
Quick Start
Guide to Verilog

Brock J. LaMeres

QUICK START GUIDE TO VERILOG

QUICK START GUIDE TO VERILOG

1ST EDITION

Brock J. LaMeres

Brock J. LaMeres
Department of Electrical & Computer Engineering
Montana State University
Bozeman, MT, USA

ISBN 978-3-030-10551-8 ISBN 978-3-030-10552-5 (eBook)
https://doi.org/10.1007/978-3-030-10552-5

Library of Congress Control Number: 2018968403

Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed
to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
express or implied, with respect to the material contained herein or for any errors or omissions that may have been
made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cover credit:# MRMake j Dreamstime.com - Binary Code Photo

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-10552-5

Preface
The classical digital design approach (i.e., manual synthesis and minimization of logic) quickly

becomes impractical as systems become more complex. This is the motivation for the modern digital

design flow, which uses hardware description languages (HDL) and computer-aided synthesis/minimi-

zation to create the final circuitry. The purpose of this book is to provide a quick start guide to the Verilog

language, which is one of the two most common languages used to describe logic in the modern digital

design flow. This book is intended for anyone that has already learned the classical digital design

approach and is ready to begin learning HDL-based design. This book is also suitable for practicing

engineers that already know Verilog and need quick reference for syntax and examples of common

circuits. This book assumes that the reader already understands digital logic (i.e., binary numbers,

combinational and sequential logic design, finite state machines, memory, and binary arithmetic basics).

Since this book is designed to accommodate a designer that is new to Verilog, the language is

presented in a manner that builds foundational knowledge first before moving into more complex topics.

As such, Chaps. 1–6 provide a comprehensive explanation of the basic functionality in Verilog to model

combinational and sequential logic. Chapters 7–11 focus on examples of common digital systems such

as finite state machines, memory, arithmetic, and computers. For a reader that is using the book as a

reference guide, it may be more practical to pull examples from Chaps. 7–11 as they use the full

functionality of the language as it is assumed the reader has gained an understanding of it in

Chaps. 1–6. For a Verilog novice, understanding the history and fundamentals of the language will

help form a comprehensive understanding of the language; thus it is recommended that the early

chapters are covered in the sequence they are written.

Bozeman, MT, USA Brock J. LaMeres

v

Acknowledgments

For Kylie. Your humor brings me laughter and happiness every day. Thank you.

vii

Contents
1: THE MODERN DIGITAL DESIGN FLOW ... 1

1.1 HISTORY OF HARDWARE DESCRIPTION LANGUAGES ... 1

1.2 HDL ABSTRACTION .. 4

1.3 THE MODERN DIGITAL DESIGN FLOW .. 8

2: VERILOG CONSTRUCTS .. 13

2.1 DATA TYPES .. 13

2.1.1 Value Set ... 14

2.1.2 Net Data Types .. 14

2.1.3 Variable Data Types .. 15

2.1.4 Vectors .. 15

2.1.5 Arrays .. 16

2.1.6 Expressing Numbers Using Different Bases .. 16

2.1.7 Assigning Between Different Types .. 17

2.2 VERILOG MODULE CONSTRUCTION .. 17

2.2.1 The Module ... 18

2.2.2 Port Definitions .. 18

2.2.3 Signal Declarations ... 19

2.2.4 Parameter Declarations .. 20

2.2.5 Compiler Directives ... 20

3: MODELING CONCURRENT FUNCTIONALITY IN VERILOG 23

3.1 VERILOG OPERATORS .. 23

3.1.1 Assignment Operator .. 23

3.1.2 Continuous Assignment .. 23

3.1.3 Bitwise Logical Operators ... 24

3.1.4 Reduction Logic Operators ... 25

3.1.5 Boolean Logic Operators .. 25

3.1.6 Relational Operators ... 25

3.1.7 Conditional Operators ... 26

3.1.8 Concatenation Operator .. 26

3.1.9 Replication Operator ... 27

3.1.10 Numerical Operators ... 27

3.1.11 Operator Precedence .. 28

3.2 CONTINUOUS ASSIGNMENT WITH LOGICAL OPERATORS ... 29

3.2.1 Logical Operator Example: SOP Circuit ... 29

3.2.2 Logical Operator Example: One-Hot Decoder .. 30

3.2.3 Logical Operator Example: 7-Segment Display Decoder 31

3.2.4 Logical Operator Example: One-Hot Encoder .. 34

3.2.5 Logical Operator Example: Multiplexer ... 36

3.2.6 Logical Operator Example: Demultiplexer .. 36

ix

3.3 CONTINUOUS ASSIGNMENT WITH CONDITIONAL OPERATORS .. 37

3.3.1 Conditional Operator Example: SOP Circuit ... 38

3.3.2 Conditional Operator Example: One-Hot Decoder 39

3.3.3 Conditional Operator Example: 7-Segment Display Decoder 40

3.3.4 Conditional Operator Example: One-Hot Decoder 40

3.3.5 Conditional Operator Example: Multiplexer .. 41

3.3.6 Conditional Operator Example: Demultiplexer ... 42

3.4 CONTINUOUS ASSIGNMENT WITH DELAY ... 43

4: STRUCTURAL DESIGN AND HIERARCHY .. 51

4.1 STRUCTURAL DESIGN CONSTRUCTS .. 51

4.1.1 Lower-Level Module Instantiation ... 51

4.1.2 Port Mapping ... 51

4.1.3 Gate-Level Primitives .. 53

4.1.4 User-Defined Primitives .. 54

4.1.5 Adding Delay to Primitives .. 55

4.2 STRUCTURAL DESIGN EXAMPLE: RIPPLE CARRY ADDER ... 56

4.2.1 Half Adders .. 56

4.2.2 Full Adders .. 56

4.2.3 Ripple Carry Adder (RCA) .. 58

4.2.4 Structural Model of a Ripple Carry Adder in Verilog 59

5: MODELING SEQUENTIAL FUNCTIONALITY ... 65

5.1 PROCEDURAL ASSIGNMENT .. 65

5.1.1 Procedural Blocks ... 65

5.1.2 Procedural Statements .. 68

5.1.3 Statement Groups ... 73

5.1.4 Local Variables .. 73

5.2 CONDITIONAL PROGRAMMING CONSTRUCTS .. 74

5.2.1 if-else Statements .. 74

5.2.2 case Statements ... 75

5.2.3 casez and casex Statements .. 77

5.2.4 forever Loops .. 77

5.2.5 while Loops ... 77

5.2.6 repeat Loops ... 78

5.2.7 for Loops .. 78

5.2.8 disable ... 79

5.3 SYSTEM TASKS .. 80

5.3.1 Text Output .. 80

5.3.2 File Input/Output .. 81

5.3.3 Simulation Control and Monitoring .. 83

6: TEST BENCHES .. 89

6.1 TEST BENCH OVERVIEW .. 89

6.1.1 Generating Manual Stimulus ... 89

6.1.2 Printing Results to the Simulator Transcript ... 91

x • Contents

6.2 USING LOOPS TO GENERATE STIMULUS ... 93

6.3 AUTOMATIC RESULT CHECKING ... 95

6.4 USING EXTERNAL FILES IN TEST BENCHES .. 96

7: MODELING SEQUENTIAL STORAGE AND REGISTERS 103

7.1 MODELING SCALAR STORAGE DEVICES ... 103

7.1.1 D-Latch .. 103

7.1.2 D-Flip-Flop ... 103

7.1.3 D-Flip-Flop with Asynchronous Reset .. 104

7.1.4 D-Flip-Flop with Asynchronous Reset and Preset 105

7.1.5 D-Flip-Flop with Synchronous Enable .. 106

7.2 MODELING REGISTERS .. 107

7.2.1 Registers with Enables ... 107

7.2.2 Shift Registers ... 108

7.2.3 Registers as Agents on a Data Bus .. 109

8: MODELING FINITE STATE MACHINES .. 113

8.1 THE FSM DESIGN PROCESS AND A PUSH-BUTTON WINDOW CONTROLLER EXAMPLE 113

8.1.1 Modeling the States .. 114

8.1.2 The State Memory Block ... 115

8.1.3 The Next State Logic Block .. 115

8.1.4 The Output Logic Block ... 116

8.1.5 Changing the State Encoding Approach .. 118

8.2 FSM DESIGN EXAMPLES .. 119

8.2.1 Serial Bit Sequence Detector in Verilog .. 119

8.2.2 Vending Machine Controller in Verilog .. 121

8.2.3 2-Bit, Binary Up/Down Counter in Verilog ... 123

9: MODELING COUNTERS .. 129

9.1 MODELING COUNTERS WITH A SINGLE PROCEDURAL BLOCK ... 129

9.1.1 Counters in Verilog Using the Type reg .. 129

9.1.2 Counters with Range Checking .. 130

9.2 COUNTER WITH ENABLES AND LOADS .. 131

9.2.1 Modeling Counters with Enables .. 131

9.2.2 Modeling Counters with Loads ... 131

10: MODELING MEMORY .. 135

10.1 MEMORY ARCHITECTURE AND TERMINOLOGY .. 135

10.1.1 Memory Map Model .. 135

10.1.2 Volatile vs. Non-volatile Memory .. 136

10.1.3 Read-Only vs. Read/Write Memory .. 136

10.1.4 Random Access vs. Sequential Access ... 136

10.2 MODELING READ-ONLY MEMORY ... 137

10.3 MODELING READ/WRITE MEMORY .. 139

Contents • xi

11: COMPUTER SYSTEM DESIGN ... 143

11.1 COMPUTER HARDWARE ... 143

11.1.1 Program Memory ... 144

11.1.2 Data Memory ... 144

11.1.3 Input/Output Ports ... 144

11.1.4 Central Processing Unit .. 144

11.1.5 A Memory Mapped System ... 146

11.2 COMPUTER SOFTWARE .. 148

11.2.1 Opcodes and Operands .. 149

11.2.2 Addressing Modes .. 149

11.2.3 Classes of Instructions .. 150

11.3 COMPUTER IMPLEMENTATION: AN 8-BIT COMPUTER EXAMPLE 157

11.3.1 Top-Level Block Diagram .. 157

11.3.2 Instruction Set Design ... 158

11.3.3 Memory System Implementation .. 159

11.3.4 CPU Implementation ... 163

APPENDIX A: LIST OF WORKED EXAMPLES .. 187

INDEX ... 189

xii • Contents

Chapter 1: The Modern Digital

Design Flow
The purpose of hardware description languages is to describe digital circuitry using a text-based

language. HDLs provide a means to describe large digital systems without the need for schematics,

which can become impractical in very large designs. HDLs have evolved to support logic simulation at

different levels of abstraction. This provides designers the ability to begin designing and verifying

functionality of large systems at a high level of abstraction and postpone the details of the circuit

implementation until later in the design cycle. This enables a top-down design approach that is scalable

across different logic families. HDLs have also evolved to support automated synthesis, which allows the

CAD tools to take a functional description of a system (e.g., a truth table) and automatically create the

gate-level circuitry to be implemented in real hardware. This allows designers to focus their attention on

designing the behavior of a system and not spend as much time performing the formal logic synthesis

steps as in the classical digital design approach.

There are two dominant hardware description languages in use today. They are VHDL and Verilog.

VHDL stands for very high speed integrated circuit hardware description language. Verilog is not an

acronym but rather a trade name. The use of these two HDLs is split nearly equally within the digital

design industry. Once one language is learned, it is simple to learn the other language, so the choice of

the HDL to learn first is somewhat arbitrary. In this text we will use Verilog to learn the concepts of an

HDL. Verilog is more lenient on its typecasting than VHDL, so it is a good platform for beginners as

systems can be designed with less formality. The goal of this chapter is to provide the background and

context of the modern digital design flow using an HDL-based approach.

Learning Outcomes—After completing this chapter, you will be able to:

1.1 Describe the role of hardware description languages in modern digital design.
1.2 Describe the fundamentals of design abstraction in modern digital design.
1.3 Describe the modern digital design flow based on hardware description languages.

1.1 History of Hardware Description Languages

The invention of the integrated circuit is most commonly credited to two individuals who filed patents

on different variations of the same basic concept within 6 months of each other in 1959. Jack Kilby filed

the first patent on the integrated circuit in February of 1959 titled “Miniaturized Electronic Circuits” while

working for Texas Instruments. Robert Noyce was the second to file a patent on the integrated circuit in

July of 1959 titled “Semiconductor Device and Lead Structure” while at a company he cofounded called

Fairchild Semiconductor. Kilby went on to win the Nobel Prize in Physics in 2000 for his invention, while

Noyce went on to cofound Intel Corporation in 1968 with Gordon Moore. In 1971, Intel introduced the first

single-chip microprocessor using integrated circuit technology, the Intel 4004. This microprocessor IC

contained 2300 transistors. This series of inventions launched the semiconductor industry, which was

the driving force behind the growth of Silicon Valley and led to 40 years of unprecedented advancement

in technology that has impacted every aspect of the modern world.

Gordon Moore, cofounder of Intel, predicted in 1965 that the number of transistors on an integrated

circuit would double every 2 years. This prediction, now known as Moore’s Law, has held true since the

invention of the integrated circuit. As the number of transistors on an integrated circuit grew, so did the

size of the design and the functionality that could be implemented. Once the first microprocessor was

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to Verilog, https://doi.org/10.1007/978-3-030-10552-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10552-5_1&domain=pdf

invented in 1971, the capability of CAD tools increased rapidly enabling larger designs to be accom-

plished. These larger designs, including newer microprocessors, enabled the CAD tools to become even

more sophisticated and, in turn, yield even larger designs. The rapid expansion of electronic systems

based on digital integrated circuits required that different manufacturers needed to produce designs that

were compatible with each other. The adoption of logic family standards helped manufacturers ensure

their parts would be compatible with other manufacturers at the physical layer (e.g., voltage and current);

however, one challenge that was encountered by the industry was a way to document the complex

behavior of larger systems. The use of schematics to document large digital designs became too

cumbersome and difficult to understand by anyone besides the designer. Word descriptions of the

behavior were easier to understand, but even this form of documentation became too voluminous to

be effective for the size of designs that were emerging.

In 1983, the US Department of Defense (DoD) sponsored a program to create a means to document

the behavior of digital systems that could be used across all of its suppliers. This program was motivated

by a lack of adequate documentation for the functionality of application specific integrated circuits

(ASICs) that were being supplied to the DoD. This lack of documentation was becoming a critical

issue as ASICs would come to the end of their life cycle and need to be replaced. With the lack of a

standardized documentation approach, suppliers had difficulty reproducing equivalent parts to those that

had become obsolete. The DoD contracted three companies (Texas Instruments, IBM, and Intermetrics)

to develop a standardized documentation tool that provided detailed information about both the interface

(i.e., inputs and outputs) and the behavior of digital systems. The new tool was to be implemented in a

format similar to a programming language. Due to the nature of this type of language-based tool, it was a

natural extension of the original project scope to include the ability to simulate the behavior of a digital

system. The simulation capability was desired to span multiple levels of abstraction to provide maximum

flexibility. In 1985, the first version of this tool, called VHDL, was released. In order to gain widespread

adoption and ensure consistency of use across the industry, VHDL was turned over to the Institute of

Electrical and Electronic Engineers (IEEE) for standardization. IEEE is a professional association that

defines a broad range of open technology standards. In 1987, IEEE released the first industry standard

version of VHDL. The release was titled IEEE 1076-1987. Feedback from the initial version resulted in a

major revision of the standard in 1993 titled IEEE 1076-1993. While many minor revisions have been

made to the 1993 release, the 1076-1993 standard contains the vast majority of VHDL functionality in

use today. The most recent VHDL standard is IEEE 1076-2008.

Also in 1983, the Verilog HDL was developed by Automated Integrated Design Systems as a logic

simulation language. The development of Verilog took place completely independent from the VHDL

project. Automated Integrated Design Systems (renamed Gateway Design Automation in 1985) was

acquired by CAD tool vendorCadence Design Systems in 1990. In response to the popularity of Verilog’s

intuitive programming and superior simulation support, and also to stay competitive with the emerging

VHDL standard, Cadencemade the Verilog HDL open to the public. IEEE once again developed the open

standard for this HDL, and in 1995 released the Verilog standard titled IEEE 1364-1995. This release has

undergone numerous revisions with the most significant occurring in 2001. It is common to refer to the

major releases as “Verilog 1995” and “Verilog 2001” instead of their official standard numbers.

The development of CAD tools to accomplish automated logic synthesis can be dated back to the

1970s when IBM began developing a series of practical synthesis engines that were used in the design

of their mainframe computers; however, the main advancement in logic synthesis came with the founding

of a company called Synopsis in 1986. Synopsis was the first company to focus on logic synthesis

directly from HDLs. This was a major contribution because designers were already using HDLs to

describe and simulate their digital systems, and now logic synthesis became integrated in the same

design flow. Due to the complexity of synthesizing highly abstract functional descriptions, only lower

levels of abstraction that were thoroughly elaborated were initially able to be synthesized. As CAD tool

2 • Chapter 1: The Modern Digital Design Flow

capability evolved, synthesis of higher levels of abstraction became possible, but even today not all

functionality that can be described in an HDL can be synthesized.

The history of HDLs, their standardization, and the creation of the associated logic synthesis tools is

key to understanding the use and limitations of HDLs. HDLs were originally designed for documentation

and behavioral simulation. Logic synthesis tools were developed independently and modified later to

work with HDLs. This history provides some background into the most common pitfalls that beginning

digital designers encounter, that being that mostly any type of behavior can be described and simulated

in an HDL, but only a subset of well-described functionality can be synthesized. Beginning digital

designers are often plagued by issues related to designs that simulate perfectly but that will not

synthesize correctly. In this book, an effort is made to introduce Verilog at a level that provides a

reasonable amount of abstraction while preserving the ability to be synthesized. Figure 1.1 shows a

timeline of some of the major technology milestones that have occurred in the past 150 years in the field

of digital logic and HDLs.

Fig. 1.1
Major milestones in the advancement of digital logic and HDLs

1.1 History of Hardware Description Languages • 3

CONCEPT CHECK

CC1.1 Why does Verilog support modeling techniques that aren’t synthesizable?

(A) There wasn’t enough funding available to develop synthesis capability as it all
went to the VHDL project.

(B) At the time Verilog was created, synthesis was deemed too difficult to
implement.

(C) To allow Verilog to be used as a generic programming language.

(D) Verilog needs to support all steps in the modern digital design flow, some of
which are unsynthesizable such as test pattern generation and timing
verification.

1.2 HDL Abstraction

HDLs were originally defined to be able to model behavior at multiple levels of abstraction.

Abstraction is an important concept in engineering design because it allows us to specify how systems

will operate without getting consumed prematurely with implementation details. Also, by removing the

details of the lower-level implementation, simulations can be conducted in reasonable amounts of time to

model the higher-level functionality. If a full computer system was simulated using detailed models for

every MOSFET, it would take an impracticable amount of time to complete. Figure 1.2 shows a graphical

depiction of the different layers of abstraction in digital system design.

Fig. 1.2
Levels of design abstraction

4 • Chapter 1: The Modern Digital Design Flow

The highest level of abstraction is the system level. At this level, behavior of a system is described

by stating a set of broad specifications. An example of a design at this level is a specification such as “the

computer system will perform 10 Tera Floating Point Operations per Second (10 TFLOPS) on double

precision data and consume no more than 100 W of power.” Notice that these specifications do not

dictate the lower-level details such as the type of logic family or the type of computer architecture to use.

One level down from the system level is the algorithmic level. At this level, the specifications begin to be

broken down into subsystems, each with an associated behavior that will accomplish a part of the

primary task. At this level, the example computer specifications might be broken down into subsystems

such as a central processing unit (CPU) to perform the computation and random-access memory (RAM)

to hold the inputs and outputs of the computation. One level down from the algorithmic level is the

register transfer level (RTL). At this level, the details of how data is moved between and within

subsystems are described in addition to how the data is manipulated based on system inputs. One

level down from the RTL level is the gate level. At this level, the design is described using basic gates and

registers (or storage elements). The gate level is essentially a schematic (either graphically or text-

based) that contains the components and connections that will implement the functionality from the

above levels of abstraction. One level down from the gate level is the circuit level. The circuit level

describes the operation of the basic gates and registers using transistors, wires, and other electrical

components such as resistors and capacitors. Finally, the lowest level of design abstraction is the

material level. This level describes how different materials are combined and shaped in order to

implement the transistors, devices, and wires from the circuit level.

HDLs are designed to model behavior at all of these levels with the exception of the material level.

While there is some capability to model circuit level behavior such as MOSFETs as ideal switches and

pull-up/pull-down resistors, HDLs are not typically used at the circuit level. Another graphical depiction of

design abstraction is known as the Gajski and Kuhn’s Y-chart. A Y-chart depicts abstraction across

three different design domains: behavioral, structural, and physical. Each of these design domains

contains levels of abstraction (i.e., system, algorithm, RTL, gate, and circuit). An example Y-chart is

shown in Fig. 1.3.

1.2 HDL Abstraction • 5

A Y-chart also depicts how the abstraction levels of different design domains are related to each

other. A top-down design flow can be visualized in a Y-chart by spiraling inward in a clockwise direction.

Moving from the behavioral domain to the structural domain is the process of synthesis. Whenever

synthesis is performed, the resulting system should be compared with the prior behavioral description.

This checking is called verification. The process of creating the physical circuitry corresponding to the

structural description is called implementation. The spiral continues down through the levels of abstrac-

tion until the design is implemented at a level that the geometries representing circuit elements

(transistors, wires, etc.) are ready to be fabricated in silicon. Figure 1.4 shows the top-down design

process depicted as an inward spiral on the Y-chart.

Fig. 1.3
Y-chart of design abstraction

6 • Chapter 1: The Modern Digital Design Flow

The Y-chart represents a formal approach for large digital systems. For large systems that are

designed by teams of engineers, it is critical that a formal, top-down design process is followed to

eliminate potentially costly design errors as the implementation is carried out at lower levels of

abstraction.

CONCEPT CHECK

CC1.2 Why is abstraction an essential part of engineering design?

(A) Without abstraction all schematics would be drawn at the transistor level.

(B) Abstraction allows computer programs to aid in the design process.

(C) Abstraction allows the details of the implementation to be hidden while the
higher-level systems are designed. Without abstraction, the details of the
implementation would overwhelm the designer.

(D) Abstraction allows analog circuit designers to include digital blocks in their
systems.

Fig. 1.4
Y-chart illustrating top-down design approach

1.2 HDL Abstraction • 7

1.3 The Modern Digital Design Flow

When performing a smaller design or the design of fully contained subsystems, the process can be

broken down into individual steps. These steps are shown in Fig. 1.5. This process is given generically

and applies to both classical andmodern digital design. The distinction between classical and modern is

that modern digital design uses HDLs and automated CAD tools for simulation, synthesis, place and

route, and verification.

This generic design process flow can be used across classical and modern digital design, although

modern digital design allows additional verification at each step using automated CAD tools. Figure 1.6

shows how this flow is used in the classical design approach of a combinational logic circuit.

Fig. 1.5
Generic digital design flow

8 • Chapter 1: The Modern Digital Design Flow

The modern design flow based on HDLs includes the ability to simulate functionality at each step of

the process. Functional simulations can be performed on the initial behavioral description of the system.

At each step of the design process the functionality is described in more detail, ultimately moving toward

the fabrication step. At each level, the detailed information can be included in the simulation to verify that

the functionality is still correct and that the design is still meeting the original specifications. Figure 1.7

shows the modern digital design flow with the inclusion of simulation capability at each step.

Fig. 1.6
Classical digital design flow

1.3 The Modern Digital Design Flow • 9

CONCEPT CHECK

CC1.3 Why did digital designs move from schematic entry to text-based HDLs?

(A) HDL models could be much larger by describing functionality in text similar to
traditional programming language.

(B) Schematics required sophisticated graphics hardware to display correctly.

(C) Schematics symbols became too small as designs became larger.

(D) Text was easier to understand by a broader range of engineers.

Fig. 1.7
Modern digital design flow

10 • Chapter 1: The Modern Digital Design Flow

Summary

v The modern digital design flow relies on
computer-aided engineering (CAE) and
computer-aided design (CAD) tools to man-
age the size and complexity of today’s digital
designs.

v Hardware description languages (HDLs)
allow the functionality of digital systems to
be entered using text. VHDL and Verilog are
the two most common HDLs in use today.

v Verilog was originally created to support
functional simulation of text-based designs.

v The ability to automatically synthesize a logic
circuit from a Verilog behavioral description
became possible approximately 10 years

after the original definition of Verilog. As
such, only a subset of the behavioral
modeling techniques in Verilog can be auto-
matically synthesized.

v HDLs can model digital systems at different
levels of design abstraction. These include
the system, algorithmic, RTL, gate, and cir-
cuit levels. Designing at a higher level of
abstraction allows more complex systems to
be modeled without worrying about the
details of the implementation.

Exercise Problems

Section 1.1: History of HDLs

1.1.1 What was the original purpose of Verilog?

1.1.2 Can all of the functionality that can be
described in Verilog be simulated?

1.1.3 Can all of the functionality that can be
described in Verilog be synthesized?

Section 1.2: HDL Abstraction

1.2.1 Give the level of design abstraction that the
following statement relates to: if there is ever
an error in the system, it should return to the
reset state.

1.2.2 Give the level of design abstraction that the
following statement relates to: once the design
is implemented in a sum of products form,
DeMorgan’s Theorem will be used to convert
it to a NAND-gate only implementation.

1.2.3 Give the level of design abstraction that the
following statement relates to: the design will
be broken down into two subsystems, one that
will handle data collection and the other that
will control data flow.

1.2.4 Give the level of design abstraction that the
following statement relates to: the interconnect
on the IC should be changed from aluminum to
copper to achieve the performance needed in
this design.

1.2.5 Give the level of design abstraction that the
following statement relates to: the MOSFETs
need to be able to drive at least eight other
loads in this design.

1.2.6 Give the level of design abstraction that the
following statement relates to: this system will
contain 1 host computer and support up to
1000 client computers.

1.2.7 Give the design domain that the following activ-
ity relates to: drawing the physical layout of the
CPU will require 6 months of engineering time.

1.2.8 Give the design domain that the following activ-
ity relates to: the CPU will be connected to four
banks of memory.

1.2.9 Give the design domain that the following activ-
ity relates to: the fan-in specifications for this
logic family require excessive logic circuitry to
be used.

1.2.10 Give the design domain that the following activ-
ity relates to: the performance specifications
for this system require 1 TFLOP at <5 W.

Section 1.3: The Modern Digital

Design Flow

1.3.1 Which step in the modern digital design flow
does the following statement relate to: a CAD
tool will convert the behavioral model into a
gate-level description of functionality.

1.3.2 Which step in the modern digital design flow
does the following statement relate to: after
realistic gate and wiring delays are determined,
one last simulation should be performed to
make sure the design meets the original timing
requirements.

1.3.3 Which step in the modern digital design flow
does the following statement relate to: if the
memory is distributed around the perimeter of
the CPU, the wiring density will be minimized.

1.3.4 Which step in the modern digital design flow
does the following statement relate to: the
design meets all requirements, so now I’m
building the hardware that will be shipped.

Exercise Problems • 11

1.3.5 Which step in the modern digital design flow
does the following statement relate to: the sys-
tem will be broken down into three subsystems
with the following behaviors.

1.3.6 Which step in the modern digital design flow
does the following statement relate to: this sys-
tem needs to have 10 Gbytes of memory.

1.3.7 Which step in the modern digital design flow
does the following statement relate to: to meet
the power requirements, the gates will be
implemented in the 74HC logic family.

12 • Chapter 1: The Modern Digital Design Flow

Chapter 2: Verilog Constructs
This chapter begins looking at the basic construction of a Verilog module. The chapter begins by

covering the built-in features of a Verilog module including the file structure, data types, operators, and

declarations. It provides a foundation of Verilog that will lead to modeling examples provided in Chap. 3.

The original Verilog standard (IEEE 1364) has been updated numerous times since its creation in 1995.

The most significant update occurred in 2001, which was titled IEEE 1394-2001. In 2005, minor

improvements were added to the standard, which resulted in IEEE 1394-2005. The constructs described

in this book reflect the functionality in the IEEE 1394-2005 standard. The functionality of Verilog (e.g.,

operators, signal types, functions) is defined within the Verilog standard; thus, it is not necessary to

explicitly state that a design is using the IEEE 1394 package because it is inherent in the use of Verilog.

Verilog is case sensitive. Also, each Verilog assignment, definition, or declaration is terminated with

a semicolon (;). As such, line wraps are allowed and do not signify the end of an assignment, definition, or

declaration. Line wraps can be used to make Verilog more readable. Comments in Verilog are supported

in two ways. The first way is called a line comment and is preceded with two slashes (i.e., //). Everything

after the slashes is considered a comment until the end of the line. The second comment approach is

called a block comment and begins with /* and ends with a */. Everything between /* and */ is considered

a comment. A block comment can span multiple lines. All user-defined names in Verilog must start with

an alphabetic letter, not a number. User-defined names are not allowed to be the same as any Verilog

keyword. This chapter contains many definitions of syntax in Verilog. The following notations will be used

throughout the chapter when introducing new constructs.

bold ¼ Verilog keyword, use as is, case sensitive.

italics ¼ User-defined name, case sensitive.

<> ¼ A required characteristic such as a data type, input/output, etc.

Learning Outcomes—After completing this chapter, you will be able to:

2.1 Describe the data types provided in Verilog.
2.2 Describe the basic construction of a Verilog module.

2.1 Data Types

In Verilog, every signal, constant, variable, and function must be assigned a data type. The IEEE

1394-2005 standard provides a variety of predefined data types. Some data types are synthesizable,

while others are only for modeling abstract behavior. The following are the most commonly used data

types in the Verilog language.

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to Verilog, https://doi.org/10.1007/978-3-030-10552-5_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10552-5_2&domain=pdf

2.1.1 Value Set

Verilog supports four basic values that a signal can take on: 0, 1, X, and Z. Most of the predefined

data types in Verilog store these values. A description of each value supported is given below.

Value Description

0 A logic zero, or false condition.

1 A logic one, or true condition.

x or X Unknown or uninitialized.

z or Z High impedance, tri-stated, or floating.

In Verilog, these values also have an associated strength. The strengths are used to resolve the

value of a signal when it is driven by multiple sources. The names, syntax, and relative strengths are

given below.

Strength Description Strength level

supply1 Supply drive for VCC 7

supply0 Supply drive for VSS, or GND 7

strong1 Strong drive to logic one 6

strong0 Strong drive to logic zero 6

pull1 Medium drive to logic one 5

pull0 Medium drive to logic zero 5

large Large capacitive 4

weak1 Weak drive to logic one 3

weak0 Weak drive to logic zero 3

medium Medium capacitive 2

small Small capacitive 1

highz1 High impedance with weak pull-up to logic one 0

highz0 High impedance with weak pull-down to logic zero 0

When a signal is driven by multiple drivers, it will take on the value of the driver with the highest

strength. If the two drivers have the same strength, the value will be unknown. If the strength is not

specified, it will default to strong drive, or level 6.

2.1.2 Net Data Types

Every signal within Verilog must be associated with a data type. A net data type is one that models

an interconnection (aka, a net) between components and can take on the values 0, 1, X, and Z. A signal

with a net data type must be driven at all times and updates its value when the driver value changes. The

most common synthesizable net data type in Verilog is the wire. The type wire will be used throughout

this text. There are also a variety of other more advanced net data types that model complex digital

systems with multiple drivers for the same net. The syntax and description for all Verilog net data types

are given below.

14 • Chapter 2: Verilog Constructs

Type Description

wire A simple connection between components.

wor Wired-OR. If multiple drivers, their values are OR’d together.

wand Wired-AND’d. If multiple drivers, their values are AND’d together.

supply0 Used to model the VSS, (GND), power supply (supply strength inherent).

supply1 Used to model the VCC power supply (supply strength inherent).

tri Identical to wire. Used for readability for a net driven by multiple sources.

trior Identical to wor. Used for readability for nets driven by multiple sources.

triand Identical to wand. Used for readability for nets driven by multiple sources.

tri1 Pulls up to logic one when tri-stated.

tri0 Pulls down to logic zero when tri-stated.

trireg Holds last value when tri-stated (capacitance strength inherent).

Each of these net types can also have an associated drive strength. The strength is used in

determining the final value of the net when it is connected to multiple drivers.

2.1.3 Variable Data Types

Verilog also contains data types that model storage. These are called variable data types. A variable

data type can take on the values 0, 1, X, and Z, but does not have an associated strength. Variable data

types will hold the value assigned to them until their next assignment. The syntax and description for the

Verilog variable data types are given below.

Type Description

reg A variable that models logic storage. Can take on values 0, 1, X, and Z.

integer A 32-bit, 2’s complement variable representing whole numbers between

�2,147,483,64810 and +2,147,483,647.

real A 64-bit, floating point variable representing real numbers between –

(2.2 � 10�308)10 and +(2.2 � 10308)10.

time An unsigned, 64-bit variable taking on values from 010 to +(9.2 � 1018).

realtime Same as time. Just used for readability.

2.1.4 Vectors

In Verilog, a vector is a one-dimensional array of elements. All of the net data types, in addition to the

variable type reg, can be used to form vectors. The syntax for defining a vector is as follows:

<type> [<MSB_index>:<LSB_index>] vector_name

While any range of indices can be used, it is common practice to have the LSB index start at zero.

Example:

wire [7:0] Sum; // This defines an 8-bit vector called “Sum” of type wire. The

// MSB is given the index 7 while the LSB is given the index 0.

reg [15:0] Q; // This defines a 16-bit vector called “Q” of type reg.

Individual bits within the vector can be addressed using their index. Groups of bits can be accessed

using an index range.

Sum[0]; // This is the least significant bit of the vector “Sum” defined above.

Q[15:8]; // This is the upper 8-bits of the 16-bit vector “Q” defined above.

2.1 Data Types • 15

2.1.5 Arrays

An array is a multidimensional array of elements. This can also be thought of as a “vector of vectors.”

Vectors within the array all have the same dimensions. To declare an array, the element type and

dimensions are defined first followed by the array name and its dimensions. It is common practice to

place the start index of the array on the left side of the “:”when defining its dimensions. The syntax for the

creation of an array is shown below.

<element_type> [<MSB_index>:<LSB_index>] array_name [<array_start_index>:

<array_end_index>];

Example:

reg[7:0] Mem[0:4095]; // Defines an array of 4096, 8-bit vectors of type reg.

integer A[1:100]; // Defines an array of 100 integers.

When accessing an array, the name of the array is given first, followed by the index of the element. It

is also possible to access an individual bit within an array by adding appending the index of element

Example:

Mem[2]; // This is the 3
rd

element within the array named “Mem”.

// This syntax represents an 8-bit vector of type reg.

Mem[2][7]; // This is the MSB of the 3
rd

element within the array named “Mem”.

// This syntax represents a single bit of type reg.

A[2]; // This is the 2
nd

element within the array named “A”. Recall

// that A was declared with a starting index of 1.

// This syntax represents a 32-bit, signed integer.

2.1.6 Expressing Numbers Using Different Bases

If a number is simply entered into Verilog without identifying syntax, it is treated as an integer.

However, Verilog supports defining numbers in other bases. Verilog also supports an optional bit size

and sign of a number. When defining the value of arrays, the “_” can be inserted between numerals to

improve readability. The “_” is ignored by the Verilog compiler. Values of numbers can be entered in

either upper or lower case (i.e., b or B, f or F). The syntax for specifying the base of a number is as

follows:

<size_in_bits>’<base><value>

Note that specifying the size is optional. If it is omitted, the number will default to a 32-bit vector with

leading zeros added as necessary. The supported bases are as follows:

Syntax Description

‘b Unsigned binary.

‘o Unsigned octal.

‘d Unsigned decimal.

‘h Unsigned hexadecimal.

‘sb Signed binary.

‘so Signed octal.

‘sd Signed decimal.

‘sh Signed hexadecimal.

16 • Chapter 2: Verilog Constructs

Example:

10 // This is treated as decimal 10, which is a 32-bit signed vector.

4’b1111 // A 4-bit number with the value 11112.

8’b1011_0000 // An 8-bit number with the value 101100002.

8’hFF // An 8-bit number with the value 111111112.

8’hff // An 8-bit number with the value 111111112.

6’hA // A 6-bit number with the value 0010102. Note that leading zeros

// were added to make the value 6-bits.

8’d7 // An 8-bit number with the value 000001112.

32’d0 // A 32-bit number with the value 0000_000016.

‘b1111 // A 32-bit number with the value 0000_000F16.

8’bZ // An 8-bit number with the value ZZZZ_ZZZZ.

2.1.7 Assigning Between Different Types

Verilog is said to be a weakly typed (or loosely typed) language, meaning that it permits assignments

between different data types. This is as opposed to a strongly typed language (such as VHDL) where

signal assignments are only permitted between like types. The reason Verilog permits assignment

between different types is because it treats all of its types as just groups of bits. When assigning between

different types, Verilog will automatically truncate or add leading bits as necessary to make the assign-

ment work. The following examples illustrate how Verilog handles a few assignments between different

types. Assume that a variable called ABC_TB has been declared as type reg[2:0].

Example:

ABC_TB¼ 2’b00; // ABC_TB will be assigned 3’b000. A leading bit is automatically

added.

ABC_TB ¼ 5; // ABC_TB will be assigned 3’b101. The integer is truncated to

3-bits.

ABC_TB ¼ 8; // ABC_TB will be assigned 3’b000. The integer is truncated to

3-bits.

CONCEPT CHECK

CC2.1 The two most commonly used data types in Verilog are wire and reg? What is the
fundamental difference between these types?

(A) They are the same because they can both take on 0, 1, X, or Z.

(B) A wire is a net data type, meaning that it must be driven at all times. A reg is a
variable data type, meaning that it will hold its value after it is assigned.

(C) A wire can only take on values of 0 and 1 while a reg can take on 0, 1, X, or Z.

(D) They cannot drive one other.

2.2 Verilog Module Construction

AVerilog design describes a single system in a single file. The file has the suffix *.v. Within the file,

the system description is contained within a module. The module includes the interface to the system

(i.e., the inputs and outputs) and the description of the behavior. Figure 2.1 shows a graphical depiction

of a Verilog file.

2.2 Verilog Module Construction • 17

2.2.1 The Module

All systems in Verilog are encapsulated inside of a module. Modules can include instantiations of

lower-level modules in order to support hierarchical designs. The keywords module and endmodule

signify the beginning and end of the system description. When working on large designs, it is common

practice to place each module in its own file with the same name.

module module_name (port_list); // Pre Verilog-2001

// port_definitions

// module_items

endmodule

or

module module_name (port_list and port_definitions); // Verilog-2001 and after

// module_items

endmodule

2.2.2 Port Definitions

The first item within a module is its definition of the inputs and outputs, or ports. Each port needs to

have a user-defined name, a direction, and a type. The user-defined port names are case sensitive and

must begin an alphabetic character. The port directions are declared to be one of the three types: input,

output, and inout. A port can take on any of the previously described data types, but only wires,

registers, and integers are synthesizable. Port names with the same type and direction can be listed

on the same line separated by commas.

There are two different port definition styles supported in Verilog. Prior to the Verilog-2001 release,

the port names were listed within parentheses after the module name. Then within the module, the

directionality and type of the ports were listed. Starting with the Verilog-2001 release, the port directions

and types could be included alongside the port names within the parenthesis after the module name.

This approach mimicked more of an ANSCI-C approach to passing inputs/outputs to a system. In this

text, the newer approach to port definition will be used. Example 2.1 shows multiple approaches for

defining a module and its ports.

Fig. 2.1
The anatomy of a Verilog file

18 • Chapter 2: Verilog Constructs

Example 2.1
Declaring Verilog module ports

2.2.3 Signal Declarations

A signal that is used for internal connections within a system is declared within the module before its

first use. Each signal must be declared by listing its type followed by a user-defined name. Signal names

of like type can be declared on the same line separated with a comma. All of the legal data types

described above can be used for signals; however, only types net, reg, and integer will synthesize

directly. The syntax for a signal declaration is as follows:

<type> name;

Example:

wire node1; // declare a signal named “node1” of type wire

reg Q2, Q1, Q0; // declare three signals named “Q2”, “Q1”, and “Q0”, all

of type reg

wire [63:0] bus1; // declare a 64-bit vector named “bus1” with all bits of type

wire

integer i,j; // declare two integers called “i” and “j”

Verilog supports a hierarchical design approach, thus signal names can be the same within a

subsystem as those at a higher level without conflict. Figure 2.2 shows an example of legal signal

naming in a hierarchical design.

2.2 Verilog Module Construction • 19

2.2.4 Parameter Declarations

A parameter, or constant, is useful for representing a quantity that will be used multiple times in the

architecture. The syntax for declaring a parameter is as follows:

parameter <type> constant_name ¼ <value>;

Note that the type is optional and can only be integer, time, real, or realtime. If a type is provided,

the parameter will have the same properties as a variable of the same time. If the type is excluded, the

parameter will take on the type of the value assigned to it.

Example:

parameter BUS_WIDTH ¼ 64;

parameter NICKEL ¼ 8’b0000_0101;

Once declared, the constant name can be used throughout the module. The following example

illustrates how we can use a constant to define the size of a vector. Notice that since we defined the

constant to be the actual width of the vector (i.e., 32-bits), we need to subtract one from its value when

defining the indices (i.e., [31:0]).

Example:

wire [BUS_WIDTH-1:0] BUS_A; // It is acceptable to add a “space” for readability

2.2.5 Compiler Directives

A compiler directive provides additional information to the simulation tool on how to interpret the

Verilog model. A compiler directive is placed before the module definition and is preceded with a backtick

(i.e., `). Note that this is not an apostrophe. A few of the most commonly used compiler directives are as

follows:

Fig. 2.2
Verilog signals and systems

20 • Chapter 2: Verilog Constructs

Syntax Description

`timescale <unit>, <precision> Defines the timescale of the delay unit and its smallest precision.

`include <filename> Includes additional files in the compilation.

`define <macroname> <value> Declares a global constant.

Example:

‘timescale 1ns/1ps // Declares the unit of time is 1 ns with a precision of 1ps.

// The precision is the smallest amount that the time can

// take on. For example, with this directive the number

// 0.001 would be interpreted as 0.001 ns, or 1 ps.

// However, the number 0.0001 would be interpreted as 0 since

// it is smaller than the minimum precision value.

CONCEPT CHECK

CC2.2 If a signal is declared within a module, can the same name be used in other modules
within a hierarchical system?

(A) Yes. To support hierarchy, Verilog signals are only seen within their respective
module. That allows other modules to use the same names.

(B) No. Once a signal name is defined, it cannot be used again.

Summary

v In a Verilog source file, all functionality is
contained within a module. The first portion
of the module is the port definition. The sec-
ond portion contains declarations of internal
signals/constants/parameters. The third por-
tion contains the description of the behavior.

v A port is an input or output to a system that is
defined as part of the initial module state-
ment. A signal, or net, is an internal connec-
tion within the system that is declared inside
of the module. A signal is not visible outside
of the system.

v Instantiating other modules from within a
higher-level module is how Verilog
implements hierarchy. A lower-level module
can be instantiated as many times as
desired. An instance identifier is useful is
keeping track of each instantiation. The
ports of the component can be connected
using either explicit or positional port
mapping.

Exercise Problems

Section 2.1: Data Types

2.1.1 What is the name of the main design unit in
Verilog?

2.1.2 What portion of the Verilog module describes
the inputs and outputs.

2.1.3 What step is necessary if a system requires
internal connections?

2.1.4 What are all the possible values that a Verilog
net type can take on?

2.1.5 What is the highest strength that a value can
take on in Verilog.

2.1.6 What is the range of decimal numbers that can
be represented using the type integer in
Verilog?

2.1.7 What is the width of the vector defined using
the type [63:0] wire?

2.1.8 What is the syntax for indexing the most signif-
icant bit in the type [31:0] wire? Assume the
vector is named example.

Exercise Problems • 21

2.1.9 What is the syntax for indexing the least signif-
icant bit in the type [31:0] wire? Assume the
vector is named example.

2.1.10 What is the difference between a wire and reg
type?

2.1.11 How many bits is the type integer by default?

2.1.12 How many bits is the type real by default?

Section 2.2: Verilog Module Construction

2.2.1 What three directions can a module port take
on?

2.2.2 What data types can a signal take on within a
module?

2.2.3 What data types can a parameter take on
within a module?

2.2.4 What is the purpose of a compiler directive?

22 • Chapter 2: Verilog Constructs

Chapter 3: Modeling Concurrent

Functionality in Verilog
This chapter presents a set of built-in operators that will allow basic logic expressions to be modeled

within a Verilog module. This chapter then presents a series of combinational logic model examples.

Learning Outcomes—After completing this chapter, you will be able to:

3.1 Describe the various built-in operators within Verilog.
3.2 Design a Verilog model for a combinational logic circuit using continuous assignment and

logical operators.
3.3 Design a Verilog model for a combinational logic circuit using continuous assignment and

conditional operators.
3.4 Design a Verilog model for a combinational logic circuit using continuous assignment with

delay.

3.1 Verilog Operators

There are a variety of predefined operators in the Verilog standard. It is important to note that

operators are defined to work on specific data types and that not all operators are synthesizable.

3.1.1 Assignment Operator

Verilog uses the equal sign (¼) to denote an assignment. The left-hand side (LHS) of the assign-

ment is the target signal. The right-hand side (RHS) contains the input arguments and can contain both

signals, constants, and operators.

Example:

F1 ¼ A; // F1 is assigned the signal A
F2 ¼ 8’hAA; // F2 is an 8-bit vector and is assigned the value 101010102

3.1.2 Continuous Assignment

Verilog uses the keyword assign to denote a continuous signal assignment. After this keyword, an

assignment is made using the ¼ symbol. The left-hand side (LHS) of the assignment is the target signal

and must be a net type. The right-hand side (RHS) contains the input arguments and can contain nets,

regs, constants, and operators. A continuous assignment models combinational logic. Any change to the

RHS of the expression will result in an update to the LHS target net. The net being assigned to must be

declared prior to the first continuous assignment. Multiple continuous assignments can be made to the

same net. When this happens, the assignment containing signals with the highest drive strength will take

priority.

Example:

assign F1 ¼ A; // F1 is updated anytime A changes, where A is a signal
assign F2 ¼ 1’b0; // F2 is assigned the value 0
assign F3 ¼ 4’hAA; // F3 is an 8-bit vector and is assigned the value 101010102

Each individual assignment will be executed concurrently and synthesized as separate logic

circuits. Consider the following example.

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to Verilog, https://doi.org/10.1007/978-3-030-10552-5_3

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10552-5_3&domain=pdf

Example:

assign X ¼ A;
assign Y ¼ B;
assign Z ¼ C;

When simulated, these three lines of Verilog will make three separate signal assignments at the

exact same time. This is different from a programming language that will first assign A to X, then B to Y,

and finally C to Z. In Verilog this functionality is identical to three separate wires. This description will be

directly synthesized into three separate wires.

Below is another example of how continuous signal assignments in Verilog differ from a sequentially

executed programming language.

Example:

assign A ¼ B;
assign B ¼ C;

In a Verilog simulation, the signal assignments of C to B and B to A will take place at the same time.

This means during synthesis, the signal B will be eliminated from the design since this functionality

describes two wires in series. Automated synthesis tools will eliminate this unnecessary signal name.

This is not the same functionality that would result if this example was implemented as a sequentially

executed computer program. A computer program would execute the assignment of B to A first, then

assign the value of C to B second. In this way, B represents a storage element that is passed to A before

it is updated with C.

3.1.3 Bitwise Logical Operators

Bitwise operators perform logic functions on individual bits. The inputs to the operation are single

bits and the output is a single bit. In the case where the inputs are vectors, each bit in the first vector is

operated on by the bit in the same position from the second vector. If the vectors are not the same length,

the shorter vector is padded with leading zeros to make both lengths equal. Verilog contains the following

bitwise operators:

Syntax Operation

~ Negation

& AND

| OR

^ XOR

~^ or ^~ XNOR

<< Logical shift left (fill empty LSB location with zero)

>> Logical shift right (fill empty MSB location with zero)

Example:

~X // invert each bit in X
X & Y // AND each bit of X with each bit of Y
X | Y // OR each bit of X with each bit of Y
X ^ Y // XOR each bit of X with each bit of Y
X ~^ Y // XNOR each bit of X with each bit of Y
X << 3 // Shift X left 3 times and fill with zeros
Y >> 2 // Shift Y right 2 times and fill with zeros

24 • Chapter 3: Modeling Concurrent Functionality in Verilog

3.1.4 Reduction Logic Operators

A reduction operator is one that uses each bit of a vector as individual inputs into a logic operation

and produces a single-bit output. Verilog contains the following reduction logic operators.

Syntax Operation

& AND all bits in the vector together (1-bit result)

~& NAND all bits in the vector together (1-bit result)

| OR all bits in the vector together (1-bit result)

~| NOR all bits in the vector together (1-bit result)

^ XOR all bits in the vector together (1-bit result)

~^ or ^~ XNOR all bits in the vector together (1-bit result)

Example:

&X // AND all bits in vector X together
~&X // NAND all bits in vector X together
|X // OR all bits in vector X together
~|X // NOR all bits in vector X together
^X // XOR all bits in vector X together
~^X // XNOR all bits in vector X together

3.1.5 Boolean Logic Operators

A Boolean logic operator is one that returns a value of TRUE (1) or FALSE (0) based on a logic

operation of the input operations. These operations are used in decision statements.

Syntax Operation

! Negation

&& AND

|| OR

Example:

!X // TRUE if all values in X are 0, FALSE otherwise
X && Y // TRUE if the bitwise AND of X and Y results in all ones, FALSE otherwise
X || Y // TRUE if the bitwise OR of X and Y results in all ones, FALSE otherwise

3.1.6 Relational Operators

A relational operator is one that returns a value of TRUE (1) or FALSE (0) based on a comparison of

two inputs.

Syntax Description

¼¼ Equality

!¼ Inequality

< Less than

> Greater than

<¼ Less than or equal

>¼ Greater than or equal

3.1 Verilog Operators • 25

Example:

X ¼¼ Y // TRUE if X is equal to Y, FALSE otherwise
X !¼ Y // TRUE if X is not equal to Y, FALSE otherwise
X < Y // TRUE if X is less than Y, FALSE otherwise
X > Y // TRUE if X is greater than Y, FALSE otherwise
X <¼ Y // TRUE if X is less than or equal to Y, FALSE otherwise
X >¼ Y // TRUE if X is greater than or equal to Y, FALSE otherwise

3.1.7 Conditional Operators

Verilog contains a conditional operator that can be used to provide a more intuitive approach to

modeling logic statements. The keyword for the conditional operator is ? with the following syntax:

<target_net> ¼ <Boolean_condition> ? <true_assignment> : <false_assignment>;

This operator specifies a Boolean condition in which if evaluated TRUE, the true_assignment will be

assigned to the target. If the Boolean condition is evaluated FALSE, the false_assignment portion of the

operator will be assigned to the target. The values in this assignment can be signals or logic values. The

Boolean condition can be any combination of the Boolean operators described above. Nested condi-

tional operators can also be implemented by inserting subsequent conditional operators in place of the

false_value.

Example:

F ¼ (A ¼¼ 1’b0) ? 1’b1 : 1’b0; // If A is a zero, F¼1, otherwise F¼0.
This models an inverter.

F ¼ (sel ¼¼ 1’b0) ? A : B; // If sel is a zero, F¼A, otherwise F¼B.
This models a selectable switch.

F ¼ ((A ¼¼ 1’b0) && (B ¼¼ 1’b0)) ? 1’b’0 : // Nested conditional statements.
((A ¼¼ 1’b0) && (B ¼¼ 1’b1)) ? 1’b’1 : // This models an XOR gate.
((A ¼¼ 1’b1) && (B ¼¼ 1’b0)) ? 1’b’1 :
((A ¼¼ 1’b1) && (B ¼¼ 1’b1)) ? 1’b’0;

F ¼ (!C && (!A || B)) ? 1’b1 : 1’b0; // This models the logic expression
// F ¼ C’�(A’+B).

3.1.8 Concatenation Operator

In Verilog, the curly brackets (i.e., {}) are used to concatenate multiple signals. The target of this

operation must be the same size of the sum of the sizes of the input arguments.

Example:

Bus1[7:0] ¼ {Bus2[7:4], Bus3[3:0]}; // Assuming Bus1, Bus2, and Bus3 are all 8-bit
// vectors, this operation takes the upper

4-bits of
// Bus2, concatenates them with the lower

4-bits of
// Bus3, and assigns the 8-bit combination

to Bus1.

BusC ¼ {BusA, BusB}; // If BusA and BusB are 4-bits, then BusC
// must be 8-bits.

BusC[7:0] ¼ {4’b0000, BusA}; // This pads the 4-bit vector BusA with
4x leading

// zeros and assigns to the 8-bit vector BusC.

26 • Chapter 3: Modeling Concurrent Functionality in Verilog

3.1.9 Replication Operator

Verilog provides the ability to concatenate a vector with itself through the replication operator. This

operator uses double curly brackets (i.e., {{}}) and an integer indicating the number of replications to be

performed. The replication syntax is as follows:

{<number_of_replications>{<vector_name_to_be_replicated>}}

Example:

BusX¼ {4{Bus1}}; // This is equivalent to: BusX¼ {Bus1, Bus1, Bus1, Bus1};
BusY ¼ {2{A,B}}; // This is equivalent to: BusY ¼ {A, B, A, B};
BusZ ¼ {Bus1, {2{Bus2}}}; // This is equivalent to: BusZ ¼ {Bus1, Bus2, Bus2};

3.1.10 Numerical Operators

Verilog also provides a set of numerical operators as follows:

Syntax Operation

+ Addition

� Subtraction (when placed between arguments)

� 2’s complement negation (when placed in front of an argument)

* Multiplication

/ Division

% Modulus

** Raise to the power

<<< Shift to the left, fill with zeros

<<< Shift to the right, fill with sign bit

Example:

X + Y // Add X to Y
X - Y // Subtract Y from X
-X // Take the two’s complement negation of X
X * Y // Multiply X by Y
X / Y // Divide X by Y
X % Y // Modulus X/Y
X ** Y // Raise X to the power of Y
X <<< 3 // Shift X left 3 times, fill with zeros
X >>> 2 // Shift X right 2 times, fill with sign bit

Verilog will allow the use of these operators on arguments of different sizes, types, and signs. The

rules of the operations are as follows:

• If two vectors are of different sizes, the smaller vector is expanded to the size of the larger
vector.
– If the smaller vector is unsigned, it is padded with zeros.
– If the smaller vector is signed, it is padded with the sign bit.

• If one of the arguments is real, then the arithmetic will take place using real numbers.

• If one of the arguments is unsigned, then all arguments will be treated as unsigned.

Example 3.1 shows the behavioral model for a 4-bit adder in Verilog using a combination of

operators including continuous assignment, numerical addition, and concatenation. Note that when

adding two n-bit arguments the sum produced will be n + 1 bits. This can be handled in Verilog by

concatenating the Cout and Sum outputs on the LHS of the assignment. The entire add operation can be

3.1 Verilog Operators • 27

accomplished in a single continuous assignment that contains both the concatenation and addition

operators. When using continuous assignment, the LHSmust be a net data type. This means the outputs

Cout and Sum need to be declared as type wire.

Example 3.1
Behavioral model of a 4-bit adder in Verilog

3.1.11 Operator Precedence

The following is the order of precedence of the Verilog operators. If two operators of the same type

appear in an expression without parenthesis to dictate the order of precedence, the precedence will be

determined by executing from the operations from left to right.

Operators Precedence Notes

! ~ + � Highest Bitwise/Unary

{} {{}} Concatenation/Replication

() # No operation, just parenthesis

** Power

* / % Binary Multiply/Divide/Modulo

+ � # Binary Addition/Subtraction

<< >> <<< >>> Shift Operators

< <¼ > >¼ Greater/Less than Comparisons

¼¼ !¼ # Equality/Inequality Comparisons

& ~& AND/NAND Operators

^ ~^ XOR/XNOR Operators

| ~| # OR/NOR Operators

&& Boolean AND

|| Boolean OR

?: Lowest Conditional Operator

28 • Chapter 3: Modeling Concurrent Functionality in Verilog

CONCEPT CHECK

CC3.1 For the expression: F ¼ !A & (B I !C); What is the order of execution of the bitwise
operations?

(A) Negate ! OR ! AND

(B) Negate ! AND ! OR

(C) OR ! Negate ! AND

(D) OR ! AND ! Negate

3.2 Continuous Assignment with Logical Operators

When modeling synthesizable logic, it is important to remember that Verilog is a hardware descrip-

tion language, not a programming language. In a programming language, the lines of code are executed

sequentially as they appear in the source file. In Verilog, the lines of code represent the behavior of real

hardware. Thus, the assignments are executed concurrently unless specifically noted otherwise. Each of

the bitwise logical operators described in Sect. 3.1.3 can be used in conjunction with continuous signal

assignments to create individual combinational logic circuits.

3.2.1 Logical Operator Example: SOP Circuit

Example 3.2 shows how to design a Verilog model of a combinational logic circuit using continuous

assignment and logical operators. Note that in this example the logic expressions must first be deter-

mined by hand prior to modeling in Verilog.

3.2 Continuous Assignment with Logical Operators • 29

Example 3.2
Combinational logic using continuous assignment with logical operators

3.2.2 Logical Operator Example: One-Hot Decoder

A one-hot decoder is a circuit that has n inputs and 2n outputs. Each output will assert for one and

only one input code. Since there are 2n outputs, there will always be one and only one output asserted at

any given time. Example 3.3 shows how to model a 3-to-8 one-hot decoder in Verilog with continuous

assignment and logic operators.

30 • Chapter 3: Modeling Concurrent Functionality in Verilog

Example 3.3
3-to-8 One-hot decoder—Verilog modeling using logical operators

3.2.3 Logical Operator Example: 7-Segment Display Decoder

A 7-segment display decoder is a circuit used to drive character displays that are commonly found in

applications such as digital clocks and household appliances. A character display is made up of seven

individual LEDs, typically labeled a–g. The input to the decoder is the binary equivalent of the decimal or

Hex character that is to be displayed. The output of the decoder is the arrangement of LEDs that will form

the character. Decoders with 2-inputs can drive characters “0” to “3.” Decoders with 3-inputs can drive

characters “0” to “7.” Decoders with 4-inputs can drive characters “0” to “F” with the case of the Hex

characters being “A, b, c or C, d, E and F.”

Let’s look at an example of how to design a 3-input, 7-segment decoder in Verilog. The first step in

the process is to create the truth table for the outputs that will drive the LEDs in the display. We’ll call

these outputs Fa, Fb, . . ., Fg. Example 3.4 shows how to construct the truth table for the 7-segment

display decoder. In this table, a logic 1 corresponds to the LED being ON.

3.2 Continuous Assignment with Logical Operators • 31

Example 3.4
7-Segment display decoder—truth table

If we wish to model this decoder using logical operators, we need to first create the seven separate

combinational logic expressions for each output. Each of the outputs (Fa – Fg) can be put into a 3-input

K-map to find the minimized logic expression. Example 3.5 shows the derivation of the logic expressions

for the decoder from the truth table in Example 3.4 using Karnaugh maps.

32 • Chapter 3: Modeling Concurrent Functionality in Verilog

Example 3.5
7-Segment display decoder—logic synthesis by hand

Now these seven logic expressions can be modeled in Verilog. Example 3.6 shows how to model

the 7-segment decoder in Verilog using continuous assignment with logic operators.

3.2 Continuous Assignment with Logical Operators • 33

Example 3.6
7-Segment display decoder—Verilog modeling using logical operators

3.2.4 Logical Operator Example: One-Hot Encoder

A one-hot binary encoder has n outputs and 2n inputs. The output will be an n-bit, binary code which

corresponds to an assertion on one and only one of the inputs. Example 3.7 shows the process of

designing a 4-to-2 binary encoder by hand (i.e., using the classical digital design approach) in order to

find the logic expression to model in Verilog using logical operators.

34 • Chapter 3: Modeling Concurrent Functionality in Verilog

Example 3.7
4-to-2 Binary encoder—logic synthesis by hand

Example 3.8 shows how to model the encoder with continuous assignments and logical operators

using the logic expressions from Example 3.7.

Example 3.8
4-to-2 Binary encoder—Verilog modeling using logical operators

3.2 Continuous Assignment with Logical Operators • 35

3.2.5 Logical Operator Example: Multiplexer

A multiplexer is a circuit that passes one of its multiple inputs to a single output based on a select

input. This can be thought of as a digital switch. The multiplexer has n select lines, 2n inputs, and

1 output. Example 3.9 shows the process of modeling a 4-to-1 multiplexer using continuous signal

assignments and logical operators.

Example 3.9
4-to-1 Multiplexer—Verilog modeling using logical operators

3.2.6 Logical Operator Example: Demultiplexer

A demultiplexer works in a complementary fashion to a multiplexer. A demultiplexer has one input

that is routed to one of its multiple outputs. The output that is active is dictated by a select input. A demux

has n select lines that chooses to route the input to one of its 2n outputs. When an output is not selected,

it outputs a logic 0. Example 3.10 shows how to model the demultiplexer in Verilog using continuous

assignments and logical operators.

36 • Chapter 3: Modeling Concurrent Functionality in Verilog

Example 3.10
1-to-4 Demultiplexer—Verilog modeling using logical operators

CONCEPT CHECK

CC3.2 Why does modeling combinational logic in its canonical form with continuous assign-
ment and logical operators defeat the purpose of the modern digital design flow?

(A) It requires the designer to first create the circuit using the classical digital
design approach and then enter it into the HDL in a form that is essentially a
text-based netlist. This doesn’t take advantage of the abstraction capabilities
and automated synthesis in the modern flow.

(B) It cannot be synthesized because the order of precedence of the logical
operators in Verilog doesn’t match the precedence defined in Boolean algebra.

(C) The circuit is in its simplest form, so there is no work for the synthesizer to do.

(D) It doesn’t allow an else clause to cover the outputs for any remaining input
codes not explicitly listed.

3.3 Continuous Assignment with Conditional Operators

Logical operators are good for describing the behavior of small circuits; however, in the prior examples

we still needed to create the canonical sum of products logic expression by hand before describing the

functionality with logical operators. The true power of an HDL is when the behavior of the system can be

3.3 Continuous Assignment with Conditional Operators • 37

described fully without requiring any hand design. The conditional operator allows us to describe a

continuous assignment using Boolean conditions that effect the values of the result. In this approach, we

use the conditional operator (?) in conjunction with the continuous assignment keyword assign.

3.3.1 Conditional Operator Example: SOP Circuit

Example 3.11 shows how to design a Verilog model of a combinational logic circuit using continuous

assignment with conditional operators. Note that this example uses the same truth table as in Example

3.2 to illustrate a comparison between approaches.

Example 3.11
Combinational logic using continuous assignment with conditional operators (1)

In the prior example, the conditional operator was based on a truth table. Conditional operators can

also be used to model logic expressions. Example 3.12 shows how to design a Verilog model of a

combinational logic circuit when the logic expression is already known. Note that this example again

uses the same truth table as in Examples 3.2 and 3.11 to illustrate a comparison between approaches.

38 • Chapter 3: Modeling Concurrent Functionality in Verilog

Example 3.12
Combinational logic using continuous assignment with conditional operators (2)

3.3.2 Conditional Operator Example: One-Hot Decoder

Example 3.13 shows how to model the 3-to-8 one-hot decoder in Verilog using continuous assign-

ment with conditional operators. This description of a one-hot decoder can be simplified by using vector

notation for the ports.

Example 3.13
3-to-8 One-hot decoder—Verilog modeling using conditional operators

3.3 Continuous Assignment with Conditional Operators • 39

3.3.3 Conditional Operator Example: 7-Segment Display Decoder

Example 3.14 shows how to model the 7-segment decoder in Verilog using continuous assignment

with conditional operators. Again, a more compact description of the decoder can be accomplished if the

ports are described as vectors.

Example 3.14
7-Segment display decoder—Verilog modeling using conditional operators

3.3.4 Conditional Operator Example: One-Hot Decoder

Example 3.15 shows how to model the encoder with continuous assignments and conditional

operators. Notice that using this approach does not require synthesizing the logic expressions by

hand but rather can model the functionality directly from the truth table.

40 • Chapter 3: Modeling Concurrent Functionality in Verilog

Example 3.15
4-to-2 Binary encoder—Verilog modeling using conditional operators

3.3.5 Conditional Operator Example: Multiplexer

Example 3.16 shows the process of modeling a 4-to-1 multiplexer using continuous signal

assignments and conditional operators. Notice that this approach can also be implemented directly

from the truth table.

Example 3.16
4-to-1 Multiplexer—Verilog modeling using conditional operators

3.3 Continuous Assignment with Conditional Operators • 41

3.3.6 Conditional Operator Example: Demultiplexer

Example 3.17 shows how to model the demultiplexer in Verilog using continuous assignments and

conditional operators. Notice that this approach can be implemented directly from the truth table as well.

Example 3.17
1-to-4 Demultiplexer—Verilog modeling using conditional operators

CONCEPT CHECK

CC3.3 Why does a continuous signal assignment with conditional operators better reflect the
modern digital design flow compared to using logical operators?

(A) It allows the logic to be modeled directly from its functional description as
opposed to from the final logic expressions, which must be determined prior to
HDL modeling. This allows the continuous signal assignment approach to
take advantage of automated synthesis and avoids any hand design.

(B) A conditional operator has a final clause that covers any input cases not
explicitly listed. This makes it more like a programming language operator.

(C) A conditional operator has a final clause that covers any input cases not
explicitly listed. This allows a final assignment of “X,” which provides the
ability to assign any outputs not explicitly listed to be treated as “unknowns”.

(D) The conditional operators can model the entire logic circuit in one assignment
while the logical operator approach often takes multiple separate
assignments.

42 • Chapter 3: Modeling Concurrent Functionality in Verilog

3.4 Continuous Assignment with Delay

Verilog provides the ability to model gate delays when using a continuous assignment. The # is used

to indicate a delayed assignment. For combinational logic circuits, the delay can be specified for all

transitions, for rising and falling transitions separately, and for rising, falling, and transitions to the value

off separately. A transition to off refers to a transition to Z. If only one delay parameter is specified, it is

used to model all delays. If two delay parameters are specified, the first parameter is used for the rise

time delay while the second is used to model the fall time delay. If three parameters are specified, the

third parameter is used to model the transition to off. Parenthesis are optional but recommended when

using multiple delay parameters.

assign #(<del_all>) <target_net> ¼ <RHS_nets, operators,
etc. . .>;

assign #(<del_rise, del_fall>) <target_net> ¼ <RHS_nets, operators,
etc. . .>;

assign #(<del_rise, del_fall, del_off>) <target_net> ¼ <RHS_nets, operators,
etc. . .>;

Example:

assign #1 F ¼ A; // Delay of 1 on all transitions.
assign #(2,3) F ¼ A; // Delay of 2 for rising transitions and 3 for falling.
assign #(2,3,4) F ¼ A; // Delay of 2 for rising, 3 for falling, and 4 for

off transition.

When using delay, it is typical to include the `timescale directive to provide the units of the delay

being specified. Example 3.18 shows a graphical depiction of using delay with continuous assignments

when modeling combinational logic circuits.

3.4 Continuous Assignment with Delay • 43

Example 3.18
Modeling delay in continuous assignments

Verilog also provides a mechanism to model a range of delays that are selected by a switch set in

the CAD compiler. There are three delays categories that can be specified: minimum, typical, and

maximum. The delays are separated by a “:”. The following is the syntax of how to use the delay

range capability.

assign #(<min>:<typ>:<max>) <target_net> ¼ <RHS_nets, operators, etc. . .>;

44 • Chapter 3: Modeling Concurrent Functionality in Verilog

Example:

assign #(1:2:3) F ¼ A; // Specifying a range of delays for all
transitions.

assign #(1:1:2, 2:2:3) F ¼ A; // Specifying a range of delays for
rising/falling.

assign #(1:1:2, 2:2:3, 4:4:5) F ¼ A; // Specifying a range of delays for
each transition.

The delay modeling capability in continuous assignment is designed to model the behavior of real

combinational logic with respect to short duration pulses. When a pulse is shorter than the delay of the

combinational logic gate, the pulse is ignored. Ignoring brief input pulses on the input accurately models

the behavior of on-chip gates. When the input pulse is faster than the delay of the gate, the output of the

gate does not have time to respond. As a result, there will not be a logic change on the output. This is

called inertial delay modeling and is the default behavior when using continuous assignments. Example

3.19 shows a graphical depiction of inertial delay behavior in Verilog.

Example 3.19
Inertial delay modeling when using continuous assignment

CONCEPT CHECK

CC3.4 Can a delayed signal assignment impact multiple continuous signal assignments?

(A) Yes. If a signal assignment with delay is made to a signal that is also used as
an input in a separate continuous signal assignment, then the delay will
propagate through both assignments.

(B) No. Only the assignment in which the delay is used will experience the delay.

3.4 Continuous Assignment with Delay • 45

Summary

v Concurrency is the term that describes
operations being performed in parallel. This
allows real-world system behavior to be
modeled.

v Verilog provides the continuous assignment
operator to support modeling concurrent
combinational logic operations.

v Complex logic circuits can be implemented
by using continuous assignment with logical
operators or conditional operators.

v Delay can also be included in continuous
assignments.

v Verilog supports a variety of delay models
including delay for all transitions, separate
delay for rising and falling transitions, sepa-
rate delay for rising, falling, and transitions to
off, and finally support for a min:typ:max
delay that is selected by a compiler switch.

Exercise Problems

Section 3.1: Verilog Operators

3.1.1 What is the purpose of the continuous assign-
ment operator?

3.1.2 If two continuous assignments are made to the
same net, which one will take priority?

3.1.3 What is the difference between a bitwise logi-
cal AND (&) operation and a reduction AND (&)
operation?

3.1.4 How is a conditional operator (?) similar to an
if/then programming construct?

3.1.5 How many bits will the target vector F need to
be if the following concatenation assignment is
made?

F ¼ {4'hA, 2'b00};

3.1.6 How many bits will the target vector F need to
be if the following replication assignment is
made?

F ¼ {3{4'hA}};

3.1.7 When adding two unsigned vectors of different
sizes using the + numerical operator, what
happens to the smaller vector prior to the
addition?

3.1.8 What operation has the highest precedence
operation in Verilog?

Section 3.2: Continuous Assignment

with Logical Operators

3.2.1 Design a Verilog model to implement the
behavior described by the 3-input minterm list
shown in Fig. 3.1. Use continuous assignment
with logical operators. Declare your module
and ports to match the block diagram provided.
Use the type wire for your ports.

Fig. 3.1
System E Functionality

3.2.2 Design a Verilog model to implement the
behavior described by the 3-input maxterm
list shown in Fig. 3.2. Use continuous assign-
ment with logical operators. Declare your mod-
ule and ports to match the block diagram
provided. Use the type wire for your ports.

Fig. 3.2
System F Functionality

3.2.3 Design a Verilog model to implement the
behavior described by the 3-input truth table
shown in Fig. 3.3. Use continuous assignment
with logical operators. Declare your module
and ports to match the block diagram provided.
Use the type wire for your ports.

Fig. 3.3
System G Functionality

3.2.4 Design a Verilog model to implement the
behavior described by the 4-input minterm list
shown in Fig. 3.4. Use continuous assignment
and logical operators. Declare your module
and ports to match the block diagram provided.
Use the type wire for your ports.

46 • Chapter 3: Modeling Concurrent Functionality in Verilog

Fig. 3.4
System I Functionality

3.2.5 Design a Verilog model to implement the
behavior described by the 4-input maxterm
list shown in Fig. 3.5. Use continuous assign-
ment and logical operators. Declare your mod-
ule and ports to match the block diagram
provided. Use the type wire for your ports.

Fig. 3.5
System J Functionality

3.2.6 Design a Verilog model to implement the
behavior described by the 4-input truth table
shown in Fig. 3.6. Use continuous assignment
and logical operators. Declare your module
and ports to match the block diagram provided.
Use the type wire for your ports.

Fig. 3.6
System K Functionality

3.2.7 Design a Verilog model for the 4-to-16 one-hot
decoder shown in Fig. 3.7. Use continuous
assignment and logical operators. Declare

your module and ports to match the block dia-
gram provided.

Fig. 3.7
4-to-16 One-Hot Decoder Functionality

3.2.8 Design a Verilog model for the 8-to-3 one-hot
encoder shown in Fig. 3.8. Use continuous
assignment and logical operators. Declare
your module and ports to match the block dia-
gram provided.

Fig. 3.8
8-to-3 One-Hot Encoder Functionality

Exercise Problems • 47

3.2.9 Design a Verilog model for the 8-to-1 multi-
plexer shown in Fig. 3.9. Use continuous
assignment and logical operators. Declare
your module and ports to match the block
diagram provided.

Fig. 3.9
8-to-1 Multiplexer Functionality

3.2.10 Design a Verilog model for the 1-to-8 demulti-
plexer shown in Fig. 3.10. Use continuous
assignment and logical operators. Declare
your module and ports to match the block dia-
gram provided.

Fig. 3.10
1-to-8 Demultiplexer Functionality

Section 3.3: Continuous Assignment with

Conditional Operators

3.3.1 Design a Verilog model to implement the
behavior described by the 3-input minterm list
shown in Fig. 3.1. Use continuous assignment
with conditional operators. Declare your

module and ports to match the block diagram
provided. Use the type wire for your ports.

3.3.2 Design a Verilog model to implement the
behavior described by the 3-input maxterm
list shown in Fig. 3.2. Use continuous assign-
ment with conditional operators. Declare your
module and ports to match the block diagram
provided. Use the type wire for your ports.

3.3.3 Design a Verilog model to implement the
behavior described by the 3-input truth table
shown in Fig. 3.3. Use continuous assignment
with conditional operators. Declare your mod-
ule and ports to match the block diagram
provided. Use the type wire for your ports.

3.3.4 Design a Verilog model to implement the
behavior described by the 4-input minterm list
shown in Fig. 3.4. Use continuous assignment
and conditional operators. Declare your mod-
ule and ports to match the block diagram
provided. Use the type wire for your ports.

3.3.5 Design a Verilog model to implement the
behavior described by the 4-input maxterm
list shown in Fig. 3.5. Use continuous assign-
ment and conditional operators. Declare your
module and ports to match the block diagram
provided. Use the type wire for your ports.

3.3.6 Design a Verilog model to implement the
behavior described by the 4-input truth table
shown in Fig. 3.6. Use continuous assignment
and conditional operators. Declare your mod-
ule and ports to match the block diagram
provided. Use the type wire for your ports.

3.3.7 Design a Verilog model for the 4-to-16 one-hot
decoder shown in Fig. 3.7. Use continuous
assignment and logical operators. Declare
your module and ports to match the block dia-
gram provided.

3.3.8 Design a Verilog model for the 8-to-3 one-hot
encoder shown in Fig. 3.8. Use continuous
assignment and logical operators. Declare
your module and ports to match the block dia-
gram provided.

3.3.9 Design a Verilog model for the 8-to-1 multi-
plexer shown in Fig. 3.9. Use continuous
assignment and logical operators. Declare
your module and ports to match the block dia-
gram provided.

3.3.10 Design a Verilog model for the 1-to-8 demulti-
plexer shown in Fig. 3.10. Use continuous
assignment and logical operators. Declare
your module and ports to match the block dia-
gram provided.

Section 3.4: Continuous Assignment

with Delay

3.4.1 Design a Verilog model to implement the
behavior described by the 3-input minterm list
shown in Fig. 3.1. Use continuous assignment
with logical operators and give each logic oper-
ation 1 ns of delay. Declare your module and

48 • Chapter 3: Modeling Concurrent Functionality in Verilog

ports to match the block diagram provided. Use
the type wire for your ports.

3.4.2 Design a Verilog model to implement the
behavior described by the 3-input maxterm
list shown in Fig. 3.2. Use continuous assign-
ment with logical operators and give each
rising transition a delay of 1 ns and each falling
transition a delay of 2 ns. Declare your module
and ports to match the block diagram provided.
Use the type wire for your ports.

3.4.3 Design a Verilog model to implement the
behavior described by the 3-input truth table
shown in Fig. 3.3. Use continuous assignment
with conditional operators and give the entire
logic operation a delay of 3 ns. Declare your
module and ports to match the block diagram
provided. Use the type wire for your ports.

3.4.4 Design a Verilog model to implement the
behavior described by the 4-input minterm list
shown in Fig. 3.4. Use continuous assignment
with conditional operators and give rising
transitions a delay of 3 ns and falling transitions

a delay of 2 ns. Declare your module and ports
to match the block diagram provided. Use the
type wire for your ports.

3.4.5 Design a Verilog model to implement the
behavior described by the 4-input maxterm
list shown in Fig. 3.5. Use continuous assign-
ment and logical operators and give each logic
operation a delay of 1, 2, and 3 ns, respec-
tively, for the operation’s min:typ:max behavior.
Declare your module and ports to match the
block diagram provided. Use the type wire for
your ports.

3.4.6 Design a Verilog model to implement the
behavior described by the 4-input truth table
shown in Fig. 3.6. Use continuous assignment
and conditional operators and give the entire
operation a delay of 1, 2, and 3 ns, respec-
tively, for the operation’s min:typ:max behavior.
Declare your module and ports to match the
block diagram provided. Use the type wire for
your ports.

Exercise Problems • 49

Chapter 4: Structural Design

and Hierarchy
This chapter describes how to accomplish hierarchy within Verilog using lower-level subsystems.

Structural design in Verilog refers to including lower-level subsystems within a higher-level module in

order to produce the desired functionality. This is called hierarchy and is a good design practice because

it enables design partitioning. A purely structural design will not contain any behavioral constructs in the

module such as signal assignments, but instead just contain the instantiation and interconnections of

other subsystems. A subsystem in Verilog is simply another module that is called by a higher-level

module. Each lower-level module that is called is executed concurrently by the calling module.

Learning Outcomes—After completing this chapter, you will be able to:

4.1 Instantiate and map the ports of a lower-level component in Verilog.
4.2 Design a Verilog model for a system that uses hierarchy.

4.1 Structural Design Constructs

4.1.1 Lower-Level Module Instantiation

The term instantiation refers to the use or inclusion of a lower-level module within a system. In

Verilog, the syntax for instantiating a lower-level module is as follows.

module_name <instance_identifier> (port mapping. . .);

The first portion of the instantiation is the module name that is being called. This must match the

lower-level module name exactly, including case. The second portion of the instantiation is an optional

instance identifier. Instance identifier are useful when instantiating multiple instances of the same lower-

level module. The final portion of the instantiation is the port mapping. There are two techniques to

connect signals to the ports of the lower-level module, explicit and positional.

4.1.2 Port Mapping

4.1.2.1 Explicit Port Mapping

In explicit port mapping the names of the ports of the lower-level subsystem are provided along with

the signals they are being connected to. The lower-level port name is preceded with a period (.) while the

signal it is being connected is enclosed within parenthesis. The port connections can be listed in any

order since the details of the connection (i.e., port name to signal name) are explicit. Each connection is

separated by a comma. The syntax for explicit port mapping is as follows:

module_name <instance identifier> (.port_name1(signal1), .port_name2(signal2),

etc.);

Example 4.1 shows how to design a Verilog model of a hierarchical system that consists of two

lower-level modules.

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to Verilog, https://doi.org/10.1007/978-3-030-10552-5_4

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10552-5_4&domain=pdf

Example 4.1
Verilog structural design using explicit port mapping

4.1.2.2 Positional Port Mapping

In positional port mapping the names of the ports of the lower-level modules are not explicitly listed.

Instead, the signals to be connected to the lower-level system are listed in the same order in which the

ports were defined in the subsystem. Each signal name is separated by a comma. This approach

requires less text to describe the connection but can also lead to misconnections due to inadvertent

mistakes in the signal order. The syntax for positional port mapping is as follows:

module_name : <instance_identifier> (signal1, signal2, etc.);

Example 4.2 shows how to create the same structural Verilog model as in Example 4.1, but using

positional port mapping instead.

52 • Chapter 4: Structural Design and Hierarchy

Example 4.2
Verilog structural design using positional port mapping

4.1.3 Gate-Level Primitives

Verilog provides the ability to model basic logic functionality through the use of primitives. A primitive

is a logic operation that is simple enough that it doesn’t require explicit modeling. An example of this

behavior can be a basic logic gate or even a truth table. Verilog provides a set of gate-level primitives to

model simple logic operations. These gate-level primitives are not(), and(), nand(), or(), nor(), xor(), and

xnor(). Each of these primitives are instantiated as lower-level subsystems with positional port mapping.

The port order for each primitive has the output listed first followed by the input(s). The output and each of

the inputs are scalars. Gate-level primitives do not need to be explicitly created as they are provided as

part of the Verilog standard. One of the benefits of using gate-level primitives is that the number of inputs

is easily scaled as each primitive can accommodate an increasing number of inputs automatically.

Furthermore, modeling using this approach essentially provides a gate-level netlist, so it represents a

very low-level, detailed gate-level implementation that is ready for technology mapping. Example 4.3

shows how to use gate-level primitives to model the behavior of a combinational logic circuit.

4.1 Structural Design Constructs • 53

Example 4.3
Modeling combinational logic circuits using gate-level primitives

4.1.4 User-Defined Primitives

A user-defined primitive (UDP) is a system that describes the behavior of a low-level component

using a logic table. This is very useful for creating combinational logic functionality that will be used

numerous times. UDPs are also useful for large truth tables where it is more convenient to list the

functionality in table form. UDPs are lower-level subsystems that are intended to be instantiated in

higher-level modules just like gate-level primitives, with the exception that the UPD needs to be created

in its own file. The syntax for a UDP is as follows:

primitive primitive_name (output output_name,

input input_name1, input_name2, ...);

table

in1_val in2_val ... : out_val;

in1_val in2_val ... : out_val;

:

endtable

endprimitive

A UDPmust list its output(s) first in the port definition. It also does not require types to be defined for

the ports. For combinational logic UDPs, all ports are assumed to be of type wire. Example 4.4 shows

how to design a user-defined primitive to implement a combinational logic circuit.

54 • Chapter 4: Structural Design and Hierarchy

Example 4.4
Modeling combinational logic circuits with a user-defined primitive

4.1.5 Adding Delay to Primitives

Delay can be added to primitives using the same approach as described in Sect. 3.4. The delay is

inserted after the primitive name but before the instance name.

Example:

not #2 U0 (An, A); // Gate level primitive for an inverter with delay

of 2.

and #3 U3 (m0, An, Bn, Cn); // Gate level primitive for an AND gate with delay

of 3.

SystemX_UDP #1 U0 (F, A, B, C); // UDP with a delay of 1.

4.1 Structural Design Constructs • 55

CONCEPT CHECK

CC4.1 Does the use of lower-level sub-modules model concurrent functionality? Why?

(A) No. Since the lower-level behavior of the module being instantiated may
contain non-concurrent behavior, it is not known what functionality will be
modeled.

(B) Yes. The modules are treated like independent sub-systems whose behavior
runs in parallel just as if separate parts were placed in a design.

4.2 Structural Design Example: Ripple Carry Adder

This section gives an example of a structural design that implements a simple binary adder.

4.2.1 Half Adders

When creating an adder, it is desirable to design incremental subsystems that can be reused. This

reduces design effort and minimizes troubleshooting complexity. The most basic component in the adder

is called a half adder. This circuit computes the sum and carry out on two input arguments. The reason it

is called a half adder instead of a full adder is because it does not accommodate a carry in during the

computation, thus it does not provide all of the necessary functionality required for a positional adder.

Example 4.5 shows the design of a half adder. Notice that two combinational logic circuits are required in

order to produce the sum (the XOR gate) and the carry out (the AND gate). These two gates are in

parallel to each other; thus, the delay through the half adder is due to only one level of logic.

Example 4.5
Design of a half adder

4.2.2 Full Adders

A full adder is a circuit that still produces a sum and carry out, but considers three inputs in the

computations (A, B, and Cin). Example 4.6 shows the design of a full adder using the classical design

56 • Chapter 4: Structural Design and Hierarchy

approach. This step is shown to illustrate why it is possible to reuse half adders to create the full adder. In

order to do this, it is necessary to have the minimal sum of products logic expression.

Example 4.6
Design of a full adder

As mentioned before, it is desirable to reuse design components as we construct more complex

systems. One such design reuse approach is to create a full adder using two half adders. This is

straightforward for the sum output since the logic is simply two cascaded XORgates (Sum¼A�B�Cin).

The carry out is not as straightforward. Notice that the expression for Cout derived in Example 4.6

contains the term (A + B). If this term could be manipulated to use an XOR gate instead, it would allow the

full adder to take advantage of existing circuitry in the system. Figure 4.1 shows a derivation of an

equivalency that allows (A + B) to be replaced with (A � B) in the Cout logic expression.

Fig. 4.1
A Useful logic equivalency that can be exploited in arithmetic circuits

4.2 Structural Design Example: Ripple Carry Adder • 57

The ability to implement the carry out logic using the expression Cout¼ A�B + (A� B)�Cin allows us to

implement a full adder with two half adders and the addition of a single OR gate. Example 4.7 shows this

approach. In this new configuration, the sum is produced in two levels of logic while the carry out is

produced in three levels of logic.

Example 4.7
Design of a full adder out of half adders

4.2.3 Ripple Carry Adder (RCA)

The full adder can now be used in the creation of multi-bit adders. The simplest topology exploiting

the full adder is called a ripple carry adder (RCA). In this approach, full adders are used to create the sum

and carry out of each bit position. The carry out of each full adder is used as the carry in for the next

higher position. Since each subsequent full adder needs to wait for the carry to be produced by the

preceding stage, the carry is said to ripple through the circuit, thus giving this approach its name.

Example 4.8 shows how to design a 4-bit ripple carry adder using a chain of full adders. Notice that

the carry in for the full adder in position 0 is tied to a logic 0. The 0 input has no impact on the result of the

sum but enables a full adder to be used in the 0th position.

58 • Chapter 4: Structural Design and Hierarchy

Example 4.8
Design of a 4-bit ripple carry adder (RCA)

4.2.4 Structural Model of a Ripple Carry Adder in Verilog

Now that the hierarchical design of the RCA is complete, we can nowmodel it in Verilog as a system

of lower-level modules. Example 4.9 shows the structural model for a full adder in Verilog consisting of

two half adders. The full adder is created by instantiating two versions of the half adder as subsystems.

The half adder in this example is implemented using gate-level primitives. In this example, all gates are

modeled with a delay of 1 ns.

4.2 Structural Design Example: Ripple Carry Adder • 59

Example 4.9
Structural model of a full adder using two half adders

Example 4.10 shows the structural model of a 4-bit ripple carry adder in Verilog. The RCA is created

by instantiating four full adders. Notice that a logic 1’b0 can be directly inserted into the port map of the

first full adder to model the behavior of C0 ¼ 0.

60 • Chapter 4: Structural Design and Hierarchy

Example 4.10
Structural model of a 4-bit ripple carry adder in Verilog

CONCEPT CHECK

CC4.2 Why is the use of hierarchy considered a good design practice?

(A) Hierarchy allows the design to be broken into smaller pieces, each with
simpler functionality that can be verified independently prior to being used in a
higher-level system.

(B) Hierarchy allows a large system to be broken into smaller subsystems that
can be designed by multiple engineers, thus decreasing the overall
development time.

(C) Hierarchy allows a large system to be broken down into smaller subsystems
that can be more easily understood so that debugging is more manageable.

(D) All of the above.

Summary

v Instantiating other modules from within a
higher-level module is how Verilog
implements hierarchy. A lower-level module
can be instantiated as many times as
desired. An instance identifier is useful is
keeping track of each instantiation.

v The ports of the component can be
connected using either explicit or positional
port mapping.

v Verilog subsystems are also treated as con-
current subsystems.

v Gate-level primitives are provided in Verilog
to implement basic logic functions (not, and,
nand, or, nor, xor, xnor). These primitives are
instantiated just like any other lower-level
subsystem.

v User-Defined Primitives are supported in
Verilog that allow the functionality of a circuit
to be described in table form.

Summary • 61

Exercise Problems

Section 4.1: Structural Design Constructs

4.1.1 How many times can a lower-level module be
instantiated?

4.1.2 Which port mapping technique is more com-
pact, explicit or positional?

4.1.3 Which port mapping technique is less prone to
connection errors because the names of the
lower-level ports are listed within the mapping?

4.1.4 Would it make sense to design a lower-level
module to implement an AND gate in Verilog?

4.1.5 When would it makes more sense to build a
user-defined primitive instead of modeling the
logic using continuous assignments?

Section 4.2: Structural Design Examples

4.2.1 Design a Verilogmodel to implement the behav-
ior describedby the3-inputminterm list shown in
Fig. 4.2. Usea structural designapproachbased
on gate-level primitives. This is considered
structural because you will need to instantiate
the gate-level primitives just like a traditional
subsystem; however, you don’t need to create
the gate-level modules as they are already built
into the Verilog standard. You will need to deter-
mine a logic expression for the system prior to
connecting the gate-level primitives. You can
use whatever approach you prefer to create
the logic expression (i.e., canonical SOP/POS,
minimized SOP/POS). Declare your module
and ports to match the block diagram provided.
Use the type wire for your ports.

Fig. 4.2
System E Functionality

4.2.2 Design a Verilog model to implement the
behavior described by the 3-input minterm list
shown in Fig. 4.2. Use a structural design
approach based on a user-defined primitive.
This is considered structural because you will
need to instantiate the user-defined primitive
just like a traditional subsystem. You will need
to create both the upper level module and the
lower-level UDP. Declare your module and
ports to match the block diagram provided.
Use the type wire for your ports.

4.2.3 Design a Verilog model to implement the
behavior described by the 3-input maxterm

list shown in Fig. 4.3. Use a structural design
approach based on gate-level primitives. This
is considered structural because you will need
to instantiate the gate-level primitives just like a
traditional subsystem; however, you don’t need
to create the gate-level modules as they are
already built into the Verilog standard. You will
need to determine a logic expression for the
system prior to connecting the gate-level
primitives. You can use whatever approach
you prefer to create the logic expression (i.e.,
canonical SOP/POS, minimized SOP/POS).
Declare your module and ports to match the
block diagram provided. Use the type wire for
your ports.

Fig. 4.3
System F Functionality

4.2.4 Design a Verilog model to implement the
behavior described by the 3-input maxterm
list shown in Fig. 4.3. Use a structural design
approach based on a user-defined primitive.
This is considered structural because you will
need to instantiate the user-defined primitive
just like a traditional subsystem. You will need
to create both the upper level module and the
lower-level UDP. Declare your module and
ports to match the block diagram provided.
Use the type wire for your ports. Declare your
module and ports to match the block diagram
provided. Use the type wire for your ports.

4.2.5 Design a Verilogmodel to implement the behav-
ior described by the 3-input truth table shown in
Fig. 4.4. Usea structural design approachbased
on gate-level primitives. This is considered
structural because you will need to instantiate
the gate-level primitives just like a traditional
subsystem; however, you don’t need to create
the gate-level modules as they are already built
into the Verilog standard. You will need to deter-
mine a logic expression for the system prior to
connecting the gate-level primitives. You can
use whatever approach you prefer to create
the logic expression (i.e., canonical SOP/POS,
minimized SOP/POS). Declare your module
and ports to match the block diagram provided.
Use the type wire for your ports.

62 • Chapter 4: Structural Design and Hierarchy

Fig. 4.4
System G Functionality

4.2.6 Design a Verilog model to implement the
behavior described by the 3-input truth table
shown in Fig. 4.4. Use a structural design
approach based on a user-defined primitive.
This is considered structural because you will
need to instantiate the user-defined primitive
just like a traditional subsystem. You will need
to create both the upper level module and the
lower-level UDP. Declare your module and
ports to match the block diagram provided.
Use the type wire for your ports.

4.2.7 Design a Verilog model to implement the
behavior described by the 4-input minterm list
shown in Fig. 4.5. Use a structural design
approach based on gate-level primitives. This
is considered structural because you will need
to instantiate the gate-level primitives just like a
traditional subsystem; however, you don’t need
to create the gate-level modules as they are
already built into the Verilog standard. You will
need to determine a logic expression for the
system prior to connecting the gate-level
primitives. You can use whatever approach
you prefer to create the logic expression (i.e.,
canonical SOP/POS, minimized SOP/POS).
Declare your module and ports to match the
block diagram provided. Use the type wire for
your ports.

Fig. 4.5
System I Functionality

4.2.8 Design a Verilog model to implement the
behavior described by the 4-input minterm list
shown in Fig. 4.5. Use a structural design
approach based on a user-defined primitive.

This is considered structural because you will
need to instantiate the user-defined primitive
just like a traditional subsystem. You will need
to create both the upper level module and the
lower-level UDP. Declare your module and
ports to match the block diagram provided.
Use the type wire for your ports.

4.2.9 Design a Verilog model to implement the
behavior described by the 4-input maxterm
list shown in Fig. 4.6. Use a structural design
approach based on gate-level primitives. This
is considered structural because you will need
to instantiate the gate-level primitives just like a
traditional subsystem; however, you don’t need
to create the gate-level modules as they are
already built into the Verilog standard. You will
need to determine a logic expression for the
system prior to connecting the gate-level
primitives. You can use whatever approach
you prefer to create the logic expression (i.e.,
canonical SOP/POS, minimized SOP/POS).
Declare your module and ports to match the
block diagram provided. Use the type wire for
your ports.

Fig. 4.6
System J Functionality

4.2.10 Design a Verilog model to implement the
behavior described by the 4-input maxterm
list shown in Fig. 4.6. Use a structural design
approach based on a user-defined primitive.
This is considered structural because you will
need to instantiate the user-defined primitive
just like a traditional subsystem. You will need
to create both the upper level module and the
lower-level UDP. Declare your module and
ports to match the block diagram provided.
Use the type wire for your ports.

4.2.11 Design a Verilog model to implement the
behavior described by the 4-input truth table
shown in Fig. 4.7. Use a structural design
approach based on gate-level primitives. This
is considered structural because you will need
to instantiate the gate-level primitives just like a
traditional subsystem; however, you don’t need
to create the gate-level modules as they are
already built into the Verilog standard. You will
need to determine a logic expression for the
system prior to connecting the gate-level
primitives. You can use whatever approach
you prefer to create the logic expression (i.e.,
canonical SOP/POS, minimized SOP/POS).

Exercise Problems • 63

Declare your module and ports to match the
block diagram provided. Use the type wire for
your ports.

Fig. 4.7
System K Functionality

4.2.12 Design a Verilog model to implement the
behavior described by the 4-input truth table
shown in Fig. 4.7. Use a structural design
approach based on a user-defined primitive.
This is considered structural because you will
need to instantiate the user-defined primitive
just like a traditional subsystem. You will need
to create both the upper level module and the
lower-level UDP. Declare your module and
ports to match the block diagram provided.
Use the type wire for your ports.

64 • Chapter 4: Structural Design and Hierarchy

Chapter 5: Modeling Sequential

Functionality
In Chap. 3 techniques were presented to describe the behavior of concurrent systems. The

modeling techniques presented were appropriate for combinational logic because these types of circuits

have outputs dependent only on the current values of their inputs. This means a model that continuously

performs signal assignments provides an accurate model of this circuit behavior. When we start looking

at sequential circuits (i.e., D-Flip-Flops, registers, finite state machine, and counters), these devices only

update their outputs based upon an event, most often the edge of a clock signal. The modeling

techniques presented in Chap. 3 are unable to accurately describe this type of behavior. In this chapter

we describe the Verilog constructs to model signal assignments that are triggered by an event to

accurately model sequential logic. We can then use these techniques to describe more complex

sequential logic circuits such as finite state machines and register transfer level systems.

Learning Outcomes—After completing this chapter, you will be able to:

5.1 Describe the behavior of a Verilog procedural block and how it is used to model sequential
logic circuits.

5.2 Model combinational logic circuits using a procedural block and conditional programming
constructs.

5.3 Use Verilog system tasks to provide additional functionality to a simulation model.

5.1 Procedural Assignment

Verilog uses procedural assignment to model signal assignments that are based on an event. An

event is most commonly a transition of a signal. This provides the ability to model sequential logic circuits

such as D-flip-flops and finite state machines by triggering assignments off of a clock edge. Procedural

assignments can only drive variable data types (i.e., reg, integer, real, and time); thus, they are ideal for

modeling storage devices. Procedural signal assignments can be evaluated in the order they are listed;

thus, they are able to model sequential assignments.

A procedural assignment can also be used to model combinational logic circuits by making signal

assignments when any of the inputs to the model change. Despite the left-hand side of the assignment

not being able to be of type wire in procedural assignment, modern synthesizers will recognize properly

designed combinational logic models and produce the correct circuit implementation. Procedural assign-

ment also supports standard programming constructs such as if-else decisions, case statements, and

loops. This makes procedural assignment a powerful modeling approach in Verilog and is the most

common technique for designing digital systems and creating test benches.

5.1.1 Procedural Blocks

All procedural signal assignments must be enclosed within a procedural block. Verilog has two types

of procedural blocks, initial and always.

Springer Nature Switzerland AG 2019
B. J. LaMeres, Quick Start Guide to Verilog, https://doi.org/10.1007/978-3-030-10552-5_5

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10552-5_5&domain=pdf

5.1.1.1 Initial Blocks

An initial block will execute all of the statements embedded within it one time at the beginning of the

simulation. An initial block is not used to model synthesizable behavior. It is instead used within test

benches to either set the initial values of repetitive signals or to model the behavior of a signal that only

has a single set of transitions. The following is the syntax for an initial block.

initial

begin // an optional “: name” can be added after the begin keyword

signal_assignment_1

signal_assignment_2

:

end

Let’s look at a simple model of how an initial block is used to model the reset line in a test bench. In

the following example, the signal “Reset_TB” is being driven into a DUT. At the beginning of the

simulation, the initial value of Reset_TB is set to a logic zero. The second assignment will take place

after a delay of 15 time units. The second assignment statement sets Reset_TB to a logic one. The

assignments in this example are evaluated in sequence in the order they are listed due to the delay

operator. Since the initial block executes only once, Reset_TB will stay at the value of its last assignment

for the remainder of the simulation.

Example:

initial

begin

Reset_TB ¼ 1’b0;

#15 Reset_TB ¼ 1’b1;

end

5.1.1.2 Always Blocks

An always block will execute forever, or for the duration of the simulation. An always block can be

used to model synthesizable circuits in addition to non-synthesizable behavior in test benches. The

following is the syntax for an always block.

always

begin

signal_assignment_1

signal_assignment_2

:

end

Let’s look at a simple model of how an always block can be used to model a clock line in a test

bench. In the following example, the value of the signal Clock_TB will continuously change its logic value

every 10 time units.

Example:

always

begin

#10 Clock_TB ¼ ~Clock_TB;

end

By itself, the above always block will not work because when the simulation begins, Clock_TB does

not have an initial value so the simulator will not know what the value of Clock_TB is at time zero. It will

also not know what the output of the negation operation (~) will be at time unit 10. The following example

66 • Chapter 5: Modeling Sequential Functionality

shows the correct way of modeling a clock signal using a combination of initial and always blocks. Verilog

allows assignments to the same variable from multiple procedural blocks, so the following example is

valid. Note that when the simulation begins, Clock_TB is assigned a logic zero. This provides a known

value for the signal at time zero and also allows the always block negation to have a deterministic value.

The example below will create a clock signal that will toggle every 10 time units.

Example:

initial

begin

Clock_TB ¼ 1’b0;

end

always

begin

#10 Clock_TB ¼ ~Clock_TB;

end

5.1.1.3 Sensitivity Lists

A sensitivity list is used in conjunction with a procedural block to trigger when the assignments within

the block are executed. The symbol @ is used to indicate a sensitivity list. Signals can then be listed

within parenthesis after the @ symbol that will trigger the procedural block. The following is the base

syntax for a sensitivity list.

always @ (signal1, signal2)

begin

signal_assignment_1

signal_assignment_2

:

end

In this syntax, any transition on any of the signals listed within the parenthesis will cause the always

block to trigger and all of its assignments to take place one time. After the always block ends, it will await

the next signal transition in the sensitivity list to trigger again. The following example shows how to model

a simple 3-input AND gate. In this example, any transition on inputs A, B, or C will cause the block to

trigger and the assignment to F to occur.

Example:

always @ (A, B, C)

begin

F ¼ A & B & C;

end

Verilog also supports keywords to limit triggering of the block to only rising edge or falling edge

transitions. The keywords are posedge and negedge. The following is the base syntax for an edge

sensitive block. In this syntax, only rising edge transitions on signal1 or falling edge transitions on signal2

will cause the block to trigger.

always @ (posedge signal1, negedge signal2)

begin

signal_assignment_1

signal_assignment_2

:

end

5.1 Procedural Assignment • 67

Sensitivity lists can also contain Boolean operators to more explicitly describe behavior. The

following syntax is identical to the syntax above.

always @ (posedge signal1 or negedge signal2)

begin

signal_assignment_1

signal_assignment_2

:

end

The ability to model edge sensitivity allows us to model sequential circuits. The following example

shows how to model a simple D-flip-flop.

Example:

always @ (posedge Clock)

begin

Q ¼ D; // Note: This model does not include a reset.

end

In Verilog-2001, the syntax to support sensitivity lists that will trigger based on any signal listed on

the right-hand side of any assignment within the block was added. This syntax is @*. The following

example shows how to use this modeling approach to model a 3-input AND gate.

Example:

always @*

begin

F ¼ A & B & C;

end

5.1.2 Procedural Statements

There are two kinds of signal assignments that can be used within a procedural block, blocking and

non-blocking.

5.1.2.1 Blocking Assignments

A blocking assignment is denoted with the ¼ symbol and the evaluation and assignment of each

statement takes place immediately. Each assignment within the block is executed in parallel. When this

behavior is coupled with a sensitivity list that contains all of the inputs to the system, this approach can

model synthesizable combinational logic circuits. This approach provides the same functionality as

continuous assignments outside of a procedural block. The reason that designers use blocking

assignments instead of continuous assignment is that more advanced programming constructs are

supported within Verilog procedural blocks. These will be covered in the next section. Example 5.1

shows how to use blocking assignments within a procedural block to model a combinational logic circuit.

68 • Chapter 5: Modeling Sequential Functionality

Example 5.1
Using blocking assignments to model combinational logic

5.1.2.2 Non-blocking Assignments

A non-blocking assignment is denoted with the <¼ symbol. When using non-blocking assignments,

the assignment to the target signal is deferred until the end of the procedural block. This allows the

assignments to be executed in the order they are listed in the block without cascading interim

assignments through the list. When this behavior is coupled with triggering the block off of a clock signal,

this approach canmodel synthesizable sequential logic circuits. Example 5.2 shows an example of using

non-blocking assignments to model a sequential logic circuit.

Example 5.2
Using non-blocking assignments to model sequential logic

The difference between blocking and non-blocking assignments is subtle and is often one of the

most difficult concepts to grasp when first learning Verilog. One source of confusion comes from the fact

that blocking and non-blocking assignments can produce the same results when they contain either a

single assignment or a list of assignments that don’t have any signal interdependencies. A signal

interdependency refers to when a signal that is the target of an assignment (i.e., on the LHS of an

assignment) is used as an argument (i.e., on the RHS of an assignment) in subsequent statements.

Example 5.3 shows two models that produce the same results regardless of whether a blocking or

non-blocking assignment is used.

5.1 Procedural Assignment • 69

Example 5.3
Identical behavior when using blocking vs. non-blocking assignments

When a list of statements within a procedural block does have signal interdependencies, blocking

and non-blocking assignments will have different behavior. Example 5.4 shows how signal

interdependencies will cause different behavior between blocking and non-blocking assignments. In

this example, all inputs are listed in the sensitivity list with the intent of modeling combinational logic.

70 • Chapter 5: Modeling Sequential Functionality

Example 5.4
Different behavior when using blocking vs. non-blocking assignments (1)

Example 5.5 shows another case where signal interdependencies will cause different behavior

between blocking and non-blocking assignments. In this example, the procedural block is triggered by

the rising edge of a clock signal with the intent of modeling two stages of sequential logic.

5.1 Procedural Assignment • 71

Example 5.5
Different behavior when using blocking vs. non-blocking assignments (2)

While the behavior of these procedural assignments can be confusing, there are two design

guidelines that can make creating accurate, synthesizable models straightforward. They are:

1. When modeling combinational logic, use blocking assignments and list every input in the
sensitivity list.

2. When modeling sequential logic, use non-blocking assignments and only list the clock and
reset lines (if applicable) in the sensitivity list.

72 • Chapter 5: Modeling Sequential Functionality

5.1.3 Statement Groups

A statement group refers to how the statements in a block are processed. Verilog supports two types

of statement groups: begin/end and fork/join. When using begin/end, all statements enclosed within the

group will be evaluated in the order they are listed. When using a fork/join, all statements enclosed within

the group will be evaluated in parallel. When there is only one statement within procedural block, a

statement group is not needed. For multiple statements in a procedural block, a statement group is

required. Statement groups can contain an optional name that is appended after the first keyword

preceded by a “:”. Example 5.6 shows a graphical depiction of the difference between begin/end and

fork/join groups. Note that this example also shows the syntax for naming the statement groups.

Example 5.6
Behavior of statement groups begin/end vs. fork/join

5.1.4 Local Variables

Local variables can be declared within a procedural block. The statement group must be named,

and the variables will not be visible outside of the block. Variables can only be of variable type.

Example:

initial

begin: stim_block // it is required to name the block when declaring local variables

integer i; // local variables can only be of variable type

i¼2;

end

5.1 Procedural Assignment • 73

CONCEPT CHECK

CC5.1 If a model of a combinational logic circuit excludes one of its inputs from the sensitivity
list, what is the implied behavior?

(A) A storage element because the output will be held at its last value when the
unlisted input transitions.

(B) An infinite loop.

(C) A don’t care will be used to form the minimal logic expression.

(D) Not applicable because this syntax will not compile.

5.2 Conditional Programming Constructs

One of the more powerful features that procedural blocks provide in Verilog is the ability to use

conditional programming constructs such as if-else decisions, case statements, and loops. These

constructs are only available within a procedural block and can be used to model both combinational

and sequential logic.

5.2.1 if-else Statements

An if-else statement provides a way to make conditional signal assignments based on Boolean

conditions. The if portion of statement is followed by a Boolean condition that if evaluated TRUE will

cause the signal assignment listed after it to be performed. If the Boolean condition is evaluated FALSE,

the statements listed after the else portion are executed. If multiple statements are to be executed in

either the if or else portion, then the statement group keywords begin/end need to be used. If only one

statement is to be executed, then the statement group keywords are not needed. The else portion of the

statement is not required and if omitted, no assignment will take place when the Boolean condition is

evaluated FALSE. The syntax for an if-else statement is as follows:

if (<boolean_condition>)

true_statement

else

false_statement

The syntax for an if-else statement with multiple true/false statements is as follows:

if (<boolean_condition>)

begin

true_statement_1

true_statement_2

end

else

begin

false_statement_1

false_statement_2

end

If more than one Boolean condition is required, additional if-else statements can be embedded

within the else clause of the preceding if statement. The following shows an example of if-else

statements implementing two Boolean conditions.

74 • Chapter 5: Modeling Sequential Functionality

if (<boolean_condition_1>)

true_statement_1

else if (<boolean_condition_2>)

true_statement_2

else

false_statement

Let’s look at using an if-else statement to describe the behavior of a combinational logic circuit.

Recall that a combinational logic circuit is one in which the output depends on the instantaneous values

of the inputs. This behavior can bemodeled by placing all of the inputs to the circuit in the sensitivity list of

an always block and using blocking assignments. Using this approach, a change on any of the inputs in

the sensitivity list will trigger the block and the assignments will take place immediately. Example 5.7

shows how to model a 3-input combinational logic circuit using if-else statements within a procedural

always block.

Example 5.7
Using if-else statements to model combinational logic

5.2.2 case Statements

A case statement is another technique to model signal assignments based on Boolean conditions.

As with the if-else statement, a case statement can only be used inside of a procedural block. The

statement begins with the keyword case followed by the input signal name that assignments will be

based off of enclosed within parenthesis. The case statement can be based on multiple input signal

names by concatenating the signals within the parenthesis. Then a series of input codes followed by the

corresponding assignment is listed. The keyword default can be used to provide the desired signal

assignment for any input codes not explicitly listed. When multiple input conditions have the same

assignment statement, they can be listed on the same line comma-delimited to save space. The keyword

endcase is used to denote the end of the case statement. The following is the syntax for a case

statement.

5.2 Conditional Programming Constructs • 75

case (<input_name>)

input_val_1 : statement_1

input_val_2 : statement_2

:

input_val_n : statement_n

default : default_statement

endcase

Example 5.8 shows how to model a 3-input combinational logic circuit using a case statement within

a procedural block. Note in this example the inputs are scalars, so they must be concatenated so that the

input values can be listed as 3-bit vectors. In this example, there are three versions of the model

provided. The first explicitly lists out all binary input codes. This approach is more readable because it

mirrors a truth table form. The second approach only lists the input codes corresponding to an output of

one and uses the default clause to handle all other input codes. The third approach shows how to list

multiple input codes with the same assignment on the same line using a comma-delimited series.

Example 5.8
Using case statements to model combinational logic

If-else statements can be embedded within a case statement and, conversely, case statements can

be embedded within an if-else statement.

76 • Chapter 5: Modeling Sequential Functionality

5.2.3 casez and casex Statements

Verilog provides two additional case statements that support don’t cares in the input conditions. The

casez statement allows the symbols ? and Z to represent a don’t care. The casex statement extends the

casez statement by also interpreting X as a don’t care. Care should be taken when using the casez and

casex statement as it is easy to create unintended logic when using don’t cares in the input codes.

5.2.4 forever Loops

A loop within Verilog provides a mechanism to perform repetitive assignments infinitely. This is

useful in test benches for creating stimulus such as clocks or other periodic signals. We have already

covered a looping construct in the form of an always block. An always block provides a loop with a

starting condition. Verilog provides additional looping constructs to model more sophisticated behavior.

All looping constructs must reside with a procedural block.

The simplest looping construct is the forever loop. As with other conditional programming

constructs, if multiple statements are associated with the forever loop, they must be enclosed within a

statement group. If only one statement is used, the statement group is not needed. A forever loop within

an initial block provides identical behavior as an always loop without a sensitivity loop. It is important to

provide a time step event or delay within a forever loop or it will cause a simulation to hang. The following

is the syntax for a forever loop in Verilog.

forever

begin

statement_1

statement_2

:

statement_n

end

Consider the following example of a forever loop that generates a clock signal (CLK) with a period of

10 time units. In this example, the forever loop is embedded within an initial block. This allows the initial

value of CLK to be set to zero upon the beginning of the simulation. Once the forever loop is entered, it

will execute indefinitely. Notice that since there is only one statement after the forever keyword, a

statement group (i.e., begin/end) is not needed.

Example:

initial

begin

CLK ¼ 0;

forever

#10 CLK ¼ ~CLK;

end

5.2.5 while Loops

A while loop provides a looping structure with a Boolean condition that controls its execution. The

loop will only execute as long as the Boolean condition is evaluated true. The following is the syntax for a

Verilog while loop.

5.2 Conditional Programming Constructs • 77

while (<boolean_condition>)

begin

statement_1

statement_2

:

statement_n

end

Let’s implement the previous example of a loop that generates a clock signal (CLK) with a period of

10 time units as long as EN¼ 1. The TRUE Boolean condition for the while loop is EN¼ 1. When EN¼ 0,

the while loop will be skipped. When the loop becomes inactive, CLK will hold its last assigned value.

Example:

initial

begin

CLK ¼ 0;

while (EN ¼¼ 1)

#10 CLK ¼ ~CLK;

end

5.2.6 repeat Loops

A repeat loop provides a looping structure that will execute a fixed number of times. The following is

the syntax for a Verilog repeat loop.

repeat (<number_of_loops>)

begin

statement_1

statement_2

:

statement_n

end

Let’s implement the previous example of a loop that generates a clock signal (CLK) with a period of

10 time units, except this time we’ll use a repeat loop to only produce 10 clock transitions, or 5 full periods

of CLK.

Example:

initial

begin

CLK ¼ 0;

repeat (10)

#10 CLK ¼ ~CLK;

end

5.2.7 for Loops

A for loop provides the ability to create a loop that can automatically update an internal variable. A

loop variable within a for loop is altered each time through the loop according to a step assignment. The

starting value of the loop variable is provided using an initial assignment. The loop will execute as long as

a Boolean condition associated with the loop variable is TRUE. The following is the syntax for a Verilog

for loop:

78 • Chapter 5: Modeling Sequential Functionality

for (<initial_assignment>; <Boolean_condition>; <step_assignment>)

begin

statement_1

statement_2

:

statement_n

end

The following is an example of creating a simple counter using the loop variable. The loop variable

i was declared as an integer prior to this block. The signal Count is also of type integer. The loop variable

will start at 0 and increment by 1 each time through the loop. The loop will execute as long as i < 15, or

16 times total. For loops allow the loop variable to be used in signal assignments within the block.

Example:

initial

begin

for (i¼0; i<15; i¼i+1)

#10 Count ¼ i;

end

5.2.8 disable

Verilog provides the ability to stop a loop using the keyword disable. The disable function only works

on named statement groups. The disable function is typically used after a certain fixed amount of time or

within a conditional construct such as an if-else or case statement that is triggered by a control signal.

Consider the following forever loop example that will generate a clock signal (CLK), but only when an

enable (EN) is asserted. When EN ¼ 0, the loop will disable and the simulation will end.

Example:

initial

begin

CLK ¼ 0;

forever

begin: loop_ex

if (EN ¼¼ 1)

#10 CLK ¼ ~CLK;

else

disable loop_ex; // The group name to be disabled comes after the keyword

end

end

CONCEPT CHECK

CC5.2 When using an if-else statement to model a combinational logic circuit, is using the else
clause the same as using don’t careswhenminimizing a logic expression with a K-map?

(A) Yes. The else clause allows the synthesizer to assign whatever output values
are necessary in order to create the most minimal circuit.

(B) No. The else clause explicitly states the output values for all input codes not
listed in the if portion of the statement. This is the same as filling in the truth
table with specific values for all input codes covered by the else clause and
the synthesizer will create the logic expression accordingly.

5.2 Conditional Programming Constructs • 79

5.3 System Tasks

A system task in Verilog is one that is used to insert additional functionality into a model that is not

associated with real circuitry. There are three main groups of system tasks in Verilog: (1) text output;

(2) file input/output; and (3) simulation control. All system tasks begin with a $ and are only used during

simulation. These tasks are ignored by synthesizers, so they can be included in real circuit models. All

system tasks must reside within procedural blocks.

5.3.1 Text Output

Text output system tasks are used to print strings and variable values to the console or transcript of a

simulation tool. The syntax follows ANSI C where double quotes (“”) are used to denote the text string to

be printed. Standard text can be entered within the string in addition to variables. Variable can be printed

in two ways. The first is to simply list the variable in the system task function outside of the double quotes.

In this usage, the default format to be printed will be decimal unless a task is used with a different default

format. The second way to print a variable is within a text string. In this usage, a unique code is inserted

into the string indicating the format of how to print the value. After the string, a comma-separated list of

the variable name(s) is listed that corresponds positionally to the codes within the string. The following

are the most commonly used text output system tasks.

Task Description

$display() Print text string when statement is encountered and append a newline.

$displayb() Same as $display, but default format of any arguments is binary.

$displayo() Same as $display, but default format of any arguments is octal.

$displayh() Same as $display, but default format of any arguments is hexadecimal.

$write() Same as $display, but the string is printed without a newline.

$writeb() Same as $write, but default format of any arguments is binary.

$writeo() Same as $write, but default format of any arguments is octal.

$writeh() Same as $write, but default format of any arguments is hexadecimal.

$strobe() Same as $display, but printing occurs after all simulation events are executed.

$strobeb() Same as $strobe, but default format of any arguments is binary.

$strobeo() Same as $strobe, but default format of any arguments is octal.

$strobeh() Same as $strobe, but default format of any arguments is hexadecimal.

$monitor() Same as $display, but printing occurs when the value of an argument changes.

$monitorb() Same as $monitor, but default format of any arguments is binary.

$monitoro() Same as $monitor, but default format of any arguments is octal.

$monitorh() Same as $monitor, but default format of any arguments is hexadecimal.

$monitoron Begin tracking argument changes in subsequent $monitor tasks.

$monitoroff Stop tracking argument changes in subsequent $monitor tasks.

The following is a list of the most common text formatting codes for printing variables within a string.

Code Format

%b Binary values

%o Octal values

%d Decimal values

%h Hexadecimal values

%f Real values using decimal form

%e Real values using exponential form

80 • Chapter 5: Modeling Sequential Functionality

Code Format

%t Time values

%s Character strings

%m Hierarchical name of scope (no argument required when printing)

%l Configuration library binding (no argument required when printing)

The format letters in these codes are not case sensitive (i.e., %d and %D are equivalent). Each of

these formatting codes can also contain information about truncation of leading and trailing digits.

Rounding will take place when numbers are truncated. The formatting syntax is as follows:

%<number_of_leading_digits>.<number_of_trailing_digits><format_code_letter>

There are also a set of string formatting and character escapes that are supported for use with the

text output system tasks.

Code Description

\n Print a new line.

\t Print a tab.

\” Print a quote (“).

\cr Print a backslash (\).

%% Print a percent sign (%).

The following is a set of examples using common text output system tasks. For these examples,

assume two variables have been declared and initialized as follow: A ¼ 3 (integer) and B ¼ 45.6789

(real). Recall that Verilog uses 32-bit codes to represent type integer and real.

Example:

$display("Hello World"); // Will print: Hello World

$display("A ¼ %b", A); // This will print: A ¼ 00000000000000000000000000000

011

$display("A ¼ %o", A); // This will print: A ¼ 00000000003

$display("A ¼ %d", A); // This will print: A ¼ 3

$display("A ¼ %h", A); // This will print: A ¼ 00000003

$display("A ¼ %4.0b", A); // This will print: A ¼ 0011

$display("B ¼ %f", B); // This will print: B ¼ 45.678900

$display("B ¼ %2.0f", B); // This will print: B ¼ 46

$display("B ¼ %2.1f", B); // This will print: B ¼ 45.7

$display("B ¼ %2.2f", B); // This will print: B ¼ 45.68

$display("B ¼ %e", B); // This will print: B ¼ 4.567890e+001

$display("B ¼ %1.0e", B); // This will print: B ¼ 5e+001

$display("B ¼ %1.1e", B); // This will print: B ¼ 4.6e+001

$display("B ¼ %2.2e", B); // This will print: B ¼ 4.57e+001

$write("A is ", A, "\n"); // This will print: A is 3

$writeb("A is ", A, "\n"); // This will print: A is 00000000000000000000000000000

011

$writeo("A is ", A, "\n"); // Will print: A is 00000000003

$writeh("A is ", A, "\n"); // Will print: A is 00000003

5.3.2 File Input/Output

File I/O system tasks allow a Verilog module to create and/or access data files in the same way files

are handled in ANSI C. This is useful when the results of a simulation are large and need to be stored in a

file as opposed to viewing in a waveform or transcript window. This is also useful when complex stimulus

5.3 System Tasks • 81

vectors are to be read from an external file and driven into a device under test. Verilog supports the

following file I/O system task functions:

Task Description

$fopen() Opens a file and returns a unique file descriptor.

$fclose() Closes the file associated with the descriptor.

$fdisplay() Same as $display but statements are directed to the file descriptor.

$fwrite() Same as $write but statements are directed to the file descriptor.

$fstrobe() Same as $strobe but statements are directed to the file descriptor.

$fmonitor() Same as $monitor but statements are directed to the file descriptor.

$readmemb() Read binary data from file and insert into previously defined memory array.

$readmemh() Read hexadecimal data from file and insert into previously defined memory array.

The $fopen() function will either create and open, or open an existing file. Each file that is opened is

given a unique integer called a file descriptor that is used to identify the file in other I/O functions. The

integer must be declared prior to the first use of $fopen. A file name argument is required and provided

within double quotes. By default, the file is opened for writing. If the file name doesn’t exist, it will be

created. If the file name does exist, it will be overwritten. An optional file_type can be provided that gives

specific action for the file opening including opening an existing file and appending to a file. The following

are the supported codes for $fopen().

$fopen types Description

“r” or “rb” Open file for reading.

“w” or “wb” Create for writing.

“a” or “ab” Open for writing and append to the end of file.

“r+” or “r+b” or “rb+” Open for update, reading or writing file.

“w+” or “w+b” or “wb+” Create for update.

“a+” or “a+b” or “ab+” Open or create for update, append to the end of file.

Once a file is open, data can be written to it using the $fdisplay(), $fwrite(), $fstrobe(), and

$fmonitor() tasks. These functions require two arguments. The first argument is the file descriptor and

the second is the information to be written. The information follows the same syntax as the I/O system

tasks. The following example shows how to create a file and write data to it. This example will create a

new file called “Data_out.txt” and write two lines of text to it with the values of variables A and B.

Example:

integer A ¼ 3;

real B ¼ 45.6789;

integer FILE_1;

initial

begin

FILE_1 ¼ $fopen("Data_out.txt", "w");

$fdisplay(FILE_1, "A is %d", A);

$fdisplay(FILE_1, "B is %f", B);

$fclose(FILE_1);

end

When reading data from a file, the functions $readmemb() and $readmemh() can be used. These

tasks require that a storage array be declared that the contents of the file can be read into. These tasks

82 • Chapter 5: Modeling Sequential Functionality

have two arguments, the first being the name of the file and the second being the name of the storage

array to store the file contents into. The following example shows how to read the contents of a file into a

storage array called “memory.” Assume the file contains eight lines, each containing a 3-bit vector. The

vectors start at 000 and increment to 111 and each symbol will be interpreted as binary using the

$readmemb() task. The storage array “memory” is declared to be an 8 � 3 array of type reg. The

$readmemb() task will insert each line of the file into each 3-bit vector location within “memory.” To

illustrate how the data is stored, this example also contains a second procedural block that will print the

contents of the storage element to the transcript.

Example:

reg[2:0] memory[7:0];

initial

begin: Read_Block

$readmemb("Data_in.txt", memory);

end

initial

begin: Print_Block

$display("printing memory %b", memory[0]); // This will print “000”

$display("printing memory %b", memory[1]); // This will print “001”

$display("printing memory %b", memory[2]); // This will print “010”

$display("printing memory %b", memory[3]); // This will print “011”

$display("printing memory %b", memory[4]); // This will print “100”

$display("printing memory %b", memory[5]); // This will print “101”

$display("printing memory %b", memory[6]); // This will print “110”

$display("printing memory %b", memory[7]); // This will print “111”

end

5.3.3 Simulation Control and Monitoring

Verilog also provides a set of simulation control and monitoring tasks. The following are the most

commonly used tasks in this group.

Task Description

$finish() Finishes simulation and exits.

$stop() Halts the simulation and enters an interactive debug mode.

$time() Returns the current simulation time as a 64-bit vector.

$stime() Returns the current simulation time as a 32-bit integer.

$realtime() Returns the current simulation time as a 32-bit real number.

$timeformat() Controls the format used by the %t code in print statements.

The arguments are: (<unit>, <precision>, <suffix>, <min_field_width>)

where:

<unit> 0 ¼ 1 s

�1 ¼ 100 ms

�2 ¼ 10 ms

�3 ¼ 1 ms

�4 ¼ 100 μs

�5 ¼ 10 μs

�6 ¼ 1 μs

�7 ¼ 100 ns

�8 ¼ 10 ns

�9 ¼ 1 ns

�10 ¼ 100 ps

5.3 System Tasks • 83

Task Description

�11 ¼ 10 ps

�12 ¼ 1 ps

�13 ¼ 100 fs

�14 ¼ 10 fs

�15 ¼ 1 fs

<precision> ¼ The number of decimal points to display.

<suffix> ¼ A string to be appended to time to indicate units.

<min_field_width> ¼ The minimum number of characters to display.

The following shows an example of how these tasks can be used.

Example:

initial

begin

$timeformat (-9, 2, "ns", 10);

$display("Stimulus starting at time: %t", $time);

#10 A_TB¼0; B_TB¼0; C_TB¼0;

#10 A_TB¼0; B_TB¼0; C_TB¼1;

#10 A_TB¼0; B_TB¼1; C_TB¼0;

#10 A_TB¼0; B_TB¼1; C_TB¼1;

#10 A_TB¼1; B_TB¼0; C_TB¼0;

#10 A_TB¼1; B_TB¼0; C_TB¼1;

#10 A_TB¼1; B_TB¼1; C_TB¼0;

#10 A_TB¼1; B_TB¼1; C_TB¼1;

$display("Simulation stopping at time: %t", $time);

end

This example will result in the following statements printed to the simulator transcript:

Stimulus starting at time: 0.00ns

Simulation stopping at time: 80.00ns

CONCEPT CHECK

CC5.3 How can Verilog system tasks be included in synthesizable circuit models when they
provide inherently unsynthesizable functionality?

(A) They can’t. System tasks can only be used in test benches.

(B) The “$” symbol tells the CAD tool that the task can be ignored during
synthesis.

(C) The designer must only use system tasks that model sequential logic.

(D) The designer must only use system tasks that model combinational logic.

84 • Chapter 5: Modeling Sequential Functionality

Summary

v To model sequential logic, an HDL needs to
be able to trigger signal assignments based
on an event. This is accomplished in Verilog
using procedural assignment.

v There are two types of procedural blocks in
Verilog, initial and always. An initial block
executes one time. An always block runs
continually.

v A sensitivity list is a way to control when a
Verilog procedural block is triggered. A sen-
sitivity list contains a list of signals. If any of
the signals in the sensitivity list transitions it
will cause the block to trigger. If a sensitivity
list is omitted, the block will trigger immedi-
ately. Sensitivity lists are most commonly
used with always blocks.

v Sensitivity lists and always blocks are used
to model synthesizable logic. Initial blocks
are typically only used in test benches.
Always blocks are also used in test benches.

v There are two types of signal assignments
that can be used within a procedural block,
blocking and non-blocking.

v A blocking assignment is denoted with the ¼

symbol. All blocking assignments are made
immediately within the procedural block.
Blocking assignments are used to model
combinational logic. Combinational logic
models list all input to the circuit in the
sensitivity list.

v A non-blocking assignment is denoted with
the <¼ symbol. All non-blocking assignments

are made when the procedural block ends
and are evaluated in the order they appeared
in the block. Blocking assignments are used
to model sequential logic. Sequential logic
models list only the clock and reset in the
sensitivity list.

v Variables can be defined within a procedural
block as long as the block is named.

v Procedural blocks allow more advanced
modeling constructs in Verilog. These
include if-else statements, case statements,
and loops.

v Verilog provides numerous looping
constructs including forever, while, repeat,
and for. Loops can be terminated using the
disable keyword.

v System Tasks provide additional functionality
to Verilog models. Tasks begin with the $
symbol and are omitted from synthesis. Sys-
tem tasks can be included in synthesizable
logic models.

v There are three groups of system tasks: text
output, file input/output, and simulation con-
trol and monitoring.

v System tasks that perform printing functions
can output strings in addition to variable
values. Verilog provides a mechanism to
print the variable values in a variety of format.

Exercise Problems

Section 5.1: Procedural Assignment

5.1.1 When using a sensitivity list with a procedural
block, what will cause the block to trigger?

5.1.2 When a sensitivity list is not used with a proce-
dural block, when will the block trigger?

5.1.3 When are statements executed when using
blocking assignments?

5.1.4 When are statements executed when using
non-blocking assignments?

5.1.5 When is it possible to exclude statement
groups from a procedural block?

5.1.6 What is the difference between a begin/end
and fork/join group when each contain multiple
statements?

5.1.7 What is the difference between a begin/end
and fork/join group when each contain only a
single statement?

5.1.8 What type of procedural assignment is used
when modeling combinational logic?

5.1.9 What type of procedural assignment is used
when modeling sequential logic?

5.1.10 What signals should be listed in the sensitivity
list when modeling combinational logic?

5.1.11 What signals should be listed in the sensitivity
list when modeling sequential logic?

Section 5.2: Conditional Programming
Constructs

5.2.1 Design a Verilog model to implement the
behavior described by the 4-input truth table
in Fig. 5.1. Use procedural assignment and an
if-else statement. Declare the module to match
the block diagram provided. Use the type wire
for the inputs and type reg for the output. Hint:
Notice that there are far more input codes pro-
ducing F ¼ 0 than producing F ¼ 1. Can you
use this to your advantage to make your if-else
statement simpler?

Exercise Problems • 85

Fig. 5.1
System I Functionality

5.2.2 Design a Verilog model to implement the
behavior described by the 4-input truth table
in Fig. 5.1. Use procedural assignment and a
case statement. Declare the module to match
the block diagram provided. Use the type wire
for the inputs and type reg for the output.

5.2.3 Design a Verilog model to implement the
behavior described by the 4-input minterm list
in Fig. 5.2. Use procedural assignment and an
if-else statement. Declare the module to match
the block diagram provided. Use the type wire
for the inputs and type reg for the output.

Fig. 5.2
System J Functionality

5.2.4 Design a Verilog model to implement the
behavior described by the 4-input minterm list
in Fig. 5.2. Use procedural assignment and a
case statement. Declare the module to match
the block diagram provided. Use the type wire
for the inputs and type reg for the output.

5.2.5 Design a Verilog model to implement the
behavior described by the 4-input maxterm
list in Fig. 5.3. Use procedural assignment
and an if-then statement. Declare the module
to match the block diagram provided. Use the
type wire for the inputs and type reg for the
output.

Fig. 5.3
System K Functionality

5.2.6 Design a Verilog model to implement the
behavior described by the 4-input maxterm list
in Fig. 5.3. Use procedural assignment and a
case statement. Declare the module to match
the block diagram provided. Use the type wire
for the inputs and type reg for the output.

5.2.7 Design a Verilog model to implement the
behavior described by the 4-input truth table
in Fig. 5.4. Use procedural assignment and an
if-else statement. Declare the module to match
the block diagram provided. Use the type wire
for the inputs and type reg for the output. Hint:
Notice that there are far more input codes pro-
ducing F ¼ 1 than producing F ¼ 0. Can you
use this to your advantage to make your if-else
statement simpler?

Fig. 5.4
System L Functionality

5.2.8 Design a Verilog model to implement the
behavior described by the 4-input truth table
in Fig. 5.4. Use procedural assignment and a
case statement. Declare the module to match
the block diagram provided. Use the type wire
for the inputs and type reg for the output.

5.2.9 Figure 5.5 shows the topology of a 4-bit shift
register when implemented structurally using
D-Flip-Flops. Design a Verilog model to

86 • Chapter 5: Modeling Sequential Functionality

describe this functionality using a single proce-
dural block and non-blocking assignments
instead of instantiating D-Flip-Flops. The figure
also provides the block diagram for the module
port definition. Use the type wire for the inputs
and type reg for the outputs.

Fig. 5.5
4-Bit Shift Register Block Diagram

5.2.10 Design a Verilog model for a counter using a
for loop with an output type of integer. Fig-
ure 5.6 shows the block diagram for the mod-
ule definition. The counter should increment
from 0 to 31 and then start over. Use delay in
your loop to update the counter value every
10 ns. Consider using the loop variable of the
for loop to generate your counter value.

Fig. 5.6
Integer Counter Block Diagram

5.2.11 Design a Verilog model for a counter using a
for loop with an output type of reg[4:0].
Figure 5.7 shows the block diagram for the
module definition. The counter should incre-
ment from 000002 to 111112 and then start
over. Use delay in your loop to update the
counter value every 10 ns. Consider using the
loop variable of the for loop to generate an
integer version of your count value, and then
assign it to the output variable of type reg[4:0].

Fig. 5.7
5-Bit Binary Counter Block Diagram

Section 5.3: System Tasks

5.3.1 Are system tasks synthesizable? Why or why
not?

5.3.2 What is the difference between the tasks $dis-
play() and $write()?

5.3.3 What is the difference between the tasks $dis-
play() and $monitor()?

5.3.4 What is the data type returned by the task
$fopen()?

Exercise Problems • 87

Chapter 6: Test Benches
One of the essential components of the modern digital design flow is verifying functionality through

simulation. This functional verification is accomplished using a test bench. A test bench is a Verilog

model that instantiates the system to be tested as a subsystem, generates the input patterns to drive into

the subsystem, and observes the outputs. Test benches are only used for simulation, so they can use

abstract modeling techniques that are unsynthesizable to generate the stimulus patterns. Verilog

conditional programming constructions and system tasks can also be used to report on the status of a

test and also automatically check that the outputs are correct. This chapter provides the details of

Verilog’s built-in capabilities that allow test benches to be created and some examples of automated

stimulus generation.

Learning Outcomes—After completing this chapter, you will be able to:

6.1 Design a Verilog test bench that manually creates each stimulus pattern using a series of
signal assignments within a procedural block.

6.2 Design a Verilog test bench that uses for loops to automatically generate an exhaustive set
of stimulus patterns.

6.3 Design a Verilog test bench that automatically checks the outputs of the system being
tested using report and assert statements.

6.4 Design a Verilog test bench that uses external I/O as part of the testing procedures
including reading stimulus patterns from, and writing the results to, external files.

6.1 Test Bench Overview

A test bench is a file in Verilog that has no inputs or outputs. The test bench instantiates the system

to be tested as a lower-level module. The system being tested is often called a device under test (DUT) or

unit under test (UUT).

6.1.1 Generating Manual Stimulus

When creating stimulus for combinational logic circuits, it is common to use a procedural block to

generate all possible input patterns to drive the DUTand especially any transitions that may cause timing

errors. Example 6.1 shows how to create a simple test bench to verify the operation of a DUT called

SystemX. The test bench does not have any inputs or outputs; thus, there are no ports declared in the

module. SystemX is then instantiated (DUT) in the test bench. Internal signals of type reg are declared to

connect to the DUT inputs (A_TB, B_TB, C_TB) and an internal signal of type wire is declared to connect

to the DUToutput (F_TB). A procedural block is then used to generate the inputs of SystemX. Within the

procedural block, delayed assignments are used to control the timing of the input patterns. In this

example, each possible input code is generated within an initial block. The output (F_TB) is observed

using a simulation tool in either the form of a waveform or a table listing.

Springer Nature Switzerland AG 2019
B. J. LaMeres, Quick Start Guide to Verilog, https://doi.org/10.1007/978-3-030-10552-5_6

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10552-5_6&domain=pdf

Example 6.1
Test bench for a combinational logic circuit with manual stimulus generation

Multiple procedural blocks can be used within a Verilog test bench to provide parallel stimulus

generation. Using both initial and always blocks allows the test bench to drive both repetitive and

aperiodic signals. Initial and always blocks can also be used to drive the same signal in order to provide

a starting value and a repetitive pattern. Example 6.2 shows a test bench for a rising edge triggered

D-flip-flop with an asynchronous, active LOW reset in which multiple procedural blocks are used to

generate the stimulus patterns for the DUT.

90 • Chapter 6: Test Benches

Example 6.2
Test bench for a sequential logic circuit

6.1.2 Printing Results to the Simulator Transcript

In the past test bench examples, the input and output values are observed using either the

waveform or listing tool within the simulator tool. It is also useful to print the values of the simulation to

a transcript window to track the simulation as each statement is processed. Messages can be printed

that show the status of the simulation in addition to the inputs and outputs of the DUT using the text

output system tasks. Example 6.3 shows a test bench that prints the inputs and output to the transcript of

the simulation tool. Note that the test bench must wait some amount of delay before evaluating the

output, even if the DUT does not contain any delay.

6.1 Test Bench Overview • 91

Example 6.3
Printing test bench results to the transcript

92 • Chapter 6: Test Benches

CONCEPT CHECK

CC6.1 How can the output of a DUT be verified when it is connected to a signal that does not go
anywhere?

(A) It can’t. The output must be routed to an output port on the test bench.

(B) The values of any dangling signal are automatically written to a text file.

(C) It is viewed in the logic simulator as either a waveform or text listing.

(D) It can’t. A signal that does not go anywhere will cause an error during
simulation.

6.2 Using Loops to Generate Stimulus

When creating stimulus that follow regular patterns such as counting, loops can be an effective way

to produce the input vectors. A for loop is especially useful for generating exhaustive stimulus patterns

for combinational logic circuits. An integer loop variable can increment within the for loop and then be

assigned to the DUT inputs as type reg. Recall that in Verilog, when an integer is assigned to a variable of

type reg, it is truncated to match the size of the reg. This allows a binary count to be created for an input

stimulus pattern by using an integer loop variable that increments within a for loop. Example 6.4 shows

how the stimulus for a combinational logic circuit can be produced with a for loop.

6.2 Using Loops to Generate Stimulus • 93

Example 6.4
Using a loop to generate stimulus in a test bench

CONCEPT CHECK

CC6.2 If you used two nested for loops to generate an exhaustive set of patterns for the inputs
of an 8-bit adder, how many patterns would be generated? There is no carry-in bit.

(A) 16

(B) 256

(C) 512

(D) 65,536

94 • Chapter 6: Test Benches

6.3 Automatic Result Checking

Test benches can also perform automated checking of the results using the conditional program-

ming constructs described earlier in this book. Example 6.5 shows an example of a test bench that uses

if-else statements to check the output of the DUTand print a PASS/FAIL message to the transcript.

Example 6.5
Test bench with automatic output checking

6.3 Automatic Result Checking • 95

CONCEPT CHECK

CC6.3 Will the test bench approach of checking the results and then printing PASS/FAIL to the
transcript window stop the simulation?

(A) Yes. As soon as “FAIL” is printed, the simulation will halt.

(B) No. The printing of PASS/FAIL is just simple text and doesn’t influence the
simulation.

6.4 Using External Files in Test Benches

There are often cases where the results of a test bench need to be written to an external file, either

because they are too verbose for visual inspection or because there needs to be a stored record of the

system’s validation. Verilog allows writing to external files via the file I/O system tasks (i.e., $fdisplay(),

$fwrite(), $fstrong(), and $fmonitor()). Example 6.6 shows a test bench in which the input vectors and the

output of the DUT are written to an external file using the $fdisplay() system task.

96 • Chapter 6: Test Benches

Example 6.6
Printing test bench results to an external file

It is often the case that the input vectors are either too large to enter manually or were created by a

separate program. In either case, a useful technique in test benches is to read input vectors from an

external file. Example 6.7 shows an example where the input stimulus vectors for a DUTare read from an

external file using the $readmemb() system task.

6.4 Using External Files in Test Benches • 97

Example 6.7
Reading test bench stimulus vectors from an external file

98 • Chapter 6: Test Benches

CONCEPT CHECK

CC6.4 What is an advantage of using external files as the input/output in test benches compared
to the built-in stimulus generation and reporting functionality within a Verilog module?

(A) External stimulus files allow more complex input stimulus vectors to be used.

(B) External output files allow more sophisticated post-processing of the results.

(C) External files allow much larger datasets to be used and analyzed.

(D) All of the above.

Summary

v A test bench is a way to simulate a device
under test (DUT) by instantiating it as a sub-
system, driving in stimulus, and observing
the outputs.

v Test benches do not have inputs or outputs
and are unsynthesizable.

v Test benches for combinational logic typically
exercise the DUT under an exhaustive set of
stimulus vectors. These include all possible
logic inputs in addition to critical transitions
that could cause timing errors.

v Text I/O system tasks provide a way to print
the results of a test bench to the simulation
tool transcript.

v File I/O system tasks provide a way to print
the results of a test bench to an external file

and also to read in stimulus vectors from an
external file.

v Conditional programming constructs can be
used within a test bench to perform automatic
checking of the outputs of a DUTwithin a test
bench.

v Loops can be used in test benches to auto-
matically generate stimulus patterns. A for
loop is a convenient technique to produce a
counting pattern.

v Assignment from an integer to a reg in a for
loop is allowed. The binary value of the inte-
ger is truncated to fit the size of the reg
vector.

Exercise Problems

Section 6.1: Test Bench Overview

6.1.1 What is the purpose of a test bench?

6.1.2 Does a test bench have input and output ports?

6.1.3 Can a test bench be simulated?

6.1.4 Can a test bench be synthesized?

6.1.5 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.1. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a pro-
cedural block and individual signal
assignments for each pattern. Your test bench
should change the input pattern every 10 ns.

Fig. 6.1
System I Functionality

Exercise Problems • 99

6.1.6 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.2. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a pro-
cedural block and individual signal
assignments for each pattern. Your test bench
should change the input pattern every 10 ns.

Fig. 6.2
System J Functionality

6.1.7 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.3. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a pro-
cedural block and individual signal
assignments for each pattern. Your test bench
should change the input pattern every 10 ns.

Fig. 6.3
System K Functionality

6.1.8 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.4. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a pro-
cedural block and individual signal
assignments for each pattern. Your test bench
should change the input pattern every 10 ns.

Fig. 6.4
System L Functionality

Section 6.2: Generating Stimulus Vectors

Using for Loops

6.2.1 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.1. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a sin-
gle for loop within a procedural block to gener-
ate all of the stimulus patterns automatically.
Your test bench should change the input pat-
tern every 10 ns.

6.2.2 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.2. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a sin-
gle for loop within a procedural block to gener-
ate all of the stimulus patterns automatically.
Your test bench should change the input pat-
tern every 10 ns.

6.2.3 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.3. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a sin-
gle for loop within a procedural block to gener-
ate all of the stimulus patterns automatically.
Your test bench should change the input pat-
tern every 10 ns.

6.2.4 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.4. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should use a sin-
gle for loop within a procedural block to gener-
ate all of the stimulus patterns automatically.
Your test bench should change the input pat-
tern every 10 ns.

6.2.5 Design a Verilog model for an 8-bit Ripple
Carry Adder (RCA) using a structural design
approach. This involves creating a half adder
(half_adder.v), full adder (full_adder.v), and
then finally a top-level adder (rca.v) by
instantiating eight full adder subsystems.
Model the ripple delay by inserting 1 ns of
gate delay for the XOR, AND, and OR
operators using a delayed signal assignment.
The general topology and module definition for
the design are shown in Example 4.8. Design a
Verilog test bench to exhaustively verify this
design under all input conditions. Your test
bench should use two nested for loops within
a procedural block to generate all of the stimu-
lus patterns automatically. Your test bench
should change the input pattern every 30 ns
in order to give sufficient time for the signals to
ripple through the adder.

100 • Chapter 6: Test Benches

Section 6.3: Automated Result Checking

6.3.1 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.1. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should change
the input pattern every 10 ns. Your test bench
should include automatic result checking for
each input pattern and then print either
“PASS” or “FAIL” depending on the output of
the DUT.

6.3.2 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.2. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should change
the input pattern every 10 ns. Your test bench
should include automatic result checking for
each input pattern and then print either
“PASS” or “FAIL” depending on the output of
the DUT.

6.3.3 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.3. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should change
the input pattern every 10 ns. Your test bench
should include automatic result checking for
each input pattern and then print either
“PASS” or “FAIL” depending on the output of
the DUT.

6.3.4 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.4. Your
test bench should drive in each input code for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should change
the input pattern every 10 ns. Your test bench
should include automatic result checking for
each input pattern and then print either
“PASS” or “FAIL” depending on the output of
the DUT.

Section 6.4: Using External Files in Test

Benches

6.4.1 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.1. Your
test bench read in the input patterns from an
external file called “input.txt.” This file should
contain an exhaustive list of input patterns for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should read in a
new input pattern every 10 ns. Your test bench
should write the input pattern and the
corresponding output of the DUT to an external
file called “output.txt.”

6.4.2 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.2. Your
test bench read in the input patterns from an
external file called “input.txt.” This file should
contain an exhaustive list of input patterns for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should read in a
new input pattern every 10 ns. Your test bench
should write the input pattern and the
corresponding output of the DUT to an external
file called “output.txt.”

6.4.3 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.3. Your
test bench read in the input patterns from an
external file called “input.txt.” This file should
contain an exhaustive list of input patterns for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should read in a
new input pattern every 10 ns. Your test bench
should write the input pattern and the
corresponding output of the DUT to an external
file called “output.txt.”

6.4.4 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 6.4. Your
test bench read in the input patterns from an
external file called “input.txt.” This file should
contain an exhaustive list of input patterns for
the vector ABCD in the order they would
appear in a truth table (i.e., “0000,” “0001,”
“0010,” . . .). Your test bench should read in a
new input pattern every 10 ns. Your test bench
should write the input pattern and the
corresponding output of the DUT to an external
file called “output.txt.”

Exercise Problems • 101

Chapter 7: Modeling Sequential

Storage and Registers
In this chapter, we will look at modeling sequential storage devices. We begin by looking at modeling

scalar storage devices such as D-latches and D-flip-flops and then move into multiple-bit storage models

known as registers.

Learning Outcomes—After completing this chapter, you will be able to:

7.1 Design a Verilog model for a single-bit sequential logic storage device.
7.2 Design a Verilog model for a register.

7.1 Modeling Scalar Storage Devices

7.1.1 D-Latch

Let’s begin with the model of a simple D-Latch. Since the outputs of this sequential storage device

are not updated continuously, its behavior is modeled using a procedural assignment. Since we want to

create a synthesizable model of sequential logic, non-blocking assignments are used. In the sensitivity

list, we need to include the C input since it controls when the D-Latch is in track or store mode. We also

need to include the D input in the sensitivity list because during the track mode, the output Q will be

assigned the value of D, so any change on D needs to trigger the procedural assignments. The use of an

if-else statement is used to model the behavior during track mode (C ¼ 1). Since the behavior is not

explicitly stated for when C ¼ 0, the outputs will hold their last value, which allows us to simply omit the

else portion of the if statement to complete the model. Example 7.1 shows the behavioral model for a

D-Latch.

Example 7.1
Behavioral model of a D-Latch in Verilog

7.1.2 D-Flip-Flop

The rising edge behavior of a D-Flip-Flop is modeled using a (posedge Clock) Boolean condition in

the sensitivity list of a procedural block. Example 7.2 shows the behavioral model for a rising edge

triggered D-Flip-Flop with both Q and Qn outputs.

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to Verilog, https://doi.org/10.1007/978-3-030-10552-5_7

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10552-5_7&domain=pdf

Example 7.2
Behavioral model of a D-Flip-Flop in Verilog

7.1.3 D-Flip-Flop with Asynchronous Reset

D-Flip-Flops typically have a reset line to initialize their outputs to known states (e.g., Q ¼ 0,

Qn ¼ 1). Resets are asynchronous, meaning whenever they are asserted, assignments to the outputs

takes place immediately. If a reset was synchronous, the outputs would only update on the next rising

edge of the clock. This behavior is undesirable because if there is a system failure, there is no guarantee

that a clock edge will ever occur. Thus, the reset may never take place. Asynchronous resets are more

desirable not only to put the D-Flip-Flops into a known state at startup, but also to recover from a system

failure that may have impacted the clock signal. In order to model this asynchronous behavior, the reset

signal is included in the sensitivity list. This allows both clock and the reset transitions to trigger the

procedural block. The edge sensitivity of the reset can be specified using posedge (active HIGH) or

negedge (active LOW). Within the block an if-else statement is used to determine whether the reset has

been asserted or a rising edge of the clock has occurred. The if-else statement first checks whether the

reset input has been asserted since it has the highest priority. If it has, it makes the appropriate

assignments to the outputs (Q ¼ 0, Qn ¼ 1). If the reset has not been asserted, the else clause is

executed, which corresponds to a rising edge of clock (Q <¼ D, Qn <¼ ~D). No other assignments are

listed in the block; thus, the outputs are only updated on a transition of the reset or clock. At all other

times the outputs remain at their current value, thus modeling the store behavior of the D-Flip-Flop.

Example 7.3 shows the behavioral model for a rising edge triggered D-Flip-Flop with an asynchronous,

active LOW reset.

104 • Chapter 7: Modeling Sequential Storage and Registers

Example 7.3
Behavioral model of a D-Flip-Flop with asynchronous reset in Verilog

7.1.4 D-Flip-Flop with Asynchronous Reset and Preset

A D-Flip-Flop with both an asynchronous reset and asynchronous preset is handled in a similar

manner as the D-Flip-Flop in the prior section. The preset input is included in the sensitivity list in order to

trigger the block whenever a transition occurs on either the clock, reset, or preset inputs. The edge

sensitivity keywords are used to dictate whether the preset is active HIGH or LOW. Nested if-else

statements are used to first check whether a reset has occurred, then whether a preset has occurred,

and finally whether a rising edge of the clock has occurred. Example 7.4 shows the model for a rising

edge triggered D-Flip-Flop with asynchronous, active LOW reset and preset.

7.1 Modeling Scalar Storage Devices • 105

Example 7.4
Behavioral model of a D-Flip-Flop with asynchronous reset and preset in Verilog

7.1.5 D-Flip-Flop with Synchronous Enable

An enable input is also a common feature of modern D-Flip-Flops. Enable inputs are synchronous,

meaning that when they are asserted, action is only taken on the rising edge of the clock. This means

that the enable input is not included in the sensitivity list of the always block. Since enable is only

considered when there is a rising edge of the clock, the logic for the enable is handled in a nested if-else

statement that is included in the section that models the behavior for when a rising edge of clock is

detected. Example 7.5 shows the model for a D-Flip-Flop with a synchronous enable (EN) input. When

EN ¼ 1, the D-Flip-Flop is enabled, and assignments are made to the outputs only on the rising edge of

the clock. When EN¼ 0, the D-Flip-Flop is disabled and assignments to the outputs are not made. When

disabled, the D-Flip-Flop effectively ignores rising edges on the clock and the outputs remain at their last

values.

106 • Chapter 7: Modeling Sequential Storage and Registers

Example 7.5
Behavioral model of a D-Flip-Flop with synchronous enable in Verilog

CONCEPT CHECK

CC7.1 Why is the D input not listed in the sensitivity list of a D-flip-flop?

(A) To simplify the behavioral model.

(B) To avoid a setup time violation if D transitions too closely to the clock.

(C) Because a rising edge of clock is needed to make the assignment.

(D) Because the outputs of the D-flip-flop are not updated when D changes.

7.2 Modeling Registers

7.2.1 Registers with Enables

The term register describes a circuit that operates in a similar manner as a D-Flip-Flop with the

exception that the input and output data are vectors. This circuit is implemented with a set of D-Flip-Flops

all connected to the same clock, reset, and enable inputs. A register is a higher level of abstraction that

allows vector data to be stored without getting into the details of the lower-level implementation of the D-

Flip-Flop components. Register Transfer Level (RTL) modeling refers to a level of design abstraction in

which vector data is moved and operated on in a synchronous manner. This design methodology is

7.2 Modeling Registers • 107

widely used in data path modeling and computer system design. Example 7.6 shows an RTL model of an

8-bit, synchronous register. This circuit has an active LOW, asynchronous reset that will cause the 8-bit

output Reg_Out to go to 0 when it is asserted. When the reset is not asserted, the output will be updated

with the 8-bit input Reg_In if the system is enabled (EN¼ 1) and there is a rising edge on the clock. If the

register is disabled (EN ¼ 0), the input clock is ignored. At all other times, the output holds its last value.

Example 7.6
RTL model of an 8-bit register in Verilog

7.2.2 Shift Registers

A shift register is a circuit which consists of multiple registers connected in series. Data is shifted

from one register to another on the rising edge of the clock. This type of circuit is often used in serial-to-

parallel data converters. Example 7.7 shows an RTL model for a 4-stage, 8-bit shift register. In the

simulation waveform, the data is shown in hexadecimal format.

108 • Chapter 7: Modeling Sequential Storage and Registers

Example 7.7
RTL model of a 4-stage, 8-bit shift register in Verilog

7.2.3 Registers as Agents on a Data Bus

One of the powerful topologies that registers can easily model is a multi-drop bus. In this topology,

multiple registers are connected to a data bus as receivers, or agents. Each agent has an enable line that

controls when it latches information from the data bus into its storage elements. This topology is

synchronous, meaning that each agent and the driver of the data bus is connected to the same clock

signal. Each agent has a dedicated, synchronous enable line that is provided by a system controller

elsewhere in the design. Example 7.8 shows this multi-drop bus topology. In this example system, three

registers (A, B, and C) are connected to a data bus as receivers. Each register is connected to the same

clock and reset signals. Each register has its own dedicated enable line (A_EN, B_EN, and C_EN).

7.2 Modeling Registers • 109

Example 7.8
Registers as agents on a data bus—system topology

This topology can be modeled using RTL abstraction by treating each register as a separate

procedural block. Example 7.9 shows how to describe this topology with an RTL model in Verilog. Notice

that the three-procedural blocks modeling the A, B, and C registers are nearly identical to each other

except for the signal names they use.

Example 7.9
Registers as agents on a data bus—RTL model in Verilog

Example 7.10 shows the resulting simulation waveform for this system. Each register is updated

with the value on the data bus whenever its dedicated enable line is asserted.

110 • Chapter 7: Modeling Sequential Storage and Registers

Example 7.10
Registers as agents on a data bus—simulation waveform

CONCEPT CHECK

CC7.2 Does RTL modeling synthesize as combinational logic, sequential logic, or both? Why?

(A) Combinational logic. Since only one process is used for each register, it will be
synthesized using basic gates.

(B) Sequential logic. Since the sensitivity list contains clock and reset, it will
synthesize into only D-flip-flops.

(C) Both. The model has a sensitivity list containing clock and reset and uses an
if-else statement indicative of a D-flip-flop. This will synthesize a D-flip-flop to
hold the value for each bit in the register. In addition, the ability to manipulate
the inputs into the register (using either logical operators, arithmetic
operators, or choosing different signals to latch) will synthesize into combi-
national logic in front of the D input to each D-flip-flop.

Summary

v A synchronous system is modeled with a
procedural block and a sensitivity list. The
clock and reset signals are always listed by
themselves in the sensitivity list. Within the
block is an if-else statement. The if clause of
the statement handles the asynchronous
reset condition while the else clause handles
the synchronous signal assignments.

v Edge sensitivity is modeled within a proce-
dural block using the (posedge Clock or
negedge reset) syntax in the sensitivity lists.

v Most D-flip-flops and registers contain a syn-
chronous enable line. This is modeled using

a nested if-else statement within the main
procedural block’s if-else statement. The
nested if-else goes beneath the clause for
the synchronous signal assignments.

v Registers are modeled in Verilog in a similar
manner to a D-flip-flop with a synchronous
enable. The only difference is that the inputs
and outputs are vectors.

v Register Transfer Level, or RTL, modeling
provides a higher level of abstraction for
moving and manipulating vectors of data in
a synchronous manner.

Summary • 111

Exercise Problems

Section 7.1: Modeling Scalar Storage

Devices

7.1.1 How does a Verilog model for a D-flip-flop han-
dle treating reset as the highest priority input?

7.1.2 For a Verilog model of a D-flip-flop with a syn-
chronous enable (EN), why isn’t EN listed in
the sensitivity list?

7.1.3 For a Verilog model of a D-flip-flop with a syn-
chronous enable (EN), what is the impact of
listing EN in the sensitivity list?

7.1.4 For a Verilog model of a D-flip-flop with a syn-
chronous enable (EN), why is the behavior of
the enable modeled using a nested if-else
statement under the else clause handling the
logic for the clock edge input?

Section 7.2: Modeling Registers

7.2.1 In register transfer level modeling, how does
the width of the register relate to the number of
D-flip-flops that will be synthesized?

7.2.2 In register transfer level modeling, how is the
synchronous data movement managed if all
registers are using the same clock?

7.2.3 Design a Verilog RTL model of a 32-bit, syn-
chronous register. The block diagram for the
port definition is shown in Fig. 7.1. The register
has a synchronous enable. The register should
be modeled using a single procedural block.

Fig. 7.1
32-Bit Register Block Diagram

7.2.4 Design a Verilog RTL model of an 8-stage,
16-bit shift register. The block diagram for the
port definition is shown in Fig. 7.2. Each stage
of the shift register will be provided as an out-
put of the system (A, B, C, D, E, F, G, and H).
The shift register should be modeled using a
single procedural block.

Fig. 7.2
16-Bit Shift Register Block Diagram

7.2.5 Design a Verilog RTL model of the multi-drop
bus topology in Fig. 7.3. Each of the 16-bit
registers (RegA, RegB, RegC, and RegD) will
latch the contents of the 16-bit data bus if their
enable line is asserted. Each register should be
modeled using an individual procedural block.

Fig. 7.3
Agents on a Bus Block Diagram

112 • Chapter 7: Modeling Sequential Storage and Registers

Chapter 8: Modeling Finite State

Machines
In this chapter, we will look at modeling finite state machines (FSMs). An FSM is one of the most

powerful circuits in a digital system because it can make decisions about the next output based on both

the current and past inputs. Finite state machines are modeled using the constructs already covered in

this book. In this chapter, we will look at the widely accepted three-process model for designing a FSM.

Learning Outcomes—After completing this chapter, you will be able to:

8.1 Describe the three-process modeling approach for FSM design.
8.2 Design a Verilog model for a FSM from a state diagram.

8.1 The FSM Design Process and a Push-Button Window

Controller Example

The most common modeling practice for FSMs is to declare two signals of type reg that are called

current_state and next_state. Then a parameter is declared for each descriptive state name in the state

diagram. A parameter also requires a value, so the state encoding can be accomplished during the

parameter declaration. Once the signals and parameters are created, all of the procedural assignments

in the state machine model can use the descriptive state names in their signal assignments. Within the

Verilog state machine model, three separate procedural blocks are used to describe each of the

functional blocks, state memory, next state logic, and output logic. In order to examine how to model a

finite state machine using this approach, let’s use the push-button window controller example from

Chap. 7. Example 8.1 gives the overview of the design objectives for this example and the state diagram

describing the behavior to be modeled in Verilog.

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to Verilog, https://doi.org/10.1007/978-3-030-10552-5_8

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10552-5_8&domain=pdf

Example 8.1
Push-button window controller in Verilog—design description

Let’s begin by defining the ports of the module. The system has an input called Press and two

outputs called Open_CW and Close_CCW. The system also has clock and reset inputs. We will design

the system to update on the rising edge of the clock and have an asynchronous, active LOW, reset.

Example 8.2 shows the port definitions for this example. Note that outputs are declared as type reg while

inputs are declared as type wire.

Example 8.2
Push-button window controller in Verilog—port definition

8.1.1 Modeling the States

Now we begin designing the finite state machine in Verilog using behavioral modeling constructs.

The first step is to create two signals that will be used for the state variables. In this text we will always

name these signals current_state and next_state. The signal current_state will represent the outputs of

the D-flip-flops forming the state memory and will hold the current state code. The signal next_state will

represent the D inputs to the D-flip-flops forming the state memory and will receive the value from the

next state logic circuitry. Since the FSM will be modeled using procedural assignment, both of these

114 • Chapter 8: Modeling Finite State Machines

signals will be declared of type reg. The width of the reg vector depends on the number of states in the

machine and the encoding technique chosen. The next step is to declare parameters for each of the

descriptive state names in the state diagram. The state encoding must be decided at this point. The

following syntax shows how to declare the current_state and next_state signals and the parameters.

Note that since this machine only has two states, the width of these signals is only 1-bit.

reg current_state, next_state;

parameter w_closed ¼ 1’b0,

w_open ¼ 1’b1;

8.1.2 The State Memory Block

Now that we have variables and parameters for the states of the FSM, we can create the model for

the state memory. State memory is modeled using its own procedural block. This block models the

behavior of the D-Flip-Flops in the FSM that are holding the current state on their Q outputs. Each time

there is a rising edge of the clock, the current state is updated with the next state value present on the D

inputs of the D-Flip-Flops. This block must also model the reset condition. For this example, we will have

the state machine go to the w_closed state when Reset is asserted. At all other times, the block will

simply update current_state with next_state on every rising edge of the clock. The block model is very

similar to the model of a D-Flip-Flop. This is as expected since this block will synthesize into one or more

D-Flip-Flops to hold the current state. The sensitivity list contains only Clock and Reset and assignments

are only made to the signal current_state. The following syntax shows how to model the state memory of

this FSM example.

always @ (posedge Clock or negedge Reset)

begin: STATE_MEMORY

if (!Reset)

current_state <¼ w_closed;

else

current_state <¼ next_state;

end

8.1.3 The Next State Logic Block

Now we model the next state logic of the FSM using a second procedural block. Recall that the next

state logic is combinational logic; thus, we need to include all of the input signals that the circuit considers

in the next state calculation in the sensitivity list. The current_state signal will always be included in the

sensitivity list of the next state logic block in addition to any inputs to the system. For this example, the

system has one other input called Press. This block makes assignments to the next_state signal. It is

common to use a case statement to separate out the assignments that occur at each state. At each state

within the case statement, an if-else statement is used to model the assignments for different input

conditions on Press. The following syntax shows how to model the next state logic of this FSM example.

Notice that we include a default clause in the case statement to ensure that the state machine has a path

back to the reset state in the case of an unexpected fault.

always @ (current_state or Press)

begin: NEXT_STATE_LOGIC

case (current_state)

w_closed : if (Press¼¼1’b1) next_state¼ w_open; else next_state¼ w_closed;

w_open : if (Press ¼¼ 1’b1) next_state ¼ w_closed; else next_state ¼ w_open;

default : next_state ¼ w_closed;

endcase

end

8.1 The FSM Design Process and a Push-Button Window Controller Example • 115

8.1.4 The Output Logic Block

Now we model the output logic of the FSM using a third procedural block. Recall that output logic is

combinational logic; thus, we need to include all of the input signals that this circuit considers in the

output assignments. The current_state will always be included in the sensitivity list. If the FSM is a Mealy

machine, then the system inputs will also be included in the sensitivity list. If the machine is a Moore

machine, then only the current_state will be present in the sensitivity list. For this example, the FSM is a

Mealy machine, so the input Press needs to be included in the sensitivity list. Note that this block only

makes assignments to the outputs of the machine (Open_CW and Close_CCW). The following syntax

shows how to model the output logic of this FSM example. Again, we include a default clause to ensure

that the state machine has explicit output behavior in the case of a fault.

always @ (current_state or Press)

begin: OUTPUT_LOGIC

case (current_state)

w_closed : if (Press ¼¼ 1’b1)

begin

Open_CW ¼ 1’b1;

Close_CCW ¼ 1’b0;

end

else

begin

Open_CW ¼ 1’b0;

Close_CCW ¼ 1’b0;

end

w_open : if (Press ¼¼ 1’b1)

begin

Open_CW ¼ 1’b0;

Close_CCW ¼ 1’b1;

end

else

begin

Open_CW ¼ 1’b0;

Close_CCW ¼ 1’b0;

end

default : begin

Open_CW ¼ 1’b0;

Close_CCW ¼ 1’b0;

end

endcase

end

Putting this all together yields a behavioral model for the FSM that can be simulated and

synthesized. Example 8.3 shows the entire model for this example.

116 • Chapter 8: Modeling Finite State Machines

Example 8.3
Push-button window controller in Verilog—full model

Example 8.4 shows the simulation waveform for this state machine. This functional simulation was

performed using ModelSim-Altera Starter Edition 10.1d. A macro file was used to display the current and

next state variables using their parameter names instead of their state codes. This allows the functional-

ity of the FSM to be more easily observed. This approach will be used for the rest of the FSM examples in

this book.

8.1 The FSM Design Process and a Push-Button Window Controller Example • 117

Example 8.4
Push-button window controller in Verilog—simulation waveform

8.1.5 Changing the State Encoding Approach

In the prior example we had two states that were encoded as: w_closed ¼ 1’b0; w_open_1’b1. This

encoding technique is considered binary and takes 1-bit; however, a one-hot could be adopted that

would require 2-bits. The way that state variables and state codes are assigned in Verilog makes is

straightforward to change the state codes. The only consideration that must be made is expanding the

size of the current_state and next_state variables to accommodate the new state codes. The following

example shows how the state encoding would look if a one-hot approach was used (w_closed ¼ 2’b01;

w_open_2’b10). Note that the state variables now must be two bits wide. This means the state variables

need to be declared as type reg[1:0]. Example 8.5 shows the resulting simulation waveforms. The

simulation waveform shows the value of the state codes instead of the state names.

reg [1:0] current_state, next_state;

parameter w_closed ¼ 2’b01,

w_open ¼ 2’b10;

Example 8.5
Push-button window controller in Verilog—changing state codes

118 • Chapter 8: Modeling Finite State Machines

CONCEPT CHECK

CC8.1 Why is it always a good design approach to model a generic finite state machine using
three processes?

(A) For readability.

(B) So that it is easy to identify whether the machine is a Mealy or Moore.

(C) So that the state memory process can be reused in other FSMs.

(D) Because each of the three subsystems of a FSM has unique inputs and
outputs that should be handled using dedicated processes.

8.2 FSM Design Examples

This section presents a set of example finite state machine designs using the behavioral modeling

constructs of Verilog.

8.2.1 Serial Bit Sequence Detector in Verilog

Let’s look at the design of the serial bit sequence detector finite state machine using the behavioral

modeling constructs of Verilog. Example 8.6 shows the design description and port definition for this

state machine.

Example 8.6
Serial bit sequence detector in Verilog—design description and port definition

8.2 FSM Design Examples • 119

Example 8.7 shows the full model for the serial bit sequence detector. Notice that the states are

encoded in binary, which requires three bits for the variables current_state and next_state.

Example 8.7
Serial bit sequence detector in Verilog—full model

120 • Chapter 8: Modeling Finite State Machines

Example 8.8 shows the functional simulation waveform for this design.

Example 8.8
Serial bit sequence detector in Verilog—simulation waveform

8.2.2 Vending Machine Controller in Verilog

Let’s now look at the design of the vending machine controller using the behavioral modeling

constructs of Verilog. Example 8.9 shows the design description and port definition.

Example 8.9
Vending machine controller in Verilog—design description and port definition

Example 8.10 shows the full model for the vending machine controller. In this model, the descriptive

state names Wait, 25¢, and 50¢ cannot be used directly. This is because Verilog user-defined names

cannot begin with a number. Instead, the letter “s” is placed in front of the state names in order to make

them legal Verilog names (i.e., sWait, s25, s50).

8.2 FSM Design Examples • 121

Example 8.10
Vending machine controller in Verilog—full model

122 • Chapter 8: Modeling Finite State Machines

Example 8.11 shows the resulting simulation waveform for this design.

Example 8.11
Vending machine controller in Verilog—simulation waveform

8.2.3 2-Bit, Binary Up/Down Counter in Verilog

Let’s now look at how a simple counter can be implemented using the three-block behavioral

modeling approach in Verilog. Example 8.12 shows the design description and port definition for the

2-bit, binary up/down counter FSM from Chap. 7.

Example 8.12
2-Bit up/down counter in Verilog—design description and port definition

Example 8.13 shows the full model for the 2-bit up/down counter using the three-block modeling

approach. Since a counter’s outputs only depend on the current state, counters are Moore machines.

This simplifies the output logic block since it only needs to contain the current state in its sensitivity list.

8.2 FSM Design Examples • 123

Example 8.13
2-Bit up/down counter in Verilog—full model (three-block approach)

Example 8.14 shows the resulting simulation waveform for this counter finite state machine.

Example 8.14
2-Bit up/down counter in Verilog—simulation waveform

124 • Chapter 8: Modeling Finite State Machines

CONCEPT CHECK

CC8.2 The procedural block for the state memory is nearly identical for all finite state machines
with one exception. What is it?

(A) The sensitivity list may need to include a preset signal.

(B) Sometimes it is modeled using an SR latch storage approach instead of with
D-flip-flop behavior.

(C) The name of the reset state will be different.

(D) The current_state and next_state signals are often swapped.

Summary

v Generic finite state machines are modeled
using three separate procedural blocks that
describe the behavior of the next state logic,
the state memory, and the output logic. Sep-
arate blocks are used because each of the
three functions in a FSM are dependent on
different input signals.

v In Verilog, descriptive state names can be
created for a FSM using parameters. Two
signals are first declared called current_state
and next_state of type reg. Then a parameter

is defined for each unique state in the
machine with the state name and desired
state code. Throughout the rest of the
model, the unique state names can be used
as both assignments to current_state/
next_state and as inputs in case and if-else
statements. This approach allows the model
to be designed using readable syntax while
providing a synthesizable design.

Exercise Problems

Section 8.1: The FSM Design Process

8.1.1 What is the advantage of using parameters for
the state when modeling a finite state
machine?

8.1.2 What is the advantage of having to assign the
state codes during the parameter declaration
for the state names when modeling a finite
state machine?

8.1.3 When using the three-procedural block behav-
ioral modeling approach for FSMs, does the
next state logic block model combinational or
sequential logic?

8.1.4 When using the three-procedural block behav-
ioral modeling approach for FSMs, does the
state memory block model combinational or
sequential logic?

8.1.5 When using the three-procedural block behav-
ioral modeling approach for FSMs, does the
output logic block model combinational or
sequential logic?

8.1.6 When using the three-procedural block behav-
ioral modeling approach for FSMs, what inputs

are listed in the sensitivity list of the next state
logic block?

8.1.7 When using the three-procedural block behav-
ioral modeling approach for FSMs, what inputs
are listed in the sensitivity list of the state mem-
ory block?

8.1.8 When using the three-procedural block behav-
ioral modeling approach for FSMs, what inputs
are listed in the sensitivity list of the output logic
block?

8.1.9 When using the three-procedural block behav-
ioral modeling approach for FSMs, how can the
signals listed in the sensitivity list of the output
logic block immediately indicate whether the
FSM is a Mealy or a Moore machine?

8.1.10 Why is it not a good design approach to com-
bine the next state logic and output logic
behavior into a single procedural block?

Section 8.2: FSM Design Examples

8.2.1 Design a Verilog behavioral model to imple-
ment the finite state machine described by
the state diagram in Fig. 8.1. Use the port

Exercise Problems • 125

definition provided in this figure for your design.
Use the three-block approach to modeling
FSMs described in this chapter for your design.
Model the state variables using parameters
and encode the states in binary using the fol-
lowing state codes: Start¼ “00,”Midway¼ “01,”
Done ¼ “10.”

Fig. 8.1
FSM 1 State Diagram and Port Definition

8.2.2 Design a Verilog behavioral model to imple-
ment the finite state machine described by
the state diagram in Fig. 8.1. Use the port
definition provided in this figure for your design.
Use the three-block approach to modeling
FSMs described in this chapter for your design.
Model the state variables using parameters
and encode the states in one-hot using the
following state codes: Start ¼ “001,” Mid-
way ¼ “010,” Done ¼ “100.”

8.2.3 Design a Verilog behavioral model to imple-
ment the finite state machine described by
the state diagram in Fig. 8.2. Use the port
definition provided in this figure for your design.
Use the three-block approach to modeling
FSMs described in this chapter for your design.
Model the state variables using parameters
and encode the states in binary using the fol-
lowing state codes: S0 ¼ “00,” S1 ¼ “01,”
S2 ¼ “10,” and S3 ¼ “11.”

Fig. 8.2
FSM 2 State Diagram and Port Definition

8.2.4 Design a Verilog behavioral model to imple-
ment the finite state machine described by
the state diagram in Fig. 8.2. Use the port
definition provided in this figure for your design.
Use the three-block approach to modeling
FSMs described in this chapter for your design.
Model the state variables using parameters
and encode the states in one-hot using the
following state codes: S0 ¼ “0001,”
S1 ¼ “0010,” S2 ¼ “0100,” and S3 ¼ “1000.”

8.2.5 Design a Verilog behavioral model for a 4-bit
serial bit sequence detector similar to Example
8.6. Use the port definition provided in Fig. 8.3.
Use the three-block approach to modeling
FSMs described in this chapter for your design.
The input to your sequence detector is called
DIN and the output is called FOUND. Your
detector will assert FOUND anytime there is a
4-bit sequence of “0101.” Model the states in
this machine with parameters. Choose any
state encoding approach you wish.

126 • Chapter 8: Modeling Finite State Machines

Fig. 8.3
Sequence Detector Port Definition

8.2.6 Design a Verilog behavioral model for a 20-¢
vending machine controller similar to Example
8.9. Use the port definition provided in Fig. 8.4.
Use the three-block approach to modeling
FSMs described in this chapter for your design.
Your controller will take in nickels and dimes
and dispense a product anytime the customer
has entered 20¢. Your FSM has two inputs,Nin
and Din. Nin is asserted whenever the cus-
tomer enters a nickel while Din is asserted
anytime the customer enters a dime. Your
FSM has two outputs, Dispense and Change.
Dispense is asserted anytime the customer
has entered at least 20¢ and Change is
asserted anytime the customer has entered
more than 20¢ and needs a nickel in change.
Model the states in this machine with
parameters. Choose any state encoding
approach you wish.

Fig. 8.4
Vending Machine Port Definition

8.2.7 Design a Verilog behavioral model for a finite
state machine for a traffic light controller. Use
the port definition provided in Fig. 8.5. This
time, you will implement the functionality
using the behavioral modeling techniques
presented in this chapter. Your FSM will control
a traffic light at the intersection of a busy high-
way and a seldom used side road. You will be
designing the control signals for just the red,
yellow, and green lights facing the highway.
Under normal conditions, the highway has a
green light. The side road has car detector
that indicates when car pulls up by asserting
a signal called CAR. When CAR is asserted,
you will change the highway traffic light from
green to yellow, and then from yellow to red.
Once in the red position, a built-in timer will
begin a countdown and provide your controller
a signal called TIMEOUT when 15 s has
passed. Once TIMEOUT is asserted, you will
change the highway traffic light back to green.
Your system will have three outputs GRN,
YLW, and RED, which control when the high-
way facing traffic lights are on (1 ¼ ON,
0 ¼ OFF). Model the states in this machine
with parameters. Choose any state encoding
approach you wish.

Fig. 8.5
Traffic Light Controller Port Definition

Exercise Problems • 127

Chapter 9: Modeling Counters
Counters are a special case of finite state machines because they move linearly through their

discrete states (either forward or backwards) and typically are implemented with state-encoded outputs.

Due to this simplified structure and widespread use in digital systems, Verilog allows counters to be

modeled using a single procedural block with arithmetic operators (i.e., + and �). This enables a more

compact model and allows much wider counters to be implemented in a practical manner. This chapter

will cover some of the most common techniques for modeling counters.

Learning Outcomes—After completing this chapter, you will be able to:

9.1 Design a behavioral model for a counter using a single procedural block.
9.2 Design a behavioral model for a counter with enable and load capability.

9.1 Modeling Counters with a Single Procedural Block

9.1.1 Counters in Verilog Using the Type reg

Let’s look at how we can model a 4-bit, binary up counter with an output called CNT. We want to

model this counter using the “+” operator to avoid having to explicitly define a state code for each state as

in the three-block modeling approach to FSMs. The “+” operator works on the type reg, so the counting

behavior can simply be modeled using CNT <¼ CNT + 1. The procedural block also needs to handle the

reset condition. Both the Clock and Reset signals are listed in the sensitivity list. Within the block, an

if-else statement is used to handle both the reset and increment behaviors. Example 9.1 shows the

Verilog model and simulation waveform for this counter. When the counter reaches its maximum value of

“1111,” it rolls over to “0000” and continues counting because it is declared to only contain 4-bits.

Example 9.1
Binary counter using a single procedural block in Verilog

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to Verilog, https://doi.org/10.1007/978-3-030-10552-5_9

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10552-5_9&domain=pdf

9.1.2 Counters with Range Checking

When a counter needs to have a maximum range that is different from the maximum binary value of

the count vector (i.e., <2n� 1), then the procedural block needs to contain range checking logic. This can

be modeled by inserting a nested if-else statement beneath of the else clause that handles the behavior

for when the counter receives a rising clock edge. This nested if-else first checks whether the count has

reached its maximum value. If it has, it is reset back to it minimum value. If it hasn’t, the counter is

incremented as usual. Example 9.2 shows the Verilog model and simulation waveform for a counter with

a minimum count value of 010 and a maximum count value of 1010. This counter still requires 4-bits to be

able to encode 1010.

Example 9.2
Binary counter with range checking in Verilog

CONCEPT CHECK

CC9.1 If a counter is modeled using only one procedural block in Verilog, is it still a finite state
machine? Why or why not?

(A) Yes. It is just a special case of a FSM that can easily be modeled using one
block. Synthesizers will recognize the single block model as a FSM.

(B) No. Using only one block will synthesize into combinational logic. Without the
ability to store a state, it is not a finite state machine.

130 • Chapter 9: Modeling Counters

9.2 Counter with Enables and Loads

9.2.1 Modeling Counters with Enables

Including an enable in a counter is a common technique to prevent the counter from running

continuously. When the enable is asserted, the counter will increment on the rising edge of the clock

as usual. When the enable is de-asserted, the counter will simply hold its last value. Enable lines are

synchronous, meaning that they are only evaluated on the rising edge of the clock. As such, they are

modeled using a nested if-else statement within the main if-else statement checking for a rising edge of

the clock. Example 9.3 shows an example model for a 4-bit counter with enable.

Example 9.3
Binary counter with enable in Verilog

9.2.2 Modeling Counters with Loads

A counter with a load has the ability to set the counter to a specified value. The specified value is

provided on an input port (i.e., CNT_in) with the same width as the counter output (CNT). A synchronous

load input signal (i.e., Load) is used to indicate when the counter should set its value to the value present

on CNT_in. Example 9.4 shows an example model for a 4-bit counter with load capability.

9.2 Counter with Enables and Loads • 131

Example 9.4
Binary counter with load in Verilog

CONCEPT CHECK

CC9.2 If a counter is modeled using only one procedural block in Verilog, is it still a finite state
machine? Why or why not?

(A) Yes. It is just a special case of a FSM that can easily be modeled using one
block. Synthesizers will recognize the single block model as a FSM.

(B) No. Using only one block will synthesize into combinational logic. Without the
ability to store a state, it is not a finite state machine.

Summary

v Counters are a special type of finite state
machine that can be modeled using a single
procedural block. Only the clock and reset
signals are listed in the sensitivity list of the
counter block.

v Registers are modeled in Verilog in a similar
manner to a D-flip-flop with a synchronous

enable. The only difference is that the inputs
and outputs are vectors.

v Register Transfer Level, or RTL, modeling
provides a higher level of abstraction for
moving and manipulating vectors of data in
a synchronous manner.

132 • Chapter 9: Modeling Counters

Exercise Problems

Section 9.1: Modeling Counters with a

Single Procedural Block

9.1.1 Design a Verilog behavioral model for a 16-bit,
binary up counter using a single procedural
block. The block diagram for the port definition
is shown in Fig. 9.1.

Fig. 9.1
16-Bit Binary Up Counter Block Diagram

9.1.2 Design a Verilog behavioral model for a 16-bit,
binary up counter with range checking using a
single procedural block. The block diagram for
the port definition is shown in Fig. 9.1. Your
counter should count up to 60,000 and then
start over at 0.

Section 9.2: Counters with Enables and

Loads

9.2.1 Design a Verilog behavioral model for a 16-bit,
binary up counter with enable using a single
procedural block. The block diagram for the
port definition is shown in Fig. 9.2.

Fig. 9.2
16-Bit Binary Up Counter with Enable Block
Diagram

9.2.2 Design a Verilog behavioral model for a 16-bit,
binary up counter with enable and load using a
single procedural block. The block diagram for
the port definition is shown in Fig. 9.3.

Fig. 9.3
16-Bit Binary Up Counter with Load Block
Diagram

9.2.3 Design a Verilog behavioral model for a 16-bit,
binary up/down counter using a single proce-
dural block. The block diagram for the port
definition is shown in Fig. 9.4. When Up ¼ 1,
the counter will increment. When Up ¼ 0, the
counter will decrement.

Fig. 9.4
16-Bit Binary Up/Down Counter Block Diagram

Exercise Problems • 133

Chapter 10: Modeling Memory
This chapter covers how to model memory arrays in Verilog. These models are technology inde-

pendent, meaning that they can be ultimately synthesized into a wide range of semiconductor memory

devices.

Learning Outcomes—After completing this chapter, you will be able to:

10.1 Describe the basic architecture and terminology for semiconductor-based memory
systems.

10.2 Design a Verilog model for a read-only memory array.
10.3 Design a Verilog model for a read/write memory array.

10.1 Memory Architecture and Terminology

The termmemory is used to describe a system with the ability to store digital information. The term

semiconductor memory refers to systems that are implemented using integrated circuit technology.

These types of systems store the digital information using transistors, fuses, and/or capacitors on a

single semiconductor substrate. Memory can also be implemented using technology other than

semiconductors. Disk drives store information by altering the polarity of magnetic fields on a circular

substrate. The two magnetic polarities (north and south) are used to represent different logic values

(i.e., 0 or 1). Optical disks use lasers to burn pits into reflective substrates. The binary information is

represented by light either being reflected (no pit) or not reflected (pit present). Semiconductor memory

does not have any moving parts, so it is called solid state memory and can hold more information per unit

area than disk memory. Regardless of the technology used to store the binary data, all memory has

common attributes and terminology that are discussed in this chapter.

10.1.1 Memory Map Model

The information stored in memory is called the data. When information is placed into memory, it is

called a write. When information is retrieved from memory, it is called a read. In order to access data in

memory, an address is used. While data can be accessed as individual bits, in order to reduce the

number of address locations needed, data is typically grouped into N-bit words. If a memory system has

N ¼ 8, this means that 8-bits of data are stored at each address. The number of address locations is

described using the variable M. The overall size of the memory is typically stated by saying “M � N.”

For example, if we had a 16 � 8 memory system, that means that there are 16 address locations, each

capable of storing a byte of data. This memory would have a capacity of 16 � 8 ¼ 128 bits. Since the

address is implemented as a binary code, the number of lines in the address bus (n) will dictate the

number of address locations that the memory system will have (M ¼ 2n). Figure 10.1 shows a graphical

depiction of how data resides in memory. This type of graphic is called a memory map model.

Springer Nature Switzerland AG 2019
B. J. LaMeres, Quick Start Guide to Verilog, https://doi.org/10.1007/978-3-030-10552-5_10

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10552-5_10&domain=pdf

10.1.2 Volatile vs. Non-volatile Memory

Memory is classified into two categories depending on whether it can store information when power

is removed or not. The term non-volatile is used to describe memory that holds information when the

power is removed, while the term volatile is used to describe memory that loses its information when

power is removed. Historically, volatile memory is able to run at faster speeds compared to non-volatile

memory, so it is used as the primary storage mechanism while a digital system is running. Non-volatile

memory is necessary in order to hold critical operation information for a digital system such as startup

instructions, operations systems, and applications.

10.1.3 Read-Only vs. Read/Write Memory

Memory can also be classified into two categories with respect to how data is accessed. Read-Only

Memory (ROM) is a device that cannot be written to during normal operation. This type of memory is

useful for holding critical system information or programs that should not be altered while the system is

running. Read/Write memory refers to memory that can be read and written to during normal operation

and is used to hold temporary data and variables.

10.1.4 Random Access vs. Sequential Access

Random-Access Memory (RAM) describes memory in which any location in the system can be

accessed at any time. The opposite of this is sequential access memory, in which not all address

locations are immediately available. An example of a sequential access memory system is a tape drive.

In order to access the desired address in this system, the tape spool must be spun until the address is in

a position that can be observed. Most semiconductor memory in modern systems is random access. The

terms RAM and ROM have been adopted, somewhat inaccurately, to also describe groups of memory

with particular behavior. While the term ROM technically describes a system that cannot be written to, it

has taken on the additional association of being the term to describe non-volatile memory. While the term

RAM technically describes how data is accessed, it has taken on the additional association of being the

term to describe volatile memory. When describing modern memory systems, the terms RAM and ROM

are used most commonly to describe the characteristics of the memory being used; however, modern

memory systems can be both read/write and non-volatile, and the majority of memory is random access.

CONCEPT CHECK

CC10.1 An 8-bit wide memory has eight address lines. What is its capacity in bits?

(A) 64 (B) 256 (C) 1024 (D) 2048

Fig. 10.1
Memory map model

136 • Chapter 10: Modeling Memory

10.2 Modeling Read-Only Memory

A read-only memory in Verilog can be defined in two ways. The first is to simply use a case

statement to define the contents of each location in memory based on the incoming address. A second

approach is to declare an array and then initialize its contents. When using an array, a separate

procedural block handles assigning the contents of the array to the output based on the incoming

address. The array can be initialized using either an initial block or through the file I/O system tasks

$readmemb() or $readmemh(). Example 10.1 shows two approaches for modeling a 4 � 4 ROM

memory. In this example the memory is asynchronous, meaning that as soon as the address changes

the data from the ROM will appear immediately. To model this asynchronous behavior the procedural

blocks are sensitive to the incoming address. In the simulation, each possible address is provided (i.e.,

“00,” “01,” “10,” and “11”) to verify that the ROM was initialized correctly.

Example 10.1
Behavioral models of a 4 � 4 asynchronous read-only memory in Verilog

A synchronous ROM can be created in a similar manner as in the asynchronous approach. The only

difference is that in a synchronous ROM, a clock edge is used to trigger the procedural block that

updates data_out. A sensitivity list is used that contains the clock to trigger the assignment. Example 10.2

10.2 Modeling Read-Only Memory • 137

shows two Verilog models for a synchronous ROM. Notice that prior to the first clock edge, the simulator

does not know what to assign to data_out so it lists the value as unknown (X).

Example 10.2
Behavioral models of a 4 � 4 synchronous read-only memory in Verilog

CONCEPT CHECK

CC10.2 Explain the advantage of modeling memory in Verilog without going into the details of
the storage cell operation.

(A) It allows the details of the storage cell to be abstracted from the functional
operation of the memory system.

(B) It is too difficult to model the analog behavior of the storage cell.

(C) There are too many cells to model, so the simulation would take too long.

(D) It lets both ROM and R/W memory to be modeled in a similar manner.

138 • Chapter 10: Modeling Memory

10.3 Modeling Read/Write Memory

In a simple read/write memory model, there is an output port that provides data when reading

(data_out) and an input port that receives data when writing (data_in). Within the module, an array signal

is declared with elements of type reg. To write to the array, signal assignment are made from the data_in

port to the element within the array corresponding to the incoming address. To read from the array, the

data_out port is assigned the element within the array corresponding to the incoming address. A write

enable (WE) signal tells the system when to write to the array (WE ¼ 1) or when to read from the array

(WE ¼ 0). In an asynchronous R/W memory, data is immediately written to the array when WE ¼ 1 and

data is immediately read from the array when WE ¼ 0. This is modeled using a procedural block with a

sensitivity list containing every input to the system. Example 10.3 shows an asynchronous R/W 4 � 4

memory system and functional simulation results. In the simulation, each address is initially read from to

verify that it does not contain data. The data_out port produces unknown (X) for the initial set of read

operations. Each address in the array is then written to. Finally, the array is read from verifying that the

data that was written can be successfully retrieved.

Example 10.3
Behavioral model of a 4 � 4 asynchronous read/write memory in Verilog

A synchronous read/write memory is made in a similar manner with the exception that a clock is

used to trigger the procedural block managing the signal assignments. In this case, the WE signal acts

as a synchronous control signal indicating whether assignments are read from or written to the RWarray.

Example 10.4 shows the Verilog model for a synchronous read/write memory and the simulation

waveform showing both read and write cycles.

10.3 Modeling Read/Write Memory • 139

Example 10.4
Behavioral model of a 4 � 4 synchronous read/write memory in Verilog

CONCEPT CHECK

CC10.3 Does modeling the R/W memory as an uninitialized array accurately describe the
behavior of real R/W memory technology?

(A) Yes. Read/Write memory is not initialized upon power-up.

(B) No. Read/Write memory should be initialized to all zeros to model the reset
behavior found in memory.

Summary

v The term memory refers to arrays of storage.
The technology used in memory is typically
optimized for storage density at the expense
of control capability. This is different from a
D-flip-flop, which is optimized for complete
control at the bit level.

v A memory device always contains an
address bus input. The number of bits in the
address bus dictates how many storage
locations can be accessed. An n-bit address
bus can access 2n (or M) storage locations.

140 • Chapter 10: Modeling Memory

v The width of each storage location (N) allows
the density of the memory array to be
increased by reading and writing vectors of
data instead of individual bits.

v A memory map is a graphical depiction of a
memory array. A memory map is useful to
give an overview of the capacity of the array
and how different address ranges of the array
are used.

v A read is an operation in which data is
retrieved from memory. A write is an opera-
tion in which data is stored to memory.

v An asynchronous memory array responds
immediately to its control inputs. A synchro-
nous memory array only responds on the
triggering edge of clock.

v Volatile memory will lose its data when the
power is removed. Non-volatile memory will
retain its data when the power is removed.

v Read-Only Memory (ROM) is a memory type
that cannot be written to during normal

operation. Read/Write (R/W) memory is a
memory type that can be written to during
normal operation. Both ROM and R/W mem-
ory can be read from during normal
operation.

v Random-Access Memory (RAM) is a mem-
ory type in which any location in memory can
be accessed at any time. In Sequential
Access Memory the data can only be
retrieved in a linear sequence. This means
that in sequential memory the data cannot be
accessed arbitrarily.

v ROM Memory can be modeled in Verilog
using a case statement or an array data
type consisting of elements of type reg that
are initialized with an initial procedural block.

v R/W Memory can be modeled in Verilog
using an array data type consisting of
elements of type reg that are uninitialized.

Exercise Problems

Section 10.1: Memory Architecture and

Terminology

10.1.1 For a 512k � 32 memory system, how many
unique address locations are there? Give the
exact number.

10.1.2 For a 512k � 32 memory system, what is the
data width at each address location?

10.1.3 For a 512k � 32 memory system, what is the
capacity in bits?

10.1.4 For a 512k � 32-bit memory system, what is
the capacity in bytes?

10.1.5 For a 512k � 32 memory system, how wide
does the incoming address bus need to be in
order to access every unique address
location?

Section 10.2: Modeling Read-Only

Memory

10.2.1 Design a Verilog model for the 16 � 8, asyn-
chronous, read-only memory system shown in
Fig. 10.2. The system should contain the infor-
mation provided in the memory map. Create a
test bench to simulate your model by reading
from each of the 16 unique addresses and
observing data_out to verify it contains the
information in the memory map.

Fig. 10.2
16 x 8 Asynchronous ROM Block Diagram

10.2.2 Design a Verilog model for the 16� 8, synchro-
nous, read-only memory system shown in
Fig. 10.3. The system should contain the infor-
mation provided in the memory map. Create a
test bench to simulate your model by reading
from each of the 16 unique addresses and
observing data_out to verify it contains the
information in the memory map.

Exercise Problems • 141

Fig. 10.3
16 x 8 Synchronous ROM Block Diagram

Section 10.3: Modeling Read/Write

Memory

10.3.1 Design a Verilog model for the 16 � 8, asyn-
chronous, read/write memory system shown in
Fig. 10.4. Create a test bench to simulate your
model. Your test bench should first read from
all of the address locations to verify they are
uninitialized. Next, your test bench should write
unique information to each of the address
locations. Finally, your test bench should read
from each address location to verify that the
information that was written was stored and
can be successfully retrieved.

Fig. 10.4
16 x 8 Asynchronous R/W Block Diagram

10.3.2 Design a Verilog model for the 16� 8, synchro-
nous, read/write memory system shown in
Fig. 10.5. Create a test bench to simulate
your model. Your test bench should first read
from all of the address locations to verify they
are uninitialized. Next, your test bench should
write unique information to each of the address
locations. Finally, your test bench should read
from each address location to verify that the
information that was written was stored and
can be successfully retrieved.

Fig. 10.5
16 x 8 Synchronous R/W Block Diagram

142 • Chapter 10: Modeling Memory

Chapter 11: Computer System Design
This chapter presents the design of a simple computer system that will illustrate the use of many of

the Verilog modeling techniques covered in this book. The goal of this chapter is not to provide an

in-depth coverage of modern computer architecture, but rather to present a simple operational computer

that can be implemented in Verilog to show how to use many of the modeling techniques covered thus

far. The chapter begins with some architectural definitions so that consistent terminology can be used

throughout the computer design example.

Learning Outcomes—After completing this chapter, you will be able to:

11.1 Describe the basic components and operation of computer hardware.
11.2 Describe the basic components and operation of computer software.
11.3 Design a fully operational computer system using Verilog.

11.1 Computer Hardware

A computer accomplishes tasks through an architecture that uses both hardware and software.

The hardware in a computer consists of many of the elements that we have covered so far. These include

registers, arithmetic and logic circuits, finite state machines, and memory. What makes a computer so

useful is that the hardware is designed to accomplish a predetermined set of instructions. These

instructions are relatively simple, such as moving data between memory and a register or performing

arithmetic on two numbers. The instructions comprise binary codes that are stored in a memory device

and represent the sequence of operations that the hardware will perform to accomplish a task. This

sequence of instructions is called a computer program. What makes this architecture so useful is that

the preexisting hardware can be programmed to perform an almost unlimited number of tasks by simply

defining the sequence of instructions to be executed. The process of designing the sequence of

instructions, or program, is called software development or software engineering.

The idea of a general-purpose computing machine dates back to the nineteenth century. The first

computing machines were implemented with mechanical systems and were typically analog in nature.

As technology advanced, computer hardware evolved from electromechanical switches to vacuum

tubes and ultimately to integrated circuits. These newer technologies enabled switching circuits and

provided the capability to build binary computers. Today’s computers are built exclusively with semicon-

ductor materials and integrated circuit technology. The term microcomputer is used to describe a

computer that has its processing hardware implemented with integrated circuitry. Nearly all modern

computers are binary. Binary computers are designed to operate on a fixed set of bits. For example, an

8-bit computer would perform operations on 8-bits at a time. This means it moves data between registers

and memory and performs arithmetic and logic operations in groups of 8-bits.

Computer hardware refers to all of the physical components within the system. This hardware

includes all circuit components in a computer such as the memory devices, registers, and finite state

machines. Figure 11.1 shows a block diagram of the basic hardware components in a computer.

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to Verilog, https://doi.org/10.1007/978-3-030-10552-5_11

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10552-5_11&domain=pdf

11.1.1 Program Memory

The instructions that are executed by a computer are held in program memory. Program memory is

treated as read only during execution in order to prevent the instructions from being overwritten by the

computer. Programs are typically held in non-volatile memory so that the computer system does not lose

its program when power is removed. Modern computers will often copy a program from non-volatile

memory (e.g., a hard disk drive) to volatile memory (i.e., SRAM or DRAM) after startup in order to speed

up instruction execution as volatile memory is often a faster technology.

11.1.2 Data Memory

Computers also require data memory, which can be written to and read from during normal

operation. This memory is used to hold temporary variables that are created by the software program.

This memory expands the capability of the computer system by allowing large amounts of information to

be created and stored by the program. Additionally, computations can be performed that are larger than

the width of the computer system by holding interim portions of the calculation (e.g., performing a 128-bit

addition on a 32-bit computer). Data memory is typically implemented with volatile memory as it is often

faster than read-only memory technology.

11.1.3 Input/Output Ports

The term port is used to describe the mechanism to get information from the output world into or out

of the computer. Ports can be input, output, or bidirectional. I/O ports can be designed to pass information

in a serial or parallel format.

11.1.4 Central Processing Unit

The central processing unit (CPU) is considered the brains of the computer. The CPU handles

reading instructions from memory, decoding them to understand which instruction is being performed,

and executing the necessary steps to complete the instruction. The CPU also contains a set of registers

Fig. 11.1
Hardware components of a computer system

144 • Chapter 11: Computer System Design

that are used for general-purpose data storage, operational information, and system status. Finally, the

CPU contains circuitry to perform arithmetic and logic operations on data.

11.1.4.1 Control Unit

The control unit is a finite state machine that controls the operation of the computer. This FSM has

states that perform fetching the instruction (i.e., reading it from program memory), decoding the instruc-

tion, and executing the appropriate steps to accomplish the instruction. This process is known as fetch,

decode, and execute and is repeated each time an instruction is performed by the CPU. As the control

unit state machine traverses through its states, it asserts control signals that move and manipulate data

in order to achieve the desired functionality of the instruction.

11.1.4.2 Data Path: Registers

The CPU groups its registers and ALU into a subsystem called the data path. The data path refers to

the fast storage and data manipulations within the CPU. All of these operations are initiated and

managed by the control unit state machine. The CPU contains a variety of registers that are necessary

to execute instructions and hold status information about the system. Basic computers have the following

registers in their CPU:

• Instruction Register (IR)—The instruction register holds the current binary code of the
instruction being executed. This code is read from program memory as the first part of
instruction execution. The IR is used by the control unit to decide which states in its FSM to
traverse in order to execute the instruction.

• Memory Address Register (MAR)—The memory address register is used to hold the current
address being used to access memory. The MAR can be loaded with addresses in order to
fetch instructions from program memory or with addresses to access data memory and/or I/O
ports.

• Program Counter (PC)—The program counter holds the address of the current instruction
being executed in program memory. The program counter will increment sequentially through
the program memory reading instructions until a dedicated instruction is used to set it to a new
location.

• General-Purpose Registers—These registers are available for temporary storage by the
program. Instructions exist to move information from memory into these registers and to move
information from these registers into memory. Instructions also exist to perform arithmetic and
logic operations on the information held in these registers.

• Condition Code Register (CCR)—The condition code register holds status flags that provide
information about the arithmetic and logic operations performed in the CPU. The most common
flags are negative (N), zero (Z), two’s complement overflow (V), and carry (C). This register can
also contain flags that indicate the status of the computer, such as if an interrupt has occurred
or if the computer has been put into a low-power mode.

11.1.4.3 Data Path: Arithmetic Logic Unit (ALU)

The arithmetic logic unit is the system that performs all mathematical (i.e., addition, subtraction,

multiplication, and division) and logic operations (i.e., and, or, not, shifts). This system operates on data

being held in CPU registers. The ALU has a unique symbol associated with it to distinguish it from other

functional units in the CPU.

Figure 11.2 shows the typical organization of a CPU. The registers and ALU are grouped into the

data path. In this example, the computer system has two general-purpose registers called A and B. This

CPU organization will be used throughout this chapter to illustrate the detailed execution of instructions.

11.1 Computer Hardware • 145

11.1.5 A Memory Mapped System

A common way to simplify moving data in or out of the CPU is to assign a unique address to all

hardware components in the memory system. Each input/output port and each location in both program

and data memory are assigned a unique address. This allows the CPU to access everything in the

memory system with a dedicated address. This reduces the number of lines that must pass into the CPU.

A bus system facilitates transferring information within the computer system. An address bus is driven by

the CPU to identify which location in the memory system is being accessed. A data bus is used to

transfer information to/from the CPU and the memory system. Finally, a control bus is used to provide

other required information about the transactions such as read or write lines. Figure 11.3 shows the

computer hardware in a memory mapped architecture.

Fig. 11.2
Typical CPU organization

146 • Chapter 11: Computer System Design

To help visualize how the memory addresses are assigned, a memory map is used. This is a

graphical depiction of the memory system. In the memory map, the ranges of addresses are provided for

each of the main subsections of memory. This gives the programmer a quick overview of the available

resources in the computer system. Example 11.1 shows a representative memory map for a computer

system with an address bus with a width of 8-bits. This address bus can provide 256 unique locations.

For this example, the memory system is also 8-bits wide, thus the entire memory system is 256 � 8 in

size. In this example, 128 bytes are allocated for program memory; 96 bytes are allocated for data

memory; 16 bytes are allocated for output ports; and 16 bytes are allocated for input ports.

Fig. 11.3
Computer hardware in a memory mapped configuration

11.1 Computer Hardware • 147

Example 11.1
Memory map for a 256 � 8 memory system

CONCEPT CHECK

CC11.1 Is the hardware of a computer programmed in a similar way to a programmable logic
device?

(A) Yes. The control unit is reconfigured to produce the correct logic for each
unique instruction just like a logic element in an FPGA is reconfigured to
produce the desired logic expression.

(B) No. The instruction code from program memory simply tells the state
machine in the control unit which path to traverse in order to accomplish the
desired task.

11.2 Computer Software

Computer software refers to the instructions that the computer can execute and how they are

designed to accomplish various tasks. The specific group of instructions that a computer can execute

is known as its instruction set. The instruction set of a computer needs to be defined first before the

computer hardware can be implemented. Some computer systems have a very small number of

instructions in order to reduce the physical size of the circuitry needed in the CPU. This allows the

CPU to execute the instructions very quickly but requires a large number of operations to accomplish a

given task. This architectural approach is called a reduced instruction set computer (RISC). The

alternative to this approach is to make an instruction set with a large number of dedicated instructions

that can accomplish a given task in fewer CPU operations. The drawback of this approach is that the

physical size of the CPU must be larger in order to accommodate the various instructions. This

architectural approach is called a complex instruction set computer (CISC).

148 • Chapter 11: Computer System Design

11.2.1 Opcodes and Operands

A computer instruction consists of two fields, an opcode and an operand. The opcode is a unique

binary code given to each instruction in the set. The CPU decodes the opcode in order to know which

instruction is being executed and then takes the appropriate steps to complete the instruction. Each

opcode is assigned a mnemonic, which is a descriptive name for the opcode that can be used when

discussing the instruction functionally. An operand is additional information for the instruction that may be

required. An instruction may have any number of operands including zero. Figure 11.4 shows an

example of how the instruction opcodes and operands are placed into program memory.

11.2.2 Addressing Modes

An addressing mode describes the way in which the operand of an instruction is used. While modern

computer systems may contain numerous addressing modes with varying complexities, we will focus on

just a subset of basic addressing modes. These modes are immediate, direct, inherent, and indexed.

11.2.2.1 Immediate Addressing (IMM)

Immediate addressing is when the operand of an instruction is the information to be used by the

instruction. For example, if an instruction existed to put a constant into a register within the CPU using

immediate addressing, the operand would be the constant. When the CPU reads the operand, it simply

inserts the contents into the CPU register and the instruction is complete.

11.2.2.2 Direct Addressing (DIR)

Direct addressing is when the operand of an instruction contains the address of where the informa-

tion to be used is located. For example, if an instruction existed to put a constant into a register within the

CPU using direct addressing, the operand would contain the address of where the constant was located

Fig. 11.4
Anatomy of a computer instruction

11.2 Computer Software • 149

in memory. When the CPU reads the operand, it puts this value out on the address bus and performs an

additional read to retrieve the contents located at that address. The value read is then put into the CPU

register and the instruction is complete.

11.2.2.3 Inherent Addressing (INH)

Inherent addressing refers to an instruction that does not require an operand because the opcode

itself contains all of the necessary information for the instruction to complete. This type of addressing is

used on instructions that performmanipulations on data held in CPU registers without the need to access

the memory system. For example, if an instruction existed to increment the contents of a register (A),

then once the opcode is read by the CPU, it knows everything it needs to know in order to accomplish the

task. The CPU simply asserts a series of control signals in order to increment the contents of A and then

the instruction is complete. Notice that no operand is needed for this task. Instead, the location of the

register to be manipulated (i.e., A) is inherent within the opcode.

11.2.3 Classes of Instructions

There are three general classes of instructions: (1) loads and stores; (2) data manipulations; and

(3) branches. To illustrate how these instructions are executed, examples will be given based on the

computer architecture shown in Fig. 11.3.

11.2.3.1 Loads and Stores

This class of instructions accomplishes moving information between the CPU and memory. A load

is an instruction that moves information from memory into a CPU register. When a load instruction uses

immediate addressing, the operand of the instruction is the data to be loaded into the CPU register. As an

example, let’s look at an instruction to load the general-purpose register A using immediate addressing.

Let’s say that the opcode of the instruction is x“86”, has a mnemonic LDA_IMM, and is inserted into

program memory starting at x“00”. Example 11.2 shows the steps involved in executing the LDA_IMM

instruction.

150 • Chapter 11: Computer System Design

Example 11.2
Execution of an instruction to “load register A using immediate addressing”

Now let’s look at a load instruction using direct addressing. In direct addressing, the operand of the

instruction is the address of where the data to be loaded resides. As an example, let’s look at an

instruction to load the general-purpose register A. Let’s say that the opcode of the instruction is x“87”,

has a mnemonic LDA_DIR, and is inserted into program memory starting at x“08”. The value to be

loaded into A resides at address x“80”, which has already been initialized with x“AA” before this

instruction. Example 11.3 shows the steps involved in executing the LDA_DIR instruction.

11.2 Computer Software • 151

Example 11.3
Execution of an instruction to “load register A using direct addressing”

A store is an instruction that moves information from a CPU register intomemory. The operand of a

store instruction indicates the address of where the contents of the CPU register will be written. As an

example, let’s look at an instruction to store the general-purpose register A into memory address x“E0”.

Let’s say that the opcode of the instruction is x“96”, has a mnemonic STA_DIR, and is inserted into

program memory starting at x“04”. The initial value of A is x“CC” before the instruction is executed.

Example 11.4 shows the steps involved in executing the STA_DIR instruction.

152 • Chapter 11: Computer System Design

Example 11.4
Execution of an instruction to “store register A using direct addressing”

11.2.3.2 Data Manipulations

This class of instructions refers to ALU operations. These operations act on data that resides in the

CPU registers. These instructions include arithmetic, logic operators, shifts and rotates, and tests and

compares. Data manipulation instructions typically use inherent addressing because the operations are

conducted on the contents of CPU registers and don’t require additional memory access. As an example,

let’s look at an instruction to perform addition on registers A and B. The sum will be placed back in

A. Let’s say that the opcode of the instruction is x“42”, has a mnemonic ADD_AB, and is inserted into

program memory starting at x“04”. Example 11.5 shows the steps involved in executing the ADD_AB

instruction.

11.2 Computer Software • 153

Example 11.5
Execution of an instruction to “add registers A and B”

11.2.3.3 Branches

In the previous examples the program counter was always incremented to point to the address of

the next instruction in programmemory. This behavior only supports a linear execution of instructions. To

provide the ability to specifically set the value of the program counter, instructions called branches are

used. There are two types of branches: unconditional and conditional. In an unconditional branch, the

program counter is always loaded with the value provided in the operand. As an example, let’s look at an

instruction to branch always to a specific address. This allows the program to perform loops. Let’s say

that the opcode of the instruction is x“20”, has a mnemonic BRA, and is inserted into program memory

starting at x“06”. Example 11.6 shows the steps involved in executing the BRA instruction.

154 • Chapter 11: Computer System Design

Example 11.6
Execution of an instruction to “branch always”

In a conditional branch, the program counter is only updated if a particular condition is true. The

conditions come from the status flags in the condition code register (NZVC). This allows a program to

selectively execute instructions based on the result of a prior operation. Let’s look at an example

instruction that will branch only if the Z flag is asserted. This instruction is called a branch if equal to

zero. Let’s say that the opcode of the instruction is x“23”, has a mnemonic BEQ, and is inserted into

program memory starting at x“05”. Example 11.7 shows the steps involved in executing the BEQ

instruction.

11.2 Computer Software • 155

Example 11.7
Execution of an instruction to “branch if equal to zero”

Conditional branches allow computer programs to make decisions about which instructions to

execute based on the results of previous instructions. This gives computers the ability to react to input

signals or act based on the results of arithmetic or logic operations. Computer instruction sets typically

contain conditional branches based on the NZVC flags in the condition code registers. The following

instructions are a set of possible branches that could be created using the values of the NZVC flags.

• BMI—Branch if minus (N ¼ 1)

• BPL—Branch if plus (N ¼ 0)

• BEQ—Branch if equal to Zero (Z ¼ 1)

• BNE—Branch if not equal to Zero (Z ¼ 0)

• BVS—Branch if two’s complement overflow occurred, or V is set (V ¼ 1)

156 • Chapter 11: Computer System Design

• BVC—Branch if two’s complement overflow did not occur, or V is clear (V ¼ 0)

• BCS—Branch if a carry occurred, or C is set (C ¼ 1)

• BCC—Branch if a carry did not occur, or C is clear (C ¼ 0)

Combinations of these flags can be used to create more conditional branches.

• BHI—Branch if higher (C ¼ 1 and Z ¼ 0)

• BLS—Branch if lower or the same (C ¼ 0 and Z ¼ 1)

• BGE—Branch if greater than or equal ((N ¼ 0 and V ¼ 0) or (N ¼ 1 and V ¼ 1)), only valid for
signed numbers

• BLT—Branch if less than ((N ¼ 1 and V ¼ 0) or (N ¼ 0 and V ¼ 1)), only valid for signed
numbers

• BGT—Branch if greater than ((N¼ 0 and V¼ 0 and Z¼ 0) or (N¼ 1 and V¼ 1 and Z¼ 0)), only
valid for signed numbers

• BLE—Branch if less than or equal ((N¼ 1 and V¼ 0) or (N¼ 0 and V¼ 1) or (Z¼ 1)), only valid
for signed numbers

CONCEPT CHECK

CC11.2 Software development consists of choosing which instructions, and in what order, will
be executed to accomplish a certain task. The group of instructions is called the
program and is inserted into program memory. Which of the following might a software
developer care about?

(A) Minimizing the number of instructions that need to be executed to accom-
plish the task in order to increase the computation rate.

(B) Minimizing the number of registers used in the CPU to save power.

(C) Minimizing the overall size of the program to reduce the amount of program
memory needed.

(D) Both A and C.

11.3 Computer Implementation: An 8-Bit Computer Example

11.3.1 Top-Level Block Diagram

Let’s now look at the detailed implementation and instruction execution of a computer system.

In order to illustrate the detailed operation, we will use a simple 8-bit computer system design.

Example 11.8 shows the block diagram for the 8-bit computer system. This block diagram also contains

the Verilog file and module names, which will be used when the behavioral model is implemented.

11.3 Computer Implementation: An 8-Bit Computer Example • 157

Example 11.8
Top-level block diagram for the 8-bit computer system

We will use the memory map shown in Example 11.1 for our example computer system. This

mapping provides 128 bytes of program memory, 96 bytes of data memory, 16� output ports, and

16� input ports. To simplify the operation of this example computer, the address bus is limited to 8-bits.

This only provides 256 locations of memory access but allows an entire address to be loaded into the

CPU as a single operand of an instruction.

11.3.2 Instruction Set Design

Example 11.9 shows a basic instruction set for our example computer system. This set provides a

variety of loads and stores, data manipulations, and branch instructions that will allow the computer to be

programmed to perform more complex tasks through software development. These instructions are

sufficient to provide a baseline of functionality in order to get the computer system operational. Additional

instructions can be added as desired to increase the complexity of the system.

158 • Chapter 11: Computer System Design

Example 11.9
Instruction set for the 8-bit computer system

11.3.3 Memory System Implementation

Let’s now look at the memory system details. The memory system contains program memory, data

memory, and input/output ports. Example 11.10 shows the block diagram of the memory system. The

program and data memory will be implemented using lower-level components (rom_128x8_sync.v and

rw_96x8_sync.v), while the input and output ports can be modeled using a combination of RTL blocks

and combinational logic. The program and data memory subsystems contain dedicated circuitry to

handle their addressing ranges. Each output port also contains dedicated circuitry to handle its unique

address. A multiplexer is used to handle the signal routing back to the CPU based on the address

provided.

11.3 Computer Implementation: An 8-Bit Computer Example • 159

Example 11.10
Memory system block diagram for the 8-bit computer system

11.3.3.1 Program Memory Implementation in Verilog

The program memory can be implemented in Verilog using the modeling techniques presented in

Chap. 12. To make the Verilog more readable, the instruction mnemonics can be declared as

parameters. This allows the mnemonic to be used when populating the program memory array. The

following Verilog shows how the mnemonics for our basic instruction set can be defined as parameters.

parameter LDA_IMM ¼ 8’h86; //-- Load Register A with Immediate Addressing
parameter LDA_DIR ¼ 8’h87; //-- Load Register A with Direct Addressing
parameter LDB_IMM ¼ 8’h88; //-- Load Register B with Immediate Addressing
parameter LDB_DIR ¼ 8’h89; //-- Load Register B with Direct Addressing
parameter STA_DIR ¼ 8’h96; //-- Store Register A to memory (RAM or IO)
parameter STB_DIR ¼ 8’h97; //-- Store Register B to memory (RAM or IO)
parameter ADD_AB ¼ 8’h42; //-- A <¼ A + B
parameter BRA ¼ 8’h20; //-- Branch Always
parameter BEQ ¼ 8’h23; //-- Branch if Z¼1

Now the program memory can be declared as an array type with initial values to define the program.

The following Verilog shows how to declare the program memory and an example program to perform a

load, store, and a branch always. This program will continually write x“AA” to port_out_00.

160 • Chapter 11: Computer System Design

https://doi.org/10.1007/978-3-030-10552-5_12

reg[7:0] ROM[0:127];

initial
begin

ROM[0] ¼ LDA_IMM;
ROM[1] ¼ 8’hAA;
ROM[2] ¼ STA_DIR;
ROM[3] ¼ 8’hE0;
ROM[4] ¼ BRA;
ROM[5] ¼ 8’h00;

end

The address mapping for the program memory is handled in two ways. First, notice that the array

type defined above uses indices from 0 to 127. This provides the appropriate addresses for each location

in the memory. The second step is to create an internal enable line that will only allow assignments from

ROM to data_out when a valid address is entered. Consider the following Verilog to create an internal

enable (EN) that will only be asserted when the address falls within the valid program memory range of

0 to 127.

always @ (address)
begin

if ((address >¼ 0) && (address <¼ 127))
EN ¼ 1’b1;

else
EN ¼ 1’b0;

end

If this enable signal is not created, the simulation and synthesis will fail because data_out

assignments will be attempted for addresses outside of the defined range of the ROM array. This enable

line can now be used in the behavioral model for the ROM as follows:

always @ (posedge clock)
begin

if (EN)
data_out ¼ ROM[address];

end

11.3.3.2 Data Memory Implementation in Verilog

The data memory is created using a similar strategy as the program memory. An array signal is

declared with an address range corresponding to the memory map for the computer system (i.e., 128 to

223). An internal enable is again created that will prevent data_out assignments for addresses outside of

this valid range. The following is the Verilog to declare the R/W memory array:

reg[7:0] RW[128:223];

The following is the Verilog to model the local enable and signal assignments for the R/W memory:

always @ (address)
begin

if ((address >¼ 128) && (address <¼ 223))
EN ¼ 1’b1;

else
EN ¼ 1’b0;

end

11.3 Computer Implementation: An 8-Bit Computer Example • 161

always @ (posedge clock)
begin

if (write && EN)
RW[address] ¼ data_in;

else if (!write && EN)
data_out ¼ RW[address];

end

11.3.3.3 Implementation of Output Ports in Verilog

Each output port in the computer system is assigned a unique address. Each output port also

contains storage capability. This allows the CPU to update an output port by writing to its specific

address. Once the CPU is done storing to the output port address and moves to the next instruction in

the program, the output port holds its information until it is written to again. This behavior can be modeled

using an RTL procedural block that uses the address bus and the write signal to create a synchronous

enable condition. Each output port is modeled with its own block. The following Verilog shows how the

output ports at x“E0” and x“E1” are modeled using address specific procedural blocks.

//-- port_out_00 (address E0)
always @ (posedge clock or negedge reset)
begin

if (!reset)
port_out_00 <¼ 8’h00;

else
if ((address ¼¼ 8’hE0) && (write))

port_out_00 <¼ data_in;
end

//-- port_out_01 (address E1)
always @ (posedge clock or negedge reset)
begin

if (!reset)
port_out_01 <¼ 8’h00;

else
if ((address ¼¼ 8’hE1) && (write))

port_out_01 <¼ data_in;
end

:
“the rest of the output port models go here. . .”

:

11.3.3.4 Implementation of Input Ports in Verilog

The input ports do not contain storage but do require a mechanism to selectively route their

information to the data_out port of the memory system. This is accomplished using the multiplexer

shown in Example 11.10. The only functionality that is required for the input ports is connecting their ports

to the multiplexer.

11.3.3.5 Memory data_out Bus Implementation in Verilog

Now that all of the memory functionality has been designed, the final step is to implement the

multiplexer that handles routing the appropriate information to the CPU on the data_out bus based on the

incoming address. The following Verilog provides a model for this behavior. Recall that a multiplexer is

combinational logic, so if the behavior is to be modeled using a procedural block, all inputs must be listed

in the sensitivity list and blocking assignments are used. These inputs include the outputs from the

program and data memory in addition to all of the input ports. The sensitivity list must also include the

162 • Chapter 11: Computer System Design

address bus as it acts as the select input to the multiplexer. Within the block, an if-else statement is used

to determine which subsystem drives data_out. Program memory will drive data_out when the incoming

address is in the range of 0 to 127 (x“00” to x“7F”). Data memory will drive data_out when the address is

in the range of 128 to 223 (x“80” to x“DF”). An input port will drive data_out when the address is in the

range of 240 to 255 (x“F0” to x“FF”). Each input port has a unique address, so the specific addresses are

listed as nested if-else clauses.

always @ (address, rom_data_out, rw_data_out,
port_in_00, port_in_01, port_in_02, port_in_03,
port_in_04, port_in_05, port_in_06, port_in_07,
port_in_08, port_in_09, port_in_10, port_in_11,
port_in_12, port_in_13, port_in_14, port_in_15)

begin: MUX1

if ((address >¼ 0) && (address <¼ 127))
data_out ¼ rom_data_out;

else if ((address >¼ 128) && (address <¼ 223))
data_out ¼ rw_data_out;

else if (address ¼¼ 8’hF0) data_out ¼ port_in_00;
else if (address ¼¼ 8’hF1) data_out ¼ port_in_01;
else if (address ¼¼ 8’hF2) data_out ¼ port_in_02;
else if (address ¼¼ 8’hF3) data_out ¼ port_in_03;
else if (address ¼¼ 8’hF4) data_out ¼ port_in_04;
else if (address ¼¼ 8’hF5) data_out ¼ port_in_05;
else if (address ¼¼ 8’hF6) data_out ¼ port_in_06;
else if (address ¼¼ 8’hF7) data_out ¼ port_in_07;
else if (address ¼¼ 8’hF8) data_out ¼ port_in_08;
else if (address ¼¼ 8’hF9) data_out ¼ port_in_09;
else if (address ¼¼ 8’hFA) data_out ¼ port_in_10;
else if (address ¼¼ 8’hFB) data_out ¼ port_in_11;
else if (address ¼¼ 8’hFC) data_out ¼ port_in_12;
else if (address ¼¼ 8’hFD) data_out ¼ port_in_13;
else if (address ¼¼ 8’hFE) data_out ¼ port_in_14;
else if (address ¼¼ 8’hFF) data_out ¼ port_in_15;

end

11.3.4 CPU Implementation

Let’s now look at the central processing unit details. The CPU contains two components, the control

unit (control_unit.v) and the data path (data_path.v). The data path contains all of the registers and the

ALU. The ALU is implemented as a subsystem within the data path (alu.v). The data path also contains a

bus system in order to facilitate data movement between the registers and memory. The bus system is

implemented with two multiplexers that are controlled by the control unit. The control unit contains the

finite state machine that generates all control signals for the data path as it performs the fetch-decode-

execute steps of each instruction. Example 11.11 shows the block diagram of the CPU in our 8-bit

microcomputer example.

11.3 Computer Implementation: An 8-Bit Computer Example • 163

Example 11.11
CPU block diagram for the 8-bit computer system

11.3.4.1 Data Path Implementation in Verilog

Let’s first look at the data path bus system that handles internal signal routing. The system consists

of two 8-bit busses (Bus1 and Bus2) and two multiplexers. Bus1 is used as the destination of the PC, A,

and B register outputs, while Bus2 is used as the input to the IR, MAR, PC, A, and B registers. Bus1 is

connected directly to the to_memory port of the CPU to allow registers to write data to the memory

system. Bus2 can be driven by the from_memory port of the CPU to allow the memory system to provide

data for the CPU registers. The two multiplexers handle all signal routing and have their select lines

(Bus1_Sel and Bus2_Sel) driven by the control unit. The following Verilog shows how the multiplexers

are implemented. Again, a multiplexer is combinational logic, so all inputs must be listed in the sensitivity

list of its procedural block and blocking assignments are used. Two additional signal assignments are

also required to connect the MAR to the address port and to connect Bus1 to the to_memory port.

164 • Chapter 11: Computer System Design

always @ (Bus1_Sel, PC, A, B)
begin: MUX_BUS1

case (Bus1_Sel)
2’b00 : Bus1 ¼ PC;
2’b01 : Bus1 ¼ A;
2’b10 : Bus1 ¼ B;
default : Bus1 ¼ 8’hXX;

endcase
end

always @ (Bus2_Sel, ALU_Result, Bus1, from_memory)
begin: MUX_BUS2

case (Bus2_Sel)
2’b00 : Bus2 ¼ ALU_Result;
2’b01 : Bus2 ¼ Bus1;
2’b10 : Bus2 ¼ from_memory;
default : Bus1 ¼ 8’hXX;

endcase
end

always @ (Bus1, MAR)
begin

to_memory ¼ Bus1;
address ¼ MAR;

end

Next, let’s look at implementing the registers in the data path. Each register is implemented using a

dedicated procedural block that is sensitive to clock and reset. This models the behavior of synchronous

latches, or registers. Each register has a synchronous enable line that dictates when the register is

updated. The register output is only updated when the enable line is asserted and a rising edge of the

clock is detected. The following Verilog shows how to model the instruction register (IR). Notice that the

signal IR is only updated if IR_Load is asserted and there is a rising edge of the clock. In this case, IR is

loaded with the value that resides on Bus2.

always @ (posedge clock or negedge reset)
begin: INSTRUCTION_REGISTER

if (!reset)
IR <¼ 8’h00;

else
if (IR_Load)

IR <¼ Bus2;
end

A nearly identical block is used to model the memory address register. A unique signal is declared

called MAR in order to make the Verilog more readable. MAR is always assigned to address in this

system.

always @ (posedge clock or negedge reset)
begin: MEMORY_ADDRESS_REGISTER

if (!reset)
MAR <¼ 8’h00;

else
if (MAR_Load)

MAR <¼ Bus2;
end

Now let’s look at the program counter block. This register contains additional functionality beyond

simply latching in the value of Bus2. The program counter also has an increment feature that will take

place synchronously when the signal PC_Inc coming from the control unit is asserted. This is handled

using an additional nested if-else clause under the portion of the block handling the rising edge of clock

condition.

11.3 Computer Implementation: An 8-Bit Computer Example • 165

always @ (posedge clock or negedge reset)
begin: PROGRAM_COUNTER

if (!reset)
PC <¼ 8’h00;

else
if (PC_Load)
PC <¼ Bus2;

else if (PC_Inc)
PC <¼ MAR + 1;

end

The two general-purpose registers A and B are modeled using individual procedural blocks as

follows:

always @ (posedge clock or negedge reset)
begin: A_REGISTER

if (!reset)
A <¼ 8’h00;

else
if (A_Load)

A <¼ Bus2;
end

always @ (posedge clock or negedge reset)
begin: B_REGISTER

if (!reset)
B <¼ 8’h00;

else
if (B_Load)

B <¼ Bus2;
end

The condition code register latches in the status flags from the ALU (NZVC) when the CCR_Load

line is asserted. This behavior is modeled using a similar approach as follows:

always @ (posedge clock or negedge reset)
begin: CONDITION_CODE_REGISTER

if (!reset)
CCR_Result <¼ 8’h00;

else
if (CCR_Load)

CCR_Result <¼ NZVC;
end

11.3.4.2 ALU Implementation in Verilog

The ALU is a set of combinational logic circuitry that performs arithmetic and logic operations. The

output of the ALU operation is called Result. The ALU also outputs 4 status flags as a 4-bit bus called

NZVC. The ALU behavior can be modeled using case and if-else statements that decide which operation

to perform based on the input control signal ALU_Sel. The following Verilog shows an example of how to

implement the ALU addition functionality. A case statement is used to decide which operation is being

performed based on the ALU_Sel input. Under each operation clause, a series of procedural statements

are used to compute the result and update the NZVC flags. Each of these flags is updated individually.

The N flag can be simply driven with position 7 of the ALU result since this bit is the sign bit for signed

numbers. The Z flag can be driven using an if-else condition that checks whether the result was x“00”.

The V flag is updated based on the type of the operation. For the addition operation, the V flag will be

asserted if a POS + POS ¼ NEG or a NEG + NEG ¼ POS. These conditions can be checked by looking

at the sign bits of the inputs and the sign bit of the result. Finally, theC flag can be computed as the 8th bit

in the addition of A + B.

166 • Chapter 11: Computer System Design

always @ (A, B, ALU_Sel)
begin

case (ALU_Sel)
3’b000 : begin //-- Addition

//-- Sum and Carry Flag
{NZVC[0], Result} ¼ A + B;

//-- Negative Flag
NZVC[3] ¼ Result[7];

//-- Zero Flag
if (Result ¼¼ 0)

NZVC[2] ¼ 1;
else

NZVC[2] ¼ 0;

//-- Two’s Comp Overflow Flag
if (((A[7]¼¼0) && (B[7]¼¼0) && (Result[7] ¼¼ 1)) ||

((A[7]¼¼1) && (B[7]¼¼1) && (Result[7] ¼¼ 0)))
NZVC[1] ¼ 1;

else
NZVC[1] ¼ 0;

end

:
//-- other ALU operations go here...

:

default : begin
Result ¼ 8’hXX;
NZVC ¼ 4’hX;

end
endcase

end

11.3.4.3 Control Unit Implementation in Verilog

Let’s now look at how to implement the control unit state machine. We’ll first look at the formation of

the Verilog to model the FSM and then turn to the detailed state transitions in order to accomplish a

variety of the most common instructions. The control unit sends signals to the data path in order to move

data in and out of registers and into the ALU to perform data manipulations. The finite state machine is

implemented with the behavioral modeling techniques presented in Chap. 9. The model contains three

processes in order to implement the state memory, next state logic, and output logic of the FSM.

Parameters are created for each of the states defined in the state diagram of the FSM. The states

associated with fetching (S_FETCH_0, S_FETCH_1, S_FETCH_2) and decoding the opcode

(S_DECODE_3) are performed each time an instruction is executed. A unique path is then added

after the decode state to perform the steps associated with executing each individual instruction. The

FSM can be created one instruction at a time by adding additional state paths after the decode state. The

following Verilog code shows how the user-defined state names are created for nine basic instructions

(LDA_IMM, LDA_DIR, STA_DIR, LDB_IMM, LDB_DIR, STB_DIR, ADD_AB, BRA, and BEQ). Eight-bit

state variables are created for current_state and next_state to accommodate future state codes. The

state codes are assigned in binary using integer format to allow additional states to be easily added.

11.3 Computer Implementation: An 8-Bit Computer Example • 167

reg [7:0] current_state, next_state;
parameter S_FETCH_0 ¼ 0, //-- Opcode fetch states

S_FETCH_1 ¼ 1,
S_FETCH_2 ¼ 2,

S_DECODE_3 ¼ 3, //-- Opcode decode state

S_LDA_IMM_4 ¼ 4, //-- Load A (Immediate) states
S_LDA_IMM_5 ¼ 5,
S_LDA_IMM_6 ¼ 6,

S_LDA_DIR_4 ¼ 7, //-- Load A (Direct) states
S_LDA_DIR_5 ¼ 8,
S_LDA_DIR_6 ¼ 9,
S_LDA_DIR_7 ¼ 10,
S_LDA_DIR_8 ¼ 11,

S_STA_DIR_4 ¼ 12, //-- Store A (Direct) States
S_STA_DIR_5 ¼ 13,
S_STA_DIR_6 ¼ 14,
S_STA_DIR_7 ¼ 15,

S_LDB_IMM_4 ¼ 16, //-- Load B (Immediate) states
S_LDB_IMM_5 ¼ 17,
S_LDB_IMM_6 ¼ 18,

S_LDB_DIR_4 ¼ 19, //-- Load B (Direct) states
S_LDB_DIR_5 ¼ 20,
S_LDB_DIR_6 ¼ 21,
S_LDB_DIR_7 ¼ 22,
S_LDB_DIR_8 ¼ 23,

S_STB_DIR_4 ¼ 24, //-- Store B (Direct) States
S_STB_DIR_5 ¼ 25,
S_STB_DIR_6 ¼ 26,
S_STB_DIR_7 ¼ 27,

S_BRA_4 ¼ 28, //-- Branch Always States
S_BRA_5 ¼ 29,
S_BRA_6 ¼ 30,

S_BEQ_4 ¼ 31, //-- Branch if Equal States
S_BEQ_5 ¼ 32,
S_BEQ_6 ¼ 33,
S_BEQ_7 ¼ 34,

S_ADD_AB_4 ¼ 35; //-- Addition States

Within the control unit module, the state memory is implemented as a separate procedural block that

will update the current state with the next state on each rising edge of the clock. The reset state will be the

first fetch state in the FSM (i.e., S_FETCH_0). The following Verilog shows how the state memory in the

control unit can be modeled. Note that this block models sequential logic, so non-blocking assignments

are used.

always @ (posedge clock or negedge reset)
begin: STATE_MEMORY

if (!reset)
current_state <¼ S_FETCH_0;

else
current_state <¼ next_state;

end

168 • Chapter 11: Computer System Design

The next state logic is also implemented as a separate procedural block. The next state logic

depends on the current state, instruction register (IR), and the condition code register (CCR_Result). The

following Verilog gives a portion of the next state logic process showing how the state transitions can be

modeled.

always @ (current_state, IR, CCR_Result)
begin: NEXT_STATE_LOGIC

case (current_state)
S_FETCH_0 : next_state ¼ S_FETCH_1; //-- Path for FETCH instruction
S_FETCH_1 : next_state ¼ S_FETCH_2;
S_FETCH_2 : next_state ¼ S_DECODE_3;

S_DECODE_3 : if (IR ¼¼ LDA_IMM) next_state ¼ S_LDA_IMM_4; //-- Register
A

else if (IR ¼¼ LDA_DIR) next_state ¼ S_LDA_DIR_4;
else if (IR ¼¼ STA_DIR) next_state ¼ S_STA_DIR_4;
else if (IR ¼¼ LDB_IMM) next_state¼ S_LDB_IMM_4;//-- Register

B
else if (IR ¼¼ LDB_DIR) next_state ¼ S_LDB_DIR_4;
else if (IR ¼¼ STB_DIR) next_state ¼ S_STB_DIR_4;
else if (IR ¼¼ BRA) next_state ¼ S_BRA_4; //-- Branch

Always
else if (IR ¼¼ ADD_AB) next_state ¼ S_ADD_AB_4; //-- ADD
else next_state ¼ S_FETCH_0; //-- others

go here

S_LDA_IMM_4 : next_state ¼ S_LDA_IMM_5; //-- Path for LDA_IMM instruction
S_LDA_IMM_5 : next_state ¼ S_LDA_IMM_6;
S_LDA_IMM_6 : next_state ¼ S_FETCH_0;

:
Next state logic for other states goes here. . .

:
endcase

end

Finally, the output logic is modeled as a third, separate procedural block. It is useful to explicitly state

the outputs of the control unit for each state in the machine to allow easy debugging and avoid

synthesizing latches. Our example computer system has Moore type outputs, so the process only

depends on the current state. The following Verilog shows a portion of the output logic process.

always @ (current_state)
begin: OUTPUT_LOGIC

case (current_state)

S_FETCH_0 : begin //-- Put PC onto MAR to provide address of Opcode
IR_Load ¼ 0;
MAR_Load ¼ 1;
PC_Load ¼ 0;
PC_Inc ¼ 0;
A_Load ¼ 0;
B_Load ¼ 0;
ALU_Sel ¼ 3’b000;
CCR_Load ¼ 0;
Bus1_Sel ¼ 2’b00;//-- "00"¼PC, "01"¼A, "10"¼B
Bus2_Sel ¼ 2’b01; //-- "00"¼ALU,"01"¼Bus1,"10"¼from_memory
write ¼ 0;

end

11.3 Computer Implementation: An 8-Bit Computer Example • 169

S_FETCH_1 : begin //-- Increment PC, Opcode will be available next state
IR_Load ¼ 0;
MAR_Load ¼ 0;
PC_Load ¼ 0;
PC_Inc ¼ 1;
A_Load ¼ 0;
B_Load ¼ 0;
ALU_Sel ¼ 3’b000;
CCR_Load ¼ 0;
Bus1_Sel ¼ 2’b00; //--"00"¼PC, "01"¼A, "10"¼B
Bus2_Sel ¼ 2’b00; //--"00"¼ALU,"01"¼Bus1,"10"¼from_memory
write ¼ 0;

end;

:
Output logic for other states goes here. . .

:
endcase

end

11.3.4.3.1 Detailed Execution of LDA_IMM

Now let’s look at the details of the state transitions and output signals in the control unit FSM when

executing a few of the most common instructions. Let’s begin with the instruction to load register A using

immediate addressing (LDA_IMM). Example 11.12 shows the state diagram for this instruction. The first

three states (S_FETCH_0, S_FETCH_1, S_FETCH_2) handle fetching the opcode. The purpose of

these states is to read the opcode from the address being held by the program counter and put it into the

instruction register. Multiple states are needed to handle putting PC into MAR to provide the address of

the opcode, waiting for the memory system to provide the opcode, latching the opcode into IR, and

incrementing PC to the next location in program memory. Another state is used to decode the opcode

(S_DECODE_3) in order to decide which path to take in the state diagram based on the instruction being

executed. After the decode state, a series of three more states are needed (S_LDA_IMM_4,

S_LDA_IMM_5, S_LDA_IMM_6) to execute the instruction. The purpose of these states is to read the

operand from the address being held by the program counter and put it into A. Multiple states are needed

to handle putting PC into MAR to provide the address of the operand, waiting for the memory system to

provide the operand, latching the operand into A, and incrementing PC to the next location in program

memory. When the instruction completes, the value of the operand resides in A and PC is pointing to the

next location in program memory, which is the opcode of the next instruction to be executed.

170 • Chapter 11: Computer System Design

Example 11.12
State diagram for LDA_IMM

Example 11.13 shows the simulation waveform for executing LDA_IMM. In this example, register A

is loaded with the operand of the instruction, which holds the value x“AA”.

11.3 Computer Implementation: An 8-Bit Computer Example • 171

Example 11.13
Simulation waveform for LDA_IMM

11.3.4.3.2 Detailed Execution of LDA_DIR

Now let’s look at the details of the instruction to load register A using direct addressing (LDA_DIR).

Example 11.14 shows the state diagram for this instruction. The first four states to fetch and decode the

opcode are the same states as in the previous instruction and are performed each time a new instruction

is executed. Once the opcode is decoded, the state machine traverses five new states to execute the

instruction (S_LDA_DIR_4, S_LDA_DIR_5, S_LDA_DIR_6, S_LDA_DIR_7, S_LDA_DIR_8). The pur-

pose of these states is to read the operand and then use it as the address of where to read the contents to

put into A.

172 • Chapter 11: Computer System Design

Example 11.14
State diagram for LDA_DIR

Example 11.15 shows the simulation waveform for executing LDA_DIR. In this example, register A

is loaded with the contents located at address x“80”, which has already been initialized to x“AA”.

11.3 Computer Implementation: An 8-Bit Computer Example • 173

Example 11.15
Simulation waveform for LDA_DIR

11.3.4.3.3 Detailed Execution of STA_DIR

Now let’s look at the details of the instruction to store register A to memory using direct addressing

(STA_DIR). Example 11.16 shows the state diagram for this instruction. The first four states are again the

same as prior instructions in order to fetch and decode the opcode. Once the opcode is decoded, the

state machine traverses four new states to execute the instruction (S_STA_DIR_4, S_STA_DIR_5,

S_STA_DIR_6, S_STA_DIR_7). The purpose of these states is to read the operand and then use it as

the address of where to write the contents of A to.

174 • Chapter 11: Computer System Design

Example 11.16
State diagram for STA_DIR

Example 11.17 shows the simulation waveform for executing STA_DIR. In this example, register A

already contains the value x“CC” and will be stored to address x“E0”. The address x“E0” is an output port

(port_out_00) in our example computer system.

11.3 Computer Implementation: An 8-Bit Computer Example • 175

Example 11.17
Simulation waveform for STA_DIR

11.3.4.3.4 Detailed Execution of ADD_AB

Now let’s look at the details of the instruction to add A to B and store the sum back in A (ADD_AB).

Example 11.18 shows the state diagram for this instruction. The first four states are again the same as

prior instructions in order to fetch and decode the opcode. Once the opcode is decoded, the state

machine only requires one more state to complete the operation (S_ADD_AB_4). The ALU is combina-

tional logic, so it will begin to compute the sum immediately as soon as the inputs are updated. The inputs

to the ALU are Bus1 and register B. Since B is directly connected to the ALU, all that is required to start

the addition is to put A onto Bus1. The output of the ALU is put on Bus2 so that it can be latched into A on

the next clock edge. The ALU also outputs the status flags NZVC, which are directly connected to the

condition code register. A_Load and CCR_Load are asserted in this state. A and CCR_Result will be

updated in the next state (i.e., S_FETCH_0).

176 • Chapter 11: Computer System Design

Example 11.18
State diagram for ADD_AB

Example 11.19 shows the simulation waveform for executing ADD_AB. In this example, two load

immediate instructions were used to initialize the general-purpose registers to A ¼ x“FF” and B ¼ x“01”

prior to the addition. The addition of these values will result in a sum of x“00” and assert the carry (C) and

zero (Z) flags in the condition code register.

11.3 Computer Implementation: An 8-Bit Computer Example • 177

Example 11.19
Simulation waveform for ADD_AB

11.3.4.3.5 Detailed Execution of BRA

Now let’s look at the details of the instruction to branch always (BRA). Example 11.20 shows the

state diagram for this instruction. The first four states are again the same as prior instructions in order to

fetch and decode the opcode. Once the opcode is decoded, the state machine traverses four new states

to execute the instruction (S_BRA_4, S_BRA_5, S_BRA_6). The purpose of these states is to read the

operand and put its value into PC to set the new location in program memory to execute instructions.

178 • Chapter 11: Computer System Design

Example 11.20
State diagram for BRA

Example 11.21 shows the simulation waveform for executing BRA. In this example, PC is set back to

address x“00”.

11.3 Computer Implementation: An 8-Bit Computer Example • 179

Example 11.21
Simulation waveform for BRA

11.3.4.3.6 Detailed Execution of BEQ

Now let’s look at the branch if equal to zero (BEQ) instruction. Example 11.22 shows the state

diagram for this instruction. Notice that in this conditional branch, the path that is taken through the FSM

depends on both IR and CCR. In the case that Z ¼ 1, the branch is taken, meaning that the operand is

loaded into PC. In the case that Z¼ 0, the branch is not taken, meaning that PC is simply incremented to

bypass the operand and point to the beginning of the next instruction in program memory.

180 • Chapter 11: Computer System Design

Example 11.22
State diagram for BEQ

Example 11.23 shows the simulation waveform for executing BEQwhen the branch is taken. Prior to

this instruction, an addition was performed on x“FF” and x“01”. This resulted in a sum of x“00”, which

asserted the Z and C flags in the condition code register. Since Z¼ 1 when BEQ is executed, the branch

is taken.

11.3 Computer Implementation: An 8-Bit Computer Example • 181

Example 11.23
Simulation waveform for BEQ when taking the branch (Z ¼ 1)

Example 11.24 shows the simulation waveform for executing BEQ when the branch is not taken.

Prior to this instruction, an addition was performed on x“FE” and x“01”. This resulted in a sum of x“FF”,

which did not assert the Z flag. Since Z ¼ 0 when BEQ is executed, the branch is not taken. When not

taking the branch, PC must be incremented again in order to bypass the operand and point to the next

location in program memory.

182 • Chapter 11: Computer System Design

Example 11.24
Simulation waveform for BEQ when the branch is not taken (Z ¼ 0)

11.3 Computer Implementation: An 8-Bit Computer Example • 183

CONCEPT CHECK

CC11.3 The 8-bit microcomputer example presented in this section is a very simple architec-
ture used to illustrate the basic concepts of a computer. If we wanted to keep this
computer an 8-bit system but increase the depth of the memory, it would require adding
more address lines to the address bus. What changes to the computer system would
need to be made to accommodate the wider address bus?

(A) The width of the program counter would need to be increased to support the
wider address bus.

(B) The size of the memory address register would need to be increased to
support the wider address bus.

(C) Instructions that use direct addressing would need additional bytes of oper-
and to pass the wider address into the CPU 8-bits at a time.

(D) All of the above

Summary

v A computer is a collection of hardware
components that are constructed to perform
a specific set of instructions to process and
store data. The main hardware components
of a computer are the central processing unit
(CPU), program memory, data memory, and
input/output ports.

v The CPU consists of registers for fast stor-
age, an arithmetic logic unit (ALU) for data
manipulation, and a control state machine
that directs all activity to execute an
instruction.

v A CPU is typically organized into a data path
and a control unit. The data path contains
circuitry used to store and process informa-
tion. The data path includes registers and the
ALU. The control unit is a large state machine
that sends control signals to the data path in
order to facilitate instruction execution.

v The control unit performs a fetch-decode-
execute cycle in order to complete
instructions.

v The instructions that a computer is designed
to execute is called its instruction set.

v Instructions are inserted into program mem-
ory in a sequence that when executed will
accomplish a particular task. This sequence
of instructions is called a computer program.

v An instruction consists of an opcode and a
potential operand. The opcode is the unique
binary code that tells the control state
machine which instruction is being executed.

An operand is additional information that may
be needed for the instruction.

v An addressing mode refers to the way that
the operand is treated. In immediate
addressing the operand is the actual data to
be used. In direct addressing the operand is
the address of where the data is to be
retrieved or stored. In inherent addressing
all of the information needed to complete
the instruction is contained within the
opcode, so no operand is needed.

v A computer also contains data memory to
hold temporary variables during run time.

v A computer also contains input and output
ports to interface with the outside world.

v A memory mapped system is one in which
the program memory, data memory, and I/O
ports are all assigned a unique address. This
allows the CPU to simply process information
as data and addresses and allows the pro-
gram to handle where the information is
being sent to. A memory map is a graphical
representation of what address ranges vari-
ous components are mapped to.

v There are three primary classes of
instructions. These are loads and stores,
data manipulations, and branches.

v Load instructions move information from
memory into a CPU register. A load instruc-
tion takes multiple read cycles. Store
instructions move information from a CPU
register into memory. A store instruction

184 • Chapter 11: Computer System Design

takes multiple read cycles and at least one
write cycle.

v Data manipulation instructions operate on
information being held in CPU registers.
Data manipulation instructions often use
inherent addressing.

v Branch instructions alter the flow of instruc-
tion execution. Unconditional branches
always change the location in memory of
where the CPU is executing instructions.

Conditional branches only change the loca-
tion of instruction execution if a status flag is
asserted.

v Status flags are held in the condition code reg-
ister and are updated by certain instructions.
The most commonly used flags are the nega-
tive flag (N), zero flag (Z), two’s complement
overflow flag (V), and carry flag (C).

Exercise Problems

Section 11.1: Computer Hardware

11.1.1 What computer hardware subsystem holds the
temporary variables used by the program?

11.1.2 What computer hardware subsystem contains
fast storage for holding and/or manipulating
data and addresses?

11.1.3 What computer hardware subsystem allows
the computer to interface to the outside world?

11.1.4 What computer hardware subsystem contains
the state machine that orchestrates the fetch-
decode-execute process?

11.1.5 What computer hardware subsystem contains
the circuitry that performs mathematical and
logic operations?

11.1.6 What computer hardware subsystem holds the
instructions being executed?

Section 11.2: Computer Software

11.2.1 In computer software, what are the names of
the most basic operations that a computer can
perform?

11.2.2 Which element of computer software is the
binary code that tells the CPUwhich instruction
is being executed?

11.2.3 Which element of computer software is a col-
lection of instructions that perform a desired
task?

11.2.4 Which element of computer software is the
supplementary information required by an
instruction such as constants or which
registers to use?

11.2.5 Which class of instructions handles moving
information between memory and CPU
registers?

11.2.6 Which class of instructions alters the flow of
program execution?

11.2.7 Which class of instructions alters data using
either arithmetic or logical operations?

Section 11.3: Computer Implementation:

An 8-Bit Computer Example

11.3.1 Design the example 8-bit computer system
presented in this chapter in Verilog with the

ability to execute the three instructions
LDA_IMM, STA_DIR, and BRA. Simulate your
computer system using the following program
that will continually write the patterns x“AA”
and x“BB” to output ports port_out_00 and
port_out_01:

initial
begin
ROM[0] ¼ LDA_IMM;
ROM[1] ¼ 8’hAA;
ROM[2] ¼ STA_DIR;
ROM[3] ¼ 8’hE0;
ROM[4] ¼ STA_DIR;
ROM[5] ¼ 8’hE1;
ROM[6] ¼ LDB_IMM;
ROM[7] ¼ 8’hBB;
ROM[8] ¼ STB_DIR;
ROM[9] ¼ 8’hE0;
ROM[10] ¼ STB_DIR;
ROM[11] ¼ 8’hE1;
ROM[12] ¼ BRA;
ROM[13] ¼ 8’h00;

end

11.3.2 Add the functionality to the computer model
from 11.3.1 the ability to perform the LDA_DIR
instruction. Simulate your computer system
using the following program that will continually
read from port_in_00 and write its contents to
port_out_00:

initial
begin
ROM[0] ¼ LDA_DIR;
ROM[1] ¼ 8’hF0;
ROM[2] ¼ STA_DIR;
ROM[3] ¼ 8’hE0;
ROM[4] ¼ BRA;
ROM[5] ¼ 8’h00;

end

11.3.3 Add the functionality to the computer model
from 11.3.2 the ability to perform the
instructions LDB_IMM, LDB_DIR, and
STB_DIR. Modify the example programs
given in Exercises 11.3.1 and 11.3.2 to use
register B in order to simulate your
implementation.

Exercise Problems • 185

11.3.4 Add the functionality to the computer model
from 11.3.3 the ability to perform the addition
instruction ADD_AB. Test your addition instruc-
tion by simulating the following program. The
first addition instruction will perform x“FE” +
x“01” ¼ x“FF” and assert the negative
(N) flag. The second addition instruction will
perform x“01” + x“FF” ¼ x“00” and assert the
carry (C) and zero (Z) flags. The third addition
instruction will perform x“7F” + x“7F” ¼ x“FE”
and assert the two’s complement overflow
(V) and negative (N) flags.

initial
begin
ROM[0] ¼ LDA_IMM; //-- test 1
ROM[1] ¼ 8’hFE;
ROM[2] ¼ LDB_IMM;
ROM[3] ¼ 8’h01;
ROM[4] ¼ ADD_AB;
ROM[5] ¼ LDA_IMM; //-- test 2
ROM[6] ¼ 8’h01;
ROM[7] ¼ LDB_IMM;
ROM[8] ¼ 8’hFF;
ROM[9] ¼ ADD_AB;
ROM[10] ¼ LDA_IMM; //-- test 3
ROM[11] ¼ 8’h7F;
ROM[12] ¼ LDB_IMM;
ROM[13] ¼ 8’h7F;
ROM[14] ¼ ADD_AB;
ROM[15] ¼ BRA;
ROM[16] ¼ 8’h00;

end

11.3.5 Add the functionality to the computer model
from 11.3.4 the ability to perform the branch if
equal to zero instruction BEQ. Simulate your

implementation using the following program.
The first addition in this program will perform
x“FE” + x“01” ¼ x“FF” (Z ¼ 0). The subsequent
BEQ instruction should NOT take the branch.
The second addition in this program will per-
form x“FF” + x“01” ¼ x“00” (Z ¼ 1) and
SHOULD take the branch. The final instruction
in this program is a BRA that is inserted for
safety. In the event that the BEQ is not
operating properly, the BRA will set the pro-
gram counter back to x“00” and prevent the
program from running away.

initial
begin

ROM[0] ¼ LDA_IMM; //-- test 1
ROM[1] ¼ 8’hFE;
ROM[2] ¼ LDB_IMM;
ROM[3] ¼ 8’h01;
ROM[4] ¼ ADD_AB;
ROM[5] ¼ BEQ; //--NO branch
ROM[6] ¼ 8’h00;

ROM[7] ¼ LDA_IMM; //-- test 2
ROM[8] ¼ 8’h01;
ROM[9] ¼ LDB_IMM;
ROM[10] ¼ 8’hFF;
ROM[11] ¼ ADD_AB;
ROM[12] ¼ BEQ; //-- Branch
ROM[13] ¼ 8’h00;

ROM[14] ¼ BRA;
ROM[15] ¼ 8’h00;

end

186 • Chapter 11: Computer System Design

Appendix A: List of Worked Examples

EXAMPLE 2.1 DECLARING VERILOG MODULE PORTS 19

EXAMPLE 3.1 BEHAVIORAL MODEL OF A 4-BIT ADDER IN VERILOG 28

EXAMPLE 3.2 COMBINATIONAL LOGIC USING CONTINUOUS ASSIGNMENT WITH LOGICAL OPERATORS 30

EXAMPLE 3.3 3-TO-8 ONE-HOT DECODER—VERILOG MODELING USING LOGICAL OPERATORS 31

EXAMPLE 3.4 7-SEGMENT DISPLAY DECODER—TRUTH TABLE 32

EXAMPLE 3.5 7-SEGMENT DISPLAY DECODER—LOGIC SYNTHESIS BY HAND 33

EXAMPLE 3.6 7-SEGMENT DISPLAY DECODER—VERILOG MODELING USING LOGICAL OPERATORS 34

EXAMPLE 3.7 4-TO-2 BINARY ENCODER—LOGIC SYNTHESIS BY HAND 35

EXAMPLE 3.8 4-TO-2 BINARY ENCODER—VERILOG MODELING USING LOGICAL OPERATORS 35

EXAMPLE 3.9 4-TO-1 MULTIPLEXER—VERILOG MODELING USING LOGICAL OPERATORS 36

EXAMPLE 3.10 1-TO-4 DEMULTIPLEXER—VERILOG MODELING USING LOGICAL OPERATORS 37

EXAMPLE 3.11 COMBINATIONAL LOGIC USING CONTINUOUS ASSIGNMENT WITH CONDITIONAL OPERATORS (1) 38

EXAMPLE 3.12 COMBINATIONAL LOGIC USING CONTINUOUS ASSIGNMENT WITH CONDITIONAL OPERATORS (2) 39

EXAMPLE 3.13 3-TO-8 ONE-HOT DECODER—VERILOG MODELING USING CONDITIONAL OPERATORS 39

EXAMPLE 3.14 7-SEGMENT DISPLAY DECODER—VERILOG MODELING USING CONDITIONAL OPERATORS 40

EXAMPLE 3.15 4-TO-2 BINARY ENCODER—VERILOG MODELING USING CONDITIONAL OPERATORS 41

EXAMPLE 3.16 4-TO-1 MULTIPLEXER—VERILOG MODELING USING CONDITIONAL OPERATORS 41

EXAMPLE 3.17 1-TO-4 DEMULTIPLEXER—VERILOG MODELING USING CONDITIONAL OPERATORS 42

EXAMPLE 3.18 MODELING DELAY IN CONTINUOUS ASSIGNMENTS 44

EXAMPLE 3.19 INERTIAL DELAY MODELING WHEN USING CONTINUOUS ASSIGNMENT 45

EXAMPLE 4.1 VERILOG STRUCTURAL DESIGN USING EXPLICIT PORT MAPPING 52

EXAMPLE 4.2 VERILOG STRUCTURAL DESIGN USING POSITIONAL PORT MAPPING 53

EXAMPLE 4.3 MODELING COMBINATIONAL LOGIC CIRCUITS USING GATE-LEVEL PRIMITIVES 54

EXAMPLE 4.4 MODELING COMBINATIONAL LOGIC CIRCUITS WITH A USER-DEFINED PRIMITIVE 55

EXAMPLE 4.5 DESIGN OF A HALF ADDER 56

EXAMPLE 4.6 DESIGN OF A FULL ADDER 57

EXAMPLE 4.7 DESIGN OF A FULL ADDER OUT OF HALF ADDERS 58

EXAMPLE 4.8 DESIGN OF A 4-BIT RIPPLE CARRY ADDER (RCA) 59

EXAMPLE 4.9 STRUCTURAL MODEL OF A FULL ADDER USING TWO HALF ADDERS 60

EXAMPLE 4.10 STRUCTURAL MODEL OF A 4-BIT RIPPLE CARRY ADDER IN VERILOG 61

EXAMPLE 5.1 USING BLOCKING ASSIGNMENTS TO MODEL COMBINATIONAL LOGIC 69

EXAMPLE 5.2 USING NON-BLOCKING ASSIGNMENTS TO MODEL SEQUENTIAL LOGIC 69

EXAMPLE 5.3 IDENTICAL BEHAVIOR WHEN USING BLOCKING VS. NON-BLOCKING ASSIGNMENTS 70

EXAMPLE 5.4 DIFFERENT BEHAVIOR WHEN USING BLOCKING VS. NON-BLOCKING ASSIGNMENTS (1) 71

EXAMPLE 5.5 DIFFERENT BEHAVIOR WHEN USING BLOCKING VS. NON-BLOCKING ASSIGNMENTS (2) 72

EXAMPLE 5.6 BEHAVIOR OF STATEMENT GROUPS BEGIN/END VS. FORK/JOIN 73

EXAMPLE 5.7 USING IF-ELSE STATEMENTS TO MODEL COMBINATIONAL LOGIC 75

EXAMPLE 5.8 USING CASE STATEMENTS TO MODEL COMBINATIONAL LOGIC 76

EXAMPLE 6.1 TEST BENCH FOR A COMBINATIONAL LOGIC CIRCUIT WITH MANUAL STIMULUS GENERATION 90

EXAMPLE 6.2 TEST BENCH FOR A SEQUENTIAL LOGIC CIRCUIT 91

EXAMPLE 6.3 PRINTING TEST BENCH RESULTS TO THE TRANSCRIPT 92

EXAMPLE 6.4 USING A LOOP TO GENERATE STIMULUS IN A TEST BENCH 94

EXAMPLE 6.5 TEST BENCH WITH AUTOMATIC OUTPUT CHECKING 95

EXAMPLE 6.6 PRINTING TEST BENCH RESULTS TO AN EXTERNAL FILE 97

EXAMPLE 6.7 READING TEST BENCH STIMULUS VECTORS FROM AN EXTERNAL FILE 98

EXAMPLE 7.1 BEHAVIORAL MODEL OF A D-LATCH IN VERILOG 103

EXAMPLE 7.2 BEHAVIORAL MODEL OF A D-FLIP-FLOP IN VERILOG 104

EXAMPLE 7.3 BEHAVIORAL MODEL OF A D-FLIP-FLOP WITH ASYNCHRONOUS RESET IN VERILOG 105

EXAMPLE 7.4 BEHAVIORAL MODEL OF A D-FLIP-FLOP WITH ASYNCHRONOUS RESET AND PRESET IN VERILOG 106

EXAMPLE 7.5 BEHAVIORAL MODEL OF A D-FLIP-FLOP WITH SYNCHRONOUS ENABLE IN VERILOG 107

EXAMPLE 7.6 RTL MODEL OF AN 8-BIT REGISTER IN VERILOG 108

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to Verilog, https://doi.org/10.1007/978-3-030-10552-5

187

https://doi.org/10.1007/978-3-030-10552-5

EXAMPLE 7.7 RTL MODEL OF A 4-STAGE, 8-BIT SHIFT REGISTER IN VERILOG 109

EXAMPLE 7.8 REGISTERS AS AGENTS ON A DATA BUS—SYSTEM TOPOLOGY .. 110

EXAMPLE 7.9 REGISTERS AS AGENTS ON A DATA BUS—RTL MODEL IN VERILOG ... 110

EXAMPLE 7.10 REGISTERS AS AGENTS ON A DATA BUS—SIMULATION WAVEFORM .. 111

EXAMPLE 8.1 PUSH-BUTTON WINDOW CONTROLLER IN VERILOG—DESIGN DESCRIPTION ... 114

EXAMPLE 8.2 PUSH-BUTTON WINDOW CONTROLLER IN VERILOG—PORT DEFINITION ... 114

EXAMPLE 8.3 PUSH-BUTTON WINDOW CONTROLLER IN VERILOG—FULL MODEL ... 117

EXAMPLE 8.4 PUSH-BUTTON WINDOW CONTROLLER IN VERILOG—SIMULATION WAVEFORM .. 118

EXAMPLE 8.5 PUSH-BUTTON WINDOW CONTROLLER IN VERILOG—CHANGING STATE CODES ... 118

EXAMPLE 8.6 SERIAL BIT SEQUENCE DETECTOR IN VERILOG—DESIGN DESCRIPTION AND PORT DEFINITION 119

EXAMPLE 8.7 SERIAL BIT SEQUENCE DETECTOR IN VERILOG—FULL MODEL 120

EXAMPLE 8.8 SERIAL BIT SEQUENCE DETECTOR IN VERILOG—SIMULATION WAVEFORM 121

EXAMPLE 8.9 VENDING MACHINE CONTROLLER IN VERILOG—DESIGN DESCRIPTION AND PORT DEFINITION 121

EXAMPLE 8.10 VENDING MACHINE CONTROLLER IN VERILOG—FULL MODEL 122

EXAMPLE 8.11 VENDING MACHINE CONTROLLER IN VERILOG—SIMULATION WAVEFORM 123

EXAMPLE 8.12 2-BIT UP/DOWN COUNTER IN VERILOG—DESIGN DESCRIPTION AND PORT DEFINITION 123

EXAMPLE 8.13 2-BIT UP/DOWN COUNTER IN VERILOG—FULL MODEL (THREE-BLOCK APPROACH) 124

EXAMPLE 8.14 2-BIT UP/DOWN COUNTER IN VERILOG—SIMULATION WAVEFORM 124

EXAMPLE 9.1 BINARY COUNTER USING A SINGLE PROCEDURAL BLOCK IN VERILOG 129

EXAMPLE 9.2 BINARY COUNTER WITH RANGE CHECKING IN VERILOG 130

EXAMPLE 9.3 BINARY COUNTER WITH ENABLE IN VERILOG 131

EXAMPLE 9.4 BINARY COUNTER WITH LOAD IN VERILOG 132

EXAMPLE 10.1 BEHAVIORAL MODELS OF A 4 � 4 ASYNCHRONOUS READ-ONLY MEMORY IN VERILOG 137

EXAMPLE 10.2 BEHAVIORAL MODELS OF A 4 � 4 SYNCHRONOUS READ-ONLY MEMORY IN VERILOG 138

EXAMPLE 10.3 BEHAVIORAL MODEL OF A 4 � 4 ASYNCHRONOUS READ/WRITE MEMORY IN VERILOG 139

EXAMPLE 10.4 BEHAVIORAL MODEL OF A 4 � 4 SYNCHRONOUS READ/WRITE MEMORY IN VERILOG 140

EXAMPLE 11.1 MEMORY MAP FOR A 256 � 8 MEMORY SYSTEM 148

EXAMPLE 11.2 EXECUTION OF AN INSTRUCTION TO “LOAD REGISTER A USING IMMEDIATE ADDRESSING” 151

EXAMPLE 11.3 EXECUTION OF AN INSTRUCTION TO “LOAD REGISTER A USING DIRECT ADDRESSING” 152

EXAMPLE 11.4 EXECUTION OF AN INSTRUCTION TO “STORE REGISTER A USING DIRECT ADDRESSING” 153

EXAMPLE 11.5 EXECUTION OF AN INSTRUCTION TO “ADD REGISTERS A AND B” 154

EXAMPLE 11.6 EXECUTION OF AN INSTRUCTION TO “BRANCH ALWAYS” 155

EXAMPLE 11.7 EXECUTION OF AN INSTRUCTION TO “BRANCH IF EQUAL TO ZERO” 156

EXAMPLE 11.8 TOP-LEVEL BLOCK DIAGRAM FOR THE 8-BIT COMPUTER SYSTEM 158

EXAMPLE 11.9 INSTRUCTION SET FOR THE 8-BIT COMPUTER SYSTEM 159

EXAMPLE 11.10 MEMORY SYSTEM BLOCK DIAGRAM FOR THE 8-BIT COMPUTER SYSTEM 160

EXAMPLE 11.11 CPU BLOCK DIAGRAM FOR THE 8-BIT COMPUTER SYSTEM 164

EXAMPLE 11.12 STATE DIAGRAM FOR LDA_IMM 171

EXAMPLE 11.13 SIMULATION WAVEFORM FOR LDA_IMM 172

EXAMPLE 11.14 STATE DIAGRAM FOR LDA_DIR 173

EXAMPLE 11.15 SIMULATION WAVEFORM FOR LDA_DIR 174

EXAMPLE 11.16 STATE DIAGRAM FOR STA_DIR 175

EXAMPLE 11.17 SIMULATION WAVEFORM FOR STA_DIR 176

EXAMPLE 11.18 STATE DIAGRAM FOR ADD_AB 177

EXAMPLE 11.19 SIMULATION WAVEFORM FOR ADD_AB 178

EXAMPLE 11.20 STATE DIAGRAM FOR BRA 179

EXAMPLE 11.21 SIMULATION WAVEFORM FOR BRA 180

EXAMPLE 11.22 STATE DIAGRAM FOR BEQ 181

EXAMPLE 11.23 SIMULATION WAVEFORM FOR BEQ WHEN TAKING THE BRANCH (Z ¼ 1) 182

EXAMPLE 11.24 SIMULATION WAVEFORM FOR BEQ WHEN THE BRANCH IS NOT TAKEN (Z ¼ 0) 183

188 • Appendix A: List of Worked Examples

Index

A

Abstraction, 4

C

Capacity, 135, 136

Classical digital design flow, 8

Computer system design, 143

addressing modes, 149

arithmetic logic unit (ALU), 145, 146

central processing unit, 144, 145

condition code register, 145

control unit, 145

data memory, 144

data path, 145

direct addressing, 149

example 8-bit system, 157, 158

CPU, 163, 164

detailed instruction execution, 170, 171

instruction set, 158, 159
memory system, 159, 160

general-purpose registers, 145

hardware, 143

immediate addressing, 149

inherent addressing, 150

input output ports, 144

instruction register, 145

instructions, 143

branches, 154, 155
data manipulations, 153

loads and stores, 150, 151

memory address register, 145

memory map, 147

memory mapped system, 146

opcodes, 149

operands, 149

program, 143

program counter, 145

program memory, 144

registers, 145

software, 143, 148

Counters, 131

modeling in Verilog, 131

D

Design abstraction, 4

Design domains, 5

behavioral domain, 5

physical domain, 5

structural domain, 5

Design levels, 5

algorithmic level, 5

circuit level, 5

gate-level, 5

register transfer level, 5

system level, 5

Digital design flow, 8

F

Full adders, 56, 57

G

Gajski and Kuhn’s Y-chart, 5

H

Half adders, 56

History of HDLs, 1–3

M

Memory map model, 135, 136

Modern digital design flow, 8

Multiplexer design by hand, 36, 41

Multiplexers, 36, 41

N

Non-volatile memory, 136

O

One-hot binary encoder design by hand, 34, 35

One-hot binary encoder modeling in Verilog, 34, 35

One-hot decoder modeling in Verilog, 30, 31

P

Place and route, 8

R

Random-access memory (RAM), 136

Read cycle, 135, 136

Read-only memory (ROM), 136

Read/write (RW) memory, 136

Ripple carry adders (RCA), 58

S

Semiconductor memory, 135

Sequential access memory, 136

7-segment decoder design by hand, 31

7-segment decoder modeling in Verilog, 33

Springer Nature Switzerland AG 2019

B. J. LaMeres, Quick Start Guide to Verilog, https://doi.org/10.1007/978-3-030-10552-5

189

https://doi.org/10.1007/978-3-030-10552-5

T

Technology mapping, 8

V

Verification, 6

Verilog

always blocks, 66

arrays, 16

behavioral modeling techniques

agents on a bus, 109, 110

counters, 129–131
D-flip-flops, 103, 104

D-flip-flop with enable, 106, 107

D-flip-flop with preset, 105, 106

D-flip-flop with reset, 104, 105
D-latches, 103

encoding styles, 118

finite state machines, 113
next state logic, 115

output logic, 116

registers, 107, 108

shift registers, 108, 109
state memory, 115

state variables, 114

up counters with enables, 131

up counters with loads, 131, 132
up counter, 129

up counter with range checking, 130

casex statements, 77

casez statements, 77

compiler directives, 20

include, 20, 21

timescale, 20

continuous assignment, 23, 24

continuous assignment with conditional operators, 38

continuous assignment with delay, 43, 44

continuous assignment with logical operators, 29

counters, 129, 130

data types, 13

disable, 79

drive strength, 14

finite state machines, 113

forever loops, 77

for loops, 78

gate level primitives, 53, 54

history, 2

if-else statements, 74, 75

initial blocks, 66

net data types, 14

number formatting

binary, 16

decimal, 16

hex, 16
octal, 16

operators, 23

assignment, 23
bitwise logical, 24

bitwise replication, 27

Boolean logic, 25

concatenation, 26
conditional, 26

numerical, 27

precedence, 28

reduction, 25
relational, 25

parameters, 20

procedural assignment, 65

procedural blocks, 65

repeat loops, 78

resolution, 14

sensitivity lists, 67, 68

signal declaration, 19

statement groups, 73

structural design and hierarchy, 56–61

explicity port mapping, 51
gate level primitives, 53, 54

instantiation, 51

positional port mapping, 52, 53

user defined primitives, 54, 55

system tasks, 80

file I/O, 81, 82

simulation control, 83
text I/O, 80

test benches, 89

user defined primitives, 54, 55

value set, 14

variable data types, 15

vectors, 15

while loops, 77

Volatile memory, 136

W

Write cycle, 135, 136

Y

Y-chart, 5

190 • Index

	Preface
	Acknowledgments
	Contents
	1: The Modern Digital Design Flow
	1.1 History of Hardware Description Languages
	Concept Check

	1.2 HDL Abstraction
	Concept Check

	1.3 The Modern Digital Design Flow
	Concept Check

	2: Verilog Constructs
	2.1 Data Types
	2.1.1 Value Set
	2.1.2 Net Data Types
	2.1.3 Variable Data Types
	2.1.4 Vectors
	2.1.5 Arrays
	2.1.6 Expressing Numbers Using Different Bases
	2.1.7 Assigning Between Different Types
	Concept Check

	2.2 Verilog Module Construction
	2.2.1 The Module
	2.2.2 Port Definitions
	2.2.3 Signal Declarations
	2.2.4 Parameter Declarations
	2.2.5 Compiler Directives
	Concept Check

	3: Modeling Concurrent Functionality in Verilog
	3.1 Verilog Operators
	3.1.1 Assignment Operator
	3.1.2 Continuous Assignment
	3.1.3 Bitwise Logical Operators
	3.1.4 Reduction Logic Operators
	3.1.5 Boolean Logic Operators
	3.1.6 Relational Operators
	3.1.7 Conditional Operators
	3.1.8 Concatenation Operator
	3.1.9 Replication Operator
	3.1.10 Numerical Operators
	3.1.11 Operator Precedence
	Concept Check

	3.2 Continuous Assignment with Logical Operators
	3.2.1 Logical Operator Example: SOP Circuit
	3.2.2 Logical Operator Example: One-Hot Decoder
	3.2.3 Logical Operator Example: 7-Segment Display Decoder
	3.2.4 Logical Operator Example: One-Hot Encoder
	3.2.5 Logical Operator Example: Multiplexer
	3.2.6 Logical Operator Example: Demultiplexer
	Concept Check

	3.3 Continuous Assignment with Conditional Operators
	3.3.1 Conditional Operator Example: SOP Circuit
	3.3.2 Conditional Operator Example: One-Hot Decoder
	3.3.3 Conditional Operator Example: 7-Segment Display Decoder
	3.3.4 Conditional Operator Example: One-Hot Decoder
	3.3.5 Conditional Operator Example: Multiplexer
	3.3.6 Conditional Operator Example: Demultiplexer
	Concept Check

	3.4 Continuous Assignment with Delay
	Concept Check

	4: Structural Design and Hierarchy
	4.1 Structural Design Constructs
	4.1.1 Lower-Level Module Instantiation
	4.1.2 Port Mapping
	4.1.2.1 Explicit Port Mapping
	4.1.2.2 Positional Port Mapping

	4.1.3 Gate-Level Primitives
	4.1.4 User-Defined Primitives
	4.1.5 Adding Delay to Primitives
	Concept Check

	4.2 Structural Design Example: Ripple Carry Adder
	4.2.1 Half Adders
	4.2.2 Full Adders
	4.2.3 Ripple Carry Adder (RCA)
	4.2.4 Structural Model of a Ripple Carry Adder in Verilog
	Concept Check

	5: Modeling Sequential Functionality
	5.1 Procedural Assignment
	5.1.1 Procedural Blocks
	5.1.1.1 Initial Blocks
	5.1.1.2 Always Blocks
	5.1.1.3 Sensitivity Lists

	5.1.2 Procedural Statements
	5.1.2.1 Blocking Assignments
	5.1.2.2 Non-blocking Assignments

	5.1.3 Statement Groups
	5.1.4 Local Variables
	Concept Check

	5.2 Conditional Programming Constructs
	5.2.1 if-else Statements
	5.2.2 case Statements
	5.2.3 casez and casex Statements
	5.2.4 forever Loops
	5.2.5 while Loops
	5.2.6 repeat Loops
	5.2.7 for Loops
	5.2.8 disable
	Concept Check

	5.3 System Tasks
	5.3.1 Text Output
	5.3.2 File Input/Output
	5.3.3 Simulation Control and Monitoring
	Concept Check

	6: Test Benches
	6.1 Test Bench Overview
	6.1.1 Generating Manual Stimulus
	6.1.2 Printing Results to the Simulator Transcript
	Concept Check

	6.2 Using Loops to Generate Stimulus
	Concept Check

	6.3 Automatic Result Checking
	Concept Check

	6.4 Using External Files in Test Benches
	Concept Check

	7: Modeling Sequential Storage and Registers
	7.1 Modeling Scalar Storage Devices
	7.1.1 D-Latch
	7.1.2 D-Flip-Flop
	7.1.3 D-Flip-Flop with Asynchronous Reset
	7.1.4 D-Flip-Flop with Asynchronous Reset and Preset
	7.1.5 D-Flip-Flop with Synchronous Enable
	Concept Check

	7.2 Modeling Registers
	7.2.1 Registers with Enables
	7.2.2 Shift Registers
	7.2.3 Registers as Agents on a Data Bus
	Concept Check

	8: Modeling Finite State Machines
	8.1 The FSM Design Process and a Push-Button Window Controller Example
	8.1.1 Modeling the States
	8.1.2 The State Memory Block
	8.1.3 The Next State Logic Block
	8.1.4 The Output Logic Block
	8.1.5 Changing the State Encoding Approach
	Concept Check

	8.2 FSM Design Examples
	8.2.1 Serial Bit Sequence Detector in Verilog
	8.2.2 Vending Machine Controller in Verilog
	8.2.3 2-Bit, Binary Up/Down Counter in Verilog
	Concept Check

	9: Modeling Counters
	9.1 Modeling Counters with a Single Procedural Block
	9.1.1 Counters in Verilog Using the Type reg
	9.1.2 Counters with Range Checking
	Concept Check

	9.2 Counter with Enables and Loads
	9.2.1 Modeling Counters with Enables
	9.2.2 Modeling Counters with Loads
	Concept Check

	10: Modeling Memory
	10.1 Memory Architecture and Terminology
	10.1.1 Memory Map Model
	10.1.2 Volatile vs. Non-volatile Memory
	10.1.3 Read-Only vs. Read/Write Memory
	10.1.4 Random Access vs. Sequential Access
	Concept Check

	10.2 Modeling Read-Only Memory
	Concept Check

	10.3 Modeling Read/Write Memory
	Concept Check

	11: Computer System Design
	11.1 Computer Hardware
	11.1.1 Program Memory
	11.1.2 Data Memory
	11.1.3 Input/Output Ports
	11.1.4 Central Processing Unit
	11.1.4.1 Control Unit
	11.1.4.2 Data Path: Registers
	11.1.4.3 Data Path: Arithmetic Logic Unit (ALU)

	11.1.5 A Memory Mapped System
	Concept Check

	11.2 Computer Software
	11.2.1 Opcodes and Operands
	11.2.2 Addressing Modes
	11.2.2.1 Immediate Addressing (IMM)
	11.2.2.2 Direct Addressing (DIR)
	11.2.2.3 Inherent Addressing (INH)

	11.2.3 Classes of Instructions
	11.2.3.1 Loads and Stores
	11.2.3.2 Data Manipulations
	11.2.3.3 Branches
	Concept Check

	11.3 Computer Implementation: An 8-Bit Computer Example
	11.3.1 Top-Level Block Diagram
	11.3.2 Instruction Set Design
	11.3.3 Memory System Implementation
	11.3.3.1 Program Memory Implementation in Verilog
	11.3.3.2 Data Memory Implementation in Verilog
	11.3.3.3 Implementation of Output Ports in Verilog
	11.3.3.4 Implementation of Input Ports in Verilog
	11.3.3.5 Memory data_out Bus Implementation in Verilog

	11.3.4 CPU Implementation
	11.3.4.1 Data Path Implementation in Verilog
	11.3.4.2 ALU Implementation in Verilog
	11.3.4.3 Control Unit Implementation in Verilog
	11.3.4.3.1 Detailed Execution of LDA_IMM
	11.3.4.3.2 Detailed Execution of LDA_DIR
	11.3.4.3.3 Detailed Execution of STA_DIR
	11.3.4.3.4 Detailed Execution of ADD_AB
	11.3.4.3.5 Detailed Execution of BRA
	11.3.4.3.6 Detailed Execution of BEQ
	Concept Check

	Appendix A: List of Worked Examples
	Index

