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Preface

Both data mining and machine learning are becoming popular subjects for university
courses and industrial applications. This popularity is partly driven by the Internet and
social media because they generate a huge amount of data every day, and the under-
standing of such big data requires sophisticated data mining techniques. In addition,
many applications such as facial recognition and robotics have extensively used ma-
chine learning algorithms, leading to the increasing popularity of artificial intelligence.
From a more general perspective, both data mining and machine learning are closely
related to optimization. After all, in many applications, we have to minimize costs,
errors, energy consumption, and environment impact and to maximize sustainabil-
ity, productivity, and efficiency. Many problems in data mining and machine learning
are usually formulated as optimization problems so that they can be solved by opti-
mization algorithms. Therefore, optimization techniques are closely related to many
techniques in data mining and machine learning.

Courses on data mining, machine learning, and optimization are often compulsory
for students, studying computer science, management science, engineering design, op-
erations research, data science, finance, and economics. All students have to develop
a certain level of data modeling skills so that they can process and interpret data for
classification, clustering, curve-fitting, and predictions. They should also be familiar
with machine learning techniques that are closely related to data mining so as to carry
out problem solving in many real-world applications. This book provides an introduc-
tion to all the major topics for such courses, covering the essential ideas of all key
algorithms and techniques for data mining, machine learning, and optimization.

Though there are over a dozen good books on such topics, most of these books are
either too specialized with specific readership or too lengthy (often over 500 pages).
This book fills in the gap with a compact and concise approach by focusing on the key
concepts, algorithms, and techniques at an introductory level. The main approach of
this book is informal, theorem-free, and practical. By using an informal approach all
fundamental topics required for data mining and machine learning are covered, and
the readers can gain such basic knowledge of all important algorithms with a focus
on their key ideas, without worrying about any tedious, rigorous mathematical proofs.
In addition, the practical approach provides about 30 worked examples in this book
so that the readers can see how each step of the algorithms and techniques works.
Thus, the readers can build their understanding and confidence gradually and in a
step-by-step manner. Furthermore, with the minimal requirements of basic high school
mathematics and some basic calculus, such an informal and practical style can also
enable the readers to learn the contents by self-study and at their own pace.

This book is suitable for undergraduates and graduates to rapidly develop all the
fundamental knowledge of data mining, machine learning, and optimization. It can
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also be used by students and researchers as a reference to review and refresh their
knowledge in data mining, machine learning, optimization, computer science, and data
science.

Xin-She Yang
January 2019 in London
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This book introduces the most fundamentals and algorithms related to optimization,
data mining, and machine learning. The main requirement is some understanding of
high-school mathematics and basic calculus; however, we will review and introduce
some of the mathematical foundations in the first two chapters.

1.1 Algorithms

An algorithm is an iterative, step-by-step procedure for computation. The detailed
procedure can be a simple description, an equation, or a series of descriptions in
combination with equations. Finding the roots of a polynomial, checking if a natu-
ral number is a prime number, and generating random numbers are all algorithms.

1.1.1 Essence of an algorithm

In essence, an algorithm can be written as an iterative equation or a set of iterative
equations. For example, to find a square root of a > 0, we can use the following
iterative equation:

xk+1 = 1

2

(
xk + a

xk

)
, (1.1)

where k is the iteration counter (k = 0,1,2, . . . ) starting with a random guess x0 = 1.
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2 Introduction to Algorithms for Data Mining and Machine Learning

Example 1

As an example, if x0 = 1 and a = 4, then we have

x1 = 1

2
(1 + 4

1
) = 2.5. (1.2)

Similarly, we have

x2 = 1

2
(2.5 + 4

2.5
) = 2.05, x3 = 1

2
(2.05 + 4

2.05
) ≈ 2.0061, (1.3)

x4 ≈ 2.00000927, (1.4)

which is very close to the true value of
√

4 = 2. The accuracy of this iterative formula or algorithm
is high because it achieves the accuracy of five decimal places after four iterations.

The convergence is very quick if we start from different initial values such as
x0 = 10 and even x0 = 100. However, for an obvious reason, we cannot start with
x0 = 0 due to division by zero.

Find the root of x = √
a is equivalent to solving the equation

f (x) = x2 − a = 0, (1.5)

which is again equivalent to finding the roots of a polynomial f (x). We know that
Newton’s root-finding algorithm can be written as

xk+1 = xk − f (xk)

f ′(xk)
, (1.6)

where f ′(x) is the first derivative or gradient of f (x). In this case, we have
f ′(x) = 2x. Thus, Newton’s formula becomes

xk+1 = xk − (x2
k − a)

2xk

, (1.7)

which can be written as

xk+1 = (xk − xk

2
) + a

2xk

= 1

2

(
xk + a

xk

). (1.8)

This is exactly what we have in Eq. (1.1).
Newton’s method has rigorous mathematical foundations, which has a guaranteed

convergence under certain conditions. However, in general, Eq. (1.6) is more general,
and the gradient information f ′(x) is needed. In addition, for the formula to be valid,
we must have f ′(x) �= 0.
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1.1.2 Issues with algorithms

The advantage of the algorithm given in Eq. (1.1) is that it converges very quickly.
However, careful readers may have asked: we know that

√
4 = ±2, how can we find

the other root −2 in addition to +2?
Even if we use different initial value x0 = 10 or x0 = 0.5, we can only reach x∗ = 2,

not −2.
What happens if we start with x0 < 0? From x0 = −1, we have

x1 = 1

2
(−1 + 4

−1
) = −2.5, x2 = 1

2
(−2.5 + 4

−2.5
) = −2.05, (1.9)

x3 ≈ −2.0061, x4 ≈ −2.00000927, (1.10)

which is approaching −2 very quickly. If we start from x0 = −10 or x0 = −0.5, then
we can always get x∗ = −2, not +2.

This highlights a key issue here: the final solution seems to depend on the initial
starting point for this algorithm, which is true for many algorithms.

Now the relevant question is: how do we know where to start to get a particular
solution? The general short answer is “we do not know”. Thus, some knowledge of
the problem under consideration or an educated guess may be useful to find the final
solution.

In fact, most algorithms may depend on the initial configuration, and such algo-
rithms are often carrying out search moves locally. Thus, this type of algorithm is
often referred to as local search. A good algorithm should be able to “forget” its initial
configuration though such algorithms may not exist at all for most types of problems.

What we need in general is the global search, which attempts to find final solutions
that are less sensitive to the initial starting point(s).

Another important issue in our discussions is that the gradient information f ′(x) is
necessary for some algorithms such as Newton’s method given in Eq. (1.6). This poses
certain requirements on the smoothness of the function f (x). For example, we know
that |x| is not differentiable at x = 0. Thus, we cannot directly use Newton’s method
to find the roots of f (x) = |x|x2 − a = 0 for a > 0. Some modifications are needed.

There are other issues related to algorithms such as the setting of parameters, the
slow rate of convergence, condition numbers, and iteration structures. All these make
algorithm designs and usage somehow challenging, and we will discuss these issues
in more detail later in this book.

1.1.3 Types of algorithms

An algorithm can only do a specific computation task (at most a class of computational
tasks), and no algorithms can do all the tasks. Thus, algorithms can be classified due
to their purposes. An algorithm to find roots of a polynomial belongs to root-finding
algorithms, whereas an algorithm for ranking a set of numbers belongs to sorting
algorithms. There are many classes of algorithms for different purposes. Even for the
same purpose such as sorting, there are many different algorithms such as the merge
sort, bubble sort, quicksort, and others.
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We can also categorize algorithms in terms of their characteristics. The root-finding
algorithms we just introduced are deterministic algorithms because the final solutions
are exactly the same if we start from the same initial guess. We obtain the same set of
solutions every time we run the algorithm. On the other hand, we may introduce some
randomization into the algorithm, for example, using purely random initial points.
Every time we run the algorithm, we use a new random initial guess. In this case, the
algorithm can have some nondeterministic nature, and such algorithms are referred
to as stochastic. Sometimes, using randomness may be advantageous. For example, in
the example of

√
4 = ±2 using Eq. (1.1), random initial values (both positive and neg-

ative) can allow the algorithm to find both roots. In fact, a major trend in the modern
metaheuristics is using some randomization to suit different purposes.

For algorithms to be introduced in this book, we are mainly concerned with al-
gorithms for data mining, optimization, and machine learning. We use a relatively
unified approach to link algorithms in data mining and machine learning to algorithms
for optimization.

1.2 Optimization

Optimization is everywhere, from engineering design to business planning. After all,
time and resources are limited, and optimal use of such valuable resources is crucial.
In addition, designs of products have to maximize the performance, sustainability, and
energy efficiency and to minimize the costs. Therefore, optimization is important for
many applications.

1.2.1 A simple example

Let us start with a very simple example to design a container with volume capacity
V0 = 10 m3. As the main cost is related to the cost of materials, the main aim is to
minimize the total surface area S.

The first thing we have to decide is the shape of the container (cylinder, cubic,
sphere or ellipsoid, or more complex geometry). For simplicity, let us start with a
cylindrical shape with radius r and height h (see Fig. 1.1).

The total surface area of a cylinder is

S = 2(πr2) + 2πrh, (1.11)

and the volume is

V = πr2h. (1.12)

There are only two design variables r and h and one objective function S to be min-
imized. Obviously, if there is no capacity constraint, then we can choose not to build
the container, and then the cost of materials is zero for r = 0 and h = 0. However,
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Figure 1.1 Design of a cylindric container.

the constraint requirement means that we have to build a container with fixed volume
V0 = πr2h = 10 m3. Therefore, this optimization problem can be written as

minimize S = 2πr2 + 2πrh, (1.13)

subject to the equality constraint

πr2h = V0 = 10. (1.14)

To solve this problem, we can first try to use the equality constraint to reduce the
number of design variables by solving h. So we have

h = V0

πr2
. (1.15)

Substituting it into (1.13), we get

S = 2πr2 + 2πrh

= 2πr2 + 2πr
V0

πr2
= 2πr2 + 2V0

r
. (1.16)

This is a univariate function. From basic calculus we know that the minimum or max-
imum can occur at the stationary point, where the first derivative is zero, that is,

dS

dr
= 4πr − 2V0

r2
= 0, (1.17)

which gives

r3 = V0

2π
, or r = 3

√
V0

2π
. (1.18)

Thus, the height is

h

r
= V0/(πr2)

r
= V0

πr3
= 2. (1.19)
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This means that the height is twice the radius: h = 2r . Thus, the minimum surface is

S∗ = 2πr2 + 2πrh = 2πr2 + 2πr(2r) = 6πr2

= 6π
( V0

2π

)2/3 = 6π
3
√

4π2
V

2/3
0 . (1.20)

For V0 = 10, we have

r = 3

√
V0

(2π)
= 3

√
10

2π
≈ 1.1675, h = 2r = 2.335,

and the total surface area

S∗ = 2πr2 + 2πrh ≈ 25.69.

It is worth pointing out that this optimal solution is based on the assumption or re-
quirement to design a cylindrical container. If we decide to use a sphere with radius R,
we know that its volume and surface area is

V0 = 4π

3
R3, S = 4πR2. (1.21)

We can solve R directly

R3 = 3V0

4π
, or R = 3

√
3V0

4π
, (1.22)

which gives the surface area

S = 4π
(3V0

4π

)2/3 = 4π
3
√

9
3
√

16π2
V

2/3
0 . (1.23)

Since 6π/
3
√

4π2 ≈ 5.5358 and 4π
3
√

9/
3
√

16π2 ≈ 4.83598, we have S < S∗, that is, the
surface area of a sphere is smaller than the minimum surface area of a cylinder with
the same volume. In fact, for the same V0 = 10, we have

S(sphere) = 4π
3
√

9
3
√

16π2
V

2/3
0 ≈ 22.47, (1.24)

which is smaller than S∗ = 25.69 for a cylinder.
This highlights the importance of the choice of design type (here in terms of shape)

before we can do any truly useful optimization. Obviously, there are many other fac-
tors that can influence the choice of design, including the manufacturability of the
design, stability of the structure, ease of installation, space availability, and so on. For
a container, in most applications, a cylinder may be much easier to produce than a
sphere, and thus the overall cost may be lower in practice. Though there are so many
factors to be considered in engineering design, for the purpose of optimization, here
we will only focus on the improvement and optimization of a design with well-posed
mathematical formulations.
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1.2.2 General formulation of optimization

Whatever the real-world applications may be, it is usually possible to formulate an
optimization problem in a generic form [49,53,160]. All optimization problems with
explicit objectives can in general be expressed as a nonlinearly constrained optimiza-
tion problem

maximize/minimize f (x), x = (x1, x2, . . . , xD)T ∈R
D,

subject to φj (x) = 0 (j = 1,2, . . . ,M),

ψk(x) ≤ 0 (k = 1, . . . ,N), (1.25)

where f (x), φj (x), and ψk(x) are scalar functions of the design vector x. Here the
components xi of x = (x1, . . . , xD)T are called design or decision variables, and they
can be either continuous, discrete, or a mixture of these two. The vector x is often
called the decision vector, which varies in a D-dimensional space R

D .
It is worth pointing out that we use a column vector here for x (thus with trans-

pose T ). We can also use a row vector x = (x1, . . . , xD) and the results will be the
same. Different textbooks may use slightly different formulations. Once we are aware
of such minor variations, it should cause no difficulty or confusion.

In addition, the function f (x) is called the objective function or cost function,
φj (x) are constraints in terms of M equalities, and ψk(x) are constraints written as
N inequalities. So there are M + N constraints in total. The optimization problem
formulated here is a nonlinear constrained problem. Here the inequalities ψk(x) ≤ 0
are written as “less than”, and they can also be written as “greater than” via a simple
transformation by multiplying both sides by −1.

The space spanned by the decision variables is called the search space RD , whereas
the space formed by the values of the objective function is called the objective or
response space, and sometimes the landscape. The optimization problem essentially
maps the domain R

D or the space of decision variables into the solution space R (or
the real axis in general).

The objective function f (x) can be either linear or nonlinear. If the constraints φj

and ψk are all linear, it becomes a linearly constrained problem. Furthermore, when
φj , ψk , and the objective function f (x) are all linear, then it becomes a linear pro-
gramming problem [35]. If the objective is at most quadratic with linear constraints,
then it is called a quadratic programming problem. If all the values of the decision
variables can be only integers, then this type of linear programming is called integer
programming or integer linear programming.

On the other hand, if no constraints are specified and thus xi can take any values
in the real axis (or any integers), then the optimization problem is referred to as an
unconstrained optimization problem.

As a very simple example of optimization problems without any constraints, we
discuss the search of the maxima or minima of a univariate function.
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Figure 1.2 A simple multimodal function f (x) = x2e−x2
.

Example 2
For example, to find the maximum of a univariate function f (x)

f (x) = x2e−x2
, −∞ < x < ∞, (1.26)

is a simple unconstrained problem, whereas the following problem is a simple constrained mini-
mization problem:

f (x1, x2) = x2
1 + x1x2 + x2

2 , (x1, x2) ∈ R
2, (1.27)

subject to

x1 ≥ 1, x2 − 2 = 0. (1.28)

It is worth pointing out that the objectives are explicitly known in all the optimiza-
tion problems to be discussed in this book. However, in reality, it is often difficult to
quantify what we want to achieve, but we still try to optimize certain things such as the
degree of enjoyment or service quality on holiday. In other cases, it may be impossible
to write the objective function in any explicit form mathematically.

From basic calculus we know that, for a given curve described by f (x), its gradient
f ′(x) describes the rate of change. When f ′(x) = 0, the curve has a horizontal tangent
at that particular point. This means that it becomes a point of special interest. In fact,
the maximum or minimum of a curve occurs at

f ′(x∗) = 0, (1.29)

which is a critical condition or stationary condition. The solution x∗ to this equation
corresponds to a stationary point, and there may be multiple stationary points for a
given curve.

To see if it is a maximum or minimum at x = x∗, we have to use the information of
its second derivative f ′′(x). In fact, f ′′(x∗) > 0 corresponds to a minimum, whereas
f ′′(x∗) < 0 corresponds to a maximum. Let us see a concrete example.

Example 3

To find the minimum of f (x) = x2e−x2
(see Fig. 1.2), we have the stationary condition

f ′(x) = 0 or

f ′(x) = 2x × e−x2 + x2 × (−2x)e−x2 = 2(x − x3)e−x2 = 0.
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Figure 1.3 (a) Feasible domain with nonlinear inequality constraints ψ1(x) and ψ2(x) (left) and linear
inequality constraint ψ3(x). (b) An example with an objective of f (x) = x2 subject to x ≥ 2 (right).

As e−x2
> 0, we have

x(1 − x2) = 0, or x = 0 and x = ±1.

The second derivative is given by

f ′′(x) = 2e−x2
(1 − 5x2 + 2x4),

which is an even function with respect to x.
So at x = ±1, f ′′(±1) = 2[1 − 5(±1)2 + 2(±1)4]e−(±1)2 = −4e−1 < 0. Thus, there are

two maxima that occur at x∗ = ±1 with fmax = e−1. At x = 0, we have f ′′(0) = 2 > 0, thus
the minimum of f (x) occurs at x∗ = 0 with fmin(0) = 0.

Whatever the objective is, we have to evaluate it many times. In most cases, the
evaluations of the objective functions consume a substantial amount of computational
power (which costs money) and design time. Any efficient algorithm that can reduce
the number of objective evaluations saves both time and money.

In mathematical programming, there are many important concepts, and we will
first introduce a few related concepts: feasible solutions, optimality criteria, the strong
local optimum, and weak local optimum.

1.2.3 Feasible solution

A point x that satisfies all the constraints is called a feasible point and thus is a feasible
solution to the problem. The set of all feasible points is called the feasible region (see
Fig. 1.3).

For example, we know that the domain f (x) = x2 consists of all real numbers. If
we want to minimize f (x) without any constraint, all solutions such as x = −1, x = 1,
and x = 0 are feasible. In fact, the feasible region is the whole real axis. Obviously,
x = 0 corresponds to f (0) = 0 as the true minimum.

However, if we want to find the minimum of f (x) = x2 subject to x ≥ 2, then it
becomes a constrained optimization problem. The points such as x = 1 and x = 0 are
no longer feasible because they do not satisfy x ≥ 2. In this case the feasible solutions
are all the points that satisfy x ≥ 2. So x = 2, x = 100, and x = 108 are all feasible. It
is obvious that the minimum occurs at x = 2 with f (2) = 22 = 4, that is, the optimal
solution for this problem occurs at the boundary point x = 2 (see Fig. 1.3).
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Figure 1.4 Local optima, weak optima, and global optimality.

1.2.4 Optimality criteria

A point x∗ is called a strong local maximum of the nonlinearly constrained op-
timization problem if f (x) is defined in a δ-neighborhood N(x∗, δ) and satisfies
f (x∗) > f (u) for u ∈ N(x∗, δ), where δ > 0 and u �= x∗. If x∗ is not a strong lo-
cal maximum, then the inclusion of equality in the condition f (x∗) ≥ f (u) for all
u ∈ N(x∗, δ) defines the point x∗ as a weak local maximum (see Fig. 1.4). The local
minima can be defined in a similar manner when > and ≥ are replaced by < and ≤,
respectively.

Fig. 1.4 shows various local maxima and minima. Point A is a strong local max-
imum, whereas point B is a weak local maximum because there are many (in fact,
infinite) different values of x that will lead to the same value of f (x∗). Point D is the
global maximum, and point E is the global minimum. In addition, point F is a strong
local minimum. However, point C is a strong local minimum, but it has a discontinuity
in f ′(x∗). So the stationary condition for this point f ′(x∗) = 0 is not valid. We will
not deal with these types of minima or maxima in detail.

As we briefly mentioned before, for a smooth curve f (x), optimal solutions usu-
ally occur at stationary points where f ′(x) = 0. This is not always the case because
optimal solutions can also occur at the boundary, as we have seen in the previous ex-
ample of minimizing f (x) = x2 subject to x ≥ 2. In our present discussion, we will
assume that both f (x) and f ′(x) are always continuous or f (x) is everywhere twice
continuously differentiable. Obviously, the information of f ′(x) is not sufficient to
determine whether a stationary point is a local maximum or minimum. Thus, higher-
order derivatives such as f ′′(x) are needed, but we do not make any assumption at this
stage. We will further discuss this in detail in the next section.

1.3 Unconstrained optimization

Optimization problems can be classified as either unconstrained or constrained. Un-
constrained optimization problems can in turn be subdivided into univariate and mul-
tivariate problems.
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1.3.1 Univariate functions

The simplest optimization problem without any constraints is probably the search for
the maxima or minima of a univariate function f (x). For unconstrained optimization
problems, the optimality occurs at the critical points given by the stationary condition
f ′(x) = 0.

However, this stationary condition is just a necessary condition, but it is not a suf-
ficient condition. If f ′(x∗) = 0 and f ′′(x∗) > 0, it is a local minimum. Conversely, if
f ′(x∗) = 0 and f ′′(x∗) < 0, then it is a local maximum. However, if f ′(x∗) = 0 and
f ′′(x∗) = 0, care should be taken because f ′′(x) may be indefinite (both positive and
negative) when x → x∗, then x∗ corresponds to a saddle point.

For example, for f (x) = x3, we have

f ′(x) = 3x2, f ′′(x) = 6x. (1.30)

The stationary condition f ′(x) = 3x2 = 0 gives x∗ = 0. However, we also have

f ′′(x∗) = f ′′(0) = 0.

In fact, f (x) = x3 has a saddle point x∗ = 0 because f ′(0) = 0 but f ′′ changes sign
from f ′′(0+) > 0 to f ′′(0−) < 0 as x moves from positive to negative.

Example 4
For example, to find the maximum or minimum of a univariate function

f (x) = 3x4 − 4x3 − 12x2 + 9, −∞ < x < ∞,

we first have to find its stationary points x∗ when the first derivative f ′(x) is zero, that is,

f ′(x) = 12x3 − 12x2 − 24x = 12(x3 − x2 − 2x) = 0.

Since f ′(x) = 12(x3 − x2 − 2x) = 12x(x + 1)(x − 2) = 0, we have

x∗ = −1, x∗ = 2, x∗ = 0.

The second derivative of f (x) is simply

f ′′(x) = 36x2 − 24x − 24.

From the basic calculus we know that the maximum requires f ′′(x∗) ≤ 0 whereas the minimum
requires f ′′(x∗) ≥ 0.

At x∗ = −1, we have

f ′′(−1) = 36(−1)2 − 24(−1) − 24 = 36 > 0,

so this point corresponds to a local minimum

f (−1) = 3(−1)4 − 4(−1)3 − 12(−1)2 + 9 = 4.
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Similarly, at x∗ = 2, f ′′(x∗) = 72 > 0, and thus we have another local minimum

f (x∗) = −23.

However, at x∗ = 0, we have f ′(0) = −24 < 0, which corresponds to a local maximum
f (0) = 9. However, this maximum is not a global maximum because the global maxima for f (x)

occur at x = ±∞.
The global minimum occurs at x∗ = 2 with f (2) = −23.

The maximization of a function f (x) can be converted into the minimization of A−
f (x), where A is usually a large positive number (though A = 0 will do). For example,
we know the maximum of f (x) = e−x2

, x ∈ (−∞,∞), is 1 at x∗ = 0. This problem
can be converted to the minimization of −f (x). For this reason, the optimization
problems can be expressed as either minimization or maximization depending on the
context and convenience of formulations.

In fact, in the optimization literature, some books formulate all the optimization
problems in terms of maximization, whereas others write these problems in terms of
minimization, though they are in essence dealing with the same problems.

1.3.2 Multivariate functions

We can extend the optimization procedure for univariate functions to multivariate
functions using partial derivatives and relevant conditions. Let us start with the ex-
ample

minimize f (x, y) = x2 + y2, x, y ∈R. (1.31)

It is obvious that x = 0 and y = 0 is a minimum solution because f (0,0) = 0. The
question is how to solve this problem formally. We can extend the stationary condition
to partial derivatives, and we have ∂f

∂x
= 0 and ∂f

∂y
= 0. In this case, we have

∂f

∂x
= 2x + 0 = 0,

∂f

∂y
= 0 + 2y = 0. (1.32)

The solution is obviously x∗ = 0 and y∗ = 0.
Now how do we know that it corresponds to a maximum or minimum? If we try to

use the second derivatives, we have four different partial derivatives such as fxx and
fyy , and which one should we use? In fact, we need to define the Hessian matrix from
these second partial derivatives, and we have

H =
(

fxx fxy

fyx fyy

)
=

⎛
⎝ ∂2f

∂x2
∂2f
∂x∂y

∂2f
∂y∂x

∂2f

∂y2

⎞
⎠. (1.33)
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Since

∂2f

∂x∂y
= ∂2f

∂y∂x
, (1.34)

we can conclude that the Hessian matrix is always symmetric. In the case of f (x, y) =
x2 + y2, it is easy to check that the Hessian matrix is

H =
(

2 0
0 2

)
. (1.35)

Mathematically speaking, if H is positive definite, then the stationary point (x∗, y∗)
corresponds to a local minimum. Similarly, if H is negative definite, then the sta-
tionary point corresponds to a maximum. The definiteness of a symmetric matrix is
controlled by its eigenvalues. For this simple diagonal matrix H , its eigenvalues are
its two diagonal entries 2 and 2. As both eigenvalues are positive, this matrix is pos-
itive definite. Since the Hessian matrix here does not involve any x or y, it is always
positive definite in the whole search domain (x, y) ∈ R

2, so we can conclude that the
solution at point (0,0) is the global minimum.

Obviously, this is a particular case. In general, the Hessian matrix depends on the
independent variables, but the definiteness test conditions still apply. That is, positive
definiteness of a stationary point means a local minimum. Alternatively, for bivariate
functions, we can define the determinant of the Hessian matrix in Eq. (1.33) as

� = det(H ) = fxxfyy − (fxy)
2. (1.36)

At the stationary point (x∗, y∗), if � > 0 and fxx > 0, then (x∗, y∗) is a local mini-
mum. If � > 0 but fxx < 0, then it is a local maximum. If � = 0, then it is inconclu-
sive, and we have to use other information such as higher-order derivatives. However,
if � < 0, then it is a saddle point. A saddle point is a special point where a local
minimum occurs along one direction, whereas the maximum occurs along another
(orthogonal) direction.

Example 5

To minimize f (x, y) = (x − 1)2 + x2y2, we have

∂f

∂x
= 2(x − 1) + 2xy2 = 0,

∂f

∂y
= 0 + 2x2y = 0. (1.37)

The second condition gives y = 0 or x = 0. Substituting y = 0 into the first condition, we have
x = 1. However, x = 0 does not satisfy the first condition. Therefore, we have a solution x∗ = 1
and y∗ = 0.

For our example with f = (x − 1)2 + x2y2, we have

∂2f

∂x2
= 2y2 + 2,

∂2f

∂x∂y
= 4xy,

∂2f

∂y∂x
= 4xy,

∂2f

∂y2
= 2x2, (1.38)
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and thus we have

H =
(

2y2 + 2 4xy

4xy 2x2

)
. (1.39)

At the stationary point (x∗, y∗) = (1,0), the Hessian matrix becomes

H =
(

2 0
0 2

)
,

which is positive definite because its double eigenvalues 2 are positive. Alternatively, we have
� = 4 > 0 and fxx = 2 > 0. Therefore, (1,0) is a local minimum.

In fact, for a multivariate function f (x1, x2, . . . , xn) in an n-dimensional space, the
stationary condition can be extended to

G = ∇f = (
∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

)T = 0, (1.40)

where G is called the gradient vector. The second derivative test becomes the definite-
ness of the Hessian matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2f

∂x1
2

∂2f
∂x1∂x2

...
∂2f

∂x1∂xn

∂2f
∂x2∂x1

∂2f

∂x2
2 ...

∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

...
∂2f

∂xn
2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1.41)

At the stationary point defined by G = ∇f = 0, the positive definiteness of H gives a
local minimum, whereas the negative definiteness corresponds to a local maximum. In
essence, the eigenvalues of the Hessian matrix H determine the local behavior of the
function. As we mentioned before, if H is positive semidefinite, then it corresponds
to a local minimum.

1.4 Nonlinear constrained optimization

As most real-world problems are nonlinear, nonlinear mathematical programming
forms an important part of mathematical optimization methods. A broad class of non-
linear programming problems is about the minimization or maximization of f (x) sub-
ject to no constraints, and another important class is the minimization of a quadratic
objective function subject to nonlinear constraints. There are many other nonlinear
programming problems as well.

Nonlinear programming problems are often classified according to the convexity
of the defining functions. An interesting property of a convex function f is that the
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vanishing of the gradient ∇f (x∗) = 0 guarantees that the point x∗ is a global minimum
or maximum of f . We will introduce the concept of convexity in the next chapter. If
a function is not convex or concave, then it is much more difficult to find its global
minima or maxima.

1.4.1 Penalty method

For the simple function optimization with equality and inequality constraints, a com-
mon method is the penalty method. For the optimization problem

minimize f (x), x = (x1, . . . , xn)
T ∈R

n,

subject to φi(x) = 0, (i = 1, . . . ,M), ψj (x) ≤ 0, (j = 1, . . . ,N), (1.42)

the idea is to define a penalty function so that the constrained problem is transformed
into an unconstrained problem. Now we define

�(x,μi, νj ) = f (x) +
M∑
i=1

μiφ
2
i (x) +

N∑
j=1

νj max{0,ψj (x)}2, (1.43)

where μi  1 and νj ≥ 0.
For example, let us solve the following minimization problem:

minimize f (x) = 40(x − 1)2, x ∈R, subject to g(x) = x − a ≥ 0, (1.44)

where a is a given value. Obviously, without this constraint, the minimum value occurs
at x = 1 with fmin = 0. If a < 1, then the constraint will not affect the result. However,
if a > 1, then the minimum should occur at the boundary x = a (which can be obtained
by inspecting or visualizing the objective function and the constraint). Now we can
define a penalty function �(x) using a penalty parameter μ  1. We have

�(x,μ) = f (x) + μ[g(x)]2 = 40(x − 1)2 + μ(x − a)2, (1.45)

which converts the original constrained optimization problem into an unconstrained
problem. From the stationarity condition �′(x) = 0 we have

80(x − 1) − 2μ(x − a) = 0, or x∗ = 40 − μa

40 − μ
. (1.46)

For a particular case a = 1, we have x∗ = 1, and the result does not depend on μ.
However, in the case of a > 1 (say, a = 5), the result will depend on μ. When a = 5
and μ = 100, we have x∗ = 40 − 100 × 5/40 − 100 = 7.6667. If μ = 1000, then this
gives 50 − 1000 ∗ 5/40 − 1000 = 5.1667. Both values are far from the exact solution
xtrue = a = 5. If we use μ = 104, then we have x∗ ≈ 5.0167. Similarly, for μ = 105,
we have x∗ ≈ 5.00167. This clearly demonstrates that the solution in general depends
on μ. However, it is very difficult to use extremely large values without causing extra
computational difficulties.
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Ideally, the formulation using the penalty method should be properly designed so
that the results will not depend on the penalty coefficient, or at least the dependence
should be sufficiently weak.

1.4.2 Lagrange multipliers

Another powerful method without the limitation of using large μ is the method of
Lagrange multipliers. Suppose we want to minimize a function f (x):

minimize f (x), x = (x1, . . . , xn)
T ∈ R

n, (1.47)

subject to the nonlinear equality constraint

h(x) = 0. (1.48)

Then we can combine the objective function f (x) with the equality to form the new
function, called the Lagrangian,

� = f (x) + λh(x), (1.49)

where λ is the Lagrange multiplier, which is an unknown scalar to be determined.
This again converts the constrained optimization into an unconstrained problem for

�(x), which is the beauty of this method. If we have M equalities

hj (x) = 0 (j = 1, . . . ,M), (1.50)

then we need M Lagrange multipliers λj (j = 1, . . . ,M). We thus have

�(x,λj ) = f (x) +
M∑

j=1

λjhj (x). (1.51)

The requirement of stationary conditions leads to

∂�

∂xi

= ∂f

∂xi

+
M∑

j=1

λj

∂hj

∂xi

(i = 1, . . . , n),
∂�

∂λj

= hj = 0 (j = 1, . . . ,M). (1.52)

These M + n equations determine the n-component x and M Lagrange multipliers.
As ∂�

∂gj
= λj , we can consider λj as the rate of the change of � as a functional of hj .

Example 6
For the well-known monkey surface f (x, y) = x3 − 3xy2, the function does not have a unique
maximum or minimum. In fact, the point x = y = 0 is a saddle point. However, if we impose an
extra equality x − y2 = 1, we can formulate an optimization problem as

minimize f (x, y) = x3 − 3xy2, (x, y) ∈R
2,
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subject to

h(x, y) = x − y2 = 1.

Now we can define

� = f (x, y) + λh(x, y) = x3 − 3xy2 + λ(x − y2 − 1).

The stationary conditions become

∂�

∂x
= 3x2 − 3y2 + λ = 0,

∂�

∂y
= 0 − 6xy + (−2λy) = 0,

∂�

∂λ
= x − y2 − 1 = 0.

The second condition −6xy − 2λy = −2y(3x + λ) = 0 implies that y = 0 or λ = −3x.

• If y = 0, then the third condition x − y2 − 1 = 0 gives x = 1. The first condition 3x2 + 3y2 −
λ = 0 leads to λ = −3. Therefore, x = 1 and y = 0 is an optimal solution with fmin = 1. It is
straightforward to verify that this solution corresponds to a minimum (not a maximum).

• If λ = −3x, then the first condition becomes 3x2 − 3y2 − 3x = 0. Substituting x = y2 + 1
(from the third condition), we have

3(y2 + 1)2 − 3y2 − 3(y2 + 1) = 0, or 3(y4 + 2) = 0.

This equation has no solution in the real domain. Therefore, the optimality occurs at (1,0) with
fmin = 1.

1.4.3 Karush–Kuhn–Tucker conditions

There is a counterpart of the Lagrange multipliers for nonlinear optimization with
inequality constraints. The Karush–Kuhn–Tucker (KKT) conditions concern the re-
quirement for a solution to be optimal in nonlinear programming [111].

Let us know focus on the nonlinear optimization problem

minimize f (x), x ∈R
n,

subject to φi(x) = 0 (i = 1, . . . ,M), ψj (x) ≤ 0 (j = 1, . . . ,N). (1.53)

If all the functions are continuously differentiable at a local minimum x∗, then there
exist constants λ0, λ1, . . . , λq and μ1, . . . ,μp such that

λ0∇f (x∗) +
M∑
i=1

μi∇φi(x∗) +
N∑

j=1

λj∇ψj(x∗) = 0, (1.54)

ψj (x∗) ≤ 0, λjψj (x∗) = 0 (j = 1,2, . . . ,N), (1.55)



18 Introduction to Algorithms for Data Mining and Machine Learning

where λj ≥ 0 (i = 0,1, . . . ,N). The constants satisfy
∑N

j=0 λj +∑M
i=1 |μi | ≥ 0. This

is essentially a generalized method of the Lagrange multipliers. However, there is a
possibility of degeneracy when λ0 = 0 under certain conditions.

It is worth pointing out that such KKT conditions can be useful to prove theorems
and sometimes useful to gain insight into certain types of problems. However, they are
not really helpful in practice in the sense that they do not give any indication where
the optimal solutions may lie in the search domain so as to guide the search process.

Optimization problems, especially highly nonlinear multimodal problems, are usu-
ally difficult to solve. However, if we are mainly concerned about local optimal or
suboptimal solutions (not necessarily about global optimal solutions), there are rel-
atively efficient methods such as interior-point methods, trust-region methods, the
simplex method, sequential quadratic programming, and swarm intelligence-based
methods [151]. All these methods have been implemented in a diverse range of soft-
ware packages. Interested readers can refer to more advanced literature.

1.5 Notes on software

Though there many different algorithms for optimization, most software packages and
programming languages have some sort of optimization capabilities due to the popu-
larity and relevance of optimization in many applications. For example, Wikipedia has
some extensive lists of

• optimization software,1

• data mining and machine learning,2

• deep learning software.3

There is a huge list of software packages and internet resources; it requires a
lengthy book to cover most of it, which is not our intention here. Interested readers
can refer to them for more detail.

1 https://en.wikipedia.org/wiki/List_of_optimization_software.
2 https://en.wikipedia.org/wiki/Category:Data_mining_and_machine_learning_software.
3 https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software.

https://en.wikipedia.org/wiki/List_of_optimization_software
https://en.wikipedia.org/wiki/Category:Data_mining_and_machine_learning_software
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
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2.1 Convexity

2.1.1 Linear and affine functions

Generally speaking, a function is a mapping from independent variables or inputs to a
dependent variable or variables/outputs. For example, the function

f (x, y) = x2 + y2 + xy, (2.1)

depends on two independent variables. This function maps the domain R
2 (for −∞ <

x < ∞ and −∞ < y < ∞) to f on the real axis as its range. So we use the notation
f :R2 → R to denote this.

In general, a function f (x, y, z, . . . ) maps n independent variables to m dependent
variables, and we use the notation f : Rn → R

m to mean that the domain of the func-
tion is a subset of Rn, whereas its range is a subset of Rm. The domain of a function
is sometimes denoted by dom(f ) or dom f .

The inputs or independent variables can often be written as a vector. For simplicity,
we often use a vector x = (x, y, z, . . . )T = (x1, x2, . . . , xn)

T for multiple variables.
Therefore, f (x) is often used to mean f (x, y, z, . . . ) or f (x1, x2, . . . , xn).

A function L(x) is called linear if

L(x + y) = L(x) +L(y) and L(αx) = αL(x) (2.2)

for any vectors x and y and any scalar α ∈R.

Example 7
To see if f (x) = f (x1, x2) = 2x1 + 3x2 is linear, we use

f (x1 + y1, x2 + y2) = 2(x1 + y1) + 3(x2 + y2) = 2x1 + 2y1 + 3x2 + 3y2

= [2x1 + 3x2] + [2y1 + 3y2] = f (x1, x2) + f (y1, y2).

In addition, for any scalar α, we have

f (αx1, αx2) = 2αx1 + 3αx2 = α[2x1 + 3x2] = αf (x1, x2).

Therefore, this function is indeed linear. This function can also be written as a vector form

f (x) =
(

2 3
)(

x1
x2

)
= a · x = aT x,

where a · x = aT x is the inner product of a = (2 3)T and x = (x1 x2)T .

In general, functions can be a multiple-component vector, which can be written
as F [22]. A function F is called affine if there exists a linear function L and a vector
constant b such that F = L(x) + b. In general, an affine function is a linear function
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Figure 2.1 Convex functions.

with translation, which can be written in a matrix form F = Ax + b, where A is an
m × n matrix, and b is a column vector in R

n.
Knowing the properties of a function can be useful for finding the maximum or

minimum of the function. In fact, in mathematical optimization, nonlinear problems
are often classified according to the convexity of the defining function(s). Geometri-
cally speaking, an object is convex if for any two points within the object, every point
on the straight line segment joining them is also within the object. Examples are a
solid ball, a cube, and a pyramid. Obviously, a hollow object is not convex.

Mathematically speaking, a set S ∈ R
n in a real vector space is called a convex set

if

θx + (1 − θ)y ∈ S, ∀(x,y) ∈ S, θ ∈ [0,1]. (2.3)

Thus, an affine set is always convex, but a convex set is not necessarily affine.

2.1.2 Convex functions

A function f (x) defined on a convex set � is called convex if

f (αx + βy) ≤ αf (x) + βf (y), ∀x, y ∈ �, (2.4)

where

α ≥ 0, β ≥ 0, α + β = 1. (2.5)

Some examples of convex functions are shown in Fig. 2.1.

Example 8
For example, the convexity of f (x) = x2 − 1 requires

(αx + βy)2 − 1 ≤ α(x2 − 1) + β(y2 − 1), ∀x, y ∈ �,

where α,β ≥ 0 and α + β = 1. This is equivalent to

αx2 + βy2 − (αx + βy)2 ≥ 0,
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where we have used α + β = 1. We now have

αx2 + βy2 − α2x2 − 2αβxy − β2y2

= α(1 − α)(x − y)2 = αβ(x − y)2 ≥ 0,

which is always true because α,β ≥ 0 and (x − y)2 ≥ 0. Therefore, f (x) = x2 − 1 is convex for
all x ∈R.

A function f (x) on � is concave if and only if g(x) = −f (x) is convex. An
interesting property of a convex function f is that the vanishing of the gradient
df/dx|x∗ = 0 guarantees that the point x∗ is the global minimum of f . Similarly,
for a concave function, any local maximum is also the global maximum. If a function
is not convex or concave, then it is much more difficult to find its global minimum or
maximum.

2.1.3 Mathematical operations on convex functions

There are some important mathematical operations that still preserve the convexity:
nonnegative weighted sum, composition using affine functions, and maximization or
minimization. For example, if f is convex, then βf is also convex for β ≥ 0. The
nonnegative sum αf1 + βf2 is convex if f1, f2 are convex and α,β ≥ 0.

The composition using an affine function also holds. For example, f (Ax + b) is
convex if f is convex. In addition, if f1, f2, . . . , fn are convex, then the maximum of
all these functions, max{f1, f2, . . . , fn}, is also convex. Similarly, the piecewise-linear
function maxn

i=1(Aix + bi ) is also convex.
If both f and g are convex, then ψ(x) = f (g(x)) can also be convex under certain

nondecreasing conditions. For example, exp[f (x)] is convex if f (x) is convex. This
can be extended to the vector composition, and most interestingly, the log-sum-exp
function

f (x) = log
n∑

k=1

exk , (2.6)

is convex. For a more comprehensive introduction of convex functions, we refer the
readers to more advanced literature such as the book by Boyd and Vandenberghe [22].

2.2 Computational complexity

In the description of algorithmic complexity, we often have to use the order notations,
often in terms of big O and small o. Loosely speaking, for two functions f (x) and
g(x), if

lim
x→x0

f (x)

g(x)
→ K, (2.7)
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where K is a finite, nonzero limit, we write

f = O(g). (2.8)

The big O notation means that f is asymptotically equivalent to the order of g(x). If
the limit is unity or K = 1, then we that say f (x) is asymptotically equivalent to g(x).
In this particular case, we write

f ∼ g, (2.9)

which is equivalent to f/g → 1 and g/f → 1 as x → x0. Obviously, x0 can be any
value, including 0 and ∞. The notation ∼ does not necessarily mean ≈ in general,
though it may give the same results, especially in the case where x → 0. For example,
sinx ∼ x and sinx ≈ x as x → 0.

When we say f is order of 100 (or f ∼ 100), this does not mean f ≈ 100 but rather
that f can be between about 50 and 150. The small o notation is often used if the limit
tends to 0, that is,

lim
x→x0

f

g
→ 0, (2.10)

or

f = o(g). (2.11)

If g > 0, then f = o(g) is equivalent to f � g (that is, f is much less than g).

Example 9

For example, for all x ∈R, we have

ex = 1 + x + x2

2! + x3

3! + · · · + xn

n! + · · · , (2.12)

which can be written as

ex ≈ 1 + x + O(x2) ≈ 1 + x + x2

2
+ o(x), (2.13)

depending on the accuracy of the approximation of interest.

It is worth pointing out that the expressions in computational complexity are most
concerned with functions such as f (n) of an input of problem size n, where n ∈ N is
an integer in the set of natural numbers N = {1,2,3, . . . }.

For example, for the functions f (n) = 10n2 + 20n + 100 and g(n) = 5n2, we have

f (n) = O
(
g(n)

)
(2.14)
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for every sufficiently large n. As n is sufficiently large, n2 is much larger than n (i.e.,
n2  n), then n2 terms dominate two expressions. To emphasize the input n, we can
often write

f (n) = O
(
g(n)

)
= O(n2). (2.15)

In addition, f (n) is in general a polynomial of n, which not only includes terms such as
n3 and n2, but it also may include n2.5 or log(n). Therefore, f (n) = 100n3 + 20n2.5 +
25n log(n) + 123n is a valid polynomial in the context of computational complexity.
In this case, we have

f (n) = 100n3 + 20n2.5 + 25n log(n) + 123n = O(n3). (2.16)

Here, we always implicitly assume that n is sufficiently large and the base of the
logarithm is 2.

To measure how easily or hardly a problem can be solved, we need to estimate its
computational complexity. We cannot simply ask how long it takes to solve a particular
problem instance because the actual computational time depends on both hardware
and software used to solve it. Thus, time does not make much sense in this context.
A useful measure of complexity should be independent of the hardware and software
used. However, such complexity is closely linked to the algorithms used.

2.2.1 Time and space complexity

To find the maximum (or minimum) among n different numbers, we only need to go
through each number once by simply comparing the current number with the highest
(or lowest) number once and update the new highest (or lowest) when necessary. Thus,
the number of mathematical operations is simply O(n), which is the time complexity
of this problem.

In practice, comparing two big numbers may take slightly longer, and different
representations of numbers can also affect the speed of this comparison. In addition,
multiplication and division usually take more time than simple addition and substrac-
tion. However, in computational complexity, we usually ignore such minor differences
and simply treat all operations as equal. In this sense, the complexity is about the num-
ber or order of mathematical operations, not the actual order of computational time.

On the other hand, space computational complexity estimates the size of com-
puter memory needed to solve the problem. In the previous simple problem of finding
the maximum or minimum among n different numbers, the memory needed is O(n)

because it needs to store n different numbers at n different entries in the computer
memory. Though we need one more entry to store the largest or smallest number, this
minor change does not affect the order of complexity because we implicitly assume
that n is sufficiently large [6,58].

In most literature, if there is no time or space explicitly used when talking about
computational complexity, it usually means time complexity. In discussing computa-
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tional complexity, we often use the word “problem” to mean a class of problems of
the same type and an “instance” to mean a specific example of a problem class. Thus,
Ax = b is a problem (class) for linear algebra, whereas

(
2 3
1 1

)(
x

y

)
=

(
8
3

)
(2.17)

is an instance. In addition, a decision problem is a yes–no problem where an output is
binary (0 or 1), even though the inputs can be any values.

The computational complexity is closely linked to the type of problems. For the
same type of problems, different algorithms can be used, and the number of basic
mathematical operations may be different. In this case, we are concerned with the
complexity of an algorithm in terms of arithmetic complexity.

2.2.2 Complexity of algorithms

The computational complexity discussed up to now has focused on the problems, and
the algorithms are mainly described simply in terms of polynomial or exponential
time. From the perspective of algorithm development and analysis, different algo-
rithms will have different complexity even for the same type of problems. In this case,
we have to estimate the arithmetic complexity of an algorithm or simply algorithmic
complexity.

For example, to solve a sorting problem with n different numbers so as to sort
them from the smallest to the largest, we can use different algorithms. For example,
the selection sort uses two loops for sorting n, which has an algorithmic complexity
of O(n2), whereas the quicksort (or partition and exchange sort) has a complexity of
O(n logn). There are many different sorting algorithms with different complexities.

It is worth pointing out that the algorithmic complexity here is mainly about time
complexity because the space (memory) complexity is less important. In this case, the
space algorithmic complexity is O(n).

Example 10

The multiplication of two n × n matrices A and B using simple matrix multiplication rules has

a complexity of O(n3). There are n rows and n columns for each matrix, and their product C

has n × n entries. To get each entry, we need to carry out the multiplication of a row of A by a

corresponding column of B and calculate their sum, and thus the complexity is O(n). As there

are n × n = n2 entries, the overall complexity is O(n2) × O(n) = O(n3).

In the rest of this book, we analyze different algorithms; the complexity to be given
is usually the arithmetic complexity of an algorithm under discussion.
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2.3 Norms and regularization

2.3.1 Norms

In general, a vector in an n-dimensional space (n ≥ 1) can be written as a column
vector

x =

⎛
⎜⎜⎜⎝

x1
x2
...

xn

⎞
⎟⎟⎟⎠ = (x1, x2, . . . , xn)

T (2.18)

or a row vector

x = (
x1 x2 . . . xn

)
. (2.19)

A simple transpose (T) can convert a column vector into its corresponding row vector.
The length of x can be written as

||x|| =
√

x2
1 + x2

2 + · · · + x2
n, (2.20)

which is the Euclidean norm.
The addition or substraction of two vectors u and v are the addition or substraction

of their corresponding components, that is,

u ± v =

⎛
⎜⎜⎜⎝

u1
u2
...

un

⎞
⎟⎟⎟⎠ ±

⎛
⎜⎜⎜⎝

v1
v2
...

vn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

u1 ± v1
u2 ± v2

...

un ± vn

⎞
⎟⎟⎟⎠. (2.21)

The dot product, also called the inner product, of two vectors u and v is defined as

uT v ≡ u · v =
n∑

i=1

uivi = u1v1 + u2v2 + · · · + unvn. (2.22)

For an n-dimensional vector x, we can define the p-norm or Lp-norm (also
Lp-norm) as

||x||p ≡
(
|x1|p + |x2|p + · · · + |xn|p

)1/p =
( n∑

i=1

|xi |p
)1/p

, p > 0. (2.23)

Obviously, the Cartesian norm or length is the L2-norm

||x||2 =
√

|x1|2 + |x2|2 + · · · + |xn|2 =
√

x2
1 + x2

2 + · · · + x2
n. (2.24)
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Three most widely used norms are p = 1,2, and ∞ [160]. When p = 2, it becomes
the Cartesian L2-norm as discussed before. When p = 1, the L1-norm is given by

||x||1 = |x1| + |x2| + · · · + |xn|. (2.25)

For p = ∞, it becomes

||x||∞ = max{|x1|, |x2|, . . . , |xn|} = xmax, (2.26)

which is the largest absolute component of x. This is because

||x||∞ = lim
p→∞

( p∑
i=1

|xi |p
)1/p = lim

p→∞
(
|xmax|p

n∑
i=1

∣∣∣ xi

xmax

∣∣∣p)1/p

= xmax lim
p→∞

( n∑
i=1

∣∣ xi

xmax

∣∣)1/p = xmax, (2.27)

where we have used the fact that |xi/xmax| < 1 (except for one component, say, |xk| =
xmax). Thus, limp→∞ |xi/xmax|p → 0 for all i �= k. Thus, the sum of all ratio terms
is 1, that is,(

lim
p→∞

∣∣∣ xi

xmax

∣∣∣p)1/p = 1. (2.28)

In general, for any two vectors u and v in the same space, we have the inequality

||u||p + ||v||p ≥ ||u + v||p, p ≥ 0. (2.29)

Example 11
For two vectors u = [1 2 3]T and v = [1 − 2 − 1]T , we have

uT v = 1 × 1 + 2 × (−2) + 3 × (−1) = −6,

||u||1 = |1| + |2| + |3| = 6, ||v||1 = |1| + | − 2| + | − 1| = 4,

||u||2 =
√

12 + 22 + 32 = √
14, ||v||2 =

√
12 + (−2)2 + (−1)2 = √

6,

||u||∞ = max{|1|, |2|, |3|} = 3, ||v||∞ = max{|1|, | − 2|, | − 1|} = 2,

and

w = u + v =
(

1 + 1 2 + (−2) 3 + (−1)

)T =
(

2 0 2
)T

with norms

||w||1 = |2| + |0| + |2| = 2, ||w||∞ = max{|2|, |0|, |2|} = 2,

||w||2 =
√

22 + 02 + 22 = √
8.
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Figure 2.2 Different p-norms for p = 1,2, and ∞ (left) as well as p = 1/2 and p = 4 (right).

Using these values, it is straightforward to verify that

||u||p + ||v||p ≥ ||u + v||p (p = 1,2,∞).

In the particular case of two-dimensional (2D) vectors, different norms Lp =
(|x|p + |y|p)1/p with different values of p are shown in Fig. 2.2.

2.3.2 Regularization

In many applications such as curve-fitting and machine learning, overfitting can be a
serious issue, and one way to avoid overfitting is using regularization. Loosely speak-
ing, regularization is using some penalty term added to the objective or loss function so
as to constrain certain model parameters. For example, in the method of least-squares
and many learning algorithms, the objective is to minimize the loss function L(x),
which represents the errors between data labels yi and the predictions fi = f (xi) for
m data points (xi, yi), i = 1,2, . . . ,m, that is,

L(x) =
m∑

i=1

[
yi − f (xi)

]2
, (2.30)

which is the L2-norm of the errors Ei = yi −fi . The model prediction f (x,w) usually
have many model parameters such as w = (w1,w2, ...,wK) for simple polynomial
curve-fitting. In general, a prediction model can have K different model parameters,
overfitting can occur if the model becomes too complex with too many parameters, and
the oscillations become significant. Thus, a penalty term in terms of some norm of the
model parameters is usually added to the loss function. For example, the well-known
Tikhonov regularization uses the L2-norm, and we have

minimize
m∑

i=1

[
yi − f (xi,w)

]2 + λ||w||2, (2.31)
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where λ > 0 is the penalty parameter. Obviously, other norms can be used. For exam-
ple, in the Lasso method, the regularization uses 1-norm, which gives

minimize
1

m

m∑
i=1

[
yi − f (xi,w)

]2 + λ||w||1. (2.32)

We will introduce both the method of least-squares and Lasso method in late chapters.

2.4 Probability distributions

2.4.1 Random variables

For a discrete random variable X with distinct values such as the number of cars
passing through a junction, each value xi may occur with certain probability p(xi).
In other words, the probability varies and is associated with the corresponding ran-
dom variable. Traditionally, an uppercase letter such as X is used to denote a random
variable, whereas a lowercase letter such as xi represents its values. For example, if
X means a coin-flipping event, then xi = 0 (tail) or 1 (head). A probability function
p(xi) is a function that assigns probabilities to all the discrete values xi of the random
variable X.

As an event must occur inside a sample space, the requirement that all the proba-
bilities must be summed to one, which leads to

n∑
i=1

p(xi) = 1. (2.33)

For example, the outcomes of tossing a fair coin form a sample space. The outcome
of a head (H) is an event with probability P(H) = 1/2, and the outcome of a tail (T)
is also an event with probability P(T ) = 1/2. The sum of both probabilities should be
one, that is,

P(H) + P(T ) = 1

2
+ 1

2
= 1. (2.34)

The cumulative probability function of X is defined by

P(X ≤ x) =
∑
xi<x

p(xi). (2.35)

Two main measures for a random variable X with given probability distribution
p(x) are its mean and variance. The mean μ or expectation of E[X] is defined by

μ ≡ E[X] ≡<X>=
∫

xp(x)dx (2.36)
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for a continuous distribution and the integration is within the integration limits. If the
random variable is discrete, then the integration becomes the weighted sum

E[X] =
∑

i

xip(xi). (2.37)

The variance var[X] = σ 2 is the expectation value of the deviation squared, that is,
E[(X − μ)2]. We have

σ 2 ≡ var[X] = E[(X − μ)2] =
∫

(x − μ)2p(x)dx. (2.38)

The square root of the variance σ = √
var[X] is called the standard deviation, which

is simply σ .
The above definition of mean μ = E[X] is essentially the first moment if we define

the kth moment of a random variable X (with a probability density distribution p(x))
by

μk ≡ E[Xk] =
∫

xkp(x)dx (k = 1,2,3, . . . ). (2.39)

Similarly, we can define the kth central moment by

νk ≡ E[(X − E[X])k] ≡ E[(X − μ)k]
=

∫
(x − μ)kp(x)dx (k = 0,1,2,3, . . . ), (2.40)

where μ is the mean (the first moment). Thus, the zeroth central moment is the sum of
all probabilities when k = 0, which gives ν0 = 1. The first central moment is ν1 = 0.
The second central moment ν2 is the variance σ 2, that is, ν2 = σ 2.

2.4.2 Probability distributions

There are a number of other important distributions such as the normal distribution,
Poisson distribution, exponential distribution, binomial distribution, Cauchy distribu-
tion, Lévy distribution, and Student t-distribution.

A Bernoulli distribution is a distribution of outcomes of a binary random variable
X where the random variable can only take two values, either 1 (success or yes) or 0
(failure or no). The probability of taking 1 is 0 ≤ p ≤ 1, whereas the probability of
taking 0 is q = 1 − p. Then, the probability mass function can be written as

B(m,p) =
{

p if m = 1,

1 − p, if m = 0,
(2.41)

which can be written more compactly as

B(m,p) = pm(1 − p)1−m, m ∈ {0,1}. (2.42)
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It is straightforward to show that its mean and variance are

E[X] = p, var[X] = pq = p(1 − p). (2.43)

This is the probability of a single experiment with two distinct outcomes. In the case of
multiple experiments or trials (n), the probability distribution of exactly m successes
becomes the binomial distribution

Bn(m,n,p) =
(

n

m

)
pm(1 − p)n−m, (2.44)

where(
n

m

)
= n!

m!(n − m)! (2.45)

is the binomial coefficient. Here, n! is the factorial, n! = n(n − 1)(n − 2) . . .1. For
example, 5! = 5 × 4 × 3 × 2 × 1 = 120. Conventionally, we set 0! = 1.

It is also straightforward to verify that

E[X] = np, var[X] = np(1 − p) (2.46)

for n trials.
The exponential distribution has the probability density function

f (x) = λe−λx, λ > 0 (x > 0), (2.47)

and f (x) = 0 for x ≤ 0. Its mean and variance are

μ = 1/λ, σ 2 = 1/λ2. (2.48)

The Poisson distribution is the distribution for small-probability discrete events.
Typically, it is concerned with the number of events that occur in a certain time interval
(e.g., the number of telephone calls in an hour) or spatial area.

The probability density function of the Poisson distribution is

P(X = x) = λxe−λ

x! , λ > 0, (2.49)

where x = 0,1,2, . . . , n, and λ is the mean of the distribution.
The Gaussian distribution or normal distribution is the most important continuous

distribution in probability, and it has a wide range of applications. For a continuous
random variable X, the probability density function (PDF) of the Gaussian distribution
is given by

p(x) = 1

σ
√

2π
e
− (x−μ)2

2σ2 , (2.50)
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where σ 2 = var[X] is the variance, and μ = E[X] is the mean of the Gaussian distri-
bution. The total probability of unity requires that∫ ∞

−∞
p(x)dx = 1, (2.51)

and this is exactly the reason why the factor 1/
√

2π is required in the normalization
of all the probabilities.

Cauchy probability distribution can be written as

p(x,μ,γ ) = 1

πγ

[ γ 2

(x − μ)2 + γ 2

]
, −∞ < x < ∞; (2.52)

its mean and variance are undefined or infinite, which is a true indication that this
distribution is heavy-tailed. The cumulative distribution function of the Cauchy distri-
bution is

F(x) = 1

π
tan−1

(x − μ

γ

)
+ 1

2
. (2.53)

It is worth pointing out that this distribution can have a heavy tail or a fat tail
where probability can be still significantly nonzero at the tails as x → ∞. Thus, such
a distribution belongs to the heavy-tailed or fat-tailed distributions.

Other heavy-tailed distributions include Pareto distribution, power-law distribu-
tions, and Lévy distribution.

2.4.3 Conditional probability and Bayesian rule

In the above calculations of probabilities, we have assumed that all possible outcomes
of an experiment such as tossing a coin are independent of each other, and events
are independent of each other. In general, two events A and B are independent if
the events have no influence on each other. That is to say, the occurrence of event
A does not affect or provide any information about whether event B will occur. In
this case, the probability of both events occurring (their joint probability) is denoted
as P(A ∩ B) and is simply the product of the probabilities of each individual event,
P(A) and P(B), respectively. We have

P(A ∩ B) = P(A)P (B). (2.54)

Probabilities may change if additional information is known or some other event
has already occurred. In this case, we are dealing with conditional probabilities. Let
P(B|A) denote the probability that the event B will occur given that event A has
already occurred. Here, “B|A” means that the event B occurs give that event A has
occurred, and the outcome of event A can be considered as data or evidence.

As the events A and B are no long independent, their joint probability is becomes

P(A ∩ B) = P(A)P (B|A) = P(B|A)P (A), (2.55)
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which is often called the multiplication rule in probability. Similarity, we can also have

P(A ∩ B) = P(B ∩ A) = P(B)P (A|B) = P(A|B)P (B). (2.56)

Thus, the conditional probability P(B|A) can be calculated by

P(B|A) = P(B ∩ A)

P (A)
= P(B)P (A|B)

P (A)
, (2.57)

which is the well-known Bayes’ theorem or Bayesian rule. As the whole event space �

can be decomposed as � = B ∪ B̄ (the union of event B and event B̄ = not B), the
total probability should be one, that is, P(B̄) = 1 − P(B), so we can calculate P(A)

by

P(A) = P(B)P (A|B) + P(B̄)P (A|B̄), (2.58)

which can be generalized to the sum of all possible events. Thus the Bayes theorem
becomes

P(B|A) = P(B)P (A|B)

P (A)
= P(B)P (A|B)

P (B)P (A|B) + P(B̄)P (A|B̄)
. (2.59)

The Bayes theorem can be a useful tool for many applications.

Example 12
Consider a hypothetical example for drug tests in sports. It is believed that a particular method
of drug testing can have an accuracy of 99% if athletes are taking drugs. For athletes not taking
drugs, the positive test is only 0.5%. In a particular sport event, it is assumed that only 1 of 1000
athletes takes this kind of drug. Now suppose an athlete is selected at random and the test shows
positive for the drug. What is the probability that the athlete is taking the drug?

Let B denote the event that an athlete is taking the drug, and let A denote the event that the
individual test is positive. We have P(B) = 1/1000 = 0.001, P(A|B) = 0.99, and P(A|B̄) =
0.005. Thus, the probability that the athlete is actually taking the drug is

P(B|A) = P(B)P (A|B)

P (B)P (A|B) + P(B̄)P (A|B̄)

= 0.001 × 0.99

0.001 × 0.99 + 0.999 × 0.005
≈ 0.165, (2.60)

which is surprisingly a low probability.

In a more general sense, we have a set of observed data y1, y2, . . . , ym for a random
variable y where yi can be an n-dimensional vector itself. Though we may not know
exactly the probability density function p(y) to generate such a data set, however, we
may wish to provide some insight into such distributions.

Suppose we have a family of conditional probability function for y described by
a parameter β, which itself is a random variable, and in general β can be a vector of
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many different parameters. Thus, we use p(y|β) to denote this family of conditional
probability distributions, which is often referred to as the likelihood function. If we
have some knowledge about β and its corresponding model for generating the given
data, then we can use p(β) to denote the prior distribution over β [51].

Now we can use the Bayesian rule to estimate the conditional probability function
p(β|y) for β given the data; we have

p(β|y) = p(y|β)p(β)

p(y)
, (2.61)

which is called the posterior distribution. In essence, this provides a posterior estimate
for a distribution, based on the observed data and the prior distribution.

It is worth pointing out that the data model or distribution p(y) does not contain the
model parameter β, which is in fact the sum or integration over all parameter values,
that is,

p(y) =
∫

p(y|β̃)p(β̃)dβ̃, (2.62)

but this integral is usually very difficult to calculate, if not impossible. In most cases,
Markov chain Monte Carlo numerical simulations can be used to get a good estimate.
We will briefly introduce some of these numerical sampling methods later.

2.4.4 Gaussian process

Loosely speaking, a Gaussian process is a continuous stochastic process for a set of
random variables X = [X1,X2, . . . ,Xm]T , and any such finite set obeys a multivariate
normal distribution with probability density function

p(x1, x2, . . . , xm) = 1√
(2π)m|�| exp

[
− 1

2
(x − μ)�−1(x − μ)

]
, (2.63)

where μ is the mean vector of m individual variables

μ ≡ E[X] = [E[X1], . . . ,E[Xm]]T
= [μ1, . . . ,μm]T , (2.64)

and � is the covariance matrix of size m × m:

� = E
[
(X − μ)(X − μ)T

] =

⎛
⎜⎜⎜⎝

cov(X1,X1) ... cov(X1,Xm)

cov(X2,X1) ... cov(X2,Xm)
...

. . .
...

cov(Xm,X1) ... cov(Xm,Xm)

⎞
⎟⎟⎟⎠
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Figure 2.3 A simple Bayesian network example.

=

⎛
⎜⎜⎜⎝

E[(X1 − μ1)(X1 − μ1)] ... E[(X1 − μ1)(Xm − μm)]
E[(X2 − μ2)(X1 − μ1)] ... E[(X2 − μ2)(Xm − μm)]

...
. . .

...

E[(Xm − μm)(X1 − μ1)] ... E[(Xm − μm)(Xm − μm)]

⎞
⎟⎟⎟⎠ . (2.65)

In addition, �−1 and |�| = det(�) are the inverse and the determinant of the matrix �.
Furthermore, any linear combination of these variables obeys a normal distribution.

Gaussian processes are important to many applications such as Bayesian inference
and machine learning [121]. In fact, Gaussian processes are the foundation for kernel-
based methods or kernel machines such as support vector machines and least-squares
classifiers. Their main differences are the probabilistic point of view and perspectives,
in addition to some key technical details. Many Bayesian approaches use Gaussian
distributions as their prior distributions; they form a class of methods such as Kriging,
which is a Gaussian process regression technique. The interested readers can refer to
more specialized literature [121].

2.5 Bayesian network and Markov models

A Bayesian network (BN) is a probabilistic graphical model for representing knowl-
edge about an uncertain domain where each node corresponds to a random variable
and each edge represents the conditional probability for the corresponding random
variables [9]. BNs are also called belief networks or Bayes nets. Due to dependencies
and conditional probabilities, a BN corresponds to a directed acyclic graph (DAG)
where no loop or self connection is allowed. For example, Fig. 2.3 is a BN.

Let us use an example to show how it works. This example is very similar to the
“earthquake” example by Pearl [112] and the “chair” example by Ben-Gal [9]. In my
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office, there is an electric fan that I use often in summer and not in other seasons.
Imagine a scenario that I try to switch on the fan, but it does not spin. The fan is
plugged into an extension socket or plug, and there is a possibility of a plug failure.
How do we figure out what the possible causes are?

The fan has a probability of 0.02 for failure, whereas the plug is very old and has the
failure probability 0.2. I also have a mobile phone charger connected to the same plug.
I found that the charger works well. What is the probability of the problem caused by
a faulty fan?

We can represent this scenario as a simple Bayesian network, shown in Fig. 2.3.
In this case, the parents of the random variable Fan are the nodes Faulty Fan and
Faulty Plug, whereas the child of Fan is No Spin. The two variables Faulty Fan and
Faulty Plug are marginally independent; however, they become conditionally depen-
dent, given Fan.

The number required to completely specify the probability distributions for a
network can be huge. For a set of n binary random variables, it requires 2n − 1
joint probability distributions [29]. Even for a small n = 20, this number becomes
220 − 1 = 1048575, which is a huge number. Thus, the complete specification and the
exact solution, if possible, can be NP-hard. Therefore, approximate solutions are often
sought in practice, and Monte Carlo simulations can be very useful in this case.

Though BNs are directed acyclic graphs of graphical models, however, probabilis-
tic graphical models can have undirected edges, which become the Markov networks
or Markov random fields. It is worth pointing out that many conventional machine
learning techniques, such as artificial neural networks, Kalman filters, and hidden
Markov models can all be considered as particular cases of Bayesian networks as
pointed out by Gen-Gal et al. [9].

Bayesian networks have a diverse range of applications [9,29,84,106], and
Bayesian statistics is relevant to modern techniques in data mining and machine
learning [106–108]. The interested readers can refer to more specialized literature
on information theory and learning algorithms [98] and Bayesian approach for neural
networks [91].

2.6 Monte Carlo sampling

One of the main difficulties in Bayesian statistics is to estimate complex probabil-
ity distributions, and their integrals for normalization can become intractable. Monte
Carlo-based methods can be a powerful technique to draw samples and thus esti-
mate such distributions very accurately [48,50]. There are many different Monte Carlo
methods, but we will mainly focus on the Markov chain Monte Carlo (MCMC) meth-
ods. More specifically, we will introduce the Gibbs sampler and Metropolis–Hastings
algorithms.
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2.6.1 Markov chain Monte Carlo

A Markov chain is a sequence of random variables X1,X2, . . . with proper Markov
properties, where the next state depends on the current state and the transition proba-
bility, that is, the conditional probability

P(Xk+1 = s|Xk = sk, . . . ,X2 = s2,X1 = s1)

= P(Xk+1 = s|Xk = sk), (2.66)

does not depend on the states or values before k.
Such chains can have stable probability distributions as k → ∞, which will forget

their initial states. Suppose we wish to estimate the states of a random parameter θ ;
two important things are the current values θ and the transition probability or transition
kernel

T (θ, θ ′) = pθ→θ ′(θ ′|θ) (2.67)

from θ to a new state θ ′. Under certain symmetrical balance conditions, there exists a
stationary distribution π(θ) for a Markov chain with this transition kernel T (θ, θ ′). It
requires that

T (θ, θ ′)π(θ) = T (θ ′, θ)π(θ ′) (2.68)

for all θ, θ ′.
The key idea of any MCMC approach is constructing a Markov chain with proper

Markov properties such that its stationary distribution π is the same as the posterior
distribution p(θ |y) that we wish to estimate. To achieve this, we need a proposal
distribution or a jump distribution q(θ, θ ′) so as to propose a new θ ′ from θ . After the
proposed move, a certain criterion is evaluated so as to decide to accept or reject the
move from θ to θ ′.

There many different algorithms and variants of MCMC methods. We will discuss
two of the most widely used: Metropolis–Hastings algorithm [102,103,63] and Gibbs
sampler [52].

2.6.2 Metropolis–Hastings algorithm

The main idea of Metropolis–Hastings algorithm can be described in the following
steps: candidate proposal, criterion evaluation, and move update.

Suppose we draw a distribution p(θ), which can be a very complicated probability
distribution. We choose a proposal distribution q(·, ·) such as Gaussian or uniform
distributions. The choice should allow nonzero probability for any possible value of θ .
Starting with a starting point θ = θ0 at iteration k = 1, we can draw a candidate θ∗ from
the proposal distribution q(θk−1, ·). Then we calculate the ratio
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r = min
{ p(θ∗)q(θ∗, θk−1)

p(θk−1)q(θk−1, θ∗)
,1

}
. (2.69)

The move from θk−1 to θ∗ is accepted with probability r; otherwise, the move is dis-
carded [103,63]. If the ratio of the first term on the right is greater than 1, then r = 1,
which means that it always accepts the move. In general, it accepts with a probability
or a fraction of the number of moves in practice.

The key advantage of using the ratio r is that it can deal with complex probability
distributions even though we do not know how to calculate the normalization inte-
gral constant. Because whatever the integral may be, it is just a constant, and it will
disappear from the ratio. Thus, it does not matter anyway.

This iterative process of Metropolis–Hastings (MH) algorithm can be summarized
as Algorithm 1.

Algorithm 1 Metropolis–Hastings algorithm.
1: Initial guess θ0 at k = 1
2: for (a given number of samples) do
3: Propose a candidate θ∗ by drawing from a proposal distribution
4: Calculate r using Eq. (2.69)
5: Accept the move θk ← θ∗ with probability r

6: Otherwise, reject the move and set θk ← θk−1 (no change)
7: end for

In a very particular case where the proposal distribution is symmetric such that
q(a, b) = q(b, a), then Eq. (2.69) becomes

r = min
{ p(θ∗)

p(θk−1)
,1

}
. (2.70)

The Metropolis–Hastings algorithm becomes the classic Metropolis algorithm, where
the jump probability density is symmetric. In this case, if the probability p(θ∗) is
higher than the old probability p(θk−1), and thus their ratio p(θ∗)/p(θk−1) is greater
than 1, then r = 1 from Eq. (2.70), which accepts the moves. This is consistent with
the observations that a move to a higher probability region should be always accepted
[102,103].

It is worth pointing out that the actual samples drawn from this will usually con-
verge well toward the desired distribution p(θ). However, the initial part of the se-
quences may not strictly obey the final stationary distribution, and in practice a burn-in
period is used by discarding a fixed number of initial samples in the drawn sequence.

Clearly, another important issue is the choice of the jump distribution. We have to
be able to draw samples from it quite quickly. If the jump is too far, then many moves
will be rejected. If the jump is too small, the samples may be aggregates at certain
part of the distribution, and thus the samples become biased. Some proper balance
and tuning may be needed.
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2.6.3 Gibbs sampler

The well-known Gibbs sampler, developed by Geman and Geman in 1984 [52], can be
considered as a particular case of the MH algorithm by setting r = 1. It can be much
faster for some special applications.

The main idea is to deal with a multivariate distribution by considering it as a uni-
variate conditional distribution at any time, using the values already drawn for other
variables. The sequence is generated by drawing samples from the conditional proba-
bility p(θ(i)| . . . ) for each dimension i = 1,2, . . . , n.

There are some extensive studies concerning the Gibbs sampler an its variants.
There are also very good software packages such as BUGS.

2.7 Entropy, cross entropy, and KL divergence

2.7.1 Entropy and cross entropy

Entropy is an important concept in statistical mechanics, which is also introduced in
information theory. The classic entropy S is defined as

H = −kB

∑
i

pi logpi, (2.71)

where pi is the probability in state i, and kB the Boltzmann constant. However, in
information theory, the Shannon entropy H is defined by

H(p) = −
∑

i

p(xi) log[p(xi)], (2.72)

where log is usually in the base b = 2. This is information averaged over all the pos-
sible values xi of a random variable X. Shannon’s information quantity is defined as

I (p) = − logp, (2.73)

where the base b of the logarithm can be 2, e, or 10. Different bases only lead to a
fixed factor for different units. For b = 2, e, and 10, the units are bit, nat, and hartley,
respectively. Thus, in practice, we can simply write “log” without worrying the actual
base, and we can use any base of convenience. So, the Shannon entropy H(p) ≥ 0 can
be considered as the average amount of information.

In the case of continuous variable, the summation becomes the integral

H(p) =
∫

p(x) log[1/p(x)]dx = −
∫

p(x) log[p(x)]dx, (2.74)

which integrates over the whole domain of the probability function p(x).
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Example 13
For events obeying an exponential distribution

p(x) = λe−λx, x ∈ [0,∞), λ > 0, (2.75)

the corresponding entropy can be calculated by

H(p) = −
∫

p(x) logp(x)dx = −
∫ ∞

0
(λe−λx)[−λx + ln(λ)]dx

= λ2
∫ ∞

0
xe−λxdx − λ ln(λ)

∫ −∞
0

dx = 1 − ln(λ), (2.76)

where we have used∫ ∞
0

xe−λxdx = 1

λ2
,

∫ ∞
0

e−λxdx = 1

λ
. (2.77)

A very important related concept is the cross entropy H(p,q) of p(x) and q(x).
We have

H(p,q) = −
∫

p(x) log[q(x)]dx, (2.78)

which is in essence the average or expectation of q(x) over the probability density
function p(x). Alternatively, it measures some distance or similarity/dissimilarity be-
tween p(x) and q(x).

2.7.2 DL divergence

In information theory and machine learning, a very important concept is the Kullback–
Leibler (KL) divergence, which is a distance measure between two probability distri-
butions. The KL divergence DKL(p,q) is often denoted by DKL(p||q) to highlight
that it represents the difference or distance between p(x) given q(x):

DKL(p,q) = DKL(p||q) =
∫

p(x) log
(p(x)

q(x)

)
dx, (2.79)

and this integral becomes summation for discrete random variables.
From its definition we can show that

DKL(p,q) =
∫

p(x) log[p(x)/q(x)]dx

=
∫

p(x) log[p(x)]dx −
∫

p(x) log[q(x)]dx

= H(p,q) − H(p), (2.80)
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Figure 2.4 Membership functions for a fuzzy logic representation.

which is the difference between the cross entropy and the Shannon entropy [121].
Obviously, the KL divergence is zero when p(x) = q(x).

2.8 Fuzzy rules

The mathematical foundations we have discussed so far are mainly based on the
Boolean logics with clear and rigorous rules. In reality, many statements such as good
quality of service and likeability may not be clear-cut as a simple binary yes–no an-
swer, and in this case, we may have to deal with fuzzy rules or fuzzy logic in general.
In some applications such as clustering and classification, it may be advantageous to
use fuzzy rules. In fact, there is a whole fuzzy logic system [162]. For example, if we
try to describe the quality of a product in terms of a set of particular measures, then we
may say that the quality is low, high, very high, and so on. In this case, we can use a
membership function μ, which is a piecewise linear function with the maximum value
of 1.0 and the minimum value of 0.0. Such membership shows the degree of truth or
the trueness of belonging to a description such as low or high (see Fig. 2.4). Often, the
membership functions are of trapezoidal or triangular shape, though they may not be
smooth. To have smooth membership functions, some special functions, such as the
well-known sigmoid function

μ(x) = 1

1 + e−x
, (2.81)

are used to approximate certain membership as shown by the dashed curve in Fig. 2.4.
In addition, a membership can be a Gaussian type of functions, or even an impulse-
type Dirac delta functions.

In general, instead of the Boolean indicator function of binary values {0,1}, the
membership function can be a general nonnegative continuous function μ ∈ [0,1] or
even multivalued sets over [0,1]. Furthermore, there is no requirement that it must be
symmetric, and thus it can be any piecewise linear or piecewise smooth or nonsmooth
functions.

Fuzzy sets and fuzzy systems have been used in control and decision-making [113]
as well as fuzzy rule-based systems [122]. The interested readers can refer to more
specialized literature [113].
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2.9 Data mining and machine learning

Both data mining and machine learning are active areas of research, and they have
a vast range of algorithms and technique. We use a unified approach in this book to
relate algorithms in both areas to optimization algorithms.

2.9.1 Data mining

Data mining is a big area of data sciences, which aims to discover patterns and features
in data, often large data sets. It includes regression, classification, clustering, detection
of anomaly, and others. It also includes preprocessing, validation, summarization, and
ultimately the making sense of the data sets.

The evolution of the Internet and the social media has resulted in the huge explosion
of the data volumes and complexity, the so-called big data nowadays. Consequently,
data mining has also expanded beyond the traditional data modeling such as regression
and statistical models. For example, the aim of clustering is dividing n observations
into some different clusters, based on certain clustering measures or objectives. Clas-
sification is dividing the data set into different classes with different labels such as
normal or abnormal, yes or no.

There are a vast array of data mining methods. In this book, we will introduce the
most widely used techniques.

2.9.2 Machine learning

Machine learning is an important area of artificial intelligence and computer sci-
ence. Machine learning algorithms are a class of sophisticated algorithms such as
supervised learning, unsupervised learning, semisupervised learning algorithms, and
others. In general, there are a diverse range of algorithms in this category, including
classification, linear regression, principal component analysis, logistic regression, de-
cision trees, artificial neural networks, support vector machines, Bayesian networks,
Boltzmann machine, deep belief networks, and others. It also includes optimization
algorithms such as stochastic gradient descent and evolutionary algorithms.

Due to the diversity of such algorithms, there is a vast literature in machine learning
and artificial intelligence. In this book, we introduce some of the most widely used
algorithms with the emphasis on the core algorithms and their essential characteristics.

2.10 Notes on software

There are many different software packages, ranging from mathematics-oriented soft-
ware such as Mathematica and Maple to statistical and simulation software such as R
and WinBUGS.
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• For symbolic computation and mathematics: Mathematica, Maple, and MuPAD
(part of Matlab) are powerful. Also, free packages such as Axiom, Maxima, and
SymPy are very versatile. A list of such packages can be found in https://en.
wikipedia.org/wiki/List_of_computer_algebra_systems.

• For statistical modeling and computation, R, Matlab, Python, MiniTab, and SPSS
all have powerful capabilities. For MCMC samplings, BUGS with Gibbs sam-
plings is very powerful.1

• For data mining and machine learning, there are a vast range of software packages,
from TensorFlow and Keras to R, Python, and RapidMiner. We will discuss these
in more detail in late chapters. For other systems such as fuzzy systems, a review
of software can be found in other literature such as [122].

1 WinBUGS: http://www.mrc-bsu.cam.ac.uk/software/bugs.

https://en.wikipedia.org/wiki/List_of_computer_algebra_systems
https://en.wikipedia.org/wiki/List_of_computer_algebra_systems
http://www.mrc-bsu.cam.ac.uk/software/bugs
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Optimization algorithms are diverse with many specialized techniques and a few gen-
eral techniques. The algorithms for optimization include gradient-based algorithms,
gradient-free algorithms, evolutionary algorithms and nature-inspired metaheuristics.
We will mainly focus on the introduction of the gradient-based techniques due to their
importance in data mining and machine learning. We will also briefly outline some
gradient-free methods and metaheuristic algorithms. For a more detailed introduction,
we refer the readers to the more advanced literature [22,5,7,159,161].

3.1 Gradient-based methods

Gradient-based methods are iterative methods that extensively use the gradient in-
formation of the objective function during iterations. Let us start with the simplest
Newton method.

3.1.1 Newton’s method

For minimization and maximization of a univariate function f (x), it is equivalent
to finding the roots of its gradient g(x) = f ′(x) = 0. From Newton’s root-finding

Introduction to Algorithms for Data Mining and Machine Learning. https://doi.org/10.1016/B978-0-12-817216-2.00010-7
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Figure 3.1 Newton’s method and iterations.

algorithm (1.6) we have

xk+1 = xk − g(xk)

g′(xk)
= xk − f ′(xk)

f ′′(xk)
, (3.1)

where we have used g′(x) = f ′′(x), implicitly assuming that these derivatives exist.
The main idea of Newton’s method is shown in Fig. 3.1.

Example 14
For a simple function f (x) = (x − 1)2 = x2 − 2x + 1 in the real domain x ∈ R, we know that
its global minimum is fmin = 0 at x∗ = 1. Let us use Newton’s formula (3.1) to find this solution
starting from any value x0 = a > 0. We have f ′(x) = 2x − 2 and f ′′(x) = 2. From

xk+1 = xk − f ′(xk)

f ′′(xk)
(3.2)

we have

x1 = x0 − 2x0 − 2

2
= a − 2a − 2

2
= 1, (3.3)

which gives the optimal solution in a single step. This shows that this algorithm is very efficient.

It is worth pointing out that this function is a special case because f (x) = (x − 1)2

is a convex function, and thus Newton’s method can find the solution in a single step.
In general, f (x) is not convex with possible multiple solutions, and some care should
be taken.

Let us revisit an earlier example (Example 3) where f (x) = x2 exp(−x2) has two
maxima at x∗ = ±1 and one minimum at x∗ = 0. Then f ′(x) = 2x(1 − x2)e−x2

and
f ′′(x) = 2e−x2

(1 − 5x2 + 2x4). Thus, Newton’s iterative formula becomes

xk+1 = xk − f ′(xk)

f ′′(xk)
= xk − 2xk(1 − x2

k )e−x2
k

2e−x2
k (1 − 5x2

k + 2x4
k )

= xk − xk(1 − x2
k )

1 − 5x2
k + 2x4

k

, (3.4)

where we have used exp(−x2
k ) �= 0.
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If we start with x0 = 0.8, then we have

x1 = 0.8 − 0.8 × (1 − 0.82)

1 − 5 × 0.82 + 2 × 0.84
≈ 1.0085747 (3.5)

and

x2 = 0.999961, x3 = 0.9999999, (3.6)

which are very close to x∗ = 1.0.
If we use x0 = 0.5, then we have

x1 = 3.5, x2 ≈ 3.66414799, x3 ≈ 3.818812, (3.7)

which gradually moves toward infinity. In this case, the iterative sequence becomes
divergent. We can never reach the optimal solution x∗ = 1.0. Similarly, if we use
x0 = 2.0, then it leads a similar divergent sequence.

If we start with x0 = 0.2, then we will get x∗ = 0 in a few steps. However, if we
start with x0 = 0.4, then we have

x1 = −0.93757962, x2 ≈ −0.9988808587, x3 ≈ −0.9999993, (3.8)

which rapidly converges toward x∗ = −1.0.
This highlights an important issue here. Different starting points x0 can lead to

completely different final solutions. The solution sequences will largely depend on
the initial solution x0. It seems that we cannot predict easily which final solutions
the iterative procedure may produce. Through detailed mathematical analysis of the
iterative formula, it may be possible to figure out critical points for bifurcation and
different branches. However, a high nonlinearity of the iteration formula makes it
difficult to see which branch a particular initial point may lead to. Even if it is possible,
it may not worth the effort because it cannot be generalized.

In fact, this issue of the dependence of the final solutions on the initial point is
almost universal for many optimization algorithms, especially for those based on gra-
dient information. The only exception is linear programming and convex optimization.
Various efforts have been dedicated to solve this issue so as to design optimization al-
gorithms that are less dependent on (ideally, independent of) initial configuration. We
will come back to this issue again in later chapters and will provide, whenever possi-
ble, various remedies to this key issue.

3.1.2 Newton’s method for multivariate functions

Newton’s method works for univariate functions. Now let us extend it to solve opti-
mization problems for multivariate functions. For the minimization of a function f (x),
x = (x1, x2, ..., xn), the essence of this method is

x(k+1) = x(k) + αg(∇f,x(k)), (3.9)
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where α is the step size, which can vary during iterations, and g(∇f,x(k)) is a function
of the gradient ∇f and the current location x(k). Different methods use different forms
of g(∇f,x(k)).

We know that Newton’s method is a popular iterative method for finding the zeros
of a nonlinear univariate function of f (x) on the interval [a, b]. It can be modified for
solving optimization problems because it is equivalent to finding the zeros of the first
derivative f ′(x) once the objective function f (x) is given.

For a given continuously differentiable function f (x), we have the Taylor expan-
sion about a known point x = xk (with �x = x − xk)

f (x) = f (xk) + (∇f (xk))
T �x + 1

2
�xT ∇2f (xk)�x + · · · ,

which is minimized near a critical point when �x is the solution of the linear equation

∇f (xk) + ∇2f (xk)�x = 0, or x = xk − H−1∇f (xk), (3.10)

where H = ∇2f (xk) is the Hessian matrix. If the iteration procedure starts from the
initial vector x(0) (usually taken to be a guessed point in the domain), then Newton’s
iteration formula for the kth iteration is

x(k+1) = x(k) − H−1(x(k))∇f (x(k)). (3.11)

It is worth pointing out that if f (x) is quadratic, then the solution can be found exactly
in a single step. However, this method may become tricky for nonquadratic functions,
especially when we have to calculate a large Hessian matrix.

It can usually be time-consuming to calculate the Hessian matrix for second deriva-
tives. A good alternative is to use an identity matrix to approximate the Hessian by
using H−1 = I , and we have the quasi-Newton method

x(k+1) = x(k) − αI ∇f (x(k)), (3.12)

where α ∈ (0,1) is a step size. In this case, the method is essentially the steepest
descent method.

Though gradient-based methods can be very efficient, the final solution tends to
depend on the starting point. If the starting point is very far away from the optimal
solution, the algorithm can either reach a completely different solution for multimodal
problems or simply fail in some cases. Therefore there is no guarantee that the global
optimal solution can be found.

It is worth pointing out that there are many variations of the steepest descent meth-
ods. If such optimization aims is to find the maximum, then this method becomes a
hill-climbing method because the aim is to climb up the hill to the highest peak.

3.1.3 Line search

In the steepest descent method, there are two important parts, the descent direction and
the step size (or how far to descend). The calculations of the exact step size may be
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very time consuming. In reality, we intend to find the right descent direction. Then a
reasonable amount of descent, not necessarily the exact amount, during each iteration
will usually be sufficient. For this, we essentially use a line search method.

To find the local minimum of the objective function f (x), we try to search along a
descent direction sk with an adjustable step size αk so that

ψ(αk) = f (xk + αksk) (3.13)

decreases as much as possible, depending on the value of αk . Loosely speaking, a
reasonably right step size should satisfy the Wolfe conditions

f (xk + αksk) ≤ f (xk) + γ1αks
T
k ∇f (xk) (3.14)

and

sT
k ∇f (xk + αksk) ≥ γ2s

T
k ∇f (xk), (3.15)

where 0 < γ1 < γ2 < 1 are algorithm-dependent parameters. The first condition is a
sufficient decrease condition for αk , often called the Armijo condition or rule, whereas
the second inequality is often referred to as the curvature condition. For most func-
tions, we can use γ1 = 10−4 to 10−2 and γ2 = 0.1 to 0.9. These conditions are usually
sufficient to ensure the algorithm converge in most cases; however, stronger conditions
may be needed for some tough functions.

The basic steps of the line search method can be summarized in Algorithm 2.

Algorithm 2 Line search method.
1: Initial guess x0 at k = 0
2: while ‖∇f (xk)‖ > accuracy do
3: Find the search direction sk = −∇f (xk)

4: Solve for αk by decreasing f (xk + αsk) significantly
5: satisfying the Wolfe conditions
6: Update the result xk+1 = xk + αksk

7: k ← k + 1
8: end while

3.2 Variants of gradient-based methods

Over many decades, a class of gradient-based methods have been developed. They all
use some forms of gradient information, though their algorithmic procedures can be
very different. Here, we introduce a few commonly used variants. In the context of
machine learning, there are some comprehensive reviews. For example, Ruder [125]
provided an overview of gradient descent optimization algorithms.
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3.2.1 Stochastic gradient descent

In many optimization problems, especially in deep learning, the objective function or
risk function to be minimized can be written in the following form:

E(w) = 1

m

m∑
i=1

fi(xi ,w) = 1

m

m∑
i=1

[
ui(xi ,w) − ȳi

]2
, (3.16)

where

fi(xi ,w) = [
ui(xi ,w) − ȳi

]2
. (3.17)

Here, w = (w1,w2, . . . ,wK)T is a parameter vector such as the weights in a neural
network. In addition, ȳi (i = 1,2, . . . ,m) are the target or real data (data points or data
sets), whereas ui(xi ) are the predicted values based on the inputs xi by a model such
as the models based on trained neural networks.

The standard gradient descent for finding new weight parameters in terms of itera-
tive formula can be written as

wt+1 = wt − η

m

m∑
i=1

∇fi, (3.18)

where 0 < η ≤ 1 is the learning rate or step size. Here, the gradient ∇fi is with respect
to w. This requires the calculations of m gradients. When m is large and the number
of iteration t is large, this can be very expensive.

To save computation, the true gradient can be approximated by the gradient at a
single value at fi instead of all m values, that is,

wt+1 = wt − ηt∇fi, (3.19)

where ηt is the learning rate at iteration t , which may vary with iterations. Though this
is a crude estimate at a randomly selected point i at iteration t to the true gradient, the
computation costs have dramatically reduced by a factor of 1/m. Due to the random
nature of the selection of a sample i (which can be very different at each iteration),
this way of calculating gradient is called stochastic gradient. The method based on
such crude estimation of gradients is called stochastic gradient descent (SGD) for
minimization or stochastic gradient ascent (SGA) for maximization.

The learning rate ηt should be reduced gradually. For example, a commonly used
reduction of learning rates is

ηt = 1

1 + βt
, t = 1,2, . . . , (3.20)

where β > 0 is a hyper-parameter (see Fig. 3.2).
Bottou showed that SGD almost surely converges if∑

t

ηt = ∞,
∑

t

η2
t < ∞. (3.21)
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Figure 3.2 Monotonic decrease of the learning rate.

The best convergence rate is ηt ∼ 1/t with the averaged residual error decreasing as
E ∼ 1/t [18].

It is worth pointing out the stochastic gradient descent is not the direct descent in
the true gradient sense, but the descent is in terms of average or expectation. Thus,
the paths can still be zig-zag, sometimes, it may be up the gradient, not necessarily all
the way down the gradient directions, but the overall computation efficiency is usually
much higher than the true gradient descent for large-scale problems. Therefore, it is
widely used for deep learning problems and large-scale problems.

3.2.2 Subgradient method

All the gradient-based methods mentioned assume implicitly that the functions are dif-
ferentiable. In the case of nondifferentiable functions, we have to use the subgradient
method for non-differential convex functions or more generally gradient-free methods
for nonlinear functions to be introduced later in this chapter.

For nondifferentiable convex functions, the subgradient vectors vk can be defined
by

f (x) − f (xk) ≥ vT
k (x − xk), (3.22)

and Newton’s iteration formula can be replaced by

xk+1 = xk − αkvk, (3.23)

where αk is the step size at iteration k. As the iteration formula involves the subgradi-
ent vk = ∂f (xk) calculated at iteration k, the method is called the subgradient method.

It is worth pointing out that since there are many arbitrary subgradients (see
Fig. 3.3), the subgradient calculated at xk may not be in the desirable direction. Some
choices such as choosing greater values of the norm v can be expected.

In addition, though a constant step size αk = α where 0 < α < 1 can work well
in many cases, it is desirable that the step size αk should vary and be scaled when
appropriate. For example, a commonly used scheme for varying step sizes is αk ≥ 0,∑∞

k=1 α2
k < ∞, and limk→∞ αk = 0.

The subgradient method is still used in practice, and it can be very effective in
combination with the stochastic gradient method, which leads to a class of so-called
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Figure 3.3 Gradient of smooth f (x) (left) and subgradients (right) of f (x) with discontinuity.

stochastic subgradient methods. The convergence can be proved, and the interested
readers can refer to more advanced literature such as Bertsbekas et al. [16].

The limitation of the subgradient method is that it is mainly for convex functions. In
case of general nonlinear nondifferentiable nonconvex functions, we can use gradient-
free methods, and we will introduce some of these methods in the next section.

3.2.3 Conjugate gradient method

The method of conjugate gradient belongs to a wider class of the so-called Krylov
subspace iteration methods. The conjugate gradient method was pioneered by Magnus
Hestenes, Eduard Stiefel, and Cornelius Lanczos in the 1950s. It was named as one of
the top 10 algorithms of the 20th century.

The conjugate gradient method can be used to solve the linear system

Au = b, (3.24)

where A is often a symmetric positive definite matrix. The above system is equivalent
to minimizing the function

f (u) = 1

2
uT Au − bT u + c, (3.25)

where c is a constant and can be taken to be zero. We can easily see that ∇f (u) = 0
leads to Au = b.

In general, the size of A can be very large and sparse with n > 100,000, but it is
not required that A is strictly symmetric positive definite. In fact, the main condition is
that A should be a normal matrix. A square matrix A is called normal if AT A = AAT .
Therefore a symmetric matrix is a normal matrix, so is an orthogonal matrix because
an orthogonal matrix Q satisfies QQT = QT Q = I .

The theory behind these iterative methods is closely related to the Krylov subspace
Kk spanned by A and b and defined by

Kk(A,b) = {Ib,Ab,A2b, . . . ,An−1b}, (3.26)

where A0 = I .
If we use an iterative procedure to obtain the approximate solution uk to Au = b at

the kth iteration, then the residual is given by

rk = b − Auk, (3.27)
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which is essentially the negative gradient ∇f (uk). The search direction vector in the
conjugate gradient method is subsequently determined by

dk+1 = rk − dT
k Ark

dT
k Adk

dk. (3.28)

The solution often starts with an initial guess u0 at k = 0 and proceeds iteratively. The
above steps can compactly be written as

uk+1 = uk + αkdk, rk+1 = rk − αkAdk, (3.29)

and

dk+1 = rk+1 + βkdk, (3.30)

where

αk = rT
k rk

dT
k Adk

, βk = rT
k+1rk+1

rT
k rk

. (3.31)

Iterations stop when a prescribed accuracy is reached. This can easily be programmed
in any programming language, especially Matlab and Python.

It is worth pointing out that the initial guess r0 can be any educated guess; however,
d0 should be taken as d0 = r0, since otherwise the algorithm may not converge.

3.3 Optimizers in deep learning

Gradient-based optimizers are widely used in machine learning, especially in many
recent studies in deep learning. For a recent review on such optimizers, we refer the
readers to Bengio et al. [12] and Ruder [125].

Stochastic gradient descent (SGD) methods can be very efficient if used prop-
erly. However, such methods can have strong oscillations for objectives with narrow
valleys. A useful modification is introducing a momentum term so as to damp such
potential oscillations [116]. Usually, a gradient-based method for minimizing the ob-
jective f (x) is using the iterative formula

x(k+1) = x(k) − η∇f (x(k)), (3.32)

where 0 < η < 1 is the learning rate.

• In momentum-based methods, the main additional step is to use

u(k+1) = γu(k) + η∇f (x(k)), 0 < γ < 1, (3.33)

and then update the increment by

x(k+1) = x(k) − u(k+1). (3.34)



54 Introduction to Algorithms for Data Mining and Machine Learning

This essentially uses momentum to speed up the downhill moves, leading to a po-
tentially higher rate of convergence. Typically, the value γ = 0.9 is used [116,125].

• Another related speedup is the Nesterov accelerated gradient (NAG) method [110],
which uses a predicted or modified step

u(k+1) = γu(k) + η∇f
(
x(k) − γu(k)

)
, (3.35)

x(k+1) = x(k) − u(k+1). (3.36)

• The adaptive subgradient method AdaGrad uses an adaptive learning rate for every
variable xi [41], that is, η is replaced by

η ← η√
Gk + ε

, (3.37)

where ε > 0 is a small number to avoid division by zero; ε = 10−8 is usually used.
Gk = [gii] ∈ R

n×n is a diagonal matrix where the ith diagonal element is the sum
of the squares of the gradient with respect to xi (i = 1,2, . . . , n) up to iteration k.
Thus, the iterative equation becomes

x(k+1) = x(k) − η√
Gk + ε

⊗ ∇f (x(k)), (3.38)

where ⊗ means the elementwise product so that this formula works for each vari-
able xi .

• One of the disadvantage of the AdaGrad method is that it has to somehow store
the gradient values

gk = ∇f (x(k)) (3.39)

so as to calculate Gk . One improvement is to use the running average Ek(g
2) of

squared gradients at iteration k, which means that the update simply becomes

Ek(g
2
k ) = γEk(g

2
k−1) + (1 − γ )g2

k . (3.40)

The parameter increment is given by

�xk = − η

RMS[gk]gk, (3.41)

where RMS[gk] =
√

E[g2
k ] + ε is the root mean squared (RMS) error. The expo-

nential decay of the average for the increment is calculated by

E[(�xk)
2] = γE[(�xk−1)

2] + (1 − γ )(�xk)
2. (3.42)

Thus the iterative formula becomes

x(k+1) = x(k) −
√

E[(�xk−1)2] + ε

RMS[gk] gk, (3.43)

which leads to the AdaDelta method [164].
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• Another optimizer is RMSprop, which was introduced independently by Geofrey
Hinton in his course on neural networks for machine learning, detailed in his un-
published lecture notes.1 The main idea is to use a running average of its recent
gradient magnitude with an exponential decay. RMSprop has some similarity to
AdaDelta method, and the running average becomes the same when γ = 0.9 in
Eq. (3.40). The weight update becomes

x(k+1) = x(k) − η√
Ek(g

2
k ) + ε

gk. (3.44)

The learning rate is usually set to η = 0.001.
• The very popular Adam optimizer was developed in 2014 by Kingma and Ba [88].

The influence of the previously stored gradient is decaying exponentially. For the
Adam optimizer, the main steps use both the first moment m1 and the second mo-
ment m2 at each iteration k, which correspond to the mean and the uncentered
variance. We have

{
m

(k)
1 = αm

(k−1)
1 + (1 − α)gk,

m
(k)
2 = βm

(k−1)
2 + (1 − β)g2

k ,
(3.45)

where α, β are parameters. However, both moment estimates are somehow biased,
and thus corrections are needed [88]. The iterative formula becomes

x(k+1) = x(k) − η√
m̄

(k)
2 + ε

m̄
(k)
1 , (3.46)

where

m̄
(k)
1 = m

(k)
1

1 − αk
, m̄

(k)
2 = m

(k)
2

1 − βk
. (3.47)

Here αk and βk are the values to the power k. The values of the parameters α = 0.9,
β = 0.999, η = 0.001, and ε = 10−8 can be used [88]. The initial values m

(0)
1 =

m
(0)
2 = 0 can be used.

There are many other variants of gradient descent methods such as AdaMax,
Nadam, and others. We refer the interested readers to more specialized literature such
as Ruder [125], Bengio [10], and Bengio et al. [12].

All the algorithms mentioned have been implemented in major machine learning
packages such as TensorFlow, Python, and others.

1 http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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Figure 3.4 Simplex transformation: (a) reflection (left), (b) expansion and contraction (middle), (c) re-
duction (right).

3.4 Gradient-free methods

Though gradient-based methods are very efficient, they need to calculate derivatives
during iterations. For some problems, the computation of derivatives can be expen-
sive. For problems with discontinuous objectives, it is not possible to calculate such
derivatives. In this case, methods that do not require derivatives are preferred. Such
derivative-free or gradient-free methods can also be very effective.

The Nelder–Mead method is a downhill simplex algorithm for unconstrained opti-
mization without using derivatives, and it was first developed in 1965 by Nelder and
Mead [109]. This is one of widely used traditional methods since its computational
effort is relatively small and is something to get a quick grasp of the optimization
problem. The basic idea of this method is to use the flexibility of the constructed
simplex via amoeba-style manipulations by reflection, expansion, contraction, and re-
duction (see Fig. 3.4). In some books, such as the best-known Numerical Recipes, it is
also called the “Amoeba algorithm” [115]. It is worth pointing out that this downhill
simplex method has nothing to do with the simplex method for linear programming.

In the n-dimensional space, a simplex, which is a generalization of a triangle on
a plane, is a convex hull with n + 1 distinct points. For simplicity, a simplex in the
n-dimensional space is referred to as an n-simplex. Therefore a 1-simplex is a line
segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and so on.

There are a few variants of the algorithm that use slightly different ways of con-
structing initial simplex and convergence criteria. However, the fundamental proce-
dure is the same (see Algorithm 3).

The first step is constructing an initial n-simplex with n + 1 vertices and evaluat-
ing the objective function at the vertices. Then, by ranking the objective values and
reordering the vertices, we have an ordered set, so that

f (x1) ≤ f (x2) ≤ · · · ≤ f (xn+1) (3.48)

at x1,x2, . . . ,xn+1, respectively. As the downhill simplex method is for minimiza-
tion, we use the convention that xn+1 is the worse point (solution) and x1 is the best
solution. Then, at each iteration, similar ranking manipulations are carried out.
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Algorithm 3 Nelder–Mead (downhill simplex) method.
1: Initialize a simplex with n + 1 vertices in n dimension.
2: while (stop criterion is not true) do
3: Reorder the points so that f (x1) ≤ f (x2) ≤ · · · ≤ f (xn+1)

with x1 being the best and xn+1 being the worse (highest value)
4: Find the centroid x̄ using x̄ = ∑n

i=1 xi/n excluding xn+1.
5: Generate a trial point via the reflection of the worse vertex
6: xr = x̄ + α(x̄ − xn+1) where α > 0 (typically α = 1)
7: if f (x1) ≤ f (xr ) < f (xn) then
8: xn+1 ← xr ;
9: end if

10: if f (xr ) < f (x1) then
11: Expand in the direction of reflection xe = xr + β(xr − x̄)

12: if (f (xe) < f (xr )) xn+1 ← xe else xn+1 ← xr ; end
13: end if
14: if f (xr ) > f (xn) then
15: Contract by xc = xn+1 + γ (x̄ − xn+1);
16: if f (xc) < f (xn+1) then xn+1 ← xc;
17: else Reduction xi = x1+δ(xi − x1), (i = 2, . . . , n + 1); end
18: end if
19: end while

Then, we have to calculate the centroid x of the current simplex excluding the worst
vertex xn+1:

x̄ = 1

n

n∑
i=1

xi . (3.49)

Using the centroid as the basis point, we try to find the reflection of the worse point
xn+1 by

xr = x̄ + α(x̄ − xn+1) (α > 0), (3.50)

though the typical value of α = 1 is often used.
Whether the new trial solution is accepted or not and how to update the new vertex

depends on the objective function at xr . There are three possibilities:

• If f (x1) ≤ f (xr ) < f (xn), then replace the worst vertex xn+1 by xr , that is,
xn+1 ← xr .

• If f (xr ) < f (x1), which means the objective improves, then we seek a more bold
move to see if we can improve the objective even further by moving or expanding
the vertex further along the line of reflection to a new trial solution

xe = xr + β(xr − x̄), (3.51)
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where β = 2. Now we have to test if f (xe) improves even better. If f (xe) < f (xr ),
then we accept it and update xn+1 ← xe; otherwise, we can use the result of the
reflection, that is, xn+1 ← xr .

• If there is no improvement or f (xr ) > f (xn), then we have to reduce the size of
the simplex while maintaining the best sides. This is the contraction

xc = xn+1 + γ (x̄ − xn+1), (3.52)

where 0 < γ < 1, though γ = 1/2 is usually used. If f (xc) < f (xn+1), then we
update xn+1 ← xc.

If all these steps fail, then we have to reduce the size of the simplex toward the best
vertex x1. This is the reduction step

xi = x1 + δ(xi − x1) (i = 2,3, . . . , n + 1). (3.53)

Then, we go to the first step of the iteration process and start over again.
There are many other gradient-free optimization algorithms, and swarm intel-

ligence-based algorithms are mostly gradient-free.

3.5 Evolutionary algorithms and swarm intelligence

The literature on evolutionary algorithms and nature-inspired algorithms is expanding
rapidly. Most of these algorithms have drawn inspiration from evolutionary character-
istics of biological or natural systems, and these algorithms form the majority of the
evolutionary algorithms. In addition, recent algorithms use multiple agents to mimic
the collective or social characteristics of swarming systems, and these algorithms
somehow can simulate certain aspects of swarm intelligence (SI). In general, a vast
majority of these algorithms are nature-inspired algorithms.

There are a large number of different algorithms, including evolutionary strategy,
simulated annealing (SA), colony optimization (ACO), bees algorithms, genetic algo-
rithm, bat algorithm, cuckoo search, differential evolution, firefly algorithm, particle
swarm optimization, flower pollination algorithm, harmony search, memetic algo-
rithm, and others. To introduce these algorithms systematically, an entire book [159] is
required; therefore, we will only briefly introduce some of the most recent and widely
used nature-inspired optimization algorithms [159,158].

Though many algorithms such as ACO, SA, and others belong to this category, we
will not introduce them since they are not widely used yet in machine learning and
data mining. We start with genetic algorithms.

3.5.1 Genetic algorithm

The genetic algorithm (GA), developed by John Holland and his collaborators in the
1960s and 1970s, is a model or abstraction of biological evolution based on Charles
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Darwin’s theory of natural selection. The genetic algorithm (GA) is an evolutionary
algorithm and probably the most widely used. It is becoming a conventional and clas-
sic method. However, it does have fundamental genetic operators that have inspired
many later algorithms, so we will introduce it in detail. There are many variants of
the genetic algorithm, and they now form a class of genetic algorithms [75,57]. The
essence of genetic algorithms involves the encoding of an objective function as arrays
of bits or character strings to represent the chromosomes, the manipulation operations
of strings by genetic operators, and the selection according to their fitness with the
aim of finding a solution to the problem concerned. This is often done by the fol-
lowing procedure: 1) encoding of solutions into strings; 2) defining a fitness function
and selection criterion; 3) creating a population of individuals and evaluating their
fitness; 4) evolving the population by generating new solutions using crossover, muta-
tion, fitness-proportionate reproduction; 5) selecting new solutions according to their
fitness and replacing the old population by better individuals; and 6) decoding the
results to obtain the solution(s) to the problem.

An important issue is the formulation or choice of an appropriate fitness function
that determines the selection criterion in a particular problem. For the minimization
of f (x) using genetic algorithms, one simple way of constructing a fitness function
is to use the simplest form F(x) = A − f (x) with A being a large constant (though
A = 0 will do), and thus the objective is maximizing the fitness function. However,
there are many different ways of defining a fitness function. For example, we can use
the individual fitness assignment relative to the whole population

F(xi ) = f (xi ))∑N
i=1 f (xi )

, (3.54)

where N is the population size. The appropriate form of the fitness function will ensure
that the solutions with higher fitness will be selected efficiently. Poorly defined fitness
functions may result in incorrect or meaningless solutions.

Another important issue is the choice of various parameters. The crossover prob-
ability pc is usually very high, typically in the range 0.7–0.99. On the other hand,
the mutation probability pm is usually small (usually 0.001–0.05). If pc is too small,
then the crossover occurs sparsely, which is not efficient for evolution. If the mutation
probability is too high, then the diversity of the population may be too high, which
makes it harder for the system to converge.

The selection criterion is also important so as to select the current population so
that the best individuals with higher fitness are preserved and passed on to the next
generation, which is often carried out in association with a certain elitism. The basic
elitism is to select the most fit individual (in each generation), which will be carried
over to the new generation without being modified by genetic operators. This ensures
that the best solution is achieved more quickly.
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3.5.2 Differential evolution

Differential evolution (DE) was developed in 1997 by Storn and Price [137]. It is a
vector-based algorithm, which has some similarity to pattern search and genetic algo-
rithms due to its use of crossover and mutation. DE is a stochastic search algorithm
with self-organizing tendency and does not use the information of derivatives. Thus
it is a population-based derivative-free method. In addition, DE uses real numbers as
solution strings, and thus no encoding and decoding are needed.

For a D-dimensional optimization problem with D parameters, a population of n

solution vectors is initially generated, and we have xi for i = 1,2, . . . , n. For each
solution xi at any generation t , we use the conventional notation

xt
i = (xt

1,i , x
t
2,i , . . . , x

t
D,i), (3.55)

which consists of D components in the D-dimensional space. This vector can be con-
sidered as the chromosomes or genomes.

Differential evolution consists of three main steps: mutation, crossover, and selec-
tion.

Mutation is carried out by the mutation scheme. For each vector xi at any time or
generation t , we first randomly choose three distinct vectors xp, xq , and xr at t and
then generate a so-called donor vector by the mutation scheme

vt+1
i = xt

p + F(xt
q − xt

r ), (3.56)

where F ∈ [0,2] is a parameter, often referred to as the differential weight. This re-
quires that the minimum number of population size is n ≥ 4. In principle, F ∈ [0,2],
but in practice, a scheme with F ∈ [0,1] is more efficient and stable. In fact, almost
all the studies in the literature use F ∈ (0,1).

Crossover is controlled by a crossover parameter Cr ∈ [0,1], controlling the rate
or probability for crossover. The actual crossover can be carried out in two ways,
binomial and exponential. The binomial scheme performs crossover on each of the
D components or variables/parameters. By generating a uniformly distributed random
number ri ∈ [0,1] the j th component of vi is manipulated as

ut+1
j,i =

{
vj,i if ri ≤ Cr,

xt
j,i otherwise,

j = 1,2, . . . ,D. (3.57)

This way, each component can be decided randomly whether or not to exchange with
the counterpart of the donor vector.

In the exponential scheme, a segment of the donor vector is selected, and this seg-
ment starts with random integer k and random length L, which can include many com-
ponents. Mathematically, choosing k ∈ [0,D − 1] and L ∈ [1,D] randomly, we have

ut+1
j,i =

{
vt

j,i for j = k, . . . , k − L + 1 ∈ [1,D],
xt

j,i otherwise.
(3.58)

The binomial scheme is simpler to implement.
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Selection is essentially the same as that used in genetic algorithms. It is selecting
the most fittest, that is, the minimum objective value for a minimization problem.
Therefore we have

xt+1
i =

{
ut+1

i if f (ut+1
i ) ≤ f (xt

i ),

xt
i otherwise.

(3.59)

It is worth pointing out here that the use of vt+1
i �= xt

i may increase the evolu-
tionary or exploratory efficiency. The overall search efficiency is controlled by two
parameters, the differential weight F and the crossover probability Cr .

3.5.3 Particle swarm optimization

Many swarms in nature such as fish and birds can have higher-level behavior, but they
all obey simple rules. For example, a swarm of birds such as starlings simply follow
three basic rules: each bird flies according to the flight velocities of their neighbor
birds (usually about seven adjacent birds) while keeping a certain separation distance;
birds on the edge of the swarm tend to fly into the center of the swarm (so as to avoid
being eaten by potential predators such as eagles); and, in addition, birds tend to fly to
search for food or shelters, and thus a short memory is used. Based on such swarming
characteristics, in 1995 particle swarm optimization (PSO) was developed by Kennedy
and Eberhart [87], which uses equations to simulate the swarming characteristics of
birds and fish.

For the ease of discussions, let us use xi and vi to denote the position (solution)
and velocity, respectively, of a particle or agent i. In PSO, there are n particles as a
population, and thus i = 1,2, . . . , n. There are two equations for updating positions
and velocities of particles, and they can be written as follows:

vt+1
i = vt

i + αε1[g∗ − xt
i] + βε2[x∗

i − xt
i], (3.60)

xt+1
i = xt

i + vt+1
i �t, (3.61)

where ε1 and ε2 are two uniformly distributed random numbers in [0,1]. The learning
parameters α and β are usually in the range of [0,2]. In Eq. (3.60), g∗ is the best
solution found so far by all the particles in the population, and each particle has an
individual best solution x∗

i by itself during the entire past iteration history.
It is worth pointing out that �t = 1 should be used because iterations in algorithms

are discrete with a step counter t ← t + 1. Thus, there is no need to consider units and
�t in all algorithms discussed in this book.

3.5.4 Bat algorithm

Bat algorithm (BA), developed by Xin-She Yang [150,152] in 2010, uses some charac-
teristics of frequency-tuning and echolocation of microbats. It also uses the variations
of pulse emission rate r and loudness A to control exploration and exploitation. In the
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bat algorithm, main algorithmic equations for position xi and velocity vi for bat i are

fi = fmin + (fmax − fmin)β, (3.62)

vt
i = vt−1

i + (xt−1
i − x∗)fi, (3.63)

xt
i = xt−1

i + vt
i�t, (3.64)

where β ∈ [0,1] is a random vector drawn from a uniform distribution so that the
frequency can vary from fmin to fmax. Here x∗ is the current best solution found so
far by all virtual bats. As pointed out earlier, �t = 1 is used for iterative discrete
algorithms.

From these equations we can see that both equations are linear in terms of xi and vi .
But the control of exploration and exploitation is carried out by the variations of loud-
ness A(t) from a high value to a lower value and the emission rate r from a lower
value to a higher value, that is,

At+1
i = αAt

i, rt+1
i = r0

i (1 − e−γ t ), (3.65)

where 0 < α < 1 and γ > 0 are two parameters. As a result, the actual algorithm can
have a weak nonlinearity. Consequently, BA can have a faster convergence rate in
comparison with PSO.

3.5.5 Firefly algorithm

Based on the flashing characteristics of tropical firefly species, in 2008 Xin-She Yang
[148,149] developed the firefly algorithm (FA). FA uses a nonlinear system by com-
bining the exponential decay of light absorption and inverse-square law of light vari-
ation with distance. In the FA, the main algorithmic equation for the position xi (as a
solution vector to a problem) is

xt+1
i = xt

i + β0e
−γ r2

ij (xt
j − xt

i ) + α εt
i , (3.66)

where α is a scaling factor controlling the step sizes of the random walks, whereas γ is
a scale-dependent parameter controlling the visibility of the fireflies (and thus search
modes). In addition, β0 is the attractiveness constant when the distance between two
fireflies is zero (i.e., rij = 0). This system is a nonlinear system, which may lead to
rich characteristics in terms of algorithmic behavior.

Since the brightness of a firefly is associated with the objective landscape with its
position as the indicator, the attractiveness of a firefly seen by others, depending on
their relative positions and relative brightness. Thus the beauty is in the eye of the
beholder. Consequently, a pair comparison is needed for comparing all fireflies.

3.5.6 Cuckoo search

In the natural world, among 141 cuckoo species, 59 species engage the so-called ob-
ligate brood parasitism. These cuckoo species do not build their own nests, and they
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lay eggs in the nests of host birds such as warblers. In fact, there is an arms race be-
tween cuckoo species and host species, forming an interesting cuckoo-host species
coevolution system.

Based the above characteristics, Xin-She Yang and Suash Deb [154–156] devel-
oped in 2009 the cuckoo search (CS) algorithm. CS uses a combination of both local
and global search capabilities, controlled by a discovery probability pa . There are two
algorithmic equations in CS, and one equation is

xt+1
i = xt

i + αs ⊗ H(pa − ε) ⊗ (xt
j − xt

k), (3.67)

where xt
j and xt

k are two different solutions selected randomly by random permuta-
tion, H(u) is the Heaviside function, ε is a random number drawn from a uniform
distribution, and s is the step size. This step is primarily local, though it can become
global search if s is large enough. However, the main global search mechanism is
realized by the other equation with Lévy flights:

xt+1
i = xt

i + αL(s,λ), (3.68)

where the Lévy flights are simulated (or drawn random numbers) by drawing random
numbers from the Lévy distribution

L(s,λ) ∼ λ�(λ) sin(πλ/2)

π

1

s1+λ
(s � 0). (3.69)

Here α > 0 is the step size scaling factor. It is worth pointing out that we use “∼” here
to highlight the fact that the steps are drawn from the distribution on the right-hand
side as a sampling technique.

3.5.7 Flower pollination algorithm

Flower pollination algorithm (FPA) is a population-based algorithm, developed by
Xin-She Yang and his collaborators, based on the inspiration from the pollination
characteristics of flowering plants [153,157,159]. FPA intends to mimic some key
characteristics of biotic and abiotic pollination as well as coevolutionary flower con-
stancy between certain flower species and some pollinator species such as insects and
animals.

In essence, there are two main equations for this algorithm, and the global search
is carried out by

xt+1
i = xt

i + γL(λ)(g∗ − xt
i ), (3.70)

where γ is a scaling parameter, L(λ) is the random number vector drawn from a Lévy
distribution governed by the exponent λ in the same form given in (3.69). Here g∗
is the best solution found so far, which acts as a selection mechanism. The current
solution xt

i is modified by varying step sizes because Lévy flights can have a fraction
of large step sizes in addition to many small steps.
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The local search is carried out by

xt+1
i = xt

i + U(xt
j − xt

k), (3.71)

which mimics local pollination and flower constancy. Here U is a uniformly dis-
tributed random number. Furthermore, xt

j and xt
k are solutions representing pollen

from different flower patches.
As we mentioned earlier, the literature is expanding, and more nature-inspired algo-

rithms are being developed by researchers, but we will not introduce more algorithms
here. We refer the interested readers to more specialized literature such as Yang’s
book [159].

3.6 Notes on software

As we mentioned earlier, many software packages and programming languages have
implemented some optimization capabilities, whereas commercial software packages
tend to have well-tested toolboxes. It is not our intention to provide a comprehen-
sive list of toolboxes and functionalities; we only intend to provide some flavor and
diversity of a few software packages or programming languages.

• Matlab: The optimization toolboxes of Matlab include linear programming
linprog, integer programming intlinprog, nonlinear programming such as fmin-
search and fmincon, quadratic programming quadprog, and multiobjective opti-
mization by genetic algorithm gamultiobj.

• Octave has many functionalities similar to Matlab, and it is an open-source
package. Its optimization toolbox optim has implemented linear programming,
quadratic programming, nonlinear programming, and linear least squares.

• R has a relatively general purpose optimization solver optimr with optim() using
conjugate gradient, Nelder–Mead method, Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method, and simulated annealing. It also has a quadratic programming
solve.QP() and least-squares solver solve.qr() as well as metaheuristic opti-
mization such as the firefly algorithm.

• Python does have good optimization capabilities via scipy.optimize(), which
includes the BFGS method, conjugate gradient, Newton’s method, trust-region
method, and least-square minimization.

• Mathematica is a commercial symbolic computation package. It has powerful
functionalities for optimization, including nonlinear constrained global optimiza-
tion NMiminize or NMaximize, linear programming and integer programming Lin-
earProgramming, Knapsack solver KnapsackSolve, traveling salesman problem
FindShortesTour, and others.

• Maple is mainly a symbolic and numerical computing tool with some functions
for optimization such as Minimize, linear programming LPSolve, and nonlinear
programming NLPSolve.

• Microsoft Excel Solver can do linear programming, integer programming, gen-
eralized reduced gradient, evolutionary algorithms (via a variant of the genetic
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algorithm). On the other hand, the OpenSolver is free and has no limit on the
number of variables. Its core algorithmic engine is COIN-OR linear and integer
programming optimizers, and thus OpenSolver is very powerful and efficient.

Other powerful optimization tools include the computational infrastructure for Op-
erations Research (COIN-OR), also known as common optimization interface for OR.
Many software packages use it as a core optimization engine.

There are some Matlab demo codes for most of the nature-inspired algorithms dis-
cussed in this book. They are available from Matlab file exchanges,2 including

• accelerated particle swarm optimization,3

• firefly algorithm,4

• cuckoo search,5

• flower pollination algorithm.6

It is worth pointing out that these codes are demo and incomplete codes. The rea-
son is that such demo codes focus on the essential steps of the algorithms without
any messy implementation of handling constraints. However, the performance of such
concentrated demo codes may be reduced as the proper constraint-handling is an im-
portant part of practical applications. These codes should still work reasonably well
for solving function optimization problems. This gives the readers an opportunity to
understand the basic algorithms and potentially improve them.

2 https://uk.mathworks.com/matlabcentral/profile/authors/2652824-xin-she-yang.
3 https://uk.mathworks.com/matlabcentral/fileexchange/29725-accelerated-particle-swarm-optimization.
4 https://uk.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm.
5 https://uk.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm.
6 https://uk.mathworks.com/matlabcentral/fileexchange/45112-flower-pollination-algorithm.

https://uk.mathworks.com/matlabcentral/profile/authors/2652824-xin-she-yang
https://uk.mathworks.com/matlabcentral/fileexchange/29725-accelerated-particle-swarm-optimization
https://uk.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm
https://uk.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm
https://uk.mathworks.com/matlabcentral/fileexchange/45112-flower-pollination-algorithm
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Regression can help to identify the trends in data and relationship between different
quantities. Regression is one of the simplest forms of classification and supervised
learning, and it is one of the most widely used data-processing techniques.

4.1 Sample mean and variance

If a sample consists of n independent observations x1, x2, . . . , xn on a random variable
x such as the noise level on a road or the price of a cup of coffee, two important and
commonly used parameters are sample mean and sample variance, which can easily
be estimated from the sample. The sample mean is calculated by

x̄ ≡<x>= 1

n
(x1 + x2 + · · · + xn) = 1

n

n∑
i=1

xi, (4.1)

which is in fact the arithmetic average of the values xi .
The sample variance S2 is defined by

S2 = 1

n − 1

n∑
i=1

(xi − x̄ )2. (4.2)

Let us look at an example.

Introduction to Algorithms for Data Mining and Machine Learning. https://doi.org/10.1016/B978-0-12-817216-2.00011-9
Copyright © 2019 Elsevier Inc. All rights reserved.
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Example 15
The measurements of a quantity such as the noise level on a road. The readings in dB are:

66, 73, 73, 74, 83, 70, 69, 77, 72, 75.

From the data we know that n = 10 and the mode is 73 as 73 appears twice (all the rest only
appears once). The sample mean is

x̄ = 1

10
(x1 + x2 + · · · + x10)

= 1

10
(66 + 73 + 73 + 74 + 83 + 70 + 69 + 77 + 72 + 75) = 732

10
= 73.2.

The corresponding sample variance is

S2 = 1

n − 1

n∑
i=1

(xi − x̄)2

= 1

10 − 1

10∑
i=1

(xi − 73.2)2

= 1

9
[(66 − 73.2)2 + (73 − 73.2)2 + · · · + (75 − 73.2)2]

= 1

9
[(−7.2)2 + (−0.2)2 + · · · + (1.8)2] = 195.6

9
≈ 21.73.

Thus, the standard derivation is

S =
√

S2 ≈ √
21.73 ≈ 4.662.

Generally speaking, if u is a linear combination of n independent random variables
y1, y2, . . . , yn and each random variable yi has an individual mean μi and a variance
σ 2

i , we have the linear combination

u =
n∑

i=1

αiyi = α1y1 + α2y2 + · · · + αnyn, (4.3)

where the parameters αi (i = 1,2, . . . , n) are the weighting coefficients. The mean μu

of the linear combination can be calculated by

μu = E[u] = E[
n∑

i=1

αiyi] =
n∑

i=1

αiE[yi] =
∑

αiμi. (4.4)

Then the variance σ 2
u of the combination is

σ 2
u = E[(u − μu)

2] = E
[ n∑

i=1

αi(yi − μi)
2
]
, (4.5)
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which can be expanded as

σ 2
u =

n∑
i=1

α2
i E[(yi − μi)

2] +
n∑

i,j=1;i �=j

αiαjE[(yi − μi)(yj − μj )], (4.6)

where E[(yi − μi)
2] = σ 2

i . Since yi and yj are independent, we have

E[(yi − μi)(yj − μj )] = E[(yi − μi)]E[(yj − μj )] = 0. (4.7)

Therefore we get

σ 2
u =

n∑
i=1

α2
i σ

2
i . (4.8)

The sample mean defined in (4.1) can also be viewed as a linear combination of all
the xi assuming that each has the same mean μi = μ, variance σ 2

i = σ 2, and weighting
coefficient αi = 1/n. Hence the sample mean is an unbiased estimate of the sample
due to the fact μx̄ = ∑n

i=1 μ/n = μ. In this case, however, we have the variance

σ 2
x̄ =

n∑
i=1

1

n2
σ 2 = σ 2

n
, (4.9)

which means that the variance becomes smaller as the size n of the sample increases
by a factor of 1/n.

For the sample variance S2 defined earlier by

S2 = 1

n − 1

n∑
i=1

(xi − x̄ )2, (4.10)

we can see that the factor is 1/(n − 1), not 1/n, because only 1/(n − 1) will give
the correct unbiased estimate of the variance. The other way to think about the factor
1/(n − 1) is that we need at least one value to estimate the mean, and we need at least
two values to estimate the variance. Thus, for n observations, only n − 1 different
values of variance can be obtained to estimate the total sample variance.

4.2 Regression analysis

Regression is a class of methods that are mostly based on the method of least squares
and the maximum likelihood theory.

4.2.1 Maximum likelihood

For a sample of n values y1, y2, . . . , yn of a random variable Y whose probability
density function p(y) depends on a set of k parameters β1, . . . , βk , the joint probability
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Figure 4.1 Best fit line for a simple linear model.

is the product of all the probabilities, that is,

�(β1, . . . , βk) =
n∏

i=1

p(yi, β1, . . . , βk)

= p(y1, β1, . . . , βk) · p(y2, β1, . . . , βk) · · ·p(yn,β1, . . . , βk),

(4.11)

where �i means the product of all its components. For example, �3
n=1ai = a1 ×

a2 × a3. The essence of the maximum likelihood is to maximize � by choosing the
parameters βj . As the sample can be considered as given values, the maximum likeli-
hood requires the following stationarity conditions:

∂�

∂βj

= 0 (j = 1,2, . . . , k), (4.12)

whose solutions for βj are the maximum likelihood estimates.
Regression is a particular case of the method of least-squares. Many other problems

can be reformulated in this framework.

4.2.2 Liner regression

For experiments and observations, we usually plot one variable such as price or pres-
sure y against another variable x such as time or spatial coordinates. We try to present
the data in such a way that we can see some trend in the data.

For a set of n data points (xi, yi) (i = 1,2, . . . , n), the usual practice is to try to
draw a straight line y = a + bx so that it represents the major trend. Such a line is
often called the regression line or the best fit line as shown in Fig. 4.1.

The method of linear least squares is to try to determine the two parameters, a

(intercept) and b (slope), for the regression line from n data points, assuming that xi

are known more precisely and the values of yi obey a normal distribution around the
potentially best fit line with variance σ 2. So we have the joint probability with each
being normally distributed:

P =
n∏

i=1

p(yi) = A exp
{

− 1

2σ 2

n∑
i=1

[yi − f (xi)]2
}
, (4.13)
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where A is a constant, and f (x) is the function for the regression [f (x) = a + bx for
the linear regression].

It is worth pointing out that the exponent

ψ =
n∑

i=1

[yi − f (xi)]2/(2σ 2) (4.14)

is in fact a weighted sum of residuals or errors.
The maximization of P is equivalent to the minimization of ψ . To minimize ψ as

a function of a and b via the model of f (x) = a + bx, its derivatives should be zero,
that is,

∂ψ

∂a
= − 1

σ 2

n∑
i=1

[yi − (a + bxi)] = 0 (4.15)

and

∂ψ

∂b
= − 1

σ 2

n∑
i=1

xi[yi − (a + bxi)] = 0. (4.16)

Since σ 2 �= 0, we can omit this factor, and these equations become

n∑
i=1

[yi − (a + bxi)] = 0,

n∑
i=1

xi[yi − (a + bxi)] = 0. (4.17)

By expanding these equations we have

na + b

n∑
i=1

xi =
n∑

i=1

yi (4.18)

and

a

n∑
i=1

xi + b

n∑
i=1

x2
i =

n∑
i=1

xiyi, (4.19)

which is a system of linear equations for a and b, and it is straightforward to obtain
the solutions as

a = 1

n
[

n∑
i=1

yi − b

n∑
i=1

xi] = ȳ − bx̄, (4.20)

b = n
∑n

i=1 xiyi − (
∑n

i=1 xi)(
∑n

i=1 yi)

n
∑n

i=1 x2
i − (

∑n
i=1 xi)2

, (4.21)
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where

x̄ = 1

n

n∑
i=1

xi, ȳ = 1

n

n∑
i=1

yi. (4.22)

If we use the following notations:

Kx =
n∑

i=1

xi, Ky =
n∑

i=1

yi, (4.23)

and

Kxx =
n∑

i=1

x2
i , Kyy =

n∑
i=1

y2
i , Kxy =

n∑
i=1

xiyi, (4.24)

then the equations for a and b give

a = KxxKy − KxKxy

nKxx − (Kx)2
(4.25)

and

b = nKxy − KxKy

nKxx − (Kx)2
. (4.26)

The residual error is defined by

εi = yi − (a + bxi), (4.27)

whose sample mean is given by

με = 1

n

n∑
i=1

εi = 1

n
yi − a − b

1

n

n∑
i=1

xi = ȳ − a − bx̄ = 0. (4.28)

The sample variance S2 is

S2 = 1

(n − 2)

n∑
i=1

[yi − (a + bxi)]2 = 1

(n − 2)
RSS, (4.29)

where the RSS stands for the residual sum of squares given by

RSS =
n∑

i=1

[yi − f (xi)]2 =
n∑

i=1

[yi − (a + bxi)]2. (4.30)

Here the factor 1/(n − 2) comes from the fact that two constraints are needed for the
best fit, and therefore the residuals have n − 2 degrees of freedom.
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The correlation coefficient rx,y is a very useful parameter for finding any potential
relationship between two sets of data xi and yi for two random variables x and y,
respectively. If x has a mean x̄ and a sample variance S2

x and if y has a mean ȳ and a
sample variance S2

y , we have

var(x) = S2
x =

∑n
i=1(xi − x̄)2

n − 1
, var(y) = S2

y =
∑n

i=1(yi − ȳ)2

n − 1
. (4.31)

The correlation coefficient is defined by

rx,y = cov(x, y)

SxSy

= E[xy] − x̄ȳ

SxSy

, (4.32)

where

cov(x, y) = E[(x − x̄)(y − ȳ)] = E[xy] − x̄ȳ (4.33)

is the covariance, which can be calculated explicitly by

cov(x, y) =
∑n

i=1(xi − x̄)(yi − ȳ)

n − 1
. (4.34)

It is worth pointing out that Sx and Sy must be sample variances; otherwise, the result
is incorrect. In addition, we can also write

Sx = cov(x, x), Sy = cov(y, y). (4.35)

It is obvious that cov(x, y) = cov(y, x). Thus, the covariance matrix

Cs =
(

cov(x, x) cov(x, y)

cov(y, x) cov(y, y)

)
=

(
Sx cov(x, y)

cov(x, y) Sy

)
(4.36)

is also symmetric.
If the two variables are independent or cov(x, y) = 0, then there is no correlation

between them (rx,y = 0). If r2
x,y = 1, then there is a linear relationship between these

two variables; rx,y = 1 is an increasing linear relationship where the increase of one
variable leads to the increase of the other. On the other hand, rx,y = −1 is a decreasing
relationship when one increases and the other decreases. In general, we have −1 ≤
rx,y ≤ 1 or |rx,y | ≤ 1.

For a set of n data points (xi, yi), the correlation coefficient can be calculated di-
rectly by

rx,y = n
∑n

i=1 xiyi − ∑n
i=1 xi

∑n
i=1 yi√[

n
∑

x2
i − (

∑n
i=1 xi)2

][
n

∑n
i=1 y2

i − (
∑n

i=1 yi)2
]

or

rx,y = nKxy − KxKy√
(nKxx − K2

x )(nKyy − K2
y )

, (4.37)

where Kyy = ∑n
i=1 y2

i .
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Table 4.1 Two quantities with measured data.

Input (H ) Output (Y ) Input (H ) Output (Y )
90 270 300 910
110 330 350 1080
140 410 400 1270
170 520 450 1450
190 560 490 1590
225 670 550 1810
250 750 650 2180

Now let us look at an example that are measurements of two quantities (H and Y ).
The data for a set of random samples are given in Table 4.1.

Is there any relationship between these two quantities?
Now let us try to do a linear regression in the following form:

Y = a + bH.

Example 16

From the data in Table 4.1 with n = 14 we can calculate

KH =
14∑
i=1

Hi = 90 + 110 + · · · + 650 = 4365,

KY =
14∑
i=1

Yi = 270 + 330 + · · · + 2180 = 13800,

KHY =
14∑
i=1

HiYi = 90 ∗ 270 + · · · + 650 ∗ 2180 = 5654150,

KHH =
14∑
i=1

H 2
i = 902 + · · · + 6502 = 1758025,

and

KYY =
14∑
i=1

Y 2
i = 2702 + · · · + 21802 = 18211800.

Thus we get

a = KHH KY − KH KHY

nKHH − K2
H

= 1758025 × 13800 − 4365 × 5654150

14 × 1758025 − 43652
≈ −75.48
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and

b = nKHY − KH KY

nKHH − K2
H

= 14 × 5654150 − 4365 × 13800

14 × 1758025 − 43652
≈ 3.404.

So the regression line becomes

Y = −75.48 + 3.404H.

Therefore, their correlation coefficient r is given by

r = nKHY − KH KY√
(nKHH − K2

H
)(nKYY − K2

Y
)

= 14 × 5654150 − 4365 × 13800√
(14 × 1758025 − 43652)(14 × 18211800 − 138002)

≈ 0.99903.

This is indeed a relatively strong correlation.

These formulations are based on the fact that the curve-fitting function y = f (x) =
a + bx is linear in terms of the independent variable x and the parameters (a and b).
Here the key linearity is about parameters but not about the basis function x. Thus, the
previous technique can still be applicable to both functions f (x) = a + bx + cx2 and
g(x) = a + b sinx with some minor adjustments to be discussed later in this chapter.
However, if we have a function of the form

y = ln(a + bx),

then the technique cannot be applied directly, and some linearization approximations
should be used.

4.2.3 Linearization

Sometimes, some obviously nonlinear functions can be transformed into linear forms
so as to carry out linear regression, instead of more complicated nonlinear regression.
However, there is no general formula for such linearization, and thus it is often neces-
sary to deal with each case individually. This can be illustrated by some examples.

Example 17
For example, the nonlinear function

f (x) = αe−βx (4.38)

can be transformed into a linear form by taking logarithms of both sides. We have

lnf (x) = ln(α) − βx, (4.39)

which is equivalent to y = a + bx if we let y = lnf (x), a = ln(α), and b = −β.
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In addition, the function

f (x) = αe−βx+γ = Ae−βx,

where A = αeγ is essentially the same as the previous function.
Similarly, function

f (x) = αxβ (4.40)

can also be transformed into

ln[f (x)] = ln(α) + β ln(x), (4.41)

which is a linear regression y = a + bζ between y = ln[f (x)] and ζ = ln(x), where a = ln(α)

and b = β.

Furthermore, the function

f (x) = αβx (4.42)

can also be converted into the standard linear form

lnf (x) = lnα + x lnβ (4.43)

by letting y = ln[f (x)], a = lnα, and b = lnβ.
It is worth pointing out that the data points involving zeros should be taken out due

to the potential singularity of the logarithm. Fortunately, these points rarely occur in
the regression for the functions of the forms mentioned.

Example 18
If a set of data can fit to the nonlinear function

y = ax exp(−x/b)

in the range of (0,∞), it is then possible to convert it to a linear regression.
As x = 0 is just a single point, we can leave this out. For x �= 0, we can divide both sides by x:

y

x
= a exp(−x/b).

Taking the logarithm of both sides, we have

ln
y

x
= lna − 1

b
x,

which is a linear regression of y/x versus x.

In general, linearization is possible for only a small class of nonlinear functions.
For nonlinear functions, we have to use either approximation or full nonlinear least
squares to be introduced later in this chapter.



Data fitting and regression 77

4.2.4 Generalized linear regression

The most widely used linear regression is the so-called generalized least square as a
linear combination of basis functions. Fitting to a polynomial of degree p,

y(x) = α0 + α1x + α2x
2 + · · · + αpxp, (4.44)

is probably the most widely used. This is equivalent to the regression to the linear
combination of the basis functions 1, x, x, . . . , and xp. However, there is no particular
reason why we have to use these basis functions. In fact, the basis functions can be
any arbitrary known functions such as sinx, cosx and even exp(x), and the main
requirement is that the model can be explicitly expressed as a linear combination of
basis functions. In this sense, the generalized least square can be written as

y(x) =
p∑

j=0

αjfj (x), (4.45)

where the basis functions fj are known functions of x without any unknown or unde-
termined parameters.

Now the sum of least squares is defined as

ψ =
n∑

i=1

[yi − ∑p

j=0 αjfj (xi)]2

σ 2
i

, (4.46)

where σi (i = 1,2, . . . , n) are the standard deviations of the ith data point at (xi, yi).
There are n data points in total. To determine the coefficients uniquely, it is required
that

n ≥ p + 1. (4.47)

In the case of unknown standard deviations σi , a common practice is to set all the
values σi as the same constant σi = σ , which can be moved to the outside of the
summation and thus be omitted as it will not affect the results.

Let D = [Dij ] be the design matrix given by

Dij = fj (xi)

σi

. (4.48)

The minimum of ψ is determined by

∂ψ

∂αj

= 0 (j = 0,1, . . . , p), (4.49)

that is,

n∑
i=1

fk(xi)

σ 2
i

[
yi −

p∑
j=0

αjfj (xi)
]

= 0, k = 0, . . . , p. (4.50)
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Rearranging the terms and interchanging the order of summations, we have

p∑
j=0

n∑
i=1

αjfj (xi)fk(xi)

σ 2
i

=
n∑

i=1

yifk(xi)

σ 2
i

, (4.51)

which can be written compactly as the matrix equation

p∑
j=0

Akjαj = bk, (4.52)

or

Aα = b, (4.53)

where

A = DT D

is a (p + 1) × (p + 1) matrix, that is,

Akj =
n∑

i=1

fk(xi)fj (xi)

σ 2
i

. (4.54)

Here b = [bk] is the column vector given by

bk =
n∑

i=1

yifk(xi)

σ 2
i

, (4.55)

where k = 0, . . . , p. Eq. (4.52) is a linear system of the so-called normal equations,
which can be solved using the standard methods for solving linear systems. The solu-
tion of the coefficients is α = A−1b or

αk =
p∑

j=0

[A]−1
kj bj (k = 0, . . . , p), (4.56)

where A−1 = [A]−1
ij .

A particular case of the generalized linear least squares is the so-called polynomial
least squares when the basis functions are simple power functions fi(x) = xi (i =
0,1, . . . , p), that is,

fi(x) = 1, x, x2, . . . , xp. (4.57)
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For simplicity, we assume that σi = σ = 1. The matrix equation (4.52) simply be-
comes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑n
i=1 1

∑n
i=1 xi . . .

∑n
i=1 x

p
i

∑n
i=1 xi

∑n
i=1 x2

i . . .
∑n

i=1 x
p+1
i

...
. . .

∑n
i=1 x

p
i

∑n
i=1 x

p+1
i . . .

∑n
i=1 x

2p
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0

α1

...

αp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑n
i=1 yi∑n

i=1 xiyi

...

∑n
i=1 x

p
i yi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the simplest case where p = 1, it becomes the standard linear regression

y = α0 + α1x = a + bx.

Now we have⎛
⎝ n

∑n
i=1 xi

∑n
i=1 xi

∑n
i=1 x2

i

⎞
⎠

⎛
⎝ α0

α1

⎞
⎠ =

⎛
⎝

∑n
i=1 yi

∑n
i=1 xiyi

⎞
⎠. (4.58)

Its solution is⎛
⎝ α0

α1

⎞
⎠ = 1

�

⎛
⎝

∑n
i=1 x2

i −∑n
i=1 xi

−∑n
i=1 xi n

⎞
⎠

⎛
⎝

∑n
i=1 yi∑n

i=1 xiyi

⎞
⎠

= 1

�

⎛
⎝ (

∑n
i=1 x2

i )(
∑n

i=1 yi) − (
∑n

i=1 xi)(
∑n

i=1 xiyi)

n
∑n

i=1 xiyi − (
∑n

i=1 xi)(
∑n

i=1 yi)

⎞
⎠, (4.59)

where

� = n

n∑
i=1

x2
i − (

n∑
i=1

xi)
2. (4.60)

These are exactly the same coefficients as those in Eq. (4.26).

Example 19

We now use a quadratic function to best fit the following data (as shown in Fig. 4.2):

x : −0.98, 1.00, 2.02, 3.03, 4.00

y : 2.44, −1.51, −0.47, 2.54, 7.52
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Figure 4.2 Best fit curve for y(x) = x2 − 2x − 1
2 with 2.5% noise.

For the formula y = α0 + α1x + α2x2, we have

⎛
⎜⎜⎜⎜⎜⎝

n
∑n

i=1 xi

∑n
i=1 x2

i

∑n
i=1 xi

∑n
i=1 x2

i

∑n
i=1 x3

i

∑n
i=1 x2

i

∑n
i=1 x3

i

∑n
i=1 x4

i

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

α0

α1

α2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

∑n
i=1 yi

∑n
i=1 xiyi

∑n
i=1 x2

i
yi

⎞
⎟⎟⎟⎟⎟⎠.

Using the data set, we have n = 5,
∑n

i=1 xi = 9.07, and
∑n

i=1 yi = 10.52. Other quantities
can be calculated in a similar way. Therefore we have⎛

⎜⎝ 5.0000 9.0700 31.2217
9.0700 31.2217 100.119

31.2217 100.119 358.861

⎞
⎟⎠

⎛
⎜⎝ α0

α0
α2

⎞
⎟⎠ =

⎛
⎜⎝ 10.52

32.9256
142.5551

⎞
⎟⎠.

By direct inversion we have

⎛
⎜⎝ α0

α1
α2

⎞
⎟⎠ =

⎛
⎜⎝ −0.5055

−2.0262
1.0065

⎞
⎟⎠.

Finally, the best fit equation is

y(x) = −0.5055 − 2.0262x + 1.0065x2,

which is quite close to the formula y = x2 − 2x − 1/2 used to generate the original data with a
random component of about 2.5%. The total residual sum of squares (RSS) is RSS = 0.0045. The
fit seems to be highly accurate.

4.2.5 Goodness of fit

In the above example, if we choose p = 2 (a quadratic polynomial), then the curve-
fitting seems to work very well. But how do we know which order of polynomials to
use in the first place? In fact, the degree p is a hyperparameter for this curve-fitting
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Table 4.2 Goodness of fit in terms of RSS.

Order p = 1 p = 2 p = 3 p = 4

RSS 36.3485 0.0045 0.0080 6.9 × 10−30

problem, and we have to use some additional information to find the right value for
this parameter.

Suppose, we start with p = 1 (a straight line) and carry out the regression in the
similar way as we before. We should get a best-fit line

f1(x) = 0.9373x + 0.4038, (4.61)

with the RSS = 36.3485.
If we use p = 3, then we have

f3(x) = 0.0080x3 + 0.9694x2 − 2.0131x − 0.4580, (4.62)

with the RSS = 0.002, which is the smallest RSS for p = 1,2,3.
If we used RSS as the goodness of fit, then it seems p = 3 gives a better fit than

p = 2, even though the coefficient of the highest order x3 is 0.0080. Now if we proceed
this way, what happens if we use p = 4?

If we use p = 4, then we have

f4(x) = 0.0101x4 − 0.0610x3 + 1.0778x2 − 1.9571x − 0.5798, (4.63)

with even a smaller RSS = 6.9 × 10−30. We summarize our results in Table 4.2.
However, we cannot continue this way because we do not have enough data to

produce well-posed coefficients if p is higher than n. In general, as p increases, the
RSS of the data points can usually decrease, but the oscillations between data points
can increase dramatically.

In addition, higher-order models may introduce unrealistic model parameters not
supported by the data. This is the well-known overfitting phenomenon, which should
be avoided. We will discuss some approaches such as information criteria and regu-
larization to deal with overfitting in later sections.

4.3 Nonlinear least squares

As functions in most mathematical models are nonlinear, we need the nonlinear least
squares in general. For given n data points (xi, yi) (i = 1,2, . . . , n), we can fit a model
f (xi,a) where a = (a0, a1, . . . , am)T is a vector of m + 1 parameters. In the simplest
linear case, we have f (xi,a) = a0 + a1x. For the one-variable logistic regression to
be discussed later, we have

f (xi,a) = 1/(1 + ea0+a1x). (4.64)



82 Introduction to Algorithms for Data Mining and Machine Learning

In general, we have the nonlinear least squares to minimize the L2-norm of the
residuals Ri = yi − f (xi,a), that is, to minimize the fitting error:

minimize E(a) =
n∑

i=1

R2
i (a) =

n∑
i=1

[yi − f (xi,a)]2 = ||Ri(a)||22. (4.65)

If we treat this as an optimization problem so as to find the best a, then we can use any
optimization techniques such as Newton’s method to solve this optimization prob-
lem. However, we can use the properties of this problem to get the solution more
efficiently [136].

4.3.1 Gauss–Newton algorithm

Let J denote the Jacobian matrix of the form

J = [Jij ] = ∂Ri

∂aj

, i = 1,2, . . . , n, j = 0,1,2, . . . ,m, (4.66)

which is an n × (m + 1) matrix. Then the gradient of the objective (error) function is
the differentiation of E:

∂E

∂aj

= 2
n∑

i=1

∂Ri

∂aj

Ri, j = 0,1,2, . . . ,m, (4.67)

which can be written in the vector form as

∇E(a) = 2J T R, (4.68)

where the residual vector R is given by

R(a) = (
R1(a),R2(a), . . . ,Rn(a)

)T
. (4.69)

Here ∇E is a vector with m + 1 components. Similarly, the Hessian matrix H of the
objective E can be written as

H = ∇2E = 2
n∑

i=1

[∇Ri∇RT
i + Ri∇2Ri] = 2J T J + 2

n∑
i=1

Ri∇2Ri, (4.70)

which gives an (m + 1) × (m + 1) matrix. As it is expected that Ri will get smaller
as the goodness of fit increases, we can essentially approximate the Hessian matrix by
ignoring all the higher-order terms, so we have

H ≈ 2J T J . (4.71)
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Now we can solve the nonlinear least squares (4.65) by Newton’s method, and we
have

at+1 = at − ∇E

∇2E

= at − 2J T R

2J T J
= at − (J T J )−1J T R(at ). (4.72)

The initial vector a0 should be a good educated guess though a0 = (1,1, . . . ,1)T may
work well in most cases.

Here we have used the approximation of H by 2J T J . In this case, this iterative
method is often referred to the Gauss–Newton method, which usually has a good con-
vergence rate. However, it is required that J should have a full rank so that the inverse
(J T J )−1 exists.

It is worth pointing out that in the context of line search at+1 = at + αt st , where
st is the step size and 0 < αt ≤ 1 is the scaling parameter or learning rate, this Gauss–
Newton method is equivalent to a line search with a step size

J T Jst = −J T R(at ). (4.73)

Though the iteration does not necessarily lead to the reduction of E in every iteration,
it is better to choose αt such that

E(at + αt st ) < E(at ), (4.74)

which leads to the reduction of least square errors.

Example 20
As an example, let us use the following data:

x : 0.10, 0.50, 1.0, 1.5, 2.0, 2.5

y : 0.10, 0.28, 0.40, 0.40, 0.37, 0.32

We fit the data to a model

y = x

a + bx2
, (4.75)

where a and b are the coefficients to be determined by the data. The objective is to minimize the
sum of the residual squares

S =
6∑

i=1

R2
i =

6∑
i=1

[
1 − x

a + bx2

]2
, (4.76)

where

Ri = yi − xi

a + bx2
i

.
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We have

∂Ri

∂a
= xi

(a + bx2
i
)2

,
∂Ri

∂b
= x3

i

(a + bx2
i
)2

.

If we use the initial guess a = 1 and b = 1, then the initial residuals are

R =
(

0.0010 −0.1200 −0.1000 −0.0615 −0.0300 −0.0248
)T

.

The initial Jacobian matrix is

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.0980 0.0010
0.3200 0.0800
0.2500 0.2500
0.1420 0.3195
0.0800 0.3200
0.0476 0.2973

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus the first iteration using the Gauss–Newton algorithm gives

(
a

b

)
1

=
(

1
1

)
− (J T J )−1JR =

(
1.3449
1.0317

)
.

Then, updating the new Jacobian and residuals, we have

a = 1.4742 and b = 1.0059

after the second iteration. Similarly, we have

a = 1.4852, b = 1.0022 (third iteration),

and

a = 1.4854, b = 1.0021 (fourth iteration).

In fact, this converges quickly, and the parameters almost remain the same values even after 10
iterations. The data points and the best fit model are shown in Fig. 4.3.

In general, the Guass–Newton method can work very well for a wide range of
nonlinear curve fitting problems, even for large-scale problems. However, when the
elements of the Jacobian are small (close to zeros), the matrix J T J may become
singular, and thus the pseudo-inverse may become ill-posed. In addition, when ap-
proaching the optimality, the gradient becomes close to zero, and the convergence
becomes very slow. A possible remedy is to use the Levenberg–Marquardt algorithm.
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Figure 4.3 An example of nonlinear least squares.

4.3.2 Levenberg–Marquardt algorithm

In essence, the Levenberg–Marquardt algorithm is more robust by using a damping
term in the approximation of the Hessian, that is,

H ≈ 2[J T J + μI ], (4.77)

where μ > 0 is the damping coefficient, also called the Marquardt parameter, and I is
the identity matrix of the same size as H . Thus, the iteration formula becomes

at+1 = at − J T R(at )

J T J + μI
= at − (J T J + μI )−1J T R(at ), (4.78)

which is equivalent to the step size st given by

(J T J + μI )st = −J T R(at ). (4.79)

Mathematically speaking, a large μ effectively reduces the step size (in comparison
with those in the Gauss–Newton algorithm) and damps the moves so that the descent
is in the right direction with right amount. If the reduction in E is sufficient, then
we can either keep this value of μ or reduce it. However, if the reduction E is not
sufficient, then we can increase μ. Thus μ should vary as iteration continues, and there
are various schemes for varying this hyperparameter. It is obvious that this method
reduces to the standard Gauss–Newton algorithm if μ = 0. Any nonzero μ essentially
ensures that the matrix J T J is full rank, and thus the iterations can be more robust.

An alternative view of the Levenberg–Marquardt algorithm is the approximation
of H in a trust region, which is equivalent to the minimization problem

minimize ||J T st + R||22, |st | ≤ �t, (4.80)

where �k is the radius of the trust region. For details, we refer the readers to the more
advanced literature [32].

4.3.3 Weighted least squares

In many cases, the measurement errors in data may be different, or the assumption of
equal variances in data may not be true. In this case, we need to weight the residuals
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differently, which leads to the so-called weighted least squares

minimize
n∑

i=1

wiR
2
i =

n∑
i=1

R2
i

σ 2
i

= ||Ri

σi

||22, (4.81)

where

Ri = yi − f (xi,a). (4.82)

Here wi = 1/σ 2
i and σ 2

i is the variance associated with data point (xi, yi).
By defining a weight matrix W as

W = diag(wi) =

⎛
⎜⎜⎜⎝

w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...

0 0 . . . wn

⎞
⎟⎟⎟⎠, (4.83)

and following the similar derivations as before Eq. (4.72) becomes

at+1 = at − (J T WJ )−1(J T WR), (4.84)

which is equivalent to approximating the Hessian by H = 2J T WJ and the gradient
by ∇E = 2J T WR.

There are other regression methods. For example, for classification purposes, the
logistic regression of the form

y(x) = 1

1 + e−(a+bx)
(4.85)

is often used because its outputs can be interpreted as binary (0 or 1) classification.
Another powerful regression method is the principal component analysis, which is
a multivariate regression method. We will introduce these methods later in the next
chapter. Now let us first discuss overfitting and information criteria.

4.4 Overfitting and information criteria

As we can see in the previous sections, curvefitting and regression are optimization
in the least-squares sense because the objective is minimizing the fitting errors from
the target values. In principle, the errors at known data points can become sufficiently
small if higher-order polynomials are used; however, oscillations between data points
become more severe. This leads to the so-called overfitting, which subsequently gives
overcomplicated models. Ideally, the fitting should be guided by Occam’s razor, which
states that if there are many competing models to explain or fit the same data, then that
with the fewest assumptions or parameters should be selected. The issue of overfitting



Data fitting and regression 87

is relevant to many applications such as curve-fitting, regression in general, and train-
ing of neural networks.

It is worth pointing out that the degree of polynomials to be used for curve fitting
is a hyperparameter, which needs extra information or rule to determine. Though so-
phisticated methods in model selection may help, some simple criteria such as the
Bayesian information criterion (BIC) or Akaike information criterion (AIC) can be
used to select such hyperparameters to avoid overfitting [2].

For a statistical model, such as regression with k parameters, the Akaike informa-
tion criterion (AIC) is defined by

AIC = 2k − 2 lnL, (4.86)

where L is the maximum value of the likelihood function. For n data points with errors
being independent identical normal distributions, we have

AIC = 2k + n ln
(RSS

n

)
, (4.87)

where RSS is the residual sum of squares, that is,

RSS =
n∑

i=1

[yi − ŷi (xi)]2, (4.88)

where yi (i = 1,2, . . . , n) are the true values, whereas ŷi (xi) (i = 1,2, . . . , n) are the
values predicted by the model. In principle, the minimization of AIC gives the best k.

However, this AIC may become inaccurate when the sample size is small; espe-
cially, when n/k < 40, we have to use a corrected AIC, called AICc given by

AICc = AIC + 2k(k + 1)

n − k − 1

= 2k + n ln
(RSS

n

) + 2k(k + 1)

n − k − 1
. (4.89)

In essence, the AIC is equivalent to the principle of maximum entropy.
Another information criterion is the Bayesian information criterion (BIC), which

can be written as

BIC = k lnn − 2 lnL. (4.90)

With the same assumptions of errors obeying Gaussian distributions, we have

BIC = k lnn + n ln
(RSS

n

)
. (4.91)

Both AIC and BIC are useful criteria, but it is difficult to say which is better, depending
on the types of problems.
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Table 4.3 AIC as the goodness of fit.

Order p = 1 p = 2 p = 3
k = p + 1 2 3 4
RSS 36.3485 0.0045 0.0080
AICc 13.64 −29.07 −24.19

Example 21
Now let revisit an earlier example (Example 19) in Section 4.2.5 using the AIC. We know that
n = 5 as there are five data points. Using the AIC criterion (4.87), we have (for p = 1 and k = 2)

AIC = 2 × 2 + 5 ln(36.3485/5) = 13.64. (4.92)

Similarly, we have

AIC = −29.07, −24.19 (4.93)

for p = 2,3, respectively. Among these three values, p = 2 has the lowest AIC. Since the value
starts to increase for p = 3, we can conclude that the best degree of fit is p = 2 with k = 3
parameters. The results of AIC values are summarized in Table 4.3.

Though p = 4 can have a 4th-order polynomial fit, the leading coefficient 0.01 (see
Section 4.2.5) is too small, compared with other coefficients. This case should not be
considered as it is an indication of overfitting. Ideally, a properly scaled and properly
fit polynomial should have coefficients of O(1). This point becomes clearer when we
discuss regularization in the next section.

4.5 Regularization and Lasso method

Regularization is another approach to deal with overfitting. If we use a general model

y = f (Z) + ε, (4.94)

where the errors ε obey a zero-mean normal distribution with variance σ 2, that is,
ε ∼ N(0, σ 2).

For multivariate cases with p components, we have

Z = (Z1,Z2, . . . ,Zp)T . (4.95)

In the case of linear regression, we have

y = β0 + β1Z1 + β2Z2 + · · · + βpZp = ZT β + β0, (4.96)

where β0 is the bias, and β = (β1, β2, . . . , βp)T is the coefficient vector.
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The standard method of least squares is minimizing the residual sum of squares
(RSS), that is,

minimize
n∑

i=1

(yi − ZT
i β − β0)

2. (4.97)

The Ridge regression uses a penalized RSS of the form

minimize
n∑

i=1

(yi − ZT
i β − β0)

2 + λ

p∑
j=1

β2
j , (4.98)

where λ is the penalty coefficient that controls the amount of regularization. This
formula can be written compactly as

minimize ||y − β0 − ZT β||22 + λ||β||22, (4.99)

where || · ||2 is the L2-norm, and this regularization term is based on the Tikhonov
regularization on the parameter/coefficient vector. Here the bias β0 is not part of the
penalty or regularization term. One reason is that we can always pre-process the data yi

(for example, by subtracting their mean value) so that the bias β0 becomes zero.
In the case of λ = 0, there is no penalty, which degenerates to the standard least

squares. In fact, λ is a hyperparameter, which needs to be tuned.
The Lasso method uses the L1-norm in the regularization term [139]

minimize ||y − β0 − ZT β||22 + λ||β||1, (4.100)

which is equivalent to the following minimization problem:

minimize
n∑

i=1

(yi − β0 − ZT
i β)2 (4.101)

subject to

||β||1 = |β1| + |β2| + · · · + |βp| ≤ t, (4.102)

where t > 0 is a predefined hyperparameter. Here β0 is a bias, which is not penalized
in the Lasso formulation.

A hybrid method is the elastic net regularization or regression [165], which com-
bines the Ridge and Lasso methods into a hybrid as

minimize ||y − β0 − ZT β||22 + λ1||β||1 + λ2||b||22, (4.103)

where both the L1-norm and L2-norm are used with two regularization hyperparame-
ters λ1 and λ2.
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4.6 Notes on software

There are a wide spectrum of software packages for regression and data mining. It is
not possible to review even a good fraction of these packages. However, we will focus
on a few popular tools and programming languages that most university courses are
using.

• Matlab: Matlab has some well-tested curve-fitting tools fit and polyfit, the
nonlinear least squares lsqnonlin (including the Levenberg–Marquardt method),
generalized least squares fitnlm and lsqcurvefit, the Lasso method lassglm, the
principal component analysis pca, and many others.

• Octave: Octave has linear least squares lsqlin, exponential fit expfit, the
Levenberg–Marquardt nonlinear regression leqsqr, the polynomial fit polyfit-
inf, and the nonlinear least squares lsqnonlin. In addition, it also has the logistic
regression logistic-regress().

• R: R has many functions for processing and visualizing data, including the linear
regression lm(), the least squares fit lsfit, and many other statistical functionali-
ties.

• Python: Python has at least two modules for regression statsmodels and Scikit-
learn. The module Scikit learn sklearn is mainly for data mining and machine
learning, which can do k-means clustering, basic clustering, and various statistical
analysis.

• Mathematica: Mathematica can also do data mining with interface with Excel and
databases. For example, it has bestfit and FindFit, the nonlinear regression Non-
linearRegress, and the least squares LeastSqures. It can also do clustering via
FindClusters with various distance metrics.

There are so many available software packages, and it is difficult to choose an
appropriate one for beginners. The choice can largely depend on the availability of
a package or programming language, ease of usage, and the personal expertise. For
example, wikipedia has some extensive lists of

• optimization software,1

• data mining and machine learning,2

• deep learning software. 3

We refer the interested readers to them for more detail. Here we have highlighted
only a few software packages, which are either open sources, free or commercial, or
easy to learn and use.

1 https://en.wikipedia.org/wiki/List_of_optimization_software.
2 https://en.wikipedia.org/wiki/Category:Data_mining_and_machine_learning_software.
3 https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software.

https://en.wikipedia.org/wiki/List_of_optimization_software
https://en.wikipedia.org/wiki/Category:Data_mining_and_machine_learning_software
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
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Following the data-fitting models and regression in the previous chapter, we now in-
troduce logistic regression and other models for data analysis.

5.1 Logistic regression

In the previous analysis, all the dependent variable values yi are continuous. In some
applications such as biometrics and classifications, the dependent variable is just dis-
crete or simply a binary categorical variable, taking two values 1 (yes) and 0 (no). In
this case, a more appropriate regression tool is the logistic regression developed by
David Cox in 1958. The logistic regression is a form of supervised learning [1,3,38].

Before we introduce the formulation of logistic regression, let us define two func-
tions: the logistic function S and logit function. A logistic function (see Fig. 5.1), also
called the sigmoid function, is defined as

S(x) = 1

1 + e−x
= ex

1 + ex
, x ∈R, (5.1)

Figure 5.1 Logistic regression and its function.

Introduction to Algorithms for Data Mining and Machine Learning. https://doi.org/10.1016/B978-0-12-817216-2.00012-0
Copyright © 2019 Elsevier Inc. All rights reserved.
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which can be written as

S(x) = 1

2

[
1 + tanh

x

2

]
, tanhx = ex − x−x

ex + e−x
. (5.2)

It is easy to see that S → +1 as x → +∞, whereas S → 0 as x → −∞. Thus the
range of S is (0,1).

This function has an interesting property for differentiation. From the differentia-
tion rules we have

S′(x) =
[ 1

1 + e−x

]′ = −1

(1 + e−x)2
(−e−x) = (1 + e−x) − 1

(1 + e−x)2

= 1

(1 + e−x)
− 1

(1 + e−x)2
= 1

1 + e−x

[
1 − 1

(1 + e−x)

]
= S(x)[1 − S(x)], (5.3)

which means that its first derivative can be obtained by multiplication. This property
can be very useful for finding the weights of artificial neural networks and machine
learning to be introduced in Chapter 8.

To get the inverse of the logistic function, we can rewrite (5.1) as

S(1 + e−x) = S + Se−x = 1, (5.4)

which gives

e−x = 1 − S

S
, (5.5)

or

ex = S

1 − S
. (5.6)

Taking the natural logarithm, we have

x = ln
S

1 − S
, (5.7)

which is the well-known logit function in probability and statistics. In fact, the logit
function can be defined as

logit (P ) = log
P

1 − P
= ln

P

1 − P
, (5.8)

which is valid for 0 < P < 1.
The simple logistic regression with one independent variable x and a binary depen-

dent variable y ∈ {0,1} with data points (xi, yi) (i = 1,2, . . . , n) tries to fit a model of
logistic probability

P = 1

1 + ea+bx
, (5.9)
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which can be written by using the logit function as

ln
P

1 − P
= a + bx, (5.10)

and thus it becomes a linear model in terms of the logit of probability P . In fact, the
odds can be calculated from probability by

Od(odd) = P

1 − P
(5.11)

or

P = Od

1 + Od

, (5.12)

which means that the logistic regression can be considered as a linear model of
log(odds) to x.

One naive way to solve the regression model (5.9) is to convert it to a nonlinear
least squares, and we have

minimize
n∑

i=1

[
yi − 1

1 + ea+bxi

]2
, (5.13)

so as to find the optimal a and b. This is equivalent to fitting the logistic model to the
data directly so as to minimize the overall fitting errors. This can give a solution to the
parameters, but this is not the true logistic regression.

However, a more rigorous mathematical model exists for the binary outcomes yi

and the objective is to maximize the log-likelihood of the model with the right pa-
rameters to explain the data. Thus, for a given data set (xi, yi) with binary values
of yi ∈ {0,1}, the proper binary logistic regression is to maximize the log-likelihood
function, that is,

maximize log(L) =
n∑

i=1

[
yi lnPi + (1 − yi) ln(1 − Pi)

]
, (5.14)

where

Pi = 1

1 + ea+bxi
(i = 1,2, . . . , n). (5.15)

This is based on the theory of the maximum likelihood probability. Since yi = 1 (yes
or true) or 0 (no or false), the random variable Y for generating yi should obey a
Bernoulli distribution for probability Pi , that is,

BP (Y = yi) = P
yi

i (1 − Pi)
1−yi , (5.16)
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so the joint probability of all data gives the likelihood function

L =
n∏

i=1

P(xi)
yi (1 − P(xi))

1−yi , (5.17)

whose logarithm is given in (5.14). The maximization of L is equivalent to the maxi-
mization of logL. Therefore, the binary logistic regression is to fit the data so that the
log-likelihood is maximized.

In principle, we can solve the optimization problem (5.14) by Newton’s method or
any other optimization techniques. Let us use an example to explain the procedure in
detail.

Example 22

To fit a binary logistic regression using

x : 0.1, 0.5, 1.0, 1.5, 2.0, 2.5,

y : 0, 0, 1, 1, 1, 0,

we can use the following form:

Pi = 1

1 + exp(a + bxi)
(i = 1,2, . . . ,6), (5.18)

starting with initial values a = 1 and b = 1.
Then we can calculate Pi with a = 1 and b = 1, and we have

Pi =
(

0.2497 0.1824 0.1192 0.0759 0.0474 0.0293
)
.

The log-likelihood for each datapoint can be calculated by

Li = yi lnPi + (1 − yi) ln(1 − Pi),

and we have

Li =
(

−0.2873 −0.2014 −2.1269 −2.5789 −3.0486 −0.0298
)

with the log-likelihood objective

6∑
i=1

Li = −8.2729.

If we try to modify the values of a and b by Newton’s method, then after about 20 iterations, we
should have

a = 0.8982, b = −0.7099, Lmax = −3.9162.
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This means that the logistic regression model is

P = 1

1 + exp(0.8982 − 0.7099x)
.

This logistic regression has only one independent variable. In the case of multiple
independent variables x̃1, x̃2, . . . , x̃m, we can extend the model as

y = 1

1 + ew0+w1x̃1+w2x̃2+...+wmx̃m
. (5.19)

Here we use x̃ to highlight its variations. To write them compactly, let us define

x̃ = [1, x̃1, x̃2, . . . , x̃m]T (5.20)

and

w = [w0, w1, w2, . . . ,wm]T , (5.21)

where we have used 1 as a variable x̃0 so as to eliminate the need to write w0 every-
where in the formulas. Thus the logistic model becomes

P = 1

1 + exp(wT x̃)
, (5.22)

which is equivalent to

logitP = ln
P

1 − P
= wT x̃. (5.23)

For all the data points x̃i = [1, x̃
(i)
1 , . . . , x̃

(i)
m ] with yi ∈ {0,1} (i = 1,2, . . . , n), we

have

maximize log(L) =
n∑

i=1

[
yi lnPi + (1 − yi) ln(1 − Pi)

]
, (5.24)

where Pi = 1/[+ exp(wT x̃i )]. The solution procedure is the same as before and can
be obtained by any appropriate optimization algorithm.

Obviously, the binary logistic regression can be extended to the case with multiple
categories, that is, yi can take K ≥ 2 different values. In this case, we have to deal
with the so-called multinomial logistic regression.

Though logistic regression can work well in many applications, it does have seri-
ous limitations [120]. Obviously, it can only work for discrete dependent variables,
whereas a correct identification of independent variables is a key for the model. It
usually requires a sufficiently large sample size, and the sample points should be inde-
pendent of each other, so that repeated observations may cause problems. In addition,
it can also vulnerable to overfitting.
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5.2 Softmax regression

Logistic regression is a binary classification technique with label yi ∈ {0,1}. For mul-
ticlass classification with yi ∈ {1,2, . . . ,K}, we can extend the logistic regression to
the softmax regression. The labels for K different classes can be other real values,
but for simplicity they can always be converted or relabeled to values from 1 to K .
Softmax regression is also called multinomial logistic regression.

The softmax regression model for probability P(y = k|x̃) for k = 1,2, . . . ,K takes
the following form:

P(x̃) = ewT x̃∑K
j=1 ewT x̃

, (5.25)

where w = [w0,w1, . . . ,wm]T are the model parameters, and w0 is the bias. The m

independent variables or attributes are written as a vector x̃ = [1, x1, . . . , xm]T . The
denominator

∑K
1 exp[wT x̃] normalizes the probabilities over all classes ensuring the

sum of the probabilities to be 1.
Similar to the log-likelihood in the logistic regression, for n data samples

(x̃1, y1), (x̃2, y2), . . . , (x̃n, yn), the objective of softmax regression is to maximize
the log-likelihood

maximize L = −
{ n∑

i=1

K∑
k=1

I[yi = k] log
[ ewT x̃i∑K

j=1 ewT x̃i

]}
, (5.26)

where I[·] is the indicator function: I[yi = k] = 1 if yi = k is true (otherwise, I = 0 if
yi �= k). However, there is no analytical solution for this optimization problem, but we
can use a gradient-based optimizer to solve it.

It is worth pointing out that softmax regression can have some redundant parame-
ters, which means that the model is overparameterized, and thus the optimal solution
will not be unique, even though the log-likelihood may be still convex. Fortunately,
there is only one parameter more than necessary, and we can set the extra parameter to
a fixed value such as zero. Consequently, care should be taken when using optimizers
in the implementations. Most software packages have taken care of this in practice.
We refer the interested readers to the more advanced literature [24,54].

5.3 Principal component analysis

For many quantities such as X1, X2, . . . , Xp and y, it is desirable to represent the
model as a hyperplane given by

y = β0 + β1X1 + β2X2 + · · · + βpXp = XT β + β0. (5.27)
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In the simplest case, we have

y = β0 + β1x. (5.28)

Let us first start with the simplest case; then we will extend the idea and procedure to
multiple variables.

For n data points (xi, yi), we use the notations

x = (x1, x2, . . . , xn), (5.29)

y = (y1, y2, . . . , yn), (5.30)

so that we have

y = β0 + β0x. (5.31)

Now we can adjust the data so that their means are zero by subtracting their means x̄

and ȳ, respectively. We have

x̃ = x − x̄, ỹ = y − ȳ, (5.32)

and

ỹ + ȳ = β0 + β1(x̃ + x̄), (5.33)

which gives

ỹ = β1x̃, (5.34)

where we have used ȳ = β0 + β1x̄. This is essentially equivalent to removing the
bias β0 (or zero bias) because the adjusted data have zero means. In this case, the
covariance can be calculated in terms of a dot product:

cov(x̃, ỹ) = 1

n − 1
x̃ỹT . (5.35)

In fact, the covariance matrix can be written as

C = 1

n − 1

(
x̃x̃T x̃ỹT

ỹx̃T ỹỹT

)
. (5.36)

Now we extend this to the case of p variables. If the mean of each variable Xi is X̄i

(i = 1,2, . . . , p) with n data points, then we now use X̃ = (X̃1 − X̄1, . . . , X̃p − X̄p)T

to denote the adjusted data with zero means (i.e., X̃i = Xi − X̄i) in the following form:

X̃ = (
X̃1 X̃2 . . . X̃p

)T =

⎛
⎜⎜⎜⎜⎝

X̃
(1)
1 X̃

(2)
1 ... X̃

(n)
1

X̃
(1)
2 X̃

(2)
2 ... X̃

(n)
2

...
...

. . .
...

X̃
(1)
p X̃

(2)
p ... X̃

(n)
p

⎞
⎟⎟⎟⎟⎠, (5.37)



98 Introduction to Algorithms for Data Mining and Machine Learning

X̃i = Xi − X̄i . (5.38)

Then X̃ is a p × n matrix, where each column is a vector for a data point. Here we
used the notation X̃

(j)
i for the j th data observations for the variable component i.

The covariance matrix can be obtained by

C = 1

n − 1
X̃X̃

T
, (5.39)

which is a p × p symmetric matrix. If the data values are all real numbers, then C is
a real symmetric matrix whose eigenvalues are all real, and the eigenvectors of two
distinct eigenvalues are orthogonal to each other.

As the covariance matrix C has a size of p × p, it should in general have p eigen-
values (λ1, λ2, . . . , λp). Their corresponding (column) eigenvectors u1, u2, . . . , up

should span an orthogonal matrix of size p × p by using p eigenvectors (column
vectors)

Ũ =

⎛
⎜⎜⎝

...
... ...

...

u1 u2 ... up

...
... ...

...

⎞
⎟⎟⎠ ∈ R

p×p, (5.40)

which has the properties Ũ Ũ
T = Ũ Ũ

T = I (the identity matrix) and

Ũ
−1 = Ũ

T
. (5.41)

The component associated with the principal direction (of the eigenvector) of the
largest eigenvalue λ∗ = max{λi} is the first main component. This corresponds to the
rotation of base vectors so as to align the main component to this principal direction.
The transformed data can be obtained by

Y = Ũ
T
X̃. (5.42)

It is worth pointing out that we have used column vectors here, and slightly different
forms of formulas may be used if the row vectors are used, which is the case in some
literature.

The principal component analysis (PCA) essentially intends to transform a set of
data points (for p variables that may be correlated) into a set of k < p principal com-
ponents, which are a set of transformed points of linearly uncorrelated variables. It
is essential to identify the first (major) component with the most variations and then
to identify the next component with the second most variations. Other components
can be identified in a similar manner. Thus the main information comes from the co-
variance matrix C and the eigenvalues (as well as the eigenvectors) of the covariance
matrix.

It is worth pointing out that since the variance measures the variations, it is invariant
with respect to a shift, that is, var(X + a) = var(X) for a ∈R. However, it is scaled as
var(aX) = a2 var(X).
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Figure 5.2 Some random data with a trend.

The main aim is to reduce redundancy in representing data. Ideally, k should be
much less than p, but the first k main components should be still sufficient to represent
the original data. Therefor PCA can be considered as a technique for dimensionality
reduction.

The choice of the hyperparameter k can be tricky. If k is too small, then too much
information is lost. If k is close to p, then almost all components are kept. So the
choice of k can largely depend on the quality of the representations and information
needed. A heuristic approach is based on the percentage of variance (via the eigenval-
ues λi) that can be retained in the k components. If we wish to keep μ as a percentage,
then we can use

minimize k (5.43)

subject to

k∑
i=1

λi ≥ μ

p∑
i=1

λi, k ≥ 1. (5.44)

The typical value of μ can be 0.9 or higher [81,83,130].
Once k < p principal components have been chosen, the data can be reconstructed

easily. It is worth pointing out that some scaling and whitening are needed so as to
make PCA work. In addition, PCA is a linear framework, so it cannot work for non-
linear systems. We will not delve into details of these topics; we refer the interested
readers to the more advanced literature [81,132].

Let us use a simple example to demonstrate how PCA works.

Example 23

Consider the following data (see Fig. 5.2):

{
x : −1.0 +0.0 +1.0 +2.0 +3.0 +4.0
y : +1.1 +0.7 +2.3 +1.4 +2.2 +3.7
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First, we adjust the data by subtracting their means x̄ and ȳ, respectively, and we have

x̄ = 1

6

6∑
i=1

xi = 1.5, ȳ = 1

6

6∑
i=1

yi = 1.9.

We have X = x − x̄ and Y = y − ȳ:

{
X : −2.5 −1.5 −0.5 +0.5 +1.5 +2.5
Y : −0.8 −1.2 +0.4 −0.5 +0.3 +1.8

which have zero means. We can then calculate the covariance matrix

C =
(

3.500 1.660
1.660 1.164

)
.

Since cov(x, y) is positive [so is cov(X,Y ) = cov(x, y)], it is expected that y increases with x

or vice versa.
The two eigenvalues of C are

λ1 = 4.36, λ2 = 0.302.

Their corresponding eigenvectors are

u1 =
(

0.887
0.461

)
, u2 =

(
−0.461
0.887

)
,

and these two vectors are orthogonal, that is, uT
1 u2 = u1 · u2 = 0. They span the orthogonal

matrix

Ũ =
(

0.887 −0.461
0461 0.887

)
.

Using the adjusted data

X̃ =
(

−2.5 −1.5 −0.5 +0.5 +1.5 +2.5
−0.8 −1.2 +0.4 −0.5 +0.3 +1.8

)
,

we have the rotated data

Y = Ũ
T

X̃,

which gives [0.44,−0.37,0.59,−0.67,−0.42,0.45] (see Fig. 5.2).
Since λ1 is the largest eigenvalue, its corresponding eigenvector indicates that the x direction

is the main component.
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Though PCA can work well for many applications, its covariance can be very sen-
sitive to a few large values. Thus, normalization of each dimension is needed, ideally
to zero mean and unit variances. In general, PCA works under the assumption that
the underlying subspace is linear. For some applications, PCA can be difficult to sep-
arate data into different classes. In this case, linear discriminant analysis can be more
suitable.

5.4 Linear discriminant analysis

The linear discriminant analysis (LDA) was developed by British statistician Sir
Ronald A. Fisher [3,26,47]. The main idea of Fisher’s discriminant analysis is to find
a transformation or a projection maximizing the separability of different classes. This
can be achieved by maximizing the difference of the means of different classes while
minimizing their within-class variances. The underlying assumption of LDA is that
the data obey unimodal Gaussian distributions.

For n data points with m variables or dimensions, we have the data

{(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))},
and each data point x(i) (where i = 1,2, . . . , n) is an m-dimensional column vector
x(i) = (x

(i)
1 , x

(i)
2 , . . . , x

(i)
m )T . The output y(i) belongs to K different classes. In the

simplest case, let us start with K = 2 where y(i) can belong to either class 1 (C1) or
class 2 (C2) (for example, y ∈ {0,1} with C1 = 0 and C2 = 1). Here, n1 data points
belong to C1, and n2 points belong to C2, so that n1 + n2 = n.

We can use the model

y = wT x = w0 + w1x1 + · · · + wmxm, (5.45)

where we have used the notation similar to Eqs. (5.20) and (5.21) so as to eliminate
the need to write w0 everywhere [42].

For a two-class model, we can define their means as

μ1 = 1

n1

∑
i∈C1

x(i), μ2 = 1

n2

∑
i∈C2

x(i), (5.46)

which is vectors of m components. Their covariance matrices can be calculated by

S1 = 1

n1 − 1

∑
i∈C1

(x(i) − μ1)(x
(i) − μ1)

T , (5.47)

S2 = 1

n2 − 1

∑
i∈C2

(x(i) − μ2)(x
(i) − μ2)

T . (5.48)

Both are m × m matrices.
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The means for the model predictions can be estimated as

μ
(y)

1 = 1

n1

∑
i∈C1

y(i) = 1

n1

∑
i∈C1

wT x(i) = wT
( 1

n1

∑
i∈C1

x(i)
)

= wT μ1 (5.49)

and

μ
(y)

2 = 1

n2

∑
i∈C2

y(i) = wT μ2. (5.50)

In addition, the within-class variances can be calculated by

σ̄ 2
1 = 1

n1 − 1

∑
i∈C1

[y(i) − μ
(y)

1 ]2 = 1

n1 − 1

∑
i∈C1

[wT x(i) − wT μ1]2

= wT
[ 1

n1 − 1

∑
i∈C1

(x(i) − μ1)(x
(i) − μ1)

T
]
w = wT S1w. (5.51)

Similarly, we have

σ̄ 2
2 = 1

n2 − 1

∑
i∈C2

[y(i) − μ
(y)

2 ]2 = wT S2w. (5.52)

The main objective is to maximize their distance (or distance squared) in means

(�μ)2 = |μ(y)

1 − μ
(y)

2 |2 = |wT μ1 − wT μ2|2 = [wT (μ1 − μ2)]2 (5.53)

and to simultaneously minimize their within-class variances

σ̄ 2
1 + σ̄ 2

2 = wT (n1S1 + n2S2)w = wT Sw, (5.54)

where S = n1S1 + n2S2. Thus, the objective function can be written as

maximize f (w) = [wT (μ1 − μ2)]2

wT Sw
. (5.55)

This is an optimization problem. It can be shown [129] that the optimal solution is

w = S−1(μ1 − μ2). (5.56)

In practice, we have to solve an eigenvalue problem to find the transformation or
projection [42,129]. Let use an example to show how it works.
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Example 24

Suppose we have 12 data points, where 6 belong to one class C1, and 6 points belong to C2, so
we have n1 = n2 = 6 and n = 12. Their data points are

xC1 =
∣∣∣∣∣ 1 2 2 3 1.6 3

2 1 1.5 2 1.7 3

∣∣∣∣∣, xC2 =
∣∣∣∣∣ 5 6 7 8 9 7

4 5 4 5.5 6.5 8

∣∣∣∣∣. (5.57)

It is straightforward to calculate that

μ1 =
(

2.1
1.7

)
, μ2 =

(
7

5.5

)
. (5.58)

The covariances are

S1 = 1

5

(
3.1 2.3
2.3 2.8

)
=

(
0.62 0.46
0.46 0.56

)
, S2 =

(
2 1.1

1.1 2.4

)
. (5.59)

Thus we have

S = n1S1 + n2S2 =
(

13.1 7.8
7.8 14.8

)
(5.60)

and

w = S−1(μ1 − μ2) = −
(

0.3223
0.0869

)
, (5.61)

which can be normalized into a unit vector as

wn = w

||w|| =
(

−0.9655
−0.2603

)
(5.62)

and has the same direction as

(
0.9655
0.2603

)
. (5.63)

This is the direction onto which the data points should project so as to give the maximum separa-
bility of the two classes.

Both LDA and PCA can be very effective for many applications such as pattern
recognition and facial recognition. In general, LDA can produce better results for pat-
tern recognitions, though PCA can perform better for a small training data set [100].
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5.5 Singular value decomposition

A real matrix A of size m × n can always be written as

A = PDQT , (5.64)

where P is an m × m orthonormal matrix, Q is an n × n orthonormal matrix, and D

is an m × n diagonal matrix. This representation is called the singular value decom-
position (SVD).

A square matrix is orthogonal if each column is orthogonal to each other. A square
matrix Q is orthonormal if it is orthogonal and each column is a unit vector. In other
words, we have

QQT = QT Q = I , Q−1 = QT , (5.65)

where I is the identity matrix of the same size as Q. Similarly, we have

PP T = P T P = I , P −1 = P T . (5.66)

In addition, the m × n diagonal matrix D is defined by Dii = di ≥ 0 and Dij = 0
when i �= j for all i = 1, . . . ,m and j = 1,2, . . . , n. For example, for m = 3 and n = 4,
we have

D =
⎛
⎝ d1 0 0 0

0 d2 0 0
0 0 d3 0

⎞
⎠. (5.67)

There are rigorous algorithms to carry out SVD effectively, and we refer the inter-
ested readers to the more specialized literature [115,140].

Example 25
For example, the matrix

A =
(

1 2 1
1 2 1

)

can be written as

A = PDQT ,

where

P = 1√
2

(
1 −1
1 1

)
, D =

(
2
√

3 0 0
0 0 0

)
, Q = 1√

6

⎛
⎜⎝ 1 −√

3 −√
2

2 0
√

2
1

√
3 −√

2

⎞
⎟⎠.

It is straightforward to check that PP T = P T P = I and QT Q = QQT = I .



Logistic regression, PCA, LDA, and ICA 105

The PCA we discussed earlier is based on the second-order statistics such as the
variances and tries to find the directions with the most variations in the data. This
can be achieved by finding the largest eigenvalue of the covariance matrix. The data
points are then projected onto that direction. Then each succeeding step aims to find a
subsequent direction that has the most variance. The projections are done in terms of
Eq. (5.42).

If we can rewrite X̃ using the SVD

X̃ = PDQT , (5.68)

we have the covariance matrix

C = 1

n − 1
X̃X̃

T = 1

n − 1

(
PDQT

)(
PDQT

)T

= 1

n − 1
PDQT QDT P T = 1

n − 1
PD2P T = P�P T , (5.69)

where we have used QT Q = I . Here � = D2/(n− 1) is a diagonal matrix, where the
diagonal values are the eigenvalues of the corresponding eigenvectors (or the columns
of P ).

Thus the data projection in PCA is equivalent to

Y = Ũ
T
X̃ = (Ũ

T
P )DQT . (5.70)

This means that PCA can be viewed as a particular class of SVD. Both PCA and SVD
can be considered as a dimensionality reduction technique. A related discussion of the
relationship between PCA and SVD can be found in [130,115].

5.6 Independent component analysis

The directions obtained in PCA are orthogonal, and the information used in PCA is
mainly means and variances (up to the second order). It would be advantageous to use
high-order statistical information for some data sets, which leads to the independent
component analysis (ICA) [79,80,85,31].

The main idea of ICA is that the n observations xi (i = 1,2, . . . , n) are a linear
mixture of n independent components sj (j = 1,2, . . . , n), that is,

xi = ai1s1 + ai2s2 + · · · + sinsn =
n∑

j=1

aij sj . (5.71)

These independent components can be considered as source signals or as hidden ran-
dom variables, and thus are called latent variables or hidden features because they
cannot be directly observed [80]. The equation can be written in the matrix form

x = As, (5.72)
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where

x = [x1, x2, . . . , xn]T , A = [aij ], s = [s1, s2, . . . , sn]T . (5.73)

The main task is to estimate both the mixing matrix A and the unknown components s.
For the first, it seems that this is an impossible task because we only know the product
of two unknown quantities. The ingenuity of ICA is that it uses certain structure and
transformations so as to make the estimation possible [31,79].

The main assumptions for sj (j = 1,2, . . . , n) are that they must be mutually sta-
tistically independent and must be non-Gaussian. Otherwise, the ICA will not work.
If we somehow can find an approximation (or unmixing matrix) W as an estimate to
the inverse of A (or W ≈ A−1), then we can calculate the independent components by

s = Wx. (5.74)

This step is equivalent to the blind source separation (BBS) in signal processing [85,
79].

For any real symmetric matrix C, we have its eigenvalue problem as

Cu = λu. (5.75)

As the matrix here is real and symmetric, its eigenvectors should be orthogonal for
distinct eigenvalues. Thus we can use eigenvectors to form an orthogonal matrix U

whose columns are eigenvectors. We have

CU = U�, (5.76)

where � is a diagonal matrix whose diagonal values are the eigenvalues λi of C with
its corresponding eigenvector in ith column of U . Thus we have

C = UDU−1. (5.77)

Since U is an orthogonal matrix, we have UT = U−1. We now have

C = UDUT , (5.78)

which is the well-known eigenvalue decomposition (EVD).
In order for the ICA to work properly, we have to center the observations by sub-

tracting the mean or expectation μi = E[xi] from xi , that is, xi −μi , which means that
the covariance matrix C = E[xxT ] is symmetric and real, and thus we can write it

C = E[xxT ] = UDUT . (5.79)

However, we can scale x so that its variance becomes the identity matrix I . By defin-
ing a scaled vector

x̃ = (
UD−1/2UT

)
x (5.80)



Logistic regression, PCA, LDA, and ICA 107

with D−1/2 = diag{d−1/2
1 , . . . , d

−1/2
n }, we have its covariance matrix

C̃ = E[x̃x̃T ] = I . (5.81)

This step of rescaling is called whitening. This is in fact equivalent to normalizing the
variances after rotating the centered observations x̄i to align with the eigenvectors of
the covariance matrix so that they are along the rotated Cartesian basis vectors [131].
As a result, all linear dependencies in the data have been removed.

The whitening step essentially transforms A to Ã:

Ã = (
UD−1/2UT

)
A, x̃ = Ãs, (5.82)

so that

E[x̃x̃T ] = E[Ãs(Ãs)T = ÃE[ssT ]ÃT = ÃÃ
T = I , (5.83)

where we have assumed that sources sj are also whitened so that E[ssT ] = 1 [131,79].
The main advantage of these steps is that the number of degrees of freedom is now
reduced to n(n − 1)/2 due to the unique structure of orthogonal matrices.

Now to find A (or Ã) or the estimate inverse W is to find a proper rotation matrix U .
Alternatively, we can view this as an optimization problem to maximize the statistical
independence of sj , which is equivalent to the minimization of the multiinformation
I (s) of the unknown distribution f (s),

I (s) =
∫

f (s) log2

[ f (s)

�if (si)

]
ds, (5.84)

which is always nonnegative with the minimum at I (s) = 0 if all variables are statis-
tically independent when f (s) = �if (si) [130]. This can be approximated by

I (s) ≈
∑

i

H(Ãsi ) =
∑

i

H(x̃i ), (5.85)

where

H(x) = −
∫

f (x) log2 f (x)dx (5.86)

is the entropy of the probability distribution f (x). This optimization problem is sub-
ject to the constraint WW T = I , which can be solved effectively by algorithms such
as the FastICA and maximum likelihood [79,80].

Both PCA and ICA have been used in a diverse range of applications. They share
some similarities, but they do have some important differences. For example, the cor-
relation in the data is gradually removed in PCA, and some components are more
dominant than others. In contrast, both higher-order dependence and correlations are
removed in ICA. In addition, ICA mainly assumes that the underlying distributions
must not be Gaussian, and the vectors are not necessarily orthogonal in ICA, unlike
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the orthogonality in PCA. Furthermore, as the result of its whitening step, all compo-
nents are essentially equally important in the framework of ICA. These characteristics
mean that ICA can have certain advantages over PCA in some applications [39].

5.7 Notes on software

Almost all major software packages in statistics, data mining, and machine learning
have implemented the algorithms we introduced in this chapter. For example, R has
pca and fastICA packages. Python has pca, ica from sklearn. Matlab has all the
functionalities such as pca, svd, and mnrfit for multinomial logistic regression.
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The evolution of the Internet and social media has resulted in the huge increase of data
in terms of both volumes and complexity. In fact, “big data” has become a buzzword
nowadays, and the so-called big data science is becoming an important area.

Data mining has expanded beyond the traditional data modeling techniques such
as statistical models and regression methods. Data mining now also includes cluster-
ing and classifications, feature selection, and feature extraction and machine learning
techniques such as decision tree methods, hidden Markov models, artificial neural net-
works, and support vector machines. To introduce these methods systematically even
by taking a whole book [144–146] it is not possible to cover even a good fraction of
these methods in a book chapter. Therefore, we focus on some of the most widely used
methods.

Loosely speaking, for a multidimensional data sample with D different attributes
or features in a D-dimensional space x = (x1, x2, . . . , xD)T , if the dependent variable
y is a continuous variable, then the problem becomes a regression problem. If y only
takes some discrete values (class labels) such as 0 and 1 (or some integer values), then
it becomes a classification problem. In the special case of no class labels at all, such a
classification problem becomes a clustering problem [96,138,163].

Clustering and classification methods are rather rich with a wide spectrum of meth-
ods. We introduce the basic k-mean method for clustering and support vector machine

Introduction to Algorithms for Data Mining and Machine Learning. https://doi.org/10.1016/B978-0-12-817216-2.00013-2
Copyright © 2019 Elsevier Inc. All rights reserved.
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for classification. Artificial neural networks (ANN) are a class of methods with dif-
ferent variations and variants, and ANN can have many applications in a diverse
range of areas, including clustering, classification, machine learning, computational
intelligence, feature extraction and selection, and others. We will introduce ANN in
Chapter 8.

6.1 Introduction

Before we introduce some data mining techniques, let us briefly discuss the types of
data and distance measures.

6.1.1 Types of data

There are many different types of data, and there are different ways of classifying
such data, depending on the emphasis on certain features such as structures, media,
database, source, time, or dimensionality. Here we will loosely divide all data into
three categories: structured, unstructured, and mixed.

Structure data sets have fixed structures. Many data from science and engineer-
ing are well structured, including time series signals, images, astronomical surveys,
weather records, and databases. Unstructured data can be of any form without a
specific structural layout. Data related to social media, world-wide webs, business
transactions, and others are typically unstructured. In addition, data can be of mixed
type, where some parts are well structured, whereas the other parts do not. For exam-
ple, emails can mixed with text and attached data files, images, and videos. Many data
and multimedia repositories can be mixtures of different data types.

The main aim of data mining is to make sense of data by processing, analyzing, and
categorizing the data using various data mining techniques such as classification, clus-
tering, feature selection, and others. Ultimately, the purpose is to understand the data
with great insight and then to be able to make predictions for new data and unknown
data [62].

6.1.2 Distance metric

It is worth pointing out that distance metrics are also very important. Even with the
most efficient methods, if the metric measure is not defined properly, then the results
may be incorrect or meaningless. Most clustering methods use the Euclidean distance
and Jaccard similarity, though other distances such as the edit distance and Hamming
distance are also widely used.

Briefly speaking, the distance d(x,y) in the D-dimensional space between two
data points x = (x1, x2, . . . , xD)T and y = (y1, y2, . . . , yD)T is the Lp-norm given by
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d(x,y) = ||x − y||p =
( D∑

i

|xi − yi |p
)1/p

, (6.1)

which is also called the Minkowski distance in the literature. In the case of p = 2, it
becomes the standard Euclidean or Cartesian distance.

The Manhattan distance is defined by

Dm(x,y) =
D∑

i=1

|xi − yi |, (6.2)

which is its L1-norm.
Jaccard’s similarity index of two sets U and V is defined as

J (U,V ) = |U ∩ V |/|U ∪ V |, (6.3)

which leads to 0 ≤ J (U,V ) ≤ 1, and the Jaccard distance is defined as

dJ (U,V ) = 1 − J (U,V ). (6.4)

The edit distance between two strings U and V is the smallest number of insertions
and deletions of single characters that will convert U to V . For example, U = “abcde”
and V = “ackdeg”, the edit distance is d(U,V ) = 3. By deleting b, inserting k after c,
and then inserting g after e, the string U can be converted to V .

On the other hand, the Hamming distance is the number of components by which
two vectors/strings differ. For example, the Hamming distance between 10101 and
11110 is 3. Obviously, other distance metrics are also used in the literature.

6.2 Hierarchy clustering

For a given set of n observations, the aim is to divide them into some clusters (say,
k different clusters) so as to minimize certain clustering measures or objectives. There
are many key issues here. Firstly, we usually do not know how many clusters the
data may intrinsically have. Secondly, the data sets can be massive (n � 1, for ex-
ample, n = O(109) or even n = O(1018)). Thirdly, the data may not be clean enough
(often with useless information and/or noisy data). Finally, the data can be incom-
plete, and thus may lack sufficient information needed for correct clustering. Obvi-
ously, there are other issues, too, such as time factors, unstructured data, and distance
metrics.

Hierarchy clustering usually works well for small datasets. It starts with every
point in its own cluster (that is, k = n for n data points), followed by a simple iterative
procedure (see Algorithm 4).
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Algorithm 4 Hierarchy clustering algorithm.
1: Each point belongs to its own cluster k = n

2: for all data points do
3: Choose two nearest clusters to merge into one cluster
4: Update k ← k − 1
5: Repeat until the metric measure goes up
6: end for

This iterative procedure can lead to one big cluster k = 1 in the end. But it does
result in a complex decision tree, which provides an informative summary and some
insight into the structures and relationship within the data. However, if a distance
metric such as the Euclidean metric is defined properly, then the metric will start to
decrease at the initial stage when two clusters are merged. In the final stage, this metric
usually starts to increase, which is an indication to stop, and the number of the clusters
can be the true number of clusters. However, this is not straightforward in practice, and
there may not exist any unique k value at all.

In fact, k is a hyperparameter, which needs some tuning and parametric studies in
practice.

In the case where Euclidean distance measures are used, the distance between cen-
troids is defined as the cluster distance. The complexity of this algorithm is O(n3),
where n is the number of points. For n = 109, this can lead to O(1027) floating-point
operations, which is quite computationally expensive.

6.3 k-Nearest-neighbor algorithm

The k-nearest-neighbor (kNN) algorithm is a voting algorithm as it uses k sample
points in terms of a given distance measure to determine the class of the data point
under consideration. The main steps of a kNN algorithm can be summarized as Algo-
rithm 5.

Algorithm 5 Nearest-neighbor algorithm.
1: Define k

2: while (stopping criterion is not met) do
3: Compute distances from other data points to point i

4: Sort the computed distances
5: Select the k points with smallest distances
6: Assign the test point to the class by the simple majority
7: Return the class
8: end while

The essential idea of this algorithm is easy to understand, and the algorithm is
relatively simple to implement. The classification is based on local information and
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Figure 6.1 The schematic representation of kNN.

distances, and thus the decision boundaries can be rather flexible to deal with irregular
complex shapes.

The kNN algorithm is quite widely used due to its simplicity, and it is yet suffi-
ciently effective in many applications. Many online systems use it for recommending
products and movies. In addition, many text and image classification systems use it.
However, as the computation and sorting of distances iteratively can be computation-
ally expensive, thus it is not suitable for big data sets.

The main idea of a simple classification problem is shown in Fig. 6.1 where there
are two classes, stars (�) and diamonds (�). The task is to determine to what class ♣
should belong? If we use k = 3 (the smaller dashed circle), then the unknown ♣ should
belong to �. If we use k = 7 (the bigger solid circle), then this ♣ should be classified
as �. However, if we use k = 6 (the dotted circle), it would be difficult to classify ♣
because it leads to a tie in this case. This highlights the importance of choosing the
right parameter k and its sensitivity.

To avoid a tie, k should be an odd number. If k is too small, then it may lead to over-
fitting and more sensitive to noise in data, whereas large k values may lead to higher
bias and lower accuracy because it may include samples that are not actual neighbors.
However, there is no easy way to determine k, and some iterative cross-validation may
be needed. A crude guideline is k <

√
n for a given set of n training data points.

Another issue is that the distances computed may be dominated by the dimensions
that have largest ranges. For example, the distance between x = [1, 1000, 10] and
y = [0.5, 100, 1] will be largely affected by the second dimension or attribute whose
range is 1000. In this case, some rescaling or normalization is needed to make sure
that all ranges are comparable, typically in the range of [0,1].

There are quite a few variants of kNN, such as kNN regression where the averages
of k samples are used, fuzzy kNN, and others.

6.4 k-Means algorithm

The main aim of the k-means clustering method is to divide a set of n observations
into k different clusters in such a way that each point belongs to the nearest cluster
with the shortest distance to its corresponding cluster mean or centroid.
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Figure 6.2 K-means algorithm and the cluster centers.

Suppose we have n observation points x1,x2, . . . ,xn in a d-dimensional vector
space. Our aim is to partition these observations into k clusters (S1, S2, . . . , Sk) with
centroid means (ξ1, ξ2, . . . , ξ k) as shown in Fig. 6.2, so that the clusterwise sum of
squares, also called within-cluster sum of squares, can be minimized, that is,

minimize
k∑

j=1,xi∈Si

||xi − ξ j ||2, (6.5)

where 1 < k ≤ n and typically k � n.
This k-means method for dividing n points into k clusters can be summarized

schematically in Algorithm 6.

Algorithm 6 k-means algorithm.
1: Choose randomly k points as the initial centroids of the k clusters
2: for each remaining point i do
3: Assign i to the cluster with the closest centroid
4: Update the centroid of that cluster (containing i)
5: end for

There are some key issues concerning this method. The choice of k points as the
initial centroids is not efficient. In the worst case, the k points selected randomly can
belong to the same cluster. One possible remedy is to choose k points with the largest
distances from each other. This is often carried out by starting from a random point,
then trying to find the second point that is as far as possible from the first point, and
then trying to find the third point that is as far as possible from the previous two points.
This continues until the first k points are initialized. This method is an improvement
over the previous random selection method, but there is still no guarantee that the
choice of these initial points will lead to the best clustering solutions. Therefore, some
sort of random restart and multiple runs are needed.
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On the other hand, the algorithm complexity of this clustering method is typically
O(nkd+1 log(n)), where d is the dimension of the data. Even for n = 106, k = 3,
and d = 2, this becomes O(1043), which is extremely computationally expensive.
However, it is worth pointing out that such a complexity is just theoretical, and these
methods can sometime work surprisingly well in practice (at least for small datasets).
In the worst cases, such an algorithm complexity can become NP-hard.

For a given dataset, it is difficult to know what k should be used because k is
a hyperparameter. Ideally, the initial choice of k should be sufficiently close to the
actual number of intrinsic classes in the data, and then some adjustment around this
initial guess can be done. But in practice, this may need either some experience or
other methods to get sense of data. In addition, the clustering distances can also be
used to check if k is a proper choice in many cases.

There are many other methods such as fuzzy k-means method and others. The
interested readers can consult a more advance literature about data mining.

6.5 Decision trees and random forests

6.5.1 Decision tree algorithm

The decision tree algorithm is a widely used algorithm for classification, which uses
attribute values to partition the decision space into smaller subspaces in an iterative
manner. Its essence is a divide-and-conquer approach, starting with a root node and
gradually growing to a final classification (or leaf). The decision processes can be
represented graphically as a tree, though this tree is usually drawn upside down [123].

Example 26

Let us use an example about a hypothetical classification system for a university degree. Suppose
a student has to take different modules and a major dissertation or thesis for a degree, and each
module subject has an exam. The minimum pass marks are 40%. For each thesis, three grades
(merit, pass, fail) are given. A naive system is used for this hypothetical degree programme, as
shown in Fig. 6.3, to put equal weights on the exams and thesis. If a student gets all the modules
with a mark above 80% with a merit of his or her thesis, a first class degree (I) will be award to
this student. The final classes are first class (I), second class (II), third class (III), or pass.

This degree classification procedure can be represented by a decision tree as shown in Fig. 6.4,
where the tree is drawn upside down from a root node Thesis growing to leaf nodes (circles),
called terminal nodes or decision nodes, which correspond to outcome classes.

It is worth pointing out that the tree is a directed tree in the sense that decisions start
at the top and go downward. A node with one incoming edge and multiple outgoing
edges is called an internal node. Each possible decision is covered and represented as
a branch, and a complete decision process is essentially a path or branch from the root
node to a leaf.
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Figure 6.3 Naive classification for a hypothetical degree.

Figure 6.4 Decision tree for the hypothesis degree classification.

6.5.2 ID3 algorithm and C4.5 classifier

Obviously, trees can be drawn in different ways, depending on the focus and which
criterion is applied first. Thus, the decision trees are not unique.

In principle, different ways of drawing the trees should lead to the same conclusions
in terms of the final classification class outcomes. As the complexity increases with
the number of attributes and their value ranges or categorical values, the actual tree
can be highly complex, and thus decision trees may not necessarily lead to the same
conclusion. This issue becomes more significant when the values of certain attributes
have noise or uncertainty, or when certain attributes may have missing values.

Another issue is which attribute should be used first. Different algorithms may
choose attributes using different criteria. To make an informed choice, we have
to define certain measures or criteria. The popular algorithm ID3 (Iterative Di-
chotomiser 3), developed by Quinlan [117] in 1986, uses an information gain as a
rule to select the attribute that can explain the training examples and maximize the
information gain.
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For a two-class classification (1 or 0) problem with n training examples, if p1

represents the fraction of class 1 among the whole set, and p0 = 1 − p1 represents
the fraction of class 0 among the whole set, then the entropy S can be defined as

S = −p1 log2 p1 − p0 log2 p0, (6.6)

where base 2 logarithm is used. It is worth pointing out that here we conventionally
set 0 log2 0 = 0. In case of K multiple classes, this entropy can be extended to

S = −
K∑

i=1

pi log2 pi, (6.7)

where pi is the fraction or probability of samples belonging to class i. It is straight-
forward to check that the minimum value of S is zero, whereas the maximum value
Smax = log2 K is reached when all pi are the same, that is, pi = 1/K (a uniform
distribution). In addition, in some literature, this Shannon entropy is called an impu-
rity function or impurity measure. Another related classical impurity function is the
so-called Gini index or Gini impurity

GI =
K∑

i=1

pi(1 − pi). (6.8)

The information gain IG(A) of an attribute A with possible categorical values
of xj , where j = 1,2, . . . ,K are the categories, is defined as

IG(A) = S −
∑

xj ∈�(A)

fjSxj
, (6.9)

where �(A) is the set of categorical values of attribute A, and fj is the fraction of
value xj ∈ A, which can be calculated by the ratio of the number |Axj

| of xj ∈ A to
the total number of values or cardinality |A|. The Sxj

is the entropy, which has a similar
formula to the entropy S, though its fractions should be based on the categorical values
of that attribute.

Let us look at an example to see how these formulas work.

Example 27

For a class of a degree programme, there are 30 students. The numbers of students of different
classes (I, II, III, and pass) are 12, 9, 6, 3, respectively. So we have K = 4 classes, and the fractions
of each class are

p1 = 12

30
= 0.4, p2 = 9

30
= 0.3, p3 = 6

30
= 0.2, p4(pass) = 3

30
= 0.1.

So their entropy is
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S = −
4∑

i=1

pi log2 pi

= −
[
0.4 log2 4 + 0.3 log2 0.3 + 0.2 log2 0.2 + 0.1 log2 0.1

]
= 1.8464.

Among all the four classes, suppose there are 20 theses that are merit, and 10 theses that are
just pass. For merits, their corresponding students’ classes are 16, 2, 1, 1 for I, II, III, and pass,
respectively, whereas for theses with a pass, they are 2, 2, 4, 2 for I, II, III, and pass, respectively.
So the attribute “thesis” has two values “merit” and “pass” (all 30 students got a degree). So the
fractions for merit and pass are 20/30 and 10/30, respectively, that is, f1 = 2/3 and f2 = 1/3.

For the theses with a merit, their fractions or probabilities of different classes are p =
[16,2,1,1]/20 = [0.8,0.1,0.05,0.05], and thus their entropy is

Sx1 = −[0.8 log2 0.8 + 0.1 log2 0.1 + 0.05 log2 0.05 + 0.05 log2 0.05] = 1.0219.

For the theses with a pass, their fractions are p = [2,2,4,2]/10 = [0.2,0.2,0.4,0.2], and their
entropy is

Sx2 = −[0.2 log2 0.2 + 0.2 log2 0.2 + 0.4 log2 0.4 + 0.2 log2 0.2] = 1.9219.

Finally, the information gain is

IG(thesis) = S −
∑

xj ∈[merit, pass]
fj Sxj

= 1.8464 −
[2

3
× 1.0219 + 1

3
× 1.9219

]
= 0.5245.

This means that the information gain by using thesis marks as a decision criterion is 0.5245 bit.

The main idea of the ID3 algorithm is to search the decision space and form deci-
sion trees by fitting the data and maximizing the information gain as each branching
or decision step [117]. The main steps of ID3 are as Algorithm 7.

Algorithm 7 The ID3 algorithm.
1: Load the data and calculate the sample entropy S

2: for all attributes do
3: Find the attribute with the maximum information gain IG(A)

4: Split the set into subsets by values of that best attribute
5: Create a decision tree node for that attribute with IG(A)max
6: Iterate over the rest of unused/unsplit attributes
7: end for

There are different ways to define a proper stopping criterion. Essentially, the iter-
ations stop if no more attributes are left, or no data samples in a subset, or each entry
in a subset becomes the same class, or all nodes are turned into leaf nodes.
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Though the ID3 is simple and can work well, however, this method is a greedy
method, and thus it tends to lead to overfit the data set, and there is no guarantee of
optimality. Obviously, this method cannot handle continuous data set.

A significant improvement was the introduction of C4.5 method by Quinlan [118]
in 1993, which was later ranked among the top 10 algorithms in data mining [30,147].
In contrast with ID3, C4.5 can deal with continuous data and missing data. In addition,
pruning is used in C4.5 so as to reduce the depth of the trees and remove unnecessary
or insignificant branches. The decision criterion uses a normalized information gain
ratio. The normalization also reduces the influence of large variations of different at-
tribute values.

For K different classes or categories, the split information (SI) of an attribute is the
entropy

SI (A) = −
K∑

i=1

fi log2 fi, (6.10)

where fi is the fraction or probability of the data in category i among the whole
data set. The information gain ratio (IGR) is the ratio of information gain, defined in
Eq. (6.9), to the split information in Eq. (6.10), that is,

IGR(A) = IG(A)

SI (A)
, (6.11)

which is essentially the information gain, normalized by the split information.
It is worth pointing out that this normalized information gain ratio has the advan-

tage of not preferring the attributes with nearly uniform distributions, but it does have
a potential issue of dividing by a small number (or nearly zero) if splitting information
is too small. In this case, an addition criterion to check the values of information gain
is needed.

The main steps of the well-known C4.5 algorithm are summarized in Algorithm 8.

Algorithm 8 C4.5 algorithm.
1: Load data and initialize
2: for (each attribute A) do
3: Calculate its normalized information gain ratio IGR(A)

4: Find the attribute with the maximum IGR

5: Create a decision node by splitting that attribute
6: Iterate over the rest of the unsplit attributes
7: end for

In addition, to prevent overfitting, the C4.5 algorithm uses a so-called reduced-error
pruning. The main idea of pruning is to remove the subtree or child nodes of a decision
node and turn that decision node into a leaf node by giving it with the most common
class among the training data samples. The removal of nodes can be according to
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certain criteria, and the removal of these nodes should not reduce the performance of
the resulting trees, in comparison with the original larger trees [118].

The way of dealing with continuous attributes is relatively straightforward. For
example, if an attribute A is continuous, then it can be simply converted into a Boolean
attribute at a critical value x∗ by setting true (or 1) if A ≥ x∗ and false (or 0) if A < x∗.
The critical value x∗ can be any decision boundary that be appropriate for that attribute
and decision-making.

Though C4.5 algorithm and its variants work well, the tree for each test instance
constructed is a single tree. For large datasets, a natural extension is to use multiple
trees simultaneously. Multiple trees are constructed from random sampling from the
learning dataset with replacements from a forest of decision trees. In this case, we are
dealing with the well-known random forest algorithm.

6.5.3 Random forest

The main idea of the random forest classifier to construct multiple decision trees ran-
domly using sampling with replacement, and the final decisions will be based on a
rule, often in terms of a voting system of the ensemble of the decision trees. The basic
idea of random decision forests was developed by Ho [74] in 1995 and significantly
extended later by Breiman [23] using the idea of bagging. Bagging can be used to fit
many large trees by using a majority vote as the rule of classification. The random for-
est algorithm is a combination of multiple decorrelated trees with bagging. In essence,
the random forest classifier is an ensemble method or ensemble-based decision-tree
learning with the aim to improve accuracy with reduced variance and to potentially
avoid overfitting.

For a set of D features (or dimensionality of the training dataset), we often use
m features for splitting the data at each decision split, though m = �√D� or m =
�log2 D� (rounded to the nearest integer) is usually used to determine m. For each
subset of m features, the training samples are randomly selected from the original
data set with replacement. Then each subset is fed into a decision tree classifier, and
classification is based on the majority vote of the ensemble.

Each tree can cast a single vote for the most popular class for a given input feature
vector. The basic idea of random forests are schematically represented in Fig. 6.5.

The main steps of the random forest classifier can be summarized as the steps
shown in Algorithm 9.

Though random forests usually do not lead to overfitting, however, overfitting can
still occur for noisy data. It is worth pointing out that there are still some free pa-
rameters (or hyperparameters) to set. For example, how many trees should be used
in a forest. Typically, a few dozens to a few hundred trees are needed to estimate the
statistical measures properly, and some literature uses T = 64 to 128 (or even 256)
trees.

There are a vast array of variants, based on random forests, including the kernel
random forest and various boost methods such as Adaboost. The interested readers
can consult a more advanced literature on these topics.
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Figure 6.5 The basic idea of random forests.

Algorithm 9 Random forest algorithm.
1: Load data and initialize
2: for (a given number of trees) do
3: Select m features randomly from D features
4: Sample data to create T different trees
5: Create each tree by iteratively splitting/forming decision nodes
6: Predict any test feature by running the multiple trees
7: Classify using majority voting
8: end for

6.6 Bayesian classifiers

Classifications can be carried out from a probabilistic perspective, and the naive
Bayesian classifier is one of the most widely used classifiers.

6.6.1 Naive Bayesian classifier

Probabilistic reasoning and inferencing can be considered as approaches based on the
assumptions that decision variables obey some probability distributions and data are
drawn from certain probability distributions. We can gain more insight by learning
from the data and approximating the underlying distributions more accurately as more
data are accumulated [127,61].

The essence of a Bayesian classifier is to estimate the probabilities of all alternative
models or hypotheses, given data as evidence, and then to find the most probable clas-
sification to be assigned to each new input. The core foundation of Bayesian classifiers
is the Bayes’ theorem or Bayesian rule

p(H |S) = p(S|H)p(H)

p(S)
, (6.12)

which estimates the posterior probability p(H |S) for a hypothesis or model, given
the samples or training data set S. Here p(S|H) is the likelihood probability of the
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data samples, given H is true, and p(H) is the prior probability of hypothesis H ,
which somehow incorporates any background knowledge about H . If there is no prior
knowledge, we can use some uniform distributions as a prior [107,108]. Furthermore,
p(S) can be considered as the prior probability of sample data S. Depending on the
emphasis and formulations, we can seek a maximum a posterior (MAP) hypothesis

maximize p(H |S) ∝ maximize P(S|H)P (H), (6.13)

or we can seek a maximum likelihood (ML)

maximize p(S|H), (6.14)

which is equivalent to the previous MAP if both p(H) and p(S) are constant.
For a classification problem with a focus on an attribute A = x with K different

attribute values [x1, x2, . . . , xK ], its model function (the model hypothesis) y = f (x)

forms a set of finite discrete values yj ∈ �. The aim of a Bayesian classifier is to
estimate the probability of y, given data xi , so as to assign the class probability

maxp(yj |xi) = p(yj |x1, x2, . . . , xK), yj ∈ �, (6.15)

which is equivalent to [from Eq. (6.12)]

max
p(x1, x2, . . . , xK |yj )p(yj )

p(x1, x2, . . . , xK)
∝ maxp(x1, x2, . . . , xK |yj )p(yj ). (6.16)

However, it is not trivial to calculate the probability p(x1, . . . , xK |yj ), and in most
cases, it is impossible to calculate at all.

A naive assumption is that all the data sample values are conditionally indepen-
dent from each other, and consequently the joint probability becomes a product of
individual probability. Thus we can use

p(x1, x2, ..., xK |yj ) =
K∏

i=1

p(xi |yj ). (6.17)

Eq. (6.16) becomes

maxp(yj )

K∏
i=1

p(xi |yj ). (6.18)

A probabilistic classifier using this to assign probabilities becomes a naive Bayesian
classifier.

The main task now is to estimate the probability of the likelihood and the prior
probability from a training data set. In some cases, especially for continuous dataset,
we can assume that the samples are drawn from a Gaussian distribution. In this case,
the naive Bayesian classifier becomes the Gaussian naive Bayesian classifier.
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One issue is that the product of multiple probability terms can lead to very small
values, or even near zero values. To avoid such a potential difficulty, Mitchell sug-
gested to use an m-estimate of probability using

Kj + msp

K + ms

, (6.19)

where Kj is the number of samples with y = yj , and p is a prior estimate of the
probability (which is usually taken as a uniform distribution), and ms is the equivalent
sample size. For more detail, the readers can refer to the book by Michell [105] and
other specialized literature [51,108].

6.6.2 Bayesian networks

A key assumption for naive Bayesian classifiers is that all variable values are con-
ditionally independent, given the target classification. This assumption significantly
reduces the complexity of the calculations of the objective functions in terms of pos-
terior probabilities.

However, this assumption may not be true for certain applications such as text
documents and speech signals. In this case, Bayesian belief networks can be a good
alternative.

Bayesian belief networks (BBN) use a set of conditionally independent probabili-
ties, but not imposing all variable values. We have seen some basic idea of Bayesian
networks in Chapter 2, and here we focus on the classification problems. In a BBN,
nodes represent variables that can be continuous or discrete, and arcs represent causal-
ity relationships in terms of conditional probabilities.

For a given structure of a BBN, not every variable is observable. Unobservable
variables are called hidden or latent variables. The BBN model has both observable
random variables X and hidden random variables Z, which means that the likelihood
function p(S|H) becomes a function of X and Z, that is, L(X,Z). The maximiza-
tion of the likelihood L(X,Z) is equivalent to the maximization of expectation of the
logarithmic likelihood function. Thus the method becomes the so-called expectation-
maximization (EM) method, which consists of an E step and an M step [36]. In the
E step, we define the expectation

QL = E
[

logL(X,Z)
]
, (6.20)

which starts with arbitrary values initially and repeatedly estimates their expectation.
The aim in the M step is to use an optimizer to solve an optimization problem

maximize QL = E
[

logL(X,Z)
]
. (6.21)

The optimizer can be a gradient-based search algorithm.
The exact form of the likelihood function can be difficult to write, depending on

the structure of the BBN. In some cases, the network structure may not be known in
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advance, which makes it extremely difficult. In this case, some heuristic and meta-
heuristic approaches may be needed to learn the network structures. Interested readers
can consult a more advanced literature.

6.7 Data mining for big data

The big data science has become increasingly important nowadays, driven by the Inter-
net, social media, and internet of things (IoT). Many applications are now dynamically
data-driven. Comparing with traditional databases and data analytics, big data have
some key characteristics, and thus the techniques required to cope with such big data
are also more sophisticated [76].

6.7.1 Characteristics of big data

The main characteristics of big data can be summarized as 5 Vs, and they are: volume,
velocity, variety, value, and veracity [66,76,78,99].

• Volume: the volume of data has increased dramatically in recent years, driven by
the Internet, multimedia, and social media.

• Velocity: the rate of data accumulation is also increased dramatically. For example,
it is estimated that there are about 20 trillion GB data added each year.

• Variety: the variety of data is also diverse, and data can be structured and unstruc-
tured from different types, sources, and media. For example, digital astronomy can
have large datasets of images and sky survey images, but they are mainly structured
data. In comparison, big data from social media, digital economy, and internet of
things can collect a huge range of different data types.

In addition, the dimensionality of big data can be high, depending on many different
factors, features or variables, either explicit or hidden.

The collection, storage and processing of such big data sets pose many challenges
in terms of both hardware and software. However, whatever these challenges may be,
we still have to try to extract some values from such big data [101].

• Value: The main aim of analysis and processing is to extract some useful features
so as to gain insight into the data and to make predictions. Ideally, the ultimate aim
is to understand the data so as to potentially predict future events.

• Veracity: Obviously, no matter how big the data may be, they can be incomplete
with noise and uncertainty, subject to dynamic changes. Even so, the quality of the
data and the subsequent analysis will have different accuracy and values.

All these characteristics, in addition to high dimensionality, make the data analysis a
very challenging task, if not impossible.
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6.7.2 Statistical nature of big data

Almost all data mining techniques use some statistical properties. For example, it
is traditionally assumed that data are independent in the statistical sense. However,
in reality, most data are not necessarily statistically independent, and thus statistical
foundations for such methods may not be valid. Currently, there is no rigorous the-
ory for methods that are based on statistically dependent data. Even so, researchers
just assume whatever is most appropriate for the data so as to be able to use certain
techniques to process and analyze the big data.

Thus, traditional methods are still used with some modifications to deal with big
data, including regression, decision tree, hidden Markov models, neural networks,
support vector machines, and others. However, from the statistical point of view, we
should be aware of Bonferroni’s principle when dealing with big data. If you try to
calculate some expected number of occurrences of certain patterns and if this number
is significantly larger than the number of real instances that you hope to find, then you
can conclude that almost anything you find is false (which means it is an artifact in a
statistical sense, rather than actual evidence). In order words, if you look too hard for
interesting patterns that your data may support, you are bound to find false patterns.
Thus care should be taken when interpreting data [96].

6.7.3 Mining big data

For big data, apart from other challenges such as storage and retrieval, one of the chal-
lenges is that the data to be processed is much larger than the main physical memory
of the computer, and thus it is not possible to load all the data into a computer’s main
memory to process. Some kind of sampling and segment-by-segment processing may
be needed before applying any algorithms.

Recent developments show that new methods may be more suitable for large
datasets [96]. For example, the Bradley–Fayyad–Reina (BFR) algorithm [25] and
Clustering Using REpresentative (CURE) algorithm have shown good results. For
more detail about these two algorithms, we refer the readers to the books by Leskovec
et al. [96], Bradley et al. [25], and Guha et al. [60].

In essence, the BFR algorithm is an extension of k-means to high-dimensional data.
It assumes that data are distributed around centroids according to Gaussian distribu-
tions in Euclidean spaces. The essence of BFR algorithm can be outlined as follows.

1. Choose a small subset (by resampling) of the big data using either k-means or
hierarchy methods to find the initial k clusters.

2. Take each chunk data (a subset) from the big dataset and do the following:

• Assign the data points and summarize the clusters (see details further), then
discard the data;

• Compress and merge points that are close to one another (forming compressed
sets);

• Retain the data points that are not assigned or not close to one another (forming
retained sets).
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For any given N points (in a subset), calculate the SUMi and SUMSQi , where SUMi

is the vector sum of data in the ith dimension, and SUMSQi is the sum of the squares
of all the data points in the ith dimension.

Then, the centroid can be updated at SUMi /N in the ith dimension, and its variance
in the ith dimension can be estimated as SUMSQi−(SUMi /N)2. The advantage of
such dimension-by-dimension calculations is that both SUMi and SUMSQi become
simple sums when combining two clusters.

When deciding if a new point xi is close enough to one of the k clusters, we can
use the following rules: (1) add point xi to a cluster if it has the centroid closest to xi ,
or (2) assign xi to a cluster with the least Mahalanobis distance.

The Mahalanobis distance between x = (x1, x2, . . . , xn) and a cluster centroid
c = (c1, c2, . . . , cn) is

dm =
√√√√ n∑

i=1

(xi − ci

σi

)2
, (6.22)

where σi is the standard deviation of the cluster in the ith dimension. Therefore this
distance is a variance-based scaled distance.

For a subset of data points (a chunk from the big data), the detailed calculations are
as follows:

• For data points that close to the centroid of a cluster, add these points to that cluster.
Then, update the centroid and other metrics such as SUMi and SUMSQi .

• For points that are not close to any centroid, cluster them, together with the retained
sets. Then, merge any miniclusters when appropriate.

• For points that are assigned to a cluster (including any minicluster), update the
centroid and other metrics (then discard such points).

• In the final stage (after going through all the subset of the data or loading the last
chunk of the data), postprocess the retained sets and compressed sets by either
assigning each point to the cluster of the nearest centroid or discarding them as
outliers.

Though the BFR algorithm is efficient, it is mainly for data that are symmet-
ric around clusters, and thus it cannot deal with S-shapes or rings effectively. For
such complicated datasets, we can use another powerful algorithm, called the CURE
(Clustering Using REpresentives) algorithm, which is a point-assignment algorithm
in Euclidean spaces without any assumptions about the shape of clusters (unlike the
normal distribution assumption in the BFR algorithm). As a result, this algorithm can
deal with data clustering of odd shapes such as bends, S-shapes, and rings.

The main steps of the CURE algorithm can be summarized as follows [60]:

1. Choose a small sample (a small subset) of the data so as to be clustered in the
main memory using any good methods such as k-means and hierarchy methods,
which gives the initial clusters.

2. Select a small set of points from each cluster to be representative points (points
should be as far from one another as possible).
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3. Move each of the representative points a fixed fraction (typically 20%) of the
distance between its location to the centroid of its cluster.

4. Merge two clusters if they have a pair of representation points (one from each
cluster) that are sufficiently close.

5. Repeat the previous steps and merge until no more close cluster to merge.
6. Carry out point assignment for all remaining points in the big data.

Though this algorithm can be sufficiently efficient in practice, there is no guar-
antee for the global optimality. For large datasets, it is impractical to reach the true
global optimality. Any suboptimal or sufficient good solutions can become acceptable
in practical applications.

It is worth pointing out that the above clustering calculations have been based on the
Euclidean distances. Obviously, non-Euclidean distances such as Jaccard similarity,
Edit distance, and Hamming distance can be used, depending on the types of problems.

Recent trends tend to combine traditional algorithms with optimization algorithms
that are based on swarm intelligence. The basic idea is to use optimization techniques
to optimize the centroids and then use clustering methods such as k-means to carry out
clustering. Recent studies suggest that such hybrid methods can produce very promis-
ing results [37]. For example, the firefly algorithm can be used to do clustering and
classifications with superior performance.

For any methods to be efficient and useful, large matrices should be avoided, and
there is no need to try every possible combination. The methods used to solve a
large-scale problem should be efficient enough to produce good results in a practi-
cally acceptable time scale. However, in general, there is no guarantee that the global
optimality can be found.

There are other methods such as GRGPF and BIRCH algorithms for clustering big
datasets. In addition, algorithms and implementations can be parallelized to speed up
these algorithms. The readers can consult a more advanced literature on these top-
ics [96].

6.8 Notes on software

There are a vast array of software packages for data mining, and it is almost an impos-
sible task to mention all such packages. Matlab, R, Python, Mathematica, and many
others have implemented k-means, kNN, and various classifiers.

For example, R has kmeans, kNN, decision trees, and random forest packages. In
addition, R can be paired with big databases such as Amazon Redshift and Google
BigQuery. Python has kmeans and decision-tree classifiers. There are also Python li-
braries such as Pandas, NumPy, SciPy, and machine learning libraries such as Mlpy,
Theano, Scikit-learn, and others. Matlab has all the functionalities such as kmeans,
fitcknn, fitctree, and fitrensemble. More computer codes in Matlab can be found
from Mathworks file exchanges, though not all files are well tested on the file exchange
web site.
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Furthermore, RapidMiner has all these classifiers implemented, including logistic
regression, decision trees, and naive Bayesian classifier. It is worth mentioning that
these algorithms, including random forests, have been implemented in other program-
ming languages such as C++.
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Support vector machines are a class of powerful tools, which become increasingly
popular in classifications, data mining, pattern recognition, artificial intelligence, and
optimization.

In many applications, the aim is separating some complex data into different cate-
gories. For example, in pattern recognition, we may need to simply separate different
images into different classes, that is, to label them with categorical values. In other
applications, we have to answer a yes–no question, which is a binary classification.
If there are k different classes, then we can in principle first classify them into two
classes, (say) class 1 and nonclass 1. We then focus on the nonclass 1 and divide it
into two different classes, and so on.

Mathematically speaking, for a given set of scattered data, the objective is separat-
ing them into different regions/domains or categorical types. In the simplest case, the
outputs are just class either A or B, that is, either +1 or −1.

7.1 Statistical learning theory

For the case of two-class classification, we have the learning examples or data as
(xi , yi) where i = 1,2, . . . , n and yi ∈ {−1,+1}. The aim of such learning is to find a
function fβ(x) from allowable functions {fβ : β ∈ �} in the parameter space � such
that

fβ(xi ) �→ yi (i = 1,2, . . . , n) (7.1)

and such that the expected risk E(β) is minimal. The latter is defined as

E(β) = 1

2

∫
|fβ(x) − y|dP (x, y), (7.2)
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where P(x, y) is an unknown probability distribution, which makes it impossible to
calculate E(β) directly. A simple approach is using the so-called empirical risk

Ep(β) ≈ 1

n

n∑
i=1

1

2

∣∣fβ(xi ) − yi

∣∣. (7.3)

A main drawback of this approach is that a small risk or error on the training set does
not necessarily guarantee a small error on prediction if the number n of training data
is small.

In the framework of structural risk minimization and statistical learning theory,
there exists an upper bound for such errors. For a given probability of at least 1 − p,
the Vapnik bound for the errors can be written as

E(β) ≤ Rp(β) + φ
(h

n
,

log(p)

n

)
, (7.4)

where

φ
(h

n
,

log(p)

n

) =
√

1

n

[
h(log

2n

h
+ 1) − log(

p

4
)
]
. (7.5)

Here h is a parameter, often referred to as the Vapnik–Chervonenskis dimension (or
simply VC-dimension) [143]. This dimension describes the capacity for prediction of
the function set fβ . In the simplest binary classification with only two values of +1
and −1, h is essentially the maximum number of points that can be classified into two
distinct classes in all possible 2h combinations.

7.2 Linear support vector machine

The basic idea of classification is trying to separate different samples into different
classes. For binary classification such as the diamonds and circles as shown in Fig. 7.1,
we intend to construct a hyperplane

w · x + b = 0 (7.6)

so that these samples can be divided into two classes with all the triangles on one side
and the spheres on the other side. Here the normal vector w should have the same size
as x, and they can be determined using the data, though the method of determining
them is not straightforward. This requires the existence of a hyperplane; otherwise,
this approach will not work. In this case, we have to use other methods.

It is worth pointing out that w · x + b = 0 can also be written as

wT x + b = 0, (7.7)

but the dot product form of w · x explicitly highlights the nature of a hyperplane
governed by the normal direction w.
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Figure 7.1 Hyperplane, maximum margins, and a linear support vector machine (SVM).

If we can construct such a hyperplane, we should construct two hyperplanes (shown
as dashed lines in Fig. 7.1) so that the two hyperplanes should be as far away as
possible and no samples should be between these two planes. Mathematically, this is
equivalent to two equations

w · x + b = +1 (7.8)

and

w · x + b = −1. (7.9)

It is worth pointing out that these equations in the literature are also written as

y(x) = f (x) =< w,x > +b = ±1. (7.10)

From these two equations it is straightforward to verify that the normal (perpendicular)
distance d between these two hyperplanes is related to the norm ||w|| via

d = 2

||w|| . (7.11)

The main objective of constructing these two hyperplanes is maximizing the distance
or the margin between the two planes. The maximization of d is equivalent to the min-
imization of ||w|| or, more conveniently, ||w||2/2. Here ||w|| is the standard L2-norm
defined earlier in Chapter 2.

From the optimization point of view, the maximization of margins can be written
as

minimize
1

2
||w||2 = 1

2
||w||22 = 1

2
(w · w). (7.12)

If we can classify all the samples completely, then for any sample (xi , yi), i =
1,2, . . . , n, we have

w · xi + b ≥ +1 if (xi , yi) ∈ one class, (7.13)
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and

w · xi + b ≤ −1 if (xi , yi) ∈ the other class. (7.14)

As yi ∈ {+1,−1}, these two equations can be combined as

yi(w · xi + b) ≥ 1 (i = 1,2, . . . , n). (7.15)

However, in reality, it is not always possible to construct such a separating hyperplane.
A very useful approach is using nonnegative slack variables

ηi ≥ 0 (i = 1,2, . . . , n), (7.16)

so that

yi(w · xi + b) ≥ 1 − ηi (i = 1,2, . . . , n). (7.17)

Now the optimization problem for the support vector machine becomes

minimize � = 1

2
||w||2 + λ

n∑
i=1

ηi, (7.18)

subject to

yi(w · xi + b) ≥ 1 − ηi, (7.19)

ηi ≥ 0 (i = 1,2, . . . , n), (7.20)

where λ > 0 is a penalty parameter to be chosen appropriately. Here, the term
∑n

i=1 ηi

is essentially a measure of the upper bound of the number of misclassifications on the
training data.

By using Lagrange multipliers αi ≥ 0 we can rewrite the constrained optimization
into an unconstrained version, and we have

L = 1

2
||w||2 + λ

n∑
i=1

ηi −
n∑

i=1

αi[yi(w · xi + b) − (1 − ηi)]. (7.21)

From this we can write the Karush–Kuhn–Tucker conditions as

∂L

∂w
= w −

n∑
i=1

αiyixi = 0, (7.22)

∂L

∂b
= −

n∑
i=1

αiyi = 0, yi(w · xi + b) − (1 − ηi) ≥ 0, (7.23)

αi[yi(w · xi + b) − (1 − ηi)] = 0 (i = 1,2, . . . , n), (7.24)

αi ≥ 0, ηi ≥ 0 (i = 1,2, . . . , n). (7.25)
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From the first KKT condition, we get

w =
n∑

i=1

yiαixi . (7.26)

It is worth pointing out here that only the nonzero coefficients αi contribute to the
overall solution. This comes from the KKT condition (7.24), which implies that when
αi �= 0, inequality (7.19) must be satisfied exactly, whereas αi = 0 means that the in-
equality is automatically met. Therefore, only the corresponding training data (xi , yi)

with αi > 0 can contribute to the solution, and thus such xi form the support vectors
(hence, the name support vector machine). For example, the position vectors for the
four points (A,B,C,D) in Fig. 7.1 are support vectors. All the other data with αi = 0
become irrelevant [34,143].

There is a dual problem for this SVM optimization problem [33,133,143], and it
can be shown that the solution for αi can be found by solving the following quadratic
programming:

maximize
n∑

i=1

αi − 1

2

n∑
i,j=1

αiαjyiyj (xi · xj ), (7.27)

subject to

n∑
i=1

αiyi = 0, (7.28)

0 ≤ αi ≤ λ (i = 1,2, . . . , n). (7.29)

From the coefficients αi we can write the final classification or decision function as

f (x) = sign
[ n∑

i=1

αiyi(x · xi ) + b
]
, (7.30)

where sign(x) is the classic sign function: sign(x) = +1 if x > 0, −1 if x < 0, and 0
if x = 0.

7.3 Kernel functions and nonlinear SVM

In reality, most problems are nonlinear, and the previous linear SVM cannot be used.
Ideally, we should find some nonlinear transformation φ such that the data can be
mapped onto a high-dimensional feature space where classification becomes linear
(see Fig. 7.2). The transformation should be chosen in a certain way so that their dot
product leads to a kernel-style function

K(x,xi ) = φ(x) · φ(xi ), (7.31)
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Figure 7.2 Kernels and nonlinear transformation.

which enables us to write our decision function as

f (x) = sign
[ n∑

i=1

αiyiK(x,xi ) + b
]
. (7.32)

From the theory of eigenfunctions we know that it is possible to expand functions in
terms of eigenfunctions [43]. In fact, we do not need to know such transformations; we
can directly use kernel functions K(x,xi ) to complete this task. This is the so-called
kernel function trick. Now the main task is choosing a suitable kernel function for a
given problem.

For most problems concerning a nonlinear support vector machine, we can use

K(x,xi ) = (x · xi)
d (7.33)

for polynomial classifiers and

K(x,xi ) = tanh[k(x · xi ) + 
)] (7.34)

for neural networks. The most widely used kernel is the Gaussian radial basis function
(RBF)

K(x,xi ) = exp
[
− ||x − xi ||2/(2σ 2)

]
= exp

[
− γ ||x − xi ||2

]
= exp[−γ r2] (7.35)

for nonlinear classifiers. Here r = ||x −xi ||. This kernel can easily be extended to any
high dimensions. Here σ 2 is the variance, and γ = 1/2σ 2 is a constant. In fact, γ is a
hyperparameter, which needs to be tuned for each support vector machine.

Following a similar procedure as discussed earlier for linear SVMs [86,133], we
can obtain the coefficients αi by solving the following optimization problem:

maximize
n∑

i=1

αi − 1

2
αiαjyiyjK(xi ,xj ). (7.36)

It is worth pointing out that when the matrix A = yiyjK(xi ,xj ) is a symmetric
positive definite matrix, the above maximization problem becomes a quadratic pro-
gramming problem [22] and can thus be solved efficiently by quadratic programming
techniques.
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Figure 7.3 Support vector regression (SVR).

There are many easily available software packages (commercial or open source), so
we will not provide any discussion on the implementation. In addition, some methods
and their variants are still an area of active research. Interested readers can consult a
more advanced literature.

7.4 Support vector regression

Support vector machines for classification work well for discrete labels. In case of a
continuous dependent variable, SVMs will not work well because the problem is a re-
gression problem. However, the basic ideas of SVMs can be modified to do regression.
In this case, we have the support vector regression (SVR) method [8,40,133].

For a given tolerance ε, the ε-insensitive support vector regression (SVR) is finding
a function y = f (x) = wT x + b = w · x + b such that all the data points are within
a strip bounded by two hyperplanes (see Fig. 7.3); that is, all the data points (xi , yi)

(i = 1,2, . . . , n) should deviate at most ε (as a vertical distance) from the regression
targets.

Mathematically, this regression problem can be written as

minimize
1

2
||w||2, (7.37)

subject to

|yi − w · xi − b| ≤ ε (7.38)

for all the n data point pairs (xi , yi), i = 1,2, . . . , n. This is equivalent to

minimize
1

2
||w||2, (7.39)

subject to

{
yi − w · xi − b ≤ ε,

w · xi + b − yi ≤ ε.
(7.40)
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Figure 7.4 The ε-insensitive loss function.

This is an optimization problem, and in principle it can be solved using any proper
optimization technique. However, depending on the choice of ε, there may not be any
solution such that all the data points lie within ±ε from the regression line. A relax-
ation extension is to allow some errors by using some slack variables ξi ≥ 0 (for the
upper boundary) and ξ∗

i ≥ 0 (for the lower boundary); see Fig. 7.3. All the values of
these slack variables must be nonnegative (ξi, ξ

∗
i ≥ 0). The idea is to minimize ||w||2

and also such errors. Thus, the regression optimization problem can be written as

minimize
1

2
||w||2 + λ

n∑
i

(ξi + ξ∗
i ), (7.41)

subject to⎧⎪⎨
⎪⎩

yi − w · xi − b ≤ ε + ξi,

w · xi + b − yi ≤ ε + ξ∗
i ,

ξi ≥ 0, ξ∗
i ≥ 0 (i = 1,2, . . . , n).

(7.42)

Here the penalty parameter λ > 0 controls the tradeoff between the flatness of the
regression model f (x) and the deviation errors [40].

In the context of machine learning, this is equivalent to the so-called ε-insensitive
loss function

|ξ |ε =
{

0 if |ξ | < ε,

|ξ | − ε otherwise.
(7.43)

Here we have used the same notation as that in the tutorial by Smola and Schölkopf
[133]. This is shown in Fig. 7.4.

This regression problem can be solved by using Lagrangian multipliers ηi, η
∗
i ,

αi, α
∗
i to incorporate the inequality constraints. Thus, we have the Lagrangian

L = 1

2
||w||2 + λ

n∑
i=1

(ξi + ξ∗
i ) −

n∑
i=1

(ηiξi + η∗
i ξ

∗
i )

−
n∑

i=1

αi(ε + ξi − yi + w · xi + b) −
n∑

i=1

α∗
i (ε + ξ∗

i + yi − w · xi − b).

(7.44)
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As the regression model is linear, this is essentially equivalent to an unconstrained
quadratic programming problem.

The optimality can be achieved by

∂L

∂w
= 0,

∂L

∂b
= 0,

∂L

∂ξ
= 0,

∂L

∂ξ∗
i

= 0, (7.45)

and the duality feasibility conditions

ηi ≥ 0, η∗
i ≥ 0 (i = 1,2, . . . , n). (7.46)

We have

∂L

∂w
= w −

n∑
i=1

αixi +
n∑

i=1

α∗
i xi = 0, (7.47)

which gives

w =
n∑

i=1

(αi − α∗
i )xi . (7.48)

In addition, we have

∂L

∂b
= −

n∑
i=1

αi +
n∑

i=1

α∗
i =

n∑
i=1

(α∗
i − αi) = 0. (7.49)

Furthermore, we have

∂L

∂ξi

= λ − ηi − αi = 0,
∂L

∂ξ∗
i

= λ − η∗
i − α∗

i = 0, (7.50)

leading to

ηi = λ − αi, η∗
i = λ − α∗

i . (7.51)

Since ηi, η
∗
i ≥ 0, these two conditions mean that

αi ∈ [0, λ], α∗
i ∈ [0, λ]. (7.52)

Similar to the SVM, kernel tricks can also be used to deal with nonlinear support
vector regression. We refer the interested readers to the more advanced literature such
as Vapnik’s 1995 book [143] and the tutorial by Smola and Schölkopf [133].

7.5 Notes on software

Both SVM and SVR are widely used, so many software packages have implemented
both methods. Matlab, R, Python, Mathematica, and Maple all have such functionali-
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ties. For example, Matlab has fitcsvm and fitrsvm for classification and regression,
respectively, R has svm, whereas the Scikit-Learn for Python has svm with all algo-
rithm variants. In addition, SVM and SVR are also been implemented in C++, Java,
and other machine learning packages.
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Machine learning algorithms are a class of sophisticated optimization algorithms, in-
cluding both supervised learning and unsupervised learning algorithms. In general,
there are a diverse range of algorithms in this category, and they are classification and
clustering algorithms, regression, decision trees, artificial neural networks, support
vector machines, Bayesian networks, Boltzmann machines, natural language process-
ing, deep belief networks, and others [144,105]. We have already introduced some of
these techniques. In this chapter, we mainly focus on artificial neural networks (ANN)
and deep learning (DL).

Many applications use ANNs, which is especially true in artificial intelligence.
The fundamental idea of ANNs is learning from data and making predictions using
a network of connected neurons arranged into a layered structure. For a given set of
input data, a neural network maps the input data into some outputs. The relationships
between the inputs and outputs are quite complicated, and it is usually impossible to
express such relationships in any exact or analytical form. By comparing the outputs
with the true outputs, the system can adjust its weights so as to better match its outputs.
If there is a sufficient number of data, then the network can become well trained, and
thus the trained network can make predictions for new data.

8.1 Learning

In general, learning in the broad context of machine learning can be divided into three
categories: supervised learning, unsupervised learning, and reinforcement learning.

Introduction to Algorithms for Data Mining and Machine Learning. https://doi.org/10.1016/B978-0-12-817216-2.00015-6
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Supervised learning use data with known labels or classes. Regression is an ex-
ample of supervised learning: the target outputs (y) are real numbers via a model or
model class y = f (x,α), where α is a model parameter vector. In addition, classifica-
tion is also supervised learning. For example, classification using the support vector
machine belongs to this category [4,17].

Clustering is a good example of unsupervised learning. There is no need to have
labeled data, and learning is figuring out the internal structures and representation of
the data.

Reinforcement learning is based on some scalar reward objective to be maximized,
based on the data and some future rewards. However, this type of learning is limited to
deal with cases where the number of key parameters is not huge (e.g., a few dozens).

It is worth pointing out that the learning in neural networks can be supervised or
unsupervised, depending on the type of data. Using labeled data with target outputs to
train neural networks is supervised learning. Otherwise, if there are no target outputs,
then the learning becomes unsupervised.

In addition to the traditional categories of learning, other forms and new types of
learning exist in the literature. For example, semisupervised learning is the learning of
largely using a lot of unlabeled data with a few labeled data, where both labeled and
unlabeled data are assumed to be drawn from the same probability distributions. In
essence, semisupervised learning implicitly uses the assumption that unlabeled data
can be labeled with the same labels used by labeled data for classification tasks.

Now let us start with artificial neural networks. Then we will move onto more
sophisticated topics about Boltzmann machines and deep learning.

8.2 Artificial neural networks

A neural network consists of many connected neurons, and the behavior of a neuron
is defined by a neuron model.

8.2.1 Neuron models

The basic mathematical model of an artificial neuron was first proposed by W. McCul-
loch and W. Pitts in 1943, and this fundamental model is referred to as the McCulloch–
Pitts model. Other models and neural networks are based on it [64,65,124].

An artificial neuron with n inputs or impulses and an output y is activated if the
signal strength reaches a certain threshold θ . Each input has a corresponding weight wi

(see Fig. 8.1). The output of this neuron is given by

y = f (x), x =
n∑

i=1

wiui, (8.1)

where the weighted sum x is the total signal strength, and f (x) = f (
∑

i ui) is the
so-called activation function, which usually depends on a threshold parameter θ or
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Figure 8.1 A simple neuron model.

Figure 8.2 Binary step and sigmoid function.

some control parameter. The simplest form of this function can be f (x) = x, called
the identity activation function, which simply passes the input as the output.

A binary step function takes the following form:

f (x) =
{

1 if x ≥ θ,

0 if x < θ.
(8.2)

We can see that the output is only activated to a nonzero value such as unity if the
overall signal strength is greater than the threshold θ .

The step activation function is binary and has discontinuity; sometimes, for activa-
tion, it is easier to use the nonlinear smooth function, called the sigmoid function,

S(x) = 1

1 + e−x
, (8.3)

which approaches 1 as x → +∞ and becomes 0 as x → −∞ (see Fig. 8.2).
The sigmoid function is also called the logistic activation function or soft step func-

tion in the literature. An interesting property of this function is

S′(x) = S(x)[1 − S(x)]. (8.4)

8.2.2 Activation models

There are many different models for activation, and they are often called activation
functions. Different models approximate and smoothen activation behavior slightly
differently, including the rectified linear model, hyperbolic tangent model, the expo-
nential linear model, and others. Here we introduce a few commonly used activation
functions.
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Figure 8.3 ReLU = max(0, x) and SoftPlus = ln(1 + ex) functions.

The rectified linear model, also called the rectified linear unit (ReLU), can be writ-
ten as

f (x) = x+1 = max{0, x} =
{

x if x > 0,

0 otherwise.
(8.5)

The ReLU is quite widely used in deep learning due to its simplicity. In addition, it has
a constant gradient 1 for any value of x > 0, which is a desirable property. In contrast,
the gradient of a sigmoid function is approaching zero when x is very large.

The ReLU function can be approximated by a smoother function, called SoftPlus,

f (x) = log(1 + ex), (8.6)

whose derivative is f ′(x) = ex/(1 + ex) = S(x). Both ReLU and SoftPlus functions
are shown in Fig. 8.3.

Though the ReLU is very widely used, it may block some units due to its zero
gradient when x < 0. A natural extension of this is using a small gradient for x < 0,
allowing propagation to pass through (leaking). In this case, ReLU is extended to the
parametric rectified linear unit (PReLU), more often called the leaky rectified linear
unit (Leaky ReLU), with parameter α (typically, α = 0.01):

f (x) =
{

αx if x < 0,

x if x ≥ 0.
(8.7)

In addition, the exponential linear unit (ELU) is defined by

f (x) =
{

α(ex − 1) if x < 0,

x if x ≥ 0.
(8.8)

The hyperbolic tangent activation can be written as

f (x) = tanh(x) = ex − e−x

ex + e−x
= 1 − e−2x

1 + e−2x
= 2

1 + e−2x
− 1, (8.9)

which approaches to +1 as x → ∞ and −1 as x → −∞. Another related activation
function is the arctan function f (x) = tan−1(x).

In case of multiple m inputs from a previous layer, the so-called softmax activation
is often used to convert to probabilities to m classes. The probability for class i is
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given by

Pi = exi∑m
j=1 exj

, i = 1,2, . . . ,m, (8.10)

which is essentially the same as the softmax regression. Interestingly, its Jacobian
J = [Jij ] can be written as

Jij = ∂Pi

∂xj

= Pi(δij − Pj ) (i, j = 1,2, . . . ,m), (8.11)

where δij is the Kronecker delta function, that is, δij = 1 if i = j and δij = 0 if i �= j .
Researchers have also designed other activation functions such as adaptive piece-

wise functions. One question is which activation function should be used, and the
answer depends on many factors such as type of problems, the structure of the net-
works, and other factors. In general, ReLU, Leaky ReLU, and Softmax are among
the most widely used. We refer the interested readers to the more advanced literature
[10,105].

8.2.3 Artificial neural networks

A single neuron can only perform a simple task, on or off. Complex functions can be
designed and performed using a network of interconnecting neurons or perceptrons.
The structure of a network can be complicated, and one of the most widely used is
arranging them in a layered structure, with an input layer, an output layer, and one
or more hidden layers (see Fig. 8.4). The connection strength between two neurons
is represented by its corresponding weight. It is worth pointing out that there can
be multiple hidden layers for an artificial neural network; however, for simplicity of
discussions, we only draw one hidden layer in Fig. 8.4. The method for updating the
weights is the same for multiple hidden layers, especially for the case of backward
propagation algorithm to be introduced later.

Some artificial neural networks (ANNs) can perform complex tasks and simulate
complex mathematical models, even if there is no explicit functional form mathemat-
ically. Neural networks have developed over last few decades and have been applied
in almost all areas of science and engineering.

The construction of a neural network involves the estimation of the suitable weights
of a network system with some training/known data sets. The task of training is finding
a set of suitable weights wij so that the neural networks not only can best-fit the known
data, but also can predict outputs for new inputs. A good artificial neural network
should be able to minimize both errors simultaneously, the fitting/learning errors and
the prediction errors.

The errors can be defined as the differences between the calculated (or predicted)
output vk and real output yk for all N output neurons in the least-square sense:

E = 1

2

N∑
k=1

(vk − yk)
2. (8.12)
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Figure 8.4 Schematic representation of a simple feedforward neural network with ni inputs, m hidden
nodes, and N outputs.

Here the output vk is a function of inputs, activation, and weights. This can be also be
written as

E = 1

2
||v − y||22, (8.13)

where v is the output vector, and y is the real or desired output vector. Here the error
function E is often called the loss function of the artificial neural network. The main
aim of training a neural network is minimizing the loss or training error and also
maximizing the prediction accuracy.

To minimize this error, we can in principle use appropriate optimization techniques
to find the solutions of the weights. A simple and yet efficient technique is the steepest
descent method. For any initial random weights, the weight increment for whk is

�whk = −η
∂E

∂whk

= −η
∂E

∂vk

∂vk

∂whk

, (8.14)

which follows the basic chain rule of differentiation. Here 0 < η ≤ 1 is the learning
rate. In a particular case, we can use η = 1 for discussions.

By starting with the neurons or nodes on the output layer in Fig. 8.4, we have

Sk =
m∑

h=1

whkvh (k = 1,2, . . . ,N), (8.15)

and

vk = f (Sk) = 1

1 + e−Sk
. (8.16)
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From f ′ = f (1 − f ), we can obtain

∂vk

∂whk

= ∂vk

∂Sk

∂Sk

∂whk

= vk(1 − vk)vh (8.17)

and

∂E

∂vk

= (vk − yk). (8.18)

Therefore we have

�whk = −ηδkvh, (8.19)

where

δk = vk(1 − vk)(vk − yk). (8.20)

In general, based on (8.14), the increment for any weight wij related to errors is
given by

�wij = −η
∂E

∂wij

, (8.21)

which can be written compactly as the iterative formula

wt+1 = wt − η∇E(wt ), (8.22)

where ∇E is the gradient vector. However, for large-scale problems with many out-
puts, the computation of the gradient vectors can be very expensive, and thus some
iterative or propagation formulas are preferred.

It is worth pointing out that the topology of a neural network is also important as
the ways of arranging neurons will influence the algorithm used. Different topologies
have different connections and thus different weights. Here we have used a common
feedforward structure with neurons on the previous layer (on the left) affecting the
neurons on the next layer (on the right), but the neurons on the right cannot affect the
neurons on the left. Thus the inputs are fed forward to the outputs, and this structure
allows an efficient implementation of the back propagation to be introduced in the next
section.

For a given structure of the neural network, there are many ways of calculating
weights by supervised learning. One of the simplest and widely used methods is us-
ing the back propagation algorithm for training neural networks, often called back
propagation neural networks (BPNNs).
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8.3 Back propagation algorithm

The basic idea of a BPNN is to start from the output layer and propagate backward
so as to estimate and update the weights. This process is carried out in an iterative
manner, until a predefined stopping criterion is met.

From any initial random weighting matrices wih (for connecting the input nodes
to the hidden layer) and whk (for connecting the hidden layer to the output nodes) we
can calculate the outputs of the hidden layer vh:

vh = 1

1 + exp[−∑ni

i=1 wihui] (h = 1,2, . . . ,m), (8.23)

and the outputs for the output nodes

vk = 1

1 + exp[−∑m
h=1 whkvh] (k = 1,2, . . . ,N). (8.24)

The errors for the output nodes are given by

δk = vk(1 − vk)(vk − yk) (k = 1,2, . . . ,N), (8.25)

where yk (k = 1,2, . . . ,N) are the data (real outputs), for the given values of inputs
ui (i = 1,2, . . . , ni). Similarly, the errors for the hidden nodes can be written as

δh = vh(1 − vh)

N∑
k=1

whkδk (h = 1,2, . . . ,m). (8.26)

If we use a similar gradient descent algorithm, the updating formulas for weights
at iteration t are

wt+1
hk = wt

hk − ηδkvh (8.27)

and

wt+1
ih = wt

ih − ηδhui, (8.28)

where 0 < η ≤ 1 is the learning rate. Here we can see that the weight increments are

�wih = −ηδhui, (8.29)

which has a similar form to the earlier formula for whk .
Again, we can write all this in the following general formula:

wt+1 = wt − η∇E(wt ), E = 1

2

N∑
k=1

[
vk(w) − yk

]2
, (8.30)



Neural networks and deep learning 147

which applies iteratively to each layer, propagating backward for multilayered net-
works.

It is worth pointing out that the error model we used is an L2-norm (i.e., ||v −y||22)
in terms of differences of the outputs and targets. There are other error models, often
called loss functions for neural networks.

In a very particular case where the target outputs are the same as inputs (that is,
using a neural network to learn and fitting the inputs to themselves), this becomes
an autoencoder network. In this case, Hinton and Salakhutdinov [70] in 2006 used a
multilayer neural network with a small central layer to reconstruct high-dimensional
input vectors. The weights were adjusted and fine-tuned by gradient descent with a
pretraining procedure to obtain better initial weights. They showed that their deep au-
toencoder network can learn low-dimensional representations that work much better
than the principal component analysis, which can effectively reduce the dimensional-
ity of data.

8.4 Loss functions in ANN

The loss function we have discussed so far is mainly the residual errors in terms of
an L2-norm as given in Eq. (8.13). There are many other forms of the loss functions
in the literature, which may be good alternatives for certain tasks and certain types of
artificial neural networks [105].

If y = (y1, y2, . . . , yN)T is a vector of the predicted values and ȳ = (ȳ1, ȳ2, . . . , ȳN )

is the vector of the true values, then the L2 loss function is usually defined as

E = ||y − ȳ||2 = ||ȳ − y||2 =
N∑

i=1

(ȳi − yi)
2, (8.31)

which is essentially the same as Eq. (8.13), except for a convenient factor of 1/2. This
can also be converted to the mean square error form as

Em = 1

N

N∑
i=1

(ȳi − yi)
2. (8.32)

In comparison with the smooth L2-norm loss, the L1-norm based loss function is
given by

E1 = ||ȳ − y||1 =
N∑

i=1

|ȳi − yi |, (8.33)
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which can also be interpreted as the mean absolute error (by multiplying a factor
of 1/N )

1

N

N∑
i=1

|ȳi − yi |. (8.34)

We have seen in earlier chapters that, for binary classification tasks, the cross en-
tropy

Ec = −
N∑

i=1

[
ȳi logyi + (1 − ȳi ) log(1 − yi)

]
(8.35)

can be used as a loss function, which is a measure of the differences between the
true values and predicted values in the probabilistic sense. Thus a larger cross entropy
means a larger difference.

The Kullback–Leibler (KL) divergence loss function is defined by

EKL = 1

N

N∑
i=1

ȳi log(ȳi) − 1

N

N∑
i=1

ȳi logyi, (8.36)

which is a combination of the entropy (the first sum) and the cross entropy (the second
term).

For other applications such as the classification using the support vector machines,
the loss function can be defined as the hinge loss

Eh =
N∑

i=1

max{0,1 − ȳi · yi}, (8.37)

which can also be defined with a scaling factor 1/2 as

Eh =
N∑

i=1

max{0,
1

2
− ȳi · yi}. (8.38)

Another related hinge loss function is the so-called squared hinge loss function

Eh2 =
N∑

i=1

(
max{0,1 − ȳi · yi}

)2
. (8.39)

There are over a dozen other loss functions, including the Tanimoto loss, Cheby-
shev loss, and Cauchy–Schwarz divergence. For a detailed review of loss functions,
we refer the readers to a more advanced literature such as [82] and [28].
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8.5 Optimizers and choice of optimizers

As we have seen before, neural networks, especially multilayered networks, require
the calculation of the gradient vectors iteratively. This can become very expensive
if the numbers of weights and outputs are huge, which is true for deep learning.
Therefore, some approximation or reduction in gradient calculation can speed up the
learning process. Stochastic gradient descent (SGD) is one of such methods [19–21].

Briefly speaking, in the standard gradient descent, we need to calculate n values of
the n components of the gradient vector ∇E, and n varies with layers. For example,
n = N for the output layer, whereas n = m for the hidden layers. Instead of using the
full gradient, the SGD uses a single observation or data example ∇Ei (i = 1,2, . . . , n)

to approximate ∇E, that is,

wt+1 = w − η∇Ei, (8.40)

which can reduce the number of calculations by a factor of n. The choice of i can be
the current data set. As this gradient instance is online and random, it is thus called
the stochastic gradient or online gradient.

However, this extreme reduction may lead to inaccurate estimates of the true gra-
dient. A better estimate can be obtained by a subset of stochastic gradient averaged.
Alternatively, some extra term can be introduced:

wt+1 = w − η∇Ei + τ�w, (8.41)

where 0 ≤ τ ≤ 1 is the parameter controlling the inertia or momentum. This method
is thus called the momentum method.

In Chapter 3 (Section 3.3), we have introduced most widely used optimizers for
deep learning, including SGD and many momentum-based optimizers such as Adam
and RMSprop.

An important issue for deep learning is the choice of a suitable optimizer. As we
have seen in this book, the choice of optimization techniques may depend on the
type of problem, solution quality, computational efforts, user’s expertise, available
resources, and other factors such as time constraints. In the context of neural networks
and deep learning, it largely depends on the structure and depth of the neural networks,
data type, size of the problem, and others.

The recent literature suggests that both Adam and RMSprop optimizers are among
the best and can converge very fast. We refer the interested readers to a more advance
literature such as the practical recommendations by Bengio [14].

8.6 Network architecture

The network structure of neural networks we have discussed is simple and easy to
understand. Perceptrons are organized in a layered structure, and each layer is fed into
the next layer, which forms a feed-forward structure. Each neuron in a layer can be
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fully connected to the next layer, but there is no connection between neurons in the
same layer.

Feed-forward structure is just one popular structure; there are many other archi-
tectures that may have different advantages for different applications. There are com-
prehensive reviews on the architectures of neural networks. For example, Bengio [10]
provided a comprehensive review on learning deep architectures for artificial intelli-
gence, and van Veen [142] provided a detailed introductory review of various neural
network architectures with colored topological representations.

Here we only briefly highlight a few different types of architecture and their main
features.

• Feed-forward networks: the simplicity of the popular feed-forward neural net-
works allows the back propagation algorithm to work effectively. In the particular
case where the input and output layers have identical structure and the outputs are
trained to be the same as the inputs, this network becomes an autoencoder (AE).
An interesting extension of the autoencoder is the denoising autoencoder (DAE),
which allows both the input data and noise to feed into the network, and the trained
outputs remove the noise. This can make the network more robust under noise or
uncertainty [70,71]. In addition, if the inputs (and also outputs) for an autoen-
coder are sampling points from a probability distribution then such an AE network
becomes a variational autoencoder (VAE), and its underlying foundation is varia-
tional Bayesian (VB) statistics that aims to optimize the posterior distributions.
Furthermore, when different layered structures are organized in series, a deep neu-
ral net can be formed. Convolutionary neural network (CNN) is such a net, and we
will introduce CNN later in this chapter.

• RBF networks: When the activation is carried out using a neighbor (in the manner
similar to the k-nearest neighbor method), the activation function depends on the
distance where radial basis functions (RBF) are used for activating each neuron,
and then the feed-forward network becomes an RBF network.

• Recurrent neural network (RNN): This network architecture was developed by El-
man [44], which uses a directed connection between every pair of neurons, and the
connections are not just from the previous layer to the current layer, but also within
the current layer itself. The connection strengths are modeled as time-varying
real-valued weights. The training and minimization of errors are done using back
propagation through time.

• Hopfield network: For the Hopfield network [77], each neuron is fully connected
symmetrically with every other neuron in the network. There is a guarantee in
terms of convergence for this network; however, it is not a recurrent network in
general.

• Self-organized map: Strictly speaking, a self-organized map (SOM), or a Kohonen
network [89], is an unsupervised learning technique that maps inputs onto outputs
by activating most appropriate neurons and their neighbor neurons that can closely
fit the inputs.

• Boltzmann machines: Boltzmann machines (BM) are a class of networks for ma-
chine learning, which has certain similarities to Kohonen networks. A particular
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class of BMs is the so-called restricted Boltzmann machine (RBM), whose con-
nections are restricted to feed-forward structures. We will introduce the RBM later
in this chapter.

• Deep belief networks: A deep belief network (DBN) [13] is a deep multilayer neu-
ral network that has many levels of nonlinearities with a deep network architecture
using restricted Boltzmann machines or variational autoencoders. The top-level
prior is a restricted Boltzmann machine between layer j − 1 and layer j , and some
greedy layerwise training algorithm is often used to train one layer at a time. Then
some fine-tuning of parameters of all layers is carried out.

• Modular neural networks: A modular neural network (MNN) uses a combination
of a set of multiple neural networks, and each network is considered as a module.
Each module can only carry out a specific task, and connection to other modules
is designed on the system level. The training of the complex larger network can be
subdivided into smaller modular training iteratively.

• Spiking neural networks: The spiking neural network (SNN) aims to provide a
more realistic model for neural networks that are based on the synaptic structures
and states [97]. It considers the time-varying information where signal impulses
(a spiking train) rise for a short period and then gradually decay. The activation
depends on the spiking impulse time interval, strength, and frequency. Such spik-
ing networks can handle tasks that can be solved by classic neural networks and
can also deal with more challenging tasks.

Other network architectures include neural Turing machine [56], generative ad-
versarial nets (GAN) [55], and others such as extreme learning machines. Interested
readers can consult a more advanced literature and textbooks.

8.7 Deep learning

Deep learning is not just a buzzword nowadays, but a very powerful tool for many
applications related to artificial intelligence [27,105,126,134]. Image processing, pat-
tern recognition, and speech recognition become much more accurate because of the
effective use of deep learning techniques such as deep convolutionary neural networks
(CNN) and restricted Boltzmann machines.

8.7.1 Convolutional neural networks

Deep learning involves neural networks with multiple hidden layers and usually has a
modular structure of combing multiple convolutional neural networks (CNN) in a se-
ries of operations. A standard ANN is a fully connected network, and the computation
of the next layer is carried out by matrix multiplication, whereas a CNN has sparse
connections, and the computation is mainly done by convolution.

The main structure of a convolutional neural network (CNN) is that it has a con-
volution layer to convert inputs such as an image into a set of convoluted features
by going through a filter or kernel of a fixed size. Then the convoluted features go
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Figure 8.5 Schematic representation of the main CNN structure.

through activation and are then subsampled by pooling to reduce their dimensionality.
Afterward, a pooled structure is flattened into a one-dimensional feature vector and
is then fed into a fully or densely connected neural networks for classification. Obvi-
ously, multiple convolution layers with pooling can be used. The main structure can
be summarized as the building blocks in Fig. 8.5.

8.7.1.1 Convolution and activation

The role of convolution is a crucial step because it allows us to use spare connections
and focus on the local regions. If a simple 128×128 grayscale image is fed into a fully
connected neural network, then the inputs can be represented by a one-dimensional
vector with 128 × 128 = 16384 elements. Thus this input vector may require 16384
connections to each neuron in the next layer, which means that it needs 16384 weights
or parameters to define such connections for this neuron. For large images, the number
of free parameters can be astronomical, and thus a fully connected neural network is
not practical for such applications. One way is using a kernel with few parameters,
and such a kernel should be able to apply for the larger image with the same set of
parameters. Such kernel-based operations are essentially convolutions.

The basic idea of convolution between a function f (x) and a kernel h is defined as

(f ∗ h)(x) =
∫ +∞

−∞
f (x − τ)h(τ)dτ =

∫ +∞

−∞
f (τ)h(x − τ)dτ, (8.42)

which is the integral of the overlapped area between two functions. This is equivalent
to sliding one function over the other function. In the simple case where h is a simple
unit slot sliding along a function f (x), the convolution value at any x is the overlapped
shaded area (see Fig. 8.6).

Convolution has been used extensively in signal and image processing. In the case
of two-dimensional (2D) inputs such as images f (x, y), the 2D convolution can be
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Figure 8.6 Simple convolution of f (x) and kernel h(τ).

written as

(f ∗ h)(x, y) =
∫ +∞

−∞

∫ +∞

−∞
h(p,q)f (x − p,y − q)dpdq

=
∫ +∞

−∞

∫ +∞

−∞
f (p,q)h(x − p,y − q)dpdq, (8.43)

which usually becomes a double sum over a region of an image. Here the kernel
h(x, y) acts as a filter or operator. For example, a simple edge detection kernel is

h =
⎛
⎝ +1 0 −1

0 0 0
−1 0 +1

⎞
⎠, (8.44)

which is a differential operator along the x and y directions. Another edge detection
operator is

g =
⎛
⎝ 0 1 0

1 −4 1
0 1 0

⎞
⎠, (8.45)

which is a gradient-based kernel.
The convolution action of a kernel on a 2D image essentially mimics the receptive

field of the biological sensory neural systems. The intensity of a grayscale image is
represented by a 2D array, and each pixel has a value between 0 to 255. However, for
simplicity, we assume that the values are between 0 to 9 and apply a simple kernel h

of 3 × 3 as an edge detector to a small image of 6 × 6 (see Fig. 8.7). The convolution
of h with f gives a 4 × 4 matrix W . The convolution of h with the first 3 × 3 region
(top left corner, dashed) gives

W(1,1) = (f ∗ h) = +1 × 8 + 0 × 0 + (−1) × 2

+ 0 × 5 + 0 × 7 + 0 × 9 + (−1) × 2 + 0 × 4 + 1 × 6 = 10. (8.46)

Similarly, the convolution of h with the second region (shown as dotted) is
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Figure 8.7 The schematic representation of a 2D convolution.

W(1,2) = 1 × 0 + 0 × 2 + (−1) × 4

+ 0 × 7 + 0 × 9 + 0 × 1 + (−1) × 4 + 0 × 6 + 1 × 8 = 0. (8.47)

The rest of W entries can be calculated in a similar manner.
It is worth pointing out that the convolution result W has a size of 4 × 4 for an

image of 6 × 6, and this is the case without padding. Sometimes, padding is used to
make sure that the resulting matrix has the same size. In general, without padding, the
convolution matrix has a size of [n − (k + 1)/2] × [n − (k + 1)/2] for an image of
n×n with a kernel of k ×k. In the previous simple example, we have n = 6 and k = 3.

The previous convolution has been demonstrated for a grayscale image. For a col-
ored image, it is usually represented as a three-dimensional array for three different
color channels (Red, Green, and Blue). This means that the convolution kernel should
be applied for each color channel, and thus the resulting convolution matrix is a 3D
array or rank-3 tensor in the most general sense. We refer the interested readers to the
more advance literature [90,93].

After the convolution operations, the outputs can fed into nonlinear activation. Ac-
tivation is usually carried out by a rectified linear unit (ReLU) (essentially max(0, x))
and Leaky ReLU as discussed earlier in this chapter.

In general, a convolution block consists of a convolution layer and an activation
layer. A convolutional neural network can have multiple convolution blocks before
sending to dimension reduction via pooling.

8.7.1.2 Pooling

Pooling is a dimensional reduction technique by focusing a region of size k × k as a
pooling filter. Only one value is calculated from a region of fixed size, and this value is
usually taken as the maximum value or average of all the values. In the case of using
the maximum value, the pooling operation is called the max pooling. For example,
in the simple pooling shown in Fig. 8.8, a 2 × 2 pooling filter is applied to every
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Figure 8.8 Max pooling in 2D with a 2 × 2 pooling filter.

nonoverlapping 2 × 2 subregions, and the bottom right corner has∣∣∣∣∣∣∣∣
0

... 2
. . . . . . . . .

9
... 1

∣∣∣∣∣∣∣∣
, (8.48)

whose maximum value is 9, which gives a single value 9 as shown inside a circle.
The size reduction can be significant, and in most cases, the size can be reduced

at least by half. In case of the stride, it is also k, which means that no two regions
are overlapping, and the final pooled size is n/k × n/k for an image of n × n with
a pooling filter of k × k. Obviously, n/k should be rounded to the nearest integers.
For example, when n = 100 and k = 2, the original size of 100 × 100 can be reduced
to 50 × 50, which is a quarter of the original size. A simple case of 2 × 2 pooling is
shown in Fig. 8.8.

It is worth pointing out that both ReLU and max pooling use “max”, and thus
the order of ReLU and max pooling can be interchangeable. The results should be
same if either ReLU or max pooling is the first. This property is sometimes called
equivariance. However, in most deep learning packages such as TensorFlow, ReLU is
usually done first.

The equivariant representation is one useful property of CNNs. For example, for an
image, convolution, and translation can be interchangeable, that is, the results should
be the same if convolution is done first (then translation) or translation first (followed
by convolution). Loosely speaking, two mathematical operations φ and ψ are said to
be equivariant if φ(ψ(x)) = ψ(φ(x)).

8.7.1.3 Flattening

The output from convolution and pooling operations are either 2D arrays for grayscale
images or 3D arrays for color images. In order to feed such outputs for further learning
by feed-forward neural networks, it is more convenient to reshape such 2D and 3D
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arrays into a one-dimensional feature vector. This process is called flattening, which
can be done by stacking each row or column in a sequential order, and then at different
depths. In general, for 2D arrays of size n×n, the flattened 1D vector has n2 elements,
for example, for gray images of size n × n × 1.

If the convolution kernel has a size of 3 × 3 and the number of hidden neurons is
m = 16, then the convoluted features have a size of (n − 2) × (n − 2) × m without
padding. If a pooling is done over a k × k grid with a stride k (nonoverlapping), then
pooled features become (n − 2)/k × (n − 2)/k × m. In case of n = 32, m = 16,
and k = 2, the pooled features form a 3D array of size 15 × 15 × 16. This can be
further converted to a one-dimensional array by flattening into a feature vector with
15 × 15 × 16 = 3600 elements or features.

For the 2 × 2 max pooling shown in Fig. 8.8, the 2D array on the right can be
flattened to

⎛
⎝ 8 9 6

6 9 4
4 8 9

⎞
⎠ =⇒ (

8 9 6 6 9 4 4 8 9
)T

. (8.49)

8.7.1.4 Fully connected neural network

It is worth pointing out that the output features from a convolution layer are low-
dimensional regional features. To obtain high-level nonlinear features that are appro-
priate for classification and recognition, a fully connected neural network should be
used.

From the above, the flattened one-dimensional feature vector can be fed into a
fully connected neural network with hidden layers. The final training outputs put into
different categories using softmax and any appropriate probabilistic interpretations.
The main role of softmax operations is to convert a real-valued vector to a normal-
ized form as a probability distribution, which assigns a probability to each possible
class and thus allows the ease of interpretation of classification and categorization.
The overall architecture of deep neural networks can be very sophisticated, and dif-
ferent software packages may use different combinations of different building blocks.
The well-known AlexNet/ImageNet [90] and Google’s TensorFlow [59] use different
architectural structures.

In addition, neural networks can have some dropout operations. The main idea of
dropping out is that neurons in an ANN can be ignored and removed with probabil-
ity p, which can reduce the number of parameters and thus reduce the complexity
of the network. This can also potentially prevent overfitting [135,94]. Typically, the
probability p = 0.25 is often used.

Furthermore, the values for image processing are between 0 to 255. In case of
other inputs, in some applications, the ranges of different signals can be very different,
and some normalization is usually needed to scale the inputs to about the same or
comparable ranges.



Neural networks and deep learning 157

Figure 8.9 Restricted Boltzmann machine with visible and hidden units.

8.7.2 Restricted Boltzmann machine

A very useful tool for deep learning applications is the restricted Boltzmann machine
(RBM), which is a two-layer (or two-group) Boltzmann machine with m visible units
vi (i = 1,2, . . . ,m) and n hidden units hj (j = 1,2, . . . , n) where both vi and hj are
binary states. The visible unit i has a bias αi , and the hidden unit j has a bias βj ,
whereas the weight connecting them is denoted by wij . The restriction is that their
neuron units connecting visible and hidden units form a bipartite graph (see Fig. 8.9),
whereas no connection with the same group (visible or hidden) is allowed.

Using the notations and configuration given in 2010 by Hinton [72], a restricted
Boltzmann machine can be represented by a pair (v,h) where v = (v1, v2, . . . , vm)T

and h = (h1, h2, . . . , hn)
T . The energy of the system can be calculated by

E(v,h) = −
∑

i∈visible

αivi −
∑

j∈hidden

βjhj −
∑
i,j

wij vihj . (8.50)

The probability of a network associated with every possible pair of a visible vector v

and a hidden vector h is assumed to obey the Boltzmann distribution

p(v,h) = 1

Z
e−E(v,h), (8.51)

where Z is a normalization constant, also called the partition function, which is essen-
tially the summation over all possible configurations, that is,

Z =
∑
v,h

e−E(v,h). (8.52)
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The marginal probability of a network associated with v can be calculated by the sum
over all possible hidden vectors in (8.51), so we have

p(v) = 1

Z

∑
h

e−E(v,h). (8.53)

The essential idea of using RBM for training over a set of data (such as images)
is to adjust the weights and bias values so that a training image can maximize its
associated network probability (thus minimizing the corresponding energy) [46,92].
For a training set, the maximization of the joint probability p(v) is equivalent to the
maximization of the expected log probability (i.e., logp(v)). Since

∂ logp(v)

∂wij

=<vihj >data − <vihj >RBMmodel, (8.54)

we can calculate the adjustments in weights by using the stochastic gradient method

�wij = η
(
<vihj >data − <vihj >RBMmodel

)
, (8.55)

where <vihj > means the expectation over the associated distributions. It is worth
pointing out that the stochastic gradient ascent (in contrast with the stochastic gradient
descent) is used.

The individual activation probabilities for visible and hidden units are determined
by the sigmoid function S(x) = 1/(1 + e−x), that is,

p(vi = 1|h) = S
(
αi +

∑
j

wijhj

)
(8.56)

and

p(hj = 1|v) = S
(
βj +

∑
i

wij vi

)
. (8.57)

The restricted Boltzmann machines form the essential part of deep belief networks
with stacked RBM layers.

There are many good software packages for artificial neural networks, and there
are dozens of good books fully dedicated to theory and implementations. Therefore,
we will not provide any code here.

8.7.3 Deep neural nets

The essence of deep learning is the feedforward deep neural network (i.e., multilayer
perceptrons) with different levels of abstraction, and training of such multilayer per-
ceptron networks (MLPN) is done by the backpropagation algorithm. Here “deep”
means multiple layers, which can range from a few layers to several hundred layers or
even more. Such learning can be done by one layer at a time. Deep learning intends to
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learn representations and feature hierarchies from higher-level features or complicated
concepts formed by lower-level features or simpler concepts, and such a system con-
sists of multiple levels of abstraction without human-crafted feature creation [105,67].

In order for the deep networks to work well, it requires both a large amount of train-
ing data (with a wide range of diversity) and computing power to realize the training
practically. For example, for face recognition and image classifications, the number of
images can vary from a few million to hundreds of millions. Therefore, it is no surprise
that big companies such as Google, Microsoft, IBM, and Amazon are among those
having the most successful deep learning systems. AlexNet and TensorFlow are good
examples of deep learning software packages. There are also many good tutorials on
these vast topics. For example, the Stanford website udldl.stanford.edu/wiki/index.php
can be a very helpful starting point.

The literature about deep learning, especially convolutional neural networks, is
vast. We refer the interested readers to more advanced and specialized journal papers
and books [68,69,54,95].

8.7.4 Trends in deep learning

Deep learning is a very active research area, and new progress is being made every
year or even every week. Here we only briefly outline some recent developments and
trends in this area [54,71,104]. The intention is not for completeness, but rather to
inspire further research.

• Self-taught teaching is a two-stage learning approach where learning is carried
out first on the unlabeled data to learn a representation, and then this learned rep-
resentation is applied to labeled data for classification tasks [119]. There is no
assumption that the labeled data were drawn from the same distributions for the
unlabeled data, and thus the data can be in different classes and from different
distributions. In other words, self-taught learning can be considered as transfer
learning from unlabeled data, or unsupervised transfer.

• Transfer learning transfers knowledge from one supervised learning task to an-
other, which requires additional labeled data from a different (but related) task
[114,11,141]. The requirement of such extra labeling may be expensive.

• One-shot learning is an efficient learning technique where learning is carried out
with only one example or handful examples [45]. Instead of learning from scratch,
training is improved from previously learned categories, which is in general in
terms of Bayesian inference. Both one-shot learning and transfer learning can be-
long to augmented and lean learning paradigm.

• Generative adversarial networks (GAN) use one network to generate candidates
such as realistic-looking images and other network to learn and detect if the gener-
ated candidates are real or not. The generated samples can be sufficient realistic to
the real things [55]. Bayesian GANs can implicitly learn rich distribution over data
such as image and audio [55], and such data may be difficult to model with an ex-
plicit likelihood probability. Thus Bayesian GAN can be considered as a Bayesian
approach for unsupervised and semisupervised learning with GANs, in combi-

http://udldl.stanford.edu/wiki/index.php
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nation with a stochastic gradient-based Monte Carlo. In essence, it is a hybrid
learning model.

• Capsule networks are a new network architecture with a hierarchical spatial rela-
tionship where a capsule is a group of neurons whose activity vector represents
certain entity parameters [128,73]. The entity can be an object or part of an image.
Active capsules at one-level make predictions by using transformation matrices,
and a higher-level capsule becomes active if multiple predictions agree. Sabour
et al. [128] showed that a trained multilayer capsule system can achieve state-of-
the-art performance or better performance.

There are other developments and architectures, for example, the combination of
recurrent neural networks (RNN) with CNN, long short-term memory (LSTM) net-
works, the RNN with long short-term memory, gated recurrent neural networks, region
proposal networks, deep reinforcement learning, and others. We will not have any
space here to introduce them briefly.

The rapid developments of deep learning has made it possible to apply artificial
intelligence in many applications such as image classification and captioning, text
generation, natural language processing and translation, big data science, product rec-
ommendation, and many others.

Interested readers can consult a more advanced literature on these topics.

8.8 Tuning of hyperparameters

Many techniques we have discussed in this chapter and previous chapters have
algorithm-dependent hyperparameters. For example, k in the k-means, λ in the reg-
ularization methods, the learning rate η, and the number of layers in deep nets are all
hyperparameters. At the moment, the choices of such hyperparameters are mainly by
researchers, based on parametric studies, the type of problems, and empirical studies,
even personal expertise and experience. The initial choice can be an educated guess,
then fine-tuning is attempted. Some researchers use uniform grid-style search, whereas
others use various approaches. In fact, the optimal choice of such hyperparameters is
a challenging task, it is the optimization of an optimization problem, and the choice is
largely problem-dependent.

In the context of deep learning, the learning rate can be given an initial rate, and
then a monotonic decay schedule is used to gradually reduce the effective learning
rates. Some researchers prefer to use randomized learning rates [15], and others prefer
to use the Bayesian approach to set hyperparameters.

Currently, there still lacks rigorous theory for choosing such parameters. Recent
studies suggested random search, heuristic methods, and metaheuristic algorithms
such as genetic algorithms, and the firefly algorithm can be very useful to optimize hy-
perparameters. Interested readers can consult a more advance literature such as some
journal articles on these topics.
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8.9 Notes on software

There are many software packages on ANN, CNN, and deep learning. For example,
Matlab has the nntool, alexnet, and Googlenet. R has toolboxes such as elasticnet,
deep learning deepnet, Restricted Boltzmann machine RcppDL, and an interface to
TensorFlow.

Python has machine learning packages such as scikit-learn, including support
vector machines and neural networks.

Google’s TensorFlow is a very powerful engine for deep learning. There are many
frontend tools to interact with TensorFlow. For example, both Keras are TFLearn are
among the most widely used, and they are easy to start with many examples on the
Internet.

Other tools include Theano, Torch, Caffe, and others. In addition, Microsoft, IBM,
Amazon, and many other companies have deep learning tools. The sources are diverse,
and the literature is vast.
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