the location. The temperature is a function f .x; y; z/. Suppose we can
tell the temperature of the material at a given point by observing the color of the
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Figure 6.4 Level sets of f .x; y; z/ D x 2 C y2 C y3 C z2.

material according to the following scale:

temperature color

0Ž black
20Ž brown
40Ž red
60Ž orange
80Ž yellow
100Ž white

Then to get an idea of the temperature distribution within the material, we can take
slices of the material in various directions and observe the colors. Level sets of the
temperature function will correspond to surfaces of constant color.

The MATLAB command slice implements this idea. Since we are dealing with
functions of three variables, we must use three-dimensional arrays of coordinates.

Example 6.3

Let R be the three-dimensional region

R D f.x; y; z/ : �2 � x; y � 2; 0 � z � 4g
and

f .x; y; z/ D 20.z C e�x2�y2
/:

We put a three-dimensional array of meshpoints in R as follows. We pick x coor-
dinate values xi D �2;�1:8; : : : ; 1:8; 2, y coordinate values, yj D �2;�1:8; : : :,
1.8, 2 and z coordinate values, zk D 0; :2; :4; : : : ; 3:8; 4. Then the coordinate mesh
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consists of the three-dimensional array of triples .xi ; yj ; zk/. The function values at
these meshpoints constitute another three-dimensional array, wi; j;k D f .xi ; yj ; zk/.
These arrays are constructed with the following MATLAB commands:

f =
inline(’20*(z + exp(-x.^2 - y.^2))’, ’x’, ’y’, ’z’)
x = -2:.2:2; y = x;
z = 0:.2:4;
[X,Y,Z] = meshgrid(x,y,z);
W = f(X,Y,Z)

Each of the arrays X;Y; Z ;W has dimensions 21 ð 21 ð 21. We can now slice
through the solid region R with planes parallel to the coordinate planes and observe
the colors of the function on each of these planes. For example, we might choose
the planes x D 0, y D 0, and z D 2. The commands to produce these planes and
display them are

slice(X,Y,Z,W,0,0,2)
colormap(hot); colorbar

The result is shown in Figure 6.5. On the page here, there is no color, just shades of
gray. However, on the screen of your computer you will see the colors range from
black to white, through red and yellow, using the colormap hot.
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Figure 6.5 Slices through the solid region R, with colors determined by the function f .x; y; z/ D
20.z C exp.�x 2 � y2//.
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We can see that the temperature rises as z increases, and reaches its greatest
value of 100 at the point .0; 0; 4/. This is shown by the colorbar that makes the
correspondence between color and the numerical values, 0 � z � 100, in Figure 6.5.

6.3 The gradient vector field
The gradient vector of a function of three variables is

r f .x; y; z/ D [ f x .x; y; z/; f y.x; y; z/; f z.x; y; z/]:

Just as for functions of two variables, the gradient vector at a point P0 D .x0; y0; z0/

is orthogonal to the level surface S of f through P0. By this we mean that if r.t/
is any smooth curve on the surface S with r.0/ D P0, then the tangent vector to the
curve at t D 0, which is r0.0/, is orthogonal to r f .x0; y0; z0/.

The gradient vector field can be displayed using the MATLAB command
quiver3, which is the three-dimensional analog of quiver that we used in
Chapter 5. The call is quiver3(X,Y,Z,U,V,W). Here X,Y,Z are matrices that
describe some surface in three-dimensional space. For instance, we could have Z =

g(X,Y) for some function g. U,V,W are the matrices of the components of vectors
that are to be attached at each of the points .x; y; z/ that lie on the surface.

Example 6.4
Let f .x; y; z/ D zC.y 2 �x2/=4. The level surfaces of f are hyperbolic paraboloids.
The gradient vector field is r f .x; y; z/ D [�x=2; y=2; 1]. We display the gradient
vector field in two ways. First we attach gradient vectors to points in a family of
planes parallel to the x; y plane at heights z D �1; 0; 1 over the square 0 � x; y � 2.
This display is shown on the left of Figure 6.6.

[X,Y] = meshgrid(0:.4 :2);
U = -X/2;
V = Y/2;
W = 1+0*X;
subplot(1,2,1)
for z = [-1,0,1]
Z = z +0*X;
quiver3(X,Y,Z,U,V,W)
hold on

end
axis image

Only three z levels were chosen; too many levels produce a very confusing figure.
In versions 5.3 and higher, quiver3 can also take three-dimensional arrays as
arguments. See Section 11.1.
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Figure 6.6 On the left, gradient vector field of f .x; y; z/ D z C .y 2 � x2/=4. On the right, level
surface f .x; y; z/ D 0, and gradient vector field.

Our second display of these gradient vectors attaches them to points on the portion
of the level surface f .x; y; z/ D 0 lying over the same square, 0 � x; y � 2. The
level surface f D 0 has the equation z D .x 2 � y2/=4. We add the following
commands to the preceding script:

% First plot the surface with finer mesh.
[XX,YY] = meshgrid(0: .05: 2);
ZZ = .25*(XX.^2 - YY.^2);
subplot(1,2,2)
surf(XX,YY,ZZ); shading interp
hold on

% Now add the gradient vector field.
Z = .25*(X.^2 - Y.^2);
quiver3(X,Y,Z,U,V,W)
axis image

This second display is shown in the right side of Figure 6.6.
The tangent plane to a surface S at the point P0 2 S is the collection of all vectors

attached at P0 and tangent to S at P0. In other words, the tangent plane is the set of
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all vectors attached at P0 that are orthogonal to a normal vector to S at that point.
In the case of a level surface

S D f.x; y; z/ : f .x; y; z/ D cg;
a normal direction to the surface is given by

r f D [ fx.P0/; fy.P0/; fz.P0/]:

Hence the equation of the tangent plane is given by

fx.P0/.x � x0/C fy.P0/.y � y0/C fz.P0/.z � z0/ D 0: (6.1)

Of course this equation defines a plane only if at least one of the components of
r f .P0/ is nonzero. Note that in the case of the hyperboloid f .x; y; z/ D x 2 C y2 �
z2 D 0 shown in Figure 6.2, the point P0 D .0; 0; 0/ lies on the surface at the vertex
of the double cones, and r f .P0/ D 0. The surface is singular at this point and there
is no tangent plane defined.

6.4 Parametric representation of surfaces

When surfaces are not expressible as the graph of a function z D g.x; y/, we often
use a parametric representation. Intuitively we think of starting with a flat piece of
surface, usually a rectangle or a disk, in the plane and then curving it in space to
form the desired surface. We use coordinates .u; v/ to locate points in the initial
piece of surface D. The curving in space is the same as defining three functions on
D for the three spatial coordinates,

x.u; v/; y.u; v/; z.u; v/:

The mapping .u; v/ ! .x.u; v/; y.u; v/; z.u; v// : D ! R3 is the parametric
representation of the surface S that is the image of this mapping.

Recall the parametric representation of a plane that we used in Chapter 3. Here we
take D to be all of R2. Suppose the plane passes through the point P0 D .x0; y0; z0/

and has normal vector N. Let v and w be two vectors orthogonal to N. Then all
points in the plane can be represented P D P0 C sv C tw. Here we use s; t instead
of u; v as the parameters. The coordinate functions are

x.s; t/ D x0 Csv1 Ctw1; y.s; t/ D y0 Csv2 Ctw2; z.s; t/ D z0 Csv3 Ctw3:

If we want to represent a piece of the plane containing P0, we restrict the parameters
to lie in a finite set D, say, D D f�1 � s; t � 1g.
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Example 6.5

We wish to find a parametric representation of the cylinder of radius a > 0 that is
centered about the z axis and that extends from z D �³=2 to z D ³=2. Now we
start with a domain D, which is a rectangle, D D f0 � u � 2³; �³=2 � v � ³=2g.
We want to roll up this flat piece of surface to form the cylinder. We shall do so by
making the line segments parallel to the u axis into circles of radius a and the line
segments parallel to the v axis into the vertical lines on the surface of the cylinder.
A set of coordinate functions that will do this is

x.u; v/ D a cos.u/; y.u; v/ D a sin.u/; z.u; v/ D v:

To graph this surface with MATLAB we proceed as follows, taking a D 1:

% Define coordinates in u,v space
u = linspace(0, 2*pi, 21);
v = linspace(-pi/2, pi/2, 21);
[U,V] = meshgrid(u,v);
a = 1;

% Define the coordinate functions
X = a*cos(U);
Y = a*sin(U);
Z = V;
surf(X,Y,Z)

The result is shown in Figure 6.7.

Example 6.6

Next we tackle the problem of parameterizing the sphere of radius a. We continue
the process we started in the previous example, where we parameterized a cylinder.
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Figure 6.7 Flat piece D of the u; v plane rolled into cylinder in x; y; z space.
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Figure 6.8 Slice through sphere of radius a.

To make a sphere, we want to “pinch in” the top and bottom of the cylinder. The
vertical lines on the sides of the cylinder will become the meridians on the sphere;
the circle in the x; y plane will become the equator on the sphere. Considering
Figure 6.8, we see that the following coordinate functions accomplish this:

x.u; v/ D a cos.v/ cos.u/; y.u; v/ D a cos.v/ sin.u/; z.u; v/ D a sin.v/;

0 � u � 2³; �³=2 � v � ³=2:

u is longitude and v is latitude on the sphere. In this parameterization, the north
pole corresponds to v D ³=2 and the south pole to v D �³=2. In Figure 6.9, we
see the sphere produced by the following commands and the same sphere with a
patch that is the image of 0 � u � ³=2; 0 � v � ³=3:

a = 2;
u = linspace(0, 2*pi, 41);

y

z

x y

z

x

Figure 6.9 On the left, sphere of radius a D 2 with lines of latitude and longitude. On the right,
patch on sphere is the image of 0 � u � ³=2; 0 � v � ³=3.
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v = linspace(-pi/2, pi/2, 31);
[U,V] = meshgrid(u,v);
X = a*cos(V).*cos(U);
Y = a*cos(V).*sin(U);
Z = a*sin(V);
surf(X,Y,Z); colormap(gray); shading flat

The parameterization of the sphere just given is not the only one. The parame-
terization of the sphere of radius r used in spherical coordinates is

x.r; �; �/ D r sin.�/ cos.�/; y.r; �; �/ D r sin.�/ sin.�/; z.r; �; �/ D r cos.�/:

Here the azimuthal angle is � , 0 � � � 2³ , and � is the polar angle, 0 � � � ³ .
In spherical coordinates, the north pole corresponds to � D 0 and the south pole to
� D ³ .

Finally, if you want to quickly graph a unit sphere, the single MATLAB command
sphere will display a unit sphere. For more information, enter help sphere.

Surfaces of revolution

The sphere and the cylinder both fall into the class of surfaces called surfaces of
revolution. They can easily be represented parametrically. We shall discuss surfaces
of revolution that are generated by revolving a curve C in the x; z plane about the
z axis.

Let the curve C in the x; z plane be parameterized by v ! .x0.v/; z0.v//. The y
coordinate y0.v/ � 0. We want to rotate this curve around the z axis, leaving the z
coordinate unchanged.

Recall from Chapter 4 that the rotation matrix R that rotates points in the x; y
plane through an angle u is

R D
�

cos.u/ � sin.u/
sin.u/ cos.u/

½
:

The x; y coordinates of the rotated curve will be given by�
x.u; v/
y.u; v/

½
D

�
cos.u/ � sin.u/
sin.u/ cos.u/

½ �
x0.v/

y0.v/

½
:

Since y0.v/ D 0 we find

x.u; v/ D cos.u/x0.v/

y.u; v/ D sin.u/x0.v/ (6.2)

z.u; v/ D z0.v/:
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Example 6.7

The torus is the surface of a doughnut. We could continue our method of describing
the surfaces in terms of a rolling and bending of the rectangular flat domain D in
the u; v plane. In this case, we could think of rolling the domain D into a tube and
then bending the tube around until it formed the donut.

Instead, we shall view the torus as a surface of revolution. Consider the circle
of radius a in the x; z plane, with center at .r; 0; 0/, where r > a. The torus is the
surface swept out by the circle as the plane of the circle is revolved about the z
axis. See Figure 6.10.

Now, the circle in the x; z plane is parameterized by

x0.v/ D r C a cos.v/; y0.v/ D 0; z0.v/ D a sin.v/; 0 � v � 2³:

The parameterization (6.2) becomes

x.u; v/ D cos.u/x0.v/ D cos.u/.r C a cos.v//
y.u; v/ D sin.u/x0.v/ D sin.u/.r C a cos.v//
z.u; v/ D a sin.v/.

The torus is graphed using the following commands. See Figure 6.11.

a = .5; r = 2;
u = linspace(0, 2*pi, 41); v = u;
[U,V] = meshgrid(u,v);
X = cos(U).*(r + a*cos(V));
Y = sin(U).*(r + a*cos(V));
Z = a*sin(V);
surf(X,Y,Z);

x

z

y

Figure 6.10 Circle rotating about z axis to generate torus.
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x

z

y

Figure 6.11 Torus with r D 2 and a D :5.

MATLAB has a single command to graph a surface of revolution when the curve
C in the x; z plane is given as a function x D f .z/, 0 � z � 1. For example, if
x D f .z/ D 3.z � 1=3/2, the resulting surface of revolution is produced by

z = linspace(0,1,41);
cylinder(3*(z-1/3).^2)

See Figure 6.12.
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Figure 6.12 Surface of revolution with generating curve x D 3.z � 1=3/2.
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Figure 6.13 Vertical cylinder of radius 1 and horizontal cylinder of radius .5.

Of course, it is possible to combine graphs to depict more complicated objects.
Example 6.8 shows how two intersecting cylinders can be displayed, see Figure 6.13.

Example 6.8
u = linspace(0,2*pi,41);
v = linspace(-2,2,41)
[U,V] = meshgrid(u,v);

% vertical cylinder of radius 1
surf(cos(U), sin(U), V);
hold on

% horizontal cylinder of radius .5
surf(.5*cos(U), V, .5*sin(U))
hold off

The ezsurf command
The command ezsurf can also be used to graph surfaces given parametrically
in terms of symbolic expressions. The syntax is ezsurf(x,y,z,[a b c d]). The
parameters are s and t , with a � s � b and c � t � d. x; y; z are symbolic
expressions given in terms of s and t .
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Example 6.9

Here is another example of two surfaces glued together, this time to form a coffee
(or beer) mug. See Figure 6.14.

syms s t
% vertical cylinder of radius 1
x = cos(s);
y = sin(s);
z = t;
ezsurf(x,y,z, [0 2*pi -2 2])
hold on

% handle formed by half of a torus with r = 1, a = .25
% centered at (1,0,.5)
xhandle = 1 + cos(s)*(1+.25*cos(t));
yhandle = .25*sin(t);
zhandle = .5 + sin(s)*(1+.25*cos(t));
ezsurf(xhandle, yhandle, zhandle, [ -pi/2 pi/2 0 2*pi])
hold off
axis([-2 3 -2 2 -2 2])
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x = 1+cos(s) (1+1/4 cos(t)), y = 1/4 sin(t), z = 1/2+sin(s) (1+1/4 cos(t))

Figure 6.14 Mug, generated by symbolic expressions and ezsurf.
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6.5 Normal vectors and tangent planes in parametric form

In Figures 6.7 and 6.9–6.13, the curves on each surface are the images of the grid
lines in the u; v plane. For example, in Figure 6.9, the curves where v is constant are
the circles of constant latitude, and the curves where u is constant are the meridians
of constant longitude.

More generally, when S is given parametrically by

.u; v/ ! .x.u; v/; y.u; v/; z.u; v//

a tangent vector to the curve u ! .x.u; v0/; y.u; v0/; z.u; v0// is

v D [xu.u; v0/; yu.u; v0/; zu.u; v0/]:

A tangent vector to the curve v ! .x.u0; v/; y.u0; v/; z.u0; v// is

w D [xv.u0; v/; yv.u0; v/; zv.u0; v/]:

These two vectors span the tangent plane at the point .x0; y0; z0/ D .x.u0; v0/;

y.u0; v0/; z.u0; v0//. Hence a direction normal to the tangent plane at this point is

n D v ð w:

We define a normal direction to the surface at the point .x0; y0; z0/ to be this vector
n. In terms of the coordinate functions this normal vector can be written

n.u; v/ D [yuzv � yvzu; xvzu � xuzv; xu yv � xvyu]: (6.3)

Usually we shorten our terms and say simply that Eq. (6.3) is the normal to the
surface, although any multiple of n is also a normal direction.

In the case of a surface of revolution, using Eqs. (6.2) and (6.3), we have

n.u; v/ D [cos u x0.v/z
0
0.v/; sin u x0.v/z

0
0.v/; �x0.v/x

0
0.v/]: (6.4)

For example, the sphere of radius a is a surface of revolution, and we recall the
parameterization for 0 � u � 2³; �³=2 � v � ³=2:

x.u; v/ D a cos.u/ cos.v/; y.u; v/ D a sin.u/ cos.v/; z.u; v/ D a sin.v/:

Hence, substituting in Eq. (6.4), the normal to the sphere is given by

n.u; v/ D a2[cos u cos2.v/; sin u cos2.v/; cos v sin v]

D a cos v [x.u; v/; y.u; v/; z.u; v/]:
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Exercises

1. Let f .x; y; z/ D x 2 C y2 C z2 C xy2.
a) Use the mfile impl over the region f�4 � x; y � 1;�2 � z � 2g. Display

the level sets Sc D f f D cg for 1:2; 1; :8; :5; :3; :2. Plot these graphs in the same
figure window using the command subplot, as in Example 6.1. Off the surface Sc,
the function f is not equal to c. On each graph indicate on which side of Sc we
have f < c and f > c.

b) For what value of c does the level set Sc break into two components?
c) As c gets smaller, the component of Sc that contains the origin resembles a

sphere. Can you explain this by looking at the formula for f ?

2. Let
f .x; y; z/ D e�.x�1/2�y2�z2 C e�.xC1/2�y2�z2

:

a) Use impl over the region �2 � x; y; z � 2. Display the level set Sc for
c D :2; :5; :7; :8. Plot them in the same figure, as in Example 6.1.

b) By experimenting with various values of c, find that value cŁ such that the
level set Sc has only one component for c < cŁ and has two components for c > cŁ.

c) The level set ScŁ will have a cusp at .0; 0; 0/. There is no tangent plane to
the surface defined there. Verify that r f .0; 0; 0/ D 0.

3. Suppose seismic data tells us that the density of rock in some region is given by

².x; y; z/ D .1 � z/e�:2x�:3y2 C 101:

We want to study the density function in the region R D f0 � x; y; z � 2g. Make
a three-dimensional grid on R, with 40 subdivisions in each direction. Use the
command slice to make a set of slices through .0; 0; 0/. Use rotate3d to rotate
the figure so that you view the region from the point .2; 2; 2/. Add the colorbar.

a) Where is the rock density greatest?
b) The rock density is nearly constant along the line x D 2; z D 0. Using the

colorbar, estimate the constant density along this line.
c) Graph the function y ! ².2; y; 0/ to compare with the estimate from the

slice portrait.

4. Let the region R D f0 � x; y; z � ³g and let the temperature be given by
u.x; y; z/ D cos x sin.2y/ sin.3z=2/.

a) Make a three-dimensional grid on R, with 40 subdivisions in each direction.
Use slice with various collections of planes and the colorbar with colormap(hot).
Determine the hottest and coldest points in the region.
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b) The heat flux F.x; y; z/ D �ru.x; y; z/. Use the commmand quiver3 to
plot the heat flux vector on the three planes z D 0; z D ³=2, and z D ³ . You will
need to write three mfiles or inline functions for the three derivatives �ux ;�uy ,
and �uz . On which sides of the cube is the flux vector tangent to the side? These
are the insulated sides through which no heat flows. On which sides of the cube is
the flux vector orthogonal to the side?

5. The hyperboloids of Figure 6.2 are surfaces of revolution. The section of the
hyperboloid in the x; z plane satisfies x 2 � z2 D c.

a) For c > 0 and x > 0, verify by hand that we can parameterize the curve by

x0.v/ D p
c cosh.v/; z.v/ D p

c sinh.v/:

b) Following Example 6.7, make a script file to graph the hyperboloids for
several values of c > 0.

c) Find the parameterization for c < 0, and graph the hyperboloids for several
values of c < 0. In this case there are two sheets, and you will need two different
expressions for z.v/.

6. Let x0.v/ > 0 and z.v/ parameterize a curve in the x; z plane.
a) What is the parameterization of the surface of revolution obtained by

revolving this curve about the z axis?
b) Modify your script file of Exercise 5 to graph this surface of revolution for

the following choices of x0.v/ and z.v/:
(i) x0.v/ D exp.�v2=2/, z.v/ D v, �2 � v � 2.
(ii) x0.v/ D exp.�v2=10/ cos2.v/C 1, z.v/ D v, �2³ � v � 2³ .
(iii) x0.v/ D j sin.v/j C 1, z.v/ D v, �3³ � v � 3³ .

7. a) Parameterize the section in the x; z plane of the ellipsoid

x2 C y2 C z2=9 D 1:

b) Graph it as a surface of revolution (revolved about the z axis).

8. Let f .u/ D cos.u/, 0 � u � ³ . Let gtop.u/ D :05 sin.u/ exp.�2 cos.u//, and✯

gbottom.u/ D �gtop.u/=2, again for 0 � u � ³ .
a) Plot both curves u ! . f .u/; gtop.u// and u ! . f .u/; gbottom.u// on the

same graph. Then use axis equal. The resulting graph is the cross section of a
wing.

b) Now make a three-dimensional graph of the wing with this cross section.
The wing should lie along the y axis, extending for 0 � y � 4. You will need to
make the graph in two pieces, top and bottom.
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c) Use the MATLAB numerical integrator quad8 to find the arc length of the
curve bounding the cross section. Then find the total surface area of the wing.

9. Write a function mfile, bar.m, that graphs a bar of radius d with axis✯

of symmetry an arbitrary line through the origin. Let L D [a; b; c] be a unit
tangent vector to the line of symmetry. The call for the function mfile should be
bar(a,b,c,d).

a) First find a formula for a pair of unit vectors u and v such that u Ð v D
u Ð L D v Ð L D 0.

b) Then parameterize the cylindrical surface of the bar in terms of s and t :

.x; y; z/ D tL C .d cos s/u C .d sin s/v:

What is the range of the parameter s? You can choose any range of the parameter
t that will produce a good graph.

c) Now make the formula more flexible to allow the radius d to depend on t .

10. Let x.t/ D r cos.t/, y.t/ D r sin.t/, and z.t/ D at parameterize a circular✯

helix of radius r > 0 with rise coefficient a ½ 0.
a) Use parameters s and t to parameterize the surface of the tube of radius b

that follows the helix. The circular cross section of the tube should lie in the plane
spanned by the vectors �N D [cos t; sin t; 0] and B D [a sin t;�a cos t; r ]=

p
r2 C a2

of the Frenet frame.
b) Write a function mfile, tube.m, with call tube(r,a,b), that graphs the

tube for 0 � t � 4³ .

11. Extend the method of Exercise 10 to parameterize a tube following the helix✯

of Exercise 10 with different cross sections.
a) Elliptical cross sections
b) Circular cross sections with radius b that depend on t .

12. Use symbolic expressions and the command ezsurf as in Example 6.9 to✯

graph a cylindrical bar of radius 1=4 running from .�1;�1;�1/ to .1; 1; 1/. Then
add two spheres of radius 1, one centered at each end of the bar.

13. Recall the parameterization of the torus,

x.u; v/ D cos.u/.r C a cos.v//

y.u; v/ D sin.u/.r C a cos.v//

z.u; v/ D a sin.v/; 0 � u; v � 2³:

a) Find an expression for the normal N.u; v/ on the surface.
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b) Graph the torus and attach the tangent plane at several points. Use the
mfile plane.

14. A ruled surface is one that is swept out by a straight line moving along a
curve. We parameterize the curve by r.t/ D [x0.t/; y0.t/; z0.t/]. Let the tangent
vector to the line at each t be L.t/ D [a.t/; b.t/; c.t/]. Then the ruled surface is
parameterized by

r.t/C sL.t/ D [x0.t/C sa.t/; y0.t/C sb.t/; z0.t/C sc.t/]:

a) Let r.t/ D .x0.t/; y0.t/; z0.t// D .2 cos.t/; 2 sin.t/; 0/ parameterize the
circle of radius 2 in the x; y plane. Let L.t/ D [cos.t=2/; sin.t=2/; sin.t=2/].
Graph the surface for 0 � t � 2³ and �:2 � s � :2. The resulting surface is called
the Moebius band.

b) Calculate the normal vector N to the surface at points t D 0; ³=6; ³=3;
: : : ; 5³=6 and s D 0. Use the mfile arrow3 to attach the normal vector to the
graph of the surface at these points. What is the limiting position of the normal as
t approaches 2³? Is it possible to construct normal vectors on the surface that are
globally continuous?

15. Graph a crystal structure with spheres of small radius at the origin and at✯✯

each of the eight corners of the cube �1 � x; y; z � 1. Connect each of the spheres
with slender straight tubes to represent the bonds.

16. Graph a door with a door knob.✯✯

17. Graph a bolt. The thread on the bolt can be drawn with several helixes. The✯✯

smaller radius of the bolt, on the inside of the thread, should be r D 1, and the
larger radius should be r D 1:1. The pitch of the thread is the angle the helix makes
with the horizontal. Make the pitch 10 degrees.



7
Solving Equations

Prepared mfiles used in this chapter

newton2

In this chapter we shall be concerned mainly with solving a system of two equa-
tions in two unknowns,

f .x; y/ D 0 (7.1)

g.x; y/ D 0:

In the first section we show how to solve a system of this type using the symbolic
solve command that we saw in Section 1.6. We then discuss numerical methods
to solve a single equation, f .x; y/ D 0, and a system, Eqs. (7.1). The numerical
methods provide very important applications of the tangent line and tangent plane
approximations of a function.

7.1 Symbolic solutions

We illustrate how to use the symbolic solver with an example.

Example 7.1

Let f .x; y/ D y � 4x2 C 3 and g.x; y/ D x2=4 C y2 � 1. The graphs of the level
curves f .x; y/ D 0 and g.x; y/ D 0 are shown in Figure 7.1. We see that there are
four roots of system (7.1), at the points A; B;C; D where the level curves f D 0
intersect the level curves g D 0.

123
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Figure 7.1 Zero curves of f .x; y/ D y � 4x2 C 3 and g.x; y/ D x2=4 C y2 � 1.

We define symbolic functions f and g of x and y. Then we apply the solve

command with two arguments. The command assumes that we want to solve
Eqs. (7.1).

syms x y
f = y - 4*x^2 +3;
g = .25*x^2 + y^2 -1;
[a b] = solve(f,g);
[a b]
ans =

[ 1/16*(190+14*17^(1/2))^(1/2), -1/32+7/32*17^(1/2)]
[ -1/16*(190+14*17^(1/2))^(1/2), -1/32+7/32*17^(1/2)]
[ 1/16*(190-14*17^(1/2))^(1/2), -1/32-7/32*17^(1/2)]
[ -1/16*(190-14*17^(1/2))^(1/2), -1/32-7/32*17^(1/2)]

double([a b])
ans =

0.9837 0.8707
-0.9837 0.8707
0.7188 -0.9332
-0.7188 -0.9332

When the symbolic solver is “stumped,” it will try to find at least one solution
numerically.
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Figure 7.2 Zero-level curves of f .x; y/ D y � sin.x/ and g.x; y/ D y � x2 C 1.

Example 7.2

Consider f .x; y/ D y � sin.x/ and g.x; y/ D y � x2 C 1. The zero-level curves
are shown in Figure 7.2. There are solutions near .x; y/ D .�:5;�:5/ and .x; y/ D
.1:5; 1/.

syms x y
f = y - sin(x);
g = y - x^2 +1;
[a b] = solve(f,g);
[a b]
ans =
[ 1.4096240040025962492355939705895,

.98703983266031148648572656479133]

The equation solver has found only one of the roots, and has found it numerically.
We do not have much control over which roots it will find. Thus it is important to
understand how to use numerical methods to solve systems like Eqs. (7.1).

7.2 Numerical solutions in one dimension

The most well-known numerical algorithm for solving equations

f .x/ D 0 (7.2)
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is Newton’s method, which is discussed in every calculus book. Recall the formula
for the iterations,

xnC1 D xn � f .xn/= f 0.xn/: (7.3)

If the root xŁ is a simple root ( f 0.xŁ/ 6D 0 ), Newton’s method converges rapidly
when a good starting value x1 is provided. A poor starting value can cause the
method to converge to the wrong root or even to fail to converge.

Newton’s method can also be used to find a root xŁ of f .x/ D 0, where f 0.xŁ/ D
0, but the convergence is much slower.

Here is a simple script mfile that implements Newton’s method. In addition you
will need to write mfiles f.m and df.m for the function and its derivative. Input at
runtime is the starting value x1 and the number of iterations.

xstart = input(’enter the starting value ’)
N = input(’ enter the number of iterations desired ’)
% We set aside N memory spaces for the iterates.
x = zeros(N,1);
x(1) = xstart;
for n = 1:N-1

x(n+1) = x(n) - f(x(n))/df(x(n));
end
[x, f(x)]

This version displays all the iterates xn and the function values f .xn/.
It is very important to know how close the approximation xn is to the exact root.

Since we do not know the exact root xŁ (otherwise we would not need a root finder),
we must be able to estimate the error, xn � xŁ, using only the computed values. It
can be shown that when xŁ is a simple root of f .x/ D 0, we have the practical
estimate (not an error bound)

jxn � xŁj ³ jxn � xn�1j:
Thus if we required our approximate root to be within 10�4 of the exact root, we
would choose N so large that jxN � xN�1j � 10�4, and then we would take xN as
our estimate of the root. Later, in Chapter 13, we shall see how to incorporate this
choice of the number of iterations in the code with a while statement.

Example 7.3

Let f .x/ D sin.x/ � x=2. From Figure 7.3, we see that in addition to the root
x D 0, there are roots near x D š2. With a starting value of x1 D 1:2, the method
converges rapidly to the root near x D 2.
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Figure 7.3 Graph of f .x/ D sin.x/� x=2.

iterate x f(x)

1 1.20000000000000 0.33203908596723
2 3.61233412536092 -2.25971429622269
3 1.98808029480705 -0.07984708586772
4 1.89987865948990 -0.00360002090311
5 1.89550532205812 -0.00000905437169
6 1.89549426710469 -0.00000000005791

However, if the starting value is x1 D 1:1, the method does not converge. The first
ten iterates are

iterate x f(x)

1 1.100000000000 .341207360061
2 8.452992261503 -3.400602278156
3 5.256413636975 -3.483839338117
4 203.384183718982 -100.961397298552
5 118.019330723405 -59.987778289229
6 -87.470869259029 44.209343971404
7 203.635887828739 101.280304759961
8 -128.232234454577 63.573907843189
9 -80.797636016021 41.171955352153

10 -387.504830399606 194.638548604918

The first guess at the root, x1 D 1:1, is too close to the maximum of the function.
The line tangent to the graph at x1 D 1:1 is too close to horizontal and intersects
the x axis far to the right of the root.
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The root finder fzero

The MATLAB numerical root finder fzero was mentioned in Section 2.3. It is a
combination of methods that are not quite as fast as Newton’s method but that are
very reliable. We can only use fzero to find roots of f .x/ D 0 where f changes
sign. There are two ways to use fzero. The first way is with a single starting value
x0 that you feel is fairly close to the desired root. This may not lead to convergence
if the desired root is very near a singularity of the function. The call is fzero(f,

x0).
A second, and better, way to use fzero is to give it a “bracket” where f changes

sign. Looking at the graph of f of Example 7.3, we see that to capture the root near
x D 2, we can choose a bracket [1; 3].

f = inline(’sin(x) - .5*x’)
root = fzero(f,[1 3]);
root = 1.89549426703398

fzero continues its iterations until it estimates that jxn � xŁj � 2 ð 10�16. This
is the default error tolerance. It is possible to require a different tolerance by adding
another argument, depending on which version of MATLAB you are using. See the
online help for fzero.

7.3 Solving a single equation in two variables

A single equation f .x; y/ D 0 can sometimes be solved for y as a function of x
with the symbolic solver. For example,

syms x y
f = x - exp(x*y);
solve(f,y)
ans =
log(x)/x

If we cannot solve the equation symbolically, we can make a numerical approx-
imation. Suppose that we are given a point .x0; y0/ such that f .x0; y0/ D 0, and
that fy.x0; y0/ 6D 0. Then by the implicit function theorem we know that for x near
x0 there exists a unique solution y of f .x; y/ D 0. This means that for x near x0,
the level curve f .x; y/ D 0 is the graph of a function y D g.x/. To find the values
of y as a function of x numerically, we must numerically approximate a root of
y ! f .x; y/ D 0 for each x . We can do this with Newton’s method or with a solver
like fzero and a for loop.
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Example 7.4

Let f .x; y/ D sin.x/C y exp.xy/. We see that f .0; 1/ D 1 and fy.0; 1/ D 1. To get
an idea of what the level curve through .0; 1/ looks like, we can use the contour

command. Put a mesh on the rectangle [�1; 1] ð [0; 4]. See Figure 7.4.
We see that we should be able to solve for y in terms of x for x ½ �:2. We could

start at .x; y/ D .0; 1/, but it may be easier to program to start at x D �:2. A look
at the graph and some experimenting shows that the point .x1; y1/ D .�:2; 1:8/ is
almost on the curve, since f .�:2; 1:8/ D :0571. f is defined in the mfile f.m. The
script uses fzero (with a longer call) and numerically approximates the value of y
on the curve for �:2 � x � 1, in steps of :01.

function z = f(y,x)
z = sin(x) + y.*exp(x.*y)-1;

......................................
% We choose the x values at which we will
% numerically estimate y
x = -.2:.01:1;

% We set aside the memory spaces for the y values.
y = zeros(size(x));

% Using our guess we calculate the first y value.
y(1) = fzero(’f’, 1.8, [], [], -.2);
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Figure 7.4 Level curve f .x; y/ D sin.x/C y exp.xy/� 1 D 0.
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% Now we enter a loop to calculate the
% remaining y values.
for n = 2:121

y(n) = fzero(’f’, y(n-1), [], [], x(n));
end
plot(x,y)

Several comments are in order. The function function fzero operates on functions
of one variable only. It can operate on a function of two or more variables if the
other variables are regarded as parameters. Thus if f D f .x; p1; p2/ is given in
an mfile as z = f(x,p1,p2), then values of the parameters p1; p2 are passed to
f with an augmented call to fzero, depending on which version of MATLAB you
are using.

In versions prior to 5.3, the call is fzero(’f’, y0, [], [], p1,p2). The
blank brackets [],[] in the call save places for additional information that can be
given to fzero.

In version 5.3 fzero has been “improved.” The call is instead fzero(’f’, y0,

[], p1, p2). Notice that we only need one place keeper.
In both cases, fzero regards the first argument of f as the “active” one and later

arguments as the parameters. It is for this reason that in our function mfile f.m we
wrote z D f .y; x/, reversing the order of the variables.

Finally note that we used the option of fzero that requires only a single starting
value instead of a bracket. After finding the first value y1, we entered the loop and
used the previous value found for y as the first guess for the next value of y.

7.4 Newton’s method in two dimensions

Newton’s method in two dimensions is derived in the same manner as the version
in one dimension. In one dimension, we start at a point x1 and approximate the
function f with the tangent line l.x/ � f .x1/ C f 0.x1/.x � x1/. We then take the
root x2 of the equation l.x/ D 0 as a better approximation to the root. The equation
l.x2/ D 0 can be written

f 0.x1/x2 D f 0.x1/x1 � f .x1/: (7.4)

We usually divide through the equation by f 0.x1/ to arrive at Eq. (7.3).
Now when we have a pair of equations, Eqs. (7.1), we make a similar linear

approximation. We start with a first guess at the root, p1 D .x1; y1/. We then
approximate f by the plane tangent to the graph of f at .p1; f .p1//. As we saw
in Eq. (5.8), this approximation is given by
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l f .x; y/ � f .p1/C fx.p1/.x � x1/C fy.p1/.y � y1/:

Similarly, the tangent plane approximation to the graph of g at .p1; g.p1// is given
by

lg.x; y/ � g.p1/C gx.p1/.x � x1/C gy.p1/.y � y1/:

We replace system (7.1) by the linearized system

l f .x; y/ D 0 (7.5)

lg.x; y/ D 0:

The terms in these equations can be rearranged a bit, in the same way as we
arrived at Eq. (7.4):

fx.p1/x C fy.p1/y D fx.p1/x1 C fy.p1/y1 � f .p1/ (7.6)

gx.p1/x C gy.p1/y D gx.p1/x1 C gy.p1/y1 � g.p1/:

Now this inhomogeneous linear system must be solved for a solution pair p2 D
.x2; y2/. The system may be thought of as the equations of two lines in the .x; y/
plane, and we are seeking the point of intersection p2 of these two lines.

System (7.6) can be put in a more compact form that will remind us even more
of Eq. (7.4). We let F.x; y/ denote the pair of functions f; g:

F.x; y/ D . f .x; y/; g.x; y//:

Further, we let J .p1/ denote the 2 ð 2 matrix of partial derivatives

J .p1/ D
�

fx.p1/ fy.p1/

gx.p1/ gy.p1/

½
:

J is called the Jacobian matrix of F at the point p1. The first row of J is the
gradient vector r f .p1/, and the second row is rg.p1/. Writing p D .x; y/ and
F.p/ D . f .p/; g.p// as column vectors we can express system (7.6) as

J .p1/p D J .p1/p1 � F.p1/:

This is the analog of Eq. (7.4). The solution of this system is p2 D .x2; y2/. Hope-
fully, it is a better approximation to the solution of the original system (7.1). The
iteration scheme for Newton’s method in two dimensions is therefore

J .pn/pnC1 D J .pn/pn � F.pn/: (7.7)
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For computation, we break this down as follows:

1) Solve the linear system of equations J .pn/s D �F.pn/. s is called the Newton
step.

2) Compute the next iterate, pnC1 D pn C s.

Recall that it was very important to choose a good starting value for Newton’s
method in one dimension. This is even more true in two dimensions. One should
always make a contour map of the zero curves of f and g to get an approximate
location of the roots.

Example 7.5

We return to the system considered in Example 7.2, where f .x; y/ D y � sin.x/,
and g.x; y/ D y � x2 C 1. For this pair of functions, the Jacobian matrix is

J .x; y/ D
�

fx fy
gx gy

½
D

� � cos.x/ 1
�2x 1

½
:

Here is a script that implements Newton’s method for this pair of functions. The
script is almost identical with the script for Newton’s method discussed in Section
7.2. We must first write mfiles for f .x; y/, g.x; y/, and J .x; y/. The function mfile
bigj.m produces a 2 ð 2 matrix as output:

function z = f(x,y)
z = y-sin(x);

function z = g(x,y)
z = y - x.^2 +1;

function z = bigj(x,y)
z = [-cos(x) 1; -2*x 1];

................................

p = input(’enter the starting point p1 = [x1;y1] ’);
x = p(1); y = p(2);

disp(’ iterate x y f(x,y) g(x,y) ’)
[1, x, y, f(x,y), g(x,y)]

for n = 2:N
s = -bigj(x,y)\[f(x,y); g(x,y)];
p = p+s;
x = p(1); y = p(2);
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[n, x, y, f(x,y), g(x,y) ]
end

Comments: The input for p has a semicolon between the entries. This makes
p a 2 ð 1 column vector. Similarly, in the first line of the loop we write
[f(x,y); g(x,y)] with a semicolon to make this a column vector.

This program does not save the values of the iterates. The input statement puts
the starting values p1 D .x1; y1/ in the memory space p. The first time the loop
is entered, the values p = [x1;y1] are used on the right side of the first line of
the loop. The result of the calculation, which is the second iterate, p2 D .x2; y2/, is
placed in the same memory space p, overwriting the values that were there before.
The results are printed out, and the loop continues. Each time, the latest iterate pn
is stored in the space p, overwriting the previous iterate, pn�1.

The line s = -bigj(x,y)\[f(x,y);g(x y)] solves the system J .pn/s D
�F.pn/ using the linear solve command x = A\b of Section 1.4. For reasons of
accuracy and stability, it is usually better to solve a linear system with the A\b

operation.

mfile newton2

The script mfile newton2.m is essentially the script written in the preceding subsec-
tion. The user must provide mfiles f.m, g.m, and bigj.m. The script plots the
location of each iteration and pauses, waiting for the user to hit Return. This can be
done for up to five iterations. Of course this script can be modified using a while
loop and a required tolerance as seen in Chapter 13.

As in the one-dimensional case, it is important to know how close the approximate
root is to the exact root. If pŁ D .xŁ; yŁ/ is the exact root and pn D .xn; yn/, we
have the estimate

jxn � xŁj C jyn � yŁj ³ jxn � xn�1j C jyn � yn�1j:

Exercises

1. Let f .x; y/ D y � 3x.x � 1/.x C 1/ and g.x; y/ D .x2/=4 C y2 � 1.
a) Write mfiles f.m for f and g.m for g.
b) Put a meshgrid [X,Y] on the square [�2; 2] ð [�2; 2]. Plot the zero-level

curves of f and g with the commands
contour(X,Y,f(X,Y),[0 0])
hold on
contour(X,Y,g(X,Y),[0 0], ’r’).

Count the number of roots and estimate their location from the plot.
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Figure 7.5 Zero level curves of f .x; y/ D y � sin.x/ and g.x; y/ D y � x2 C 1. Zero level lines of
l f .x; y/ and lg.x; y/ for p1 D .�1:2;�:5/. The intersection at p2 is the next Newton iterate.

c) Define the symbolic expressions ff = y -3*x*(x-1)*(x+1) and
gg = .25*x^2 +y^2 -1. Then use the symbolic solver as in Example 7.1. Does
the symbolic solver get all the roots? Are they symbolic answers, or are they numeric
answers?

2. Let f .x; y/ D y � 2 sin.2x/. Use the same function g as in Exercise 1. Repeat
parts a), b), and c) of Exercise 1.

3. Let f .x; y/ D arctan.xCy/�xy. The MATLAB function for arctan is atan(x).
Verify that f .0; 0/ D 0.

a) Put a mesh on the square [�1; 1] ð [�1; 1]. Use the command
contour(X,Y,f(X,Y),[0 0]) to plot the zero level curve of f in this square.
Is this curve the graph of a function y D g.x/? What is fy.0; 0/?

b) Following Example 7.4, compute the values of g.x/ for �1 � x � :5, and
plot the curve of values you get.

4. Consider the system✯

f .x; y/ D arctan.x C y/� xy D 0

g.x; y/ D y2 � x D 0

a) Write mfiles f.m and g.m for f and g.
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b) There are three roots for this pair of equations. Plot the zero level curves
of f and of g in the region �2 � x; y � 2 to get an estimate of the location of the
roots.

c) Now write an mfile bigj.m as in Example 7.5 for the Jacobian matrix J .
Then use the mfile newton2.m to get better results for each of the roots.

5. We wish to find the roots of the system✯

f .x; y/ D x2 C 4xy � 4y2 � :1 D 0

g.x; y/ D 4 cos x C 2 sin y � 5y D 0:

a) Plot the zero-level curves of f and g in the square �3 � x; y � 3. Make a
first estimate of the location of the roots.

b) Use the mfile newton2 to find the roots.

6. A continuously stirred tank reactor is a vessel through which flows a mixture✯✯

of chemicals. They react while in the vessel. We shall take the volume of the vessel
to be V and the flow rate to be Q. We shall consider a reaction between three
chemicals, A, B, and C , with the following reaction rules:

A ! 2B; with reaction rate r1:

B ! A C C; with reaction rate r2:

C ! A; with reaction rate r3:

Let A0 be the inflow concentration of chemical A. Making an abuse of notation, let
A be the concentration of chemical A in gram-moles/liter, and the same for B and
C . The differential equations for the reaction process are

V
d A

dt
D Q.A0 � A/� r1 C r2

V
d B

dt
D �Q B C 2r1 � r2

V
dC

dt
D �QC C r2 � r3:

If there is a steady-state solution for this reaction, the concentrations of A, B, and
C must satisfy

f1.A; B;C/ D Q.A0 � A/� r1 C r2 D 0

f2.A; B;C/ D �Q B C 2r1 � r2 D 0

f3.A; B;C/ D �QC C r2 � r3 D 0:
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The reaction rates may depend on the concentrations in a nonlinear fashion. We
shall assume

r1 D :1A2; r2 D :04B3=2; r3 D :06C:

Thus a steady state reaction will correspond to a solution of the nonlinear system

f1.A; B;C/ D Q.A0 � A/� :1A2 C :04B3=2 D 0

f2.A; B;C/ D �Q B C :2A2 � :04B3=2 D 0

f3.A; B;C/ D �QC C :04B3=2 � :06C D 0:

Solve this system for Q D 50 liters/sec and A0 D 5 gram-moles/liter.
a) Modify the file newton2.m to make it solve systems of three equations in

three unknowns; call it newton3.m.
b) Make a first guess for the solution by assuming B D C D 0 and finding the

value of A that solves the first equation. Then use newton3.m to solve the system.

7. If a parameter is present in a system of equations such as system (7.1), the✯✯

nature of the solutions can depend on the value of the parameter. Consider the
system

f .x; y/ D .y � x/2=4 � .x C y/=2 C 1 D 0

g.x; y/ D y C ½.x � 2/3 D 0:

a) Use the command contour to display the level curves f D 0 and g D 0
for various values of ½ in the rectangle f0 � x � 3; �:5 � y � 2g. Show that there
is a critical value of ½, ½Ł, such that

there are no solutions for ½ < ½Ł;
there is one solution for ½ D ½Ł;
there are two solutions for ½ > ½Ł.

b) When ½ D 2, the system has two roots. Use the code newton2, or use the
symbolic solver, to find each of them.

c) Find the critical value ½Ł and the single root of the system that corresponds
to ½ D ½Ł. Use the following idea.

From the graphs of part a), we can see that when ½ D ½Ł, the level curves
C1 D f.x; y/ : f .x; y/ D 0g and C2 D f.x; y/ : g.x; y; ½Ł/ D 0g are tangent at
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the root .xŁ; yŁ/. Let C1 be the graph of y1.x/ and C2 be the graph of y2.x/. By
implicit differentiation,

� fx.xŁ; yŁ/
fy.xŁ; yŁ/

D dy1

dx
.xŁ/

D dy2

dx
.xŁ/ D �gx.xŁ; yŁ; ½Ł/

gy.xŁ; yŁ; ½Ł/
;

whence
fx.x; y/gy.x; y; ½/� fy.x; y/gx.x; y; ½/

þþþ
.xŁ;yŁ;½Ł/

D 0:

Thus .xŁ; yŁ; ½Ł/ is the solution of the system of three equations

f D 0

g D 0

fx gy � fygx D 0 :

Solve this system using the three-dimensional version of the Newton code or the
symbolic solver.

8. Suppose a weight of mass m is suspended by two springs, attached at points✯✯

.�1; 0/ and .1; 0/. What are the coordinates .x; y/ of the position of the mass? This
situation is shown in Figure 7.6.

We assume a linear spring law, in which the magnitude of the restoring force is
proportional to the amount the spring is stretched. To be more specific, we suppose
that the spring on the left has length l1 when not stretched and has spring constant
k1, while that on the right has length l2 when not stretched and spring constant k2.
With these assumptions, the magnitude of the force exerted by the spring on the left
when it is stretched to a length d1 > l1 is

jjF1jj D k1.d1 � l1/:

Similarly,
jjF2jj D k2.d2 � l2/:

The forces F1;F2 are
F1 D jjF1jj.� cos.�1/; sin.�1//

and
F2 D jjF2jj.cos.�2/; sin.�2//;



138 Solving Equations

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

y

  F2

−mg

(x,y)

(−1,0) (1,0)

θ1
θ2

 F1

Figure 7.6 Weight with mass m suspended by springs with gravitational force and restoring forces
of springs.

with

cos.�1/ D .x C 1/=d1; sin.�1/ D �y=d1; d1 D
q
.x C 1/2 C y2

and

cos.�2/ D .1 � x/=d2; sin.�2/ D �y=d2; d2 D
q
.x � 1/2 C y2:

At equilibrium, the sum of forces acting on the mass is zero:

F1 C F2 � mgj D 0:

Writing out the x and y components separately, we have

0 D F1;x C F2;x D �k1.1 C x/.1 � l1=d1/C k2.1 � x/.1 � l2=d2/

mg D F1;y C F2;y D �k1 y.1 � l1=d1/� k2 y.1 � l2=d2/:

a) Show that if l1 D l2 D l and k1 D k2 D k, then x D 0, so d1 D d2 Dp
1 C y2. In this case, the system reduces to the second equation, now an equation
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in just y. Set k D l D 1 and g D 9:8. Write an mfile that takes the mass m as input
and solves numerically for y. Keep in mind that with our coordinate system, y < 0.

b) Now rewrite the mfile of part a) so that it calculates the root y for each
value of m D 1; 2; 3; : : : ; 50 and plots the values of y against the values of m. This
graph can be well approximated by a linear function y D c1m C c2. What choices
of c1 and c2 give the best linear approximation? Explain the best choice of c1 by
examining the equation for y.

c) For simplicity set k1 D 1, l1 D 1;m D 1; g D 9:8. Write an mfile that solves
the system with input statements for the values of k2 and l2 and uses the numerical
solver newton2. The mfile should also plot out the position of the mass as shown
in Figure 7.6.
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Optimization

Prepared mfiles used in this chapter
tplane findcrit lagrange impl

8.1 Critical points and the second-derivative test
Recall that a critical point for a function f .x; y/ is a point .x0; y0/ in its domain
where f is differentiable, with fx.x0; y0/ D 0 and fy.x0; y0/ D 0. Geometrically
this means that the tangent plane to the graph of f at the point .x0; y0; f .x0; y0//

is parallel to the x; y plane (“horizontal”). A critical point for f can be a local
maximum, a local minimum, or neither of these. Figure 8.1 displays the graph of a
function having two critical points with attached tangent planes.

To find the critical points of f we must solve the system

fx.x; y/ D 0 (8.1)

fy.x; y/ D 0:

Solutions of these equations (there may be many) can sometimes be found using a
symbolic solver and sometimes using a numerical solver. We shall deal with this
issue later in the chapter.

Since the first derivatives of f are zero at .x0; y0/, we must look to the higher
derivatives to describe the behavior of f near a critical point. The contour lines can
also provide valuable information.

Recall that the second-derivative test for functions of one variable says that if
f 0.x0/ D 0 and f 00.x0/ > 0, then x0 is a local minimum for f . If f 00.x0/ < 0, then
x0 is a local maximum for f .

141
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Figure 8.1 Graph of f .x; y/ D .y3 � 3y/=.1 C x2/, with horizontal tangent planes at the critical
points .0;�1/ and .0; 1/.

How can we extend this idea to higher dimensions? Intuitively, if f .x; y/ has a
local minimum at the point .x0; y0/, then the intersection of the graph of f with
any vertical plane,

a.x � x0/C b.y � y0/ D 0;

should be a curve that is concave up near the point .x0; y0/. See Figure 8.2. If
.x0; y0/ is a maximum, we would expect the curve of intersection to be concave
down near .x0; y0/.

The second-derivative test for functions of two variables gives a sufficient condi-
tion for this kind of behavior. It will also give us information about the level curves
of a function near a local maximum or minimum. We define the discriminant

D.x; y/ D fxx.x; y/ fyy.x; y/� f 2
xy.x; y/: (8.2)

D is the determinant of the 2 ð 2 matrix of second-order partial derivatives

H.x; y/ D
�

fxx.x; y/ fxy.x; y/
fxy.x; y/ fyy.x; y/

½
: (8.3)

H is known as the Hessian matrix of f and can be thought of as the analog of the
second derivative of a function of one variable.

The Second-Derivative Test

ž If D.x0; y0/ > 0 and fxx.x0; y0/ > 0, then .x0; y0/ is a local minimum.

ž If D.x0; y0/ > 0 and fxx.x0; y0/ < 0, then .x0; y0/ is a local maximum.
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Figure 8.2 Several slices through the graph of f .x; y/ D .y2 � 1/ cos.x/ at the critical point
.x0; y0/ D .0; 0/.

ž If D.x0; y0/ < 0, then .x0; y0/ is a saddle point.

ž If D.x0; y0/ D 0, then we cannot draw a conclusion.

To understand how the second-derivative test works, we apply it to a quadratic
function,

f .x; y/ D ax2 C 2bxy C cy2; (8.4)

that has a critical point at .x0; y0/ D .0; 0/. For this f , the quantity D.x; y/ �
4.ac � b2/. Now suppose D > 0 and 2a D fxx.x0; y0/ > 0. Then from analytic
geometry, we know that the graph of f is a bowl opening upward with minimum
at .0; 0/. When D > 0 and a < 0, the graph is a bowl opening downward. In both
cases the level curves of f are ellipses centered at .0; 0/.

We illustrate the case D < 0 with an example. Set a D 1; b D 2; and c D �2 so
that D D �24. The graph of f is displayed in Figure 8.3 sliced by planes parallel
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Figure 8.3 Graph of f .x; y/ D x2 C 4xy � 2y2 near saddle point .x0; y0/ D .0; 0/.

to the x; z plane and to the y; z plane. The level curves of f are hyperbolas, shown
in Figure 8.4.

For a function f more general than Eq. (8.4) we approximate f at a critical
point by a quadratic function. We use the two-dimensional version of the Taylor
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Figure 8.4 Contour lines of f .x; y/ D x2 C 4xy � 2y2 near saddle point.
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expansion at a point .x0; y0/:

f .x; y/ D f .x0; y0/C fx.x0/.x � x0/C fy.x0; y0/.y � y0/C q.x; y/C E; (8.5)

where q.x; y/ is the quadratic function

q.x; y/ D C1

2
[ fxx.x0; y0/.x � x0/

2 C fyy.x0; y0/.y � y0/
2] (8.6)

C2 fxy.x0; y0/.x � x0/.y � y0/:

When f has continuous third-order partial derivatives, the error E can be estimated
as

jE j � C max jx � x0j3; jy � y0j3; (8.7)

where the constant C is determined by the behavior of the third derivatives near
.x0; y0/. We recognize the first three terms of Eq. (8.5) as the tangent plane approx-
imation to f at .x0; y0/. At a critical point, fx.x0; y0/ D fy.x0; y0/ D 0, so the
Taylor expansion (8.5) reduces to

f .x; y/ D f .x0; y0/C q.x; y/C E : (8.8)

Since the error E ! 0 as .x; y/ ! .x0; y0/, f behaves essentially like q near
a critical point. This implies that for .x; y/ close to .x0; y0/, the level curves of f
should be approximated by the level curves of q . Now, q is of the form (8.4), with

2a D fxx.x0; y0/; 2b D fxy.x0; y0/; 2c D fyy.x0; y0/

and with x replaced by x � x0 and y replaced by y � y0. In the first two cases of
the second-derivative test, when D.x0; y0/ > 0, the level curves of q are ellipses,
centered at .x0; y0/. Examples are shown in Figures 8.5 and 8.6.

The third case, which has no one-dimensional analog, is that the quantity D < 0.
This can happen when the two partial derivatives fxx and fyy are both nonzero and
have differing signs or if both fxx D fyy D 0 at .x0; y0/ and fxy 6D 0 at .x0; y0/.
The graph of f near the critical point is called a saddle surface in this case. See
Figure 8.3.

Of course, one can have critical points where D D 0 so that the second-derivative
test does not apply. The graph of f and its level curves can be quite complicated
near such a critical point, as shown in the following example.
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Figure 8.5 Level curves of f .x; y/ D .y2 � 1/ cos.x/ near a minimum at .x0; y0/ D .0; 0/.

Example 8.1

Let f .x; y/ D x3 � 3xy2. The origin is a critical point for f and D.0; 0/ D 0.
We display its graph and the level curves near .0; 0/ in Figure 8.7. We used a finer
mesh for the contours to avoid irregular jumps in the level curve near the orgin.
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Figure 8.6 Level curves of g.x; y/ D �2x2 � 3y2 C 2xy C 3xy2 � y3 near a maximum at .x0; y0/ D
.0; 0/.
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Figure 8.7 Graph of f .x; y/ D x3 � 3xy2 near .0; 0/.

f = inline(’x.^3 - 3*x.*y.^2’, ’x’, ’y’)
% We plot the graph of f
in the left side of the figure.

[X,Y] = meshgrid(-1:.1:1);
subplot(1,2,1)

surf(X,Y,f(X,Y))
% We plot the contours
in the right side of the figure.

[XX,YY] = meshgrid(-1:.025:1);
subplot(1,2,2)

contour(XX,YY,f(XX,YY), ’k’)

8.2 Estimating the maximum and minimum

MATLAB has a very convenient tool that can be used to calculate the maximum
and minimum over a mesh. If v D [v1; : : : ; vn] is a vector, either row or column,
max(v) returns max vi . min(v) returns min vi . The more complete command [V,i]

= max(v) returns max vi and the first index i where the maximum is attained.

Example 8.2

>> v = [1 2 -1 3 0 3];
>> V = max(v);
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V =
3

>> [V,i] = max(v);
V =

3
i =

4

We can use this tool to find the maximum or minimum value of a function of one
variable over a mesh. Here we estimate the maximum of f .x/ D x2.1 � x2/ over
the interval [�1; 1]:

>> f = inline(’x.^2.*(1-x.^2)’)
>> x = -1:.02:1;
>> [M,i] = max(f(x))
M =

.2499
i =

16
>> x0 = x(i)
x0 =

-.7000

It is important to keep in mind that this sequence of commands has found the
maximum of f over the mesh, not over the interval [�1; 1]. The true maximum of
f over [�1; 1] is :25, and it is attained at two places, x D š1=

p
2 D š:707161.

To treat functions of two variables, we use the commands on matrices. If
A is a matrix with elements ai; j , the command max(A) finds the maximum in
each column, recording the results in a row vector. Then repeating the command,
max(max(A)), we find the maximum of the row vector max(A). Thus max(max(A))
is the maximum over the elements ai; j . In the same way, min(min(A)) is the
minimum over the elements ai; j . The command [row, I] = max(A) returns the
largest element in each column and the first index i in each column where the
maximum is attained. Then applying max again, we can find the maximum over all
the ai; j and a pair of indices where the maximum is attained.

Example 8.3

>> A = [1 0 3; 2 1 3; -1 4 0; 0 2 1]
A =

1 0 3
2 1 3
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-1 4 0
0 2 1

[row, I] = max(A)
row =

2 4 3
I =

2 3 1

[maxA, j] = max(row)
maxA =

4
j =

2
>> i = I(j)
i =

3

Thus we see that the largest element of A is A.3; 2/ D 4.
If f is a function of two variables, we can use the max command to estimate the

maximum of f over a set G. Let f .x; y/ D x=2 C exp.�x2 � y2/ and G D f0 �
x � 1g ð f�1=2 � y � 1=2g.

>> f = inline(’.5*x+exp(-x.^2-y.^2)’,’x’,’y’)
>> x = 0:.02:1;
>> y = -.5:.02:.5;
>> [X,Y] = meshgrid(x,y);
>> [row, I] = max(f(X,Y));
>> [maxf, j] = max(row)
maxf =

1.0646
j =

14
>> x0 = x(j)
x0 =

.2600
>> y0 = y(I(j))
y0 =

0

Then f .xj ; yi / � f .:26; 0/ D 1:0646 for all the points in the mesh.
The commands min and max can also be used on three-dimensional arrays. See

help min or help max.
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mfile findcrit

The mfile findcrit uses contour maps and the commands max and min to find
estimates of the maximum and minimum of a function over a rectangle. The call
is findcrit(f, corners) when the function f is given as an inline function
and findcrit(’f’,corners) when f is given in an mfile. corners is a vector,
[a b c d]. The corners of the rectangle are .a; c/; .b; c/; .b; d/, and .a; d/. After
the call is made, a contour map of the rectangle is displayed. The script waits for the
user to click twice with the mouse on the lower left and the upper right corners of a
smaller rectangle where you think the critical point lies. A smaller blue rectangle will
be displayed. Then click a third time, anywhere. The blue rectangle will be blown
up to fill the figure, and it will contain a blown-up contour map. The maximum
and minimum of f over the blue rectangle will be computed and displayed on the
screen, along with the coordinates in the mesh where they are attained. This process
can be repeated four times.

We now give an example where several of these techniques are combined.

Example 8.4

Let
f .x; y/ D sin.x C y/C 1 � x2=40 C e�y2

:

We wish to find the critical points of this function in the rectangle R D f�6 � x �
9; �4 � y � 4g. First we graph f on R:

f= inline(’sin(x+y) +
1 - (1/40)*x.^2 + exp(-y.^2)’, ’x’, ’y’)

[X,Y] = meshgrid(-6:.2:9,-4:.2:4);
surf(X,Y,f(X,Y))

The graph is shown in Figure 8.8. It appears that there are a number of hills and
valleys in R. Next we use a contour map on R to get a rough location of the critical
points in R:

contour(X,Y,f(X,Y),20)

In Figure 8.9, we see that local maxima alternate with saddle points. To find the coor-
dinates of these critical points, we must solve Eq. (8.1) or use graphical techniques.
First we shall try the symbolic equation solver on equations (8.1).

syms x y
fx = cos(x+y) - x/20;
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Figure 8.8 Graph of f .x; y/ D sin.x C y/C 1 � x2=40 C exp.�y2/:

fy = cos(x+y) - 2*y*exp(- y^2)
[a,b] = solve(fx,fy)
double([a,b]);
ans =
1.46109980190872 0.03657639542810

We see that the symbolic solver has found only one critical point, and has found it
numerically. Now to apply the second-derivative test, we calculate the discriminant
symbolically and evaluate it at the critical point:

fxx = diff(fx,x); fyy = diff(fy,y)
fxy = diff(fx,y);
D = fxx*fyy - fxy^2;
subs(D,[x,y],[a,b])
ans =
2.1361246935553050846054264650197

subs(fxx, [x,y], [a,b])
ans =
-1.0473279141897893178644240175064

Since D > 0 and fxx < 0 at the critical point, we conclude that it is a local
maximum, in agreement with our graphical results in Figures 8.8 and 8.9.
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Figure 8.9 Contours of f .x; y/ D sin.x C y/C 1 � x2=40 C exp.�y2/.

To find the other critical points in R, we shall use the mfile findcrit. From
Figure 8.9, there appears to be a saddle point near .�1; 0/. To close in on this
saddle point, we use findcrit with corners chosen to be [�2; 0;�1; 1]. Then
after clicking several times we have the picture shown in Figure 8.10. The saddle
point appears to be located at .a; b/ D .�1:61;�:040/. To confirm this graphical
approach, we evaluate fx ; fy and D at this point:

a = -1.61; b = -.040
double(subs(fx, [x,y],[a,b]))
ans =

-1.1158e-04
double(subs(fy,[x,y], [a,b]))
ans =

-2.9775e-04
double(subs(D,[x,y], [a,b]))
ans =

-1.9341

Of course, these results are only quite approximate. We could repeat the proce-
dure with findcrit and a much smaller starting rectangle to get a more accurate
location of the critical point. We could also use Newton’s method to find a solution
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Figure 8.10 Level curves of f .x; y/ D sin.x C y/C 1 � x2=40 C exp.�y2/ near a saddle point.

of system (8.1). We would need mfiles for fx , fy , and the Jacobian matrix of system
(8.1), which would be the Hessian matrix H of f . For a starting point, we could
use the approximate location of the critical point found using findcrit.

8.3 Constrained maximum and minimum problems

It is an important theorem of analysis that a continuous function on a closed, bounded
set in R2 or R3 attains its maximum and minimum. We can find the location of
an extreme point by seeking the critical points if that extreme point occurs in the
interior of the set. If the maximum or the minimum occurs on the boundary, it may
not be the case that the first derivatives vanish there.

We suppose the set is described as

K D f.x; y/ : g.x; y/ � 0g
and the boundary of the set K is the level curve f.x; y/ : g.x; y/ D 0g. The
constrained max-min problem is to find the maximum or minimum of a function
f .x; y/ over the set K . This is often stated as follows:

Find max f or min f subject to the constraint g.x; y/ � 0.
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The maximum or minimum may occur in the interior of K or on the boundary of
K .

The method of Lagrange multipliers is used to find the extrema of functions on
the boundary curve of a set. To find the minimum and maximum values of f .x; y/
on the boundary of K we look for those points on the boundary where a level curve
of f is tangent to the boundary of K . Since the gradient vector is always orthogonal
to the level curves, we see that at such a point, the gradients of f and g point in
the same direction or in the opposite direction. See Figure 8.11.

A concise way to state this is to say that at these points,

r f .x0; y0/ D ½rg.x0; y0/

for some scalar ½. ½ is a third variable, called the Lagrange multiplier. When we
write out the components of the vector equation and add the constraint that .x0; y0/

must lie on the boundary curve g.x; y/ D 0, we arrive at a system of three equations
in the three variables x; y, and ½:

fx.x; y/ D ½gx.x; y/ (8.9)

fy.x; y/ D ½gy.x; y/ (8.10)

g.x; y/ D 0: (8.11)

The solutions of this system are candidates for the location of the maximum and
the minimum of f on the curve g.x; y/ D 0. This system, like system (8.1), can
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Figure 8.11 Boundary curve g.x; y/ D x2 C 2y2 � 1 D 0 and level curves of f .x; y/ D x2 C .y �
1/2 C xy3.
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be solved symbolically sometimes and numerically sometimes. Solutions of these
systems are discussed in the next section.

The following mfile lagrange can be used to get a better geometric picture of
the level curves and can be used to get an estimate of the solutions of Eqs. (8.9)–
(8.11). For example, in Figure 8.11, which was produced by the mfile lagrange.m,
the maximum of f on the curve g D 0 is approximately 3.04, while the minimum
value is approximately .05. Since there are no interior critical points, these are the
absolute maximum and minimum of f over the set K D fg.x; y/ � 0g.
mfile lagrange

The mfile lagrange.m has the call lagrange(f,g,corners) when the functions
f and g are given as inline functions and lagrange(’f’, ’g’,corners) when
given in mfiles f.m and g.m. As in the mfile findcrit, the vector corners is
[a b c d], where .a; c/; .b; c/; .b; d/, and .a; d/ are the corners of the viewing
rectangle. After the call, the level curve g.x; y/ D 0 is displayed. The script waits
for the user to click on a point anywhere in the viewing rectangle. When the
mouse is clicked, the level curve of f through that point is plotted, as well as
the value of f . This can be done five times. By marching around the curve, we can
come close to the point where the maximum or minimum on the boundary curve is
attained.

Example 8.5

Let f .x; y/ D x3Cx2C y2=3 and let K be the disk of radius 6 centered at the origin.
K D fx2 C y2 � 36g, so we take g.x; y/ D x2 C y2 � 36. The system (8.9)–(8.11)
to solve is

3x2 C 2x D 2½x

2y=3 D 2½y

x2 C y2 D 36:

First we graph several of the level curves of f using the mfile lagrange.m. Then
we solve the system symbolically:

f = inline(’x.^3 + x.^2 + (y.^2)/3’, ’x’, ’y’)
g = inline(’x.^2 + y.^2 -36’, ’x’, ’y’)
corners = [- 8,9.5,-7,7]
lagrange(f,g,corners)

several clicks
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% now we begin the symbolic calculation of the roots.
syms x y lambda
eq1 = 3*x^2 + 2*x - 2*lambda*x
eq2 = (2/3)*y - 2*lambda*y
g = x^2 +y^2 -36
[lambda x y ] = solve(eq1,eq2,g);
[lambda x y]
ans =
[ 10, 6, 0]
[ -8, -6, 0]
[ 1/3, 0, 6]
[ 1/3, 0, -6]
[ 1/3, -4/9, 10/9*29^(1/2)]
[ 1/3, -4/9, -10/9*29^(1/2)]

In agreement with the graph of the level curves in Figure 8.12, we see that the
maximum is attained at .x; y/ D .6; 0/ and the minimum at .x; y/ D .�6; 0/. The
remaining four points are local extrema of f on the curve g D 0. We can see from
Figure 8.12 that the level curves of f are tangent to the curve g D 0 at those points
as well.

It is often the case that the 3ð3 system (8.9)–(8.11) cannot be solved symbolically.
We may have to use numerical methods to find solutions. Newton’s method can
easily be extended to these larger systems. However, now it will be harder to find
good starting values.
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Figure 8.12 Level curves of f .x; y/ D x3 C x2 C y2=3 on and near the disk fx2 C y2 � 36g.
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8.4 Functions of three variables

A critical point for a function f .x; y; z/ is a point where all the first partial deriva-
tives vanish. This condition yields a system of three equations in three unknowns,

fx.x; y; z/ D 0 (8.12)

fy.x; y; z/ D 0

fz.x; y; z/ D 0:

The solutions of this system are candidates for a local maximum or minimum of
f . This system may be solvable by symbolic means, but more often a numerical
method must be used, which requires a reasonably good first guess for a starting
point. Locating the critical points, even approximately, is not easy when it is not
possible to graph the function. One must use all the information available from
the setting of the problem to gain some insight. The commands slice and impl,
discussed in Chapter 6, can be useful here.

Example 8.6

Let
f .x; y; z/ D 1:5e�.x�1/2�y2�z2 C e�.xC1/2�.y�1/2�z2

:

From the form of the function we expect to find two local maxima, one near
.x; y; z/ D .1; 0; 0/ and one near .x; y; z/ D .�1; 1; 0/. First we write an mfile
for f :

function w = f(x,y,z)
w1 = 1.5*exp(-(x-1).^2 - y.^2 - z.^2);
w2 = exp(-(x+1).^2 - (y-1).^2 - z.^2);
w = w1 + w2;

Then we construct a three-dimensional array and use the commmand slice as in
Section 6.2:

x = linspace(-1.5, 1.5, 41);
y = linspace(-.5, 1.5, 41);
z = linspace(-1,1,41);
[X,Y,Z] = meshgrid(x,y,z);
W = f(X,Y,Z);
slice(X,Y,Z,W,[-1,0,1], 0,0); colorbar
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Figure 8.13 Slices through the domain of f .x; y; z/ indicating possible local maxima.

Note that we have substituted a vector [�1; 0; 1] for the coordinate of the planes
parallel to the x axis. This gives us slices through three parallel planes x D �1; x D
0, and x D 1. The result is shown in Figure 8.13.

The colorbar indicates that the largest values of f correspond to the lightest
shade of gray (on this page). It appears that there are local maxima near .1; 0; 0/
and .�1; 1; 0/. To get good approximate values of these critical points, we would
use Newton’s method on Eq. (8.12).

Once a critical point has been found, what is the second-derivative test? This time
the Hessian matrix is the 3ð3 symmetric matrix of second-order partial derivatives,

H.x; y; z/ D
2
4 fxx.x; y; z/ f xy.x; y; z/ f xz.x; y; z/

fxy.x; y; z/ f yy.x; y; z/ f yz.x; y; z/
fxz.x; y; z/ f yz.x; y; z/ f zz .x; y; z/

3
5 :

A sufficient condition that .x0; y0; z0/ be a local minimum for f is that
1. fxx > 0,
2. fxx fyy � f 2

xy > 0,
3. det H > 0,

all evaluated at .x0; y0; z0/. Notice how this condition extends the first case of
the second-derivative test for functions of two variables. If we apply this set of



8.4 Functions of three variables 159

conditions to the function � f , we see that a sufficient condition for the critical
point .x0; y0; z0/ to be a local maximum for f is that quantity (1) be negative,
quantity (2) be positive, and quantity (3) be negative. In both of these cases, the
level surfaces of f close to the critical point will resemble ellipsoids. We can see
this with the command impl.

We continue to study the function of Example 8.6. From the form of the function
we expect the local maximum near .1; 0; 0/ to be about 1.5, while the local maximum
near .�1; 1; 0/ should be about 1. Thus the level surfaces Sc for 1 < c < 1:5 should
consist of a single closed surface resembling a sphere containing the point .1; 0; 0/,
while for c < 1, but not too small, the level set Sc should consist of two closed
surfaces, one containing .1; 0; 0/ and the other containing .�1; 1; 0/. Eventually for
c > 0 sufficiently small, Sc will consist of one surface enclosing both critical points:

f = inline(’1.5*exp(-(x-1).^2 - y.^2 - z.^2) +
exp(-(x+1).^2 - (y-1).^2 - z.^2)’, ’x’, ’y’, ’z’)

corners = [-2,2,-2,2, -2,2];
subplot(2,2,1)

impl(f, corners, .5)
title(’c = .5’)

subplot(2,2,2)
impl(f, corners, .9)
title(’c = .9’)

subplot(2,2,3)
impl(f, corners, .7)
title(’c = .7’)

subplot(2,2,4)
impl(f, corners, 1.2)
title(’c = 1.2’)

See Figure 8.14.

Exercises

1. A function mfile need not produce numbers as output. It may produce a graph.
Write a short function mfile, conic.m, that takes as its three arguments a; b; c

and then graphs the quadratic function f .x; y/ D ax2 C 2bxy C cy2 over the square
�2 � x; y � 2. It will begin like this:

function out = conic(a,b,c)
[X,Y] = meshgrid(-2:.05:2);
Z = . . . .
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Figure 8.14 Level sets of the function f of Example 8.6 for several values of c, indicating two
local maxima.

surf(X,Y,Z); shading flat; colormap(cool)

Add a statement that superimposes the plane z D 0 so that you can see clearly where
f is positive and where negative.

Try the following choices of a; b; c. In each case describe the surface (bowl up,
bowl down, or saddle) and the nature of the critical point.

(i) .a; b; c/ D .1; 0; 2/ (ii) .a; b; c/ D .�2; 0;�3/
(iii) .a; b; c/ D .1; 0;�2/ (iv) .a; b; c/ D .0; 2; 0/
(v) .a; b; c/ D .1; 3; 2/ (vi) .a; b; c/ D .3; 2; 2/

2. Let g.x; y/ be

g.x; y/ D 2e�.x�1/2�.y�1/2 C 1:8e�5.xC1/2�3y2 � 2e�2.x�1/2�3.yC:5/2:
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a) Graph the function on the square [�2; 2] ð [�2; 2]. You will see that the
graph of g has two hills and one valley.

b) Use the contour command contour(X,Y,g(X,Y),20). This will plot 20
contour lines. Use the contour map to estimate the coordinates of the two peaks and
of the bottom of the valley.

c) Use the mfile findcrit to explore a possible critical point near the point
.�:35; :45/. What kind of critical point is this? Put a fine mesh over a small rectangle
containing .�:35; :45/ and graph the function with the command surf.

3. Let f .x; y/ D sin.x/=.1 C .y � x/2/.
a) Graph f over the square [�3; 3] ð [�3; 3]. You should see one hill and one

valley.
b) Use the mfile findcrit to estimate where the maximum occurs. Then find

the critical point by hand or by using the symbolic solver.
c) Use findcrit to determine where the minimum occurs.

4. Let f .x; y/ D x2 C 2y2 C 3xy3 � y3.
a) Use the contour command to locate approximately the critical points of f .
b) Then solve system (8.1) symbolically for the critical points as follows:

Define the symbolic expressions for fx and fy . Then use the command [a b]

= solve(fx fy), as in Example 8.4. The answer will fill the screen. To get a
double-precision evaluation of these roots, use double([a b]).

5. Let f .x; y/ D x4 � 2x2 � y3 C 3y. This function has six critical points in the
square �2 � x; y � 2.

a) Make a fairly fine mesh over the square, say, 50 by 50. Then use the
commmand contour(X,Y,Z, levels), where levels = -4:.4:4. Locate the six
critical points and determine their nature by looking at the contour map.

b) Now solve system (8.1) for the critical points by hand. Use the second-
derivative test at each critical point. Compare these results with your observations
in part a).

6. Let✯

f .x; y/ D x C y C 2e�.x�1/2�y2 � 3e�.xC1/2�y2
:

a) Make an mfile for f . Graph f over the square f�3 � x; y � 3g using the
command surf.

b) Make a contour map over the same square, using 50 contours. Locate where
you think there are critical points.

c) Use the mfile findcrit to get good approximations to the location of the
critical points, and determine their nature.
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d) Write mfiles for fx ; fy and H. Use the mfile newton2 to get higher-accuracy
approximations of the critical points.

7. An exercise on Taylor polynomials in one dimension.
a) Let f .x/ D ex . Let p0.x/ � 1, p1.x/ D 1 C x , and p2.x/ D 1 C x C x2=2 be

the Taylor polynomials of f at x D 0 of degrees zero, one, and two, respectively.
Plot f; p0; p1, and p2 together on the interval [�2; 2]. Compute max j f � p0j,
max j f � p1j, and max j f � p2j over the interval [�2; 2]. Describe how p2 fits f
better around x D 0 than does p1. Why?

b) Let g.x/ D cos x C x3. Verify by hand that g has a minimum at x D 1.
Calculate by hand the Taylor polynomials p0.x/; p1.x/, and p2.x/ at x D 1 of g.
Graph these Taylor polynomials together with g on the interval [�1; 3]. Compute
Emax D max jg.x/� p2.x/j on intervals jx � 1j � h for h D 1; 1=2; 1=4, and 1=8.
Each time h is reduced by a factor of 1=2. By what factor is Emax reduced each time?

8. Let f .x; y/ D x exp.�x2=2/=.1 C y2/.
a) Solve system (8.1) by hand, and verify that f has critical points at .x; y/ D

.š1; 0/.
b) Apply the second-derivative test to determine the nature of each critical

point.
c) Using Eq. (8.6), calculate by hand the quadratic approximation f .1; 0/ C

q.x; y/ to f at the critical point .1; 0/. Write an mfile for the absolute value of the
error, jE.x; y/j D j f .x; y/� f .1; 0/�q.x; y/j. Use the mfile findcrit on jE j over
the square [0; 2] ð [�1; 1]. Click down to the square [1=2; 3=2] ð [�1=2; 1=2] and
find the maximum of jE j over this smaller square. Do this several times, reducing
the side of the square by a factor of 2. Record the max of jE j over each square. By
what factor is the maximum error decreased? Does this agree with Eq. (8.7)?

9. Harmonic functions f .x; y/ satisfy the Laplace equation, fxx C fyy D 0. We✯

can see immediately that if f is harmonic, then at any critical point, D � 0. Thus
we can never use the second-derivative test to find a local maximum or minimum
in the interior of any region. In fact, it can be shown that harmonic functions enjoy
a maximum principle, which says that the maximum and minimum of a harmonic
function over any closed, bounded set K is always attained on the boundary of K .

Let f .x; y/ D sin x cosh y.
a) Verify by hand that f is a harmonic function.
b) Find the critical points of f by solving system (8.1). Using the second-

derivative test, verify that each critical point is a saddle point.
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c) Use findcrit over the starting square �2³ � x; y � 2³ . Find the
maximum and minimum of f over smaller rectangles. The MATLAB function for
cosh.x/ is cosh. Where do the maximum and minimum always occur?

10. Suppose point charges of 1 coulomb each are placed at the points p1 D .1; 0/,
p2 D .�1; 0/, and p3 D .0; h/. The two-dimensional electrostatic potential from
each charge is

Vj .x; y/ D � log.rj /

2³
;

where rj D jjp � pj jj is the distance from the point pj . The combined potential is
V D V1 C V2 C V3.

a) Verify by hand that V is a harmonic function for p D .x; y/ 6D pj .
b) Let h D p

3. Let K be the triangle with vertices p1; p2; p3. Do you think
there should be a point in K where V has a minimum? Make an mfile for V , and
graph V over the rectangle f�1 � x � 1; :1 � y � 1:6g. There is a critical point at
the centroid of the triangle. Use findcrit to take a closer look. This is the more
complicated kind of behavior that can happen in the case where the discriminant
D D 0.

c) Now take h D 2. You will see that the single critical point at the centroid
has split into two critical points. Use findcrit to determine their nature.

11. Let f .x; y/ D x2 � y2 C 3xy and let the set K D f.x; y/ : x2 C 2y2 � 1g.
a) Use the mfile lagrange.m to estimate where the level curves of f are

tangent to the boundary of K . Approximately where does the maximum of f over
K occur, and what is it? Where does the minimum of f over K occur, and what is it?

b) Solve the Lagrange system (8.9)–(8.11) symbolically, as in Example 8.5.
To get a double-precision evaluation of the roots, use double([lambda,x,y]).

12. Let f .x; y; z/ D x 2 C 2y2 C z2 C xy C x2y.
a) Use the second-derivative test to determine the nature of the critical point

of f at .0; 0; 0/.
b) Use the mfile impl over the region �2 � x; y; z � 2. Start with c D 3,

and decrease c until you see the level set separate into two components. What does
the component containing the origin look like for small c?

13. Let f .x; y; z/ D .xy C z/ exp.�x 2 � y2 � z2/.✯

a) Verify that f has critical points at .0; 0;š1=
p

2/.
b) Use the mfile impl on the region f�:5 � x; y � :5; :5 � z � 1g. Letting

cŁ D f .0; 0; 1=
p

2/, display several level sets Sc for values of c near cŁ. What is
the nature of the critical point at .0; 0; 1=

p
2/?
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c) Use the second-derivative test to confirm your conclusion in part b).
d) For an interesting view of the level sets for c D š:3, use impl on the

region �1 � x; y; z � 1. Combine the two pictures with hold on. Rotate around
to get a clear view.

14. The gravitational potential of a body of mass M located at the origin in✯✯

three-dimensional space is

V .x; y; z/ D � G M

r
; r D

q
x2 C y2 C z2:

Here G is the universal gravitational constant. If we have one body of mass M0
located at the origin and another body of mass M1 located at the point .d; 0; 0/ on
the x axis, the combined potential is

V .x; y; z/ D � G M0

r0
� G M1

r1
;

where r0 D
p

x2 C y2 C z2 and r1 D
p
.x � d/2 C y2 C z2.

a) Let M0 D 10; M1 D 1, G D 1, and d D 100. Graph V .x; y; 0/ over the
rectangle R D f�10 � x � 110; �50 � y � 50g. V tends to �1 at .0; 0; 0/ and
at .d; 0; 0/, so we must cut off the graph from below. If we want to graph only
where V ½ �2, we can cut if off with the characteristic function for these points
and set V D �2 otherwise. Use the following instructions (see Section 5.9):

x = linspace(-10, 110, 51); y = linspace(-50, 50, 51);
[X,Y] = meshgrid(x,y);
pot = inline(’-10./sqrt(x.^2 +y.^2) -

1./sqrt((x-100).^2 +y.^2)’, ’x’, ’y’)
V = pot(X,Y);
W = (V+2 >= 0).*(V+2) - 2;
surf(X,Y,W)

b) Look for a saddle point of V .x; y; 0/ on the x axis between 0 and d. Use
the mfile findcrit to find an approximate location of the saddle point. Finally,
find the saddle point by hand by solving the equation Vx.x; 0; 0/ D 0.

c) The potential V is rotationally symmetric about the x axis. Rotate the
contours of V .x; y; 0/ about the x axis to generate the surfaces of gravitational
equipotential.

d) If a particle is placed at the saddle point on the x axis, will it fall toward
M0, fall toward M1, or remain fixed? What if the particle is placed closer to M0?
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15. Constrained optimization problems often arise in economics. However, the✯✯

economist is not so interested in finding the maximum or minimum as in observing
what happens to the maximum or minimum as certain parameters in the problem
change. The following example of this kind of study is called the “Averch Johnson
effect.”

Recall Example 5.9. There we had a revenue function R.z/ D z2=.1 C z2/ with
the Cobb–Douglas production function z D x 1=2y1=2. Here x is capital and y is
labor. The profit function was ³.x; y/ D R.x; y/� :04x � :06y.

a) Use findcrit to locate a maximum of ³ near the point .3; 2/.
b) The rate of return is the fraction

h.x; y/ � R.x; y/� :06y

x
:

What is the rate of return when the profit is maximized as in part a)?
c) Government regulation may be imposed to restrict the rate of return. In

mathematical terms, this means we impose the constraint h.x; y/ � s, where s is
the permissible rate of return. A smaller value of s corresponds to a more restrictive
regulation. Let Gs D f.x; y/ : h.x; y/ � sg be the set of values of capital and labor
that yield a permissible rate of return. Let R be the rectangle f1 � x � 6; 1 � y �
3g. Use the command contour to plot the level curves h D s for s D :15; :2; :3; :4
in R. On which side of the curve does Gs lie? For what values of s does Gs contain
the point .xŁ; yŁ/ where the profit was maximized in part a)?

d) The firm now wishes to maximize its profit, subject to the constraint h � s.
It can be shown that the maximum occurs on the curve h D s. The constrained
maximum problem for the firm is therefore

maximize ³

subject to h D s:

The Lagrange equations are

³x D ½hx

³y D ½hy

h D s: (8.13)

Since hy D ³y=x , the second equation is simply .1 � ½=x/³y D 0. It can be shown
that 0 < ½=x < 1, so the equations that determine the location of the solution of
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(8.13) are

³y D 0

h D s:

Use the command contour to graph the curve ³y D 0. Then use hold on and the
contour command again to graph the curves h D s for s D :4; :3; :2; :15. Which
way does the point of intersection move as s decreases? In particular, what happens
to the values of capital and labor as s decreases?

16. The subject of this exercise is usually treated in a course on differential✯✯

equations. However, with our graphing techniques, we can make some important
observations.

Let x and y be two species competing for resources in some environment. x.t/
and y.t/ will denote the populations of species x and y at time t . The populations
change with time, and their rates of change are coupled together in a system of
ordinary differential equations,

dx

dt
D x.a � by/

dy

dt
D y.c � dx/: (8.14)

a; b; c; d are positive constants. The growth rate of species x in the absence of
competition ( y D 0 ) is a; in this case, x grows exponentially, x.t/ D C exp.at/. c is
the growth rate of y in the absence of competition. The constants b and d describe the
interaction of the species (they may like to eat each other). Let h.x; y/ D f .x/g.y/
where

f .x/ D x�cedx and g.y/ D yae�by:

a) Verify by hand that if .x.t/; y.t// is a solution pair of system (8.14), then
.dh=dt/.x.t/; y.t// D 0. This means that the solution curves t ! .x.t/; y.t// lie
on the level curves of h.

b) Verify that f 0.a=b/ D g0.c=d/ D 0 and f 00.c=d/ > 0 while g00.a=b/ < 0.
c) Show that part b) implies that .c=d; a=b/ is critical point of h that is a

saddle point. Note further that x.t/ � c=d and y.t/ � a=b is a solution pair of
(8.14). Thus the critical point .c=d; a=b/ is a state of the system in which the two
species are in perfect equilibrium.

d) Now make an mfile h.m for h as a function h.x; y; p/, where p D
[a; b; c; d] is a vector of the coefficients. Make a fine mesh (100 ð 100 ) over the
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rectangle R D [0; 10]ð [0; 4]. Start with p D [a; b; c; d] D [:5; :4; :6; :3]. Plot the
level curves of h over R using 40 levels. Calculate the value h0 D h.c=d; a=b; p/ for
this choice of p. Use the command contour(X,Y,h(X,Y,p), [h0,h0], ’r’) to
add the level set h D h0 that passes through the critical point. This level set consists
of two curves that intersect at the critical point. You should see the typical curves
of a saddle point.

e) The solution curves .x.t/; y.t// of (8.14) provide a parameterization of
the level curves of h. Use the MATLAB function quiver to add the vector field
.u; v/ D .x.b � ay/; y.c � dx// to the plot of the level curves you made in part d).
Use a much coarser mesh (10 ð 10) with the quiver function.

f) If at time t D 0, the system is in a state .x0; y0/ lying on one of the level
curves of h, the state of the system will evolve along the level curve in the direction
indicated by the arrows. If the level curve tends toward either of the axes, one of
the species is dying out. Let 0 be the part of the level set h D h0 that is the curve
with positive slope. If the initial state .x0; y0/ lies above and to the left of 0, which
species will die out? What happens if .x0; y0/ lies below and to the right of 0?
What happens if .x0; y0/ lies on 0? What is the realistic probability that the system
tends toward equilibrium?

g) Now set a D b D c D 1, and let d vary from :1 to 1. When d is small,
the x species has a small effect on the growth of the y species. Explain in terms of
the species interaction why the equilibrium point .1=d; 1/ moves to the right as d
decreases.

h) The predator–prey relationship is modeled (with x the prey and y the
predator) by the following system of differential equations:

dx

dt
D ax � bxy

dy

dt
D �cy C dxy:

Continue to assume that a; b; c; d are positive constants. The solution curves of
this system lie on the level curves of the function k.x; y/ D g.y/= f .x/. The point
.c=d; b=a/ is again an equilibrium point for this system and a critical point for k.
Investigate the level curves of k, add the appropriate vector field, and interpret the
results in terms of the predator–prey relationship.
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9
Multiple Integrals

Prepared mfiles used in this chapter

riemann simp2 simp3 trf

9.1 Double integrals over rectangles

The double integral of a function f .x; y/ over a rectangle R is usually approached
by placing a grid over the rectangle that divides R into subrectangles Ri; j . We then
pick a point pi; j in each subrectangle Ri; j and approximate f on each Ri; j by the
constant value f .pi; j /. The Riemann sum corresponding to this subdivision and to
this choice of pi; j is

S. f / D
X
i; j

f .pi; j /A.Ri; j / (9.1)

where A.Ri; j / is the area of each subrectangle. When f .x; y/ is a continuous
function on R, these Riemann sums converge to a limit as the subdivisions become
finer and finer. This limit is defined to be the double integral of f over R, and we
write Z Z

R
f .x; y/ d A D lim

1!0
S. f /:

Here 1 is the maximum diagonal over all the subrectangles Ri; j .

mfile riemann

The mfile riemann.m computes Riemann sums and provides a graphical display of
the approximating piecewise constant function. The call is riemann(f, corners),

169
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where f is a function of two variables given as an inline function. When f is given
in an mfile, the call is riemann(’f’, corners). As usual, corners is a vector
[a; b; c; d], where the rectangle R is defined as R D f.x; y/ : a � x � b; c � y �
dg. We will divide the interval [a; b] into n subintervals, and the interval [c; d] into
m subintervals. When the call is made, the user chooses m and n and the Riemann
sum is computed, using as a choice for pi; j the center of each subrectangle Ri; j .
Here are the sequence of commands in riemann.m after a; b; c; d, m, and n are
entered:

dx = (b-a)/n; dy = (d-c)/m;
% calculate the center points of the subrectangles
p = a +.5*dx: dx : b-.5*dx;
q = c +.5*dy: dy : d-.5*dy;
[P,Q] = meshgrid(p,q);
Z = f(P,Q);

disp(’ Approximate value of the integral ’)
integral = sum(sum(Z))*dx*dy;

The Riemann sum is computed in the last line using the command sum. When sum

is applied to a matrix, the sum of each column is computed and stored in a row
vector. When sum is applied to a vector, row, or column, the elements of the vector
are summed.

A third argument may be added to the call for riemann. When the call is
riemann(f,corners, graph), a graph of the approximating step function is
displayed. graph can be any number, such as 1 or 2.

Example 9.1

Let f .x; y/ D x3 C x C y and let R D f1 � x � 2; 0 � y � 3g.
>> f = inline(’x.^3 + x + y’, ’x’, ’y’)
>> corners = [1 2 0 3];
>> riemann(f, corners, 1)
enter the number of subdivisions in x and y

directions as [n m] [10 20]
Approximate value of the integral
ans =

20.2387

The result is displayed in Figure 9.1. The limiting value of the Riemann sums isR R
R.x

3 C x C y/ dx dy D 20:25.
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Figure 9.1 Step function approximation to the graph of f .x; y/ D x3 C x C y over the rectangle
R D f.x; y/ : 1 � x � 2; 0 � y � 3g.

Symbolic Integration

Double integrals over a rectangle can be expressed as iterated integrals,Z Z
f .x; y/ d A D

Z b

a

Z d

c
f .x; y/ dy dx D

Z d

c

Z b

a
f .x; y/ dx dy:

In this form we can use the symbolic integrator of MATLAB to compute first the
inner integral and then the outer integral.

Recall from Section 1.6 that the command for the symbolic integrator is
int(g,a,b) when g D g.x/ is a function of one variable. When we have a function
of two variables, such as f .x; y/, the integration command must specify which is
the variable of integration. Thus if we wish to integrate with respect to y from c
to d, the command is G = int(f,y,c,d). This will produce a symbolic function
G.x/ D R d

c f .x; y/ dy, which can now be integrated from a to b with int(G,a,b).
The two commands can be combined as int(int(f,y,c,d),a,b).

Example 9.2

Let f .x; y/ D x3 C x C y as in Example 9.1.

>> syms x y
>> f = x^3 +x+y
>> int(int(f,y,0,3), 1,2)
ans =
81/4
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If we wish to keep the limits of integration as parameters in the answer, we
declare a; b; c; d as symbolic variables and then repeat the preceding sequence of
commands:

>> syms x y a b c d
>> f = x^3+x+y
>> int(int(f,y,c,d),a,b)
ans =
1/4*b^4*d+1/2*b^2*d+1/2*d^2*b-1/4*b^4*c

-1/2*b^2*c-1/2*c^2*b-1/4*a^4*d- 1/2*a^2*d
-1/2*d^2*a+1/4*a^4*c+1/2*a^2*c+1/2*c^2*a

Numerical methods

The numerical integration scheme used in the mfile riemann.m is a two-dimensional
analog of the one-dimensional midpoint rule. It is natural to look for two-dimensional
analogs of other rules, such as Simpson’s rule. Recall that for Simpson’s rule in
one dimension, we subdivide the interval [a; b] into n equal subintervals of length
h D .b � a/=n, with n even. ThenZ b

a
g.x/ dx D Sn.g/C En.g/

where

Sn.g/ D h

3
[g.x1/C 4g.x2/C 2g.x3/C Ð Ð Ð C 2g.xn�1/C 4g.xn/C g.xnC1/] (9.2)

and the error

En.g/ D � 1

180
.b � a/h4g.4/.¾/ (9.3)

for some point ¾ in the interval [a; b]. Simpson’s rule is derived by fitting parabolas
through the points .xi ; g.xi //. We would expect Simpson’s rule to be exact on
quadratic polynomials, but in fact it is exact on cubics, because if g is a cubic, then
g.4/ D 0 and the error term is zero. The presence of h4 in the error term means that

E2n.g/ ³ 1

16
En.g/:

Simpson’s rule is very easy to implement in MATLAB. We could use a for loop
with summation, but MATLAB is faster when for loops are avoided. We recognize
that the rule can be expressed as �

h

3

�
g Ð s;
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where s is the Simpson vector, s D [1; 4; 2; : : : ; 2; 4; 1], and g D [g.x1/; : : : ;

g.xnC1/]. A short script mfile to implement Simpson’s rule is
x = linspace(a,b,n+1);
svec = 2*ones(1,n+1);
svec(2:2:n) = 4*ones(1,n/2);
svec(1) = 1; svec(n+1) = 1;
integral = dot(g(x),svec)*(b-a)/(3*n);

Here we assume that a; b, and n have been entered and that g is given in an mfile or
as an inline function that is array-smart. The Simpson vector, svec, is constructed
by taking a vector that is all 20s and setting the even indexed components to 4.
Finally the first and last components are set to 1.

For future use, we write a short function mfile that yields the Simpson vector for
n subintervals:

function s = simpvec(n)
s = 2*ones(1,n+1);
s(2:2:n) = 4*ones(1,n/2);
s(1) = 1; s(n+1) =1;

What is the two-dimensional analog of Simpson’s rule? Write the double integral
over the rectangle R as an iterated integral,Z Z

R
f .x; y/ d A D

Z d

c
F.y/ dy

where

F.y/ D
Z b

a
f .x; y/ dx :

Now divide the interval [a; b] into n (n must be even) equal subintervals, with
points a D x1 < x2 < Ð Ð Ð < xnC1 D b. We denote the Simpson vector in the x
direction as

sx D [1; 4; 2; : : : ; 2; 4; 1] D [sx
1 ; sx

2 ; : : : s
x
n ; sx

nC1]:

Then for each y, the Simpson’s rule estimate for F.y/ is

F.y/ ³ b � a

3n

nC1X
jD1

sx
j f .xj ; y/: (9.4)

Similarly, we divide the interval [c; d] into m (m must be even) equal subintervals
c < y1 < y2 < Ð Ð Ð < ymC1 D d. The Simpson vector in the y direction is

sy D [1; 4; 2; : : : ; 2; 4; 1] D [s y
1 ; s y

2 ; : : : s
y
mC1]:
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Then the Simpson’s rule estimate for the integral of F is

Z d

c
F.y/ dy ³ d � c

3m

mC1X
iD1

s y
i F.yi /: (9.5)

For each i , we replace F.yi / in the right side of Eq. (9.5) with the Simpson estimate
(9.4). Making this replacement, we haveZ Z

R
f .x; y/ d A D

Z d

c
F.y/ dy ³ .b � a/.d � c/

9mn

X
i; j

sx
j s y

i f .xj ; yi /:

The .m C 1/ð .n C 1/ matrix S with Si; j D sx
j s y

i is the Simpson matrix.
The two-dimensional version of Simpson’s rule is also quite easy to implement

in MATLAB using the array operations. Assuming a; b; c; d, m, and n have been
entered and that f .x; y/ is given in an mfile or as an inline function, the script is:

x = linspace(a,b,n+1);
y = linspace(c,d,m+1);
[X,Y] = meshgrid(x,y);

% Construct the Simpson vector in x.
svecx = simpvec(n);

% Construct the Simpson vector in y
svecy = simpvec(m);

% Construct the Simpson matrix
S = svecy’*svecx;
integral = sum(sum(S.*f(X,Y)))*(b-a)*(d-c)/(9*m*n);

The Simpson matrix is constructed with the operation S = svecy’.*svecx, which
is the product of the .m C 1/ð 1 vector svecy’ and the 1 ð .n C 1/ vector svecx.
f(X,Y) is the .m C1/ð.n C1/ matrix with elements f .xj ; yi /. The Simpson matrix
for n D 6;m D 4 is the 5 ð 7 matrix

S D

2
66664

1 4 2 4 2 4 1
4 16 8 16 8 16 4
2 8 4 8 4 8 2
4 16 8 16 8 16 4
1 4 2 4 2 4 1

3
77775 :
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mfile simp2.m

The mfile simp2.m is a function mfile with the call simp2(f,corners) when f is
an inline function and simp2(’f’,corners) when f is given in an mfile. As in the
mfile riemann.m, corners is the vector [a; b; c; d] that determines the rectangle
R D fa � x � b; c � y � dg. After the call the program pauses to let you enter
the number of subdivisions n in the x direction and m in the y direction.

Example 9.3

Let f .x; y/ D xy2 C cos.x C y/2 and the rectangle R D [1; 2] ð [0; 3].
>> f = inline(’x.*y.^2 + cos(x+y).^2’, ’x’, ’y’)
>> corners = [1 2 0 3]
>> s1 = simp2(f, corners)
enter the number of subdivisions in

x and y directions as [n m] [10 20]
Approximate value of the

integral using Simpson’s rule
s1 =
15.05701244123409

The numerical approximation produced by any numerical method is useless and
can be quite misleading if we do not have some estimate of the error in this approx-
imation. It may seem impossible to obtain such an estimate since we usually do not
know the exact result. However, in the case of Simpson’s rule we can make an error
estimate easily. Double the number of subdivisions in each direction, and compute
the approximation of the integral again. The difference in the two numerical calcu-
lations is an estimate of the error made in the first calculation. This estimate works
remarkably well, even for functions where the derivatives have singularities, e.g.,
f .x/ D p

x . However, it is not to be trusted when f itself has singularities.
In the preceding example, we apply Simpson’s rule again with n D 20 and

m D 40. The result is
>> s2 = simp2(f, corners)
enter the number of subdivisions in

x and y directions as [n,m] [20 40]
Approximate value of the

integral using Simpson’s rule
s2 =
15.05700953134787

>> s1 - s2
= 2.909886214652602e-06

Hence, the error in the first calculation is on the order of 3 ð 10�6.
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MATLAB integrators

MATLAB has its own built-in integration routines. The one-dimensional routines
are quad and quad8. They use methods similar to Simpson’s rule but apply them
in a more sophisticated manner called adaptive quadrature. From Eq. (9.3) for the
error in Simpson’s rule, we see that a naive, straightforward way to reduce the error
is to refine the mesh uniformly over the interval [a; b] by cutting h in half, i.e., by
doubling n. However, quad and quad8 are more efficient, in that they refine the
mesh only where the function is changing more rapidly. The calls for quad and
quad8 are quad(f,a,b) and quad8(f,a,b) when f is given as an inline function
and use single quotes when f is given in an mfile. The interval of integration
is [a; b]. These integrators estimate the error in their results and, unless specified
otherwise, continue to refine the mesh adaptively until the relative error is less than
10�3. A different tolerance for the relative error may be specified by adding a fourth
argument to the call, quad(f,a,b,tol), where tol is the desired tolerance. For
example, we could take tol = 10^(-4).

It is possible to iterate these routines to evaluate double integrals, but there are
some delicate points related to passing the variables of integration to the functions
involved. Probably for this reason, there is a built-in double integrator, dblquad.
The call for dblquad is

dblquad(f,a,b,c,d)

Here it is assumed that the “inner” integration is done in x , a � x � b, and that the
second, “outer” integration is done in y, c � y � d for f .x; y/. If it is desired to
do the integration in y first, the call will be

dblquad(g,c,d,a,b)

where g.y; x/ D f .x; y/. Note the reversal of x; y.
We have introduced our own double integrator simp2 for two reasons. First,

Simpson’s rule is easy to understand in several variables. Second, dblquad appears
to find possible singularities in the integrand when there are none, and sometimes
exits before achieving the desired error tolerance.

Example 9.4

We shall integrate the function f .x; y/ D .4=³/ exp.�x2 � y2/ over the rectangle
R D f0 � x � :5; 0 � y � 1g. The result can be expressed in terms of the error
function:

erf.x/ D 2p
³

Z x

0
e�s2

ds:
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We haveZ Z
R

f .x; y/d A.x; y/
4

³

Z :5

0
e�x2

dx
Z 1

0
e�y2

dy D erf.:5/erf.1/:

The following script estimates the integral, first using dblquad and then using
simp2. Finally, a more accurate estimate of the integral is obtained by using the
MATLAB routine for evaluating the error function, erf:

>> f = inline(’exp(-x.^2 -y.^2)*(4/pi)’, ’x’, ’y’)
>> dblquad(f,0,.5, 0,1)
ans =
0.43862714228015

>> corners = [0 0.5 0 1]
>> simp2(f,corners)
enter the number of subdivisions [n m] [10 20]
ans =
0.43862581863650

>> erf(.5)*erf(1)
ans =
0.43862565976328

9.2 Nonrectangular regions of integration

The double integral over a rectangle was defined as the limit of the Riemann sums
(9.1), when this limit exists. How can this concept be adapted to a set G that is not
a rectangle?

Let f .x; y/ be a function that we wish to integrate over the set G. We define the
restriction of f to G as

Qf .x; y/ D
²

f .x; y/ for .x; y/ 2 G
0 for .x; y/ =2 G

:

Now let R be a rectangle that contains G. For example, in Figure 9.2, the rectangle
R D f�1:5 � x � 1:5; �1 � y � :5g. Compute the Riemann sums of Qf over R. If
the boundary of G is piecewise smooth and f is continuous on G, it can be shown
that these Riemann sums converge, and we define the double integral

R R
G f dx dy

as the limit of these sums. See Figure 9.2.
Because of the discontinuity of the function at the boundary of G, the direct

Riemann sum approach will require a very fine mesh on the boundary to get an
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Figure 9.2 Graph of f .x; y/ D cos.x/ exp.�y2/ restricted to the ellipse G D fx2 C 2y C 4y2 � 1g.
G is contained in the rectangle R D fjx j � 1:5; �1 � y � :5g.

accurate result. An adaptive two-dimensional method would be needed that would
use a fine mesh on the boundary and a coarser mesh in the interior of G. This can
be difficult to implement.

In some cases, the geometry of a nonrectangular region G allows
R R

G f d A to
be computed as an iterated integral. For instance, if G is vertically simple, G D
f.x; y/ : c.x/ � y � d.x/; a � x � bg, we can writeZ Z

G
f d A D

Z b

a

Z d.x/

c.x/
f .x; y/ dy dx :

We may be able to use the symbolic integrators to calculate such an integral.

Example 9.5

The set G in Figure 9.3 is described as

G D f.x; y/ : x.3 � x/ � y � sin.x/; 0 � x � 2:4g:
Let f .x; y/ D xy. We can compute

R R
G f .x; y/ d A as follows:

>> syms x y
>> f = x*y
>> F = int(f,y,x*(x-3), sin(x))

F =
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Figure 9.3 Vertically simple region.

1/2*sin(x)^2*x-1/2*x^5+3*x^4-9/2*x^3

>> int(F,0,2.4)
ans =
-3/5*cos(12/5)*sin(12/5)-74286/15625+1/8*sin(12/5)^2
>> double(ans)
ans =
-4.3894

In many cases double integrals cannot be done symbolically, and we must use
numerical methods. The iterated form of the integral over a nonrectangular region
is often not the best way to make a numerical estimate of the integral. A better
way is to make a change of coordinates so that the set becomes a rectangle. Then
we can apply the numerical methods developed for rectangles. We must postpone
this treatment until we determine how the area of a set is affected by a change of
variable.

9.3 Change of variable in double integrals

Affine transformations of the plane

A pair of functions x D f .u; v/ and y D g.u; v/ takes a point with coordinates
.u; v/ and maps it into the point with coordinates .x; y/ D . f .u; v/; g.u; v//. We
can think of this operation as a mapping of one copy of the plane, with coordinates
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u; v, into or onto another copy of the plane, with coordinates x; y. The mapping
.x; y/ D T .u; v/ D . f .u; v/; g.u; v// is called a transformation. For example,
T .u; v/ D .uv; u C v/.

An important class of these transformations are the affine transformations. They
have the form

x D f .u; v/ D Au C Bv Cw1 (9.6)

y D g.u; v/ D Cu C Dv Cw2:

We write the transformation more compactly as

.x; y/ D T .u; v/

and note that T .0; 0/ D w D .w1; w2/. When .w1; w2/ D .0; 0/, T takes .0; 0/ into
.0; 0/ and is said to be a linear transformation.

It is not hard to show that an affine transformation takes a parallelogram into a
parallelogram. Furthermore, there is a simple formula that describes how the area
is changed. If Q is a parallelogram in u; v space and P is the image of Q under
the affine transformation T , then

area.P/ D jAD � BC j area.Q/: (9.7)

We shall see later that this rule for the change of area of a parallelogram under an
affine transformation works for all sets having area.

General transformations of the plane

Now we ask how a more general transformation changes area. We concentrate on
the case of a rectangle R D fa � x � b; c � y � dg. The transformation
T .u; v/ D . f .u; v/; g.u; v// will map R into a set G with possibly curvilinear
boundaries.

In Figure 9.4 the square R D [1; 2] ð [0; 1] is mapped by

T .u; v/ D .u2 � v2; 2uv/

into the curvilinear figure on the right.
We can approximate the image set G by a parallelogram P that is the image of

R under an affine transformation QT . The affine transformation QT that approximates
T is obtained by using the tangent plane approximations for f and g at a point
.u0; v0/ 2 R:

f .u; v/ ³ f .u0; v0/C fu.u0; v0/.u � u0/C fv.u0; v0/.v � v0/ (9.8)

g.u; v/ ³ g.u0; v0/C gu.u0; v0/.u � u0/C gv.u0; v0/.v � v0/: (9.9)
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Figure 9.4 Square R D [1; 2] ð [0; 1] on the left, transformed by T .u; v/ D .u2 � v2; 2uv/. Image
set G is on the right.

Recall from Chapter 7 that the Jacobian matrix of a pair of functions f .u; v/ and
g.u; v/ is

J .u; v/ D
�

fu.u; v/ fv.u; v/
gu.u; v/ gv.u; v/

½
:

Approximations (9.8) and (9.9) can be written

T .u; v/ D . f .u; v/; g.u; v// ³ T .u0; v0/C J .u0; v0/

�
u � u0
v � v0

½
:

In the right-hand side the matrix product,

J .u0; v0/

�
u � u0
v � v0

½
D

�
fu.u0; v0/.u � u0/C fv.u0; v0/.v � v0/

gu.u0; v0/.u � u0/C gv.u0; v0/.v � v0/

½
:
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The approximating affine transformation, with A D fu.u0; v0/; B D fv.u0; v0/,
C D gu.u0; v0/; D D gv.u0; v0/, is therefore

QT .u; v/ D T .u0; v0/C J .u0; v0/

�
u � u0
v � v0

½
: (9.10)

The point .u0; v0/ may be taken anywhere in the rectangle R. We shall make the
choice of the midpoint .u0; v0/ D ..a C b/=2; .c C d/=2/. The multiplication factor
of the area of the affine approximation is

jAD � BC j D j det J ..a C b/=2; .c C d/=2/j:

We shall abbreviate this determinant expression by writing simply jJ .u; v/j for
j det J .u; v/j.

Thus using Eq. (9.7), the area of the parallelogram P , which is the image of the
rectangle R under QT , is

area.P/ D jJ ..a C b/=2; .c C d/=2/j.b � a/.d � c/:

To get a better approximation of the area of G, we subdivide the rectangle R
into subrectangles Ri; j and make an affine approximation QTi; j on each Ri; j . These
affine approximations produce parallelograms Pi; j D QTi; j .Ri; j /. As the number of
subrectangles increases, the union of the parallelograms Pi; j provides a better and
better approximation to the image set G. The sum of the areas of the Pi; j is also
an approximation to the area of G. In fact we have

Z Z
G

d A.x; y/ D A.G/ ³
X
i; j

A.Pi; j /

D
X
i; j

jJ .ui ; vj /jA.Ri; j /

where we have chosen .ui ; vj / to be the midpoints of the subrectangles Ri; j . In the
limit, as the diameter of the rectangles Ri; j tends to zero, we obtain

area.G/ D
Z Z

G
d A.x; y/ D

Z Z
R

jJ .u; v/j d A.u; v/: (9.11)
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mfile trf

The mfile trf.m displays this approximation process. It transforms a rectangle into
a curvilinear set G and makes an approximation to the area of G by adding the areas
of the approximating parallelograms. The user must provide functions f .u; v/ and
g.u; v/ in mfiles or as inline functions. These functions define the transformation. A
rectangle R is defined by the usual vector corners. The call is trf(f,g,corners)
when f and g are given as inline functions and trf(’f’, ’g’, corners) when
f and g are given in mfiles. The user must then enter the number of subdivisions
in each direction. The rectangle R is displayed on the left of the figure, and the
curvilinear set G is displayed on the right with the images of the subrectangles. To
see the approximating parallelograms superimposed on G, the user then hits return.
The sum of the areas of the rectangles is displayed on the screen.

Example 9.6

We use the same transformation used to make Figure 9.4,

T .u; v/ D . f .u; v/; g.u; v// D .u2 � v2; 2uv/;

and the rectangle R D [1; 2] ð [0; 1].

>> f = inline(’u.^2 - v.^2’, ’u’, ’v’)
>> g = inline(’2*u.*v’, ’u’, ’v’)
>> corners = [1 2 0 1]
>> trf(f,g,corners)
enter the number of subdivisions [m n] [4 4]

(hit return)
A =

10.625

The result is shown in Figure 9.5.
Formula (9.11) extends to the integral of a function h.x; y/ over the set G. The

general formula becomesZ Z
G

h.x; y/ d A.x; y/ D
Z Z

R

Qh.u; v/jJ .u; v/j d A.u; v/: (9.12)

Here the function Qh.u; v/ D h. f .u; v/; g.u; v// is the composition of the transfor-
mation T and the function h. We call Qh the pullback of h to the rectangle R.
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Figure 9.5 Approximating parallelograms produced by affine transformations on each subrectangle,
m D n D 4.

Change-of-variable formula (9.12) is valid in the more general situation when G
is the image under a transformation T of another curvilinear set QG. In this case we
would say that QG is the pullback of G under the transformation T .

A great advantage of finding a pullback of G that is a rectangle R is that we can
apply the numerical means of estimating integrals over rectangles to the integral of
Qh over R.

Vertically simple and horizontally simple regions G

We return to the question of numerical estimation of integrals over vertically or
horizontally simple regions. Recall that if G is a vertically simple region, we can
describe G as

G D f.x; y/ : c.x/ � y � d.x/; a � x � bg:
Let R be the rectangle R D f.u; v/ : a � u � b; 0 � v � 1g. The simple
transformation

T .u; v/ D . f .u; v/; g.u; v// D .u; .1 � v/c.u/C vd.u//

maps the rectangle R onto the set G. Notice that the lower edge of R, where v D 0,
is mapped onto the curve y D c.x/ and that the upper edge, v D 1, is mapped onto
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the curve y D d.x/. The Jacobian matrix of this transformation is

J .u; v/ D
�

1 0
.1 � v/c0.u/C vd 0.u/ d.u/� c.u/

½

and the Jacobian determinant is

jJ .u; v/j D jd.u/� c.u/j:
Hence the integral over G becomesZ Z

G
h.x; y/ d A .x; y/ D

Z Z
R

Qh.u; v/jd.u/� c.u/jdv du

where Qh.u; v/ D h.u; .1 � v/c.u/C vd.u//.

Example 9.7

Let h.x; y/ D cos2.x/ exp.�xy/, and let

G D f.x; y/ : x.x � 3/ � y � sin.x/; 0 � x � ³=2g:
Then Z Z

G
h.x; y/ d A.x; y/ D

Z ³=2

0

Z 1

0

Qh.u; v/j sin u � u.u � 3/jdv du

where

Qh.u; v/ D h.u; .1 � v/c.u/C vd.u//

D cos2.u/e�u..1�v/u.u�3/Cv sin.u//

We estimate this integral with the mfile simp2.m. First we write an mfile for the
integrand q.u; v/ � Qh.u; v/.d.u/� c.u//:

function z = q(u,v)
x = u;
y = (1-v).*u.*(u-3) + v.*sin(u);
z = cos(x).^2 .*exp(-x.*y).*abs(sin(u) - u.*(u-3));

. . . . . . . . . . . . . . . . . . . . . . . . . . .

>> format long
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>> corners = [0 pi/2 0 1]
>> simp2(’q’,corners)
enter the number of subdivisions [n m] [30 20]

Approximate value of the integral
using Simpson’s rule

ans =
2.03220348853753

To get an estimate of the error in this result, we run Simpson’s rule again, this time
doubling the number of subdivisions in each direction:

>> simp2(’q’, corners)
enter the number of subdivisions [n m] [60 40]

Approximate value of the integral
using Simpson’s rule

ans =
2.03219215873978

The difference in the results is about 10�5, which means that the absolute value of
the error in the first result is on the order of 10�5.

A similar change of variables to a rectangle can be made for regions that are
horizontally simple.

Polar coordinates

An important special case of the change-of-variable formula is that of polar coordi-
nates. We suppose that a set G in the xy plane is the image under the transformation

x D r cos �; y D r sin �

of some rectangle R in the r; � plane. The Jacobian matrix of this transformation is

J .r; �/ D
�

xr x�
yr y�

½
D

�
cos � �r sin �
sin � r cos �

½

and
j det J .r; �/j D r..cos �/2 C .sin �/2/ D r:

Thus for a set G, which in polar coordinates is described by a � r � b and
c � � � d, we haveZ Z

G
h.x; y/ d A.x; y/ D

Z d

c

Z b

a
h.r cos �; r sin �/ r dr d�:
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More generally, if G is described in polar coordinates as

QG D f.r; �/ : a.�/ � r � b.�/; c � � � dg;
then Z Z

G
h.x; y/ d A.x; y/ D

Z Z
QG

h.r cos �; r sin �/ r dr d�:

This integral may in turn be pulled back to the rectangle R D fc � u � d; 0 � v �
1g with the change of variable

r D r.u; v/ D .1 � v/a.u/C vb.u/; � D u:

This yieldsZ Z
G

h.x; y/ d A.x; y/ D
Z Z

R

Qh.u; v/r.u; v/jb.u/� a.u/j d A.u; v/

where
Qh.u; v/ D h.r.u; v/ cos u; r.u; v/ sin u/:

Example 9.8

The set G bounded by a cardiod curve is

G D f.r; �/ : 0 � r � 1 C sin �; 0 � � � 2³g:
Let h.x; y/ D exp.�x2 C y/. First we put in polar coordinates. We haveZ Z

G
h.x; y/ d A.x; y/ D

Z 2³

0

Z 1Csin �

0
h.r cos �; r sin �/ r dr d�:

Then we make a second change of variable,

r D r.u; v/ D v.1 C sin u/; � D u:

where 0 � u � 2³ , and 0 � v � 1. Finally, we haveZ Z
G

h.x; y/ d A.x; y/ D
Z 1

0

Z 2³

0

Qh.u; v/r.u; v/.1 C sin u/ du dv:

The double pullback Qh.u; v/ is defined by the compositions

Qh D exp.�x2 C y/ D exp.�.r.u; v/ cos u/2 C r.u; v/ sin u/:

We estimate this integral using the mfile simp2. Let

q.u; v/ D Qh.u; v/r.u; v/.1 C sin u/:
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function z = q(u,v)
r = v.*(1 + sin(u));
x = r.*cos(u); y = r.*sin(u);
z = exp(-x.^2 + y).*r.*(1 + sin(u));

. . . . . . . . . . . . . . . . . . . . . . . . .

>> corners = [0 2*pi 0 1]
>> simp2(’q’, corners)
enter the number of subdivisions [n m] [120 20]
ans =
9.17859917245639

>> simp2(’q’, corners)
enter the number of subdivisions [n m] [240 40]
ans =
9.17857577346632

When m and n are doubled, the results differ by 2:3 ð 10�5.

9.4 Triple integrals

The integral
R R R

R f dV , where now R is a rectangular solid in x; y; z space, is
defined in the same way as the limit of Riemann sums. These triple integrals can
be represented as iterated integrals. Suppose the solid R D f.x; y; z/ : a1 � x �
a2; b1 � y � b2; c1 � z � c2g. Then

Z Z Z
R

f .x; y; z/ dV D
Z a2

a1

Z b2

b1

Z c2

c1

f .x; y; z/ dz dy dx

D
Z b2

b1

Z a2

a1

Z c2

c1

f .x; y; z/ dz dx dy

D
Z c2

c1

Z b2

b1

Z a2

a1

f .x; y; z/ dx dy dz

Altogether there are six different orders in which we may do the triple integral.
Once written as an iterated integral, we may apply the symbolic integrator int

three times and hope that the integral can be done this way. If not, we can use a
three-dimensional version of Simpson’s rule, which is constructed in the same way
as the two-dimensional rule. It is implemented in the mfile simp3.
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mfile simp3.m

The call is simp3(f,corners), where f is given in an mfile or as an inline function.
Here, corners is a six-vector of the corner coordinates of the rectangular solid. After
the call, the user is asked to specify the number or subdivisions in each direction
as a three-vector [n m p].

Example 9.9

Let the solid be the unit cube, with corner at the origin, R D f0 � x; y; z � 1g, and
let f .x; y; z/ D .y C z/ sin.³.x 2 C y2//. First we do the integral using the symbolic
integrator three times. We then do the integral using the mfile simp3.

>> syms x y z
>> ff = (y+z)*sin(pi*(x^2 +y^2))
>> int(int(int(ff, x,0,1), y,0,1),0,1)
ans =
1/2*FresnelC(2^(1/2))*(FresnelS(2^(1/2))*pi+2^(1/2))/pi
>> double(ans)
ans =
0.30784938470884

>> f =
inline(’(y+z).*sin(pi*(x.^2 +y.^2))’, ’x’, ’y’, ’z’)
>> corners = [0 1 0 1 0 1]
>> simp3(f, corners)
enter the number of subdivisions [n m p] [20 20 20]
ans =
0.30786314294381

>> simp3(f, corners)
enter the number of subdivisions [n m p] [40 40 40]
ans =
0.30785023200358

The result for the symbolic calculation is given in terms of the following Fresnel
functions:

FresnelC.x/ D
r

2

³

Z p
x

0
cos.t2/ dt

FresnelS.x/ D
r

2

³

Z p
x

0
sin.t2/ dt:

The three answers differ by an amount on the order of 10�6.
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Integration over nonrectangular regions is accomplished by using a transformation
T to pull back the region and function to a rectangular set, as in the two-dimensional
setting. Let the transformation

.x; y; z/ D T .u; v;w/ D .Þ.u; v;w/; þ.u; v;w/; � .u; v;w//

map the solid rectangle R onto the set G in x; y; z space. The Jacobian matrix of
T is

J .u; v;w/ D
2
4 Þu Þv Þw
þu þv þw
�u �v �w

3
5 :

We let jJ .u; v;w/j stand for the absolute value of det.J .u; v;w//. The formula for
change of variable isZ Z Z

G
f .x; y; z/ dV .x; y; z/

D
Z Z Z

R
f .Þ.u; v;w/; þ.u; v;w/; � .u; v;w//jJ .u; v;w/j dV .u; v;w/.

(9.13)

Spherical coordinates

Integration in regions described in spherical coordinates uses Eq. (9.13). Here the
change of variable is

.x; y; z/ D T .r; �; �/;

where

x D r cos � sin�

y D r sin � sin�

z D r cos�:

The radial distance is r D
p

x2 C y2 C z2, the angle in the xy plane is � , and the
angle from the north pole is �. The Jacobian matrix for this T is

J .r; �; �/ D
2
4 cos � sin� �r sin � sin� r cos � cos�

sin � sin� r cos � sin� r sin � cos�
cos� 0 �r sin�

3
5 :
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The determinant of the Jacobian matrix is jJ .r; �; �/j D r2 sin�, so Eq. (9.13)
becomesZ Z Z

G
f .x; y; z/dV .x; y; z/ D

Z Z Z
R

Qf .r; �; �/r2 sin� dr d� d�; (9.14)

where the pullback

Qf .r; �; �/ D f .r cos � sin�; r sin � sin�; r cos�/:

Example 9.10

Let G be the region between the spheres of radius r D 2 and r D 4, centered
at the origin. We suppose the region is filled with a material of variable density
².x; y; z/ D 1 C cos.x/. What is the mass of the region, and what is the average
density? The mass is given byZ Z Z

G
².x; y; z/ dV .x; y; z/:

The region between the spheres is described by 2 � r � 4, 0 � � � 2³ , and
0 � � � ³ . Using the change-of-variable formula (9.14), we haveZ Z Z

G
².x; y; z/ dV .x; y; z/

D
Z ³

0

Z 2³

0

Z 4

2
[1 C cos.r cos � sin�/]r2 sin� dr d� d�:

We estimate this integral using the mfile simp3:

function out = rrho(r,theta,phi)
x = r.*cos(theta).*sin(phi);
out = (1+cos(x)).*r.^2.*sin(phi);

. . . . . . . . . . . . . . . .

>> corners = [2 4 0 2*pi 0 pi]

>> simp3(’rrho’, corners)
enter the number of subdivisions [n m p] [20 60 30]
ans =
2.360351669395974e+02
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>> simp3(’rrho’, corners)
enter the number of subdivisions [m n p] [40 120 60]
ans =
2.360324035495266e+02

The difference in the answers is on the order of 3 ð 10�3. We conclude that the
absolute error in the first answer is on this order. The relative error is on the order
of 3 ð 10�3=200 D 1:5 ð 10�5. The average density is found by dividing the mass
by the volume, .4=3/³.43 � 23/.

Exercises

1. a) Let R be the rectangle [0; 2] ð [0; 2] and f .x; y/ D sin.x C y/. Use the
mfile riemann with m D n D 4, m = n = 8;m D n D 16, and m D n D 32,
and each time use the option to show the graph of the step function approxima-
tion.

b) Calculate the exact result by hand. What is the difference between the
Riemann sum with m D n D 32 and the exact result?

2. a) Let G be the set f.x; y/ : y > x2=2g\ R, where R is the square of Exercise 1.
We shall try the direct Riemann sum approach to estimate the integralZ Z

G
sin.x C y/ d A.x; y/:

The restricted function Qf is

Qf .x; y/ D
²

sin.x C y/ for y > x2=2
0 for y < x2=2

The function mfile for Qf is

function z = ftil(x,y)
z = (y >.5*x.^2).* sin(x+y);

Use the mfile riemann on Qf with m D n D 50.
b) Now evaluate the integral as an iterated integral

Z Z
G

sin.x C y/ d A.x; y/ D
Z 2

0

Z 2

x2=2
sin.x C y/ dy dx
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using the symbolic integrator. The answer is given in terms of the Fresnel functions.
Evaluate the answer in double precision. What is the difference between this answer
and the answer in part a)? The evaluation in terms of Fresnel integrals is more
accurate and may be taken as the “exact answer.”

3. Recall that the trapezoid rule in one dimension is ✯

Tn. f / D
�

b � a

2n

�
[ f .x1/C 2 f .x2/C Ð Ð Ð C 2 f .xn/C f .xnC1/]

and Z b

a
f .x/ dx D Tn. f /C En. f /:

Letting h D .b � a/=n, the error may be expressed as

En. f / D � 1

12
.b � a/h2 f 00.¾/

for some point ¾ 2 [a; b].
a) What is the two-dimensional version of the trapezoid rule on a rectangle

R D [a; b] ð [c; d]? How can this rule be interpreted on each subrectangle?
b) Let Tn;m be the two-dimensional trapezpoid rule, where n is the number

of subdivisions in the x direction and m is the number of subdivisions in the y
direction. Show that for a function of the form f .x; y/ D g.x/h.y/,

Tn;m. f / D Tn.g/Tm.h/:

c) For a function of the form f .x; y/ D g.x/h.y/, we know thatZ Z
R

f .x; y/ d A.x; y/ D
Z b

a
f .x/ dx

Z d

c
g.y/ dy:

Show that the error in the two-dimensional trapezoid method is

E D En.g/Tm.h/C Tn.g/Em.h/C En.g/Em.h/:

How should the error decrease when n and m are doubled?
d) Write a MATLAB script that implements the two-dimensional trapezoid rule

in the manner of the two-dimensional Simpson’s rule.
e) Try out your script on f .x; y/ D xCy2 on the unit square R D [0; 1]ð[0; 1].

Calculate the exact value of the integral by hand. Then calculate the actual error for
various choices of n and m. How does the error decrease when n and m are doubled?
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4. Let R be the rectangle [0; 2] ð [1; 4].
a) Let f .x; y/ D x cos.x2 C y/. Calculate the integral

R R
R f dA by hand to

get the exact value.
b) Use the code simp2 to estimate the integral with [n;m] D [40; 60]. Call the

result I1. Then estimate it again with [n;m] D [80; 120] and call the result I2. How
well does the difference jI1 � I2j estimate the error I1 � R R

R f d A ?

5. Let R be the rectangle [0; 5] ð [0; 5] and let f .x; y/ D exp.x C sin y/. Use
simp2 to estimate the integral

R R
R f d A, first with [n;m] D [50; 50] and then

with [n;m] D [100; 100]. Estimate the error in the first result. Finally use dblquad.
Compare the results.

6. A thin metal plate of constant density occupies the set G in the xy plane, where
G D f.x; y/ : 2x3 � 1 � y � 2.x � :5/2 C :5; 0 � x � 1g. The center of mass of
the plate has coordinates Nx; Ny where

Nx D
R R

G x d A.x; y/R R
G d A.x; y/

; Ny D
R R

G y d A.x; y/R R
G d A.x; y/

:

a) Graph the plate in the xy plane.
b) Use the symbolic integrator to find Nx; Ny.

7. Let the transformation T be given by x D f .u; v/ D exp.u/ cos v and y D
g.u; v/ D exp.u/ sin v. Let R be the rectangle f0 � u � 2; 0 � v � ³g.

a) Let G be the image of R under this transformation. Sketch the set G in the
xy plane. What is the area of G?

b) Now use the mfile trf.m on this problem, first with m D n D 2, then with
m D n D 4, and then with m D n D 8. Compare the area of the approximating
set of parallelograms with the exact answer of part a). How large must you choose
m; n to get within :15 of the exact answer?

8. Let the transformation T be given by x D f .u; v/ D uCv=2 and y D g.u; v/ D
v exp.u=2/. Let R be the rectangle f0 � u � 4; �1 � v � 1g.

a) Let G be the image of R under the transformation T . Sketch the set G in
the xy plane. Calculate its area exactly using the change-of-variable formula (9.11).

b) Now use the mfile trf.m on this problem, first with m D n D 2, then
m D n D 4, and finally m D n D 8. Compare the area of the approximating set of
parallelograms each time with the exact area found in part a). How large must you
choose m; n to get within :01 of the exact answer?

9. Find the volume of the portion of the ball x2 C y2 C z2 � 4 that lies above the
surface z D exp.x/.
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a) Set up as a double integral over the set G D fx2 C exp.2x/C y2 � 4g.
b) Find out what the boundary of the set G looks like by graphing y D g.x/ D

š
p

4 � x2 � exp.2x/ on the interval �2 � x � 1.
c) We can write the integral over G as an iterated integral for an appropriate

f as Z b

a

Z g.x/

�g.x/
f .x; y/ dy dx D 2

Z b

a

Z g.x/

0
f .x; y/ dy dx :

a and b are zeros of g. Use fzero and the function g.x/ to find a and b.
d) Make the change of variable x D u, y D v

p
4 � u2 � exp.2u/ to bring the

integral into the form

2
Z b

a

Z 1

0
q.u; v/ dv du:

e) Use simp2 first with m D n D 50 and then with m D n D 100. Estimate
the error in your first result.

10. Let G be the ellipsoid fx2 C y2=4 C z2=9 � 1g. Suppose that a material with
density ².x; y; z/ D exp.�x 2 � y2 � z2/ occupies this region.

a) Graph the body by graphing the functions z D š3
p

1 � x2 � y2=4 over
the set fx2 C y2=4 � 1g.

b) Find the mass of the body. First make the change of variable x D u; y D
2v; w D 3z to transform G into the unit ball. Then use spherical coordinates and
the mfile simp3.

11. This problem is a slight variation on a standard problem in multivariable
calculus. However, in this variation, the integral cannot be done analytically.

Find the volume of the region that is the intersection of the solid cylinder
f.x � 1/2 C y2 � 1=4g with the ball fx2 C y2 C z2 � 4g. Make a change of
variable Qx D x � 1 to move the cylinder to have as its axis of symmetry the z axis.
Use polar coordinates and then use simp2 to estimate the integral with an error on
the order of 10�6.

12. Consider a solid cylinder H of radius b < 2, aligned along the x axis,✯

H D f.x; y; z/ : y2 C z2 � b2g. Suppose this cylinder consists of a material with
density ².x; y; z/ D 1=.1 C x 2/.

a) Find the mass of the part of the cylinder in the interval jx j � 4. This can
be done by hand easily.

b) Now cut out a cylinder of radius a < b, with its axis of symmetry the z
axis. Let this set be denoted F D H \ fx2 C y2 � a2g. Graph the two cylinders for
the choice of parameters a D 1; b D 2.
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c) To find the mass of F , we must compute the integral
R R R

F ².x/dxdydz.
Do the z integration by hand, reducing the problem to that of evaluating a double
integral over the disk fx2 C y2 � b2g. Introduce polar coordinates, and then use
simp2 to estimate the value of this integral for the case a D 1; b D 2.

d) Now, to make the problem more interesting, suppose the smaller cylinder
has the line z D x; y D 0 as its axis of symmetry. Thus F D H \f.x � z/2 C2y2 D
2a2g. We want to compute the mass of F . To reduce this problem to that of part b),
set Qx D x�z and leave y and z unchanged. This change of variable maps the cylinder
fy2 Cz2 � b2g onto itself, but changes the density into Q². Qx; y; z/ D 1=.1C. Qx Cz/2/.
It also transforms the smaller-diameter cylinder into a cylinder with its axis of
symmetry the z axis but with elliptical cross section Qx 2 C2y2 D 2a2. Make a second
change of variable to map the smaller cylinder into a cylinder with a circular cross
section. Estimate the value of the integral using dblquad.

13. Let a circular helix be given by✯

p.t/ D .r cos t; r sin t; at/; 0 � t � 8³:

A tube of circular cross section of radius b < r follows the helix with the circular
cross sections perpendicular to the tangent vector of the helix. Think of a coiled
tube.

a) Make the following change of variable,

.u; v; t/ ! .x; y; z/ D p.t/C uN.t/C vB.t/;

where N.t/ D .� cos t;� sin t; 0/ is the principal normal at p.t/ and where B.t/ D
.a sin t;�a cos t; r/=

p
r2 C a2 is the binormal at p.t/. This change of variable pulls

back the coiled tube to the cylinder fu2 C v2 � b2; 0 � t � 8³g (cf. Exercise 10
of Chapter 6). Show that for this change of variable, jJ .u; v; t/j D .a2 C r.r C
u//=

p
r2 C a2.
b) Show that the volume of the coiled tube is 8³2b2

p
r2 C a2. This calculation

can be done easily by hand.
c) Now suppose that the coiled tube is filled with a liquid containing metallic

particles. A magnetic field is applied that affects the density of metal particles. It
becomes Ž.x; y; z/ D .x C 10/3=2. Neglecting the mass of the fluid in the tube,
calculate the mass of metal particles in the tube. Make the change of variable of
part a), and write the integral that must be calculated. Set r D 4; a D 1, and b D :5
and estimate the integral using simp3.

14. Find the volume of your dog.✯✯



10
Scalar Integrals Over Curves and

Surfaces

Prepared mfiles used in this chapter

simp2 tsurf gdome

10.1 Scalar integrals along curves

The integral of a scalar-valued function along a curve C arises in many contexts.
These integrals have the form Z

C
f ds;

where s is arc length and f is some function defined on the curve. The function f
may be a function of the arc length, or it may be a function of the coordinates of a
point on C .

Example 10.1

Suppose that the density of a curved wire depends on the arc length from one end
of the wire. Then the mass of the wire is given by the integral

m D
Z

C
².s/ ds D

Z L

0
².s/ ds;

where ².s/ is the linear density and L is the length of the curve.

197
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To find the coordinates of the center of mass of this piece of wire, we must
evaluate the integrals

Nx D 1

m

Z
C

x².s/ ds

Ny D 1

m

Z
C

y².s/ ds

Nz D 1

m

Z
C

z².s/ ds:

Let C be the semicircle of radius 2 in the upper half-plane, and suppose that the
density ².s/ D p

1 C s2, where the arc length is measured from the point .2; 0/.
The arc length of the semicircle is L D 2³ so that the mass is given by

m D
Z 2³

0

p
1 C s2 ds

This integral can be done by hand or symbolically.

>> syms s
>> density = sqrt(1+s^2)
>> int(density, 0, 2*pi)
1/2*pi*(1+pi^2)^(1/2)-1/2*log(-pi+(1+pi^2)^(1/2))
>> mass = double(ans)
mass =
21.2563

Now, to calculate the coordinates of the center of mass we parameterize C by

r.t/ D [2 cos.t/; 2 sin.t/; 0]; 0 � t � ³:

ds D jjr0.t/jjdt D 2dt:

Then s.t/ D 2t and ².s.t// D p
1 C 4t2. Since x D 2 cos.t/ on the curve, we have

Nx D .1=m/
Z ³

0
2 cos.t/

p
1 C 4t2 2dt:

This integral cannot be done symbolically, so we use quad8:

>> f = inline(’4*sqrt(1+4*t.^2).*cos(2*t)’)
>> xbar = (1/mass)*quad8(f,0, pi)
xbar =
0.1267
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10.2 Scalar integrals on surfaces

If the surface S is given as the graph of a continuously differentiable function
z D f .x; y/ over a set G, the formula for the surface area is

Area.S/ D
Z Z

G

q
1 C f 2

x C f 2
y d A.x; y/: (10.1)

If g.x; y; z/ is a function defined in a region in x; y; z space containing the piece
of surface over G, the integral of g over S is defined to beZ Z

G
g.x; y; f .x; y//

q
1 C f 2

x C f 2
y d A.x; y/: (10.2)

We often write the element of surface area as

d S D
q

1 C f 2
x C f 2

y d A.x; y/;

so we may write the scalar surface integral asZ Z
S

g.x; y; z/ d S:

Example 10.2

Let the surface S be given by z D f .x; y/ D sin.x C y2/ over the square R D
[0; 2] ð [0; 2]. The area of this piece of surface isZ Z

R

q
1 C cos2.x C y2/.1 C 4y2/ d A.x; y/:

Frequently this kind of integral cannot be done symbolically, so we estimate the
integral using the two-dimensional version of Simpson’s rule:

>> h =
inline(’sqrt(1 + cos(x+y.^2).^2.*(1 + 4*y.^2))’, ’x’, ’y’)
>> simp2(h, [0 2 0 2])
enter the number of subdivisions [n m] [20 20]
ans =
7.2589
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Suppose the surface S is a sheet of metal with a variable density ².x; y; z/. The
mass of the sheet of metal is given by the scalar surface integral

m D
Z Z

S
².x; y; z/ d S D

Z Z
R
².x; y; f .x; y//

q
1 C f 2

x C f 2
y d A.x; y/:

The coordinates of the center of mass are given by the integrals

Nx D .1=m/
Z Z

S
x².x; y; z// d S

Ny D .1=m/
Z Z

S
y².x; y; z/ d S

Nz D .1=m/
Z Z

S
z².x; y; z// d S:

Example 10.3

We continue with the surface of Example 10.2 over the set G D R D [0; 2] ð [0; 2].
Suppose the density of the material is given by ².x; y; z/ D x C y C z. Then the
mass of the sheet of metal is given by the integral

m D
Z Z

R
.x C y C sin.x C y2//

q
1 C cos2.x C y2/.1 C 4y2/ d A.x; y/:

The z coordinate of the center of mass is given by

.1=m/
Z Z

R
.x C y C sin.x C y2// sin.x C y2/

q
1 C cos2.x C y2/.1 C 4y2/ d A.x; y/:

Just for practice, we estimate these integrals using the mfile dblquad. Since it is
not possible to combine inline functions, we write an mfile for the integrands:

function integrand = h(x,y)
z = sin(x+y.^2);
density = x+y+z;
area_element = sqrt(1 + cos(x+y.^2).^2.*(1+4*y.^2));
integrand = density.*area_element;

. . . . . . . . . . . . . . . . . . . . . . . . . . .

function integrand = h1(x,y)
z = sin(x+y.^2);
integrand = z.*h(x,y);

. . . . . . . . . . . . . . . . . . . . . . . . . . .
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>> mass = dblquad(’h’, 0, 2, 0, 2)
mass = 17.0008

>> zbar = (1/mass)*dblquad(’h1’, 0, 2, 0, 2)
zbar = .2285

10.3 Integrals over surfaces given parametrically

Recall that a surface is represented parametrically when it is the image set in xyz
space of a set R (usually a rectangle) in uv space under the three functions

.u; v/ ! .x.u; v/; y.u; v/; z.u; v//:

How do we calculate the area of such a surface, and how do we calculate integrals
of scalar functions over them?

The element of surface area for a surface S represented parametrically is defined
to be

d S D jjn.u; v/jj d A.u; v/

D
q
.yuzv � yvzu/2 C .xvzu � xuzv/2 C .xu yv � xvyu/2 d A.u; v/:

The area of the surface is therefore

Area.S/ D
Z Z

R
jjn.u; v/jj d A.u; v/ (10.3)

and the integral of a function f .x; y; z/, such as a density, isZ Z
S

f .x; y; z/ d S D
Z Z

R
f .x.u; v/; y.u; v/; z.u; v//jjn.u; v/jj d A.u; v/: (10.4)

In the case of a surface of revolution, n is given in Eq. (6.4), and the element of
surface area is

d S D jjn.u; v/jj d A.u; v/ D jx0.v/j
q

[x 0
0.v/]

2 C [z0
0.v/]

2 dudv:

Hence the area of a surface of revolution reduces to a single integral in v,

Area.S/ D 2³
Z b

a
jx0.v/j

q
[x 0

0.v/]
2 C [z0

0.v/]
2 dv: (10.5)
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Example 10.4

We shall find the surface area of a banana. First we must find a parameterization
of what we think a banana should look like. Begin with an ellipsoid, which is a
surface of revolution.

x.u; v/ D cos u cos v

y.u; v/ D sin u cos v

z.u; v/ D 3 sin v; 0 � u � 2³; �³=2 � v � ³=2:

Then bend it over in the x direction by adding on a perturbation to the x coordinate
function,

x.u; v/ D cos u cos v C 2 sin2 v:

The ellipsoid and the banana are shown in Figure 10.1, left and right. The normal
vector is

n.u; v/ D [3 cos u cos2 v; 3 sin u cos2 v; cos v sin v � 4 cos u sin v cos2 v];
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Figure 10.1 Ellipsoid, on the left, and banana, on the right.
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and the area is given by the integralZ 2³

0

Z ³=2

�³=2
jjn.u; v/jj d A.u; v/;

where
jjn.u; v/jj2 D 9 cos4 v C .cos v sin v � 4 cos u sin v cos2 v/2:

The graphing and the computation are done as follows: The expression for jjnjj is
rather complicated, so we write it in an mfile:

function out = da(u,v)
n1 = 3*cos(u).*cos(v).^2;
n2 = 3*sin(u).*cos(v).^2;
n3 = cos(v).*sin(v) - 4*cos(u).*sin(v).*cos(v).^2;
out = sqrt(n1.^2 + n2.^2 +n3.^2);

. . . . . . . . . . . . . . . . . . . . . . . . . . .
% First we graph the banana.
>> u = linspace(0,2*pi,41)
>> v = linspace(-.5*pi,.5*pi, 41)
>> [U,V] = meshgrid(u,v);
>> X = cos(U).*cos(V) + 2* sin(V).^2;
>> Y = sin(U).*cos(V);
>> Z = 3*sin(V);
>> surf(X,Y,Z);
% Now we compute the surface area.
>> simp2(’da’, [0 2*pi -.5*pi .5*pi])
enter the number of subdivisions [n,m], [50 50]
ans =
33.37013464057785

simp2(’da’, [0 2*pi -.5*pi .5*pi])
enter the number of subdivisions [n,m] [100 100]
ans =
33.37016362462368

Comparing the first and second Simpson estimates, we see that the first estimate
probably has an error on the order of 3 ð 10�5.

10.4 Surfaces composed of triangles

It is often interesting, and more convenient, to construct surfaces from triangular
patches. This is done in many contexts, including computer graphics and mechanical
engineering.
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Computer graphics

MATLAB uses a triangular patch representation of the surface in the surf command.
After a mesh .xj ; yi / is put on the rectangle R with the meshgrid command, we
create a matrix of z values, zi; j D f .xj ; yi /, with the command Z = f(X,Y). It
appears that the surface is constructed from small parallelograms with vertices at
the points in space .xj ; yi ; f .xj ; yi //. However, we know that in general a plane
cannot be fit through four distinct points in space. If we look closely at a test case,
we can see that what appears to be a parallelogram is really two triangles. In Figure
10.2, we have used the surf command to produce a surface through the four points
in space,

P1 D .0; 0; 0/; P2 D .1; 0; 0/; P3 D .1; 1; 1/; P4 D .0; 1; 0/:

These four points do not lie in a plane. The surface in Figure 10.2 consists of one
triangle with vertices at P1; P2; P3 and a second triangle with vertices at P1; P3; P4.

Geodesic domes

The roofs of many structures are surfaces constructed of triangles and other polygon
shapes. For ease of construction it is desirable that the triangles have only one or two
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Figure 10.2 Surface consisting of two triangles through four points.
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shapes, preferably equilateral or isosceles. An important class of these triangulated
surfaces is the geodesic dome introduced by R. Buckminster Fuller. A geodesic
dome is very strong and light, and no interior columns are needed to support it.

The simplest geodesic structure is the icosahedron, consisting of a 20-sided poly-
hedron with all faces equal to the same equilateral triangle. Of course, the dome
would be the upper half of the icosahedron. The icosahedron can be refined by
dividing each of the triangular faces into 6 congruent right triangles, thereby yielding
a polyhedron with 120 identical faces.

One of Fuller’s designs started with a polyhedron consisting of 32 faces, of which
12 are pentagons, interspersed with 20 faces that are hexagons. This polyhedron is
known as a Bucky ball. The subdivisions of a soccer ball also have this form. Each
of the hexagons may be subdivided into 6 triangles, and each of the pentagons into
5 triangles, for a total of 180 triangles. They are all isosceles triangles, even though
the triangles of the hexagons may appear to be equilateral.

To see this object, use the mfile gdome.m. Enter gdome. The initial polyhedron,
which looks like a soccer ball, is displayed. Then enter Return. The hexagons are
divided into triangles. Enter Return a third time to see the pentagons divided into
triangles.

Surface area by triangles

We can also approximate a smooth surface with triangular patches. The area of the
smooth surface can be approximated easily by adding up the areas of the triangular
patches. Of course, this will not yield the exact area of the surface as given by
the surface area integral (Eq. 10.1). It is only an approximation. Furthermore, if we
choose the triangular patches differently, we will probably get a different answer.
However, computing the area of this approximation to the surface is easier than using
the integral formula, because we do not need to know the values of the derivatives
of the function.

We illustrate this kind of approximation in a very simple example. Let f .x; y/
be defined on the rectangle R D fa � x � b; c � y � dg. We construct a triangular
patch approximation to the graph of f using only the values at the four corners. We
set

z1 D f .a; c/

z2 D f .b; c/

z3 D f .b; d/

z4 D f .a; d/
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Figure 10.3 Rectangle divided into two triangles.

Then we divide the base rectangle R into two triangles, as in Figure 10.3. Over
each of these triangles, there is a triangular surface patch. Let ¦ be the triangular
patch with vertices

.a; c; z1/; .b; c; z2/; .a; d; z4/;

and let − be the triangular patch with vertices

.b; c; z2/; .b; d; z3/ .a; d; z4/:

The edge vectors of ¦ , attached to the vertex .a; c; z1/, are

u D [b � a; 0; z2 � z1]; v D [0; d � c; z4 � z1]:

Hence the area of ¦ is

.1=2/jjuðvjjD.1=2/
p
.b � a/2.d � c/2 C .b � a/2.z4 � z1/2 C .d � c/2.z2 � z1/2:

In similar fashion, the area of triangle − is found to be

.1=2/
p
.b � a/2.d � c/2 C .b � a/2.z2 � z3/2 C .d � c/2.z4 � z3/2:

The area of the surface consisting of these two patches is just the sum of the areas
of ¦ and − .
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Figure 10.4 Alternate way of dividing a rectangle into a triangle.

It is also possible to divide the base rectangle into two triangles, as in Figure 10.4.
With ¦ and − as the triangular patches over these base triangles, the formula is

area.¦ / D .1=2/
p
.b � a/2.d � c/2 C .d � c/2.z2 � z1/2 C .b � a/2.z3 � z2/2

and

area.− / D .1=2/
p
.b � a/2.d � c/2 C .d � c/2.z4 � z3/2 C .b � a/2.z4 � z1/2:

Example

Let f .x; y/ D xy over the rectangle R D f0 � x; y � 1g. Then z1 D z2 D
z4 D 0 and z3 D 1. The triangulation depicted in Figure 10.3 yields a surface area
approximation of .1 C p

3/=2 ³ 1:3660. The other triangulation yields a surface
area approximation of

p
2 ³ 1:414. The true surface area isZ 1

0

Z 1

0

q
1 C f 2

x C f 2
y dx dy D

Z 1

0

Z 1

0

q
1 C x2 C y2 dx dy D 1:2808:

More generally, let S be given as the graph of a function z D f .x; y/ over
a rectangle R D [a; b] ð [c; d]. We shall calculate the area of a triangular patch
approximation to S as follows. Introduce a mesh on R with meshpoints .xj ; yi /,

a D x1 < Ð Ð Ð < xnC1 D b; c D y1 < Ð Ð Ð < ymC1 D d
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Figure 10.5 Rectangle divided into 32 triangles.

and values zi; j D f .xj ; yi / at the meshpoints. Let Ri; j be the subrectangle xj � x �
xjC1; yi � y � yiC1. Dividing each Ri; j into triangles ¦i; j and −i; j (see Figure 10.5)
we see that the area of the surface consisting of triangular patches is

A D
mX

iD1

nX
jD1

[area.¦i; j /C area.−i; j /] (10.6)

where

area.¦i; j /D .1=2/
q
1x21y2 C1x2.ziC1; j � zi; j /2 C1y2.zi; jC1 � zi; j /2

area.−i; j /D .1=2/
q
1x21y2 C1x2.zi; jC1 � ziC1; jC1/2 C1y2.ziC1; j � ziC1; jC1/2:

mfile tsurf

The mfile tsurf produces a triangular patch approximation to a surface and
computes the sum of the areas of the triangles. If X,Y is a mesh on the rectangle
R and Z = f(X,Y), the call is tsurf(X,Y,Z). You will see the triangles displayed
in two colors, blue and cyan.

Example 10.5

Let f .x; y/ D x2 C y2 on the square [0; 2] ð [0; 2]. We make a coarse mesh with
only two subdivisions in each direction. We also graph f with the surf command
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and a finer mesh to see how the triangles fit the surface. The results are displayed
in Figure 10.6. We also estimate the area integral (Eq. 10.1) with simp2:

>> f = inline(’x.^2 + y.^2’, ’x’, ’y’)
% We compute the area of the triangular patchs.
>> [X,Y] = meshgrid(0:2);
>> Z = f(X,Y);
>> tsurf(X,Y,Z)
ans =
12.724

>> hold on
% We graph the surface with a finer mesh.
>> [XX,YY] = meshgrid(0:.1:2);
>> ZZ = f(XX,YY);
>> surf(XX,YY,ZZ); colormap(gray); shading interp;

% We compute the surface area integral numerically.
>> g = inline(’sqrt(1 + 4*(x.^2 + y.^2))’, ’x’, ’y’)
>> corners = [0 2 0 2]
>> simp2(g, corners)
enter the number of subdivisions [n m] [40 40]
ans =
13.004
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Figure 10.6 Surface z D x 2 C y2, on the left, and triangular approximation, on the right.
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If we continue to increase the number of triangles and do not allow them to become
too “skinny,” the triangular patch approximation will converge to the surface area,
for any triangulation of the rectangle.

The minimal-surface problem

A basic problem in geometry, which has consequences in engineering and architec-
ture, is that of finding the surface of least area that spans a given wire frame. Such
surfaces are easy to produce physically by dipping a wire frame in a soapy solu-
tion. The resulting soap films are minimal surfaces. There are very few examples of
minimal surfaces that are expressible in mathematically closed form. One of these
is the catenoid. It is the surface of revolution that is formed by revolving the curve
y D c cosh.x=c/ about the x axis.

In a particular kind of minimal-surface problem, we specify the height of the
surface around the boundary of a set G. This is called Plateau’s problem and it can
be stated in precise mathematical terms as follows.

Given a set G in x; y space, and a function f defined on the boundary of G, let
A be the set of all differentiable functions u.x; y/ on G such that u D f on the
boundary of G. Then we seek that function u 2 A that minimizes the surface area:Z Z

G

q
1 C u2

x C u2
y d A:

If the minimizing function u has continuous second order partial derivatives, it can
be shown that u must satisfy the nonlinear partial differential equation

@

@x

0
@ uxq

1 C u2
x C u2

y

1
A C @

@y

0
@ uyq

1 C u2
x C u2

y

1
A D 0: (10.7)

Equation (10.7) is called the minimal-surface equation. It is very hard to construct
and analyze solutions of this equation. We shall instead use an engineering approach
to Plateau’s problem over a rectangle R in which we attempt to approximate the
minimal surface with a surface consisting of triangles. In this context, the triangle
surface patches are called finite elements.

Let R be a rectangle in x; y space, a � x � b; c � y � d. We could specify four
separate functions of one variable, one for each side of the rectangle. Instead we
shall consider one function, f .x; y/, defined on R, and then use its restriction to the
four sides of R as the boundary values for the surface. We shall construct a surface
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S, consisting of triangles, that agrees with f on the sides of R. We shall then adjust
the triangles in the interior of R to make the area of S as small as possible.

We introduce meshpoints .xj ; yi / in the rectangle, as before, and calculate the area
of the surface consisting of triangles using Eq. (10.6). The values zi; j D f .xj ; yi / are
given for .xj ; yi / on the boundary of R. However, for the interior points, indicated
in Figure 10.7, we can choose the values. This means that the area formula (10.6)
defines a function of the .n � 1/.m � 1/ variables zi; j , with i D 2; : : : ;m; j D
2; : : : ; n,

A D A.z2;2; z2;3; : : : ; z2;n; z3;2; : : : ; z3;n; : : : ; zm;2; : : : ; zm;n/:

We illustrate with an example where the numbers are not too large.

Example 10.6

Let R be the square [1; 4]ð[1; 4]. We subdivide R into smaller squares with sides of
length 1 and then subdivide each smaller square into two triangles. Here m D n D 3.
We arrive at 18 triangles and four interior points (see Figure 10.7).

Let f .x; y/ D x2 C y4=20 determine the boundary values. A surface S agreeing
with f on the boundary will have 18 triangular patches. The area of this surface is
given by Eq. (10.6), which in this case has 18 terms ¦i; j , −i; j , indexed by i; j D
1; 2; 3. The sum will be a function of the heights z2;2; z2;3; z3;2; z3;3 of the surface

1 1.5 2 2.5 3 3.5 4
1
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z2,2 z2,3

x

y

Figure 10.7 Interior points indicated with dots.
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at the four interior points. Instead of the cumbersome z.i; j/ notation, let us set

a D z2;2; b D z2;3; c D z3;2; d D z3;3:

Then we can think of the surface area as a function of the four variables a; b; c; d:

A D A.a; b; c; d/:

The following function mfile implements this function. It uses the mfile tsurf

defined earlier.

function out = A(a,b,c,d)
f = inline(’x.^2 + (y.^4)/20’, ’x’, ’y’)
x = [1 2 3 4]; y = [1 2 3 4];
[X,Y] = meshgrid(x,y);
Z = f(X,Y);
Z(2,2) = a; Z(2,3) = b;
Z(3,2) = c; Z(3,3) = d;
tsurf(X,Y,Z)

Note that the mfile replaces the values f .2; 2/; f .2; 3/; f .3; 2/; f .3; 3/ in the Z
matrix with the variable values a; b; c; d, and calculates the area of the resulting
triangular patch surface. In Figure 10.8 we see the triangular approximation to the
original surface z D f .x; y/ D x 2 C y4=20 on the left. Its area is calculated to be
64.5593. The interior values are then changed to make the surface closer to linear:
a D 8:3; b D 13:05; c D 12:55; d D 17:05. The resulting surface is displayed on
the right. The area of the surface on the right is 60.9110.
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Figure 10.8 On the left, the triangular patch surface with boundary data and interior points given by
z D f .x; y/ D x 2 C y4=20 on the square R D [1; 4] ð [1; 4]. On the right, the surface with modified
values at the interior points.
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In the preceding example we used only a small number of triangular patches
to construct the surface, and there were only four interior points. The area of the
surface was a function of the values at the four interior points. This discrete version
of Plateau’s problem becomes a problem of minimizing the area function, which
depends on four variables. If we chose to make a finer mesh on R, we would
increase the number of interior points. We could easily be faced with the problem
of minimizing an area function that depended on 100 or more variables. Setting the
derivatives of the area function equal to zero to find the minimum would yield a
system of perhaps 100 nonlinear equations in 100 unknowns. Newton’s method, as
described in Chapter 7, can be used on such system, and there are other methods
that can also be used.

A more direct, but usually slower, way to approach the problem of minimizing
a function A of many variables is to use a discrete search method. Given a starting
value z0, the algorithm computes the values of A.z/ near z0 and looks for a point
z1 such that A.z1/ < A.z0/. Then the search is done again through points near z1.
Of course the search algorithm is made as efficient as possible.

MATLAB has a minimizing routine for functions of one variable, called fmin. It
also has a routine for minimizing functions of many variables called fmins. To get
information about fmin and fmins, use the help command. The instructor demo
minsurf employs this procedure.

Exercises

1. Use simp2 to estimate the area of the part of the sphere x2 C y2 C z2 D 4 that
lies over the square �1 � x; y;� 1. Use a sufficiently fine mesh so that the error
estimate is on the order of 10�4 or less.

2. Let f .x; y/ D x2 C y3.
a) Graph the surface over the disk of radius 2.
b) Set up the integral for the area of the graph of f .x; y/ over the set fjyj �

x; x2 C y2 � 4g. Change to polar coordinates, and then estimate the integral to
within 10�4 using simp2.

3. Find the area of the surface z D exp.�x 2 � y2/ over the triangle G D fx; y ½
0; x C y � 1g.

a) Express the surface area as a double integral over G.
b) Make a change of variable x D u; y D y.u; v/ that maps the rectangle

R D f0 � u � 1; 0 � v � 1g onto G.
c) Estimate the resulting double integral over R with an error on the order of

10�4 or less using simp2.m.



214 Scalar Integrals Over Curves and Surfaces

4. Parameterize the ellipsoid surface�x

a

�2 C
� y

b

�2 C
� z

c

�2 D 1

using spherical coordinates,

x D a cos � sin�; y D b sin � sin�; z D c cos�:

a) Express the surface area of the ellipsoid as a double integral over the rect-
angle in �; � space, R D f0 � � � 2³; 0 � � � ³g.

b) Use simp2 to estimate the integral for a D 1; b D 2; c D 3 with an error on
the order of 10�4 or less.

5. Recall the boat hull described in Exercise 9 of Chapter 4. The curved piece is✯

the graph of y D .2x=a.z//2 on the set G D f�a.z/ � x � a.z/; 0 � z � 20g. The
function a.z/ D �:0166z2 C :2245z C 2:25.

a) Write the area of the curved piece of the hull as a double integral with
respect to x and z over the set G.

b) Make the change of variable x D a.v/u; z D v to yield a double integral
over the rectangle R D f�1 � u � 1; 0 � v � 20g.

c) Use simp2 to estimate the integral with an error on the order of 10�4 or less.
d) Find the total area of the boat hull by adding on the area of the flat piece

that is the stern.

6. Let the surface S be given by z D x 2 C y3 over the rectangle 0 � x � 3; 0 �✯

y � 2.
a) Graph the surface using surf.
b) Assuming a constant density Ž D :55 gms/cm2, make a numerical estimate

of the mass of the sheet of metal forming the surface S. Use simp2.m.
c) Make numerical estimates of the coordinates of the center of mass of the

metal sheet, given by

Nx D Ž

m

Z Z
S

x d S; Ny D Ž

m

Z Z
S

y d S; Nz D Ž

m

Z Z
S

z d S:

7. A pagoda-type roof over a circular room is a surface of revolution that is
obtained by revolving the curve x D �:12z3 C 5:4z2 � 82z C 420; 10 � z � 15
about the z axis.

a) Graph the surface.
b) Use Eq. (10.5) to express the surface area of this roof as a one-dimensional

integral over the interval 10 � v � 15.
c) Estimate the integral using quad8.
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8. Let a body of water be h feet deep. The hydrostatic pressure, in pounds per
square foot, increases as the depth below the surface increases. In fact, the pressure
p is given by the formula

p.z/ D 62:5.h � z/;

where z is the height above the bottom, 0 � z � h.
An empty vessel sits on the bottom. It is bounded by a closed surface that consists

of a paraboloid, z D h=4 � x 2 � y2, and the flat bottom z D 0.
a) Write an integral expression for the total hydrostatic force on the curved

surface of the vessel.
b) Evaluate the integral for h D 100 feet.

9. Let S be the torus, given parametrically by✯

x D .100 C 2 cos v/ cos u

y D .100 C 2 cos v/ sin u

z D 100 C 2 sin v; 0 � u; v � 2³

Let ².x; y; z/ D
p

x2 C y2 be the charge density on S in coulombs per unit area.
Find the total charge on S.

10. Let f .x; y/ D x exp.�x2 � 2y2/, and let R be the rectangle f0 � x; y � 1g.✯

a) Express the surface area of the graph of f over R as a double integral
over R. Use simp2 to estimate the integral with an error on the order of 10�4. You
should use an mfile for the integrand, because it is too complicated to do as an
inline function.

b) Now use the mfile tsurf.m to estimate the surface area using triangles.
Take m D n. How large must n be so that the area calculated by tsurf is within
:05 of the value of the surface area as estimated by simp2? To use tsurf you can
write f as an inline function.

11. Suppose the coordinates of points on a surface S are determined by some
numerical procedure. The surface is over a rectangle R D [0; 1] ð [0; 1] with mesh-
points xj D . j � 1/=10; j D 1; : : : 11, and yi D .i � 1/=10; i D 1; : : : ; 11. The
heights of the surface at each meshpoint are tabulated in an 11 ð 11 matrix Z , with
Z.i; j/ being the height at .xj ; yi /.

a) If you are given the matrix Z , how would you approximate the area of the
surface S?

b) Suppose the elements of Z are random numbers lying in the interval 0 �
z � :1. The MATLAB command P =.1* rand(11,11) generates such a matrix.
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Let the surface S be at a constant height z D 1 with a random perturbation at the
meshpoints. Use Z = 1+P. Find the area of the surface using tsurf. Do it several
times. The result should be different each time, because the random numbers are
different.

12. Let R be the rectangle [0; 2] ð [0; 4]. Let S be the surface over R consisting✯

of four triangles with common vertex at .1; 2/. See Figure 10.9. The heights of the
surface at the corners are

(0,0) height = 1 (2,0) height = 3
(0,4) height = 2 (2,4) height = 1.

The height z of the surface at .1; 2/ is to be determined.
a) Write a sum of four terms that expresses the area A of the surface S as a

function of z, A.z/.
b) Write an mfile for A.z/.
c) Plot A.z/ on the interval 0 � z � 3. Estimate by eye the value of z that

minimizes the surface area A.
d) Use the MATLAB routine fmin to find the value of z that minimizes A.z/,

and then calculate the corresponding value of A.

13. Let values h1; h2; h3; h3 be prescribed at the vertices p1 D .2; 0/; p2 D .0; 1/,✯

p3 D .�2; 0/, and p4 D .0;�1/. The values z at p5 D .�1; 0/ and w at p6 D .1; 0/
are to be chosen to make the surface as small as possible. See Figure 10.10.

(0,0) (2,0)

(0,4) (2,4)

(1,2)A1 A3

A2

A4

Figure 10.9 Triangles for Exercise 12.
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Figure 10.10 Location of vertices for Exercise 13.

a) Write a sum of six terms that expresses the surface area A as a function
A.z; w/. Let h1 D 1; h2 D 2; h3 D 4, and h4 D 3.

b) Write an mfile A.m for A.z; w/ and graph A on the square 1 � z; w � 4.
Plot the contours and use the mfile findcrit to estimate the values of z; w that
minimize A.

c) We cannot use tsurf to graph the surface found in part b) because the
points pj do not lie on rectangular grid. To display this surface, you must write a
script file that uses the command fill3 to fill in each of the six triangular elements
of the surface.

14. Suppose a surface S is given in the form of a matrix Z of heights over a✯✯

rectangle R D [a; b] ð [c; d]. We wish to estimate
R R

S Ž d S.
Let meshpoints .xj ; yi / be given in R with a D x1 < x2 < Ð Ð Ð < xn D b

and c D y1 < y2 < Ð Ð Ð < ym D d. Let zi; j be the height of the surface over
the point .xj ; yi /. Using Eq. (10.6) as a guide, write a formula to approximateR R

S Ž d S. Evaluate the function Ž at the centroid of each triangular surface element.
If p1; p2; p3 are points in R3, the centroid of the triangle with these vertices is
given by c D .p1 C p2 C p3/=3.

Write a MATLAB script that implements this procedure over the square R D
0 � x; y � 1 for various values of m and n. Let the surface S be given by
z D f .x; y/ D x 2 C y3. Let Ž.x; y; z/ D

p
x2 C y2 C z2.
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11
Integrals of Vector Fields Over Curves

and Surfaces

Prepared mfiles used in this chapter

lint flux2 curl

11.1 Vector fields

A two-dimensional vector field is written in Cartesian coordinates with two func-
tions, u.x; y/ and v.x; y/. At each point .x; y/ in a set G, we attach the
vector F D [u.x; y/; v.x; y/]. Vector fields in two-dimensional space are easily
displayed with the command quiver. Recall from Chapter 5 that first we need
to write the functions u and v either as mfiles or as inline functions. Then we
need to construct a meshgrid [X,Y] over some rectangle R. Finally, the call is
quiver(X,Y,u(X,Y),v(X,Y)).

Example 11.1
We display the vector field F D [1; x C y2] over the rectangle R D f�2 � x �
3; �1 � y � 2g. You should be careful not to put too many arrows in the figure,
making it difficult to interpret. A mesh with between 10 and 15 subdivisions in each
direction is usually fine enough. See Figure 11.1.

>> u = inline(’0*x +1’, ’x’, ’y’)
>> v = inline(’x + y.^2’,’x’, ’y’)
>> x = linspace(-2,3,11);
>> y = linspace(-1,2,11);

219
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Figure 11.1 Vector field F D [1; x C y2].

>> [X,Y] = meshgrid(x,y);
>> U = u(X,Y); V = v(X,Y);
>> quiver(X,Y,U,V)
>> axis image

Notice that the definition of u as an inline function lists both x and y as variables,
even though u is actually a constant function.

The last command, axis image, sets the tick marks the same on both axes (as
does the command axis equal), but in addition does not leave extra space at the
edges of the plot, where the arrows may hang over. Notice also that the length of
the arrows is scaled to represent the relative magnitude of the vectors. If there is
some place in the plotting rectangle where the vector field is quite large, it may
appear to be zero at points where the magnitude is more moderate. To see a unit
vector field displayed with the same directions as F, set

>> U1 = U./sqrt(U.^2 + V.^2)
>> V1 = V./sqrt(U.^2 + V.^2).
>> quiver(X,Y,U1,V1)
>> axis image

The result is shown in Figure 11.2. Compare with Figure 11.1.
Vector fields in three-dimensional space have three component functions, F D

[u.x; y; z/; v.x; y; z/; w.x; y; z/], and attach this vector to each point .x; y; z/
in some set G in xyz space. MATLAB also has a way of displaying three-
dimensional vector fields. First we make mfiles or inline functions for u; v, and
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Figure 11.2 Normalized vector field F=jjFjj.

w. The MATLAB graphing command quiver3 displays the arrows of F attached to
any two-dimensional surface S that lies inside a three-dimensional rectangular space
R. Recall that we used quiver3 in Example 6.4 to display the gradient vectors r f
attached to a level surface of f . To fill a three-dimensional rectangular space R
with arrows, we attach the arrows to a family of surfaces, for example, planes z D
constant. This can be done with a short loop in a script mfile.

Example 11.2

Consider the vector field

F.x; y; z/ D [1; x C y2; z]:

We shall display this vector field in the rectangle

R D f�2 � x � 3; �1 � y � 2; �1 � z � 1g:
Here is a script mfile to do this. See Figure 11.3.

u = inline(’1 + 0*x’, ’x’, ’y’, ’z’)
v = inline(’x + y.^2’, ’x’, ’y’, ’z’)
w = inline(’z’, ’x’, ’y’, ’z’)
x = linspace(-2,3,6);
y = linspace(-1,2,6);
[X,Y] = meshgrid(x,y);
for z = -1:.4:1
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Figure 11.3 Three-dimensional plot of the vector field F D [1; x C y2; z].

Z = z+0*X;
U = u(X,Y,Z);
V = v(X,Y,Z);
W = w(X,Y,Z);
quiver3(X,Y,Z,U,V,W)
hold on

end

Again notice that the inline definitions of u, v, and w list all three variables, x; y; z.
We have taken the xy mesh even coarser than in Example 11.1, and we are using
only six levels in the z direction. To see the vector field properly, it is usually
necessary to view it from different angles using the rotate3d command. The call
for quiver3 is the exact analog of that for quiver, but with three arguments for the
point of attachment and three arguments for the components of the vector field. In
versions 5.3 and higher of MATLAB , quiver3 can take three-dimensional arrays
as arguments. In this case the loop can be omitted and the execution is a bit faster.
After u,v,w,x,y are defined, use the commands

z = linspace(-1,1,6);
[X,Y,Z] = meshgrid(x,y,z);
U = u(X,Y,Z);
V = v(X,Y,Z);
W = w(X,Y,Z);
quiver3(X,Y,Z,U,V,W)
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11.2 Line integrals

A line integral of a vector field F D [u; v;w] along an oriented curve C from P to
Q is an integral written Z

C
F Ð dr D

Z
C

udx C vdy C wdz: (11.1)

It is defined as a limit of sumsZ
C

F Ð dr D lim
n!1

nX
iD1

F.Pi / Ð .PiC1 � Pi /;

where Pi ; i D 1; : : : ; n C 1, is a sequence of points on C , with P1 D P the initial
point and PnC1 D Q the terminal point. See Figure 11.4. From the definition, it
follows that the line integral Z

C
F Ð dr D

Z
C

F Ð T ds;

where T is the unit tangent vector to the curve. Hence line integral (11.1) is the
integral with respect to arc length of the tangential component of F and is interpreted
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P1

F(P4)
F(P6)

F(P7)

F(P5)

F(P3)

F(P2)
F(P1) P2

Figure 11.4 Curve C with points Pi , vectors PiC1 � Pi , and vector field F D [u; v], with u.x; y/ �
:15 and v.x; y/ � :1.
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as the work done by the force field F on a body following the curve C in the given
orientation.

When the curve C is parameterized by a continuously differentiable function r.t/
on the interval a � t � b, with r.a/ D P and r.b/ D Q, the line integral can be
written Z

C
F Ð dr D

Z b

a
F.r.t// Ð r0.t/ dt: (11.2)

In this form the line integral may be evaluated either numerically or symbolically.

Example 11.3

We use Simpson’s rule to estimate the value of the line integral
R

C F Ð dr, where

F.x; y; z/ D [x; z; exp.x C y/]

and C is parameterized by r.t/ D [t cos t; t sin t; t2]; 0 � t � 2³ . A call is made
to the mfile simpvec, written in Section 9.2.

% Define the components of F.
u = inline(’x’, ’x’, ’y’, ’z’)
v = inline(’z’, ’x’, ’y’, ’z’)
w = inline(’exp(x+y)’, ’x’, ’y’, ’z’)

% Chose the t values for Simpson’s rule.
n = 200;
t = linspace(0, 2*pi, n+1); dt = 2*pi/n;
s = simpvec(n);

% Calculate the x,y,z values along the curve.
x = t.*cos(t); y = t.*sin(t); z = t.^2;

% Calculate the components of rdot along the curve.
xdot = cos(t) -t.*sin(t);
ydot = sin(t) +t.*cos(t);
zdot = 2*t;

% Calculate the terms of the integrand
I1 = u(x,y,z).*xdot;
I2 = v(x,y,z).*ydot;
I3 = w(x,y,z).*zdot;

% Compute the integral using Simpson.
integral = dot(s,(I1 +I2 +I3))*dt/3;
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However, if a parameterization of C is not available, we can make an estimate
of line integral (11.1) as follows. Approximate the curve C by a sequence of line
segments between the points Pj on the curve, j D 1; : : : ; n C 1, as in Figure 11.4.
The line segment L j from Pj to PjC1 can be parameterized by

rj .t/ D .1 � t/Pj C t PjC1; 0 � t � 1;

with r0
j D PjC1 � Pj . Then

Z
C

F Ð dr ³
nX

jD1

Z
L j

F Ð dr

D
nX

jD1

Z 1

0
F.rj .t// Ð .PjC1 � Pj / dt

D
X

j

.xjC1 � xj /

Z 1

0
u.rj .t// dt

C
X

j

.yjC1 � yj /

Z 1

0
v.rj .t// dt

C
X

j

.zjC1 � zj /

Z 1

0
w.rj .t// dt:

Each of the integrals can be done either symbolically or numerically using Simpson’s
rule or quad8.

Example 11.4

Suppose that a curve C in the xy plane has been found numerically as the trajectory
of a particle. The coordinates of the points on C are as given in the following table:

x 0 .1 .25 .4 .54 .76 .82 .93 1
y 0 .005 .0312 .0800 .1458 .2888 .3362 .4352 .5

Let a force field be given by F.x; y/ D [x cos y; xCy]. We want to estimate the work
done on the particle by F as it follows curve C from P1 D .0; 0/ to P9 D .1; :5/.
This is done in the following script. We use Simpson’s rule, with n D 50 on each
segment.
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x = [0 .1 .25 .4 .54 .76 .82 .93 1]
y = [0 .005 .0312 .0800 .1458 .2888 .3362 .4352 .5]

% Define the components of F.
u = inline(’x.*cos(y)’, ’x’, ’y’)
v = inline(’x+y’, ’x’, ’y’)

% Prepare the Simpson vector.
n = 50;
s = simpvec(n);
dt = 1/n;

% Initialize Work.
Work = 0;
for j = 1:8

% Calculate the values of x and y along the
% jth segment.
xx = linspace(x(j), x(j+1), n+1);
yy = linspace(y(j), y(j+1), n+1);

% Calculate the integrand.
I = (x(j+1) - x(j))*u(xx,yy)

+ (y(j+1) - y(j))*v(xx,yy)

% Calculate the jth integral.
integral = dot(s,I)*dt/3;
Work = Work + integral

end
Work = .9353

mfile lint

The mfile lint.m uses the procedure of Example 11.4 to estimate the line integral of
a two-dimensional vector field F D [u.x; y/; v.x; u/] along a polygonal path deter-
mined by the user by clicking on the figure. The call is lint(u,v,corners), where,
as usual, corners is a vector [a; b; c; d] that defines a rectangle R. Remember to
use single quotes in the call when u and v are given in mfiles. You are then asked
to enter the number N of line segments in the path. The file uses quiver to plot
the vector field over R. Then click on the figure with the left mouse button to
start the path of integration. A second click produces a line from the first point to
the second point and computes the work done by the vector field along this line.
This procedure can be repeated a total of N times. The cumulative value of the
line integral is shown on the screen. The program also calculates the line integral
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Figure 11.5 Vector field F D [y2; x3=6 C 3x=2], and polygonal path determined by mfile lint.m.

R
C xdy. When the curve C is closed and forms the positively oriented boundary of

a polygon, this line integral is the area of the polygon. A sample figure window is
shown in Figure 11.5 with N D 10.

A vector field is conservative if it is the gradient of a scalar potential, F.x; y/ D
r f . In component terms, u.x; y/ D fx.x; y/ and v.x; y/ D fy.x; y/. If the vector
field F is conservative, the line integrals

R
C F Ð ds are independent of path. Equiv-

alently,
R

C F Ð ds D 0 for every closed curve such that the components of F are
continuously differentiable in the interior of C . In the exercises we shall use lint.m
to explore examples of conservative and nonconservative vector fields.

11.3 Curl and Green’s theorem

The curl of a three-dimensional vector field

F.x; y; z/ D [u.x; y; z/; v.x; y; z/; w.x; y; z/];

where u; v;w are continuously differentiable functions, is defined to be the vector
field

curl.F/ D [wy � vz; uz �wx ; vx � uy]:

Green’s theorem helps to give a physical and geometrical meaning to this quan-
tity. First we restrict our discussion to a vector field that has only two nonzero
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Figure 11.6 Line integral around the boundary of set G with positive orientation.

components that depend only on x; y,

F D [u.x; y/; v.x; y/; 0]:

In this case curl.F/ D [0; 0; vx � uy]. Now we assume this vector field is defined
in a set G in xy space with piecewise smooth boundary C . We also assume that C
has the positive orientation with respect to G. In particular, the outer boundary of
G is oriented in the counterclockwise direction. See Figure 11.6. Then we have

Green’s theorem Z
C

udx C vdy D
Z Z

G
.vx � uy/ d A.x; y/; (11.3)

which may also be stated,Z
C

F Ð T ds D
Z

C
F Ð dr D

Z Z
G

curl.F/ Ð k d A.x; y/: (11.4)

The line integral on the left of Eq. (11.3) represents the work done by a force
field F in circling around the closed path C . In fluid flow, F D [u; v] is the velocity
field of the fluid, with u being the x component of velocity and v being the y
component. In this context, the line integral is called the circulation of the fluid
around the closed path C . On the right-hand side, k is the vector [0; 0; 1].
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Green’s theorem gives meaning to the curl in the following way. Consider a small
square of side h centered at .x0; y0/. Applying Green’s theorem to this small square,
which we call Rh , and dividing both sides of Eq. (11.3) by h2, we have

1

h2

Z
C

udx C vdy D 1

h2

Z Z
Rh

.vx � uy/ d A.x; y/

D average over Rh of .vx � uy/:

If we assume curl.F/ is continous, then the right-hand side of this equation converges
to vx.x0; y0/� uy.x0; y0/ as h ! 0. Thus curl.F/.x0; y0/ is the limit of the circu-
lation per unit area around smaller and smaller squares. Hence we can interpret
curl.F/.x0; y0/ as the circulation per unit area at the point .x0; y0/.

Example 11.5

We can use the mfile lint.m to illustrate this last idea. Let the vector field F D
[1�y2; 0] in the region �1 � y � 1. This vector field represents the two-dimensional
flow of a viscous fluid from left to right in a channel whose walls are the lines
y D š1. The fluid sticks to the walls (the no-slip boundary condition). We see
immediately that curl.F/ D 2yk. Now we use the mfile lint.m to calculate the
circulation around smaller and smaller paths centered at the point .0; 1=2/, where
curl.F/ Ð k D 1. The program also computes the areas of the enclosed polygon. We
first take corners = [-1 1 -1 1] and calculate the circulation around a triangle
with vertices at approximately P1 D .�:5; 0/; P2 D .:5; 0/; P3 D .0; 1/. Dividing
the circulation by the area, we obtain :6747 (the exact answer is 2=3). Repeating the
calculation with a triangle with vertices at approximately P1 D .�:25; :3/; P2 D
.:25; :3/; P3 D .0; :7/, and again dividing the circulation by the area, we obtain
:8655 (the exact answer is :86666 : : :). The smaller of these two triangles is shown
in the upper part of Figure 11.7. Since it is hard to close the path by eye with the
cursor, to obtain better accuracy we should graph the vector field over a smaller rect-
angle enclosing the point .0; 1=2/ and repeat the calculations over triangles centered
at .0; 1=2/. As expected, we see that the value of the circulation, divided by the area
enclosed by the path, approaches 1. We have used triangles here, but any closed
polygons could be used.

In the lower half of Figure 11.7, we see another triangle. Because of the way F
is changing, i.e., u is increasing for y < 0, the circulation around this triangle is
negative, and curl.F/ points in the �k direction.

In general, it is not easy to see if a vector field has a nonzero curl by looking at
a graph of the vector field. Nevertheless, we can present some examples of typical
two-dimensional vector fields whose curl can be determined visually.



230 Integrals of Vector Fields Over Curves and Surfaces

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

1

2

3

1

2

3

Figure 11.7 Circulation around triangles of the vector field F.x; y/ D [1 � y2; 0].

Example 11.6

A shear flow is defined as follows. Let p D [p1; p2] be a constant vector, and let
a.s/ be a continuously differentiable function of one variable. Then the function
.x; y/ ! a.p2x � p1y/ is constant on lines parallel to p. The gradient

[@x ; @y]a.p2x � p1y/ D a0.p2x � p1y/q

is always parallel to the vector q D [p2;�p1]. Let the vector field F D a.p2x �
p1y/p. Then the vector field F is always parallel to p, and it changes only in the
direction q, which is orthogonal to p. We have

curl.F/ D .vx.x; y/� uy.x; y//k D a0.p2x � p1y/.p2
1 C p2

2/k:

Hence curl.F/ is nonzero whenever a0 6D 0. The vector field of Example 11.5 is a
shear flow with p D i:curl.F/ D 2yk points in the positive direction for y > 0 and
in the negative k direction for y < 0.

Example 11.7

Vortex flow: Let

F.x; y/ D
��y

r
;

x

r

½
;
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where r D
p

x2 C y2. F is a unit vector that describes a fluid rotating in the coun-
terclockwise direction about the origin. We have

curl.F/.x; y/ D .vx.x; y/� uy.x; y//k D
�

1

r

�
k:

This vector field is singular at the origin because the curl becomes infinite there.

mfile curl

This mfile can help you determine where a two-dimensional vector field has
a nonzero curl and indicates the sign and magnitude by color. The call is
curl(u,v,corners), where, as usual, u.x; y/ and v.x; y/ are given in mfiles or as
inline functions. Remember to use single quotes on u and v in the call when they are
given in mfiles. corners is the vector of corner coordinates of the graphing rect-
angle. When the call is made, the vector field is graphed, and curl.F/ is computed
using difference quotient approximations to the derivatives. The vector field is super-
imposed on a pcolor plot of curl.F/. A color bar is displayed on the right of
the figure to indicate how the color scale relates to the values of curl.F/. See
Figure 11.8.
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Figure 11.8 Vector field F.x; y/ D .1=4/[1; x � x3=3 � xy2=4] displayed together with a pcolor plot
of curl.F/.
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11.4 Flux integrals

Let F.x; y; z/ D [u.x; y; z/; v.x; y; z/; w.x; y; z/] be a vector field on some region
of xyz space, and let S be a piece of two-dimensional surface in that region. We
assume that S is an orientable surface. This means that at each point .x; y; z/ 2 S,
there is defined a unit normal vector n that varies continuously as .x; y; z/ moves
over S. Then the flux integral of F over S isZ Z

S
F Ð n d S; (11.5)

where d S is the element of surface area on S. When F is the velocity of a fluid,
expression (11.5) is the volume of fluid crossing the surface S per unit time. When
the flux is positive, the net flow across S is in the direction specified by n.

For a vector field F.x; y/ D [u.x; y/; v.x; y/] and a curve C with normal vector
n, the flux integral is Z

C
F Ð n ds; (11.6)

where ds is the element of arc length on C . In particular, if C is the level curve of
a function g.x; y/, then we may take

n D š rg

jjrgjj D š [gx ; gy]q
g2

x C g2
y

:

If, instead, C is parameterized by a piecewise smooth function r.t/ D .x.t/; y.t//,
we may take

n D š [y0.t/;�x 0.t/]
[x 0.t/2 C y0.t/2]1=2

:

In this case, the flux integral (11.6) reduces toZ
C

F Ð n ds D š
Z

C
udy � vdx :

mfile flux2

The mfile flux2.m computes the flux of a two-dimensional vector field through a
boundary composed of line segments. It is used in the same manner as the mfile
lint.m. The call is flux2(u,v,corners) where the components u; v of F are
given in mfiles or as inline functions. Remember to use single quotes in the call
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when u and v are given in mfiles. corners is the vector of corner coordinates
[a; b; c; d]. After the call, enter the number N of segments in the path. You begin
the path of integration with a first click on the figure. This time, after the second
click, the program computes the flux

R
F Ð n ds along the segment. The direction of

the normal is shown by the red arrow. This can be done for N segments.

Example 11.8

Let the vector field be F.x; y/ D [u; v] D [x2=2; y2=2]. We are going to find the
flux through the boundaries of two triangles contained in the square �2 � x; y � 2.
The first triangle is in the upper right of Figure 11.9, and the second triangle is in
the lower left of the same figure.

>> u = inline(’.5*x.^2’, ’x’, ’y’)
>> v = inline(’.5*y.^2’, ’x’, ’y’)
>> corners = [-2 2 -2 2]
>> flux2(u,v,corners)

Enter the number of segments 3
flux =

1.2852

>> hold on
>> flux2(u,v,corners)

Enter the number of segments 3
flux = -9.885
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Figure 11.9 Two flux calculations for the vector field F D [x2=2; y2=2].
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11.5 The divergence theorem

Let F.x; y; z/ D [u.x; y; z/; v.x; y; z/; w.x; y; z/] be a vector field. The divergence
of F is the scalar function

div.F/ D ux .x; y; z/C vy.x; y; z/C wz.x; y; z/:

The Gauss divergence theorem connects the integral of div.F/ with a flux integral.
Let G be a bounded set in xyz space, which is bounded by an orientable surface S.
Let n denote the unit exterior normal to S.

Divergence theorem

Z Z Z
G

div.F/ dV .x; y; z/ D
Z Z

S
F Ð n d S:

The divergence theorem gives a meaning to div.F/ in the following way. Let Rh
be a small cube with side h centered at the point .x0; y0; z0/. Then applying the
divergence theorem over Rh and dividing by the volume h3, we have

1

h3

Z Z
S

F Ð n d S D 1

h3

Z Z Z
Rh

div.F/ dV : (11.7)

The right-hand side of Eq. (11.7) is the average of div.F/ over the cube Rh . If
the components of F are continuously differentiable, this average converges to
div.F/.x0; y0; z0/ as h ! 0. Hence for small h we can say

div.F/.x0; y0; z0/ ³ 1

h3

Z Z
S

F Ð n d S:

Thus div.F/ has the units of flux/unit volume. In the context of fluid flow, F is the
velocity vector of the fluid, with u being the x component, v being the y component,
and w being the z component. Since velocity has the units of length/time, the flux
has the units of volume/time. It is the volume of fluid that flows across the boundary
surface S per unit time. Hence in this context, div.F/ is the volume/time of fluid
that is being created or absorbed per unit volume.

Of course, there is a two-dimensional version of the divergence theorem. The
mfile flux2.m can help us understand the divergence in the two-dimensional case.
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Example 11.9

Let F.x; y/ D [x2=2; sin.³y=2/]. We shall compute the flux and divide by the area
of the enclosed polygon to get an approximation to div.F/.x; y/ D ux .x; y/ C
vy.x; y/. See Figure 11.10. The square in the lower left of the figure has vertices at
approximately .�1:5;�1:5/; .�:5;�1:5/; .�:5;�:5/; .�1:5;�:5/. The calculated
flux is �1:0212, and the calculated area (which should be exactly 1) is 1.0096. Hence
flux/area D �1:0115. The exact value of the divergence at the center of this square
is �1.

The larger square has vertices at .:5;�:5/; .2;�:5/; .2; 1/; .:5; 2/. The flux is
calculated to be 5.2746 and the area is calculated to be 2.2334. Here flux/area =
2.3617. The smaller square inside the larger square has vertices at .1; 0/; .1:5; 0/,
.1:5; :5/; .1; :5/. The calculated flux is .6666 and the calculated area is .2377. In
the smaller square, flux/area = 2.7766. The exact value at the center of square,
.1:25; :25/, is div.F/.1:25; :25/ D 1:25 C .³=2/ cos.³=8/ D 2:7012.

Generally speaking, it is difficult to determine visually the sign of the divergence
of a vector field. Our intuitive feeling is that if the arrows are spreading apart, the
divergence should be positive, and if they are converging, the divergence should be
negative. This appears to be the case in Figure 11.10. However, the matter is more
subtle, as shown in the following examples.
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Figure 11.10 Flux calculations around squares for the vector field F.x; y/ D [x2=2; sin.³y=2/].
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Example 11.10

We define accelerated flow as follows: Let p D [p1; p2] be a constant vector,
which will be the direction of the flow, and let a.s/ be a continuously differentiable
function of one variable. The function .x; y/ ! a.p1x C p2y/ is constant on lines
perpendicular to p, and the gradient of a.p1x C p2y/ is parallel to p. Now we set
F.x; y/ D a.p1x C p2y/p. We have

div.F/.x; y/ D a0.p1x C p2y/.p2
1 C p2

2/:

Hence div.F/ is positive or negative depending on the sign of a0. Here all the vectors
are parallel; they do not spread apart or converge. However, the flow speeds up or
slows down depending on a, which is the reason for the term accelerated flow. A
simple example with p D i is

F.x; y/ D [x2; 0]:

We have div.F/ D 2x , which is positive for x > 0 and negative for x < 0. Compare
with shear flow, discussed in Example 11.6.

Example 11.11

Radial flow: We consider the vector field

F.x; y/ D
hx

r
;

y

r

i
;

where r D
p

x2 C y2. F is a unit vector field. We have

div.F/.x; y/ D 1

r
:

The vector field is singular at the origin because div.F/ becomes infinite there. The
positive divergence of this vector field is due to the fact that the arrows are spreading
apart. However, as we shall see in the exercises, if the arrows are getting shorter as
they spread out, the divergence may be zero or negative.

In the exercises you will construct an mfile, divg.m, that is the analog of curl.m.
It superimposes the vector field on a pcolor plot of the div.F/.

Exercises

1. a) Let F.x; y/ D [xy; cos.xy/]. Use quiver to graph the vector field on the
square 0 � x; y � 4.



11.5 The divergence theorem 237

b) Let C be parameterized by r.t/ D [t2; exp.t/]; 0 � t � 2. Following
Example 11.3, make a numerical estimate of the line integral

R
C FÐdr. Use Simpson’s

rule, first with 100 subdivisions and then with 200 subdivisions. Estimate the error
in the first calculation.

2. a) Let F.x; y; z/ D [1 � y2 � z2; 0; 0]. Use quiver3 to graph the vector field
in the cube �1 � x; y; z � 1.

b) Let the curve C be parameterized by r.t/ D [t; t cos t; t sin t]; 0 � t � 2³ .
Calculate the line integral

R
C F Ð dr by hand, and numerically with Simpson’s rule.

3. Let the curve C be given in tabular form,

x 0 .5083 .3833 -.5825 -2.0333 -3.1416
y 0 .3693 1.1951 1.7927 1.4733 -0.0000

x -3.1416 -3.0499 1.3591 1.5533 4.5749 6.2832
y -0.0000 -2.2159 -4.1830 -4.7805 -3.3238 0.0000

Let the vector field F D [xy; cos.xy/]. Estimate the line integral
R

C F Ð dr using the
procedure of Example 11.4.

4. Add a vector of z values to the x and y values of Exercise 3, z. j/ D . j �
1/=10; j D 1; : : : ; 11. Now suppose the discrete points .xj ; yj ; zj /; j D 1; : : : ; 11,
are located on the curve C . Let the vector field F D [xz; cos.xy/; z]. Estimate the
line integral

R
C F Ð dr.

5. Let the force field F.x; y/ D [sin.xy/; x � y].
a) Let corners be [0 2:2 0 2:2] and let C be the path consisting of the two

straight-line segments from .:5; :5/ to .1:5; 1/ and from .1:5; 1/ to .2; 2/. Use the
mfile lint.m to calculate the work integral

R
C F Ð dr.

b) Repeat the work calculation with the path C now consisting of 10 line
segments forming a curve from .:5; :5/ to .2; 2/.

c) Try various paths to see how you can make the work along the path C from
.:5; :5/ to .2; 2/ nonnegative and as small as possible.

6. a) Use the same vector field over the same rectangle as in Exercise 5. Calculate
the work around a closed path with 10 segments using the mfile lint.m. First do a
closed path in the lower right-hand corner, then in the upper left-hand corner, and
finally in the upper right-hand corner. Calculate and record the work/area for each
closed path.
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b) Use the mfile curl.m to see where curl.F/ is greatest and where smallest.
Compare with your results in part a). If in each case you divide the work (circulation)
by the area of the enclosed polygon, how close do you come to the value of the
curl.F/ at the center of the polygon?

7. Let F.x; y/ D [x C sin y; x cos y].
a) Use the mfile lint.m with this F and the rectangle R D [1; 4] ð [�2; 2].

Calculate the work done by any two paths from the point .1:5;�1/ to the point
.3:5; 1/. Use any number of segments. What are your results?

b) Calculate the work (circulation) around any closed path. What can you
conclude about this vector field?

8. Let the vector field F D [�y; x]=r p, where r D
p

x2 C y2.✯

a) Calculate curl.F/ by hand and show that

curl.F/ D 2 � p

r p
k:

This result appears to challenge our intuition, because the flow is counterclockwise
for all p > 0, yet the curl.F/ points in the negative k direction for p > 2.

b) Let p D 3. Use lint.m on the rectangle R D [:5; 1:5] ð [�:5:5]. Calculate
the circulation in the counterclockwise direction around a small square centered at
.1; 0/, where curl.F/ D �k. Note that the work W1 done on the right side of the
square is positive but that the work done on the left side of the square is negative,
W3 < 0, and that W1 C W3 < 0. The work done on the top and bottom segments is
of a smaller order.

c) Let p D 1. Do the same calculation and note now that W1 C W3 > 0. Does
this agree with the hand calculation done in part a)?

9. Let a vector p D [p1; p2] be given. Let a D a.s/. Let F.x; y/ D a.p2x � p1y/p.
This is an example of a shear flow (see Example 11.6).

a) Calculate the curl.F/ by hand.
b) Let p D [1; 2] and a.s/ D jsj. Use lint.m on the rectangle R D [1; 3] ð

[1; 3]. Calculate the circulation around a small closed path lying above the line
y D x=2 and around a small closed path lying below the line y D x=2. Do the
results agree with your calculation in part a)?

10. Let F.x; y/ D [1; .y=4/ sin.³x/].
a) Calculate div.F/ by hand. Where is it positive, and where is it negative?
b) Use the mfile flux2.m over the rectangle R D [0; 2] ð [0; 2]. Calculate

the flux around a small square lying in x < 1, and divide by the area. Does this
approximate div.F/ at the center of the square?
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c) Do the same calculation over a small square lying in x > 1, and answer
the same question as in part b).

11. The mfile curl.m uses centered differences to approximate the value of vx�uy✯

in the lines C1 = ... and C2 = ....
a) Use the centered difference formula

u.x C h; y/� u.x � h; y/

2h
C v.x; y C h/� v.x; y � h/

2h

to approximate the divergence ux C vy . Modify the mfile curl.m to make a pcolor
plot of the divergence of a vector field F.x; y/ D [u.x; y/; v.x; y/]. Call the new
file divg.m.

b) Use divg.m to plot the divergence of the vector field of exercise 10.

12. Let the vector p D [p1; p2] and let F.x; y/ D a.p1x C p2y/p. This is accel-
erated, parallel flow (see Example 11.10).

a) Calculate div.F/ by hand.
b) Let p D [2;�1] and let a.s/ D jsj C s2. Use the mfile flux2.m over the

rectangle R D [�2; 2] ð [�2; 2]. Calculate the flux around a small square above the
line y D 2x and divide by the area. Does this approximate the divergence and the
center of the square?

c) Repeat the calculation for a small square lying below the line y D 2x .
Answer the same question.

13. Let F D [x; y]=r p, with r D
p

x2 C y2.✯

a) Calculate div.F/ by hand. Show that

div.F/ D 2 � p

r p
:

Again, this result seems counterintuitive. Although the arrows are spreading apart
for all p > 0, the divergence is negative for p > 3. This can be understood by
noting that the larger p is, the faster the arrows are getting shorter as r increases.

b) Let p D 3. Use the mfile flux2.m on the rectangle R D [:5; 1:5]ð[�:5; :5].
Calculate the flux around a square with side :4 centered at .1; 0/. Note that the flux
along the top and bottom of the square f1 and f3 are both positive, with f1 ³ f3.
The flux f2 on the right side is positive, while the flux f4 on the left side is negative
with f1 C f2 C f3 C f4 < 0.

c) Now let p D 1. Repeat the calculation of part b). What is the sign of the
flux? How do the individual parts add up?
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d) Finally, let p D 2. Repeat the calculation of part b). What is the result?
How do the individual parts balance out?

14. Let F.x; y/ D [ f .x; y/; g.x; y/] be a vector field and let G be the unit square✯✯

0 � x; y � 1. The flux through the boundary of G (using the exterior normal) is
the sum of four integrals:

Z
@G

F Ð n ds D �
Z 1

0
f .0; y/dy C

Z 1

0
g.x; 1/dx C

Z 1

0
f .1; y/dy �

Z 1

0
g.x; 0/dx :

a) Write a script file to calculate this flux integral. The script should call
function mfiles f.m and g.m. Use the one-dimensional Simpson’s rule with n D 20
to calculate each of the four integrals.

b) To test your script, use it to calculate the flux integral for F.x; y/ D
[.x C 1/y; 3y2], and compare with your calculation by hand.

c) Now let f .x; y/ D exp.x C y/ and g.x; y/ D y cos.x2/. Calculate the flux
integral with your script. Then use the mfile simp2 to calculate numerically the
integral

R R
G div.F/ dxdy with n D m D 20 and then with n D m D 40. Compare

the result for the double integral with the result for the boundary integrals.



12
Problems from Electrostatics

and Fluid Flow

Prepared mfiles used in this chapter

flow1 flow2

Chapter 12 is divided into two major sections, one dealing with problems from
electrostatics and the other covering problems from fluid flow. We shall discuss
electrostatics first because we deal with a single equation. In the discussion of fluid
flow, we shall need to consider systems of equations.

First we introduce some techniques we will use for deriving the equations.

12.1 An important tool

The principle tool used to derive the partial differential equations of physics is the
divergence theorem. The divergence theorem connects global observations of vector
fields (e.g., flux integrals over surfaces) with the local behavior of the vector fields
(partial derivatives of the components). Application of the divergence theorem often
leads to an integral equation, for instance,

Z Z
G

f .x; y/ d A.x; y/ D 0 or
Z Z Z

G
f .x; y; z/ dV .x; y; z/ D 0;

(12.1)
holding for all sets G in xy space or all sets G in xyz space. Next we want to
deduce a statement about the point values of f from (12.1).

241



242 Problems from Electrostaticsand Fluid Flow

Null Theorem

If f is continuous and Eq. (12.1) holds for all sets G, then f � 0.
We show why this is true in two dimensions. The argument in three dimensions

is the same. Fix a point .x0; y0/. Condition (12.1) holds in particular for all squares
Qh of side h centered at .x0; y0/,

Qh D f.x; y/ : jx � x0j � h=2; jy � y0j � h=2g:
Dividing Eq. (12.1) by h2, we have

1

h2

Z Z
Qh

f .x; y/ dxdy D 0 for all h > 0: (12.2)

But Eq. (12.2) is just the average of f over Qh . As h # 0, this average, which is
always zero by Eq. (12.2), tends to the value of f at .x0; y0/. We write this as

f .x0; y0/ D lim
h!0

1

h2

Z Z
Qh

f .x; y/ dxdy D 0:

Since .x0; y0/ could be any point, we see that f is zero everywhere.

12.2 Electrostatics

In this introduction to the subject, we shall set all the physical constants to 1. The
electric field E D [E1; E2; E3] is a vector attached to each point in some set G of
xyz space. It is the force exerted on a particle with a unit positive charge. The field
is produced by the presence of charge, according to Coulomb’s law. If a charge of
Q coulombs is located at the point x0 D .x0; y0; z0/, the electric field at the point
x D .x; y; z/ is

E.x; y; z/ D Q.x � x0/

4³ jjx � x0jj3 : (12.3)

Notice that if Q > 0, the electric field vector E points from x0 to x. In this case,
the force is repellent. If Q < 0, the E vector points from x to x0, and the charge at
x0 is attracting the positive unit test charge. In either case, the magnitude of E is

jjE.x; y; z/jj D jQj
4³ jjx � x0jj2 :

This is an example of an inverse square law.
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What is the electric field produced by a distribution of charge? Two facts about
the electric field generated by such a charge distribution, which can be verified in
the laboratory, are

I The electric field is conservative. The line integral
R

C E Ð dr D 0 for all closed
paths C .

II Gauss’s law The strength of the electric field, as measured by the flux integralZ Z
S

E Ð n d S

over a closed surface S, is equal to the total charge contained within the surface.
When the charge is distributed continuously over a volume by a charge density
².x; y; z/, Gauss’s law becomesZ Z

S
E Ð n d S D

Z Z Z
G
².x; y; z/ dV; (12.4)

where G is the region bounded by S. These two facts will allow us to determine
the electric field from a given charge density ².

Assuming our region of investigation has no holes in it, the fact that E is conser-
vative means that there is a potential function �.x; y; z/ such that

�r� D E: (12.5)

The minus sign is a convention used in physics. A surface on which � is constant
is called an equipotential surface.

Now we apply the divergence theorem to the integral on the left of Eq. (12.4).
We deduce that Z Z Z

G
div.E/ dV D

Z Z Z
G
² dV (12.6)

or Z Z Z
G

[div.E/� ²] dV D 0

for all bounded sets G. Hence by the Null theorem, we can conclude that

div.E/.x; y; z/ D ².x; y; z/: (12.7)

But from Eq. (12.5), we have div.E/ D div.�r�/ D �1�. Thus the potential �
must satisfy

�1� D ²: (12.8)
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This is the Poisson equation. It appears in many other contexts, including heat
transfer and acoustics. The operator on the left, 1� D �xx C �yy C �zz , is the
Laplace operator seen in Chapter 8.

Now we have a single partial differential equation that relates the electrostatic
potential to a given charge density. Once � is determined, E is found from Eq. (12.5).

The physically relevant solution of Eq. (12.8), in the absence of any boundaries,
is found using the potential of a point charge. It is easy to verify that the potential
of the electric field (Eq. 12.3) for Q D 1 and x0 D 0 is

� .x/ D 1

4³ jjxjj :

� is the fundamental potential in three dimensions. You should verify that 1� D 0
for x 6D 0. If the unit charge is placed at y 6D 0, the potential is

� .x � y/ D 1

4³ jjx � yjj :

Notice that the potential � becomes infinite as x ! y because the unit charge is
concentrated at a single point y.

The potential produced by charges Q1 at y1 and Q2 at y2 is

Q1� .x � y1/C Q2� .x � y2/:

If charges Q1; Q2; : : : ; Qn are placed at locations y1; y2; : : : ; yn , the resulting poten-
tial is

�.x/ D
nX

jD1

Qj� .x � yj / D
nX

jD1

Qj

4³ jjx � yj jj : (12.9)

For a continuous distribution of charge, given by a density ².x/, the discrete sum
(Eq. 12.9) is replaced by

�.x/ D
Z Z Z

� .x � y/².y/ dV .y/ (12.10)

D 1

4³

Z Z Z
².y/

jjx � yjj dV .y/:

A Riemann sum approximation to this integral is

1

4³

X
i; j;k

².yi; j;k/

jjx � yi; j;k jj1V; (12.11)
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where we have decomposed the region of integration into cubes Ri; j;k of volume
1V and picked a point yi; j;k 2 Ri; j;k . In the exercises you will write a MATLAB
code that computes this approximation. This is not the approach used in efficient,
accurate, computation of solutions to this problem, but it will give us some idea of
what the solutions look like.

Example 12.1

We compute and graph the potential �.x; y; z/ produced by a uniform charge density
² � 1 on the solid cylinder R D fx2 C y2 < 1; �1 � z � 1g. It is given by the
triple integral, which can be put in cylindrical coordinates:

�.x; y; z/ D 1

4³

Z Z Z
R

dV .y/
jjx � yjj

D 1

4³

Z 1

�1

Z 1

0

Z 2³

0

rdrd�d�p
.x � r cos �/2 C .y � r sin �/2 C .z � � /2

Since the potential is symmetric with respect to the z axis, it suffices to compute
values of the potential �.x; 0; z/ and display the results in the x; z plane. The integral
to compute is

�.x; 0; z/ D 1

4³

Z 1

�1
d�

Z 1

0
rdr

Z 2³

0

d�p
x2 � 2xr cos � C r 2 C .z � � /2

:

We do this in the following script. The graph of �.x; 0; z/ is displayed in the left
side of Figure 12.1, and the level curves of �.x; 0; z/ are displayed on the right. The
equipotential surfaces of � are generated by revolving these curves about the z axis.

% choose midpoints in the r, theta, zeta grid.
delr = .1; deltheta = pi/10; delzeta = .1;
r = linspace(.5*delr, 1-.5*delr, 10);
th = linspace(.5*deltheta, 2*pi-.5*deltheta, 20);
zeta = linspace(-1+.5*delzeta, 1-.5*deltheta, 20);
% We form the three-dimensional arrays, which are
% 10 by 20 by 20
[R,TH,ZETA] = meshgrid(r,th,zeta);

% construct the meshgrid for graphing the potential.
x = linspace(0, 5, 26);
z = linspace(-5,5, 51);
[X,Z] = meshgrid(x,z);
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Figure 12.1 Potential � produced by uniform charge density on the cylinder R D fx2 C y2 <

1; �1 � z � 1g. Graph of �.x; 0; z/ on the left, level curves on the right.

% set aside a 51 by 26 array for the values of phi.
phi = 0*Z;

for i = 1:51
for j = 1:26

% for each z(i),x(j) in the x,z meshgrid,
% compute the three-dimensional array of the denominator
denom =
sqrt(x(j)^2-2*x(j)*R.*cos(TH)+R.^2+(z(i)-ZETA).^2);
% compute the Riemann sum by summing over the three-
% dimensional arrays R and denom
phi(i,j) =
(delr*deltheta*delzeta/(4*pi))*sum(sum(sum(R./denom)));

end
end
subplot(1,2,1)

surf(X,Z,phi)
subplot(1,2,2)

contour(X,Z,phi)

The Dirichlet problem

In a region G with no charge, the equation for the potential is simply 1� D 0.
Solutions of this equation are called harmonic functions (see Chapter 8), and they
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have very special properties. This situation arises when G is the interior of a shell
bearing charge. The charge on the shell produces an electric field and hence a
potential �. The values of � inside of G are determined by its values on the bounding
shell, which we shall denote by @G. The Dirichlet problem is to find the solution
of the boundary value problem

1�.x/ D 0 in G; � D f on @G: (12.12)

The function f is given on @G. These are the values the potential is supposed to
have on @G.

In more advanced courses it is shown that if the region has no sharp cusps and f
is continuous, then there is a unique solution to the Dirichlet problem. Furthermore
the solution can be represented in terms of f , much as in Eq. (12.10). There is a
function P.x; y/, determined by the domain G, such that the solution of Eq. (12.12)
is given by

�.x/ D
Z Z

@G
P.x; y/ f .y/ d S.y/: (12.13)

P.x; y/ is called the Poisson kernel for the region G. For y 2 @G, x ! P.x; y/
satisfies the Laplace equation inside G.

For y 2 @G, as x ! @G, P.x; y/ ! 0, except for the special case when x ! y
when P blows up.

The Poisson kernel can be thought of as the potential produced by a unit charge
placed at the point y 2 @G with the boundary grounded (potential equals 0) every-
where except at y.

The Poisson kernel can be found in closed form only for special geometries,
such as a sphere, circle, half-plane, or quarter-plane. For this reason, Eq. (12.13)
is not used for computation of solutions. Nevertheless, it can give us some insight
into the qualitative properties of the solution and how it depends on the boundary
data. In the exercises we shall examine the Poisson kernel for the circle and the
half-plane.

12.3 The geometry of fluid flow

By a fluid we mean either a gas or a liquid. We shall limit our treatment to fluid
flow in two dimensions, but the derivation of the equations is easily extended to
three dimensions. Furthermore we shall limit our discussion to the case of steady
flow. In this situation the velocity is independent of time. This does not mean the
fluid particles are stationary; they can move.
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We shall first investigate how certain quantities move with the fluid for a given
fluid velocity field. In the next section, we apply the laws of physics to find which
velocity vector fields can represent a fluid.

In the Eulerian description of a fluid, the observer views the fluid at fixed points
.x; y/ in space. Her observation point does not move with the fluid. At each point
in the two-dimensional space considered, we assume given the velocity of the fluid

q D [u.x; y/; v.x; y/]:

The x component of the velocity is u, and the y component is v. Now, from our
observer’s point of view, if we wish to follow the path of a fluid particle, we
need functions x.t/ and y.t/ to locate the particle as a function of t . The curve
t ! .x.t/; y.t// parameterizes the path of the particle, and the velocity of this
particle at time t is

[x 0.t/; y0.t/]:
This expression must be the same as the given velocity vector at the location
.x.t/; y.t//. Consequently, x.t/ and y.t/ must satisfy the following system of differ-
ential equations:

dx

dt
D u.x.t/; y.t// (12.14)

dy

dt
D v.x.t/; y.t//:

For a given velocity field [u; v], Eqs. (12.14) can be very difficult or impossible
to solve analytically. Instead we shall use a numerical method to generate approx-
imate solutions to Eqs. (12.14). The method we describe is simple but effective in
certain situations. It is called the Euler method, and it is the starting point for the
construction of more sophisticated methods.

We suppose that at time t D 0, the particle is at the point .x1; y1/. The velocity
vector at that point is

q1 D [u.x1; y1/; v.x1; y1/]:

Over a very short time interval 1t , the particle will move from the point .x1; y1/

to approximately

.x2; y2/ D .x1 C1tu.x1; y1/; y1 C1tv.x1; y1//:

We use this approximation again, starting from .x2; y2/, which yields

.x3; y3/ D .x2 C1tu.x2; y2/; y2 C1tv.x2; y2//:
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We can repeat this procedure any number of times. The general form is

.xnC1; ynC1/ D .xn C1tu.xn; yn/; yn C1tv.xn; yn//: (12.15)

Example 12.2

The following script implements the Euler method for the velocity field

u.x; y/ D x C y; v.x; y/ D cos.y/:

We assume u and v are given as inline functions or in mfiles, u.m and v.m.
start = input(’enter the starting point [x1,y1]’)
delt = input(’enter the time step delta t ’)
nstep = input(’enter the number of time steps ’)
x = zeros(1,nstep+1); y = x;
x(1) = start(1);
y(1) = start(2);

for n = 1:nstep
x(n+1) = x(n) + delt*u(x(n),y(n));
y(n+1) = y(n) + delt*v(x(n),y(n));

end
plot(x,y,’r’)

You can plot this polygonal path together with the velocity field [u; v] using a
meshgrid and the command quiver (see Figure 12.2). You can further compare the
path produced by the Euler method with that produced by the mfile flow1.m, which
uses a more sophisticated numerical solver of the system (12.14).

mfile flow1

The mfile flow1.m solves the system (12.14) numerically using the more sophis-
ticated solver ode45 of MATLAB. It also plots the vector field. The call is
flow1(corners,T), where, as usual, corners is the vector of corner coordinates
[a; b; c; d] of the rectangle where the vector field is to be displayed. T is the time
up to which the flow is followed. The vector field components must be provided
in mfiles u.m, and v.m. flow1.m also requires another mfile wdot.m, which is
provided. wdot.m uses the mfiles u.m and v.m.

After the call, the program asks the user to enter the number M of starting points
for the trajectories. After M is entered, the program waits for the user to click on
the figure for a starting point. The program then computes the trajectory through
this point and superimposes it on the vector field. This can be done M times. If the
trajectory goes outside the rectangle determined by corners, the time T should be
shortened.
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Figure 12.2 Vector field q D [u; v] D [x C y; cos.y/]. Approximate particle path starting at .0; 0/
computed by Euler method with 1t D :5, 10 time steps.

Example 12.3

Let the vector field be u.x; y/ D �y C x2 and v D x C x3. We choose the rectangle
R D [�2:5; 2:5] ð [�1; 6]. The results of using flow1 with M D 5 trajectories is
shown in Figure 12.3. The 5 trajectories begin at points .0; 1/; .0; 2/; .0; 3/; .0; 4/,
.0; 5/.

function z = u(x,y)
z = -y +x.^2;

function z = v(x,y)
z = x + x.^3;

>> corners = [-2.5 2.5 -1 6]
>> flow1(corners, 4)

Following the flow

Next we shall examine how a scalar quantity, such as the density of the fluid, changes
with the flow. We shall use this result in the next section to find the equations of
motion of the fluid.



12.3 The geometry of fluid flow 251

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

0

1

2

3

4

5

6

x

y

Figure 12.3 Particle paths of the flow q D [u; v] D [�y C x2; x C x3]. The flow rotates in the
counterclockwise direction.

Let G D G.0/ be a bounded set in x; y space consisting of fluid particles. As these
particles move following the solution curves of (12.14), the set G.0/ is deformed
into a set G.t/ at time t . The shape and area of G.t/ may change with t .

Let f .x; y/ be a continuously differentiable function. How does the integralZ Z
G.t/

f .x; y/ dxdy (12.16)

depend on t? We give an intuitive derivation of the formula for

d

dt

Z Z
G.t/

f .x; y/ dxdy;

assuming f .x; y/ ½ 0.
Let 1.h/ be the region between the boundaries of G.t/ and G.t C h/ (see

Figure 12.4). Let n be the unit exterior normal to @G.t/. The width of 1.h/,
measured in the direction along the normal n, varies as we move along @G.t/. At
each point of @G.t/, it is given approximately by jn Ð qjh. Where the fluid particles
move outward from G.t/, i.e., where n Ð q > 0, the integral (12.16) will increase.
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Figure 12.4 Set G.t/ displaced a short time interval h > 0 by a flow. Boundary of G.t/ in solid
line, boundary of G.t C h/ in dotted line.

Where the fluid particles move into G.t/, i.e., where n Ð q < 0, the integral (12.16)
decreases. Hence the net changeZ Z

G.tCh/
f .x; y/ dxdy �

Z Z
G.t/

f .x; y/ dxdy ³
Z Z

1.h/
f .x; y/sign.n Ð q/ dxdy

³ h
Z
@G.t/

f n Ð q ds:

Dividing by h and taking the limit as h ! 0, we have

d

dt

Z Z
G.t/

f .x; y/ dxdy D
Z
@G.t/

f n Ð q ds: (12.17)

Now finally, we use the divergence theorem in a crucial way to convert the
boundary integral on the right into a double integral over G.t/. The vector field in
this case is the product of f times the velocity vector q. Hence the integral on the
right of Eq. (12.17) can be writtenZ

@G.t/
f n Ð q ds D

Z Z
G.t/

div. f q/ dxdy;
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which yields the fundamental result

d

dt

Z Z
G.t/

f .x; y/ dxdy D
Z Z

G.t/
div. f q/ dxdy: (12.18)

We shall make several choices of f to derive the equations of the fluid. However,
to get an immediate, geometrically important, result, we take f � 1. ThenZ Z

G.t/
f .x; y/ dxdy D A.t/;

the area of G.t/. Putting f � 1 in the right side of Eq. (12.18) yields

d

dt
A.t/ D

Z Z
G.t/

div.q/ dxdy: (12.19)

Thus whether the area of G.t/ decreases or grows with the flow depends on the sign
of div.q/. If div.q/ > 0, G.t/ expands as t increases; if div.q/ < 0, G.t/ shrinks
as t increases. In the special case that div.q/ D 0 (incompressible flow), the area of
G.t/ is constant, although the shape may change.

mfile flow2

The mfile flow2.m works like flow1.m and allows the user to follow the defor-
mations of a disk carried with the flow. The call is flow2(corners,times). As
usual, corners is the vector [a; b; c; d] of corner coordinates of the rectangle R
where the vector field is displayed. times = [t1 t2 t3 t4] is a vector of the
four times at which the deformed disk is plotted, in addition to t D 0. The vector
field components, u.x; y/ and v.x; y/, must be provided in mfiles u.m and v.m. The
mfile wdot.m is also needed. After the call, the vector field is displayed in the rect-
angle R, and the program waits for the user to click on the figure to determine the
center of the initial disk. The area of the deformed disks is computed approximately,
using a numerical approximation to the line integral

R
C xdy.

Example 12.4

Let the flow be given by the vector field

q D [u; v] D [x C y; cos.y/]:

The initial disk is centered at .�:2;�:5/, and the times are t1 D :4; t2 D :8; t3 D
1:2; t4 D 1:6. The areas of the initial disk and the images are
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Figure 12.5 Images of a disk centered at .�:2;�:5/ carried by the flow [u.x; y/; v.x; y/] D [x C
y; cos y] at times t1 D :4; t2 D :8; t3 D 1:2; t4 D 1:6.

area0 = .1236
area1 = .2078
area2 = .3005
area4 = .4262

See Figure 12.5. From the figure and the values of the areas, it is clear that div.q/ > 0
in this region. In fact, div.q/ D 1 � sin y > 0 for �3³=2 < y < ³=2.

12.4 The Euler equations

Up to now we have described the geometry of the motion of a fluid. We have not
invoked any physical principles that govern the flow of a fluid. We do this now to
derive the equations of motion. Remember that we are assuming that the velocity
q D [u.x; y/; v.x; y/] does not depend on t .

Two additional quantities that we will need to describe a fluid are the pressure
p.x; y/ and the density ².x; y/. Since we are working in two dimensions, the units
of ² are mass/area; for any region G of the fluid,

R R
G ² dxdy is the mass of the

fluid particles contained in G. If we have a region G.t/ that moves with the flow,
always consisting of the same fluid particles, the mass of fluid contained in G.t/ is
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constant. Hence
d

dt

Z Z
G.t/

².x; y/ dxdy D 0: (12.20)

Now we apply Eq. (12.18), taking f .x; y/ D ².x; y/. We conclude that

0 D
Z Z

G.t/
div.²q/ dxdy (12.21)

for any set G.t/. By the Null theorem, assuming ² and q are continuously differ-
entiable, we see that ² and q must satisfy the partial differential equation

div.²q/ D r² Ð q C ² div.q/ D 0: (12.22)

This is our first equation of motion. It expresses the physical law of conservation
of mass.

Next we turn our attention to the momentum of the fluid. The momentum density
is a vector field ²q D [²u.x; y/; ²v.x; u/]. We shall assume that the fluid has
no viscosity, and that the only force acting on a body of fluid is the pressure.
Newton’s second law states that the rate of change of momentum is equal to the
applied force (in this case the pressure). We follow the same procedure we did to
derive the conservation of mass equation, and we invoke Newton’s second law on
each component of the momentum density. This yields equations for the x and y
components of the momentum:

r.²u/ Ð q C ²u div.q/C px D 0 (12.23)

and
r.²v/ Ð q C ²v div.q/C py D 0: (12.24)

These equations express conservation of momentum.
These equations may be simplified by taking into account Eq. (12.22). Since

r.²u/ D ur² C ²ru, we have

r.²u/ Ð q C ²u div.q/ D ur² Ð q C ²ru Ð q C ²u div.q/

D u div.²q/C ²ru Ð q

D ²ru Ð q:
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The same holds for the left side of Eq. (12.24). Hence our equations for steady
motion of a fluid are

div.²q/ D 0 (12.25)

²q Ð ru D �px (12.26)

²q Ð rv D �py: (12.27)

These are known as the Euler equations of steady flow. The second and third
equations are often written as a single vector equation,

q Ð rq D �r p=²:

We note that the Euler equations are a system of three partial differential equations
in the four unknown functions ²; u; v; and p. Generally, for a system to be solvable,
there must the same number of equations as there are unknown functions. For this
reason, we add a fourth equation to the system (12.25)–(12.27) that relates the
pressure and the density. This is called the equation of state. In the absence of any
temperature variation, or with very little temperature variation, the equation of state
is written

F.²; p/ D 0: (12.28)

The equation of state is determined by the type of fluid. For example, in a gas, such
as air, the equation of state is

p D A²� ;

where A and � are constants, � > 1.
A solution of Eqs. (12.25)–(12.28) is a set of four functions u.x; y/, v.x; y/,

².x; y/, and p.x; y/ that satisfy the equations everywhere in a specified region of
the xy plane. It is very difficult to find solutions of these equations in closed form.
More often, approximate numerical solutions are found using high-speed computers.

A fluid such as water or oil is practically incompressible, so the density is nearly
constant, although the pressure may vary. When the density is constant, Eq. (12.25)
becomes

ux C vy D div.q/ D 0; (12.29)

which is the incompressiblity condition. In this case, the equation of state is not
necessary.
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12.5 Incompressible flow

Most solutions in closed form are for incompressible flow, where ² is constant. The
incompressibility condition (12.29) may be rewritten

0 D ux C vy D ux � .�vy/

so that the vector field [�v; u] is the gradient of a scalar function  .x; y/:

 x D �v;  y D u:

 is called the stream function. It is easy to verify that  is constant on the particle
trajectories, which are now called streamlines. This follows from the fact that r Ð
q D [�v; u] Ð [u; v] D �uv C uv D 0.

Examples 12.5

In these examples of incompressible flow, the density ² is constant, so we may as
well set ² � 1. Our problem comes down to finding velocity fields q D [u; v] such
that div.q/ D 0 and Eqs. (12.26) and (12.27) are satisfied. This will be the case if
q Ð rq is a gradient, which is to say curl.q Ð rq/ D 0. Then we may take for the
pressure p any function such that �r p D q Ð rq.

Rotating flow

With r D
p

x2 C y2, let q D [�y; x]=rÞ. It is easy to verify that div.q/ D 0, and
that

q Ð rq D �[x; y]=r 2Þ;

which is a gradient.
For Þ 6D 1, we take the pressure as

p.x; y/ D
�

1

2Þ � 2

�
1

r2Þ�2
C C:

For Þ D 1, the pressure is

p.x; y/ D � ln r C C:

Radial flow

We look for q in the form q D [x; y]=rÞ and find that div.q/ D 0 only for Þ D 2.
In this case q Ð rq D �[x; y]=r 4 and

p.x; y/ D 1

r2
C C:
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It is important to find quantities that are preserved by the flow. This means that
we seek scalar quantities that are constant on the streamlines. Of course, the stream
function is constant on the streamlines. Another important quantity is a combination
of the speed of the flow and the pressure.

Bernoulli’s law
Let q D [u; v], p and ² D constant be a solution of the Euler Eqs. (12.25)–(12.27).
Then the quantity

e � ²

2
jjqjj2 C p

is constant along the streamlines, although it may vary from one streamline to
another. To see this, we consider the function of t that is e restricted to a solution
curve of Eqs. (12.14),

e.t/ D ²

2
jjq.x.t/; y.t//jj2 C p.x.t/; y.t//:

To show that e.t/ is constant, we calculate de=dt . Now,

jjqjj2 D u2.x.t/; y.t//C v2.x.t/; y.t//;

so by the chain rule,
d

dt

²

2
jjqjj2 D ²[uux.dx=dt/C uuy.dy=dt/C vvx.dx=dt/C vvy.dy=dt/]

D ²[u2ux C uvuy C uvvx C v2vy]

D ²u.uux C vuy/C ²v.uvx C vvy/:

Similarly,
d

dt
p.x.t/; y.t// D px.dx=dt/C py.dy=dt/

D pxu C pyv:

Hence
de

dt
D 1

2

d

dt
.²jjqjj2/C d

dt
p

D ².uux C vuy/u C ².uvx C vvy/v C pxu C pyv

D [².uux C vuy/C px ]u C [².uvx C vvy/C py]v

D 0

because of Eqs. (12.26) and (12.27).
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According to Bernoulli’s law, if the speed jjqjj of the flow increases along a
given streamline, then the pressure p must decrease. For example, when a fluid
leaves a nozzle, the pressure decreases and the fluid particles accelerate. As we
shall see later when we consider irrotational flow, Bernoulli’s law is also important
in aerodynamics.

Another quantity that is constant along streamlines is the vorticity. The vorticity
is just the k component of the curl of q,

! D vx � uy: (12.30)

It is a bit more complicated computation to show that d!=dt D 0 along a stream-
line, but the method is the same. This result holds only in two dimensions. In
three dimensions, the vorticity may change along the streamlines, and this makes
the analytical and numerical study of the Euler equations in three dimensions more
difficult.

Irrotational, incompressible flow

Finally we make an additional restriction on the type of flows we consider. In
addition to assuming that the density ² is constant, we shall also assume that the
flow is irrotational,

curl.q/ D 0: (12.31)

This means that in any region having no holes, there is a potential function �.x; y/,
called the velocity potential, with

r� D [u; v] D q:

If we now apply the incompressibility condition, div.q/ D 0, we find that � must
satisfy the Laplace equation

1� D div.r�/ D div.q/ D 0: (12.32)

This is the same equation that the electrostatic potential satisfies in a region where
there is no charge. The stream function  also satisfies 1 D 0.

Bernoulli’s law becomes even simpler for irrotational, incompressible flow. If �
is the velocity potential, then the second and third Euler equations, Eqs. (12.26) and
(12.27), are satisfied automatically when we take the pressure to be

p.x; y/ D �²
2

jjqjj2 C C:
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In fact,

uux C vuy D �x�xx C �y�xy D 1

2

@

@x
.�2

x C �2
y/

and

uvx C vvy D �x�xy C �y�yy D 1

2

@

@y
.�2

x C �2
y/:

so that

².uux C vuy/ D ²

2

@

@x
jjqjj2 D �px

and

².uvx C vvy/ D ²

2

@

@y
jjqjj2 D �py :

Thus Bernoulli’s law holds with the same constant everywhere in the case of irro-
tational, incompressible flow.

Subsonic flow of air around a wing can be modeled by irrotational, incompressible
flow. Bernoulli’s law is what provides the lift on a wing. The wing is shaped so that
the air particles move faster over the top of the wing than across the bottom. Hence
the pressure on top of the wing is less than on the bottom. The resulting pressure
difference is the lift. The same phenomenon allows a sail boat to tack against the
wind, a sail being a kind of vertical wing.

Many techniques have been developed to solve 1� D 0 to represent flow around
an obstacle. If B is a body, which is impenetrable to the fluid, the velocity q must
be tangent to the boundary curve of B. This means that on @B, n Ðq D 0, where n is
the exterior normal to @B. When the flow is irrotational and there exists a velocity
potential �, it must satisfy the boundary value problem

1� D 0 outside B; (12.33)

@�

@n
D n Ð r� D 0 on @B: (12.34)

Example 12.6

The radial flow q D [x; y]=r 2 is irrotational and incompressible with the velocity
potential �.x; y/ D ln r C C . The streamlines are the radial lines � D constant.

Example 12.7

We display the flow around an infinite cylinder whose cross section is the disk of
radius a, fx2 C y2 � a2g. We choose a velocity potential so that the flow far from
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the disk is almost uniform, q ³ [V; 0] where V is a constant:

�.x; y/ D V

�
x C a2x

x2 C y2

�
:

The stream function is

 .x; y/ D V

�
y � a2y

x2 C y2

�
:

On the boundary of the disk, x2 C y2 D a2, so that  D 0. The velocity field is

q D [�x ; �y] D V

�
1 C a2.y2 � x2/

.x2 C y2/2
;� 2a2xy

.x2 C y2/2

½
:

The streamlines, which are the level curves of  , are plotted in Figure 12.6 using the
commands contour. The shading of the figure represents the speed jjqjj2 according
to the color bar at the right of the figure. Notice that q D 0 at .ša; 0/. These are
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Figure 12.6 Streamlines of the flow around a cylinder.
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called stagnation points in the flow. According to Bernoulli’s law, the pressure is
greatest at these points.

To make Figure 12.6, we shall take a D V D 1. We put the stream function
and the speed squared in mfiles stream.m and speed2.m. Both of these functions
become infinite at .x; y/ D .0; 0/. Hence we cut them off, using the characteristic
function of the exterior of the disk, ( x.^2 + y.^2 > 1).

function z = stream(x,y)
z = (x.^2 + y.^2 > 1).*(y - y./(x.^2 + y.^2));
. . . . . . . . . . . . . . . . . . .

function z = speed2(x,y)

z1 = (1+ (y.^2 - x.^2)./(x.^2 +y.^2).^2).^2;
z2 = 4.*x.^2.*y.^2./(x.^2 +y.^2).^4;
z = (x.^2 + y.^2 > 1).*(z1 +z2);

. . . . . . . . . . . . . . . . . . .

>> x = linspace(-4,4,101);
>> y = linspace(-3,3,101);
>> [X,Y] = meshgrid(x,y);
>> pcolor(X,Y,speed2(X,Y));shading flat;
>> colormap(cool)
>> colorbar
>> levels = linspace(-3,3,11)
>> contour(X,Y, stream(X,Y), levels, ’k’)
>> hold on
>> axis equal

We notice a jagged line where there should be a smooth curve for the level curve
 D 0, which is the unit circle. To make a better picture, we change the set of
level curves to be levels = [linspace(-3, -.1, 6), linspace(.1,3, 6)]

and we plot the unit circle separately, inserting the instructions

>> t = linspace(0, 2*pi, 101);
>> plot(cos(t), sin(t))

before the contour command. The improved plot is shown in Figure 12.7.
Remember, where the speed is greatest, the pressure is lowest.
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Figure 12.7 Improved picture of flow past cylinder.

Exercises

Problems in electrostatics

1. We use the method of images to produce the electrostatic potential �.x; y; z/✯

of a unit positive point charge located at x0 D .0; 0; 1/, with the plane z D 0 being
grounded. That is, we want �.x; y; 0/ D 0 for all x; y. To produce this potential,
we use the fundamental potential � .x � x0/ at x0, balanced by another charge of
the opposite sign at x1 D .0; 0;�1/. Thus we take

�.x/ D � .x � x0/� � .x � x1/:

a) Verify that �.x; y; 0/ D 0.
b) To get an idea of what the equipotential surfaces look like, plot the contours

of .x; z/ ! �.x; 0; z/ in the rectangle R D fjx j � 5; 0 � z � 5g using the command
contour, with levels = linspace(0,0.1,11). Now imagine these curves rotated
around the z axis to form the equipotential surfaces. You can also use the mfile impl
to view these surfaces. Describe in words what they look like.
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c) Calculate the field E D �1� and superimpose it on the plots of part b),
using quiver and a much coarser grid. Multiply the vector field by the cutoff
function that is zero on the disk fx2 C .z � 1/2 � :5g. What is the direction of E on
the plane z D 0?

2. Use the method of images to construct the potential �.x; y; z/ in the quarter-✯

space f.x; y; z/ : x; z ½ 0g produced by a point charge located at x0 D .1; 0; 1/
that is zero on the planes z D 0 and x D 0. Put additional point charges at
the symmetrically placed points x1 D .1; 0;�1/, x2 D .�1; 0; 1/, and x3 D
.�1; 0;�1/.

a) Use the command contour to plot level curves of �.x; 0; z/ in the part of
the quarter-plane f0 � x; z � 3g. Use levels = linspace (0,0.1,11).

Use impl to view the equipotential surfaces of �. What do they look like?
b) Again compute the electric field E D �1� and use quiver to superimpose

it on the contour plot of part b). Use a much coarser mesh with quiver, and multiply
the vector fields with the cutoff function that is zero on the disk f.x � 1/2 C .z �
1/2 � 1g. What is the direction of the field E on the surfaces z D 0 and x D 0?

3. A condenser is two parallel plates with opposite charges. In this exercise we✯

shall make a numerical approximation to the potential of a condenser. The potential
of a unit positive charge at .x; y; 1/ and a negative unit charge at .x; y;�1/ is

g.x; y; z/ D 1

4³

"
1p

x2 C y2 C .z � 1/2
� 1p

x2 C y2 C .z C 1/2

#
:

Let R be the square �1 � x; y � 1. Now suppose the two plates are

Pupper D f.x; y; z/ : x; y 2 R; z D 1g

and

Plower D f.x; y; z/ : x; y 2 R; z D �1g:
Suppose that both plates have a constant charge density ¦ . Then the potential we
must estimate numerically is

�.x; y; z/ D ¦

Z Z
R

g.x � ¾; y � �; z/ d¾d�:
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The potential can be approximated crudely by a Riemann sum. Choose points ¾j D
�:75;�:25; :25; :75 and �i D �:75;�:25; :25; :75. Here 1¾ D 1� D :25. Then

�.x; y; z/ ³
4X

i; jD1

¦g.x � ¾j ; y � �i ; z/ 1¾ 1�:

a) Make a function mfile g.m for g.x; y; z/, taking ¦ D 1. Then write another
function file, phi.m, that computes the Riemann sum for each x; y; z. Follow
Example 12.1. You will need to make three-dimensional arrays [X,Y,Z] for plot-
ting and two-dimensional 4 ð 4 arrays [Xi,Eta] for the integration. Be careful in
choosing your arrays for x; y; z so that x and y do not take on the values of ¾ or �.
For each i; j; k use the command sum(sum(g(X(i,j,k)-Xi, Y(i,j,k) -Eta,

Z(i,j,k)))).
Check that your computed function � D 0 everywhere on the plane z D 0.

This plane is an equipotential surface for �.
b) Plot the function .x; z/ ! �.x; 0; y/.
c) Combine a contour plot of .x; z/ ! �.x; 0; z/ with a pcolor plot on the

rectangle f�5 � x; z � 5g.
d) Calculate E D �r� from the integral expression for �. In what direction

does E point on the plane z D 0?

4. Now imagine two plates, P1 in the xy plane, P1 D f�1 � x; y � 1; z D 0g,✯

and one in the xz plane, P2 D f�1 � x � 1; 1 � z � 3; y D 0g. Suppose that P1
has a positive charge density ¦ and that P2 has a negative charge density �¦ . The
potential is given by

¦

4³

Z Z
P1

d¾d�p
.x � ¾/2 C .y � �/2 C z2

� ¦

4³

Z Z
P2

d¾d�p
.x � ¾/2 C y2 C .z � � /2

:

Write a MATLAB code to make a Riemann sum approximation to the integral in
the manner of Exercise 3. Plot the level curves of the potential in the xy plane, and
in the xz plane.

5. Suppose a charge density ².x; y; z/ D x C y C z is carried on the cube R D✯

f�1 � x; y; z � 1g. The resultant potential is

�.x; y; z/ D 1

4³

Z Z Z
R

².¾; �; � /d¾d�d�p
.x � ¾/2 C .y � �/2 C .z � � /2

:

Approximate the integral by a Riemann sum, and plot the level curves of � in the
xy plane, in the xz plane, and in the yz plane. What special symmetries do you
see? What do the equipotential surfaces look like?
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6. Suppose a charge is distributed uniformly on the z axis, �1 < z < 1 with a
density ½. Let E be the electric field produced by this line charge. By a symmetry
argument, we can see that the z component E3 D 0 and that

E D f .r/
hx

r
;

y

r
; 0

i
;

where, as usual, r D
p

x2 C y2 and f .r/ is to be determined.
a) Apply Gauss’s law to this field and a “pill box,” which is a cylinder of

radius a and thickness 2b,

P D fx2 C y2 � a2; �b � z � bg:

There will be no contribution to the flux integral over the top and bottom of the pill
box. Deduce that

f .r/ D ½

2³r
:

b) Show that the potential for this line charge is

½

2³
ln.1=r/

so that the fundamental potential for a line charge is

�2.x; y/ D 1

2³
ln.1=r/:

c) Verify that 1�2.x; y/ D 0 for r 6D 0.

7. The fundamental potential of a line charge on the vertical line through .x0; y0/

is �2.x � x0; y � y0/.
a) Use the method of images to construct the potential �.x; y/ for a line

charge with ½ D 1 located at x0 > 0; y0 > 0 and such that � D 0 on x D 0 and on
y D 0.

b) Use a cutoff function and graph � in the quarter-plane x; y ½ 0.
c) Use the contour command to plot the level curves of �. What are the

equipotential surfaces in three-dimensional space?

8. The Green’s function for the disk Da D fx2 C y2 < a2g is the potential � from✯

a unit (line) charge placed at a point y inside Da such that � D 0 on the circle



12.5 Incompressible flow 267

x2 C y2 D a2. This potential is also constructed by the method of images. Another
unit charge with the opposite sign is placed at the point outside the disk:

yŁ D a2y
jjyjj2 :

a) Verify that jjyŁjj > a if jjyjj < a.
b) The Green’s function for the disk is

g.x; y/ D 1

2³

h
ln

�
1

jjx � yjj
�

� ln
h �

a

jjyjj
�

1

jjx � yŁjj
ii
:

Verify that g.x; y/ D 0 for jjyjj < a and jjxjj D a.
c) Set a D 1 and take y D .:5; 0/. Use the contour command to plot the level

curves of g.x; .:5; 0//.
d) Compute the electric field E of this potential and superimpose it on the plot

of part c). What is the direction of E on the boundary x2 C y2 D 1?

9. The Poisson kernel for the half-plane H D f.x; y/; y ½ 0g is✯

P.x; y/ D y

³

1

x2 C y2
:

a) Verify that 1P D 0 for y 6D 0.
b) Plot the level curves of the Poisson kernel in H .

The Dirichlet problem for H is

1� D 0 in H

�.x; 0/ D f .x/

for a given function f .x/ on the x axis. The solution of the Dirichlet problem in
H is given by the integral

�.x; y/ D
Z 1

�1
P.x � ¾; y/ f .¾/ d¾:

c) Write a script mfile that takes a function f defined in an mfile f.m, computes
�, and plots the surface. You can use the one-dimensional Simpson’s rule to
estimate the integral for each x; y. Assume that f D 0 for jx j > 5. Compute
the values of the integral at the points in the meshgrid [X,Y] = meshgrid(x,y),
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where x = linspace(-5,5,51) and y = linspace(.05, 8, 51). We avoid
the points y D 0 because the Poisson kernel is singular at the point .0; 0/,
which will make P.x � ¾; y/ singular at .¾; 0/. Let the variable of integration
be xi =linspace(-5,5,101).

d) Let f .x/ D .x C :5/ exp.�:5x2/. You can cut off the integral to the interval
[�5; 5] because f is very small for jx j > 5. Graph � and plot its level curves.
Where are the maximum and minimum values of � obtained?

e) Compare the computed values of the potential � on the line y D :05 with
the values of f . They should be nearly equal.

10. Solutions of the Laplace equation in the disk fx2 C y2 < a2g.✯

a) Use the chain rule to verify that the Laplace operator 1u D uxx C uyy in
polar coordinates is given by

1u D urr C 1

r
ur C 1

r2
u�� :

b) Verify that rn cos.n�/ and rn sin.n�/ are solutions of 1u D 0.
c) Graph several of these solutions on the disk of radius a D 1, using polar

coordinates (see Example 5.4).
d) Verify by hand that finite sums

u.r; �/ D A0 C
nDNX
nD1

[An cos.n�/C Bn sin.n�/]rn

are solutions of 1u D 0 with

u.1; �/ D A0 C
nDNX
nD1

[An cos.n�/C Bn sin.n�/]:

e) Let f .�/ D 2 cos.�/ C sin2.�/ C 4 sin.3�/. Use a trig identity to expand
sin2.�/ and find the solution of 1u D 0, u D f on the circle r D 1. Graph the
solution. Where are the maximum and minimum values on the disk fx2 C y2 � 1g
attained?

Problems in fluid flow

11. In this exercise we compare the Euler method of integrating the system (Eq.
12.14) with the more sophisticated method ode45 used in flow1.
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Let the vector field be q D [�y; x]. The particle paths are circles. Write mfiles
u.m and v.m for the components u.x; y/ D �y, and v.x; y/ D x . Write an mfile
eulerflow.m for the script of Example 12.2.

a) Use the mfile eulerflow.m with starting point .3; 0/. Choose 1t D :2
and 30 time steps. The trajectory strays far from the circle of radius 3. Now use
1t D :05 and 120 time steps. Finally use 1t D :01 and 600 time steps. Compare
the results.

b) Now use the mfile flow1.m, with corners being the vector [�4; 4;�4; 4],
and T D 6. Take M D 1 and click as closely as you can to the point .3; 0/. What
is the computed path? How does this compare to the result for the Euler method?
Note that for this integration, ode45 uses only 57 time steps. Although ode45 does
a more complicated calculation at each step, the net result is that it is much more
efficient than the Euler method.

12. Let the vector field be q D [u; v], with u.x; y/ D x.1 � y/ and v.x; y/ D 1.
Use flow1.m with corners for the square 0 � x; y � 4. Use T D 5.

a) Plot trajectories starting from .xj ; :5/ with xj D 1; 2; 2:5 ; 3. What kind
of motion do you see?

b) Calculate the divergence of q. Where is div.q/ > 0, and where is div.q/ <
0? Do the particle paths give you much indication of the sign of the divergence?

13. Use the same vector field as in Exercise 12. Now use the mfile flow2.m with
corners for the square 0 � x; y � 5. Take times t1 D :3; t2 D :6; t3 D :9; t4 D 1:2
and click on the point .2:75; :75/. Try some other combinations of times and starting
points. Observe the size of the images of the disk and their areas. Does this fit with
the calculated value of div.q/ ?

14. Let the vector field q D [u; v], where

u.x; y/ D y; v.x; y/ D �x C y.x2 � 4/=5 C y3=15:

a) Calculate the divergence of q. Where is it positive, and where is it negative?
b) Use the mfile flow1.m with corners for the square �4 � x; y � 4 and

time T D 10. Use starting points on the x axis, x D 1; 1:5; 2; 2:5; 3, to get a
feeling for the flow.

c) Now use the mfile flow2.m with the same corners. First choose times
t1 D 1; t2 D 2; t3 D 3; t4 D 4, and click on the point .1; 0/. How do the images
of the disk behave? Does this agree with the calculation of part a)?

d) Now use smaller times, t1 D :5; t2 D 1; t3 D 1:5; t4 D 2. This time click
on .2:5; 0/, and watch how the disk deforms with the flow. Does this behavior agree
with the calculation of part a)?
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15. Return to Example 12.7, flow around a cylinder.
a) Find the points on the boundary of the cylinder, x2 C y2 D 1, where jjqjj

is greatest.
b) Plot the contours of the velocity potential. Verify that they are normal to

the circle and that � is a solution of the boundary value problem (12.33), (12.34).

16. Consider the velocity potential �.x; y/ D x2 � y2 and the stream function✯

 .x; y/ D 2xy. This pair of functions describes incompressible, irrotational flow in
the quarter-plane, x; y ½ 0.

a) Verify that 1� D 1 D 0 and that r� Ð r D 0.
b) Plot the contours of � and  in the square f0 � x; y � 2g. According to

part a), what angle should their tangent vectors make where they cross?
c) Use the mfile flow2.m and times t1 D :2; t2 D :4; t3 D :6; t4 D :8. Put

the center of the initial disk at .x; y/ D .:3; 1:4/. Describe how the shape changes.
What happens to the area? Is it conserved? Why?

d) Combine a pcolor plot of the speed squared, jjqjj2, with the contours of
the stream function. Where is the stagnation point? According to Bernoulli’s law,
where is the pressure the greatest?

17. This exercise extends Exercise 16 to the case of a wedge of angle ³=3. The✯

velocity potential is �.x; y/ D x3=3 � xy2, and the stream function is  D x2y �
y3=3. Repeat parts a), b), c), and d) of Exercise 16. Use times t1 D :1; t2 D :2; t3 D
:3; t4 D :4, and place the center of the initial disk at .x; y/ D .1:2; 1/. When the
program flow2.m is finished, use hold on and add the line y D x

p
3; 0 � x � 1.

This will indicate the edge of the wedge.

18. Let the velocity potential be �.x; y/ D cos x cosh y and the stream function✯

be  D � sin x sinh y. Repeat the questions of Exercise 16 in the rectangle f0 �
x � ³; 0 � y � 1g. Use flow2.m with times t1 D :3; t2 D :6; t3 D :9; t4 D 1:2,
and place the center of the initial disk on .x; y/ D .2:5; 1:5/. Now there are two
stagnation points. What kind of flow does this represent?



13
More Features of MATLAB

13.1 Data classes

There are four basic classes of data in MATLAB. We have been using all four of
them without paying much attention. However, some very perplexing errors can
occur if we are not careful. The classes are

Numeric Symbolic String Inline

When we enter a number at the prompt >>, this creates a numerical, double-precision
quantity. For example,

>> x = 1/3;
>> y = 1/2;
>> x*y
ans =

0.1667

Most of the examples we have considered involved calculation with numerical quan-
tities.

As we have seen in Section 1.6, symbolic quantities are created using the
command syms. For example,

>> syms x y
>> f = x*y + y^2

defines the symbolic expression xyCy2. If we wish to make symbolic manipulations
of constants as well as symbols, we must use the long syntax. For example,
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>> x = sym(’1/3’)
>> y = sym(’1/2’)
>> x*y
ans =

1/6

Compare with the numeric product x*y.
A string, often called a character array, is created when we enclose an alpha-

numeric sequence of characters in single quotes. For example,

>> z = ’a*x+5’

The string is a vector of numbers that represents the sequence of characters between
the single quotes. You can look at the string components of z:

>> double(z)
ans =

97 42 120 43 53

The numbers assigned to each character are the ASCII values.
Strings are often used to label functions or quantities. For example, in the defini-

tion of an inline function, we use strings:

>> f = inline(’x.^2’);
>> g = inline(’x.^2 + exp(y)’, ’x’, ’y’);

We can check the data class of each variable or quantity in the work space with
the command whos.

Example 13.1

>> x = linspace(0,2*pi, 101);
>> y = x.^2;

>> syms a b c
>> d = 2*a*b+c^3;

>> w = ’3/u +v’;
>> f = inline(w,’u’,v’)

>> whos

Name Size Bytes Class

a 1x1 126 sym object
b 1x1 126 sym object
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c 1x1 126 sym object
d 1x1 142 sym object
f 1x1 876 inline object
w 1x6 12 char array
x 1x101 808 double array
y 1x101 808 double array

Grand total is 287 elements using 3024 bytes.

Converting from one class to another

There are several commands that convert data from one class to another. A symbolic
expression, such as d in Example 13.1, may be converted into a string and used to
define an inline function. The inline function may then be evaluated. Using d of
Example 13.1, the conversion command is char(d). Then

>> g = inline(char(d), ’a’, ’b’, ’c’);

is the inline function g.a; b; c/ D 2ab C c2. However, the inline function g may
be used only on scalar values of a; b; c, and so cannot be graphed. To get a string
expression that uses .* and .^, we use the command vectorize(d). Then

>> h = inline(vectorize(d), ’a’, ’b’, ’c’);

is now array-smart and can take vectors and matrices for its f arguments. If we
are interested only in graphing the symbolic function expression, we can use the
command ezplot. We can do this without converting to an inline function.

Example 13.2

Let f .x; y/ D x exp.�x2�y2/. We define f symbolically and compute 1 f symbol-
ically. We then convert the expression to an inline function for graphing and inte-
gration:

>> syms x y
>> f = x*exp(-x^2 -y^2);
>> laplacef = diff(f,x,2) + diff(f,y,2);
>> g = inline(vectorize(laplacef), ’x’, ’y’);
>> [X,Y] = meshgrid(-1:.05:2);
>> surf(X,Y,g(X,Y))

If you have the command ezsurf available, you can graph 1 f without converting
to an inline function.

To convert a symbolic expression to an mfile, first vectorize the symbolic expres-
sion, and then cut and paste into the mfile.
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13.2 The command feval

The command feval is used to take the name of a function in the form of string,
call the function, and evaluate it. For example, if f .x; y/ D 3x2 � 2y is defined as
an inline function, then

>> f = inline(’3*x.^2 -2*y’, ’x’, ’y’);
>> feval(f,2,3)
ans =

6

Of course, we could have more easily written f(2,3). If the same function f is
given in an mfile f.m,

function z = f(x,y)
z = 3*x.^2 - 2*y;

then we must use the name of f in the form of a string as the argument of feval.

>> feval(’f’, 2,3)
ans =

6

The importance of feval comes in writing function mfiles that take functions as
arguments. For example, the MATLAB rootfinder fzero has the call

fzero(fname, [x1,x2])

where fname is a string that is the name of a function. feval is used in the
code of fzero to evaluate the function. Thus when f is given as an inline
function, we use fzero(f,[x1,x2]), and when f is given in an mfile, we use
fzero(’f’,[x1,x2]). This construction allows the function function fzero to
accept any name for a function, f; g; h; F;G, etc. The same is true of the function
mfiles, such as simp2, that are written for this text.

Example 13.3

You recall the function mfile qsurf that you can use to graph numerical functions
of two variables over a rectangle a � x � b; c � y � d. The input arguments are
the function name, and the 4-vector [a; b; c; d].

function out = qsurf(f, corners)
x = linspace(corners(1), corners(2), 51);
y = linspace(corners(3), corners(4), 51);
[X,Y] = meshgrid(x,y);
Z = feval(f,X,Y);
surf(X,Y,Z)
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13.3 Vectorizing computations

Computations in MATLAB that involve loops or nested loops can often be speeded
up if we take advantage of the many array operations of MATLAB. Our goal in
MATLAB programming is to eliminate as many loops as possible.

Example 13.4

The operation sum is applied to a vector and adds up the components. Here are two
codes to compute the sum

PN
1 n p. The long way is to do this in a loop:

function out = f(p,N)
s = 0;
for n = 1:N

s = s + n^p;
end
out = s;

A more efficient way is to use the sum operator and the array operation .^:

function out = f(p,N)
x = [1:N].^p;
out = sum(x);

Example 13.5

The two-dimensional midpoint rule for integration over a rectangle R is

Z Z
R

f dxdy ³
nX

jD1

mX
iD1

f .xj ; yi /1x1y;

where .xj ; yi / is the center of the subrectangle Ri; j with sides 1x and 1y. The
long way to implement this rule is to use nested loops:

function out = midpt(f,corners,n,m)
a = corners(1); b = corners(2);
c = corners(3); d = corners(4);
delx = (b-a)/n; dely = (d-c)/m;
x = linspace(a+.5*delx, b-.5*delx,n);
y = linspace(c+.5*dely, d-.5*dely,m);
s = 0;
for i = 1:m

for j = 1:n
s = s + feval(f,x(j),y(i));
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end
end
out = s*delx*dely;

The double loop can be replaced with vector, matrix operations, which are more
efficient. The operation sum, when applied to a matrix, sums down each column
and puts the sum of each column in a row vector. Then applying sum a second time
sums the elements in this row vector, yielding the sum over all the elements of the
matrix. The last seven lines of previous code can be rewritten

[X,Y] = meshgrid(x,y);
F = feval(f,X,Y);
out = sum(sum(F))*delx*dely;

F is the matrix of function values f .xj ; yi /.

13.4 Programming

While loops

The programs we have written so far involved only simple for loops where the
number of passes though the loop was determined in advance. In some circum-
stances, however, the number of passes may depend on the state of the computation.
The notion of a while loop addresses this situation.

Example 13.6

Suppose our problem is to sum the terms of an infinite series,
P

an , on the computer.
Of course, we sum only a finite number of terms and thereby make an approximation
to the exact sum of the series. Our criterion will be that if janj < 10�6, we shall
stop. Here is a short script that sums the series

e D
1X
0

1

n!
:

term = 1;
sum = 0;
n = 1;
while term > 10^(-6)

sum = sum +term;
term = term/n;
n = n+1;

end
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Example 13.7

For a second example of a while loop, we return to Newton’s method for numerically
approximating the root of an equation f .x/ D 0. This time, instead of specifying
a certain number of iterations, we want to continue the process until a desired
accuracy is achieved. We can estimate the error in Newton’s method at a simple
root by looking at the difference between two successive iterates, xnC1 � xn. Here is
a function mfile that implements Newton’s method in one dimension. Its arguments
are the functions f and f 0, the starting value, and the error tolerance. Compare this
mfile with that of Section 7.2.

function out = Newton(f,fprime,xstart,tol)
xold = xstart;
xnew = xold - feval(f, xold)/feval(fprime,xold);
while abs(xold -xnew) > tol
xold = xnew;
xnew = xold - feval(f,xold)/feval(fprime,old);

end
out = xnew;

Logic

Often a program must make a choice and proceed to make different calculations,
depending on a parameter. The relevant commands are if, else, and elseif.

Example 13.8

Consider an income tax system with two brackets. For income less than $20; 000
the rate is 10%, and for income in excess of $20; 000 the rate is 15%. A short
program to compute the tax could be written as follows:

function out = tax(income)
if income < 20000

out = .1*income;
else

out = 2000 + .15*(income - 20000);
end

Notice that the end command is needed to close the if, else sequence. Now
suppose the system has a third bracket, with a rate of 20% for income in excess of
$50; 000. We modify the function mfile tax as follows:

function out = tax(income)
if income < 20000
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out = .1*income;
elseif 20000 <= income < 50000

out = 2000 + .15*(income-20000);
else

out = 6500 + .2*(income - 50000);
end

One can add any number of branches with more elseif statements.
Another useful logical command is the break command, which terminates a loop

when a certain value is reached in a computation before the index of the loop is
exhausted.

Example 13.9

A Fibonacci sequence is a sequence an generated by the recursive scheme

anC2 D anC1 C an; n ½ 1:

To start the sequence, one must provide the starting values a1 and a2.
Input statements will be used to supply the starting values and the number of terms

to be computed at run time. However, the first time janj > 1000, the computation
will stop. A script file that accomplishes this is

N = input(’enter the number of terms to be computed ’)
a1 = input(’enter a1 ’)
a2 = input(’enter a2 ’)
% set aside a column vector of N memory spaces for the
% values of a.
a = zeros(N,1)
a(1) = a1; a(2) = a2;
for n = 1:N-2

a(n+2) = a(n+1) + a(n);
if abs(a(n+2)) > 1000

break
end

end

This program saves all the computed values in the column vector a. If you want to
see a50, enter a(50). If you want to see all of them at once, enter a.

For descriptions of other logical commands, enter help or or help and.



Appendix
Instructor Demos

In this appendix we discuss four mfiles that provide graphical displays that illuminate
some important concepts. They are not intended to be numerical tools to make
computations. They can be used by instructors in the classroom or by students on
their own. Instructions on how to use the files can be found with the command help.

findroot.m minsurf.m flux3.m circ.m tarea.m

findroot is an interactive version of Newton’s method to solve the system
f .x; y/ D 0; g.x; y/ D 0. The program displays the zero-level curves of f and
g in a rectangle where the root is sought. After clicking on the figure, the code
plots intersections of the tangent plane approximations to f and g in the xy plane.
Additional clicks on the figure solve the approximating linear system and plot the
approximate solution.

minsurf uses the triangular patch representation of a surface to provide approx-
imate solutions of Plateau’s problem in a rectangle. minsurf uses the mfile tarea.m.
flux3 calculates the flux of a vector field through a square piece of surface.

The piece of surface contains the origin in three-dimensional space, and it can be
oriented in any direction.

circ calculates the circulation of a vector field around a circular disk. The disk
is centered at the origin in three-dimensional space and can be oriented in any
direction.
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Solutions to Selected Exercises

Chapter 3

4. Place the center of the seat of the stool at the point .0; 2:5/. The points on
the ground where the legs reach the circle of radius 1 can be chosen as .1; 0; 0/,
.�1=2;

p
3=2; 0/ and .�1=2;�p

3=2; 0/. The magnitude of the force on each leg is
.80=3/

p
29.

5. The for loop when n D 24 is

deltheta = 2*pi/24;
t = [-1,1];
for theta = 0:deltheta:2*pi

plot3(cos(theta)*t, sin(theta)*t, .7*t)
hold on

end

11. Use a for loop. The spacing between the planes on the x axis is Žx D cos.³=6/.
Let N be the normal to the planes.

for j = 1:8
P = [(j-1)*delx,0,0];
plane(P,N)
hold on

end

13. The directions of the wires are [�1=2; 0;�p
3=2] for L1,

[1=4;�p
3=4;�p

3=2] for L2, and [1=4;
p

3=4;�p
3=2] for L3.
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Chapter 4

2. The polygonal approximation with 100 segments yields a value of 9:6869,
while quad8 gives the more accurate value of 9:6885.

5. From the first component of r.t/, find the time tŁ when the projectile hits the
ground, then substitute in the second component of r.t/. This produces the formula
for the range R D v2

0 sin.2�/=32.

9. The arc length of each rib is given by the integral .1=4/
R 8=a

0

p
1 C u2 du,

where a D a.z/. The integrals can be done by hand or symbolically and the values
added up, or we can use quad8 on each integral and add up the results, as in this
short script. This script yields a value of 202:6068.

z = 0:20;
a = -.0166*z.^2 + .2245*z + 2.25;
f = inline(’sqrt(1+x.^2)’)
length = 0;
for n = 1:21

rib = (1/4)*a(n)^2*quad(f, 0, 8/a(n));
length = length + rib;

end

11. Figure 4.11 shows the cam and cam follower when � D ³=3. c) l.�/ D
1 C .1=2/ cos � .

12. The minimum value of l is :4084, occurring at the values � D 2:0106 and
� D 2³ � 2:0106.

Chapter 5

4. h has the constant value .1 � a2/=.1 C a2/ on the line y D ax .

5. The error in the difference approximation to fx is proportional to j1x j.
7. d) fy.x; y/ D x for y > 0 and fy.x; y/ D �x for x < 0. fy.0; 0/ exists and

equals 0, because f .0; y/ D 0 for all y.

8. a) The maximum value of Du f .1; 1/ is
p

5, attained in the direction .1;�2/.
b) Du f .1; 1/ D 0 when u D [2; 1].

9. The hottest spot is at the point .:5; :5/. The heat flux is always perpendicular to
the level curves. The heat flows away from the hottest spot. On the left (insulated)
edge, ux D 0, which makes the flux vector parallel to the edge.

12. The error is reduced by factor of 1=4 when h is halved.
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Chapter 6

2. cŁ D 2=e. The origin lies on ScŁ .

3. 101:2 � ².2; y; 0/ � 101:7 for 0 � y � 2.

8. The arc length of the curve bounding the cross section of the wing is 4.1744,
and the area of the surface of the wing is 4 ð 4:1744 D 16:6974.

9. One set of mutually orthogonal vectors is L D [a; b; c], u D [ac; bc;�.a2 C
b2/], v D [�b; a; 0]. These work as long as a2 C b2 > 0. You should normalize u
and v. After you have created a meshgrid [S,T], the key commands are

X = L(1)*T + d*cos(S)*u(1) + d*sin(S)*v(1);
Y = L(2)*T + d*cos(S)*u(2) + d*sin(S)*v(2);
Z = L(3)*T + d*cos(S)*u(3) + d*sin(S)*v(3);

10. Let p.t/ D .r cos t; r sin t; at/ be the point on the helix, 0 � t � 4³ . Then
the tube may be parameterized

x.t/ D p.t/C .b cos s/N.t/C .b sin s/B.t/;

where 0 � s � 2³ . The key MATLAB commands to graph the tube are similiar to
those in Exercise 9.

14. With the meshgrid [S,T] constructed, the key commands are

X = 2*cos(T) + S.*cos(T/2);
Y = 2*sin(T) + S.*sin(T/2);
Z = S.*sin(T/2);

A normal to the surface is given by r0.t/ð L.t/.

Chapter 7

1. There are six roots. The symbolic solver finds all of them as lengthy symbolic
expressions. Rounding off to four digits, they are

.š1:1169;š:8295/; .š:3836;Ý:9814/; .š:7780;Ý:9212/:

3. Here are some of the numbers you should get, rounded to four digits. You can
also check your numerical results by plotting the curve you compute together with
the zero-level curve of f plotted by the contour command.

x �1 �:5 0: :5
y :4797 :3323 0: �1:1433
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4. One root is easily spotted, .0; 0/. The other two are .:3781;�:6149/ and
.1:0858; 1:0420/.

6. A D 4:9510, B D :0980, C D :245 ð 10�4.

7. a) ½Ł D :7828. b) When ½ D 2, there are two real roots, .x1; y1/ D
.:8988; 2:6704/ and .x2; y2/ D .1:2527; :8347/. c) When ½ D ½Ł, the single
root is .xŁ; yŁ/ D .:8024; 1:3445/.

8. b) If jyj is large, the factor .1 � 1=
p

1 C y2/ ³ 1. Hence c1 ³ �.9:8=2/. A
good linear approximation is given by y D �.9:8=2/m � 1.

Chapter 8

2. g has a saddle point at .x0; y0/ ³ .�:33; :47/.

5. f has saddle points at .0;�1/, .1; 1/, and .�1; 1/. It has minima at .0; 1/,
.1;�1/, and .�1;�1/.

6. c) Using findcrit, we see that f has a minimum at .x1; y1/ ³
.�1:191;�:180/ and a maximum at .x2; y2/ ³ .1:322; :370/. Using newton2,
more accurate estimates are .x1; y1/ D .�1:19098;�0:17954/ and .x2; y2/ D
.1:32240; 0:30715/.

8. c) When the size of the square is halved, the error decreases (roughly) by a
factor of .1=2/3 D 1=8, which agrees with Eq. (8.7).

11. a) maxK f ³ 1:513 occurs near .š0:89;š0:33/, and minK f ³ �1:03
occurs near .Ý0:46;š0:63/. b) The symbolic solver finds the roots ½; x; y,
and when evaluated in double precision and then rounded to 4 digits, the max
occurs at .š0:8881;š0:3251/, with maxK f D 1:5490. The min occurs at
.Ý0:4597;š:6280/, with minK f D �1:0490.

14. The point .x0; 0; 0/ D .75:9747; 0; 0/ is a saddle point for V .x; y; 0/. A
particle at a point .x; 0; 0/ with x < x0 will fall toward the mass M0. When x > x0,
the particle will fall toward the mass M1. When x D x0, the gravitational force
�rV D 0, so that the particle does not move.

15. a) When there is no regulation, the maximum profit is :6172, occurring at
.3:025; 2:0167/. b) The rate of return is about :24 (24%). c) The set Gs lies to
the right of the level curve h D s. d) The point of intersection moves down and to
the right as s decreases. This means that capital is being substituted for labor as s
decreases.
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Chapter 9

1. The Riemann sum result with m D n D 32 yields 2:5762, and the analytic
result is � sin.4/C 2 sin.2/ D 2:5754. The difference ³ 8 ð 10�4.

3. a) Let tx D .1; 2; 2; : : : ; 2; 1/ be the nC1 vector of trapezoid coefficients in the
x direction and ty D .1; 2; : : : ; 2; 1/ be the m C 1 vector of trapezoid coefficients
in the y direction. The two-dimensional trapezoid method, applied to a function
f .x; y/, is

Tn;m. f / D .b � a/.d � c/

4mn

X
i; j

t x
j t y

i f .xj ; yi /:

It can be rewritten
Tn;m. f / D

X
i; j

Nfi; j area.Ri; j /;

where Nfi; j is the average of the function values at the four corners of the subrectangle
Ri; j .

b)

Z Z
R

g.x/h.y/ dxdy D
Z b

a
g.x/ dx

Z d

c
h.y/ dy

D .Tn.g/C En.g//.Tm.h/C Em.h//

D Tn;m.gh/C En.g/Tm.h/C Em.h/Tn.g/C En.g/En.h/

When m and n are doubled, the error is reduced (roughly) by a factor of 1=4, just
as in the one-dimensional rule.

4. With n D 40;m D 60, Simpson’s rule gives I1 D �0:38239636754005. With
n D 80;m D 120, Simpson’s rule gives I2 D �0:38239213241589. The exact
result is I D �0:38239185372996. jI1 � I2j D 4:235124158313841 ð 10�6 while
jI � I1j D 4:513810089102651 ð 10�6. The difference jI1 � I2j is a very good
estimate of jI � I1j.

7. With m D n D 20, the approximation is within :15 of the exact answer.

9. c) a D �1:9954 and b D :6396. d) The change of variable x D u; y D
v
p

4 � u2 � exp.2u/ yields the integral 2
R b

a

R 1
0 q.u; v/ dv du, where

q.u; v/ D .
p
.1 � v2/.4 � u2/C v2e2u � eu/

p
4 � u2 � e2u :
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e) Simpson’s rule with m D n D 50 yields I1 D 6:12134479405900. Simpson’s rule
with m D n D 100 yields I2 D 6:12114816464481. An estimate of the error in I1
is jI1 � I2j ³ 2 ð 10�4.

11. Making first the change of variable Qx D x�1 and then using polar coordinates,
Qx D r cos �; y D r sin � , we have

2
Z Z

.x�1/2Cy2�1=4

q
4 � x2 � y2 dxdy D 2

Z Z
Qx2Cy2�1=4

q
4 � . Qx C 1/2 � y2 dxdy

D 2
Z 1=4

0

Z 2³

0

p
3 � r2 � 2r cos � rdrd�:

Simpson’s rule with n D 10;m D 10 yields I1 D 0:67601408747821, while
Simpson’s rule with n D 20;m D 20 yields I2 D 0:67601407734176, with a
difference I1 � I2 D 1:013645556380283 ð 10�8. The result I1 is an estimate of the
true value of the integral with an error on the order of 10�8.

12. a) The mass of H is 2³b2 arctan.4/. c) The mass of F is given by the integralZ Z Z
F

1

1 C x2
dV D 2

Z Z
x2Cy2�a2

p
b2 � y2

1 C x2
dxdy

D 2
Z 2³

0

Z a

0

p
b2 � r2 sin2 �

1 C r2 cos2 �
rdrd�:

Simpson’s rule with m D n D 20 yields I1 D 10:05448036681659, while Simpson’s
rule with m D n D 40 yields I2 D 10:05433242388650. The difference I1 � I2 D
1:479429300896840 ð 10�4.

d) The mass of F is now

Z Z
Qx2C2y2�2a2

Z p
b2�y2

�
p

b2�y2

dzd Qxdy

1 C .z C Qx/2

D
Z Z

Qx2C2y2�2a2
[arctan. Qx C

q
b2 � y2/� arctan. Qx �

q
b2 � y2/] d Qxdy:

Make the further change of variable Qx D p
2a cos �; y D a sin � so that the integral

to compute becomes
p

2
Z a

0

Z 2³

0
q.r; �/r drd�;
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where

q D arctan.a
p

2 cos � C
p

b2 � a2 sin2 �/� arctan.a
p

2 cos � �
p

b2 � a2 sin2 �/

Simpson’s rule with m D n D 20 yields I1 D 8:67952960048467, and with m D
n D 40, I2 D 8:67952906940928. The difference I1 � I2 ³ 5 ð 10�7.

13. c) With d D p
r2 C a2, the Jacobian determinant is jJ j D d C ru=d and the

change of variable for x is x.u; v; t/ D .r C u/ cos t C .av=d/ sin t . The integral for
the mass is

Z 8³

0

Z Z
u2Cv2�b2

.x.u; v; t/C 10/.d C ru=d/ dudvdt:

Put in polar coordinates u D ² cos �; v D ² sin � . Using Simpson’s rule with n D
m D 10 and p D 20, we get I1 D 2652:380095534809. With n D m D 20 and p D
40, we get I2 D 2652:410623115358. The difference I1 � I2 D :03052758054901,
which estimates the relative error as on the order of :03=2652 ³ 10�5.

Chapter 10

3. b) Take y.u; v/ D uv. The integral becomes

Z 1

0

Z 1

0
u
q

1 C 4u2.1 C v2/e�2u2.1Cv2/ dudv:

c) With n D m D 10, Simpson’s rule yields I1 D 0:62217628062857, and with
n D m D 20, it yields I2 D 0:62218208324708. The difference I1 � I2 is on the
order of 6 ð 10�6.

5. a) The curved surface of the hull is the graph of y.x; z/ D .2x=a.z//2 D
4x2=a.z/2 over G. The surface area of this part of the hull is given by the integralZ Z

G

q
1 C y2

x C y2
z dxdz:

b) With the change of variable x D a.z/u, the integral becomes

Z 20

0

Z 1

�1

p
a2.z/C 64u2.1 C u2.a0.z/2/ dudz:
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c) With n D m D 50, Simpson’s rule yields I1 D 195:6791, and with n D m D 100
it yields I2 D 195:6795, with I1 � I2 ³ 3 ð 10�4. d) The area of the stern is

8a.0/� 2
Z a.0/

0

�
2x

a.0/

�2

dx D 16a.0/=3 D 12:

7. b) The area is given by the integral

2³
Z 15

10
j f .v/j

q
1 C . f 0.v//2;

where f 0.v/ D �:36v2 C 10:8v � 82. c) quad8 gives a value of 1; 275:8 with a
tolerance of 10�3.

8. The hydrostatic pressure on the upper surface is given by the integralZ Z
S

p.z/ d S D 62:5
Z Z

x2Cy2�h=4
.3h=4 C x2 C y2/

q
1 C 4.x2 C y2/ dxdy

D 125³
Z p

h=2

0
r.3h=4 C r2/

p
1 C 4r2 dr:

quad8 gives the answer 2:938 ð 106 pounds, with a relative error of 10�3.

10. The area integral isZ Z
R

q
1 C ..1 � 2x2/2 C 16x2y2/e�2x2�4y2 dxdy:

a) Simpson’s rule works exceedingly well on this integral. With m D n D 4,
I1 D 1:11519234133286; with n D m D 8, I2 D 1:11509286114128. The difference
I1 � I2 ³ 10�4.

b) Using a 5 ð 5 mesh, tsurf gives a value of 1:06604860421834, which differs
from I1 by ³ :05.

12. Let Aj be the area of triangle j as labeled in the exercise:

A1 D .1=2/
p

17 C .4z � 6/2; A2 D .1=2/
p

20 C .2z � 3/3;

A3 D
p
.5 C .2z � 4/2; A4 D

p
8 C .z � 2/2:

The minimim value of A.z/ D A1 C A2 C A3 C A4 occurs at 1:7363. fmin finds
this point with an error tolerance of 10�4.
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Chapter 11

1. b) With n D 100, Simpson’s rule gives I1 D 42:0543; with n D 200, Simpson’s
rule gives I2 D 42:0557, with a difference I1 � I2 ³ 10�3.

3. Using Simpson’s rule on each segment with 50 subintervals, the result is
�36:8082.

5. a) The line integral along these two segments yields a value of about 1:2 or
1:3 when done by eye. c) The path consisting of the two line segments .:5; :5/ to
.:5; 1:5/ and then .:5; 1:5/ to .2; 2/ yields a value very close to zero, but nonnegative.

7. This vector field is obviously conservative.

14. b) The boundary integrals sum to 3:5. Simpson’s rule is exact on polynomials
of degree � 3. c) Simpson’s rule applied to the boundary integrals yields 3:8570168.
simp2 applied to the double integral yields 3:8570169, with an error on the order
of 2 ð 10�7.

Chapter 12

2. b) On the plane x D 0, the electric field E points in the direction .�1; 0; 0/;
on the plane z D 0, E points in the dirction .0; 0;�1/. In both cases, it points to
the exterior, away from the positive charge.

3. e) We can calculate r� by differentiating under the integral as long as .x; y; z/
does not lie on either plate. Now, gx..x�¾/; .y��/; 0/ D gy..x�¾/; .y��/; 0/ D 0.
Hence �x.x; y; 0/ D �y.x; y; 0/ D 0. Thus

E.x; y; 0/ D .0; 0;��z.x; y; 0// D � 1

2³

Z Z
R

d¾d�

[.x � ¾/2 C .y � �/2 C 1]3=2
:

The electric field points down from the positively charged plate to the negatively
charged plate.

6. a) The flux through the cylindrical boundary S isZ Z
S

E Ð n d S D f .a/
Z Z

S
d S D 4³ab f .a/:

By Gauss’s law, this flux must equal the charge contained in the pill box, 2 > b.
Equating these expressions, we get f .a/ D ½=.2a³/. Since a is arbitrary and the

answer is independent of b, we deduce that f .r/ D ½=.2³r/.

9. Simpson’s rule does not do a good job for y close to zero because the integrand
is singular. However, it gives some idea of the solution. f and P should be defined
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in mfiles or as inline functions. Then a script file to compute � and plot it is given
by

n = 50; m = 100;
x = linspace(-5,5,n+1); y = linspace(.05, 8,n+1);
xi = linspace(-5,5, m+1);

s = simpvec(m); h = 10/m;

[X,Y] = meshgrid(x,y); phi = zeros(size(X));

for j = 1:m+1
phi = phi+(h/3)*s(j)*f(xi(j))*P(X-xi(j),Y);

end

surf(X,Y,phi)
pause

plot(x, f(x), x, phi(1,:), ’r’)
pause

levels = linspace(-.4, 1, 41);
contour(X,Y,phi, levels)

The maximum and minimum values of � are attained on the line y D 0 and are the
same as the maximum and minimum values of f .

10. d) The solution is

u.r; �/ D 1

2
C 2r cos.�/� .1=2/r2 cos.2�/C 4r3 sin.3�/:

The maximum and minimum over any disk fx2 C y2 � a2g are attained on the
boundary circle fx2 C y2 D a2g.

15. jjqjj is greatest at the points .0;š1/.

16. c) Although the shape changes, the area remains constant because the flow
is incompressible. d) The origin is the stagnation point and the pressure is greatest
there.
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accelerated flow, 236
acceleration, 50
affine approximation, 180
affine transformation, 179
animate, 51
arc length, 54, 197
array operations

division, 8
exponentiation, 7
multiplication, 7

array-smart, 10, 23, 69
arrow, 33
arrow3, 33
axis equal, 34, 220
axis, 19, 90
axis image, 220
azimuth, 41

backward difference, 62
binormal, 57
break, 278

catenoid, 210
center of mass, 198
centered difference, 63
char, 79
characteristic function, 23, 91
circulation, 228
clear, 19
clf, 19

close, 19
color slices, 105
colorbar, 89
colormap, 73, 89
colormap, 73
command line, 1
comment line, 26
conservative vector field, 227
constraint, 153
contour, 77
contour lines, 76
critical point, 141
cross, 35
cross product, 35
curl, 227
curl, 231, 239
curvature, 57
curve

parametric equations of, 47
cycloid curve, 52
cylinder, 111
cylinder, 115

data classes, 271
diary, 28
diff, 13, 56
difference approximation

backward, 62
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difference approximation (continued )
centered

for second derivative, 63
for first derivative, 63

forward, 62
difference formula

centered, for divergence, 239
dimensions of matrix, 4
direction of vector, 33
directional derivative, 81
discriminant, 142
divergence, 234
divergence theorem, 234
divg, 239
dot, 34
double, 14
double precision, 271

Editor/Debugger, 21
elevation, 41
ellipsoid, 102
else, 277
elseif, 277
end, 25, 277
erf(x), 11
error estimate

for Newton’s method, 126
for Simpson’s rule, 175

error message, 2
ezcontour, 78
ezmesh, 78
ezplot, 18, 24, 48
ezplot3, 49, 51
ezsurf, 78, 116

feval, 73, 274
fill, 36
fill3, 36
findcrit, 150
flux integrals, 232
flux2, 232
for loop, 25, 275
format long, 2
format short, 2
forward difference, 62
frenet, 58
Frenet frame, 57
function functions, 24

fzero, 24, 26, 128, 274

geodesic dome, 204
gradient

vector, 81, 108
vector field, 83, 108, 227

graphing
in three dimensions

numerical functions, 70
in two dimensions

numerical functions, 16
symbolic functions, 18
color table, 17

labels and titles, 18
Green’s theorem, 228
grid, 70

heat flux, 97
helix, 48
help, 3
Hessian matrix, 142, 158
hold on, 17
horizontally simple, 184
hyperbolic paraboloid, 102
hyperboloid, 102

if, 277
impl, 104, 159
inline function, 11, 271
int, 13, 56, 171

Jacobian matrix, 131, 181

lagrange, 155
Lagrange multiplier, 154
level curves, 76, 145
level set, 76, 101
level surfaces, 101
line

parametric equations of, 36
line integrals, 223

without parameterization, 225
linear systems, 8
linspace, 6
lint, 226
lookfor, 20

magnitude of vector, 33
Maple, 12
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matrix, 4
matrix multiplication, 8, 9
max, 89, 147, 148
mesh, 70
mesh, 73
meshgrid, 70
mfiles, 21

function, 22
script, 25
use of workspace, 26

midpoint rule, 275
min, 147
minimal surface problem, 210
Moebius band, 122
more on, 20
mslice, 82
mug, 117

Newton’s method
in one dimension, 126, 277
in two dimensions, 130

newton2, 133
norm, 34
norm of vector, 33
normal

to plane, 37
to surface, 110, 118

numerical differentiation, 62
numerical function, 10, 24

ones, 6
osculating plane, 58

paraboloid, 102
parametric equations

of curve, 47
of line, 36
of plane, 38

parametric representation
of cylinder, 111
of sphere, 111
of surface, 110, 201
of torus, 114

partial derivative, 79
patch, 203
pcolor, 231
piecewise function, 23
piecewise smooth curve, 51

plane
equation of, 37
normal to, 37
parametric equations of, 38

plane, 39
Plateau’s problem, 210
plot, 16, 24, 35
plot3, 35, 48
polar coordinates, 186
polygonal approximation, 54, 55
principal normal, 57
pullback, 183

qsurf, 274
quad, 176
quad8, 25, 55, 176
quadric surfaces, 101
quit, 3
quiver, 84, 219
quiver3, 221

rotate3d, 42
rotation matrix, 60
rotations, 59
ruled surface, 122

save, 27
scalar, 4
scalar product, 34
secant vector, 49
second derivative test, 142
shading flat, 73
shading interp, 73
shear flow, 230
simp2, 175
simp3, 189
Simpson matrix, 174
Simpson vector, 173
Simpson’s rule, 172
size, 5
slice, 106, 157
smooth curve, 51
solve, 15, 124
speed, 50
sphere, 111
sphere, 113
spherical coordinates, 113, 190
string, 272
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subplot, 93
subs, 14
sum, 275
suppressing output, 2
surf, 72
surface

of revolution, 113
patch representation, 203
ruled, 122

surface area
by integration

given parametrically, 201
graph of function, 199

by patches, 205
symbolic

differentiation, 13
equation solver, 15, 123
integration, 13, 171

symbolic function expression, 10, 12, 24, 271
syms, 12

tangent plane, 87, 109
tangent plane approx., 86, 131, 180
tangent vector

to curve, 49
to line, 36

Taylor expansion, 62, 88, 145
torus, 114
transformation, 180
transpose, 4

Hermitian, 5
trapezoid rule, 193
trf, 183
triple integrals, 188

tsurf, 208
type, 19, 29

unit tangent vector, 57

vector, 3
direction of, 33
column, 3
magnitude of, 33
norm of, 33
row, 3

vector fields, 219
vectorize, 273
vectorizing computations, 275
velocity, 50
vertically simple, 184
view, 41
vortex flow, 230

which, 20
while loops, 276
who, 19
whos, 272
work, 224

xslice, 80

yslice, 80

zeros, 6
zoom, 19
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