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Université Montpellier 2
Montpellier, France

Christian P. Robert
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Preface

After that, it was down to attitude.
—Ian Rankin, Black & Blue.—

The purpose of this book is to provide a self-contained entry into practical
and computational Bayesian statistics using generic examples from the most
common models for a class duration of about seven blocks that roughly cor-
respond to 13–15 weeks of teaching (with three hours of lectures per week),
depending on the intended level and the prerequisites imposed on the students.
(That estimate does not include practice—i.e., R programming labs, writing
data reports—since those may have a variable duration, also depending on
the students’ involvement and their programming abilities.) The emphasis on
practice is a strong commitment of this book in that its primary audience
consists of graduate students who need to use (Bayesian) statistics as a tool
to analyze their experiments and/or datasets. The book should also appeal
to scientists in all fields who want to engage into Bayesian statistics, given
the versatility of the Bayesian tools. Bayesian essentials can also be used for
a more classical statistics audience when aimed at teaching a quick entry to
Bayesian statistics at the end of an undergraduate program, for instance. (Ob-
viously, it can supplement another textbook on data analysis at the graduate
level.)

This book is an extensive revision of our previous book, Bayesian Core,
which appeared in 2007, aiming at the same goals. (Glancing at this earlier
version will show the filiation to most readers.) However, after publishing
Bayesian Core and teaching from it to different audiences, we soon realized
that the level of mathematics therein was actually more involved than the one
expected by those audiences. Students were also asking for more advice and
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viii Preface

more R code than what was then available. We thus decided upon a major
revision, producing a manual that cut the mathematics and expanded the R
code, changing as well some chapters and replacing some datasets. We had at
first even larger ambitions in terms of contents, but had eventually to sacrifice
new chapters for the sake of completing the book before we came to blows!
To stress further the changes from the 2007 version, we also decided on a new
title, Bayesian Essentials, that was actually suggested by Andrew Gelman
during a visit to Paris.

The current format of the book is one of a quick coverage of the topics,
always backed by a motivated problem and a corresponding dataset (available
in the associated R package, bayess), and a detailed resolution of the infer-
ence procedures pertaining to this problem, always including commented R
programs or relevant parts of R programs. Special attention is paid to the
derivation of prior distributions, and operational reference solutions are pro-
posed for each model under study. Additional cases are proposed as exercises.
The spirit is not unrelated to that of Nolan and Speed (2000), with more em-
phasis on the methodological backgrounds. While the datasets are inspired by
real cases, we also cut on their description and the motivations for their anal-
ysis. The current format thus serves as a unique textbook for a service course
for scientists aimed at analyzing data the Bayesian way or as an introductory
course on Bayesian statistics.

Note that we have not included any BUGS-oriented hierarchical analysis
in this edition. This choice is deliberate: We have instead focussed on the
Bayesian processing of mostly standard statistical models, notably in terms
of prior specification and of the stochastic algorithms that are required to
handle Bayesian estimation and model choice questions. We plainly expect
that the readers of our book will have no difficulty in assimilating the BUGS
philosophy, relying, for instance, on the highly relevant books by Lunn et al.
(2012) and Gelman et al. (2013).

A course corresponding to the book has now been taught by both of us
for several years in a second year master’s program for students aiming at
a professional degree in data processing and statistics (at Université Paris
Dauphine, France) as well as in several US and Canadian universities. In Paris
Dauphine the first half of the book was used in a 6-week (intensive) program,
and students were tested on both the exercises (meaning all exercises) and
their (practical) mastery of the datasets, the stated expectation being that
they should go beyond a mere reproduction of the R outputs presented in
the book. While the students found that the amount of work required by this
course was rather beyond their usual standards (!), we observed that their
understanding and mastery of Bayesian techniques were much deeper and
more ingrained than in the more formal courses their counterparts had in the
years before. In short, they started to think about the purpose of a Bayesian
statistical analysis rather than on the contents of the final test and they ended
up building a true intuition about what the results should look like, intuition
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that, for instance, helped them to detect modeling and programming errors!
In most subjects, working on Bayesian statistics from this perspective created
a genuine interest in the approach and several students continued to use this
approach in later courses or, even better, on the job.

Exercises are now focussed on solving problems rather than addressing
finer theoretical points. Solutions to about half of the exercises are freely
available on our webpages. We insist upon the point that the developments
contained in those exercises are often relevant for fully understanding in the
chapter.

Thanks

We are immensely grateful to colleagues and friends for their help with this
book and its previous version, Bayesian Core, in particular, to the follow-
ing people: François Perron somehow started thinking about this book and
did a thorough editing of it during a second visit to Dauphine, helping us
to adapt it more closely to North American audiences. He also adopted
Bayesian Core as a textbook in Montréal as soon as it appeared. George
Casella made helpful suggestions on the format of the book. Jérôme Dupuis
provided capture–recapture slides that have been recycled in Chap. 5. Arnaud
Doucet taught from the book at the University of British Columbia, Van-
couver. Jean-Dominique Lebreton provided the European dipper dataset of
Chap. 5. Gaelle Lefol pointed out the Eurostoxx series as a versatile dataset
for Chap. 7. Kerrie Mengersen collaborated with both of us on a review paper
about mixtures that is related to Chap. 6, Jim Kay introduced us to the Lake
of Menteith dataset. Mike Titterington is thanked for collaborative friendship
over the years and for a detailed set of comments on the book (quite in tune
with his dedicated editorship of Biometrika). Jean-Louis Foulley provided us
with some dataset and with extensive comments on their Bayesian process-
ing. Even though we did not use those examples in the end, in connection
with the strategy not to include BUGS-oriented materials, we are indebted
to Jean-Louis for this help. Gilles Celeux carefully read the manuscript of
the first edition and made numerous suggestions on both content and style.
Darren Wraith, Julyan Arbel, Marco Banterle, Robin Ryder, and Sophie Don-
net all reviewed some chapters or some R code and provided highly relevant
comments, which clearly contributed to the final output. The picture of the
caterpillar nest at the beginning of Chapter 3 was taken by Brigitte Plessis,
Christian P. Robert’s spouse, near his great-grand-mother’s house in Brittany.

We are also grateful to the numerous readers who sent us queries about po-
tential typos, as there were indeed many typos and if not unclear statements.
Thanks in particular to Jarrett Barber, Hossein Gholami, we thus encourage
all new readers of Bayesian Essentials to do the same!

The second edition of Bayesian Core was started, thanks to the support of
the Centre International de Rencontres Mathématiques (CIRM), sponsored
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by both the Centre National de la Recherche Scientifique (CNRS) and the
Société Mathématique de France (SMF), located on the Luminy campus near
Marseille. Being able to work “in pair” in the center for 2 weeks was an
invaluable opportunity, boosted by the lovely surroundings of the Calanques,
where mountain and sea meet! The help provided by the CIRM staff during
the stay is also most gratefully acknowledged.

Montpellier, France Jean-Michel Marin
Paris, France Christian P. Robert
September 19, 2013
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1

User’s Manual

The bare essentials, in other words.
—Ian Rankin, Tooth & Nail.—

Roadmap

The Roadmap is a section that will start each chapter by providing a commented
table of contents. It also usually contains indications on the purpose of the chapter.

For instance, in this initial chapter, we explain the typographical notations that
we adopted to distinguish between the different semantic levels of the course.
We also try to detail how one should work with this book and how one could
best benefit from this work. This chapter is to be understood as a user’s (or
instructor’s) manual that details our pedagogical choices. It also seems the right
place to introduce the programming language R, which we use to illustrate all the
introduced concepts.

In each chapter, both Ian Rankin’s quotation and the figure on top of the title
page are (at best) vaguely related to the topic of the chapter, and one should not
waste too much time pondering their implications and multiple meanings. The
similarity with the introductory chapter of Introducing Monte Carlo Methods with

R is not coincidental, as Robert and Casella (2009) used the same skeleton as in
Bayesian Core and as we restarted from their version.

J.-M. Marin and C.P. Robert, Bayesian Essentials with R, Springer Texts
in Statistics, DOI 10.1007/978-1-4614-8687-9 1,
© Springer Science+Business Media New York 2014
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2 1 User’s Manual

1.1 Expectations

The key word associated with this book is modeling, that is, the ability to
build up a probabilistic interpretation of an observed phenomenon and the
“story” that goes with it. The “grand scheme” is to get anyone involved in
analyzing data to process a dataset within this coherent methodology. This
means picking a parameterized probability distribution, denoted by fθ, and
extracting information about (shortened in “estimating”) the unknown pa-
rameter θ of this probability distribution in order to provide a convincing
interpretation of the reasons that led to the phenomenon at the basis of the
dataset (and/or to be able to draw predictions about upcoming phenomena
of the same nature). Before starting the description of the probability distri-
butions, we want to impose on the reader the essential feature that a model
is an interpretation of a real phenomenon that fits its characteristics up to
some degree of approximation rather than an explanation that would require
the model to be “true”. In short, there is no such thing as a “true model”,
even though some models are more appropriate than others!

In this book, we chose to describe the use of “classical” probability models
for several reasons: First, it is often better to start a trip on well-traveled
paths because they are less likely to give rise to unexpected surprises and
misinterpretations. Second, they can serve as references for more advanced
modelings: Quantities that appear in both simple and advanced modelings
should get comparable estimators or, if not, the more advanced modeling
should account for that difference. At last, the deliberate choice of an artificial
model should give a clearer meaning to the motto that all models are false
in that it illustrates the fact that a model is not necessarily justified by the
theory beyond the modeled phenomenon but that its corresponding inference
can nonetheless be exploited as if it were a true model. By the end of the book,
the reader should also be in a position to assess the relevance of a particular
model for a given dataset.

Working with this book should not appear as a major endeavor: The
datasets are described along with the methods that are relevant for the cor-
responding model, and the statistical analysis is provided with detailed com-
ments. The R code that backs up this analysis is included and commented
throughout the text. If there is a difficulty with this scheme, it actually starts
at this point: Once the reader has seen the analysis, it should be possible
for her or him to repeat this analysis or a similar analysis with no further
assistance. Even better, the reader should try to read as little as possible of
the analysis proposed in this book and on the opposite hand should try to
conduct the following stage of the analysis before reading the proposed (but
not unique) solution. The ultimate lesson here is that there are indeed many
ways to analyze a dataset and to propose modeling scenarios and inferential
schemes. It is beyond the purpose of this book to provide all of those analyses,
and the reader (or the instructor) is supposed to look for alternatives on her
or his own.
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We thus expect readers to place themselves in a realistic situation to con-
duct this analysis in life-threatening (or job-threatening) situations. As de-
tailed in the preface, the course was originally intended for students in the
last year of study toward a professional degree, and it seems quite reasonable
to insist that they face similar situations before entering their incoming job!

1.2 Prerequisites and Further Reading

This being a textbook about statistical modeling, the students are supposed to
have a background in both probability and statistics, at the level, for instance,
of Casella and Berger (2001). In particular, a knowledge of standard sampling
distributions and their properties is desirable. Lab work in the spirit of Nolan
and Speed (2000) is also a plus. (One should read in particular their Ap-
pendix A on “How to write lab reports?”) Further knowledge about Bayesian
statistics is not a requirement, although using Robert (2007) or Hoff (2009)
as further references would bring a better insight into the topics treated here.

Similarly, we expect students to be able to understand the bits of R pro-
grams provided in the analysis, mostly because the syntax of R is very simple.
We include an introduction to this language in this chapter and we refer to
Dalgaard (2002) for a deeper entry and also to Venables and Ripley (2002).

Besides Robert (2007), the philosophy of which is obviously reflected in this
book, other reference books pertaining to applied Bayesian statistics include
Gelman et al. (2013), Carlin and Louis (1996), and Congdon (2001, 2003).
More specific books that cover parts of the topics of a given chapter are
mentioned (with moderation) in the corresponding chapter, but we can quote
here the relevant books of Holmes et al. (2002), Pole et al. (1994), and Gill
(2002). We want to stress that the citations are limited for efficiency purposes:
There is no extensive coverage of the literature as in, e.g., Robert (2007) or
Gelman et al. (2013), because the prime purpose of the book is to provide
a working methodology, for which incremental improvements and historical
perspectives are not directly relevant.

While we also cover simulation-based techniques in a self-contained per-
spective, and thus do not assume prior knowledge of Monte Carlo methods,
detailed references are Robert and Casella (2004, 2009) and Chen et al. (2000).

Although we had at some stage intended to write a new chapter about
hierarchical Bayes analysis, we ended up not including this chapter in the
current edition and this for several reasons. First, we were not completely
convinced about the relevance of a specific hierarchical chapter, given that
the hierarchical theme is somehow transversal to the book and pops in the
mixture (Chap. 6), dynamic (Chap. 7) and image (Chap. 8) chapters. Second,
the revision took already too long and creating a brand new chapter did not
sound a manageable goal. Third, managing realistic hierarchical models meant
relying on codes written in JAGS and BUGS, which clashed with the philoso-
phy of backing the whole book on R codes. This was subsumed by the recent
and highly relevant publication of The BUGS Book (Lunn et al., 2012) and by
the incoming new edition of Bayesian Data Analysis (Gelman et al., 2013).
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1.3 Styles and Fonts

Presentation often matters almost as much as content towards a better und-
erstanding, and this is particularly true for data analyzes, since they aim
to reproduce a realistic situation of a consultancy job where the consultant
must report to a customer the results of an analysis. An equilibrated use
of graphics, tables, itemized comments, and short paragraphs is, for instance,
quite important for providing an analysis that stresses the different conclusions
of the work, as well as the points that are yet unclear and those that could
be expanded.

In particular, because this book is doing several things at once (that is,
to introduce theoretical and computational concepts and to implement them
in realistic situations), it needs to differentiate between the purposes and the
levels of the parts of the text so that it is as obvious as possible to the reader.
To this effect, we take advantage of the many possibilities of modern computer
editing, and in particular of LATEX, as follows.

First, a minimal amount of theoretical bases is required for dealing with
the model introduced in each chapter, either for Bayesian statistics or for
Monte Carlo theory. This aspect of the material is necessarily part of the
main text, but it is also kept to a minimum—just enough for the book to
be self-contained—and therefore occasional references to more detailed books
such as Robert (2007) and Robert and Casella (2004) are necessary. These
sections need be well-understood before handling the following applications
or realistic cases. This book is primarily intended for those without a strong
background in the theory of Bayesian statistics or computational methods,
and “theoretical” sections are essential for them, hence the need to keep those
sections within the main text.

Statistics is as much about data processing as about mathemat-
ical and probabilistic modeling. To enforce this principle, we center
each chapter around one or two specific realistic datasets that are de-
scribed early enough in the chapter to be used extensively through-
out the chapter. These datasets are available on the book’s Website
(http://www.ceremade.dauphine.fr/~xian/BCS/) and are part of the cor-
responding R package bayess, as normaldata, capturedata, and so on, the
name being chosen in reference to the case/chapter heading. (Some of these
datasets are already available as datasets in the R language.) In particu-
lar, we explain the “how and why” of the corresponding dataset in a separate
paragraph in this shaded format. This style is also used for illustrating theoret-
ical developments for the corresponding dataset and for specific computations
related to this dataset. For typographical convenience, large graphs and tables
may appear outside these sections, in subsequent pages, but are obviously
mentioned and identified within them.
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Example 1.1. There may also be a need for detailed examples in addition
to the main datasets, although we strived to keep them to a minimum and
only for very specific issues where the reference dataset was not appropriate.
They follow this numbered style, the sideways triangle indicating the end of
the example. ◭

� The last style used in the book is the warning, represented by a lightning �

symbol in the margin: This entry is intended to signal major warnings about

things that can (and do) go wrong “otherwise”; that is, if the warning is not

taken into account. Needless to say, these paragraphs must be given the utmost

attention!

A diverse collection of exercises is proposed at the end of each chapter, with
solutions to all those exercises freely available on Springer-Verlag webpage.

1.4 An Introduction to R

This section attempts at introducing R to newcomers in a few pages and,
as such, it should not be considered as a proper introduction to R. Entire
volumes, such as the monumental R Book by Crawley (2007), and the intro-
duction by Dalgaard (2002), are dedicated to the practice of this language,
and therefore additional efforts (besides reading this chapter) will be required
from the reader to sufficiently master the language.1 However, before discour-
aging anyone, let us comfort you with the fact that:

(a) The syntax of R is simple and logical enough to quickly allow for a basic
understanding of simple R programs, as should become obvious in a few
paragraphs.

(b) The best, and in a sense the only, way to learn R is through trial-and-
error on simple and then more complex examples. Reading the book with
a computer available nearby is therefore the best way of implementing
this recommendation.

In particular, the embedded help commands help() and help.search() are
very good starting points to gather information about a specific function or
a general issue, even though more detailed manuals are available both locally
and on-line. Note that help.start() opens a Web browser linked to the local
manual pages.

One may first wonder why we support using R as the programming int-
erface for this introduction to Monte Carlo methods, since there exist other

1If you decide to skip this chapter, be sure to at least print the handy R Ref-
erence Card available at http://cran.r-project.org/doc/contrib/Short-refcard.pdf that
summarizes, in four pages, the major commands of R.
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languages, most (all?) of them faster than R, like Matlab, and some even free,
like C or Python. We obviously have no partisan or commercial involvement
in this language.2 Rather, besides the ease of presentation, our main reason
for this choice is that the language combines a sufficiently high power (for an
interpreted language) with a very clear syntax both for statistical computation
and graphics. R is a flexible language that is object-oriented and thus allows
the manipulation of complex data structures in a condensed and efficient
manner. Its graphical abilities are also remarkable. R provides a powerful
interface that can integrate programs written in other languages such as C,
C++, Fortran, Perl, Python, and Java. At last, it is increasingly common to see
people who develop new methodology simultaneously producing an R package
in support of their approach and to back up introductory statistics courses
with illustrations in R.

One choice we have not addressed above is “why R and not BUGS?” BUGS
(which stands for Bayesian inference Using Gibbs Sampling) is a Bayesian
analysis software developed since the early 1990s, mostly by researchers from
the Medical Research Council (MRC) at Cambridge University. The most
common version is WinBugs, working under Windows, but there also exists an
open-source version called OpenBugs. So, to return to the initial question, we
are not addressing the possible links and advantages of BUGS simply because
the purpose is different. While access to Monte Carlo specifications is possible
in BUGS, most computing operations are handled by the software itself, with
the possible outcome that the user does not bother about this side of the
problem and instead concentrates on Bayesian modeling. Thus, while R can
be easily linked with BUGS and simulation can be done via BUGS, we think
that a lower-level language such as R is more effective in bringing you in
touch. However, more advanced models like the hierarchical models cannot
be easily handled by basic R programming and packages are not necessarily
available to handle the variety of those models and call for other programming
languages like JAGS. (JAGS standing for Just Another Gibbs Sampler and
being dedicated to the study of Bayesian hierarchical models. This program
is also freely available and distributed under the GNU Licence, the current
version being JAGS 3.3.0.)

1.4.1 Getting Started

The R language is straightforward to install: it can be downloaded (obviously
free) from one of the numerous CRAN (Comprehensive R Archive Network)
mirror Websites around the world.3

At this stage, we refrain from covering the installation of the R package
and thus assume that (a) R is installed on the machine you want to work with
and (b) that you have managed to launch it (in most cases, you simply have

2Once again, R is a freely distributed and open-source language.
3 The main CRAN Website is http://cran.r-project.org/.
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to click on the proper icon). In the event you use a friendly (GUI) interface
like RKWard, the interface opens several windows whose use should be self-
explanatory (along with a proper on-line help). Otherwise, you should then
obtain a terminal window whose first lines resemble the following, most likely
with a more recent version:

R version 2.14.1 (2011-12-22)

Copyright (C) 2011 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

Platform: i686-pc-linux-gnu (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ’license()’ or ’licence()’ for distribution details.

R is a collaborative project with many contributors.

Type ’contributors()’ for more information and

’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or

’help.start()’ for an HTML browser interface to help.

Type ’q()’ to quit R.

>

Neither this austere beginning nor the prospect of using a line editor should
put you off, though, as there are many other ways of inputting and outputting
commands and data, as we shall soon see! The final line above with the symbol
> means that the R software is waiting for a command from the user. This
character > at the beginning of each line in the executable window is called the
prompt and precedes the line command, which is terminated by pressing the
RETURN key. At this early stage, all commands will be passed as line commands,
and you should thus spot commands thanks to this symbol.

Commands and programs that need to be stopped during their execution,
for instance because they take too long or too much memory to complete or
because they involve a programming mistake such as an infinite loop, can be
stopped by the Control-C double-key action without exiting the R session.

For memory and efficiency reasons, R does not install all the available
functions and programs when launched but only the basic packages that it
requires to run properly. Additional packages can be loaded via the library

command, as in

> library(mnormt) # Multivariate Normal and t Distributions

and the entire list of available packages is provided by library(). (The symbol
# in the prompt lines above indicates a comment: All characters following #

until the end of the command line are ignored. Comments are recommended to
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improve the readability of your programs.) There exist hundreds of packages
available on the Web.4 Installing a new package such as the package mnormt

is done by downloading the file from the Web depository and calling

> install.package("mnormt")

For a given package, the install.package command obviously needs to be
executed only once, while the library call is required each time R is launched
(as the corresponding package is not kept as part of the .RData file). Thus, it
is good practice to include calls to required libraries within your R programs
in order to avoid error messages when launching them.

1.4.2 R Objects

As with many advanced programming languages, R distinguishes between
several types of objects. Those types include scalar, vector, matrix, time series,
data frames, functions, or graphics. An R object is mostly characterized by a
mode that describes its contents and a class that describes its structure. The
R function str applied to any R object, including R functions, will show its
structure. For instance,

> str(log)

function (x, base = exp(1))

The different modes are

- null (empty object),
- logical (TRUE or FALSE),
- numeric (such as 3, 0.14159, or 2+sqrt(3)),
- complex, (such as 3-2i or complex(1,4,-2)), and
- character (such as ‘‘Blue’’, ‘‘binomial’’, ‘‘male’’, or ‘‘y=a+bx’’),

and the main classes are vector, matrix, array, factor, time-series,
data.frame, and list. Heterogeneous objects such as those of the list class
can include elements with various modes. Manual entries about those classes
can be obtained via the help commands help(data.frame) or ?matrix for
instance.

R can operate on most of those types as a regular function would operate
on a scalar, which is a feature that should be exploited as much as possible for
compact and efficient programming. The fact that R is interpreted rather than
compiled involves many subtle differences, but a major issue is that all vari-
ables in the system are evaluated and stored at every step of R programs. This
means that loops in R are enormously time-consuming and should be avoided
at all costs! Therefore, using the shortcuts offered by R in the manipulation
of vectors, matrices, and other structures is a must.

4Packages that have been validated and tested by the R core team are listed at
http://cran.r-project.org/src/contrib/PACKAGES.html.
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The vector class

As indicated logically by its name, the vector object corresponds to a
mathematical vector of elements of the same type, such as (TRUE,TRUE,FALSE)
or (1,2,3,5,7,11). Creating small vectors can be done using the R command
c() as in

> a=c(2,6,-4,9,18)

This fundamental function combines or concatenates terms together. For in-
stance,

> d=c(a,b)

concatenates the two vectors a and b into a new vector d. Note that decimal
numbers should be encoded with a dot, character strings in quotes " ", and
logical values with the character strings TRUE and FALSE or with their respec-
tive abbreviations T and F. Missing values are encoded with the character
string NA.

In Fig. 1.1, we give a few illustrations of the use of vectors in R. The char-
acter + indicates that the console is waiting for a supplementary instruction,
which is useful when typing long expressions. The assignment operator is =,
not to be confused with ==, which is the Boolean operator for equality. An
older assignment operator is <-, as in

> x <- c(3,6,9)

and, at least for compatibility reasons, it still remains functional in current
versions of R, but we prefer using the equality sign. (As pointed out by Spector
(2009), an exception is when using system.time, briefly described in Fig. 1.8,
since = is then used to identify keywords, although = can preserve its initial
purpose if curly brackets { and } delimit the allocation commands.)

� A misleading feature of the assignment operator <- is found in Boolean expres-
sions such as

> if (x[1]<-2) ...

which is supposed to test whether or not x[1] is less than -2 but ends up
allocating 2 to x[1], erasing its current value! Adding a space in the expression
is sufficient to solve the problem: if (x[1] < -2).
Note also that using

> if (x[1]=-2) ...

mistakenly instead of (x[1]==-2) has the same consequence.

New R objects are simply defined by assigning them a value, as in the
first line of Fig. 1.1, without a preliminary declaration of type (as in the C
language).



10 1 User’s Manual

> a=c(5,5.6,1,4,-5) build the object a containing a numeric vector

of dimension 5 with elements 5, 5.6, 1, 4, –5

> a[1] display the first element of a

> b=a[2:4] build the numeric vector b of dimension 3

with elements 5.6, 1, 4

> d=a[c(1,3,5)] build the numeric vector d of dimension 3

with elements 5, 1, –5

> 2*a multiply each element of a by 2

and display the result

> b%%3 provides each element of b modulo 3

> d%/%2.4 computes the integer division of each element of d by 2.4

> e=3/d build the numeric vector5 e of dimension 3

and elements 3/5, 3, –3/5

> log(d*e) multiply the vectors d and e term by term

and transform each term into its natural logarithm

> sum(d) calculate the sum of d

> length(d) display the length of d

> t(d) transpose d, the result is a row vector

> t(d)%*%e scalar product between the row vector t(b) and

the column vector e with identical length

> t(d)*e element-wise product between two vectors

with identical lengths

> g=c(sqrt(2),log(10)) build the numeric vector g of dimension 2

and elements
√

2, log(10)

> e[d==5] build the subvector of e that contains the

components e[i] such that d[i]=5

> a[-3] create the subvector of a that contains

all components of a but the third.

> is.vector(d) display the logical expression TRUE if

a vector and FALSE else

Fig. 1.1. Illustrations of the processing of vectors in R

Note6 in Table 1.1 the convenient use of Boolean expressions to ex-
tract subvectors from a vector without having to resort to a component-by-
component test (and hence a loop). The quantity d==5 is itself a vector of
Booleans, while the number of components satisfying the constraint can be
computed by sum(d==5). The ability to apply scalar functions to vectors as a
whole is also a major advantage of R. In the event the function depends on a
parameter or an option, this quantity can be entered as in

5The variable e is not predefined in R as exp(1).
6Positive and negative indices cannot be used simultaneously.
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> e=lgamma(e^2) #warning: this is not the exponential basis,

exp(1)

which returns the vector with components logΓ (e2i ). Functions that are spe-
cially designed for vectors include, for instance, sample, order, sort and rank,
which all have to do with manipulating the order in which the components of
the vector occur.

Besides their numeric and logical indexes, the components of a vector can
also be identified by names. For a given vector x, names(x) is a vector of
characters of the same length as x. This additional attribute is most useful
when dealing with real data, where the components have a meaning such
as "unemployed" or "democrat". Those names can also be erased by the
command

> names(x)=NULL

� The : operator found in Fig. 1.1 is a very useful device that defines a consecutive

sequence, but it is also fragile in that sequences do not always produce what is

expected. For instance, 1:2*n corresponds to (1:2)*n rather than 1:(2*n).

The matrix, array, and factor classes

The matrix class provides the R representation of matrices. A typical entry
is, for instance,

> x=matrix(vec,nrow=n,ncol=p)

which creates an n × p matrix whose elements are those of the vector vec,
assuming this vector is of dimension np. An important feature of this entry
is that, in a somewhat unusual way, the components of vec are stored by
column, which means that x[1,1] is equal to vec[1], x[2,1] is equal to
vec[2], and so on, except if the option byrow=T is used in matrix. (Because
of this choice of storage convention, working on R matrices column-wise is
faster then working row-wise.) Note also that, if vec is of dimension n× p, it
is not necessary to specify both the nrow=n and ncol=p options in matrix.
One of those two parameters is sufficient to define the matrix. On the other
hand, if vec is not of dimension n × p, matrix(vec,nrow=n,ncol=p) will
create an n× p matrix with the components of vec repeated the appropriate
number of times. For instance,

> matrix(1:4,ncol=3)

[,1] [,2] [,3]

[1,] 1 3 1

[2,] 2 4 2

Warning message:

data length [4] is not a submultiple or multiple of the

number

of columns [3] in matrix in: matrix(1:4, ncol = 3)
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produces a 2 × 3 matrix along with a warning message that something may
be missing in the call to matrix. Note again that 1, 2, 3, 4 are entered con-
secutively when following the column (or lexicographic) order. Names can be
given to the rows and columns of a matrix using the rownames and colnames

functions.
Note that, in some situations, it is useful to remember that an R matrix

can also be used as a vector. If x is an n × p matrix, x[i+p*(j-1)] is equal
to x[i,j], i.e., x can also be manipulated as a vector made of the columns
of vec piled on top of one another. For instance, x[x>5] is a vector, while
x[x>5]=0 modifies the right entries in the matrix x. Conversely, vectors can
be turned into p× 1 matrices by the command as.matrix. Note that x[1,]
produces the first row of x as a vector rather than as a p× 1 matrix.

R allows for a wide range of manipulations on matrices, both termwise and
in the classical matrix algebra perspective. For instance, the standard matrix
product is denoted by %*%, while * represents the term-by-term product. (Note
that taking the product a%*%b when the number of columns of a differs from
the number of rows of b produces an error message.) Figure 1.2 gives a few
examples of matrix-related commands. The apply function is particularly easy
to use for functions operating on matrices by row or column.

> x1=matrix(1:20,nrow=5) build the numeric matrix x1 of dimension

5 × 4 with first row 1, 6, 11, 16

> x2=matrix(1:20,nrow=5,byrow=T) build the numeric matrix x2 of dimension

5 × 4 with first row 1, 2, 3, 4

> a=x3%*%x2 matrix summation of x2 and x3

> x3=t(x2) transpose the matrix x2

> b=x3%*%x2 matrix product between x2 and x3,

with a check of the dimension compatibility

> c=x1*x2 term-by-term product between x1 and x2

> dim(x1) display the dimensions of x1

> b[,2] select the second column of b

> b[c(3,4),] select the third and fourth rows of b

> b[-2,] delete the second row of b

> rbind(x1,x2) vertical merging of x1 and x2

> cbind(x1,x2) horizontal merging of x1 and x2

> apply(x1,1,sum) calculate the sum of each row of x1

> as.matrix(1:10) turn the vector 1:10 into a 10 × 1 matrix

Fig. 1.2. Illustrations of the processing of matrices in R

The function diag can be used to extract the vector of the diagonal el-
ements of a matrix, as in diag(a), or to create a diagonal matrix with a
given diagonal, as in diag(1:10). Since matrix algebra is central to good
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programming in R, as matrix programming allows for the elimination of time-
consuming loops, it is important to be familiar with matrix manipulation. For
instance, the function crossprod replaces the product t(x)%*%y on either
vectors or matrices by crossprod(x,y) more efficiently:

> system.time(crossprod(1:10^6,1:10^6))

user system elapsed

0.016 0.048 0.066

> system.time(t(1:10^6)%*%(1:10^6))

user system elapsed

0.084 0.036 0.121

Eigen-analysis of square matrices is also included in the base package. For
instance, chol(m) returns the upper triangular factor of the Choleski decom-
position of m; that is, the matrix R such that RTR is equal to m. Similarly,
eigen(m) returns a list that contains the eigenvalues of m (some of which can
be complex numbers) as well as the corresponding eigenvectors (some of which
are complex if there are complex eigenvalues). Related functions are svd and
qr, which provide the singular values and the QR decomposition of their ar-
gument, respectively. Note that the inverse M−1 of a matrix M can be found
either by solve(M) (recommended) or ginv(M), which requires downloading
the library MASS and also produces generalized inverses (which may be a
mixed blessing since the fact that a matrix is not invertible is not signaled by
ginv). Special versions of solve are backsolve and forwardsolve, which are
restricted to upper and lower diagonal triangular systems, respectively. Note
also the alternative of using chol2inv which returns the inverse of a matrix
m when provided by the Choleski decomposition chol(m).

Structures with more than two indices are represented by arrays and can
also be processed by R commands, for instance x=array(1:50,c(2,5,5)),
which gives a three-entry table of 50 terms. Once again, they can also be
interpreted as vectors.

The apply function used in Fig. 1.2 is a very powerful device that op-
erates on arrays and, in particular, matrices. Since it can return arrays, it
bypasses calls to multiple loops and makes for (sometimes) quicker and (al-
ways) cleaner programs. It should not be considered as a panacea, however,
as apply hides calls to loops inside a single command. For instance, a com-
parison of apply(A, 1,mean) with rowMeans(A) shows the second version is
about 200 times faster. Using linear algebra whenever possible is therefore a
more efficient solution. Spector (2009, Sect. 8.7) gives a detailed analysis of
the limitations of apply and the advantages of vectorization in R.

A factor is a vector of characters or integers used to specify a discrete
classification of the components of other vectors with the same length. Its
main difference from a standard vector is that it comes with a level attribute
used to specify the possible values of the factor. This structure is therefore
appropriate to represent qualitative variables. R provides both ordered and
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unordered factors, whose major appeal lies within model formulas, as illus-
trated in Fig. 1.3. Note the subtle difference between apply and tapply.

> state=c("tas","tas","sa","sa","wa") create a vector with five values

> statef=factor(state) distinguish entries by group

> levels(statef) give the groups

> incomes=c(60,59,40,42,23) create a vector of incomes

> tapply(incomes,statef,mean) average the incomes for each group

> statef=factor(state, define a new level with one more

+ levels=c("tas","sa","wa","yo")) group than observed

> table(statef) return statistics for all levels

Fig. 1.3. Illustrations of the factor class

The list and data.frame classes

A list in R is a rather loose object made of a collection of other arbitrary
objects known as its components.7 For instance, a list can be derived from n
existing objects using the function list:

a=list(name_1=object_1,...,name_n=object_n)

This command creates a list with n arguments using object_1,...,object_n
for the components, each being associated with the argument’s name, name_i.
For instance, a$name_1 will be equal to object_1. (It can also be represented
as a[[1]], but this is less practical, as it requires some bookkeeping of the
order of the objects contained in the list.) Lists are very useful in preserving
information about the values of variables used within R functions in the sense
that all relevant values can be put within a list that is the output of the
corresponding function (see Sect. 1.4.5 for details about the construction of
functions in R). Most standard functions in R, for instance eigen in Fig. 1.4,
return a list as their output. Note the use of the abbreviations vec and val

in the last line of Fig. 1.4. Such abbreviations are acceptable as long as they
do not induce confusion. (Using res$v would not work!)

The local version of apply is lapply, which computes a function for each
argument of the list

> x = list(a = 1:10, beta = exp(-3:3),

+ logic = c(TRUE,FALSE,FALSE,TRUE))

> lapply(x,mean) #compute the empirical means

$a

[1] 5.5

7Lists can contain lists as elements.
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> li=list(num=1:5,y="color",a=T) create a list with three arguments

> a=matrix(c(6,2,0,2,6,0,0,0,36),nrow=3) create a (3,3) matrix

> res=eigen(a,symmetric=T) diagonalize a and

> names(res) produce a list with two

arguments: vectors and values

> res$vectors vectors arguments of res

> diag(res$values) create the diagonal matrix

of eigenvalues

> res$vec%*%diag(res$val)%*%t(res$vec) recover a

Fig. 1.4. Chosen features of the list class

$beta

[1] 4.535125

$logic

[1] 0.5

provided each argument is of a mode that is compatible with the function
argument (i.e., is numeric in this case). A “user-friendly” version of lapply is
sapply, as in

> sapply(x,mean)

a beta logic

5.500000 4.535125 0.500000

The last class we briefly mention here is the data.frame. A data frame is
a list whose elements are possibly made of differing modes and attributes but
have the same length, as in the example provided in Fig. 1.5. A data frame can
be displayed in matrix form, and its rows and columns can be extracted using
matrix indexing conventions. A list whose components satisfy the restrictions
imposed on a data frame can be coerced into a data frame using the function
as.data.frame. The main purpose of this object is to import data from an
external file by using the read.table function.

1.4.3 Probability Distributions in R

R is primarily a statistical language. It is therefore well-equipped with prob-
ability distributions. As described in Table 1.1, all standard distributions are
available, with a clever programming shortcut: A “core” name, such as norm,
is associated with each distribution and the four basic associated functions,
namely the cdf, the pdf, the quantile function, and the simulation procedure,
are defined by appending the prefixes d, p, q, r to the core name, such as
dnorm(), pnorm(), qnorm(), and rnorm(). Obviously, each function requires
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> v1=sample(1:12,30,rep=T) simulate 30 independent uniform

random variables on {1, 2, ..., 12}
> v2=sample(LETTERS[1:10],30,rep=T) simulate 30 independent uniform

random variables on {a, b, ...., j}
> v3=runif(30) simulate 30 independent uniform

random variables on [0, 1]

> v4=rnorm(30) simulate 30 independent realizations

from a standard normal distribution

> xx=data.frame(v1,v2,v3,v4) create a data frame

Fig. 1.5. Definition of a data.frame

additional entries, as in pnorm(1.96) or rnorm(10,mean=3,sd=3). Recall that
pnorm() and qnorm() are inverses of one another.

Table 1.1. Standard distributions with R core name

Distribution Core Parameters Default values

Beta beta shape1, shape2

Binomial binom size, prob

Cauchy cauchy location, scale 0, 1
Chi-square chisq df

Exponential exp 1/mean 1
Fisher f df1, df2

Gamma gamma shape,1/scale NA, 1
Geometric geom prob

Hypergeometric hyper m, n, k

Log-Normal lnorm mean, sd 0, 1
Logistic logis location, scale 0, 1
Normal norm mean, sd 0, 1
Poisson pois lambda

Student t df

Uniform unif min, max 0, 1
Weibull weibull shape

In addition to these probability functions, R also provides a battery of
(classical) statistical tools, ranging from descriptive statistics to nonparamet-
ric tests and generalized linear models. A description of these abilities is not
possible in this section but we refer the reader to, e.g., Dalgaard (2002) or
Venables and Ripley (2002) for a complete entry.

1.4.4 Graphical Facilities

Another clear advantage of using the R language is that it allows a very rich
range of graphical possibilities. Functions such as plot and image can be
customized to a large extent, as described in Venables and Ripley (2002) or
Murrell (2005) (the latter being entirely dedicated to the R graphic abilities).
Even though the default output of plot as for instance in
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> plot(faithful)

is not highly most enticing, plot is incredibly flexible: To see the number of
parameters involved, you can type par() that delivers the default values of
all those parameters.

� The wealth of graphical possibilities offered by R should be taken advantage of

cautiously! That is, good design avoids clutter, small fonts, unreadable scale,

etc. The recommendations found in Tufte (2001) are thus worth following to

avoid horrid outputs like those often found in some periodicals! In addition,

graphs produced by R usually tend to look nicer on the current device than

when printed or included in a slide presentation. Colors may change, font sizes

may turn awkward, separate curves may end up overlapping, and so on.

Before covering the most standard graphic commands, we start by describ-
ing the notion of device that is at the core of those graphic commands. Each
graphical operation sends its outcome to a device, which can be a graphi-
cal window (like the one that automatically appears when calling a graphical
command for the first time as in the example above) or a file where the graph-
ical outcome is stored for printing or other uses. Under Unix, Linux and mac
OS, launching a new graphical window can be done via X11(), with many
possibilities for customization (such as size, positions, color, etc.). Once a
graphical window is created, it is given a device number and can be managed
by functions that start with dev., such as dev.list, dev.set, and others. An
important command is dev.off, which closes the current graphical window.
When the device is a file, it is created by a function that is named after its
driver. There are therefore a postscript, a pdf, a jpeg, and a png function.
When printing to a file, as in the following example,

> pdf(file="faith.pdf")

> par(mfrow=c(1,2),mar=c(4,2,2,1))

> hist(faithful[,1],nclass=21,col="grey",main="",

+ xlab=names(faithful)[1])

> hist(faithful[,2],nclass=21,col="wheat",main="",

+ xlab=names(faithful)[2])

> dev.off()

closing the sequence with dev.off() is compulsory since it completes the file,
which is then saved. If the command pdf(file="faith.pdf") is repeated,
the earlier version of the pdf file is erased.

Of course, using a line command interface for controlling graphics may
seem antiquated, but this is the consequence of the R object-oriented philos-
ophy. In addition, current graphs can be saved to a postscript file using the
dev.copy and dev.print functions. Note that R-produced graphs tend to be
large objects, in part because the graphs are not pictures of the current state
but instead preserve every action ever taken.
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As already stressed above, plot is a highly versatile tool that can be used
to represent functional curves and two-dimensional datasets. Colors (chosen
by colors() or colours() out of 650 hues), widths, and types can be cal-
ibrated at will and LATEX-like formulas can be included within the graphs
using expression. Text and legends can be included at a specific point with
locator (see also identify) and legend. An example of (relatively simple)
output is

> plot(as.vector(time(mdeaths)),as.vector(mdeaths),cex=.6,

+ pch=19,xlab="",ylab="Monthly deaths from bronchitis")

> lines(spline(mdeaths),lwd=2,col="red",lty=3)

> ar=arima(mdeaths,order=c(1,0,0))$coef

> lines(as.vector(time(mdeaths))[-1], ar[2]+ar[1]*

+ (mdeaths[-length(mdeaths)]-ar[2]),col="blue",lwd=2,lty=2)

> title("Splines versus AR(1) predictor")

> legend(1974,2800,legend=c("spline","AR(1)"),col=c("red",

+ "blue"),lty=c(3,2),lwd=c(2,2),cex=.5)

represented in Fig. 1.6, which compares spline fitting to an AR(1) predictor
and to an SAR(1,12) predictor. Note that the seasonal model is doing worse.
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Fig. 1.6. Monthly deaths from bronchitis in the UK over the period 1974–1980
and fits by a spline approximation and an AR predictor
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Useful graphical functions include

– hist for constructing and optionally plotting histograms of datasets;
– points for adding points on an existing graph;
– lines for linking points together on an existing graph;
– polygon for filling the area between two sets of points;
– barplot for creating barplots;
– boxplot for creating boxplots.

The two-dimensional representations offered by image and contour are quite
handy when providing likelihood or posterior surfaces. Figure 1.7 gives some
of the most usual graphical commands.

> x=rnorm(100)

> hist(x,nclass=10, prob=T) compute and plot an histogram

of x

> curve(dnorm(x),add=T) draw the normal density on top

> y=2*x+rnorm(100,0,2)

> plot(x,y,xlim=c(-5,5),ylim=c(-10,10)) draw a scatterplot of x against y

> lines(c(0,0),c(1,2),col="sienna3")

> boxplot(x) compute and plot

a box-and-whiskers plot of x

> state=c("tas","tas","sa","sa","wa","sa")

> statef=factor(state)

> barplot(table(statef)) draw a bar diagram of x

Fig. 1.7. Some standard plotting commands

1.4.5 Writing New R Functions

One of the strengths of R is that new functions and libraries can be created
by anyone and then added to Web depositories to continuously enrich the
language. These new functions are not distinguishable from the core functions
of R, such as median() or var(), because those are also written in R. This
means their code can be accessed and potentially modified, although it is
safer to define new functions. (A few functions are written in C, though, for
efficiency.) Learning how to write functions designed for one’s own problems
is paramount for their resolution, even though the huge collection of available
R functions may often contain a function already written for that purpose.
A function is defined in R by an assignment of the form

name=function(arg1[=expr1],arg2[=expr2],...) {

expression

...

expression

value

}
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where expression denotes an R command that uses some of the arguments
arg1, arg2, ... to calculate a value, value, that is the outcome of the
function. The braces indicate the beginning and the end of the function and
the brackets some possible default values for the arguments. Note that pro-
ducing a value at the end of a function is essential because anything done
within a function is local and temporary, and therefore lost once the function
has been exited, unless saved in value (hence, again, the appeal of list()).
For instance, the following function, named sqrnt, implements a version of
Newton’s method for calculating the square root of y:

sqrnt=function(y) {

x=y/2

while (abs(x*x-y) > 1e-10) x=(x+y/x)/2

x

}

When designing a new R function, it is more convenient to use an external
text editor and to store the function under development in an external file,
say myfunction.R, which can be executed in R as source("myfunction.R").
Note also that some external commands can be launched within an R function
via the very handy command system(). This is, for instance, the easiest way
to incorporate programs written in other languages (e.g., Fortran, C, Matlab)
within R programs.

Without getting deeply into R programming, let us note a distinction be-
tween global and local variables: the former are defined in the core of the
R code and are recognized everywhere, while the later are only defined within a
specific function. This means in particular that a local variable, locax say, ini-
tialized within a function, myfunc say, will not be recognized outside myfunc.
(It will not even be recognized in a function defined within myfunc.)

The expressions used in a function rely on a syntax that is quite similar to
those of other programming languages, with conditional statements such as

if (expres1) expres2 else expres3

where expres1 is a logical value, and loops such as

for (name in expres1) expres2

and

while (name in expres1) expres2

where expres1 is a collection of values, as illustrated in Fig. 1.8. In partic-
ular, Boolean operators can be used within those expressions, including ==

for testing equality, != for testing inequality, & for the logical and, | for the
logical or, and ! for the logical contradiction.

Since R is an interpreted language, avoiding loops is generally a good idea,
but this may render programs much harder to read. It is therefore extremely
useful to include comments within the programs by using the symbol #.



1.4 An Introduction to R 21

> bool=T;i=0 separate commands by semicolons

> while(bool==T) {i=i+1; bool=(i<10)} stop at i = 11

> s=0;x=rnorm(10000)

> system.time(for (i in 1:length(x)){ output sum(x) and

+ s=s+x[i]})[3] provide computing time

> system.time(t(rep(1,10000))%*%x)[3] compare with vector product

> system.time(sum(x))[3] compare with sum() efficiency

Fig. 1.8. Some artificial loops in R

1.4.6 Input and Output in R

Large data objects need to be read as values from external files rather than
entered during an R session at the keyboard (or by cut-and-paste). Input
facilities are simple, but their requirements are fairly strict. In fact, there is
a clear presumption that it is possible to modify input files using other tools
outside R.

An entire data frame can be read directly with the read.table() function.
Plain files containing rows of values with a single mode can be downloaded
using the scan() function, as in

> a=matrix(scan("myfile"),nrow=5,byrow=T)

When data frames have been produced by another statistical software, the
library foreign can be used to input those frames in R. For example, the
function read.spss() allows ones to read SPSS data frames.

Conversely, the generic function save() can be used to store all R objects
in a given file, either in binary or ASCII format. (The alternative function
dump() is more rudimentary but also useful.) The function write.table() is
used to export R data frames as ASCII files.

1.4.7 Administration of R Objects

During an R session, objects are created and stored by name. The command
objects() (or, alternatively, ls()) can be used to display, within a directory
called the workspace, the names of the objects that are currently stored. In-
dividual objects can be deleted with the function rm(). Removing all objects
created so far is done by rm(list=ls()).

All objects created during an R session (including functions) can be stored
permanently in a file in provision of future R sessions. At the end of each R
session, obtained by the command quit() (which can be abbreviated as q()),
the user is given the opportunity to save all the currently available objects,
as in

>q()

Save workspace image? [y/n/c]:
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If the user answers y, the object created during the current session and those
saved from earlier sessions are saved in a file called .RData and located in the
working directory. When R is called again, it reloads the workspace from this
file, which means that the user starts the new session exactly where the old
one had stopped. In addition, the entire past command history is stored in
the file .Rhistory and can be used in the current or in later sessions by using
the command history().

1.5 The bayess Package

Since this is originally a paper book, copying by hand the R code represented
on the following pages to your computer terminal would be both tedious and
time-wasting. We have therefore gathered all the programs and codes of this
book within an R package called bayess that you should download from CRAN
before proceeding to the next chapter. Once downloaded on your computer fol-
lowing the instructions provided on the CRAN Webpage, the package bayess
is loaded into your current R session by library(bayess). All the functions
defined inside the package are then available, and so is a step-by-step repro-
duction of the examples provided in the book, using the demo command:

> demo(Chapter.1)

demo(Chapter.1)

---- ~~~~~~~~~

Type <Return> to start :

> # Chapter 1 R commands

>

> # Section 1.4.2

>

> str(log)

function (x, base = exp(1))

> a=c(2,6,-4,9,18)

> x <- c(3,6,9)

> d=a[c(1,3,5)]

> e=3/d

> e=lgamma(e^2)
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> S=readline(prompt="Type <Return> to continue : ")

Type <Return> to continue :

and similarly for the following chapters. Obviously, all commands contained
in the demonstrations and all functions defined in the package can be accessed
and modified.

� Although most steps of the demonstrations are short, some may require longer

execution times. If you need to interrupt the demonstration, recall that Ctrl-C

is an interruption command.
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Normal Models

This was where the work really took place.
—Ian Rankin, Knots & Crosses.—

Roadmap

This chapter uses the standard normal N (μ, σ2) distribution as an easy entry to
generic Bayesian inferential methods. As in every subsequent chapter, we start
with a description of the data used as a chapter benchmark for illustrating new
methods and for testing assimilation of the techniques. We then propose a cor-
responding statistical model centered on the normal distribution and consider
specific inferential questions to address at this level, namely parameter estima-
tion, model choice, and outlier detection, once set the description of the Bayesian
resolution of inferential problems. As befits a first chapter, we also introduce here
general computational techniques known as Monte Carlo methods.

J.-M. Marin and C.P. Robert, Bayesian Essentials with R, Springer Texts
in Statistics, DOI 10.1007/978-1-4614-8687-9 2,
© Springer Science+Business Media New York 2014
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2.1 Normal Modeling

The normal (or Gaussian) distribution N (μ, σ2), with density on R,

f(x|μ, σ) = 1√
2πσ

exp

{
− 1

2σ2
(x− μ)2

}
,

is certainly one of the most studied and one of the most used distributions
because of its “normality”: It appears both as the limit of additive small
effects and as a representation of symmetric phenomena without long tails,
and it offers many openings in terms of analytical properties and closed-form
computations. As such, it is thus the natural opening to a modeling course,
even more than discrete and apparently simpler models such as the binomial
and Poisson models we will discuss in the following chapters. Note, however,
that we do not advocate at this stage the use of the normal distribution as
a one-fits-all model: There exist many continuous situations where a normal
model is inappropriate for many possible reasons (e.g., skewness, fat tails,
dependence, multimodality).

Fig. 2.1. Dataset normaldata: Histogram of the observed fringe shifts in Illing-
worth’s 1927 experiment
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Our normal dataset, normaldata, is linked with the famous Michelson–
Morlay experiment that opened the way to Einstein’s relativity theory in
1887. The experiment was intended to detect the “æther flow” and hence
the existence of æther, this theoretical medium physicists postulated at this
epoch was necessary to the transmission of light. Michelson’s measuring de-
vice consisted in measuring the difference in the speeds of two light beams
travelling the same distance in two orthogonal directions. As often in physics,
the measurement was done by interferometry and differences in the travelling
time inferred from shift in the fringes of the light spectrum. However, the
experiment produced very small measurements that were not conclusive for
the detection of the æther. Later experiments tried to achieve higher preci-
sion, as the one by Illingworth in 1927 used here as normaldata, only to
obtain smaller and smaller upper bounds on the æther windspeed. While the
original dataset is available in R as morley, the entries are approximated to
the nearest multiple of ten and are therefore difficult to analyze as normal
observations.

The 64 data points in normaldata are associated with session numbers
(first column), corresponding to different times of the day, and the values in the
second column represent the averaged fringe displacement due to orientation
taken over ten measurements made by Illingworth, who assumed a normal
error model. Figure 2.1 produces an histogram of the data by the simple R
commands

> data(normaldata)

> shift=normaldata[,2]

> hist(shift,nclass=10,col="steelblue",prob=TRUE,main="")

This histogram seems compatible with a symmetric unimodal distribution
such as the normal distribution. As shown in Fig. 2.2 by a qq-plot obtained
by the commands

> qqnorm((shift-mean(shift))/sd(shift),pch=19,col="gold2")

> abline(a=0,b=1,lty=2,col="indianred",lwd=2)

which compare the empirical cdf with a pluggin normal estimate, The
N (μ, σ2) fit may not be perfect, though, because of (a) a possible bimodality
of the histogram and (b) potential outliers.

As mentioned above, the use of a normal distribution for modeling a given
dataset is a convenient device that does not need to correspond to a perfect fit.
With some degree of approximation, the normal distribution may agree with
the data sufficiently to be used in place of the true distribution (if any). There
exist, however, some setups where the normal distribution is thought to be the
exact distribution behind the dataset (or where departure from normality has
a significance for the theory behind the observations). In Marin and Robert
(2007), we introduced a huge dataset related to the astronomical concept of
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Fig. 2.2. Dataset normaldata: qq-plot of the observed fringe shifts against the
normal quantiles

the cosmological background noise that illustrated this point, but chose not
to reproduce the set in this edition due to the difficulty in handling it.

2.2 The Bayesian Toolkit

2.2.1 Posterior Distribution

Given an independent and identically distributed (later abbreviated as iid)
sample Dn = (x1, . . . , xn) from a density f(x|θ), depending upon an un-
known parameter θ ∈ Θ, for instance the mean μ of the benchmark normal
distribution, the associated likelihood function is

ℓ(θ|Dn) =

n∏

i=1

f(xi|θ) . (2.1)

This function of θ is a fundamental entity for the analysis of the information
provided about θ by the sample Dn, and Bayesian analysis relies on (2.1) to
draw its inference on θ. For instance, when Dn is a normal N (μ, σ2) sample
of size n and θ = (μ, σ2), we get

ℓ(θ|Dn) =

n∏

i=1

exp{−(xi − μ)2/2σ2}/
√
2πσ
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∝ exp

{
−
∑

i=1

(xi − μ)2/2σ2

}
/σn

∝ exp

{
−
(
nμ2 − 2nx̄μ+

∑

i=1

x2
i

)
/
2σ2

}
/σn

∝ exp
{
−
[
n(μ− x̄)2 + s2

] /
2σ2
}
/σn,

where x̄ denotes the empirical mean and where s2 is the sum
∑n

i=1(xi − x̄)2.
This shows in particular that x̄ and s2 are sufficient statistics.

� In the above display of equations, the sign ∝ means proportional to. This

proportionality is understood for functions of θ, meaning that the discarded

constants do not depend on θ but may well depend on the data Dn. This

shortcut is both handy in complex Bayesian derivations and fraught with danger

when considering several levels of parameters.

The major input of the Bayesian approach, compared with a traditional
likelihood approach, is that it modifies the likelihood function into a posterior
distribution, which is a valid probability distribution on Θ defined by the
classical Bayes’ formula (or theorem)

π(θ|Dn) =
ℓ(θ|Dn)π(θ)∫
ℓ(θ|Dn)π(θ) dθ

. (2.2)

The factor π(θ) in (2.2) is called the prior and it obviously has to be chosen
to start the analysis.

� The posterior density is a probability density on the parameter, which does not

mean the parameter θ need be a genuine random variable. This density is used

as an inferential tool, not as a truthful representation.

A first motivation for this approach is that the prior distribution sum-
marizes the prior information on θ; that is, the knowledge that is available
on θ prior to the observation of the sample Dn. However, the choice of π(θ)
is often decided on practical grounds rather than strong subjective beliefs or
overwhelming prior information. A second motivation for the Bayesian con-
struct is therefore to provide a fully probabilistic framework for the inferential
analysis, with respect to a reference measure π(θ).

As an illustration, consider the simplest case of the normal distribution
with known variance, N (μ, σ2). If the prior distribution on μ, π(μ), is the
normal N

(
0, σ2
)
, the posterior distribution is easily derived via Bayes’ the-

orem

π(μ|Dn) ∝ π(μ) ℓ(θ|Dn)

∝ exp{−μ2/2σ2} exp
{
−n(x̄− μ)2/2σ2

}
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∝ exp
{
−(n+ 1)μ2/2σ2 + 2nμx̄/2σ2

}

∝ exp
{
−(n+ 1)[μ− nx̄/(n+ 1)]2/2σ2

}
,

which means that this posterior distribution in μ is a normal distribution
with mean nx̄/(n + 1) and variance σ2/(n + 1). The mean (and mode) of
the posterior is therefore different from the classical estimator x̄, which may
seem as a paradoxical feature of this Bayesian analysis. The reason for the
difference is that the prior information that μ is close enough to zero is taken
into account by the posterior distribution, which thus shrinks the original
estimate towards zero. If we were given an alternative information that μ was
close to ten, the posterior distribution would similarly shrink μ towards ten.
The change from a factor n to a factor (n + 1) in the (posterior) variance
is similarly explained by the prior information, in that accounting for this
information reduces the variability of our answer.

For normaldata, we can first assume that the value of σ is the variability
of the Michelson–Morley apparatus, namely 0.75. In that case, the posterior
distribution on the fringe shift average μ is a normal N (nx̄/(n+1), σ2/(n+1))
distribution, hence with mean and variance

> n=length(shift)

> mmu=sum(shift)/(n+1); mmu

[1] -0.01461538

> vmu=0.75^2/(n+1); vmu

[1] 0.008653846

represented on Fig. 2.3 as a dotted curve.

The case of a normal distribution with a known variance being quite un-
realistic, we now consider the general case of an iid sample Dn = (x1, . . . , xn)
from the normal distribution N (μ, σ2) and θ = (μ, σ2). Keeping the same
prior distribution N

(
0, σ2
)
on μ, which then appears as a conditional distri-

bution of μ given σ2, i.e., relies on the generic decomposition

π(μ, σ2) = π(μ|σ2)π(σ2) ,

we have to introduce a further prior distribution on σ2. To make computations
simple at this early stage, we choose an exponential E (1) distribution on
σ−2. This means that the random variable ω = σ−2 is distributed from an
exponential E (1) distribution, the distribution on σ2 being derived by the
usual change of variable technique,

π(σ2) = exp(−σ−2)

∣∣∣∣
dσ−2

dσ2

∣∣∣∣ = exp(−σ−2) (σ2)−2 .

(This distribution is a special case of an inverse gamma distribution, namely
IG(1, 1).) The corresponding posterior density on θ is then given by
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π((μ, σ2)|Dn) ∝ π(σ2)× π(μ|σ2)× ℓ((μ, σ2)|Dn)

∝ (σ−2)1/2+2 exp
{
−(μ2+2)/2σ2

}

×(σ−2)n/2 exp
{
−
(
n(μ− x)2+s2

)
/2σ2
}

∝ (σ2)−(n+5)/2 exp
{
−
[
(n+1)(μ− nx̄/(n+1))2+(2+s2)

]
/2σ2
}

∝ (σ2)−1/2 exp
{
−(n+1)[μ− nx̄/(n+1)]2/2σ2

}
.

×(σ2)−(n+2)/2−1 exp
{
−(2+s2)/2σ2

}
.

Therefore, the posterior on θ can be decomposed as the product of an inverse
gamma distribution on σ2, I G ((n+ 2)/2, [2 + s2]/2)—which is the distribu-
tion of the inverse of a gamma G ((n+2)/2, [2+s2]/2) random variable—and,
conditionally on σ2, a normal distribution on μ, N (nx̄/(n+ 1), σ2/(n+ 1)).
The interpretation of this posterior is quite similar to the case when σ is
known, with the difference that the variability in σ induces more variabil-
ity in μ, the marginal posterior in μ being then a Student’s t distribution1

(Exercise 2.1)

μ|Dn ∼ T
(
n+ 2, nx̄/(n+ 1), (2 + s2)/(n+ 1)(n+ 2)

)
,

with n+ 2 degrees of freedom, a location parameter proportional to x̄ and a
scale parameter (almost) proportional to s.

For normaldata, an E xp(1) prior on σ−2 being compatible with the value
observed on the Michelson–Morley experiment, the parameters of the t distri-
bution on μ are therefore n = 64,

> mtmu=sum(shift)/(n+1);mtmu

[1] -0.01461538

> stmu=(2+(n-1)*var(shift))/((n+2)*(n+1));stmu

[1] 0.0010841496

We compare the resulting posterior with the one based on the assumption
σ = 0.75 on Fig. 2.3, using the curve commands (note that the mnormt li-
brary may require the preliminary installation of the corresponding package
by install.packages("mnormt")):

> library(mnormt)

> curve(dmt(x,mean=mmu,S=stmu,df=n+2),col="chocolate2",lwd=2,

+ xlab="x",ylab="",xlim=c(-.5,.5))

> curve(dnorm(x,mean=mmu,sd=sqrt(vmu)),col="steelblue2",

+ lwd=2,add=TRUE,lty=2)

1We will omit the reference to Student in the subsequent uses of this distribution,
as is the rule in anglo-saxon textbooks.
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Fig. 2.3. Dataset normaldata: Two posterior distributions on μ corresponding
to an hypothetical σ = 0.75 (dashed lines) and to an unknown σ2 under the prior
σ−2 ∼ E (1) (plain lines)

Although this may sound counterintuitive, in this very case, estimating the
variance produces a reduction in the variability of the posterior distribution
on μ. This is because the postulated value of σ2 is actually inappropriate for
Illingworth’s experiment, being far too large. Since the posterior distribution
on σ2 is an I G (33, 1.82) distribution for normaldata, the probability that
σ is as large as 0.75 can be evaluated as

> digmma=function(x,shape,scale){dgamma(1/x,shape,scale)/x^2}

> curve(digmma(x,shape=33,scale=(1+(n+1)*var(shift))/2),

+ xlim=c(0,.2),lwd=2)

> pgamma(1/(.75)^2,shape=33,scale=(1+(n+1)*var(shift))/2)

[1] 8.99453e-39

which shows that 0.75 is quite unrealistic, being ten times as large as the
mode of the posterior density on σ2.

The above R command library(mnormt) calls the mnormt library, which
contains useful additional functions related with multivariate normal and t
distributions. In particular, dmt allows for location and scale parameters in the
t distribution. Note also that s2 is computed as (n-1)*var(shift) because R
implicitly adopts a classical approach in using the “best unbiased estimator”
of σ2.



2.2 The Bayesian Toolkit 33

2.2.2 Bayesian Estimates

A concept that is at the core of Bayesian analysis is that one should provide
an inferential assessment conditional on the realized value of Dn. Bayesian
analysis gives a proper probabilistic meaning to this conditioning by allocating
to θ a probability distribution. Once the prior distribution is selected, Bayesian
inference formally is “over”; that is, it is completely determined since the
estimation, testing, and evaluation procedures are automatically provided by
the prior and the way procedures are compared (or penalized). For instance,

if estimations θ̂ of θ are compared via the sum of squared errors,

L(θ, θ̂) = ‖θ − θ̂‖2 ,

the corresponding Bayes optimum is the expected value of θ under the posterior
distribution,2

θ̂ =

∫
θ π(θ|Dn) dθ =

∫
θ ℓ(θ|Dn)π(θ) dθ∫
ℓ(θ|Dn)π(θ) dθ

, (2.3)

for a given sample Dn.
When no specific penalty criterion is available, the estimator (2.3) is of-

ten used as a default estimator, although alternatives are also available. For
instance, the maximum a posteriori estimator (MAP) is defined as

θ̂ = argmaxθ π(θ|Dn) = argmaxθ π(θ)ℓ(θ|Dn), (2.4)

where the function to maximize is usually provided in closed form. However,
numerical problems often make the optimization involved in finding the MAP
far from trivial. Note also here the similarity of (2.4) with the maximum
likelihood estimator (MLE): The influence of the prior distribution π(θ) on
the estimate progressively disappears as the number of observations n in-
creases, and the MAP estimator often recovers the asymptotic properties of
the MLE.

For normaldata, since the posterior distribution on σ−2 is a G (32, 1.82)
distribution, the posterior expectation of σ−2 given Illingworth’s experimental
data is 32/1.82 = 17.53. The posterior expectation of σ2 requires a supple-
mentary effort in order to derive the mean of an inverse gamma distribution
(see Exercise 2.2), namely

E
π[σ2|Dn] = 1.82/(33− 1) = 0.057 .

2Estimators are functions of the data Dn, while estimates are values taken by
those functions. In most cases, we will denote them with a “hat” symbol, the de-
pendence on Dn being implicit.
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Similarly, the MAP estimate is given here by

argmaxθ π(σ
2|Dn) = 1.82/(33 + 1) = 0.054

(see also Exercise 2.2). These values therefore reinforce our observation that
the Michelson–Morley precision is not appropriate for the Illingworth experi-
ment, which is much more precise indeed.

2.2.3 Conjugate Prior Distributions

The selection of the prior distribution is an important issue in Bayesian statis-
tics. When prior information is available about the data or the model, it can
(and must) be used in building the prior, and we will see some implementa-
tions of this recommendation in the following chapters. In many situations,
however, the selection of the prior distribution is quite delicate, due to the
absence of reliable prior information, and default solutions must be chosen
instead. Since the choice of the prior distribution has a considerable influence
on the resulting inference, this inferential step must be conducted with the
utmost care.

From a computational viewpoint, the most convenient choice of prior dis-
tributions is to mimic the likelihood structure within the prior. In the most
advantageous cases, priors and posteriors remain within the same param-
eterized family. Such priors are called conjugate. While the foundations of
this principle are too advanced to be processed here (see, e.g., Robert, 2007,
Chap. 3), such priors exist for most usual families, including the normal dis-
tribution. Indeed, as seen in Sect. 2.2.1, when the prior on a normal mean is
normal, the corresponding posterior is also normal.

Since conjugate priors are such that the prior and posterior densities be-
long to the same parametric family, using the observations boils down to an
update of the parameters of the prior. To avoid confusion, the parameters
involved in the prior distribution on the model parameter are usually called
hyperparameters. (They can themselves be associated with prior distributions,
then called hyperpriors.)

For most practical purposes, it is sufficient to consider the conjugate priors
described in Table 2.1. The derivation of each row is straightforward if painful
and proceeds from the same application of Bayes’ formula as for the normal
case above (Exercise 2.5). For distributions that are not within this table, a
conjugate prior may or may not be available (Exercise 2.6).

An important feature of conjugate priors is that one has a priori to select
two hyperparameters, e.g., a mean and a variance in the normal case. On the
one hand, this is an advantage when using a conjugate prior, namely that one
has to select only a few parameters to determine the prior distribution. On
the other hand, this is a drawback in that the information known a priori on μ
may be either insufficient to determine both parameters or incompatible with
the structure imposed by conjugacy.
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Table 2.1. Conjugate priors for the most common statistical families

f(x|θ) π(θ) π(θ|x)
Normal Normal

N (θ, σ2) N (μ, τ 2) N (ρ(σ2μ + τ 2x), ρσ2τ 2)

ρ−1 = σ2 + τ 2

Poisson Gamma
P(θ) G (α, β) G (α + x, β + 1)

Gamma Gamma
G (ν, θ) G (α, β) G (α + ν, β + x)

Binomial Beta
B(n, θ) Be(α,β) Be(α + x, β + n − x)

Negative Binomial Beta
N eg(m,θ) Be(α,β) Be(α + m, β + x)

Multinomial Dirichlet
Mk(θ1, . . . , θk) D(α1, . . . , αk) D(α1 + x1, . . . , αk + xk)

Normal Gamma

N (μ, 1/θ) G (α, β) G (α + 0.5, β + (μ − x)2/2)

2.2.4 Noninformative Priors

There is no compelling reason to choose conjugate priors as our priors, ex-
cept for their simplicity, but the restrictive aspect of conjugate priors can
be attenuated by using hyperpriors on the hyperparameters themselves, al-
though we will not deal with this additional level of complexity in the current
chapter. The core message is therefore that conjugate priors are nice to work
with, but require a hyperparameter determination that may prove awkward
in some settings and that may moreover have a lasting impact on the resulting
inference.

Instead of using conjugate priors, one can opt for a completely different
perspective and rely on so-called noninformative priors that aim at attenuat-
ing the impact of the prior on the resulting inference. These priors are fun-
damentally defined as coherent extensions of the uniform distribution. Their
purpose is to provide a reference measure that has as little as possible bear-
ing on the inference (relative to the information brought by the likelihood).
We first warn the reader that, for unbounded parameter spaces, the den-
sities of noninformative priors actually fail to integrate to a finite number
and they are defined instead as positive measures. While this sounds like an
invalid extension of the probabilistic framework, it is quite correct to def-
ine the corresponding posterior distributions by (2.2), as long as the integral
in the denominator is finite (almost surely). A more detailed account is for
instance provided in Robert (2007, Sect. 1.5) about this possibility of using
σ-finite measures (sometimes called improper priors) in settings where true
probability prior distributions are too difficult to come by or too subjective
to be accepted by all. For instance, location models
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x ∼ p(x− θ)

are usually associated with flat priors π(θ) = 1 (note that these models include
the normal N (θ, 1) as a special case), while scale models

x ∼ 1

θ
f
(x
θ

)

are usually associated with the log-transform of a flat prior, that is,

π(θ) = 1/θ .

In a more general setting, the (noninformative) prior favored by most Bayesi-
ans is the so-called Jeffreys prior,3 which is related to the Fisher information
matrix

IF (θ) = varθ

(
∂ log f(X |θ)

∂θ

)

by

πJ(θ) =
∣∣IF (θ)
∣∣1/2 ,

where |I| denotes the determinant of the matrix I.
Since the mean μ of a normal model is a location parameter, when the

variance σ2 is known, the standard choice of noninformative parameter is an
arbitrary constant π(μ) (taken to be 1 by default). Given that this flat prior
formally corresponds to the limiting case τ = ∞ in the conjugate normal
prior, it is easy to verify that this noninformative prior is associated with the
posterior distribution N (x, 1), which happens to be the likelihood function
in that case. An interesting consequence of this observation is that the MAP
estimator is also the maximum likelihood estimator in that (special) case. For
the general case when θ = (μ, σ2), the Fisher information matrix leads to
the Jeffreys prior πJ(θ) = 1/σ3 (Exercise 2.4). The corresponding posterior
distribution on (μ, σ2) is then

π((μ, σ2)|Dn) ∝ (σ−2)(3+n)/2 exp
{
−
(
n(μ− x)2 + s2

)
/2σ2
}

∝ σ−1 exp
{
−n(μ− x̄)2/2σ2

}
× (σ2)−(n+2)/2 exp

{−s2

2σ2

}
,

that is,
θ ∼ N

(
x̄, σ2/n

)
× I G

(
n/2, s2/2

)
.

a product of a conditional normal on μ by an inverse gamma on σ2. Therefore
the marginal posterior distribution on μ is a t distribution (Exercise 2.1)

μ|Dn ∼ T
(
n, x̄, s2/n2)

)
.

3Harold Jeffreys was an English geophysicist who developed and formalized
Bayesian methods in the 1930s in order to analyze geophysical data. He ended up
writing an influential treatise on Bayesian statistics entitled Theory of Probability.
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For normaldata, the difference in Fig. 2.3 between the noninformative
solution and the conjugate posterior is minor, but it expresses that the prior
distribution E (1) on σ−2 is not very appropriate for the Illingworth experi-
ment, since it does not put enough prior weight on the region of importance,
i.e. near 0.05. As a result, the most concentrated posterior is (seemingly para-
doxically) the one associated with the noninformative prior!

� A major (and potentially dangerous) difference between proper and improper
priors is that the posterior distribution associated with an improper prior is not
necessarily defined, that is, it may happen that

∫

π(θ)ℓ(θ|Dn) dθ < ∞ (2.5)

does not hold. In some cases, this difficulty disappears when the sample size is

large enough. In others (see Chap. 6), it may remain whatever the sample size.

But the main thing is that, when using improper priors, condition (2.5) must

always be checked.

2.2.5 Bayesian Credible Intervals

One point that must be clear from the beginning is that the Bayesian approach
is a complete inferential approach. Therefore, it covers confidence evaluation,
testing, prediction, model checking, and point estimation. We will progres-
sively cover the different facets of Bayesian analysis in other chapters of this
book, but we address here the issue of confidence intervals because it is rather
a straightforward step from point estimation.

As with everything else, the derivation of the confidence intervals (or con-
fidence regions in more general settings) is based on the posterior distribution
π(θ|Dn). Since the Bayesian approach processes θ as a random variable, a
natural definition of a confidence region on θ is to determine C(Dn) such that

π(θ ∈ C(Dn)|Dn) = 1− α (2.6)

where α is a predetermined level such as 0.05.4

The important difference with a traditional perspective in (2.6) is that the
integration is done over the parameter space, rather than over the observation
space. The quantity 1− α thus corresponds to the probability that a random
θ belongs to this set C(Dn), rather than to the probability that the random
set contains the “true” value of θ. Given this drift in the interpretation of a

4There is nothing special about 0.05 when compared with, say, 0.87 or 0.12. It
is just that the famous 5% level is accepted by most as an acceptable level of error.
If the context of the analysis tells a different story, another value for α (including
one that may even depend on the data) should be chosen!
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confidence set (rather called a credible set by Bayesians), the determination of
the best5 credible set turns out to be easier than in the classical sense: indeed,
this set simply corresponds to the values of θ with the highest posterior values,

C(Dn) = {θ; π(θ|Dn) ≥ kα} ,

where kα is determined by the coverage constraint (2.6). This region is called
the highest posterior density (HPD) region.

For normaldata, since the marginal posterior distribution on μ associated
with the Jeffreys prior is the t distribution, T (n, x̄, s2/n2),

π(μ|Dn) ∝
[
n(μ− x̄)2 + s2

]−(n+1)/2

with n = 64 degrees of freedom. Therefore, due to the symmetry properties
of the t distribution, the 95% credible interval on μ is centered at x̄ and its
range is derived from the 0.975 quantile of the t distribution with n degrees
of freedom,

> qt(.975,df=n)*sqrt((n-1)*var(shift)/n^2)

[1] 0.05082314

since the mnormt package does not compute quantiles. The resulting confidence
interval is therefore given by

> qt(.975,df=n)*sqrt((n-1)*var(shift)/n^2)+mean(shift)

[1] 0.03597939

> -qt(.975,df=n)*sqrt((n-1)*var(shift)/n^2)+mean(shift)

[1] -0.06566689

i.e. equal to [−0.066, 0.036]. In conclusion, the value 0 belongs to this credible
interval on μ and this (noninformative) Bayesian analysis of normaldata
shows that, indeed, the absence of æther wind is not infirmed by Illingworth’s
experiment.

�While the shape of an optimal Bayesian confidence set is easily derived, the

computation of either the bound kα or the set C(Dn) may be too challenging

to allow an analytic construction outside conjugate setups (see Exercise 2.11).

2.3 Bayesian Model Choice

Deciding the validity of some assumptions or restrictions on the parameter
θ is a major part of the statistician’s job. In classical statistics, this type of

5In the sense of producing the smallest possible volume with a given coverage.
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problems goes under the name of hypothesis testing, following the framework
set by Fisher, Neyman and Pearson in the 1930s. Hypothesis testing considers
a decision problem where an hypothesis is either true or false and where the
answer provided by the statistician is also a statement whether or not the hy-
pothesis is true. However, we deem this approach to be too formalized—even
though it can be directly reproduced from a Bayesian perspective, as shown
in Robert (2007, Chap. 5)—, we strongly favour a model choice philosophy,
namely that two or more models are proposed in parallel and assessed in
terms of their respective fits of the data. This view acknowledges the fact that
models are at best approximations of reality and it does not aim at finding a
“true model”, as hypothesis testing may do. In this book, we will thus follow
the later approach and take the stand that inference problems expressed as
hypothesis testing by the classical statisticians are in fact comparisons of dif-
ferent models. In terms of numerical outcomes, both perspectives—Bayesian
hypothesis testing vs. Bayesian model choice—are exchangeable but we al-
ready warn the reader that, while the Bayesian solution is formally very close
to a likelihood (ratio) statistic, its numerical values often strongly differ from
the classical solutions.

2.3.1 The Model Index as a Parameter

The essential novelty when dealing with the comparison of models is that this
issue makes the model itself an unknown quantity of interest. Therefore, if we
are comparing two or more models with indices k = 1, 2, . . . , J , we introduce a
model indicator M taking values in {1, 2, . . . , J} and representing the index of
the “true” model. If M = k, then the data Dn are generated from a statistical
model Mk with likelihood ℓ(θk|Dn) and parameter θk taking its value in a
parameter space Θk. An obvious illustration is when opposing two standard
parametric families, e.g., a normal family against a t family, in which case
J = 2, Θ1 = R × R∗

+—for mean and variance—and Θ2 = R∗
+ × R× R∗

+—for
degree of freedom, mean and variance—, but this framework also includes soft
or hard constraints on the parameters, as for instance imposing that a mean
μ is positive.

In this setting, a natural Bayes procedure associated with a prior distri-
bution π is to consider the posterior probability

δπ(Dn) = P
π(M = k|Dn) ,

i.e., the posterior probability that the model index is k, and select the index
of the model with the highest posterior probability as the model preferred
by the data Dn. This representation implies that the prior π is defined over
the collection of model indices, {1, 2, . . . , J}, and, conditionally on the model
index M, on the corresponding parameter space, Θk. This construction may
sound both artificial and incomplete, as there is no prior on the parameter θk
unless M = k, but it nonetheless perfectly translates the problem at hand:



40 2 Normal Models

inference on θk is meaningless unless this is the parameter of the correct model.
Furthermore, the quantity of interest integrates out the parameter, since

P
π(M = k|Dn) =

Pπ(M = k)
∫
ℓ(θk|Dn)πk(θk) dθk∑J

j=1 P
π(M = j)πj(θj) dθj

.

�We believe it is worth emphasizing the above point: A parameter θk associated

with a model does not have a statistical meaning outside this model. This means

in particular that the notion of parameters “common to all models” often found

in the literature, including the Bayesian literature, is not acceptable within a

model choice perspective. Two models must have distinct parameters, if only

because the purpose of the analysis is to end up with a single model.

The choice of the prior π is highly dependent on the value of the prior
model probabilities Pπ(M = k). In some cases, there is experimental or sub-
jective evidence about those probabilities, but in others, we are forced to settle
for equal weights Pπ(M = k) = 1/J . For instance, given a single observation
x ∼ N (μ, σ2) from a normal model where σ2 is known, assuming μ ∼ N (ξ, τ2),
the posterior distribution π(μ|x) is the normal distribution N (ξ(x), ω2) with

ξ(x) =
σ2ξ + τ2x

σ2 + τ2
and ω2 =

σ2τ2

σ2 + τ2
.

If the question of interest is to decide whether μ is negative or positive, we
can directly compute

P
π(μ < 0|x) = P

π

(
μ− ξ(x)

ω
<

−ξ(x)

ω

)

= Φ (−ξ(x)/ω) , (2.7)

where Φ is the normal cdf. This computation does not seem to follow from
the principles we just stated but it is only a matter of perspective as we
can derive the priors on both models from the original prior. Deriving this
posterior probability indeed means that, a priori, μ is negative with probability
Pπ(μ < 0) = Φ(−ξ/τ) and that, in this model, the prior on μ is the truncated
normal

π1(μ) =
exp{−(μ− ξ)2/2τ2}√

2πτΦ(−ξ/τ)
Iµ<0 ,

while μ is positive with probability Φ(ξ/τ) and, in this second model, the prior
on μ is the truncated normal

π2(μ) =
exp{−(μ− ξ)2/2τ2}√

2πτΦ(ξ/τ)
Iµ>0 .

The posterior probability of Pπ(M = k|Dn) is the core object in Bayesian
model choice and, as indicated above, the default procedure is to select the
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model with the highest posterior probability. However, in decisional settings
where the choice between two models has different consequences depending on
the value of k, the boundary in Pπ(M = k|Dn) between choosing one model
and the other may be far from 0.5. For instance, in a pharmaceutical trial,
deciding to start production of a new drug does not have the same financial
impact as deciding to run more preliminary tests. Changing the bound away
from 0.5 is in fact equivalent to changing the prior probabilities of both models.

2.3.2 The Bayes Factor

A notion central to Bayesian model choice is the Bayes factor

Bπ
21(Dn) =

Pπ(M = 2|Dn)/P
π(M = 1|Dn)

Pπ(M = 2)/Pπ(M = 1)
,

which corresponds to the classical odds or likelihood ratio, the difference be-
ing that the parameters are integrated rather than maximized under each
model. While this quantity is a simple one-to-one transform of the posterior
probability, it can be used for Bayesian model choice without first resorting
to a determination of the prior weights of both models. Obviously, the Bayes
factor depends on prior information through the choice of the model priors π1

and π2,

Bπ
21(Dn) =

∫
Θ2

ℓ2(θ2|Dn)π2(θ2) dθ2∫
Θ1

ℓ1(θ1|Dn)π1(θ1) dθ1
=

m2(Dn)

m1(Dn)
,

and thus it can clearly be perceived as a Bayesian likelihood ratio which
replaces the likelihoods with the marginals under both models.

The evidence brought by the data Dn can be calibrated using for instance
Jeffreys’ scale of evidence:

– if log21(B
π
21) is between 0 and 0.5, the evidence against model M1

is weak,
– if it is between 0.5 and 1, it is substantial,
– if it is between 1 and 2, it is strong, and
– if it is above 2, it is decisive.

While this scale is purely arbitrary, it provides a reference for model assess-
ment in a generic setting.

Consider now the special case when we want to assess whether or not a
specific value of one of the parameters is appropriate, for instance μ = 0 in the
normaldata example. While the classical literature presents this problem as
a point null hypothesis, we simply interpret it as the comparison of two models,
N (0, σ2) and N (μ, σ2), for Illingworth’s data. In a more general framework,
when the sample Dn is distributed as Dn ∼ f(Dn|θ), if we decompose θ as
θ = (δ, ω) and if the restricted model corresponds to the fixed value δ = δ0, we
define π1(ω) as the prior under the restricted model (labelled M1) and π2(θ)
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as the prior under the unrestricted model (labelled M2). The corresponding
Bayes factor is then

Bπ
21(Dn) =

∫
Θ ℓ(θ|Dn)π2(θ) dθ∫

Ω
ℓ((δ0, ω)|Dn)π1(ω) dω

Note that, as hypotheses, point null problems often are criticized as ar-
tificial and impossible to test (in the sense of how often can one distinguish
θ = 0 from θ = 0.0001?!), but, from a model choice perspective, they simply
correspond to more parsimonious models whose fit to the data can be checked
against the fit produced by an unconstrained model. While the unconstrained
model obviously contains values that produce a better fit, averaging over the
whole parameter space Θ may still result in a small integrated likelihood
m2(Dn). The Bayes factor thus contains an automated penalization for com-
plexity, a feature missed by the classical likelihood ratio statistic.

� In the very special case when the whole parameter is constrained to a fixed
value, θ = θ0, the marginal likelihood under model M1 coincides with the
likelihood ℓ(θ0|Dn) = f(Dn|θ0) and the Bayes factor simplifies in

Bπ
21(Dn) =

∫

Θ
f(Dn|θ)π2(θ) dθ

f(Dn|θ0)
.

For x ∼ N (μ, σ2) and σ2 known, consider assessing μ = 0 when μ ∼
N (0, τ2) under the alternative model (labelled M2). The Bayes factor is the
ratio

Bπ
21(Dn) =

m2(x)

f(x|(0, σ2))

=
σ√

σ2 + τ2
e−x2/2(σ2+τ2)

e−x2/2σ2

=

√
σ2

σ2 + τ2
exp

{
τ2x2

2σ2(σ2 + τ2)

}
.

Table 2.2 gives a sample of the values of the Bayes factor when the normalized
quantity x/σ varies. They obviously depend on the choice of the prior variance
τ2 and the dependence is actually quite severe, as we will see below with the
Jeffreys–Lindley paradox.

For normaldata, since we saw that setting σ to the Michelson–Morley
value of 0.75 was producing a poor outcome compared with the noninforma-
tive solution, the comparison between the constrained and the unconstrained
models is not very trustworthy, but as an illustration, it gives the following
values:
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Table 2.2. Bayes factor B21(z) against the null hypothesis μ = 0 for different
values of z = x/σ and τ

z 0 0.68 1.28 1.96

τ 2 = σ2 0.707 0.794 1.065 1.847
τ 2 = 10σ2 0.302 0.372 0.635 1.728

> BaFa=function(z,rat){

#rat denotes the ratio tau^2/sigma^2

sqrt(1/(1+rat))*exp(z^2/(2*(1+1/rat)))}

> BaFa(mean(shift),1)

[1] 0.7071767

> BaFa(mean(shift),10)

[1] 0.3015650

which supports the constraint μ = 0 for those two values of τ , since the Bayes
factor is less than 1. (For this dataset, the Bayes factor is always less than
one, see Exercise 2.13.)

2.3.3 The Ban on Improper Priors

We introduced noninformative priors in Sect. 2.2.4 as a way to handle situ-
ations when the prior information was not sufficient to build proper priors.
We also saw that, for normaldata, a noninformative prior was able to ex-
hibit conflicts between the prior information (based on the Michelson–Morley
experiment) and the data (resulting from Illingworth’s experiment). Unfor-
tunately, the use of noninformative priors is very much restricted in model
choice settings because the fact that they usually are improper leads to the
impossibility of comparing the resulting marginal likelihoods.

Looking at the expression of the Bayes factor,

Bπ
21(Dn) =

∫
Θ2

ℓ2(θ2|Dn)π2(θ2) dθ2∫
Θ1

ℓ1(θ1|Dn)π1(θ1) dθ1
,

it is clear that, when either π1 or π2 are improper, it is impossible to normalize
the improper measures in a unique manner. Therefore, the Bayes factor be-
comes completely arbitrary since it can be multiplied by one or two arbitrary
constants.

For instance, when comparing x ∼ N (μ, 1) (model M1) with x ∼ N (0, 1)
(model M2), the improper Jeffreys prior on model M1 is π1(μ) = 1. The Bayes
factor corresponding to this choice is

Bπ
12(x) =

e−x2/2

∫ +∞

−∞ e−(x−θ)2/2 dθ
=

e−x2/2

√
2π

.
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If, instead, we use the prior π1(μ) = 100, the Bayes factor becomes

Bπ
12(x) =

e−x2/2

100
∫+∞

−∞ e−(x−θ)2/2 dθ
=

e−x2/2

100
√
2π

and is thus one-hundredth of the previous value! Since there is no mathe-
matical way to discriminate between π1(μ) = 1 and π1(μ) = 100, the answer
clearly is non-sensical.

Note that, if we are instead comparing model M1 where μ ≤ 0 and model
M2 where μ > 0, then the posterior probability of model M1 under the flat
prior is

P
π(μ ≤ 0|x) = 1√

2π

∫ 0

−∞

e−(x−θ)2/2 dθ = Φ(−x) ,

which is uniquely defined.
The difficulty in using an improper prior also relates to what is called the

Jeffreys–Lindley paradox, a phenomenon that shows that limiting arguments
are not valid in testing settings. In contrast with estimation settings, the non-
informative prior no longer corresponds to the limit of conjugate inferences.
For instance, for the comparison of the normal x ∼ N (μ, σ2) (model M1) and
of the normal x ∼ N (μ, σ2) (model M2) models when σ2 is known, using a
conjugate prior μ ∼ N (0, τ2), the Bayes factor

Bπ
21(x) =

√
σ2

σ2 + τ2
exp

[
τ2x2

2σ2(σ2 + τ2)

]

converges to 0 when τ goes to +∞, for every value of x, again a non-sensical
procedure.

Since improper priors are an essential part of the Bayesian approach, there
are many proposals found in the literature to overcome this ban. Most of
those proposals rely on a device that transforms the improper prior into a
proper probability distribution by exploiting a fraction of the data Dn and
then restricts itself to the remaining part of the data to run the test as in
a standard situation. The variety of available solutions is due to the many
possibilities of removing the dependence on the choice of the portion of the
data used in the first step. The resulting procedures are called pseudo-Bayes
factors, although some may actually correspond to true Bayes factors. See
Robert (2007, Chap. 5) for more details, although we do not advocate using
those procedures.

There is a major exception to this ban on improper priors that we can
exploit. If both models under comparison have parameters that have similar
enough meanings to share the same prior distribution, as for instance a mea-
surement error σ2, then the normalization issue vanishes. Note that we are
not assuming that parameters are common to both models and thus that we
do not contradict the earlier warning about different parameters to different
models. An illustration is provided by the above remark on the comparison



2.3 Bayesian Model Choice 45

of μ < 0 with μ > 0. This partial opening in the use of improper priors rep-
resents an opportunity but it does not apply to parameters of interest, i.e. to
parameters on which restrictions are assessed.

Example 2.1. When comparing two id normal samples, (x1, . . . , xn) and (y1,
. . . , yn), with respective distributions N (μx, σ

2) and N (μy , σ
2), we can ex-

amine whether or not the two means are identical, i.e. μx = μy (corresponding
to modelM1). To take advantage of the structure of this model, we can assume
that σ2 is a measurement error with a similar meaning under both models and
thus that the same prior πσ(σ

2) can be used under both models. This means
that the Bayes factor

Bπ
21(Dn) =

∫
ℓ2(μx, μy, σ|Dn)π(μx, μy)πσ(σ

2) dσ2 dμx dμy∫
ℓ1(μ, σ|Dn)πµ(μ)πσ(σ2) dσ2 dμ

does not depend on the normalizing constant used for πσ(σ
2) and thus that

we can still use an improper prior such as πσ(σ
2) = 1/σ2 in that case. Fur-

thermore, we can rewrite μx and μy as μx = μ−ξ and μy = μ+ξ, respectively,
and use a prior of the form π(μ, ξ) = πµ(μ)πξ(ξ) on the new parameterization
so that, again, the same prior πµ can be used under both models. The same
cancellation of the normalizing constant occurs for πµ, which means a Jeffreys
prior πµ(μ) = 1 can be used. However, we need a proper and well-defined prior
on ξ, for instance ξ ∼ N (0, τ2), which leads to

Bπ
21(Dn) =

∫
e−n[(µ−ξ−x̄)2+(µ+ξ−ȳ)2+s2xy]/2σ

2

σ−2n−2e−ξ2/2τ2

/τ
√
2π dσ2 dμdξ

∫
e−n[(µ−x̄)2+(µ−ȳ)2+s2xy]/2σ

2

σ−2n−2 dσ2 dμ

=

∫ [
(μ − ξ − x̄)2 + (μ + ξ − ȳ)2 + s2xy

]−n
e−ξ2/2τ2

/τ
√
2π dμdξ

∫ [
(μ − x̄)2 + (μ − ȳ)2 + s2xy

]−n
dμ

,

where s2xy denotes the average

s2xy =
1

n

n∑

i=1

(xi − x̄)2 +
1

n

n∑

i=1

(yi − ȳ)2 .

While the denominator can be completely integrated out, the numerator can-
not. A numerical approximation to Bπ

21 is thus necessary. (This issue is ad-
dressed in Sect. 2.4.) ◭

We conclude this section by a full processing of the assessment of μ = 0
for the single sample normal problem. Comparing models M1 : N (0, σ2)
under the prior π1(σ

2) = 1/σ2 and M2 : N (μ, σ2) under the prior made of
π2(σ

2) = 1/σ2 and π2(μ|σ2) equal to the normal N (0, σ2) density, the Bayes
factor is
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Bπ
21(Dn) =

∫
e−[n(x̄−µ)2+s2]/2σ2

e−µ2/2σ2

σ−n−1−2 dμdσ
2

√
2π∫

e−[nx̄2+s2]/2σ2

σ−n−2 dσ2

=

∫
e−(n+1)[µ−nx̄/(n+1)]2 e−[nx̄2/(n+1)+s2]/2σ2

σ−n−3 dμdσ2

√
2π[

nx̄2 + s2

2

]−n/2/
Γ (n/2)

=

∫
(n+ 1)−1/2 e−[nx̄2/(n+1)+s2]/2σ2

σ−n−2 dσ2

[
nx̄2 + s2

2

]−n/2/
Γ (n/2)

=

(n+ 1)−1/2

[
nx̄2/(n+ 1) + s2

2

]−n/2/
Γ (n/2)

[
nx̄2 + s2

2

]−n/2/
Γ (n/2)

= (n+ 1)−1/2

[
nx̄2 + s2

nx̄2/(n+ 1) + s2

]n/2
,

taking once again advantage of the normalizing constant of the gamma dis-
tribution (see also Exercise 2.8). It therefore increases to infinity with x̄2/s2,
starting from 1/

√
n+ 1 when x̄ = 0.

The value of this Bayes factor for Illingworth’s data is given by

> ratio=n*mean(shift)^2/((n-1)*var(shift))

> ((1+ratio)/(1+ratio/(n+1)))^(n/2)/sqrt(n+1)

[1] 0.1466004

which confirms the assessment that the model with μ = 0 is to be preferred.

2.4 Monte Carlo Methods

While, as seen in Sect. 2.3, the Bayes factor and the posterior probability
are the only quantities used in the assessment of models (and hypotheses),
the analytical derivation of those objects is not always possible, since they
involve integrating the likelihood ℓ(θ|Dn) both on the sets Θ1 and Θ2, under
the respective priors π1 and π2. Fortunately, there exist special numerical
techniques for the computation of Bayes factors, which are, mathematically
speaking, simply ratios of integrals. We now detail the techniques used in the
approximation of intractable integrals, but refer to Chen et al. (2000) and
Robert and Casella (2004, 2009) for book-length presentations.
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2.4.1 An Approximation Based on Simulations

The technique that is most commonly used for integral approximations in
statistics is called the Monte Carlo method6 and relies on computer simula-
tions of random variables to produce an approximation technique that con-
verges with the number of simulations. Its justification is thus the law of large
numbers, that is, if x1, . . . , xN are independent and distributed from g, then
the empirical average

ÎN = (h(x1) + . . .+ h(xN ))/N

converges (almost surely) to the integral

I =

∫
h(x)g(x) dx .

We will not expand on the foundations of the random number generators
in this book, except for an introduction to accept–reject methods in Chap. 5
because of their links with Markov chain Monte Carlo techniques (see, in-
stead, Robert and Casella, 2004). The connections of utmost relevance here
are (a) that softwares like R can produce pseudo-random series that are indis-
tinguishable from truly random series with a given distribution, as illustrated
in Table 1.1 and (b) that those software packages necessarily cover a limited
collection of distributions. Therefore, other methods must be found for simu-
lating distributions outside this collection, while relying on the distributions
already available, first and foremost the uniform U (0, 1) distribution.

The implementation of the Monte Carlo method is straightforward, at least
on a formal basis, with the following algorithmic representation:

Algorithm 2.1 Basic Monte Carlo Method

For i = 1, . . . , N ,
simulate xi ∼ g(x).

Take
ÎN = (h(x1) + . . .+ h(xN ))/N

to approximate I.

as long as the (computer-generated) pseudo-random generation from g is feasi-
ble and the h(xi) values are computable. When simulation from g is a problem
because g is nonstandard and usual techniques such as accept–reject algo-
rithms (see Chap. 5) are difficult to devise, more advanced techniques such as
Markov Chain Monte Carlo (MCMC) are required. We will introduce those

6This method is named in reference to the central district of Monaco, where the
famous Monte-Carlo casino lies.
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in both next chapters. When the difficulty is with the intractability of the
function h, the solution is often to use an integral representation of h and to
expand the random variables xi in (xi, yi), where yi is an auxiliary variable.
The use of such representations will be detailed in Chap. 6.

Example 2.2 (Continuation of Example 2.1). As computed in Exam-
ple 2.1, the Bayes factor Bπ

21(Dn) can be simplified into

Bπ
21(Dn) =

∫ [
(μ− ξ − x̄)2 + (μ+ ξ − ȳ)2 + s2xy

]−n
e−ξ2/2τ2

dμ dξ/τ
√
2π

∫ [
(μ− x̄)2 + (μ− ȳ)2 + s2xy

]−n
dμ

=

∫ [
(2ξ + x̄− ȳ)2 + 2 s2xy

]−n+1/2
e−ξ2/2τ2

dξ/τ
√
2π

[
(x̄− ȳ)2 + 2 s2xy

]−n+1/2
,

and we are left with a single integral in the numerator that involves the normal
N (0, τ2) density and can thus be represented as an expectation against this
distribution. This means that simulating a normal N (0, τ2) sample of ξi’s
(i = 1, . . . , N) and replacing Bπ

21(Dn) with

B̂π
21(Dn) =

1
N

∑N
i=1

[
(2ξi + x̄− ȳ)2 + 2 s2xy+

2
]−n+1/2

[
(x̄− ȳ)2 + 2 s2xy

]−n+1/2

is an asymptotically valid approximation scheme. ◭

In normaldata, if we compare the fifth and the sixth sessions, both with
n = 10 observations, we obtain

> illing=as.matrix(normaldata)

> xsam=illing[illing[,1]==5,2]

> xbar=mean(xsam)

[1] -0.041

> ysam=illing[illing[,1]==6,2]

> ybar=mean(ysam)

[1] -0.025

> Ssquar=9*(var(xsam)+var(ysam))/10

[1] 0.101474

Picking τ = 0.75 as earlier, we get the following approximation to the Bayes
factor

> Nsim=10^4

> tau=0.75

> xis=rnorm(Nsim,sd=tau)

> BaFa=mean(((2*xis+xbar-ybar)^2+2*Ssquar)^(-8.5))/

+ ((xbar-ybar)^2+2*Ssquar)^(-8.5)

[1] 0.0763622
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This value of B̂π
21(Dn) implies that ξ = 0, i.e. μx = μy is much more likely

for the data at hand than μx 
= μy. Note that, if we use τ = 0.1 instead, the
approximated Bayes factor is 0.4985 which slightly reduces the argument in
favor of μx = μy.

Obviously, this Monte Carlo estimate of I is not exact, but generating a
sufficiently large number of random variables can render this approximation
error arbitrarily small in a suitable probabilistic sense. It is also possible to
assess the size of this error for a given number of simulations. If

∫
|h(x)|2g(x) dx < ∞ ,

the central limit theorem shows that
√
N [ÎN − I] is also normally distributed,

and this can be used to construct asymptotic confidence regions for ÎN , esti-
mating the asymptotic variance from the simulation output.

For the approximation of Bπ
21(Dn) proposed above, its variability is illus-

trated in Fig. 2.4, based on 500 replications of the simulation of N = 1000
normal variables used in the approximation and obtained as follows

> xis=matrix(rnorm(500*10^3,sd=tau),nrow=500)

> BF=((2*xis+xbar-ybar)^2+2*Ssquar)^(-8.5)/

+ ((xbar-ybar)^2+2*Ssquar)^(-8.5)

> estims=apply(BF,1,mean)

> hist(estims,nclass=84,prob=T,col="wheat2",

+ main="",xlab="Bayes Factor estimates")

> curve(dnorm(x,mean=mean(estims),sd=sd(estims)),

+ col="steelblue2",add=TRUE)

As can be seen on this figure, the value of 0.076 reported in the previous
Monte Carlo approximation is in the middle of the range of possible values.
More in connection with the above point, the shape of the histogram is clearly
compatible with the normal approximation, as shown by the fitted normal
density.

2.4.2 Importance Sampling

An important feature of Example 2.2 is that, for the Monte Carlo approxima-
tion of Bπ

21(Dn), we exhibited a normal density within the integral and hence
derived a representation of this integral as an expectation under this normal
distribution. This seems like a very restrictive constraint in the approximation
of integrals but this is only an apparent restriction in that we will now show
that there is no need to simulate directly from the normal density and fur-
thermore that there is no intrinsic density corresponding to a given integral,
but rather an infinity of densities!
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Fig. 2.4. Dataset normaldata: Histogram of 500 realizations of the approximation
̂B21(Dn) based on N = 1000 simulations each and normal fit of the sample

Indeed, an arbitrary integral

I =

∫
H(x) dx

can be represented in infinitely many ways as an expectation, since, for an
arbitrary probability density γ, we always have

I =

∫
H(x)

γ(x)
γ(x) dx , (2.8)

under the minimal condition that γ(x) > 0 when H(x). Therefore, the
generation of a sample from γ can provide a converging approximation to
E and the Monte Carlo method applies in a very wide generality. This
method is called importance sampling when applied to an expectation under a
density g,

I =

∫
h(x)g(x) dx ,H(x) = h(x)g(x)

since the values xi simulated from γ are weighted by the importance weights
g(xi)/γ(xi) in the approximation
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ÎN =
1

N

N∑

i=1

g(xi)

γ(xi)
h(xi) .

�While the representation (2.8) holds for any density γ with a support larger than

the support of H , the performance of the empirical average ÎN can deteriorate

considerably when the ratio h(x)g(x)/γ(x) is not bounded as this raises the

possibility for infinite variance in the resulting estimator. When using importance

sampling, one must always take heed of a potentially infinite variance of ÎN .

An additional incentive in using importance sampling is that this method
does not require the density g (or γ) to be known completely. Those densities
can be known only up to a normalizing constant, g(x) ∝ g̃(x) and γ(x) ∝ γ̃(x),
since the ratio

n∑

i=1

h(xi)g̃(xi)/γ̃(xi)

/ n∑

i=1

g̃(xi)/γ̃(xi)

also converges to I when n goes to infinity and when the xi’s are generated
from γ.

The equivalent of Algorithm 2.1 for importance sampling is as follows:

Algorithm 2.2 Importance Sampling Method

For i = 1, . . . , N ,
simulate xi ∼ γ(x);
compute ωi = g̃(xi)/γ(xi) .

Take

ÎN =

N∑

i=1

ωi h(xi)

/ N∑

i=1

ωi

to approximate I.

This algorithm is straightforward to implement. Since it offers a degree of
freedom in the selection of γ, simulation from a manageable distribution can
be imposed, keeping in mind the constraint that γ should have flatter tails
than g. Unfortunately, as the dimension of x increases, differences between
the target density g and the importance density γ have a larger and larger
impact.

Example 2.3. Consider almost the same setting as in Exercise 2.11: Dn =
(x1, . . . , xn) is an iid sample from C (θ, 1) and the prior on θ is a flat prior.
We can use a normal importance function from a N (μ, σ2) distribution to
produce a sample θ1, . . . , θN that approximates the Bayes estimator of θ,
i.e. its posterior mean, by
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δ̂π(Dn) =

∑N
t=1 θt exp

{
(θt − μ)2/2

} ∏n
i=1[1 + (xi − θt)

2]−1

∑N
t=1 exp {(θt − μ)2/2} ∏n

i=1[1 + (xi − θt)2]−1
.

But this is a very poor estimation (see Exercise 2.17 for an analytic explana-
tion) and it degrades considerably when μ increases. If we run an R simulation
experiment producing a sample of estimates when μ increases, as follows,

> Nobs=10

> obs=rcauchy(Nobs)

> Nsim=250

> Nmc=500

> sampl=matrix(rnorm(Nsim*Nmc),nrow=1000) # normal samples

> raga=riga=matrix(0,nrow=50,ncol=2) # ranges

> mu=0

> for (j in 1:50){

+ prod=1/dnorm(sampl-mu) # importance sampling

+ for (i in 1:Nobs)

+ prod=prod*dt(obs[i]-sampl,1)

+ esti=apply(sampl*prod,2,sum)/apply(prod,2,sum)

+ raga[j,]=range(esti)

+ riga[j,]=c(quantile(esti,.025),quantile(esti,.975))

+ sampl=sampl+0.1

+ mu=mu+0.1

+ }

> mus=seq(0,4.9,by=0.1)

> plot(mus,0*mus,col="white",xlab=expression(mu),

+ ylab=expression(hat(theta)),ylim=range(raga))

> polygon(c(mus,rev(mus)),c(raga[,1],rev(raga[,2])),col="grey50")

> polygon(c(mus,rev(mus)),c(riga[,1],rev(riga[,2])),col="pink3")

as shown by Fig. 2.5, not only does the range of the approximation increase,
but it ends up missing the true value θ = 0 when μ is far enough from 0. ◭

2.4.3 Approximation of Bayes Factors

Bayes factors being ratios of integrals, they can be approximated by regu-
lar importance sampling tools. However, given their specificity as ratios of
marginal likelihoods, hence of normalizing constants of the posterior distri-
butions, there exist more specialized techniques, including a fairly generic
method called bridge sampling, developed by Gelman and Meng (1998).

When comparing two models with sampling densities f1(Dn|θ1) (model
M1) and f2(Dn|θ2) (model M2), assume that both models share the same pa-
rameter space Θ. This is for instance the case when comparing the fit of two
densities with the same number of parameters (modulo a potential reparam-
eterization of one of the models). In this setting, if the corresponding prior
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Fig. 2.5. Representation of the whole range (grey) and of the 95% range (pink)
of variation of the importance sampling approximation to the Bayes estimate for
n = 10 observations from the C (0, 1) distribution and N = 250 simulations of θ
from a N (μ, 1) distribution as a function of μ. This range is computed using 500
replications of the importance sampling estimates

densities are π1(θ) and π2(θ), we only know the unnormalized posterior densi-
ties π̃1(θ|Dn) = f1(Dn|θ)π1(θ) and π̃2(θ|Dn) = f2(Dn|θ)π2(θ). In this general
setting, for any positive function α such that the integrals below exist, the
Bayes factor for comparing the two models satisfies

Bπ
12(Dn) =

m1(x)

m2(x)

=
m1(x)

m2(x)

∫
π̃1(θ|Dn)α(θ)π̃2(θ|Dn)dθ
∫

π̃2(θ|Dn)α(θ)π̃1(θ|Dn)dθ

=

∫
π̃1(θ|Dn)α(θ)π2(θ|Dn)dθ
∫

π̃2(θ|Dn)α(θ)π1(θ|Dn)dθ

. (2.9)

Therefore, the bridge sampling approximation

N∑

i=1

π̃1(θ2i|Dn)α(θ2i)

/ N∑

i=1

π̃2(θ1i|Dn)α(θ1i) (2.10)
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is a convergent approximation of the Bayes factor Bπ
12(Dn) when θji ∼

πj(θ|Dn) (j = 1, 2, i = 1, . . . , N). One of the appealing features of the method
is that it only requires simulations from the posterior distributions under both
models of interest. Another interesting feature is that α is completely arbi-
trary, which means it can be chosen in the best possible way. Using asymptotic
variance arguments, Gelman and Meng (1998) proved that the best choice is

αO(θ) ∝ 1

π1(θ|Dn) + π2(θ|Dn)
,

which bridges both posteriors. This means that the optimal weight of θ2i in
(2.10) is

π̃1(θ2i|Dn)

π1(θ2i|Dn) + π2(θ2i|Dn)
=

π̃1(θ2i|Dn)

π̃1(θ2i|Dn) +Bπ
12(Dn)π̃2(θ2i|Dn)

,

with an appropriate change of indices for the θ1i’s. There is however a caveat
with this find in that it cannot be attained because the optimum depends on
the very quantity we are trying to approximate! However, the Bayes factor
Bπ

12(Dn) can first be approximated on a crude basis and the corresponding
construction of αO iterated till the Bayes factor approximation (2.10) stabi-
lizes.

We will now illustrate this derivation in the case of the normal model, with
an application to normaldata. (We showed in Sect. 2.3.3 that the Bayes factor
was available in closed form so this implementation of the bridge sampler is
purely for illustrative purposes.) A further implementation is discussed in
Chap. 4, Sect. 4.3.2, in connection with the probit model.

When assessing whether or μ = 0 is appropriate for the single sample nor-
mal model, the above approximation does not apply directly because there is
an extra parameter in the unconstrained model. There are however two easy
tricks out of this difficulty. The first one, repeatedly found in the literature, is
to add an arbitrary density to make dimensions match. In the normal example,
this means introducing an arbitrary (normalized) density π∗

1(μ|σ2) in the con-
strained model (denoted M1) and extending the Bayes factor representation
(2.9) to

Bπ
12(Dn) =

∫
π∗
1(μ|σ2)π̃1(σ

2|Dn)α(θ)π2(θ|Dn)dθ
∫

π̃2(θ|Dn)α(θ)π1(σ
2|Dn)dσ

2π∗
1(μ|σ2)dμ

.

which holds independently of π∗
1(μ|σ2) for the same reason as in (2.9). The

choice of the substitute π∗
1(μ|σ2) equal to an approximation of π2(μ|Dn, σ

2) is
suggested by Chen et al. (2000). For instance, we can use as π∗

1(μ|σ2) a normal
distribution N (μ̂, σ̂2) where μ̂ and σ̂2 are computed based on a simulation
from π2(μ, σ|Dn).
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The exact value of this Bayes factor Bπ
12(Dn) for Illingworth’s data is given

by

> ((1+ratio)/(1+ratio/(n+1)))^(-n/2)*sqrt(n+1)

[1] 6.821262

while the bridge sampling solution is obtained as

> n=64

> xbar=mean(shift)

> sqar=(n-1)*var(shift)

> Nmc=10^7

> # Simulation from model M2:

> sigma2=1/rgamma(Nmc,shape=n/2,rate=(n*xbar^2/(n+1)+sqar)/2)

> mu2=rnorm(Nmc,n*xbar/(n+1),sd=sqrt(sigma2/(n+1)))

> # Simulation from model M1:

> sigma1=1/rgamma(Nmc,shape=n/2,rate=(n*xbar^2+sqar)/2)

> muhat=mean(mu2)

> tauat=sd(mu2)

> mu1=rnorm(Nmc,mean=muhat,sd=tauat)

> #tilde functions

> tildepi1=function(sigma,mu){

+ exp(-.5*((n*xbar^2+sqar)/sigma+(n+2)*log(sigma))+

+ dnorm(mu,muhat,tauat,log=T))

+ }

> tildepi2=function(sigma,mu){

+ exp(-.5*((n*(xbar-mu)^2+sqar+mu^2)/sigma+(n+3)*log(sigma)+

+ log(2*pi)))}

> #Bayes Factor loop

> K=diff=1

> rationum=tildepi2(sigma1,mu1)/tildepi1(sigma1,mu1)

> ratioden=tildepi1(sigma2,mu2)/tildepi2(sigma2,mu2)

> while (diff>0.01*K){

+ BF=mean(1/(1+K*rationum))/mean(1/(K+ratioden))

+ diff=abs(K-BF)

+ K=BF}

and returns the value

> BF

[1] 6.820955

which is definitely close to the true value!

The second possible trick to overcome the dimension difficulty while using
the bridge sampling strategy is to introduce artificial posterior distributions
in each of the parameters spaces and to process each marginal likelihood as
an integral ratio in itself. For instance, if η1(θ1) is an arbitrary normalized
density on θ1, and α is an arbitrary function, we have
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m1(Dn) =

∫
π̃1(θ1|Dn) dθ1 =

∫
π̃1(θ1|Dn)α(θ1)η1(θ1) dθ1
∫

η1(θ1)α(θ1)π1(θ1|Dn) dθ1

by application of (2.9). Therefore, the optimal choice of α leads to the ap-
proximation

m̂1(Dn) =

∑N
i=1 π̃1(θ

η
1i|Dn)
/
{m1(Dn)π̃1(θ

η
1i|Dn) + η(θη1i)}∑N

i=1 η(θ1i)
/
{m1(Dn)π̃1(θ1i|Dn) + η(θ1i)}

when θ1i ∼ π1(θ1|Dn) and θη1i ∼ η(θ1). The choice of the density η is obvi-
ously fundamental and it should be close to the true posterior π1(θ1|Dn) to
guarantee good convergence approximation. Using a normal approximation to
the posterior distribution of θ or a non-parametric approximation based on
a sample from π1(θ1|Dn), or yet again an average of MCMC proposals (see
Chap. 4) are reasonable choices.

The R implementation of this approach can be done as follows

> sigma1=1/rgamma(Nmc,shape=n/2,rate=(n*xbar^2+sqar)/2)

> sihat=mean(log(sigma1))

> tahat=sd(log(sigma1))

> sigma1b=exp(rnorm(Nmc,sihat,tahat))

> #tilde function

> tildepi1=function(sigma){

exp(-.5*((n*xbar^2+sqar)/sigma+(n+2)*log(sigma)))}

> K=diff=1

> rnum=dnorm(log(sigma1b),sihat,tahat)/

+ (sigma1b*tildepi1(sigma1b))

> rden=sigma1*tildepi1(sigma1)/dnorm(log(sigma1),sihat,tahat)

> while (diff>0.01*K){

> BF=mean(1/(1+K*rnum))/mean(1/(K+rden))

> diff=abs(K-BF)

> K=BF}

> m1=BF

when using a normal distribution on log(σ2) as an approximation to
π1(θ1|Dn). When considering the unconstrained model, a bivariate normal
density can be used, as in

> sigma2=1/rgamma(Nmc,shape=n/2,rate=(n*xbar^2/(n+1)+sqar)/2)

> mu2=rnorm(Nmc,n*xbar/(n+1),sd=sqrt(sigma2/(n+1)))

> temean=c(mean(mu2),mean(log(sigma2)))
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> tevar=cov.wt(cbind(mu2,log(sigma2)))$cov

> te2b=rmnorm(Nmc,mean=temean,tevar)

> mu2b=te2b[,1]

> sigma2b=exp(te2b[,2])

leading to

> m1/m2

[1] 6.824417

The performances of both extensions are obviously highly dependent on
the choice of the completion factors, η1 and η2 on the one hand and π∗

1 on the
other hand. The performances of the first solution, which bridges both models
via π∗

1 , are bound to deteriorate as the dimension gap between those models
increases. The impact of the dimension of the models is less keenly felt for the
other solution, as the approximation remains local.

As a simple illustration of the performances of both methods, we pro-
duce here a comparison between the completions based on a single pseudo-
conditional and on two local approximations to the posteriors, by running
repeated approximations for normaldata and tracing the resulting boxplot
as a measure of the variability of those methods. As shown in Fig. 2.6, the
variability is quite comparable for both solutions in this specific case.

Note that there exist many other approaches to the approximative com-
putation of marginal likelihoods and of Bayes factors that we cannot cover
here. We want however to point out the dangers of the harmonic mean ap-
proximation. This approach proceeds from the interesting identity

E
π1

[
ϕ1(θ1)

π1(θ1)ℓ1(θ1|Dn)

∣∣∣∣Dn

]
=

∫
ϕ1(θ1)

π1(θ1)ℓ1(θ1|Dn)

π1(θ1)ℓ1(θ1|Dn)

m1(Dn)
dθ1

=
1

m1(Dn)
,

which holds, no matter what the density ϕ1(θ1) is—provided ϕ1(θ1) = 0 when
π1(θ1)ℓ1(θ1|Dn) = 0—. The most common implementation in approximations
of the marginal likelihood uses ϕ1(θ1) = π1(θ1), leading to the approximation

m̂1(Dn) = 1

/
N−1

N∑

j=1

1

ℓ1(θ1j |Dn)
.

While very tempting, since it allows for a direct processing of simulations
from the posterior distribution, this approximation is unfortunately most often
associated with an infinite variance (Exercise 2.19) and, thus, should not be
used. On the opposite, using ϕ1’s with supports constrained to the 25% HPD
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doublesingle

Fig. 2.6. Dataset normaldata: Boxplot of the variability of the approximations
to the Bayes factor assessing whether or not μ = 0, based on a single and on
a double completions. Each approximation is based on 105 simulations and the
boxplots are based on 250 approximations. The dotted line corresponds to the true
value of Bπ

12(Dn)

regions—approximated by the convex hull of the 10% or of the 25% highest
simulations—is both completely appropriate and implementable (Marin and
Robert, 2010).

2.5 Outlier Detection

The above description of inference in normal models is only an introduction
both to Bayesian inference and to normal structures. Needless to say, there
exists a much wider range of possible applications. For instance, we will meet
the normal model again in Chap. 4 as the original case of the (generalized)
linear model. Before that, we conclude this chapter with a simple extension
of interest, the detection of outliers.

Since normal modeling is often an approximation to the “real thing,” there
may be doubts about its adequacy. As already mentioned above, we will deal
later with the problem of checking that the normal distribution is appropriate
for the whole dataset. Here, we consider the somehow simpler problem of sep-
arately assessing whether or not each point in the dataset is compatible with



2.5 Outlier Detection 59

normality. There are many different ways of dealing with this problem. We
choose here to use the predictive distribution: If an observation xi is unlikely
under the predictive distribution based on the other observations, then we
can argue against its distribution being equal to the distribution of the other
observations.

If xn+1 is a future observation from the same distribution f(·|θ) as the
sample Dn, its predictive distribution given the current sample is defined as

fπ(xn+1|Dn) =

∫
f(xn+1|θ,Dn)π(θ|Dn) dθ =

∫
f(xn+1|θ)π(θ|Dn) dθ .

This definition is coherent with the Bayesian approach, which considers xn+1

as an extra unknown and then integrates out θ if xn+1 is the “parameter” of
interest.

For the normal N (μ, σ2) setup, using a conjugate prior on (μ, σ2) of the
form

(σ2)−λσ−3/2 exp−
{
λµ(μ− ξ)2 + α

}
/2σ2 ,

the corresponding posterior distribution on (μ, σ2) given Dn is

N

(
λµξ + nxn

λµ + n
,

σ2

λµ + n

)
×I G

(
λσ + n/2,

[
α+ s2 +

nλµ

λµ + n
(x− ξ)2

]
/2

)
,

denoted by

N
(
ξ(Dn), σ

2/λµ(Dn)
)
× I G (λσ(Dn)/2, α(Dn)/2) ,

and the predictive on xn+1 is derived as

fπ(xn+1|Dn) ∝
∫
(σ2)−λσ(Dn)/2−1−1 exp−(xn+1 − μ)2/2σ2

× exp−
{
λµ(Dn)(μ− ξ(Dn))

2 + α(Dn)
}
/2σ2 d(μ, σ2)

∝
∫
(σ2)−λσ(Dn)/2−3/2 exp−

{
(λµ(Dn) + 1)(xn+1 − ξ(Dn))

2

/
λµ(Dn) + α(Dn)

}
/2σ2 dσ2

∝
[
α(Dn) +

λµ(Dn) + 1

λµ(Dn)
(xn+1 − ξ(Dn))

2

]−(λσ(Dn)+1)/2

.

Therefore, the predictive of xn+1 given the sample Dn is a Student t distribu-
tion with mean ξ(Dn) and λσ(Dn) degrees of freedom. In the special case of the
noninformative prior, corresponding to the limiting values λµ = λσ = α = 0,
the predictive is

fπ(xn+1|Dn) ∝
[
s2 +

n+ 1

n
1(xn+1 − xn)

2

]−(n+1)/2

. (2.11)
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It is therefore a Student’s t distribution with n degrees of freedom, a mean
equal to xn and a scale factor equal to (n − 1)s2/n, which is equivalent to
a variance equal to (n − 1)s2/n2 (to compare with the maximum likelihood
estimator σ̂2

n = s2/n).
In the outlier problem, we process each observation xi ∈ Dn as if it

was a “future” observation. Namely, we consider fπ
i (x|D i

n) as being the pre-
dictive distribution based on D i

n = (x1, . . . , xi−1, xi+1, . . . , xn). Considering
fπ
i (xi|D i

n) or the corresponding cdf Fπ
i (xi|D i

n) (in dimension one) gives an
indication of the level of compatibility of the observation xi with the sample.
To quantify this level, we can, for instance, approximate the distribution of
Fπ
i (xi|D i

n) as being uniform over [0, 1] since Fπ
i (·|D i

n) does converge to the
true cdf of the model. Simultaneously checking all Fπ

i (xi|D i
n) over imay signal

outliers.

� The detection of outliers must pay attention to the Bonferroni fallacy, which
is that extreme values do occur in large enough samples. This means that, as n
increases, we will see smaller and smaller values of F π

i (xi|D i
n) occurring, and

this even when the whole sample is from the same distribution. The significance
level must therefore be chosen in accordance with this observation, for instance
using a bound a on F π

i (xi|D i
n) such that

1− (1− a)n = 1− α ,

where α is the nominal level chosen for outlier detection.

Considering normaldata, we can compute the predictive cdf for each of
the 64 observations, considering the 63 remaining ones as data.

> n=length(shift)

> outl=rep(0,n)

> for (i in 1:n){

+ lomean=-mean(shift[-i])

+ losd=sd(shift[-i])*sqrt((n-2)/n)

+ outl[i]=pt((shift[i]-lomean)/losd,df=n-1)

+ }

Figure 2.7 provides the qq-plot of the Fπ
i (xi|D i

n)’s against the uniform quan-
tiles and compares it with a qq-plot based on a dataset truly simulated from
the uniform U (0, 1).

> plot(c(0,1),c(0,1),lwd=2,ylab="Predictive",xlab="Uniform",

+ type="l")

> points((1:n)/(n+1),sort(outl),pch=19,col="steelblue3")

> points((1:n)/(n+1),sort(runif(n)),pch=19,col="tomato")

There is no clear departure from uniformity when looking at this graph, except
of course for the multiple values found in normaldata.
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Fig. 2.7. Dataset normaldata: qq-plot of the sample of the F π
i (xi|D i

n) for a uniform
U (0, 1) distribution (blue dots) and comparison with a qq-plot for a uniform U (0, 1)
sample (red dots)

2.6 Exercises

2.1 Show that, if

μ|σ2 ∼ N (ξ, σ2/λµ) , σ2 ∼ I G (λσ/2, α/2) ,

then
μ ∼ T (λσ, ξ, α/λµλσ)

a t distribution with λσ degrees of freedom, location parameter ξ and scale parameter
α/λµλσ.

2.2 Show that, if σ2 ∼ I G (α, β), then E[σ2] = β/(α − 1). Derive from the density
of I G (α, β) that the mode is located in β/(α + 1).

2.3 Show that minimizing (in θ̂(Dn)) the posterior expectation E
π[||θ − θ̂||2|Dn] pro-

duces the posterior expectation as the solution in θ̂.

2.4 Show that the Fisher information on θ = (μ, σ2) for the normal N (μ, σ2) distri-
bution is given by
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IF (θ) = Eθ

[(

1/σ2 2(x − μ)/2σ4

2(x − μ)/2σ4 (μ − x)2/σ6 − 1/2σ4

)]

=

(

1/σ2 0
0 1/2σ4

)

and deduce that Jeffreys’ prior is πJ (θ) ∝ 1/σ3.

2.5 Derive each line of Table 2.1 by an application of Bayes’ formula, π(θ|x) ∝
π(θ)f(x|θ), and the identification of the standard distributions.

2.6 A Weibull distribution W (α, β, γ) is defined as the power transform of a gamma
G (α, β) distribution: If x ∼ W (α, β, γ), then xγ ∼ G (α, β). Show that, when γ is
known, W (α, β, γ) allows for a conjugate family, but that it does not an exponential
family when γ is unknown.

2.7 Show that, when the prior on θ = (μ, σ2) is N (ξ, σ2/λµ) × I G (λσ, α), the
marginal prior on μ is a Student t distribution T (2λσ, ξ, α/λµλσ) (see Example 2.18 for
the definition of a Student t density). Give the corresponding marginal prior on σ2. For
an iid sample Dn = (x1, . . . , xn) from N (μ, σ2), derive the parameters of the posterior
distribution of (μ, σ2).

2.8 Show that the normalizing constant for a Student T (ν, μ, σ2) distribution is

Γ ((ν + 1)/2)/Γ (ν/2)

σ
√

νπ
.

Deduce that the density of the Student t distribution T (ν, θ, σ2) is

fν(x) =
Γ ((ν + 1)/2)

σ
√

νπ Γ (ν/2)

(

1 +
(x − θ)2

νσ2

)−(ν+1)/2

.

2.9 Show that, for location and scale models, the specific noninformative priors are
special cases of Jeffreys’ generic prior, i.e., that πJ(θ) = 1 and πJ(θ) = 1/θ, respectively.

2.10 Show that, when π(θ) is a probability density, (2.5) necessarily holds for all
datasets Dn.

2.11 Consider a dataset Dn from the Cauchy distribution, C (μ, 1).

1. Show that the likelihood function is

ℓ(μ|Dn) =
n
∏

i=1

fµ(xi) =
1

πn
∏n

i=1(1 + (xi − μ)2)
.

2. Examine whether or not there is a conjugate prior for this problem. (The answer is
no.)

3. Introducing a normal prior on μ, say N (0, 10), show that the posterior distribution
is proportional to

π̃(μ|Dn) =
exp(−μ2/20)

∏n
i=1(1 + (xi − μ)2)

.

4. Propose a numerical solution for solving π̃(μ|Dn) = k. (Hint: A simple trapezoidal
integration can be used: based on a discretization size ∆, computing π̃(μ|Dn) on a
regular grid of width ∆ and summing up.)
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2.12 Show that the limit of the posterior probability P
π(μ < 0|x) of (2.7) when τ

goes to ∞ is Φ(−x/σ). Show that, when ξ varies in R, the posterior probability can
take any value between 0 and 1.

2.13 Define a function BaRaJ of the ratio rat when z=mean(shift)/.75 in the func-
tion BaFa. Deduce from a plot of the function BaRaJ that the Bayes factor is always less
than one when rat varies. (Note: It is possible to establish analytically that the Bayes
factor is maximal and equal to 1 for τ = 0.)

2.14 In the application part of Example 2.1 to normaldata, plot the approximated
Bayes factor as a function of τ . (Hint: Simulate a single normal N (0, 1) sample and
recycle it for all values of τ .)

2.15 In the setup of Example 2.1, show that, when ξ ∼ N (0, σ2), the Bayes factor
can be expressed in closed form using the normalizing constant of the t distribution (see
Exercise 2.8)

2.16 Discuss what happens to the importance sampling approximation when the sup-
port of g is larger than the support of γ.

2.17 Show that, when γ is the normal N (0, ν/(ν − 2)) density and fν is the density
of the t distribution with ν degrees of freedom, the ratio

f2
ν (x)

γ(x)
∝ ex

2(ν−2)/2ν

[1 + x2/ν](ν+1)

does not have a finite integral. What does this imply about the variance of the importance
weights?

Deduce that the importance weights of Example 2.3 have infinite variance.

2.18 If fν denotes the density of the Student t distribution T (ν, 0, 1) (see Exer-
cise 2.8), consider the integral

I =

∫

√

∣

∣

∣

∣

x

1− x

∣

∣

∣

∣

fν(x) dx .

1. Show that I is finite but that
∫ |x|

|1− x|fν(x) dx = ∞ .

2. Discuss the respective merits of the following importance functions γ
– the density of the Student T (ν, 0, 1) distribution,
– the density of the Cauchy C (0, 1) distribution,
– the density of the normal N (0, ν/(ν − 2)) distribution.
In particular, show via an R simulation experiment that these different choices all
lead to unreliable estimates of I and deduce that the three corresponding estimators
have infinite variance.

3. Discuss the alternative choice of a gamma distribution folded at 1, that is, the
distribution of x symmetric around 1 and such that

|x − 1| ∼ Ga(α, 1) .
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Show that

h(x)
f2(x)

γ(x)
∝

√
x f2

ν (x) |1− x|1−α−1 exp |1− x|

is integrable around x = 1 when α < 1 but not at infinity. Run a simulation
experiment to evaluate the performances of this new proposal.

2.19 Evaluate the harmonic mean approximation

m̂1(Dn) = 1

/

N−1
N
∑

j=1

1

ℓ1(θ1j |Dn)
.

when applied to the N (0, σ2) model, normaldata, and an I G (1, 1) prior on σ2.
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Regression and Variable Selection

You see, I always keep my sums.
—Ian Rankin, Strip Jack.—

Roadmap

Linear regression is one of the most widely used tools in statistics for analyzing the
(linear) influence of some variables or some factors on others and thus to uncover
explanatory and predictive patterns. This chapter details the Bayesian analysis
of the linear (or regression) model both in terms of prior specification (Zellner’s
G-prior) and in terms of variable selection, the next chapter appearing as a sequel
for nonlinear dependence structures. The reader should be warned that, given
that these models are the only conditional models where explicit computation
can be conducted, this chapter contains a fair amount of matrix calculus. The
photograph at the top of this page is a picture of processionary caterpillars, in
connection (for once!) with the benchmark dataset used in this chapter.

J.-M. Marin and C.P. Robert, Bayesian Essentials with R, Springer Texts
in Statistics, DOI 10.1007/978-1-4614-8687-9 3,
© Springer Science+Business Media New York 2014
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3.1 Linear Models

A large proportion of statistical analyses deal with the representation of
dependences among several observed quantities. For instance, which social
factors influence unemployment duration and the probability of finding a
new job? Which economic indicators are best related to recession occur-
rences? Which physiological levels are most strongly correlated with aneurysm
strokes? From a statistical point of view, the ultimate goal of these analyses is
thus to find a proper representation of the conditional distribution, f(y|θ,x),
of an observable variable y given a vector of observables x, based on a sample
of x and y. While the overall estimation of the conditional density f is usually
beyond our ability, the estimation of θ and possibly of restricted features of f
is possible within the Bayesian framework, as shown in this chapter.

The variable of primary interest, y, is called the response or the out-
come variable; we assume here that this variable is continuous, but we
will completely relax this assumption in the next chapter. The variables
x = (x1, . . . , xp) are called explanatory variables and may be discrete, con-
tinuous, or both. One sometimes picks a single variable xj to be of primary
interest. We then call it the treatment variable, labeling the other compo-
nents of x as control variables, meaning that we want to address the (linear)
influence of xj on y once the linear influence of all the other variables has
been taken into account (as in medical studies). The distribution of y given
x is typically studied in the context of a set of units or experimental sub-
jects, i = 1, . . . , n, such as patients in a hospital ward, on which both yi and
xi1, . . . , xip are measured. The dataset is then made up of the reunion of the
vector of outcomes

y = (y1, . . . , yn)

and the n× p matrix of explanatory variables

X = [x1 . . . xp] =

⎡
⎢⎢⎢⎢⎢⎣

x11 x12 . . . x1p

x21 x22 . . . x2p

x31 x32 . . . x3p

...
...

...
...

xn1 xn2 . . . xnp

⎤
⎥⎥⎥⎥⎥⎦
.

The caterpillar dataset exploited in this chapter was extracted from a
1973 study on pine processionary1caterpillars: it assesses the influence of some
forest settlement characteristics on the development of caterpillar colonies.
This dataset was first published and studied in Tomassone et al. (1993). The
response variable is the logarithmic transform of the average number of nests
of caterpillars per tree (as the one in the picture at the beginning of this
chapter) in an area of 500m2 (which corresponds to the last column in cater-
pillar). There are p = 8 potential explanatory variables defined on n = 33
areas, as follows

1These caterpillars derive their name from their habit of moving over the ground
in incredibly long head-to-tail monk-like processions when leaving their nest to create
a new colony.
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x1 is the altitude (in meters),
x2 is the slope (in degrees),
x3 is the number of pine trees in the area,
x4 is the height (in meters) of the tree sampled at the center of the area,
x5 is the orientation of the area (from 1 if southbound to 2 otherwise),
x6 is the height (in meters) of the dominant tree,
x7 is the number of vegetation strata,
x8 is the mix settlement index (from 1 if not mixed to 2 if mixed).

The goal of the regression analysis is to decide which explanatory variables
have a strong influence on the number of nests and how these influences over-
lap with one another. As shown by Fig. 3.1, some of these variables clearly
have a restricting influence on the number of nests, as for instance with x5, x7

and x8. We use the following R code to produce Fig. 3.1 (the way we created
the objects y and X will be described later).

> par(mfrow=c(2,4),mar=c(4.2,2,2,1.2))

> for (j in 1:8) plot(X[,j],y,xlab=vnames[j],pch=19,

+ col="sienna4",xaxt="n",yaxt="n")

While many models and thus many dependence structures can be proposed
for dependent datasets like caterpillar, in this chapter we only focus on the
Gaussian linear regression model, namely the case when E[y|x, θ] is linear in
x and the noise is normal.

The ordinary normal linear regression model is such that, using a matrix
representation,

y|α,β, σ2 ∼ Nn

(
α1n +Xβ, σ2 In

)
,

where Nn denotes the normal distribution in dimension n, and thus the yi’s
are independent normal random variables with

E[yi|α,β, σ2] = α+ β1xi1 + . . .+ βpxip , V[yi|α,β, σ2] = σ2 .

Given that the models studied in this chapter are all conditional on the re-
gressors, we omit the conditioning on X to simplify the notations.

For caterpillar, where n = 33 and p = 8, we thus assume that the ex-
pected lognumber yi of caterpillar nests per tree over an area is modeled as a
linear combination of an intercept and eight predictor variables (i = 1, . . . , n),

E[yi|α,β, σ2] = α+

8∑

j=1

βjxij ,
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x1 x2 x3 x4

x5 x6 x7 x8

Fig. 3.1. Dataset caterpillar: Plot of the pairs (xj ,y) (1 ≤ j ≤ 8)

while the variation around this expectation is supposed to be normally
distributed. Note that it is also customary to assume that the yi’s are
conditionally independent.

The caterpillar dataset is called by the command data(caterpillar)

and is made of the following rows:

1200 22 1 4 1.1 5.9 1.4 1.4 2.37

1342 28 8 4.4 1.5 6.4 1.7 1.7 1.47

....

1229 21 11 5.8 1.8 10 2.3 2 0.21

1310 36 17 5.2 1.9 10.3 2.6 2 0.03

The first eight columns correspond to the explanatory variables and the last
column is the response variable, i.e. the lognumber of caterpillar nests. The
following R code is an example for starting with this caterpillar dataset:
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> y=log(caterpillar$y)

> X=as.matrix(caterpillar[,1:8])

There is a difference between using finite-valued regressors like x7 in cater-
pillar and using categorical variables (or factors), which also take a finite num-
ber of values but whose range has no numerical meaning. For instance, if
x denotes the socio-professional category of an employee, this variable may
range from 1 to 9 for a rough grid of socio-professional activities, or it may
range from 1 to 89 on a finer grid, and the numerical values are not compara-
ble. It thus makes little sense to involve x directly in the regression, and the
usual approach is to replace the single regressor x (taking values in {1, . . . ,m},
say) with m indicator (or dummy) variables x1 = I1(x), . . ., xm = Im(x). In
essence, a different constant (or intercept) βj is used in the regression for each
class of categorical variable: it is invoked in the linear regression under the
form

. . .+ β1I1(x) + . . .+ βmIm(x) + . . . .

Note that there is an identifiability issue related with this model since the sum
of the indicators is always equal to one. In a Bayesian perspective, identifia-
bility can be achieved via the prior distribution. However, we can also impose
an identifiability constraint on the parameters, for instance by omitting one
class (such as β1 = 0). We pursue this direction further in Sects. 4.5.1 and 6.2.

3.2 Classical Least Squares Estimator

Before fully launching into the description of the Bayesian approach to the
linear model, we recall the basics of the classical processing of this model
(in particular, to relate the Bayesian perspective to the results provided by
standard software such as R lm output). For instance, the parameter β can
obviously be estimated via maximum likelihood estimation. In order to avoid
non-identifiability and uniqueness problems, we assume that [1n X] is of full
rank, that is, rank [1n X] = p+1. This also means that there is no redundant
structure among the explanatory variables.2 We suppose in addition that p+
1 < n in order to obtain well-defined estimates for all parameters. Notice that,
since the inferential process is conditioned on the design matrix X, we choose
to standardize the data, namely to center and to scale the columns of X so
that the estimated values of β are truly comparable. For this purpose, we use
the R function scale:

> X=scale(X)

2Hence, the exclusion of one of the classes for categorical variables.
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The likelihood ℓ(α,β, σ2|y) of the standard normal linear model is pro-
vided by the following matrix representation:

1

(2πσ2)
n/2

exp

{
− 1

2σ2
(y − α1n −Xβ)

T
(y − α1n −Xβ)

}
. (3.1)

The maximum likelihood estimators of α and β are then the solution of the
(least squares) minimization problem

min
α,β

(y − α1n −Xβ)
T
(y − α1n −Xβ)

= min
α,β

n∑

i=1

(yi − α− β1xi1 − . . .− βpxip)
2
,

If we denote by ȳ =
1

n

n∑

i=1

yi the empirical mean of the yi’s and recall that,

1T
nX = 0T

n because of the standardization step, we have a Pythagorean dec-
omposition of the above norm as

(y−α1n−Xβ)
T
(y−α1n−Xβ)

= (y−ȳ1n−Xβ+(ȳ−α)1n)
T (y−ȳ1n−Xβ+(ȳ−α)1n)

= (y−ȳ1n−Xβ)
T
(y−ȳ1n−Xβ)+2(ȳ−α)1T

n (y−ȳ1n−Xβ)+n(ȳ−α)2

= (y−ȳ1n−Xβ)T (y−ȳ1n−Xβ)+n(ȳ−α)2 .

Indeed, 1T
n (y − ȳ1n −Xβ) = (nȳ − nȳ) = 0. Therefore, the likelihood

ℓ(α,β, σ2|y) is given by

1

(2πσ2)
n/2

exp

(
− 1

2σ2
(y−ȳ1n−Xβ)

T
(y−ȳ1n−Xβ)

)
exp
{
− n

2σ2
(ȳ−α)2

}
.

We get from the above decomposition that

α̂ = ȳ , β̂ = (XTX)−1XT(y − ȳ) .

In geometrical terms, (α̂, β̂) is the orthogonal projection of y on the linear
subspace spanned by the columns of [1n X]. It is quite simple to check that

(α̂, β̂) is an unbiased estimator of (α, β). In fact, the Gauss–Markov theorem

(see, e.g., Christensen, 2002) states that (α̂, β̂) is the best linear unbiased
estimator of (α, β). This means that, for all a ∈ Rp+1, and with the abuse of

notation that, here, (α̂, β̂) represents a column vector,

V(aT(α̂, β̂)|α,β, σ2) ≤ V(aT(α̃, β̃)|α,β, σ2)

for any unbiased linear estimator (α̃, β̃) of (α, β). (Note that the property of
unbiasedness is not particularly appealing when considered on its own.)
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An unbiased estimator of σ2 is

σ̂2 =
1

n− p− 1
(y − α̂1n −Xβ̂)T(y − α̂1n −Xβ̂) =

s2

n− p− 1
,

and σ̂2(XTX)−1 approximates the covariance matrix of β̂. Note that the MLE
of σ2 is not σ̂2 but σ̃2 = s2/n.

The standard t-statistics are defined as (j = 1, . . . , p)

Tj =
β̂j − βj√
σ̂2ωjj

∼ T (n− p− 1, 0, 1) ,

where ωjj denotes the (j, j)-th element of the matrix (XTX)−1. These t-
statistic are used in classical tests, for instance for testing H0 : βj = 0 versus
H1 : βj 
= 0, the former being accepted at level γ if

|β̂j |/σ̂√ωjj < F−1
n−p−1(1− γ/2)

the (1 − γ/2)th quantile of the Student’s t T (n− p− 1, 0, 1) distribution
(with location parameter 0 and scale parameter 1). The frequentist argument
in using this bound (see Casella and Berger, 2001) is that the so-called p-value
is smaller than γ,

pj = PH0(|Tj | > |tj |) < γ.

Note that these statistics Tj can also be used when constructing marginal
frequentist confidence intervals on the βj ’s like

{

βj ;
∣

∣

∣βj − β̂j

∣

∣

∣ ≤ σ̂
√

ωjj F−1
n−p−1(1− γ/2)

}

=
{

βj ; |Tj | ≤ σ̂
√

ωjj F−1
n−p−1(1− γ/2)

}

.

� From a Bayesian perspective, we far from advocate the use of p-values in

Bayesian settings or elsewhere since they suffer many defects (exposed for in-

stance in Robert, 2007, Chap. 5), one being that they are often wrongly inter-

preted as probabilities of the null hypotheses.

For caterpillar, the unbiased estimate of σ2 is equal to 0.7781 and the
maximum likelihood estimates of α and of the components βj produced by
the R command

> summary(lm(y~X))

are given in Fig. 3.2, along with the least squares estimates of their respective
standard deviations and p-values. According to the classical paradigm, the
coefficients β1, β2 and β7 are the only ones considered to be significant.
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We stress here that conditioning on X is valid only when X is exogenous,
that is, only when we can write the joint distribution of (y,X) as

f(y,X|α,β, σ2, δ) = f(y|α,β, σ2,X)f(X|δ) ,

where (α,β, σ2) and δ are fixed parameters. We can thus ignore f(X|δ) if the
parameter δ is only a nuisance parameter since this part is independent3 of
(α,β, σ2). The practical advantage of using a regression model as above is that
it is much easier to specify a realistic conditional distribution of one variable
given p others rather than a joint distribution on all p + 1 variables. Note
that if X is not exogenous, for instance when X involves past values of y (see
Chap. 7), the joint distribution must be used instead.

Residuals:

Min 1Q Median 3Q Max

-1.4710 -0.4474 -0.1769 0.6121 1.5602

lm(formula = y ˜ X)

Residuals:

Min 1Q Median 3Q Max

-1.4710 -0.4474 -0.1769 0.6121 1.5602

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.81328 0.15356 -5.296 1.97e-05 ***

Xx1 -0.52722 0.21186 -2.489 0.0202 *

Xx2 -0.39286 0.16974 -2.315 0.0295 *

Xx3 0.65133 0.38670 1.684 0.1051

Xx4 -0.29048 0.31551 -0.921 0.3664

Xx5 -0.21645 0.16865 -1.283 0.2116

Xx6 0.29361 0.53562 0.548 0.5886

Xx7 -1.09027 0.47020 -2.319 0.0292 *

Xx8 -0.02312 0.17225 -0.134 0.8944

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 0.8821 on 24 degrees of freedom

Multiple R-squared: 0.6234,Adjusted R-squared: 0.4979

Fig. 3.2. Dataset caterpillar: R output providing the least squares estimates of
the regression coefficients along with their standard significance analysis

3From a Bayesian point of view, note that we would also need to impose prior
independence between (α,β, σ2) and δ to achieve this separation.
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3.3 The Jeffreys Prior Analysis

Considering only the case of a complete lack of prior information on the pa-
rameters of the linear model, we first describe a noninformative solution based
on the Jeffreys prior. It is rather easy to show that the Jeffreys prior in this
case is

πJ (α,β, σ2) ∝ σ−2 ,

which is equivalent to a flat prior on (α,β, log σ2). We recall that

ℓ(α,β, σ2|y) = 1

(2πσ2)
n/2

exp

{
− 1

2σ2
(y − ȳ1n −Xβ)T (y − ȳ1n −Xβ)

}
×

exp
{
− n

2σ2
(ȳ − α)2

}

=
1

(2πσ2)
n/2

exp

{
− 1

2σ2

(
y − α̂1n −Xβ̂

)T(
y − α̂1n −Xβ̂

)}
×

exp

{
− n

2σ2
(α̂− α)2 − 1

2σ2
(β − β̂)TXTX(β − β̂)

}
.

The corresponding posterior distribution is therefore

πJ(α,β, σ2|y) ∝
(
σ−2
)−n/2

exp

{
− 1

2σ2
(y − α̂1n −Xβ̂)T(y − α̂1n −Xβ̂)

}
×

σ−2 exp

{
− n

2σ2
(α̂− α)2 − 1

2σ2
(β − β̂)TXTX(β − β̂)

}

∝
(
σ−2
)−p/2

exp

{
− 1

2σ2
(β − β̂)TXTX(β − β̂)

}
×

(
σ−2
)−1/2

exp
{
− n

2σ2
(α̂− α)2

}

(
σ−2
)−(n−p−1)/2−1

exp

{
− 1

2σ2
s2
}

.

From this expression, we deduce the following (conditional and marginal)
posterior distributions

α|σ2,y ∼ N
(
α̂, σ2/n

)
,

β|σ2,y ∼ Np

(
β̂, σ2(XTX)−1

)
,

σ2|y ∼ I G ((n− p− 1)/2, s2/2) .

� As in every analysis involving an improper prior, one needs to check that the

corresponding posterior distribution is proper. In this case, π(α,β, σ2|y) is

proper when both n > p+1 and rank [1n X] = p+1. The former constraint

requires that there be at least as many data points as there are parameters in

the model, and, as already explained above, the latter is obviously necessary

for identifiability reasons.
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The corresponding Bayesian estimates of α, β and σ2 are thus given by

E
π[α|y] = α̂ , E

π [β|y] = β̂ and E
π [σ2|y] = s2

n− p− 3
,

respectively. Unsurprisingly, the Jeffreys prior estimate of α is the empirical
mean. Further, the posterior expectation of β is the maximum likelihood
estimate. Note also that the Jeffreys prior estimate of σ2 is larger (and thus
more pessimistic) than both the maximum likelihood estimate s2/n and the
classical unbiased estimate s2/(n− p− 1).

The marginal posterior distribution of βj associated with the above joint
distribution is

T (n− p− 1, β̂j, ωjjs
2/(n− p− 1)) ,

(recall that ωjj = (XTX)−1
(j,j)). Hence, the similarity with a frequentist anal-

ysis of this model is very strong since the classical (1− γ) confidence interval
and the Bayesian HPD interval on βj coincide, even though they have different
interpretations. They are both equal to

{
βj ; |βj − β̂j | ≤ F−1

n−p−1(1− γ/2)
√
ωjjs2/(n− p− 1)

}
.

For caterpillar, the Bayes estimate of σ2 is equal to 0.8489. Figure 3.3
provides the corresponding (marginal) 95% HPD intervals for each component
of β. (It is obtained by the plotCI function, part of the gplots package.)
Note that while some of these credible intervals include the value βj = 0
(represented by the dashed line), they do not necessarily validate acceptance of
the null hypothesis H0 : βj = 0, which must be tested through a Bayes factor,
as described below. This distinction is a major difference from the classical
approach, where confidence intervals are dual sets of acceptance regions.

3.4 Zellner’s G-Prior Analysis

From this section onwards,4 we concentrate on a different noninformative
approach which was proposed by Arnold Zellner5 to handle linear regression
from a Bayesian perspective. This approach is a middle-ground perspective
where some prior information may be available on β and it is called Zellner’s
G-prior, the “G” being the symbol used by Zellner in the prior variance.

4In order to keep this coverage of G-priors simple and self-contained, we made
several choices in the presentation that the most mature readers will possibly find
arbitrary, but this cannot be avoided if we want to keep the chapter at a reasonable
length.

5Arnold Zellner was a famous Bayesian econometrician, who wrote two reference
books on Bayesian econometrics (Zellner, 1971, 1984)
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Fig. 3.3. Dataset caterpillar: Range of the credible 95% HPD intervals for α (top
row) and each component of β when using the Jeffreys prior

3.4.1 A Semi-noninformative Solution

When considering the likelihood (3.1) its shape is both Gaussian and Inver-
se Gamma, indeed, β given σ2 appears in a Gaussian-like expression, while
σ2 involves an Inverse Gamma expression. This structure leads to a natural
conjugate prior family, of the form

(α,β)|σ2 ∼ Np+1((α̃, β̃), σ
2M−1) ,

conditional on σ2, where M is a (p + 1, p + 1) positive definite symmetric
matrix, and for σ2,

σ2 ∼ I G (a, b), a, b > 0 .

(The conjugacy can be easily checked by the reader.) Even in the presence
of genuine information on the parameters, the hyperparameters M , a and b
are very difficult to specify. Moreover, the posterior distributions, notably the
posterior variances are sensitive to the specification of these hyper-parameters.
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Therefore, given that a natural conjugate prior for the linear regression
model has severe limitations, a more elaborate strategy is called for. The
idea at the core of Zellner’s G-prior modeling is to allow the experimenter
to introduce (possibly weak) information about the location parameter of the
regression but to bypass the most difficult aspects of the prior specification,
namely the derivation of the prior correlation structure. This structure is fixed
in Zellner’s proposal since the prior corresponds to

β|α, σ2 ∼ Np

(
β̃, gσ2(XTX)−1

)
, (3.2)

and a noninformative prior distribution is imposed on the pair (α, σ2),

π
(
α, σ2
)
∝ σ−2 . (3.3)

Zellner’s G-prior is thus decomposed as a (conditional) Gaussian prior for β
and an improper (Jeffreys) prior for (α, σ2). This modelling somehow appears
as a data-dependent prior through its dependence on X, but this is not a
genuine issue6 since the whole model is conditional on X. The experimenter
thus restricts prior determination to the choices of β̃ and of the constant g.
As we will see once the posterior distribution is constructed, the factor g can
be interpreted as being inversely proportional to the amount of information
available in the prior relative to the sample. For instance, setting g = n gives
the prior the same weight as one observation of the sample. We will use this
as our default value.

� Genuine data-dependent priors are not acceptable in a Bayesian analysis because

they use the data twice and fail to enjoy the basic convergence properties of

the Bayes estimators. (See Carlin and Louis, 1996, for a comparative study of

the corresponding so-called empirical Bayes estimators.)

Note that, in the initial proposition of Zellner (1984), the parameter α is
not modelled by a flat prior distribution. It was instead considered to be a
component of the vector β. (This was also the approach adopted in Marin and
Robert 2007.) However, endowing α with a flat prior ensures the location-scale
invariance of the analysis, which means that changes in location or scale on
y (like a switch from Celsius to Fahrenheit degrees for temperatures) do not
impact on the resulting inference.

We are now engaging into some algebra that will expose the properties of
the G-posterior. First, we assume p > 0, meaning that there is at least one ex-

planatory variable in the model. We define the matrix P = X
{
XTX
}−1

XT.

The prior π
(
α,β, σ2

)
can then be decomposed as

6This choice is more problematic when conditioning on X is no longer possible,
as for instance when X contains lagged dependent variables (Chap. 7) or endogenous
variables.
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π
(
α,β, σ2

)
∝ (σ2)−p/2 exp

[
− 1

2gσ2

{
βTXTXβ − 2βTXTPXβ̃

}]
×

σ−2 exp

(
− 1

2gσ2
β̃
T
XTPXβ̃

)
,

since XTPX = XTX. Therefore,

π
(
α,β, σ2|y

)
∝ (σ2)−n/2−p/2−1

exp

{
− 1

2σ2
(y − ȳ1n −Xβ)

T
(y − ȳ1n −Xβ)

}
×

exp
{
− n

2σ2
(ȳ − α)2

}
× exp

{
− 1

2gσ2
β̃
T
XTPXβ̃

}
×

exp

{
− 1

2gσ2

[
βTXTXβ − 2βTXTPXβ̃

]}
.

Since 1T
nX = 0p, we deduce that

π
(
α,β, σ2|y

)
∝ (σ2)−n/2−p/2−1 exp

{
− 1

2σ2

[
βTXTXβ − 2yTXβ

]}
×

exp

{
− 1

2σ2
(y − ȳ1n)

T (y − ȳ1n)

}
×

exp
{
− n

2σ2
(ȳ − α)2

}
× exp

{
− 1

2gσ2
β̃
T
XTPXβ̃

}
×

exp

{
− 1

2gσ2

[
βTXTXβ − 2βTXTPXβ̃

]}
.

Since PX = X, we deduce that, conditionally on y, X and σ2, the parameters
α and β are independent and such that

α|σ2,y ∼ N1

(
ȳ, σ2/n

)
,

β|y, σ2 ∼ Np

(
g

g + 1

(
β̂ +Xβ̃/g

)
,
σ2g

g + 1

{
XTX
}−1
)

,

where β̂ =
{
XTX
}−1

XTy is the maximum likelihood (and least squares)
estimator of β. The posterior independence between α and β is due to the
fact that X is centered and that α and β are a priori independent.

Moreover, the posterior distribution of σ2 is given by

σ2|y ∼ IG
[
(n− 1)/2, s2 + (β̃ − β̂)TXTX(β̃ − β̂)

/
(g + 1)

]

where IG (a, b) is an inverse Gamma distribution with mean b/(a − 1) and

where s2 = (y − ȳ1n −Xβ̂)T(y − ȳ1n −Xβ̂) corresponds to the (classical)
residual sum of squares.
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� The previous derivation assumes that p > 0. In the special case p = 0, which
will later be used as a null model in hypothesis testing, similar arguments lead
to

α|y, σ2 ∼ N
(

ȳ, σ2/n
)

,

σ2|y ∼ IG

[

(n − 1)/2, (y − ȳ1n)
T(y − ȳ1n)

/

2
]

.

(There is no β when p = 0, as this corresponds to the constant mean model.)

Recalling the double expectation formulas

E [E [X |Y ]] = E [X ] and V(X) = V[E(X |Y )] + E[V(X |Y )]

for V(X |Y ) = E[(X − E(X |Y ))2
∣∣Y ], we can derive from the previous deriva-

tions that
E
π [α|y] = E

π
[
E
π
(
α|σ2,y

)
|y
]
= E

π [ȳ|y] = ȳ

and that

V
π(α|y) = V(ȳ|y) + E

[
σ2

n

∣∣∣∣y
]
= κ
/
n(n− 3) ,

where

κ = (y − ȳ1n)
T(y − ȳ1n) +

1

g + 1

{
−gyTPy + β̃

T
XTPXβ̃ − 2yTPXβ̃

}

= s2 + (β̃ − β̂)TXTX(β̃ − β̂)
/
(g + 1) .

With a bit of extra algebra, we can recover the whole distribution of α from

π(α, σ2|y) ∝ (σ−2)(n−1)/2+1+1/2 exp
{
− n

2σ2
(α− ȳ)2

}
exp
{
− κ

2σ2
κ
}
,

namely

π(α|y) ∝
[
1 +

n(α− ȳ)2

κ

]−n/2

.

This means that the marginal posterior distribution of α—the distribution
of α given only y and X—is a Student’s t distribution with n − 1 degrees
of freedom, a location parameter equal to ȳ and a scale parameter equal to
κ
/
n(n− 1).
If we now turn to the parameter β, by the same double expectation for-

mula, we derive that

E
π [β|y] = E

π
[
E
π
(
β|σ2,y

) ∣∣y
]

= E
π

[
g

g + 1
(β̂ + β̃/g)

∣∣y
]

=
g

g + 1
(β̂ + β̃/g) .
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This result gives its meaning to the above point relating g with the amount
of information contained in the dataset. For instance, when g = 1, the prior
information has the same weight as this amount. In this case, the Bayesian
estimate of β is the average between the least square estimator and the prior
expectation. The larger g is, the weaker the prior information and the closer
the Bayesian estimator is to the least squares estimator. For instance, when
g goes to infinity, the posterior mean converges to β̂.

Based on similar derivations, we can compute the posterior variance of β.
Indeed,

V
π(β|y) = V

[
g

g + 1
(β̂ + β̃/g)|y

]
+ E

[
gσ2

g + 1
(XTX)−1

]

=
κg

(g + 1)(n− 3)
(XTX)−1 .

Once more, it is possible to integrate out σ2 in

π(β, σ2|y) ∝ (σ2)−p/2 exp

(
−g + 1

2gσ2

{
β − E

π [β|y]
}T

XTX
{
β − E

π [β|y]
})

×(σ2)−(n−1)/2−1 exp

(
− 1

2σ2
κ

)
,

leading to

π(β|y) ∝
[
1 +

g + 1

gκ

{
β − E

π [β|y]
}T

XTX
{
β − E

π [β|y]
}]

.

Therefore, the marginal posterior distribution of β is also a multivariate Stu-
dent’s t distribution with n− 1 degrees of freedom, location parameter equal

to
g

g + 1
(β̂ + β̃/g) and scale parameter equal to

gκ

(g + 1)(n− 1)
(XTX)−1.

The standard Bayes estimator of σ2 for this model is the posterior expec-
tation

E
π
[
σ2|y
]
=

κ

n− 3
=

s2 + (β̃ − β̂)TXTX(β̃ − β̂)
/
(g + 1)

n− 3
.

� In the special case p = 0, by using similar arguments, we get

E
π [

σ2
∣

∣y
]

=
(y − ȳ1n)

T(y − ȳ1n)

n − 3
=

s2

n − 3
,

which is the same expectation as with the Jeffreys prior.

HPD regions on subvectors of the parameter β can be derived in a straight-
forward manner from this marginal posterior distribution of β. For a single
parameter, we have for instance
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βj |y ∼ T

(
n− 1,

g

g + 1

(
β̃j

g
+ β̂j

)
,

gκ

(n− 1)(g + 1)
ωjj

)
,

where ωjj is the (j, j)-th element of the matrix (XTX)−1. If we set

ζ = (β̃ + gβ̂)
/
(g + 1)

the transform

βj − ζj

/√ gκ

(n− 1)(g + 1)
ωjj

is (marginally) distributed as a standard t distribution with n− 1 degrees of
freedom. A (1− γ) HPD interval on βj has therefore

ζj ±
√

gκ

(n− 1)(g + 1)
ωjjF

−1
n−1(1− γ/2)

as bounds, where F−1
n−1 denotes the quantile function of the T (n − 1, 0, 1)

distribution.

3.4.2 The BayesReg R Function

We have created in bayess an R function called BayesReg to implement Zell-
ner’s G-prior analysis within R. The purpose is dual: first, this R function
shows how easily automated this approach can be. Second, it also illustrates
how it is possible to get exactly the same type of output as the standard R
function summary(lm(y~X)).

The following R code is extracted from this function BayesReg and used
to calculate the Bayes estimates. As an aside, notice that we use the function
stop in order to end the calculations if the matrix XTX is not invertible.

if (det(t(X)%*%X)<=1e-7)

stop("Design matrix has too low a rank!",call.=FALSE)

We also stress the use of scale below to standardize the explanatory variables.

X=as.matrix(X)

n=length(y)

p=dim(X)[2]

X=scale(X)

U=solve(t(X)%*%X)%*%t(X)

# MLE

alphaml=mean(y)

betaml=U%*%y

s2=t(y-alphaml-X%*%betaml)%*%(y-alphaml-X%*%betaml)

kappa=as.numeric(s2+t(betatilde-betaml)%*%t(X)%*%X%*%

(betatilde-betaml)/(g+1))
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malphabayes=alphaml

mbetabayes=g/(g+1)*(betaml+betatilde/g)

msigma2bayes=kappa/(n-3)

valphabayes=kappa/(n*(n-3))

vbetabayes=diag(kappa*g/((g+1)*(n-3))*solve(t(X)%*%X))

vsigma2bayes=2*kappa^2/((n-3)*(n-4))

postmean=c(malphabayes,mbetabayes)

postsd=sqrt(c(valphabayes,vbetabayes))

# evidence of the model

intlike=(g+1)^(-p/2)*kappa^(-(n-1)/2)

We will see further aspects of BayesReg in the following sections.

3.4.3 Bayes Factors and Model Comparison

One important inferential issue pertaining to linear models is to test whether
or not a specific explanatory variable is truly explanatory or, in other words,
to decide which explanatory variables should be kept within the model. This
leads to tests on the nullity of some elements of the parameter β. Following
the general testing methodology presented in Chap. 2, these tests can be con-
ducted using Bayes factors. In the case of linear models and under Zellner’s
G-priors, those Bayes factors are actually available in closed form.

When considering the marginal likelihood (or evidence) at the core of the
Bayes factors, we have, if p 
= 0,

f(y) =

∫ (∫ ∫
f(y|α,β, σ2)π(β|α, σ2)π(σ2, α)dαdβ

)
dσ2 ,

with

f(y|α,β, σ2)π(β|α, σ2) =

∣∣XTX
∣∣1/2

(2πσ2)(n+p)/2gp/2
exp
{
− n

2σ2
(α− ȳ)2

}
×

exp

{
− 1

2σ2
(y − ȳ1n −Xβ)T(y − ȳ1n −Xβ)

}
×

exp

{
− 1

2gσ2
(β − β̃)TXTX(β − β̃)

}
,

and π(α, σ2) = δσ−2 (where δ is an arbitrary constant). Thus

f(y) = δn−1/2(g + 1)−p/2(2π)−(n−1)/2
∫

(σ2)−(n−1)/2−1 exp
(
− 1

2σ2
κ
)
dσ2

=
δΓ ((n − 1)/2)

π(n−1)/2n1/2
(g + 1)−p/2

[
s2 + (β̃ − β̂)TXT

X(β̃ − β̂)
/
(g + 1)

]−(n−1)/2
,

=
δΓ ((n − 1)/2)

π(n−1)/2n1/2
(g + 1)−p/2κ−(n−1)/2 . (3.4)
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� If p = 0, a similar expression emerges:

f(y) =

∫ (∫

f(y|α, σ2)π(α,σ2)dα

)

dσ2 ,

with

f(y|α, σ2)π(α, σ2) =
δ(σ2)−1

(2πσ2)n/2
exp

{

− 1

2σ2
(y − ȳ1n)

T(y − ȳ1n)

}

=
δ(σ2)−n/2−1

(2π)n/2
exp

(

− 1

2σ2
(y − ȳ1n)

T(y− ȳ1n)

}

×

exp
{

− n

2σ2
(α − ȳ)2

}

.

The integration in both α and σ2 can then be conducted in closed form and
we obtain

f(y) =
δΓ ((n − 1)/2)

π(n−1)/2n1/2

[

(y− ȳ1n)
T(y − ȳ1n)

]−(n−1)/2

as the evidence associated with this “null” model. The evidence corresponds to

intlike0 in the BayesReg code.

As pointed out in Chap. 2, the computation of Bayes factors is plagued by
the inability to include generic improper prior distributions. In order to bypass
this difficulty, we will assume that all the linear models under comparison do
include the parameter α, which means that each regression model includes
an intercept. This assumption allows us to take the same improper prior
(and hence the same arbitrary constant δ) on (α, σ2) for all of those models.
Otherwise, the Bayes factors simply cannot be correctly defined.

When we compare two sets of regressors, we have to handle two regres-
sion matrices, X1 and X2, with respective dimensions (n, p1) and (n, p2),
extracted from the original matrix X by removing some columns. From a
Bayesian perspective, using Zellner’s G-prior modelling in both cases, we are
thus comparing model M1

y|α,β1, σ2 ∼ Nn

(
α1n +X1β1, σ2 In

)
,

β
1|α, σ2 ∼ Np1

(
β̃
1
, g1σ

2((X1)TX1)−1
)
, p1 
= 0

π
(
α, σ2
)
∝ σ−2 ,

with model M2:

y|α,β2, σ2 ∼ Nn

(
α1n +X2β2, σ2 In

)
,

β
2|α, σ2 ∼ Np2

(
β̃
2
, g2σ

2((X2)TX2)−1
)
, p2 
= 0

π
(
α, σ2
)
∝ σ−2 .

Using the above derivations, the Bayes factor between model M1 and model
M2 is then given by
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B12(y) =
(g1 + 1)−p1/2

[
s21 + (β̃

1 − β̂
1
)T(X1)TX1(β̃

1 − β̂
1
)
/
(g1 + 1)

]−(n−1)/2

(g2 + 1)−p2/2
[
s22 + (β̃

2 − β̂
2
)T(X2)TX2(β̃

2 − β̂
2
)
/
(g2 + 1)

]−(n−1)/2
.

For caterpillar, if we have to test the null hypothesis H0 : β8 = β9 = 0,
using β̃1 = 08, β̃

2 = 06, and an arbitrary7g1 = g2 = 100, in Zellner’s G-priors,
we obtain Bπ

12 = 0.0165 when model M2 corresponds to H0. Using Jeffreys’
scale of evidence (provided in Chap. 2), this implies that log12(B

π
12) = −1.78,

hence that the posterior distribution appears to strongly favor H0.
More generally, using β̃ = 08 and g = 100, we can produce a Bayesian

regression output, programmed in R, which mimics a standard software re-
gression output like lm: besides the estimation of the βj ’s via their posterior

expectation, we include the Bayes factors Bj
12, in the log scale log10

(
Bj

12

)
,

corresponding to testing the null hypotheses H0 : βj = 0. (The stars are
related to Jeffreys’ scale of evidence.)

The R code corresponding to this “standard” output is also part of the R
function BayesReg:

bayesfactor=rep(0,p)

p0=p-1 # remove one variate

X0=X[,-j]

U0=solve(t(X0)%*%X0)%*%t(X0)

betatilde0=U0%*%X%*%betatilde

betaml0=U0%*%y

s20=t(y-alphaml-X0%*%betaml0)%*%(y-alphaml-X0%*%betaml0)

kappa0=as.numeric(s20+t(betatilde0-betaml0)%*%t(X0)%*%

X0%*%(betatilde0-betaml0)/(g+1))

intlike0=(g+1)^(-p0/2)*kappa0^(-(n-1)/2)

bayesfactor[j]=intlike/intlike0

where intlike is the marginal likelihood for the full model. (The way this
computation is repeated and used to mimic the output of the lm function can
be found by reading the function BayesReg.)

For the caterpillar dataset, β̃ = 08 and g = n = 33, the G-prior estimate
of σ2 is equal to 0.653, while the posterior means and standard variations of
the βj ’s are given below. We can immediately spot that the (most) significant
explanatory variables are the same ones as those selected by lm, x1, x2, and
x7. Note, however, that this output does not rigorously validate the selection
of the submodel with the covariates x1, x2, and x7, as it does not produce the
Bayes factor associated with this (sub)model and the full model.

7Arbitrary means here that this choice is no more justified than any other. We will
see later that gj = n is the recommended or default value for non-informative
settings.
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> res1=BayesReg(y,X)

PostMean PostStError Log10bf EvidAgaH0

Intercept -0.8133 0.1407

x1 -0.5039 0.1883 0.7224 (**)

x2 -0.3755 0.1508 0.5392 (**)

x3 0.6225 0.3436 -0.0443

x4 -0.2776 0.2804 -0.5422

x5 -0.2069 0.1499 -0.3378

x6 0.2806 0.4760 -0.6857

x7 -1.0420 0.4178 0.5435 (**)

x8 -0.0221 0.1531 -0.7609

Posterior Mean of Sigma2: 0.6528

Posterior StError of Sigma2: 0.939

3.4.4 Prediction

The prediction of m ≥ 1 future observations from units for which the explana-
tory variables X̃—but not the outcome variable ỹ—have been observed or set
is also based on the posterior distribution. Logically enough, were α, β and
σ2 known quantities, the m-vector ỹ would then have a Gaussian distribution
with mean α1m + X̃β and variance σ2Im. The predictive distribution on ỹ is
defined as the marginal in y of the joint posterior distribution on (ỹ, α,β, σ2).

Conditional on σ2, the vector ỹ of future observations has a Gaussian dis-
tribution and we can derive its expectation—used as our Bayesian estimator—
by averaging over α and β,

E
π [ỹ|σ2,y] = E

π [Eπ(ỹ|α,β, σ2,y)|σ2,y]

= E
π [α1m + X̃β|σ2,y]

= α̂1m + X̃
β̃ + gβ̂

g + 1
,

which is independent from σ2. This representation is quite intuitive, being the
product of the matrix of explanatory variables X̃ by the Bayesian estimator
of β. Similarly, we can compute

V
π(ỹ|σ2,y) = E

π[Vπ(ỹ|α,β, σ2,y)|σ2,y]

+V
π(Eπ(ỹ|α,β, σ2)|σ2,y)

= E
π[σ2Im|σ2,y] + V

π(α1m + X̃β|σ2,y)

= σ2

(
Im +

g

g + 1
X̃(XTX)−1X̃T

)
.
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Due to this factorization, and the fact that the conditional expectation does
not depend on σ2, we thus obtain

V
π(ỹ|y) = σ̂2

(
Im +

g

g + 1
X̃(XTX)−1X̃T

)
.

This decomposition of the variance makes perfect sense: Conditionally
on σ2, the posterior predictive variance has two terms, the first term be-
ing σ2Im, which corresponds to the sampling variation, and the second one
being σ2 g

g+1 X̃(XTX)−1X̃T, which corresponds to the uncertainty about β.
HPD credible regions and tests can then be conducted based on this con-

ditional predictive distribution

ỹ|σ2,y, σ2 ∼ N
(
E
π [ỹ],Vπ(ỹ|y, σ2)

)
.

Integrating σ2 out to produce the marginal distribution of ỹ leads to a mul-
tivariate Student’s t distribution

ỹ|y ∼ Tm

(
n, α̂1m + gβ̃/(g + 1),

s2 + β̂
T

XTXβ̂

n

{
Im + X̃(XTX)−1X̃T

})
.

(following a straightforward but lengthy derivation that is very similar to the
one we conducted at the end of Chap. 2, see (2.11)).

3.5 Markov Chain Monte Carlo Methods

Given the complexity of most models encountered in Bayesian modeling, stan-
dard simulation methods are not a sufficiently versatile solution. We now
present the rudiments of a technique that emerged in the late 1980s as the
core of Bayesian computing and that has since then revolutionized the field.

This technique is based on Markov chains, but we will not make many
incursions into the theory of Markov chains (see Meyn and Tweedie, 1993),
focusing rather on the practical implementation of these algorithms and trust-
ing that the underlying theory is sound enough to validate them (Robert and
Casella, 2004). At this point, it is sufficient to recall that a Markov chain
(xt)t∈N is a sequence of dependent random vectors whose dependence on the
past values x0, . . . ,xt−1 stops at the value immediately before, xt−1, and that
is entirely defined by its kernel—that is, the conditional distribution of xt

given xt−1.
The central idea behind these new methods, called Markov chain Monte

Carlo (MCMC) algorithms, is that, to simulate from a distribution π (for in-
stance, the posterior distribution), it is actually sufficient to produce a Markov
chain (xt)t∈N whose stationary distribution is π: when xt is marginally dis-
tributed according to π, then xt+1 is also marginally distributed according to
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π. If an algorithm that generates such a chain can be constructed, the ergodic
theorem guarantees that, in almost all settings, the average

1

T

T∑

t=1

g(xt)

converges to E[g(x)], no matter what the starting value.8

More informally, this property means that, for large enough t, xt is ap-
proximately distributed from π and can thus be used like the output from a
more standard simulation algorithm (even though one must take care of the
correlation between the xt’s created by the Markovian structure). For integral
approximation purposes, the difference from regular Monte Carlo approxima-
tions is that the variance structure of the estimator is more complex because of
the Markovian dependence. These methods being central to the cases studied
from this stage onward, we hope that the reader will become sufficiently profi-
cient with them by the end of the book! In this chapter, we detail a particular
type of MCMC algorithm, the Gibbs sampler, that is currently sufficient for
our needs. The next chapter will introduce a more universal type of algorithm.

3.5.1 Conditionals

A first remark that motivates the use of the Gibbs sampler9 is that, within
structures such as

π(x1) =

∫
π1(x1|x2)π̃(x2) dx2 , (3.5)

to simulate from the joint distribution

π(x1, x1) = π1(x1|x2)π̃(x2) (3.6)

automatically produces (marginal) simulation from π(x1). Therefore, in set-
tings where (3.5) holds, it is not necessary to simulate from π(x1) when one
can jointly simulate (x1, x2) from (3.6).

For example, consider (x1, x2) ∈ N×[0, 1] distributed from the joint density

π(x1, x2) ∝
(
n

x1

)
xx1+α−1
2 (1− x2)

n−x1+β−1 .

This is a joint distribution where

x1|x2 ∼ B(n, x2) and x2|α, β ∼ Be(α, β) .

8In probabilistic terms, if the Markov chains produced by these algorithms are
irreducible, then these chains are both positive recurrent with stationary distribution
π and ergodic, that is, asymptotically independent of the starting value x0.

9In the literature, both the denominations Gibbs sampler and Gibbs sampling
can be found. In this book, we will use Gibbs sampling for the simulation technique
and Gibbs sampler for the simulation algorithm.
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Therefore, although

π(x1) =

(
n

x1

)
B(α+ x1, β + n− x1)

B(α, β)

is available in closed form as the beta-binomial distribution, it is unnecessary

to work with this marginal when one can simulate an iid sample (x
(i)
1 , x

(i)
2 )

(t = 1, . . . , N) as

x
(t)
2 ∼ Be(α, β) and x

(t)
1 ∼ B(n, x

(t)
2 ) .

Integrals such as E[x1/(x1 + 1)] can then be approximated by

1

N

N∑

i=1

x
(t)
1

x
(t)
1 + 1

,

using a regular Monte Carlo approach.

Unfortunately, even when one works with a representation such as (3.6)
that is naturally associated with the original model, it is often the case that
the mixing density π̃(x2) itself is neither available in closed form nor amenable
to simulation. However, both conditional posterior distributions,

π1(x1|x2) and π2(x2|x1) ,

can often be simulated, and the following method takes full advantage of this
feature.

3.5.2 Two-Stage Gibbs Sampler

The availability of both conditionals of (3.6) in terms of simulation can be
exploited to build a transition kernel and a correspondingMarkov chain, some-
what analogous to the derivation of the maximum of a multivariate function
via an iterative device that successively maximizes the function in each of its
arguments until a fixed point is reached.

The corresponding Markov kernel is built by simulating successively from
each conditional distribution, with the conditioning variable being updated
on the run. It is called the two-stage Gibbs sampler or sometimes the data
augmentation algorithm, although both terms are rather misleading.10

10Gibbs sampling got its name from Gibbs fields, used in image analysis, when Ge-
man and Geman (1984) proposed an early version of this algorithm, while data
augmentation refers to Tanner’s (1996) special use of this algorithm in missing-data
settings, as seen in Chap. 6.
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Algorithm 3.3 Two-Stage Gibbs Sampler

Initialization: Start with an arbitrary value x
(0)
2 .

Iteration t: Given x
(t−1)
2 , generate

1. x
(t)
1 according to π1(x1|x(t−1)

2 ) ,

2. x
(t)
2 according to π2(x2|x(t)

1 ) .

Note that, in the second step of the algorithm, x
(t)
2 is generated conditional

on x1 = x
(t)
1 , not x

(t−1)
1 . The validation of this algorithm is that, for both

generations, π is a stationary distribution. Therefore, the limiting distribution

of the chain (x
(t)
1 , x

(t)
2 )t is π if the chain is irreducible; that is, if it can reach

any region in the support of π in a finite number of steps. (Note that there is
a difference between the stationary distribution and the limiting distribution
only in cases when the chain is not ergodic, as shown in Exercise 3.9.)

The practical implementation of Gibbs sampling involves solving two types
of difficulties: the first type corresponds to deriving an efficient decomposition
of the joint distribution in easily-simulated conditionals and the second one to
deciding when to stop the algorithm. Evaluating the efficiency of the decom-
position includes assessing the ease of simulating from both conditionals and
the level of correlation between the x(t)’s, as well as the mixing behavior of
the chain, that is, its ability to explore the support of π sufficiently fast. While
deciding whether or not a given conditional can be simulated is easy enough,
it is not always possible to find a manageable conditional, and more robust
alternatives such as the Metropolis–Hastings algorithm will be described in
the following chapters (see Sect. 4.2).

Choosing a stopping rule also relates to the mixing performances of the
algorithm, as well as to its ability to approximate posterior expectations un-
der π. Many indicators have been proposed in the literature (see Robert and
Casella, 2004, Chap. 12) to signify convergence, or lack thereof, although none
of these is foolproof. In the easiest cases, the lack of convergence is blatant and
can be spotted on the raw plot of the sequence of the x(t)’s, while, in other
cases, the Gibbs sampler explores very satisfactorily one mode of the posterior
distribution but fails altogether to visit the other modes of the posterior: we
will encounter such cases in Chap. 6 with mixtures of distributions. Through-
out this chapter and the following ones, we give hints on how to implement
these recommendations in practice.

Consider the posterior distribution derived in Exercise 2.11, for n = 2
observations,

π(μ|D2) ∝
e−µ2/20

{1 + (x1 − μ)2)(1 + (x2 − μ)2} .

Even though this is a univariate distribution, it can still be processed by a
Gibbs sampler through a data augmentation step, thus illustrating the idea
behind (3.5). In fact, since (j = 1, 2)



3.5 Markov Chain Monte Carlo Methods 89

1

1 + (xj − μ)2
=

∫ ∞

0

e−ωj[1+(xj−µ)2] dωj ,

we can define ω = (ω1, ω2) and envision π(μ|D2) as the marginal distribu-
tion of

π(μ,ω|D2) ∝ e−µ2/20 ×
2∏

j=1

e−ωj[1+(xj−µ)2] .

For this multivariate distribution, a corresponding Gibbs sampler is associated
with the following two steps:

1. Generate μ(t) ∼ π(μ|ω(t−1),D2) .
2. Generate ω(t) ∼ π(ω|μ(t),D2) .

The second step is straightforward: the ωi’s are conditionally independent
and distributed as E xp(1 + (xi − μ(t))2). The first step is also well-defined
since π(μ|ω,D2) is a normal distribution with mean

∑
i ωixi/(

∑
i ωi + 1/20)

and variance 1/(2
∑

i ωi+1/10). The corresponding R program then simplifies
into two lines

Fig. 3.4. (Top) Last 100 iterations of the chain (μ(t)); (bottom) histogram of the
chain (μ(t)) and comparison with the target density for 10,000 iterations
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> mu = rnorm(1,sum(x*omega)/sum(omega+.05),

+ sqrt(1/(.1+2*sum(omega))))

> omega = rexp(2,1+(x-mu)^2)

and the output of the simulation is represented in Fig. 3.4, with a very sat-
isfying fit between the histogram of the simulated values and the target. A
detailed zoom on the last 100 iterations shows how the chain (μ(t)) moves
around, alternatively visiting each mode of the target.

�When running a Gibbs sampler, the number of iterations should never be fixed

in advance: it is usually impossible to predict the performance of a given sampler

before producing a corresponding chain. Deciding on the length of an MCMC

run is therefore a sequential process where output behaviors are examined after

pilot runs and new simulations (or new samplers) are chosen on the basis of

these pilot runs.

3.5.3 The General Gibbs Sampler

For a joint distribution π(x1, . . . , xp) with full conditionals π1, . . . , πp where πj

is the distribution of xj conditional on (x1, . . . , xj−1, xj+1, . . . , xp), the Gibbs
sampler simulates successively from all conditionals, modifying one compo-
nent of x at a time. The corresponding algorithmic representation is given in
Algorithm 3.4.

Algorithm 3.4 Gibbs Sampler

Initialization: Start with an arbitrary value x(0) = (x
(0)
1 , . . . , x

(0)
p ) .

Iteration t: Given (x
(t−1)
1 , . . . , x

(t−1)
p ), generate

1. x
(t)
1 according to π1(x1|x(t−1)

2 , . . . , x
(t−1)
p ) ,

2. x
(t)
2 according to π2(x2|x(t)

1 , x
(t−1)
3 , . . . , x

(t−1)
p ) ,

...
p. x

(t)
p according to πp(xp|x(t)

1 , . . . , x
(t)
p−1) .

Quite logically, the validation of this generalization of Algorithm 3.3 is
identical: for each of the p steps of the t-th iteration, the joint distribution
π(x) is stationary. Under the same restriction on the irreducibility of the
chain, it also converges to π for every possible starting value. Note that the
order in which the components of x are simulated can be modified at each
iteration, either deterministically or randomly, without putting the validity of
the algorithm in jeopardy.
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The two-stage Gibbs sampler naturally appears as a special case of Algo-
rithm 3.4 for p = 2. It is, however, endowed with higher theoretical properties,
as detailed in Robert and Casella (2004, Chap. 9) and Robert and Casella
(2009, Chap. 7).

To conclude this section, let us stress that the impact of MCMC on
Bayesian statistics has been considerable. Since the 1990s, which saw the
emergence of MCMC methods in the statistical community, the occurrence of
Bayesian methods in applied statistics has greatly increased, and the frontier
between Bayesian and “classical” statistics is now so fuzzy that in some fields,
it has completely disappeared. From a Bayesian point of view, the access to
far more advanced computational means has induced a radical modification
of the way people work with models and prior assumptions. In particular,
it has opened the way to process much more complex structures, such as
graphical models and latent variable models (see Chap. 6). It has also freed
inference by opening for good the possibility of Bayesian model choice (see,
e.g., Robert, 2007, Chap. 7). This expansion is much more visible among
academics than among applied statisticians, though, given that the use of
the MCMC technology requires some “hard” thinking to process every new
problem. The availability of specific software such as BUGS has nonetheless
given access to MCMC techniques to a wider community, starting with the
medical field. New modules in R and other languages like Python are also
helping to bridge the gap.

3.6 Variable Selection

3.6.1 Deciding on Explanatory Variables

In an ideal world, when building a regression model, we should include all rele-
vant pieces of information, which in the regression context means including all
predictor variables that might possibly help in explaining y. However, there
are obvious drawbacks to the advice of increasing the number of explanatory
variables. For one thing, in noninformative settings, this eventually clashes
with the constraint p < n. For another, using a huge number of explana-
tory variables leaves little information available to obtain precise estimators.
In other words, when we increase the explanatory scope of the regression
model, we do not necessarily increase its explanatory power because it gets
harder and harder to estimate the coefficients.11 It is thus important to be

11This phenomenon is related to the principle of parsimony, also called Occam’s
razor, which states that, among two models with similar explanatory powers, the
simplest one should always be preferred. It is also connected with the learning curve
effect found in information theory and neural networks, where the performance of
a model increases on the learning dataset but decreases on a testing dataset as its
complexity increases.
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able to decide which variables—within a large pool of potential explanatory
variables—should be kept in a model that balances good explanatory power
with good estimation performance.

This is truly a decision problem in that all potential models have to be con-
sidered in parallel against a criterion that ranks them. This variable-selection
problem can be formalized as follows. We consider a dependent random vari-
able y and a set of p potential explanatory variables. At this stage, we assume
that every subset of q explanatory variables could make a proper set of ex-
planatory variables for the regression of y. The only restriction we impose is
that the intercept (that is, the constant variable) is included in every model.
There are thus 2p models in competition and we are looking for a procedure
that selects the “best” model, that is, the “most relevant” explanatory vari-
ables. Note that this variable-selection procedure can alternatively be seen
as a two-stage estimation setting where we first estimate the indicator of the
model (within the collection of models), which also amounts to estimating
variable indicators, as detailed below, and we then estimate the parameters
corresponding to this very model.

Each of the 2p models under comparison is in fact associated with a binary
indicator vector γ ∈ Γ = {0, 1}p, where γj = 1 means that the variable xj

is included in the model, denoted by Mγ . This notation is quite handy since
γ=(1,0,1,0,0,. . . ,1,0) clearly indicates which explanatory variables are in and
which are not. We also use the notation

qγ = 1T

pγ

for computing the number of variables included in the model Mγ . We de-
fine βγ as a sub-vector of β containing only the components such that xj is
included in the model Mγ and Xγ as the sub-matrix of X where only the
columns such that xj is included in the model Mγ have been left. The model
Mγ is thus defined as

y|α,βγ , σ2,γ ∼ Nn

(
α1n + βγXγβγ , σ2In

)
.

� Once again, and apparently in contradiction to our basic tenet that different

models should enjoy completely different parameters, we are compelled to de-

note by σ2 and α the variance and intercept terms common to all models,

respectively. Although this is more of a mathematical trick than a true model-

ing reason, the prior independence of (α, σ2) and γ allows for the simultaneous

use of Bayes factors and an improper prior. Despite the possibly confusing nota-

tion, βγ and β are completely unrelated in that they are parameters of different

models.
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3.6.2 G-Prior Distributions for Model Choice

Because so many models are in competition and thus considered in the global
model all at once, we cannot expect a practitioner to specify one’s own prior
on every model Mγ in a completely subjective and autonomous manner. We
thus now proceed to derive all priors from a single global prior associated with
the so-called full model that corresponds to γ = (1, . . . , 1). The argument goes
as follows:

(1) For the full model, we use Zellner’s G-prior as defined in Sect. 3.4,

β|σ2 ∼ Np(β̃, gσ
2(XTX)−1) and π(α, σ2) ∝ σ−2 .

(2) For each (sub-)model Mγ , the prior distribution of βγ conditional on σ2

is fixed as

β
γ |σ2,γ ∼ Nqγ

(
β̃
γ
, gσ2
(
XγTXγ

)−1
)

,

where β̃
γ
=
(
XγTXγ

)−1

XγT X̃β̃ and we use the same prior on (α, σ2).

� This distribution is conditional on γ; in particular, this implies that, while the

variance notation σ2 is common to all models, its distribution varies with γ.

Although there are many possible ways of defining the prior on the model
index12 γ, we opt for the uniform prior

π(γ) = 2−p .

The posterior distribution of γ (that is, the distribution of γ given y) is central
to the variable-selection methodology since it is proportional to the marginal
density of y in Mγ . In addition, for prediction purposes, the prediction dis-
tribution can be obtained by averaging over all models, the weights being the
model probabilities (this is called model averaging).

The posterior distribution of γ is

π(γ|y) ∝ f(y|γ)π(γ) ∝ f(y|γ)

∝ (g + 1)−(qγ+1)/2

[
yTy − g

g + 1
yTXγ
(
XγTXγ

)−1

XγTy

− 1

g + 1
β̃
γT

XγTXγ β̃
γ
]−(n−1)/2

. (3.7)

When the number of explanatory variables is less than 15, say, the exact
derivation of the posterior probabilities for all submodels can be undertaken.

12For instance, one could instead use a uniform prior on the number qγ of ex-
planatory variables or a more parsimonious prior such as π(γ) = 1/qγ .
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Indeed, 215 = 32768 means that the problem remains tractable. The following
R code (part of the function ModChoBayesReg) is used to calculate those pos-
terior probabilities and returns the top most probable models. The integrated
likelihood for the null model is computed as intlike0.

intlike=rep(intlike0,2^p)

for (j in 2:2^p){

gam=as.integer(intToBits(i-1)[1:p]==1)

pgam=sum(gam)

Xgam=X[,which(gam==1)]

Ugam=solve(t(Xgam)%*%Xgam)%*%t(Xgam)

betatildegam=b1=Ugam%*%X%*%betatilde

betamlgam=b2=Ugam%*%y

s2gam=t(y-alphaml-Xgam%*%b2)%*%(y-alphaml-Xgam%*%b2)

kappagam=as.numeric(s2gam+t(b1-b2)%*%t(Xgam)%*%

Xgam%*%(b1-b2)/(g+1))

intlike[j]=(g+1)^(-pgam/2)*kappagam^(-(n-1)/2)

}

intlike=intlike/sum(intlike)

modcho=order(intlike)[2^p:(2^p-9)]

probtop10=intlike[modcho]

The above R code uses the generic function intToBits to turn an integer i
into the indicator vector gam. The remainder of the code is quite similar to
the model choice code when computing the Bayes factors.

For the caterpillar data, we set β̃ = 08 and g = 1. The models corre-
sponding to the top 10 posterior probabilities are then given by

> ModChoBayesReg(y,X,g=1)

Number of variables less than 15

Model posterior probabilities are calculated exactly

Top10Models PostProb

1 1 2 3 7 0.0142

2 1 2 3 5 7 0.0138

3 1 2 7 0.0117

4 1 2 3 4 7 0.0112

5 1 2 3 4 5 7 0.0110

6 1 2 5 7 0.0108

7 1 2 3 7 8 0.0104

8 1 2 3 6 7 0.0102

9 1 2 3 5 6 7 0.0100

10 1 2 3 5 7 8 0.0098
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In a basic 0 − 1 decision setup, we would choose the model Mγ with the
highest posterior probability—that is, the model with explanatory variables
x1, x2, x3 and x7—which corresponds to the variables

– altitude,
– slope,
– the number of pine trees in the area, and
– the number of vegetation strata.

The model selected by the procedure thus fails to correspond to the three
variables identified in the R output at the end of Sect. 3.4. But interestingly,
even under this strong shrinkage prior g = 1 (where the prior has the same
weight as the data), all top ten models contain the explanatory variables x1,
x2 and x7, which have the most stars in this R analysis.

Now, the default or noninformative calibration of the G-prior corresponds
to the choice β̃ = 0p and g = n, which reduces the prior input to the equivalent
of a single observation. Pushing g to a smaller value results in a paradoxical
behaviour of the procedure which then usually picks the simpler model: this
is another illustration of the Jeffreys-Lindley paradox, mentioned in Chap. 2.

For β̃ = 0p and g = n, the ten most likely models and their posterior
probabilities are:

> ModChoBayesReg(y,X)

Number of variables less than 15

Models’s posterior probabilities are calculated exactly

Top10Models PostProb

1 1 2 7 0.0767

2 1 7 0.0689

3 1 2 3 7 0.0686

4 1 3 7 0.0376

5 1 2 6 0.0369

6 1 2 3 5 7 0.0326

7 1 2 5 7 0.0294

8 1 6 0.0205

9 1 2 4 7 0.0201

10 7 0.0198

For this different prior modelling, we chose the same model as the lm clas-
sical procedure, rather than when g = 1; however, the posterior probabilities
of the most likely models are much lower for g = 1, which is logical given
that the current prior is less informative. Therefore, the top model is not as
strongly supported as in the informative case. Once again, we stress that the
choice g = 1 is rather arbitrary and that it is used here merely for illustrative
purposes. The default value we recommend is g = n.
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3.6.3 A Stochastic Search for the Most Likely Model

When the number p of variables is large, it becomes impossible to compute
the posterior probabilities for the whole series of 2p models. We then need a
tailored algorithm that samples from π(γ|y) and thus selects the most likely
models, without computing first all the values of π(γ|y). This can be done
rather naturally by Gibbs sampling, given the availability of the full condi-
tional posterior probabilities of the γj’s.

Indeed, if γ−j (1 ≤ j ≤ p) is the vector (γ1, . . . , γj−1, γj+1, . . . , γp), the
full conditional distribution π(γj |y,γ−j) of γj is proportional to π(γ|y) and
can be computed in both γj = 0 and γj = 1 at no cost (since these are the
only possible values of γj).

Algorithm 3.5 Gibbs Sampler for Variable Selection

Initialization: Draw γ0 from the uniform distribution on Γ .

Iteration t: Given (γ
(t−1)
1 , . . . , γ

(t−1)
p ), generate

1. γ
(t)
1 according to π(γ1|y, γ(t−1)

2 , . . . , γ
(t−1)
p ) ,

2. γ
(t)
2 according to π(γ2|y, γ(t)

1 , γ
(t−1)
3 , . . . , γ

(t−1)
p ) ,

...
p. γ

(t)
p according to π(γp|y, γ(t)

1 , . . . , γ
(t)
p−1) .

After a large number of iterations of this algorithm (that is, when the
sampler is supposed to have converged or, more accurately, when the sampler
has sufficiently explored the support of the target distribution), its output
can be used to approximate the posterior probabilities π(γ|y, X) by empirical
averages based on the Gibbs output,

P̂
π(γ = γ∗|y) =

(
1

T − T0 + 1

) T∑

t=T0

Iγ(t)=γ∗ ,

where the T0 first values are eliminated as burn-in. (The number T0 is therefore
the number of iterations roughly needed to “reach” convergence.) The Gibbs
output can also be used to approximate the inclusion of a given variable,
P π(γj = 1|y, X), as

P̂
π(γj = 1|y) =

(
1

T − T0 + 1

) T∑

t=T0

I
γ
(t)
j

=1
,

with the same asymptotic validation.
The following R code (again part of the function ModChoBayesReg) de-

scribes our implementation of the above variable-selection Gibbs sampler.
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The code uses the null model with only the intercept α as a reference, based
on the integrated likelihood intlike0 as above. It then starts at random in
the collection of models:

gamma=rep(0,niter)

mcur=sample(c(0,1),p,replace=TRUE)

gamma[1]=sum(2^(0:(p-1))*mcur)+1

pcur=sum(mcur)

and computes the corresponding integrated likelihood intlikecur

if (pcur==0) intlikecur=intlike0 else{ #integrated likelihood

Xcur=X[,which(mcur==1)]

Ucur=solve(t(Xcur)%*%Xcur)%*%t(Xcur)

betatildecur=b1=Ucur%*%X%*%betatilde

betamlcur=b2=Ucur%*%y

s2cur=t(y-alphaml-Xcur%*%b2)%*%(y-alphaml-Xcur%*%b2)

kappacur=as.numeric(s2cur+t(b1-b2)%*%t(Xcur)%*%

Xcur%*%(b1-b2)/(g+1))

intlikecur=(g+1)^(-pcur/2)*kappacur^(-(n-1)/2)

}

It then proceeds according to Algorithm 3.5, proposing to change one variable
indicator γj and accepting this move with a Metropolis–Hastings (defined and
justified in Chap. 4) probability:

if (runif(1)<=(intlikeprop/intlikecur))

This modification is more efficient than directly simulating from the condi-
tional as it avoids proposing the same value for γj twice.

for (t in 1:(niter-1)){ #iteration index

mprop=mcur

j=sample(1:p,1)

mprop[j]=abs(mcur[j]-1)

pprop=sum(mprop)

if (pprop==0) intlikeprop=intlike0 else{ #integrated

likelihood Xprop=X[,which(mprop==1)]

Uprop=solve(t(Xprop)%*%Xprop)%*%t(Xprop)

betatildeprop=b1=Uprop%*%X%*%betatilde

betamlprop=b2=Uprop%*%y

s2prop=t(y-alphaml-Xprop%*%betamlprop)%*

%(y-alphaml-Xprop%*%betamlprop)

kappaprop=as.numeric(s2prop+t(betatildeprop-betamlprop)%*

%t(Xprop)%*%Xprop%*%

(betatildeprop-betamlprop)/(g+1))

intlikeprop=(g+1)^(-pprop/2)*kappaprop^(-(n-1)/2)

}

if (runif(1)<=(intlikeprop/intlikecur)){
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mcur=mprop

intlikecur=intlikeprop

}

gamma[t+1]=sum(2^(0:(p-1))*mcur)+1

}

gamma=gamma[20001:niter] #20,000 burnin steps

res=as.data.frame(table(as.factor(gamma)))

odo=order(res$Freq)[length(res$Freq):(length(res$Freq)-9)]

modcho=res$Var1[odo]

probtop10=res$Freq[odo]/(niter-20000)

In this setting of caterpillar, handling only eight (potential) explana-
tory variables means that it is possible to compute all of the 28 probabilities
π(γ|y) and to thus deduce the normalizing constant in (3.7). We can therefore
compare these exact values with the approximations produced by the Gibbs
sampler. Using T0 =20,000 and T0 =80,000, i.e. a total of 105 simulations,
we obtain the following results for the top five models:

Models PostProb Gibbs estimates

of the PostProb

1 1 2 7 0.0767 0.0740

2 1 7 0.0689 0.0675

3 1 2 3 7 0.0686 0.0668

4 1 3 7 0.0376 0.0376

5 1 2 6 0.0369 0.0370

The comparison is quite comforting for the Gibbs sampler as the differences
are truly minor! Rather naturally, as the number of variables grows, the num-
ber of simulations needed to provide a good approximation grows as well. Once
more, we recommend running the code several times (with different random
sequences) to ensure the stability of the approximation.

3.7 Exercises

3.1 Show that the matrix Z is of full rank if and only if the matrix ZTZ is in-
vertible (where ZT denotes the transpose of the matrix Z, which can be produced
in R using the t(Z) command). Apply to Z = [1n X] and deduce that this
cannot happen when p+ 1 > n.

3.2 Show that solving the minimization program

min
β

(y −Xβ)T(y −Xβ)
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requires solving the system of equations (XTX)β = XTy. Check that this can
be done via the R command solve(t(X)%*%(X),t(X)%*%y).

3.3 Show that the variance of the maximum likelihood estimator of β in the
regression model is given by V(β̂|σ2) = σ2(XTX)−1.

3.4 For the model
y|β, σ2 ∼ Nn

(
Xβ, σ2In

)

a conjugate prior distribution is as follows: the conditional distribution of β is
given by

β|σ2 ∼ Np(β̃, σ
2M−1) ,

where M is a (p, p) positive definite symmetric matrix, and the marginal prior on
σ2 is an inverse Gamma distribution

σ2 ∼ I G (a, b), a, b > 0 .

Taking advantage of the matrix identities

(
M+XTX

)−1
= M−1 −M−1

(
M−1 + (XTX)−1

)−1
M−1

= (XTX)−1 − (XTX)−1
(
M−1 + (XTX)−1

)−1
(XTX)−1

and

XTX(M+XTX)−1M =
(
M−1(M +XTX)(XTX)−1

)−1

=
(
M−1 + (XTX)−1

)−1
,

establish that

β|y, σ2 ∼ Np

(
(M+XTX)−1{(XTX)β̂ +Mβ̃}, σ2(M+XTX)−1

)
(3.8)

where β̂ = (XTX)−1XTy and

σ2|y ∼ I G

(
n

2
+ a, b+

s2

2
+

(β̃ − β̂)T
(
M−1 + (XTX)−1

)−1
(β̃ − β̂)

2

)

(3.9)

where s2 = (y − β̂X)T(y − β̂X) are the correct posterior distributions. Give a
(1− α) HPD region on β.

3.5 The regression model of Exercise 3.4 can also be used in a predictive sense:
for a given (m, p+ 1) explanatory matrix X̃, i.e., when predicting m unobserved
variates ỹi, the corresponding outcome ỹ can be inferred through the predictive

distribution π(ỹ|σ2,y). Show that π(ỹ|σ2,y) is a Gaussian density with mean

E
π[ỹ|σ2,y] = X̃(M +XTX)−1(XTXβ̂ +Mβ̃)
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and covariance matrix

V
π(ỹ|σ2,y) = σ2(Im + X̃(M+XTX)−1X̃T) .

Deduce that

ỹ|y ∼ Tm

(
n+ 2a, X̃(M+XTX)−1(XTXβ̂ +Mβ̃),

2b+ s2 + (β̃ − β̂)T
(
M−1 + (XTX)−1

)−1
(β̃ − β̂)

n+ 2a

×
{
Im + X̃(M +XTX)−1X̃T

})
.

3.6 Show that the marginal distribution of y associated with (3.8) and (3.9) is
given by

y ∼ Tn

(
2a,Xβ̃,

b

a
(In +XM−1XT)

)
.

3.7 Show that the matrix (In + gX(XTX)−1XT) has 1 and g + 1 as only
eigenvalues. (Hint: Show that the eigenvectors associated with g + 1 are of the
form Xβ and that the eigenvectors associated with 1 are those orthogonal to
X.) Deduce that the determinant of the matrix (In + gX(XTX)−1XT) is indeed
(g + 1)p+1.

3.8 Under the Jeffreys prior, give the predictive distribution of ỹ, m dimensional
vector corresponding to the (m, p) matrix of explanatory variables X̃.

3.9 If (x1, x2) is distributed from the uniform distribution on

{
(x1, x2); (x1 − 1)2 + (x2 − 1)2 ≤ 1

}
∪
{
(x1, x2); (x1 + 1)2 + (x2 + 1)2 ≤ 1

}
,

show that the Gibbs sampler does not produce an irreducible chain. For this dis-
tribution, find an alternative Gibbs sampler that works. (Hint: Consider a rotation
of the coordinate axes.)

3.10 If a joint density g(y1, y2) corresponds to the conditional distributions
g1(y1|y2) and g2(y2|y1), show that it is given by

g(y1, y2) =
g2(y2|y1)∫

g2(v|y1)/g1(y1|v) dv
.

3.11 Considering the model

η|θ ∼ Bin(n, θ) , θ ∼ Be(a, b),

derive the joint distribution of (η, θ) and the corresponding full conditional distri-
butions. Implement a Gibbs sampler associated with those full conditionals and
compare the outcome of the Gibbs sampler on θ with the true marginal distribu-
tion of θ.
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3.12 Take the posterior distribution on (θ, σ2) associated with the joint model

xi|θ, σ2 ∼ N (θ, σ2), i = 1, . . . , n,

θ ∼ N (θ0, τ
2) , σ2 ∼ IG (a, b) .

Show that the full conditional distributions are given by

θ|x, σ2 ∼ N

(
σ2

σ2 + nτ2
θ0 +

nτ2

σ2 + nτ2
x̄,

σ2τ2

σ2 + nτ2

)

and

σ2|x, θ ∼ IG

(
n

2
+ a,

1

2

∑

i

(xi − θ)2 + b

)
,

where x̄ is the empirical average of the observations. Implement the Gibbs sampler
associated with these conditionals.
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Generalized Linear Models

This was the sort of thing that impressed
Rebus: not nature, but ingenuity.

—Ian Rankin, A Question of Blood.—

Roadmap

Generalized linear models are extensions of the linear regression model described
in the previous chapter. In particular, they avoid the selection of a single transfor-
mation of the data that must achieve the possibly conflicting goals of normality
and linearity imposed by the linear regression model, which is for instance impossi-
ble for binary or count responses. The trick that allows both a feasible processing
and an extension of linear regression is first to turn the covariates into a real
number by a linear projection and then to transform this value so that it fits the
support of the response. We focus here on the Bayesian analysis of probit and
logit models for binary data and of log-linear models for contingency tables.

On the methodological side, we present a general MCMC method, the
Metropolis–Hastings algorithm, which is used for the simulation of complex dis-
tributions where both regular and Gibbs sampling fail. This includes in particular
the random walk Metropolis–Hastings algorithm, which acts like a plain vanilla
MCMC algorithm.

J.-M. Marin and C.P. Robert, Bayesian Essentials with R, Springer Texts
in Statistics, DOI 10.1007/978-1-4614-8687-9 4,
© Springer Science+Business Media New York 2014
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4.1 A Generalization of the Linear Model

4.1.1 Motivation

In the previous chapter, we modeled the connection between a response vari-
able y and a vector x of explanatory variables by a linear dependence relation
with normal perturbations. There are many instances where both the linear-
ity and the normality assumptions are not appropriate, especially when the
support of y is restricted to R+ or N. For instance, in dichotomous models,
y takes its values in {0, 1} as it represents the indicator of occurrence of a
particular event (death in a medical study, unemployment in a socioeconomic
study, migration in a capture–recapture study, etc.); in this case, a linear con-
ditional expectation E[y|x,β] = xTβ would be fairly cumbersome to handle,
both in terms of the constraints on β and the corresponding distribution of
the error ε = y − E[y|x,β].
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Fig. 4.1. Dataset bank: (left) Plot of the status indicator versus the bottom margin
width; (right) boxplots of the bottom margin width for both counterfeit statuses

The bank dataset we analyze in the first part of this chapter comes from
Flury and Riedwyl (1988) and is made of four measurements on 100 genuine
Swiss banknotes and 100 counterfeit ones. The response variable y is thus the
status of the banknote, where 0 stands for genuine and 1 stands for counterfeit,
while the explanatory factors are the length of the bill x1, the width of the
left edge x2, the width of the right edge x3, and the bottom margin width x4,
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all expressed in millimeters. We want a probabilistic model that predicts the
type of banknote (i.e., that detects counterfeit banknotes) based on the four
measurements above. To motivate the introduction of the generalized linear
models, we only consider here the dependence of y on the fourth measure,
x4, which again is the bottom margin width of the banknote. To start, the
yi’s being binary, the conditional distribution of y given x4 cannot be normal.
Nonetheless, as shown by Fig. 4.1, the variable x4 clearly has a strong influence
on whether the banknote is or is not counterfeit. To model this dependence in
a proper manner, we must devise a realistic (if not real!) connection between
y and x4. The fact that y is binary implies a specific form of dependence: In-
deed, both its marginal and conditional distributions necessarily are Bernoulli
distributions. This means that, for instance, the conditional distribution of y
given x4 is a Bernoulli B(p(x4)) distribution; that is, for x4 = x4i, there exists
0 ≤ pi = p(x4i) ≤ 1 such that

P(yi = 1|x4 = x4i) = pi ,

which turns out to be also the conditional expectation of yi, E[yi|x4i]. If we
do impose a linear dependence on the pi’s, namely,

p(x4i) = β0 + β1x4i ,

the maximum likelihood estimates of β0 and β1 are then equal to −2.02 and
0.268, leading to the estimated prediction equation

p̂i = −2.02 + 0.268xi4 . (4.1)

This implies that a banknote with bottom margin width equal to 8 is coun-
terfeit with probability

−2.02 + 0.268× 8 = 0.120 .

Thus, this banknote has a relatively small probability of having been counter-
feited, which coincides with the intuition drawn from Fig. 4.1. However, if we
now consider a banknote with bottom margin width equal to 12, (4.1) implies
that this banknote is counterfeited with probability

−2.02 + 0.268× 12 = 1.192 ,

which is certainly embarrassing for a probability estimate! We could
try to modify the result by truncating the probability to (0, 1) and by decid-
ing that this value of x4 almost certainly indicates a counterfeit, but still there
is a fundamental difficulty with this model. The fact that an ordinary linear
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dependence can predict values outside (0, 1) suggests that the connection bet-
ween this explanatory variable and the probability of a counterfeit cannot be
modeled through a linear function but rather can be achieved using functions
of x4i that take their values within the interval (0, 1).

4.1.2 Link Functions

As shown by the previous analysis, while linear models are nice to work with,
they also have strong limitations. Therefore, we need a broader class of models
to cover various dependence structures. The class selected for this chapter is
called the family of generalized linear models (GLM), which has been formal-
ized in McCullagh and Nelder (1989). This nomenclature stems from the fact
that the dependence of y on x is partly linear in the sense that the conditional
distribution of y given x is defined in terms of a linear combination xTβ of
the components of x,

y|β ∼ f(y|xTβ) .

As in the previous chapter, we use the notation y = (y1, . . . , yn) for a
sample of n responses and

X = [x1 . . . xk] =

⎡
⎢⎢⎢⎢⎢⎣

x11 x12 . . . x1k

x21 x22 . . . x2k

x31 x32 . . . x3k

...
...

...
...

xn1 xn2 . . . xnk

⎤
⎥⎥⎥⎥⎥⎦

for the n × k matrix of corresponding explanatory variables, possibly with
x11 = . . . = xn1 = 1. We use y and x as generic notations for single-response
and covariate vectors, respectively. Once again, we will omit the dependence
on x or X to simplify notations.

A generalized linear model is specified by two functions:

1. a conditional density f of y given x that belongs to an exponential family
(Sect. 2.2.3) and that is parameterized by an expectation parameter μ =
μ(x) = E[y|x] and possibly a dispersion parameter ϕ > 0 that does not
depend on x; and

2. a link function g that relates the mean μ = μ(x) of f and the covariate
vector, x, as g(μ) = (xTβ), β ∈ Rk.

For identifiability reasons, the link function g is a one-to-one function and we
have

E[y|β, ϕ] = g−1
(
xTβ
)
.

We can thus write the (conditional) likelihood as

ℓ(β, ϕ|y) =
n∏

i=1

f
(
yi|xiTβ, ϕ

)
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if we choose to reparameterize f with the transform g(μi) of its mean and if
we denote by xi the covariate vector for the ith observation.1

The ordinary linear regression is obviously a special case of GLM where
g(x) = x, ϕ = σ2 and y|β, σ2 ∼ N

(
xTβ, σ2

)
. However, outside the linear

model, the interpretation of the coefficients βi is much more delicate because
these coefficients do not relate directly to the observables, due to the presence
of a link function that cannot be the identity. For instance, in the logistic
regression model (defined in the following paragraph), the linear dependence
is defined in terms of the log-odds ratio log{p1/(1− pi)}.

The most widely used GLMs are presumably those that analyze binary
data, as in bank, that is, when yi ∼ B(1, pi) (with μi = pi = p(xiTβ)). The
mean function p thus transforms a real value into a value between 0 and 1,
and a possible choice of link function is the logit transform,

g(p) = log{p/(1− p)} ,

associated with the logistic regression model. Because of the limited support
of the responses yi, there is no dispersion parameter in this model and the
corresponding likelihood function is

ℓ(β|y) =
n∏

i=1

(
exp(xiTβ)

1 + exp(xiTβ)

)yi
(

1

1 + exp(xiTβ)

)1−yi

(4.2)

= exp

{
n∑

i=1

yi x
iTβ

}/ n∏

i=1

[
1 + exp(xiTβ)

]
.

It thus fails to factorize conveniently because of the denominator: there is no
manageable conjugate prior for this model, called the logit model.

There exists a specific form of link function for each exponential family
which is called the canonical link. This canonical function is chosen as the
function g⋆ of the expectation parameter that appears in the exponent of the
natural exponential family representation of the probability density, namely

g⋆(μ) = θ if f(y|μ, ϕ) = h(y) expϕ{T (y) · θ − Ψ(θ)} .

Since the logistic regression model can be written as

f(yi|pi) = exp

{
yi log

(
pi

1− pi

)
+ log(1− pi)

}
,

the logit link function is the canonical version for the Bernoulli model. Note
that, while it is customary to use the canonical link, there is no compelling
reason to do so, besides following custom!

1This upper indexing allows for the distinction between xi, the ith component
of the covariate vector, and xi, the ith vector of covariates in the sample.
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For binary response variables, many link functions can be substituted for
the logit link function. For instance, the probit link function, g(μi) = Φ−1(μi),
where Φ is the standard normal cdf, is often used in econometrics. The corre-
sponding likelihood is

ℓ(β|y) ∝
n∏

i=1

Φ(xiTβ)yi
[
1− Φ(xiTβ)

]1−yi
. (4.3)

Although this alternative is also quite arbitrary and any other cdf could be
used as a link function (such as the logistic cdf associated with (4.2)), the
probit link function enjoys a missing-data (Chap. 6) interpretation that clearly
boosted its popularity: This model can indeed be interpreted as a degraded
linear regression model in the sense that observing yi = 1 corresponds to
the case zi ≥ 0, where zi is a latent (that is, unobserved) variable such that
zi ∼ N

(
xiTβ, 1

)
. In other words, y = I(zi ≥ 0) appears as a dichotomized

linear regression response. Of course, this perspective is only an interpretation
of the probit model in the sense that there may be no hidden zi’s at all in the
real world! In addition, the probit and logistic regression models have quite
similar behaviors, differing mostly in the tails.

Another type of GLM deals with unbounded integer-valued variables. The
Poisson regression model starts from the assumption that the yi’s are Poisson
P(μi) and it selects a link function connecting R+ bijectively with R, such
as, for instance, the logarithmic function, g(μi) = log(μi). This model is thus
a count model in the sense that the responses are integers, for instance the
number of deaths due to lung cancer in a county or the number of speeding
tickets issued on a particular stretch of highway, and it is quite common in
epidemiology. The corresponding likelihood is

ℓ(β|y) =
n∏

i=1

(
1

yi!

)
exp
{
yi x

iTβ − exp(xiTβ)
}
,

where the factorial terms (1/yi!) are irrelevant for both likelihood and poste-
rior computations. Note that it does not factorize conveniently because of the
exponential terms within the exponential.

The three examples above are simply illustrations of the versatility of
generalized linear modeling. In this chapter, we discuss only two types of
data for which generalized linear modeling is appropriate. We refer the reader
to McCullagh and Nelder (1989) and Gelman et al. (2013) for a much more
detailed coverage.

4.2 Metropolis–Hastings Algorithms

As partly hinted by the previous examples, posterior inference in GLMs is
much harder than in linear models because of less manageable (and non-
factorizing) likelihoods, which explains the longevity and versatility of linear
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model studies over the past centuries! Working with a GLM typically requires
specific numerical or simulation tools. We take the opportunity of this require-
ment to introduce a universal MCMC method called the Metropolis–Hastings
algorithm. Its range of applicability is incredibly broad (meaning that it is by
no means restricted to GLM applications) and its inclusion in the Bayesian
toolbox in the early 1990s has led to considerable extensions of the Bayesian
field.2

4.2.1 Definition

When compared with the Gibbs sampler, Metropolis–Hastings algorithms are
generic (or off-the-shelf) MCMC algorithms in the sense that they can be
tuned toward a much wider range of possibilities. Those algorithms are also
a natural extension of standard simulation algorithms such as accept–reject
(see Chap. 5) or sampling importance resampling methods since they are all
based on a proposal distribution. However, a major difference is that, for the
Metropolis–Hastings algorithms, the proposal distribution is Markov, with
kernel density q(x, y). If the target distribution has density π, the Metropolis–
Hastings algorithm is as follows:

Algorithm 4.6 Generic Metropolis–Hastings Sampler

Initialization: Choose an arbitrary starting value x(0).
Iteration t (t ≥ 1):
1. Given x(t−1), generate x̃ ∼ q(x(t−1), x).
2. Compute

ρ(x(t−1), x̃) = min

(
π(x̃)/q(x(t−1), x̃)

π(x(t−1))/q(x̃, x(t−1))
, 1

)
.

3. With probability ρ(x(t−1), x̃), accept x̃ and set x(t) = x̃;
otherwise reject x̃ and set x(t) = x(t−1).

The distribution q is also called the instrumental distribution. As in the
accept–reject method (Sect. 5.4), we only need to know either π or q up to a
proportionality constant since both constants cancel in the calculation of ρ.
Note also the advantage of this approach compared with the Gibbs sampler:
it is not necessary to use the conditional distributions of π.

The strong appeal of this algorithm is that it is rather universal in its
formulation as well as in its use. Indeed, we only need to simulate from a

2This algorithm had been used by particle physicists, including Metropolis, since
the late 1940s, but, as is often the case, the connection with statistics was not made
until much later!
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proposal q that can be chosen quite freely. There is, however, a theoretical
constraint, namely that the chain produced by this algorithm must be able to
explore the support of π(y) in a finite number of steps. As discussed below,
there also are many practical difficulties that are such that the algorithm may
lose its universal feature and that it may require some specific tuning for each
new application.

The theoretical validation of this algorithm is the same as with other
MCMC algorithms: The target distribution π is the limiting distribution of
the Markov chain produced by Algorithm 4.6. This is due to the choice of the
acceptance probability ρ(x, y) since the so-called detailed balance equation

π(x)q(x, y)ρ(x, y) = π(y)q(y, x)ρ(y, x)

holds and thus implies that π is stationary by integrating out x.
While theoretical guarantees that the algorithm converges are very high,

the choice of q remains essential in practice. Poor choices of q may indeed
result either in a very high rejection rate, meaning that the Markov chain
(x(t))t hardly moves, or in a myopic exploration of the support of π, that
is, in a dependence on the starting value x(0) such that the chain is stuck
in a neighborhood region of x(0). A particular choice of proposal q may thus
work well for one target density but be extremely poor for another one. While
the algorithm is indeed universal, it is impossible to prescribe application-
independent strategies for choosing q.

We thus consider below two specific cases of proposals and briefly discuss
their pros and cons (see Robert and Casella, 2004, Chap. 7, for a detailed
discussion).

4.2.2 The Independence Sampler

The choice of q closest to the accept–reject method (see Algorithm 5.9) is to
pick a constant q that is independent of its first argument,

q(x, y) = q(y) .

In that case, ρ simplifies into

ρ(x, y) = min

(
1,

π(y)/q(y)

π(x)/q(x)

)
.

In the special case in which q is proportional to π, we obtain ρ(x, y) = 1 and
the algorithm reduces, as expected, to iid sampling from π. The analogy with
the accept–reject algorithm is that the maximum of the ratio π/q is replaced
with the current value π(x(t−1))/q(x(t−1)) but the sequence of accepted x(t)’s
is not iid because of the acceptance step.

The convergence properties of the algorithm depend on the density q.
First, q needs to be positive everywhere on the support of π. Second, for good
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exploration of this support, it appears that the ratio π/q needs to be bounded
(see Robert and Casella, 2004, Theorem 7.8). Otherwise, the chain may take
too long to reach some regions with low q/π values. This constraint obviously
reduces the appeal of using an independence sampler, even though the fact
that it does not require an explicit upper bound on π/q may sometimes be a
plus.

This type of MH sampler is thus very model-dependent, and it suffers from
the same drawbacks as the importance sampling methodology, namely that
tuning the “right” proposal becomes much harder as the dimension increases.

4.2.3 The Random Walk Sampler

Since the independence sampler requires too much global information about
the target distribution that is difficult to come by in complex or high-
dimensional problems, an alternative is to opt for a local gathering of infor-
mation, clutching to the hope that the accumulated information will provide,
in the end, the global picture. Practically, this means exploring the neigh-
borhood of the current value x(t) in search of other points of interest. The
simplest exploration device is based on random walk dynamics.

A random walk proposal is based on a symmetric transition kernel q(x, y) =
qRW (y− x) with qRW (x) = qRW (−x). Symmetry implies that the acceptance
probability ρ(x, y) reduces to the simpler form

ρ(x, y) = min
(
1, π(y)
/
π(x)
)
.

The appeal of this scheme is obvious when looking at the acceptance proba-
bility, since it only depends on the target π and since this version accepts all
proposed moves that increase the value of π. There is considerable flexibility
in the choice of the distribution qRW , at least in terms of scale (i.e., the size
of the neighborhood of the current value) and tails. Note that while from a
probabilistic point of view random walks usually have no stationary distri-
bution, the algorithm biases the random walk by moving toward modes of π
more often than moving away from them.

The ambivalence of MCMC methods like the Metropolis–Hastings algo-
rithm is that they can be applied to virtually any target. This is a terrific plus
in that they can tackle new models, but there is also a genuine danger that
they simultaneously fail to converge and fail to signal that they have failed to
converge! Indeed, these algorithms can produce seemingly reasonable results,
with all outer aspects of stability, while they are missing major modes of the
target distribution. For instance, particular attention must be paid to models
where the number of parameters exceeds by far the size of the dataset.

4.2.4 Output Analysis and Proposal Design

An important problem with the implementation of an MCMC algorithm is to
gauge when convergence has been achieved; that is, to assess at what point
the distribution of the chain is sufficiently close to its asymptotic distribution
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for all practical purposes or, more practically, when it has covered the whole
support of the target distribution with sufficient regularity. The number of
iterations T0 that is required to achieve this goal is called the burn-in period.
It is usually sensible to discard simulated values within this burn-in period
in the Monte Carlo estimation so that the bias caused by the starting value
is reduced. However, and this is particularly true in high dimensions, the
empirical assessment of MCMC convergence is extremely delicate, to the point
that it is rarely possible to be certain that an algorithm has converged.3

Nevertheless, some partial convergence diagnostic procedures can be found
in the literature (see Robert and Casella, 2004, Chap. 12, and Robert and
Casella, 2009, Chap. 8). In particular, the latter describes the R package coda
in Sect. 8.2.4.

A first way to assess whether or not a chain is in its stationary regime
is to visually compare trace plots of sequences started at different values, as
it may expose difficulties related, for instance, to multimodality. In practice,
when chains of length T from two starting values have visited substantially
different parts of the state space, the burn-in period for at least one of the
chains should be greater than T . Note, however, that the problem of obtaining
overdispersed starting values can be difficult when little is known about the
target density, especially in large dimensions.

Autocorrelation plots of particular components provide in addition good
indications of the chain’s mixing behavior. If ρk (k ∈ N∗) denotes the kth-
order autocorrelation,

ρk = cov
(
x(t), x(t+k)

)
,

these quantities can be estimated from the observed chain itself,4 at least for
small values of k, and an effective sample size factor can be deduced from
these estimates,

T ess = T

(
1 + 2

T0∑

k=1

ρ̂k

)−1/2

,

where ρ̂k is the empirical autocorrelation function. This quantity represents
the sample size of an equivalent iid sample when running T iterations. Con-
versely, the ratio T/T ess indicates the multiplying factor on the minimum
number of iid iterations required to run a simulation. Note, however, that this
is only a partial indicator: Chains that remain stuck in one of the modes of
the target distribution may well have a high effective ratio.

While we cannot discuss at length the selection of the proposal distribu-
tion (see Robert and Casella, 2004, Chap. 7, and Robert and Casella, 2009,

3Guaranteed convergence as in accept–reject algorithms is sometimes achievable
with MCMC methods using techniques such as perfect sampling or renewal. But
such techniques require a much more advanced study of the target distribution and
the transition kernel of the algorithm. These conditions are not met very often in
practice (see Robert and Casella 2004, Chap. 13).

4In R, this estimation can be conducted using the acf function.
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Chap. 6), we stress that this is an important choice that has deep consequences
for the convergence properties of the simulated Markov chain and thus for the
exploration of the target distribution. As for prior distributions, we advise
the simultaneous use of different kernels to assess their performances on the
run. When considering a random walk proposal, for instance, a quantity that
needs to be calibrated against the target distribution is the scale of this ran-
dom walk. Indeed, if the variance of the proposal is too small with respect to
the target distribution, the exploration of the target support will be small and
may fail in more severe cases. Similarly, if the variance is too large, this means
that the proposal will most often generate values that are outside the support
of the target and that the algorithm will reject a large portion of attempted
transitions.

� It seems reasonable to tune the proposal distribution in terms of its past per-

formances, for instance by increasing the variance if the acceptance rate is high

or decreasing it otherwise (or moving the location parameter toward the mean

estimated over the past iterations). This must not be implemented outside a

burn-in step, though, because a permanent modification of the proposal dis-

tribution amounts to taking into account the whole past of the sequence and

thus it cancels both its Markovian nature and its convergence guarantees.

Consider, solely for illustration purposes, the standard normal distribution
N (0, 1) as a target. If we use Algorithm 4.6 with a normal random walk, i.e.,

x̃|x(t−1) ∼ N

(
x(t−1), σ2

)
,

the performance of the sampler depends on the value σ. An R function that
implements the associated Hastings–Metropolis sampler is coded as

hm=function(n,x0,sigma2){

x=rep(x0,n)

for (i in 2:n){

y=rnorm(1,x[i-1],sqrt(sigma2))

if (runif(1)<=exp(-0.5*(y^2-x[i-1]^2))) x[i]=y

else x[i]=x[i-1]

}

x

}

For instance, picking σ2 equal to either 10−4 or 103 provides two extreme
cases: As shown in Fig. 4.2, the chain has a high acceptance rate but a low
exploration ability and a high autocorrelation in the former case, while its
acceptance rate is low but its ability to move around the normal range is
high in the latter case (with a quickly decreasing autocorrelation). Both
cases use the “wrong scale”, though, in that the histograms of the simula-
tion outputs are quite far from the target distribution after 10,000 iterations,
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and this indicates that a much larger number of iterations must be used.
A comparison with Fig. 4.3, which corresponds to σ = 1, clearly makes this
point but also illustrates the fact that the large variance still induces large
autocorrelations.

Fig. 4.2. Simulation of a N (0, 1) target with (left) a N (x, 10−4) and (right)
a N (x, 103) random walk proposal. Top: Sequence of 10,000 iterations; middle:
histogram of the last 2,000 iterations compared with the target density; bottom:
empirical autocorrelations using R function plot.acf

Fig. 4.3. Same legend as Fig. 4.2 for a N (x, 1) random walk proposal
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Several MCMC algorithms can be mixed together within a single algorithm
using either a circular or a random design. While this construction is often
suboptimal (in that the inefficient algorithms in the mixture are still used on
a regular basis), it almost always brings an improvement compared with its
individual components. A special case where a mixed scenario is used is the
Metropolis-within-Gibbs algorithm: When building a Gibbs sampler, it may
happen that it is difficult or impossible to simulate from one or several of
the conditional distributions. In that case, a single Metropolis step associated
with this conditional distribution (as its target) can be used instead.5

4.3 The Probit Model

We now engage in a full discussion of the Bayesian processing of the probit
model introduced in Sect. 4.1, taking special care to distinguish between the
various types of prior modeling.

4.3.1 Flat Prior

If no prior information is available, we can resort (as usual!) to a default flat
prior on β, π(β) ∝ 1, and then obtain the posterior distribution

π(β|y) ∝
n∏

i=1

Φ(xiTβ)yi
[
1− Φ(xiTβ)

]1−yi
,

which is nonstandard and must be simulated using, e.g., MCMC techniques.
First, the log-likelihood function is computable, as shown by the following R
code6:

probitll=function(beta,y,X){

# probit likelihood

if (is.matrix(beta)==F) beta=as.matrix(t(beta))

n=dim(beta)[1]

pll=rep(0,n)

for (i in 1:n){

lF1=pnorm(X%*%beta[i,],log=T)

lF2=pnorm(-X%*%beta[i,],log=T)

5We stress that we do not resort to an MH algorithm for the purpose of simulat-
ing exactly from the corresponding conditional since this would require an infinite
number of iterations but rather that we use a single iteration of the MH algorithm
as a substitute for the simulation from the conditional since the resulting MCMC
algorithm is still associated with the same stationary distribution.

6The use of the is.matrix test ensures that the function can be computed at one
point as well as on multiple points and thus allows for calls from plot and other
graphical functions.
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pll[i]=sum(y*lF1+(1-y)*lF2)

}

pll

}

A variety of Metropolis–Hastings algorithms have been proposed for obtain-
ing samples from this posterior distribution. Here we consider a sampler that
appears to work well when the number of predictors is reasonably small. This
Metropolis–Hastings sampler is a random walk scheme that uses the maxi-
mum likelihood estimate β̂ as a starting value and the asymptotic (Fisher)
covariance matrix Σ̂ of the maximum likelihood estimate as the covariance
matrix for the proposal7 density, β̃ ∼ Nk(β

(t−1), τ2Σ̂).

Algorithm 4.7 Probit Metropolis–Hastings Sampler

Initialization: Compute the MLE β̂ and the covariance matrix Σ̂ corre-
sponding to the asymptotic covariance of β̂, and set β(0) = β̂.
Iteration t ≥ 1:
1. Generate β̃ ∼ Nk(β

(t−1), τ2Σ̂).
2. Compute

ρ(β(t−1), β̃) = min
(
1, π(β̃|y)

/
π(β(t−1)|y)

)
.

3. With probability ρ(β(t−1), β̃), take β(t) = β̃;

otherwise take β(t) = β(t−1).

The R function glm is obviously quite helpful in setting the initialization
step of Algorithm 4.7. The step used in the R code to scale the algorithm is
based on

> mod=summary(glm(y~X,family=binomial(link="probit")))

with mod$coeff[,1] corresponding to β̂ and mod$cov.unscaled to Σ̂. The
following code is then reproducing the above algorithm in R::

hmflatprobit=function(niter,y,X,scale){

p=dim(X)[2]

mod=summary(glm(y~-1+X,family=binomial(link="probit")))

beta=matrix(0,niter,p)

beta[1,]=as.vector(mod$coeff[,1])

Sigma2=as.matrix(mod$cov.unscaled)

7A choice of parameters that depend on the data for the Metropolis–Hastings
proposal is completely valid, both from an MCMC point of view (meaning that
this is not a self-tuning algorithm) and from a Bayesian point of view (since the
parameters of the proposal are not those of the prior).
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for (i in 2:niter){

tildebeta=rmnorm(1,beta[i-1,],scale*Sigma2)

llr=probitll(tildebeta,y,X)-probitll(beta[i-1,],y,X)

if (runif(1)<=exp(llr)) beta[i,]=tildebeta

else beta[i,]=beta[i-1,]

}

beta

}

It takes advantage of the multivariate normal generator rmnorm, part of the
package mnormt that caters to the multivariate normal distribution.

For bank, using a probit modeling with no intercept over the four mea-
surements, we tested three different scales, namely τ = 1, 0.1, 10, by running
Algorithm 4.7 over 10,000 iterations. Looking both at the raw sequences and
at the autocorrelation graphs, it appears that the best mixing behavior is
associated with τ = 1. Figure 4.4 illustrates the output of the simulation run
in that case.8 Using a burn-in range of 1,000 iterations, the averages of the
parameters over the last 9,000 iterations are equal to −1.2193, 0.9540, 0.9795,
and 1.1481, respectively. A plug-in estimate of the predictive probability of a
counterfeit banknote is therefore

p̂i = Φ (−1.2193xi1 + 0.9540xi2 + 0.9795xi3 + 1.1481xi4) .

For instance, according to this equation, a banknote of length 214.9mm, left-
edge width 130.1mm, right-edge width 129.9mm, and bottom margin width
9.5mm is counterfeited with probability

Φ (−1.1293× 214.9 + . . .+ 1.1481× 9.5) ≈ 0.5917.

While the plug-in representation above gives an immediate evaluation of
the predictive probability, a better approximation to this probability function
is provided by the average over the iterations of the current predictive proba-

bilities, Φ
(
β
(t)
1 xi1 + β

(t)
2 xi2 + β

(t)
3 xi3 + β

(t)
4 xi4

)
. It is easily derived from the

output of the hmflatprobit function.

4.3.2 Noninformative G-Priors

Following the principles discussed in earlier chapters (see, e.g., Chap. 3), a flat
prior on β is not appropriate for comparison purposes since we cannot validate
the corresponding Bayes factors. In a variable selection setup, we thus need
to replace the flat prior with, e.g., a hierarchical prior,

8 We do not include the graphs for the other values of τ , but the curious reader
can check that there is indeed a clear difference with the case τ = 1.
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Fig. 4.4. Dataset bank: Estimation of the probit coefficients via Algorithm 4.7 and
a flat prior. Left: βi’s (i = 1, . . . , 4); center: histogram over the last 9,000 iterations;
right: autocorrelation over the last 9,000 iterations

β|σ2 ∼ Nk

(
0k, σ

2(XTX)−1
)

and π(σ2) ∝ σ−2 ,

inspired by the normal linear regression model.9 Integrating out σ2 in this
joint prior then leads to

π(β) ∝ |XTX|1/2Γ (k/2)
(
βT(XTX)β

)−k/2

π−k/2 ,

which is clearly improper. Nonetheless, if we consider the same hierarchical
prior for a submodel associated with a subset of the predictor variables in X,
associated with the same variance factor σ2, the marginal distribution of y
then depends on the same unknown multiplicative constant as the full model,
and this constant cancels in the corresponding Bayes factor. This is exactly
the same idea as for Zellner’s noninformative G-prior, see Sect. 3.4.3.

The corresponding posterior distribution of β is

π(β|y) ∝ |XTX|1/2Γ (k/2)
(
βT(XTX)β

)−k/2

π−k/2

9Note that the matrix XTX is not the Fisher information matrix outside of the
normal model. However, the (genuine) Fisher information matrix usually involves a
function of β that prevents its use as a prior (inverse) covariance matrix on β.
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×
n∏

i=1

Φ(xiTβ)yi
[
1− Φ(xiTβ)

]1−yi
. (4.4)

Note that we need to keep the “constant” terms |XTX|1/2, Γ (k/2), and π−k/2,
in this expression because they vary among submodels. To omit these terms
would thus result in a bias in the computation of the Bayes factors.

Contrary to the linear regression setting and as for the flat prior in
Sect. 4.3.1, neither the posterior distribution of β nor the marginal distri-
bution of y can be derived analytically. We can however use exactly the same
Metropolis–Hastings sampler as in Sect. 4.3.1, namely a random walk proposal
based on the estimated Fisher information matrix for its scale and the MLE
β̂ as its starting value.

For bank, the corresponding approximate Bayes estimate of β is given by

E
π [β|y] ≈ (−1.1552, 0.9200, 0.9121, 1.0820),

which slightly differs from the estimate found in Sect. 4.3.1 for the flat prior.
This approximation was obtained by running the MH algorithm with scale
τ2 = 1 over 10,000 iterations and averaging over the last 9,000 iterations.
Figure 4.5 gives an assessment of the convergence of the MH scheme that
does not vary very much compared with the previous figure.

We now address the specific problem of approximating the marginal dis-
tribution of y toward providing approximations to the Bayes factor and thus
achieve the Bayesian equivalent of standard software to identify significant
variables in the probit model. The marginal distribution of y is

f(y) ∝ |XTX|1/2 π−k/2Γ (k/2)

∫ (
βT(XTX)β

)−k/2

×
n∏

i=1

Φ(xiTβ)yi
[
1− Φ(xiTβ)

]1−yi
dβ ,

which cannot be computed in closed form. We thus propose to use as a generic
proxy an importance sampling approximation to this integral based on a nor-
mal approximation Nk(β̂, 2 V̂ ) to π(β|y), where β̂ is the MCMC approxima-
tion of Eπ [β|y] and V̂ is the MCMC approximation10 of V(β|y). The corre-
sponding estimate of the marginal distribution of y is then, up to a constant,

10The factor 2 in the covariance matrix allows some amount of overdispersion,
which is always welcomed in importance sampling settings, if only for variance finite-
ness purposes.
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Fig. 4.5. Dataset bank: Same legend as Fig. 4.4 using an MH algorithm and a
G-prior on β

|XTX|1/2
πk/2M

M∑

m=1

(
β
(m)T(XT

X)β(m)

)−k/2 n∏

i=1

Φ(xiT
β
(m))yi

[
1− Φ(xiT

β
(m))
]1−yi

× |V̂ |1/2(4π)k/2 e(β
(m)−β̂)TV̂ −1(β(m)−β̂)/4 , (4.5)

where the β(m)’s are simulated from the Nk(β̂, 2 V̂ ) importance distribution.
If we consider a linear restriction on β such as H0 : Rβ = r, with r ∈ Rq

and R a q×k matrix of rank q, the submodel is associated with the likelihood

ℓ(β0|y) ∝
n∏

i=1

Φ(xiT
0 β0)yi

[
1− Φ(xiT

0 β0)
]1−yi

,

where β0 is (k − q)-dimensional and X0 and x0 are linear transforms of X
and x of dimensions (n, k − q) and (k − q), respectively. Under the G-prior

β0|σ2 ∼ Nk−q

(
0k−q, σ

2(XT

0X0)
−1
)

and π(σ2) ∝ σ−2 ,

the marginal distribution of y is of the same type as in the unconstrained
case, namely,
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f(y) ∝ |XT

0X0|1/2π−(k−q)/2Γ{(k − q)/2}
∫ {

(β0)T(XT

0X0)β
0
}−(k−q)/2

×
n∏

i=1

Φ(xiT
0 β0)yi

[
1− Φ(xiT

0 β0)
]1−yi

dβ0 .

Once again, if we first run an MCMC sampler for the posterior of β0 for this
submodel, it provides both parameters of a normal importance distribution
and thus allows an approximation of the marginal distribution of y in the
submodel in all ways similar to (4.5).

For bank, if we want to test the null hypothesis H0 : β1 = β2 = 0, we
obtain the Bayes factor Bπ

10 = 8916.0 via the importance sampling approxima-
tion of (4.5). We use the following R commands, which again borrow functions
like dmnorm and rmnorm from the package mnormt,

# full model

mkprob=apply(noinfprobit,2,mean)

vkprob=var(noinfprobit)

simk=rmnorm(100000,mkprob,2*vkprob)

usk=probitnoinflpost(simk,y,X[,2:5])-

dmnorm(simk,mkprob,2*vkprob,log=T)

# null model

noinfprobit0=hmnoinfprobit(10000,y,X[,4:5],1)

mk0=apply(noinfprobit0,2,mean)

vk0=var(noinfprobit0)

simk0=rmnorm(100000,mk0,2*vk0)

usk0=probitnoinflpost(simk0,y,X[,4:5])-

dmnorm(simk0,mk0,2*vk0,log=T)

# Bayes factor

bf0probit=mean(exp(usk))/mean(exp(usk0))

Using Jeffreys’ scale of evidence, since log10(B
π
10) = 3.950, the posterior dis-

tribution is strongly against H0.

More generally, we can produce a Bayesian regression output, programmed
in R, that mimics the standard software output for generalized linear models.
Along with the estimates of the βi’s, given by their posterior expectation, we
include the posterior variances of the βi’s, also derived from the MCMC sam-
ple, and the log Bayes factors log10

(
Bi

10

)
corresponding to the null hypotheses

H0 : βi = 0. As above, the Bayes factors are computed by importance sam-
pling based on 100,000 simulations. The stars are related to Jeffreys’ scale of
evidence.
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For bank, the corresponding outcome is

Estimate Post. var. log10(BF)

X1 -1.1552 0.0631 4.5844 (****)

X2 0.9200 0.3299 -0.2875

X3 0.9121 0.2595 -0.0972

X4 1.0820 0.0287 15.6765 (****)

evidence against H0: (****) decisive, (***) strong,

(**) substantial, (*) poor

Although these Bayes factors cannot be used simultaneously, an informal con-
clusion is that the significant variables for the identification of counterfeited
banknotes are X1 and X4.

4.3.3 About Informative Prior Analyses

In the setting of probit (and other generalized linear) models, it is unrealis-
tic to expect practitioners to come up with precise prior information about
the parameters β. There exists nonetheless an amenable approach to prior
information through what is called the conditional mean family of prior dis-
tributions. The intuition behind this approach is that prior beliefs about the
probabilities pi can be assessed to some extent by the practitioners for par-
ticular values of the explanatory variables x1i, . . . , xki. Once this information
is taken into account, a corresponding prior can be derived for the parameter
vector β. This technique is certainly one of the easiest methods of incorporat-
ing subjective prior information into the processing of the binary regression
problem, especially because it appeals to practitioners for whom the β’s have,
at best, a virtual meaning.

Starting with k explanatory variables, we derive the subjective prior infor-
mation from k different values11 of the covariate vector, denoted by x̃1, . . . , x̃k.
For each of these values, the practitioner is asked to specify two things:

1. a prior guess gi at the probability of success pi associated with xi; and
2. an assessment of her or his certainty about that guess translated as a num-

berKi of equivalent “prior observations.”
12 This question can be expressed

as “On how many imaginary observations did you build this guess?”

Both quantities can be turned into a formal prior density on β by imposing
a beta prior distribution on pi with parameters Kigi and Ki(1 − gi) since
the mean of a Be(a, b) distribution is a/(a + b). If we make the additional

11The theoretical motivation for setting the number of covariate vectors equal to
the dimension of β will be made clear below.

12This technique is called the device of imaginary observations and was proposed
by the Italian statistician Bruno de Finetti for prior elicitation.
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assumption that the k probabilities p1, . . . , pk are a priori independent (which
clearly does not hold since they all depend on the same β!), their joint den-
sity is

π(p1, . . . , pk) ∝
k∏

i=1

pKigi−1
i (1− pi)

Ki(1−gi)−1 . (4.6)

Now, if we relate the probabilities pi to the parameter β, conditional on the
covariate vectors x̃1, . . . , x̃k, by pi = Φ(x̃iTβ), we conclude that the corre-
sponding distribution on β is

π(β) ∝
k∏

i=1

Φ(x̃iTβ)Kigi−1
[
1− Φ(x̃iTβ)

]Ki(1−gi)−1
ϕ(x̃iTβ) .

This change of variable explains why we needed exactly k different covariate
vectors in the prior assessment.

This intuitive approach to prior modeling is also interesting from a com-
putational point of view since the corresponding posterior distribution

π(β|y) ∝
n∏

i=1

Φ(xiTβ)yi
[
1− Φ(xiTβ)

]1−yi

×
k∏

j=1

Φ(x̃jTβ)Kjgj−1
[
1− ϕ(x̃jTβ)

]Kj(1−gj)−1
Φ(x̃jTβ)

is of almost exactly the same type as the posterior distributions in both non-
informative modelings above. The main difference stands in the product of
the Jacobian terms ϕ(x̃jTβ) (1 ≤ j ≤ k), but

k∏

j=1

ϕ(x̃jTβ) ∝ exp

⎧
⎨
⎩−

k∑

j=1

(x̃jTβ)2
/
2

⎫
⎬
⎭ = exp

⎧
⎨
⎩−βT

⎡
⎣

k∑

j=1

x̃j x̃jT

⎤
⎦β
/
2

⎫
⎬
⎭

means that, if we forget about the −1’s in the exponents, this posterior
distribution corresponds to a regular posterior distribution for the probit
model when adding to the observations (y1,x

1), . . . , (yn,x
n) the pseudo-

observations13 (g1, x̃
1), . . . , (g1, x̃

1), . . . , (gk, x̃
k), . . . , (gk, x̃

k), where each pair
(gi, x̃

i) is repeated Ki times and when using the G-prior

β ∼ Nk

⎛
⎜⎝0k,

⎡
⎣

k∑

j=1

x̃j x̃jT

⎤
⎦
−1
⎞
⎟⎠ .

Therefore, Algorithm 4.7 need not be adapted to this case.

13Note that the fact that the gj ’s do not take their values in {0, 1} but rather in
(0, 1) does not create any difficulty in the implementation of Algorithm 4.7.
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4.4 The Logit Model

We now reproduce some of the developments of the previous section in the case
of the logit model, as defined in Sect. 4.1.2, not because there exist notable
differences with either the processing or the conclusions of the probit model
but rather because there is hardly any difference! For instance, Algorithm 4.7
can also be used for this model, while based on the same proposal, by simply
modifying the definition of π(β|y), since the likelihood is now

ℓ(β|y) = exp

{
n∑

i=1

yi x
iTβ

}/ n∏

i=1

[
1 + exp(xiTβ)

]
. (4.7)

The R function that computes the log-likelihood of the logit model is

logitll=function(beta,y,X){

if (is.matrix(beta)==F) beta=as.matrix(t(beta))

n=dim(beta)[1]

pll=rep(0,n)

for (i in 1:n){

lF1=plogis(X%*%beta[i,],log=T)

lF2=plogis(-X%*%beta[i,],log=T)

pll[i]=sum(y*lF1+(1-y)*lF2)

}

pll

}

That both models can be processed in a very similar manner means, for in-
stance, that they can be easily compared when one is uncertain about which
link function to adopt. The Bayes factor used in the comparison of the probit
and logit models is directly derived from the importance sampling experi-
ments described for the probit model. Note also that, while the values of
the parameter β differ between the two models, a subjective prior modeling
as in Sect. 4.3.3 can be conducted simultaneously for both models, the only
difference occurring for the change of variables from (p1, . . . , pk) to β.

If we use a flat prior on β, the posterior distribution proportional to (4.7)
can be inserted directly in Algorithm 4.7 to produce a sample approximately
distributed from this posterior (assuming it exists, which means observing a
sufficiently large and diverse sample). The corresponding R code is

hmflatlogit=function(niter,y,X,scale){

p=dim(X)[2]

mod=summary(glm(y~-1+X,family=binomial(link="logit")))

beta=matrix(0,niter,p)

beta[1,]=as.vector(mod$coeff[,1])

Sigma2=as.matrix(mod$cov.unscaled)

for (i in 2:niter){

tildebeta=rmvn(1,beta[i-1,],scale*Sigma2)
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Fig. 4.6. Dataset bank: Estimation of the logit coefficients via Algorithm 4.7 under
a flat prior. Left: βi’s (i = 1, . . . , 4); center: histogram over the last 9,000 iterations;
right: autocorrelation over the last 9,000 iterations

llr=logitll(tildebeta,y,X)-logitll(beta[i-1,],y,X)

if (runif(1)<=exp(llr)) beta[i,]=tildebeta

else beta[i,]=beta[i-1,]

}

beta

}

For bank, Fig. 4.6 summarizes the results of running Algorithm 4.7 with
the scale factor equal to τ = 1: There is no clear difference between these
graphs and those of earlier figures, except for a slight increase in the skew-
ness of the histograms of the βi’s. (Obviously, this does not necessarily
reflect a different convergence behavior but possibly a different posterior be-
havior since we are not dealing with the same posterior distribution.) The MH
approximation—based on the last 9,000 iterations—of the Bayes estimate of
β is equal to (−2.5888, 1.9967, 2.1260, 2.1879). We can note the numerical dif-
ference between these values and those produced by the probit model. The
sign and the relative magnitudes of the components are, however, very simi-
lar. For comparison purposes, consider the plug-in estimate of the predictive
probability of a counterfeit banknote,



126 4 Generalized Linear Models

p̂i =
exp (−2.5888xi1 + 1.9967xi2 + 2.1260xi3 + 2.1879xi4)

1 + exp (−2.5888xi1 + 1.9967xi2 + 2.1260xi3 + 2.1879xi4)
.

Using this approximation, a banknote of length 214.9mm, of left-edge width
130.1mm, of right-edge width 129.9mm, and of bottom margin width 9.5mm
is counterfeited with probability

exp (−2.5888× 130.1 + . . .+ 2.1879× 9.5)

1 + exp (−2.5888× 130.1 + . . .+ 2.1879× 9.5)
≈ 0.5963 .

This estimate of the probability is therefore very close to the estimate de-
rived from the probit modeling, which was equal to 0.5917 (especially if we
take into account the uncertainties associated both with the MCMC experi-
ments and with the plug-in shortcut).

For model comparison purposes and the computation of Bayes factors,
we can also use the same G-prior as for the probit model and thus multiply

(4.7) by |XTX|1/2Γ (k/2)
(
βT(XTX)β

)−k/2

π−k/2. The MH implementation

obviously remains the same.

For bank, Fig. 4.7 once more summarizes the output of the MH scheme
over 10,000 iterations. Since we observe the same skewness in the histograms
as in Fig. 4.6, this feature is most certainly due to the corresponding posterior
distribution rather than to a deficiency in the convergence of the algorithm.)

We can repeat the test of the null hypothesis H0 : β1 = β2 = 0 already
done for the probit model and then obtain an approximate Bayes factor of
Bπ

10 = 16972.3, with the same conclusion as earlier (although with twice as
large an absolute value. We can also take advantage of the output software
programmed for the probit model to produce the following summary:

Estimate Post. var. log10(BF)

X1 -2.3970 0.3286 4.8084 (****)

X2 1.6978 1.2220 -0.2453

X3 2.1197 1.0094 -0.1529

X4 2.0230 0.1132 15.9530 (****)

evidence against H0: (****) decisive, (***) strong,

(**) substantial, (*) poor

Therefore, the most important covariates are again X1 and X4.
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Fig. 4.7. Dataset bank: Same legend as Fig. 4.6 using an MH algorithm and a
G-prior on β

4.5 Log-Linear Models

We conclude this chapter with an application of generalized linear modeling
to the case of factors, already mentioned in Sect. 3.1. A standard approach
to the analysis of associations (or dependencies) between categorical variables
(that is, variables that take a finite number of values) is to use log-linear
models. These models are special cases of generalized linear models connected
to the Poisson distribution, and their name stems from the fact that they have
traditionally been based on the logarithmic link function.

4.5.1 Contingency Tables

In such models, a sufficient statistic is the contingency table, which is a
multiple-entry table made up of the cross-classified counts for the different
categorical variables. There is much literature on contingency tables, including
for instance Whittaker (1990) and Agresti (1996), because the corresponding
models are quite handy both in the social sciences and in survey processing,
where the observables are always reduced to a finite number of values.
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The airquality dataset was obtained from the New York State
Department of Conservation (ozone data) and from the American National
Weather Service (meteorological data) and is part of the datasets contained
in R (Chambers et al., 1983) and available as

> air=data(airquality)

This dataset involves two repeated measurements over 111 consecutive days
of 1973, namely the mean ozone u (in parts per billion) from 1pm to 3 pm
at Roosevelt Island, the maximum daily temperature v (in degrees F) at La
Guardia Airport, and, in addition, the month w (coded from 5 for May to 9
for September). If we discretize the measurements u and v into dichotomous
variables (using the empirical median as the cutting point), we obtain the
following three-way contingency table of counts per combination of the three
(discretize) factors:

month 5 6 7 8 9

ozone temp

[1,31] [57,79] 17 4 2 5 18

(79,97] 0 2 3 3 2

(31,168] [57,79] 6 1 0 3 1

(79,97] 1 2 21 12 8

This contingency table thus has 5 × 2 × 2 = 20 entries deduced from the
number of categories of the three factors, among which some are zero because
the corresponding combination of the three factors has not been observed in
the study.

Each term in the table being an integer, it can then in principle be modeled
as a Poisson variable. If we denote the counts by y = (y1, . . . , yn), where
i = 1, . . . , n is an arbitrary way of indexing the cells of the table, we can thus
assume that yi ∼ P(μi). Obviously, the likelihood

ℓ(μ|y) =
n∏

i=1

1

μi!
μyi

i exp(−μi) ,

where μ = (μ1, . . . , μn), shows that the model is saturated, namely that no
structure can be exhibited because there are as many parameters as there
are entries in the table. To exhibit any structure, we need to constrain the
μi’s and do so via a GLM whose covariate matrix X is directly derived from
the contingency table itself. If some entries are structurally equal to zero (as
for instance when crossing “number of pregnancies” with “male indicators”),
these entries should be removed from the model.
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An R function that corresponds to this log-linear model log-likelihood is

loglinll=function(beta,y,X){

if (is.matrix(beta)==FALSE) beta=as.matrix(t(beta))

n=dim(beta)[1]

pll=rep(0,n)

for (i in 1:n){

lF=exp(X%*%beta[i,])

pll[i]=sum(dpois(y,lF,log=T))

}

pll

}

with again the use of is.matrix and as.matrix to allow for matricial calls
to the loglinll function.

When we constrain the mean parameters μi of a log-linear model to satisfy

log(μi) = xiTβ ,

the covariate vector xi is rather peculiar in that it is constituted only of
indicators. The so-called incidence matrix X with rows equal to the xi’s is
thus such that its elements are all zeros or ones. Given a contingency table,
the choice of indicator variables to include in xi can vary, depending on what
is deemed (or found) to be an important relation between some categorical
variables. For instance, suppose that there are three categorical variables, u,
v, and w as in airquality, and that u takes I values, v takes J values, and w
takes K values. If we only include the indicators for the values of the three
categorical variables in X, we have

log(μτ ) =

I∑

b=1

βu
b Ib(uτ ) +

J∑

b=1

βv
b Ib(vτ ) +

K∑

b=1

βw
b Ib(wτ ) ;

that is, (1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K),

log(μl(i,j,k)) = βu
i + βv

j + βw
k

(1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K), where l(i, j, k) corresponds to the index
of the (i, j, k) entry in the table, namely the case when u = i, v = j, and
w = k. Similarly, the saturated log-linear model corresponds to the use of one
indicator per entry of the table; that is 1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K),

log(μl(i,j,k)) = βuvw
ijk .

For comparative reasons that will very soon become apparent, and by
analogy with analysis of variance (ANOVA) conventions, we can also over-
parameterize this representation as

log(μl(i,j,k)) = λ+ λu
i + λv

j + λw
k + λuv

ij + λuw
ik + λvw

jk + λuvw
ijk , (4.8)
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where λ appears as the overall or reference average effect, λu
i appears as

the marginal discrepancy (against the reference effect λ) when u = i, λuv
ij

as the interaction discrepancy (against the added effects λ + λu
i + λv

j ) when
(u, v) = (i, j), etc.

Using the representation (4.8) is quite convenient because it allows a
straightforward parameterization of the nonsaturated models, which then ap-
pear as submodels of (4.8) where some groups of parameters are null. For
example,

1. if both categorical variables v and w are irrelevant, then

log(μl(i,j,k)) = λ+ λu
i ;

2. if all three categorical variables are mutually independent, then

log(μl(i,j,k)) = λ+ λu
i + λv

j + λw
k ;

3. if u and v are associated but are both independent of w, then

log(μl(i,j,k)) = λ+ λu
i + λv

j + λw
k + λuv

ij ;

(iv) if u and v are conditionally independent given w, then

log(μl(i,j,k)) = λ+ λu
i + λv

j + λw
k + λuw

ik + λvw
jk ; and

(v) if there is no three-factor interaction, then

log(μl(i,j,k)) = λ+ λu
i + λv

j + λw
k + λuv

ij + λuw
ik + λvw

jk ,

which appears as the most complete submodel (or as the global model if
the saturated model is not considered at all).

This representation naturally embeds log-linear modeling within a model
choice perspective in that it calls for a selection of the most parsimonious sub-
model that remains compatible with the observations. This is clearly equiv-
alent to a variable-selection problem of a special kind in the sense that all
indicators related with the same association must remain or vanish at once.
This specific feature means that there are much fewer submodels to consider
than in a regular variable-selection problem.

As stressed above, the representation (4.8) is not identifiable. Although
the following is not strictly necessary from a Bayesian point of view (since
the Bayesian approach can handle nonidentifiable settings and still estimate
properly identifiable quantities), it is customary to impose identifiability con-
straints on the parameters as in the ANOVA model. A common convention
is to set to zero the parameters corresponding to the first category of each
variable, which is equivalent to removing the indicator (or dummy variable)
of the first category for each variable (or group of variables). For instance,
for a 2 × 2 contingency table with two variables u and v, both having two
categories, say 1 and 2, the constraint could be
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λu
1 = λv

1 = λuv
11 = λuv

12 = λuv
21 = 0 .

For notational convenience, we assume below that β is the vector of the pa-
rameters once the identifiability constraint has been applied and that X is the
indicator matrix with the corresponding columns removed.

4.5.2 Inference Under a Flat Prior

Even when using a noninformative flat prior on β, π(β) ∝ 1, the posterior
distribution

π(β|y) ∝
n∏

i=1

{
exp(xiTβ)

}yi
exp{− exp(xiTβ)}

= exp

{
n∑

i=1

yi x
iTβ −

n∑

i=1

exp(xiTβ)

}

= exp

⎧
⎨
⎩

(
n∑

i=1

yi x
i

)T
β −

n∑

i=1

exp(xiTβ)

⎫
⎬
⎭

is nonstandard and must be approximated by an MCMC algorithm. While
the shape of this density differs from the posterior densities in the probit and
logit cases, we can once more implement Algorithm 4.7 based on the normal
Fisher approximation of the likelihood (whose parameters are again derived
using the R glm() function as in

> mod=summary(glm(y~-1+X,family=poisson()))

which provides β̂ as mod$coeff[,1] and Σ̂ as mod$cov.unscaled).

For airquality, we first consider the most general nonsaturated model,
as described in Sect. 4.5.1. Taking into account the identifiability constraints,
there are therefore

1+(2−1)+(2−1)+(5−1)+(2−1)×(2−1)+(2−1)×(5−1)+(2−1)×(5−1) ,

i.e., 16, free parameters in the model (to be compared with the 20 counts
in the contingency table). Given the dimension of the simulated parameter,
it is impossible to provide a complete picture of the convergence properties
of the algorithm, and we represented in Fig. 4.8 the traces and histograms
for the marginal posterior distributions of the parameters βi based on 10,000
iterations using a scale factor equal to τ2 = 0.5. (This value was obtained by
trial and error, producing a smooth trace for all parameters. Larger values of
τ required a larger number of iterations since the acceptance rate was lower,
as the reader can check using the BCoRe package.) Note that some of the
traces represented in Fig. 4.8 show periodic patterns that indicate that more
iterations could be necessary. However, the corresponding histograms remain
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Fig. 4.8. Dataset airquality: Traces (top) and histograms (bottom) of the simulations
from the posterior distributions of the components of β using a flat prior and a
random walk Metropolis–Hastings algorithm with scale factor τ 2 = 0.5 (same order
row-wise as in Table 4.1)
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Table 4.1. Dataset airquality: Bayes estimates of the parameter β using a random
walk MH algorithm with scale factor τ 2 = 0.5

Effect Post. mean Post. var.

λ 2.8041 0.0612
λu
2 –1.0684 0.2176

λv
2 –5.8652 1.7141

λw
2 –1.4401 0.2735

λw
3 –2.7178 0.7915

λw
4 –1.1031 0.2295

λw
5 –0.0036 0.1127

λuv
22 3.3559 0.4490

λuw
22 -1.6242 1.2869

λuw
23 –0.3456 0.8432

λuw
24 –0.2473 0.6658

λuw
25 –1.3335 0.7115

λvw
22 4.5493 2.1997

λvw
23 6.8479 2.5881

λvw
24 4.6557 1.7201

λvw
25 3.9558 1.7128

quite stable over iterations. Both the approximated posterior means and the
posterior variances for the 16 parameters as deduced from the MCMC run are
given in Table 4.1. A few histograms in Fig. 4.8 are centered at 0, signaling a
potential lack of significance for the corresponding βi’s.

4.5.3 Model Choice and Significance of the Parameters

If we try to compare different levels of association (or interaction), or if we
simply want to test the significance of some parameters βi, the flat prior is
once again inappropriate. The G-prior alternative proposed for the probit and
logit models is still available, though, and we can thus replace the posterior
distribution of the previous section with

π(β|y) ∝ |XTX|1/2Γ (k/2)
(
βT(XTX)β

)−k/2

π−k/2

exp

⎧
⎨
⎩

(
n∑

i=1

yi x
i

)T
β −

n∑

i=1

exp(xiTβ)

⎫
⎬
⎭ (4.9)

as an alternative posterior.
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Table 4.2. Dataset airquality: Metropolis–Hastings approximations of the posterior
means under the G-prior

Effect Post. mean Post. var.

λ 2.7202 0.0603
λu
2 –1.1237 0.1981

λv
2 –4.5393 0.9336

λw
2 –1.4245 0.3164

λw
3 –2.5970 0.5596

λw
4 –1.1373 0.2301

λw
5 0.0359 0.1166

λuv
22 2.8902 0.3221

λuw
22 –0.9385 0.8804

λuw
23 0.1942 0.6055

λuw
24 0.0589 0.5345

λuw
25 –1.0534 0.5220

λvw
22 3.2351 1.3664

λvw
23 5.3978 1.3506

λvw
24 3.5831 1.0452

λvw
25 2.8051 1.0061

For airquality and the same model as in the previous analysis, namely the
maximum nonsaturated model with 16 parameters, Algorithm 4.7 can be used
with (4.9) as target and τ2 = 0.5 as the scale in the random walk. The result
of this simulation over 10,000 iterations is presented in Fig. 4.9. The traces of
the components of β show the same slow mixing as in Fig. 4.8, with similar
occurrences of large deviances from the mean value that may indicate the weak
identifiability of some of these parameters. Note also that the histograms of the
posterior marginal distributions are rather close to those associated with the
flat prior, as shown in Fig. 4.8. The MCMC approximations to the posterior
means and the posterior variances are given in Table 4.2 for all 16 parameters,
based on the last 9,000 iterations. While the first parameters are quite close to
those provided by Table 4.1, the estimates of the interaction coefficients vary
much more and are associated with much larger variances. This indicates
that much less information is available within the contingency table about
interactions, as can be expected.

If we now consider the very reason why this alternative to the flat prior
was introduced, we are facing the same difficulty as in the probit case for
the computation of the marginal density of y. And, once again, the same
solution applies: using an importance sampling experiment to approximate
the integral works when the importance function is a multivariate normal
(or t) distribution with mean (approximately) E[β|y] and covariance matrix
(approximately) 2 × V(β|y) using the Metropolis–Hastings approximations
reported in Table 4.2. We can therefore approximate Bayes factors for testing
all possible structures of the log-linear model.
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Fig. 4.9. Dataset airquality: Same legend as Fig. 4.8 for the posterior distribu-
tion (4.9) as target
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For airquality, we illustrate this ability by testing the presence of two-
by-two interactions between the three variables. We thus compare the largest
non-saturated model with each submodel where one interaction is removed.
An ANOVA-like output is

Effect log10(BF)

u:v 6.0983 (****)

u:w -0.5732

v:w 6.0802 (****)

evidence against H0: (****) decisive, (***) strong,

(**) substantial, (*) poor

which means that the interaction between u and w (that is, ozone and month)
is too small to be significant given all the other effects. (Note that it would
be excessive to derive from this lack of significance a conclusion of indepen-
dence between u and w because this interaction is conditional on all other
interactions in the complete nonsaturated model.)

The above was obtained by the following R code: first we simulated an
importance sample towards approximating the full model integrated likelihood

mklog=apply(noinfloglin,2,mean)

vklog=var(noinfloglin)

simk=rmnorm(100000,mklog,2*vklog)

usk=loglinnoinflpost(simk,counts,X)-

dmnorm(simk,mklog,2*vklog,log=T)

then reproduced this computation for the three corresponding submodels,
namely

noinfloglin1=hmnoinfloglin(10^4,counts,X[,-8],0.5)

mk1=apply(noinfloglin1,2,mean)

vk1=var(noinfloglin1)

simk1=rmnorm(100000,mk1,2*vk1)

usk1=loglinnoinflpost(simk1,counts,X[,-8])-

dmnorm(simk1,mk1,2*vk1,log=T)

bf1loglin=mean(exp(usk))/mean(exp(usk1))

and the same pattern with

noinfloglin2=hmnoinfloglin(10^4,counts,cbind(X[,-(9:12)],0.5)

and

noinfloglin3=hmnoinfloglin(10^4,counts,X[,1:12],0.5)
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4.6 Exercises

4.1 Show that, for the logistic regression model, the statistic
∑n

i=1 yi x
i is suf-

ficient when conditioning on the xi’s (1 ≤ i ≤ n), and give the corresponding
family of conjugate priors.

4.2 Show that the logarithmic link is the canonical link function in the case of
the Poisson regression model.

4.3 Suppose y1, . . . , yk are independent Poisson P(μi) random variables. Show

that, conditional on n =
∑k

i=1 yi,

y = (y1, . . . , yk) ∼ Mk(n;α1, . . . , αk) ,

and determine the αi’s.

4.4 For π the density of an inverse normal distribution with parameters θ1 = 3/2
and θ2 = 2,

π(x) ∝ x−3/2 exp(−3/2x− 2/x)Ix>0,

write down and implement an independence MH sampler with a Gamma proposal
with parameters (α, β) = (4/3, 1) and (α, β) = (0.5

√
4/3, 0.5).

4.5 Consider x1, x2, and x3 iid C (θ, 1), and π(θ) ∝ exp(−θ2/100). Show that
the posterior distribution of θ, π(θ|x1, x2, x3), is proportional to

exp(−θ2/100)[(1 + (θ − x1)
2)(1 + (θ − x2)

2)(1 + (θ − x3)
2)]−1

and that it is trimodal when x1 = 0, x2 = 5, and x3 = 9. Using a random walk
based on the Cauchy distribution C (0, σ2), estimate the posterior mean of θ using
different values of σ2. In each case, monitor the convergence.

4.6 Estimate the mean of a G a(4.3, 6.2) random variable using

1. direct sampling from the distribution via the R command
> x=rgamma(n,4.3,scale=6.2)

2. Metropolis–Hastings with a G a(4, 7) proposal distribution;
3. Metropolis–Hastings with a G a(5, 6) proposal distribution.

In each case, monitor the convergence of the cumulated average.

4.7 For a standard normal distribution as target, implement a Hastings–
Metropolis algorithm with a mixture of five random walks with variances
σ = 0.01, 0.1, 1, 10, 100 and equal weights. Compare its output with the output
of Fig. 4.3.

4.8 For the probit model under flat prior, find conditions on the observed pairs
(xi, yi) for the posterior distribution above to be proper.

4.9 For the probit model under non-informative prior, find conditions on
∑

i yi
and
∑

i(1 − yi) for the posterior distribution defined by (4.4) to be proper.
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4.10 Include an intercept in the probit analysis of bank and run the correspond-
ing version of Algorithm 4.7 to discuss whether or not the posterior variance of
the intercept is high.

4.11 Using the latent variable representation of the probit model, introduce
zi|β ∼ N

(
xiTβ, 1

)
(1 ≤ i ≤ n) such that yi = Izi≤0. Deduce that

zi|yi,β ∼
{

N+

(
xiTβ, 1, 0

)
if yi = 1 ,

N−

(
xiTβ, 1, 0

)
if yi = 0 ,

where N+ (μ, 1, 0) and N− (μ, 1, 0) are the normal distributions with mean μ and
variance 1 that are left-truncated and right-truncated at 0, respectively. Check
that those distributions can be simulated using the R commands

> xp=qnorm(runif(1)*pnorm(mu)+pnorm(-mu))+mu

> xm=qnorm(runif(1)*pnorm(-mu))+mu

Under the flat prior π(β) ∝ 1, show that

β|y, z ∼ Nk

(
(XTX)−1XTz, (XTX)−1

)
,

where z = (z1, . . . , zn), and derive the corresponding Gibbs sampler, sometimes
called the Albert–Chib sampler. (Hint: A good starting point is the maximum
likelihood estimate of β.) Compare the application to bank with the output in
Fig. 4.4. (Note: Account for differences in computing time.)

4.12 For the bank dataset and the probit model, compute the Bayes factor
associated with the null hypothesis H0 : β2 = β3 = 0.

4.13 In the case of the logit model—i.e., when pi = exp x̃iTβ
/
{1+ exp x̃iTβ}

(1 ≤ i ≤ k)—derive the prior distribution on β associated with the prior (4.6) on
(p1, . . . , pk).

4.14 Examine whether or not the sufficient conditions for propriety of the pos-
terior distribution found in Exercise 4.9 for the probit model are the same for the
logit model.

4.15 For the bank dataset and the logit model, compute the Bayes factor as-
sociated with the null hypothesis H0 : β2 = β3 = 0 and compare its value with
the value obtained for the probit model in Exercise 4.12.

4.16 Given a contingency table with four categorical variables, determine the
number of submodels to consider.

4.17 In the case of a 2 × 2 contingency table with fixed total count n =
n11+n12+n21+n22, we denote by θ11, θ12, θ21, θ22 the corresponding probabil-
ities. If the prior on those probabilities is a Dirichlet D4(1/2, . . . , 1/2), give the
corresponding marginal distributions of α = θ11+ θ12 and β = θ11+ θ21. Deduce
the associated Bayes factor if H0 is the hypothesis of independence between the
factors and if the priors on the margin probabilities α and β are those derived
above.
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Capture–Recapture Experiments

He still couldn’t be sure that
he hadn’t landed in a trap.

—Ian Rankin, Resurrection Men.—

Roadmap

This chapter deals with a very special case of survey models. Surveys are used
in many settings to evaluate some features of a given population, including its
main characteristic, the size of the population. In the case of capture–recapture
surveys, individuals are observed and identified either once or several times and the
repeated observations can be used to draw inference on the population size and
its dynamic characteristics. Along with the original model, we will also introduce
extensions that can be seen as a first entry into hidden Markov chain models,
detailed further in Chap. 6. In particular, we cover the generic Arnason–Schwarz

model that is customarily used by biologists for open populations.
On the methodological side, we provide an introduction to the accept–reject

method, which is the central simulation technique behind most standard random
generators and relates to the Metropolis–Hastings methodology in many ways.

J.-M. Marin and C.P. Robert, Bayesian Essentials with R, Springer Texts
in Statistics, DOI 10.1007/978-1-4614-8687-9 5,
© Springer Science+Business Media New York 2014
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5.1 Inference in a Finite Population

In this chapter, we consider the problem of estimating the unknown size, N ,
of a population, based on a survey; that is, on a partial observation of this
population. To be able to evaluate a population size without going through
the enumeration of all its members is obviously very appealing, both timewise
and moneywise, especially when sampling those members has a perturbing
effect on them.1

A primary type of survey (which we do not study in this chapter) is based
on knowledge of the structure of the population. For instance, in a political
survey about voting intentions, we build a sample of 1,000 individuals, say,
such that the main sociological groups (farmers, civil servants, senior citizens,
etc.) are represented in proportion in the sample. In that situation, there is no
statistical inference, so to speak, except about the variability of the responses,
which are in the simplest cases binomial variables.

Obviously, such surveys require primary knowledge of the population,
which can be obtained either by a (costly) census, like those that states run
every 5 or 10 years, or by a preliminary exploratory survey that aims at uncov-
ering these hidden structures. This secondary type of survey is the purpose of
this chapter, under the name of capture–recapture (or capture–mark–recapture)
experiments, where a few individuals sampled at random from the population
of interest bring some information about the characteristics of this population
and in particular about its size.

The capture–recapture models were first used in biology and ecology to
estimate the size of animal populations, such as herds of caribous (e.g., for
culling) or of whales (e.g., for the International Whaling Commission to
determine fishing quotas), cod populations, and the number of different species
in a particular area. While our illustrative dataset will be related to a biolog-
ical problem, we stress that these capture–recapture models apply in a much
wider range of domains, such as, for instance,

– sociology and demography, where the estimation of the size of populations
at risk is always delicate (e.g., homeless people, prostitutes, illegal
migrants, drug addicts, etc.);

– official statistics for reducing the cost of a census2 or improving its
efficiency on delicate or rare subcategories (as in the U.S. census under-
count procedure and the new French census);

– finance (e.g., in credit scoring, defaulting companies, etc.) and marketing
(consumer habits, telemarketing, etc.);

1In the most extreme cases, sampling an individual may lead to its destruction,
as for instance in forestry when estimating the volume of trees or in meat production
when estimating the content of fat in meat.

2Even though a census is formally a deterministic process since it aims at the
complete enumeration of a given population, it inevitably involves many random
components at the selection, collection, and processing levels (Särndal et al., 2003).
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– fraud detection (e.g., phone, credit card, etc.) and document authentication
(historical documents, forgery, etc.); and

– software debugging, to determine an evaluation of the number of bugs in
a computer program.

In these different examples, the size N of the whole population is unknown
but samples (with fixed or random sizes) can easily be extracted from the
population. For instance, in a computer program, the total number N of
bugs is unknown but one can record the number n1 of bugs detected in a
given perusal. Similarly, the total number N of homeless people in a city like
Philadelphia at a given time is not known but it is possible to count the
number n1 of homeless persons in a given shelter on a precise night, to record
their ID, and to cross this sample with a sample of n2 persons collected the
night after in order to detect how many persons n12 were present in the shelter
on both nights.

The dataset we consider throughout this chapter is called eurodip and
is related to a population of birds called European dippers (Cinclus cinclus).
These birds are closely dependent on streams, feeding on underwater inverte-
brates, and their nests are always close to water. The capture–recapture data
on the European dipper contained in eurodip covers 7 years (1981–1987 in-
clusive) of observations in a zone of 200 km2 in eastern France. The data
consist of markings and recaptures of breeding adults each year during the
breeding period from early March to early June. Birds were at least 1 year old
when initially banded. In eurodip, each row of seven digits corresponds to a
capture–recapture story for a given dipper, 0 indicating an absence of capture
that year and, in the case of a capture, 1, 2, or 3 representing the zone where
the dipper is captured. For instance, the three lines from eurodip

1 0 0 0 0 0 0

1 3 0 0 0 0 0

0 2 2 2 1 2 2

indicate that the first dipper was only captured the first year in zone 1 and
that the second dipper was captured in years 1981 and 1982 and moved from
zone 1 to zone 3 between those years. The third dipper was captured every
year but 1981 and moved between zones 1 and 2 during the remaining year.

In conclusion, we hope that the introduction above was motivating enough
to convince the reader that population sampling models are deeply relevant
in statistical practice. Besides, these models also provide an interesting appli-
cation of Bayesian modeling and in particular they allow for the inclusion of
often available prior information.
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5.2 Sampling Models

5.2.1 The Binomial Capture Model

We start with the simplest model of all, namely the independent observation
or capture3 of n+ individuals from a population of size N . For instance, a
trap is positioned on a rabbit track for five hours and n+ rabbits are found in
the trap. While the population size N ∈ N is the parameter of interest, there
exists a nuisance parameter, namely the probability p ∈ [0, 1] with which each
individual is captured. (This model assumes that catching the ith individual
is independent of catching the jth individual.) For this model,

n+ ∼ B(N, p)

and the corresponding likelihood is

ℓ(N, p|n+) =

(
N

n+

)
pn

+

(1− p)N−n+

IN≥n+ .

Obviously, with a single observation n+, we cannot say much on (N, p), but
the posterior distribution is still well-defined. For instance, if we use the vague
prior

π(N, p) ∝ N−1
IN(N)I[0,1](p) ,

the posterior distribution of N is

π(N |n+) ∝ N !

(N − n+)!n+!
N−1

IN≥n+IN∗(N)

∫ 1

0

pn
+

(1 − p)N−n+

dp

∝ (N − 1)!

(N − n+)!

(N − n+)!

(N + 1)!
IN≥n+∨1

=
1

N(N + 1)
IN≥n+∨1 , (5.1)

where n+ ∨ 1 = max(n+, 1). Note that this posterior distribution is defined
even when n+ = 0. If we use the (more informative) uniform prior

π(N, p) ∝ I{1,...,S}(N)I[0,1](p) ,

the posterior distribution of N is

π(N |n+) ∝ 1

N + 1
I{n+∨1,...,S}(N) .

3We use the original terminology of capture and individuals, even though the
sampling mechanism may be far from genuine capture, as in whale sightseeing or
software bug detection.
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For illustrative purposes, consider the case of year 1981 in eurodip (which
is the first column in the file):

> data(eurodip)

> year81=eurodip[,1]

> nplus=sum(year81>0)

[1] 22

where n+ = 22 dippers were thus captured. By using the binomial capture
model and the vague prior π(N, p) ∝ N−1, the number of dippers N can be
estimated by the posterior median. (Note that the mean of (5.1) does not
exist, no matter what n+ is.)

> N=max(nplus,1)

> rangd=N:(10^4*N)

> post=1/(rangd*(rangd+1))

> 1/sum(post)

[1] 22.0022

> post=post/sum(post)

> min(rangd[cumsum(post)>.5])

[1] 43

For this year 1981, the estimate of N is therefore 43 dippers. (See Exercise 5.1
for theoretical justifications as to why the sum of the probabilities is equal to
n+ and why the median is exactly 2n+−1.) If we use the ecological information
that there cannot be more than 400 dippers in this region, we can take the
prior π(N, p) ∝ I{1,...,400}(N)I[0,1](p) and estimate the number of dippers N
by its posterior expectation:

> pbino=function(nplus){

+ prob=c(rep(0,max(nplus,1)-1),1/(max(nplus,1):400+1))

+ prob/sum(prob)

+ }

> sum((1:400)*pbino(nplus))

[1] 130.5237

5.2.2 The Two-Stage Capture–Recapture Model

A logical extension to the capture model above is the capture–mark–recapture
model, which considers two capture periods plus a marking stage, as follows:

1. n1 individuals from a population of sizeN are “captured”, that is, sampled
without replacement.

2. Those individuals are “marked”, that is, identified by a numbered tag
(for birds and fishes), a collar (for mammals), or another device (like the
Social Security number for homeless people or a picture for whales), and
they are then released into the population.
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3. A second and similar sampling (once again without replacement) is
conducted, with n2 individuals captured.

4. m2 individuals out of the n2’s bear the identification mark and are thus
characterized as having been captured in both experiments.

If we assume a closed population (that is, a fixed population size N
throughout the capture experiment), a constant capture probability p for all
individuals, and complete independence between individuals and between cap-
tures, we end up with a product of binomial models,

n1 ∼ B(N, p) , m2|n1 ∼ B(n1, p) ,

and

n2 −m2|n1,m2 ∼ B(N − n1, p) .

If

nc = n1 + n2 and n+ = n1 + (n2 −m2)

denote the total number of captures over both periods and the total number
of captured individuals, respectively, the corresponding likelihood ℓ(N, p|n1,
n2,m2) is

(
N − n1

n2 −m2

)
pn2−m2(1− p)N−n1−n2+m2I{0,...,N−n1}(n2 −m2)

×
(
n1

m2

)
pm2(1− p)n1−m2

(
N

n1

)
pn1(1− p)N−n1I{0,...,N}(n1)

∝ N !

(N − n1 − n2 +m2)!
pn1+n2(1 − p)2N−n1−n2IN≥n+

∝
(
N

n+

)
pn

c

(1− p)2N−nc

IN≥n+ ,

which shows that (nc, n+) is a sufficient statistic. If we choose the prior
π(N, p) = π(N)π(p) such that π(p) is a U ([0, 1]) density, the conditional
posterior distribution on p is such that

π(p|N,n1, n2,m2) = π(p|N,nc) ∝ pn
c

(1− p)2N−nc

;

that is,

p|N,nc ∼ Be(nc + 1, 2N − nc + 1).

Unfortunately, the marginal posterior distribution of N is more complicated.
For instance, if π(N) = IN∗(N), it satisfies

π(N |n1, n2,m2) = π(N |nc, n+) ∝
(
N

n+

)
B(nc + 1, 2N − nc + 1)IN≥n+∨1 ,
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where B(a, b) denotes the beta function This distribution is called a
beta-Pascal distribution, but it is not very tractable. The same difficulty
occurs if π(N) = N−1IN∗(N).

The intractability in the posterior distribution π(N |n1, n2,m2) is due to
the infinite summation resulting from the unbounded support of N . A feasible
approximation is to replace the missing normalizing factor by a finite sum
with a large enough bound on N , the bound being determined by a lack
of perceivable impact on the sum. But the approximation errors due to the
computations of terms such as

(
N
n+

)
or B(nc + 1, 2N − nc + 1) can become a

serious problem when n+ is large. However,

> prob=lchoose((471570:10^7),471570)+lgamma(2*(471570:10^7)-

+ 582681+1)-lgamma(2*(471570:10^7)+2)

> range(prob)

[1] -7886469 -7659979

shows that relatively large populations are manageable.
If we have information about an upper bound S on N and use the corre-

sponding uniform prior,

π(N) ∝ I{1,...,S}(N) ,

the posterior distribution of N is thus proportional to

π(N |n+) ∝
(
N

n+

)
Γ (2N − nc + 1)

Γ (2N + 2)
I{n+∨1,...,S}(N) ,

and, in this case, it is possible to calculate the posterior expectation of N with
no approximation error.

For the first 2 years of the eurodip experiment, which correspond to the
first two columns and the first 70 rows of the dataset, n1 = 22, n2 = 60, and
m2 = 11. Hence, nc = 82 and n+ = 71. Therefore, within the frame of the
two-stage capture–recapture model4 and the uniform prior U ({1, . . . , 400})×
U ([0, 1]) on (N, p), the posterior expectation of N is derived as follows:

> n1=sum(eurodip[,1]>0)

> n2=sum(eurodip[,2]>0)

> m2=sum((eurodip[,1]>0) & (eurodip[,2]>0))

> nc=n1+n2

> nplus=nc-m2

> pcapture=function(T,nplus,nc){

+ #T is the number of capture episodes

+ lprob=lchoose(max(nplus,1):400,nplus)+

lgamma(T*max(nplus,1):400-nc+1)-

+ lgamma(T*max(nplus,1):400+2)

+ prob=c(rep(0,max(nplus,1)-1),exp(lprob-max(lprob)))

4This analysis is based on the assumption that all birds captured in the second
year were already present in the population during the first year.
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+ prob/sum(prob)

+ }

> sum((1:400)*pcapture(2,nplus,nc))

[1] 165.2637

A simpler model used in capture–recapture settings is the hypergeometric
model, also called the Darroch model. This model can be seen as a conditional
version of the two-stage model when conditioning on both sample sizes n1 and
n2 since (see Exercise 5.3)

m2|n1, n2 ∼ H (N,n2, n1/N) , (5.2)

the hypergeometric distribution If we choose the uniform prior U ({1, . . . , 400})
on N , the posterior distribution of N is thus

π(N |m2) ∝
(
N − n1

n2 −m2

)/(
N

n2

)
I{n+∨1,...,400}(N) ,

and posterior expectations can be computed numerically by simple summa-
tions.

For the first 2 years of the eurodip dataset and S = 400, the posterior
distribution of N for the Darroch model is given by

π(N |m2) ∝ (n− n1)!(N − n2)!
/
{(n− n1 − n2 +m2)!N !} I{71,...,400}(N) ,

the normalization factor being the inverse of

400∑

k=71

(k − n1)!(k − n2)!
/
{(k − n1 − n2 +m2)!k!} .

We thus have a closed-form posterior distribution and the posterior expecta-
tion of N is given by

pdarroch=function(n1,n2,m2){

prob=c(rep(0,max(n1+n2-m2,1)-1),

choose(n1,m2)*choose(max((n1+n2-m2),1):400-n1,n2-m2)/

choose(max((n1+n2-m2),1):400,n2))

prob/sum(prob)

}

> sum((1:400)*pdarroch(n1,n2,m2))

[1] 137.5962
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Table~5.1 shows the evolution of this

posterior expectation for different values of m_2,

obtained by

> for (i in 6:16) print(round(sum(pdarroch(n1,n2,i)*1:400)))

[1] 277

[1] 252

[1] 224

[1] 197

[1] 172

[1] 152

[1] 135

[1] 122

[1] 111

[1] 101

[1] 94

The number of recaptures is thus highly influential on the estimate of N . In
parallel, Table 5.2 shows the evolution of the posterior expectation for different
values of S (taken equal to 400 in the above). When S is large enough, say
larger than S = 250, the estimate of N is quite stable, as expected.

Table 5.1. Dataset eurodip: Rounded posterior expectation of the dipper popu-
lation size, N , under a uniform prior U ({1, . . . , 400})

m2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E
π[N |m2] 355 349 340 329 316 299 277 252 224 197 172 152 135 122 110 101

Table 5.2. Dataset eurodip: Rounded posterior expectation of the dipper popu-
lation size, N , under a uniform prior U ({1, . . . , S}), for m2 = 11

S 100 150 200 250 300 350 400 450 500

E
π[N |m2] 95 125 141 148 151 151 152 152 152

Leaving the Darroch model and getting back to the two-stage capture
model with probability p of capture, the posterior distribution of (N, p) asso-
ciated with the noninformative prior π(N, p) = 1/N is proportional to

(N − 1)!

(N − n+)!
pn

c

(1− p)2N−nc

.

Thus, if n+ > 0, both conditional posterior distributions are standard
distributions since
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p|nc, N ∼ Be(nc + 1, 2N − nc + 1)

N − n+|n+, p ∼ N eg(n+, 1− (1− p)2) ,

the latter being a negative binomial distribution. Indeed, as a function of N ,

(N − 1)!

(N − n+)!
(1− p)2N−nc ∝

(
N − 1

N − n+

){
(1 − p)2

}N−n+ {
1− (1 − p)2

}n+

.

Therefore, while the marginal posterior in N is difficult to manage, the joint
distribution of (N, p) can be approximated by a Gibbs sampler, as follows:

Algorithm 5.8 Two-stage Capture–Recapture Gibbs Sampler

Initialization: Generate p(0) ∼ U ([0, 1]).
Iteration i (i ≥ 1):
1. Generate N (i) − n+ ∼ N eg(n+, 1− (1− p(i−1))2).
2. Generate p(i) ∼ Be(nc + 1, 2N (i) − nc + 1).

5.2.3 The T -Stage Capture–Recapture Model

A further extension to the two-stage capture–recapture model is to consider
instead a series of T consecutive captures. In that case, if we denote by nt the
number of individuals captured at period t (1 ≤ t ≤ T ) and by mt the number
of recaptured individuals (with the convention that m1 = 0), under the same
assumptions as in the two-stage model, then n1 ∼ B(N, p) and, conditionally
on the j − 1 previous captures and recaptures (2 ≤ j ≤ T ),

mj ∼ B

(
j−1∑

t=1

(nt −mt), p

)
and nj −mj ∼ B

(
N −

j−1∑

t=1

(nt −mt), p

)
.

The likelihood ℓ(N, p|n1, n2,m2 . . . , nT ,mT ) is thus

(
N

n1

)
pn1(1− p)N−n1

T∏

j=2

[(
N −∑j−1

t=1 (nt −mt)

nj −mj

)
pnj−mj+mj

× (1− p)N−
∑j−1

t=1 (nt−mt)

(∑j−1
t=1 (nt −mt)

mj

)
(1− p)

∑j−1
t=1 (nt−mt)−mj

]

∝ N !

(N − n+)!
pn

c

(1− p)TN−nc

IN≥n+

if we denote the sufficient statistics as

n+ =

T∑

t=1

(nt −mt) and nc =

T∑

t=1

nt ,



5.2 Sampling Models 149

the total numbers of captured individuals and captures over the T periods,
respectively.

For a noninformative prior such as π(N, p) = 1/N , the joint posterior
satisfies

π(N, p|n+, nc) ∝ (N − 1)!

(N − n+)!
pn

c

(1− p)TN−nc

IN≥n+∨1 .

Therefore, the conditional posterior distribution of p is

p|N,n+, nc ∼ Be(nc + 1, TN − nc + 1)

and the marginal posterior distribution of N

π(N |n+, nc) ∝ (N − 1)!

(N − n+)!

(TN − nc)!

(TN + 1)!
IN≥n+∨1 ,

is computable. Note that the normalization coefficient can also be approxi-
mated by summation with an arbitrary precision unless N and n+ are very
large.

For the uniform prior U ({1, . . . , S}) onN and U ([0, 1]) on p, the posterior
distribution of N is then proportional to

π(N |n+) ∝
(
N

n+

)
(TN − nc)!

(TN + 1)!
I{n+∨1,...,S}(N).

For the whole set of observations in eurodip, we have T = 7, n+ =
294, and nc = 519. Under the uniform prior with S = 400, the posterior
expectation of N is given by

> sum((1:400)*pcapture(7,294,519))

[1] 372.7384

While this value seems dangerously close to the upper bound of 400 on N
and thus leads us to suspect a strong influence of the upper bound S, the
computation of the posterior expectation for S = 2500

> S=2500;T=7;nplus=294;nc=519

> lprob=lchoose(max(nplus,1):S,nplus)+

+ lgamma(T*max(nplus,1):S-nc+1)-lgamma(T*max(nplus,1):S+2)

> prob=c(rep(0,max(nplus,1)-1),exp(lprob-max(lprob)))

> sum((1:S)*prob)/sum(prob)

[1] 373.9939

leads to 373.99, which shows the limited impact of this hyperparameter S.

Using even a slightly more advanced sampling model may lead to genuine
computational difficulties. For instance, consider a heterogeneous capture–re-
capture model where the individuals are captured at time 1 ≤ t ≤ T with
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probability pt and where both the size N of the population and the probabil-
ities pt are unknown. The corresponding likelihood is

ℓ(N, p1, . . . , pT |n1, n2,m2 . . . , nT ,mT ) ∝
N !

(N − n+)!

T∏

t=1

pnt

t (1− pt)
N−nt .

If the associated prior on (N, p1, . . . , pT ) is such that

N ∼ P(λ)

and (1 ≤ t ≤ T ),

αt = log

(
pt

1− pt

)
∼ N (μt, σ

2),

where both σ2 and the μt’s are known,5 the posterior distribution satisfies

π(α1, . . . , αT , N |, n1, . . . , nT ) ∝ N !

(N − n+)!

λN

N !

T∏

t=1

(1 + eαt)−N (5.3)

×
T∏

t=1

exp

{
αtnt −

1

2σ2
(αt − μt)

2

}
.

It is thus much less manageable from a computational point of view, especially
when there are many capture episodes. A corresponding Gibbs sampler could
simulate easily from the conditional posterior distribution on N since

N − n+|α, n+ ∼ P

(
λ

T∏

t=1

(1 + eαt)

)
,

but the conditionals on the αt’s (1 ≤ t ≤ T ) are less conventional,

αt|N,n ∼ πt(αt|N,n) ∝ (1 + eαt)−Neαtnt−(αt−µt)
2/2σ2

,

and they require either an accept–reject algorithm (Sect. 5.4) or a Metropo-
lis–Hastings algorithm in order to be simulated.

For the prior

π(N, p) ∝ λN

N !
IN(N)I[0,1](p) ,

the conditional posteriors are then

p|N,nc ∼ Be(nc + 1, TN − nc + 1) and N − n+|p, n+ ∼ P(λ(1 − p)T )

and a Gibbs sampler similar to the one developed in Algorithm 5.8 can easily
be implemented, for instance via the code

5This assumption can be justified on the basis that each capture probability is
only observed once on the tth round (and so cannot reasonably be associated with
a noninformative prior).
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> lambda=200

> nsimu=10^4

> p=rep(1,nsimu); N=p

> N[1]=2*nplus

> p[1]=rbeta(1,nc+1,T*lambda-nc+1)

> for (i in 2:nsimu){

+ N[i]=nplus+rpois(1,lambda*(1-p[i-1])^T)

+ p[i]=rbeta(1,nc+1,T*N[i]-nc+1)

+ }

For eurodip, we used this Gibbs sampler and obtained the results
illustrated by Fig. 5.1. When the chain is initialized at the (unlikely) value
N (0) = λ = 200 (which is the prior expectation of N), the stabilization of the
chain is quite clear: It only takes a few iterations to converge toward the proper
region that supports the posterior distribution. We can thus visually confirm
the convergence of the algorithm and approximate the Bayes estimators of N
and p by the Monte Carlo averages

> mean(N)

[1] 326.9831

> mean(p)

[1] 0.2271828

The precision of these estimates can be assessed as in a regular Monte Carlo
experiment, but the variance estimate is biased because of the correlation
between the simulations. A simple way to assess this effect is to call R function
acf() for each component θi of the parameter, as

ν = 1 + 2

∞∑

t=1

cor(θ
(1)
i , θ

(t+1)
i )

evaluates the loss of efficiency due to the correlation. The corresponding ef-
fective sample size, given by Tess = T/ν, provides the equivalent size of an iid
sample. For instance,

> 1/(1+2*sum(acf(N)$acf[-1]))

[1] 0.599199

> 1/(1+2*sum(acf(p)$acf[-1]))

[1] 0.6063236

shows that the current Gibbs sampler offers an efficiency of 60% compared
with an iid sample from the posterior distribution.
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Fig. 5.1. Dataset eurodip: Representation of the Gibbs sampling output for the
parameters p (first column) and N (second column)

5.3 Open Populations

Moving towards more realistic settings, we now consider the case of an open
population model, where the population size does not remain fixed over the
experiment but, on the contrary, there is a probability q for each individual
to leave the population at each time (or, more accurately, between any two
capture episodes). Given that the associated likelihood involves unobserved
indicators (namely, indicators of survival; see Exercise 5.14), we study here
a simpler model where only the individuals captured during the first cap-
ture experiment are marked and subsequent recaptures are registered. For
three successive capture experiments, we thus have

n1 ∼ B(N, p) , r1|n1 ∼ B(n1, q) , r2|n1, r1 ∼ B(n1 − r1, q) ,

for the distributions of the first capture population size and of the numbers
of individuals who vanished between the first and second, and the second and
third experiments, respectively, and

c2|n1, r1 ∼ B(n1 − r1, p), c3|n1, r1, r2 ∼ B(n1 − r1 − r2, p) ,
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for the number of recaptured individuals during the second and the third
experiments, respectively. Here, only n1, c2, and c3 are observed. The numbers
of individuals removed at stages 1 and 2, r1 and r2, are not available and must
therefore be simulated, as well as the parameters N , p, and q.6 The likelihood
ℓ(N, p, q, r1, r2|n1, c2, c3) is given by

(
N

n1

)
pn1(1 − p)N−n1

(
n1

r1

)
qr1(1 − q)n1−r1

(
n1 − r1

c2

)
pc2(1− p)n1−r1−c2

×
(
n1 − r1

r2

)
qr2(1 − q)n1−r1−r2

(
n1 − r1 − r2

c3

)
pc3(1 − p)n1−r1−r2−c3

and, if we use the prior π(N, p, q) ∝ N−1I[0,1](p)I[0,1](q), the associated
conditionals are

π(p|N, q,D∗) ∝ pn
+

(1 − p)u+ ,

π(q|N, p,D∗) ∝ qr1+r2(1− q)2n1−2r1−r2 ,

π(N |p, q,D∗) ∝ (N − 1)!

(N − n1)!
(1 − p)N IN≥n1 ,

π(r1|p, q, n1, c2, c3, r2) ∝
(n1 − r1)! q

r1(1 − q)−2r1(1− p)−2r1

r1!(n1 − r1 − r2 − c3)!(n1 − c2 − r1)!
,

π(r2|p, q, n1, c2, c3, r1) ∝
qr2 [(1− p)(1− q)]−r2

r2!(n1 − r1 − r2 − c3)!
,

where D∗ = (n1, c2, c3, r1, r2) and

u1 = N − n1, u2 = n1 − r1 − c2, u3 = n1 − r1 − r2 − c3 ,

n+ = n1 + c2 + c3, u+ = u1 + u2 + u3

(u stands for unobserved, even though these variables can be computed con-
ditional on the remaining unknowns). Therefore, the full conditionals are

p|N, q,D∗ ∼ Be(n+ + 1, u+ + 1) ,

q|N, p,D∗ ∼ Be(r1 + r2 + 1, 2n1 − 2r1 − r2 + 1) ,

N − n1|p, q,D∗ ∼ N eg(n1, p) ,

r2|p, q, n1, c2, c3, r1 ∼ B

(
n1 − r1 − c3,

q

q + (1− q)(1− p)

)
,

which are very easily simulated, while r1 has a less conventional distribu-
tion. However, this difficulty is minor since, in our case, n1 is not extremely

6From a theoretical point of view, r1 and r2 are missing variables rather than true
parameters. This obviously does not change anything either for simulation purposes
or for Bayesian inference.
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large. It is thus possible to compute the probability that r1 is equal to each
of the values in {0, 1, . . . ,min(n1 − r2 − c3, n1 − c2)}. This means that the
corresponding Gibbs sampler can be implemented as well.

gibbscap1=function(nsimu,n1,c2,c3){

N=p=q=r1=r2=rep(0,nsimu)

N[1]=round(n1/runif(1))

r1[1]=max(c2,c3)+round((n1-c2)*runif(1))

r2[1]=round((n1-r1[1]-c3)*runif(1))

nplus=n1+c2+c3

for (i in 2:nsimu){

uplus=N[i-1]-r1[i-1]-c2+n1-r1[i-1]-r2[i-1]-c3

p[i]=rbeta(1,nplus+1,uplus+1)

q[i]=rbeta(1,r1[i-1]+r2[i-1]+1,2*n1-2*r1[i-1]-r2[i-1]+1)

N[i]=n1+rnbinom(1,n1,p[i])

rbar=min(n1-r2[i-1]-c3,n1-c2)

pq=q[i]/((1-q[i])*(1-p[i]))^2

pr=lchoose(n1-c2,0:rbar)+(0:rbar)*log(pq)+

lchoose(n1-(0:rbar),r2[i-1]+c3)

r1[i]=sample(0:rbar,1,prob=exp(pr-max(pr)))

r2[i]=rbinom(1,n1-r1[i]-c3,q[i]/(q[i]+(1-q[i])*(1-p[i])))

}

list(N=N,p=p,q=q,r1=r1,r2=r2)

}

We stress that R is quite helpful in simulating from unusual distributions
and in particular from those with finite support. For instance, the conditional
distribution of r1 above can be simulated using the following representation
of P(r1 = k|p, q, n1, c2, c3, r2) (0 ≤ k ≤ r = min(n1 − r2 − c3, n1 − c2)),

(
n1 − c2

k

) {
q

(1− q)2(1− p)2

}k (
n1 − k

r2 + c3

)
, (5.4)

up to a normalization constant, since the binomial coefficients and the power in
k can be computed for all values of k at once, thanks to the matrix capabilities
of R, through the command lchoose. The above quantity corresponding to

pr=lchoose(n=n1− c2,k=0:r) + (0:r)*log(q1)
+ lchoose(n=n1-(0:r),k=r2 + c3)

is the whole vector of the log-probabilities, with q1 = q/(1− q)2(1 − p)2.

� In most computations, it is safer to use logarithmic transforms to reduce the
risk of running into overflow or underflow error messages. For instance, in the
example above, the probability vector can be recovered by

pr=exp(pr-max(pr))/sum(exp(pr-max(pr)))
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while a direct computation of exp(pr) may well produce an Inf value that

invalidates the remaining computations.7

Once the probabilities are transformed as in the previous R code, a call to
the R command

> sample(0:mm,n,prob=exp(pr-max(pr)))

is sufficient to provide n simulations of r1. The production of a large Gibbs
sample is immediate:

> system.time(gibbscap1(10^5,22,11,6))

user system elapsed

12.816 0.000 12.830

Even a large value such as n1 = 1612 used below does not lead to comput-
ing difficulties since we can run 10,000 iterations of the corresponding Gibbs
sampler in a few seconds on a laptop:

> system.time(gibbscap1(10^4,1612,811,236))

user system elapsed

10.245 0.028 10.294

For eurodip, we have n1 = 22, c2 = 11, and c3 = 6. We obtain the Gibbs
output

> gg=gibbscap1(10^5,22,11,6)

summarized in Fig. 5.2. The sequences for all components are rather stable
and their mixing behavior (i.e., the speed of exploration of the support of
the target) is satisfactory, even though we can still detect a trend in the first
three rows. Since r1 and r2 are integers with only a few possible values, the
last two rows show apparently higher jumps than the three other parameters.
The MCMC approximations to the posterior expectations of N and p are
equal

> mean(gg$N)

[1] 57.52955

> mean(gg$p)

[1] 0.3962891

respectively.
Given the large difference between n1 and c2 and the proximity between

c2 and c3, high values of q are rejected, and the difference can be attributed

7This recommendation also applies to the computation of likelihoods that tend
to take absolute values that exceed the range of the computer representation of
real numbers, while only the relative values are relevant for Bayesian computations.
Using a transform such as exp(loglike-max(loglike)) thus helps in reducing the
risk of overflows.
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with high likelihood to a poor capture rate. One should take into account the
fact that there are only three observations for a model that involves three true
parameters plus two missing variables. Figure 5.3 gives another insight into
the posterior distribution by representing the joint distribution of the sample
of (r1, r2)’s

> plot(jitter(gg$r1,factor=1),jitter(g2$r2,factor=1),cex=0.5,

+ xlab=expression(r[1]),ylab=expression(r[2]))

using for representation purposes the R function jitter(), which moves each
point by a tiny random amount. There is a clear positive correlation between
r1 and r2, despite the fact that r2 is simulated on an (n1 − c3− r1) scale. The
mode of the posterior is (r1, r2) = (0, 0), which means that it is likely that no
dipper died or left the observation area over the 3-year period.

5.4 Accept–Reject Algorithms

In Chap. 2, we mentioned standard random number generators used for the
most common distributions and presented importance sampling (Algorithm
2.2) as a possible alternative when such generators are not available. While
MCMC algorithms always offer a solution when facing nonstandard distri-
butions, there often exists a possibility that is in fact used in most of the
standard random generators and which we now present. It also relates to the
independent Metropolis–Hastings algorithm of Sect. 4.2.2.

Given a density g that is defined on an arbitrary space (of any dimen-
sion), a fundamental identity is that simulating X distributed from g(x) is
completely equivalent to simulating (X,U) uniformly distributed on the set

S = {(x, u) : 0 < u < g(x)}
(this is called the Fundamental Theorem of Simulation in Robert and Casella,
2004, Chap. 3). The reason for this equivalence is simply that

∫ ∞

0

I0<u<g(x) du = g(x) .

Since S usually has complex features, direct simulation from the uniform
distribution on S is most often impossible (Exercise 5.16). The idea behind
the accept–reject method is to find a simpler set G that contains S , S ⊂ G ,
and then to simulate uniformly on this set G until the value belongs to S .
In practice, this means that one needs to find an upper bound on g; that is,
another density f and a constant M such that

g(x) ≤ Mf(x) (5.5)

on the support of the density g. (Note that M > 1 necessarily.) Implementing
the following algorithm then leads to a simulation from g.
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Fig. 5.2. Dataset eurodip: Representation of the Gibbs sampling output for the
five parameters of the open population model, based on 10,000 iterations, with raw
plots (first column) and histograms (second column)

Algorithm 5.9 Accept–Reject Sampler

1. Generate X ∼ f , U ∼ U[0,1].
2. Accept Y = x if u ≤ g(x)/(Mf(x)).
3. Return to 1 otherwise.

This method provides a random generator for densities g that are known
up to a multiplicative factor, which is a feature that occurs particularly often
in Bayesian calculations since the posterior distribution is usually specified up
to a normalizing constant.
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Fig. 5.3. Dataset eurodip: Representation of the Gibbs sampling output of the
(r1, r2)’s by a jitterplot: to translate the density of the possible values of (r1, r2) on
the N

2 grid, each simulation has been randomly moved using the R jitter procedure
and colored at random using grey levels to help distinguish the various simulations

For the open population model, we found the full conditional distribution
of r1 to be rather non-standard, as shown by (5.4). Rather than using an
exhaustive enumeration of all probabilities P(m1 = k) = g(k) and then sam-
pling from this distribution, we can instead try to use a proposal based on a
binomial upper bound. Take for instance f that corresponds to the binomial
distribution B(r̄, q2) with

q2 = q/{q + (1 − q)2(1 − p)2} .

The ratio g(k)/f(k) is proportional to

(
n1−c2

k

)(
n1−k
r2+c3

)
(
r̄
k

) ∝ (n1 − k)!

(max(n1 − c2, n1 − r2 − c3)− k)!
,

which is decreasing in k. The ratio is therefore bounded by



5.4 Accept–Reject Algorithms 159

(
n1−c2

0

)(
n1−0
r2+c3

)
(
r̄
0

) =
(n1 − c2)!

(r2 + c3)!(n1 − r2 − c3)!

(up to the same normalizing constant). Note that this is not the constant M
introduced in Algorithm 5.9 because we use unnormalized densities (the bound
M may therefore also depend on q2). Therefore we cannot derive the average
acceptance rate from this ratio and we have to use a Monte Carlo experiment
to check whether or not the method is really efficient (see Exercise 5.20).

If we use the values from eurodip—that is, n1 = 22, c2 = 11 and c3 = 6,
with r2 = 1 and q1 = 0.1—, we can use R functions like

thresh=function(k,n1,c2,c3,r2,barr){

choose(n1-c2,k)*choose(n1-k,c3+r2)/choose(barr,k)

}

ardipper=function(nsimu=1,n1,c2,c3,r2,q2){

barr=min(n1-c2,n1-r2-c3)

boundM=thresh(0,n1,c2,c3,r2,barr)

echan=1:nsimu

for (i in 1:nsimu){

test=TRUE

while (test){

y=rbinom(1,size=barr,prob=q2)

test=(runif(1)>thresh(y,n1,c2,c3,r2,barr))

}

echan[i]=y

}

echan

}

the average of the acceptance ratios g(k)/Mf(k) is equal to 0.12. This is a
relatively small value since it corresponds to a rejection rate of about 9/10.
The simulation process could thus be a little slow, although

> system.time(ardipper(10^5,n1=22,c2=11,c3=6,r2=1,q1=.1))

user system elapsed

8.148 0.024 8.1959

shows this is not the case. (Note that the code ardipper provided here does
not produce the rejection rate. It has to be modified for this purpose.) An
histogram of accepted values is shown in Fig. 5.4.

Obviously, this method is not hassle-free. For complex densities g, it may
prove impossible to find a density f such that g(x) ≤ Mf(x) and M is small
enough. However, there exists a large class of univariate distributions for which
a generic choice of f is possible (see Robert and Casella, 2004, Chap. 2).
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Fig. 5.4. Dataset eurodip: Sample from the distribution (5.4) obtained by accept–
reject and based on the simulation of 10,000 values from a B(n1, q1) distribution for
n1 = 22, c2 = 11, c3 = 6, r2 = 1, and q1 = 0.1

5.5 The Arnason–Schwarz Capture–Recapture Model

We consider in this final section a more advanced capture–recapture model
based on the realistic assumption that, in most capture–recapture experi-
ments, we can tag individuals one by one; that is, we can distinguish each
individual at the time of its first capture and thus follow its capture history.
For instance, when tagging mammals and birds, differentiated tags can be
used, so that there is only one individual with tag, say, 23131932.8

The Arnason–Schwarz model thus considers a capture–recapture experi-
ment as a collection of individual histories. For each individual that has been

8In a capture–recapture experiment used in Dupuis (1995), a population of
lizards was observed in the south of France (Lozère). When it was found that plastic
tags caused necrosis on those lizards, the biologists in charge of the experiment de-
cided to cut a phalange of one of the fingers of the captured lizards to identify them
later. While the number of possibilities, 220, is limited, it is still much larger than
the number of captured lizards in this study. Whether or not the lizards appreciated
this ability to classify them is not known.



5.5 The Arnason–Schwarz Capture–Recapture Model 161

captured at least once during the experiment, individual characteristics of
interest are registered at each capture. For instance, this may include loca-
tion, weight, sexual status, pregnancy occurrence, social status, and so on.
The probabilistic modeling includes this categorical decomposition by adding
what we will call movement probabilities to the survival probabilities already
used in the Darroch open population model of Sect. 5.2.2. From a theoretical
point of view, this is a first example of a (partially) hidden Markov model,
a structure studied in detail in Chap. 7. In addition, the model includes the
possibility that individuals vanish from the population between two capture
experiments. (This is thus another example of an open population model.)

As in eurodip, the interest that drives the capture–recapture experiment
may be to study the movements of individuals within a zone K divided into
k = 3 strata denoted by 1, 2, 3. (This structure is generic: Zones are not
necessarily geographic and can correspond to anything from social status,
to HIV stage, to university degree.) For instance, four consecutive rows of
possible eurodip (individual) capture–recapture histories look as follows:

45 0 3 0 0 0 0 0
46 0 2 2 2 2 1 1
47 0 2 0 0 0 0 0
48 2 1 2 1 0 0 0

where 0 denotes a failure to capture. This means that, for dipper number 46,
the first location was not observed but this dipper was captured for all the
other experiments. For dippers number 45 and 47, there was no capture after
the second time and thus one or both of them could be dead (or outside the
range of the capture area) at the time of the last capture experiment. We
also stress that the Arnason–Schwarz model often assumes that individuals
that were not part of the population on the first capture experiments can be
identified as such.9 We thus have cohorts of individuals that entered the study
in the first year, the second year, and so on.

5.5.1 Modeling

A description of the basic Arnason–Schwarz model involves two types of vari-
ables for each individual i (i = 1, . . . , n) in the population: first, a variable
that describes the location of this individual,

zi = (z(i,t), t = 1, .., τ) ,

where τ is the number of capture periods; and, second, a binary variable that
describes the capture history of this individual,

xi = (x(i,t), t = 1, .., τ) .

9This is the case, for instance, with newborns or new mothers in animal capture
experiments.
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We10 assume that z(i,t) = r means the animal i is alive in stratum r at time
t and that z(i,t) = † denotes the case when the animal i is dead at time t.
The variable zi is sometimes called the migration process of individual i by
analogy with the special case where one is considering animals moving between
geographical zones, like some northern birds in spring and fall. Note that xi

is entirely observed, while zi is not. For instance, we may have

xi = 1 1 0 1 1 1 0 0 0

and

zi = 1 2 · 3 1 1 · · · ,

for which a possible completed zi is

zi = 1 2 1 3 1 1 2 † † ,

meaning that the animal died between the seventh and the eighth capture
events. In particular, the Arnason–Schwarz model assumes that dead animals
are never observed (although this type of assumption can easily be modi-
fied when processing the model, in what are called tag-recovery experiments).
Therefore z(i,t) = † always corresponds to x(i,t) = 0.

Moreover, we assume that the (xi, zi)’s (i = 1, . . . , n) are independent
and that each random vector zi is a Markov chain taking values in K ∪ {†}
with uniform initial probability on K (unless there is prior information to the
contrary). The parameters of the Arnason–Schwarz model are thus of two
kinds: the capture probabilities

pt(r) = P
(
x(i,t) = 1|z(i,t) = r

)

on the one hand and the transition probabilities

qt(r, s) = P
(
z(i,t+1) = s|z(i,t) = r

)
r ∈ K, s ∈ K ∪ {†}, qt(†, †) = 1

on the other hand. We derive two further sets of parameters, ϕt(r) = 1−qt(r, †)
the survival probabilities and ψt(r, s) the interstrata movement probabilities,
defined as

qt(r, s) = ϕt(r)× ψt(r, s) r ∈ K, s ∈ K .

The likelihood corresponding to the complete observation of the (xi, zi)’s,
ℓ(p1, . . . , pτ , q1, . . . , qτ |(x1, z1), . . . , (xn, zn)), is then given by

n∏

i=1

[
τ∏

t=1

pt(z(i,t))
x(i,t){1− pt(z(i,t))}1−x(i,t)×

τ−1∏

t=1

qt(z(i,t), z(i,t+1))

]
, (5.6)

10Covariates registered once or at each time will not be used here, although they
could be introduced via a generalized linear model as in Chap. 4, so we abstain from
adding further notations in an already dense section.
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up to a constant. The complexity of the likelihood corresponding to the data
actually observed is due to the fact that the zi’s are not fully observed, hence
that (5.6) would have to be summed over all possible values of the missing
components of the zi’s. This complexity can be bypassed by a simulation
alternative described below in Sect. 5.5.2.

The prior modeling corresponding to these parameters will depend on the
information that is available about the population covered by the capture–
recapture experiment. For illustration’s sake, consider the use of conjugate
priors

pt(r) ∼ Be(at(r), bt(r)) , ϕt(r) ∼ Be(αt(r), βt(r)) ,

where the hyperparameters, at(r), bt(r) and so on, depend on both time t and
location r, and

ψt(r) ∼ Dir(γt(r)) ,

a Dirichlet distribution, where ψt(r) = (ψt(r, s); s ∈ K) with

∑

s∈K

ψt(r, s) = 1 ,

and γt(r) = (γt(r, s); s ∈ K). The determination of these (numerous) hyperpa-
rameters is also case-dependent and varies from a noninformative modeling,
where all hyperparameters are taken to be equal to 1 or 1/2, to a very in-
formative setting where exact values of these hyperparameters can be chosen
from the prior information. The following example is an illustration of the
latter.

Table 5.3. Prior information about the capture and survival parameters of the
Arnason–Schwarz model, represented by prior expectation and prior confidence
interval, for a capture–recapture experiment on the migrations of lizards (source:
Dupuis, 1995)

Episode 2 3 4 5 6

pt Mean 0.3 0.4 0.5 0.2 0.2
95% cred. int. [0.1, 0.5] [0.2, 0.6] [0.3, 0.7] [0.05, 0.4] [0.05, 0.4]

Site A B,C
Episode t = 1, 3, 5 t = 2, 4 t = 1, 3, 5 t = 2, 4

ϕt(r) Mean 0.7 0.65 0.7 0.7
95% cred. int. [0.4, 0.95] [0.35, 0.9] [0.4, 0.95] [0.4, 0.95]

Example 5.1. For the capture–recapture experiment described in Footnote 8
on the migrations of lizards between three adjacent zones, there are six capture
episodes. The prior information provided by the biologists on the capture
and survival probabilities, pt (which are assumed to be zone independent)
and ϕt(r), is given by Table 5.3. While this may seem very artificial, this
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construction of the prior distribution actually happened that way because the
biologists in charge were able to quantify their beliefs and intuitions in terms of
prior expectation and prior confidence interval. (The differences in the prior
values on pt are due to differences in capture efforts, while the differences
between the group of episodes 1, 3 and 5, and the group of episodes 2 and
4 are due to the fact that the odd indices correspond to spring and the even
indices to fall and mortality is higher over the winter.) Moreover, this prior
information can be perfectly translated in a collection of beta priors by the
R divide-and-conquer function

probet=function(a,b,c,alpha){

coc=(1-c)/c

pbeta(b,alpha,alpha*coc)-pbeta(a,alpha,alpha*coc)

}

solbeta=function(a,b,c,prec=10^(-3)){

coc=(1-c)/c

detail=alpha=1

while (probet(a,b,c,alpha)<.95) alpha=alpha+detail

while (abs(probet(a,b,c,alpha)-.95)>prec){

alpha=max(alpha-detail,detail/10)

detail=detail/10

while (probet(a,b,c,alpha)<.95) alpha=alpha+detail

}

list(alpha=alpha,beta=alpha*coc)

}

(see Exercise 5.23 for details). Repeated calls to solbeta as in

> solbeta(.1,.5,.3,10^(-4))

[1] 5.45300 12.72367

then leads to the hyperparameters given in Table 5.4. ◭

Table 5.4. Hyperparameters of the beta priors corresponding to the information
contained in Table 5.3 (source: Dupuis, 1995)

Episode 2 3 4 5 6

Dist. Be(5, 13) Be(8, 12) Be(12, 12) Be(3.5, 14) Be(3.5, 14)

Site A B
Episode t = 1, 3, 5 t = 2, 4 t = 1, 3, 5 t = 2, 4

Dist. Be(6.0, 2.5) Be(6.5, 3.5) Be(6.0, 2.5) Be(6.0, 2.5)
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5.5.2 Gibbs Sampler

Given the presence of missing data in the Arnason–Schwarz model, a Gibbs
sampler is a natural solution to handle the complexity of the likelihood. It
needs to include simulation of the missing components in the vectors zi in
order to simulate the parameters from the full conditional distribution

π(θ|x, z) ∝ ℓ(θ|x, z)× π(θ) ,

Algorithm 5.10 Arnason–Schwarz Gibbs Sampler

Iteration l (l ≥ 1):

1. Parameter simulation

Simulate θ(l) ∼ π(θ|z(l−1),x) as (t = 1, . . . , τ),

p
(l)
t (r)|x, z(l−1) ∼ Be

(
at(r) + ut(r), bt(r) + v

(l)
t (r)
)
,

ϕ
(l)
t (r)|x, z(l−1) ∼ Be

⎛
⎝αt(r) +

∑

j∈K

w
(l)
t (r, j), βt(r) + w

(l)
t (r, †)

⎞
⎠ ,

ψ
(l)
t (r)|x, z(l−1) ∼ Dir

(
γt(r, s) + w

(l)
t (r, s); s ∈ K

)
,

where

w
(l)
t (r, s) =

n∑

i=1

I
(z

(l−1)

(i,t)
=r,z

(l−1)

(i,t+1)
=s)

,

u
(l)
t (r) =

n∑

i=1

I
(x(i,t)=1,z

(l−1)

(i,t)
=r)

,

v
(l)
t (r) =

n∑

i=1

I
(x(i,t)=0,z

(l−1)

(i,t)
=r)

.

2. Missing location simulation

Generate the unobserved z
(l)
(i,t)’s from the full conditional distributions

P(z
(l)
(i,1) = s|x(i,1), z

(l−1)
(i,2) , θ(l)) ∝ q

(l)
1 (s, z

(l−1)
(i,2) )(1 − p

(l)
1 (s)) ,

P(z
(l)
(i,t) = s|x(i,t), z

(l)
(i,t−1), z

(l−1)
(i,t+1), θ

(l)) ∝ q
(l)
t−1(z

(l)
(i,t−1), s)

×qt(s, z
(l−1)
(i,t+1))(1 − p

(l)
t (s)) ,

P(z
(l)
(i,τ) = s|x(i,τ), z

(l)
(i,τ−1), θ

(l)) ∝ q
(l)
τ−1(z

(l)
(i,τ−1), s)(1 − pτ (s)

(l)) .



166 5 Capture–Recapture Experiments

where x and z denote the collections of the vectors of capture indicators and
locations, respectively. This is thus a particular case of data augmentation,
where the missing data z are simulated at each step t in order to reconstitute
a complete sample (x, z(t)) for which conjugacy applies. In the setting of the
Arnason–Schwarz model, we can simulate the full conditional distributions
both of the parameters and of the missing components. The Gibbs sampler is
as follows:

Note that simulating the missing locations in the zi’s conditionally on the
other locations and on the parameters is not a very complex task because
of the good conditioning properties of these vectors (which stem from their
Markovian nature). As shown in Step 2 of Algorithm 5.10, the full conditional
distribution of z(i,t) only depends on the previous and next locations z(i,t−1)

and z(i,t+1) (and obviously on the fact that it is not observed; that is, that
x(i,t) = 0). The corresponding part of the R code is based on a latent matrix
containing the current values of both the observed and missing locations:

for (i in 1:n){

if (z[i,1]==0) latent[i,1]=sample(1:(m+1),1,

prob=q[,latent[i,2]]*(1-c(p[s,],0)))

for (t in ((2:(T-1))[z[i,-c(1.T)]==0]))

latent[i,t]=sample(1:(m+1),1,

prob=q[latent[i,t-1],]*q[,latent[i,t+1]]*(1-c(p[s,],0)))

if (z[i,T]==0) latent[i,T]=sample(1:(m+1),1,

prob=q[latent[i,T-1],]*(1-c(p[s,],0)))

}

(The convoluted range for the inner loop replaces an if (z[i,t]==0).)
When the number of states s ∈ K is moderate, it is straightforward to simulate
from such a distribution.

Take K = {1, 2}, n = 4, m = 8 and assume that, for x, we have the
following histories:

1 1 1 · · 1 · · ·
2 1 · 1 · 1 · 2 1
3 2 1 · 1 2 · · 1
4 1 · · 1 2 1 1 2

Assume also that all (prior) hyperparameters are taken equal to 1. Then one
possible instance of a simulated z is

1 1 1 2 1 1 2 †
1 1 1 2 1 1 1 2
2 1 2 1 2 1 1 1
1 2 1 1 2 1 1 2
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and it leads to the following simulation of the parameters:

p
(l)
4 (1)|x, z(l−1) ∼ Be(1 + 2, 1 + 0) ,

ϕ
(l)
7 (2)|x, z(l−1) ∼ Be(1 + 0, 1 + 1) ,

ψ
(l)
2 (1, 2)|x, z(l−1) ∼ Be(1 + 1, 1 + 2) ,

in the Gibbs sampler, where the hyperparameters are therefore derived from
the (partly) simulated history above. Note that because there are only two
possible states, the Dirichlet distribution simplifies into a beta distribution.
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Fig. 5.5. Dataset eurodip: Representation of the Gibbs sampling output for some
parameters of the Arnason–Schwarz model, based on 10,000 iterations, with raw
plots (first column) and histograms (second column)
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For eurodip, Lebreton et al. (1992) argue that the capture and survival
rates should be constant over time. If we assume that the movement probabil-
ities are also time independent, we are left with 3+3+3×2 = 12 parameters.
Figure 5.5 gives the Gibbs output for the parameters p(1), ϕ(2), and ψ(3, 3)
using noninformative priors with a(r) = b(r) = α(r) = β(r) = γ(r, s) = 1.
The simulation of the parameters is obtained by the following piece of R code,
where s is the current index of the Gibbs iteration in the R code below:

for (r1 in 1:m){

for (r2 in 1:(m+1))

omega[r2]=sum(latent[,1:(T-1)]==r1 & latent[,2:T]==r2)

u=sum(z!=0 & latent==r1)

v=sum(z==0 & latent==r1)

p[s,r1]=rbeta(1,1+u,1+v)

phi[s,r1]=rbeta(1,1+sum(omega[1:m]),1+omega[m+1])

psi[r1,,s]=rdirichlet(1,rep(1,m)+omega[1:m])

}

The transition probabilities qt(r, s) are then reconstructed from the survival
and movement probabilities, with the special case of the m+1 column corre-
sponding to the absorbing † state:

tt=matrix(rep(phi[s,],m),m,byrow=T)

q=rbind(tt*psi[,,s],rep(0,m))

q=cbind(q,1-apply(q,1,sum))

The convergence of the Gibbs sampler to the region of interest occurs very
quickly, even though we can spot an approximate periodicity in the raw plots
on the left-hand side. The MCMC approximations of the estimates of p(1),
ϕ(2), and ψ(3, 3), the empirical mean over the last 8,000 simulations, are equal
to 0.25, 0.99, and 0.61, respectively.

5.6 Exercises

5.1 Show that the posterior distribution π(N |n+) given by (5.1), while associated with
an improper prior, is defined for all values of n+. Show that the normalization factor of
(5.1) is n+ ∨ 1, and deduce that the posterior median is equal to 2(n+ ∨ 1)− 1. Discuss
the relevance of this estimator and show that it corresponds to a Bayes estimate of p
equal to 1/2.



5.6 Exercises 169

5.2 Under the same prior as in Sect. 5.2.1, derive the marginal posterior density of N
in the case where n+

1 ∼ B(N, p) and

n+
2 , . . . , n+

k
iid∼ B(n+

1 , p)

are observed (the later are in fact recaptures). Apply to the sample

(n+
1 , n+

2 , . . . , n+
11) = (32, 20, 8, 5, 1, 2, 0, 2, 1, 1, 0) ,

which describes a series of tag recoveries over 11 years.

5.3 Show that the conditional distribution of m2 conditional on both sample sizes
n1 and n2 is given by (5.2) and does not depend on p. Deduce the expectation
E

π[m2|n1, n2, N ].

5.4 In order to determine the number N of buses in a town, a capture–recapture
strategy goes as follows. We observe n1 = 20 buses during the first day and keep
track of their identifying numbers. Then we repeat the experiment the following day by
recording the number of buses that have already been spotted on the previous day, say
m2 = 5, out of the n2 = 30 buses observed the second day. For the Darroch model,
give the posterior expectation of N under the prior π(N) = 1/N .

5.5 Show that the maximum likelihood estimator of N for the Darroch model is N̂ =
n1/ (m2/n2), and deduce that it is not defined when m2 = 0.

5.6 Give the likelihood of the extension of Darroch’s model when the capture–recapture
experiments are repeated K times with capture sizes and recapture observations nk

(1 ≤ k ≤ K) and mk (2 ≤ k ≤ K), respectively. (Hint: Exhibit first the two-dimensional
sufficient statistic associated with this model.)

5.7 Give both conditional posterior distributions involved in Algorithm 5.8 in the case
n+ = 0.

5.8 Show that, for the two-stage capture model with probability p of capture, when the
prior on N is a P(λ) distribution, the conditional posterior on N −n+ is P(λ(1−p)2).

5.9 Reproduce the analysis of eurodip summarized by Fig. 5.1 when switching the prior
from π(N,p) ∝ λN/N ! to π(N, p) ∝ N−1.

5.10 An extension of the T -stage capture–recapture model of Sect. 5.2.3 is to consider
that the capture of an individual modifies its probability of being captured from p to q
for future recaptures. Give the likelihood ℓ(N, p, q|n1, n2, m2 . . . , nT , mT ).

5.11 Another extension of the two-stage capture–recapture model is to allow for mark
loss.11 If we introduce q as the probability of losing the mark, r as the probability of
recovering a lost mark and k as the number of recovered lost marks, give the associated
likelihood ℓ(N, p, q, r|n1, n2, m2, k).

11Tags can be lost by marked animals, but the animals themselves could also be
lost to recapture either by changing habitat or dying. Our current model assumes
that the population is closed; that is, that there is no immigration, emigration, birth,
or death within the population during the length of the study. These other kinds of
extension are dealt with in Sects. 5.3 and 5.5.
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5.12 Show that the conditional distribution of r1 in the open population model of
Sect. 5.3 is proportional to the product (5.4).

5.13 Show that the distribution of r2 in the open population model of Sect. 5.3 can be
integrated out from the joint distribution and that this leads to the following distribution
on r1:

π(r1|p, q, n1, c2, c3) ∝
(n1 − r1)!(n1 − r1 − c3)!

r1!(n1 − r1 − c2)!

×
(

q

(1− p)(1− q)[q + (1− p)(1− q)]

)r1

.

Compare the computational cost of a Gibbs sampler based on this approach with a Gibbs
sampler using the full conditionals.

5.14 Show that the likelihood associated with an open population as in Sect. 5.3 can
be written as

ℓ(N, p|D∗) =
∑

(ǫit,δit)it

T
∏

t=1

N
∏

i=1

qǫitǫi(t−1)
(1− qǫi(t−1)

)1−ǫit

× p(1−ǫit)δit(1− p)(1−ǫit)(1−δit) ,

where q0 = q, q1 = 1, and δit and ǫit are the capture and exit indicators, respectively.
Derive the order of complexity of this likelihood; that is, the number of elementary
operations necessary to compute it.12

5.15 In connection with the presentation of the accept–reject algorithm in Sect. 5.4,
show that, for M > 0, if g is replaced with Mg in S and if (X, U) is uniformly
distributed on S , the marginal distribution of X is still g. Deduce that the density g
only needs to be known up to a normalizing constant.

5.16 For the function g(x) = (1 + sin2(x))(2 + cos4(4x)) exp[−x4{1 + sin6(x)}] on
[0, 2π], examine the feasibility of running a uniform sampler on the set S associated
with the accept–reject algorithm in Sect. 5.4.

5.17 Show that the probability of acceptance in Step 2 of Algorithm 5.9 is 1/M and
that the number of trials until a variable is accepted has a geometric distribution with
parameter 1/M . Conclude that the expected number of trials per simulation is M .

5.18 For the conditional distribution of αt derived from (5.3), construct an accept–
reject algorithm based on a normal bounding density f and study its performances for
N = 532, nt = 118, μt = −0.5, and σ2 = 3.

5.19 When uniform simulation on the accept–reject set S of Sect. 5.4 is impossible,
construct a Gibbs sampler based on the conditional distributions of u and x. (Hint:
Show that both conditionals are uniform distributions.) This special case of the Gibbs
sampler is called the slice sampler (see Robert and Casella, 2004, Chap. 8). Apply to the
distribution of Exercise 5.16.

12We will see in Chap. 7 a derivation of this likelihood that enjoys an O(T ) com-
plexity.
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5.20 Show that the normalizing constant M of a target density f can be deduced from
the acceptance rate in the accept–reject algorithm (Algorithm 5.9) under the assumption
that g is properly normalized.

5.21 Reproduce the analysis of Exercise 5.20 for the marginal distribution of r1 com-
puted in Exercise 5.13.

5.22 Modify the function ardipper used in Sect. 5.4 to return the acceptance rate as
well as a sample from the target distribution.

5.23 Show that, given a mean and a 95% confidence interval in [0, 1], there exists at
most one beta distribution Be(a, b) with such a mean and confidence interval.

5.24 Show that, for the Arnason–Schwarz model, groups of consecutive unknown lo-
cations are independent of one another, conditional on the observations. Devise a way
to simulate these groups by blocks rather than one at a time; that is, using the joint
posterior distributions of the groups rather than the full conditional distributions of the
states.
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Mixture Models

I must have missed something.
—Ian Rankin, The Hanging Garden.—

Roadmap

This chapter covers a class of models where a rather simple distribution is made
more complex and less informative by a mechanism that mixes together several
known or unknown distributions. This representation is naturally called a mix-
ture of distributions, as illustrated above. Inference about the parameters of the
elements of the mixtures and the weights is called mixture estimation, while re-
covery of the original distribution of each observation is called classification (or,
more exactly, unsupervised classification to distinguish it from the supervised clas-
sification to be discussed in Chap. 8).

Both aspects almost always require advanced computational tools since even
the representation of the posterior distribution may be complicated. Typically,
Bayesian inference for these models was not correctly treated until the intro-
duction of MCMC algorithms in the early 1990s. This chapter also covers the
case of a mixture with an unknown number of components, for which a specific
approximation of the Bayes factor was designed by Chib (1995).

J.-M. Marin and C.P. Robert, Bayesian Essentials with R, Springer Texts
in Statistics, DOI 10.1007/978-1-4614-8687-9 6,
© Springer Science+Business Media New York 2014
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6.1 Missing Variable Models

In some cases, the complexity of a model originates from the fact that some
piece of information about an original and more standard (simpler) model is
missing. For instance, we have encountered a missing variable model in Chap. 5
with the Arnason–Schwarz model (Sect. 5.5), where the fact of ignoring the
characteristics of the individuals outside their capture periods makes inference
much harder. Similarly, we have seen in Chap. 4 that the probit model can
be reinterpreted as a missing-variable model in that we only observe the sign
of a normal variable.

Formally, all models that are defined via a marginalization mechanism,
that is, such that the density of the observables x, f(x|θ), is given by an
integral

f(x|θ) =
∫

Z

g(x, z|θ) dz , (6.1)

can be considered as belonging to a missing variable (or missing data) model.1

This chapter focus on the case of the mixture model, which is the archetyp-
ical missing-variable model in that its simple representation (and interpreta-
tion) is mirrored by a need for complex processing. Later, in Chap. 7, we
will also discuss hidden Markov models that add to the missing structure a
temporal dependence dimension.

Although image analysis is the topic of Chap. 8, the dataset used in this
chapter is derived from an image of a license plate, called License and not
available in bayess, as

> image(license,col=grey(0:255/255),axes=FALSE,xlab="",

ylab="")

represented in Fig. 6.1 (top). The actual histogram of the grey levels is con-
centrated on 256 values because of the poor resolution of the image, but we
transformed the original data as

> license=scan("license.txt")

> license=jitter(license,10)

> datha=log((license-min(license)+.01)/

+ (max(license)+.01-license))

where jitter is used to randomize the dataset and avoid repetitions (as
already described on page 156). The second line of code is a logit transform.

1This is not a definition in the mathematical sense since all densities can formally
be represented that way. We thus stress that the model itself must be introduced
that way. This point is not to be mistaken for a requirement that the variable z be
meaningful for the data at hand. In many cases, for instance the probit model, the
missing variable representation remains formal.
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The transformed data used in this chapter has been stored in the file
datha.txt.

> data(datha)

> datha=as.matrix(datha)

> hist(datha,nclas=200,xlab="",xlim=c(min(datha),max(datha)),

ylab="",prob=TRUE,main="")

As seen from Fig. 6.1 (bottom), the resulting structure of the data is compat-
ible with a sample from a mixture of several normal distributions (with at
least two components). We point out at this early stage that mixture model-
ing is often used in image smoothing. Unsurprisingly, the current plate image
would instead require feature recognition, for which this modeling does not
help, because it requires spatial coherence and thus more complicated models
that will be presented in Chap. 8.
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0.30

Fig. 6.1. Dataset License: (top) Image of a car license plate and (bottom) histogram
of the transformed grey levels of the dataset
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6.2 Finite Mixture Models

We now introduce the specific case of mixtures as it exemplifies the complexity
of missing-variable models, both by its nature (in the sense that it is inherently
linked with a missing variable) and by its processing, which also requires the
incorporation of the missing structure.2

A mixture distribution is a convex combination

k∑

j=1

pjfj(x) , pj ≥ 0 ,

k∑

j=1

pj = 1 ,

of k distributions fj (k > 1). In the simplest situations, the fj ’s are known and
inference focuses either on the unknown proportions pj or on the allocations
of the points of the sample (x1, . . . , xn) to the components fj , i.e. on the
probability that xi is generated from fj by opposition to being generated
from fℓ, say. In most cases, however, the fj ’s are from a parametric family
like the normal or Beta distributions, with unknown parameters θj , leading
to the mixture model

k∑

j=1

pjf(x|θj) , (6.2)

with parameters including both the weights pj and the component parameters
θj (j = 1, . . . , k). It is actually relevant to distinguish the weights pj from
the other parameters in that they are solely associated with the missing-
data structure of the model, while the others are related to the observations.
This distinction is obviously irrelevant in the computation of the likelihood
function or in the construction of the prior distribution, but it matters in the
interpretation of the posterior output, for instance.

There are several motivations for considering mixtures of distributions as
a useful extension to “standard” distributions. The most natural approach is
to envisage a dataset as made of several latent (that is, missing, unobserved)
strata or subpopulations. For instance, one of the earliest occurrences of mix-
ture modeling can be found in Bertillon (1887),3 where the bimodal structure
of the heights of (military) conscripts in central France (Doubs) can be ex-
plained a posteriori by the aggregation of two populations of young men, one
from the plains and one from the mountains. The mixture structure appears
because the origin of each observation (that is, the allocation to a specific
subpopulation or stratum) is lost. In the example of the military conscripts,
this means that the geographical origin of each young man was not recorded.

2We will see later that the missing structure of a mixture actually need not
be simulated but, for more complex missing-variable structures like hidden Markov
models (introduced in Chap. 7), this completion cannot be avoided.

3The Frenchman Alphonse Bertillon is also the father of scientific police investi-
gation. For instance, he originated the use of fingerprints in criminal investigations.
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Depending on the setting, the inferential goal associated with a sample
from a mixture of distributions may be either to reconstitute the groups by
estimating the missing component z, an operation usually called classifica-
tion (or clustering), to provide estimators for the parameters of the different
groups, or even to estimate the number k of groups.

A completely different (if more involved) approach to the interpretation
and estimation of mixtures is the semiparametric perspective. This approach
considers that since very few phenomena obey probability laws corresponding
to the most standard distributions, mixtures such as (6.2) can be seen as a
good trade-off between fair representation of the phenomenon and efficient
estimation of the underlying distribution. If k is large enough, there is theo-
retical support for the argument that (6.2) provides a good approximation (in
some functional sense) to most distributions. Hence, a mixture distribution
can be perceived as a type of (functional) basis approximation of unknown dis-
tributions, in a spirit similar to wavelets and splines, but with a more intuitive
flavor (for a statistician at least). However, this chapter mostly focuses on the
“parametric” case, that is, on situations when the partition of the sample into
subsamples with different distributions fj does make sense from the dataset
or modelling point of view (even though the computational processing is the
same in both cases). In other words, we consider settings where clustering the
sample into strata or subpopulations is of interest.

6.3 Mixture Likelihoods and Posteriors

Let us consider an iid sample x = (x1, . . . , xn) from model (6.2). The likeli-
hood is such that

ℓ(θ,p|x) =
n∏

i=1

k∑

j=1

pj f(xi|θj) .

This likelihood contains kn terms when the inner sums are expanded. While
this expansion is not necessary for computing the likelihood at a given value
(θ,p), a computation that is feasible in O(nk) operations as demonstrated by
the representation in Fig. 6.2, it remains a necessary step in the understand-
ing of the mixture structure. Alas, the computational difficulty in using the
expanded version precludes analytic solutions for either maximum likelihood
or Bayes estimators.

Example 6.1. Consider the simple case of a two-component normal mixture

pN (μ1, 1) + (1− p)N (μ2, 1) , (6.3)

where the weight p 
= 0.5 is known. The likelihood surface can be computed
by an R code as in the following plotmix function, which relies on the image
function and a discretization of the (μ1, μ2) space into pixels. Given a sample



178 6 Mixture Models

sampl that is generated in the first lines of the function, the log-likelihood
surface is computed by

pbar=1-p

mu1=mu2=seq(min(sampl),max(sampl),.1)

mo1=mu1%*%t(rep(1,length(mu2)))

mo2=rep(1,length(mu2))%*%t(mu2)

ca1=-0.5*mo1*mo1

ca2=-0.5*mo2*mo2

like=0*mo1

for (i in 1:n)

like=like+log(p*exp(ca1+sampl[i]*mo1)+

pbar*exp(ca2+sampl[i]*mo2))

like=like+.1*(ca1+ca2)

and plotted by

image(mu1,mu2,like,xlab=expression(mu[1]),

ylab=expression(mu[2]),col=heat.colors(250))

contour(mu1,mu2,like,levels=seq(min(like),max(like),lengthl),

add=TRUE,drawlabels=FALSE)

We note that the outcome of the plotmix function is the list
list(sample=sampl,like=like), used in subsequent analyses of the data.
For instance, this outcome, including the level sets obtained by contour, is
provided in Fig. 6.2. In this case, the parameters are identifiable: μ1 cannot be
confused with μ2 when p is different from 0.5. Nonetheless, the log-likelihood
surface in this figure exhibits two modes, one being close to the true value
of the parameters used to simulate the dataset and one corresponding to an
inverse separation of the dataset into two groups.4 ◭

For any prior π (θ,p), the posterior distribution of (θ,p) is available up
to a multiplicative constant:

π(θ,p|x) ∝

⎡
⎣

n∏

i=1

k∑

j=1

pj f(xi|θj)

⎤
⎦ π (θ,p) . (6.4)

While π(θ,p|x) can thus be computed for a given value of (θ,p) at a cost of
order O(kn), we now explain why the derivation of the posterior character-
istics, and in particular of posterior expectations of quantities of interest, is
only possible in an exponential time of order O(kn).

To explain this difficulty in more detail, we consider the rather intuitive
missing-variable representation of mixture models: With each xi is associated

4To get a better understanding of this second mode, consider the limiting setting
when p = 0.5. In that case, there are two equivalent modes of the likelihood, (μ1, μ2)
and (μ2, μ1). As p moves away from 0.5, this second mode gets lower and lower
compared with the other mode, but it still remains.
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Fig. 6.2. R image representation of the log-likelihood of the mixture (6.3) for a
simulated dataset of 500 observations and a true value (μ1, μ2, p) = (2.5, 0, 0.7).
Besides a mode (represented by a diamond) in the neighborhood of the true value,
the R contour function exhibits an additional mode on the likelihood surface

a missing variable zi that indicates “its” component, i.e. the index zi of the
distribution from which it was generated. Formally, this means that we have
a hierarchical structure associated with the model:

zi|p ∼ Mk(p1, . . . , pk)

and
xi|zi, θ ∼ f(·|θzi) .

The completed likelihood corresponding to the missing structure is such that

ℓ(θ,p|x, z) =
n∏

i=1

pzi f(xi|θzi)

and

π(θ,p|x, z) ∝
[

n∏

i=1

pzi f(xi|θzi)
]
π (θ,p) ,

where z = (z1, . . . , zn). If we denote by Z = {1, . . . , k}n the set of the kn

possible values of the vector z, we can decompose Z into a partition of subsets

Z = ∪r

j=1Zj
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as follows (see Exercise 6.2 for the value of r: For a given allocation size vector
(n1, . . . , nk), where n1+ . . .+nk, i.e. a given number of observations allocated
to each component, we define the partition sets

Zj =

{
z :

n∑

i=1

Izi=1, . . . ,
n∑

i=1

Izi=k

}
,

which consist of all allocations with the given allocation size (n1, . . . , nk).
We label those partition sets with j = j(n1, . . . , nk) by using, for instance,
the lexicographical ordering on the (n1, . . . , nk)’s. (This means that j = 1
corresponds to (n1, . . . , nk) = (n, 0, . . . , 0), j = 2 to (n1, . . . , nk) = (n −
1, 1, . . . , 0), j = 3 to (n1, . . . , nk) = (n− 1, 0, 1, . . . , 0), and so on). Using this
partition, the posterior distribution of (θ,p) can be written in closed form as

π (θ,p|x) =
∑

z∈Z

π (θ,p|x, z) =
r∑

i=1

∑

z∈Zi

ω (z)π (θ,p|x, z) , (6.5)

where ω (z) represents the marginal posterior probability of the allocation z
conditional on the observations x (derived by integrating out the parameters
θ and p). With this representation, a Bayes estimator of (θ,p) can also be
written in closed form as

E
π[θ, p|x] =

r∑

i=1

∑

z∈Zi

ω (z)Eπ [θ,p|x, z] .

Continuation of Example 6.1. In the special case of model (6.3), if we
take two different independent normal priors on both means,

μ1 ∼ N (0, 4) , μ2 ∼ N (2, 4) ,

the posterior weight of a given allocation vector z is

ω (z) ∝
√
(n1 + 1/4)(n− n1 + 1/4) pn1(n1 − p)n−l

× exp
{
−[(n1 + 1/4)ŝ1 (z) + n1{x̄1 (z)}2/4]/2

}

× exp
{
−[(n− n1 + 1/4)ŝ2 (z) + (n− n1){x̄2 (z)− 2}2/4]/2

}
,

x̄1 (z) =
1

n1

n∑

i=1

Izi=1xi, x̄2 (z) =
1

n− n1

n∑

i=1

Izi=2xi ,

ŝ1 (z) =

n∑

i=1

Izi=1 (xi − x̄1 (z))
2
, ŝ2 (z) =

n∑

i=1

Izi=2 (xi − x̄2 (z))
2

(if we set x̄1 (z) = 0 when n1 = 0 and x̄2 (z) = 0 when n − n1 = 0). Imple-
menting this derivation in R is quite straightforward:
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omega=function(z,x,p){

n=length(x)

n1=sum(z==1);n2=n-n1

if (n1==0) xbar1=0 else xbar1=sum((z==1)*x)/n1

if (n2==0) xbar2=0 else xbar2=sum((z==2)*x)/n2

ss1=sum((z==1)*(x-xbar1)^2)

ss2=sum((z==2)*(x-xbar2)^2)

return(sqrt((n1+.25)*(n2+.25))*p^n1*(1-p)^n2*

exp(-((n1+.25)*ss1+(n2+.25)*ss2)/2)*

exp(-(n1*xbar1^2+n2*xbar2)/8))

}

leading for instance to

> omega(z=sample(1:2,4,rep=TRUE),

+ x=plotmix(n=4,plot=FALSE)$samp,p=.8)

[1] 0.0001781843

> omega(z=sample(1:2,4,rep=TRUE),

+ x=plotmix(n=4,plot=FALSE)$sample,p=.8)

[1] 5.152284e-09

Note that the omega function is not and cannot be normalized, so the values
must be interpreted on a relative scale. ◭

The decomposition (6.5) makes a lot of sense from an inferential point of
view. The posterior distribution simply considers each possible partition z of
the dataset, then allocates a posterior probability ω (z) to this partition, and
at last constructs a posterior distribution for the parameters conditional on
this allocation. Unfortunately, the computational burden resulting from this
decomposition is simply too intensive because there are kn terms in the sum.

However, there exists a solution that overcomes this computational prob-
lem. It uses an MCMC approach that takes advantage of the missing-variable
structure and removes the requirement to explore the kn possible values of z
by only looking at the most likely ones.

Although this is beyond the scope of the book, let us point out here that
there also exists in the statistical literature a technique that predates MCMC
simulation algorithms but still relates to the same missing-data structure and
completion mechanism. It is called the EM Algorithm5 and consists of an
iterative but deterministic sequence of “E” (for expectation) and “M” (for
maximization) steps that converge to a local maximum of the likelihood. At
iteration t, the “E” step corresponds to the computation of the function

Q{(θ(t),p(t)), (θ,p)} = E(θ(t),p(t)) [log ℓ(θ,p|x, z)|x] ,

5In non-Bayesian statistics, the EM algorithm is certainly the most ubiquitous
numerical method, even though it only applies to (real or artificial) missing variable
models.
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where the likelihood ℓ(θ,p|x, z) is the joint distribution of x and z, while
the expectation is computed under the conditional distribution of z given x
and the value (θ(t),p(t)) for the parameter. The “M” step corresponds to the

maximization of Q((θ(t),p(t)), (θ,p)) in (θ,p), with solution (θ(t+1),p(t+1)).
As we will see in Sect. 6.4, the Gibbs sampler takes advantage of exactly the
same conditional distribution. Further details on EM and its Monte Carlo
versions (namely, when the “E” step is not analytically feasible) are given in
Robert and Casella (2004, Chap. 5; 2009, Chap. 5).

6.4 MCMC Solutions

For the joint distribution (6.4), the full conditional distribution of z given x
and the parameters is always available as

π(z|x, θ,p) ∝
n∏

i=1

pzif(xi|θzi)

and can thus be computed at a cost of O(n). Since, for standard distributions
f(·|θ), the full posterior conditionals are also easily simulated when using
conjugate priors, this implies that the Gibbs sampler can be derived in this
setting.6

If p and θ are independent a priori, then, given z, the vectors p and x are
independent; that is,

π(p|z,x) ∝ π(p)f(z|p)f(x|z) ∝ π(p)f(z|p) ∝ π(p|z) .

Moreover, in that case, θ is also independent a posteriori from p given z and
x, with density π(θ|z,x). If we apply the Gibbs sampler in this problem, it
involves the successive simulation of z and (p, θ) conditional on one another
and on the data:

6Historically, missing-variable models constituted one of the first instances where
the Gibbs sampler was used by completing the missing variables by simulation under
the name of data augmentation (see Tanner, 1996, and Robert and Casella, 2004,
Chaps. 9 and 10).
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Algorithm 6.11 Mixture Gibbs Sampler

Initialization: Choose p(0) and θ(0) arbitrarily.
Iteration t (t ≥ 1):

1. For i = 1, . . . , n, generate z
(t)
i such that

P (zi = j|θ,p) ∝ p
(t−1)
j f
(
xi|θ(t−1)

j

)
.

2. Generate p(t) according to π(p|z(t)).
3. Generate θ(t) according to π(θ|z(t),x).

The simulation of the pj ’s is also generally obvious since there exists a
conjugate prior (as detailed below). In contrast, the complexity in the simu-
lation of the θj ’s will depend on the type of sampling density f(·|θ) as well as
the prior π.

The marginal (sampling) distribution of the zi’s is a multinomial distri-
bution Mk(p1, . . . , pk), which allows for a conjugate prior on p, namely the
Dirichlet distribution p ∼ D (γ1, . . . , γk), with density

Γ (γ1 + . . .+ γk)

Γ (γ1) · · ·Γ (γk)
pγ1

1 · · · pγk

k

on the simplex of Rk,

Sk =

⎧
⎨
⎩(p1, . . . , pk) ∈ [0, 1]k ;

k∑

j=1

pj = 1

⎫
⎬
⎭ .

In this case, denoting nj =

n∑

l=1

Izl=j (1 ≤ j ≤ k) the allocation sizes, the

posterior distribution of p given z is

p|z ∼ D (n1 + γ1, . . . , nk + γk) .

It is rather peculiar that, despite its importance for Bayesian statistics,
the Dirichlet distribution is not available in R (at least in the standard stat
package). It is however fairly straightforward to code, using a representation
based on gamma variates, as shown below.

rdirichlet=function(n=1,par=rep(1,2)){

k=length(par)

mat=matrix(0,n,k)

for (i in 1:n){
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sim=rgamma(k,shape=par,scale=1)

mat[i,]=sim/sum(sim)

}

mat

}

When the density f(·|θ) also allows for conjugate priors, the simulation
of θ can be specified further since an independent conjugate prior on each θj
leads to independent and conjugate posterior distributions on the θj ’s, given
z and x.

Continuation of Example 6.1. For the mixture (6.3), under independent
normal priors N (δ, 1/λ) (both δ ∈ R and λ > 0 are fixed hyperparameters)
on both μ1 and μ2, the parameters μ1 and μ2 are independent given (z,x),
with conditional distributions

N

(
λδ + n1x̄1 (z)

λ+ n1
,

1

λ+ n1

)
and N

(
λδ + (n− n1)x̄2 (z)

λ+ n− n1
,

1

λ+ n− n1

)
,

respectively. Similarly, the conditional posterior distribution of the zi’s given
(μ1, μ2) is (i = 1, . . . , n)

P (zi = 1|μ1, xi) ∝ p exp
(
−0.5 (xi − μ1)

2
)
.

We can thus construct an R function like the following one to generate a
sample from the posterior distribution: assuming δ = 0 and λ = 1,

gibbsmean=function(p,datha,niter=10^4){

n=length(datha)

z=rep(0,n); ssiz=rep(0,2)

nxj=rep(0,2)

mug=matrix(mean(datha),nrow=niter+1,ncol=2)

for (i in 2:(niter+1)){

for (t in 1:n){

prob=c(p,1-p)*dnorm(datha[t],mean=mug[i-1,])

z[t]=sample(c(1,2),size=1,prob=prob)

}

for (j in 1:2){

ssiz[j]=1+sum(z==j)

nxj[j]=sum(as.numeric(z==j)*datha)

}

mug[i,]=rnorm(2,mean=nxj/ssiz,sd=sqrt(1/ssiz))

}

mug

}
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which can be used as

> dat=plotmix()$sample

> simu=gibbsmean(0.7,dat)

> points(simu,pch=".")

to produce Figs. 6.3 and 6.4. This R code illustrates two possible behaviors
of this algorithm if we use a simulated dataset of 500 points from the mix-
ture 0.7N (0, 1) + 0.3N (2.5, 1), which corresponds to the level sets on both
pictures. The starting point in both cases is located at the saddle point be-
tween the two modes, i.e. at an instable equilibrium. Depending on the very
first (random) iterations of the algorithm, the final sample may end up lo-
cated on the upper or on the lower mode. For instance, in Fig. 6.3, the Gibbs
sample based on 10,000 iterations is in agreement with the likelihood surface,
since the second mode discussed in Example 6.1 is much lower than the mode
where the simulation output concentrates. In Fig. 6.4, the Gibbs sample ends
up being trapped by this lower mode. ◭

Example 6.2. If we consider the more general case of a mixture of two normal
distributions with all parameters unknown,

pN (μ1, σ
2
1) + (1− p)N (μ2, σ

2
2) ,

and for the conjugate prior distribution (j = 1, 2)
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Fig. 6.3. Log-likelihood surface and the corresponding Gibbs sample for the model
(6.3), based on 10,000 iterations
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Fig. 6.4. Same legend as Fig. 6.3, with the same starting point located at the saddle
point. In this instance, the Gibbs sample ends up around a lower mode

μj |σj ∼ N (ξj , σ
2
j /lj) , σ2

j ∼ I G (νj/2, s
2
j/2) , p ∼ Be(α, β) ,

the same decomposition conditional on z and straightforward (if dreary) al-
gebra imply that

p|x, z ∼ Be(α + n1, β + n2),

μj |σj ,x, z ∼ N

(
ξ1(z),

σ2
j

nj + lj

)
, σ2

j |x, z ∼ I G ((νj + nj)/2, sj(z)/2) ,

where nj is the number of zi equal to j, x̄j(z) and ŝ2j (z) are the empirical
mean and variance (biased) for the subsample with zi equal to j, and

ξj(z) =
ljξj + njx̄j(z)

lj + nj
, sj(z) = s2j + nj ŝ

2
j(z) +

ljnj

lj + nj
(ξj − x̄j(z))

2 .

The modification of the above R code is also straightforward and we do not
reproduce it here to save space. The extension to more than two components
is equally straightforward, as described below for License. ◭
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If we model License by a k = 3 component normal mixture model, we start
by deriving the prior distribution from the scale of the problem. Namely, we
choose a D3(1/2, 1/2, 1/2) prior for the weights (although picking parameters
less than 1 in the Dirichlet prior has the potential drawback that it may
allow very small weights for some components), a N (x, σ2

i ) distribution on
the means μi, and a G a(10, σ̂2) distribution on the precisions σ−2

i , where x
and σ̂2 are the empirical mean and variance of License, respectively. (This
empirical choice of a prior is debatable on principle, as it depends on the
dataset, but this is relatively harmless since it is equivalent to standardizing
the dataset so that the empirical mean and variance are equal to 0 and 1,
respectively.) If we define the parameter vector mix as a list,

> mix=list(k=k,p=p,mu=mu,sig=sig)

our R function

gibbsnorm=function(niter,mix)

is made of an initialization step:

n=length(datha);k=mix$k

z=rep(0,n) #missing data

nxj=rep(0,k)

ssiz=ssum=rep(0,k)

mug=sigg=prog=matrix(0,nrow=niter,ncol=k)

lopost=rep(0,niter) #log-posterior

lik=matrix(0,n,k)

prog[1,]=rep(1,k)/k;mug[1,]=rep(mix$mu,k)

sigg[1,]=rep(mix$sig,k)

#current log-likelihood

for (j in 1:k)

lik[,j]=prog[1,j]*dnorm(x=datha,mean=mug[1,j],

sd=sqrt(sigg[1,j]))

lopost[1]=sum(log(apply(lik,1,sum)))+

sum(dnorm(mug[1,],mean(datha),sqrt(sigg[1,]),log=TRUE))-

(10+1)*sum(log(sigg[1,]))-sum(var(datha)/sigg[1,])+

.5*sum(log(prog[1,]))

and of the main loop for data completion and conditional parameter simula-
tion:

for (i in 1:(niter-1)){

for (t in 1:n){ #missing data completion

prob=prog[i,]*dnorm(datha[t],mug[i,],sqrt(sigg[i,]))

if (sum(prob)==0) prob=rep(1,k)/k

z[t]=sample(1:k,1,prob=prob)

}
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#conditional parameter simulation

for (j in 1:k){

ssiz[j]=sum(z==j)

nxj[j]=sum(as.numeric(z==j)*datha)

}

mug[i+1,]=rnorm(k,(mean(datha)+nxj)/(ssiz+1),

sqrt(sigg[i,]/(ssiz+1)))

for (j in 1:k)

ssum[j]=sum(as.numeric(z==j)*(datha-nxj[j]/ssiz[j])^2)

sigg[i+1,]=1/rgamma(k,shape=.5*(20+ssiz),rate=var(datha)+

.5*ssum+.5*ssiz/(ssiz+1)*(mean(datha)-nxj/ssiz)^2)

prog[i+1,]=rdirichlet(1,par=ssiz+0.5)

#current log-likelihood

for (j in 1:k)

lik[,j]=prog[i+1,j]*dnorm(x=datha,mean=mug[i+1,j],

sd=sqrt(sigg[i+1,j]))

lopost[i+1]=sum(log(apply(lik,1,sum)))+

sum(dnorm(mug[i+1,],mean(datha),sqrt(sigg[i+1,]),log=TRUE))-

(10+1)*sum(log(sigg[i+1,]))-sum(var(datha)/sigg[i+1,])+

.5*sum(log(prog[i+1,]))

}

returning all simulated values as a list

list(k=k,mu=mug,sig=sigg,p=prog,lopost=lopost)

The output of this R function, represented in Fig. 6.5 as an overlay of the
License histogram is then produced by the R code

mix=list(k=3,mu=mean(datha),sig=var(datha))

simu=gibbsnorm(1000,mix)

hist(datha,prob=TRUE,main="",xlab="",ylab="",nclass=100)

x=y=seq(min(datha),max(datha),length=150)

yy=matrix(0,ncol=150,nrow=1000)

for (i in 1:150){

yy[,i]=apply(simu$p*dnorm(x[i],mean=simu$mu,

sd=sqrt(simu$sig)),1,sum)

y[i]=mean(yy[,i])

}

for (t in 501:1000)

lines(x,yy[t,],col="gold")

lines(x,y,lwd=2.3,col="sienna2")

This output demonstrates that this crude prior modeling is sufficient to cap-
ture the modal features of the histogram as well as the tail behavior in a
surprisingly small number of Gibbs iterations, despite the large sample size of
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2,625 points. The range of the simulated densities represented in Fig. 6.5 re-
flects the variability of the posterior distribution, while the estimate of the
density is obtained by averaging the simulated densities over the 500 itera-
tions.7

−10 −5 0 5 10

0.00

0.10

0.20

Fig. 6.5. Dataset License: Representation of 500 Gibbs iterations for the mixture
estimation. (The accumulated lines correspond to the estimated mixtures at each
iteration and the overlaid curve to the density estimate obtained by summation.)

The experiment produced in Example 6.1, page 184, gives a false sense
of security about the performance of the Gibbs sampler because it hides
the structural dependence of the sampler on its initial conditions. The
fundamental feature of Gibbs sampling—its derivation from conditional
distributions—implies that it is often restricted in the width of its moves and
that, in some situations, this restriction may even jeopardize convergence.
In the case of mixtures of distributions, conditioning on z implies that the
proposals for (θ,p) are quite concentrated and do not allow drastic changes
in the allocations at the next step. To obtain a significant modification of z
requires a considerable number of iterations once a stable position has been
reached.8 Figure 6.4 illustrates this phenomenon for the very same sample
as in Fig. 6.3: A Gibbs sampler initialized at the saddlepoint may get close
to the second mode in the very first iterations and is then unable to escape
its (fatal) attraction, even after a large number of iterations, for the reason
given above. It is quite interesting to see that this Gibbs sampler suffers from
the same pathology as the EM algorithm. However, this is not immensely
surprising given that it is based on a similar principle.

In general, there is very little one can do about improving the Gibbs
sampler since its components are given by the joint distribution. The solu-
tions are (a) to change the parameterization and thus the conditioning (see

7That this is a natural estimate of the model, compared with the “plug-in”
density using the estimates of the parameters, will be explained more clearly in
Sect. 6.5.

8In practice, the Gibbs sampler never leaves the vicinity of a given mode if the at-
traction of this mode is strong enough, for instance in the case of many observations.
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Exercise 6.6), (b) to use tempering to facilitate exploration (see Sect. 6.7), or
(c) to mix the Gibbs sampler with another MCMC algorithm.

To look for alternative MCMC algorithms is not a difficulty in this setting,
given that the likelihood of mixture models is available in closed form, being
computable in O(kn) time, and the posterior distribution is thus known up
to a multiplicative constant. We can therefore use any Metropolis–Hastings
algorithm, as long as the proposal distribution q provides a correct exploration
of the posterior surface, since the acceptance ratio

π(θ′,p′|x)
π(θ,p|x)

q(θ,p|θ′,p′)

q(θ′,p′|θ,p) ∧ 1

can be computed in O(kn) time. For instance, we can use a random walk
Metropolis–Hastings algorithm where each parameter is the mean of the pro-
posal distribution for the new value, that is,

ξ̃j = ξ
(t−1)
j + uj,

where uj ∼ N (0, ζ2) and ζ is chosen to achieve a reasonable acceptance rate.

Continuation of Example 6.1. For the posterior associated with (6.3), the
Gaussian random walk proposal is

μ̃1 ∼ N

(
μ
(t−1)
1 , ζ2

)
and μ̃2 ∼ N

(
μ
(t−1)
2 , ζ2

)

which leads to an acceptance probability of

r = min
{
1, π ( μ̃1, μ̃2|x)

/
π
(
μ
(t−1)
1 , μ

(t−1)
2

∣∣∣ x
)}

.

The corresponding R function is then of the form

hmmean=function(dat,niter,var=1){

mu=matrix(0,niter,2)

mu[1,]=rnorm(2)

for (i in 2:niter){

muprop=rnorm(2,mu[i-1,],sqrt(var))

bound=lpost(dat,muprop)-lpost(dat,mu[i-1,])

if (runif(1)<=exp(bound)) mu[i,]=muprop else

mu[i,]=mu[i-1,]

}

mu

}

used as in

> dat=plotmix()$sample

> simu=hmmeantemp(dat,niter=10^4)

> points(simu,pch=".")
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when lpost is the log-posterior density R function:

lpost=function(x,mu,p=0.7,delta=0,lambda=1){

sum(log(p*dnorm(x,mu[1])+(1-p)*dnorm(x,mu[2])))+

sum(log(dnorm(mu,delta,1/sqrt(lambda))))

}

For the same simulated dataset as in Fig. 6.4, Fig. 6.6 shows how quickly this
algorithm escapes the attraction of the spurious mode. After a few itera-
tions of the algorithm, the chain drifts away from the poor mode and con-
verges almost deterministically to the proper region of the posterior surface.
The Gaussian random walk is scaled as ζ = 1, although slightly smaller scales
do work as well but would require more iterations to reach the proper modal
regions. Too small a scale sees the same trapping phenomenon appear, as the
chain does not have sufficient energy to escape the attraction of the current
mode (see Example 6.1, page 199, and Fig. 6.8 below). Nonetheless, for a large
enough scale, the Metropolis–Hastings algorithm overcomes the drawbacks of
the Gibbs sampler. ◭
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Fig. 6.6. Outcome of a 10,000 iteration random walk Metropolis–Hastings sample
on the log-likelihood surface; the starting point is equal to (1, 3). The scale ζ of the
random walk is equal to 1
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We must point out that, for constrained parameters, the unconstrained
random walk Metropolis–Hastings proposal remains valid but is not efficient

because when the chain (ξ
(t)
j ) gets close to the boundary of the parameter

space, it moves very slowly, given that the proposed values are often in-
compatible with the constraint and thus rejected at the Metropolis–Hastings
acceptance step.

For instance, this lack of efficiency has an impact on the simulation of
the weight vector p since

∑k
i=1 pk = 1 in addition to positivity constraints.

A practical resolution of this difficulty is to overparameterize the weights of
(6.2) into

pj = wj

/ k∑

l=1

wl , wj > 0 (1 ≤ j ≤ k) .

Obviously, the wj ’s are not identifiable, but this is not a difficulty from a sim-
ulation point of view and the pj’s remain identifiable (up to a permutation
of indices). Perhaps paradoxically, using overparameterized representations
often helps with the mixing of the corresponding MCMC algorithms since
those algorithms are less constrained by the dataset or by the likelihood. The
reader may have noticed that the wj ’s are also constrained by a positivity re-
quirement (just like the variances in a normal mixture or the scale parameters
for a Gamma mixture), but this weaker constraint can be bypassed using the
reparameterization ηj = logwj . The proposed random walk move on the wj ’s
is thus

log(w̃j) = log
{
w

(t−1)
j

}
+ uj ,

where uj ∼ N (0, ζ2). An important difference from the original random walk
Metropolis–Hastings algorithm is that the acceptance ratio also involves a
Jacobian term. For instance, the acceptance ratio for a move from w(t−1) to
w̃ is then

1 ∧ π(w̃)

π(w(t−1))

k∏

j=1

w̃j

w
(t−1)
j

. (6.6)

Note that, while being a fairly natural algorithm, the random walk Metro-
polis–Hastings algorithm usually falls victim to the curse of dimensionality
since, obviously the same scale cannot perform well for every component of the
parameter vector. In large or even moderate dimensions, a reparameterization
of the parameter and preliminary estimation of the information matrix of the
distribution are thus often necessary and must sometimes be completed by
Gibbs steps operating in lower dimensions.

6.5 Label Switching Difficulty

A basic but extremely important feature of a mixture model is that it is in-
variant under permutations of the indices of the components. For instance,
the normal mixtures 0.3N (0, 1)+0.7N (2.5, 1) and 0.7N (2.5, 1)+0.3N (0, 1)
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are exactly the same. Therefore, the N (2.5, 1) distribution cannot be called
the “first” component of the mixture! In other words, the component param-
eters θi are not identifiable marginally in the sense that θ1 may be 2.5 as well
as 0 in the example above. In this specific case, the pairs (θ1, p) and (θ2, 1−p)
are exchangeable.

First, in a k-component mixture, the number of modes of the likelihood
is of order O(k!) since if ((θ1, . . . , θk), (p1, . . . , pk)) is a local maximum of the
likelihood function, so is τ(θ,p) = (θτ(1), . . . , θτ(k), pτ(1), . . . , pτ(k)) for every
permutation τ ∈ Sk, the set of all permutations of {1, . . . , k}. This makes
maximization and even exploration of the posterior surface obviously harder
because modes are separated by valleys that most samplers find difficult to
cross.

Second, if an exchangeable prior is used on (θ,p) (that is, a prior invariant
under permutation of the indices), all the posterior marginals on the θi’s are
identical, a fact which means for instance that the posterior expectation of
θ1 is identical to the posterior expectation of θ2. Therefore, alternatives to
posterior expectations must be considered to provide pertinent estimators.

Continuation of Example 6.1. In the special case of model (6.3), if we
take the same normal prior on both μ1 and μ2, μ1, μ2 ∼ N (0, 10) , say, the
posterior weight conditional on p associated with an allocation z for which
n1 values are attached to the first component will simply be

ω (z) ∝ pn1(1− p)n−n1

∫
e−n1(µ1−x̄1(z))

2/2−(n−1)(µ2−x̄2(z))
2/2 dπ(μ1) dπ(μ2)

× exp
(
−
{
s21(z) + s22(z)

}
/2
)

∝
√
(n1 + 1/10)(n− n1 + 1/10)pn1(1− p)n−n1 exp

(
−
{
s21(z) + s22(z)

+n1{x̄1(z)}2/(10n1 + 1) + (n− n1){x̄2(z)}2/(10(n− n1) + 1)
}
/2
)
,

where s21(z) and s22(z) denote the sums of squares for both groups. ◭

For the Gibbs output of License discussed above, the exchangeability
predicted by the theory is not observed at all, as shown in Fig. 6.7. This figure
is derived from an R code repeating dual plots like

> simu=gibbsnorm(1000,mix)

> plot(simu$mu[,1],ylim=range(simu$mu),

+ ylab=expression(mu[i]),xlab="n",type="l",col="sienna3")

> lines(simu$mu[,2],col="gold4")

> lines(simu$mu[,3],col="steelblue")

> plot(simu$mu[,2],simu$p[,2],col="sienna3",

+ xlim=range(simu$mu),ylim=range(simu$p),

+ xlab=expression(mu[i]),ylab=expression(p[i]))

> points(simu$mu[,3],simu$p[,3],col="steelblue")
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In Fig. 6.7, we see that each component is thus identified by its mean, and
the posterior distributions of the means are very clearly distinct. Although this
result has the appeal of providing distinct estimates for the three components,
it suffers from the severe drawback that the Gibbs sampler has not explored
the whole parameter space after 1,000 iterations. Running the algorithm for
a much longer period does not solve this problem since the Gibbs sampler
cannot simultaneously switch enough component allocations in this highly
peaked setup. In other words, the algorithm is unable to explore more than
one of the 3! = 6 equivalent modes of the posterior distribution. Therefore, it
is difficult to trust the estimates derived from such an output.
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Fig. 6.7. Dataset License: (left) Convergence of the three types of parameters of
the normal mixture, each component being identified by a different grey level/color ;
(right) 2× 2 plot of the Gibbs sample for the three types of parameters of a normal
mixture

This identifiability problem related to the exchangeability of the posterior
distribution, often called “label switching,” thus requires either an alternative
prior modeling or a more tailored inferential approach. A näıve answer to
the problem is to impose an identifiability constraint on the parameters, for
instance defining the components by ordering the means (or the variances or
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the weights) in a normal mixture (see Exercise 6.3). From a Bayesian point
of view, this amounts to truncating the original prior distribution, going from
π (θ,p) to

π (θ,p) Iµ1≤...≤µk

for instance. While this seems innocuous (given that the sampling distribution
is the same with or without this indicator function), the introduction of an
identifiability constraint has severe consequences on the resulting inference,
both from a prior and from a computational point of view. When reducing
the parameter space to its constrained part, the imposed truncation has no
reason to respect the topology of either the prior or the likelihood. Instead of
singling out one mode of the posterior, the constrained parameter space may
then well include parts of several modes and the resulting posterior mean
could, for instance, lie in a very low probability region between the modes,
while the high posterior probability zones are located at the boundaries of
this space.

In addition, the constraint may radically modify the prior modeling and
come close to contradicting the prior information. For large values of k, the
introduction of a constraint also has a consequence on posterior inference:
With many components, the ordering of components in terms of one of the
parameters of the mixture is unrealistic. Some components will be close in
mean while others will be close in variance or in weight. This may even lead to
very poor estimates of the parameters if the inappropriate ordering is chosen.

Note that while imposing a constraint that is not directly related to the
modal regions of the target distribution may considerably reduce the efficiency
of an MCMC algorithm, it must be stressed that the constraint does not need
to be imposed during the simulation but can instead be imposed after sim-
ulation by reordering the MCMC output according to the constraint. For
instance, if the constraint imposes an ordering of the means, once the sim-
ulation is over, the components can be relabeled for each MCMC iteration
according to this constraint; that is, defining the first component as the one
associated with the smallest simulated mean and so on. From this perspective,
identifiability constraints have nothing to do with (or against) simulation.

An empirical resolution of the label switching problem that avoids impos-
ing the constraints altogether consists of arbitrarily selecting one of the k!
modal regions of the posterior distribution once the simulation step is over
and only then operate the relabeling in terms of proximity to this region.

Given an MCMC sample of size M , we can find a Monte Carlo approxi-
mation of the maximum a posteriori (MAP) estimator by taking θ(i∗),p(i∗)

such that
i∗ = arg max

i=1,...,M
π
{
(θ,p)(i)|x

}
;
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that is, the simulated value that gives the maximal posterior density. (Note
that π does not need its normalizing constant for this computation.) This
value is quite likely to be in the vicinity of one of the k! modes, especially if
we run many simulations. The approximate MAP estimate will thus act as a
pivot in the sense that it gives a good approximation to a mode and we can
reorder the other iterations with respect to this mode.

Rather than selecting the reordering based on a Euclidean distance in
the parameter space, we use a distance in the space of allocation probabili-
ties. Indeed, the components of the parameter vary in different spaces, from
the real line for the means to the simplex for the weights. Let Sk be the
k-permutation set and τ ∈ Sk. We suggest to minimize in τ an entropy dis-
tance summing the relative entropies between the P(zt = j|θ(i⋆),p(i⋆))’s and

the P(zt = j|τ
{
(θ(i),p(i))

}
)’s, namely

h(i, τ) =

n∑

t=1

k∑

j=1

P(zt = j|θ(i⋆),p(i⋆))

× log
{
P(zt = j|θ(i⋆),p(i⋆))

/
P(zt = j|τ

[
(θ(i),p(i))

]
)
}
.

The selection of the permutations reordering the MCMC output thus reads
as follows:

Algorithm 6.12 Pivotal Reordering

At iteration i ∈ {1, . . . ,M}:
1. Compute

τi = arg min
τ∈Sk

h(i, τ) ,

2. Set (θ(i),p(i)) = τi{(θ(i),p(i))}.

Thanks to this reordering, most iteration labels get switched to the same
mode (when n gets large, this is almost a certainty), and the identifiability
problem is thus solved. Therefore, after this reordering step, the Monte Carlo
estimate of the posterior expectation Eπ [θi|x],

M∑

j=1

(θi)
(j)
/
M ,
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can be used as in a standard setting because the reordering automatically
gives different meanings to different components. Obviously, Eπ[θi|x] (or its
approximation) should also be compared with θ(i

∗) to check convergence.9

Using the Gibbs output simu of License (which is the datha of the fol-
lowing code) as in the previous illustration, the corresponding R code involves
the determination of the MAP approximation

indimap=order(simu$lopost,decreasing=TRUE)[1]

map=list(mu=simu$mu[indimap,],sig=simu$sig[indimap,],

p=simu$p[indimap,])

that is easily derived by storing the values of the log-likelihood densities in
the Gibbs sampling function gibbsnorm. The corresponding (MAP) allocation
probabilities for the data are then

lili=alloc=matrix(0,length(datha),3)

for (t in 1:length(datha)){

lili[t,]=map$p*dnorm(datha[t],mean=map$mu,

sd=sqrt(map$sig))

lili[t,]=lili[t,]/sum(lili[t,])

}

They are used as reference for the reordering:

ormu=orsig=orp=matrix(0,ncol=3,nrow=1000)

library(combinat)

perma=permn(3)

for (t in 1:1000){

entropies=rep(0,factorial(3))

for (j in 1:n){

alloc[j,]=simu$p[t,]*dnorm(datha[j],mean=simu$mu[t,],

sd=sqrt(simu$sig[t,]))

alloc[j,]=alloc[j,]/sum(alloc[j,])

for (i in 1:factorial(3))

entropies[i]=entropies[i]+

sum(lili[j,]*log(alloc[j,perma[[i]]]))

}

best=order(entropies,decreasing=TRUE)[1]

ormu[t,]=simu$mu[t,perma[[best]]]

orsig[t,]=simu$sig[t,perma[[best]]]

orp[t,]=simu$p[t,perma[[best]]]

}

9While this resolution seems intuitive enough, there is still a lot of debate in
academic circles on whether or not label switching should be observed on an MCMC
output and, in case it should, on which substitute to the posterior mean should be
used.
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An output comparing the original MCMC sample and the one correspond-
ing to this reordering for the License dataset is then constructed. However,
since the Gibbs sampler does not switch between the k! modes in this case,
the above reordering does not modify the labelling and we thus abstain from
producing the corresponding graph as it is identical to Fig. 6.7.

6.6 Prior Selection

After10 insisting in Chap. 2 that conjugate priors are not the only possibility
for prior modeling, we seem to be using them quite extensively in this chapter!
The fundamental reason for this is that, as explained below, it is not possible
to use the standard alternative of noninformative priors on the components.
Nonconjugate priors can be used as well (with Metropolis–Hastings steps) but
are difficult to fathom when the components have no specific “real” meaning
(as, for instance, when the mixture is used as a nonparametric proxy).

The representation (6.2) of a mixture model precludes the use of
independent improper priors,

π (θ) =

k∏

j=1

πj(θj) ,

since if, for any 1 ≤ j ≤ k,
∫

πj(θi)dθj = ∞ ,

then, for every n, ∫
π(θ,p|x)dθdp = ∞ .

The reason for this inconvenient behavior is that among the kn terms in the
expansion (6.5) of π(θ,p|x), there are (k−1)n terms without any observation
allocated to the ith component and thus there are (k − 1)n terms with a
conditional posterior π(θi|x, z) that is equal to the prior πi(θi).

The inability to use improper priors may be seen by some as a margina-
lia, a fact of little importance, since they argue that proper priors with large
variances can be used instead. However, since mixtures are ill-posed prob-
lems,11 this difficulty with improper priors is more of an issue, given that the

10This section may be skipped by most readers, as it only addresses the very
specific issue of handling improper priors in mixture estimation.

11By nature, ill-posed problems are not precisely defined. They cover classes of
models such as inverse problems, where the complexity of getting back from the
data to the parameters is huge. They are not to be confused with nonidentifiable
problems, though.
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influence of a particular proper prior, no matter how large its variance, cannot
be truly assessed. In other words, the prior gives a specific meaning to what
distinguishes one component from another.

� Prior distributions must always be chosen with the utmost care when dealing

with mixtures and their bearing on the resulting inference assessed by a sen-

sitivity study. The fact that some noninformative priors are associated with

undefined posteriors, no matter what the sample size, is a clear indicator of the

complex nature of Bayesian inference for those models.

6.7 Tempering

The notion of tempering can be found in different areas under many different
denominations, but it always comes down to the same intuition that governs
simulated annealing (Chap. 8), namely that when you flatten a posterior sur-
face, it is easier to move around, while if you sharpen it, it gets harder to do
so except around peaks.

More formally, given a density π(x), we can define an associated density
πα(x) ∝ π(x)α for α > 0 large enough (if α is too small, π(x)α does not
integrate). An important property of this family of distributions is that they
all share the same modes. When α > 1, the surface of πα is more contrasted
than the surface of π: Peaks are higher and valleys are lower. Increasing α to
infinity results in a Dirac mass at the modes of π, and this is the principle
behind simulated annealing. Conversely, lowering α to values less than 1 makes
the surface smoother by lowering peaks and raising valleys. In a compact
space, lowering α to 0 ends up with the uniform distribution.

This rather straightforward intuition can be exploited in several directions
for simulation. For instance, a tempered version of π, πα, can be simulated in
a preliminary step to determine where the modal regions of π are. (Different
values of α can be used in parallel to compare the results.) This preliminary
exploration can then be used to build a more appropriate proposal. Alter-
natively, these simulations may be pursued and associated with appropriate
importance weights. Note also that a regular Metropolis–Hastings algorithm
may be used with πα just as well as with π since the acceptance ratio is
transformed into

(
π(θ′,p′|x)
π(θ,p|x)

)α
q(θ,p|θ′,p′)

q(θ′,p′|θ,p) ∧ 1 (6.7)

in the case of the mixture parameters, with the same irrelevance of the
normalizing constants.

Continuation of Example 6.1. If we consider once more the posterior as-
sociated with (6.3), we can check in Fig. 6.8 the cumulative effect of a small
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Fig. 6.8. Comparison of Metropolis–Hastings samples of 104 points started in the
vicinity of the spurious mode for the target distributions πα when α = 1, 0.1, 0.01
(from left to right), π is the same as in Fig. 6.6, and the proposal is a random walk
with variance 0.1 (the shape of log-likelihood does not changed)

variance for the random walk proposal (chosen here as 0.1) and a decrease in
the power α. The R function used to produce this figure is

hmmeantemp=function(dat,niter=100,var=.1,alpha=1){

mu=matrix(0,niter,2)

mu[1,]=c(1,3)

for (i in 2:niter){

muprop=rnorm(2,mu[i-1,],sqrt(var))

bound=lpost(dat,muprop)-lpost(dat,mu[i-1,])

if (runif(1)<=exp(alpha*bound)) mu[i,]=muprop else

mu[i,]=mu[i-1,]

}

mu

}

It thus constitutes a very straightforward modification of the original Metro-
polis–Hastings algorithm. For the genuine target distribution π (left), 10,000
iterations of the Metropolis–Hastings algorithm are not nearly sufficient to
remove the attraction of the lower mode. When α = 0.1, we can reasonably
hope that a few thousand more iterations could bring the Markov chain toward
the other mode. For α = 0.01, only a few iterations suffice to switch modes,
given that the saddle between both modes is not much lower than the modes
themselves. (The best way to check this fact and to select α in practice is to
run the R code!) ◭
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6.8 Mixtures with an Unknown Number of Components

While the standard interpretation of mixtures gives each component a
meaning, the semiparametric approach to mixtures only perceives com-
ponents as base elements in a representation of an unknown density. In that
perspective, the number k of components represents the degree of approxi-
mation, and it has no particular reason to be fixed in advance. Even from the
traditional perspective, it may also happen that the number of homogeneous
groups within the population of interest is unknown and that inference first
seeks to determine this number. For instance, in a marketing study of Web-
browsing behaviors, it may well be that the number of different behaviors is
unknown. Also, for instance, in the analysis of financial stocks, the number
of different patterns in the evolution of these stocks may be unknown to
the analyst. For these different situations, it is thus necessary to extend the
previous setting to include inference on the number k of components itself.

Inference on such a structure is somehow more complicated than on single
models, especially when there are an infinite number of submodels, i.e. when
k is not bounded, and it can be tackled from two different (or even opposite)
perspectives. The first approach is to consider the variable dimension model
as a whole and to estimate quantities that are meaningful for the whole model
(such as moments or predictives) as well as quantities that only make sense
for submodels (such as posterior probabilities of submodels and posterior mo-
ments of θk). From a Bayesian perspective, once a prior is defined on θ, the
only difficulty is in finding an efficient way to explore the complex parameter
space in order to produce these estimators. The second perspective on variable
dimension models is to resort to testing, rather than estimation, by adopting
a model choice stance. This requires choosing among all possible submodels
the “best one” in terms of an appropriate criterion, usually through the Bayes
factor (Sect. 2.3.2). The computational resolution of the comparison when the
number of models is infinite requires MCMC exploration, while the variability
of the resulting inference may be underestimated if the selection of the model
is not accounted for in the assessment of the variability. Nonetheless, this is an
approach often used in linear and generalized linear models (Chaps. 3 and 4)
where subgroups of covariates are compared against a given dataset.

Mixtures with an unknown number of components are one particular in-
stance of variable dimension models. Other cases include the selection of co-
variates among k possible covariates in a generalized linear model (Chap. 4)
which can be seen as a collection of 2k submodels (depending on the presence
or absence of each covariate). Similarly, in a time series model such as the AR
and MA models (Chap. 7), the value of the lag dependence can be left open,
depending on the data at hand. Other instances are the determination of the
order in a hidden Markov model (Chap. 7), as in DNA sequences where the
dependence of the past bases may go back for one, two, or more steps, or even
in a capture–recapture experiment (Chap. 5) when one estimates the number
of species from the observed species.
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While we opt here for a testing perspective, a more generic simulation
technique called reversible jump has been developed by Green (1995). While
it was exposed in the earlier edition (Marin and Robert, 2007), it requires
both a high degree of formalization and a very sensitive calibration. In the
specific case of mixtures, the number of models under comparison (i.e., the
range of k) is usually small enough to prefer an enumeration of all models and
hence an approximation of all marginal likelihoods.

Similarly, Dirichlet processes are often advanced as alternative to the
estimation of the number of components for mixtures because they naturally
embed a clustering mechanism. A Dirichlet process is a nonparametric object
that formally involves a countably infinite number of components. Nonethe-
less, inference on Dirichlet processes for a finite sample size produces a random
number of clusters, which can be used as an estimate of the number of com-
ponents. Since the technical complexity of those objects is too high for this
book, we refer to Hjort et al. (2010) for detail.

Once testing is adopted as the setting of reference, the implementation of
the principle boils down to study some proposals regarding approximations
of the Bayes factor oriented towards the direct exploitation of outputs from
single model MCMC runs.

In fact, the major difference between approximations of Bayes factors
based on those outputs and approximations based on the output from the
reversible jump chains is that the latter requires a sufficiently efficient choice
of proposals to move around models, which can be difficult. If we can instead
concentrate the simulation effort on single models, the complexity of the al-
gorithm decreases (a lot) and there exist ways to evaluate the performance of
the corresponding MCMC samples. In addition, it is often the case that few
models are in competition when estimating k and it is therefore possible to
visit the whole range of potentials models in an exhaustive manner.

We have

fJ(x|λJ) =

n∏

i=1

J∑

j=1

pjf(xi|θj)

where λJ = (θ,p) = (θ1, . . . , θJ , p1, . . . , pJ). Most solutions (see, e.g.
Frühwirth-Schnatter, 2006, Sect. 5.4) revolve around an importance sam-
pling approximation to the marginal likelihood integral

mJ(x) =

∫
fJ(x|λJ)πJ (λJ) dλJ

where J denotes the model index (that is the number of components in the
present case). A different possibility is to use Gelfand and Dey (1994) repre-
sentation: starting from an arbitrary density gJ , the equality
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1 =

∫
gJ(λJ) dλJ =

∫
gJ(λJ )

fJ(x|λJ )πJ (λJ)
fJ(x|λJ)πJ (λJ) dλJ

= mJ(x)

∫
gJ(λJ)

fJ(x|λJ )πJ(λJ )
πJ (λJ |x) dλJ

implies that a potential estimate of mJ (x) is

m̂J(x) = 1

/
1

T

T∑

t=1

gJ(λ
(t)
J )

fJ(x|λ(t)
J )πJ (λ

(t)
J )

when the λ
(t)
J ’s are produced by a Monte Carlo or an MCMC sampler targeted

at πJ (λJ |x).
While this solution can be easily implemented in low dimensional settings,

calibrating the auxiliary density gk is always an issue. The auxiliary density
could be selected as a non-parametric estimate of πk(λJ |x) based on the
sample itself but this is very costly. Another difficulty is that the estimate
may have an infinite variance and thus be too variable to be trustworthy.

Yet another approximation to the integral mJ(x) is to consider it as the
expectation of fJ(x|λJ), when λJ is distributed from the prior. While a brute
force approach simulating λJ from the prior distribution requires a huge num-
ber of simulations!

We consider here a further solution, first proposed by Chib (1995), that
is straightforward to implement in the setting of mixtures. Although this
method may fail because of the lack of label switching, we show below how
the difficulty can easily be removed. Chib’s method is directly based on the
expression of the marginal distribution (loosely called marginal likelihood in
this section) in Bayes’ theorem:

mJ(x) =
fJ(x|λJ)πJ (λJ)

πJ (λJ |x)

and on the property that the rhs of this equation is constant in λJ . Therefore,
if an arbitrary value of λJ , λ

∗
J say, is selected and if a good approximation to

πJ (λJ |x) can be constructed, π̂J (λJ |x), Chib’s approximation to the marginal
likelihood is

m̂J(x) =
fJ(x|λ∗

J )πJ (λ
∗
J)

π̂J(λ
∗
J |x)

. (6.8)

In the case of mixtures, a natural approximation to πJ (λJ |x) is the
Rao–Blackwell estimate

π̂J (λ
∗
J |x) =

1

T

T∑

t=1

πJ (λ
∗
J |x, z(t)) , (6.9)

where the z(t)’s are the latent variables simulated by the MCMC sampler. To
be efficient, this method requires
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(a) a good choice of λ∗
J but, since in the case of mixtures, the likelihood is

computable, λ∗
J can be chosen as the MCMC approximation to the MAP

estimator (see Algorithm 6.12) and,
(b) a good approximation to πJ(λJ |x).
This latter requirement is paramount: while, at a formal level, π̂J(λ

∗
J |x) is

a converging (parametric) approximation to πJ(λJ |x) by virtue of the er-
godic theorem, this obviously requires the chain (z(t)) to converge to its sta-
tionarity distribution. Unfortunately, as discussed previously, in the case of
mixtures, the Gibbs sampler rarely converges because of the label switching
phenomenon, so the approximation π̂J(λ

∗
J |x) is untrustworthy. It is easily seen

via a numerical experiment that (6.8) is significantly different from the true
value mJ(x) when label switching does not occur. There is, however, a fix to
this problem which is to recover the label switching symmetry a posteriori,
replacing π̂J (λ

∗
J |x) in (6.9) above with

π̂J(λ
∗
J |x) =

1

T J !

∑

σ∈SJ

T∑

t=1

πJ (σ(λ
∗
J)|x, z(t)) ,

where SJ denotes the set of all permutations of {1, . . . , J} and σ(λ∗
J ) denotes

the transform of λ∗
J where components are switched according to the permu-

tation σ. Note that the permutation can equally be applied to λ∗
J or to the

z(t)’s but that the former is usually more efficient from a computational point
of view given that the sufficient statistics only have to be computed once. The
justification for this modification stems from a Rao–Blackwellization argu-
ment, namely that the permutations are ancillary for the problem and should
be integrated out.

Example 6.3. In the case of the normal mixture case and a benchmark called
the “galaxy dataset” (Robert and Casella, 2004, Chap. 11, Table 11.1) Gibbs
sampling does not produce any label switching. If we compute log m̂J(x) using
Chib’s original estimate (6.8), the [logarithm of the] estimated marginal like-
lihood is

ρ̂J(x) = −105.1396

for J = 3 (based on 103 simulations), while introducing the permutations
leads to

ρ̂J(x) = −103.3479 .

As noted by Frühwirth-Schnatter (2006), the difference between the origi-
nal Chib’s approximation and the true marginal likelihood is close to log(J !)
(only) when the Gibbs sampler remains concentrated around a single mode
of the posterior distribution. In the current case, we have that

−116.3747+ log(2!) = −115.6816

exactly! (We also checked this numerical value of the marginal likelihood
against a brute-force estimate obtained by simulating from the prior and
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averaging the likelihood, up to a fourth digit agreement.) A similar result
holds for J = 3, with

−105.1396+ log(3!) = −103.3479 .

For J = 4, we get for instance that the original Chib’s approximation is
−104.1936, while the average over permutations gives −102.6642. Similarly,
for J = 5, the difference between−103.91 and −101.93 is less than log(5!). The
log(J !) difference cannot therefore be used as a direct correction for Chib’s
approximation because of this difficulty in controlling the amount of overlap.
However, it is unnecessary since using the permutation average resolves the
difficulty. Table 6.1 shows that the preferred value of J for the Galaxy dataset
and the current choice of prior distribution is J = 5.

J 2 3 4 5 6 7 8

ρ̂J (x) −115.68 −103.35 −102.66 −101.93 −102.88 −105.48 −108.44

Table 6.1. Dataset Galaxy: estimations of the marginal log-likelihoods by the
symmetrized Chib’s approximation

When the number of components J grows too large for all permutations
in SJ to be considered in the average, a (random) subsample of permutations
can be simulated to keep the computing time to a reasonable level (obviously
keeping the identity as one of the selected permutations!), as in Table 6.1 for
J = 6, 7. Note also that the discrepancy between the original Chib’s (1995)
approximation and the average over permutations is a good indicator of the
mixing properties of the Markov chain, if a further convergence indicator is
requested.

We implemented Chib’s method for the License dataset in the func-
tion gibbsnorm(niter,mix). The code relies on the combinatorial package
combinat in order to store all possible permutations:

lolik=rep(0,niter)

library(combinat)

perms=matrix(unlist(permn(k)),ncol=k,byrow=T)

nperms=dim(perms)[1]

The marginal likelihood is then averaged over iterations and permutations

chibdeno=0

for (j in 1:nperms)

chibdeno=chibdeno+exp(sum(dnorm(mug[i+1,perms[j,]],

mean=(mean(datha)+nxj)/(1+ssiz),
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sd=sqrt(sigg[i+1,perms[j,]])/sqrt((1+ssiz)),log=TRUE))+

sum(dgamma(1/sigg[i+1,perms[j,]],shape=.5*(20+ssiz),

rate=var(datha)+.5*ssum+.5*ssiz/

(ssiz+1)*(mean(datha)-nxj/ssiz)^2,log=TRUE)

-2*log(sigg[i+1,perms[j,]]))+

sum((ssiz-0.5)*log(prog[i+1,perms[j,]]))+

lgamma(sum(ssiz+0.5))-sum(lgamma(ssiz+0.5)))

the function returning a list list(...,lolik=lolik,deno=chibdeno). Using
the code,

> simu=gibbsnorm(1000,mix)

> lopos=order(simu$lopost)[1000]

> lnum1=simu$lolik[lopos]

> lnum2=sum(dnorm(simu$mu[lopos,],

+ mean=mean(datha),sd=simu$sig[lopos,],log=TRUE)+

+ dgamma(1/simu$sig[lopos,],10,var(datha),log=TRUE)-

+ 2*log(simu$sig[lopos,]))+

+ sum((rep(0.5,k)-1)*log(simu$p[lopos,]))+

+ lgamma(sum(rep(0.5,k)))-sum(lgamma(rep(0.5,k)))

> lchibapprox2=lnum1+lnum2-log(simu$deno)

we obtain Table 6.2 which gives the approximations of the marginal likeli-
hoods from k = 2 to k = 8. For the License dataset, the favored number of
components is thus k = 4.

k 2 3 4 5 6

ρ̂k(x) −5373.445 −5315.351 −5308.79 −5336.23 −5341.524

Table 6.2. Dataset License: estimations of the marginal log-likelihoods by the
symmetrized Chib’s approximation

6.9 Exercises

6.1 Show that a mixture of Bernoulli distributions is again a Bernoulli distribution.
Extend this to the case of multinomial distributions.

6.2 Show that the number of nonnegative integer solutions of the decomposition of n
into k parts such that n1 + . . . + nk is equal to

r =

(

n + k − 1

n

)

.
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Deduce that the number of partition sets is of order O(nk−1). (Hint: This is a classical
combinatoric problem.)

6.3 For a mixture of two normal distributions with all parameters unknown,

pN (μ1, σ
2
1) + (1− p)N (μ2, σ

2
2) ,

and for the prior distribution (j = 1, 2)

μj |σj ∼ N (ξj , σ
2
j /nj) , σ2

j ∼ I G (νj/2, s
2
j/2) , p ∼ Be(α, β) ,

show that

p|x, z ∼ Be(α + ℓ1, β + ℓ2),

μj |σj ,x, z ∼ N

(

ξ1(z),
σ2
j

nj + ℓj

)

, σ2
j |x, z ∼ I G ((νj + ℓj)/2, sj(z)/2) ,

where ℓj is the number of zi equal to j, x̄j(z) and ŝ2j(z) are the empirical mean and
variance for the subsample with zi equal to j, and

ξj(z) =
njξj + ℓj x̄j(z)

nj + ℓj
, sj(z) = s2j + ℓj ŝ

2
j(z) +

njℓj
nj + ℓj

(ξj − x̄j(z))
2 .

Compute the corresponding weight ω(z).

6.4 For the normal mixture model of Exercise 6.3, compute the function Q(θ0, θ) and
derive both steps of the EM algorithm. Apply this algorithm to a simulated dataset and
test the influence of the starting point θ0.

6.5 In the mixture model with independent priors on the θj ’s, show that the θj ’s are
dependent on each other given (only) x by summing out the z’s.

6.6 Construct and test the Gibbs sampler associated with the (ξ, μ0) parameterization
of (6.3), when μ1 = μ0 − ξ and μ2 = μ0 + ξ.

6.7 Show that, if an exchangeable prior π is used on the vector of weights (p1, . . . , pk),
then, necessarily, Eπ[pj ] = 1/k and, if the prior on the other parameters (θ1, . . . , θk) is
also exchangeable, then E

π[pj |x1, . . . , xn] = 1/k for all j’s.

6.8 Show that running an MCMC algorithm with target π(θ|x)γ will increase the
proximity to the MAP estimate when γ > 1 is large. (Note: This is a crude version of
the simulated annealing algorithm. See also Chap. 8.) Discuss the modifications required
in Algorithm 6.11 to achieve simulation from π(θ|x)γ when γ ∈ N

∗ is an integer.

6.9 Show that the ratio (6.7) goes to 1 when α goes to 0 when the proposal q is a
random walk. Describe the average behavior of this ratio in the case of an independent
proposal.

6.10 If one needs to use importance sampling weights, show that the simultaneous
choice of several powers α requires the computation of the normalizing constant of πα.

6.11 In the setting of the mean mixture (6.3), run an MCMC simulation experiment
to compare the influence of a N (0, 100) and of a N (0, 10000) prior on (μ1, μ2) on a
sample of 500 observations.

6.12 Show that, for a normal mixture 0.5N (0, 1) + 0.5N (μ, σ2), the likelihood is
unbounded. Exhibit this feature by plotting the likelihood of a simulated sample using
the R image procedure.
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Time Series

Rebus was intrigued by the long gaps
in the chronology.

—Ian Rankin, The Falls.—

Roadmap

At one point or another, everyone has to face modeling time series datasets, by
which we mean series of dependent observations that are indexed by time (like
both series in the picture above!). As in the previous chapters, the difficulty in
modeling such datasets is to balance the complexity of the representation of the
dependence structure against the estimation of the corresponding model—and
thus the modeling most often involves model choice or model comparison. We
cover here the Bayesian processing of some of the most standard time series mod-
els, namely the autoregressive and moving average models, as well as extensions
that are more complex to handle like stochastic volatility models used in finance.

This chapter also covers the more complex dependence structure found in hid-
den Markov models, while spatial dependence in considered in Chap. 8. The reader
should be aware that, due to mathematical constraints related to the long-term
stability of the series, this chapter contains more advanced material, although we
restrained from introducing complex simulation procedures on variable-dimension
spaces.

J.-M. Marin and C.P. Robert, Bayesian Essentials with R, Springer Texts
in Statistics, DOI 10.1007/978-1-4614-8687-9 7,
© Springer Science+Business Media New York 2014
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7.1 Time-Indexed Data

While we started with independent (and even iid) observations, for the obvious
reason that they are easier to process, we soon departed from this setup, gath-
ering more complexity either through heterogeneity as in the linear and gener-
alized linear models (Chaps. 3 and 4), or through some dependence structure
as in the open capture–recapture models of Chap. 5 that pertain to the generic
notion of hidden Markov models covered in Sect. 7.5.

7.1.1 Setting

This chapter concentrates on time-series (or dynamic) models, which somehow
appear to be simpler because they are unidimensional in their dependence,
being indexed only by time. Their mathematical validation and estimation
are however not so simple, while they are some of the most commonly used
models in applications, ranging from finance and economics to reliability, to
medical experiments, and ecology. This is the case, for instance, for series
of pollution data, such as ozone concentration levels, or stock market prices,
whose value at time t depends at least on the previous value at time t− 1.

The dataset we use in this chapter is a collection of four time series con-
nected with the stock market. Figure 7.1 plots the successive values from Jan-
uary 1, 1998, to November 9, 2003, of those four stocks1 which are the first
ones (in alphabetical order) to appear in the financial index Eurostoxx50, a
financial reference for the euro zone2 made of 50 major stocks. These four
series constitute the Eurostoxx50 dataset. A perusal of these graphs is suffi-
cient for rejecting the assumption of independence of these series: High values
are followed by high values and small values by small values, even though the
variability (or volatility) of the stocks varies from share to share.

The simplest mathematical structure for a time series is when the series
(xt) is Markov. We recall that a stochastic process (xt)t∈T , that is, a sequence
of random variables indexed by the t’s in T (where, here, T is equal to N or Z)
is a Markov chain when the distribution of xt conditional on the past values
(for instance, x0:(t−1) = (x0 . . . , xt−1) when T = N) only depends on xt−1.
This process is homogeneous if the distribution of xt conditional on the past

1 The four stocks are as follows. ABN Amro is an international bank from
Holland. Aegon is a Dutch insurance company. Ahold Kon., namely Koninklijke
Ahold N.V., is also a Dutch company, dealing in retail and food-service businesses.
Air Liquide is a French company specializing in industrial and medical gases.

2 At the present time, the euro zone is made up of the following countries:
Austria, Belgium, Finland, France, Germany, Greece, Holland, Ireland, Italy, Por-
tugal, and Spain.
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Fig. 7.1. Dataset Eurostoxx50: Evolution of the first four stocks over the period
January 1, 1998 to November 9, 2003

is constant in t ∈ T . Thus, given an observed sequence x0:T = (x0, . . . , xT )
from a homogeneous Markov chain, the associated likelihood is given by

ℓ(θ|x0:T ) = f0(x0|θ)
T∏

t=1

f(xt|xt−1, θ) ,

where f0 is the distribution of the starting value x0. From a Bayesian point of
view, this likelihood can be processed almost as in an iid model once a prior
distribution on θ is chosen.

However, a generic time series may be represented in formally the same
way, namely through the full conditionals as in

ℓ(θ|x0:T ) = f0(x0|θ)
T∏

t=1

ft(xt|x0:(t−1), θ) . (7.1)

When this function can be obtained in a closed form, a Bayesian analysis is
equally possible.
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Note that general time-series models can often be represented as Markov
models via the inclusion of missing variables and an increase in the dimension
of the model. This is called a state-space representation.

7.1.2 Stability of Time Series

While we pointed out above that, once the likelihood function is written down,
the Bayesian processing of the model is the same as in the iid case,3 there
exists a major difference that leads to a more delicate determination of the
corresponding prior distributions in that the new properties of stationarity and
causality constraints must often be accounted for. We cannot embark here on
a mathematically rigorous coverage of stationarity for stochastic processes or
even for time series (see Brockwell and Davis, 1996), thus simply mention
(and motivate) below the constraints found in the time series literature.

A stochastic process (xt)t∈T is stationary4 if the joint distributions of
(x1, . . . , xk) and (x1+h, . . . , xk+h) are the same for all indices k and k + h
in T . Formally, this property is called strict stationarity because there exists
an alternative version of stationarity, called second-order stationarity. This
alternative imposes invariance in time only on first and second moments of
the process. If we define the autocovariance function γx(·, ·) of the process
(xt)t∈T by

γx(r, s) = E[{xr − E(xr)}{xs − E(xs)}], r, s ∈ T ,

namely the covariance between xr and xs, cov(xr , xs), assuming that the
varianceV(xt) is finite, a process (xt)t∈T with finite second moments is second-
order stationary if

E(xt) = μ and γx(r, s) = γx(r + t, s+ t)

for all r, s, t ∈ T .
If (xt)t∈T is second-order stationary, then γx(r, s) = γx(|r − s|, 0) for all

r, s ∈ T . It is therefore convenient to redefine the autocovariance function of
a second-order stationary process as a function of just one variable; i.e., with
a slight abuse of notation,

γx(h) ≡ γx(h, 0), h ∈ T .

3In the sense that, once a closed form of the posterior is available as in (7.1),
there exist generic simulation techniques that do not take into account the dynamic
structure of the model.

4The connection with the stationarity requirement of MCMC methods is that
these methods produce a Markov kernel such that, when the Markov chain is started
at time t = 0 from the target distribution π, the whole sequence (xt)t∈N is stationary
with marginal distribution π.
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The function γx(·) is called the autocovariance function of (xt)t∈T , and γx(h)
is said to be the autocovariance “at lag” h.

The autocorrelation function is implemented in R as acf(), already used
in Chaps. 4 and 5 for computing the effective sample size of an MCMC sam-
ple. By default, the function acf() returns 10 log10(m) autocorrelations when
applied to a series (vector) of size m, the autocovariances being obtained
with the option type="covariance", and it also produces a graph of those
autocorrelations unless the option plot=FALSE is activated.

An illustration of acf() for the ABN Amro stock series is given by

> data(Eurostoxx50)

> abnamro=Eurostoxx50[,2]

> abnamro=ts(abnamro,freq=365-55*2,start=1998)

> par(mfrow=c(2,2),mar=c(4,4,1,1))

> plot.ts(abnamro,col="steelblue")

> acf(abnamro,lag=365-55*2)

> plot.ts(diff(abnamro),col="steelblue")

> acf(diff(abnamro))

whose graphical output is given in Fig. 7.2. The ts function turns the vector
of ABN Amro stocks into a time series, which explains for the years on the
first axis in plot.ts and the relative values on the first axis in acf, where 1.0
corresponds to a whole year. (The range of a year is computed by adding six
bank holidays per year to the weekend breaks.) The second row corresponds
to the time-series representation of the first difference (xt+1 −xt), a standard
approach used to remove the clear lack of stationarity of the original series.
The difference in the autocorrelation graphs is striking: in particular, the
complete lack of significant autocorrelation in the first difference is indicative
of a random walk behavior for the original series.

Obviously, strict stationarity is stronger than second-order stationarity,
and this feature somehow seems more logical from a Bayesian viewpoint as it
is a property of the whole model.5 For a process (xt)t∈N, this property relates
to the distribution f0 of the starting values.

From a Bayesian point of view, to impose the stationarity condition on a
model (or rather on its parameters) is however objectionable on the grounds
that the data themselves should indicate whether or not the underlying model
is stationary. In addition, since the datasets we consider are always finite, the
stationarity requirement is at best artificial in practice. For instance, the se-
ries in Fig. 7.1 are clearly not stationary on the temporal scale against which
they are plotted. However, for reasons ranging from asymptotics (Bayes esti-
mators are not necessarily convergent in nonstationary settings) to causality,

5Nonetheless, there exists a huge amount of literature on the study of time series
based only on second-moment assumptions.
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Fig. 7.2. Representations (left) of the time series ABN Amro (top) and of its first
difference (bottom), along with the corresponding acf graphs (right)

to identifiability (see below), and to common practice, it is customary to im-
pose stationarity constraints, possibly on transformed data, even though a
Bayesian inference on a nonstationary process could be conducted in prin-
ciple. The practical difficulty is that, for complex models, the stationarity
constraints may get quite involved and may even be unknown in some cases,
as for some threshold or changepoint models. We will expose (and solve) this
difficulty in the following sections.

7.2 Autoregressive (AR) Models

In this section, we consider one of the most common (linear) time series mod-
els, the AR(p) model, along with its Bayesian analyses and its Markov con-
nections (which can be exploited in some MCMC implementations).
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7.2.1 The Models

An AR(1) process (xt)t∈Z (where AR stands for autoregressive) is defined by
the conditional relation (t ∈ Z),

xt = μ+ ̺(xt−1 − μ) + ǫt , (7.2)

where (ǫt)t∈Z is an iid sequence of random variables with mean 0 and variance
σ2 (that is, a so-called white noise). Unless otherwise specified, we will only
consider the ǫt’s to be iid N (0, σ2) variables.6

If |̺| < 1, (xt)t∈Z can be written as

xt = μ+

∞∑

j=0

̺jǫt−j , (7.3)

and it is easy to see that this is a unique second-order stationary representa-
tion. More surprisingly, if |̺| > 1, the unique second-order stationary repre-
sentation of (7.2) is

xt = μ−
∞∑

j=1

̺−jǫt+j .

This stationary solution is frequently criticized as being artificial because it
implies that xt is correlated with the future white noises (ǫt)s>t, a property not
shared by (7.3) when |̺| < 1. While mathematically correct, the fact that xt

appears as a weighted sum of random variables that are generated after time
t is indeed quite peculiar, and it is thus customary to restrict the definition of
AR(1) processes to the case |̺| < 1 so that xt has a representation in terms of
the past realizations (ǫt)s≤t. Formally, this restriction corresponds to so-called
causal or future-independent autoregressive processes.7 Notice that the causal
constraint for the AR(1) model can be naturally associated with a uniform
prior on (−1, 1).

Note that, when we replace the above normal sequence (ǫt) with another
white noise sequence, it is possible to express an AR(1) process with |̺| > 1
as an AR(1) process with |̺| < 1. However, this modification is not helpful
from a Bayesian point of view because of the complex distribution of the
transformed white noise.

6Once again, there exists a statistical approach that leaves the distribution of the
ǫt’s unspecified and only works with first and second moments. But this perspective
is clearly inappropriate within the Bayesian framework, which cannot really work
with half-specified models.

7Both stationary solutions above exclude the case |̺| = 1. This is because the
process (7.2) is then a random walk with no stationary solution.
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A natural generalization of the AR(1) model is obtained by increasing the
lag dependence on the past values. An AR(p) process is thus defined by the
conditional (against the past) representation (t ∈ Z),

xt = μ+

p∑

i=1

̺i(xt−i − μ) + ǫt , (7.4)

where (ǫt)t∈Z is a white noise. As above, we will assume implicitly that the
white noise is normally distributed. This natural generalization assumes that
the p most recent values of the process influence (linearly) the current value
of the process. As for the AR(1) model, stationarity and causality constraints
can be imposed on this model.

A lack of stationarity of a time series theoretically implies that the series
ultimately diverges to ±∞. An illustration of this property is provided by the
following R code, which produces four AR(10) series of 260 points based on
the same ǫt’s when the coefficients ̺i are uniform over (−.5, .5). The first and
the last series either have coefficients that satisfy the stationarity conditions
or have not yet exhibited a divergent trend. Both remaining series clearly
exhibit divergence.

> p=10

> T=260

> dat=seqz=rnorm(T)

> par(mfrow=c(2,2),mar=c(2,2,1,1))

> for (i in 1:4){

+ coef=runif(p,min=-.5,max=.5)

+ for (t in ((p+1):T))

+ seqz[t]=sum(coef*seqz[(t-p):(t-1)])+dat[t]

+ plot(seqz,ty="l",col="sienna",lwd=2,ylab="")

+ }

As shown in Brockwell and Davis (1996, Theorem 3.1.1), the AR(p) process
(7.4) is both causal and second-order stationary if and only if the roots of the
polynomial

P(u) = 1−
p∑

i=1

̺iu
i (7.5)

are all outside the unit circle in the complex plane. (Remember that poly-
nomials of degree p always have p roots, but that some of those roots may
be complex numbers.) While this necessary and sufficient condition on the
parameters ̺i is clearly defined, it also imposes an implicit constraint on the
vector ̺ = (̺1, . . . , ̺p). Indeed, in order to verify that a given vector ̺ satisfies
this condition, one needs first to find the roots of the pth degree polynomial
P and then to check that these roots all are of modulus larger than 1. In other
words, there is no clearly defined boundary on the parameter space to define
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Fig. 7.3. Four simulation of an AR(10) series of 260 points when based on the
same standard normal perturbations ǫt and when the coefficients ̺i are uniform
over (−.5, .5)

the ̺’s that satisfy (or do not satisfy) this constraint, and this creates a major
difficulty for simulation applications, given that simulated values of ̺ need to
be tested one at a time. For instance, the R code

> maxi=0

> for (i in (1:10^6)) maxi=maxi+

+ (max(Mod(polyroot(c(1,runif(10,-.5,.5)))))>1)

> maxi/10^6

[1] 1

shows that no simulation out of one million simulated coefficients for the
AR(10) model that satisfy the constraint. It is therefore very likely that all
series in Fig. 7.3 are non-stationary.

Note that the general AR(p) model is Markov, just like the AR(1) model,
because the distribution of xt+1 only depends on a fixed number of past
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values. It can thus be expressed as a regular Markov chain when considering
the vector, for t ≥ p− 1,

zt = (xt, xt−1, . . . , xt+1−p)
T
= xt:(t+1−p) .

Indeed, we can write

zt+1 = μ1p +B(zt − μ1p) + εt+1 , (7.6)

where

1p = (1, . . . , 1)T ∈ R
p , B =

⎛
⎜⎜⎜⎜⎜⎝

̺1 ̺2 ̺3 . . . ̺p−2 ̺p−1 ̺p
1 0 . . . 0
0 1 0 . . . 0 0 0
...

...
0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

,

and εt = (ǫt, 0, . . . , 0)
T.

If we now consider the likelihood associated with a series x0:T of obser-
vations from a Gaussian AR(p) process, it depends on the unobserved values
x−p, . . . , x−1 since

ℓ(μ, ̺1, . . . , ̺p, σ|x0:T ,x−p:−1) ∝

σ−T−1
T∏

t=0

exp

⎧
⎨
⎩−
[
xt − μ−

p∑

i=1

̺i(xt−i − μ)

]2 /
2σ2

⎫
⎬
⎭ .

These unobserved initial values can be processed in various ways that we
now describe. First, they can all be set equal to μ, but this is a purely com-
putational convenience with no justification. Second, if the stationarity and
causality constraints hold, the process (xt)t∈Z has a stationary distribution
and one can assume that x−p:−1 is distributed from the corresponding sta-
tionary distribution, namely a Np(μ1p,A) distribution. We can then integrate
those initial values out to obtain the marginal likelihood

∫
σ−T−1

T∏

t=0

exp

⎧
⎨
⎩

−1

2σ2

(
xt−μ−

p∑

i=1

̺i(xt−i−μ)

)2⎫⎬
⎭ f(x−p:−1|μ,A) dx−p:−1,

based on the argument that they are not directly observed. This likelihood can
be dealt with analytically but is more easily processed via a Gibbs sampler
that simulates the initial values. An alternative and equally coherent approach
is to consider instead the likelihood conditional on the initial observed values
x0:(p−1); that is,
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ℓc(μ, ̺1, . . . , ̺p, σ|xp:T ,x0:(p−1)) ∝

σ−T+p−1
T∏

t=p

exp

⎧
⎨
⎩−
[
xt − μ−

p∑

i=1

̺i(xt−i − μ)

]2 /
2σ2

⎫
⎬
⎭ . (7.7)

Unless specified otherwise, we will adopt this approach. In this case, if we do
not restrict the parameter space through stationarity conditions, a natural
conjugate prior can be found for the parameter θ = (μ,̺, σ2), made up of
a normal distribution on (μ,̺) and an inverse gamma distribution on σ2.
Instead of the Jeffreys prior, which is controversial in this setting (see Robert,
2007, Note 4.7.2), we can also propose a more traditional noninformative prior
such as π(θ) = 1/σ2.

7.2.2 Exploring the Parameter Space by MCMC Algorithms

If we do impose the causal stationarity constraint on ̺ that all the roots
of P in (7.5) be outside the unit circle, the set of acceptable ̺’s becomes
quite involved and we cannot, for instance, use as prior distribution a normal
distribution restricted to this set, if only because we lack a simple algorithm
to properly describe the set. While a feasible solution is based on the partial
autocorrelations of the AR(p) process (see Robert, 2007, Sect. 4.5.2), we cover
here a different and somehow simpler reparameterization approach using the
inverses of the real and complex roots of the polynomial P , which are within
the unit interval (−1, 1) and the unit sphere, respectively. Because of this
unusual structure of the parameter space, involving two subsets of completely
different natures, we introduce an MCMC algorithm that could be related
with birth and death processes and simulation in variable dimension spaces.

If we represent the polynomial (7.5) in its factorized form

P(x) =

p∏

i=1

(1− λix) ,

the inverse roots, λi (i = 1, . . . , p), are either real numbers or complex conju-
gates.8 Under the causal stationarity constraint, a natural prior is then to use
uniform priors for these roots, taking a uniform distribution on the number
rp of conjugate complex roots and uniform distributions on [−1, 1] and on the
unit sphere S = {λ ∈ C; |λ| ≤ 1} for the real and nonconjugate complex
roots, respectively. In other words,

π(λ) =
1

⌊p/2⌋+ 1

∏

λi∈R

1

2
I|λi|<1

∏

λi 	∈R

1

π
I|λi|<1 , (7.8)

8The term conjugate is to be understood here in the complex calculus sense that
if ι2 = −1 defines the standard root of −1, λ = r eιθ is a (complex) root of P , then
λ̄ = r e−ιθ is also a (complex) root of P .
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where ⌊p/2⌋+1 is the number of different values of rp and the second product
is restricted to the nonconjugate roots of P . (Note that the quantity π in the
denominator is in fact the surface of the unit sphere of C.)

Note that this ⌊p/2⌋ + 1 factor, while unimportant for a fixed p setting,
must necessarily be included within the posterior distribution when using a
birth-and-death MCMC algorithm to estimate the lag order p since it does
not vanish in the acceptance probability of a move between an AR(p) model
and an AR(q) model.

While the connection between the inverse roots and the coefficients of
the polynomial P is straightforward (Exercise 7.10), there is no closed-form
expression of the posterior distribution either on the roots or on the coeffi-
cients. Therefore, a numerical approach is once again compulsory to approx-
imate the posterior distribution. However, any Metropolis–Hastings scheme
can work here, given that the likelihood function can be easily computed in
every point.

The derivation of the coefficients ̺i of the autoregressive model from the
roots follows from a recursive linear procedure explained in Exercise 7.10. If
pr and pc denote the number of real and complex roots and if lr and lc are
the real and (non-conjugate) complex roots, respectively, the former being a
vector and the latter a two-column matrix, we have

Psi=matrix(0,ncol=p,nrow=p+1)

Psi[1,]=1

if (pr>0){

Psi[2,1]=-lr[1]

if (pr>1){

for (i in 2:pr)

Psi[2:(i+1),i]=Psi[2:(i+1),i-1]-lr[i]*Psi[1:i,i-1]

}

}

if (pc>0){

if (pr>0){

Psi[2,pr+2]=-2*lc[1]+Psi[2,pr]

Psi[3:(pr+3),pr+2]=(lc[1]^2+lc[2]^2)*Psi[1:(pr+1),pr]

-2*lc[1]*Psi[2:(pr+2),pr]+Psi[3:(pr+3),pr]

}else{

Psi[2,2]=-2*lc[1];

Psi[3,2]=(lc[1]^2+lc[2]^2);

}

if (pc>2){

for (i in seq(4,pc,2)){

pri=pr+i

prim=pri-2

Psi[2,pri]=-2*lc[i-1]+Psi[2,prim]
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Psi[3:(pri+1),pri]=(lc[i-1]^2+lc[i]^2)*Psi[1:(pri-1),

prim]-2*lc[i-1]*Psi[2:pri,prim]+Psi[3:(pri+1),prim]

}

}

}

Rho=Psi[1:(p+1),p]

where the ρi’s are the opposites of the components of Rho[2:p]. The
log-likelihood (7.7) is then derived in a straightforward manner:

x=x-mu

loglike=0

for (i in (p+1):T)

loglike=loglike-(t(Rho)%*%x[i:(i-p)])^2

loglike=(loglike/sig2-(T-p)*log(sig2))/2

x=x+mu

Since the conditional likelihood function (7.7) is a standard Gaussian
likelihood in both μ and σ, we can directly use a Gibbs sampler on those
parameters and opt for a Metropolis-within-Gibbs step on the remaining (in-
verse) roots of P , λ = (λ1, . . . , λp). A potentially inefficient9 if straightforward
Metropolis–Hastings implementation is to use the prior distribution π(λ) it-
self as a proposal on λ. This means selecting first one or several roots of P ,
λ1, . . . , λq (1 ≤ q ≤ p), and then proposing new values for these roots that are
simulated from the prior, λ′

1, . . . , λ
′
q ∼ π(λ). (Reordering the roots so that the

modified values are the first ones is not restrictive since both the prior and
the likelihood are permutation invariant.) The acceptance ratio then simplifies
into the likelihood ratio by virtue of Bayes’ theorem:

ℓ(μ,λ′, σ|xp:T ,x0:(p−1))π(μ,λ
′, σ)

ℓ(μ,λ, σ|xp:T ,x0:(p−1))π(μ,λ, σ)

π(λ)

π(λ′)
=

ℓ(μ,λ′, σ|xp:T ,x0:(p−1))

ℓ(μ,λ, σ|xp:T ,x0:(p−1))

The main difficulty with this scheme is that one must take care to modify
complex roots by (conjugate) pairs. This means, for instance, that to cre-
ate a complex root (and its conjugate) either another complex root (and its
conjugate) or two real roots must be chosen and modified. Formally, this is
automatically satisfied by simulations from the prior (7.8).

One possible algorithmic representation is therefore:

9Simulating from the prior distribution when aiming at the posterior distribution
is inevitably leading to a waste of simulations if the data is informative about the
parameters. The solution is of course unavailable when the prior is improper.
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Algorithm 7.13 Metropolis–Hastings AR(p) Sampler

Initialization: Choose λ(0), μ(0), and σ(0).
Iteration t (t ≥ 1):
1. Select one root at random.

If the root is real, generate a new real root from the prior distribution.
Otherwise, generate a new complex root from the prior distribution
and update the conjugate root.
Replace λ(t−1) with λ⋆ using these new values.
Calculate the corresponding ̺⋆ = (̺⋆1, . . . , ̺

⋆
p).

Take ξ = λ⋆ with probability

ℓc(μ(t−1),̺⋆, σ(t−1)|xp:T ,x0:(p−1))

ℓc(μ(t−1),̺(t−1), σ(t−1)|xp:T ,x0:(p−1))
∧ 1 ,

and ξ = λ
(t−1) otherwise.

2. Select two real roots or two complex conjugate roots at random.
If the roots are real, generate a new complex root from the prior
distribution and compute the conjugate root.
Otherwise, generate two new real roots from the prior distribution.
Replace ξ with λ⋆ using these new values.
Calculate the corresponding ̺⋆ = (̺⋆1, . . . , ̺

⋆
p).

Accept λ(t) = λ⋆ with probability

ℓc(μ(t−1),̺⋆, σ(t−1)|xp:T ,x0:(p−1))

ℓc(μ(t−1),̺(t−1), σ(t−1)|xp:T ,x0:(p−1))
∧ 1 ,

and set λ(t) = ξ otherwise.
3. Generate μ⋆ by a random walk proposal.

Accept μ(t) = μ⋆ with probability

ℓc(μ⋆,̺(t), σ(t−1)|xp:T ,x0:(p−1))

ℓc(μ(t−1),̺(t), σ(t−1)|xp:T ,x0:(p−1))
∧ 1 ,

and set μ(t) = μ(t−1) otherwise.
4. Generate σ⋆ by a log-random walk proposal.

Accept σ(t) = σ⋆ with probability

ℓc(μ(t),̺(t), σ⋆|xp:T ,x0:(p−1))

ℓc(μ(t),̺(t), σ(t−1)|xp:T ,x0:(p−1))
∧ 1 ,

and set σ(t) = σ(t−1) otherwise.
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While the whole R code is too long (300 lines) to be reproduced here,
the core part about the modification of the roots can be implemented as
follows: “down” moves removing one pair of complex roots are chosen with
probability 0.1 while “up” moves creating one pair of complex roots are chosen
with probability 0.9, in order to compensate for the inherently higher difficulty
in accepting complex proposals from the prior. Those uneven weights must
then be accounted for in the acceptance probability, along with the changes
in the masses of the uniform priors on the real and complex roots in (7.8).

if (runif(1)<.1){ #down

ppropcomp=pcomp-2; ppropreal=preal+2

ind=sample(1:pcomp,1) #indices of removed complex root

ind=ind-(ind%%2==0)

if (ppropcomp>0){

lambpropcomp=lambdacomp[((1:pcomp)[-(ind:(ind+1))]

}else{ #no complex root

lambpropcomp=0 #dummy necessary for ARllog function

}

lambpropreal=c(lambdareal,2*runif(2)-1)

coef=9*(1+(preal<2))*(pi/4) #if new case is boundary

}else{ #up

ppropreal=preal-2; ppropcomp=pcomp+2

ind=sample(1:preal,2) #indices of removed real roots

if (ppropreal>0){

lambpropreal=lambdareal[(1:preal)[-ind]]

}else{

lambpropreal=0 #dummy necessary for ARllog function

}

theta=2*pi*runif(1); rho=sqrt(runif(1))

lambpropcomp=c(lambdacomp,rho*cos(theta),rho*sin(theta))

coef=(4/pi)*(1+(ppropcomp<p-1))/9 #if new case is

boundary

}

the boundary cases with no complex root or less than two real roots requiring a
special processing (not reproduced here). The Metropolis–Hastings acceptance
step is then simple:

lloprop=ARllog(pr=ppropreal,pc=ppropcomp,

lr=lambpropreal,lc=lambpropcomp,mu,sig2)

if (log(runif(1))<log(coef)+lloprop-llo){
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llo=lloprop

preal=ppropreal; pcomp=ppropcomp

lambdacomp=lambpropcomp; lambdareal=lambpropreal

}

illustrating the role of the coef correction.

As an application of the above, we processed the Ahold Kon. series of
Eurostoxx50. We ran the algorithm for the whole series with p = 5, with
satisfactory jump behavior between the different numbers of complex roots.
The same behavior can be observed with larger values of p. Note that a call
to the non-Bayesian R ar( ) procedure gives an order of 1 for this series, as

> ar(x = Eurostoxx50[, 4])

Coefficients:

1

0.9968

Order selected 1 sigma^2 estimated as 0.5399

This standard analysis is very unstable, for instance, using the following
alternative produces a very different order estimate!

> ar(x = Eurostoxx50[, 4], method = "ml")

Coefficients:

1 2 3 4 5 6 7 8

1.042 -0.080 -0.038 0.080 -0.049 0.006 0.080 -0.043

Order selected 8 sigma^2 estimated as 0.3228

Figure 7.4 summarizes the MCMC output for 50,000 iterations. The top left
graph shows that jumps between 2 and 0 complex roots occur with high
frequency and therefore that the MCMC algorithm mixes well between both
(sub)models. Both following graphs on the first row relate to the hyperpa-
rameters μ and σ, which are updated outside the reversible jump steps. The
parameter μ appears to be mixing better than σ, which is certainly due to the
choice of the same scaling factor in both cases. The middle rows correspond to
the first three coefficients of the autoregressive model, ̺1, ̺2, ̺3. Their stability
is a good indicator of the convergence of the reversible jump algorithm. Note
also that, except for ̺1, the other coefficients are close to 0 (since their poste-
rior means are approximately 0.052, −0.0001, 2.99× 10−5, and −2.66× 10−7,
respectively). The final row is an assessment of the fit of the model and the
convergence of the MCMC algorithm. The first graph provides the sequence
of corresponding log-likelihoods, which remain stable almost from the start,
the second the distribution of the complex (inverse) roots, and the last one
the connection between the actual series and its one-step-ahead prediction
E[Xt+1|xt, xt−1, . . .]: On this scale, both series are well-related.

While the above algorithm is a regular Metropolis–Hastings algorithm
on a parameter space with a fixed number of parameters, ̺1, . . . , ̺p, the
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real–complex dichotomy gives us the opportunity to mention a new class of
MCMC algorithms, variable dimension MCMC algorithms. The class of vari-
able dimension models is made of models characterized by a collection of sub-
models, Mk, often nested, that are considered simultaneously and associated
with different parameter spaces. The number of submodels can be infinite,
and the “parameter” is defined conditionally on the index of the submodel,
θ = (k, θk), with a dimension that generally depends on k. It naturally occurs
in settings like Bayesian model choice and Bayesian model assessment.

Inference on such structures is obviously more complicated than on single
models, especially when there are an infinite number of submodels, and it can
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Fig. 7.4. Dataset Eurostoxx50: Output of the MCMC algorithm for the Ahold
Kon. series and an AR(5) model: (top row, left) histogram and sequence of numbers
of complex roots (ranging from 0 to 4), (top row, middle and right) sequence of μ
and σ2, (middle row) sequences of ̺i (i = 1, 2, 3), (bottom row, left) sequence of
observed log-likelihood, (bottom row, middle) representation of the cloud of complex
roots, with a part of the boundary of the unit circle on the right, (bottom row, right)
comparison of the series and the one-step-ahead prediction
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be tackled from two different (or even opposite) perspectives. The first ap-
proach is to consider the variable dimension model as a whole and to estimate
quantities that are meaningful for the whole model (such as moments or pre-
dictives) as well as quantities that only make sense for submodels (such as
posterior probabilities of submodels and posterior moments of θk). From a
Bayesian perspective, once a prior is defined on θ, the only difficulty is in
finding an efficient way to explore the complex parameter space in order to
produce these estimators. The second perspective on variable dimension mod-
els is to resort to testing, rather than estimation, by adopting a model choice
stance. This requires choosing among all possible submodels the “best one”
in terms of an appropriate criterion. The drawbacks of this second approach
are far from benign. The computational burden may be overwhelming when
the number of models is infinite, the interpretation of the selected model is
delicate and the variability of the resulting inference is underestimated since
it is impossible to include the effect of the selection of the model in the assess-
ment of the variability of the estimators built in later stages. Nonetheless, this
is an approach often used in linear and generalized linear models (Chaps. 3
and 4) where subgroups of covariates are compared against a given dataset. It
is obviously the recommended approach when the number of models is small,
as in the mixture case (Chap. 6) or in the selection of the order p of an AR(p)
model, provided the Bayes factors can be approximated.

MCMC algorithms that can handle such variable-dimension structures are
facing measure theoretic difficulties and, while a universal and elegant solution
through reversible jump algorithms exists (Green, 1995), we have made the
choice of not covering these in this book. An introductory coverage can be
found in the earlier edition (Marin and Robert, 2007, Sect. 6.7), as well as
in Robert and Casella (2004). Nonetheless, we want to point out that the
above MCMC algorithm happens to be a special case of the birth-and-death
MCMC algorithm (and of its generalization, the reversible jump algorithm)
where, in nested models, additional components are generated from the prior
distribution and the move to a larger model is accepted with a probability
equal to the ratio of the likelihoods (with the proper reweighting to account
for the multiplicity of possible moves). For instance, extending the above
algorithm to the case of the unknown order p is straightforward.

7.3 Moving Average (MA) Models

A second type of time series model that still enjoys linear dependence and
closed-form expression is the MA(q) model, where MA stands for moving
average. It appears as a dual version of the AR(p) model.

An MA(1) process (xt)t∈Z is such that, conditionally on the past

xt = μ+ ǫt − ϑǫt−1 , t ∈ T , (7.9)
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where (ǫt)t∈T is a white noise sequence. For the same reasons as above, we
will assume the white noise is normally distributed unless otherwise specified.
Thus,

E[xt] = μ , V(xt) = (1 + ϑ2)σ2 , γx(1) = ϑσ2 , and γx(h) = 0 (h > 1) .

An important feature of (7.9) is that the model is not identifiable per se.
Indeed, we can also rewrite xt as

xt = μ+ ǫ̃t−1 −
1

ϑ
ǫ̃t, ǫ̃ ∼ N (0, ϑ2σ2) .

Therefore, both pairs (ϑ, σ) and (1/ϑ, ϑσ) are equivalent representations of
the same model. To achieve identifiability, it is therefore customary in (non-
Bayesian environments) to restrict the parameter space of MA(1) processes by

|ϑ| < 1 ,

and we will follow suit. Such processes are called invertible. As with causality,
the property of inversibility is not a property of the sole process (xt)t∈Z but
of the connection between the two processes (xt)t∈T and (ǫt)t∈T .

A natural extension of the MA(1) model is to increase the dependence on
the past innovations, namely to introduce the MA(q) process as the process
(xt)t∈T defined by

xt = μ+ ǫt −
q∑

i=1

ϑiǫt−i , (7.10)

where (ǫt)t∈T is a white noise (once again assumed to be normal unless oth-
erwise specified). The corresponding identifiability condition in this model is
that the roots of the polynomial

Q(u) = 1−
q∑

i=1

ϑiu
i

are all outside the unit circle in the complex plane (see Brockwell and Davis,
1996, Theorem 3.1.2, for a proof). Thus, we end up with exactly the same
parameter space as in the AR(q) case!

The intuition behind the MA(q) representation is however less straight-
forward than the regression structure underlying the AR(p) model. This
representation assumes that the dependence between observables stems from
a dependence between the (unobserved) noises rather than directly through
the observables. Furthermore, in contrast with the AR(p) models, where the
covariance between the terms of the series is exponentially decreasing to zero
but always different from 0, the autocovariance function for the MA(q) model
is such that γx(s) is equal to 0 for |s| > q, meaning that xt+s and xt are
independent. In addition, the MA(q) process is obviously (second-order and
strictly) stationary, whatever the vector (ϑ1, . . . , ϑq), since the white noise is
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iid and the distribution of (7.10) is thus independent of t. A major differ-
ence between the MA(q) and the AR(p) models, though, is that the MA(q)
dependence structure is not Markov (even though it can be represented as a
Markov process through a state-space representation, introduced below).

While, in the Gaussian case, the whole (observed) vector x1:T is a realiza-
tion of a normal random variable, with constant mean μ and covariance matrix
Σ, and thus provides a formally explicit likelihood function, both the compu-
tation and the integration (or maximization) of this likelihood are quite costly
since they involve inverting the huge matrix Σ.10

A more manageable representation of the MA(q) likelihood is to use the
likelihood of x1:T conditional on the past white noises ǫ0, . . . , ǫ−q+1,

ℓc(μ, ϑ1, . . . , ϑq, σ|x1:T , ǫ(−q+1):0) ∝

σ−T
T∏

t=1

exp

⎧
⎪⎨
⎪⎩
−

⎛
⎝xt − μ+

q∑

j=1

ϑj ǫ̂t−j

⎞
⎠

2/
2σ2

⎫
⎪⎬
⎪⎭

, (7.11)

where ǫ̂0 = ǫ0,. . ., ǫ̂1−q = ǫ1−q and (t > 0)

ǫ̂t = xt − μ+

q∑

j=1

ϑj ǫ̂t−j .

This recursive definition of the likelihood is still costly since it involves T sums
of q terms. Nonetheless, even though the problem of handling the conditioning
values ǫ(−q+1):0 must be treated separately via an MCMC step, the complexity
O(Tq) of this representation is much more manageable than the normal exact
representation mentioned above.

Since the transform of the roots into the coefficients is exactly the same as
with the AR(q) model, the expression of the log-likelihood function conditional
on the past white noises eps is quite straightforward. Taking for Psi the
subvector Psi[2:(p+1),p], the computation goes as follows:

x=x-mu

# construction of the epsilonhats

heps=rep(0,T+q)

heps[1:q]=eps # past noises

for (i in 1:T)

heps[p+i]=x[i]+sum(rev(Psi)*heps[i:(q+i-1)])

# completed loglikelihood (includes negative epsilons)

loglike=-((sum(heps^2)/sig2)+(T+q)*log(sig2))/2

x=x+mu

10Obviously, taking advantage of the block diagonal structure of Σ—due to the
fact that γx(s) = 0 for |s| > q—may reduce the computational cost, but this requires
advanced programming abilities!
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Given both x1:T and the past noises ǫ(−q+1):0, the conditional posterior
distribution of the parameters (μ, ϑ1, . . . , ϑq, σ) is formally very close to the
posterior associated with an AR(q) posterior distribution. This proximity is
such that we can recycle the code of Algorithm 7.13 to some extent since
the simulation of the (inverse) roots of the polynomial Q is identical once
we modify the likelihood according to the above changes. The past noises ǫ−i

(i = 1, . . . , q) are simulated conditional both on the xt’s and on the parameters
μ, σ and ϑ = (ϑ1, . . . , ϑq). While the exact distribution

f(ǫ(−q+1):0|x1:T , μ, σ,ϑ) ∝
0∏

i=−q+1

e−ǫ2i/2σ
2

T∏

t=1

e−ǫ̂2t/2σ
2

, (7.12)

where the ǫ̂t’s are defined as above, is exactly a normal distribution on the
vector ǫ(−q+1):0 (Exercise 7.13), its computation is too costly to be available
for realistic values of T . We therefore implement a hybrid Gibbs algorithm
where the missing noise ǫ(−q+1):0 is simulated from a proposal based either
on the previous simulated value of ǫ(−q+1):0 (in which case we use a simple
termwise random walk) or on the first part of (7.12) (in which case we can use
normal proposals).11 More specifically, one can express ǫ̂t (1 ≤ t ≤ q) in terms
of the ǫ−t’s and derive the corresponding (conditional) normal distribution on
either each ǫ−t or on the whole vector ǫ12 (see Exercise 7.14).

The additional step, when compared with the AR(p) function, is the con-
ditional simulation of the past noises ǫ(−q+1):0. For 1 ≤ i ≤ q (the indices are
drifted to start at 1 rather than −q), the corresponding part of our R code is as
follows. Unfortunately, the derivation of the Metropolis–Hastings acceptance
probability does require computing the inverse ǫ̂−t’s as they are functions of
the proposed noises.

x=x-mu

heps[1:q]=eps # simulated ones

for (j in (q+1):(2*p+1)) # epsilon hat

heps[j]=x[j]+sum(rev(Psi)*heps[(j-q):(j-1)])

heps[i]=0

for (j in 1:(q-i+1))

keps[j]=x[j]+sum(rev(Psi)*heps[j:(j+q-1)])

x=x+mu

11In the following output analysis, we actually used a more hybrid proposal with
the innovations ǫ̂t’s (1 ≤ t ≤ q) fixed at their previous values. This approximation
remains valid when accounted for in the Metropolis–Hastings acceptance ratio, which
requires computing the ǫ̂t’s associated with the proposed ǫ−i.

12Using the horizon t = q is perfectly sensible in this setting given that x1, . . . , xq

are the only observations correlated with the ǫ−t’s, even though (7.11) gives the
impression of the opposite, since all ǫ̂t’s depend on the ǫ−t’s.
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epsvar=1/sum(c(1,Psi[i:q]^2))

epsmean=sum(Psi[i:q]*keps[1:(q-i+1)])*epsvar

epsmean=epsmean/epsvar

epsvar=sig2*epsvar

propeps=rnorm(1,mean=epsmean,sd=sqrt(epsvar))

epspr=eps

epspr[i]=propeps

lloprop=MAllog(pr=preal,pc=pcomp,lr=lambdareal,

lc=lambdacomp,mu=mu,sig2=sig2,compsi=FALSE,pepsi=Psi,

eps=epspr)

propsal1=dnorm(propeps,mean=epsmean,sd=sqrt(epsvar),log=TRUE)

x=x-mu

heps[i]=propeps

for (j in (q+1):(2*q+1))

heps[j]=x[j]+sum(rev(Psi)*heps[(j-q):(j-1)])

heps[i]=0

for (j in 1:(q-i+1))

keps[j]=x[j]+sum(rev(Psi)*heps[j:(j+q-1)])

x=x+mu

epsvar=1/sum(c(1,Psi[i:q]^2))

epsmean=sum(Psi[i:q]*keps[1:(q-i+1)])

epsmean=epsmean*epsvar

epsvar=sig2*epsvar

propsal0=dnorm(eps[i],mean=epsmean,sd=sqrt(epsvar),log=TRUE)

if (log(runif(1))<lloprop-llo-propsal1+propsal0){

eps[i]=propeps;

llo=lloprop

}

The complete R code also includes an additional random walk perturbation
of the ǫi, centered on the proposal

propeps = rnorm(1,mean=eps[i],sd=0.1*sqrt(sig2))

in order to increase the mixing properties of the chain. Apart from those
changes, the R code is identical to the code used for the AR(p) model.



7.3 Moving Average (MA) Models 231

Algorithm 7.14 MCMC MA(q) Sampler

Initialization: Choose λ(0), ǫ(0), μ(0), and σ(0) arbitrarily.
Iteration t (t ≥ 1):
1. Run steps 1–4 of Algorithm 7.13 conditional on ǫ(t−1) with the correct

corresponding conditional likelihood.
2. Simulate ǫ(t) by a Metropolis–Hastings step.

To illustrate the behavior of this algorithm, we considered the first 350
points of the Air Liquide series in Eurostoxx50. The output is represented
on Fig. 7.5 for q = 9 and 10,000 iterations of Algorithm 7.14, with the same
conventions as in Fig. 7.4, except that the lower right graph represents the
series of the simulated ǫ−t’s rather than the predictive behavior.

Interestingly, the likelihood found by the algorithm as the iteration pro-
ceeds is (numerically) much higher than the one found by the classical R arima
procedure since it differs by a factor of 450 on the log scale (assuming we are
talking of the same quantity since R arima computes the log-likelihood associ-
ated with the observations without the ǫ−i’s!). The details of the call to arima
are as follows:

> arima(x = Eurostoxx50[1:350, 5], order = c(0, 0, 9))

Coefficients:

ma1 ma2 ma3 ma4 ma5 ma6 ma7

1.0605 0.9949 0.9652 0.8542 0.8148 0.7486 0.5574

s.e. 0.0531 0.0760 0.0881 0.0930 0.0886 0.0827 0.0774

ma8 ma9 intercept

0.3386 0.1300 114.3146

s.e. 0.0664 0.0516 1.1281

sigma^2 estimated as 8.15: log likelihood = -864.97

The favored number of complex roots is 6, and the smaller values 0 and 2 are
not visited after the initial warmup. The mixing over the σ parameter is again
lower than over the mean μ, despite the use of three different proposals. The
first one is based on the inverted gamma distribution associated with ǫ̂−(q−1):q,
the second one is based on a (log) random walk with scale 0.1σ̂x, and the third
one is an independent inverted gamma distribution with scale σ̂x/(1 + ϑ2

1 +
. . .+ ϑ2

q)
1/2. Note also that, except for ϑ9, the other coefficients ϑi are quite

different from 0 (since their posterior means are approximately 1.0206, 0.8403,
0.8149, 0.6869, 0.6969, 0.5693, 0.2889, and 0.0895, respectively). This is also
the case for the estimates above obtained in R arima. The prediction being of
little interest for MA models (Exercise 7.15), we represent instead the range
of simulated ǫt’s in the bottom right figure. The range is compatible with the
N (0, σ2) distribution.
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Fig. 7.5. Dataset Eurostoxx50: Output of the MCMC algorithm for the Air Liq-
uide series and an MA(9) model: (top row, left) histogram and sequence of numbers
of complex roots (ranging from 0 to 8); (top row, middle and right) sequence of μ
and σ2; (middle row) sequences of ϑi (i = 1, 2, 3); (bottom row, left) sequence of
observed likelihood; (bottom row, middle) representation of the cloud of complex
roots, with the boundary of the unit circle; and (bottom row, right) evolution of the
simulated ǫ−t’s

7.4 ARMA Models and Other Extensions

An alternative approach that is of considerable interest for the representation
and analysis of the MA(q) model and its generalizations is the so-called state-
space representation, which relies on missing variables to recover both the
Markov structure and the linear framework.13

The general idea is to represent a time series (xt) as a system of two
equations,

13It is also inspired from the Kalman filter, ubiquitous for prediction, smoothing,
and filtering in time series.
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xt = Gyt + εt , (7.13)

yt+1 = Fyt + ξt , (7.14)

where εt and ξt are multivariate normal vectors14 with general covariance
matrices that may depend on t and E[εTuξv] = 0 for all (u, v)’s. Equation (7.13)
is called the observation equation, while (7.14) is called the state equation. This
representation embeds the process of interest (xt) into a larger space, the state
space, where the missing process (yt) is Markov and linear. For instance, (7.6)
is a state-space representation of the AR(p) model (see Exercise 7.16).

The MA(q) model can be written that way by defining yt as

yt = (ǫt−q, . . . , ǫt−1, ǫt)
T .

Then the state equation is

yt+1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠

yt + ǫt+1

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠

, (7.15)

while the observation equation is

xt = xt = μ−
(
ϑq ϑq−1 . . . ϑ1 −1

)
yt ,

with no perturbation εt.
The state-space decomposition of the MA(q) model thus involves no vector

εt in the observation equation, while ξt is degenerate in the state equation.
The degeneracy phenomenon is quite common in state-space representations,
but this is not a hindrance in conditional uses of the model, as in MCMC
implementations. Notice also that the state-space representation of a model
is not unique, again a harmless feature for MCMC uses. For instance, for the
MA(1) model, the observation equation can also be chosen as xt = μ+(1 0)yt

with yt = (y1t, y2t)
T directed by the state equation

yt+1 =

(
0 1
0 0

)
yt +

(
1

−ϑ1

)
ǫt+1 .

Note that, while the state-space representation is wide-ranging and con-
venient, it does not mean that the derived MCMC strategies are necessarily
efficient. In particular, when the hidden state xt is too large, a näıve com-
pletion may prove itself disastrous. Alternative solutions based in sequential
importance sampling (SMC) have been shown to be usually more efficient.
(See Del Moral et al., 2006.)

14Notice the different fonts that distinguish the εt’s used in the state-space rep-
resentation from the ǫt’s used in the AR and MA models.
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A straightforward extension of both previous AR and MA models are the
(normal) ARMA(p, q) models, where xt (t ∈ Z) is conditionally defined by

xt = μ−
p∑

i=1

̺i(xt−i − μ) + ǫt −
q∑

j=1

ϑjǫt−j , ǫt ∼ N (0, σ2) , (7.16)

the (ǫt)’s being independent. The role of such models, as compared with both
AR and MA models, is to aim toward parsimony; that is, to resort to much
smaller values of p and q than in a pure AR(p) or a pure MA(q) modeling.

The causality and inversibility conditions on the parameters of (7.16)
still correspond to the roots of both polynomials P and Q being outside
the unit circle, respectively, with a further condition that both polynomials
have no common root. (But this almost surely never happens under a contin-
uous prior on the parameters.) The root reparameterization can therefore be
implemented for both the ϑj ’s and the ̺i’s, still calling for MCMC techniques
owing to the complexity of the posterior distribution.

State-space representations also exist for ARMA(p, q) models, one possi-
bility being

xt = xt = μ−
(
ϑr−1 ϑr−2 . . . ϑ1 −1

)
yt

for the observation equation and

yt+1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1
̺r ̺r−1 ̺r−2 . . . ̺1

⎞
⎟⎟⎟⎟⎠

yt + ǫt+1

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠

(7.17)

for the state equation, with r = max(p, q+1) and the convention that ̺m = 0
if m > p and ϑm = 0 if m > q.

Similarly to the MA(q) case, this state-space representation is handy in
devising MCMC algorithms that converge to the posterior distribution of the
parameters of the ARMA(p, q) model.

A straightforward MCMC processing of the ARMA model is to take
advantage of the AR and MA algorithms that have been constructed above by
using both algorithms sequentially. Indeed, conditionally on the AR param-
eters, the ARMA model can be expressed as an MA model and, conversely,
conditionally on the MA parameters, the ARMA model can be expressed
almost as an AR model. This is quite obvious for the MA part since, if we
define (t > p)

x̃t = xt − μ+

p∑

i=1

̺i(xt−i − μ) ,

the likelihood is formally equal to a standard MA(q) likelihood on the x̃t’s.
The reconstitution of the AR(p) likelihood is more involved: If we now define
the residuals ǫ̃t =

∑q
j=1 ϑjǫt−j , the log-likelihood conditional on x0:(p−1) is
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−
T∑

t=p

⎛
⎝xt − μ−

p∑

j=1

̺j [xt−j − μ]− ǫ̃t

⎞
⎠

2

/
2σ2 ,

which is obviously close to an AR(p) log-likelihood, except for the ǫ̃t’s. The
original AR(p) MCMC code can then be recycled modulo this modification in
the likelihood.

Another extension of the AR model is the ARCH model, used to represent
processes, particularly in finance, with independent errors but time-dependent
variances, as in the ARCH(p) process15 (t ∈ Z)

xt = σtǫt , ǫt
iid∼ N (0, 1) , σ2

t = α+

p∑

i=1

βix
2
t−i .

The ARCH(p) process defines a Markov chain since xt only depends on
xt−p:t−1. It can be shown that a stationarity condition for the ARCH(1) model
is that E[log(β1ǫ

2
t )] < 0, which is equivalent to β1 < 3.4. This condition be-

comes much more involved for larger values of p. Contrary to the stochastic
volatility model defined below, the ARCH(p) model enjoys a closed-form like-
lihood when conditioning on the initial values x1, . . . , xp. However, because
of the nonlinearities in the variance terms, approximate methods based on
MCMC algorithms must be used for their analysis.

State-space models are special cases of hidden Markov models (detailed
below in Sect. 7.5) in the sense that (7.13) and (7.14) are a special occurrence
of the generic representation

xt = G(yt, ǫt) ,
yt = F (yt−1, ζt) .

(7.18)

Note, however, that it is not necessarily appealing to resort to this hidden
Markov representation, in comparison with state-space models, because the
complexity of the functions F or G may hinder the processing of this repre-
sentation to unbearable levels (while, for state-space models, the linearity of
the relations always allows for a generic if not necessarily efficient processing
based on, e.g., Gibbs sampling steps).

Stochastic volatility models are quite popular in financial applications,
especially in describing series with sudden and correlated changes in the mag-
nitude of variation of the observed values. These models use a hidden chain
(yt)t∈N, called the stochastic volatility, to model the variance of the observ-
ables (xt)t∈N in the following way: Let y0 ∼ N (0, σ2) and, for t = 1, . . . , T ,
define

15The acronym ARCH stands for autoregressive conditional heteroscedasticity,
heteroscedasticity being a term favored by econometricians to describe heteroge-
neous variances. Gouriéroux (1996) provides a general reference on these models, as
well as classical inferential methods of estimation.
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{
yt = ϕyt−1 + σǫ∗t−1 ,

xt = βeyt/2ǫt ,
(7.19)

where both ǫt and ǫ∗t are iid N (0, 1) random variables. In this simple version,
the observable is thus a white noise, except that the variance of this noise
enjoys a particular AR(1) structure on the logarithmic scale. Quite obviously,
this structure makes the computation of the (observed) likelihood a formidable
challenge!

Figure 7.6 gives the sequence {log(xt)− log(xt−1)} when (xt) is the Aegon
stock sequence plotted in Fig. 7.1. While this real-life sequence is not necessar-
ily a stochastic volatility process, it presents some features that are common
with those processes, including an overall stationary structure and periods in
the magnitude of the variation of the sequence.
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Fig. 7.6. Dataset Eurostoxx50: First-order difference {log(xt)− log(xt−1)} of the
Aegon stock sequence regarded as a potential stochastic volatility process (7.19)

When comparing ARMA with the hidden Markov models of the following
Section, it may appear that the former are more general in the sense that
they allow a different dependence on the past values. Resorting to the state-
space representation (7.18) shows that this is not the case. Different horizons
p of dependence can also be included for hidden Markov models simply by
(a) using a vector xt = (xt−p+1, . . . , xt) for the observables or by (b) using a
vector yt = (yt−q+1, . . . , yt) for the latent process in (7.18).

7.5 Hidden Markov Models

Hidden Markov models are a generalization of the mixture models of Chap. 6.
Their appeal within this chapter is that they constitute an interesting case
of non-Markov time series, besides being extremely useful in modeling, e.g.,
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for financial, telecommunication, and genetic data. We refer the reader to
McDonald and Zucchini (1997) for a deeper introduction to these models and
to Cappé et al. (2004) and Frühwirth-Schnatter (2006) for a complete coverage
of their statistical processing.

7.5.1 Basics

The family of hidden Markov models (abbreviated to HMM) consists of a
bivariate process (xt, yt)t∈N, where the unobserved subprocess (yt)t∈N is a ho-
mogeneous Markov chain on a state space Y and, conditional on (yt)t∈N,
(xt)t∈N is a series of random variables on X such that the conditional distri-
bution of xt given yt and the past (xj , yj)j<t only depends on yt, as represented
by the DAG in Fig. 7.7. When Y = {1, . . . , κ}, i.e. when the hidden Markov
chain takes a finite number of possible values, we have, in particular,

xt|yt ∼ f(x|ξyt
)

where (yt)t∈N thus is a finite state-space Markov chain, meaning that yt|yt−1

is distributed from

P(yt = i|yt−1 = j) = pji , 1 ≤ i ≤ κ ,

and the ξi’s are the different parameters indexing the conditional distribution.
In the general case, the joint distribution of (xt, yt) given the past values
x0:(t−1) = (x0, . . . , xt−1) and y0:(t−1) = (y0, . . . , yt−1) factorizes as

(xt, yt)|x0:(t−1),y0:(t−1) ∼ f(yt|yt−1) f(xt|yt) ,
in agreement with Fig. 7.7. The process (yt)t∈N is usually referred to as the
state of the model and, again, is not observable (hence, hidden). Inference thus
has to be carried out only in terms of the observable process (xt)t∈N.

Fig. 7.7. Directed acyclic graph (DAG) representation of the dependence structure
of a hidden Markov model, where (xt)t∈N is the observable process and (yt)t∈N the
hidden process

Simulating a hidden Markov chain is then straightforward: we start with
the simulation of the hidden layer, i.e. of the process (yt)t=1,...,T and proceed
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Fig. 7.8. Dataset Dnadataset: Sequence of 9718 amine bases for an HIV genome.
The four bases A, C, G, and T have been recoded as 1, . . . , 4

to simulating each xt conditional on the corresponding yt (t = 1, . . . , T ). The
corresponding computing time is linear in T (Exercise 7.18).

Hidden Markov models have been used in genetics since the early 1990s for
the modeling of DNA sequences. In short (and with no ambition at complete-
ness!), DNA, which stands for deoxyribonucleic acid, is a molecule that carries
the genetic information about a living organism and is replicated in each of
its cells. This molecule is made up of a sequence of amine bases—adenine,
cytosine, guanine, and thymine—abbreviated as A, C, G, and T. The par-
ticular arrangement of bases in different parts of the sequence is thought to
be related to different characteristics of the living organism to which it cor-
responds. Dnadataset is a particular sequence corresponding to a complete
HIV (which stands for Human Immunodeficiency Virus) genome where A, C,
G, and T have been recoded as 1, . . . , 4. Figure 7.8 represents this sequence of
9718 bases by decomposing it into five blocks. The simplest modeling of this
sequence is to assume a two-state hidden Markov model with Y = {1, 2} and
X = {1, 2, 3, 4}, the assumption being that one hidden state corresponds to
noncoding regions and the other hidden state to coding regions.16

For statistical purposes, the distributions of both xt and yt are usually
parameterized, that is, (7.18) looks like

xt = G(yt, ǫt|θ) ,
yt = F (yt−1, ζt|δ) , (7.20)

where ǫt and ζt are independent perturbations (white noise) and where θ and
δ are finite-dimensional parameters.

To draw inference on either the parameters of the HMM or on the hid-
den chain, it is generally necessary to take advantage of the missing-variable
nature of HMMs and to use simultaneous simulation both of (yt)t∈N and

16There obviously is no reason why the data should fit this formalized model.
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of the parameters of the model. There is, however, one exception to that
requirement, which is revealed in Sect. 7.5.2, and that is when the state space
Y of the hidden chain (yt)t∈N is finite.

In the event that both the hidden and the observed chains are on finite
state-spaces, with Y = {1, . . . , κ} and X = {1, . . . , k}, as in Dnadataset,
the parameter θ is made up of p probability vectors

q1 = (q11 , . . . , q
1
k), . . . ,q

κ = (qκ1 , . . . , q
κ
k )

and the parameter δ is the κ × κ Markov transition matrix P = (pij) on Y .
Given that the joint distribution of (xt, yt)0≤t≤T is

̺y0 q
y0
x0

T∏

t=1

{
pyt−1yt

qyt
xt

}
,

where ̺ = (̺1, . . . , ̺κ) is the stationary distribution of P (i.e., such that
̺P = ̺), the posterior distribution of (θ, δ) given (xt, yt)t factorizes as

π(θ, δ) ̺y0

κ∏

i=1

k∏

j=1

(qij)
nij ×

κ∏

i=1

p∏

j=1

p
mij

ij ,

where the nij ’s and the mij ’s are sufficient statistics representing

– the number of visits to state j by the xt’s when the corresponding yt’s are
equal to i

and
– the number of transitions from state i to state j on the hidden chain

(yt)t∈N,

respectively. If we condition on the starting value y0, set equal to 1 for (partial)
identifiability reasons, and thus omit ̺y0 in the expression above and if we
use a flat prior on the pij ’s and qij ’s, the posterior distributions are Dirichlet.
Similarly to the ARMA case processed in Chap. 7, if we include the starting
values in the posterior distribution, this introduces a non-conjugate structure
in the simulation of the pij ’s, but this can be handled with a Metropolis–
Hastings substitute that uses the Dirichlet distribution as the proposal. Note
that, in the non-conditional case, we need to simulate y0.

Conditional on the parameters, the simulation of the chain (yt)0≤t≤T can
be processed Gibbs-wise (i.e., one term at a time), using the fully conditional
distributions

P(yt = i|xt, yt−1, yt+1) ∝ pyt−1i piyt+1 q
i
xt

.

Therefore, the overall algorithm looks as follows:
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Algorithm 7.15 Finite–State HMM Gibbs Sampler

Initialization:
1. Generate random values (or pick arbitrary estimators) of the pij ’s and

the qij ’s.
2. Generate the hidden Markov chain (yt)0≤t≤T by (i = 1, 2)

P(yt = i) ∝
{
pii q

i
x0

if t = 0 ,

pyt−1i q
i
xt

if t > 0 ,

and compute the corresponding sufficient statistics.
Iteration m (m ≥ 1):
1. Generate

(pi1, . . . , piκ) ∼ D(1 + ni1, . . . , 1 + niκ) ,

(qi1, . . . , q
i
k) ∼ D(1 +mi1, . . . , 1 +mik) ,

and correct for the missing initial probability by a Metro-
polis–Hastings step with acceptance probability ̺′y0

/̺y0 .
2. Generate successively each yt (0 ≤ t ≤ T ) by

P(yt = i|xt, yt−1, yt+1) ∝
{
pii q

i
x1

piy1 if t = 0 ,

pyt−1i q
i
xt
piyt+1 if t > 0 ,

and compute the corresponding sufficient statistics.

In the initialization step of Algorithm 7.15, any distribution on (yt)t∈N is
obviously valid, but this particular choice is of interest since it is related to
the true conditional distribution, simply omitting the dependence on the next
value.

The main loop in the Gibbs sampler is then of the form (for κ = 2 and
k = 4 as in Dnadataset)

# Beta/Dirichlet simulations for P

a=1/(1+rgamma(1,nab+1)/rgamma(1,naa+1))

b=1/(1+rgamma(1,nba+1)/rgamma(1,nbb+1))

P=matrix(c(a,1-a,1-b,b),ncol=2,byrow=T)

q1=rgamma(4,ma+1) # and Q

q2=rgamma(4,mb+1)

q1=q1/sum(q1); q2=q2/sum(q2)

# (hidden) Markov conditioning

x[1]=sample(1:2,1,prob=c(a*P[1,x[2]]*q1[y[1]],b*P[2,x[2]]
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*q2[y[1]]))

for (m in 2:(T-1))

x[m]=sample(1:2,1,prob=c(P[x[m-1],1]*P[1,x[m+1]]*q1[y[m]],

P[x[m-1],2]*P[2,x[m+1]]*q2[y[m]]))

x[T]=sample(1:2,1,prob=c(P[x[T-1],1]*q1[y[T]],P[x[T-1],2]

*q2[y[T]]))

# Sufficient statistics for next iteration

naa=sum((x[1:(T-1)]==1)*(x[2:T]==1))

nab=sum((x[1:(T-1)]==1)*(x[2:T]==2))

nba=sum((x[1:(T-1)]==2)*(x[2:T]==1))

nbb=sum((x[1:(T-1)]==2)*(x[2:T]==2))

ya=y[x==1]

ma=c(sum(ya==1),sum(ya==2),sum(ya==3),sum(ya==4))

yb=y[x==2]

mb=c(sum(yb==1),sum(yb==2),sum(yb==3),sum(yb==4))

We ran several Gibbs samplers for 1,000 iterations, starting from small,
medium and high values for p11 and p22, and got very similar results in both
first and both last cases for the approximations to the Bayes posterior means,
as shown by Table 7.1. The raw output also gives a sense of stability, as shown
by Fig. 7.9.

For the third case, started at small values of both p11 and p22, the sim-
ulated chain had not visited the same region of the posterior distribution
after those 1,000 iterations, and it produced an estimate with a smaller log-
likelihood17value of −13, 160. However, running the Gibbs sampler longer
(for 4,000 more iterations) did produce a similar estimate, as shown by the
third replication in Table 7.1. This phenomenon is slightly related to the phe-
nomenon, discussed in the context of Figs. 6.4 and 6.3, that the Gibbs sampler
tends to “stick” to lower modes for lack of sufficient energy. In the current
situation, the energy required to leave the lower mode appears to be available.
Note that we have reordered the output to compensate for a possible switch
between hidden states 1 and 2 among experiments. This is quite natural, given
the lack of identifiability of the hidden states (Exercise 7.17). Flipping the in-
dices 1 and 2 does not modify the likelihood, and thus all these experiments
explore the same mode of the posterior.

7.5.2 Forward–Backward Representation

When the state space of the hidden Markov chain Y is finite, that is, when

Y = {1, . . . , κ} ,

17The log-posterior is proportional to the log-likelihood in that special case, and
the log-likelihood is computed using a technique described below in Sect. 7.5.2.
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Fig. 7.9. Dataset Dnadataset: Convergence of a Gibbs sequence to the region of
interest on the posterior surface for the hidden Markov model (this is replication 2
in Table 7.1). The row-wise order of the parameters is the same as in Table 7.1

Table 7.1. Dataset Dnadataset: Five runs of the Gibbs sampling approximations
to the Bayes estimates of the parameters for the hidden Markov model along with
final log-likelihood (starting values are indicated on the line below in parentheses)
based on M = 1000 iterations (except for replication 3, based on 5,000 iterations)

Run p11 p22 q11 q12 q13 q21 q22 q23 Log-like.

1 0.720 0.581 0.381 0.032 0.396 0.306 0.406 0.018 –13,121
(0.844) (0.885) (0.260) (0.281) (0.279) (0.087) (0.094) (0.0937)

2 0.662 0.620 0.374 0.016 0.423 0.317 0.381 0.034 –13,123
(0.628) (0.621) (0.203) (0.352) (0.199) (0.066) (0.114) (0.0645)

3 0.696 0.609 0.376 0.023 0.401 0.318 0.389 0.030 –13,118
(0.055) (0.150) (0.293) (0.200) (0.232) (0.150) (0.102) (0.119)

4 0.704 0.580 0.377 0.024 0.407 0.313 0.403 0.020 –13,121
(0.915) (0.610) (0.237) (0.219) (0.228) (0.079) (0.073) (0.076)

5 0.694 0.585 0.376 0.0218 0.410 0.315 0.395 0.0245 –13,119
(0.600) (0.516) (0.296) (0.255) (0.288) (0.110) (0.095) (0.107)

the likelihood function18 of the observed process (xt)1≤t≤T can be computed
in a manageable O(T × κ2) time by a recurrence relation called the forward–

18To lighten notation, we will not use the parameters appearing in the various
distributions of the HMM, even though they are obviously of central interest.
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backward or Baum–Welch formulas.19 We now explain how those formulas are
derived.

As illustrated in Fig. 7.7, a generic feature of HMMs is that (t = 2, . . . , T )

p(yt|yt−1,x0:T ) = p(yt|yt−1,xt:T ) .

In other words, knowledge of the past observations is redundant for the distri-
bution of the hidden Markov chain when we condition on its previous value.
Therefore, when Y is finite, we can write that

p(yT |yT−1,x0:T ) ∝ pyT−1yT
f(xT |yT ) ≡ p⋆T (yT |yT−1,x0:T ) ,

meaning that we define p⋆T (yT |yT−1,x0:T ) as the unnormalized version of the
density p(yT |yT−1,x0:T ). Then we can process backward the definition of the
previous conditionals, so that (1 < t < T )

p(yt|yt−1,x0:T ) =

κ∑

i=1

p(yt, yt+1 = i|yt−1,xt:T )

∝
κ∑

i=1

p(yt, yt+1 = i,xt:T |yt−1)

=

κ∑

i=1

p(yt|yt−1)f(xt|yt)p(yt+1 = i,x(t+1):T |yt)

∝ pyt−1yt
f(xt|yt)

κ∑

i=1

p(yt+1 = i|yt,x(t+1):T )

∝ pyt−1yt
f(xt|yt)

κ∑

i=1

p⋆t+1(i|yt,x1:T ) ≡ p⋆t (yt|yt−1,x1:T ) .

At last, the conditional distribution of the first hidden value y0 is

p(y0|x0:T ) ∝ ̺y0 f(x0|y0)
κ∑

i=1

p⋆1(i|y0,x0:t) ≡ p⋆0(y0|x0:T ) ,

where (̺k)k is the stationary distribution associated with the Markov tran-
sition matrix P. (This is unless the first hidden value y0 is automatically set
equal to 1 for identifiability reasons.)

While this construction amounts to a straightforward conditioning argu-
ment, the use of the unnormalized functions p⋆t+1(yt+1 = i|yt, x(1:T ) is crucial
for deriving the joint conditional distribution of y1:T since resorting to the
normalized conditionals instead would result in a useless identity.

19This recurrence relation has been known for quite a while in the signal processing
literature and is also used in the corresponding EM algorithm; see Cappé et al. (2004)
for details.
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Notice that, as stated above, the derivation of the p⋆t ’s indeed has a cost of
O(T×κ2) since, for each t and each of the κ values of yt, a sum of κ terms has to
be computed. So, in terms of raw computational time, computing the observed
likelihood does not take less time than simulating the sequence (yt)t∈N in the
Gibbs sampler. However, the gain in using this forward–backward formula
may impact in subtler ways a resulting Metropolis–Hastings algorithm, such
as a better mixing of the chain of the parameters, given that we are simulating
the whole vector at once.

Once we have all the conditioning functions (or backward equations), it
is possible to simulate sequentially the hidden sequence y0:T given x0:T by
generating first y0 from p(y0|x0:T ), second y1 from p(y1|y0,x0:T ) and so on.
However, there is (much) more to be done. Indeed, when considering the joint
conditional distribution of y0:T given x0:T , we have

p(y0:T |x0:T ) = p(y0|x0:T )

T∏

t=1

p(yt|yt−1,x0:T )

=
π(y1)f(x0|y0)∑κ
i=1 p

⋆
0(i|x0:T )

T∏

t=1

pyt−1yt
f(xt|yt)

∑κ
i=1 p

⋆
t+1(i|yt,x1:T )∑κ

i=1 p
⋆
t (i|yt−1,x(1:T )

= π(y0)f(x0|y0)
T∏

t=1

pyt−1yt
f(xt|yt)

/ κ∑

i=1

p⋆1(i|x0:T )

since all the other sums cancel. This joint conditional distribution immediately
leads to the derivation of the observed likelihood since, by Bayes’ formula,

f(x0:T ) =
f(x0:T |y1:T ) p(y0:T )

p(y0:T |x0:T )
=

κ∑

i=1

p⋆1(i|x0:T ) ,

which is the normalizing constant of the initial conditional distribution!
Therefore, working with the unnormalized densities has this supplementary
advantage to provide an approximation to the observed likelihood. (Keep in
mind that all the expressions above implicitly depend on the model parame-
ters.)

A forward derivation of the likelihood can similarly be constructed. Besides
the obvious construction that is symmetrical to the previous one, consider the
so-called prediction filter

ϕt(i) = P(yt = i|x1:t−1) ,

with ϕ1(j) = π(j) (where the term prediction refers to the conditioning on
the observations prior to time t). The forward equations are then given by
(t = 1, . . . , T )

ϕt+1(j) =
1

ct

κ∑

i=1

f(xt|yt = i)ϕt(i)pij ,
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where

ct =

κ∑

k=1

f(xt|yt = k)ϕt(k)

is the normalizing constant. (This formula uses exactly the same principle as
the backward equations.) Exploiting the Markov nature of the joint process
(xt, yt)t, we can then derive the log-likelihood as

log p(x1:t) =

t∑

r=1

log

[
κ∑

i=1

p(xt, yt = i|x1:(r−1))

]

=

t∑

r=1

log

[
κ∑

i=1

f(xr|yt = i)ϕr(i)

]
,

which also requires a O(T × κ2) computational time.
The resulting R function for computing the (observed) likelihood is there-

fore (for κ = 2 and k = 4 as in Dnadataset)

likej=function(vec,log=TRUE){

# vec is the aggregated parameter vector

P=matrix(c(vec[1],1-vec[1],1-vec[2],vec[2]),ncol=2,byrow=

TRUE)

Q1=vec[3:6]; Q2=vec[7:10]

pxy=c(P[1,1],P[2,2])

pxy=pxy/sum(pxy) # stationary distribution of P

pyy=rep(1,T)

pyy[1]=pxy[1]*Q1[y[1]]+pxy[2]*Q2[y[1]]

for (t in 2:T){

pxy=pxy[1]*Q1[y[t-1]]*P[1,]+pxy[2]*Q2[y[t-1]]*P[2,]

pxy=pxy/sum(pxy)

pyy[t]=(pxy[1]*Q1[y[t]]+pxy[2]*Q2[y[t]])

}

if (log){

ute=sum(log(pyy))

}

else{

ute=prod(pyy)

}

ute

}

Obviously, to be able to handle directly the observed likelihood when
T is reasonable opens new avenues for simulation methods. For instance,
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the completion step (of simulating the hidden Markov chain) is no longer
necessary, and Metropolis–Hastings alternatives such as random-walk propos-
als can be used.

Returning to Dnadataset, we can compute the log-likelihood (and hence
the posterior up to a normalizing constant) associated with a given parameter
using, for instance, the prediction filter. In that case,

log p(x1:T ) =

T∑

t=1

log

[
k∑

i=1

qixt
ϕt(i)

]
,

where ϕt(j) ∝ ∑2
i=1 q

i
xt
ϕt(i)pij . This representation of the log-likelihood is

used in the computation given above for the Gibbs sampler.
Furthermore, given that all parameters to be simulated are probabilities,

using a normal random walk proposal in the Metropolis–Hastings algorithm
is not adequate. Instead, a more appropriate proposal is based on Dirichlet
distributions centered at the current value, with scale factor α > 0; that is
(j = 1, 2),

p̃jj ∼ Be(αpjj , α(1 − pjj)) q̃j ∼ D(αqj1, . . . , αq
j
4) .

The Metropolis–Hastings acceptance probability is then the ratio of the like-
lihoods over the ratio of the proposals, f(θ|θ′)/f(θ′|θ). Since larger values of
α produce more local moves, we could test a range of values to determine the
“proper” scale. However, this requires a long calibration step. Instead, the
algorithm can take advantage of the different scales by picking at random for
each iteration a value of α from among 1, 10, 100, 10,000 or 100,000. (The
randomness in α can then be either ignored in the computation of the proposal
density f or integrated by a Rao–Blackwell argument.) For Dnadataset, this
range of α’s was wide enough since the average probability of acceptance is
0.25 and a chain (θm)m started at random does converge to the same values
as the Gibbs chains simulated above, as shown by Fig. 7.10, which also indi-
cates that more iterations would be necessary to achieve complete stability.
We can note in particular that the maximum log-posterior value found along
the iterations of the Metropolis–Hastings algorithm is −13,116, which is larger
than the values found in Table 7.1 for the Gibbs sampler, for parameter values
of (0.70, 0.58, 0.37, 0.011, 0.42, 0.19, 0.32, 0.42, 0.003, 0.26).

When the state space Y is finite, it may be of interest to estimate the
order of the hidden Markov chain. For instance, in the case of Dnadataset,
it is relevant to infer on how many hidden coding states there are. A possible
approach, not covered here, is to use a reversible jump MCMC algorithm that
resemble very much the reversible jump algorithm for the mixture model. The
reference in this direction is Cappé et al. (2004, Chap. 16) where the authors
construct a reversible jump algorithm in this setting. However, the availability
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Fig. 7.10. Dataset Dnadataset: Convergence of a Metropolis–Hastings sequence
for the hidden Markov model based on 5,000 iterations. The overlayed curve in the
background is the sequence of log-posterior values

of the (observed) likelihood means that the marginal solution of Chib (1995),
exposed in Chap. 6 (Sect. 6.8) for the mixtures of distributions also applies in
the current setting (Exercise 7.19).

Fig. 7.11. DAG representation of the dependence structure of a Markov-switching
model where (xt)t is the observable process and (yt)t is the hidden chain

The model first introduced for Dnadataset is overly simplistic in that, at
least within the coding regime, the xt’s are not independent. A more realistic
modeling thus assumes that the xt’s constitute a Markov chain within each
state of the hidden chain, resulting in the dependence graph of Fig. 7.11. To
distinguish this case from the earlier one, it is often called Markov-switching.
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This extension is much more versatile than the model of Fig. 7.7, and we can
hope to capture the time dependence better. However, it is far from parsimo-
nious, as the use of different Markov transition matrices for each hidden state
induces an explosion in the number of parameters. For instance, if there are
two hidden states, the number of parameters is 26; if there are four hidden
states, the number jumps to 60.

7.6 Exercises

7.1 Consider the process (xt)t∈Z defined by

xt = a+ bt + yt ,

where (yt)t∈Z is an iid sequence of random variables with mean 0 and variance σ2, and
where a and b are constants. Define

wt = (2q + 1)−1∑q
j=−qxt+j .

Compute the mean and the autocovariance function of (wt)t∈Z. Show that (wt)t∈Z is
not stationary but that its autocovariance function γw(t + h, t) does not depend on t.

7.2 Suppose that the process (xt)t∈N is such that x0 ∼ N (0, τ 2) and, for all t ∈ N,

xt+1|x0:t ∼ N (xt/2, σ
2) , σ > 0 .

Give a necessary condition on τ 2 for (xt)t∈N to be a (strictly) stationary process.

7.3 Suppose that (xt)t∈N is a Gaussian random walk on R: x0 ∼ N (0, τ 2) and, for
all t ∈ N,

xt+1|x0:t ∼ N (xt, σ
2) , σ > 0 .

Show that, whatever the value of τ 2 is, (xt)t∈N is not a (strictly) stationary process.

7.4 Give the necessary and sufficient condition under which an AR(2) process with
autoregressive polynomial P(u) = 1− ̺1u − ̺2u

2 (with ̺2 	= 0) is causal.

7.5 Consider the process (xt)t∈N such that x0 = 0 and, for all t ∈ N,

xt+1|x0:t ∼ N (̺ xt, σ
2) .

Suppose that π(̺, σ) = 1/σ and that there is no constraint on ̺. Show that the
conditional posterior distribution of ̺, conditional on the observations x0:T and on σ2,
is a N (μT , ω2

T ) distribution with

μT =

T
∑

t=1

xt−1xt

/ T
∑

t=1

x2
t−1 and ω2

T = σ2

/ T
∑

t=1

x2
t−1 .

Show that the marginal posterior distribution of ̺ is a Student T (T − 1, μT , ν2
T ) dis-

tribution with
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ν2
T =

1

T − 1

(

T
∑

t=1

x2
t

/ T−1
∑

t=0

x2
t − μ2

T

)

.

Apply this modeling to the Aegon series in Eurostoxx50 and evaluate its predictive
abilities.

7.6 For Algorithm 7.13, show that, if the proposal on σ2 is a log-normal distribu-
tion L N (log(σ2

t−1), τ
2) and if the prior distribution on σ2 is the noninformative prior

π(σ2) = 1/σ2, the acceptance ratio also reduces to the likelihood ratio because of the
Jacobian.

7.7 Write down the joint distribution of (yt, xt)t∈N in (7.19) and deduce that the
(observed) likelihood is not available in closed form.

7.8 Show that the stationary distribution of x−p:−1 in an AR(p)model is a Np(μ1p,A)
distribution, and give a fixed point equation satisfied by the covariance matrix A.

7.9 Show that the posterior distribution on θ associated with the prior π(θ) = 1/σ2

and an AR(p) model is well-defined for T > p observations.

7.10 Show that the coefficients of the polynomial P in (7.5) associated with an AR(p)
model can be derived in O(p2) time from the inverse roots λi using the recurrence
relations (i = 1, . . . , p, j = 0, . . . , p)

ψi
0 = 1 , ψi

j = ψi−1
j − λiψ

i−1
j−1 ,

where ψ0
0 = 1 and ψi

j = 0 for j > i, and setting ̺j = −ψp
j (j = 1, . . . , p).

7.11 Given the polynomial P in (7.5), the fact that all the roots are outside the unit
circle can be determined without deriving the roots, thanks to the Schur–Cohn test. If
Ap = P , a recursive definition of decreasing degree polynomials is (k = p, . . . , 1)

uAk−1(u) = Ak−1(u)− ϕkA⋆
k(u) ,

where A⋆
k denotes the reciprocal polynomial A⋆

k(u) = ukAk−1(1/u).

1. Given the expression of ϕk in terms of the coefficients of Ak.
2. Show that the degree of Ak is at most k.
3. If am,k denotes the m-th degree coefficient in Ak, show that ak,k 	= 0 for k =

0, . . . , p if, and only if, a0,k 	= ak,k for all k’s.
4. Check by simulation that, in cases when ak,k 	= 0 for k = 0, . . . , p, the roots are

outside the unit circle if, and only if, all the coefficients ak,k are positive.

7.12 For an MA(q) process, show that (s ≤ q)

γx(s) = σ2

q−|s|
∑

i=0

ϑiϑi+|s| .

7.13 Show that the conditional distribution of (ǫ0, . . . , ǫ−q+1) given both x1:T and
the parameters is a normal distribution. Evaluate the complexity of computing the mean
and covariance matrix of this distribution.

7.14 Give the conditional distribution of ǫ−t given the other ǫ−i’s, x1:T , and the ǫ̂i’s.
Show that this distribution only depends on the other ǫ−i’s, x1:q−t+1, and ǫ̂1:q−t+1.
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7.15 Show that the (useful) predictive horizon for the MA(q) model is restricted to
the first q future observations xt+i.

7.16 Show that the system of equations given by (7.13) and (7.14) induces a Markov
chain on the completed variable (xt,yt). Deduce that state-space models are special
cases of hidden Markov models.

7.17 Show that, for a hidden Markov model, when the support Y is finite and when
(yt)t∈N is stationary, the marginal distribution of xt is the same mixture distribution for
all t’s. Deduce that the same identifiability problem as in mixture models occurs in this
setting.

7.18 Given a hidden Markov chain (xt, yt) with both xt and yt taking a finite number of
possible values, k and κ, show that the time required for the simulation of T consecutive
observations is in O(kκT ).

7.19 Implement Chib’s method of Sect. 6.8 in the case of a doubly finite hidden Markov
chain. First, show that an equivalent to the approximation (6.9)) is available for the
denominator of (6.8). Second, discuss whether or not the label switching issue also rises
in this framework. Third, apply this approximation to Dnadataset.

7.20 Show that the counterpart of the prediction filter in the Markov-switching case
is given by

log p(x1:t) =
t

∑

r=1

log

[

κ
∑

i=1

f(xr|xr−1, yr = i)ϕr(i)

]

,

where ϕr(i) = P(yr = i|x1:r−1) is given by the recursive formula

ϕr(i) ∝
κ
∑

j=1

pjif(xr−1|xr−2, yr−1 = j)ϕr−1(j) .
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Image Analysis

“Reduce it to binary, Siobhan,” she told herself.
—Ian Rankin, Resurrection Men.—

Roadmap

This final chapter covers the analysis of pixelized images through Markov random
field models, towards pattern detection and image correction. We start with the
statistical analysis of Markov random fields, which are extensions of Markov chains
to the spatial domain, as they are instrumental in this chapter. This is also the
perfect opportunity to cover the ABC method, as these models do not allow for
a closed form likelihood. Image analysis has been a very active area for both
Bayesian statistics and computational methods in the past 30 years, so we feel it
well deserves a chapter of its own for its specific features.

J.-M. Marin and C.P. Robert, Bayesian Essentials with R, Springer Texts
in Statistics, DOI 10.1007/978-1-4614-8687-9 8,
© Springer Science+Business Media New York 2014
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8.1 Image Analysis as a Statistical Problem

If we think of a computer image as a (large) collection of colored pixels
disposed on a grid, there does not seem to be any randomness involved nor any
need for statistical analysis! Nonetheless, image analysis seen as a statistical
analysis is a thriving field that saw the emergence of several major statisti-
cal advances, including, for instance, the Gibbs sampler. (Moreover, this field
has predominantly adopted a Bayesian perspective both because this was a
natural thing to do and because the analytical power of this approach was
higher than with other methods.) The reason for this apparent paradox is
that, while pixels usually are deterministic objects, the complexity and size
of images require one to represent those pixels as the random output of a
distribution governed by an object of much smaller dimension. For instance,
this is the case in computer vision, where specific objects need to be extracted
out of a much richer (or noisier) background.

In this spirit of extracting information from huge dimensional structure, we
thus build in Sect. 8.2 a specific family of distributions inspired from particle
physics, the Potts model, in order to structure images and other spatial struc-
tures in terms of local homogeneity. Unfortunately, this is a mostly theoretical
section with very few illustrations. In Sect. 8.3, we address the fundamen-
tal issue of handling the missing normalizing constant in these models by
introducing a new computational technique called ABC that operates on in-
tractable likelihoods (with the penalty of producing an approximative answer).
In Sect. 8.4, we impose a strong spatial dimension on the prior associated with
an image in order to gather homogeneous structures out of a complex or blurry
image.

8.2 Spatial Dependence

8.2.1 Grids and Lattices

An image (in the sense of a computer generated image) is a special case of
a lattice, in the sense that it is a random object whose elements are indexed
by the location of the pixels and are therefore related by the geographical
proximity of those locations. In full generality, a lattice is a mathematical
multidimensional object on which a neighbourhood relation can be defined.
Even though the original analysis of lattice models by Besag (1974) focussed
on plant ecology and agricultural experiments, the neighbourhood relation is
only constrained to be a symmetric relation and it does not necessarily have
a connection with a geographical proximity, nor with an image. For instance,
the relation can describe social interactions between Amazon tribes or words
in a manuscript sharing a linguistic root. (The neighbourhood relation be-
tween two points of the lattice is generally translated in statistical terms into
a probabilistic dependence between those points.) The lattice associated with
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an image is a regular n × m array made of (i, j)’s (1 ≤ i ≤ n, 1 ≤ j ≤ m),
whose nearest (but not necessarily only) neighbors are made of the four en-
tries (i, j − 1), (i, j +1), (i− 1, j) and (i+ 1, j). In order to properly describe
a dependence structure in images or in other spatial objects indexed by a
lattice, we need to expand the notion of Markov chain on those structures.
Since a lattice is a multidimensional object—as opposed to the unidimen-
sional line corresponding to the times of observation of the Markov chain—,
a first requirement for the generalization is to define a proper neighbourhood
structure.

In order to illustrate this notion, we consider a small dataset1 depicting
the presence of tufted sedges2 in a part of a wetland. This dataset, called
Laichedata, is simply a 25×25 matrix of zeroes and ones. The corresponding
lattice is the 25× 25 array (Fig. 8.1).

Fig. 8.1. Presence/absence of the tufted sedge plant (Carex elata) on a rectangular
patch

Given a lattice I of sites i ∈ I on a map or of pixels in an image,3 a
neighbourhood relation on I is denoted by ∼, i ∼ j meaning that i and j
are neighbors. If we associate a probability distribution on a vector x indexed
by the lattice, x = (xi)i∈I , with this relation, meaning that two components
xi and xj are correlated if the sites i and j are neighbors, a fundamental

1 Taken from Gaetan and Guyon (2010), kindly provided by the authors.
2 Wikipedia: “Carex is a genus of plants in the family Cyperaceae, commonly

known as sedges. Most (but not all) sedges are found in wetlands, where they are
often the dominant vegetation.” Lâıche is the French for sedge.

3We will indiscriminately use site and pixel in the remainder of the chapter.
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requirement for the existence of this distribution is that the neighbourhood
relation is symmetric (Cressie, 1993): if i is a neighbor of j (written as i ∼ j),
then j is a neighbor of i. (By convention, i is not a neighbor of itself.) Figure 8.2
illustrates this notion for three types of neighborhoods on a regular grid.
For instance, Laichedata could be associated with a northwest-southeast
neighbourhood to account for dominant winds: an entry (i, j) would have as
neighbors (i− 1, j − 1) and (i + 1, j + 1).

Fig. 8.2. Some common neighbourhood structures used in imaging, with four
(upper left), eight (upper right), or twelve neighbors (lower)

8.2.2 Markov Random Fields

A random field on I is a random structure indexed by the lattice I, a col-
lection of random variables {xi; i ∈ I} where each xi takes values in a finite
set χ. Obviously, the interesting case is when the xi’s are dependent random
variables in relation with the neighbourhood structure on I.

If n(i) is the set of neighbors of i ∈ I and if xA = {xi; i ∈ A} denotes
the subset of x for indices in a subset A ⊂ I, then xn(i) is the set of values
taken by the neighbors of i. The extension from a Markov chain to a Markov
random field then assumes only dependence on the neighbors.4 More precisely,
if, as before, we denote by x−A = {xi; i /∈ A} the coordinates that are not in

4This dependence immediately forces the neighbourhood relation to be
symmetric.
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a given subset A ⊂ I, a random field is a Markov random field (MRF) if the
conditional distribution of any pixel given the other pixels only depends on
the values of the neighbors of that pixel; i.e., for i ∈ I,

π(xi|x−i) = π(xi|xn(i)) .

Markov random fields have been used for quite a while in imaging,
not necessarily because images obey Markov laws but rather because these
dependence structures offer highly stabilizing properties in modeling. Indeed,
constructing the joint prior distribution of an image is a daunting task because
there is no immediate way of describing the global properties of an image via
a probability distribution. Just as for the directed acyclic graphs (DAG) mod-
els at the core of the BUGS software, using the full conditional distributions
breaks the problem down to a sequence of local problems and this is therefore
more manageable in the sense that we may be able to express more clearly
how we think xi behaves when the configuration of its neighbors is known.5

Before launching into the use of specific MRFs to describe prior assump-
tions on a given lattice, we need to worry6 about the very existence of MRFs!
Indeed, defining a set of full conditionals does not guarantee that there is a
joint distribution behind them (Exercise 8.1). In our case, this means that gen-
eral forms of neighborhoods and general types of dependences on the neighbors
do not usually correspond to a joint distribution on x.

We first obtain a representation that can be used for testing the existence
of a joint distribution. Starting from a complete set of full conditionals on a
lattice I, if there indeed exists a corresponding joint distribution, π(x), it is
completely defined by the ratio π(x)/π(x∗) for a given fixed value x∗ since
the normalizing constant is automatically determined. Now, if I = {1, . . . , n},
it is simple to exhibit a full conditional density within the joint density by
writing the natural decomposition

π(x) = π(x1|x−1)π(x−1)

and then to introduce x∗ by the simple divide-and-multiply trick

π(x) =
π(x1|x−1)

π(x∗
1|x−1)

π(x∗
1,x−1) .

If we iterate this trick for all terms in the lattice (assuming we never divide
by 0), we eventually get to the representation

5It is no surprise that computational techniques such as the Gibbs sampler
stemmed from this area, as the use of conditional distributions is deeply ingrained
in the imaging community.

6For those that do not want nor do not need to worry, the end of this section
can be skipped, it being of a more theoretical nature and not used in the rest of the
chapter.
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π(x)

π(x∗)
=

n−1∏

i=0

π(xi+1|x∗
1, . . . , x

∗
i , xi+2, . . . , xn)

π(x∗
i+1|x∗

1, . . . , x
∗
i , xi+2, . . . , xn)

. (8.1)

Hence, we can truly write the joint density as a product of ratios of its full
conditionals modulo one renormalization.7

This result can also be used toward our purpose of checking for compatibil-
ity of the full conditional distributions: if there exists a joint density such that
the full conditionals never cancel, then (8.1) must hold for every representa-
tion of I = {1, . . . , n}; that is, for every ordering of the indices, and for every
choice of reference value x∗. Although we cannot provide here the reasoning
behind the result, there exists a necessary and sufficient condition for the exis-
tence of an MRF. This condition relies on the notion of clique: Given a lattice
I and a neighbourhood relation ∼, a clique is a maximal subset of I made
of sites that are all neighbors. The corresponding existence result (Cressie,
1993) is that an MRF associated with I and the neighbourhood relation ∼
necessarily is of the form

π(x) ∝ exp

(
−
∑

C∈C

ΦC(xC)

)
, (8.2)

where C is the collection of all cliques. This result amounts to saying that the
joint distribution must separate in terms of its system of cliques.

We now embark on the description of two specific MRFs that are appro-
priate for image analysis, namely the Ising model used for binary images and
its extension, the Potts model, used for images with more than two colors.

8.2.3 The Ising Model

If pixels of the image x under study can only take two colors (black and
white, say, as in Fig. 8.1), x is binary. We typically refer to each pixel xi as
being foreground if xi = 1 (black) and background if xi = 0 (white). The
conditional distribution of a pixel is then Bernoulli, with the corresponding
probability parameter depending on the other pixels. A simplification step is
to assume that it is a function of the number of black neighboring pixels, using
for instance a logit link as (j = 0, 1)

π(xi = j|x−i) ∝ exp(βni,j) , β > 0 , (8.3)

where ni,j =
∑

ℓ∈n(i) Ixℓ=j is the number of neighbors of xi with color j. The
Ising model is then defined via these full conditionals

π(xi = 1|x−i) =
exp(βni,1)

exp(βni,0) + exp(βni,1)
,

7This representation is by no means limited to MRFs: it holds for every joint
distribution such that the full conditionals never cancel. It is called the Hammersley–
Clifford theorem, and a two-dimensional version of it was introduced in Exercise 3.10.
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and the joint distribution therefore satisfies

π(x) ∝ exp

⎛
⎝β
∑

j∼i

Ixj=xi

⎞
⎠ , (8.4)

where the summation is taken over all pairs (i, j) of neighbors (Exercise 8.17).
When inferring on β and thus simulating the posterior distribution β, we

will be faced with a major obstacle, namely that the normalizing constant of
(8.4), Z(β), is intractable except for very small lattices I, while depending on
β. Therefore the likelihood function cannot be computed. We will introduce
in Sect. 8.3 a computational technique called ABC that is intended to fight
this very problem. At this early stage, however, we consider β to be known
and focus on the simulation of x in preparation for the inference on both β
and x given a noisy version of the image, y, as presented in Sect. 8.4.

The computational conundrum of Ising models goes deeper as, due to the
convoluted correlation structure of the Ising model, a direct simulation of x is
not possible, expect in very specific cases. Faced with this difficulty, the image
community very early developed computational tools which eventually led in
1984 to the proposal of the Gibbs sampler (Sect. 3.5.1).8 The specification of
Markov random fields and in particular of the Ising model implies the full
conditional distributions of those models are available in closed form. The
local structure of Markov random fields thus provides an immediate site-by-
site update for the Gibbs sampler:

Algorithm 8.16 Ising Gibbs Sampler

Initialization: For i ∈ I, generate independently

x
(0)
i ∼ B(1/2) .

Iteration t (t ≥ 1):
1. Generate u = (ui)i∈I , a random ordering of the elements of I.
2. For 1 ≤ ℓ ≤ |I|, update n

(t)
uℓ,0

and n
(t)
uℓ,1

, and generate

x(t)
uℓ

∼ B

(
exp(βn

(t)
uℓ,1

)

exp(βn
(t)
uℓ,0

) + exp(βn
(t)
uℓ,1

)

)
.

In this implementation, the order of the updates of the pixels of I is random
in order to overcome possible bottlenecks in the exploration of the distribu-

8The very name “Gibbs sampling” was proposed in reference to Gibbs random
fields, related to the physicist Willard Gibbs. Interestingly, both of the major MCMC
algorithms are thus named after physicists and were originally developed for prob-
lems that were beyond the boundaries of (standard) statistical inference.
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tion, although this is not a necessary condition for the algorithm to converge.
In fact, when considering two pixels x1 and x2 that are m pixels apart, the
influence of a change in x1 is not felt in x2 before at least m iterations of
the basic Gibbs sampler. Of course, if m is large, the dependence between x1

and x2 is quite moderate, but this slow propagation of changes is indicative
of slow mixing in the Markov chain. For instance, to see a change of color of a
relatively large homogeneous region is an event of very low probability, even
though the distribution of the colors is exchangeable (Exercise 8.18).

� If β is large, the Ising distribution (8.4) is very peaked around both single color

configurations. In such settings, the Gibbs sampler will face enormous difficulties

to simply change the value of a single pixel.

Running Algorithm 8.16 in R is straightforward: opting for a four-neighbor
relation, if we use the following function for the number of neighbors at (a, b),

xneig4=function(x,a,b,col){

n=dim(x)[1];m=dim(x)[2]

nei=c(x[a-1,b]==col,x[a,b-1]==col)

if (a!=n)

nei=c(nei,x[a+1,b]==col)

if (b!=m)

nei=c(nei,x[a,b+1]==col)

sum(nei)

}

the above Gibbs sampler can be written as

isingibbs=function(niter,n,m=n,beta){

# initialization

x=sample(c(0,1),n*m,prob=c(0.5,0.5),rep=TRUE)

x=matrix(x,n,m)

for (i in 1:niter){

sampl1=sample(1:n)

sampl2=sample(1:m)

for (k in 1:n){

for (l in 1:m){

n0=xneig4(x,sampl1[k],sampl2[l],0)

n1=xneig4(x,sampl1[k],sampl2[l],1)

x[sampl1[k],sampl2[l]]=sample(c(0,1),1,

prob=exp(beta*c(n0,n1)))

}}}

x

}

where niter is the number of times the whole matrix x is modified. (It should
therefore be scaled against n*m, the size of x.) Figure 8.3 presents the output
of simulations from Algorithm 8.16
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Fig. 8.3. Simulations from the Ising model with a four-neighbor neighbourhood
structure on a 100× 100 array after 1,000 iterations of the Gibbs sampler: β varies
in steps of 0.1 from 0.3 to 1.2 (first column, then second column)

> image(1:100,1:100,isingibbs(10^3,100,100,beta))

for different values of β. Although we cannot discuss here convergence as-
sessment for the Gibbs sampler (see Robert and Casella, 2009, Chap. 8), the
images thus produced are representative of the Ising distributions: the larger
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β, the more homogeneous the image (and also the slower the Gibbs sampler).9

When looking at the result associated with the larger values of β, we can start
to see the motivations for using such representations to model images like the
Menteith dataset, discussed in Sect. 8.4.

Along with the slow dynamic induced by the single-site updating, we can
point out another inefficiency of this algorithm, namely that many updates
will not modify the current value of x simply because the new value of xl

is equal to its previous value! It is, however, straightforward to modify the
algorithm so that it only proposes changes of values. The update of each pixel
l is then a Metropolis–Hastings step with acceptance probability

ρ = exp(βnl,1−xl
)/ exp(βnl,xl

) ∧ 1 ,

with the corresponding R function

isinghm=function(niter,n,m=n,beta){

x=sample(c(0,1),n*m,prob=c(0.5,0.5),rep=TRUE)

x=matrix(x,n,m)

for (i in 1:niter){

sampl1=sample(1:n)

sampl2=sample(1:m)

for (k in 1:n){

for (l in 1:m){

n0=xneig4(x,sampl1[k],sampl2[l],x[sampl1[k],sampl2[l]])

n1=xneig4(x,sampl1[k],sampl2[l],1-x[sampl1[k],sampl2[l]])

if (runif(1)<exp(beta*(n1-n0)))

x[sampl1[k],sampl2[l]]=1-x[sampl1[k],sampl2[l]]

}}}

x

}

Although the details are too involved to be included here, Liu (1996) has
shown that this alternative is faster (to converge) than the original Gibbs
sampler.

8.2.4 The Potts Model

The generalization of the Ising model to cases when the image has more than
two colors, G say, is straightforward. If ni,g denotes the number of neighbors
of i ∈ I with color g (1 ≤ g ≤ G), that is,

9In fact, there exists a critical value of β, βc = 2.269185 in the case of the four
neighbor relation, such that, when β > βc, the Markov chain converges to one of two
different stationary distributions, depending on the starting point. In other words,
the chain is no longer irreducible. In particle physics, this phenomenon is called
phase transition.
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ni,g =
∑

j∼i

Ixj=g ,

the full conditional distribution of xi is chosen as

π(xi = g|x−i) ∝ exp(βni,g) .

This choice corresponds to a (true) joint probability model, the Potts model,
whose density is given by (Exercise 8.6)

π(x) ∝ exp

⎛
⎝β
∑

j∼i

Ixj=xi

⎞
⎠ . (8.5)

This model is a clear generalization of the Ising model and it suffers from the
same drawback, namely that the normalizing constant of this density—which
is a function of β—is not available in closed form and thus hinders inference
and the computation of the likelihood function.

Once again, we face the hindrance that, when simulating x from a Potts
model with a large β, the single-site Gibbs sampler may be quite slow. More
efficient alternatives are available, including the Swendsen–Wang algorithm
(Exercise 8.7). For instance, Algorithm 8.17 below is again a Metropolis–
Hastings algorithm that forces moves on the current values. Note the special
feature that, while this Metropolis–Hastings proposal is not a random walk,
using instead a uniform proposal on the G− 1 other possible values still leads
to an acceptance probability that is equal to the ratio of the target densities.

Algorithm 8.17 Potts Metropolis–Hastings Sampler

Initialization: For i ∈ I, generate independently

x
(0)
i ∼ U ({1, . . . , G}) .

Iteration t (t ≥ 1):
1. Generate u = (ui)i∈I a random ordering of the elements of I.
2. For 1 ≤ ℓ ≤ |I|,

generate

x̃uℓ
∼ U ({1, 2, . . . , x(t−1)

uℓ
− 1, x(t−1)

uℓ
+ 1, . . . , G}) ,

compute the n
(t)
ul,g and

ρl =
{
exp(βnuℓ,x̃uℓ

)/ exp(βn(t)
uℓ,xuℓ

)
}
∧ 1 ,

and set x
(t)
uℓ

equal to x̃uℓ
with probability ρl.
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Figure 8.4 illustrates the result of a simulation using Algorithm 8.17 in a
situation where there are G = 4 colors, using the following R function

pottshm=function(ncol=2,niter=10^4,n,m=n,beta=0){

x=matrix(sample(1:ncol,n*m,rep=TRUE),n,m)

for (i in 1:niter){

sampl=sample(1:(n*m))

for (k in 1:(n*m)){

xcur=x[sampl[k]]

a=(sampl[k]-1)%%n+1

b=(sampl[k]-1)%/%n+1

xtilde=sample((1:ncol)[-xcur],1)

acpt=beta*(xneig4(x,a,b,xtilde)-xneig4(x,a,b,xcur))

if (log(runif(1))<acpt) x[sampl[k]]=xtilde

}}

return(x)

}

for the simulation. (The use of a single vector of indices for rows and columns
is a programming trick that removes a loop in the code and thus saves a
considerable amount of computing time. This also allows a true uniform dis-
tribution in sampl. Note the call to the congruential operators %% for modulo
and %/% for integer division) We point out the reinforced influence of large
β’s on Fig. 8.4: not only is the homogeneity higher, but there is also a larger
differentiation in the colors.10 We stress that, while β in Fig. 8.4 ranges over
the same values as in Fig. 8.3, the β’s are not directly comparable since the
larger number of classes in the Potts model induces a smaller value of the
ni,g’s for the neighbourhood structure.

8.3 Handling the Normalizing Constant

While simulating random variables distributed from a Potts model is required
in several settings, one of which we will cover in the next section, a more
common statistical setting is observing x distributed as

f(x|β) = 1

Z(β)
exp

⎛
⎝β
∑

j∼i

Ixj=xi

⎞
⎠ , (8.6)

where Z(β) is the normalizing constant of the density in x, and inferring upon
the parameter β, using for instance a uniform prior β ∼ U (0, 2).11

10Similar to the Ising model mentioned in Footnote 9, there also exist a phase
transition phenomenon and a critical value for β in this model.

11The upper bound on β in the above prior is chosen for a very precise reason: As
mentioned in the previous footnotes, when β ≥ 2, the Potts model associated with
a four-neighbor relation is almost surely concentrated on single-color images. It is
thus pointless to consider larger values of β.
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Fig. 8.4. Simulations from the Potts model with four grey levels and a four-neighbor
neighbourhood structure based on 1,000 iterations of the Metropolis–Hastings sam-
pler. The parameter β varies in steps of 0.1 from 0.3 to 1.2 (first column, then second
column)
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The primary computational difficulty with this inference is the unavail-
ability of the normalizing constant

Z(β) =
∑

x

exp {βS(x)} ,

where S(x) =
∑

i∈I

∑
j∼i Ixj=xi

. The above summation operates over the

G|I| possible values of x, where |I| denotes the size of I. It involves too
many terms to be manageable. In the case of the Ising model, the number
of terms in the sum is for instance 2 to the power the number of points in
the lattice. For a small 256× 256 black-and-white image, there are therefore
265536 terms in the sum! Furthermore, this is not a setting where a standard
MCMC solution would apply because of the same difficulty: a Metropolis–
Hastings algorithm also requires the evaluation of the ratio Z(β̃)/Z(β) in the
acceptance probability. Unsurprisingly, addressing the approximation of Z(β)
has given rise to a huge literature, as shown by Ripley (1988) and Rue and
Held (2005), but the solutions are mostly too convoluted for this book (see,
e.g., the auxiliary variable method of Møller et al., 2006). We first describe a
semi-practical resolution of this difficulty, called path sampling, which is costly
in computing time for large images, before moving to a more generic if less
precise solution.

8.3.1 Path Sampling

The path sampling technique is based on a derivative representation of the
normalizing constant. Since

dZ(β)

dβ
=
∑

x

S(x) exp(βS(x)) ,

we can express this derivative as an expectation under π(x|β),

dZ(β)

dβ
= Z(β)

∑

x

S(x)
exp(βS(x))

Z(β)
= Z(β)Eβ [S(X)] ,

that is,

d logZ(β)

dβ
= Eβ [S(X)] .

Therefore, the ratio Z(β1)/Z(β0) can be represented as an integral,

log {Z(β1)/Z(β0)} =

∫ β1

β0

Eβ [S(x)]dβ , (8.7)

leading to the path sampling identity (see Chen et al., 2000, for many more
details about this technique.)
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Although (8.7) may not look like a considerable improvement, since we now
have to compute an expectation in x plus an integral over β, the represen-
tation (8.7) is appealing because we can use standard simulation procedures
for its approximation. First, for a given value of β, Eβ [S(X)] can be approx-
imated from an MCMC sequence simulated by Algorithm 8.17. Obviously,
changing the value of β should involve a new simulation run, however the cost
can be attenuated by using instead importance sampling for similar values
of β. Second, the integral itself can be approximated by numerical quadra-
ture, namely by computing the value of f(β) = Eβ [S(X)] for a finite number

of values of β and approximating f(β) by a piecewise-linear function f̂(β) for
the intermediate values of β. Indeed, for arbitrary β0 and β1,

∫ β1

β0

f(β) dβ ≈ f̂(β0) +
{
f̂(β1)− f̂(β0)

} (β1 − β0)
2

2
,

where f̂(β) is approximated by the above Monte Carlo method.
The rendering of the above in R for Laichedata is as follows for a four-

neighbor relation: the expectation Eβ [S(X)] is approximated via the following
R function

sumising=function(niter=10^3,numb,beta){

S=0

x=matrix(sample(c(0,1),numb^2,rep=TRUE),ncol=numb)

for (i in 1:niter){

s=0

sampl1=sample(1:numb)

sampl2=sample(1:numb)

for (k in 1:numb){

for (l in 1:numb){

n0=xneig4(x,sampl1[k],sampl2[l],x[sampl1[k],sampl2[l]])

n1=xneig4(x,sampl1[k],sampl2[l],1-x[sampl1[k],sampl2[l]])

if (log(runif(1))<(beta*(n1-n0))){

x[sampl1[k],sampl2[l]]=1-x[sampl1[k],sampl2[l]]

n0=n1}

s=s+n0

}}

if (2*i>niter)

S=S+s

}

return(2*S/niter)

}

for a few selected values of β, while the whole function f(β) is then
approximated using the R procedure approxfun as

Z=seq(0,2,by=.1)

for (i in 1:21)
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Z[i]=sumising(numb=24,beta=Z[i])

lrcst=approxfun(seq(0,2,0.1),Z)

This approximation is illustrated by Fig. 8.5. The ratio of the constants,
Z(β̃)/Z(β) is provided by the R numerical integration function, integrate, as

Zratio=integrate(lrcst,betatilde,beta)$value

and can be easily inserted within a random walk Metropolis–Hasting
algorithm. Indeed, now that we have painstakingly constructed a satisfactory
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Fig. 8.5. Monte Carlo approximation of Eβ[S(X)] for a 24× 24 Ising model, based
on 103 iterations. The irregularity at the penultimate value of β can be attributed
to a failed convergence of the Gibbs sampler

approximation of Z(β1)/Z(β0) for any arbitrary pair (β0, β1), we can run an
MCMC sampler targeting the posterior distribution π(β|x), where simulation
at iteration t is based on the proposal

β̃ ∼ U ([β(t−1) − h, β(t−1) + h]) ;

that is, a uniform move with range 2h. The acceptance ratio associated with
the pair (β(t−1), β̃) is thus given by

1 ∧
(
Ẑ(β(t−1))

/
Ẑ(β̃)
)
exp
{
(β̃ − β(t−1))S(x)

}
,

which translates into the R code
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betatilde=beta[t-1]+runif(1,-0.05,0.05)

laccept=lvr*(betatilde-beta[t-1])+integrate(lrcst,

betatilde,beta[t-1])$value

if (runif(1)<exp(laccept)){

beta[t]=betatilde}else{

beta[t]=beta[t-1]}

The outcome of this MCMC algorithm is represented by the histogram of
Fig. 8.6, which exhibits a very regular posterior distribution for β, which is
symmetric around 0.47. Thanks to the path sampling approximation to Z(β),
running 105 iterations is almost instantaneous.
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Fig. 8.6. Dataset Laichedata: Histogram of the MCMC sample of β’s produced
using the path sampling approximation to the ratio Z(β̃)/Z(β), when based on 105

iterations

8.3.2 The ABC Method

In a general setting where the likelihood function is not available in a closed
form, the trick at the core of the path sampling technique is not always avail-
able. (Consider for instance the case of a multivariate β.) We thus need to turn
towards faster if more rudimentary approximations and a method of choice
is the ABC (approximate Bayesian computation) technique, introduced by
Pritchard et al. (1999) in population genetic settings.

The method starts from a valid rejection technique bypassing the
computation of the likelihood function. Namely, if we observe x ∼ f(x|θ)
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and if π(θ) is the prior distribution on the parameter θ, then an algorithm
that jointly simulates

θ′ ∼ π(θ) and y ∼ f(y|θ′)

and accepts the simulated θ′ if, and only if, the auxiliary variable y is equal
to the observed value,

x = y ,

is exact in the sense that the accepted θ′’s are distributed from the posterior.
Obviously, the algorithm is not practical in cases when x is continuous or even
takes a large enough number of values.12 In most standard occurrences, the
ABC algorithm starts with an approximation, in the sense that the equality
constraint x = y is replaced with a tolerance condition, ̺(x, y) ≤ ǫ, where ̺
is a measure of discrepancy between x and y. We will call ǫ > 0 the tolerance
bound and ̺ will be chosen as a distance between summary statistics. The
output of the ABC algorithm is then distributed from the distribution with
density proportional to

π(θ)Pθ(̺(x, y) ≤ ǫ|x) ,

where the probability is associated with y ∼ f(y|θ). This density is denoted
by πǫ(θ | x).

If the tolerance ǫ is “too large”, the approximation is poor; to understand
why, consider that, when ǫ goes to ∞, the ABC algorithm amounts to sim-
ulating from the prior since all simulations are accepted. If ǫ is sufficiently
small, πǫ(θ|x) is a good approximation of π(θ|x), but the acceptance proba-
bility may be too low for this value to be practical. Selecting the “right” ǫ is
thus crucial. It is customary to pick ǫ as an empirical quantile of ̺(x, y) when
y is simulated from the marginal

∫
π(θ)f(y|θ)dθ

and the choice is often the corresponding 1% quantile. This quantile is easily
approximated by simulation.

In settings when the data x has a large dimension, the ABC algorithm
uses instead a distance between summary statistics ̺(S(x), S(y)) rather than
a distance between x and y. This choice throws away some information con-
tained in the data about θ, but it also allows to concentrate on important
features of the data in order to bring a maximal discrimination between the
observed and the simulated statistics. It is thus rarely the case that S is a

12Note that, for Laichedata, it is possible to wait for the equality S(x) = S(y)
with a sufficiently high probability. In that case, since S is a sufficient statistic, we
are simulating from the exact posterior.
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sufficient statistic.13 In the general case, the output of the ABC algorithm is
therefore a simulation from the distribution πǫ(θ | x). The ABC algorithm
thus reads as follows:

Algorithm 8.18 ABC algorithm For i = 1, . . . , N ,

1. Generate θi from the prior π.
2. Generate yi from the model distribution f(x|θi).
3. Compute the distance ̺(S(yi), S(x)).

Deduce ǫ as the 1% quantile of the distances. Accept the θi’s such that
̺(S(x), S(yi)) ≤ ǫ.

To illustrate the ABC method in a simple environment, consider the prob-
lem already processed in Chap. 2 about assessing whether a normal N (μ, σ2)
distribution has a zero mean, μ = 0. As explained in Sect. 2.3.1, the natural
Bayesian approach is to include the model index M as an extra parameter
taking only the values 1 (when μ = 0) and 2 (when μ 
= 0). In other words,
Bayesian inference covers the pair (M, θ), conditional on the data Dn. Sim-
ulating by ABC from the posterior on (M, θ) given Dn then follows from
Algorithm 8.18:

1. Generate M
i uniformly at random on {1, 2} (i = 1, . . . , n).

2. Generate θi from the prior π(θ|Mi) (i = 1, . . . , n).
3. Generate D i

n from the normal model indexed by (Mi, θi) (i = 1, . . . , n).
4. Compute the distances between the statistics (x̄(Dn), s

2(Dn)) and
(x̄(D i

n), s
2(D i

n)) (i = 1, . . . , n).
5. Deduce ǫ as the 1% quantile of the distances.
6. Accept the M

i’s for which the distances are less than ǫ.

The distance we pick is inspired from the likelihood function, namely

̺{(x̄(Dn), s
2(Dn)), (x̄(D

∗
n),s

2(D∗
n))} = n{x̄(Dn)− x̄(D∗

n)}2

+ {s2(Dn)/s
2(D∗

n)} − 1− log{s2(Dn)/s
2(D∗

n)} .

The implementation is then straightforward: we select one of the models at
random, simulate from the corresponding (necessarily proper) prior on the
parameter(s) and create a normal sample D∗

n. The posterior probability of
the model associated with μ = 0 is then estimated by the proportion of ac-
cepted simulations from the simpler model. Under an E (1) prior on σ2 in both
models and a N (0, σ2) on μ under the larger model, with the normaldata
benchmark, the R code goes as follow:

13The setting of Markov random fields like the Ising and the Potts models is
an exception in that it allows for a sufficient statistic, while being intractable via
classical approaches.
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> xbar=mean(normaldata)

> s2=(n-1)*var(normaldata)

> Nsim=10^6 #simulations from the prior

> indem=sample(c(0,1),Nsim,rep=TRUE)

> ssigma=1/rexp(Nsim)

> smu=rnorm(Nsim)*sqrt(ssigma)*(indem==1)

> ss2=s2/(ssigma*rchisq(Nsim,n-1))

> sobs=n*(rnorm(Nsim,smu,sqrt(ssigma/n))-xbar)^2+

+ ss2-1-log(ss2)

> epsi=quantile(sobs,.001) #bound and selection

> prob=sum(indem[sobs<=epsi]==0)/(0.001*Nsim)

> (1-prob)/prob

[1] 0.1574074

producing a numerical value to be compared with the exact Bayes factor

(n+ 1)−1/2

[
nx̄2 + s2 + 2

nx̄2/(n+ 1) + s2 + 2

]n+2/2

(deduced from the derivation on page 45 by modifying for the exponential
prior), which is equal to 0.1369 for normaldata. Figure 8.7 represents the
variability of the ABC approximation compared with the true value.

8.3.3 Inference on Potts Models

If we consider the specific case of the posterior distribution associated with
(8.6) and a uniform prior, Algorithm 8.18 simulates values of β uniformly over
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Fig. 8.7. Dataset normaldata: Boxplot representation of the ABC approximation
to the Bayes factor, which true value is represented by an horizontal line, based on
105 proposals, a 1% acceptance rate, and 500 replications
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(0, 2) and then values x from the Potts model (8.6). Simulating a data set x is
unfortunately non-trivial for Markov random fields and in particular for Potts
models, as we already discussed. While there exist developments towards this
goal in the special case of the Ising model—in the sense that they produce
exact simulations, at a high computing cost—, we settle for using a certain
number of steps of an MCMC sampler (for instance, Algorithm 8.17) updat-
ing one clique at a time conditional on the others. Obviously, this solution
brings a further degree of approximation into the picture in that running a
fixed number of iterations of the MCMC sampler does not produce an exact
simulation from (8.6). There is however little we can do about this if we want
to use ABC. (And we can further argue that ABC involves such a significant
departure from the exact posterior that an imperfect MCMC simulation does
not matter so much!)

Since, for every new value of β, the algorithm runs a full MCMC simula-
tion, we need to discuss the choice of the starting value as well. There are (at
least) three natural solutions:

– start completely at random;
– start from the previously simulated x.
– always start from the observed value x0;

The first one is the closest to the MCMC idea and it produces independent
outcomes. The second solution is less compelling as the continuity it creates
between draws is not statistically meaningful, given that the simulated β’s
change (independently or not) from one step to the other. The third solution
offers the appealing feature of connecting with the observed value x0, thus
favoring proximity between the simulated and the observed values, but this
feature could confuse the issues in that this proximity may be due to a poor
mixing of the chain rather than to a proper choice for β. (For instance, in
the extreme case the MCMC chain does not move from x0, x = x0 does not
mean that the simulated β is at all interesting for π(β|x0). . . ) The distance
used in step 3 of Algorithm 8.18 is the (natural) absolute difference between
the sufficient statistics S(x) and S(x0), with

S(x) =
∑

i∼j

Ixi=xj
.

For the four-neighbour relation, the statistic can be computed directly without
loops as

sum(x[-1,]==x[-n,])+sum(x[,-1]==x[,-m])

and the whole R code corresponding to a random start of the Metropolis–
Hastings algorithm is as follows:

> ncol=4; nrow=10; Nsim=2*10^4; Nmc=10^2

> suf0=sum(x0[-1,]==x0[-nrow,])+sum(x0[,-1]==x0[,-nrow])

> outa=dista=rep(0,Nsim)
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> for (tt in 1:Nsim){

+ beta=runif(1,max=2)

+ xprop=pottshm(ncol,nit=Nmc,n=nrow,beta=beta)

+ dista[tt]=abs(suf0-(sum(xprop[-1,]==xprop[-nrow,])+

+ sum(xprop[,-1]==xprop[,-ncol])))

+ outa[tt]=beta

+ }

betas=outa[order(dista)<=.01*Nsim]

Note the inequality sign <= and the use of jitter to get exactly 0.01*Nsim

values in the vector beta. This is due to the fact that the statistic S takes
integer values.

When applying the above to the Laichedata dataset, we obtain the out-
come represented in Fig. 8.8. When comparing with Fig. 8.6, we can check that
ABC produces an almost exact representation, even though ǫ is not equal to
zero. As mentioned above, it would actually be feasible to achieve ǫ = 0 with
a larger number of simulations.
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Fig. 8.8. Dataset Laichedata: Histogram of the sample of β’s produced using an
ABC algorithm with 104 iterations and a 1% quantile on the difference between the
sufficient statistics as its tolerance bound ǫ
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8.4 Image Segmentation

In this section, we still consider images as statistical objects, but they are
now “noisy” in the sense that the color or the grey level of a pixel is not
observed exactly but with some perturbation (sometimes called blurring as in
satellite imaging). The purpose of image segmentation is to cluster pixels into
homogeneous classes without supervision or preliminary definition of those
classes, based only on the spatial coherence of the structure.

This underlying structure of the “true” pixels is denoted by x, while the ob-
served image is denoted by y. Both objects x and y are arrays, with each entry
of x taking a finite number of values and each entry of y taking real values
(for modeling convenience rather than reality constraints). We are thus inter-
ested in the posterior distribution of x given y provided by Bayes’ theorem,
π(x|y) ∝ f(y|x)π(x). In this posterior distribution, the likelihood, f(y|x),
describes the link between the observed image and the underlying classifica-
tion; that is, it gives the distribution of the noise, while the prior π(x) encodes
beliefs about the (possible or desired) properties of the underlying image. Al-
though, as in other chapters, we cannot provide the full story of Bayesian
image segmentation, an excellent tutorial on Bayesian image processing based
on a summer school course can be found in Hurn et al. (2003).

As indicated above, a proper motivation for image segmentation is satellite
processing since images caught by satellites are often blurred, either because
of inaccuracies in the instruments or transmission or because of clouds or
vegetation cover between the satellite and the area of interest.

The Menteith dataset that motivates this section is a 100 × 100 pixel
satellite image of the lake of Menteith, as represented in Fig. 8.9. The lake
of Menteith is located in Scotland, near Stirling, and offers the peculiarity
of being called “lake” rather than the traditional Scottish “loch.” As shown
by the image, there are several islands on this lake, one of which houses an
ancient abbey. The purpose of analyzing this satellite dataset is to classify all
pixels into one of six states in order to detect some homogeneous regions.

The model being introduced, we turn to the central issue, namely how to
draw inference on the “true” image, x, given an observed noisy image, y. The
prior on x is a Potts model with G categories,

π(x|β) = 1

Z(β)
exp

⎛
⎝β
∑

j∼i

Ixj=xi

⎞
⎠ ,

where Z(β) is the (intractable, see Sect. 8.3) normalizing constant of the Potts
model. Given x, we assume that the observations in y are independent normal
random variables,

f(y|x, σ2, μ1, . . . , μG) =
∏

i∈I

1

(2πσ2)1/2
exp

{
− 1

2σ2
(yi − μxi

)2
}

.



274 8 Image Analysis

20 40 60 80 100

20

40

60

80

100

Fig. 8.9. Dataset Menteith: Satellite image of the lake of Menteith

This model is not exact in that the yi’s are integer grey levels that vary
between 0 and 255, but it is easier to handle than a parameterized distribution
on {0, . . . , 255}. This setting is clearly reminiscent14 of the mixture and hidden
Markov models of Chaps. 6 and 7 in that a Markov structure, the Markov
random field, is only observed through random variables indexed by the states.

In this problem, the parameters β, σ2, μ1, . . . , μG are usually considered
to be nuisance parameters, a point of view that justifies the use of uniform
priors like

β ∼ U ([0, 2]) ,

µ = (μ1, . . . , μG) ∼ U ({µ ; 0 ≤ μ1 ≤ . . . ≤ μG ≤ 255}) ,
π(σ2) ∝ σ−2

I]0,∞[(σ
2) ,

the last prior corresponding to a uniform prior on log σ.
The upper bound on β has been discussed in the previous section. The

ordering of the μg’s is not necessary, strictly speaking, but it avoids the label
switching phenomenon discussed in Sect. 6.5. (The alternative is to use the
same uniform prior on all μg’s and then reorder them once the MCMC sim-
ulation is done. While this may avoid slow convergence behaviors in some
cases, this strategy also implies more involved bookkeeping and higher stor-
age requirements. In the case of large images, it simply cannot be considered.)

14Besides image segmentation, another typical illustration of such structures is
character recognition where a machine scans handwritten documents, e.g., envelopes,
and must infer a sequence of symbols (i.e., numbers or letters) from digitized pic-
tures. Hastie et al. (2001) provide an illustration of this problem.
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The corresponding posterior distribution is thus

π(x, β, σ2,µ|y) ∝ π(β, σ2,µ)× 1

Z(β)
exp

⎛
⎝β
∑

j∼i

Ixj=xi

⎞
⎠

×
∏

i∈I

1

(2πσ2)1/2
exp

{ −1

2σ2
(yi − μxi

)2
}

.

We can therefore construct the various full conditionals of this joint distri-
bution with a view to the derivation of a hybrid Gibbs sampler for this model.
First, the full conditional distribution of xi (i ∈ I) is (1 ≤ g ≤ G)

P(xi = g|y, β, σ2,µ) ∝ exp

⎧
⎨
⎩β
∑

j∼i

Ixj=g −
1

2σ2
(yi − μg)

2

⎫
⎬
⎭ ,

which can be simulated directly, even though this is no longer a Potts model.
As in the mixture and hidden Markov cases, once x is known, the groups asso-
ciated with each category g separate and therefore the μg’s can be simulated
independently conditional on x, y, and σ2. More precisely, if we denote by

ng =
∑

i∈I

Ixi=g and sg =
∑

i∈I

Ixi=gyi

the number of observations and the sum of the observations allocated to cat-
egory g, respectively, the full conditional distribution of μg is a truncated
normal distribution on [μg−1, μg+1] (setting μ0 = 0 and μG+1 = 255) with
mean sg/ng and variance σ2/ng. (Obviously, if no observation is allocated
to this group, the conditional distribution turns into a uniform distribution
on [μg−1, μg+1].) The full conditional distribution of σ2 is an inverse gamma
distribution with parameters |I|2/2 and

∑
i∈I(yi − μxi

)2/2. Finally, the full
conditional distribution of β is such that

π(β|y) ∝ 1

Z(β)
exp

⎛
⎝β
∑

j∼i

Ixj=xi

⎞
⎠ , (8.8)

since β does not depend on σ2, µ, and y, given x. As discussed in Sect. 8.3.1,
a path sampler can provide an approximation for the ratio of normalizing
constants.
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In the case of the Menteith data, we use a four-neighbour neighbourhood
and G = 6 on a 100 × 100 image. For β ranging from 0 to 2 by steps of 0.1,
the approximation to f(β) is based on 15,000 iterations of Algorithm 8.17
(after burn-in), following the same procedure as with Fig. 8.5. The resulting
piecewise-linear function is given in Fig. 8.10 and is smooth enough for us
to consider the approximation as acceptable. (We use these numerical values
in the clustering function reconstruct as the vector dali.) Note that the
increasing nature of the function f in β is intuitive: As β grows, the probability
of having more neighbors of the same category increases and so does S(x).
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Fig. 8.10. Approximation of f(β) for the Potts model on a 100 × 100 image, a
four-neighbour neighbourhood, and G = 6, based on 1,500 MCMC iterations after
burn-in

The corresponding R code for 6 colors and 4 neighbors (which are the
specifications for the Menteith dataset) is as follows:

reconstruct=function(niter=10^3,y){

numb=dim(y)[1]

x=0*y

mu=matrix(0,niter,6)

sigma2=rep(0,niter)

#prior input

mu[1,]=c(35,50,65,84,92,120)

sigma2[1]=100

beta=rep(1,niter)

xcum=matrix(0,numb^2,6)

n=rep(0,6)
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dali=c(6667.729,7245.159,7856.514,8523.00,9242.127,10025.211,

10896.380,11877.379,12985.344,14360.080,16062.470,18408.592,

22755.124,33163.207,35947.756,36745.675,38286.608,38534.912,

38531.211,38916.662,38495.781)

thefunc=approxfun(seq(0,2,length=21),dali)

for (i in 2:niter){

lvr=0

for (k in 1:numb){

for (l in 1:numb){

for (co in 1:6)

n[co]=xneig4(x,k,l,co)

x[k,l]=sample(1:6,1,prob=exp(beta[i-1]*n)*

dnorm(y[k,l],mu[i-1,],sqrt(sigma2[i-1])))

xcum[(k-1)*numb+l,x[k,l]]=xcum[(k-1)*numb+l,x[k,l]]+1

lvr=lvr+n[x[k,l]]

}}

mu[i,1]=truncnorm(1,mean(y[x==1]),sqrt(sigma2[i-1]/

sum(x==1)),0,mu[i-1,2])

for (co in 2:5)

mu[i,co]=truncnorm(1,mean(y[x==co]),sqrt(sigma2[i-1]/

sum(x==co)),mu[i,co-1],mu[i-1,co+1])

mu[i,6]=truncnorm(1,mean(y[x==6]),sqrt(sigma2[i-1]/

sum(x==5)),mu[i,5],255)

sese=sum((y-mu[i,1])^2*(x==1))

for (co in 2:6)

sese=sese+(y-mu[i,co])^2*(x==co))

sigma2[i]=1/rgamma(1,numb^2/2,sese/2)

betilde=beta[i-1]+runif(1,-0.05,0.05)

laccept=vr*(betatilde-beta[i-1])+integrate(thefunc,

betatilde,beta[i-1])$value

integrate(lrcst,betilde,beta[i-1])$value

if (log(runif(1))<laccept){

beta[i]=betilde}else{beta[i]=beta[i-1]}

}

list(beta=beta,mu=mu,sigma2=sigma2,xcum=xcum)

}

In the above, truncnorm is the standard simulator of a truncated normal
variate based on the inverse cdf (see Robert and Casella, 2004, Chap. 2, for
details).
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In the case of the Menteith data, we use a four-neighbour neighbourhood
and G = 6 on a 100 × 100 image. For β ranging from 0 to 2 by steps of 0.1,
the approximation to f(β) is based on 1,500 iterations of Algorithm 8.17
(after burn-in), following the same procedure as with Fig. 8.5. The resulting
piecewise-linear function is given in Fig. 8.11 and is smooth enough for us to
consider the approximation as acceptable. Note that the increasing nature of
the function f in β is intuitive: As β grows, the probability of having more
neighbors of the same category increases and so does S(x).
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Fig. 8.11. Approximation of f(β) for the Potts model on a 100 × 100 image, a
four-neighbour neighbourhood, and G = 6, based on 1,500 MCMC iterations after
burn-in

Figures 8.12–8.14 illustrate the convergence performances of the hybrid
Gibbs sampler for Menteith. In that case, using h = 0.05 shows that 2,000
MCMC iterations are sufficient for convergence. (Recall, however, that x is a
100×100 image and thus that a single Gibbs step implies simulating the value
of 104 pixels. This comes in addition to the cost of approximating the ratio of
normalizing constants.)All histograms are smooth and unimodal, even though
the moves on β are more difficult than for the other components. (Different
values of h were tested for this dataset and none improved this behavior.) Note
that large images like Menteith often lead to a very concentrated posterior
on β. (Other starting values for β were also tested to check for the stability
of the stationary region.)

We recall that the primary purpose of this image analysis is to clean
(de-noise) and to classify into G categories the pixels of the image. Based
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on the MCMC output and in particular on the chain (x(t))1≤t≤T (where T
is the number of MCMC iterations), an estimator of x needs to be derived
through an evaluation of the consequences of wrong allocations. Two common
ways of running this evaluation are either to count the number of (individual)
pixel misclassification,

L1(x, x̂) =
∑

i∈I

Ixi 	=x̂i
,

or to use the global “zero–one” loss function (see Sect. 2.3.1),

L2(x, x̂) = Ix 	=x̂ ,

which amounts to saying that only a perfect reconstitution of the image is
acceptable (and thus sounds rather extreme in its requirements). It is then
easy to show that the estimators associated with these loss functions are the
marginal posterior mode (MPM), x̂MPM ; that is, the image made of the pixels

x̂MPM
i = arg max

1≤g≤G
P
π(xi = g|y) , i ∈ I ,

Fig. 8.12. Dataset Menteith: Sequence of μg’s based on 2,000 iterations of the
hybrid Gibbs sampler (read row-wise from μ1 to μ6)
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Fig. 8.13. Dataset Menteith: Histograms of the μg ’s represented in Fig. 8.12

Fig. 8.14. Dataset Menteith: Raw plots and histograms of the σ2’s and β’s based
on 2,000 iterations of the hybrid Gibbs sampler (the first row corresponds to σ2)

and the maximum a posteriori estimator (2.4),

x̂MAP = argmax
x

π(x|y) ,

respectively. Note that it makes sense that the x̂MPM estimator only depends
on the marginal distribution of the pixels, given the linearity of the loss func-
tion. Both loss functions are nonetheless associated with image reconstruction
rather than true classification (Exercise 8.14).
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The estimators x̂MPM and x̂MAP obviously have to be approximated since
the marginal posterior distributions π(xi|y) (i ∈ I) and π(x|y) are not avail-
able in closed form. The marginal distributions of the xi’s being by-products
of the MCMC simulation of x, we can use, for instance, as an approximation
to x̂MPM the most frequent occurrence of each pixel i ∈ I,

x̂MPM
i = max

g∈{1,...,G}

N∑

j=1

I
x
(j)
i

=g
,

based on a simulated sequence, x(1), . . . ,x(N), from the posterior distribution
of x. (This is not the most efficient approximation to x̂MPM , obviously, but it
comes as a cheap by-product of the MCMC simulation and it does not require
the use of more advanced simulated annealing tools, mentioned in Sect. 6.7.)

Unfortunately, the same remark cannot be made about x̂MAP : the state
space of the simulated chain (x(t))1≤t≤T is so huge, being of cardinality
G100×100, that it is completely unrealistic to look for a proper MAP esti-
mate out of the sequence (x(t))1≤t≤T . Since π(x|y) is not available in closed
form, even though this density could be approximated by

π̂(x|y) ∝
T∑

t=1

π(x|y, β(t),µ(t), σ(t)) ,

thanks to a Rao–Blackwellization argument, it is rather difficult to propose a
foolproof simulated annealing that converges to x̂MAP (although there exist
cheap approximations; see Exercise 8.15).

The segmented image of Lake Menteith is given by the MPM estimate
that was found after 2,000 iterations of the Gibbs sampler. We reproduce in
Fig. 8.15 the original picture to give an impression of the considerable im-
provement brought by the algorithm.

8.5 Exercises

8.1 Find two conditional distributions f(x|y) and g(y|x) such that there is no joint
distribution corresponding to both f and g. Find a necessary condition for f and g to
be compatible in that respect; i.e., to correspond to a joint distribution on (x, y).

8.2 Using the Hammersley–Clifford theorem, show that the full conditional distribu-
tions given by (8.3) are compatible with a joint distribution. Deduce that the Ising model
is a Markov random field.

8.3 If a joint density π(y1, . . . , yn) is such that the conditionals π(y−i|yi) never cancel
on the supports of the marginals m−i(y−i), show that the support of π is equal to the
Cartesian product of the supports of the marginals.
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Fig. 8.15. Dataset Menteith: (top) Segmented image based on the MPM estimate
produced after 2,000 iterations of the Gibbs sampler and (bottom) the observed image

8.4 Describe the collection of cliques C for an eight-neighbour neighbourhood structure
such as in Fig. 8.2 on a regular n × m array. Compute the number of cliques.

8.5 Draw the function Z(β) for a 3 × 5 array. Determine the computational cost of
the derivation of the normalizing constant Z(β) of (8.4) for an m × n array.

8.6 Show that the joint distribution (8.5) is indeed compatible with the full conditionals
of the Potts model. Can you derive this joint distribution from the Hammersley–Clifford
representation (8.1)?

8.7 For an n × m array I, if the neighbourhood relation is based on the four nearest
neighbors, show that the xi,j ’s for which (i+j) ≡ 0(mod 2) are independent conditional
on the xi,j ’s for which (i + j) ≡ 1(mod 2) (1 ≤ i ≤ n, 1 ≤ j ≤ m). Deduce that the
update of the whole image can be done in two steps by simulating the pixels with even
sums of indices and then the pixels with odd sums of indices. (This modification of
Algorithm 8.16 is a version of the Swendsen–Wang algorithm.)

8.8 Determine the computational cost of the derivation of the normalizing constant
of the distribution (8.5) for an n × m array and G different colors.
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8.9 Use the Hammersley–Clifford theorem to establish that (8.5) is the joint distribu-
tion associated with the conditionals above. Deduce that the Potts model is an MRF.

8.10 Derive an alternative to Algorithm 8.17 where the probabilities in the multinomial
proposal are proportional to the numbers of neighbors nuℓ,g and compare its performance
with that of Algorithm 8.17.

8.11 Show that the Swendsen–Wang improvement given in Exercise 8.7 also applies
to the simulation of π(x|y, β, σ2,µ).

8.12 Using a piecewise-linear interpolation of f(β) based on the values
f(β1), . . . , f(βM ), with 0 < β1 < . . . < βM = 2, give the explicit value of the
integral

∫ α1

α0

f̂(β) dβ

for any pair 0 ≤ α0 < α1 ≤ 2.

8.13 Show that the estimators x̂ that minimize the posterior expected losses
E

π[L1(x, x̂)|y)] and E
π[L2(x, x̂)|y] are x̂MPM and x̂MAP , respectively.

8.14 Determine the estimators x̂ associated with two loss functions that penalize
differently the classification errors,

L3(x, x̂) =
∑

i,j∈I

Ixi=xj
Ix̂i �=x̂j

and L4(x, x̂) =
∑

i,j∈I

Ixi �=xj
Ix̂i=x̂j

.

8.15 Since the maximum of π(x|y) is the same as that of π(x|y)κ for every κ ∈ N,
show that

π(x|y)κ =

∫

π(x, θ1|y) dθ1 × · · · ×
∫

π(x, θκ|y) dθκ , (8.9)

where θi = (βi,µi, σ
2
i ) (1 ≤ i ≤ κ). Deduce from this representation an optimization

scheme that slowly increases κ over iterations and that runs a Gibbs sampler for the
integrand of (8.9) at each iteration.

8.16 For the Ising model, show that the distribution (8.4) can be also defined as

π(x) ∝ exp

(

2β
∑

j∼i

Ixj=xi=1

)

when the number of neighbors is constant.

8.17 Show that the joint distribution (8.4) can be obtained from the full conditionals
(8.3) by virtue of the Hammersley–Clifford representation (8.1).

8.18 Show that the Ising distribution is symmetric in that inverting the color of all
pixels does not change the probability (8.4).

8.19 For the Ising model, run a simulation experiment that should locate the limiting
value of β above which almost all pixels are of the same color. Same question for the
(negative) limiting value of β below which the image is a perfect checkerboard.

8.20 Show that the ABC algorithm implemented with ǫ = 0 and a distance between
sufficient statistics is not approximate in that the output is truly simulated from the
posterior distribution π(θ|x) ∝ f(x|θ)π(θ).
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Accept–reject algorithm, see Algorithm

Acceptance rate, 113

airquality, 128

Algorithm

accept–reject, 47, 156, 157

Arnason–Schwarz Gibbs, 165

basic Monte Carlo, 47

capture–recapture Gibbs, 148

down-the-shelf, 109

EM, 181, 182, 189, 243

finite–state HMM Gibbs, 240

generic Metropolis–Hastings, 109

Gibbs sampler, 86, 90, 91, 169

assessment, 260

failure to converge, 189

for variable selection, 96

Metropolis within, 115, 221

two-stage, 87, 88

warning, 90

importance sampling, 51

Ising Gibbs, 257

MCMC, 85

Metropolis–Hastings, 88, 108–111

random walk, 190

unconstrained, 192

mixture

Gibbs sampler, 183

pivotal reordering, 196

Potts Metropolis–Hastings, 261

probit Metropolis–Hastings, 116

reversible jump AR(p), 222

reversible jump MA(q), 231

reversible jump MCMC, 202
Swendsen–Wang, 282

Allocation variable, 176, 180
Amine bases, 238
Annealing, see Simulated annealing
ANOVA (analysis of variance), 129
Approximate Bayesian computation

(ABC), 252, 267
AR model, see Model
ARMA model, see Model
Arnason–Schwarz model, see Model
Autocorrelation, 112
Autocovariance, 212, 227
Auxiliary variable, 48

bank, 104
Baum–Welch formulas, 243
Bayes

formula, 29
theorem, 29

Bayes factor, 41, 82, 92
approximation, 52
computation, 119, 126
for mixtures, 202

Bayesian
decision procedure, 33, 92
estimation, 33
model choice, 39, 225
using ABC, 269

posterior, see Posterior
prior, see Prior
regression output, 121

Bayesian regression output, 83
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bayess, 4
Belief, 29
Bertillon, Alphonse, 176
Binomial model, see Model
Blurring of images, 273
Bonferroni fallacy, 60
Boxplot, 57
Bridge sampling, 53
BUGS, 3, 6, 91, 255
Burn-in, 112

caterpillar, 66
Causality, 212, 215
Classification, 177
Clique, 256
Clustering, 177
Cohort, 161
Complex numbers, 216
Conditional distribution, 66, 87
Conditional mean family, 122
Confidence interval, 37
Conjugacy, 34
Conjugate prior, 34, 35

for mixture of distributions, 184
Constant

normalizing, 45, 159, 220
for the Ising model, 257
for the Potts model, 273

prior, 36
Zellner’s G, 76

Contingency table, 127, 128
Correlation, 86
Covariate, 66
CRAN, 8
Credible set, 38
Critical value, 260, 262
Curse of dimensionality, 192

Darroch model, see Model
Data augmentation, 182
Data-dependent prior, 76
datha, 174
De-noise, 279
de Finetti, Bruno, 122
Dependence, 211
Detailed balance, 110
Dichotomous data, 104, 128
Distribution

beta, 176

beta-Pascal, 145
binomial, 116, 142
Dirichlet, 246
hypergeometric, 146
inverse gamma, 30
mixture, 176
nonstandard, 156
normal, 26
Poisson, 128
predictive, 59, 84, 99
stationary, 88
Student t, 31, 62, 78
Weibull, 62

DNA, 238
Dnadataset, 238

Effective sample size, 112, 213
Elicitation, 122
EM algorithm, see Algorithm
Empirical Bayes analysis, 76
Entropy, 196
Equation

backward, 244
detailed balance, 110
forward, 244
forward–backward, 243

Ergodicity, 86
Estimation

of mixture parameters, 196
versus testing, 201, 226

eurodip, 141
European dipper, 141
Eurostoxx50, 210
Explanation vs. interpretation, 2
Explanatory variable, 66

Factor, 69
Fisher information, 116
Forward–backward formulas, 243
Function

beta, 145
Fundamental theorem of simulation,

156

Galaxy dataset, 204
Generalized linear model (GLM), see

Model
Gibbs sampler, see Algorithm
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GLM, see Generalized linear model
Goodness of fit, 39

Harmonic mean, 57
Heteroscedasticity, 235
Hidden Markov model, see Model
HIV, 238
HPD region, 38, 79
Hyperparameter, see Prior
Hypothesis

point null, 41
testing, 38, 71, 82
versus estimation, 201

Identifiability, 69, 130, 194, 241
Illingworthh, K.K., 27
Image, 252

noisy, 273
Imaginary observations, 122
Importance sampling, 49, 50

for marginal approximation, 119
Independent, identically distributed

(iid), 28
Intercept, 69
International Whaling Commission, 140
Invariance

by permutation, 221
Invariance under permutations, 193
Irreducibility, 86, 88
Ising model, see Model

JAGS, 3, 6
Jeffreys, Harold, 36
Jeffreys’ scale of evidence, 41
Jeffreys–Lindley paradox, 42, 44, 95

Kalman filter, 232

Label switching, 192–197, 200, 241, 274
and Chib’s method, 203

Lag, 213
Laichedata, 253
Lattice, 252, 253
Least squares estimate, 72
Lexicographical ordering, 180
License, 197
Likelihood, 28
likelihood, -free inference, 261

Link, 106
canonical, 107
log, 108
logit, 107
probit, 108

Local versus global variables, 20
Loch, 273
Log-linear model, see Model
Log-odds ratio, 107
Logit model, see Model
Loss function, 37, 279

MA model, see Model
MAP, see Maximum a posteriori
Marginal distribution, 38, 79

approximation, 119
Marginal likelihood, 55, 203
Marginal posterior mode (MPM), 279
Markov

kernel, 85, 87
random field, 254, 255
switching, 247

Markov chain, 85, 109, 217, 218, 253
definition, 210
hidden, 161
homogeneous, 210, 237
slow mixing, 258

Markov Chain Monte Carlo (MCMC),
47, 85

birth-and-death, 220
Maximum a posteriori, 33, 195, 279
Menteith, 278
Menteith, 273
Metropolis–Hastings algorithm, see

Algorithm
Michelson-Morlay experiment, 27
Military conscripts, 176
Missing variable, 153
Mixture, see Distribution
Mixture model, see Model
Model

ANOVA (analysis of variance), 129
AR(1), 215
AR(p), 216
ARCH(p), 235
ARMA, 232, 234
Arnason-Schwarz, 160–168
averaging, 93
binomial, 142
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capture–mark–recapture, 143, 210

Darroch, 146

dynamic, 210

full, 93

generalized linear, 16, 106

hidden Markov, 174, 237–250

hypergeometric, 146

Ising, 256, 258

latent variable, 108

log-linear, 127

logit, 107, 124

MA, 226

MA(q), 227, 233

Markov, 228

Markov–switching, 247

mixture, 176

Potts, 252, 256, 260, 275

inference on, 270

probit, 115

regression, 67

saturated, 128

stochastic volatility, 235

temporal, 210

T -stage capture–recapture, 148

two-stage capture, 147

variable dimension, see Variable
dimension

Model choice, 38–58, 130

Monte Carlo

estimate, 49

methods, 3

MRF, see Markov random field

Multimodality, 26

Noise, 273, 279

white, 215, 236

Normal distribution, see Distribution

normaldata, 27

Normalizing constant, 62, 261–264

Numerical quadrature, 265

Occam’s razor, 91

Optimality, 38

Outcome, 66

Outlier, 60

Overfitting, 91

Parameter

common to several models, 40

interest, 142

nuisance, 142, 274

Parsimony, 42, 91, 234

Partition, 179

Path sampling, 264

Phase transition, 260, 262

Pilot run, 90

Pivot, 196

Plug-in, 126

Polynomial

lag, 219

root, 220

Population

closed, 144

sub, 176

Posterior, 29

proper, 73

Potts model, see Model

Prediction

filter, 244

Prior

construction of, 122

elicitation, 122

flat, 36, 124

hyper-, 35

hyperparameter, 34

improper, 35, 37, 43, 73

index, 36

Jeffreys, 36, 219

noninformative, 35

selection, 34

subjective, 29

Probit model, see Model

Process

Dirichlet, 202

future-independent, 215

invertible, 227

nonstationary, 214

stationary, 212

stochastic, 210

Proposal, 109

choice, 113

p-value, 71
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R, 5
airquality, 128
apply, 13
arima, 231
array, 11
as.matrix, 129
bayess, 4
color, 156
combinat, 205
contour, 178
data, 128
depository, 19
dump, 21
factor, 11
function, 19
glm, 131
graphical commands, 19
help, 5
image, 178, 207
integrate, 266
intToBits, 94
is.matrix, 129
jitter, 156
list, 14
lm, 16, 69, 83
matrix, 11
mnormt, 32, 121
morley, 27
packages, 8
plot, 16
probability distributions, 16
programming, 19, 20
quit, 21
rm, 21
scan, 21
solve, 99
stat, 183
vector, 9

Random field, 254
Random number generator, 156
Random walk, 111, 190, 248
Rankin, Ian, 1
Rao–Blackwellization, 281
Recurrence, 86
Regression model, see Model
Reordering MCMC output, 196
Reparameterization

root, 219, 228, 234
weight, 192

Response, 66
Reversible jump MCMC, see Algorithms
Rkwards, 7

Saddle point, 186
Satellite image, 273
scale, 69
Scotland, 273
Sequential Monte Carlo sampler, 233
Significance, 71
Simulated annealing, 199, 207, 281
Simulation, 47
Skewness, 26
Slice sampler, 170
SMC, 233
State–space representation, 212, 232,

233, 237
Stationarity

constraint, 214
lack of, 216
second–order, 212, 213
strict, 212

Statistics, 3, 210
nonparametric, 16, 198
semiparametric, 177

Step
E and M, 181

Stochastic volatility model, see Model
Stock market, 210
Stopping rule, 88
Sufficiency, 29
Survey, 140

Target, 109
Tempering, 199
Test

Schur–Cohn, 249
Testing

versus estimation, 226
Theorem

Gauss–Markov, 70
Hammersley–Clifford, 256, 281
Rao–Blackwell, 203

Tolerance (for ABC), 268
T -stage capture–recapture model, see

Model
Two-stage capture model, see Model

Unit circle, 216
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Variable
categorical, 127
control, 66
dummy, 69
latent, 108, 235

Variable-dimension model, 225

Volatility, 210
Volume, 38

White noise, see Noise

Zellner, Arnold, 76


	Preface
	Contents
	1 User's Manual
	1.1 Expectations
	1.2 Prerequisites and Further Reading
	1.3 Styles and Fonts
	1.4 An Introduction to R
	1.4.1 Getting Started
	1.4.2 R Objects
	1.4.3 Probability Distributions in R
	1.4.4 Graphical Facilities
	1.4.5 Writing New R Functions
	1.4.6 Input and Output in R
	1.4.7 Administration of R Objects

	1.5 The bayess Package

	2 Normal Models
	2.1 Normal Modeling
	2.2 The Bayesian Toolkit
	2.2.1 Posterior Distribution
	2.2.2 Bayesian Estimates
	2.2.3 Conjugate Prior Distributions
	2.2.4 Noninformative Priors
	2.2.5 Bayesian Credible Intervals

	2.3 Bayesian Model Choice
	2.3.1 The Model Index as a Parameter
	2.3.2 The Bayes Factor
	2.3.3 The Ban on Improper Priors

	2.4 Monte Carlo Methods
	2.4.1 An Approximation Based on Simulations
	2.4.2 Importance Sampling
	2.4.3 Approximation of Bayes Factors

	2.5 Outlier Detection
	2.6 Exercises

	3 Regression and Variable Selection
	3.1 Linear Models
	3.2 Classical Least Squares Estimator
	3.3 The Jeffreys Prior Analysis
	3.4 Zellner's G-Prior Analysis
	3.4.1 A Semi-noninformative Solution
	3.4.2 The BayesReg R Function
	3.4.3 Bayes Factors and Model Comparison
	3.4.4 Prediction

	3.5 Markov Chain Monte Carlo Methods
	3.5.1 Conditionals
	3.5.2 Two-Stage Gibbs Sampler
	3.5.3 The General Gibbs Sampler

	3.6 Variable Selection
	3.6.1 Deciding on Explanatory Variables
	3.6.2 G-Prior Distributions for Model Choice
	3.6.3 A Stochastic Search for the Most Likely Model

	3.7 Exercises

	4 Generalized Linear Models
	4.1 A Generalization of the Linear Model
	4.1.1 Motivation
	4.1.2 Link Functions

	4.2 Metropolis–Hastings Algorithms
	4.2.1 Definition
	4.2.2 The Independence Sampler
	4.2.3 The Random Walk Sampler
	4.2.4 Output Analysis and Proposal Design

	4.3 The Probit Model
	4.3.1 Flat Prior
	4.3.2 Noninformative G-Priors
	4.3.3 About Informative Prior Analyses

	4.4 The Logit Model
	4.5 Log-Linear Models
	4.5.1 Contingency Tables
	4.5.2 Inference Under a Flat Prior
	4.5.3 Model Choice and Significance of the Parameters

	4.6 Exercises

	5 Capture–Recapture Experiments
	5.1 Inference in a Finite Population
	5.2 Sampling Models
	5.2.1 The Binomial Capture Model
	5.2.2 The Two-Stage Capture–Recapture Model
	5.2.3 The T-Stage Capture–Recapture Model

	5.3 Open Populations
	5.4 Accept–Reject Algorithms
	5.5 The Arnason–Schwarz Capture–Recapture Model
	5.5.1 Modeling
	5.5.2 Gibbs Sampler

	5.6 Exercises

	6 Mixture Models
	6.1 Missing Variable Models
	6.2 Finite Mixture Models
	6.3 Mixture Likelihoods and Posteriors
	6.4 MCMC Solutions
	6.5 Label Switching Difficulty
	6.6 Prior Selection
	6.7 Tempering
	6.8 Mixtures with an Unknown Number of Components
	6.9 Exercises

	7 Time Series
	7.1 Time-Indexed Data
	7.1.1 Setting
	7.1.2 Stability of Time Series

	7.2 Autoregressive (AR) Models
	7.2.1 The Models
	7.2.2 Exploring the Parameter Space by MCMCAlgorithms

	7.3 Moving Average (MA) Models
	7.4 ARMA Models and Other Extensions
	7.5 Hidden Markov Models
	7.5.1 Basics
	7.5.2 Forward–Backward Representation

	7.6 Exercises

	8 Image Analysis
	8.1 Image Analysis as a Statistical Problem
	8.2 Spatial Dependence
	8.2.1 Grids and Lattices
	8.2.2 Markov Random Fields
	8.2.3 The Ising Model
	8.2.4 The Potts Model

	8.3 Handling the Normalizing Constant
	8.3.1 Path Sampling
	8.3.2 The ABC Method
	8.3.3 Inference on Potts Models

	8.4 Image Segmentation
	8.5 Exercises

	About the Authors
	References
	Index

