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Département de chimie
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All impedances are complex, but some are more complex

than others.

Margaretha Sluyters-Rehbach





Preface

My first practical contact with electrochemical impedance spectroscopy (EIS)

was during my postdoctoral training in the laboratory of Prof. Ron W. Fawcett

at the University of Guelph, Ontario, Canada, in 1975. At that time I was using ac

voltammetry on a dropping mercury electrode. Since then, the technique and

equipment have evolved significantly. I was continually using EIS in subsequent

years in the kinetics of the reduction of metal cations in nonaqueous solvents to

determine the kinetics of hydrogen evolution, adsorption and absorption into

metals, impedance of porous electrodes, and electrocatalytic reactions. After a

series of seminars on the impedance spectroscopy in the laboratory of Prof. Brian

Conway in Ottawa in 1994, he encouraged me to write a review inModern Aspects

of Electrochemistry, which was published in 1999. Prof. Conway has also asked me

to write a second chapter in Modern Aspects on the impedance of hydrogen

adsorption, absorption, and evolution (2002). Later, Prof. M. Schlesinger asked

me to write yet another chapter on the impedance of porous electrodes (2009). This

book originated from my previous reviews and lectures at various universities.

The purpose of this book is to present the concept of impedance, impedance

of electrical and electrochemical systems, its limitations, and certain applications.

The available books on EIS were written either by physicists or engineers, and I

wanted to present it from the chemist’s point of view. Some knowledge of electro-

chemistry is necessary to understand the developments of kinetic equations. I hope

that it will be useful to students who are just starting to use this technique and to

others already using it in their research. The book contains theory and applications,

numerical examples shown in the text, and exercises with full solutions on the

Internet.

First, electrical circuits containing resistances only are presented, followed by

circuits containing R, C, and L elements in transient and ac conditions. To under-

stand the concept of impedance, the notions of Laplace and Fourier transforms

are presented and must be understood thoroughly. In this chapter, impedance plots

are also presented, along with several examples for various circuits. Next, methods

for determining impedances, including fast Fourier transform-based techniques, are

discussed.
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Based on that knowledge, the impedance of electrode processes in the presence

of diffusion in various geometries and adsorption is mathematically developed. This

leads to the general method of determining the impedances of complex mechanisms.

As an illustration, the impedance of electrocatalytic reactions involving hydrogen

adsorption, absorption, and evolution is presented.

The next two chapters deal with impedance dispersion at solid electrodes and

the impedance of porous electrodes in the absence and presence of electroactive

species.

It is difficult to present all applications of EIS; some applications (such as

those to solid materials and PEM fuel cells, corrosion and passivity, batteries;

see Sect. 1.3) may be found in available books. As examples, Mott-Schottky plots

obtained for semiconductors, the impedance of coating and paints, and electro-

catalysis of hydrogen adsorption, absorption and evolution were presented as they

are well known in the electrochemical literature. Additionally, newer and develop-

ing applications such as the impedance of self-assembled monolayers, biological

bilayers, and biosensors were also shown.

Finally, methods of verification of obtained impedances and the modeling of

experimental data are discussed. The last two chapters deal with applications

of nonlinear measurements and instrumental limitations.

Besides examples in the text, there are exercises at the end of certain chapters

that can be solved using Excel, Maple, or Mathematica and more specialized

programs such as ZView and KKtransform, with solutions on the Internet.

This book contains a comprehensive approach to impedance, but there exist

more specialized books on impedance that should also be consulted; reading of the

research literature cannot be avoided. One hour in the library may save one year of

laboratory research.

Sherbrooke, Québec, Canada Andrzej Lasia
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Chapter 1

Introduction

1.1 Why Impedance?

Among the various electrochemical techniques, electrochemical impedance

spectroscopy (EIS) holds a special place. The classical electrochemical techniques

present measurements of currents, electrical charges or electrode potentials as

functions of time (which can also be related to the electrode potential). In contrast,

EIS presents the signal as a function of frequency at a constant potential. This often

poses some problems in understanding what is happening because electrochemists

try to think in terms of time, not frequency. On the other hand, in optical spectros-

copy, nobody thinks that light consists of the sinusoidal oscillations of electric and

magnetic vectors of various frequencies, phases, and amplitudes. In spectroscopy,

we used to think in terms of the frequency domain (wave number, frequency, or

some related functions as wavelength) and that what we observed was the Fourier

transform of the optical signal.

The issues associated with understanding EIS also relate to the fact that it

demands some knowledge of mathematics, Laplace and Fourier transforms, and

complex numbers. The concept of complex calculus is especially difficult for

students, although it can be avoided using a quite time-consuming approach with

trigonometric functions. However, complex numbers simplify our calculations but

create a barrier in understanding complex impedance. Nevertheless, these problems

are quite trivial and may be easily overcome with a little effort.

The advantages of using EIS are numerous. First of all, it provides a lot of useful

information that can be further analyzed. In practical applications of cyclic

voltammetry, simple information about peak currents and potentials is measured.

These parameters contain very little information about the whole process especially

when hardware and software is able sampling the current-potential curve producing

thousands of experimental points every fraction of mV. On the other hand, one can use

voltammetry with convolution, which delivers information at each potential, although

very few people know and use this technique in current research. EIS contains analyz-

able information at each frequency. This is clearly seen from the examples that follow.

A. Lasia, Electrochemical Impedance Spectroscopy and its Applications,
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Steady-state polarization measurements, that is measurement of the current at

constant potential or potential at the constant current provide current-potential

curves from which a slope, that is, a polarization resistance, Rp ¼ dE/dj, can be

determined. An example of such a curve for a fuel cell is displayed in Fig. 1.1.

However, taking the impedance at each potential produces series of data values at

different frequencies. Examples of complex plane impedance plots that is imaginary

versus real part at various frequencies for different fuel cells are presented in Fig. 1.2.

The polarization resistance is the only point corresponding to zero frequency,

as indicated in the plots. One may observe that the impedance plots, besides Rp,

produce much more information that is not available in steady-state measurements.

Impedance plots display complex curves that are rich in information. Such informa-

tion is contained in every point, not only in one value of Rp. However, one must know

how to find this information on the system being studied. This is a more complex

problem and can be solved by the proper physicochemical modeling.

To characterize more complex electrochemical systems other studies of the

system: including microscopic, surface morphology, structure, composition, and

dc electrochemical characterization, should be carried out and understood

thoroughly prior to EIS analysis. Studies may begin with EIS only for the electrical

circuits and simple, well understood, systems. Beginning studies of complex

systems with EIS is not recommended.

EIS supplies a large amount of information, but it cannot provide all the answers.

EIS is usually used for fine-tuning mechanisms and determining the kinetics of

processes, resistances, and capacitances, and it allows for the determination of real

surface areas in situ. It is a very sensitive technique but must be used with care; it is

often abused in the literature.

EIS has numerous applications. It is used in the following types of studies:

1. Interfacial processes: redox reaction at electrodes, adsorption and

electrosorption, kinetics of homogeneous reactions in solution combined with

redox processes, forced mass transfer

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

E
 /

 V

j / A cm-2

Rp = dE / dj

Fig. 1.1 Voltage (E)-

current ( j) curve for fuel

cell. The slope is the

polarization resistance (Rp)
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2. Geometric effects: linear, spherical, cylindrical mass transfer, limited-volume

electrodes, determination of solution resistance, porous electrodes

3. Applications in power sources (batteries, fuel cells, supercapacitors, mem-

branes), corrosion, coatings and paints, electrocatalytic reactions (e.g., water

electrolysis, Cl2 evolution), conductive polymers, self-assembled monolayers,

biological membranes, sensors, semiconductors, and others.

1.2 Short History of Impedance

EIS uses tools developed in electrical engineering for electrical circuit analysis

[1–3]. The mathematical foundations of EIS were laid by Heaviside [4], who

developed operational calculus and Laplace transform, introducing differentiation,

s, and integration, 1/s, operators. They made it possible to solve integrodifferential

equations appearing in the solutions of electrical circuits (Sect. 2.8) by transforming

them into a system of algebraic equations. Heaviside defined impedance,

Fig. 1.2 Examples of

complex plane impedance

plots for fuel cells; arrows:

polarization resistance also

found in steady-state

measurements; impedances

are in Ω
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admittance, reactance, and operational impedance and explained the relation

between Laplace and Fourier transforms by introducing a complex operator s ¼
σ + jω. The main advantage of EIS is the fact that it is based on the linear time-

invariant system theory, most commonly known as LTI system theory, and the

validity of data may be verified using integral transforms (Kramers–Kronig trans-

forms) that are independent of the physical processes involved.

Chemical applications of impedance spectroscopy began with the work of

Nernst [5], followed by many others, including those applications to the distribution

of relaxation time constants by Cole and Cole [6] and Davidson and Cole [7].

Warburg [8] developed the impedance of mass transfer (the so-called Warburg

impedance), which allowed further applications of EIS to redox reactions.

The development of EIS is displayed schematically in Table 1.1. In the subsequent

age of the double layer (1930–1965) [1, 2] the structure of a double layer in the

absence and in the presence of adsorbed species was studied initially at a dropping

mercury electrode and then at solid electrodes using ac bridges. The development of

electronic potentiostats has revolutionized electrochemical and impedance measure-

ments. With the presentation of the electrical analog circuit for electrochemical

reactions by Dolin and Ershler [9] and Randles [10] the age of electrical analogs

[2] began and continues up till now. Electrochemical systems are usually represented

by analog circuits containing resistances, capacitances, and inductances, including

some distributed elements such as, for example, theWarburg impedance and constant

phase element. Commercial software allows for simple modeling of experimental

impedance results. However, electrical analog circuits are analogs, not physico-

chemical models. Although in simple cases analog circuits can reflect chemistry of

the model quite often they either cannot or can lead to the ambiguous circuits. In

addition, several different electrical equivalent models can exactly approximate the

experimental data because they are not unique. For example, two semicircles on

the complex plane plots might be interpreted by a serial or a parallel connection of

the circuit elements (see Sect. 9.1.2, Figs. 9.12 and 9.13). In certain cases although

approximate electrical analog circuit can be found the physicochemical model may

contain elements which cannot be represented by such elements (see Sect. 9.2.3 on

Table 1.1 Eras in development of EIS [2]

Eras in development of electrochemical impedance spectroscopy

In the beginning (1880–1905). . . (O. Heaviside and E. Warburg)

Age of double layer (1930–1965) (D.C. Grahame, R. Payne, J.O’M. Bockris, R. Parsons; Cdl/Hg,

ac bridges)

Arrival of potentiostat (Hickling, Wenking) and the age of AC polarography (1965–1980)

(D.E. Smith, J. H. Sluyters and M. Sluyters-Rehbach)

Age of electrical analogs (1948–present) (J.E.B. Randles, J.R. Macdonald, R. Buck). No unique

EEC for a given system!

Age of material characterization (1970–present) (R.A. Huggins, J.R. Macdonald, W. Weppner)

Age of reaction mechanism analysis (1970–present). The real power of EIS! (A.N. Frumkin,

R.D. Armstrong, I. Epelboin, M. Keddam, C. Gabrielli, D.D. Macdonald)

Explosion in applications (1985–present)
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porous electrodes). More discussion is provided in Chap. 14. However, the electrical

equivalent circuits are often used in practice.

The age of mechanistic analysis [2] runs in parallel, where starting from

chemical/electrochemical equations the impedances are built up, describing the

system under study uniquely. These equations may, after some rearrangements,

lead to proper electrical equivalent circuits (see, for example, the pioneering work

of Epelboin, which was continued by Keddams, Gabrielli, Wiart, and other mem-

bers of the Paris group [11], and that of D.D. Macdonald). This is the real power of

EIS, but it is more difficult to implement. Presently, impedance is used in every area

of electrochemistry to study, for example, interfaces, electrochemical reactions, and

solid materials (on which more later).

1.3 Publications on Impedance

Electrochemical impedance spectroscopy is usually presented in electrochemistry

handbooks [12–22], although such presentations are usually quite brief. There are

few books on impedance in English [3, 23–26], one in Russian [27], one on

differential impedance analysis [28], and many chapters on specific topics [29–72].

The first book [23] on the topic was edited by Macdonald and centered on solid

materials; the second edition [24] by Macdonald and Barsoukov was enlarged by

including other applications. Recently, three new books, by Orazem and Tribollet [3],

by Yuan et al. [26] on proton exchange membrane fuel cells (PEM FC), and

by Lvovich [25], have been published, while that by Stoynov et al. [27]

was never translated into English. A third edition of the book by Macdonald and

Barsoukov is in preparation. However, not all aspects of EIS are presented, and these

books are not complete in the presentation of their applications. Plenty of review

articles on different aspects of impedance and its applications have been published;

however, they are very specific and can usually be used only by readers who already

know the basics of this technique. A Scopus search for “electrochemical impedance

spectroscopy” to the end of 2012 comes up with 18,000 papers, most of them

since 1996.

1.3 Publications on Impedance 5



Chapter 2

Definition of Impedance and Impedance
of Electrical Circuits

2.1 Introduction

To understand the impedance of electrochemical objects, it is necessary to

understand the behavior of simple electrical circuits, first in steady state, then in

transient conditions. Such circuits contain simple linear electrical elements: resis-

tance, capacitance, and inductance. Then the concept of electrical impedance will

be introduced. It demands an understanding of the Laplace and Fourier transforms,

which will also be presented. To understand impedance, it is necessary to thor-

oughly understand the complex plane and Bode plots, which will be presented for a

few typical connections of the electrical elements. They can be computed using

Excel, Maple, Mathematica, and specialized programs such as ZView. Several

examples and exercises will be included.

2.2 Electrical Circuits Containing Resistances

2.2.1 Ohm’s Law

The total resistance of complex electrical circuits can be determined using two

fundamental laws of Ohm and Kirchhoff. Ohm’s law relates current passing

through resistance i in A, with voltage V in V, and resistance R in Ω:

V ¼ Ri: ð2:1Þ

It allows one to determine the current if the applied voltage is known or the

voltage (ohmic drop) when the current is flowing through the resistance. It also

shows that current follows the potential without delay. Additionally, in electrical

engineering, by convention, the current is positive when it flows from the positive

A. Lasia, Electrochemical Impedance Spectroscopy and its Applications,
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to the negative side of the potential source that is the potential drop is related to the

direction of the current. This is illustrated in Fig. 2.1. The direction of the current

was chosen, and Ohm’s law may be written as

i ¼ Va � Vb

R
¼ V

R
, ð2:2Þ

where Va > Vb for the chosen direction of the current. From Ohm’s law it follows

that the equivalent resistance, Req, of the connection of resistances, Ri, in series

equals the sum of the resistances:

Req ¼
X

i

Ri: ð2:3Þ

2.2.2 Kirchhoff’s Laws

There are two Kirchhoff laws, one for nodes and one for loops. The first law says

that the sum of the currents entering any point is equal to zero:

X

k

ik ¼ 0, ð2:4Þ

that is, the algebraic sum of currents entering one point is equal to the sum of all

currents leaving this point. It simply states that there can be no accumulation of

charges in conductors. The second law applies to loops and says that the algebraic

sum of voltage drops in a closed loop equals zero:

X

k

Vk ¼ 0: ð2:5Þ

These laws allow for resolving any connection of resistances and voltage

sources. They will be illustrated in the following examples.

Example 2.1 Find the relation between the total current and voltage and the

equivalent resistance of the circuit in Fig. 2.2.

Fig. 2.1 Illustration

of Ohm’s law
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The total current, i, flows from the positive to the negative connection of the

source V. It separates into two currents, i1 and i2, and, according to Kirchhoff’s

first law,

i ¼ i1 þ i2: ð2:6Þ

Using Ohm’s law one can write

i1 ¼
Va � Vbð Þ

R1

¼ V

R1

,

i2 ¼
V

R2

:
ð2:7Þ

Combining these equations with Eq. (2.6) gives

i ¼ V

R1

þ V

R2

¼ V
1

R1

þ 1

R2

� �
¼ V

Req

, ð2:8Þ

which means that the two resistances can be replaced by one equivalent resis-

tance Req:

Req ¼
1

1

R1

þ 1

R2

¼ R1R2

R1 þ R2

or

1

Req

¼ 1

R1

þ 1

R2

:

ð2:9Þ

The equivalent resistance is the harmonic mean of two parallel resistances. This

formula should always be used for the parallel connection of resistances.

Fig. 2.2 Illustration

of Kirchhoff’s law

for Example 2.1
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The problem may also be solved using Kirchhoff’s second law. It is easy to see

that there are three loops in the circuit, one containing the source V and the

resistance R1, the second containing V and R2, and the third containing R1 and R2.

For these loops, in the clockwise direction, one can write Kirchhoff’s law for loops:

i1R1 � V ¼ 0

i2R2 � V ¼ 0

�
or i1R1 � i2R2 ¼ 0: ð2:10Þ

The negative sign in the first two equations for V appears because the direction of

the loop goes from negative to positive voltage. The third equation is equivalent to

the Eq. (2.8) and comes from the two first equations; therefore, it is redundant. The

solution is, of course, the same as the previous one. Such equations written for any

circuit lead to the system of linear equations for which programs were developed in

electrical engineering.

Example 2.2 Calculate the currents, voltages, and equivalent resistances for the

schema of the circuit in Fig. 2.3.

From Kirchhoff’s first law one obtains

i ¼ i1 þ i2 ð2:11Þ

and from the second law

iR1 þ i1R2 � V ¼ 0

iR1 þ i2R3 � V ¼ 0

�
or i1R2 þ i2R3 ¼ 0: ð2:12Þ

As happened earlier, the third equation arises from the first two previous

equations. Elimination of i2 gives

i1 ¼ i
R3

R2 þ R3

: ð2:13Þ

The total voltage drop may be described as

V ¼ Va � Vbð Þ þ
�
Vb � Vc

�
¼ iR1 þ i1R2 ¼ iR1 þ i

R2R3

R2 þ R2

¼ i R1 þ
1

1

R2

þ 1

R3

0
BBB@

1
CCCA ¼ iReq:

ð2:14Þ

Therefore, all the resistances in the circuit may be substituted by one equivalent

resistance, Req, equal to the sum of R1 and the parallel connection of resistances

R2 and R3.
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Example 2.3 Find the equivalent resistance in Fig. 2.4.

To determine the total resistance, a circuit can be divided into parts starting

from the right. First there are two resistances in parallel, then in series, etc. Answer:

8R/5.

2.3 Capacitance

Electrical circuits may contain three passive elements: resistors, capacitors, and

inductors. The behavior of the capacitance and inductance is different from that of

the resistance. A constant current cannot flow through a capacitance, but an

electrical charge can accumulate in it, and it is different at each voltage applied.

The fundamental relation between charge and voltage is given as

V ¼ Q

C
, ð2:15Þ

where Q is the charge stored in the capacitor in coulombs, C, and C is the

capacitance in farads, F. The charge is related to the current flowing in the circuit:

Q tð Þ ¼
ðt

0

i tð Þdt: ð2:16Þ

Fig. 2.3 Circuit

for Example 2.2

Fig. 2.4 Circuit

for Example 2.3
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Substitution of Eq. (2.16) into (2.15) gives an integral equation:

V tð Þ ¼ 1

C

ðt

0

i tð Þdt: ð2:17Þ

If there is a circuit consisting of a resistor and a capacitor in series connected to

the voltage source V, the voltage applied to the system is the sum of the potentials

on the resistance (ohmic drop) and on the capacitance:

E tð Þ ¼ i tð ÞRþ 1

C

ðt

0

i tð Þdt: ð2:18Þ

This constitutes an integral equation where the unknown current is outside and

under the integral. The solution of such an equation may be easily accomplished

using a Laplace transform. It should be added that in electrochemical systems

double layer capacitance is potential dependent and the differential capacitance,

C ¼ dQ/dE should be used.

2.4 Inductance

The inductance is usually represented as a coil in which current induces an

electromotive force that opposes a change in current. The ideal inductance has a

zero resistance and resists changes in the current. The potential difference devel-

oped at the inductance is

V tð Þ ¼ L
di tð Þ
dt

, ð2:19Þ

where L is the inductance in henrys, H. This means that the constant current flows

through the inductance without resistance, that is, V(t) ¼ 0. In the case of the

connections of the resistance and inductance in series the equation describing the

system is

V ¼ i tð ÞRþ L
di tð Þ
dt

: ð2:20Þ

To obtain the solution of a transient current, this differential equation must be

solved. It can be easily solved using a Laplace transform.

12 2 Definition of Impedance and Impedance of Electrical Circuits



2.5 Laplace Transform

The Laplace transform is a tool that allows for an easy solution of differential or

integral equations by changing them into algebraic equations in the Laplace plane.

It is also well suited for solving problems in electrical engineering and impedance

spectroscopy. The Laplace transform is defined as

L f tð Þ½ � ¼ F sð Þ ¼ f sð Þ ¼
ð1

0

f tð Þe�stdt: ð2:21Þ

This is an integral transform that maps the function of time, f(t), into a function

called F(s) or f (s) of the parameter s, called the frequency, because if t is in s, then

s must be in s�1. Of course, integration over the parameter t between 0 and ∞

assures that t will not appear after integration. During the transformation, no

information about f(t) is lost and the transform contains the same amount of

information, only displayed in the frequency domain. Complex equations are

usually much simpler in the Laplace domain. In general, the parameter s can be

complex (see Sect. 2.6),

s ¼ σ þ jω, ð2:22Þ

but usually a real transform is used s ¼ σ, and for complex s it is a Heaviside

transform. Let us first look at the restrictions on the function f(t) because not all

functions can be transformed:

(1) f (t) � 0 for t < 0, that is, the function must always be zero at t < 0.

(2) f (t) has a finite number of discontinuities.

(3) f (t) is of exponential order, that is, there are always two constants λ � 0 and

M � 0 for which |f(t)| < M eλt for all values of t. Functions tn and eat are of

exponential order, but the function ex
2

is not and cannot be transformed.

The Laplace transform is linear, that is, the transform of the sum of functions is

equal to the sum of transforms:

L af 1 tð Þ þ bf 2 tð Þf g ¼ af 1 sð Þ þ bf 2 sð Þ: ð2:23Þ

To better understand this transform, let us work out a few examples.

Example 2.4 Determine the Laplace transform of the Heaviside step function η(t)

defined as

2.5 Laplace Transform 13



f tð Þ ¼ η tð Þ ¼ 0 t < 0,

1 t > 0,

�
ð2:24Þ

displayed in Fig. 2.5. This function is equal to zero for t < 0 (as specified in

restriction 1 given earlier) and equal to 1 elsewhere.

Application of the definition given by Eq. (2.21) yields

L η tð Þ½ � ¼
ð1

0

1e�stdt ¼ � e�st

s
j1
0
¼ 1

s
, ð2:25Þ

and the transform is simply equal to 1/s.

Example 2.5 Find the transform of the exponential function f(t) ¼ exp(�at):

L e�atð Þ ¼
ð1

0

e�ate�stdt ¼
ð1

0

e� aþsð Þtdt ¼ e� aþsð Þt

� aþ sð Þ j
1

0
¼ 1

sþ a
: ð2:26Þ

The exponential function is transformed into a simpler form: 1/(s + a).

Example 2.6 Find the transform of the first derivative of the function

L f
0
tð Þ

� 	
¼

ð1

0

e�stf
0�
t
�
dt ¼ e�stf

�
t
�j1

0
�

ð1

0

�
e�st

�0
f
�
t
�
dt

¼ �f 0þð Þ þ s

ð1

0

e�stf
�
t
�
dt ¼ sf

�
s
�
� f

�
0þ

�
, ð2:27Þ

where the following formula for integration by parts was used:

ð
uv
0
dx ¼ uv�

ð
u
0
vdx, ð2:28Þ

and f (0)+ is the initial value of the function f(x) at time equal to zero; it is taken as

the right-hand-side limit, limx!0
þ f xð Þ:

Fig. 2.5 Heaviside step

function
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Similarly, the transform of the second derivative may be obtained as follows:

L f} tð Þ½ � ¼ s2f sð Þ � sf 0þð Þ � f 0 0þð Þ: ð2:29Þ

It can also be shown that the transform of the integral equals

L

ðt

0

f τð Þdτ

8
<
:

9
=
; ¼

1

s
L f tð Þf g ¼ f sð Þ

s
: ð2:30Þ

The preceding examples show that the differentiation is equivalent to the

multiplication by the parameter s and the integration is equivalent to the division

by s in the Laplace domain. This allows for an easy transformation of differential or

integral equations into algebraic equations, solving them in the Laplace domain and

then carrying an inverse transformation into the time domain. This is schematically

shown below:

Time domain

Differential eqn: !L Algebraic eqn:
#

solution tð Þ  
L�1

solution sð Þ

8
><
>:

9
>=
>;
Laplace domain

ð2:31Þ

To understand this method, let us work out two examples.

Example 2.7 Solve the following differential equation of first-order kinetics:

dy tð Þ
dt
¼ �ky tð Þ with y 0ð Þ ¼ y0: ð2:32Þ

Application of the Laplace transform to both sides of the equation using

Eqs. (2.27) and (2.23) gives

sy sð Þ � y0 ¼ �ky sð Þ, ð2:33Þ

from which y sð Þ is the solution in the Laplace domain:

y sð Þ ¼ y0
1

sþ k
: ð2:34Þ

The inverse transform using Eq. (2.26) gives the solution in the time domain:

y ¼ y0e
�kt: ð2:35Þ

The differential equation was solved only by transformation, which can be done

using Laplace transform tables, the solution of an algebraic equation, and the

inverse Laplace transform using tables. Tables of Laplace transforms can be easily

2.5 Laplace Transform 15



found in the literature [73, 74], and several of the most often used ones are shown in

the appendix.

Example 2.8 Solve the following differential equation:

d2y tð Þ
dt2

� a2y tð Þ þ b ¼ 0 ð2:36Þ

if the initial values of y(0) and y’(0) are known and a and b are constants.

Transformation into the Laplace domain by applying the formula for the second

derivative, Eq. (2.29), and for the constant (2.25) leads to

s2y sð Þ � sy 0ð Þ � y
0
0ð Þ � a2y sð Þ þ b

s
¼ 0, ð2:37Þ

from which the value of y sð Þ may be isolated:

y sð Þ ¼ �
b
s
þ y

0
0ð Þ þ sy 0ð Þ

s2 � a2
¼ þs

2y 0ð Þ þ sy
0
0ð Þ � b

s s� að Þ sþ að Þ : ð2:38Þ

To carry out the inverse Laplace transform, Eq. (2.38) must be separated into

simple fractions:

y sð Þ ¼ A

sþ a
þ B

s� a
þ C

s
¼ A s2 � asð Þ þ B s2 þ asð Þ þ C s2 � a2ð Þ

s s2 � a2ð Þ

¼ s2 Aþ Bþ Cð Þ þ s �aAþ aBð Þ � Ca2

s s2 � a2ð Þ : ð2:39Þ

The constants A, B, and C may be obtained by comparison of the coefficients

at s2, s, and s0 between Eqs. (2.38) and (2.39). This gives three equations:

Aþ Bþ C ¼ y 0ð Þ,
�aAþ aB ¼ y0 0ð Þ,
�Ca2 ¼ �b,

8
<
: ð2:40Þ

from which the following parameters are obtained:

C ¼ b

a2
,

A ¼ y 0ð Þ
2
� y0 0ð Þ

2a
� b

2a2
,

B ¼ y 0ð Þ
2
þ y0 0ð Þ

2a
� b

2a2
:

8
>>>>>>>><
>>>>>>>>:

ð2:41Þ
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The inverse transform of Eq. (2.39),

y sð Þ ¼ A

sþ a
þ B

s� b
þ C

s
, ð2:42Þ

leads to the solution in the time domain:

y tð Þ ¼ Ae�ax þ Beax þ b

a2
: ð2:43Þ

Example 2.9 Solve the differential equation

y tð Þ}þ ky tð Þ ¼ 0 ð2:44Þ

with the following conditions: y (0) ¼ a; y0 (0) ¼ b.

Application of a Laplace transform gives

s2y sð Þ � sy
�
0
�
� y0

�
0
�
þ ky

�
s
�
¼ 0,

s2y sð Þ � as� bþ ky
�
0
�
¼ 0:

ð2:45Þ

The solution in the Laplace domain is

y sð Þ ¼ asþ b

s2 þ k
¼ a

s

s2 þ k
þ b

1

s2 þ k
: ð2:46Þ

From the Laplace transform tables we have

L sin atð Þ½ � ¼ a

s2 þ a2
; L cos atð Þ½ � ¼ s

s2 þ a2
, ð2:47Þ

and the solution in the time domain is

y tð Þ ¼ a cos
ffiffiffiffi
kt
p� �

þ bffiffiffi
k
p sin

ffiffiffiffi
kt
p� �

: ð2:48Þ

This equation displays the sum of two periodic functions.

The use of the Laplace transform is relatively simple using either Laplace

transform tables or programs that make it possible to perform symbolic operations

such as Maple or Mathematica. Application of the Laplace transform to solve

current-voltage relations in electrical circuits will be illustrated in Sect. 2.8 on the

impedance of electrical circuits.
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2.6 Complex Numbers

The use of complex numbers is not obligatory, but they greatly simplify mathe-

matical operations.

Let us consider first a vector R rotating with a constant angular frequency

ω ¼ 2πf, where f is the frequency in s�1 or Hz and ω is in radians s�1 (Fig. 2.6).
The projection of R on the x- and y-axes, Rx and Ry, can be calculated using

simple trigonometry:

Rx ¼
R
 cos φð Þ ¼

R
 cos

�
ωt
�
,

Ry ¼
R
 sin φð Þ ¼

R
 sin

�
ωt
�
,

ð2:49Þ

where |R| is the length of the vector and φ ¼ ωt. This means that the projections of

the rotating vector are periodic cos and sin functions of time. It should be stressed

that Rx is the function of the cosine and Ry that of the sine. Of course, using

Pythagoras’ rule and the trigonometric identity sin2x + cos2x ¼ 1 the length of

the vector is

R
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
x þ R2

y

q
: ð2:50Þ

In complex analysis, a projection on the x-axis is called the real part of vector R,

and a projection on the y-axis is called the imaginary part. This is a simple way of

distinguishing between these two projections, but, as we will see below, it simplifies

considerably the calculations. The angle φ can be obtained as

tan φð Þ ¼ Ry

Rx

; φ ¼ atan
Ry

Rx

� �
: ð2:51Þ

ω

ϕ

x

y

| |R

Fig. 2.6 Vector R rotating

with constant angular

frequency ω
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The imaginary unit is defined as j2 ¼ �1, and the complex plane has two axes, x,

which is real, and y, which is imaginary; all the real numbers on the y-axis are

multiplied by the imaginary unit j. This means that any point on the complex plane

has two parts: a real part on the x-axis and an imaginary part on the y-axis. This is

illustrated in Fig. 2.7. Vector R may be written as

R̂ ¼ Re Rð Þ þ j Im Rð Þ ¼ R0 þ jR}, ð2:52Þ

where the following definitions were used for the real and imaginary parts of the

vector R:

Re R̂
� �
¼ R0 and Im Rð Þ ¼ R}: ð2:53Þ

Of course, the length of the vector |R| is

R
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0ð Þ2 þ R}ð Þ2

q
: ð2:54Þ

The phase angle of a complex number is called an argument, arg R̂
� �

, and the same

point may be described by the angles φ + 2πn, where n ¼ �1, �2,. . . . However,
we usually need the principal value of the argument denoted by Arg R̂

� �
which is

between 0 and 2π i.e. between 0� and 360�:

φ ¼ Arg R̂
� �
¼ atan

R}

R0

� �
: ð2:55Þ

Complex numbers can be written in exponential form keeping in mind that

ejφ ¼ cosφþ j sinφ; ð2:56Þ

ϕ x = Real 

y = Imaginary 

| |R

Im(R)

Re( )R

Fig. 2.7 Representation of

vector R on complex plane
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therefore, each complex number may be written in polar form:

R ¼
R
ejφ ¼

R
 cosφþ j sinφð Þ: ð2:57Þ

The length of the vector jRj is found by multiplying R by its complex

conjugate R*:

R
 ¼

ffiffiffiffiffiffiffiffiffi
RR∗
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ jR}ð Þ R0 � jR}ð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0ð Þ2 þ R}ð Þ2

q
: ð2:58Þ

From Eqs. (2.56) and (2.58) it follows that

ejφ
 ¼ 1: ð2:59Þ

It should be kept in mind that addition, multiplication, and division of the

complex numbers should be carried out correctly:

aþ jbð Þ þ
�
cþ jd

�
¼

�
aþ c

�
þ j

�
bþ d

�
,

aþ jbð Þ
�
cþ jd

�
¼

�
ac� bd

�
þ j

�
ad þ bc

�
,

1

aþ jb
¼ a� jbð Þ

aþ jbð Þ a� jbð Þ ¼
a

a2 þ b2

0
@

1
A� j

b

a2 þ b2

0
@

1
A,

aþ jb

cþ jd
¼ aþ jbð Þ c� jdð Þ

cþ jdð Þ c� jdð Þ ¼
acþ bd

c2 þ d2

0
@

1
Aþ j

bc� ad

c2 þ d2

0
@

1
A:

ð2:60Þ

Complex calculations may be carried out in Excel using built-in functions.

Further applications of complex calculations will be shown later.

2.7 Fourier Transform

Techniques based on the FT are often used in chemical instrumentation and

spectroscopy [e.g., Fourier transform-infrared (FTIR), Fourier transform nuclear

magnetic resonance (FT-NMR), FT Raman] and in EIS. They can also be applied

to smooth noisy experimental data. To comprehend these methods, a good under-

standing of the FT technique and its limitations is necessary.

Each periodic function may be presented as an infinite Fourier series composed

of sine and cosine functions:

f tð Þ ¼ a0 þ
X1

k¼1
ak cos kω1tð Þ þ bk sin kω1tð Þ, ð2:61Þ
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where a0 is a constant and all the parameters a0, ak, and bk may be found by

integration over the function f(t) with cosine and sine functions over one period:

ak ¼
2

T

ðT

0

f tð Þ cos kω1tð Þdt, ð2:62Þ

bk ¼
2

T

ðT

0

f tð Þ sin kω1tð Þdt: ð2:63Þ

The FT of the continuous function f(t) is defined similarly to Eq. (2.21) with the

parameter, s ¼ jω, Eq. (2.22), but with integration from �∞ to ∞ [75–77]:

F ωð Þ ¼
ð1

�1

f tð Þe�jωtdt: ð2:64Þ

It maps the function of time, f (t), into the function of frequency, F(ω). As with

the Laplace transform, no information is lost during this operation. In practice, one

uses integration between 0 and T assuming that the function is periodic before and

after this time window, which means that this time window is exactly repeated until

infinity:

F ωð Þ ¼
ðT

0

f tð Þe�jωtdt: ð2:65Þ

Taking into account Eq. (2.57) this equation corresponds to two parts of the

integral: a real part,

F0 ωð Þ ¼
ðT

0

f tð Þ cos ωtð Þdt, ð2:66Þ

and an imaginary part,

F} ωð Þ ¼ j

ðT

0

f tð Þ sin ωtð Þdt: ð2:67Þ

This operation corresponds simply to the integration of our function f(t) with

cos(ωt) and sin(ωt), respectively.
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Electrochemistry deals with digitized signals acquired with a constant frequency

determined by the analog to digital (A/D) converter, that is, instead of the contin-

uous function we deal with the collection of N points every Δt during the time

period T. The points i are numbered from 0 to N � 1, but only the point number is

indicated and the corresponding time must be calculated from the sampling rate:

Function of time Point number

f 0½ � f 0ð Þ
f Δt½ � f 1ð Þ
f 2Δt½ � f 2ð Þ
. . . . . .

f N � 2ð ÞΔt½ � f N � 2ð Þ
f N � 1ð ÞΔt½ � f N � 1ð Þ

ð2:68Þ

The acquired series of points may be integrated using Eq. (2.65), rewritten for

the discretized function (the integral is written as a sum):

F uð Þ ¼ 1

N

XN�1

i¼0
f ið Þexp �jωutið Þ, ð2:69Þ

where ωu is a series of harmonic frequencies and u is a whole number between 0 and

N � 1,

ωu ¼ uω1, ð2:70Þ

and the fundamental angular frequency ω1 is related to the fundamental frequency

v1 determined by the data acquisition time:

ω1 ¼ 2πv1 ¼
2π

T
¼ 2π

NΔt
: ð2:71Þ

Taking into account that

ti ¼ iΔt ð2:72Þ

and substituting these values into Eq. (2.69), the following equation is obtained:

F uð Þ ¼ 1

N

XN�1

i¼0
f ið Þexp � j2πui

N

� �
: ð2:73Þ

This equation represents the so-called discrete Fourier transform (DFT) and

shows how the series of points f(i) in the time domain is transformed into a series

of points in the frequency domain F(u). The exponent depends only on the numbers

u (point number in frequency domain), i (point number in the time domain), and the
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total number of points N. It should be noticed that Δt cancels and does not appear in

the equation. This operation can be shown in a schema, where the parameters i and

u change from 0 to N � 1:

Time domain Frequency domain

f 0ð Þ F 0ð Þ
f 1ð Þ F 1ð Þ
f 2ð Þ F 2ð Þ
. . . . . .

f ið Þ F uð Þ
. . . . . .

f N � 1ð Þ F N � 1ð Þ

ð2:74Þ

However, the highest frequency for which information can be obtained

corresponds to the point N/2. This is the so-called Nyquist frequency and it

expresses the fact that in order to obtain information about a periodic function

(sine or cosine), this function must be sampled at least two times per period. The

Nyquist frequency is

vmax ¼
Nv1

2
¼ N

2T
¼ N

2 NΔtð Þ ¼
1

2Δt
: ð2:75Þ

Although N points in the frequency domain are obtained, the information about

the frequency is contained for u from 0 (constant) up to N/2. After this point the

values are repeated, and no new information is found. Nevertheless, to carry out the

inverse FT, all N points must be used (for u from u ¼ 0 to N � 1):

f ið Þ ¼
XN�1

u¼0
F uð Þexp j2πui

N

� �
: ð2:76Þ

The frequencies at each point are calculated using the equation

vu ¼
u

NΔt
for u ¼ 0 . . .N=2: ð2:77Þ

The DFT is numerically inefficient and demands many multiplications/divisions.

Cooley and Tukey have developed a more efficient algorithm that reduces the

number of calculations for N2 to N log2 N. This is the so-called fast Fourier

transform (FFT) [75], which is implemented in many programs including Microsoft

Excel. However, it requires that the number of data points be a power of 2, that is,

N ¼ 2k, where k is an integer number, e.g., 4, 8, 16, 32, 64, 128,. . .. Although

manual calculation of the FT is possible for a few points, it is always done by

computer. To better understand this transform, let us look at a few examples. They

can be completed using Excel. In Exercise 2.1, the function E(t) ¼ cos(2πti/0.32) is

generated for 64 points and its FT is computed in Excel. Plots of the functions are
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displayed in Fig. 2.8. The FT displays only one point at the frequency ν ¼ 1/0.32 s�1

¼ 3.125 s�1, with the real part 0.5 and the imaginary part 0. This indicates that the

function transformed was the cosine without a phase shift. The phase angle is

calculated using Eq. (2.78):

φ ¼ Arg
0

0:5

� �
¼ 0: ð2:78Þ

The value of 0.5 is simply the FT of the cosinus function with an amplitude

of one:

1

T

ðT

0

cos 2πt=Tð Þe�j 2π=Tð Þtdt ¼ 0:5 ð2:79Þ

for ν ¼ 3.125 s�1. It should be stressed that the FT of the cosine function is

always real.

Fig. 2.8 Assumed function E(t) ¼ cos(2πti/0.32) (64 points) and its FT in Excel plotted versus

u and versus frequency
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The FT of the sinus function E(t) ¼ sin(2πt/Ta) is studied in Exercise 2.2.

It is simply the cosine function studied in Exercise 2.1 but shifted in phase by

�π/2 ¼ �90�:

sin
2πt

Ta

� �
¼ cos

2πt

Ta

� π

2

� �
ð2:80Þ

The assumed function and its FT are presented in Fig. 2.9.

The FT of this function shows that all the real values are equal to 0. The FT

displays two imaginary values:�0.5j for u ¼ 2 and 0.5j for u ¼ 62. The frequency

of the function is 3.125 s�1. The phase angle is

φ ¼ Arg
�0:5
0

� �
¼ � π

2
, ð2:81Þ

that is, �90�. FT is characterized by three parameters: the real (0) and imaginary

(�0.5) parts and the frequency 3.125 s�1. The equivalent representation is by the

modulus 0.5, the phase angle �π/2, and the frequency 3.125 s�1.
Let us consider now what happens if the cosine function is shifted by the phase

angle φ. This is also illustrated in Exercise 2.3, where the function E(t) ¼ cos(2πt / T

+ π / 3) is transformed. The function and its FT are displayed in Fig. 2.10.

In this case the FT versus u presents values different from 0 for u ¼ 2 and 62;

they are both complex, the real part is the same, and the imaginary is just of the

Fig. 2.9 Assumed function sin(2πti / 0.32) (64 points) and its FT (imaginary part) in Excel plotted

versus u and versus frequency up to Nyquist frequency
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opposite sign. The plot versus frequency displays real and imaginary values

different from zero for one frequency f ¼ 3.125 s�1. The phase angle is

φ ¼ Arg
Im

Re

� �
¼ π

3
¼ 60�: ð2:82Þ

From these values one can write that the original function is cos(2π 3.125 t + π/3).

Themodulus of the FT is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:252 þ 0:433012

p
¼ 0:5, and it is the same as in Exercises

2.1 and 2.2. In all these exercises the amplitude of the periodic functions was assumed

to be one.

In general, the cosine function (without the phase shift) always produces real

values and the sine only imaginary values. A cosine function shifted in phase

produces the real and imaginary parts from which the phase shift can be determined.

In the next example we will examine the FT of an intrinsically nonperiodic

function. This is also illustrated in Exercise 2.4, in which the function E(t) ¼ exp

(�3ti) for 32 points is transformed. This function and its FT are displayed in

Fig. 2.11. It is evident that nonzero values of the FT are obtained at all frequencies;

with the exception of u ¼ 0 and 16, they are all complex. The first constant value

for f ¼ 0 is simply the average value of all the experimental points. Note that from

u > N/2 that is form u ¼ 17 the real values are repeated in inverse order, that is,

Re17 ¼ Re15, Re18 ¼ Re14, etc., while the imaginary parts change sign: Im17 ¼
�Im15, Im18 ¼ �Im14, etc., around the central value for u ¼ N/2 ¼ 16. It must be

Fig. 2.10 Assumed function E(t) ¼ cos(2πti/0.32 + π/3) (64 points) and its FT (real and imag-

inary parts) in Excel plotted versus u and versus frequency, f
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stressed that all the frequencies are necessary to approximate the experimental

points. The experimental points of the exponential function are approximated by a

sum of the cosine functions with different amplitudes and different phase angles.

The amplitude (modulus) at each frequency and the phase angle are displayed in

Fig. 2.12. The same information is contained in the real and imaginary values at

each frequency as in the amplitude and the phase angle. It should be stressed that FT

gives an exact approximation of the experimental function at each point by the sum

of the periodic functions. Of course, one cannot use the sum of the obtained periodic

functions to interpolate it between the experimental points.

Fig. 2.11 Assumed function E(t) ¼ exp(�3ti) (32 points) and its FT (real and imaginary parts) in

Excel plotted versus u and versus frequency
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Fig. 2.12 Amplitude and phase angle of FT of exponential function in Fig. 2.11
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2.7.1 Leakage

There are some limitations of the FT technique connected with so-called leakage.

The FFT works well if there is a whole number of periods of the function f(t) in the

total acquisition time, T. As was mentioned at the beginning, the FT is an integral

from �∞ to ∞, and the transform assumes that what is observed in the total data

acquisition time is repeated before and after our time window from 0 to T. This is

illustrated in Fig. 2.13; curve a, containing a whole number of periods (here one),

produces a smooth curve (without discontinuities) when it is repeated before and

after the time window. However, when the number of periods is not a whole or

integer number, curve b (in this example 1.5 periods), repetition of this curve

produces discontinuities, as at the end of the period the curve is decreasing and at

the beginning of a new block it is increasing. The FT of curve a, Fig. 2.14, produces

one point in the frequency domain corresponding to the frequency of the wave.

However, in the case of curve b, in the list of frequencies calculated using

Eq. (2.77), there is no frequency corresponding to the natural frequency of that

sine function (there are others around this number; see Fig. 2.14), and a dispersion

of frequencies appears. This problem is called leakage and always appears when

there are no whole numbers of periods in the data acquisition time T, that is, the

a

b

Fig. 2.13 Top: curve a

containing whole number of

periods (here one); curve b

containing 1.5 periods.

Bottom: FT assumes that

this element is periodically

repeated producing

discontinuities for curve b
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Fig. 2.14 Fourier transform (amplitude) of function in Fig. 2.13a, bottom, containing whole

number (one) of periods ( ) and Fig. 2.13b, bottom, containing three blocks of 1.5 periods each

( ) during data acquisition time

28 2 Definition of Impedance and Impedance of Electrical Circuits



ratio of T/Ta, where Ta is the period of the studied function, is not a whole number.

An example of leakage is illustrated in Exercise 2.5.

The main conclusion of this part is that to avoid leakage, one always should keep

a whole number of periods in the total acquisition time. The problem of leakage

may be minimized (but not completely eliminated) when the total time and number

of periods of the function increase, which means that more frequencies are added to

the list and their separation becomes smaller (Exercise 2.5). Some authors have

proposed that using a digital filter that decreases the importance of the initial and

final points decreases the effect of leakage.

Therefore, when using a sum of frequencies in impedance (Chap. 3.7.3) one

must also ensure that the number of periods of each function during the data

acquisition time is a whole number.

The advantage of the FFT is that this analysis allows one to determine the

response of each periodic function when their sum is applied. It should be stressed,

however, that the frequency information is for f between fmin ¼ 1/T and the Nyquist

frequency fmax ¼ l/2Δt. For example, the FT of the curve displayed in Fig. 2.15

shows that it is composed of four cosine (only real values in the Fourier domain)

and three sine functions (only imaginary values in the Fourier domain) (Fig. 2.16).
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Fig. 2.15 Plot of a complex

function composed of the

sum of seven simple

periodic functions
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Fig. 2.16 Fourier

transform of function

displayed in Fig. 2.15
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Although the shape of the function f(t) seems quite complex, the FT analysis

reveals all the underlying functions and their frequencies. Details are presented in

Exercise 2.6.

2.7.2 Aliasing

Another problem with the FFT is related to the Nyquist sampling theorem. As was

shown earlier, the highest frequency for which information can be found from the

FFT is given by Eq. (2.75); this is the so-called Nyquist frequency, vmax. If the

experimental frequency is larger than this value, it cannot be found with the FFT.

Instead, new frequencies lower than vmax appear. This can be illustrated in the

following example. Let us suppose that the sampling frequency is 1 kHz, that is,

samples are measured every 1 ms. This means that the Nyquist frequency is

fmax ¼ 1/(2 � 0.001 s) ¼ 500 Hz. When a cosine wave of frequency 250 Hz is

applied, the FT is able to find it because the periodic wave is sampled four times per

period. This is illustrated in Fig. 2.17. When the wave frequency is 500 Hz (Nyquist

frequency), the wave is sampled two times per period. This is a minimum sampling

rate necessary to determine the frequency (Fig. 2.18). While sampling with the

Nyquist frequency one can find, by accident, that all the sampled values are zero or

very small. In the second case, the measurements might not be precise enough

(noisy), although theoretically the FFT should give correct values (Fig. 2.18). In

such a case, the waveform should be resampled. In practice, sampling with the

Nyquist frequency might be less reliable and should be repeated.

Finally, when the wave frequency is 625 Hz, which is larger than the Nyquist

frequency (500 Hz), the FT cannot find it. Instead, it finds a different frequency,

lower than the Nyquist frequency, in this case 375 Hz. This frequency does not exist

in the system but is reconstructed by the FT. It is illustrated in Fig. 2.19. This

example indicates that when performing FFT one should ensure that the sampling

rate is sufficiently large, larger than the Nyquist frequency. It could be verified by

doubling the sampling frequency; no changes in the frequencies found should

appear. Sometimes, it is advantageous to use a low-pass filter to cut off all
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Fig. 2.17 Examples of sampling wave of frequency 250 Hz at rate of 1,000 Hz. The wave is

sampled four times per period, which can be at different places (phases) of the wave
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frequencies larger than the Nyquist frequency. A problem with leakage is presented

in Exercise 2.5.

In summary, the sampled waveform should contain a whole number of periods to

avoid leakage and the sampling should be with at least the Nyquist frequency or

faster to avoid aliasing. In EIS practice, a waveform containing a predetermined

number of frequencies and whole number of periods of waveforms is used and

sampling is synchronized (Chap. 3.7).
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Fig. 2.18 Sampling of wave of frequency 500 Hz with Nyquist frequency of 1,000 Hz. It may

appear in some cases that the measured signal is either zero or very small; in such cases, the wave

should be resampled
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Fig. 2.19 Example of wave of 750 Hz (continuous line) being sampled with frequency of

1,000 Hz. The Nyquist frequency is 500 Hz. The Fourier transform finds a “phantom” frequency

of 250 Hz (dashed line) that does not exist in the system
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2.8 Impedance of Electrical Circuits

Knowledge of the Laplace and Fourier transforms allows us to determine the

system impedance and to solve the equations i(t) ¼ f[E(t)] for an arbitrary

perturbation.

2.8.1 Application of Laplace Transform to Determination

of Impedances

Let us assume that an arbitrary potential function E(t) is applied to a simple

connection of the resistance R and capacitanceC in series. Such a circuit is described

by Eq. (2.18):

E tð Þ ¼ i tð ÞRþ 1

C

ðt

0

i tð Þdt: ð2:18Þ

To solve the problem, which is an integral equation, we could use the Laplace

transform:

E sð Þ ¼ Ri sð Þ þ 1

Cs
i sð Þ, ð2:83Þ

where an integral equation in the time domain was transformed into an algebraic

equation in the frequency domain s. From this equation one can easily find i sð Þ :

i sð Þ ¼ 1

Rþ 1
sC

E sð Þ: ð2:84Þ

Similarly, one can solve differential Eq. (2.20) describing the connection of the

resistance, R, and inductance, L, in series:

E tð Þ ¼ i tð ÞRþ L
di tð Þ
dt

: ð2:20Þ

Applying the Laplace transform to this equation and keeping in mind Eq. (2.27)

for the transform of the first derivative the following form is obtained:

E sð Þ ¼ i sð ÞRþ i sð ÞsL, ð2:85Þ
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from which a current in the Laplace domain may be easily obtained:

i sð Þ ¼ E sð Þ
Rþ sL

: ð2:86Þ

To obtain a current as a function of time, the form of the potential program must

be known. In the case of a simple resistance in the circuit, the solution is obvious:

i tð Þ ¼ E tð Þ
R

and i sð Þ ¼ E sð Þ
R

: ð2:87Þ

2.8.2 Definition of Operational Impedance

Analysis of Eqs. (2.84), (2.86), and (2.87) reveals that the relation between current

and potential in the presence of resistance, capacitance, and inductance may be

represented in a general form:

Ẑ sð Þ ¼ L E tð Þ½ �
L i tð Þ½ � ¼

E sð Þ
i sð Þ , ð2:88Þ

where Ẑ sð Þ is called the operational impedance and has units of the resistance, Ω,

and for each electrical element one can write the corresponding impedance

(Table 2.1) and calculate the total impedance using Ohm’s and Kirchhoff’s laws.

The operational impedance is the ratio of the Laplace transform of the potential to

the Laplace transform of the current (Eq. 2.88). It is usually used for an arbitrary

perturbation signal. For the periodic signal it is equivalent to the definition using

Fourier transformation. What follows are examples of the application of the Laplace

technique to the determination of the current–potential relations and the impedances.

Example 2.10 Determine the current after application of the potential step E0η(t)

[see Fig. 2.5 for a definition of the Heaviside function η(t) and its transform] to the

connection of the resistance, R, and capacitance, C, in series.

The system is described by Eq. (2.84). The transform of the potential step E0 η(t) is

L E0η tð Þ½ � ¼ E0L η tð Þ½ � ¼ E0

s
, ð2:89Þ

Table 2.1 Operational

impedance of linear electrical

elements

Element Impedance

R R

C 1
sC

L sL
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where Eq. (2.25) was used for the transform of the η(t) function. The operational

impedance corresponds to the connection of the impedances of the R and

C elements in series. Using the impedances from Table 2.1 the total impedance is

Ẑ sð Þ ¼ Rþ 1

Cs
, ð2:90Þ

and from Eq. (2.88)

i sð Þ ¼ E sð Þ
Ẑ sð Þ

¼ E0

s

1

Rþ 1
Cs

¼ E0

R

1

sþ 1=RC
: ð2:91Þ

An inverse Laplace transform using Eq. (2.26) gives the solution in the time

domain:

i tð Þ ¼ E0

R
exp � t

RC

� �
¼ E0

R
exp � t

τ

� �
: ð2:92Þ

The current starts at i ¼ E0/R at t ¼ 0 then decreases exponentially with time to

zero as the capacitor is charged from 0 to E0; the constant current cannot flow

through the capacitance. The potential step and the response of the system are

displayed in Fig. 2.20. The rate at which the current decreases with time depends on

RC, which is called the system time constant τ ¼ RC; if the time constant is smaller

(smaller resistance or capacitance), then the current decay is faster.

Let us consider an application of the same potential step function to the R-L

connection in series.

Example 2.11 Determine the current after application of the potential step E0 η(t)

to the connection of the resistance, R, and inductance, L, in series.

The proposed system is described by the differential Eq. (2.20). The impedance

of the system is

Ẑ sð Þ ¼ Rþ Ls: ð2:93Þ

Fig. 2.20 Current–time transients due to application of step function to connection R-C and R-L in

series; the time constant in both cases is 1 s
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Substitution into the expression for the current gives

i sð Þ ¼ E sð Þ
Ẑ sð Þ

¼ E0

s Rþ sLð Þ ¼
E0

L

1

s sþ R=Lð Þ ¼
E0

R

1

s
� 1

sþ R=L

� �
: ð2:94Þ

The inverse transform gives

i tð Þ ¼ E0

R
1� exp �Rt

L

� �� �
: ð2:95Þ

A plot of current versus time is given in Fig. 2.20. At time t ¼ 0 the exponential

term is equal to 1 and the current is zero. This corresponds to the properties of a coil

that resists fast changes in a current. Then the current increases to the limiting value

E0/R as the coil does not oppose the passage of the constant current [Ldi(t)/dt ¼ 0 in

Eq. (2.20)]. The characteristic time constant of the system is τ ¼ L/R.

Let us consider a more difficult example.

Example 2.12 Determine the current after application of the potential step E0η(t) to

the connection of the resistance, R, capacitance, C, and inductance, L, in series.

The operator impedance of the circuit is simply a connection of the three

elements in series:

Ẑ sð Þ ¼ Rþ 1

Cs
þ Ls: ð2:96Þ

Substitution into the equation for the current gives

i sð Þ ¼ E0

s Rþ 1
Cs
þ Ls

� � ¼ E0

L

1

s2 þ R
L
sþ 1

RL

� � : ð2:97Þ

To be able to carry out the inverse transform, the second-order expression for

s must be separated into simple fractions:

s2 þ R

L
sþ 1

RL
¼ s� s1ð Þ s� s2ð Þ, ð2:98Þ

s1 ¼
R

2L
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4L

R2C

s0
@

1
A ¼ 1

2τ1
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4τ1

τ2

s0
@

1
A,

s2 ¼
R

2L
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4L

R2C

s0
@

1
A ¼ 1

2τ1
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4τ1

τ2

s0
@

1
A,

ð2:99Þ
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assuming that Δ > 0, that is, 1 � 4τ1 / τ2 > 0

1

s2 þ R

L
sþ 1

RL

¼ 1

s� s1ð Þ s� s2ð Þ ¼
A

s� s1
þ B

s� s2
¼ s Aþ Bð Þ � As2 � Bs1

s� s1ð Þ s� s2ð Þ ,

A ¼ �B ¼ � 2L

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4L

R2C

s ¼ � 2

τ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4τ1

τ2

s :

ð2:100Þ

After substitution into the expression for the Laplace transform of the current,

i sð Þ ¼ E0

R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4τ1

τ2

q 1

s� s2
� 1

s� s1

� �
, ð2:101Þ

the inverse transform is

i tð Þ ¼ E0

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4L

R2C

q es2t � es1tð Þ

¼ E0

R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4τ1

τ2

q e
� 1

2τ1
1�

ffiffiffiffiffiffiffiffi
1�4τ1

τ2

q� �
t
� e

� 1
2τ1

1þ
ffiffiffiffiffiffiffiffi
1�4τ1

τ2

q� �
t

2
4

3
5: ð2:102Þ

The current relaxation is controlled by two time constants, τ1 ¼ L/R and

τ2 ¼ RC, which correspond to the relaxation of the system corresponding to R-L

and R-C connections. A plot of the current versus time is presented in Fig. 2.21. At

t ¼ 0 the current is zero, and then it increases as in the case of the connection R-L.

Then it starts to decrease to zero as with the connection R-C.

The method of the Laplace transform may also be used to determine the i(t)

relation in the case where the ac signal is applied. This is illustrated in Example 2.13.

Fig. 2.21 Current–time

transients due to application

of step function to

connection R-C-L in series;

τ1 ¼ 0.15 s, τ2 ¼ 3 s
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Example 2.13 Determine the current after application of the periodic function

E(t) ¼ E0 sin(ωt) to the connection of the resistance, R, and capacitance, C, in

series.

As in Example 2.10, the relation between current and potential in the Laplace

domain is described as

i sð Þ ¼ E sð Þ
Ẑ sð Þ

¼ E sð Þ
Rþ 1

Cs

ð2:103Þ

The Laplace transform of the sine function is found in Appendix 1:

L sin ωtð Þ½ � ¼ ω

s2 þ ω2
: ð2:104Þ

Substitution into Eq. (2.103) gives, after rearrangements,

i sð Þ ¼ E0

ω

s2 þ ω2

1

Rþ 1

Cs

¼ E0

ω

s2 þ ω2ð Þ
s

R sþ 1

RC

0
@

1
A
¼

¼ E0ω

R

s

s2 þ ω2ð Þ sþ 1

RC

0
@

1
A

:
ð2:105Þ

The last term in Eq. (2.105) must be separated into simple fractions:

i sð Þ ¼ Asþ B

s2 þ ω2
þ D

sþ 1

RC

¼

¼

s2 Aþ Dð Þ þ s Bþ A

RC

0
@

1
Aþ B

RC
þ Dω2

0
@

1
A

s2 þ ω2ð Þ sþ 1

RC

0
@

1
A

:

ð2:106Þ

Comparison of Eqs. (2.106) and (2.105) allows for the determination of the

parameters A, B, and D:
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Aþ D ¼ 0 Bþ A

RC
¼ 1

B

RC
þ Dω2 ¼ 0,

A ¼ �D ¼ RC

1þ ωRCð Þ2
B ¼ ωRCð Þ2

1þ ωRCð Þ2
:

ð2:107Þ

Substitution of these parameters into Eq. (2.106) leads to

i sð Þ ¼ E0ω

R

RC

1þ ωRCð Þ2
h i s

s2 þ ω2ð Þ þ
ωRCð Þ2

1þ ωRCð Þ2
h i 1

s2 þ ω2ð Þ

þ RC

1þ ωRCð Þ2
h i 1

sþ 1

RC

2
6666664

3
7777775
¼ ð2:108Þ

¼ E0ω

R ωRCð Þ2 1þ 1

ωRCð Þ2

0
@

1
A

RC
s

s2 þ ω2ð Þ þ ωRCð Þ2 1

s2 þ ω2ð Þ

2
4

3
5 ¼

¼ E0

R

1

1þ 1

ωRCð Þ2

2
4

3
5

1

ωRC

s

s2 þ ω2ð Þ þ
ω

s2 þ ω2ð Þ

2
4

3
5,

ð2:109Þ

where the third term displaying a transient exponential relaxation was neglected

because it disappears in the steady state. This equation can be transformed into the

time domain keeping in mind that

L cos ωtð Þ½ � ¼ s

s2 þ ω2
, ð2:110Þ

and the following expression is obtained:

i tð Þ ¼ E0

R

1

1þ 1

ωRCð Þ2

1

ωRC
cos ωtð Þ þ sin ωtð Þ

� �
: ð2:111Þ

Note that any real number can be represented as tan(x); in our case we can use

tanφ ¼ 1

ωRC
: ð2:112Þ
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Substitution of Eq. (2.112) into (2.111) gives

i tð Þ ¼ E0

R

1

1þ 1

ωRCð Þ2
tan φð Þ cos ωtð Þ þ sin ωtð Þ½ �

¼ E0

R

1

1þ 1

ωRCð Þ2
cos ωtð Þ sin φð Þ þ sin ωtð Þ cos φð Þ½ � ð2:113Þ

Using the trigonometric identities

cos φð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ tan 2 φð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ 1

ωRCð Þ2

vuuuut

cos ωtð Þ sin
�
φ
�
þ sin

�
ωt
�
cos

�
φ
�
¼ sin

�
ωtþ φ

�
ð2:114Þ

one obtains the final form:

i tð Þ ¼ E0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

ωcð Þ2
q sin ωtþ φð Þ ¼ E0

Zj j sin ωtþ φð Þ: ð2:115Þ

Comparison of the applied voltage and obtained current reveals that the current

oscillates with the same frequency as the potential but is shifted in phase by the

angle φ depending on the frequency, according to Eq. (2.112). The term | Z | is the

modulus of the impedance:

Z
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

ωCð Þ2

s
ð2:116Þ

is a sum of two perpendicular vectors, R and 1/ωC. We will find later that the same

answer will be obtained using FT.

An exercise where the sine function is replaced by the cosine is presented in

Example 2.14.

Example 2.14 Determine the current following application of the periodic function

E(t) ¼ E0 cos(ωt) to the connection of the resistance, R, and capacitance, C, in

series.

This example is analogous to Example 2.13, with the exception of the periodic

function, which is now the cosine. Using the Laplace transform of the cosine

function the transformed current is obtained and must be separated into simple

fractions:
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i sð Þ ¼ E0

s

s2 þ ω2ð Þ Rþ 1

sC

0
@

1
A
¼ E0

R

s2

s2 þ ω2ð Þ sþ 1

RC

0
@

1
A

¼ E0

R 1þ ωRCð Þ2
� � ωRCð Þ2 s

s2 þ ω2ð Þ � ωRC
ω

s2 þ ω2ð Þ þ
1

sþ 1

RC

0
@

1
A

2
6666664

3
7777775

¼ E0

R

ωRCð Þ2

1þ ωRCð Þ2
s

s2 þ ω2ð Þ �
1

ωRC

ω

s2 þ ω2ð Þ

2
4

3
5

¼ E0

R

1

1þ 1

ωRCð Þ2

s

s2 þ ω2ð Þ �
1

ωRC

ω

s2 þ ω2ð Þ

2
4

3
5:

ð2:117Þ
As before, the transient term was neglected. The inverse Laplace transform may

be rearranged as before:

i tð Þ ¼ E0

R

1

1þ 1

ωRCð Þ2
cos ωtð Þ � tan φð Þ sin ωtð Þ½ �

¼ E0

R

1

1þ 1

ωRCð Þ2

cos ωtð Þ cos ωtð Þ � sin φð Þ sin ωtð Þ
cos ωð Þ

2
4

3
5,

ð2:118Þ

and using the trigonometric identity, Eq. (2.114), and

cos ωtð Þ cos ωtð Þ � sin φð Þ sin ωtð Þ ¼ cos ωtþ φð Þ ð2:119Þ

the final expression is obtained:

i tð Þ ¼ E0

R
cos 2

�
φ
� cos ωtþ φð Þ

cos φð Þ ¼ E0

R

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ωRCð Þ2
s cos

�
ωtþ φ

�

i tð Þ ¼ E0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

ωCð Þ

s cos
�
ωtþ φ

�
¼ E0

Zj j cos
�
ωtþ φ

�
: ð2:120Þ
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As in Example 2.13, the current is shifted in phase by angle φ and the modulus of

the impedance is the same. Such an exercise is mathematically simple but time

consuming. It should be added that the program Maple, which allows for symbolic

calculations, allows for automatic separation of expressions into simple fractions

using the function convert(f, parfrac, s), in which function f of the

parameter s is transformed into simple fractions, for example:

> f :¼ s2= s2 þ a2ð Þ=
�
sþ b

�
;

f :¼ s2

s2 þ a2ð Þ sþ bð Þ

> yy :¼ convert f; parfrac; sð Þ;

yy :¼ � a2 b� sð Þ
b2 þ a2
� �

s2 þ a2ð Þ
þ b2

b2 þ a2
� �

sþ bð Þ
:

ð2:121Þ

2.8.3 Application of Fourier Transform to Determination

of Impedances

In the Laplace transform above, we assumed a real transform with s ¼ σ. As in the

impedance technique, we usually apply a periodic cosine perturbation, and in such a

case it is simpler to use the FT with s ¼ jω. In general, a periodic potential

perturbation, ΔE, applied to a circuit may be written as a complex analog of the

simple periodic perturbation, see Eq. (2.56):

ΔE ¼ E0exp jωtð Þ ð2:122Þ

or, in a more general form, assuming that there is an initial phase shift at t ¼ 0:

ΔE ¼ E0exp j ωtþ ϕ1ð Þ½ � ¼ E0exp jϕ1ð Þexp jωtð Þ ¼ eEexp jωtð Þ: ð2:123Þ

Equation (2.123) represents a vector of length E0 rotating with a constant

frequency ω and with the initial phase shift ϕ1, and projections of this vector on

the x- and y-axes are called real and imaginary parts, respectively. The value of ΔE

oscillates between �E0. This is represented schematically in Fig. 2.22. Vector eE can

be written as a product of the amplitude and exponential:

eE ¼ E0exp jϕ1ð Þ, ð2:124Þ

which represents a vector of lengths E0 shifted by the angle ϕ1 and the term exp

( jωt), which is responsible for the rotation of the vector eE at a constant rate ω.

The parameter eE is called a phasor and represents an immobile vector shifted by

the angle ϕ1. Similarly, for the vector corresponding to the current we can write
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ΔI ¼ I0exp j ωtþ ϕ2ð Þ½ � ¼ I0exp jϕ2ð Þexp jωtð Þ ¼ eIexp jωtð Þ, ð2:125Þ

whereeI is the phasor of the current. The rotating vectors of E(t) and I(t) are shown in
Fig. 2.22 and the corresponding phasors in Fig. 2.23. The initial phase shift for eE is

usually assumed to be zero because it is the signal of reference created by the signal

generator and all other signals are referred to it. The ac impedance of the system is

defined as the ratio of phasors eE and eI:

Ẑ jωð Þ ¼ ΔE

ΔI
¼

eE
eI
: ð2:126Þ

In other words, the impedance is the ratio of the FTs of the potential and current,

which is equal to the ratio of the corresponding phasors:

Ẑ jωð Þ ¼ F E tð Þ½ �
F I tð Þ½ � ¼

eE
eI
: ð2:127Þ

To better understand how the impedance is determined, let us suppose that the

applied ac voltage and measured current are described by the following equations:

E(t) ¼ E0 cos(ωt) and I(t) ¼ I0 cos(ωt + π/3), where E0 ¼ 0.01 V, I0 ¼ 0.002 A,

ω ¼ 2πf ¼ 2π/Ta, Ta ¼ 0.32 s. The calculations are carried out in Exercise 2.7.

x

y

ΔEΔ Iω

φ1

φ2

Fig. 2.22 Representation

of rotating vectors ΔE,

Eq. (2.124), and ΔI on

complex plane. They both

rotate with a constant

angular frequency ω, but

there is a constant phase

difference between them,

ϕ1 � ϕ2

x

y

φ
2
–φ1

Fig. 2.23 Representation

of phasors of eE and eI on
complex plane plot. These

vectors are immobile and

there is a constant phase

difference, ϕ2 � ϕ1 ¼ ϕ,

between them. The initial

phase angle for the potential

eE was chosen as zero
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The potential and current functions are displayed in Fig. 2.24 and their FTs in

Fig. 2.25. Using complex calculations in Excel the ratio of the FT of the potential

and the current gives the total impedance:

eE ¼ 0:005 V, eI ¼ 3:20� 10�2 þ 5:54256� 10�2j A,

Ẑ ¼ eE=eI ¼ 2:5� 4:33013j Ω,

ϕ ¼ �60�,
Z
 ¼ 5 Ω at f ¼ 3:125 Hz:

Modern impedance measuring equipment is able to extract the impedance from

the experimentally measured potential and current.

Fig. 2.24 Potential and current functions for calculation of impedance using following data:

E(t) ¼ E0 cos(ωt) and I(t) ¼ I0 cos(ωt + π / 3),where E0 ¼ 0.01 V, I0 ¼ 0.002 A, ω ¼ 2πf ¼
2π/Ta, Ta ¼ 0.32 s (Exercise 2.7)

Fig. 2.25 Fast Fourier transform of potential and current functions in: real part – diamonds,

imaginary – squares of functions in Fig. 2.24
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2.8.4 Definition of Impedance

From the preceding section we can write a general definition of impedance. The

general operational definition of impedance is described by Eq. (2.88):

Ẑ sð Þ ¼ L E tð Þ½ �
L i tð Þ½ � ¼

E sð Þ
i sð Þ , ð2:88Þ

where the symbol L denotes the Laplace transform, Eq. (2.21). As was mentioned

earlier, the parameter s, called the frequency, may be complex: s ¼ σ + jω. In the

classical Laplace transform the parameter s is real: s ¼ σ. To obtain the impedance

of electrical circuits, the impedance of the elements R, C, and L are defined in

Table 2.1 and the impedance of the total circuit is written using Ohm’s and

Kirchhoff’s laws. The following examples illustrate this method.

Example 2.15 Write the impedance of the circuit in Fig. 2.26.

Applying the laws for the connections of impedances in series and in parallel,

and substituting the impedance of the elements from Table 2.1, the total impedance

of this circuit may be written as

Ẑ sð Þ ¼ R0 þ
1

sC1 þ
1

R1

: ð2:128Þ

Example 2.16 Write the impedance of the circuit in Fig. 2.27.

The impedance of this circuit may be written as

Ẑ sð Þ ¼ R0 þ
1

sC1 þ
1

R1 þ
1

sC2 þ
1

R2

: ð2:129Þ

From the preceding examples one can see that writing the impedance of the

circuits is straightforward.

The foregoing examples are valid for any potential perturbation. In the particular

case of ac impedance, that is, when the applied potential perturbation is sinusoidal,

one uses the FT (Eq. 2.127):

C1

R1

R0

Fig. 2.26 Circuit for

Example 2.15
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Ẑ jωð Þ ¼ F E tð Þ½ �
F I tð Þ½ � ¼

eE jωð Þ
eI jωð Þ

, ð2:127Þ

where the parameter s is imaginary: s ¼ jω. It should be stressed that all the

definitions presented above are equivalent for periodic signal perturbation while

the operator impedance applies better to any perturbation. Besides impedance other

terms are also used; the inverse of impedance is admittance:

Ŷ sð Þ ¼ 1

Ẑ sð Þ
: ð2:130Þ

Both impedance and admittance are called immittances. Between other related

functions, complex dielectric constant should also be mentioned [78]. It is used in

the analysis of dielectric relaxation and is obtained from the measured admittance

(impedance) of a cell with a given dielectric (liquid or solid):

ε̂ ¼ Ŷ

jωCc

, ð2:131Þ

where Ŷ is the admittance of the cell Ŷ ¼ jωĈ, and

Ĉ ¼ ε̂ ε0Ac

d
ð2:132Þ

is the capacitance of the studied material, ε̂ is the complex dielectric constant

(function of the frequency), ε0 ¼ 9.8542 � 10�14 F/cm is the dielectric permittivity

of a vacuum, d is the distance between electrodes, Ac is their surface area, and Cc is

the capacity of the empty cell (containing air or in vacuum) Cc ¼ ε0Ac/d. Another

function used in dielectric research is the modulus, M̂ ¼ 1=ε̂ .
To obtain the ac impedance of circuits represented by Eqs. (2.128) and (2.129)

substitution of s must be done, and the appropriate equations become

Ẑ jωð Þ ¼ R0 þ
1

jωC1 þ 1
R1

, ð2:133Þ

C1

R1 

C2

R2

R0

Fig. 2.27 Circuit for

Example 2.16
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Ẑ jωð Þ ¼ R0 þ
1

jωC1 þ 1
R1þ 1

jωC2þ 1
R2

: ð2:134Þ

Therefore, in general, the impedance of the electrical elements used is displayed

in Table 2.2.

Equations (2.133) and (2.134) can be further rearranged using the complex

calculus. For example, Eq. (2.133) may be rearranged into

Ẑ jωð Þ ¼ R0 þ
R1

1þ jωR1C1

¼ R0 þ
R1 1� jωR1C1ð Þ
1þ ωR1C1ð Þ2

¼

¼ R0 þ
R1

1þ ωR1C1ð Þ2
� j

ωR1C1

1þ ωR1C1ð Þ2 ð2:135Þ

and the impedance consists of two parts, one real and positive and one imaginary

and negative:

Re Ẑ jωð Þ
� �

¼ R0 þ
R1

1þ ωR1C1ð Þ2
,

Im Ẑ jωð Þ
� �

¼ � ωR1C1

1þ ωR1C1ð Þ2
,

ð2:136Þ

and both parts are frequency dependent. Similarly, Eq. (2.134) may be rearranged

into

Ẑ jωð Þ ¼ R0 þ
R1 þ R2 þ jωR1R2C2

1� ω2R1R2C1C2 þ jω R2C2 þ C1 R1 þ R2ð Þ½ � , ð2:137Þ

and multiplying by the conjugated form of the denominator yields

Re Ẑ jωð Þ
� �

¼ R0

R1 þ R2ð Þ 1� ω2R1R2C1C2ð Þ þ ω2R1R2C2 R2C2 þ C1 R1 þ R2ð Þ½ �
1� ω2R1R2C1C2ð Þ2 þ ω2 R2C2 þ C1 R1 þ R2ð Þ½ �2

,

Im Ẑ jωð Þ
� �

¼ ωR1R2C2 1� ω2R1R2C1C2ð Þ � ω R1 þ R2ð Þ R2C2 þ C1 R1 þ R2ð Þ½ �
1� ω2R1R2C1C2ð Þ2 þ ω2 R2C2 þ C1 R1 þ R2ð Þ½ �2

:

ð2:138Þ

Table 2.2 Operational and

ac impedance of linear

electrical elements

Element Operational impedance Ac impedance

R R R

C 1
sC

1
jωC

L sL jωL
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The calculations are simple but time consuming and may be carried out easily

using Maple (see below):

>Z: ¼ 1/(I * om * C1 þ 1/(R1 þ 1/(I * om * C2 þ 1/R2)));

Z : ¼ 1

I om C1þ 1
R1þ 1

I om C2þ 1
R2

> Z1: ¼ simplify (Z);

Z1 :¼ � I R1 om C2 R2þ R1þ R2

om2 C1 R1 C2 R2� I om C1 R1� I om C1 R2� I om C2 R2� 1

> evalc(Re(Z1));

� R1þ R2ð Þ om2 C1 R1 C2 R2� 1ð Þ
om2 C1 R1 C2 R2� 1ð Þ2 þ �om C1 R1� om C1 R2� om C2 R2ð Þ2

� R1 om C2 R2 �om C1 R1� om C1 R2� om C2 R2ð Þ
om2 C1 R1 C2 R2� 1ð Þ2 þ �om C1 R1� om C1 R2� om C2 R2ð Þ2

>evalc(Im(Z1));

� R1 om C2 R2 om2 C1 R1 C2 R2� 1ð Þ
om2 C1 R1 C2 R2� 1ð Þ2 þ �om C1 R1� om C1 R2� om C2 R2ð Þ2

þ R1þ R2ð Þ �om C1 R1� om C1 R2� om C2 R2ð Þ
om2 C1 R1 C2 R2� 1ð Þ2 þ �om C1 R1� om C1 R2� om C2 R2ð Þ2

:

The obtained results might be visualized using impedance plots.

2.9 Circuit Description Code

Boukamp [79] has proposed a simple notation for the connection of various

electrical elements. It can be used instead of circuit schematics.

A simple connection of the elements in series, for example R, L, and C in series,

is R L C. The use of parentheses means a change from a connection in series to a

connection in parallel. That is, the connection of R and C in parallel (Fig. 2.33) is

(RC), and the connection of R, L, and C parameters in parallel is (RLC). The

connection of Rs with a parallel connection of R and C becomes (Fig. 2.34) Rs(RC).

The next parentheses indicate a subsequent change from parallel to series

connection. Inserting the capacitance in series with the resistance in a nested circuit

(Fig. 2.35) is described as Rs(Cdl(RctCp)), that is, Rs in series with the parallel

connection of Cdl and a series connection of Rct and Cp.
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The two circuits in Fig. 2.37 in series and nested are described by R0(C1R1)

(R2C2) and R0(C1(R1(C2R2))). Other distributed circuit elements can also be used:

Q represents a constant phase element, CPE, W a semi-infinite Warburg element,

Ws a finite length transmissive element,Wo a finite length reflecting element, and so

forth. In the case of distributed elements, it is preferable to define them specifically.

Let us look at a more complex example (Fig. 2.28). It can be represented as

R1(R2(W3(C5R4))). In this example, R1 is in series with the circuit CE1, which is R2

in parallel with CE2, which isW3 in series with CE3, that is, a parallel connection of

C5 and R4.

Another, more complex, example is shown in Fig. 2.29. It is described using

Boukamp’s notation as follows: L1R2(Q3(R4(C5(R6(R7L8)(R9C10))))).

In this way, almost any arbitrary circuit may be simply represented.

2.10 Impedance Plots

Impedance measurements produce numerical results, usually as real Z0 and imag-

inary Z00 impedances or modulus |Z| and phase angle φ as functions of frequency.

Visual (graphical) inspection of the obtained results usually makes it possible

to identify the electrical equivalent circuit containing R, C, and L elements.

Fig. 2.28 Example of a

more complex circuit from

ref. [79] with permission

of author

Fig. 2.29 Example of

a more complex circuit

from ref. [79] with

permission of author
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However, this inspection is insufficient, and mathematical modeling involving

fit to the circuit or equation should be carried out (Chap. 14). In the case of real

electrochemical systems, the situation is more complex because the studied objects

are not electrical circuits but systems involving interfaces, electrochemical reac-

tions, transport of species, etc. Nevertheless, graphical inspection usually helps in

deciding whether the experiments are proceeding correctly and in making a first

assessment of data.

There are two fundamental types of graph:

1. Complex plane plots, also called Argand diagrams (or, less correctly,

Nyquist plots). They are plots of imaginary versus real impedance. In these

plots -Z00 is plotted versus Z0 as the imaginary impedances of the electrochemical

systems are usually negative. It should be added that, although the name

Nyquist plot is often used in the electrochemical literature, it is not precise

because Nyquist plots are used for assessing the stability of a system with

feedback.

2. Bode plots. There are two types of Bode plot:

(a) log |Z| (magnitude) versus log f (frequency)

(b) phase angle φ versus log f

It should be stressed that in complex plane plots, the unit length of real and

imaginary parts should be the same; otherwise, deformation of the plots is observed.

Moreover, these plots do not contain all the information about frequency, and some

frequencies are often added in these plots to better visualize the frequency domain.

They are preferred by electrochemists because a model can be more easily found

from them (especially by inexperienced researchers). On the other hand, two

Bode plots contain all the necessary information. From a practical point of view,

typical data acquisition and analysis programs display both plots. It is strongly

recommended that both types of plots be used, especially when comparing exper-

imental data with the fit to the appropriate model. In some cases other plots are also

presented, for example, complex admittance plots, complex capacitance plots,

and tridimensional impedance plots. Admittance plots can be useful when dealing

with blocking systems, where very small and very large impedances are present

(Fig. 2.30).

An example of a tridimensional plot, Z00, Z0, log f, created automatically in

ZView, is displayed in Fig. 2.31.

Several examples of impedance plots are presented in Exercises 2.8 and 2.10.

First, let us look at the complex plane and Bode plots obtained for an R-C

connection in series, RC in Boukamp’s notation, with R ¼ 150 Ω, C ¼ 40 μF,

Exercise 2.8. The impedance of such a circuit is described as

Ẑ jωð Þ ¼ Rþ 1

jωC
¼ R� j

1

ωC
: ð2:139Þ
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The modulus and the phase angle are

Zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

ωCð Þ2
s

φ ¼ atan
Z}

Z0

0
@

1
A ¼ atan � 1

ωRC

0
@

1
A ¼ atan

1

ωRC

0
@

1
A,

ð2:140Þ

and the admittance is
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Fig. 2.31 Example of tridimensional impedance (in Ω) plot generated by ZView
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Fig. 2.30 Complex plane impedance, Z0 vs. Z00, Eq. (2.139), and admittance, Y0 vs. Y00, Eq. (2.141),
plots for circuit Rs(Cdl(RpCp)) with Rs ¼ 10 Ω, Cdl ¼ 4 � 10�5 F, Rp ¼ 10 Ω, Cp ¼ 0.001 F
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Ŷ jωð Þ ¼ 1

Ẑ jωð Þ
¼ 1

R� j 1
ωC

¼ R

R2 þ 1

ω2C2

þ j
1

ωC R2 þ 1
ω2C2

� � : ð2:141Þ

Equation (2.140) should be compared with Eq. (2.115); it is evident that the

same equation describing impedance was obtained from Eq. (2.139) using complex

algebra. The plots are displayed in Fig. 2.32.

In a complex plane plot, the real part is always constant, Z0 ¼ R, and the

imaginary part, Z00 ¼ �1/ωC, changes from zero at infinite frequency to infinity

at zero frequency. A dc current cannot circulate through such a circuit because |Z|

also goes to infinity as f goes to zero.

The Bode magnitude contains two elements: R and 1/ωC. The plot presents a

constant value log| Z | ¼ logR at high frequencies and a straight line with a slope�1:
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Fig. 2.32 Complex plane (a), Bode magnitude (b), Bode phase angle (c), and complex admittance

(d) plots for R-C connection in series; R ¼ 150 Ω, C ¼ 40 μF
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log |Z| ¼ � log ω � log C at low frequencies. There is an inflection point where

these two elements are identical, giving the break-point frequency ω ¼ 1/RC. The

Bode phase angle plot represents two bend points and changes between angle zero at

high frequencies and 90� at very low frequencies.

The admittance presents a semicircle (Eq. 2.141); at very low frequencies the

admittance is zero (impedance infinite), and at high frequencies it is equal to 1/R

because the impedance of the capacitance is zero. The maximum of admittance is at

ω ¼ 1/RC.

Let us now look at the R-C connection in parallel, i.e., the circuit (RC) using

Boukamp’s notation (Exercise 2.10). The impedance of the system is

Z ¼ 1
1
R
þ jωC

¼ R

1þ jωRC
¼ R

1þ ωRCð Þ2
� j

ωR2C

1þ ωRCð Þ2
, ð2:142Þ
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Fig. 2.33 Complex plane impedance, Bode, and complex plane admittance plots for a connection

of R and C in parallel (RC), R ¼ 100 Ω, C ¼ 20 μF
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Zj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ωR2C

� �2q

1þ ωRCð Þ2
φ ¼ atan �ωRCð Þ ¼ �atan ωRCð Þ, ð2:143Þ

and the admittance is

Ŷ ¼ 1

R
þ jωC: ð2:144Þ

The impedance presents a semicircle; when the frequency goes to infinity, the

impedance goes to zero because the impedance of the capacitor becomes zero and

when the frequency goes to zero the impedance becomes realZ ¼ R because a constant

dc current can flow through the circuit. The maximum of the imaginary part is

observed at the frequencyω ¼ 1/RC, and RC is called the time constant of the system.

As in the preceding example, the imaginary part of the impedance is always negative.

There are two linear parts of the Bode magnitude plot; when the frequency is

very low, Eq. (2.142) reduces to |Z| ¼ R, and when the frequency is very large, the

real part becomes small and |Z| ¼ 1/ωC. There is one break-point frequency on a

Bode magnitude plot, when R ¼ 1/ωC, and the break-point frequency corresponds

to the system time constant:

ω ¼ 1

τ
¼ 1

RC
: ð2:145Þ

The admittance plot for (RC) connections is similar in shape to the impedance

plot for an R-C connection in series. The difference is that for circuits containing

capacitances the imaginary part of the impedance is negative and that of the

admittance positive.

Next, let us consider Rs in series with a parallel connection of R and C, that is,

circuit Rs(CR) (Exercise 2.11 and Fig. 2.34).

The total impedance of the system is

Ẑ ¼ Rs þ
1

1
R
þ jωC

¼ Rs þ
R

1þ jωRC

¼ Rs þ
R

1þ ωRCð Þ2
� j

ωR2C

1þ ωRCð Þ2
, ð2:146Þ

and the complex plane plots are displayed in Fig. 2.34.

A complex plane plot represents a semicircle shifted to higher values by a

constant resistance Rs. The high-frequency current flows through the capacitance

C and the total impedance is real and equal to Rs. The dc current (ω ¼ 0) flows

through Rs and R and the impedance is real and here equal to Rs + R.

The phase angle is

φ ¼ atan
Z}

Z0

� �
¼ �atan ωR2C

Rs þ Rþ Rs ωRCð Þ2

" #
, ð2:147Þ
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and the maximum of the phase angle is observed at the frequency

ωmax ¼
1

RC

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rs

R
þ 1

r
, ð2:148Þ

which in this example appears at ωmax ¼ 1658 rad s�1. One notices that the

maximum of the phase angle appears at a frequency higher than the maximum of

the imaginary part of the semicircle, which is at ωmax, Im ¼ 1/RC ¼ 500 rad s�1, as
in the simple (RC) parallel circuit. This is schematically displayed in Fig. 2.34,

Bode phase angle. The value of ωmax approaches that of ωmax, Im when Rs / R 	 1,

that is, when the series resistance Rs is very small.
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Fig. 2.34 Complex plane impedance, Bode, and complex plane admittance plots for resistance Rs

with connection of R and C in parallel, Rs ¼ 10 Ω, R ¼ 100 Ω, C ¼ 20 μF
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2.10.1 Interpretation of Bode Magnitude Plots

The total impedance of the circuit in Fig. 2.34 can be rewritten as

Ẑ ¼ Rs þ
1

1þ jωRC
¼ Rs þ Rþ jωRsRC

1þ jωRC
¼ Rs þ Rð Þ

1þ jω
RsR

Rs þ R
C

0
@

1
A

1þ jω RCð Þ

¼ Rs þ Rð Þ 1þ jωτ2

1þ jωτ1
,

ð2:149Þ

where τ1 and τ2 are the two characteristic time constants of the circuit in Fig. 2.34;

these time constants are τ1 ¼ 2 ms and τ1 ¼ 0.1818 ms, corresponding to two

break-point frequencies, ω1 ¼ 500 rad s�1 and ω2 ¼ 5500 rad s�1. From

Eq. (2.149) the Bode magnitude plot can be evaluated:

log Zj j ¼ log Rs þ Rð Þ þ log 1þ jωτ2j jð Þ � log 1þ jωτ1j jð Þ: ð2:150Þ

Depending on the frequencies, the logarithmic terms log(j1 + jωτj) may take

two different values; when ωτ 	 1, log(|1 + jωτ|) ¼ 0, and when ωτ 
 1, log

(j1 + jωτj) ¼ log ω + log τ, which gives a line with a slope of one. From this

equation three asymptotes can be constructed. When ωτ 	 1 logjZj ¼ log

(Rs + R), in the intermediate frequency zone, taking into account that τ2 < τ1, log

jZj ¼ log (Rs + R) + log ω + log τ2, and at high frequencies the third term in

Eq. (2.150) must also be taken into account, and the impedance becomes log jZj ¼
log (Rs + R) + log ω + log τ2 � log ω � log τ1 ¼ log Rs. This produces three

straight lines and two break-point frequencies on the Bode magnitude plot. This is

schematically shown in Fig. 2.34 (Bode magnitude) as a dashed line. The method

presented above allows for a quick visualization of Bode magnitude plots.

Let us look now at the circuit in Fig. 2.35, denoted as Rs(Cdl(RctCp)); it is described

in detail in Exercise 2.12. The impedance of the system is easily written as

Ẑ ¼ Rs þ
1

jωCdl þ
1

Rct þ
1

jωCp

: ð2:151Þ

The total impedance can be separated into real and imaginary parts, although the

calculations are laborious and it is easy to make a mistake. It can be done easily in

Maple (Exercise 2.12), and the obtained impedances are

Z0 ¼
Rs C2

dl þ 2CdlCp

� �
þ C2

p Rs þ Rctð Þ þ RsRctCdlCpω
� �2

Cdl þ Cp

� �2 þ RctCdlCpω2
� �2 , ð2:152Þ
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Z} ¼ � Cdl þ Cp þ Cdl RctCpω
� �2

Cdl þ Cp

� �2 þ RctCdlCpω2
� �2h i

ω
: ð2:153Þ

To calculate the impedances, either the preceding equations may be used or they

can be calculated stepwise in Excel starting from Ẑ f :
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Fig. 2.35 Complex plane impedance, Bode, and complex plane admittance plots for circuit

Rs(Cdl(RctCp)); Rs ¼ 2 Ω, Rct ¼ 50 Ω, Cdl ¼ 20 μF, Cp ¼ 0.01 F
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Ẑ f ¼ Rct þ
1

jωCp

¼ Rct � j
1

ωCp

,

Ŷ f ¼
1

Ẑ f

,

Ŷ el ¼ Ŷ f þ jωCdl,

Ẑ el ¼
1

Ŷ el

,

Ẑ ¼ Rs þ Ẑ el:

ð2:154Þ

The complex plane and the Bode plots are displayed in Fig. 2.35.

Looking at the circuit, it is evident that a dc current cannot flow through it

because the two parallel branches are blocked by capacitances. This means that the

low-frequency imaginary impedance part must go to negative infinity. On the other

hand, at very high frequencies the capacitances do not obstruct current flow

(impedance of the capacitance goes to zero), and the total ac current flows through

Rs and the upper branch; therefore, the impedance is Rs. In the medium frequencies,

the coupling of Rct and Cdl produces a semicircle with the time constant τ ¼ RctCdl

¼ 1 ms. On Bode plots a semicircle produces an S-shaped wave followed by a

straight line with a slope of �1. The phase angle plots show a peak at higher

frequencies, corresponding to the semicircle, and then the phase angle goes to�90�
as the imaginary part of the impedance goes to �∞. On the complex admittance at

high frequencies the admittance is 1/2 Ω ¼ 0.5 Ω�1, at low frequencies it goes to
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Fig. 2.36 Complex plane

plots for circuit in Fig. 2.35

and different values of

parameter Cp indicated in

figure in farads
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zero as the impedance goes to �∞. Two semicircles are observed on the complex

admittance plots. The radius of the small low-frequency semicircle corresponds to

1/(Rs + Rct) ¼ 1/52 Ω�1, which is the total low-frequency real resistance in the

complex impedance plots.

It is interesting to note that the shape of complex plane plots depends on the

relative ratio of both capacitances. Figure 2.36 shows a series of plots for different

values of Cp and the same values of all other parameters as previously. When Cp is

very large (Cp
Cdl), a full semicircle touching the real part is formed. With a

decrease of Cp, a smaller part of the semicircle is produced. Finally, when Cdl 

Cp, the current flows not through the branch Rp-Cp but through Rs-Cdl, which

produces a straight line on the complex plane plots, as in Fig. 2.32.

2.10.2 Circuits with Two Semicircles

Let us consider two circuits leading to the formation of two semicircles on complex

plane plots, one consisting of two parallel (RC) circuits in series and another a

nested circuit (Fig. 2.37), i.e., R0(R1C1)(R2C2) and R0(C1(R1(R2C2))). In the

simulations, the following parameters were used: R0 ¼ 10 Ω, R1 ¼ R2 ¼ 100 Ω,

C1 ¼ 20 μF, and different values of C2 ¼ 0.1, 10�3, 10�4, 2 � 10�5, and 10�5 F.
This circuit contains two time constants: τ1 ¼ R1C1 ¼ 2 ms and τ2 ¼ R2C2 ¼ 10,

0.1, 0.01, 0.001, and 0.002 s. The results of simulations of the complex plane and

Bode plots are displayed in Fig. 2.38. The numerical values recopied from ZView

can be found in files (Exercise 2.13). When the two time constants are very

different, two well-separated semicircles are formed on the complex plane plots.

At the same time, two steps are observed on the Bode magnitude plots and two

peaks on the Bode phase angle plots. When the two time constants merge, separa-

tion of the two semicircles becomes less obvious, a large semicircle is formed,

τ2 ¼ 0.01 s, and later it is difficult to decide just by looking at the plots that there

still are two semicircles, τ2 ¼ 0.001 s. In this case, only an analysis of the

impedances (i.e., fit to the appropriate circuit) may determine whether there is

one or two semicircles. Finally, when the time constants of the two circuit elements

C1 C2 C1

C2

Fig. 2.37 Examples of two circuits producing two semicircles on complex plane plots: left series

R0(R1C1)(R2C2) and right nested R0(C1(R1(R2C2)))

58 2 Definition of Impedance and Impedance of Electrical Circuits



are identical, one semicircle appears in the complex plane plots. This effect is

confirmed by the equation

Z ¼ R0 þ
1

1

R1

þ jωC1

þ 1

1

R2

þ jωC2

¼ R0 þ
1

1

R1

þ jωC1

þ 1

1

R1

þ jωC1

¼

¼ R0 þ
2

1

R1

þ jωC1

¼ R0 þ
1

1

2R1ð Þ þ jω
C1

2

0
@

1
A

:

ð2:155Þ

In such a case, one semicircle on the complex plane plots has a diameter of

2R1 ¼ 200Ω and a capacitance of C1/2 ¼ 10 μF. In this case, analysis of the circuit

reveals only one time constant, although two identical parallel (RC) elements were

used in simulations.

Let us look now at the impedance plots for a nested circuit using the same

parameters as for a circuit in series. The results are presented in Fig. 2.39.

Note that, using the same set of parameters R1, C1, R2, and C2, different plots are

obtained for both circuits. Nevertheless, exactly the same plots as in the case of a

nested circuit can be obtained using a circuit in series but with different parameters.
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Fig. 2.38 Complex plane and Bode plots for a series circuit in Fig. 2.37, R0(R1C1)(R2C2), using

following parameters: R0 ¼ 10 Ω, R1 ¼ R2 ¼ 100 Ω, C1 ¼ 20 μF, and different values of

C2 ¼ 0.1, 10�3, 10�4, 2 � 10�5, and 10�5 F. Values of τ2 are indicated on plots
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In fact, plots for the nested circuit can be obtained using the circuit in series and

the parameters shown in Table 2.3, where the resistance R0 is always the same,

R0 ¼ 10 Ω, and other parameters are different. It should be stressed that the fit is

exact, whichmeans that the two circuits give exactly the same values of impedances.

This effect arises from the fact that impedances of circuits in series and nested

circuits (Fig. 2.37) can be represented by the same equation:

Ẑ ¼ R0

s� z1ð Þ s� z2ð Þ
s� p1ð Þ s� p2ð Þ , ð2:156Þ
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Fig. 2.39 Complex plane and Bode plots for a nested circuit in Fig. 2.37, R0(C1(R1(R2C2))), using

parameters as in Fig. 2.38. Values of τ2 are indicated on plots

Table 2.3 Results of fit of impedances in Fig. 2.39 to circuit containing two parallel (RC)

elements in series. The parameters of the nested circuit are as follows: R0 ¼ 10Ω, R1 ¼ R2 ¼ 100

Ω, C1 ¼ 20 μF, and different assumed values of C2 indicated below; the parameters found using fit

to the series circuit are indicated

C2 assumed / F R1 found / Ω C1 found / F R2 found / Ω C2 found / F

0.100 99.96 2.00 � 10�5 100.0 1.53 � 10�6

1.00 � 10�3 96.00 2.04 � 10�5 104.0 1.35 � 10�8

1.00 � 10�4 62.86 2.57 � 10�5 137.1 1.54 � 10�9

2.00 � 10�5 10.56 7.24 � 10�5 189.4 3.02 � 10�10

1.00 � 10�5 2.99 1.47 � 10�4 197.0 1.57 � 10�10
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where s ¼ jω. This equation comes from the expressions for the impedances of

both circuits:

Ẑ ¼ R0 þ
1

1
R1
þ sC1

þ 1
1
R2
þ sC2

, ð2:157Þ

Ẑ ¼ R0 þ
1

sC1 þ 1
R1þ 1

1
R2
þ sC2

:
ð2:158Þ

The values of the zeros zi and poles pi of the equation are
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for the nested circuit. From the preceding equations it is obvious that the imped-

ances for both circuits have exactly the same general form with different formulas

for zeros and poles. These are only two out of three possible circuits that will be

discussed in Example 14.2.

2.10.3 Circuits Containing Inductances

Until now, only circuits containing resistances and capacitances have been

discussed. Inductive effects in electrical circuits appear when alternative electrical

current flow creates a magnetic field interacting with the flowing current; of course,

in a strait wire the inductance is very small, but in looped wires or a coil it becomes

larger. The inductive effects always lead to positive imaginary impedances, as will

be shown in what follows. Let us first consider the circuit in Fig. 2.40, which

contains inductance L in series with resistance R0 and a nested connection of two

(RC) circuits, i.e., LR0(C1(R1(R2C2))). The complex plane and Bode plots for this

circuit without inductance were presented in Fig. 2.39.

From the impedance plots it follows that the presence of inductance in series

does not affect low-frequency data. At high frequencies a positive imaginary

straight line appears on the complex plane plots and the phase angle changes sign

from negative to positive, while the modulus of the frequency displays a minimum

at R0 ¼ 10 Ω. This positive imaginary impedance is characteristic of the presence

of inductance.

Finally, let us consider a simple circuit containing an RLC connection in series.

The impedance of such a circuit is

Ẑ ¼ Rþ jωL� j
1

ωC
¼ Rþ j ωL� 1

ωC

� �
: ð2:161Þ

C1

R1

C2

R2

R0L

Fig. 2.40 Nested circuit

with inductance L in series;

L ¼ 2 � 10�4 H,
C2 ¼ 0.1 F; other

parameters as in Fig. 2.39
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The real part of the impedance is constant and equal to R, while the imaginary

impedance may be positive at high frequencies or negative at low frequencies.

The imaginary impedance becomes zero when ωrez ¼ 1=
ffiffiffiffiffiffi
LC
p

; this is the so-called

resonant frequency. An example of the complex plane and Bode plots for such

a circuit is presented in Fig. 2.42. A complex plane plot is a straight line perpen-

dicular to the real axis. The upper negative part corresponds to low frequencies and

is identical to an RC connection in series. The lower positive part corresponds to

an RL connection in series. The Bode magnitude plot shows two lines at 45�

corresponding to the capacitive (negative slope) and inductive (positive slope)

parts. The phase angle plot passes through Z00 ¼ 0 at the resonant frequency and

goes to �90� or 90� at very low or very high frequencies, respectively.

These results are shown in Exercise 2.14.
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Fig. 2.41 Complex plane and Bode plots for circuit in Fig. 2.40
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2.11 Summary

Impedance of an electrical circuit containing linear electrical elements R, C, and L

can be calculated using the impedance of these elements and Ohm’s and

Kirchhoff’s laws. The complex plane and Bode plots can be easily produced

using programming in Excel, Zplot, Maple, Mathematica, etc., which are readily

available. It should be stressed that these electrical elements are linear, that is, their

impedance is independent of the applied ac amplitude. In subsequent chapters, we

will see how the impedance of electrochemical systems can be described.

2.12 Exercises

Exercise 2.1 Generate a digitalized function E(t) ¼ cos(2πt/Ta) containing

64 points from 0 to 63 for the sampling time 0.01 s and wave period Ta ¼ 0.32 s
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Fig. 2.42 Complex plane and Bode plots for RLC connection in series; R ¼ 1 Ω, C ¼ 0.01 F,

L ¼ 0.01 H
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for 0.63 s. Then use Excel to carry out a FFT. Show the plots of the function and its

FT. What information can be obtained from it?

Exercise 2.2 Generate a digitalized function E(t) ¼ sin(2πt/Ta) containing

64 points from 0 to 63 for the sampling time 0.01 s and for wave period Ta ¼ 0.32 s

for 0.63 s. Then use Excel to carry out a FFT. Show the plots of the function and its

FT. What information can be obtained from it?

Exercise 2.3 Generate a digitalized function E(t) ¼ cos(2πt/Ta + π/3) containing

64 points from 0 to 63 for the sampling time 0.01 s and for Ta ¼ 0.32 s for 0.63 s.

Then use Excel to carry out a FFT. Show the plots of the function and its FT. What

information can be obtained from it?

Exercise 2.4 Generate a digitalized function E(t) ¼ exp(�3ti) containing 32 points
for the sampling time 0.01 s. Use Excel to carry out a FFT. What information can be

obtained from it?

Exercise 2.5 Generate a digitalized function E(t) ¼ sin(2πt/Ta) containing

256 points for the sampling time 0.2 s and Ta ¼ 34 s. Use Excel to carry out a

FFT. What information can be obtained from it? Is it possible to obtain the studied

function frequency from FT analysis?

Exercise 2.6 Simulate the sum of frequencies curve consisting of the following

functions: cos(k 2πt/1024) for k ¼ 1, 3, 7, and 13 and sin(k 2πt/1024) for k ¼ 5,

9, and 17, and t from 0 to 1023. Perform a FFT, determine the frequencies, and

compare with the frequencies of assumed individual functions.

Exercise 2.7 To determine the impedance of a system, data of the applied voltage

and circulating current were measured for 0.64 s every 0.01 s. To calculate the

impedance, generate “experimental” data (normally they would be presented as

series of numbers) using the following equations: E(t) ¼ E0cos(ωt) and I(t) ¼ I0
cos(ωt + π / 3), where E0 ¼ 0.01 V, I0 ¼ 0.002 A, ω ¼ 2πf ¼ 2π/Ta, Ta ¼ 0.32 s.

Exercise 2.8 Determine impedance using data obtained from D/A data acquisition

of voltage and current. These data, containing time, potential, and current: t, E(t), I

(t) in s, V, and A, respectively, can be found in the file Ex2_8.txt. What is the

frequency of these functions?

Exercise 2.9 Make complex plane, Bode, and complex admittance plots of an RC

connection in series; R ¼ 150 Ω, C ¼ 40 μF.

Exercise 2.10 Make complex plane, Bode, and complex admittance plots of an

(RC) connection in parallel; R ¼ 100 Ω, C ¼ 20 μF.

Exercise 2.11 Make complex plane, Bode, and complex admittance plots of Rs in

series with the parallel connection of (RC), Rs(RC); Rs ¼ 10 Ω, R ¼ 100 Ω,

C ¼ 20 μF.
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Exercise 2.12 Make complex plane and Bode plots for the circuit Rs(Cdl(RctCp))

with the following elements: Rs ¼ 2 Ω, Rct ¼ 50 Ω, Cdl ¼ 2 � 10�5 F, and

Cp ¼ 0.01 F.

Exercise 2.13 Simulate using ZView the impedance of the two models displayed

in Fig. 2.37, in series R0(R1C1)(R2C2) and nested R0(C1(R1(R2C2))), using the

following parameters: Rs ¼ 10 Ω, R1 ¼ 100 Ω, C1 ¼ 2 � 10�5 F, R2 ¼ 100 Ω,

C2 ¼ 10�1, 10�3, 10�4, 2 � 10�5, 10�5 F. Make the approximations of the imped-

ances of the nested circuit using those in series. Compare with the results in Ch2.

xlsx, Worksheets Ex2.13 serial, Ex2.13 nested, and Ex2.13 approx.

Exercise 2.14 Simulate impedances for the circuit RCL in series for R ¼ 1 Ω,

C ¼ 0.01 F, and L ¼ 0.01 H. Make simulations using ZView and Excel. Make

complex plane and Bode plots.

66 2 Definition of Impedance and Impedance of Electrical Circuits



Chapter 3

Determination of Impedances

Modern potentiostats are able to apply various potential programs to a working

electrode. In EIS measurements, a small sinusoidal perturbation of a controlled

amplitude and frequency must be applied together with the dc electrical program.

The system impedance may be measured using various techniques:

1. Ac bridges

2. Lissajous curves

3. Phase-sensitive detection (PSD)

4. Frequency response analyzers (FRA)

5. Fast Fourier transform (FFT)

6. Laplace transform of applied signal

3.1 AC Bridges

Ac bridges were used before modern electronic apparatus were developed. Such

bridges provided a very precise but very laborious and time-consuming method of

measurement. A schema of an ac bridge is presented in Fig. 3.1.

The ac bridge is based on a classical Wheatstone (or Wien for ac measure-

ments) bridge in which one part is replaced by an electrochemical cell and the other

compensating part by a variable, R or C. The dc potential is supplied by a

potentiometer in the center and ac by the external source. The double layer

capacitance measurements were initially carried out on a dropping mercury elec-

trode (DME), and the bridge compensation had to be carried out always at the same

surface area of the DME, that is, after exactly the same time from the beginning of

A. Lasia, Electrochemical Impedance Spectroscopy and its Applications,

DOI 10.1007/978-1-4614-8933-7_3, © Springer Science+Business Media New York 2014
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the drop fall [80]. Early papers were reviewed by Delahay [81] and Mohilner

[82]. By now, ac bridges have been replaced by frequency analyzers or lock-in

amplifiers.

3.2 Lissajous Curves

In general, after application of an ac potential perturbation to an electrochemical

system, E(t) ¼ E0 cos(ωt), the obtained current is shifted in phase with respect to

the voltage: i(t) ¼ i0 cos(ωt + φ). By applying the voltage to the x-axis and the

current (transformed into the corresponding voltage) to the y-axis of the oscillo-

scope one obtains so-called Lissajous curves [3, 24]. When the phase angle differ-

ence φ is zero, a straight line at 45� is obtained, and when the phase difference is

90�, a semicircle is obtained; for intermediate phase shifts, ellipses at different

angles are obtained. Examples of Lissajous curves for different values of the phase

angle φ are displayed in Fig. 3.2. The ratio of the amplitudes of both signals gives

the modulus of the impedance, |Z|, and the phase angle φ is determined from

the inclination of the ellipse. From |Z| and φ the real and imaginary parts of the

impedance are determined. Such an analysis must be carried out at all frequencies

studied. Nonlinearity causes the formation of asymmetric curves [3, 126]. However,

this method is time consuming and is rarely used nowadays.

Fig. 3.1 Ac bridge for

electrochemical impedance

measurements (From Ref.

[17] with permission from

Wiley)
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3.3 Phase-Sensitive Detection, Lock-In Amplifiers

Two additional methods use a potentiostat with a device permitting automatic

determination of the impedance. Phase-sensitive detection (PSD) is used in lock-

in amplifiers [83]. The most popular commercial equipment of this type was used

by EG&G Princeton Applied Research. In this technique, the measured ac signal,

which is the potential or current, E1 ¼ E0 sin(ωt + φ1), is multiplied by a square

wave signal of the same frequency ω. The square wave signal of unit amplitude can

be represented by an infinite Fourier series:

E2 ¼
4

π

X1

n¼0

1

2nþ 1
sin 2nþ 1ð Þ ωtþ φ2ð Þ½ � ð3:1Þ

which is a sum of the sin functions of odd harmonics of the fundamental frequency

ω, and its amplitude was taken as unity. In general, both signals may contain

different phases φ1 and φ2, respectively. In practice, as both the potential and

current signals are multiplied by the same square signal, its initial phase shift

might be considered zero. Usually the same generator inside the lock-in amplifier

is used to produce the square wave and the ac signal used in the impedance analysis.

The operation of multiplying E1 � E2 gives

-1 0 1
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0
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0
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E

Fig. 3.2 Lissajous curves

for various phase

differences; the values

of φ in degrees are shown

in the legend
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The result of this operation contains a series consisting of the constant element

(2E0/π) cos(φ1 � φ2) and harmonics of the fundamental signal. The constant

element is proportional to the amplitude of the measured signal and contains

information on the phase of the measured signal. The average value of a periodic

signal is, of course, zero, and this signal is sent to the low-pass filter, which passes

only the constant term (integrating the signal):

Average E1 � E2ð Þ ¼ 1

T

ðT

0

E1E2dt ¼
2E0

π
cos φ1 � φ2ð Þ ð3:3Þ

In practice, the measured signal is usually mixed with two signals, with φ2 ¼ 0

and φ ¼ 90� extracting the real and imaginary parts, respectively, of the measured

signal: (2E0/π)cos(φ1) and (2E0/π)sin(φ1). The schema of the two-phase lock-in

amplifier is presented in Fig. 3.3. Note that if harmonic signals are present in the

measured signal, then they are attenuated by 1/3, 1/5, 1/7, etc. Lock-in amplifiers

operate in a frequency range of 0.5–10 Hz the lower limit, depending on the

manufacturer, to approximately �105 Hz, with a precision of 0.1–0.2 %. Modern

lock-in amplifiers are controlled by a microprocessor and permit automated

measurements.

3.4 Frequency Response Analyzers

The system impedance at different frequencies may also be measured using fre-

quency response analyzers. Frequency response analyzers operate on the basis of

the correlation of the studied signal with the reference signal [84]. The measured

signal, E ¼ E0 cos(ωt + φ), is multiplied by a cosine and sine signal of the same

frequency, and the product is integrated during one or more wave periods. Inte-

grating over n periods gives
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Re E1ð Þ ¼
1

nT

ðnT

0

E0cos ωtþ φð Þ cos ωtð Þdt ¼ E0

2
cos φð Þ ð3:4Þ

and

Im E1ð Þ ¼
1

nT

ðnT

0

E0cos ωtþ φð Þ sin ωtð Þdt ¼ E0

2
sin φð Þ ð3:5Þ

Note that Eqs. (3.4) and (3.5) correspond to the Fourier transform (FT) of the

function E, Eqs. (2.66) and (2.67). This operation produces real and imaginary

parts of the measured signal. Such an operation is carried out for the potential and

current signal, and the impedance of the system is calculated as the ratio of the

FTs, Eq. (2.127). The functioning of a frequency response analyzer is displayed in

Fig. 3.4.

Frequency response analyzers were popularized in electrochemistry by Solartron,

but presently other companies are using themmore frequently (e.g., PAR–AMETEK,

Oak Ridge, Tennessee, Metrohm Autolab, Utrecht, The Netherlands, ZAHNER,

Kronach, Germany, Scribner Associates, Southern Pines, North Carolina, Zive Zcon,

Seoul, Korea). It can also be shown that all the harmonics, if presented in the input

signal, are strictly rejected, that is, the correlation of sin(kωt + φ) with sin(ωt) or with

cos(ωt) is equal to zero for k > 1. The advantage of the correlation process is also a

reduction in noise (of arbitrary frequency), its influence decreasing with increases in

the integration time. Figure 3.5 shows the attenuation of an output signal as a function

Fig. 3.3 Schema of two-phase lock-in amplifier. The input signal is mixed with the simple square

wave signal and the square wave signal shifted by 90�. After filtering the periodic functions,

in-phase (real) and out-of-phase (imaginary) parts of the signal are obtained
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of frequency and the number of integration cycles N. Modern frequency response

analyzers carry out all computations digitally. Frequency response analyzers have a

wide frequency range (12 decades) and high precision.

A comparison of PSD and FRA was presented by Evans [85] and is shown

in Table 3.1.

3.5 AC Voltammetry

Using either a lock-in amplifier or frequency response analyzer it is possible

to study impedance during cyclic voltammetric dc potential cycling. During a

slow voltammetric sweep, an ac signal can be superimposed and the ac response

measured at one frequency at a time as a function of potential. If such an experiment

is repeated at various frequencies, a complete impedance curve can be acquired,

although for individual sweeps complex admittance is usually registered.

Generator

Input

signal

×

×•

Re(S)

Im(S)
sin

cos
Fig. 3.4 Scheme

of frequency response

analyzer

Fig. 3.5 Frequency

response of a FRA

averaging filter for

different numbers

of integration cycles

(From Ref. [84]

with permission

from Solartron)
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This technique was applied, for example, to Pt oxidation [86], electrocatalysis of

methanol [87], formic acid oxidation [88], or hydrogen adsorption [89]. There is a

limitation on the smallest frequency at a given sweep rate, v; during the ac cycle the

electrode potential cannot change too much [86]:

RT

F
v << ω ð3:6Þ

For example, a sweep rate of 10 mV s�1 and minimum frequency of 2 Hz were

used in such studies [86]. The main problem in this technique is that it takes a long

time to carry out potential sweeps at many frequencies, and the measured system

should not evolve with time.

3.6 Laplace Transform

As was mentioned in Sects. 2.8.1 and 2.8.2, application of the Laplace transform to

the transient potential and current permits determination of the operational imped-

ance. Such a method was initially introduced by Pilla [90–93] and applied to studies

using mercury electrodes. Using a fast potentiostat a small potential step was

applied, and both voltage and current transients were measured. Of course, because

of the nonideal potentiostat response, the potential increase was not a rectangular

step but occurred more slowly. Examples of the measured potential and current

transients are shown in Fig. 3.6. Such data acquisition was extended to longer times

and then extrapolated as the integration had to be continued to infinity.

This method was later critically reviewed and modified by Barsoukov

et al. [94]. They showed that the weakness of the direct Laplace transform lies in

its large sensitivity to noise. Instead of direct numerical integration, Eq. (2.21), they

proposed instead to fit first the time-domain data to a “carrier function,” which

could then be directly transformed. The operator impedance of stable systems is

Table 3.1 Comparison of lock-in amplifiers and frequency response

analyzers [85]

Lock-in amplifier FRA

Advantages Advantages

Very sensitive Faster analysis

Effectively removes noise Wide frequency range

Reduces harmonic distortion Removes harmonic distortion

Suppresses dc noise Direct output to external device

Relatively low cost Easy standalone measurements

Disadvantages Disadvantages

Limited frequency range Higher cost

Slower Limited noise removal

Standalone readings difficult Limited sensitivity
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described as a ratio of two polynomials with negative poles that, in the case of first-

order poles, may be represented as simple fractions (see also Sect. 13.3.3):

z sð Þ ¼
K
YM

m¼1
s� μmð Þ

YQ

q¼1

s� λq
� �

¼
XQ

q¼1

Aq

s� λq
ð3:7Þ

In the case of the galvanostatic step, the observed potential transient is described by

V tð Þ ¼ A0 þ
XQ

q¼1

Aqe
λqt ð3:8Þ

where all values λq < 0. In such a case, the experimental voltage transient must be

fitted to Eq. (3.8). If V(t) and I(t) are known, the impedance can be easily obtained,

but in this case, instead of numerical integration, a direct transformation of the

approximating voltage function, Eq. (3.8), and current step I(s) ¼ I/s is performed.

Barsoukov et al. [94] found that this method works well when logarithmically

distributed time samples are used. They also studied in detail error propagation

during such experiments. As in the case of the fast Fourier transform (FFT)

(Sect. 3.7), the frequency information is obtained between fmax ¼ 1/(2Δt) and

fmin ¼ 1/T, where Δt is the sampling time and T the total data acquisition time.

This method was applied to study the charge state of lithium batteries. It requires

equipment that is much simpler than a frequency response analyzer or a lock-in

amplifier and is faster than sequential frequency sweep. It can be compared to the

Fig. 3.6 Current (upper curve) and potential (lower curve) transients due to potential step of 6 mV

applied to electrical equivalent circuit R(C(R(CR))); current scale is 7 mA and potential scale is

2 mV per major division. The time scale is 50 ns per major horizontal division (From Ref. [90];

reproduced by permission of Electrochemical Society)
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multisine fast Fourier-based techniques because it requires a similar experiment

time. However, its implementation is simpler because only current (or potential)

steps are necessary.

3.7 Methods Based on Fourier Transform

The FT method makes it possible to study system response to a series of different

frequencies. Taking the FT of the perturbation signal and that of the resulting signal

allows one to determine the transfer function, e.g., impedance, of the measured

system, Eq. (2.127). The FFT provides a fast and efficient algorithm for computing

the FT [95]; however, the number of points acquired must be equal to 2k, where k is

an integer. However, discrete Fourier transform, DFT, which does not have this

limitation, can also be used as the power of computers has increased tremendously

since the invention of the FFT algorithm. In principle, any form of the excitation

signal might be used, but in practice, few types of excitation are applied [96–98]:

(1) pulse or step, (2) noise, and (3) sum of sine waves. It should be kept in mind the

total signal applied to the system should be small enough to keep the system in the

linear zone.

3.7.1 Pulse or Step Excitation

The FT of an infinite short pulse, h(t) ¼ Kδ(t), where δ(t) is Dirac’s delta function,

equals H( jω) ¼ K, that is, it contains all frequencies with the same amplitude K.

Such a method is used in FFT nuclear magnetic resonance. An ideal pulse function

cannot be realized in practice because of the limitations of the electronics, and in

practice it must be substituted by a pulse of a short duration Δt. However, such a

function does not have a uniform response in the Fourier (i.e., frequency) domain.

The applied pulse function is defined as h(t) ¼ 1 for t ¼ 0 to Δt and h(t) ¼ 0

elsewhere. Its FT is

H jωð Þ ¼
ð1

0

h tð Þe�jωtdt ¼
ðΔt

0

e�jωtdt ¼ 1� e�jωΔt

jω
ð3:9Þ

The amplitude of this function equals

H jωð Þj j ¼
ffiffiffi
2

p
Δt

ωΔt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos ωΔtð Þ

p
ð3:10Þ

It is presented in Fig. 3.7. Clearly, at ω < 1/Δt, all the frequencies are presented

in the excitation function, but their amplitude decreases quickly at higher frequen-

cies. By decreasing Δt, a wider frequency window is obtained. However, in
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practice, we are limited by the response of the potentiostat, which has a limited

response time.

Because it is difficult to apply a very short pulse function, there is another way of

obtaining this effect; one can apply a step function and take its derivative, which is

Dirac’s delta function, δ(t) (Fig. 3.8).

Such a method was used in the literature for the determination of impedances

[99–101], and a commercial apparatus [102] applying a current step was described.

Taking the FT of the derivative of the potential and current versus time gives the

impedance as a function of frequency. However, some authors [100, 101] tried to

extrapolate the obtained results to low frequencies beyond the experimental values.

If the data are acquired during time T ¼ NΔt, the information in the measured

signal is obtained for frequencies from 1/T up to the Nyquist frequency 1/2Δt,

where Δt is the sampling time. It has been shown [103] that extrapolating imped-

ances to frequencies lower than 1/T introduces artifacts. In addition, the measured
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response signals decay fast with time, and at longer times the signals are hidden in

noise [99, 101, 104].

Although the methods using pulse or step excitation are correct from a mathe-

matical point of view, their FT contains all frequencies between flow ¼ 1/T ¼
1/NΔt and fhigh ¼ 1/2Δt, and the amplitude for each frequency is quite weak.

This causes large sensitivity to noise (Fig. 3.9a). In addition, the measured response

signals decay fast with time, and at longer times the signals are hidden in noise.

Popkirov and Schindler [105] also attempted to use exponentially decaying

voltage pulse perturbation. It presents a relatively noisy response (Fig. 3.9b).

3.7.2 Noise Perturbation

White noise is a signal that contains a continuous spectrum of frequencies with flat

amplitudes [99, 104, 105]. However, single-frequency components have quite low

amplitudes, and the response to individual frequencies is also weak. Impedance

calculated using a white nose perturbation signal with small 1 % noise added is

displayed in Fig. 3.9c. It is obvious that very noisy results are generated, and such

an excitation is not recommended for acquiring impedance spectra.

3.7.3 Sum of Sine Wave Excitation Signals

It seems that the best way to obtain a response to multiple frequencies is to apply a

sum of odd harmonic sine waves, ∑sin(2πfit), where fi are f, 3f, 5f. . . (2n + 1)f,

Fig. 3.9 Complex plane plots of numerically simulated impedances, in Ω, for different perturba-

tion waveforms with 1 % noise added; (a) rectangular pulse, (b) exponentially decaying pertur-

bation, (c) quasi-random noise, (d) sum of sine waves with constant amplitudes and zero phases

(From Ref. [105] with permission of editorial board)

3.7 Methods Based on Fourier Transform 77



where f is the fundamental frequency [99, 105–109]. The theoretical formulation of

this test was discussed by Diard et al. [110]. To avoid problems with leakage, a

whole number of periods should be included in the total measurement time T. The

lowest frequency is f ¼ 1/T and the highest 1/(2Δt), where Δt is the sampling time.

However, from a practical point of view, sampling two times per period, although

theoretically justifiable, is not practical, and at least four samples per period should

be taken [107]. Moreover, averaging several sine periods improves the signal-to-

noise ratio. Because of the proprieties of the FFT, the number of points must be a

power of two, N ¼ 2k. The ac perturbation signal is described as

E tð Þ ¼
Xm

i¼1
ai sin 2πf itþ ϕið Þ ð3:11Þ

where ai are the amplitudes, fi frequencies, and ϕi the initial phases of the sine

functions applied. An example of such a signal consisting of 25 sine waves is

presented in Fig. 3.10a. It was suggested that by randomizing the phases ϕi one

could increase the amplitude of each sine function without exceeding the total

amplitude of 5 mV. This is shown in Fig. 3.10, right, where one can see that after

randomization the amplitudes are larger (Fig. 3.10b), and the noise of the

Fig. 3.10 Sum of 25 sine waves with equal amplitudes: left – no phase optimization, right –

optimization of phases; (a) perturbation voltage, (b) Fourier transform of perturbation signal, (c)
complex plane plots obtained by adding 5 % noise to current response; solid lines: ideal response

without noise. Impedances are in Ω. (From Ref. [105] with permission of editorial board)
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impedances is smaller. Popkirov and Schindler [105, 106] presented the values of

phases one could use in programming perturbation functions. Carrying out phase

optimization, one can have even larger amplitudes [111].

It can be seen from Fig. 3.10 that noise is always larger at low frequencies. This

means that in order to obtain “good” data one should use larger amplitudes at low

frequencies, while they could be lower at higher frequencies. Such a method was

suggested by Popkirov and Schindler [105, 106]. They used the first impedance

measurement as a test and adjusted amplitudes of all the sine waves, aj as propor-

tional to the impedance modulus:

aj ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0ð Þ2 þ z00ð Þ2

q
ð3:12Þ

where K is a coefficient determined by the condition that the total signal amplitude

must be within the linearity limits (usually 5 mV), and then a second measurement

is performed with both adjusted amplitudes and phases. An example of such

optimization is shown in Fig. 3.11.

It is evident that amplitude optimization reduces noise significantly, by a factor

of about 4–5. Garland et al. [107] proposed to decrease the amplitude by a factor of

two per decade of frequencies. This avoids the necessity of repetition of measure-

ments. The authors also proposed to use a chirp-z transform to carry out a discrete

Fourier transform in the case where the number of points is N 6¼ 2k.

3.7.4 Dynamic Electrochemical Impedance Spectroscopy

EIS is usually used in stationary conditions at a constant potential or current.

However, there is an interest in studying systems that change with time or during

potential cycling in cyclic voltammetry. In such cases, so-called dynamic electro-

chemical impedance spectroscopy (DEIS) is used. It is also called by some authors

potentiodynamic EIS, PDEIS, or time-resolved impedance spectroscopy. Typically,

the sum of odd harmonic signals is applied during slow cycling of electrodes.

In such a case, the relation expressed by Eq. (3.6) between the sweep rate and the

lowest frequency must be observed. The FFT is applied to time windows where the

system can be considered pseudostationary. In each window the impedance is

measured at different frequencies. Such a procedure leads to a series of impedances

measured in regular time intervals. This method has been used by several research

groups [112–132].

Sacci and Harrington [133] recently developed hardware and software for DEIS.

They typically used 34 frequency numbers: 1, 3, 5, 7, 9, 11, 13, 17, 21, 25, 31, 37,

44, 52, 64, 75, 90, 100, 110, 130, 170, 210, 250, 310, 370, 440, 520, 640, 750, 900,

1000, 1100, 1300, and 1700, that is, the smallest frequency chosen was multiplied

by these numbers to obtain real frequencies. The data were sampled continually

during the potential sweep, and the FFT was performed on blocks of 4,096

(or 2,024) points. A schema of a DEIS system, based on the Keithley KUSB3116
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Data Acquisition Module, is shown in Fig. 3.12. The digital-to-analog converter

generates the sum of sine waves with a total amplitude of, for example, �2.5 V,

which is divided electronically by 500 to obtain a signal of 5 mV amplitude. This ac

signal is added to the dc signal from the linear sweep generator and applied to the

potentiostat. Three signals are measured by analog-to-digital (A/D) converters: ac

current (directly from the potentiostat or as a potential drop on a standard resistor,

amplified using an analog amplifier), ac potential from the potential output from the

potentiostat after subtracting the dc component and amplification, and dc potential.

Because the potential and current are sampled sequentially (not simultaneously), a

phase correction must be made. If they are sampled at equal intervals δt, an apparent

phase shift ofφ ¼ 2πfδt radians is introduced. Since this is known for each frequency,

it can be corrected for by multiplying the calculated impedance at that frequency by

Fig. 3.11 Sum of 25 sine waves: left – no amplitude optimization, right – optimization of

amplitudes according to Eq. (3.12); (a) perturbation voltage in time domain, (b) Fourier transform
of perturbation signal, (c) complex plane plots obtained by adding 10 % noise to current response

presented in frequency domain, (d) complex plane plots with 10% noise added to current response;

solid lines: ideal response without noise. Impedances are inΩ. (From Ref. [105] with permission of

editorial board)
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exp(�jφ). A detailed schema of the electronics was recently developed by D. Auger

and published in the Ph.D. thesis ofM.Martin [134]. The applied ac signal and the FT

of its amplitude are displayed in Fig. 3.13; see also Exercise 3.1.

FT-EIS allows for measurements of nonstationary systems evolving slowly with

time or during a potential sweep. In addition, it allows for detecting and quantifying

the presence of time variance and nonlinear distortions in experimental data

[123–127, 135]. In these experiments, a series of odd harmonics was applied

from which every third or fourth frequency was removed. They were 1, 3, 9, 11,

15, 17, 21. . . or 3, 5, 7, 11, 15, 17, 19, 21, 25. . . This method was applied to study

organic coatings on Al [125]. The signal contained frequencies between 0.1 Hz and

Fig. 3.12 Schema of dynamic electrochemical impedance spectroscopy system (From Ref.

[133]. Reproduced by permission of Electrochemical Society)
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approximately 104 Hz with a total amplitude of 10 mV rms (root mean square),

amplitudes aj decreasing proportionally to 1=
ffiffiffiffi
N
p

, where N denotes the frequency

number, and randomized phases (see Sect. 3.7.3). Such measurements allowed the

determination of the noise level at the excited frequencies, the noise at the

nonexcited frequencies, and the total variance of the impedance, which includes

the noise and nonlinear distortions. Comparison of the amplitude of the impedance

with the noise at nonexcited frequencies allowed for the estimation of the signal-to-

noise ratio while information about the linearity was assessed comparing the total

variance with the noise level at the nonexcited frequencies [123–125]. When these

values are similar the system is linear. An example of the application of this method

is illustrated in Fig. 3.14. For lower amplitude the system behaves as linear but for

larger amplitude it behaves as nonlinear. Although larger amplitude improves

signal-to-noise ratio it introduces nonlinearities. Comparison of the noise at excited

frequencies with that at the nonexcited frequencies shows that both are similar

therefore the system is stationary after 14 days of immersion. Similar measurements

after 11 days of immersion revealed that the system is nonstationary [125].

In classical implementations of the FFT analysis of impedances to avoid

leakage problems, the data acquisition must be synchronized with the wave periods,

and in the data acquisition window there must always be an integer number of

periods of each wave. Darowicki and coworkers [136–141] proposed a so-called

short time FT (STFT). It was later extended to large-amplitude analysis [142]. It is

similar to the FFT-based method discussed previously, but a time window of the

applied sum of frequencies was selected by applying a moving Gaussian window

centered in the middle of the window. The size of the cutout fragment depends on

the Gaussian distribution parameter. In practice, the signal is multiplied by the

Gauss window and the product is Fourier transformed. Because of the leakage

problem and lower power spectrum, the authors recently modified this technique

[143]. They analyze a time period containing a whole number of periods of all

functions, but because they do not acquire exactly 2k points, they use the discrete

Fourier transform (DFT).

Fig. 3.14 Impedance modulus for Aluzinc in 0.1 M Na2SO4 after 14 days of immersion measured

with two total amplitudes (a) 8 mV and (b) 48 mV; continuous line – |Z|, * – noise estimated from

excited frequencies, + noise from nonexcited frequencies, —— – total variance of impedance

(Reprinted from Ref. [125], Copyright (2010), with permission from Elsevier)
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FT-based measurements allow for faster measurements because all the

frequencies are applied at the same time, and to carry out impedance measurements

during the potential sweep, it is assumed that the changes during the data block used

for transformation are negligible (pseudostationary). FT-based measurements also

permit one to determine time variance and nonlinear distortions in the data.

However, the cost of this convenience is a lower amplitude for each frequency

compared to classical EIS. This produces a weaker signal and larger noise. The

interest in this method is constantly increasing.

3.8 Perturbation Signal

In EIS one can use potential or current sinusoidal perturbations. In practice, the

potential perturbation of 10 mV peak to peak or a 5 mV amplitude is usually used

because EIS is based on the linearization of nonlinear electrochemical equations.

This also means that as the sum of sine waves is applied, its total amplitude cannot

exceed 5 mV. In practice amplitude of 5 mV rms is usually used for diffusion and

adsorption limited processes, see Sect. 13.2, but in certain cases of surface pro-

cesses where sharp voltammetric peaks appear the amplitude should be much

lower. The linearity can be simply checked by decreasing amplitude and comparing

the obtained results, Sect. 13.2. It should be kept in mind that the apparatus used in

electrochemistry displays the root-mean-squared (rms) amplitude, which is the

effective amplitude measured by an ac voltmeter. This rms amplitude is equal to

the real amplitude divided by
ffiffiffi
2
p

:

Erms ¼
Eamplffiffiffi

2
p ð3:13Þ

This means that to have an amplitude of 5 mV, the rms value should be set to

Erms ¼ 5=
ffiffiffi
2
p

� 3:5 mV.

It is also possible to apply a current sinusoidal perturbation and measure the

oscillating voltage generated in the system. This galvanostatic mode is usually used

in studies of power sources: fuel cells, batteries, and supercapacitors. Further

determination of impedances from alternating the voltage and current is the same

as for the potential perturbation. However, in the latter, care must be taken to verify

whether the amplitude of the alternating voltage is not larger than 5 mV, which can

be easily checked using an oscilloscope.

3.9 Conclusions

Nowadays it is possible to carry out automatic impedance measurements with modern

equipment that uses frequency analyzers, lock-in amplifiers, and FT techniques. This

equipment comes with its own software for data acquisition and analysis. Usually, ten

frequencies per decade are acquired and one must use the appropriate ac amplitude.
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Equipment dedicated to simultaneous FT analysis at a constant potential or during ac

sweep is still less common. More details on how to choose the ac amplitude and to

assure that good impedances will be obtained will be discussed in Sect. 13.2.

3.10 Exercises

Exercise 3.1 Simulate the sum of odd harmonic functions ∑Ai cos(2πvit + πbi) for:

Frequencies, ν,/Hz

1 3 5 7 9 11 13 17 21 25 31 37

44 52 64 75 90 100 110 130 170 210 250 310

370 440 520 640 750 900 1,000

Relative amplitudes, A:

0.25 0.1796024 0.154003 0.1391682 0.1290281 0.1214646

0.1155073 0.1065462 0.09997981 0.09486765 0.08891917 0.08430711

0.08002237 0.0760977 0.07148676 0.06815384 0.06451406 0.0625

0.06073228 0.05775367 0.0532731 0.04998991 0.04743382 0.04445958

0.04215356 0.04001119 0.03804884 0.03574338 0.03407692 0.03225703

0.03125

Relative phases, b, φ ¼ π * b

0.7055475 0.533424 0.5795186 0.2895625 0.301948 0.7747401

0.01401764 0.7607236 0.81449 0.7090379 0.04535276 0.4140327

0.8626193 0.79048 0.3735362 0.9619532 0.8714458 0.05623686

0.9495566 0.3640187 0.5248684 0.7671117 0.05350453 0.5924582

0.4687001

Perform simulations for the total time of 1 s for N ¼ 2,048 points, that is, for

Δt ¼ 1/2048 s. Calculate the FT of this function and its amplitude (modulus) versus

frequency up to the Nyquist frequency. The results are in the file Ch3.xlsx.
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Chapter 4

Impedance of the Faradaic Reactions
in the Presence of Mass Transfer

In Chap. 2 we saw the responses of electrical circuits containing the elements R, C,

and L. Because these are linear elements, their impedance is independent of the ac

amplitude used. However, in electrochemical systems, we do not have such elements;

we have solution–electrode interfaces, redox species, adsorption, etc. In this and the

following chapters, we will learn how to express the electrochemical interfaces and

reactions in terms of equations that, in particular cases, can be represented by the

electrical equivalent circuits. Of course, such circuits are only the electrical repre-

sentations of physicochemical phenomena, and electrical elements such as resistance,

capacitance, or inductance do not exist physically in cells. However, such a presen-

tation is useful and helps in our understanding of the physicochemical phenomena

taking place in electrochemical cells. Before presenting the case of electrochemical

reactions, the case of an ideally polarizable electrode will be presented.

4.1 Impedance of an Ideally Polarizable Electrode

An ideally polarizable electrode also called blocking electrode, is an electrode at

which there is no charge transfer between electrode and solution [17]. Such an

electrode immersed in a solution containing supporting electrolyte can be

represented as a connection of the solution resistance and electrode capacitance

in series (Fig. 4.1a), and its impedance is described as

Ẑ ¼ Rs þ
1

jωCel

, (4.1)

where, when the impedance is measured in a three-electrode setup [working

electrode (WE), counter electrode (CE), and reference electrode (RE)] with a

potentiostat, Rs represents the solution resistance, that is, the resistance between

the electrode surface and the tip of the reference electrode (or Luggin capillary),

and Cel represents the capacitance of the electrode surface equal to
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Cel ¼ SrCdl, (4.2)

where Sr is the real surface area and Cdl is the specific double layer capacitance of

the electrode. Examples of ideally polarized electrodes are mercury electrodes in a

supporting electrolyte between mercury dissolution and reduction of the cations of

the supporting electrolyte in a rather large potential range (up to 2 V), Pt in aqueous

solutions between hydrogen underpotential deposition (UPD) and Pt oxidation

(relatively narrow potential zone of ~0.4 V), Au electrode with a rather large

potential zone between the reduction of the supporting electrolyte and Au oxida-

tion, and glassy carbon in a more anodic zone.

It must be added that if the impedance is measured in a two-electrode cell, then

Cel represents the sum of the capacitance of the working and counter electrodes,

1

Cel

¼ 1

CWE

þ 1

CCE

, (4.3)

and Rs is the solution resistance between these electrodes. When we are interested

in the impedance of the working electrode only, the surface area and, consequently,

capacitance of the CE must be much larger than that of the WE because its

capacitance in Eq. (4.3) must be negligible.

4.2 Impedance in Presence of Redox Process in Semi-
infinite Linear Diffusion: Determination of Parameters

4.2.1 General Case

In the presence of redox species in solution, an electrochemical process involving

the transfer of electrons between the electrode and species in solution may take

place at some potentials. The electrical equivalent circuit in such a case contains the

Fig. 4.1 Equivalent

electrical circuits of (a) an
ideally polarized electrode,

(b) electrode in the presence
of redox reaction
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faradaic impedance, Zf, in parallel with the electrode capacitance, Fig. 4.1b. The

electrochemical reaction taking place at the electrode surface is

Oxþ ne! Red: (4.4)

The dc current in such a case is described by the current-potential equation [17]

i ¼ nF kbCR 0ð Þ � kfCO 0ð Þ½ �, (4.5)

where i is the current density, n is the number of electrons exchanged in the process,

CO(0) and CR(0) are the surface concentrations of the Ox and Red species, respec-

tively, and kf and kb are the potential dependent heterogeneous rate constants of the

forward (reduction) and backward (oxidation) processes:

kf ¼ k0 exp �αnf E� E0
� �� �

, (4.6)

kb ¼ k0 exp 1� αð Þnf E� E0
� �� �

: (4.7)

E0 is the standard potential of the redox process, α is the transfer coefficient, k0 is

the heterogeneous rate constant at the standard potential in centimeters per second,

f ¼ F/RT, F is the Faraday constant, R is the gas constant, and T is the absolute

temperature in Kelvin. In Eq. (4.5) the oxidation current was taken as positive. To

solve problems involving diffusion, one should solve Fick’s second law for Ox and

Red species. This equation contains partial derivatives versus time, t, and distance

from the electrode surface, x. In the case of linear semi-infinite diffusion it is [144]

∂Ci x; tð Þ
∂t

¼ Di

∂
2
Ci x; tð Þ
∂x2

(4.8)

as the concentrations are functions of the distance from the electrode surface, x, and

time, t.

Let us suppose that a small alternating voltage perturbation is applied to the

working electrode around a constant dc potential, Edc:

E ¼ Edc þ ΔE ¼ Edc þ E0 cos ωtð Þ, (4.9)

where E0 is the amplitude of the ac signal. To simplify the mathematical develop-

ment, we will suppose that ΔE is expressed as a rotating vector of length E0 as in

Eq. (2.123), assuming that the initial phase shift is zero:

E ¼ Edc þ ΔE ¼ Edc þ eEexp jωtð Þ ¼ Edc þ E0exp jωtð Þ: (4.10)

Such a perturbation causes oscillation of the current and concentrations:

i ¼ idc þ Δi, (4.11)
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CO ¼ CO,dc þ ΔCO and CR ¼ CR,dc þ ΔCR, (4.12)

and

ΔE ¼ eEexp jωtð Þ,
Δi ¼ eiexp jωtð Þ, (4.13)

ΔCO ¼ eCOexp jωtð Þ,
ΔCR ¼ eCRexp jωtð Þ,

where Ẽ, ei , eCO, and eCR are the phasors of the ac potential, current, and concentra-

tions containing a complex phase shift, Eq. (2.124):

eE ¼ E0exp jϕEð Þ,
ei ¼ i0exp jϕið Þ,

eCO ¼ CO,0exp jϕCO,0

� �
, (4.14)

eCR ¼ CR,0exp jϕCR,0

� �
,

where the index 0 indicates the amplitude of the oscillating parameter and ϕk is a

phase shift of parameter k. In practice, the initial phase shift of the potential

perturbation is set to zero, ϕE ¼ 0, and all other phase shifts are calculated with

respect to the applied voltage. Because the current in Eq. (4.5) is a function of the

potential and concentration, it can be represented as an infinite Maclauren series:

Δi¼ ∂i

∂E

0
@

1
AΔEþ ∂i

∂CO

0
@

1
AΔCOþ

∂i

∂CR

0
@

1
AΔCR

þ 1

2

∂
2
i

∂E2

0
@

1
A ΔEð Þ2þ 1

2

∂
2
i

∂C2
O

0
@

1
A ΔCOð Þ2þ 1

2

∂
2
i

∂C2
R

0
@

1
A ΔCRð Þ2

þ ∂
2
i

∂E∂CO

0
@

1
AΔEΔCO þ

∂
2
i

∂E∂CR

0
@

1
AΔEΔCRþ

∂
2
i

∂CO∂CR

0
@

1
AΔCOΔCRþ . . .

(4.15)

The partial derivatives can be calculated from Eq. (4.5). It is obvious that this

equation is linear with respect to concentrations because all second and higher

derivatives with respect to concentration are equal to zero. It should be stressed that

the dependence of a current on the potential is strongly nonlinear; however, it can

be linearized for very small potential perturbations. In such a case, only linear terms

might be kept, and Eq. (4.15) becomes
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Δi ¼ ∂i

∂E

� 	
ΔEþ ∂i

∂CO

� 	
ΔCO þ

∂i

∂CR

� 	
ΔCR: (4.16)

This linearization is the fundamental property of EIS, and small amplitudes

�8/n mV peak-to-peak [32] should be used; otherwise, higher harmonics will appear

in the response. In the present and following chapters, a linear impedance approach

will be presented. A discussion of higher harmonics will take place in Chap. 15. In

practice, an amplitude of ~5 mV is used. It should be stressed that impedance pro-

grams usually display root-mean-square (rms) values, that is, the absolute amplitude is

divided by
ffiffiffi
2

p
. This means that to obtain an amplitude of 5 mV, one should configure

the data acquisition program to 3.5 mV rms. Setting the rms amplitude to 5 mV

indicates that the absolute amplitude is 5
ffiffiffi
2

p
¼ 7.1 mV or 14.2 mV peak to peak.

The simplest approach to diffusion/kinetics problems is to solve Fick’s equation

for oscillating variables only. First, the stationary conditions must be solved, that is,

the derivatives in Eq. (4.16) must be evaluated in the steady state:

∂i

∂E
¼ n2Ff αkfCO 0ð Þ þ 1� αð ÞkbCR 0ð Þ½ �, (4.17)

∂i

∂CO

¼ �nFkf and
∂i

∂CR

¼ nFkb: (4.18)

Now, Fick’s equation must be written for ΔCi:

∂ΔCO

∂t
¼ DO

∂
2
ΔCO

∂x2
and

∂ΔCR

∂t
¼ DR

∂
2
ΔCR

∂x2
: (4.19)

Substituting ΔCi from Eq. (4.13) one obtains

∂ΔCO

∂t
¼ jωeCOexp jωtð Þ, (4.20)

jωeCOexp jωtð Þ ¼ DO

∂
2eCO

∂x2
exp jωtð Þ: (4.21)

Simplification leads to a system of ordinary differential equations for phasors:

jωeCO ¼ DO

d2eCO

dx2
and jωeCR ¼ d2eCR

dx2
, (4.22)
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with the following boundary conditions:

x ¼ 0
deCO

dx
¼ �

ei
nFDO

and
deCR

dx
¼

ei
nFDR

, (4.23)

DO

deCO

dx
þ DR

deCR

dx
¼ 0, (4.24)

x!1 eCO ! 0 and eCR ! 0:
(4.25)

The first condition at the surface relates the concentration gradients to the

current. This is the continuity of fluxes at the electrode surface, and it states that

Ox is changed to Red according to Eq. (4.24), which is the law of conservation of

matter. Far from the electrode at x ! ∞ there are no oscillations of concentrations

of redox species and the phasors become zero.

Equation (4.22) may be rearranged into simpler forms:

d2eCO

dx2
¼ jω

DO

� 	
eCO ¼ s2O

eCO and
d2eCR

dx2
¼ jω

DR

� 	
eCR ¼ s2R

eCR, (4.26)

where

sO ¼
ffiffiffiffiffiffiffi
jω

DO

r
and sR ¼

ffiffiffiffiffiffi
jω

DR

r
: (4.27)

Equation (4.26) has general solutions

eCO xð Þ ¼ A exp
�
� sOx

�
þ B exp

�
sOx
�

and eCR xð Þ ¼ A
0
exp
�
� sRx

�
þ B

0
exp
�
sRx
�
: (4.28)

For semi-infinite linear diffusion parameters B and B0 are equal to zero from the

conditions expressed by Eq. (4.25). The other two constants, A and A0, can be

determined from the conditions at the electrode surface:

deCO

dx
¼ �sOA ¼ �

ei
nFDO

and
deCR

dx
¼ �sRA

0 ¼
ei

nFDR

, (4.29)

and together with condition Eq. (4.24) these parameters are determined:

A ¼ eCO 0ð Þ ¼
ei

nF
ffiffiffiffiffiffiffiffiffiffiffi
jωDO

p and A
0 ¼ eCR 0ð Þ ¼ �

ei
nF

ffiffiffiffiffiffiffiffiffiffiffi
jωDR

p , (4.30)
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and the solutions of Eq. (4.28) are

eCO xð Þ ¼
ei

nF
ffiffiffiffiffiffiffiffiffiffiffi
jωDO

p exp �sOxð Þ and eCR xð Þ ¼ �
ei

nF
ffiffiffiffiffiffiffiffiffiffiffi
jωDR

p exp �sRxð Þ: (4.31)

Finally, substitution into Eq. (4.16) using Eqs. (4.17) and (4.18) gives the

relation between the current and the potential phasors:

ei ¼ n2F2

RT
αkfCO 0ð Þ þ 1� αð ÞkbCR 0ð Þ½ �eE �

eikfffiffiffiffiffiffiffiffiffiffiffi
jωDO

p �
eikbffiffiffiffiffiffiffiffiffiffiffi
jωDR

p , (4.32)

from which the faradaic impedance, Ẑ f ¼ eE=ei, may be calculated:

Ẑ f ¼
RT

n2F2

1

αkfCO 0ð Þ þ 1� αð ÞkbCR 0ð Þ

þ RT

n2F2

kfffiffiffiffiffiffiffiffiffiffiffi
jωDO

p þ kbffiffiffiffiffiffiffiffiffiffiffi
jωDR

p

αkfCO 0ð Þ þ 1� αð ÞkbCR 0ð Þ : (4.33)

The faradaic impedance consists of one real part arising from the derivative

Eq. (4.17) and is called the charge transfer resistance, Rct, and the second part

containing j�1/2 is called the mass transfer impedance, Ẑ W, which, in the case of

semi-infinite linear diffusion, is called the Warburg impedance and is composed of

two parts: Ẑ W,O and ẐW,R, [8, 30, 145]

Ẑ f ¼ Rct þ ẐW ¼ Rct þ Ẑ W,O þ Ẑ W,R, (4.34)

where

Rct ¼
RT

n2F2

1

αkfCO 0ð Þ þ 1� αð ÞkbCR 0ð Þ , (4.35)

Ẑ W,O ¼
RT

n2F2

kfffiffiffiffiffiffiffiffiffiffiffi
jωDO

p
αkfCO 0ð Þ þ 1� αð ÞkbCR 0ð Þ½ �

¼ RT

n2F2

1ffiffiffiffiffiffiffiffiffiffiffi
jωDO

p
αCO 0ð Þ þ 1� αð ÞCR 0ð Þexp nf E� E0

� �� �� � ,
(4.36)

Ẑ W,R ¼
RT

n2F2

exp nf E� E0
� �� �

ffiffiffiffiffiffiffiffiffiffiffi
jωDR

p
αCO 0ð Þ þ 1� αð ÞCR 0ð Þexp nf E� E0

� �� �� � : (4.37)
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It is obvious that the charge transfer resistance depends on the reaction kinetics; it is

inversely proportional to the heterogeneous rate constants, and the mass transfer

impedance is independent of the kinetics. From Eq. (2.57) both 1/j ¼ exp(–jπ/2)

and

1ffiffi
j
p ¼ exp � jπ

4

� 	
¼ cos

π

4

� �
� j sin

π

4

� �
¼ 1ffiffiffi

2
p 1� jð Þ, (4.38)

and it follows that the mass transfer impedance contains two parts: one real and one

imaginary of the same magnitude. To determine the faradaic impedance, the surface

concentrations must be known. The simplest case is when one is working with

known bulk concentrations C�
O and C�

R at the equilibrium potential (dc current equal

to zero), where CO(0) ¼ C�
O and CR(0) ¼ C�

R In the presence of a dc current the

surface concentrations can be estimated from the dc current [17]:

CO 0ð Þ ¼ 1� i

ilim
and CR 0ð Þ ¼ i

ilim
: (4.39)

4.2.2 DC Reversible Case

Equations of the faradaic impedance can be simplified assuming that the surface

concentrations follow the Nernst law that is they correspond to the electro-chemical

equilibrium after staying at a constant potential for a certain time while the ac

concentrations corresponding to higher frequencies or shorter times are out of

equilibrium. Using the Nernst equation:

CO 0ð Þ
CR 0ð Þ ¼ exp nf E� E0

� �� �
(4.40)

Equations (4.35), (4.36) and (4.37) can be simplified. The Warburg impedance

becomes

Ẑ W ¼ Ẑ W,O þ Ẑ W,R ¼ RT

n2F2
ffiffiffiffiffi
jω

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOCO 0ð Þ

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DRCR 0ð Þ

p

0
@

1
A

¼ σ0ffiffiffiffiffi
jω

p ¼
ffiffiffi
2

p
ffiffi
j

p σffiffiffiffi
ω

p ¼ σffiffiffiffi
ω

p 1� jð Þ,
(4.41)

where σ0 ¼
ffiffiffi
2

p
σ is the mass transfer coefficient equal to the sum of the contribu-

tions of the Ox and Red forms:
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σ
0 ¼ σ

0
O þ σ

0
R ¼

RT

n2F2

1ffiffiffiffiffiffiffi
DO

p
CO 0ð Þ þ

1ffiffiffiffiffiffi
DR

p
CR 0ð Þ

2
4

3
5: (4.42)

In the particular case where initially only Ox species are present in the solution

with bulk concentration C�
O, the surface concentrations may be calculated as

functions of the electrode potential [17]:

CO 0ð Þ ¼ C�
O

ξθ

1þ ξθ
and CR 0ð Þ ¼ C�

O

ξ

1þ ξθ
, (4.43)

where

ξ ¼ DO=DRð Þ1=2, θ ¼ exp nf E� E0
0� �h i

,

and θξ ¼ exp nf E� E1=2

� �� �
, (4.44)

and E1/2 is the reversible half-wave potential [17]:

E1=2 ¼ E0
0
þ RT

nF
ln

ffiffiffiffiffiffiffi
DR

DO

r
: (4.45)

Then, the mass transfer coefficient becomes

σ
0 ¼ RT

n2F2C�
O

ffiffiffiffiffiffiffi
DO

p 1þ exp nf E� E1=2

� �� �� �2

exp nf E� E1=2

� �� � (4.46)

or, introducing the function coth(x),

cosh xð Þ ¼ ex þ e�x

2
(4.47)

one obtains

σ
0 ¼ 4RT

n2F2C�
O

ffiffiffiffiffiffiffi
DO

p cosh2
nf E� E1=2

� �

2

 �
(4.48)

and the Warburg impedance

ẐW ¼ σ
0

ffiffiffiffiffi
jω

p ¼ σffiffiffiffi
ω

p � j
σffiffiffiffi
ω

p ¼ 4RT

n2F2C�
O

ffiffiffiffiffiffiffiffiffiffiffi
jωDO

p cosh2
nf E� E1=2

� �

2

 �
, (4.49)
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with

σ ¼ 4RT

n2F2C�
O

ffiffiffiffiffiffiffiffiffi
2DO

p cosh2
nf E� E1=2

� �

2

 �
: (4.50)

The Warburg impedance is a function of ω�1/2 and cannot be represented as a

simple function of R, C, and L parameters. It contains real and imaginary parts of

the same value, with the real part positive and the imaginary negative. Its phase

angle is φ ¼ atan(Z00/Z0) ¼ atan(�1) ¼ �π/2 ¼ �45�. It is inversely proportional

to the bulk concentration and depends on the electrode potential, but it is indepen-

dent of any kinetic parameters. It can be shown that Ẑ w has a minimum at Ε ¼ E1/2.

Similarly, under the same conditions of initial concentrations, the charge transfer

resistance can also be presented:

Rct ¼
RT

n2F2kbC
�
O

1þ exp nf E� E1=2

� �� �

ξ
¼

¼ RT

n2F2k0C�
O

1þ exp nf E� E1=2

� �� �

ξαexp 1� αð Þnf E� E1=2

� �� � , (4.51)

and it has a minimum at

Es ¼ E1=2 þ
RT

nF
ln
1� α

α
(4.52)

and only when α ¼ 0.5 Es ¼ E1/2. The charge transfer resistance is inversely

proportional to the bulk concentration and the rate constant.

The corresponding electrical equivalent circuit, a so-called Randles circuit, is

shown in Fig. 4.2. The same figure shows plots of the Warburg impedance,

Eq. (4.34), dotted line, and the total impedance including solution resistance and

double layer capacitance. The mass transfer impedance starts at Rct and continues as

a straight line at 45�. The total impedance displays a semicircle due to coupling of

the charge transfer resistance with the double layer capacitance at high frequencies

and a straight line due to Ẑ W at low frequencies. The Bode magnitude plot displays

a step from Rs at the highest frequencies to Rs + Rct at intermediate frequencies

(corresponding to the semicircle on the complex plane plot) and a straight line at

45� at low frequencies. The Bode phase angle plot shows a peak corresponding to

the semicircle at higher frequencies and a line going asymptotically to 45� at low
frequencies. It is important to note that the kinetic effect appears at higher frequen-

cies and mass transfer effects at low frequencies. The semicircle, which is well

visible in Fig. 4.2, is not always clearly visible. It depends on the relative values of

the kinetic and mass transfer parameters. The effect of the concentration is
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displayed in Fig. 4.3 for the same kinetics of the electrode process. From Eqs. (4.49)

and (4.51) it is obvious that both Ẑ W and Rct depend on the concentration of

electroactive species. At low concentrations the semicircle overlaps with the

diffusion while at higher concentrations both processes are well separated.

0 1000 2000 3000 4000
0

-500

-1000

-1500

-2000

-2500

-3000

Z
" 

/ 
Ω

 c
m

2

Z' / Ω cm
2

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

Z
" 

/ 
Ω

 c
m

2

Z' / Ω cm
2

Fig. 4.3 Complex plane plots for redox system with diffusion; k0 ¼ 0.01 cm s�1, Do ¼
10�5 cm2 s�1, Rs ¼ 1 Ω, at E ¼ E1/2, concentrations C

�
O: left 10

�4 M, right 0.1 M

0 50 100 150 200 250
0

-50

-100

-150

-200

Z
" 

/ Ω
 c

m
-2

Z' / Ω cm
-2

-4 -2 0 2 4 6

1.0

1.5

2.0

2.5

lo
g

|Z
 /
 Ω

|

log(f / s
-1
)

-6 -4 -2 0 2 4 6
0

-10

-20

-30

-40

-50

ϕ
 /
 d

e
g

log(f / s
-1
)

Cdl

ZW

Fig. 4.2 Complex plane and Bode plots for redox system with diffusion; Rs ¼ 10Ω, Cdl ¼ 25 μF,

Rct ¼ 50 Ω, σ0 ¼ 10 Ω s�1/2; dotted line – Warburg impedance

4.2 Impedance in Presence of Redox Process in Semi-infinite Linear Diffusion. . . 95



However, complex nonlinear least-squares (CNLS) approximation can recover

both kinetic and mass transfer parameters in this case. For faster processes this

might be difficult [146].

The dependence of the kinetic parameter Rct and mass transfer coefficient σ on

the potential is shown in Fig. 4.4. The logarithm of the mass transfer coefficient is

symmetrical around and has a minimum exactly at E1/2, and the slopes are dE/

dlnσ ¼ � RT/nF. The minimum of the charge transfer resistance is at the potential

described by Eq. (4.52). If the process is not symmetrical, then the slopes of the

cathodic and anodic branches of log Rct are different: dE/dlnRct ¼–RT/αnF and dE/

dlnRct ¼ RT/(1–α)nF.

VanderNoot [147] studied the case of poorly separated kinetic and diffusional

phenomena. He found that the kinetic information could be extracted from the

experimental impedances when the ratio of the kinetic, τk ¼ RctCdl, and diffu-

sional, τd ¼ R2
ct/(2σ)

2 time constants, τk/τd ¼ 2σ2Cdl/Rct, was lower than 30.

The general kinetic-diffusional model has two limiting cases:

1. Diffusional mass transfer can be neglected; this is the case with large concen-

trations of redox species and low currents;

2. Kinetics may be neglected; this is observed for very fast electrode processes, i.e.,

very small Rct.

Examples of these two cases are displayed in Fig. 4.5. Reduction of Hg2þ2 is a

very fast reaction, with Rct very small, and only a straight line at 45� is visible in the
whole frequency range. On the other hand, the couple Zn2+/Zn(Hg) is quite slow

and almost a full semicircle is observed, only at the lowest frequencies is the

beginning of the mass transfer impedance visible.

The time dependence of impedances measured at a constant potential was also

studied [29, 30, 149].
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4.3 Analysis of Impedance in the Case of Semi-infinite
Diffusion

The impedances acquired in the case of processes controlled by diffusion and

kinetics of the electrode process is described by the Randles circuit (Fig. 4.2).

They were analyzed by several different methods.

4.3.1 Randles Analysis

Historically, impedances were measured on dropping mercury or amalgam elec-

trodes using an ac bridge [9, 10, 24, 30, 39] and registered as functions of the

electrode potential. Information on the electrode process was included in the

faradaic impedance. It may be obtained by subtracting the solution resistance and

double layer capacitance from the total impedance, Ẑ t:

1

Ẑ f

¼ Ŷf ¼
1

Ẑt � Rs

� jωCdl: (4.53)

Rs and Cdl can be obtained from the measurement in the presence of the supporting

electrolyte only if the distance between the Luggin capillary and the working

electrode is the same. One can also determine these parameters in the presence of

the electroactive species: Rs at high frequencies and Cdl by interpolation of the Ŷt
plot versus the potential before and after the faradaic peak. An example of such an

interpolation is shown in Fig. 4.6, where the in-phase (real part) ac current propor-

tional to the real part of the total admittance is displayed for Cd2+ reduction in

dimethylsulfoxide (DMSO) [150]. Similar measurements of the out-of-phase

(imaginary) part make it possible to determine the double layer capacitance in the

presence of the redox reaction.

Fig. 4.5 Complex plane plots for (a) Zn2+/Zn(Hg) and (b) Hg2þ2 /Hg illustrating very slow and

very fast electrodes (impedances are in Ω, Z00 should be negative) (From Ref. [148], Copyright

Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission)
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The faradaic impedance

Ẑ f ¼ Rct þ
σffiffiffiffi
ω
p

� 	
� j

σffiffiffiffi
ω
p
� 	

(4.54)

contains real and imaginary parts. The plot of the real and imaginary parts versus

ω�1/2 presents straight lines with the same slopes, and the origin of the real part

Fig. 4.6 Dependence of in-phase current, proportional to real part of total electrode admittance

for Cd2+ reduction at Hg dropping electrode in dimethyl-sulfoxide (From Ref. [150] with permis-

sion of author)

Fig. 4.7 Randles plot of faradaic impedance for reduction of nitromesitylene in dimethyl-

formamide on a dropping mercury electrode, ZO – out-of-phase (imaginary), ZI in-phase (real)

impedance (Reprinted with permission Ref. [151]. Copyright 1978 American Chemical Society)
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gives Rct. An example of such plots is shown in Fig. 4.7. Such an analysis must be

performed at different potentials and Rct and σ plotted as functions of the potential.

Kinetic information is contained in Rct, Eq. (4.51). Concentration of the

electroactive species and the electrode surface area may be eliminated if the ratio

of σ/Rct is calculated:

σ

Rct

exp
�
nf E� E1=2

� �

1þ exp nf
�
E� E1=2

� � ¼ ξkbffiffiffiffiffiffiffiffiffi
2DO

p : (4.55)

Moreover, at the reversible half-wave potential this ratio becomes

σ

Rct

� 	

E1=2

¼ 2ξαffiffiffiffiffiffiffiffiffi
2DO

p k0; (4.56)

taking into account the relation between kb and E1/2:

kb ¼ k0 e 1�αð Þnf E�E1=2ð Þξα�1, (4.57)

which allows for a quick assessment of k0.

4.3.2 De Levie-Husovsky Analysis

De Levie and Husovsky [152] proposed another method based on the analysis of

faradaic admittances:

Ŷf ¼
1

Ẑ t � Rs

� jωCdl: (4.58)

An example of the dependence of the real and imaginary faradaic admittances on

the electrode potential is displayed in Fig. 4.8.
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Fig. 4.8 Dependence of

real and imaginary faradaic

admittances on electrode

potential for α ¼ 0.4
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The ratio of the imaginary to real faradaic admittance is determined as follows:

Y
00
f

Y
0
f

¼ ξ

1þ ξ
, (4.59)

where

ξ ¼ Y
00
f

Y
0
f � Y

00
f

¼ σffiffiffiffiffiffi
2ω
p

Rct

¼ kfffiffiffiffiffiffiffiffiffiffiffiffi
2ωDO

p þ kbffiffiffiffiffiffiffiffiffiffiffiffi
2ωDR

p

¼ kfffiffiffiffiffiffiffiffiffiffiffiffi
2ωDO

p 1þ exp nf E� E1=2

� �� �� �
: (4.60)

The plot of log ζ= 1þ exp nf E� E1=2

� �� �� �� �
¼ log kf =

ffiffiffiffiffiffiffiffiffiffiffiffi
2ωDO

p� �
versus the

potential allows for the determination of the rate constant.

4.3.3 Analysis of cot φ

Another type of analysis is based on the determination of the phase angle, φ, of the

faradaic impedance. From Eq. (4.54) the cotangent of the phase angle,

cotφ ¼ Z
0
f

Z
00
f

¼ 1þ Rct

σ
ω1=2, (4.61)

is a linear function of ω1/2 with an origin of one. After substitution the definitions of

Rct and σ, Eq. (4.61), become

cotφ ¼ 1þ
ffiffiffi
2
p

D
1�αð Þ=2
O D

α=2
R

k0 exp 1� αð Þf E� E1=2

� �� �
1þ exp �nf E� E1=2

� �� �� �ω1=2: (4.62)

An example of the dependence of cot φ on the potential and frequency is shown

in Fig. 4.9. Further, at each potential a plot of cot φ versus ω1/2 is constructed

(Fig. 4.10). The maximum of the phase angle is described as

cotφ½ �max ¼ 1þ 2D1�α
O Dα

R

� �1=2

k0
α

β

� 	�α
þ α

β

� 	β
" #ω1=2 (4.63)
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or, at the half-wave potential,

cotφ½ �E1=2
¼ 1þ D1�α

O Dα
R

2

� 	1=2
ω1=2

k0
: (4.64)

Such an analysis gives easy access to the kinetics of the electrode process.

Fig. 4.9 Dependence of cot

φ on potential for reduction

of TiCl4 in solution

containing H2C2O4

measured at different

frequencies (Reprinted with

permission from Ref.

[153]. Copyright 1963

American Chemical

Society)

Fig. 4.10 Dependence of

cot φ versus ω1/2 for TiCl4
reduction in H2C2O4

(Reprinted with permission

from Ref. [153]. Copyright

1963 American Chemical

Society)
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4.3.4 Complex Nonlinear Least-Squares Analysis

Presently, the most often used analysis is based on the complex nonlinear least-

squares approximation of the impedance data acquired at a constant potential. The

total impedance may be separated into the real and imaginary parts and fitted to the

Randles model:

Ẑ t ¼ Rs þ
1

1
Rct
þ jωCdl

¼

¼ Rs þ
Rct þ σω�1=2

σω1=2Cdl þ 1ð Þ2 þ ω2C2
dl Rct þ σω�1=2ð Þ2

þ

�j ωCdl Rct þ σω�1=2
� �2 þ σ2Cdl þ σω�1=2

σω1=2Cdl þ 1ð Þ2 þ ω2C2
dl Rct þ σω�1=2ð Þ2

:

(4.65)

Of course, using higher-level languages such as Fortran or Maple/Mathematica

it is not necessary to separate Ẑ t into real and imaginary parts because this is

automatically calculated in the program. The use of approximation packages such

as ZView allows one to carry out the fitting by constructing an appropriate model

and avoiding the mathematical complexities. Exercises present a construction of

such models in ZView and Maple.

4.4 Finite-Length Linear Diffusion

In practical applications, very often diffusion is not semi-infinite. Such finite-length

linear diffusion is observed, for example, for internal diffusion into mercury film

deposited on a planar electrode, in deposited conducting polymers, for hydrogen

diffusion into thin films or membranes of Pd or other hydrogen absorbing materials,

or for a rotating disk electrode where the diffusion layer corresponds to the layer

thickness. There are two cases of finite-length diffusion displayed Fig. 4.11:

Fig. 4.11 Concentration

profiles in two cases of

finite-length linear

diffusion: left –

transmissive boundary,

right – reflective boundary
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a. If species penetrate the layer at x ¼ 0 and leave at the other end at x ¼ l, this is a

case of a transmissive boundary. Such a case is observed when hydrogen ions are

reduced at the entry plane and hydrogen is oxidized and leaves the membrane at

the exit plane. In this case, a steady-state concentration gradient exists in the

membrane.

b. When no charge transfer is possible at x ¼ l, this plane is impermeable, and it is

called a reflective boundary. Such a case is observed for conductive polymers

deposited on metallic surfaces or for hydrogen absorption in Pd deposited on

metallic surface (Au,Pt),where further adsorption into the basemetal is impossible.

4.4.1 Transmissive Boundary

The problem to be solved is described by a system of two differential equations,

Eq. (4.26), with the general solution described by Eq. (4.28). Let us assume that the

concentration at the exit plane is equal to zero. Four constants (A, A0, B, B0)must be

obtained from the boundary conditions for the transmissive boundary:

x ¼ 0
deCO

dx
¼ �sOAþ sOB ¼ �

ei
nFDO

,

deCR

dx
¼ sRA

0 þ sRB
0 ¼

ei
nFDR

, (4.66)

x ¼ l eCO ¼ Aexp �sOlð Þ þ Bexp sOlð Þ ¼ 0,

eCR ¼ A
0
exp �sRlð Þ þ B

0
exp sRlð Þ ¼ 0:

These give the following constants:

A ¼
ei

nF
ffiffiffiffiffiffiffiffiffiffiffi
jωDO

p exp sOlð Þ
exp sOlð Þ þ exp �sOlð Þ ,

B ¼ �
ei

nF
ffiffiffiffiffiffiffiffiffiffiffi
jωDO

p exp �sOlð Þ
exp sOlð Þ þ exp �sOlð Þ ,

A
0 ¼

ei
nF

ffiffiffiffiffiffiffiffiffiffiffi
jωDR

p exp sRlð Þ
exp sRlð Þ þ exp �sRlð Þ ,

B
0 ¼ �

ei
nF

ffiffiffiffiffiffiffiffiffiffiffi
jωDR

p exp sRlð Þ
exp sRlð Þ þ exp �sRlð Þ , (4.67)

4.4 Finite-Length Linear Diffusion 103



from which the surface concentrations are as follows:

eCO 0ð Þ ¼
ei

nF
ffiffiffiffiffiffiffiffiffiffiffi
jωDO

p tanh

ffiffiffiffiffiffiffi
jω

DO

r
l

� 	
,

eCR 0ð Þ ¼ �
ei

nF
ffiffiffiffiffiffiffiffiffiffiffi
jωDR

p tanh

ffiffiffiffiffiffi
jω

DR

r
l

� 	
:

(4.68)

The Warburg impedance may be obtained, for the reversible case, from

Ẑ W ¼
dE

di
¼
X

i¼O,R

dE

dCi

eCið0Þ
ei

, (4.69)

and the derivatives dE/dCi are obtained from the Nernst equation:

dE

dCO

¼ RT

nFCO 0ð Þ and
dE

dCR

¼ � RT

nFCR 0ð Þ : (4.70)

Using these relations the mass transfer impedance is obtained:

Ẑ W ¼
RT

n2F2CO 0ð Þ ffiffiffiffiffiffiffiffiffiffiffijωDO

p tanh

ffiffiffiffiffiffiffi
jω

DO

s
l

0
@

1
A

þ RT

n2F2CR 0ð Þ ffiffiffiffiffiffiffiffiffiffiffijωDR

p tanh

ffiffiffiffiffiffi
jω

DR

s
l

0
@

1
A:

(4.71)

Assuming that the diffusion coefficients of Ox and Red are the same, Ẑ W

becomes

ẐW ¼
σ
0

ffiffiffiffiffi
jω
p tanh

ffiffiffiffiffi
jω

D

s
l

0
@

1
A ¼ σffiffiffiffi

ω
p tanh

ffiffiffiffiffi
jω

D

s
l

0
@

1
A 1� jð Þ, (4.72)

where

tanh xð Þ ¼ sinh xð Þ
cosh xð Þ ¼

ex � e�x

exþe�x : (4.73)

The complex plane plots obtained in this case are shown in Fig. 4.12. The

faradaic impedance displays a straight line at 45� at high frequencies where the

ac diffusion, that is, the oscillations of the concentration, are limited to the zone

around the electrode and diffusion behaves in a semi-infinite linear manner. At

higher frequencies oscillations of the concentrations arrive at the back wall and a
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semicircle is obtained because at ω ! ∞ a dc current can flow. For low values of

the argument,

limx!0

tanh xð Þ
x

 �
¼ 1, (4.74)

it is possible to obtain the limiting value of the mass transfer impedance at zero

frequency:

limω!0 Ẑ W

� �
¼ σ

0
lffiffiffiffiffiffiffi
DO

p (4.75)

and the limit of the total frequency:

limω!0 Ẑ t

� �
¼ Rs þ Rct

σ
0
lffiffiffiffiffiffiffi
DO

p : (4.76)

Equation (4.72) is often written as
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Fig. 4.12 Complex plane and Bode plots of mass transfer and total impedances for (a) semi-

infinite linear, (b) transmissive, and (c) reflective boundary; l ¼ 0.01 cm, other parameters used:

Rs ¼ 10 Ω cm2, Rct ¼ 50 Ω cm2, Cdl ¼ 20 μF cm�2, C�
i ¼ 2 mM, Di ¼ 10�5 cm2s�1
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Ẑ W ¼ RD

tanh
ffiffiffiffiffiffiffiffiffiffiffi
jωTD

p
ffiffiffiffiffiffiffiffiffiffiffi
jωTD

p , (4.77)

where

RD ¼
σ
0
lffiffiffiffi
D
p and TD ¼

l2

D
: (4.78)

4.4.2 Reflective Boundary

In this case, one boundary condition in Eq. (4.66) at x ¼ l must be changed:

x ¼ l
dCO

dx
¼ 0 and

dCR

dx
¼ 0 (4.79)

or

deCO

dx
¼ �sOA exp �sOlð Þ þ sOB exp

�
sOl
�
¼ 0,

deCR

dx
¼ �sRA

0
exp �sRlð Þ þ sRB

0
exp
�
sRl
�
¼ 0,

(4.80)

as the Ox and Red forms cannot penetrate this boundary. Determination of the

constants and substitution into Eq. (4.28) gives the surface concentration phasors:

eCO 0ð Þ ¼
ei

nF
ffiffiffiffiffiffiffiffiffiffiffi
jωDO

p coth

ffiffiffiffiffiffiffi
jω

DO

s
l

0
@

1
A,

eCR 0ð Þ ¼ �
ei

nF
ffiffiffiffiffiffiffiffiffiffiffi
jωDR

p coth

ffiffiffiffiffiffi
jω

DR

s
l

0
@

1
A:

(4.81)

Then, using Eq. (4.69) the mass transfer impedance is

Ẑ W ¼
RT

n2F2CO 0ð Þ ffiffiffiffiffiffiffiffiffiffiffijωDO

p coth

ffiffiffiffiffiffiffi
jω

DO

s
l

0
@

1
A

þ RT

n2F2CR 0ð Þ ffiffiffiffiffiffiffiffiffiffiffijωDR

p coth

ffiffiffiffiffiffi
jω

DR

s
l

0
@

1
A (4.82)

or assuming equal diffusion coefficients:
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Ẑ W ¼
σ
0

ffiffiffiffiffi
jω
p coth

ffiffiffiffiffi
jω

D

s
l

0
@

1
A: (4.83)

The impedance plots are shown in Fig. 4.12. The mass transfer impedance

displays a straight line at 45� at high frequencies because the penetration length of

the ac signal is smaller than the layer thickness and at low frequencies the imaginary

part goes to infinity as the constant current cannot flow in the system. At very thin

layers or low frequencies a capacitive behavior is observed. In fact, because

coth xð Þ
x

����
x!0

� 1

3
þ 1

x2
þ . . . , (4.84)

the low-frequency impedance becomes

Ẑ W ω ! 0ð Þ ¼ σ
0
l

3
ffiffiffiffi
D

p � j

ffiffiffiffi
D

p
σ

0

ωl
¼ RW � j

1

ωCW

(4.85)

and represents the connection between the resistance, RW, and the

pseudocapacitance, CW, in series, where

RW ¼ σ
0
l

3
ffiffiffiffi
D

p and CW ¼ lffiffiffiffi
D

p
σ

0 : (4.86)

The finite-length transmissive impedance may be found in ZView as Warburg

Element (short) Ws and the finite-length reflective impedance as Warburg Element

(open) Wo. Examples of simulations in Mathematica are shown in files in the

exercises.

4.5 Generalized Warburg Element

In practical applications of EIS it is often found that the experimental data for the

finite-length diffusion cannot be approximated by Eq. (4.72) or Eq. (4.83). For

example, in the case of hydrogen absorption in Pd the low-frequency reflective

impedance is not strictly capacitive, or in the transmissive case the complex plane

plot is slightly depressed [154–156]. In such cases one should use a so-called

generalized finite-length Warburg element for transmissive
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Ẑ W ¼
σ
0
l

ffiffiffiffi
D
p ffiffiffiffi

jω
D

q
l

� 	ϕW
tanh

ffiffiffiffiffi
jω

D

r
l

 !ϕW

(4.87)

or for reflective

Ẑ W ¼
σ
0
l

ffiffiffiffi
D
p ffiffiffiffi

jω
D

q
l

� 	ϕW
coth

ffiffiffiffiffi
jω

D

r
l

 !ϕW

(4.88)

geometry [24], where ϕW is the experimental parameter, always �1. The physical

interpretation is related to the nonuniform diffusion or multiple paths existing in the

system [24, 155–157] and corresponds to the application of the constant phase

element (CPE) model (Chap. 8) to diffusion. An example of the finite-length

reflective diffusion mode is illustrated in Fig. 4.13, where mass transfer and total

impedances are shown for the ideal case, ϕW ¼ 1 and for ϕW ¼ 0.94. Deviation

starts already at high frequencies but is clearly visible at low frequencies. In such a

case, the low-frequency behavior is changed from theRW � CW connection in series

to an RW � CPEW connection, where the impedance of the CPE element is given as

Ẑ W ¼ σ
0
l

3
ffiffiffiffi
D

p þ σ
0
DϕW�0:5

jωð ÞϕW l2ϕW
�1

¼ RW þ 1

jωð ÞϕWTW

, (4.89)

where

TW ¼ l2ϕW
�1

σ
0
DϕW

�0:5 : (4.90)
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Macdonald and coworkers [158–164] obtained an exact solution of the finite-

length diffusion impedance in unsupported conditions where the Nernst–Planck and

continuity equations for both negative and positive mobile charges were solved and

involved full satisfaction of Poisson’s equation. One can expect such conditions in

diluted electrolytic solutions and in poorly conductive solids.

4.6 Spherical Diffusion

In the case of spherical diffusion, there is an additional term in the differential

equation indicating an increase of the mass transfer to a sphere [144]. These

equations may be written for the concentration phasors as

∂eCO

∂t
¼ DO

∂
2eCO

∂r2
þ 2

r

∂eCO

∂r

 !
and

∂eCR

∂t
¼ DR

∂
2eCR

∂r2
þ 2

r

∂eCR

∂r

 !
(4.91)

and transformed into a simpler form, similar to that of Eq. (4.26), by a standard

substitution introducing two auxiliary variables ũ and ev:

eu ¼ reCO and ev ¼ reCR: (4.92)

Then Eq. (4.91) become

d2eu
dx2
¼ s2Oeu and

d2ev
dx2
¼ s2R ev: (4.93)

These equations can be solved for semi-infinite external diffusion, where both

Red and Ox forms are in the solution outside the sphere (diffusion to a spherical or

hemispherical hanging mercury electrode, metallic solid spherical electrode), or

they may diffuse inside the sphere (amalgam formation at mercury electrode,

intercalation of Li into particles, hydrogen absorption into spherical hydrogen-

absorbing particles).

4.6.1 Semi-infinite External Spherical Diffusion

In this case, the boundary and initial conditions are as follows:

x ¼ r0
deCO

dx
¼ �

ei
nFDO

and
deCR

dx
¼

ei
nFDR

,
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DO

deCO

dx
þ DR

deCR

dx
¼ 0,

x!1 eCO ! 0 and eCR ! 0, (4.94)

where r0 is the sphere radius. Keeping in mind that

deu
dr
¼ eCO þ r

deCO

dr
and

dev
dr
¼ eCR þ r

deCR

dr
(4.95)

and using the condition at the electrode surface, the solution for the auxiliary

variables is

eu ¼ A exp �
ffiffiffiffiffiffiffi
jω

DO

r�
r

	
and ev ¼ A

0
exp �

ffiffiffiffiffiffi
jω

DR

r
r

� 	
, (4.96)

and returning to the initial variables:

eCO 0ð Þ ¼
ei

nF
ffiffiffiffiffiffiffi
DO

p ffiffiffiffiffi
jω
p þ

ffiffiffiffiffi
DO

p

r0

� � ,

eCR 0ð Þ ¼ �
ei

nF
ffiffiffiffiffiffi
DR

p ffiffiffiffiffi
jω
p þ

ffiffiffiffiffi
DR

p

r0

� � : (4.97)

A comparison of Eqs. (4.97) and (4.30) indicates that an additional real term,

Di/r0, appeared in the denominator under the square root. The Warburg impedance,

using Eq. (4.69), becomes

Ẑ w ¼
X

i¼O,R

RT

n2F2
ffiffiffiffiffi
Di

p
Ci 0ð Þ

1

ffiffiffiffiffi
jω
p þ

ffiffiffiffiffi
Di

p

r0

0
@

1
A
¼
X

i¼O,R

σ
0
iffiffiffiffiffi
jω
p 1

1þ
ffiffiffiffiffi
Di

p

r0
ffiffiffiffiffi
jω
p

1
A

0
@

¼
X

i¼O,R

σ
0
ir0ffiffiffiffiffi
Di

p 1ffiffiffiffiffi
jω

Di

s
r0 þ 1

,

(4.98)

and the total impedance is described by Eq. (4.34). From Eq. (4.98) it is evident that

spherical diffusion introduces a constant term in the denominator. This means

that, contrary to the semi-infinite linear diffusion where the Warburg impedance

Ẑ W !1 as ω ! 0, in the case of spherical diffusion the impedance goes to a real
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constant as ω ! 0. This is analogous to chronoamperometry, where for semi-

infinite linear diffusion the current always decreases as t�1/2 and never reaches

zero, and for spherical diffusion the current becomes constant at very long times.

The fact that the faradaic impedance becomes real at ω ¼ 0 indicates that a dc

current may circulate in a circuit. Such effects are easily observed at ultramicroe-

lectrodes. Examination of Eq. (4.98) reveals that the mass transfer impedance can

be written as

Ẑ W ¼
1

ffiffiffiffiffi
jω
p

T þ 1

RD

(4.99)

corresponding to the connection of the resistance RD ¼ σ
0
r0=

ffiffiffiffi
D
p

and the CPE

element with the value of ϕ ¼ 0.5 and T ¼ 1/σ0 in parallel.

Impedance plots are modified at spherical electrodes. Examples of such plots,

using an equivalent circuit in Fig. 4.1, are shown in Fig. 4.14. The high-frequency

semicircle is related to the coupling of Rct and Cdl, while the low-frequency,

depressed semicircle is related to spherical diffusion.
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semi-infinite linear diffusion, (b) 0.005, (c) 0.01, (d ) 0.02, (e) 0.05 cm; other parameters as in

Fig. 4.12
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4.6.2 Finite-Length Internal Spherical Diffusion

Let us consider now diffusion inside a sphere neglecting the diffusion gradient

outside the sphere. Such a case might be observed for hydrogen absorption or Li

intercalation into spherical particles. Diffusion inside the sphere can go only to the

sphere center and is called finite-length internal spherical diffusion. In the steady

state in which the impedance measurements are carried out, dc concentration inside

the sphere is uniform, and no dc current is flowing. Ac perturbation causes oscil-

lations of concentration at the sphere surface, which diffuse inside the sphere. In

such a case, two boundary conditions in Eq. (4.94) are changed:

r ¼ r0
deCR

dx
¼ �

ei
nFDR

,

r ¼ 0 eCR ¼ 0: (4.100)

Using the standard substitution, Eq. (4.92), and using the condition at r ¼ 0 one

obtains

eCR ¼
2A

r
sinh sRrð Þ, (4.101)

and applying the first condition the constant is found:

A ¼ �
ei

2nF
ffiffiffiffiffiffi
DR

p ffiffiffiffiffi
jω
p

r0 cosh sRr0ð Þ �
ffiffiffiffiffi
DR

p

r0
sinh sRr0ð Þ

h i , (4.102)

where

sinh xð Þ ¼ ex � e�x

2
and cosh xð Þ ¼ ex þ e�x

2
: (4.103)

The final solution for the concentration is

eCR ¼ �
eisinh sRrð Þ

nF
ffiffiffiffiffiffi
DR

p ffiffiffiffiffi
jω
p

cosh sRr0ð Þ �
ffiffiffiffiffi
DR

p

r0
sinh sRr0ð Þ

h i , (4.104)

and at the electrode surface:

eCR 0ð Þ ¼
ei

nF
ffiffiffiffiffiffi
DR

p ffiffiffiffiffi
jω
p

coth sRr0ð Þ �
ffiffiffiffiffi
DR

p

r0

h i : (4.105)
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This equation can be compared with Eq. (4.97) to see that for internal spherical

diffusion the first term in brackets is multiplied by coth, and there is a change in sign

in one term. Using Eq. (4.69) the mass transfer impedance is obtained:

ẐW ¼
RT

n2F2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DRCR 0ð Þ

p 1

ffiffiffiffiffi
jω
p

coth

ffiffiffiffiffiffi
jω

DR

s
r0

0
@

1
A�

ffiffiffiffiffiffi
DR

p

r0

¼ σ
0

jω

1

coth

ffiffiffiffiffiffi
jω

DR

s
r0

0
@

1
A�

ffiffiffiffiffiffi
DR

p

r0
ffiffiffiffiffi
jω
p

¼ σ
0
r0ffiffiffiffiffiffi
DR

p 1
ffiffiffiffiffiffi
jω

DR

s
r0

0
@

1
Acoth

ffiffiffiffiffiffi
jω

DR

s0
@ r0

1
A� 1

:

(4.106)

The difference between Eqs. (4.106) and (4.98) is that one is replaced by coth in

the denominator. It should be added that the difference in the denominator is always

positive.

For large values of r0 or high frequencies coth(x) � 1 and both equations

become similar. On the other hand for low values of x, that is for small r0 and

low frequencies, 1/[x coth(x) � 1] ¼ 1/5 + 3/x2 and this equation simplifies to:

ẐW ¼ σ
0
r0

5
ffiffiffiffiffiffi
DR

p þ 3σ
0 ffiffiffiffiffiffi

DR

p

jωr0
¼ RW þ 1

jωCW

(4.107)

that is to the connection of RW and CW in series (not a mistake in Ref. [61]). The

complex plane plots of the mass transfer and the total impedance are shown in

Fig. 4.15. The mass transfer impedance displays a straight line at 45� at high

frequencies followed by a vertical line at low frequencies. The high frequency part

corresponds to the semi-infinite diffusion where the diffusion layer thickness is much

smaller than the sphere radius that is the electrode behaves as flat (compare with the

case of r0 ! ∞) while the low frequency part corresponds to the diffusion layer

thickness much larger than the sphere radius. In such a case diffusion arrives at the

very center of the electrode and cannot proceed any further and no dc current can flow.

4.7 Cylindrical Diffusion

Cylindrical diffusion is observed, for example, during diffusion to a thin metallic

wire or a carbon fiber electrode. Impedance of cylindrical electrodes was studied by

Fleischmann et al. [165, 166] and Jacobsen and West [167]. The partial differential

equation describing diffusion to a cylinder, written for the oscillation concentration

of an Ox form, is [144]
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∂ΔCO

∂t
¼ DO

∂
2
ΔCO

∂r2

 
þ 1

r

∂ΔCO

∂r

!
, (4.108)

and introducing concentration phasor it is reduced to

d2eCO

dr2
þ 1

r

deCO

dr
� jω

DO

� 	
eCO ¼ 0: (4.109)

The only difference between equations for the cylindrical, Eq. (4.108), and

spherical, Eq. (4.91), is a constant factor (one instead of two), but this has a

quite important effect on the solution; Eq. (4.108) cannot be reduced to a simple

form by substitution. A standard substitution used for cylindrical geometry is

z ¼ r( jω/DO)
1/2, and Eq. (4.109) simplifies to

d2eCO

dz2
þ 1

z

deCO

dz
� eCO ¼ 0: (4.110)

This is a modified Bessel equation of zero order that has a solution

eCO ¼ AI0 zð Þ þ BK0 zð Þ, (4.111)

where A and B are the constants to be found from the initial and boundary

conditions, Eq. (4.94), and I0 and K0 are zero-order modified Bessel functions.

Taking into account the condition at z ! ∞ (r ! ∞), A ¼ 0 is obtained.

0 50 100
0

-50

-100

-150

-200

Z'

W / Ω

Z
" W

 /
 Ω

a b c d

e

f

0 50 100 150 200
0

-50

-100

-150

-200

Z
" t /

 Ω

Z
'

t 
 / Ω

a b c d e

f

Fig. 4.15 Complex plane plots of mass transfer and total impedances at spherical electrodes

assuming internal diffusion; sphere radius r0 (a) 0.001, (b) 0.005, (c) 0.01, (d ) 0.02, (e) 0.05, ( f )

0.2 cm; other parameters as in Fig. 4.12
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The derivative at the electrode surface r ¼ r0 or z ¼ z0, taking into account that

dK0(z)/dz ¼ –K1(z), is

deCO

dr
¼ �

ffiffiffiffiffiffiffi
jω

DO

r
BK1 z0ð Þ ¼ �

ei
nFDO

, (4.112)

from which the constant B is

B ¼
ei

nF
ffiffiffiffiffiffiffiffiffiffiffi
jωDO

p
K1 z0ð Þ

(4.113)

and

eCO ¼ �
eiK0 zð Þ

nF
ffiffiffiffiffiffiffiffiffiffiffi
jωDO

p
K1 z0ð Þ

: (4.114)

Using Eq. (4.69) the mass transfer impedance is

Ẑ W ¼
RT

n2F2
ffiffiffiffiffiffiffi
DO

p
CO 0ð Þ

K0 z0ð Þffiffiffiffiffi
jω
p

K1 z0ð Þ
¼ σ

0

ffiffiffiffiffi
jω
p K0 z0ð Þ

K1 z0ð Þ
: (4.115)

The complex plane plots of the mass transfer and total impedances are displayed

in Fig. 4.16.
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Fig. 4.16 Complex plane

plots of mass transfer, ẐW,

and total, Ẑt, impedances for

cylindrical external

diffusion, r0: (a) 0.001, (b)

0.005, (c) 0.02 (d ) ∞ cm;

other parameters as in

Fig. 4.12
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In the case of cylindrical diffusion at low frequencies, impedance becomes

parallel to the real axis and never approaches the real axis. This is related to the

fact that in chronoamperometry the current never goes to zero. Jacobsen and West

[167] also considered a case of finite-length cylindrical diffusion.

4.8 Diffusion to Disk Electrode

Disk electrodes are very often used as metallic or carbon disks embedded in an

insulator. They are also used as ultramicroelectrodes. Fleischmann et al. [165, 166,

168] presented the impedance of such electrodes. Diffusion to a disk is more

complex because it includes normal and radial directions, i.e., it is 2D diffusion

described as

∂CO

∂t
¼ D

∂
2
CO

∂r2

 
þ 1

r

∂CO

∂r
þ ∂

2
CO

∂z2

!
, (4.116)

where r and z are the radial and normal directions, and assuming that the Ox form

only is initially present in the solution, the following initial and boundary condi-

tions describe the system:

t ¼ 0 0 < r < 1, 0 < z <1, CO ¼ C�
O,

t > 0 r ! 1, z ! 1, CO ! C�
O,

0 < r < r0, z ¼ 0, DO

∂CO

∂z
þ DR

∂CR

∂z
¼ 0,

r0 < r < 1, z ¼ 0, DO

∂CO

∂z
¼ DR

∂CR

∂z
¼ 0:

(4.117)

The solution of the problem is [166]

Z
0
W ¼ 4RT

n2F2πD
1=2
O r20ω

1=2C�
O

Z1

0

J1 β
r0

l

0
@

1
A

2
4

3
5
2

cos Θ=2ð Þdβ
β 1þ β4
� �1=4 ¼

¼ 4RT

n2F2πD
1=2
O r20ω

1=2C�
O

Φ4

r20ω

DO

0
@

1
A

Z
00
W ¼ 4RT

n2F2πD
1=2
O r20ω

1=2C�
O

Z1

0

J1 β
r0

l

0
@

1
A

2
4

3
5
2

sin Θ=2ð Þdβ
β 1þ β4
� �1=4 ¼

¼ � 4RT

n2F2πD
1=2
O r20ω

1=2C�
O

Φ5

r20ω

DO

0
@

1
A,

(4.118)
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where J1 is the Bessel function of the first kind and first order, l2 ¼ D/ω, and

tanΘ ¼ 1/β2. The functions Φ4 and Φ5 were tabulated [166] and can be used to

construct impedance plots (note a mistake in Ref. [165] where a different definition

was used and the values ofΦiwere multiplied by2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20ω=DO

�q
. The complex plane

plots are displayed in Fig. 4.17. It should be noticed that at low frequencies

impedances tend to a real value and the plots for small disks resemble those for

microspherical electrodes, while at high frequencies a slope at 45� corresponding to
semi-infinite linear diffusion is observed. However, the mass transfer impedance

for a disk electrode cannot be fitted to a spherical electrode model. It could be fitted

to the model described by Eq. (4.99):

Ẑ W ¼ R1 þ
1

jωð ÞϕT þ 1
RD

, (4.119)

with ϕ ~ 0.55, although the approximation is not perfect.

Recently, Michel et al. [169] carried out a numerical computation of the faradaic

impedance of inlaid microdisk electrodes using a finite-element method and

discussed the limitations of the Fleischmann and Pons [168] approach. Calculation

of the functions Φ4 and Φ5 is shown in Exercise 4.8.

4.9 Rotating Disk Electrode

Impedance may also be studied in the case of forced diffusion. The most important

example of such a technique is a rotating disk electrode (RDE). In a RDE conditions

a steady state is obtained and the observed current is time independent, leading to

the Levich equation [17]. The general diffusion-convection equation written in

cylindrical coordinates y, r, and φ is [17]
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Fig. 4.17 Complex plane

plot of mass transfer

impedance at a disk

electrode, r0 ¼ 0.005 cm;

other parameters as in

Fig. 4.12
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∂Ci

∂t
þ vr

∂Ci

∂r
þ vφ

∂Ci

∂φ
þ vy

∂Ci

∂y
¼ Di

∂
2
Ci

∂y2
þ∂

2
Ci

∂r2
þ 1

r

∂Ci

∂r
þ 1

r2
∂
2
Ci

∂φ2

" #
, (4.120)

where y is a normal distance from the disk surface, r is the radial distance from the

disk axis, and φ is the angle (Fig. 4.18).

It is obvious that because of the cylindrical symmetry derivatives ∂Ci/∂φ ¼ 0

and because Ci(0) is independent of the coordinate r, Eq. (4.120) reduces to

∂Ci

∂t
þ vy

∂Ci

∂y
¼ Di

∂
2
Ci

∂y2
: (4.121)

To solve this equation, the velocity of the solution flowing toward the electrode

must be known. This is a hydrodynamic problem involving a Navier–Stokes

equation solved by von Karman and Cochrane assuming laminar flow [170]:

vy ¼
ffiffiffiffiffiffi
vΩ
p

H ςð Þ ¼
ffiffiffiffiffiffi
vΩ
p

�aς2 þ 1

3
ς3 þ b

6
ς4 þ . . .

� 	
, (4.122)

where ν is the kinematic viscosity of the solution, Ω is the angular rotation velocity,

Ω ¼ 2πf, f is the rotation frequency in s�1, parameters a and b are constants, a ¼
0.51023, b ¼ �0.6159, ζ is the dimensionless distance normal to disk surface, and

ς ¼ y
ffiffiffiffiffiffiffiffiffi
Ω=v

p
. Assuming a steady-state solution, ∂Ci/∂t ¼ 0, and keeping only the

first term in vy leads to the well-known Levich equation. This simplification of vy is

valid for large Schmidt numbers (!∞), Sc ¼ v/D. For diluted aqueous solutions

v � 0.01 cm s�1, and for D ¼ 10�5 cm2 s�1 Sc ¼ 1,000.

The simplest solution may be obtained assuming that the diffusion takes place

inside the stationary Nernst diffusion layer of thickness [obtained taking only the

first term in Eq. (4.122)]

Fig. 4.18 Definition of

cylindrical coordinates
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δN ¼ 1:612D1=3Ω�1=2v1=6: (4.123)

In such a case the diffusion layer thickness l is replaced by δN in the finite-length

transmissive diffusion impedance, Eq. (4.72):

Ẑ w ¼
σ0ffiffiffiffiffi
jω
p tanh

ffiffiffiffiffi
jω

D

r
δN

 !
¼ RD

tanh

ffiffiffiffi
jω
D

q
δN

� 	

ffiffiffiffi
jω
D

q
δN

� 	 , (4.124)

and its complex plane plot is as in Fig. 4.12b. This solution simply corresponds to

an infinite value of the Schmidt number. However, this is an approximate solution

sometimes leading to large errors.

A more precise solution may be found by linearizing Eq. (4.121),

jωeCi þ vy
∂eCi

∂y
¼ Di

∂
2eCi

∂y2
, (4.125)

with the following conditions:

y ¼ 0 eCi ¼ eCi 0ð Þ,
y!1 eCi ! 0: (4.126)

Many attempts have been made in the literature to solve this equation numeri-

cally [171] or analytically in the form of series [172, 173] or Airy function [174]

and keeping only the first term in Eq. (4.122), which is valid for large Sc numbers.

Other authors have used more terms in Eq. (4.122) [175, 176].

Fig. 4.19 Normalized complex plane plots obtained at RDE for reduction of 1 mM Fe(CN)6
3� at

Pt electrode at potentials corresponding to ¼ (	), ½ (●), and ¾ (	) of limiting current; (a)

approximation of Nernst diffusion layer, (b) numerical solution [171] (From Ref. [177], Copyright

(1970), with permission from Elsevier)
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A comparison of the experimental data with the solution based on the diffusion

layer theory and the numerical solution presented by Coueignoux and Schuhmann

[171] was made by Deslouis et al. [177]. Figure 4.19 presents the normalized

complex plane plots for ferricyanide obtained at different potentials corresponding

to 1/4, 1/2, and 3/4 of the limiting currents. It is obvious that the approximation

using the simplified Nernst diffusion layer theory, curve (a), goes above the

experimental points while the numerical solution, curve (b), is much better.

Later, it was shown that in the case of ferricyanide, time-dependent impedance

was observed due to surface film formation [178].

Radial nonuniformity in current distribution was taken into account in later

models. This effect leads to the 2D models (i.e., containing a concentration distri-

bution in the y- and r-directions) [179]. In such a case the radial term was added to

Eqs. (4.121), (4.122), (4.123), (4.124) and (4.125) leading to

jωeCi þ vy
∂eCi

∂y
þ vr

∂eCi

∂r
¼ Di

∂
2eCi

∂y2
: (4.127)

It was found that neglecting this term may lead to serious errors, especially for

fast kinetics. A comparison of the 1D and 2D solutions is displayed in Fig. 4.20.

In summary, diffusion to a RDE is a complex problem for which numerical

solutions exist; one can use either tables in publications or perform calculations

following descriptions in papers. Under conditions where a 2D current distribution

exists, the 1D model may provide an adequate fit to the experimental data, but the

physical parameters obtained by regression will be incorrect [179].

However, this is an important issue in the determination of a diffusion coefficient

from experimental data. It seems that the charge transfer resistance, necessary to

determine the reaction kinetics, is less affected by a 2D current distribution, and so

a simpler model might be used in the kinetic studies. Even simple models based on

the Nernst diffusion layer are often used in kinetic studies [180] because of their

simplicity.

Fig. 4.20 Simulated

complex plane plots at RDE

using 1D and 2D models

(From Ref.

[179]. Reproduced by

permission of

Electrochemical Society)
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4.10 Homogeneous Reaction, Gerischer Impedance

Homogeneous chemical reactions proceeding or following the electrochemical

process affect the process impedance [15, 29, 30, 39]. The theory of the impedance

of the preceding CE [15, 29, 30, 39, 181–183], following first-order [15, 39,

184–186], dimerization [187], ECE mechanism [15, 188, 189], disproportionation

[190], catalytic [191], and other reactions [192–195], has been studied in the

literature where E denotes electrochemical and C chemical reactions. Below, an

example of the impedance of a CE process will be presented. Readers can find

details for other reactions in the cited literature.

A CE process is described by the following reactions:

A! 
k1

k�1

O

Oþ ne ¼ R

9
=
;

K ¼ k1

k�1
¼ C�

O

C�
A
: (4.128)

These chemical equations are described by the following system of diffusion-

kinetic equations assuming that the diffusion coefficients of all species are

identical:

∂CA

∂t
¼ D

∂
2
CA

∂x2
� k1CA þ k�1CO,

∂CO

∂t
¼ D

∂
2
CO

∂x2
þ k1CA � k�1CO,

∂CR

∂t
¼ D

∂
2
CR

∂x2
,

(4.129)

with the following conditions:

t ¼ 0 or t > 0, x ! 1,

C�
A þ C�

O ¼ C0,

C�
R ¼ 0,

K ¼ C�
O

C�
A

,

t > 0, x ¼ 0,

D
∂CO

∂x
¼ �D

∂CR

∂x
¼ i

nF
,

D
∂CA

∂x
¼ 0:

(4.130)
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To solve these equations, the following substitutions may be used:

CT ¼ CA þ CO and CS ¼ CA �
CO

K
, (4.131)

which give the following equations:

∂CT

∂t
¼ D

∂
2
CT

∂x2
and

∂CS

∂t
¼ D

∂
2
CS

∂x2
� kCS, (4.132)

with k ¼ k1 + k�1. The equation for CR does not change. For these equations the

following conditions exist:

t ¼ 0 and t > 0, x!1,

CT ¼ C0,CS ¼ 0,CR ¼ 0,

t > 0, x ¼ 0,

D
∂CT

∂x
¼ � i

nF
,

D
∂CS

∂x
¼ � i

nFK
,

D
∂CR

∂x
¼ � i

nF
:

(4.133)

Solution for phasors is necessary to obtain impedance:

jωeCT ¼ D
∂eCT

∂x
,

jωeCS ¼ D
∂eCS

∂x
� keCS,

jωeCR ¼ D
∂eCR

∂x
:

(4.134)

Following the standard solution procedure and using the initial and boundary

conditions the resulting equations are

eCT ¼ A1exp �
ffiffiffiffiffi
jω

D

s
x

0
@

1
A,

eCR ¼ A2exp �
ffiffiffiffiffi
jω

D

s
x

0
@

1
A,

eCS ¼ A3exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jω

D
þ k

D

s
x

0
@

1
A,

(4.135)
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and using the boundary condition at x ¼ 0 the parameters Ai are obtained:

A1 ¼ eCO ¼
ei

nFD1=2 ffiffiffiffiffi
jω
p ,

A2 ¼ �
ei

nFD1=2 ffiffiffiffiffi
jω
p ,

A3 ¼ �
ei

nFD1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jωþ k
p ,

(4.136)

from which phasors of the surface concentrations are

eCO 0ð Þ ¼
ei

nFD1=2

K

K þ 1

1ffiffiffiffiffi
jω
p þ 1

K
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jωþ k
p

0
@

1
A,

eCR 0ð Þ ¼ �
ei

nFD1=2 ffiffiffiffiffi
jω
p :

(4.137)

Finally, the mass transfer impedance may be obtained from the equation

Ẑ W ¼
dE

di
¼
X

i¼O,R

dE

dCi

eCi

ei
, (4.138)

where dE/dCi is calculated from the Nernst equation:

dE=dCO ¼ RT=nFCO 0ð Þand dE=dCR ¼ �RT=nFCR 0ð Þ, (4.139)

which gives [30]

ẐW ¼ σO
K

K þ 1

1ffiffiffiffiffi
jω
p þ 1

K þ 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
jωþ k
p

� 	
þ σR

1ffiffiffiffiffi
jω
p : (4.140)

A complex plane plot obtained is displayed in Fig. 4.21. This impedance

presents a skewed semicircle. Under conditions specified in the legend the total

impedance can be reduced to a simpler form:

Ẑ ¼ Z0ffiffiffiffiffiffiffiffiffiffiffiffiffi
jωþ k
p : (4.141)

This term was first obtained by Gerischer [196] and is called the Gerischer

impedance. Such a behavior was observed in solid oxide fuel cells [197–199] and

interpreted as a competition between surface [200] and bulk diffusion coupled
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through the surface oxygen exchange process or slow adsorption coupled with

surface diffusion [201]. Boukamp [197–199] also introduced a so-called finite-

length Gerischer impedance:

Ẑ ¼ Z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jωþ kð ÞD

p tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jωþ kð Þ=D

p
l

h i
, (4.142)

where l is the diffusion layer thickness. This equation reduces to Eq. (4.141) for

large values of l. Boukamp [197, 199] later modified Eq. (4.142), introducing a

so-called double fractal model:

Ẑ ¼ Z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jωð Þα þ k½ �βD

q tanh jωð Þα þ k½ �βl
h i

, (4.143)

which reduces for large l to

Ẑ ¼ Z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jωð Þα þ k½ �βD

q : (4.144)

These equation approximate better the experimental impedances for anodes in

the solid oxide fuel cells (SOFC). It might be noticed that Eq. (4.144) is formally

identical to the empirical Havriliak–Negami dielectric response function [202].

4.11 Conclusions

EIS response is very sensitive to the geometry of mass transfer. Data analysis

permits us to determine the characteristic parameters describing mass and electron

transfer. In most cases, analytical solutions exist; however, in the case of disk

diffusion and RDEs (forced mass transfer), numerical solutions must be used.
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Fig. 4.21 Complex plane

plot for EC mechanism,

Eq. (4.140), for K ¼ 105,

k ¼ 0.1 s�1, and for

simplification σO ¼ σR

¼ 1 Ω s�1/2
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4.12 Exercises

Exercise 4.1 Write a program in Maple or Mathematica for the Randles model and

create the corresponding complex plane and Bode plots.

Exercise 4.2 Construct a model of a Randles circuit in ZView and perform a

simulation using data in Fig. 4.2 (book) Rs(Cdl(RctZW): Rs ¼ 10 Ω, Cdl ¼ 25 μF,

Rct ¼ 50 Ω, σ0 ¼ 10 Ω s�1/2. Repeat the simulations in Maple or Mathematica.

Exercise 4.3 Write a Maple/Mathematica program to simulate spherical internal

diffusion and create the corresponding complex plane and Bode plots using the

following parameters: Rs ¼ 10 Ω, Cdl ¼ 2 	 10�5 F, DO ¼ 10�5 cm2 s�1, Rct

¼ 50 Ω, CO ¼ 2 	 10�6 mol cm�3, r0 ¼ 10�3 cm.

Exercise 4.4 Write a program in Maple or Mathematica to simulate semi-infinite

spherical fusion (external) diffusion and create the corresponding complex plane

and Bode plots. The parameters are as in Exercise 4.3, except r0 ¼ 0.01 cm.

Exercise 4.5 Write a program in Maple/Mathematica to simulate transmissive

impedance and create the corresponding complex plane and Bode plots. The

parameters are as in Exercise 4.3, with l ¼ 0.01 cm.

Exercise 4.6 Write a program in Maple/Mathematica to simulate reflective mass

transfer impedance and create the corresponding complex plane and Bode graphs.

Use data from Exercise 4.5.

Exercise 4.7 Write a Maple/Mathematica program to simulate cylindrical diffu-

sion and create the corresponding complex plane and Bode plots. Use parameters

from Exercise 4.5 and r0 ¼ 0.01 cm.

Exercise 4.8 Write a program to calculate Φ4 and Φ5 for diffusion to a disk

electrode.
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Chapter 5

Impedance of the Faradaic Reactions
in the Presence of Adsorption

In Chap. 4, the faradaic reaction involving the diffusion of redox species was

presented. In this chapter reactions involving adsorption without diffusion will be

presented, starting with simple electrosorption as in underpotential deposition,

followed by adsorption/desorption involving one, two, or more adsorbed species.

5.1 Faradaic Reaction Involving One Adsorbed Species,
No Desorption

Let us suppose the simplest adsorption reaction involving one species that stays

adsorbed, that is, there is no desorption:

Asol þ eÆ
k
!

k
 

Bads: ð5:1Þ

where k
!

and k
 

are the potential dependent forward and backward rate constants.

The rate of this process (in units of flux, mol cm�2 s�1) is expressed, assuming the

Langmuir adsorption isotherm, as Eq. (5.2):

v ¼ k01exp �βf E� E0
� �� �

Γ1 � ΓBð ÞCA 0ð Þ
� k0�1exp 1� βð Þf E� E0

� �� �
ΓB ð5:2Þ

or introducing the surface coverage, θB ¼ ΓB/Γ∞:

v ¼ k01Γ1exp �βf E� E0
� �� �

1� θBð ÞCA 0ð Þ
� k0�1Γ1exp 1� βð Þf E� E0

� �� �
θB, ð5:3Þ

where k0i are the standard heterogeneous rate constants (at standard potential), k01 is

in cm3 s�1mol�1 and k0�1 in s
�1, Γ

∞
is the total surface concentration of active sites,
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and ΓB is the surface concentration (in mol cm�2) of the adsorbed form Β. Note that

for this reaction the dc current and reaction rate are always null and the surface

concentration is equal to that in bulk CA(0) ¼ C�A. Introducing the equilibrium

potential, that is, when v1 ¼ 0,

Eeq ¼ E0 þ RT

F
ln

k01
k0�1

C�A
1� θ�B
� �

θ�B

� �
, ð5:4Þ

where * denotes the equilibrium values. Taking as the reference potential Ep at

θ ¼ 0.5 and defining η ¼ E � Ep yields

Ep ¼ E0 þ RT

F
ln

k01
k0�1

C�A

� �
: ð5:5Þ

Equation (5.3) becomes

v ¼ k
0 1�βð Þ
1 k0�1

βΓ1C
�1�β
A

� 	
1� θBð Þe�βf η

� k
0 1�βð Þ
1 k0�1

βΓ1C
�1�β
A

� 	
θBe

1�βð Þf η

¼ k
!

1� θBð Þ � k
 
θB,

ð5:6Þ

where k
!

and k
 

are the potential dependent heterogeneous rate constants of the

surface reactions

k
!
¼ k0exp �βf η½ �; k

 
¼ k0exp 1� βð Þf η½ �; :

k0 ¼ k01
� � 1�βð Þ

k0�1
� �β

Γ1 C�A
� � 1�βð Þ ð5:7Þ

The current is related to the change in the surface coverage:

i ¼ dQ

dt
¼ � FΓ1ð Þ dθB

dt
¼ �Fv ¼ �F k

!
1� θBð Þ � k

 
θB

� �
, ð5:8Þ

where Q ¼ FΓ
∞
θB is the amount of adsorbed Β expressed as the electrical charge.

Equation (5.8) describes the dc behavior of our system. From the condition that the

dc current is zero in steady-state conditions, one obtains the adsorption isotherm

and the surface coverage:

θH

1� θH
¼ e�f η or θB ¼

1

1þ exp f ηð Þ : ð5:9Þ

Next, the ac solution must be developed for Δi, Δη, and ΔθB:

Δi ¼ �FΔv ¼ �F ∂v

∂η


 �
Δηþ ∂v

∂θB


 �
ΔθB

� �
ð5:10Þ
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and

FΓ1ð Þ∂ΔθB
∂t
¼ jω FΓ1ð ÞΔθB ¼ jωσ1ΔθB

¼ F
∂v

∂η


 �
Δηþ ∂v

∂θB


 �
ΔθB

� �
, ð5:11Þ

where σ1 ¼ F Γ
∞
is the charge necessary for the complete coverage of the surface

by B. After division of both sides by exp( jωt), the following equations are obtained:

ei ¼ �F ∂v

∂η


 �
eη þ ∂v

∂θB


 �
eθB

� �
, ð5:12Þ

jωσ1eθB ¼ F
∂v

∂η


 �
eη þ ∂v

∂θB


 �
eθB

� �
: ð5:13Þ

Equations (5.12) and (5.13) may be rearranged and written in matrix form:

�∂v1
∂η

�∂v1
∂η

2
66664

3
77775
¼

1

F

∂v1

∂θB

0
∂v1

∂θB
� jω

σ1

F

2
66664

3
77775

ei
eη
eθB
eη

2
66664

3
77775

ð5:14Þ

with the solution

eY f ¼
ei
eη , ð5:15Þ

Ŷ f ¼ �F
∂v

∂η


 �
�
�F ∂v

∂η


 �� �
� F

σ1

∂v

∂θB


 �� �

jωþ � F

σ1

∂v1

∂θB


 �� � ¼ A� AC

jωþ C
, ð5:16Þ

where

A ¼ �F ∂v

∂η

0
@

1
A ¼ F βf k

!
1� θBð Þ þ 1� βð Þf k

 
θB

� �
,

C ¼ � F

σ1

∂v

∂θB

0
@

1
A ¼ F

σ1
k
!
þ k
 


 �
, ð5:17Þ

or, introducing values of θB and rearranging,
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A ¼ Ff k0

2

1

cosh 0:5f ηð Þ ,

C ¼ 2Fk0

σ1
cosh 0:5f ηð Þ:

ð5:18Þ

The faradaic impedance is obtained as

Ẑ f ¼
1

Ŷ f

¼ 1

A
þ 1

jω A=Cð Þ ¼ Rct þ
1

jωCp

, ð5:19Þ

with

Rct ¼
1

A
and Cp ¼

A

C
, ð5:20Þ

and it corresponds to the connection between the resistance of the charge transfer,

Rct, and the pseudocapacitance, Cp, in series. For β ¼ 0.5, the parameter Rctmay be

rearranged to

Rct ¼
2RT

F2k0
cosh 0:5f ηð Þ: ð5:21Þ

This kinetic parameter is inversely proportional to the rate constant of the

electrode process of adsorption. On the other hand, the adsorption pseudoca-

pacitance reduces to

Cp ¼
Fσ1

4RT

1

cosh2 0:5f ηð Þ
ð5:22Þ

and contains no kinetic parameters. Of course, integration of Cp gives the total

adsorption charge:

ð1

�1

Cpdη ¼ σ1: ð5:23Þ

To obtain the total impedance, the faradaic impedance, Eq. (5.19), must be

inserted into the total impedance (Fig. 4.1b). The complex plane and Bode plots

of the total impedance are as in Fig. 2.35. The circuit parameters Rct and Cp depend

on the potential, as illustrated in Fig. 5.1. The charge transfer resistance displays a

minimum at Ep and its logarithm is linear with the potential further from the

minimum, while the pseudocapacitance displays a maximum. These values at the

potential Ep are
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Rct ¼
2RT

F2k0
¼ 5:38� 10�7

k0
Ωcm2 and Cp ¼

Fσ1

4RT
¼ 2:04 mF cm�2 ð5:24Þ

for the parameters in Fig. 5.1.

This type of reaction is observed for the underpotential deposition of hydrogen

or metals. Unfortunately, the Langmuir isotherm is rarely found in practice, but for

more complex isotherms the same impedance plots are observed; only the potential

dependence of the reaction parameters Rct and Cp is different. In the presence of the

Frumkin adsorption isotherm with a negative interaction parameter, discontinuous

impedances might be observed [203, 204].

The theory of the process where both Red and Ox species are adsorbed at the

electrode surface was analyzed by Laviron [205] and Los and Laviron [206].

Recently, such a case was studied experimentally for the redox couple

azobenzene/hydrazobenzene at a mercury electrode by Prieto et al. [207] and the

rate constants of the sequential protonation–electron transfer reactions were deter-

mined. The total impedance in this case is described by the circuit displayed in

Fig. 2.35, but the rate constant is a more complex function of the electrode potential

because the process involves two protonation and two electron transfer processes.

5.2 Faradaic Reaction Involving One Adsorbed Species
with Subsequent Desorption

Let us consider now a more complex reaction where adsorbed species are electro-

chemically desorbed in the second reaction:

Asol þ e�! �
k
!

1

k
 
�1

Bads, ð5:25Þ
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Fig. 5.1 Dependence of charge transfer resistance and pseudocapacitance on potential assuming

k0 ¼ 10�6 mol cm�2 s�1, β ¼ 0.5, and σ1 ¼ 210 μF cm�2.
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Bads þ e! 
k
!

2

k
 
�2

Csol: ð5:26Þ

This is a so-called Volmer–Heyrovsky type of mechanism, although it was

originally found for the hydrogen evolution reaction.

5.2.1 Determination of Impedance

As before, the steady-state behavior must be described first. The rates of these

reactions, assuming a Langmuir adsorption isotherm, are

v1 ¼ k01Γ1CA 0ð Þ
�
1� θB

�
exp �β1f E� E0

1

� �� �

�k0�1Γ1θB exp 1� β1ð Þf E� E0
1

� �� �
, ð5:27Þ

v2 ¼ k02Γ1θB exp �β2f E� E0
2

� �� �

� k0�2Γ1CC 0ð Þ
�
1� θB

�
exp 1� β2ð Þf E� E0

2

� �� �
: ð5:28Þ

Next, the equilibrium potential and the overpotential will be introduced. At the

equilibrium potential the rates of both reactions are zero, from which the following

equations are obtained:

exp f Eeq � E0
1

� �� �
¼ k01

k0�1
C�A

1� θ�B
θ�B

, ð5:29Þ

exp f Eeq � E0
2

� �� �
¼ k02

k0�2

1

C�C

θ�B
1� θ�B

,
ð5:30Þ

where θ�B is the surface coverage at the equilibrium potential and C�i are the bulk

concentrations. Now the potential difference may be expressed as the overpotential

E� E0
i ¼ E� Eeq þ Eeq � E0

i ¼ ηþ Eeq � E0
i :

v1¼ k
0 1�β1ð Þ
1 k0�1

β1Γ1C
�
A
�β1 θ�B

1�θ�B

0
@

1
A

β1

CA 0ð Þ

8
<
:

9
=
; 1�θBð Þexp

�
�β1f η

�

� k
0 1�β1ð Þ
1 k0�1

β1Γ1C
� 1�β1ð Þ
A

1�θ�B
θ�B

0
@

1
A
1�β18

<
:

9
=
;θBexp 1�β1ð Þf η½ �

¼ k1 1�θBð Þexp
�
�β1f η

�
� k�1θBexp 1�β1ð Þf η½ �

¼ k
!
1 1�θBð Þ� k

 
�1θB,

ð5:31Þ
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v2¼ k
0 1�β2ð Þ
2 k0�2

β2Γ1C
�
C
β2

1�θ�B
θ�B

0
@

1
A

β2
8
<
:

9
=
;θBexp �β2f ηð Þ

� k
0 1�β2ð Þ
2 k0�2

β2Γ1C
� �1þβ2ð Þ
C

θ�B
1�θ�B

0
@

1
A

1�β2

CC 0ð Þ

8
<
:

9
=
; 1�θBð Þexp 1�β2ð Þf η½ �

¼k2θBexp �β2f ηð Þ�k�2
�
1�θB

�
exp 1�β2ð Þf η½ �

¼ k
!
2θB� k

 
�2 1�θBð Þ,

ð5:32Þ

where

k1 ¼ k
0 1�β1ð Þ
1 k0�1

β1Γ1C
�
A
�β1 θ�B

1� θ�B


 �β1

CA 0ð Þ, ð5:33Þ

k�1 ¼ k
0 1�β1ð Þ
1 k0�1

β1Γ1C
�
A
1�β1 1� θ�B

θ�B


 �1�β1
, ð5:34Þ

k2 ¼ k
0 1�β2ð Þ
2 k0�2

β2Γ1C
�
C
β2

1� θ�B
θ�B


 �β2

, ð5:35Þ

k�2 ¼ k
0 1�β2ð Þ
2 k0�2

β2Γ1C
�
�
�1þ

C
β2

�
θ�B

1� θ8B


 �1�β2
CC 0ð Þ: ð5:36Þ

Assuming there is no concentration gradient and the surface and bulk concen-

trations are the same one obtains

k1 ¼ k
0 1�β1ð Þ
1 k0�1

β1Γ1C
�1�
A

β1
θ�B

1� θ�B


 �β1

, ð5:37Þ

k�2 ¼ k
0 1�β2ð Þ
2 k0�2

β2Γ1C
�
C
β2

θ�B
1� θ�B


 �1�β2
: ð5:38Þ

It should be stressed that this condition may be met only when the concentrations

of A and C are large and the currents are small. Such conditions are met, for

example, for water electrolysis or chlorine evolution from concentrated electro-

lytes. One should add the condition at the equilibrium potential, which leads to

k1k2

k�1k�2
¼ 1, ð5:39Þ

which indicates that only three rate constants are independent and the fourth may be

calculated from Eq. (5.39). Assuming there are four rate constants leads to an

overdetermined system and errors [208, 209]. In fact, substituting the rate constants
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Eqs. (5.34), (5.35), (5.37), and (5.38) into (5.39) also confirms this identity.

Equations (5.31) and (5.32) can be rearranged into other useful forms:

v1 ¼ v01
1� θB

1� θ�B


 �
CA 0ð Þ
C�A


 �
exp �β1f ηð Þ � θB

θ�B


 �
exp 1� β1ð Þf η½ �

� �
, ð5:40Þ

v2 ¼ v02
θB

θ�B


 �
exp �β2f ηð Þ � 1� θB

1� θ�B


 �
CC 0ð Þ
C�C


 �
exp 1� β1ð Þf η½ �

� �
, ð5:41Þ

and the corresponding exchange current densities for reactions (5.25) and (5.26) are

i01 ¼ Fv01 and i02 ¼ Fv02: ð5:42Þ

To find the kinetic parameters of these reactions, one must find either three (out

of four) rate constants or two exchange current densities and θ�B and, of course, two

transfer coefficients.

The total current is the sum of two reactions,

i ¼ �F v1 þ v2ð Þ ¼ �Fr0, ð5:43Þ

and the change in the surface coverage by species B,

dΓB

dt
¼ Γ1

dθB

dt
¼ σ1

F

dθB

dt
¼ r1 ¼ v1 � v2 ¼ 0, ð5:44Þ

which, in the steady state, is equal to zero, where σ1 ¼ FΓ
∞
is the charge necessary

for the total coverage of the electrode surface.

To calculate the impedance, equations for the total current and the changes in the

surface coverage must be linearized:

Δi ¼ � ∂i

∂η


 �

Θ

Δη� ∂i

∂Θ


 �

η

ΔθB ¼ �F
∂r0

∂η


 �

Θ

Δηþ ∂r0

∂θB


 �

η

ΔθB

" #
, ð5:45Þ

σ1

F

dΔθB

dt
¼ Δr1 ¼

∂r1

∂η


 �

θB

Δηþ ∂r1

∂θB


 �

η

ΔθB: ð5:46Þ

Taking into account the definitions of Δ:

Δi ¼ ei exp jωtð Þ, Δri ¼ er i exp
�
jωt

�
,

Δη ¼ eη exp jωtð Þ, and ΔθB ¼ eθB exp
�
jωt

�
,

ð5:47Þ
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the following equations are obtained:

�
ei
F
¼ er0 ¼

∂r0

∂η


 �

θB

eη þ ∂r0

∂θB


 �

η

eθB, ð5:48Þ

σ1

F
jωeθB ¼

∂r1

∂η


 �

θB

eη þ ∂r1

∂θB


 �

η

eθB: ð5:49Þ

As before, division by eη and rearrangement leads to

�∂r0
∂η

�∂r1
∂η

2
66664

3
77775
¼

1

F

∂r0

∂θB

0
∂r1

∂θB
� jω

σ1

F

2
66664

3
77775

ei
eη
eθB
eη

2
66664

3
77775
: ð5:50Þ

The solution of this equation gives the faradaic admittance, Eq. (5.15):

Ŷ f ¼
ei
eη ¼ �F

∂r0

∂η


 �

θB

�
F2

σ1

∂r0
∂θB

� 	
η

∂r1
∂η

� 	
θB

jω� F
σ1

∂r1
∂θB

� 	
η

¼ Aþ B

jωþ C
, ð5:51Þ

where

A ¼ �F ∂r0

∂η


 �

θB

,B ¼ �F2

σ1

∂r0

∂θB


 �

η

∂r1

∂η


 �

θB

, and C ¼ � F

σ1

∂r1

∂θB


 �

η

, ð5:52Þ

and, rearranging into impedance,

Ẑ f ¼
1

A
� B

jωA2 þ AB
¼ 1

A
þ 1

�jω A2

B
� A2C

B
� A

ð5:53Þ

or

Ẑ f ¼ Rct þ
1

jωCp þ 1
Rp

, ð5:54Þ

where

Rct ¼
1

A
, Cp ¼ �

A2

B
, and Rp ¼ �

1

A2C
B
þ A

, ð5:55Þ
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that is, the faradaic impedance consists of the charge transfer resistance in series

with the parallel connection between the resistance Rp and pseudocapacitance Cp.

The total impedance is

Ẑ t ¼ Rs þ
1

jωCdl þ 1
Rctþ 1

1
Rp
þjωCp

ð5:56Þ

and is the same as shown earlier in Eq. (2.158) for the nested circuit in Fig. 2.37,

right. The meaning of the parameters in this circuit may be better understood

following their calculation:

A ¼ Ff β1 k
!
1 1� θBð Þ þ 1� β1ð Þk

 
�1θB þ β2 k

!
2θB þ 1� β2ð Þk

 
�2 1� θBð Þ

� �
,

ð5:57Þ

B ¼ F2f

σ1
�k
!
1 � k

 
�1 þ k

!
2 þ k

 
�2


 �

� β1 k
!
1 1� θBð Þ þ 1� β1ð Þk

 
�1θB � β2 k

!
2θB � 1� β2ð Þk

 
�2 1� θBð Þ

� �
,

ð5:58Þ

and

C ¼ F

σ1
k
!
1 þ k

 
�1 þ k

!
2 þ k

 
�2


 �
, ð5:59Þ

from which it is evident that parameters A and C are always positive but Bmight be

positive or negative, which will influence the impedance plots. The faradaic

polarization resistance, Rpol, that is, the impedance at ω ¼ 0 is Rpol ¼ Rct + Rp.

The steady-state surface coverage, θB, is calculated from the rate constants using

the steady-state condition v1 ¼ v2:

θB ¼
k
!
1 þ k

 
�2

k
!
1 þ k

 
�1 þ k

!
2 þ k

 
�2

: ð5:60Þ

Note that, assuming no concentration polarization and β1 ¼ β2, this parameter

becomes potential independent and changes from:

θB ¼
k
!
1

k
!
1 þ k

!
2

¼ k1

k1 þ k2
ð5:61Þ

at very negative overpotentials to:
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θB ¼
k1

k1 þ k�1
¼ k�2

k�1 þ k�2
ð5:62Þ

at zero overpotential, and

θB ¼
k�2

k�1 þ k�2
ð5:63Þ

at very positive potentials [210].

5.2.2 Impedance Plots

Impedance plots corresponding to the general Eq. (5.53) depend on the sign of

parameter B and relative values of the capacitances in the circuit.

1. B < 0

(a) Rp > 0

When B < 0, the faradaic impedance is described by Eq. (5.54). It describes

resistance Rct in series with a parallel connection between Cp and Rp

(Fig. 5.2, left). The complex plane plots in this case display two semicircles

(Fig. 5.3a).

(b) Rp ¼ ∞
In this case, the impedance becomes simply a connection between Rct and Cp

in series:

Ẑ f ¼ Rct þ
1

jωCp

, ð5:64Þ

and the complex plane plots are presented in Fig. 5.3b.

Cdl

Rct

Rs

Ro

L

Cdl

Rct

Cp

Rp

Rs

Fig. 5.2 Electrical equivalent circuits describing electrochemical reaction with one adsorbed

species, Eq. (5.53), left for B < 0, right for B > 0
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(c) Rp ¼ 0

In this case, the faradaic impedance equals Rct and the complex plane plot of

the faradaic impedance is a point while the total impedance displays one

semicircle on the complex plane plots (Fig. 5.3c).

(d) Rp < 0

Three cases are possible: Rct < �Rp, Rct ¼ �Rp, and Rct > �Rp. In such

cases, the faradaic impedance plot displays a semicircle going from limω!1
Ẑ f ¼ Rct at high frequencies to limω!0Ẑ f ¼ Rct þ Rp at low frequencies.

Examples of complex plane plots in the case where Rct < �Rp are presented

in Fig. 5.3d.

2. B ¼ 0

This case is identical with B < 0 and Rp ¼ 0. In general, the faradaic impedance

equals Rct when A > > |B|/C. An example of such a plot is shown in Fig. 5.3b.
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Fig. 5.3 Complex plane plots of faradaic (dashed lines) and total (continuous lines) impedances

obtained using Eq. (5.54) (a–d) or (5.65) to calculate faradaic impedance; Rs ¼ 10 Ω, Rct ¼ 50 Ω,

Cdl ¼ 20 μF. (a) B < 0, Rp ¼ 50 Ω, Cp ¼ 0.1 F; (b) B < 0, Rp ¼ ∞; (c) B < 0, Rp ¼ 0, or

B ¼ 0; (d) B < 0, Rp ¼ �100 Ω, Cp ¼ 0.1 F; (e) B > 0, Ro ¼ 50 Ω, L ¼ 0.1 H
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3. B > 0

In this case, the impedance equation may be rearranged into

Ẑ f ¼
1

Aþ 1
1
B
jωþC

B

¼ 1
1
Rct
þ 1

jωLþRo

, ð5:65Þ

where

Rct ¼
1

A
,Ro ¼

C

B
, L ¼ 1

B
, ð5:66Þ

representing the connection between Rct and L-Ro in parallel (Fig. 5.2, right),

with all the parameters positive. Of course, these are only electrical representa-

tions of the general equation, and there are relations between the parameters of

both circuits:

L ¼ �R2
ctCp and Ro ¼ �

Rct Rct þ Rp

� �

Rp

: ð5:67Þ

The circuit in Eq. (5.65) can be represented by that in Eq. (5.54) assuming that

Cp < 0, Rp < 0 and Rct > �Rp. The complex plane plots are displayed in Fig. 5.3e.

Note that the faradaic impedance is always positive and the total impedance

displays a plot with capacitive and inductive loops.

In addition, the impedance for B < 0 can also be represented by the circuit in

Fig. 5.2b, but with both R0 and L negative [211]. In this case, the time constant of

the circuit is positive and the circuit is stable (see Sect. 13.3). Of course, there are no

physical (simple electrical) elements representing negative parameters, but this is

only an electric representation of Eq. (5.51), which might be useful but is not

necessary as long as we have an equation describing the system.

As can be seen from Fig. 5.3 and the preceding discussion, one simple Eq. (5.51)

describing the faradaic admittance in the presence of one adsorbed species, in

combination with the double-layer capacitance, can produce many different com-

plex plane plots and electrical equivalent circuits. It should be stressed that the

kinetic equations with physically possible rate parameters in Eqs. (5.25) and (5.26)

may not give all the behaviors, i.e. impedance plots, found by arbitrarily allocating

values to the circuit elements.

It is interesting to discoverwhen inductive loopsmay beobserved. First of all, let us

consider the case of large overpotentials where the process becomes irreversible, i.e.,

the backward rates are negligible. In this case, the faradaic impedance simplifies to

Ẑ f ¼
1

Ff

k
!

1 þ k
!
2

k
!

1 k
!
2

1

β1 þ β2 þ
F2 f
σ1

k
!

2�k
!

1

� �
β1�β2ð Þ

jωþ F
σ1

k
!

1þk
!

2

� �
" # : ð5:68Þ

This equation was presented by Gabrielli [11] and indicates that when β1 ¼ β2,

the faradaic impedance is real and one semicircle must be obtained on the total
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impedance complex plane plots. Gabrielli obtained an inductive loop assuming

β1 ¼ 0.925 and β2 ¼ 0.257. It must be stressed that the value of β1 is quite extreme.

The same values of transfer coefficients were also chosen by Orazem and Tribollet

in their book [3] using different rate constants to obtain an inductive loop, and quite

different values of transfer coefficients, 0.2 and 0.6, were chosen by Diard

et al. [212].

For the general mechanism involving all four rate constants and assuming that

the transfer coefficients are both 0.5 and the rate constants are between 10�5 and
10�15 mol cm�2 s�1 one can find that the ratio of R0/Rct is never lower than 8 and

the inductive loop is hardly visible taking into account that the value of L must be

sufficiently large. On the other hand, when the transfer coefficients are different,

e.g., β1 ¼ 0.7 and β2 ¼ 0.3, the ratio R0/Rct � 2.5 and an inductive loop may be

observed. Examples of complex plane plots obtained in these two cases are

displayed in Fig. 5.4.

5.2.3 Distinguishability of the Kinetic Parameters

of the Volmer–Heyrovsky Reaction

It has been found [213] that the kinetic parameters of the Volmer–Heyrovsky type

of mechanism cannot be unambiguously determined. In fact, two sets of kinetic

parameters can describe the experimental parameters of current and impedance, and

formally these two solutions are indistinguishable and arise from the permutation of

the parameters of the Volmer and Heyrovsky reactions:

k1 $ k2, k�1 $ k�2, β1 $ β2 : ð5:69Þ
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Fig. 5.4 Complex plane plots of faradaic (dashed lines) and total (continuous lines) impedances

where B > 0,Cdl ¼ 25 μF; left: η ¼ �0.095 V, β1 ¼ β2 ¼ 0.5, k1 ¼ 10�6.65, k�1 ¼ 10�9.2, k2 ¼
10�8.05mol cm�2 s�1,Rct ¼ 4.835Ω,R0 ¼ 42.76Ω, L ¼ 0.0471H; right: η ¼ �0.14V, β1 ¼ 0.7,

β2 ¼ 0.3, k1 ¼ 10�9.2, k�1 ¼ 10�8 05, k2 ¼ 10�6.35 mol cm�2 s�1, Rct ¼ 9.2 Ω, R0 ¼ 25.7 Ω,

L ¼ 0.0241 H
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The only difference obtained is that the value of θB for one set is replaced by

1 � θB for the other set of parameters, that is, the surface coverage increases or

decreases with the overpotential [213]. However, this parameter is not directly

measurable and is calculated from the rate constants, Eq. (5.60). This problem was

subsequently discussed in detail in the literature [214–217] and extended to other

mechanisms. Other measurements, for example electrogravimetric ones, are nec-

essary to distinguish between the two sets of parameters. In a series of papers, Diard

et al. [218–221] studied possible graphs obtained for such a reaction and the general

conditions when an inductive loop might be observed [220].

The preceding equations were written assuming the Langmuir adsorption iso-

therm for both species. In the case of the Frumkin adsorption isotherm with

negative interaction terms the situation is more complex and multi-steady-state

curves can be obtained. Such a situation was discussed by Berthier et al. [222].

5.3 Faradaic Reaction Involving Two Adsorbed Species

Electrocatalytic and corrosion reactions often involve two or more adsorbed spe-

cies. A mechanism involving two adsorbed species and the exchange of two

electrons is presented below:

Asol þ e�! �
k
!

1

k
 
�1

Bads, ð5:70Þ

Bsol þ e�! �
k
!

2

k
 
�2

Cads, ð5:71Þ

Cads
�! �
k
!

2

k
 
�2

Dsol, ð5:72Þ

where reaction (5.72) is a simple chemical (potential independent) desorption

reaction. These reactions are described by the following kinetic equations:

v1 ¼ k
!
1 1� θB � θCð Þ � k

 
�1θB, ð5:73Þ

v2 ¼ k
!
2θB � k

 
�2θC, ð5:74Þ

v3 ¼ k3θC � k�3 1� θB � θCð Þ, ð5:75Þ

and the current equals

i ¼ �F v1 þ v2ð Þ ¼ �Fr0 ð5:76Þ
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as the electrons are changed only in the first and second steps. From the equilibrium

condition v1 ¼ v2 ¼ v3 ¼ 0 one can obtain an additional condition for the rate

constants:

k1k2k3

k�1k�2k�3
¼ 1, ð5:77Þ

which is an analogous condition to Eq. (5.39). In addition, two equations describe

changes in the surface coverage:

σ1

F

dθB

dt
¼ v1 � v2 ¼ r1, ð5:78Þ

σ2

F

dθC

dt
¼ v2 � v3 ¼ r2, ð5:79Þ

where σi are the charges necessary for a full coverage of the electrode surface by

B and C, respectively. Equations (5.76), (5.78), and (5.79) describe the electro-

chemical behavior of the system. To describe the system impedance, these equa-

tions should be rewritten for the phasors:

ei ¼ �F ∂r0

∂η


 �

θB,θC

eη þ ∂r0

∂θA


 �

η,θC

eθB þ
∂r0

∂θC


 �

η,θB

eθC

" #
, ð5:80Þ

jω
σ1

F
eθB ¼

∂r1

∂η


 �

θB,θC

eη þ ∂r1

∂θB


 �

η,θC

eθB þ
∂r1

∂θC


 �

η,θB

eθC, ð5:81Þ

jω
σ2

F
eθC ¼

∂r2

∂η


 �

θB,θC

eη þ ∂r2

∂θB


 �

η,θC

eθB þ
∂r2

∂θC


 �

η,θB

eθC, ð5:82Þ

from which the faradaic admittance, Ŷ f ¼ ei=eη, can be determined:

Ŷ f ¼
1

Ẑ f

¼
ei
eη ¼ Aþ Bþ jωC

jωD� ω2 þ E
, ð5:83Þ

where

A ¼ 1

Rct

¼ �F ∂r0

∂η


 �

θB,θC

, ð5:84Þ

B ¼ � F3

σ1σ2

� ∂r0

∂θB

0
@

1
A ∂r1

∂η

0
@

1
A ∂r2

∂θC

0
@

1
Aþ ∂r0

∂θB

0
@

1
A ∂r1

∂θC

0
@

1
A ∂r2

∂η

0
@

1
A

� ∂r0

∂θC

0
@

1
A ∂r1

∂θB

0
@

1
A ∂r2

∂η

0
@

1
Aþ ∂r0

∂θC

0
@

1
A ∂r1

∂η

0
@

1
A ∂r2

∂θB

0
@

1
A

8
>>>>>><
>>>>>>:

9
>>>>>>=
>>>>>>;

, ð5:85Þ
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C ¼ �F2 1

σ1

∂r0

∂θB


 �
∂r1

∂η


 �
þ 1

σ2

∂r0

∂θC


 �
∂r2

∂η


 �� �
, ð5:86Þ

D ¼ �F 1

σ1

∂r1

∂θB


 �
þ 1

σ2

∂r2

∂θC


 �� �
, ð5:87Þ

E ¼ F2

σ1σ2

∂r1

∂θB


 �
∂r2

∂θC


 �
� ∂r1

∂θC


 �
∂r2

∂θB


 �� �
, ð5:88Þ

where parameters A, C, andD are always positive and B and E can be either positive

or negative. From Eq. (5.83) the faradaic impedance is

Ẑ f ¼ Rct þ
Bþ jωC

A2 Dþ B=Að Þ þ jω Eþ C=Að Þ � ω2½ �
ð5:89Þ

and the polarization resistance

Rpol ¼ Rct þ
B

A2 Dþ B
A

� � : ð5:90Þ

Equation (5.89) represents a second-order impedance [223], and its denominator

can be expressed in the form [222]

1þ jω
2ζ

ωn

� ω

ωn


 �2

¼ 1þ s
2ζ

ωn

þ s2
1

ω2
n

, ð5:91Þ

where ωn is called the undamped natural frequency and ζ is the damping ratio of the

system [224] expressed as

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ B

A

r
and ζ ¼ 1

2

Eþ C
Affiffiffiffiffiffiffiffiffiffiffiffi

Dþ B
A

q ¼ 1

2

Eþ C
A

ωn

: ð5:92Þ

The roots of Eq. (5.91) are

s1,2 ¼
�ζ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 � 1

p

ωn

: ð5:93Þ

Depending on the value of ζ, the roots of the denominator may be real or

complex. Taking into account possible combinations of the values and the nature

of the roots and poles, there are at least 54 theoretically different cases [221]. How-

ever, not all the cases are experimentally possible. An example of a circuit

5.3 Faradaic Reaction Involving Two Adsorbed Species 143



representing the total impedance, which could be obtained using the faradaic

impedance, Eq. (5.89), is displayed in Fig. 5.5. Of course, this is not a unique

circuit, and, depending on the signs and values of parameters A–E, other represen-

tations are possible.

A few examples of the complex plane plots that can be obtained in such a case

are shown in Fig. 5.6. Many other possible plots are discussed in Ref. [225]. In a

similar way, impedance equations for three [11, 57, 226] or more adsorbed species

can be obtained [227]. Macdonald et al. [1, 227] studied Al corrosion in KOH

and considered three adsorbed species of aluminum and adsorbed hydrogen. They

considered six possible mechanisms and found one that explained well changes

of the impedance with the electrode potential. Examples of the experimental
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Fig. 5.5 Example of

electrical equivalent circuit

obtained in case of two

adsorbed species
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Fig. 5.6 Examples of complex plane plots obtained in presence of two adsorbed species

assuming the following parameters: Rs ¼ 1 Ω, Cdl ¼ 20 μF, Rct ¼ 20 Ω; (a) Rp1 ¼ Rp2 ¼ 20 Ω,

Cp1 ¼ 0.02 F, Cp2 ¼ 2 F; (b) Rp1 ¼ 20 Ω, Rp2 ¼ �20 Ω, Cp1 ¼ 0.02 F, Cp2 ¼ �2 F; (c) Rp1 ¼
�10 Ω, Rp2 ¼ 20 Ω, Cp1 ¼ �0.02 F,Cp2 ¼ 2 F; (d) Rp1 ¼ �10 Ω, Rp2 ¼ �7 Ω, Cp1 ¼ �0.02 F,
Cp2 ¼ �2 F
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impedances and their fit to the assumed mechanism are displayed in Fig. 5.7. More

complex cases involving the Frumkin isotherm and second-order mixed terms were

studied for methanol oxidation [228].

Using the general method explained in this chapter other mechanisms can be

simply described and their impedances found. However, to distinguish between

different possible models, measurements should be carried out under different

conditions by changing, for example, the electrode potential or concentration.

5.4 Exercises

Exercise 5.1 Simulate in ZView the plots in Fig. 5.6.

Fig. 5.7 Experimental and simulated impedance spectra for Al in 4 M KOH at 25 �C as a function

of applied potential (From Ref. [227]. Reproduced by permission of Electrochemical Society)
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Chapter 6

General Method of Obtaining Impedance
of Complex Reactions

It is possible to write the impedance for each electrochemical mechanism which is

described by a series of chemical/electrochemical reactions. In this chapter a

general method will be presented using matrix notation, which simplifies the task.

An example of a reaction mechanism containing two diffusing, A and C, and one

adsorbed species B, described by Eq. (6.1), will be presented:

Aþ e! Bads, ð6:1Þ

Bads þ e! C: ð6:2Þ

It involves the diffusion of A toward an electrode, a surface adsorption reaction

at an area that is not already occupied by B, desorption of B, and diffusion of C from

the electrode. First of all, the system dc behavior must be described by appropriate

equations. Because the reactions proceed by an exchange of electrons, the rate

constants of forward and backward reactions are potential dependent:

v1 ¼ k1exp �β1f η½ � Γ1 � ΓBð ÞCA 0ð Þ � k�1exp 1� β1ð Þf η½ �ΓB, ð6:3Þ

v2 ¼ k2exp �β2f η½ �ΓB � k�2exp 1� β2ð Þf η½ � Γ1 � ΓBð ÞCC 0ð Þ, ð6:4Þ

where vi are the rates of reaction in the units of flux, mol cm�2 s�1, ki and k–i are the
heterogeneous rate constants of the forward and backward reactions, respectively,

βi are the symmetry coefficients of the electrode processes, η ¼ E � Eeq is the

overpotential, Eeq is the equilibrium potential, Γ
∞
is the surface concentration of all

available free sites in the absence of adsorption, ΓB is the surface concentration of B

(in mol cm�2), andCi(0) are the surface concentrations. By introduction of the surface

coverage, θB, which is the portion of the surface occupied by adsorbed B species,

θB ¼
ΓB

Γ1
, ð6:5Þ
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a simpler form may be written:

v1 ¼ k
!
1 1� θBð ÞCA 0ð Þ � k

 
�1θB, ð6:6Þ

v2 ¼ k
!
2θB � k

 
�2 1� θBð ÞCC 0ð Þ, ð6:7Þ

where

k
!
i ¼ kiexp �βi f ηð Þ and k

 
�i ¼ k�iexp 1� βið Þf η½ � ð6:8Þ

are the potential-dependent rate constants. Considering the condition at the equi-

librium potential

v1 ¼ v2 ¼ 0 ð6:9Þ

leads to the relation

k1k2

k�1k�2

C�A
C�C
¼ 1, ð6:10Þ

where C�i are the bulk concentrations. This relation indicates that there are only

three out of four independent rate constants in the system. Such a condition should

be checked for each mechanism involving adsorption to avoid further problems

with the determination of the kinetic parameters (overdetermined system). More

details on such conditions will be presented in Chap. 5.

Next, solving the problem in the steady state, it is necessary to write the

following items:

1. Current as a function of the rates of reactions (6.6) and (6.7)

2. Current as function of fluxes of diffusing species

3. Mass balance relations for adsorbed species

The current is described as

i ¼ �F v1 þ v2ð Þ ¼ �Fr0, ð6:11Þ

where r0 ¼ v1 + v2 and the negative sign must be added because the reduction

current is negative and that of oxidation is positive. Relations between the current

and fluxes are

i ¼ �2FDA

∂CA

∂x

� �

x¼0
¼ 2FDC

∂CC

∂x

� �

x¼0
ð6:12Þ
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and the change in the surface coverage is

Γ1
dθB

dt
¼ v1 � v2 ¼ r1, ð6:13Þ

where r1 ¼ v1 � v2. Equations (6.11), (6.12) and (6.13) describe the dc behavior of

our system. Next, equations must be written for the oscillating current, concentra-

tions, and surface coverage, Eq. (4.13), using a linearization procedure, Eq. (4.16).

The linearization of Eq. (6.11) (neglecting the higher-order terms) gives

Δi ¼ �F ∂r0

∂η

� �
Δηþ ∂r0

∂eθB

� �
ΔθB þ

∂r0

∂CA

� �
ΔCA 0ð Þ þ ∂r0

∂CC

� �
ΔCC 0ð Þ

� �
,

ð6:14Þ

which may be simplified by dividing both sides by exp( jωt):

ei ¼ �F ∂r0

∂η

� �
eη þ ∂r0

∂eθB

� �
eθB þ

∂r0

∂CA

� �
eCA 0ð Þ þ ∂r0

∂CC

� �
eCC 0ð Þ

� �
: ð6:15Þ

Solution of a semi-infinite linear diffusion Fick’s equations (4.19) and (4.22)

leads to the expression of Eq. (6.12) in terms of phasors, that is and expressing

Eq. (4.30) at the electrode surface, x ¼ 0, leads to

ei ¼ 2F
ffiffiffiffiffiffiffiffiffiffiffi
jωDA

p eCA 0ð Þ,

ei ¼ �2F ffiffiffiffiffiffiffiffiffiffiffi
jωDC

p eCC 0ð Þ:
ð6:16Þ

Finally, linearization of Eq. (6.13) gives the following equation:

Γ1
dΔθB

dt
¼ Δr1 ¼

∂r1

∂η

0
@

1
AΔηþ ∂r1

∂eθB

0
@

1
AΔθB

þ ∂r1

∂CA

0
@

1
AΔCA 0ð Þ þ ∂r1

∂CC

0
@

1
AΔCC 0ð Þ,

ð6:17Þ

which gives, after division of both sides by exp( jωt),

Γ1 jωeθB ¼
∂r1

∂η

� �
eη þ ∂r1

∂θB

� �
eθB þ

∂r1

∂CA

� �
eCA 0ð Þ þ ∂r1

∂CC

� �
eCC 0ð Þ: ð6:18Þ

We have obtained four equations, (6.15), (6.16), and (6.18), which can be

rearranged by dividing all by eη and keeping constant terms on one side:
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� ∂r0

∂η

0
@

1
A ¼ 1

F

ei
eη �

∂r0

∂θB

0
@

1
AeθB
eη �

∂r0

∂CA

0
@

1
A eCA 0ð Þ

eη � ∂r0

∂CC

0
@

1
A eCC 0ð Þ

eη ,

0 ¼ � 1

2F

ei
eη þ

ffiffiffiffiffiffiffiffiffiffiffi
jωDA

p eCA 0ð Þ
eη ,

0 ¼ 1

2F

ei
eη þ

ffiffiffiffiffiffiffiffiffiffiffi
jωDC

p eCC 0ð Þ
eη ,

� ∂r1

∂η

0
@

1
A ¼ �Γ1jω

eθB
eη þ

∂r1

∂θB

0
@

1
AeθB

eη þ
∂r1

∂CA

0
@

1
A eCA 0ð Þ

eη þ ∂r1

∂CC

0
@

1
A eCC 0ð Þ

eη :

ð6:19Þ

It is evident that the ratio ei=eη is the faradaic admittance; therefore, this term

should be calculated from the system of Eq. (6.19). To simplify the procedure, they

may be written in the matrix form Y ¼ AX:

�∂r0
∂η

0

0

�∂r1
∂η

2
66666666666664

3
77777777777775

¼

1

F
� ∂r0
∂θB

� ∂r0

∂CA

� ∂r0

∂CC

� 1

2F
0

ffiffiffiffiffiffiffiffiffiffiffi
jωDA

p
0

1

2F
0 0

ffiffiffiffiffiffiffiffiffiffiffi
jωDC

p

0
∂r1

∂θB
� Γ1jω

∂r1

∂CA

∂r1

∂CC

2
66666666666664

3
77777777777775

ei
eη
eθB
eη

eCC 0ð Þ
eη

eCA 0ð Þ
eη

2
6666666666666664

3
7777777777777775

: ð6:20Þ

The faradaic admittance eY ¼ ei=eη may be calculated using Cramer’s rule as

eY f ¼ T=A, where A ¼ det(A), T ¼ det(T), and determinant T is obtained by

replacing the first column in A by Y:

A ¼

1

F
� ∂r0
∂θB

� ∂r0

∂CA

� ∂r0

∂CC

� 1

2F
0

ffiffiffiffiffiffiffiffiffiffiffi
jωDA

p
0

1

2F
0 0

ffiffiffiffiffiffiffiffiffiffiffi
jωDC

p

0
∂r1

∂θB
� Γ1jω

∂r1

∂CA

∂r1

∂CC

�������������������

�������������������

, ð6:21Þ
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T ¼

�∂r0
∂η

� ∂r0
∂θB

� ∂r0

∂CA

� ∂r0

∂CC

0 0
ffiffiffiffiffiffiffiffiffiffiffi
jωDA

p
0

0 0 0
ffiffiffiffiffiffiffiffiffiffiffi
jωDC

p

�∂r1
∂η

∂r1

∂θB
� Γ1jω

∂r1

∂CA

∂r1

∂CC

�������������

�������������

, ð6:22Þ

and after calculation of the determinants

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DADC

p
Γ1

∂r0

∂η
jωð Þ2 þ �∂r0

∂η

∂r1

∂θB
� ∂r0

∂θB

∂r1

∂η

0
@

1
A jωð Þ

2
4

3
5

¼ a4 jωð Þ2 þ a2 jωð Þ,

ð6:23Þ

A ¼ 1

2F

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DADC

p
Γ1 jωð Þ2

þΓ1
ffiffiffiffiffiffi
DC

p ∂r0

∂CA

�
ffiffiffiffiffiffiffi
DA

p ∂r0

∂CC

0
@

1
A jωð Þ3=2

2
ffiffiffiffiffiffiffiffiffiffiffiffi
DADC

p ∂r1

∂θB
jωð Þ

þ

ffiffiffiffiffiffi
DC

p ∂r0

∂CA

∂r1

∂θB
þ

ffiffiffiffiffiffi
DA

p ∂r0

∂CC

∂r1

∂θB

�
ffiffiffiffiffiffi
DC

p ∂r0

∂θB

∂r1

∂CA

�
ffiffiffiffiffiffi
DA

p ∂r0

∂θB

∂r1

∂CC

0
BBBB@

1
CCCCA

jωð Þ1=2

2
666666666666666664

3
777777777777777775

¼ 1

2F
b4 jωð Þ2 þ b3 jωð Þ3=2 þ b2 jωð Þ þ b1 jωð Þ1=2
h i

,

ð6:24Þ

and the faradaic admittance:

Ŷ f ¼ 2F
a4 jωð Þ2 þ a2 jωð Þ

b4 jωð Þ2 þ b3 jωð Þ3=2 þ b2 jωð Þ þ b1 jωð Þ1=2

¼ 2F
a4 jωð Þ3=2 þ a2 jωð Þ1=2

b4 jωð Þ3=2 þ b3 jωð Þ þ b2 jωð Þ1=2 þ b1

¼ 2F
a4

b4
� a4

b4

b3

b4
jωð Þ þ b2

b4
� a2

a4

0
@

1
A jωð Þ1=2 þ b1

b4

jωð Þ3=2 þ b3

b4
jωð Þ þ b2

b4
jωð Þ1=2 þ b1

b4

2
6666664

3
7777775

8
>>>>>><
>>>>>>:

9
>>>>>>=
>>>>>>;

,

ð6:25Þ
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or, for the faradaic impedance,

Ẑ f ¼
1

2F

b4 jωð Þ3=2 þ b3 jωð Þ þ b2 jωð Þ1=2 þ b1

a4 jωð Þ3=2 þ a2 jωð Þ1=2
: ð6:26Þ

This can be rearranged into

Ẑ f ¼
1

2F

b4

a4
þ 1

2F

b4

a4

b3

b4
jωþ � a2

a4
þ b2

b4

0
@

1
A jωð Þ1=2 þ b1

b4

jωð Þ1=2 jωþ a2

a4

2
4

3
5

2
6666664

3
7777775

¼ Rct þ
1

2F

b3

a2
jωþ � b4

a4
þ b2

a2

0
@

1
A jωð Þ1=2 þ b1

a2

jωð Þ1=2 jωþ a4

a2
þ 1

2
4

3
5

2
6666664

3
7777775
,

ð6:27Þ

where Rct is the charge transfer resistance. It is evident that the denominator of the

last expression has two poles corresponding to one diffusive, (jω)�1/2, and one

capacitive, (jω)�1, term, which should appear in the equivalent electrical circuit. It

can be shown that this equation similar to a general model (Fig. 6.1). In fact, the

impedance of this model may be expressed as

Ẑ f ¼ Rct þ
1

jωCp þ
1

Rp

þ ZW ¼ Rct þ
1

jωCp þ
1

Rp

þ σffiffiffiffiffi
jω
p

¼ Rct þ
jωð Þσ þ jωð Þ1=2 1

Cp

þ σ

RpCp

jωð Þ1=2 jωþ 1

RpCp

2
4

3
5

,

ð6:28Þ

Cp

Rp

Rct

ZW

Fig. 6.1 Electrical

equivalent model of

faradaic impedance

described by Eqs. (6.28)

and (6.26)
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which has a form similar to Eq. (6.27). However, Eq. (6.27) contains five indepen-

dent parameters and Eq. (6.28) only four, therefore exact equivalence of the

parameters of both equations cannot be established unless there is a relation

between the parameters of Eq. (6.27). If such a relation exists one can get a plot

displaying two semicircles followed by a straight line at 45� on the complex plane

plots, Fig. 6.2. General plot of Eq. (6.27) might be more complex.

Comparison of the parameters in Eqs. (6.27) and (6.28) leads to the physical

meaning of the parameters found:

Rct ¼
1

2F

b4

a4
; Cp ¼ 2F

a4

b4

1

b2
b4
� a2

a4

� 	 ; Rp ¼
1

2F

b4

a2

b2

b4
� a2

a4

� �
;

σ ¼ 1

2F

b3

a4
; b1 ¼

a2b3

a4

ð6:29Þ

Of course, Eq. (6.27) might also have other equivalent circuit representations.

The method presented above can be applied to any mechanism. In a later chapter

it will be used for the calculation of impedances of other mechanisms. In general, in

the faradaic impedance, inverse of resistances are proportional to rate constants and

capacitances depend on the surface coverages (which contain the ratios of the rate

constants that is depend on the equilibrium constants), although some lengthy

rearrangements might be required to prove this.

Harrington et al. [229–235] proposed a more general method based on a general

model for chemical reactions [236] and linear algebra, making it possible to predict

the number and nature of parameters and the equivalent circuit for mechanisms

involving diffusion and adsorption. Practical information about the stability and

complexity of impedance plots and the relation between the reaction mechanism

and equivalent circuit may be deduced. For example, the model predicts that

inductive loops cannot be observed at equilibrium. However, a detailed presenta-

tion of this method is beyond the scope of this book.

0 100 200 300 400

0

-50

-100

-150

-200

Z
" 

/ 
Ω

Z' / Ω

Fig. 6.2 Complex plane

plot for circuit in Fig. 6.1.

Parameters: Rs ¼ 10 Ω,

Rct ¼ Rp ¼ 100 Ω,

Cdl ¼ 2 � 10�5 F,
Cp ¼ 0.01 F,

σ’ ¼ 0.5 Ω s�1/2
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Chapter 7

Electrocatalytic Reactions Involving
Hydrogen

Many reactions of industrial importance are electrocatalytic, i.e., they involve the

specific adsorption of intermediates, for example hydrogen, chlorine, and oxygen

evolution, oxygen reduction, and methanol or ethanol oxidation in fuel cells. Many

different electrochemical techniques were used to study these reactions, and EIS is

one of them, providing interesting kinetic and surface information. Certain model

reactions will be presented in what follows with a detailed method of relating

impedance parameters with mechanistic and kinetic equations.

7.1 Hydrogen Underpotential Deposition Reaction

On several noble metals (Pt, Rh, Ru, Ir, and Pd) hydrogen adsorption takes place at

the potentials positive to the equilibrium potential for the hydrogen evolution

reaction. This is a so-called hydrogen underpotential deposition reaction (HUPD)

and indicates a strong adsorptive interaction between atomic hydrogen and the

surface metal atoms. Similar UPD processes are observed for the deposition of

metals on metals [237]. Certain reactions, like Cu UPD at Pt, Ru, or Rh, are used as

diagnostic tools to determine the real surface area of electrocatalytic materials.

Although the adsorption isotherms are usually complex [238], the simplest

Langmuir isotherm will be presented first and later the Frumkin isotherm will be

shown. The following development is similar to that in Sect. 5.1. The HUPD

reaction in acid and alkaline solutions may be written as

Hþ þMþ e�
k
!

1

k
 
�1

MHads ð7:1Þ
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or

H2OþMþ e�
k
*

1

k
 
�1

MHadsþOH�: ð7:2Þ

The kinetic equations in acid solution are

i ¼ �Fv1 ¼
dQ

dt
¼ �F dΓH

dt
¼ �σ1

dθH

dt
, ð7:3Þ

v1 ¼ k01CHþ 0ð Þ Γ1 � ΓHð Þe�βf E�E0
1ð Þ � k0�1ΓHe

1�βð Þf E�E0
1ð Þ

¼ Γ1 k01CHþ 0ð Þ 1� θHð Þe�βf E�E0
1ð Þ � k0�1θHe

1�βð Þf E�E0
1ð Þ

h i
,

ð7:4Þ

where Q is the charge corresponding to the adsorption of H (C cm�2), v1 is the

reaction rate (mol cm�2 s�1), σ1 ¼ F ΓH is the charge necessary for one monolayer

coverage by adsorbed H (C cm�2), k01 is the standard rate constant of hydrogen

adsorption (cm3 mol�1 s�1), k0�1 is the standard rate constant of desorption (s�1),
CHþ 0ð Þ is the surface concentration of hydrogen ions, Γ

∞
is the total surface

concentration of adsorption sites (mol cm�2), ΓH is the surface concentration of

adsorbed H, E0
1 is the standard potential of reaction (7.1), θH is the fractional surface

coverage by adsorbed hydrogen, and θH ¼ ΓH/Γ∞. It is evident that the current can

flow only when there is a change in surface coverage and in the steady state the

current is zero. The equilibrium and peak potential for the HUPD reaction are

described by (5.4) and (5.5).

Assuming that the bulk and surface concentrations are the same (i.e., the

hydrogen surface concentration is not affected by the passing current) the following

equation is obtained:

v1 ¼ Γ1 k01
� �1�β

k0�1
� �β

C�Hþ
� �1�β

1� θHð Þe�βf E�Epð Þ

� Γ1 k01
� �1�β

k0�1
� �β

C�Hþ
� �1�β

θHe
1�βð Þf E�Epð Þ

¼ k0e�βf E�Epð Þ 1� θHð Þ � k0e 1�βð Þf E�Epð ÞθH
¼ k
!

1 1� θHð Þ � k
 
1θH,

ð7:5Þ

where k0 ¼ Γ1 k01
� �1�β

k0�1
� �β

C�Hþ
� �1�β

is the concentration-dependent rate con-

stant, and the potential-dependent rate constants are k
!
1 ¼ k0exp �βf E� Ep

� �� �
and

k
 
1 ¼ k0exp 1� βð Þf E� Ep

� �� �
. For simplicity let us introduce the overpotential

η ¼ E � Ep, see Eq. (5.5). The further development is identical to that described in

Sect. 5.1 [61, 211]. The faradaic impedance is described in Eq. (5.19) and the

dependence of the parameters Rct and Cp on the potential is shown in Fig. 5.1.

At the current peak potential the charge transfer resistance is at a minimum and the

pseudocapacitance at a maximum. It is interesting to note that for the Langmuir
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adsorption isotherm the maximum value of the pseudocapacitance, Cp, depends

only on the total hydrogen adsorption charge, σ1 ¼ 210 μC cm�2 [239], and equals
2.04 mF cm�2.

In the case of the Frumkin adsorption isotherm, which includes lateral interac-

tions between adsorbed hydrogen atoms, the reaction rate is described by [240]

v1 ¼ k0exp �βf ηð Þexp �λg θH � 0:5ð Þ½ � 1� θHð Þ
� k0exp 1� βð Þf η½ �exp 1� λð Þg θH � 0:5ð Þ½ �θH

¼ k
!

1exp �λg θH � 0:5ð Þ½ � 1� θHð Þ � k
 

1exp 1� λð Þg θH � 0:5ð Þ½ �θH,

ð7:6Þ

where g is the interaction parameter, positive for repulsions and negative for

interactions [17], and λ is the adsorption symmetry factor between 0 and 1, typically

~0.5 [240]. In the steady state, the current is equal to zero and the following relation

is obtained:

θH

1� θH
eg θH�0:5ð Þ ¼ e�f η, ð7:7Þ

which is the definition of the Frumkin isotherm. Continuing the development, the

same expression for the impedance is obtained, Eq. (5.19), but with different values

of the derivatives ∂v1/∂η and ∂v1/∂θH. The influence of the parameter g on the

parameters Rct and Cp is illustrated in Fig. 7.1.

It is evident that an increase in the repulsion between H atoms causes a flattening

of both curves and a decrease in the maximum of the pseudocapacitance. It can be

added that the Frumkin isotherm was found to describe HUPD at Pt(100) in HCIO4,

Pt(110) in H2SO4, and Pt(111) in both acids [241]. The value of the parameter g at

Pt(111) was approximately 12. Unfortunately, the isotherms at other surfaces or

metals are much more complicated. The HUPD kinetics was studied on different

polycrystalline metals. It was found that the kinetics at Pt [242] was about three

orders of magnitude faster than that at Ru [243], Pd [244, 245], or Rh [246]

electrodes, while that at Ir was intermediate between those groups [247] (on the
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Fig. 7.1 Comparison of parameters Rct and Cp for HUPD reaction, continuous line Langmuir

isotherm, g ¼ 1, dash-dotted and dashed lines: Frumkin isotherm with g ¼ 5 and 10,

k0 ¼ 10�6 mol cm�2 s�1
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logarithmic scale). An example of the complex plane plots obtained at polycrystalline

Pt in H2SO4 is presented in Fig. 7.2. To approximate the experimental curves, it was

necessary to replace Cdl and Cp by the constant phase elements, CPE, see Chap. 8.

The dependence of the charge transfer resistance on the potential is shown in Fig. 7.3.

It is evident that Rct decreases with a decrease in the electrode potential in the

entire range. At the lowest potentials there is an influence of the overpotentially

deposited hydrogen (HOPD), which is related to the classical hydrogen evolution,

and dissolved hydrogen formation at the solution around the electrode. The kinetics

is very fast and was measured without a potentiostat [242]. Because the adsorption

isotherm is rather complex [248] no rate constants were determined. It should be

added that in earlier studies, at monocrystalline Pt, it was found that Rct was

potential independent [249], which may be connected with equipment artifacts.

1.25 1.50 1.75 2.00 2.25

0.0

0.2

0.4

0.6

0.8

19.9 kHz

8.9 kHz

3.5 kHz

1 MHz

1.9 kHz

1.2 kHz

794.3 Hz

 100 mV
 200 mV
 260 mV

-Z
'' 

/ 
Ω

 c
m

2

Z ' / Ω cm2

Fig. 7.2 Complex plane

plots for HUPD reaction at

polycrystalline Pt electrode

in 0.1 M H2SO4; potentials

versus reversible hydrogen

electrode indicated in graph.

Points – experimental, lines

– fit (From Ref. [242],

copyright (2012), with

permission from Elsevier)
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7.2 Hydrogen Evolution Reaction

The hydrogen evolution reaction (HER) is one of the most important and most

studied electrocatalytic processes [61, 211, 239, 250, 251]. It is well accepted that

the first step is the Volmer reaction, (7.8), followed by Heyrovsky, (7.9), or Tafel,

(7.10), steps. Because the process is usually carried out in alkaline solutions these

steps are written as follows:

H2OþMþ e�
k
!

1

k
 
�1

MHadsþOH�, ð7:8Þ

MHþ H2Oþ e�
k
!

2

k
 
�2

Mþ OH�þH2, ð7:9Þ

2MH�
k3

k�3
2Mþ H2: ð7:10Þ

It might be noticed that the Volmer and Heyrovsky reactions are electrochemical

while the Tafel reaction is chemical, without an exchange of electrons. Assuming a

Langmuir adsorption isotherm for H, the rates, νi, are written as

v1 ¼ k01Γ1aH2O 1� θHð Þe�β1f E�E0
1ð Þ � k0�1Γ1aOH�θHe

1�β1ð Þf E�E0
1ð Þ, ð7:11Þ

v2 ¼ k02Γ1aH2OθHe
�β2f E�E0

2ð Þ

� k0�2Γ1aH2
aOH- 1� θHð Þe 1�β2ð Þf E�E0

2ð Þ,
ð7:12Þ

v3 ¼ k03Γ
2
1

� �
θ2H � k0�3Γ

2
1

� �
1� θHð Þ2aH2

: ð7:13Þ

For simplicity the surface concentrations of OH�, H2O, and H2 are written as

dimensionless ai ¼ Ci(0)/C
*, where the superscripted asterisk denotes bulk or

equilibrium values. In general, the standard potentials of the Volmer and

Heyrovsky steps are different. Proceeding in a way similar to that described in

Sect. 5.2.1 the following equations are obtained:

v1¼ k01
� � 1�β1ð Þ

k0�1
� �β1Γ1

a�
OH-

a�H2O

θ�H
1�θ�H

0
@

1
A

β1
8
<
:

9
=
;aH2O 1�θHð Þexp �β1f ηð Þ

� k01
� � 1�β1ð Þ

k0�1
� �β1Γ1

a�H2O

a�
OH-

1�θ�H
θ�H

0
@

1
A

1�β18
<
:

9
=
;aOH-θHexp 1�β1ð Þf η½ �,

ð7:14Þ
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v2¼ k02
� � 1�β2ð Þ

k0�2
� �β2Γ1

a�H2
a�
OH-

a�H2O

1�θ�H
θ�H

0
@

1
A

β2
8
<
:

9
=
;aH2OθHexp �β2f ηð Þ

� k02
� � 1�β2ð Þ

k0�2
� �β2Γ1

a�H2O

a�H2
a�
OH-

θ�H
1�θ�H

0
@

1
A

1�β28
<
:

9
=
;aH2

aOH- 1�θHð Þexp 1�β2ð Þf η½ �:

ð7:15Þ

Assuming that the surface and bulk concentrations are the same one obtains

v1 ¼ k1 1� θHð Þe�β1f η � k�1θHe
1�β1ð Þf η ¼ k

!
1 1� θHð Þ � k

 
�1θH, ð7:16Þ

v2 ¼ k2θHe
�β2f η � k�2 1� θHð Þe 1�β2ð Þf η ¼ k

!
2θH � k

 
�2 1� θHð Þ, ð7:17Þ

v3 ¼ k3θ
2
H � k�3 1� θHð Þ2, ð7:18Þ

where

k1 ¼ k01
� � 1�β1ð Þ

k0�1
� �β1Γ1

a�
OH-

a�H2O

θ�H
1� θ�H

0
@

1
A
β1

,

k�1 ¼ k01
� � 1�β1ð Þ

k0�1
� �β1Γ1

a�H2O

a�
OH-

1� θ�H
θ�H

0
@

1
A
1�β1

,

ð7:19Þ

k2 ¼ k02
� � 1�β2ð Þ

k0�2
� �β2Γ1

a�H2
a�
OH-

a�H2O

1� θ�H
θ�H

0
@

1
A
β2

,

k�2 ¼ k02
� � 1�β2ð Þ

k0�2
� �β2Γ1

a�H2O

a�H2
a�
OH-

θ�H
1� θ�H

0
@

1
A
1�β2

,

ð7:20Þ

k3 ¼ k03Γ
2
1,

k�3 ¼ k0�3Γ
2
1a
�
H2
:

ð7:21Þ

Equations (7.16), (7.17), and (7.18) can also be presented in another form:

v1 ¼ v01
1� θH

1� θ�H

� �
aH2O

a�H2O

 !
exp �β1f ηð Þ � θH

θ�H

� �
aOH-

a�
OH-

� �
exp 1� β1ð Þf η½ �

" #
,

ð7:22Þ
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v2 ¼ v02

θH

θ0H

0
@

1
A aH2O

a�H2O

0
@

1
Aexp �β2f ηð Þ

� 1� θH

1� θ0H

0
@

1
A aH2

a�H2

0
@

1
A aOH-

a�
OH-

0
@

1
Aexp 1� β2ð Þf η½ �

2
6666664

3
7777775
, ð7:23Þ

v3 ¼ v03
θH

θ�H

� �2

� 1� θH

1� θ�H

� �2
aH2

a�H2

 !" #
, ð7:24Þ

where

v01 ¼ k01
� � 1�β1ð Þ

k0�1
� �β1

Γ1 a�OH-
� �β1 a�H2O

� 	1�β1
θ�H
� �β1 1� θ�H

� �1�β1 , ð7:25Þ

v02 ¼ k02
� � 1�β2ð Þ

k0�2
� �β2Γ1 a�H2

a�OH-
� 	β2

a�H2O

� 	1�β2
θ�H
� �1�β2 1� θ�H

� �β2 , ð7:26Þ

v03 ¼
k3k�3Γ1a�H2ffiffiffiffiffi
k3
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�3a�H2

p� 	 : ð7:27Þ

It is important to remember that all rate constants, Eqs. (7.19), (7.20), and (7.21),

and the standard rates, Eqs. (7.25), (7.26), and (7.27), are concentration dependent,

and the experimenter should ensure that they stay constant at various current

densities. It is also possible to redefine all the equations introducing the real surface

concentrations, which should be known from the experiments. Then the current

flowing in the system is described by

i ¼ �F v1 þ v2ð Þ ¼ �Fr0: ð7:28Þ

At the equilibrium potential, the rates of all reactions are zero,

v1 ¼ v2 ¼ v3 ¼ 0, ð7:29Þ

and the following relation between the rate constants is obtained [217]:

k1k2

k�1k�2
¼ k21k3

k2�1k�3
¼ k22k3

k2�2k�3
¼ 1: ð7:30Þ

As a consequence, two equivalent solutions exist (see also Sect. 5.2.3) giving the

same values of the physically measured currents and impedances [213–217] in

which the appropriate rate constants can be exchanged:
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k1 $ k2 k�1 $ k�2 k3 $ k�3: ð7:31Þ

The only difference is that the values of θH are replaced by 1–θH, that is, the

surface coverage decreases or increases with the negative overpotential. This makes

the rate constants indistinguishable, and other experiments must be used to decide

which solution is correct.

At the steady state, the surface coverage by adsorbed hydrogen may be obtained

from the condition that the rates of hydrogen adsorption and desorption are equal:

dΓH

dt
¼ σ1

F

dθH

dt
¼ r1 ¼ v1 � v2 � 2v3 ¼ 0, ð7:32Þ

which leads to a second-order equation [217, 252, 253]. In the case where the Tafel

reaction is neglected, a simpler equation is obtained:

θH ¼
k
!
1 þ k

 
�2

k
!
1 þ k

 
�1 þ k

!
2 þ k

 
�2

, ð7:33Þ

which, at negative overpotentials, reaches a constant value lower than unity

(in contrast to the HUPD reaction):

θH ¼
k1

k1 þ k2
, ð7:34Þ

Having described the HER in dc conditions the impedance of this process is

described by the linearization of the changes in the surface coverage and the

current:

Δi ¼ ∂i

∂η

� �

θH

Δηþ ∂i

∂θH

� �

η

ΔθH ¼ F
∂r0

∂η

� �

θH

Δηþ ∂r0

∂θH

� �

η

ΔθH

" #
, ð7:35Þ

σ1

F

dΔθH

dt
¼ Δr1 ¼

∂r1

∂η

� �

θH

Δηþ ∂r1

∂θH

� �

η

ΔθH: ð7:36Þ

Following the procedure described in Sect. 5.2 the faradaic impedance described

by Eq. (5.54) is obtained. The kinetics of the HER has been studied often using EIS,

but the rate constants were rarely determined, e.g., at Ni [213, 254], Pt [255–258],

alloys [259–262], or composite [263–269] electrodes. The best method for deter-

mining the rate constant is the simultaneous approximation of the impedance

parameters and the dc current [213, 254, 263].
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7.3 Influence of Hydrogen Mass Transfer on HER

During the HER, hydrogen is produced at the electrode surface, Eqs. (7.9), and

(7.10), and diffuses toward the bulk of the solution. At the electrode surface at the

rotating disk electrode (RDE), oversaturation may appear without bubble formation

[180, 270, 271]. In such cases, reactions (7.12) and (7.13) should be rearranged to

v2 ¼ k
!

2θH � k
 
�2 1� θHð ÞaH2

, ð7:37Þ

v3 ¼ k3θ
2
H � k�3 1� θHð Þ2aH2

, ð7:38Þ

where the definitions of k2, k�2, and k�3 must be modified to exclude the dimension-

less surface concentration of hydrogen, aH2
. Besides Eqs. (7.28), (7.29), (7.30),

(7.31), and (7.32) another equation involving dissolved hydrogen flux, JH2
, must be

added:

JH2
¼ �DH2

C0 daH2

dx
¼ v2 þ v3 ¼ r2: ð7:39Þ

For the RDE one can write a simplified equation, JH2
¼ DH2

C0 aH2
� a�H2

� 	
=δ,

where δ ¼ 1:612D
1=3
H2

v1=6Ω�1=2 and C0 is the surface concentration of hydrogen

(see also Sect. 4.9). Writing the equation for the flux phasor in finite-length

transmissive mass transfer, Eq. (4.68), leads to

eJH2
¼ eaH2

C0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jωDH2

p
coth

ffiffiffiffiffiffiffiffi
jω

DH2

s
δ

 !" #
¼ J

0eaH2
: ð7:40Þ

The linearized equations describing the system are

ei ¼ �F ∂r0

∂η

� �
eη þ ∂r0

∂θH

� �
eθH

� �
, ð7:41Þ

jω
σ1

F
eθH ¼

∂r1

∂η

� �
eη þ ∂r1

∂θH

� �
eθH þ

∂r1

∂aH2

� �
eaH2

, ð7:42Þ

J
0eaH2
¼ ∂r2

∂θH

� �
eθH þ

∂r2

∂aH2

� �
eaH2

: ð7:43Þ
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They may be written in matrix form:

�∂r0
∂η

�∂r1
∂η

0

2
6666666664

3
7777777775

¼

1

F

∂r0

∂θH
0

0
∂r1

∂θH
� jω

σ1

F

∂r1

∂aH2

0
∂r2

∂θH

∂r2

∂aH2

� J
0

2
6666666664

3
7777777775

ei
eη
eθH
eη
eaH2

eη

2
6666666664

3
7777777775

: ð7:44Þ

The faradaic admittance is

Ŷf ¼
ei
eη ¼ Aþ B

jωþ Cþ D

E� J
0

, ð7:45Þ

where parameters A, B, and C are as defined in Eq. (5.52) and

D ¼ F

σ1

∂r1

∂aH2

� �
∂r2

∂θH

� �
and E ¼ ∂r2

∂aH2

� �
: ð7:46Þ

The faradaic admittance may be rearranged into impedance:

Ẑ f ¼ Rct þ
1

jωCp þ
1

Rp

þ 1

Rd þ ẐW

, ð7:47Þ

where

Rd ¼ �
BE

A2D
, ẐW ¼

B

A2D
C0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jωDH2

p
coth

ffiffiffiffiffiffiffiffi
jω

DH2

s
δ

 !
: ð7:48Þ

The electrical equivalent circuit corresponding to Eq. (7.48) is presented in

Fig. 7.4.

Rct

Cp

Rp

Rd

ZW

Fig. 7.4 Electrical

equivalent circuit of

faradaic impedance

corresponding to HER with

hydrogen diffusion,

Eq. (7.48)
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Comparing this circuit with that for a simple hydrogen evolution without mass

transfer effects, Fig. 5.1 left, it is evident that a new branch in parallel consisting of

the resistance Rd in series with the finite-length mass transfer impedance, Zw, was

added to the circuit. Studies of the HER at various monocrystalline Pt surfaces

displayed one or two semicircles followed by a finite-length diffusion impedance

on the complex plane plots [180]. Examples of the impedance plots obtained at the

rotating disk at the Pt(511) electrode are displayed in Fig. 7.5. The equations

developed earlier might also be used to describe a hydrogen oxidation reaction.

Fig. 7.5 Complex plane

plots for Pt(511) at η (a)
�7.3 mV; (b) �14 mV; (c)
�30 mV; (d) �40 mV, in

0.5 M H2SO4 at RDE

3,500 rpm (From Ref. [180],

copyright (1998), with

permission from Elsevier)
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7.4 Hydrogen Absorption into Metals

Besides hydrogen adsorption and evolution, hydrogen absorption into metals might

occur. It is observed in Pd and certain alloys of the type AB5 (e.g., LaNi5) or AB2

and is used in metal hydride batteries. The theory developed here is also applicable

to other reactions, e.g., Li intercalation in Li-ion batteries. Let us consider first the

simplest adsorption–absorption reaction [272].

7.4.1 Hydrogen Adsorption–Absorption Reaction

in Presence of Hydrogen Evolution

In this case, the hydrogen adsorption reaction, (7.49), is followed by hydrogen

evolution, (7.50) and (7.51), in parallel with hydrogen absorption, (7.52), during

which a hydrogen atom at the surface goes to a subsurface site at a distance x ¼ 0

[273–275]:

Hþ þ eþMsurface�
k
!

1

k
 
�1

MHads, ð7:49Þ

MHadsþHþ þ e�
k
!

2

k
 
�2

Mþ H2þMsurface, ð7:50Þ

2MHads�
k3

k�3
2Msurface þ H2, ð7:51Þ

MHadsþMsubsurface�
k4

k�4
MHabs,0þMsurface, ð7:52Þ

where Msurface and Msubsurface are the empty surface and subsurface sites. The

absorbed hydrogen diffuses into the bulk [276]:

MHabs,0�MHabs,x: ð7:53Þ

The rate of reaction (7.49) is described by Eq. (7.5) and that of reaction (7.52) by

v4 ¼ k4θH 1� X0ð Þ � k�4 1� θHð ÞX0, ð7:54Þ

where X is the dimensionless bulk hydrogen concentration, the surface concentra-

tion is X0 ¼ CH,0/CH,max, and CH,max is the saturation concentration under given

experimental conditions. A thus defined X takes values between 0 and 1. Under

steady-state conditions, when v4 ¼ 0, Eq. (7.54) becomes
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X0 ¼
k4θH

k4θH þ k�4 1� θHð Þ ¼
K4θH

K4θH þ 1� θHð Þ , ð7:55Þ

which defines the absorption isotherm and K4 ¼ k4/k�4 is the absorption equilib-

rium constant. The diffusion of hydrogen into metal is described by Fick’s

equation:

∂X

∂t
¼ DH

∂
2
X

∂x2
, ð7:56Þ

and the surface hydrogen flux equals the absorption rate:

JH ¼ �DH

σX

F

∂X

∂x

� �

x¼0
¼ v4, ð7:57Þ

where σX ¼ FCH,max is the charge corresponding to the saturation of metal with

hydrogen.

Diffusion Eq. (7.56) must be solved for the oscillating dimensionless concen-

tration of hydrogen: ΔX ¼ eXexp jωtð Þ , and an equation analogous to (4.22) is

obtained:

jωeX ¼ DH

d2eX
dx2

, ð7:58Þ

and, assuming finite-length linear diffusion with the impermeable conditions at

x ¼ l,

x ¼ 0 �DH

σX

F

deX
dx
¼ eJH,

x ¼ l
deX
dx
¼ 0:

ð7:59Þ

The solution of Eq. (7.58) is

eX ¼ Ae�sx þ Besx, ð7:60Þ

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jω=DH

p
. Taking into account the boundary conditions, the solution for

eX is

eX ¼ F

σX

eJHffiffiffiffiffiffiffiffiffiffiffi
jωDH

p cosh s l� xð Þ½ �
sinh sl½ � , ð7:61Þ
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and at the electrode surface

eX0 ¼
F

σX

eJHffiffiffiffiffiffiffiffiffiffiffi
jωDH

p coth

ffiffiffiffiffiffiffi
jω

DH

r
l

� �
: ð7:62Þ

From Eq. (7.62) the hydrogen flux is

eJH ¼
σX

F
eX0

ffiffiffiffiffiffiffiffiffiffiffi
jωDH

p
tanh

ffiffiffiffiffiffiffi
jω

DH

r
l

� �
¼ J

0

H
eX0 ¼

∂v4

∂θB

� �
eθB þ

∂v4

∂X0

� �
eX0, ð7:63Þ

where

J
0

H ¼
σX

F

ffiffiffiffiffiffiffiffiffiffiffi
jωDH

p
tanh

ffiffiffiffiffiffiffi
jω

DH

r
l

� �
: ð7:64Þ

The current is given by

�Δi

F
¼ Δr0 ¼ Δv1 þ Δv2 ð7:65Þ

and its phasor by

er0 ¼ �
ei
F
¼ ∂r0

∂η

� �
eη þ ∂r0

∂θH

� �
eθH: ð7:66Þ

A similar linearization must be applied to the surface coverage by adsorbed

hydrogen:

σ1

F

deθH
dt
¼ σ1

F
jωθH ¼ ev1 � ev2 � 2ev3 � ev4 ¼ er1 � ev4

¼ ∂r1

∂θH

0
@

1
AeθH þ

∂r1

∂η

0
@

1
Aeη � ∂r4

∂θH

0
@

1
AeθH �

∂r4

∂X0

0
@

1
AeX0:

ð7:67Þ

This equation is simplified because ∂r1/∂X0 ¼ ∂v4/∂η ¼ 0. Equations (7.63),

(7.66), and (7.67) can be written in matrix form:

�∂r0
∂η

�∂r1
∂η

0

2
666664

3
777775
¼

� 1

F

∂r0

∂θH
0

0
∂r1

∂θH
� ∂v4

∂θH
� jω

σ1

F
� ∂v4
∂X0

0
∂v4

∂θH

∂v4

∂X0

� J
0

H

2
6666666664

3
7777777775

ei
eη
eθH
eη
eX0

eη

2
6666666664

3
7777777775

: ð7:68Þ
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The solution obtained using Cramer’s rule is eif =eη ¼ T1=B :

T1 ¼

�∂r0
∂η

∂r0

∂θH
0

�∂r1
∂η

∂r1

∂θH
� ∂v4

∂θH
� jω

σ1

F
� ∂v4
∂X0

0
∂v4

∂θH

∂v4

∂X0

� J
0

H





ð7:69Þ

and

B ¼

� 1

F

∂∂r0

∂θH
0

0
∂r1

∂θH
� ∂v4

∂θH
� jω

σ1

F
� ∂v4
∂X0

0
∂v4

∂θH

∂v4

∂X0

� J
0

H





, ð7:70Þ

from which the faradaic admittance is

Ŷ f ¼ �
ei
eη ¼ �F

∂r0

∂η

� �
�

F2

σ1

∂r0

∂θH

� �
∂r1

∂η

� �

jω� F

σ1

∂r1

∂θH

� �
þ

F

σ1

∂v4

∂θH

� �

1�

∂v4

∂X0

� �

J
0
H

, ð7:71Þ

which may written in a form similar to Eq. (5.51) for an electrocatalytic reaction

with one adsorbed species and to that for the HER:

eY f ¼ Aþ B

jωþ Cþ D

1þ E
ffiffiffiffiffiffiffiffiffiffiffi
jωDH

p
tanh

ffiffiffiffiffi
jω
DH

q
l

� 	

, ð7:72Þ

where the parameters A, B, and C are as defined earlier, Eq. (5.52), and D and E are

defined as

D ¼ F

σ1

∂v4

∂θH

� �

X0

and E ¼ � F

σX

∂v4

∂X0

� �

θH

: ð7:73Þ
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The difference between Eqs. (5.51) and (7.72) is the presence of the additional

term in the denominator. The faradaic impedance is

Ẑ f ¼
1

Ŷ f

¼ 1

A
� 1

jω
A2

B

0
@

1
Aþ A2C

B
þ A

0
@

1
Aþ 1

B

A2D

0
@

1
Aþ BE

A2D

0
@

1
A

coth

ffiffiffiffiffiffiffi
jω

DH

s
l

0
@

1
A

ffiffiffiffiffiffiffiffiffiffiffi
jωDH

p

¼

¼ Rct þ
1

jωCp þ
1

Rp

þ 1

Rab þ ẐW

,

ð7:74Þ

where Rct, Rp, and Cp are as defined in Eq. (5.55) and the new parameters are

Rab ¼ �
B

A2D
¼ 1

Cp

1

D
; σ0 ¼ � BE

A2D
¼ 1

Cp

E

D
;

Ẑ W ¼
σ0ffiffiffiffiffiffiffiffiffiffiffi
jωDH

p coth

ffiffiffiffiffiffiffi
jω

DH

s
l

0
@

1
A:

ð7:75Þ

This equation corresponds to a circuit similar to that in Fig. 7.4 (where Rab

replaces Rd). The complex plane plot corresponding to the total circuit including the

solution resistance and the double-layer capacitance is shown in Fig. 7.6. Three

semicircles are observed corresponding to the coupling Rct � Cdl, Rab � Cp, and

0 5 10 15
0

-2

-4

-6

-8

Z
" 

/ 
Ω

Z' / Ω

Fig. 7.6 Complex plane plot corresponding to hydrogen evolution and adsorption in finite-length

reflective conditions; Rs ¼ 1 Ω, Cdl ¼ 20 μF, Cp ¼ 0.01 F, Rct ¼ 5 Ω, Rp ¼ 10 Ω, Rab ¼ 3 Ω,

RD ¼ 10 Ω, TD ¼ 1,000 s, see Eq. (4.77) for definition of latter two parameters
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Rp � Cp and a part of the mass transfer impedance. In this case, the low-frequency

impedance is real because a constant current flows through Rs � Rct � Rp.

A case of finite diffusion length with transmissive boundary conditions has also

been considered in the literature [277, 278]. It corresponds to the case where

hydrogen diffuses across a membrane and is oxidized on the other side. The same

Eq. (7.74) is obtained but with tanh replacing coth in Eq. (7.75).

7.4.2 Direct Hydrogen Absorption and Hydrogen Evolution

Most authors assumed the foregoing indirect adsorption–absorption mechanism;

however, others proposed a direct absorption mechanism [279–281]:

MsubsurfaceþHþ þ e�
k
!

5

k
 

5

MHabs,0, ð7:76Þ

with the rate

v5 ¼ k
!
5 1� X0ð Þ � k

 
�5X0, ð7:77Þ

from which the subsurface hydrogen concentration is

X0 ¼
K 5

1þ K 5

andK 5 ¼
k
!

5

k
 
�5

¼ k05
k0�5

e�f η: ð7:78Þ

This reaction leads to an impedance, Ẑ abs, consisting of the charge transfer

resistance and mass transfer impedance:

Ẑ abs ¼ Rct,abs þ Ẑ W, ð7:79Þ

where

1

Rct,abs
¼ A ¼ �F ∂v5

∂η

0
@

1
A

X0

,

Ẑ W ¼
σ
0

ffiffiffiffiffiffiffiffiffiffiffi
jωDH

p coth

ffiffiffiffiffiffiffi
jω

DH

s
l

0
@

1
A,

σ
0 ¼ E

A
,E ¼ � F

σX

∂v6

∂X0

0
@

1
A,

ð7:80Þ
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and the mass transfer impedance was written for the finite-length reflecting condi-

tions. Of course, besides the hydrogen direct absorption, hydrogen adsorption and

evolution might take place. The total electrical equivalent circuit for the faradaic

impedance is displayed in Fig. 7.7, where the upper branch corresponds to hydrogen

adsorption and evolution and the lower branch corresponds to direct hydrogen

absorption.

Besides hydrogen evolution and absorption, there might also be a HUPD reac-

tion adding another RUPD-CUPD branch in parallel [272, 282]. From a structural

point of view circuits for indirect and direct hydrogen absorption are indistinguish-

able. Studies of hydrogen absorption in palladium suggest that direct hydrogen

absorption is faster than the indirect path [283, 284].

7.4.3 Hydrogen Absorption in Absence of Hydrogen

Evolution

Very often hydrogen absorption is studied at potentials before hydrogen evolution,

especially in the HUPD zone [282–285]. In such cases, the circuit becomes sim-

plified because Rp ¼ ∞ and parameter B ¼ –AC. The faradaic impedance in the

case of indirect adsorption–absorption mechanism becomes

Ẑ f ¼ Rct þ
1

jωCp þ 1

RabþẐ W

, ð7:81Þ

where

Cp ¼
A

C
¼ fσ1

K1

K1 þ 1
� �2 ;Rab ¼

1

CpD
;

σ
0 ¼ E

CpD
¼ 1

fσX

K1K4 þ 1
� �2

K1K4

,

ð7:82Þ

Rct

Cp

Rp

Rct,abs

ZW

Fig. 7.7 Electrical

equivalent circuit for

faradaic impedance of

direct hydrogen absorption

in presence of hydrogen

adsorption–evolution
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and for the direct absorption mechanism

Ẑ f ¼
1

1

Rct þ 1
jωCp

þ 1

Rab þ Ẑ W

: ð7:83Þ

The electrical equivalent circuits of the faradaic impedance corresponding to the

indirect, Eq. (7.81). and direct, Eq. (7.83), hydrogen absorption reaction with finite-

length linear diffusion are displayed in Fig. 7.8.

The total impedance complex plane plot for indirect hydrogen absorption with-

out hydrogen evolution, including solution resistance and double-layer capacitance,

is displayed in Fig. 7.9. It shows two semicircles due to the Rct � Cdl and Rab � Cp

coupling followed by the finite-length reflective linear diffusion displaying a line at

45� followed by a capacitive line at 90�.
In practice, the hydrogen absorption resistance is usually very small, and one

semicircle is observed on the complex plane plots. Examples of the complex plane

Rct

Cp

Rab

ZW

a Rct Cp

Rab

ZW

b

Fig. 7.8 Electrical equivalent circuits of faradaic impedance corresponding to (a) indirect,

Eq. (7.81), and (b) direct, Eq. (7.83), hydrogen absorption reaction with finite-length linear

diffusion of hydrogen
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Fig. 7.9 Complex plane

plot corresponding to

indirect hydrogen

absorption reaction,

Eq. (7.81), in presence of

finite-length reflective

linear diffusion.

Parameters: Rs ¼ 1 Ω,

Cdl ¼ 20 μF, Rct ¼ 5 Ω,

Rab ¼ 3 Ω, Cp ¼ 0.01 F,

RD ¼ 10 Ω, TD ¼ 1,000 s
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plots obtained for hydrogen absorption at Pd membrane in the transmissive and

reflective conditions [155] are displayed in Fig. 7.10. The high-frequency part

corresponding to the coupling Rct � Cdl is identical, and parts of the transmissive

and reflective mass transfer impedances are visible (compare with Fig. 4.12).

For thin absorbing layers the mass transfer impedance in reflective

conditions reduces to an RW � CW connection in series, Eq. (4.85). The observed

impedance for the hydrogen absorption reaction in 10 monolayers (ML) of Pd on

Au(111) [155] is shown in Fig. 7.11, where a high-frequency semicircle is followed

directly by a low-frequency vertical capacitive line (corresponding to the penetra-

tion of the ac signal to the bottom of the layer).

7.4.4 Hydrogen Absorption in Spherical Particles

Very often H absorption is studied in practical powdered materials (e.g., in NiMH

batteries) that consist of spherical particles for which a finite-length spherical

diffusion treatment must be used [287–289]. In this case the diffusion Eq. (7.56)

must be written for the spherical diffusion, as in Eq. (4.91):
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Fig. 7.10 Complex plane

plots obtained on Pd foil

(50 μm) in 0.1 M H2SO4 at

E ¼ 0.12 V versus

reversible hydrogen

electrode, RHE (From Ref.

[286] with permission of

author)
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300Fig. 7.11 Complex plane

plots obtained on 10 ML of

Pd on Au(111), in 0.1 M

H2SO4 at E ¼ 0.15 V

versus RHE (From Ref.

[286] with permission of

author)
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∂X

∂t
¼ DH

∂
2
X

∂r2
þ 2

r

∂X

∂r

" #
: ð7:84Þ

Proceeding as in Sect. 4.6.2, the mass transfer impedance is described as

Ẑ W ¼
σ
0
r0

DH

1ffiffiffiffiffi
jω
DH

q
r0

� 	
coth

ffiffiffiffiffi
jω
DH

q
r0

� 	
� 1

h i , ð7:85Þ

and the impedance is as in Fig. 4.15. At low frequencies a capacitive behavior,

Eq. (4.107), is observed as the hydrogen can diffuse only to the sphere center. This

equation was used in modeling the hydrogen absorbing materials [287, 288, 290].

The influence of self-stress on hydrogen absorption has also been studied [291–294].

The preceding theory may be extended to other intercalation reactions, e.g., in

lithium batteries. It has also been extended to bilayers [295, 296].

7.5 Conclusions

Hydrogen adsorption, evolution, and absorption reactions were presented as exam-

ples of electrocatalytic reactions, i.e., involving adsorption at the electrode surface.

The general rules of development of impedance equations involving first the dc

description followed by linearization of the equations were used. The electrode

processes involved adsorption and mass transfer either in solution or inside the

electrode material. In a similar way, other electrocatalytic reaction mechanisms

such as, for example, oxygen reduction or evolution, chlorine evolution, and

lithium intercalation, might be discussed. The transfer mechanisms of hydrogen

through membranes might also be studied using transfer functions other than

impedance and admittance; see, e.g., Ref. [61].
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Chapter 8

Dispersion of Impedances at Solid Electrodes

8.1 Constant Phase Element

The impedance of ideally polarizable liquid electrodes (e.g., mercury, amalgams,

indium-gallium) may be modeled by an R-C circuit (Fig. 4.1a). However, most

impedance studies are now carried out at solid electrodes. At these electrodes the

double-layer capacitance is not purely capacitive and often displays a certain

frequency dispersion. Such behavior cannot be modeled by a simple circuit

consisting of R, L, and C elements. To explain such behavior, a constant phase

element (CPE) is usually used.

In general, bulk dielectric dispersion in solids and liquids is well known and

described in the literature [24, 297, 298]. In this chapter, the dispersion of capac-

itances at electrode surfaces in solutions will be discussed. The complex dielectric

constant is described as

ε ωð Þ � ε1
εS � ε1

¼
ð1

0

G τð Þ
1þ jωτ

dτ, ð8:1Þ

where ε
∞
and εS are the dielectric constants at frequencies ω ! ∞ and ω ! 0 and

G(τ) is the function describing the distribution of time constants. If there is no

distribution of time constants, i.e., the dielectric constant may be described by one

time constant, the function G(τ) is simply Dirac’s δ function, G(τ) ¼ δ(τ�τ0), and
integration in Eq. (8.1) gives

ε ωð Þ � ε1
εS � ε1

¼ 1

1þ jωτ0
: ð8:2Þ
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Cole and Cole [297] described the observed dispersion by the function

ε ωð Þ � ε1
εS � ε1

¼ 1

1þ jωτ0ð Þϕ
, ð8:3Þ

where ϕ is the dimensionless parameter and ϕ � 1. By analogy, the dispersion of

impedances may be described by

Ẑ ωð Þ � Z1

Z0 � Z1
¼

ð1

0

τG τð Þ

1þ jωτ
d ln τ: ð8:4Þ

The distribution function is described by [297]

G τð Þ ¼
1

2πτ

sin 1� ϕð Þπ½ �

cosh ϕln τ=τ0ð Þ½ � � cos 1� ϕð Þπ½ �
, ð8:5Þ

and the plot of τG(τ) versus ln(τ/τ0) is shown in Fig. 8.1. When ϕ ¼ 1, the

distribution function reduces to Dirac’s delta function, and with its decrease the

distribution becomes wider around τ ¼ τ0.

In such a case, the impedance of the ideal capacitor, 1/( jωC), must be replaced

by the impedance of a CPE:

Ẑ CPE ¼
1

T jωð Þϕ
, ð8:6Þ

where T is the parameter related to the electrode capacitance (F sϕ�1 cm�2), and

ϕ is the constant phase exponent (0 < ϕ < 1) related to the deviation of the straight
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Fig. 8.1 Dependence of

time constant distribution

function, τG(τ), Eq. (8.5),

on ln(τ/τ0)
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capacitive line from 90� by an angle α ¼ 90�(1 � ϕ). The units of T can also be

rearranged [299] to Ω�1 sϕ cm�2; however, as it becomes purely capacitive for

ϕ ¼ 1, it seems more logical to use farads instead of ohms. Taking into account the

properties of the complex numbers, jϕ ¼ cos(ϕπ/2) � j sin(ϕπ/2) is a complex

number and Eq. (8.6) may be expressed as

Ẑ CPE ¼
cos ϕπ=2ð Þ

Tωϕ

� �
� j

sin ϕπ=2ð Þ
Tωϕ

� �
, ð8:7Þ

which means that the impedance of this element is no longer purely imaginary and

always contains both real and imaginary components. Therefore, the CPE repre-

sents a nonideal or “leaking capacitor” and causes energy dissipation because of the

presence of the impedance real part [299–301]. In fact, the inverse transform of the

CPE element into the time domain shows that after the potential step the current

decreases proportionally to t�ϕ, that is, it never reaches zero [302], which means the

electrode charge goes to infinity! Such an electrode cannot be called ideally

polarizable [301] and it physically cannot exist. This means that somewhere beyond

the measured low-frequency range it must become ideally polarizable. The name

constant phase element originates from its behavior displayed on the complex plane

and Bode plots in Fig. 8.2. The complex plane plots deviate from the ideal capacitor

case by 9� for ϕ ¼ 0.9 and by 18� for ϕ ¼ 0.8. The Bode phase angle is always

constant and equal to 90�ϕ, and the slope of the logarithmic Bode magnitude plots

equals ϕ. In the absence of redox species in solution, the electrical equivalent

circuit consists of a Rs � CPEdl connection in series. The corresponding complex

plane and Bode plots are displayed in Fig. 8.3. The slopes in the complex plane

plots are the same as in Fig. 8.2, and the Bode plots approach those for the CPE only

at lower frequencies.

To more easily identify the presence of the CPE, Orazem et al. [303] proposed

using Bode plots of impedances corrected for the solution resistance, log|Z00| versus
log f, and effective capacitance plots Teff versus log f:

Teff ¼ � sin
ϕπ

2

� �
1

Z
00
2πfð Þϕ

: ð8:8Þ

Such plots will be presented below (Fig. 8.5).

In the presence of a redox reaction without diffusion limitations, the system

impedance is described by the electrical equivalent circuit Rs(CdlRct) displayed in

Fig. 2.34. Replacing the double-layer capacitance with the CPE produces complex

plane and Bode plots (Fig. 8.4) corresponding to the equation for the impedance of

such a system:

Z ¼ Rs þ
1

jωð ÞϕT þ 1
Rct

: ð8:9Þ

The complex plane plots represent “sunken” or rotated semicircles with their

center located below the real axis [304]. There are also changes in the Bode plots.
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The plots of log|Z00| versus log f and the effective capacitance plot of Teff versus

log f are displayed in Fig. 8.5. Note that such plots are very sensitive to variations in

the CPE exponent, which is determined experimentally. Such a procedure could be

used when the equivalent circuit describing the system is not known.

Brug et al. [305] proposed a simple model that allows estimation of an average

double-layer capacitance, C dl, for the CPE behavior. The model consists of the

solution resistance, Rs, and the CPE in series, Rs-CPE, i.e., electrode-supporting

electrolyte interface. Assuming dispersion of the time constants, τ ¼ RsCdl, around

an average value, τ0 ¼ RsC dl, and the Cole-Cole formula, Eq. (8.3), the researchers

obtained

Ẑ ¼ Rs þ
1

jωð ÞϕT
¼ Rs 1þ 1

jωð Þϕ RsTð Þ

" #
¼ Rs 1þ 1

jωτ0ð Þϕ

" #
: ð8:10Þ
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Comparison of the terms in parentheses leads to

T ¼ C
ϕ

dlR
� 1�ϕð Þ
s or Cdl ¼ T1=ϕ 1

Rs

� �1�1
ϕ

, ð8:11Þ

from which C dl is obtained. In a similar way, for the circuit Rs(CPEdlRct) (as in

Fig. 2.34) they obtained

T ¼ C dl
ϕ R�1s þ R�1ct

� �1�ϕ
: ð8:12Þ

Hsu and Mansfeld [306] proposed another formula that is applicable to cases

where a semicircle is observed on complex plane plots:

C dl ¼ T ωcð Þϕ�1, ð8:13Þ

where ωc is the frequency corresponding to the maximum of the imaginary part

(corresponding to the maximum of the semicircle). This frequency may be calcu-

lated from [307]
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T ¼ 20 μF cm�2 sϕ�1
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ωc ¼
1

RctT

� �1=ϕ
, ð8:14Þ

which leads to

C dl ¼ T1=ϕ 1

Rct

� �1�1
ϕ

, ð8:15Þ

0 50 100 150 200
0

50

100

φ = 0.8

φ = 1φ = 0.9

-Z
" 

/ 
Ω

Z' / Ω

0 2 4 6

102

φ = 0.8
φ = 0.9

|Z
| 
/ 

Ω

log(f / Hz)

φ = 1

0 2 4 6

0

-10

-20

-30

-40

-50

-60

-70

φ= 0.8

φ= 0.9

ϕ
 /
 d

e
g

log(f / Hz)

φ= 1

Fig. 8.4 Complex plane and Bode plots for circuit consisting of solution resistance in series with

parallel connection of CPE and resistance Rct. Parameters: Rs ¼ 10 Ω, T ¼ 20 μF cm�2 sϕ�1,
Rct ¼ 200 Ω

-4 -2 0 2 4 6

-4

-2

0

2

lo
g

|Z
" 

/ 
Ω

|

log(f / Hz) 

2 4 6

0.000

0.001

0.002

T
e
ff
 /
 F

 s
φ

−
1

log(f / Hz)

Fig. 8.5 Plots of log|Z00 | versus log f and Teff versus log f for Rs(RctCPE) circuit with Rs ¼ 10 Ω,

Rct ¼ 100 Ω, T ¼ 0.001 F sϕ�1, and ϕ ¼ 0.9

182 8 Dispersion of Impedances at Solid Electrodes



and it can be compared with Brug et al.’s [305] formula:

C dl ¼ T1=ϕ 1

Rs

þ 1

Rct

� �1�1
ϕ

: ð8:16Þ

The difference between these two equations is related to the presence of an

additional term 1/Rs in Brug et al.’s formula. In fact, they merge when Rs � Rct. A

comparison of the estimation of C dl using Eqs. (8.15) and (8.16) is shown in

Fig. 8.6. It is evident that the value obtained from the Hsu and Mansfeld model is

very sensitive to the value of Rct, and deviations between the C dl values obtained

increases with increases in Rct. Several authors have indicated that Brug et al.’s

formula seems to work better [307–311]. It should also be mentioned that it is often

experimentally observed that when the parameter ϕ decreases, the value of

T increases [213, 312, 313]. In such cases, Brug et al.’s formula produces smoother

C dl data because they are proportional to T1/ϕ.

8.2 Fractal Model

Real polycrystalline solid surfaces contain surface defects, scratches, irregularities,

and pores, and their detailed geometry is usually unknown and cannot be exactly

described. To describe such cases, a fractal model was proposed [314]. Fractal

models describe self-similar surfaces in which further magnification reveals a self-

similarity in which further magnification always shows a similar structure. Such a

description could also be used to model random surface inhomogeneities. To better

understand fractal scaling, let us look at a comparison of the fractal and classical

magnifications shown in Fig. 8.7 [315]. Using a simple three times magnification

(a ! b), each element of the length l is increased three times in length, to 3 l.

However, fractal magnification of each element (a ! c) shows that it consists of

additional similar elements. In the case presented in Fig. 8.7, each element l is
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Fig. 8.6 Comparison of

average values of interfacial

capacitance, C dl, using

Brug et al. [305] and Hsu

and Mansfeld [306],

Eqs. (8.15) and (8.16), as

functions of charge transfer

resistance, Rct. Parameters:

Rs ¼ 10 Ω, Tdl ¼ 20 μF

sϕ�1, ϕ ¼ 0.9
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increased four times in length, to 4 l. This leads to the fractal Hausdorf dimension

[316], DH ¼ ln4/ln3 ¼ 1.2619 [315, 317]. This dimension is larger than that of a

simple magnification, which corresponds to a linear dimension of 1. This means

that this simple fractal line has a dimension of 1.2619. A line consisting of self-

similar segments scaled fractally is called a von Koch line [318]. This line has an

infinite length as each magnification increases its length and is nowhere differen-

tiable. A fractal structure is a mathematical model, but in nature, magnification is

limited by the atomic structure and is limited to dimensions between 10 nm and

0.1 mm [315]. Examples of von Koch curves for three different fractal dimensions

are shown in Fig. 8.8. The fractal dimension of a line may be between 1 � Dh < 2

and for the surfaces 2 � Dh < 3. As the fractal dimensions increase, the complex-

ity of the line increases.

The concept of fractals was introduced for electrochemical impedance by Le

Méhauté and coworkers [319, 320] and later developed by Nyikos and Pajkossy

[317, 321–328]. They showed that the fractal geometry of a blocking interface leads

to constant phase element behavior, Eq. (8.6).

Fig. 8.7 Comparison of

classical (a) and fractal (b)
magnification; fractal

dimension DH ¼ 1.2619

(From Ref. [315], copyright

(1990), with permission

from Elsevier)

Fig. 8.8 Examples of von

Koch curves for three

different fractal dimensions

(From ref. [317], copyright

(1985), with permission

from Elsevier)
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Fractal theory was subsequently extended to irregular or quasi-random surfaces

lacking well-defined self-similarity [323, 326, 329–331]. Pajkossy and Nyikos

[332] carried out simulations of blocking electrodes with a self-similar spatial

capacitance distribution and found that the calculated impedances exhibited CPE

behavior.

It was found subsequently that, although fractal geometry produces CPE behav-

ior, in practice there is no relation between the CPE exponent and fractal dimen-

sions [333, 334]. Qualitatively, however, higher fractal dimensions lead to smaller

values of ϕ. This is related to the different type of fractals like Cantor bars

[335–338] or Sierpiński carpets [339–341], for which different relations hold.

This means that the impedance technique does not allow for the determination of

the surface fractal dimension. Such information can be obtained by the analysis of

current-time curves in the presence of diffusion to the surface [323, 324, 342–344].

Fractal theory has also been applied to systems with faradaic reactions [315, 323,

324, 345, 346]. De Levie [315, 345] showed that the impedance of a fractal

electrode in the presence of a simple faradaic reaction but in the absence of dc

current is

Ẑ ¼ Rs þ
1

b

1
1
Rct
þ jωCdl

 !ϕ
, ð8:17Þ

where the parameter b is [317, 345]

b ¼ f gρs
ϕ�1, ð8:18Þ

ρs is the solution resistivity, and fg is a geometric factor depending on the fractal

surface geometry. De Levie [345] specified that this factor reflects the fact that a

fractal description ignores details of the surface morphology, focusing only on the

global response, and different surface geometries can have the same fractal dimen-

sion but different geometric factors fg. Of course, for flat surfaces ϕ ¼ 1, fg ¼ 1,

b ¼ 1. Equation (8.17) is formally identical with that postulated by Davidson and

Cole [298] for dielectric studies.

Although the CPE and fractal systems give the same impedance in the absence of

redox reactions, a comparison of Eq. (8.9) for the CPE model with Eq. (8.17) for a

fractal system in the presence of a redox reaction shows that they are structurally

different. In fact, they produce different complex plane and Bode plots. This is

clearly visible from Fig. (8.9), which can be compared with Fig. 8.4 for the CPE

model. With a decrease in the value of ϕ, an asymmetry on the complex plane plot

occurs that is also visible on the phase angle Bode plots. This is related to

the different topology of the equivalent circuits; they are compared in Fig. 8.10.

In the CPE model, only the impedance of the double-layer capacitance is taken

to the power ϕ, while in the fractal model the whole electrode impedance is taken to

the power ϕ. The asymmetry of the complex plane and Bode plots for fractal

systems arises from the asymmetric distribution function of time constants in

Eq. (8.4) according to the equation [298, 347]
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τG τð Þ ¼

sin ϕπð Þ
π

τ

τ0 � τ

� �ϕ

0

for τ < τ0,

for τ > τ0,

8
>>><
>>>:

ð8:19Þ

which means that the time constants are dispersed only up to the maximal value τ0.

The plot of this function is shown in Fig. 8.11. It is evident that the distribution

function is asymmetric.

Because of the presence of the unknown parameter fg in Eq. (8.18), it impossible

to determine the value of the factor b, and the values of the charge transfer resistance

and double-layer capacitance remain unknown. From the experiment it is possible

to determine only these parameters multiplied or divided by the factor b1/ϕ:

Cdl,exp ¼ C
dl
b1=ϕ and Rct,exp ¼

Rct

b1=ϕ
: ð8:20Þ

8.3 Origin of CPE Dispersion

The presence of the CPE in experimentally measured impedances generated a lot of

discussion and confusion in the literature [334]. Of course, the fractal model

described earlier also leads to CPE behavior for blocking electrodes; however, in

the presence of faradaic reactions it leads to skewed semicircles instead of a

decrease in the center of the semicircle below the real axis, without the further

deformation typically observed in experimental conditions (CPE behavior).

In general, the appearance of CPE-like behavior can be attributed to two

phenomena:

1. Dispersion of time constants, τ ¼ RsCdl;

2. Dispersion due to surface adsorption/diffusion processes (the so-called kinetic

dispersion effect).

-3 -2 -1 0 1 2

0.0

0.5

1.0
φ =0.9
φ =0.75
φ =0.5

τ
G

( τ
)

log(τ/τ
0
)

Fig. 8.11 Time constant
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8.3.1 Dispersion of Time Constants

Schelder [348] attributed CPE dispersion to the microscopic surface roughness

through bulk electrolyte conductivity; however, his branched R-C model does not

seem to reflect correctly the actual current distribution [334]. Initially, CPE disper-

sion continued to be considered a consequence of surface microscopic roughness or

porosity. However, surface porosity gives quite different effects (Chap. 9). More-

over, several authors [313, 334, 349, 350] demonstrated experimentally that an

increase in the microroughness of a Pt electrode causes a decrease in the deviation

from the ideal capacitive behavior, that is, the parameter ϕ becomes close to one for

an electrochemically roughened surface. Even a very porous Pt powder microcavity

electrode prepared by ball milling with a dispersing agent displays almost ideal

low-frequency behavior with ϕ ¼ 0.992 [351]. In addition, for very porous gold-

based electrodes, after the initial line at 45� a vertical line showing only a small

deviation from the ideal behavior is observed on complex plane plots [352]. Simple

estimation shows that the microscopic roughness of macroscopically flat electrodes

could show the dispersion of the time constants in a very high (kHz to MHz)

frequency range, contrary to the experimental observations of dispersion in a very

wide frequency range [353].

In general, the distribution of the time constants τ ¼ RsCdl can arise from

i. The distribution of solution resistances, Rs

ii. The distribution of double-layer capacitances, Cdl

The distribution of solution resistances is observed in the Hull cell [354]

displayed in Fig. 8.12, where the distance between the working and the counter

electrode changes between l1 and l2.

A simulation of impedances for different values of l1 is shown in Fig. 8.13.

When l1 < l2, dispersion of the impedances is observed displaying a CPE-like

behavior but only in a limited frequency range. Adding a charge transfer resistance

in parallel with the double-layer capacitance leads to a skewed semicircle with a

radius lower than the assumed Rct. When the two electrodes are parallel, no

dispersion is observed and a correct result is obtained. Simulations of impedances

in the presence of the redox reaction represented by Rct is displayed in Fig. 8.14,

where distorted semicircles are obtained.

It should be added that in the foregoing cases, the current lines are not parallel as

the current is looking for a path of least resistance.

CE
WE

l3

l1

l2

Fig. 8.12 Schematic

representation of Hull cell

used in simulations. CE,

counter electrode, WE,

working electrode
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Newman found that at disk electrodes current distribution is nonuniform in the

radial direction (known as the primary [355] and secondary [356] current distribu-

tions), which leads to impedance dispersion [357]. Recently, Huang et al. [310, 358,

359] continued these studies in more detail using a local impedance approach.

Global admittance corresponds to the integration of the local admittances over the

total disk area. Impedance can also be defined (and experimentally measured)

locally as a function of the position on the electrode surface. In the case of the

disk geometry, it changes radially from the disk center, r ¼ 0, to the disk radius,

r ¼ r0. The authors distinguished two types of distribution of time constants:

a. 2D distribution arising from surface heterogeneities and geometry-induced

nonuniform current and potential distribution.

b. 3D distribution arising from variations in properties normal to the electrode

surface, for example, changes in the conductivity of oxide layers with the

distance from the electrode surface.

Fig. 8.13 Complex plane

plots for ideally polarizable

working electrode in Hull

cells with different

geometry; parameters:

ρs ¼ 10 Ω cm,

Cdl ¼ 20 μF cm�2,
l2 ¼ 5 cm, l3 ¼ 1 cm, l1 ¼
(a) 1 cm, (b) 2 cm, (c) 3 cm,

(d) 5 cm; see Fig. 8.12 for

definitions of geometric

parameters, (impedances

are in Ω, imaginary part is

negative) (From Ref. [354],

copyright (2007), with

permission from Elsevier)
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The local impedance, z(r), consists of two contributions: the local interfacial

impedance, z0(r), and the local ohmic solution impedance, ze(r):

z rð Þ ¼ z0 rð Þ þ ze rð Þ, ð8:21Þ

and the global impedance, Z, is obtained by integration of the admittances:

Z ¼ 2π

ðr0

0

1

z rð Þ r dr

0
@

1
A
�1

, ð8:22Þ

where z0(r) is measured between the electrode surface and a point just outside the

diffuse double layer, and ze (r) is measured in solution between the point outside the

diffuse layer and the reference electrode at infinity. The behavior of the total

electrode impedance for an ideally polarizable electrode obtained at a disk elec-

trode is shown in Fig. 8.15. This behavior depends on the dimensionless frequency

factor, K, defined as

K ¼ ωCdlr0

κ
, ð8:23Þ

where Cdl is the specific double-layer capacitance and κ is the solution-specific

conductivity. At frequencies corresponding to K < 1 the electrode behaves as an

ideal capacitance, whereas for K > 1 deviations are observed (in accordance with

Fig. 8.14 Complex plane plots for faradaic reaction with Rct ¼ 250 Ω cm2 in various Hull cells;

cell parameters as in Fig. 8.13, (impedances are inΩ, imaginary part is negative) (From Ref. [354],

copyright (2007), with permission from Elsevier)
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Newman’s predictions [357]). These deviations are more clearly visible on the

logarithmic plot. It is interesting to note that the local interfacial impedance

corresponds to an ideal capacitance, while the local ohmic impedance displays a

more complicated behavior showing capacitive or inductive effects, see Ref. [359].

This means that the deviations from the ideal capacitive behavior observed for

global impedance at high frequencies originate from the behavior of the local ohmic

solution impedance (Fig. 8.16) caused by a nonlinear current and potential distri-

bution at disk electrodes [360]. Similar effects were observed in the presence of

faradaic reactions [310, 361, 362]. Theory discussed above was experimentally

verified for corroding materials [359, 360, 363] or film thickness [311, 364, 365].

It is important to note that the Brug et al. formula, Eqs. (8.15) and (8.16), seems

to work much better than that of Hsu and Florian, Eq. (8.15) [310]. Moreover,

the recessed disk electrodes for which the current distribution is uniform do not

show such impedance dispersion and behave ideally [366].

Fig. 8.15 Simulated complex plane plots of impedance response for ideally polarized disk

electrode: (a) linear plot showing effect of dispersion at frequencies K > 1 as deviation from

vertical line; (b) plot in logarithmic scale for imaginary impedances (From Ref. [358]. Reproduced

with permission of Electrochemical Society)

Fig. 8.16 Complex plane plots of normalized local ohmic impedance for different positions at

disk surface, r/r0 (From Ref. [358]. Reproduced with permission of Electrochemical Society)
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Another possible source of dispersion of time constants is the dispersion of

capacitances arising from atomic-scale surface inhomogeneities such as grain

boundaries, crystal faces on a polycrystalline electrode, or other variations in

surface properties [313, 334, 350, 358]. However, experimental studies do not

confirm this hypothesis. In fact, an increase in surface roughness, that is, of surface

inhomogeneities, does not decrease the CPE parameter ϕ but increases it and such a

surface becomes more similar to the ideal capacitance [313, 334, 350].

8.3.2 Dispersion Due to Surface Adsorption/Diffusion

Processes

Dispersion due to surface adsorption/diffusion processes, or the so-called kinetic

dispersion effect, is related to slow, i.e., kinetically limited, adsorption of ions or

neutral molecules (often impurities) at the electrode surface. It has also been

observed for surface reconstruction and changes in the adsorption layer where

sharp deviations from ideal behavior and drop of the CPE exponent appeared. It

has been found that in very clean solutions at monocrystalline electrodes the CPE

parameter ϕ is very close to unity, e.g., at Au(111) in 0.1 M HClO4 it is 0.997 [367],

which indicates a practically ideal capacitive behavior. However, in the presence of

specifically adsorbed anions, this value is always smaller. This behavior could be

explained by assuming diffusion-kinetics-controlled ionic adsorption [367–375]

and is described by the Frumkin and Melik-Gaykazyan model [376, 377]. The

rate of an ionic adsorption reaction, v, is described by the following equation [367]:

v ¼ dΓ

dt
¼ vad � vd, ð8:24Þ

where subscripts ad and d denote adsorption and desorption, respectively, and Γ is

the surface excess of adsorbed ions. The current related to this reaction is

j ¼ F
dΓ

dt
¼ dqM

dt
¼ �γFv, ð8:25Þ

where γ is the electrosorption valency that is the charge transferred between the

electrode and the adsorbed ion in reaction: A� þ λe = A�1þλads , and qM is the excess

charge density in a metal electrode. Applying the standard linearization procedure

the reaction impedance is obtained:

Ẑ f ¼ Rad þ
1

jωCad

þ Ẑ W,ad, ð8:26Þ

where Rad and Cad are the adsorption capacitance and resistance, respectively, and

Ẑ W,ad is the mass transfer impedance. The electrical impedance model is displayed

in Fig. 8.17 and its elements are defined as
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Cad ¼ γF

∂v

∂E

0
@

1
A

∂v

∂Γ

0
@

1
A

; Rad ¼ �
1

γF
∂v

∂E

0
@

1
A

;

Ẑ W,ad ¼
σadffiffiffiffiffi
jω
p ¼ � 1

γF
ffiffiffiffiffiffiffiffiffi
jωD
p

∂v

∂C

0
@

1
A

∂v

∂E

0
@

1
A

,

ð8:27Þ

where C is the bulk concentration of adsorbed ions, D their diffusion coefficient,

and σad the Warburg coefficient. Because complex plane plots are quite featureless,

the analysis was carried out by transforming the impedances into complex

capacitances:

Ĉ ¼ 1

jω Ẑ tot � Rs

	 
 ¼ Cdl þ
1

1
Cad

σad
ffiffiffiffiffi
jω
p þ Rad

: ð8:28Þ

Examples of complex capacitances simulated for kinetically slow, fast (i.e.,

diffusion limited), and intermediate adsorption rates are shown in Fig. 8.17. For

the kinetically controlled reaction a perfect semicircle is observed and it becomes

Fig. 8.17 Complex plane plots of complex capacitance, Ĉ , defined using Eq. (8.28) for limiting

cases of slow (continuous line), fast (diffusion limited, dotted line), and intermediate (dashed line)

adsorption. Insert: equivalent electrical model for this process (From Ref. [367], copyright (2002),

with permission from Elsevier)
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distorted in the presence of mixed kinetic-diffusion control. Such an analysis was

applied to study anionic adsorption on several well-defined metallic surfaces

[367–375].

Experimental studies confirm that the CPE is often related to the adsorption of

impurities. Studies performed on a polycrystalline Au electrode in the double-layer

zone [352] in 1 M H2SO4 display almost ideal capacitive behavior with ϕ ~ 0.99,

while in the same cell on the same electrode in 1 M NaNO3 a larger CPE deviation

with ϕ ~ 0.93 was observed because sodium nitrate is not as pure as sulfuric acid.

Moreover, at well-polished and annealed polycrystalline Pt (roughness factor

Rf ¼ 1.4) the parameter ϕ is between 0.97 and 0.977 in the double-layer zone in

0.1 M H2SO4 [352]. However, after electrochemical roughening (Rf ¼ 5.1) ϕ

increases to >0.99. This can only be explained by the fact that the surface (ionic)

impurities become distributed over a larger surface area and their coverage

becomes smaller.

Although the CPE and the kinetic Frumkin and Melik-Gayakazan models are

intrinsically different, they lead to the same impedance behavior in a certain

frequency range.
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Fig. 8.18 Approximation of impedances simulated using CPE model with T ¼ 8 mF s�0.05,
ϕ ¼ 0.95, and Rs ¼ 1 Ω (points) by kinetic Frumkin-Melik-Gayakazan model (lines)
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Figure 8.18 shows complex plane plots simulated with the CPE model assuming

Tdl ¼ 8 mF s�0.05 and ϕ ¼ 0.95. These data could be very well approximated [313]

using the kinetic model with Cdl ¼ 6.08 (0.02) mF, σ ¼ 0.0053 (0.0001) Ω s�1/2,
Cp ¼ 2.83 (0.01) mF, and Rad ¼ 0, where the numbers in parentheses denote the

standard deviations of the parameters. The fit was carried out in the frequency range

100 kHz to 0.4 Hz and the goodness-of-fit parameter is χ2 ¼ 7.5 � 10�4. At lower
frequencies deviations appear. The obtained results indicate that both models might

be indistinguishable in practice, although the CPE model contains fewer adjustable

parameters.

If the experimental data arise from the kinetic model, the use of Brug’s et al.’s

formula cannot be justified. In fact, this formula leads, for the foregoing example, to

an average value of C dl ¼ 7 mF, while the true Cdl is 6.1 mF and Cp ¼ 2.8 mF.

Surprisingly, both values are relatively close to each other. However, the influence

of the solution and charge transfer resistances in Brug et al.’s formula is relatively

small because they are taken to the power (1�ϕ)/ϕ.
Data simulated using the CPE model and T ¼ 8 mF sϕ � 1, values of ϕ between

0.90 and 0.99, and Rs ¼ 1 Ω could be approximated using the kinetic Frumkin-

Melik-Gayakazan model, Eq. (8.26). Comparison of the values of Cdl from the

kinetic model and C dl obtained using Brug et al.’s formula, Eq. (8.11), is displayed

in Fig. 8.19. The values obtained using the Brug et al.’s CPE model are close to

those obtained using the kinetic model with a relative error from 2 % at ϕ ¼ 0.9 %

to 0.5 % at ϕ ¼ 0.99. Similar approximations were obtained for lower values of the

parameter T (corresponding to those obtained in the double-layer zone) but at

frequencies higher than 4 Hz.

It should be stressed again that in the kinetic model the CPE-like behavior

appears in a limited frequency range only.
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Fig. 8.19 Dependence of double-layer capacitance,C dl, determined using Brug et al. CPE model,

Eq. (8.11), (▪), and Cdl estimated from kinetic model, (•), Eq. (8.26) (with Rad ¼ 0) determined

from impedances simulated using CPE data: T ¼ 8 mF sϕ � 1, Rs ¼ 1 Ω versus CPE exponent ϕ
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8.4 Determination of Time Constant Distribution Function

As was shown earlier, the presence of the CPE of fractal impedance produces a

distribution of the time constants. In addition, other elements such as the Warburg

(semi-infinite or finite-length) linear or nonlinear diffusion, porous electrodes, and

others also produce a dispersion of time constants. Knowledge about the nature of

such dispersion is important in the characterization of electrode processes and

electrode materials. Such information can be obtained even without fitting the

experimental impedances to the corresponding models, which might be still

unknown. Several methods allow for the determination of the distribution of time

constants [378, 379], and they will be briefly presented below.

8.4.1 Regularization Methods

Equation (8.4), defining the time constant distribution function, is known as the

Fredholm integral equation of the first kind:

g ωð Þ ¼
ð1

0

K τ;ωð Þf τð Þdτ, ð8:29Þ

where the left-hand side is a known function:

g ωð Þ ¼ Ẑ ωð Þ � Z1
Z0 � Z1

, ð8:30Þ

K(ω, τ) is a known kernel:

K ω; τð Þ ¼ 1

1þ jωτ
, ð8:31Þ

and

f τð Þ ¼ τG τð Þ ð8:32Þ

is the unknown time constant distribution function [248, 380–382]. Equation (8.29)

can be solved numerically by its transformation into a system of linear equations:

g ¼ g ωð Þ ¼
XN

j¼1
wiKi, jf i ¼ KWg ¼ Af , ð8:33Þ

where wi are the coefficients corresponding to the quadrature used for integration,

Kij ¼ K(τi,ωj), fi ¼ f (τi), and bold letters denote vectors or matrices. For example,

for a simple trapezoidal integration rule the weights are w1 ¼ wN ¼ 0.5 and the
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other wi ¼ 1. The linear system of equations g ¼ Af can be solved by minimizing

the residuals using a least-squares method: minimize || Af � g ||2 with respect to f.
This leads to a known solution: f ¼ (AT A)�1 AT g, where the index T denotes a

transposed matrix. However, this procedure is an ill-posed problem involving the

inversion of large matrices, and its solution leads to strong oscillations of f (τ) due to

experimental errors of the measured impedance. To stabilize the solution, regular-

ization techniques must be used depending on the value of the regularization

parameter λ, which smooths function f. The biggest problem is how to choose the

optimal value of λ because too small values of λ allow oscillations and too large

values distort the function (too much damping). There are, however, several

methods of regularization and determination of the optimal values of the regular-

ization parameter [383]. It was found using data simulated for the CPE or fractal

models that correct distribution functions were obtained [381, 382]. However, the

results were sensitive to experimental errors, and for a more complicated model

involving a finite-length porous model the distribution function obtained contained

some oscillations around the large peak [382]. When these oscillations were

damped, the data recalculated from the distribution function differed from the

assumed values. This indicated that the regularization method was not reliable for

determining the time constant distribution function.

Ivers-Tiffé and coworkers proposed a modification of the solution of Eq. (8.4)

using a Fourier transform [384]. They applied their method to determine the time

constant distribution in solid electrolytes and batteries [384–387]. An example of

the application of this technique to solid oxide fuel cells (SOFCs) is shown in

Fig. 8.20. The complex plane plot shows several poorly separated semicircles,

while the time constant distribution function displays five peaks; the authors

assigned these time constants to different processes.

Fig. 8.20 Impedance spectrum and distribution of relaxation time function for solid oxide fuel

cell (From Ref. [385]. Reproduced with permission of Electrochemical Society)
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8.4.2 Least-Squares Deconvolution Methods

The kernel in Eq. (8.31) corresponds to one element of a Voigt circuit, and the time

constant distribution function, Eq. (8.32), is continuous. However, the integral in

Eq. (8.4) can be substituted by a sum of discrete functions [378, 379]:

Ẑ ωð Þ � Z1
Z0 � Z1

¼
ð1

0

G τð Þ
1þ jωτ

dτ ¼
XM

m¼1

gm
1þ jωτm

, ð8:34Þ

where the continuous function G(τ) was replaced by a sum of discrete values gm.

For a series of fixed time constants uniformly distributed on a logarithmic scale, τm,

the values of gmmight be determined by a complex nonlinear least-squares method.

This method was implemented in J. Ross Macdonald’s program LEVM (distributed

at no cost on the Internet) [388]. Macdonald and Tuncer [378, 379] applied this

method to study the dispersion of dielectric permittivities.

A modification of this procedure was proposed in the literature [389] and applied

to determine the time constant distribution function [379]. This method is based on

the predistribution of time constants uniformly on the logarithmic scale, and to

improve the quality of the analysis, a Monte Carlo technique was used to increase

the number of analyzed time constants. Approximation was carried out using a

constrained least-squares method and led to a continuous distribution function. This

procedure converted the nonlinear problem to a linear one from which gm versus τm
were obtained and produced positive values of the distribution function. The

procedure was also applied to the distribution of the dielectric constants [379, 389].

8.4.3 Differential Impedance Analysis

Stoynov and coworkers [28, 390–398] proposed another method for the determi-

nation of the distribution of parameters called differential impedance analysis

(DIA). It is based on the application of a simple three parameter R1(R2C) model

[a so-called local operating model (LOM)] to the impedance spectra. At each

frequency three parameters Z0, Z00, and ω are known but they are not sufficient to

determine the parameters R1, R2, and C. Therefore, two more parameters are added:

dZ0/d logω and dZ00/d logω. This LOM is swept across the experimental impedance

data producing series of the parameters at each frequency. The impedance of the

LOM is

Ẑ LOM ¼ R1 þ
R2

1þ ω2τ2
� j

R2

1þ ω2τ2
¼ Reff ωð Þ þ jωLeff ωð Þ ð8:35Þ

where the model containing two frequency dependent parameters, Reff and Leff was

introduced. Time constant may be found as τ ¼ R2C ¼ (dLeff/d logω)/(dReff/d

logω) and then all the parameters using Eq. (8.35). To avoid oscillations, the
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experimental data might be smoothed using splines. Let us look at the application of

this method to the impedance data shown in Fig. 8.21a. Values of the parameters, P̂ ,

obtained as a function of the logarithm of frequency are displayed in Fig. 8.21b. It is

obvious that there are two values of R2, C, and the time constant τ ¼ T.

Figure 8.21c, d shows the cumulative spectral line’s intensity plots as functions

of the logarithm of the parameter values. Now it is obvious that there are two time

constants (d) and two values of the resistance and capacitance, in agreement with

the model (a). To deal with the distributed elements as the CPE, the authors

proposed a secondary DIA. The complex plane impedance plot for the CPE is

shown in Fig. 8.22a, and the plot of the values of the parameters versus logTf ¼
�log f are shown in panel b. There is a linear relation between the log of these

parameters and log f. Then one can determine the derivatives of these lines:

δPi
¼ d logPi

d logω
, ð8:36Þ

which, according to the definition of the CPE, are δR ¼ α, δC ¼ 1 � α and δT ¼ 1.

These derivatives are shown in Fig. 8.22c as functions of log Tf; they are constant,

Fig. 8.21 Application of DIA to impedance data simulated using electrical equivalent model

containing two time constants; (a) electrical equivalent model and impedance complex plane plot;

(b) log of obtained parameters R2, C, and time constant τ ¼ T as functions of log of inverse

frequency log TF ¼ �log fF; (c) and (d) cumulative spectral line’s intensity plots as functions of

log of values of parameters (From Ref. [392], copyright (2004), with permission from Elsevier)
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in agreement with the theory. Finally, the cumulative spectral line’s intensity plots

as functions of the logarithm of the parameter values are shown in panel d. The

original value of the parameter ϕ is recovered. The DIA behavior of other distrib-

uted elements was shown in Ref. [28]. It should be added that DIA does not give

directly the dispersion of the time constants but rather the dispersion of parameters

that arises from the distribution of the time constants.

An example of the application of DIA to the impedance analysis of SOFCs is

shown in Fig. 8.23.

8.4.4 Summary

Determination of the time constant distribution function is still carried out quite

rarely. Several methods make it possible to determine this distribution function.

Such procedures can be carried out without prior knowledge of the impedance

model. Studies of the changes in the values and nature of time constants as

functions of temperature or partial pressure of gases in SOFCs make it possible to

assign these time constants to particular processes and to better understand the

process mechanisms. The biggest drawback of this procedure is the lack of com-

mercial programs allowing such an analysis. Mathematically, the simplest methods

Fig. 8.22 DIA of CPE with ϕ ¼ 0.8 simulated in frequency range 103–10�3 Hz: (a) impedance

diagram; (b) plot of CPE parameters versus Tf ¼ �log f; (c) differential temporal plots of

parameters versus logTf; (d) differential spectral plots versus values of these derivatives (From

Ref. [395], copyright (2006), with permission from Elsevier)
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are the least-squares deconvolution method (implemented in LEVM program) and

the DIA, although some authors (Tuncer, program in Matlab [379]) intend to

provide their programs.

8.5 Conclusion

The problem of impedance dispersion at solid electrodes is still a subject of heated

discussion. The CPE model that is usually used in practice makes it possible to fit

experimental data; however, from a physical point of view it cannot be valid in the

whole frequency range. The main sources of dispersion are the distribution of

solution resistances (e.g., Hull cells, disk geometry) and the adsorption of ionic

impurities. It must be stressed that both processes contribute to dispersion in a

limited frequency range; however, in many cases it is impossible to go to suffi-

ciently low frequencies to notice this effect. Of course, it is difficult to carry out

detailed studies of the origin of the observed CPE in each experimental case, and

the CPE might be used in the modeling of experimental impedances. The use of the

Brug et al. formulas (8.11) and (8.16) to estimate the average double-layer capac-

itance seems to be an acceptable compromise, although, fundamentally, they are

not correct. However, in kinetic studies, it was noticed that the presence of the CPE

did not affect the charge transfer resistances. In fact, studies of the kinetics of the

HUPD at a polycrystalline Pt carried out in two different geometric arrangements

produced quite different CPE ϕ exponents, but the determined charge transfer

resistances were identical [399].

Fig. 8.23 Complex plane plots of YSZ single crystal in (a) 395 �C and (b) 900 �C; (c) plot of
parameters versus �log f; (d) spectral plot of determined parameters (From Ref. [395], copyright

(2006), with permission from Elsevier)
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Chapter 9

Impedance of Porous Electrodes

In the industrial applications of electrochemistry, the use of smooth surfaces is

impractical and the electrodes must possess a large real surface area in order to

increase the total current per unit of geometric surface area. For that reason porous

electrodes are usually used, for example, in industrial electrolysis, fuel cells,

batteries, and supercapacitors [400]. Porous surfaces are different from rough

surfaces in the depth, l, and diameter, r, of pores; for porous electrodes the ratio

l/r is very important. Characterization of porous electrodes can supply information

about their real surface area and electrochemical utilization. These factors are

important in their design, and it makes no sense to design pores that are too long

and that are impenetrable by a current. Impedance studies provide simple tools to

characterize such materials. Initially, an electrode model was developed by several

authors for dc response of porous electrodes [401–406]. Such solutions must be

known first to be able to develop the ac response. In what follows, porous electrode

response for ideally polarizable electrodes will be presented, followed by a

response in the presence of redox processes. Finally, more elaborate models

involving pore size distribution and continuous porous models will be presented.

9.1 Impedance of Ideally Polarizable Porous Electrodes

Pore geometry influences the shape of impedance plots. In what follows, various

pore geometries will be presented. First, the ohmic drop in solution only will be

taken into account, and later the ohmic drop in solution and in the electrode material

will be considered [407].
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9.1.1 Cylindrical Pore with Ohmic Drop in Solution

Only (idc ¼ 0, re ¼ 0, rs 6¼ 0)

The simplest model involves a cylindrical pore with length l and radius r filled with

electrolytic solution (Fig. 9.1). It is assumed that only the pore walls are conducting

and behave as ideally polarizable. There is no dc current, but the ac current will flow

charging the double layer of pore walls through the solution resistance.

The ac current I enters the pore and flows to the walls. Because of the ohmic drop

in the solution, inside the pore it decreases with the penetration depth and its

amplitude decreases as it flows to the walls as j. An equation for the impedance

of the cylindrical pore was developed by de Levie [408]. The following assump-

tions were made:

a. The pore is cylindrical.

b. Only the pore side walls are conducting; the resistance of the electrode material

is zero (ρe ¼ 0).

c. The pore is filled with supporting electrolyte characterized by the resistivity, ρs
(Ω cm).

d. The ac potential gradient exists in the axial direction only, i.e., there is no radial

potential gradient.

The specific impedance of the pore walls is Ẑ el ¼ 1=jωCdl in Ω cm2Þ
�

, where

Cdl is the specific capacitance (F cm–2) of the pore walls. The ac potential phasor, eE,

that enters the pore decreases from the initial value at the pore orifice, eE0, because

of the ohmic drop in solution, and the ac charging current phasor,eI , decreases with

l

r

I

j

Fig. 9.1 Model of a

cylindrical pore; gray area

is not conductive. I axial

current flowing to pore,

j local current flowing to

pore walls
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the pore depth as it flows to the pore walls from its initial valueeI0 at the pore orifice.
This problem can be described by a system of two differential equations describing

the current and potential drop along the pore:

deI
dx
¼
eE
ẑ
, ð9:1Þ

deE
dx
¼ �rseI , ð9:2Þ

where the parameter x changes from zero at the pore orifice to l at the pore bottom, ẑ

is the impedance unit pore length (Ω cm); for ideally polarized electrodes

ẑ ¼ Ẑ sl ¼ 1= jωcdlð Þ, where Ẑ s ¼ 1= jωcdl 2πrlð Þ is the total impedance of the pore

wall (Ω), cdl is the double-layer capacitance per unit of pore length (F cm–1), and ẑ

can also be written as ẑ ¼ Ẑ ell=s ¼ 1= jωCdl2πrð Þ, Cdl is the specific double layer

capacitance in F cm�2, s ¼ 2πrl is the total surface area of the pore wall, rs is the

solution resistance in the pore per unit length, rs ¼ RΩ,p/l ¼ (ρsl/πr
2)/l ¼ ρs/πr

2

(Ω cm–1), and RΩ,p is the total resistance of the pore filled with solution,

RΩ,p ¼ ρsl/πr
2 (Ω). The second derivative of eE, Eq. (9.2), versus x equals

d2eE
dx2
¼ �rs

deI
dx
¼ rs

ẑ
eE, ð9:3Þ

with the following conditions:

x ¼ 0 eE ¼ eE0,

x ¼ l deE=dx ¼ 0 :

The solution of Eq. (9.3) is

eE ¼ eE0

cosh
ffiffiffi
rs
ẑ

p
l� xð Þ

� �

cosh
ffiffiffi
rs
ẑ

p
l

� � : ð9:4Þ

This equation predicts that the amplitude of the ac signal, which penetrates into

the pore, decreases with the distance in the pore x. An example of such a relation is

shown in Fig. 9.2.

The amplitude of the ac signal decreases with x and reaches a constant value at

x ¼ l. Of course, such a graph is different at different frequencies. To determine the

total impedance, the ratio of the phasors of the potential and current at the pore

orifice must be calculated. The potential gradient at the pore orifice is

deE
dx

�����
x¼0
¼ �eE0

ffiffiffiffi
rs

ẑ

r
tanh

ffiffiffiffi
rs

ẑ

r
l

� �
¼ �eI0rs, ð9:5Þ
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and the pore impedance (Ω) is

Ẑ pore ¼
eE0

eI0
¼

ffiffiffiffiffiffiffi
rsẑ

p
coth

ffiffiffiffi
rs

ẑ

r
l

� �
: ð9:6Þ

This equation may be rearranged into another useful form [409]:

Ẑ pore ¼
RΩ,p

Λ1=2
coth Λ1=2

� 	
ð9:7Þ

where

Λ ¼ rSl
2

ẑ
¼ 2ρsl

2

rẐ el

¼ 2ρsl
2jωCdl

r
ð9:8Þ

is the dimensionless admittance of the porous electrode. For n identical pores and

when the solution resistance outside pores is Rsol, the total impedance is

Ẑ ¼ Rsol þ
Ẑ pore

n
: ð9:9Þ

The complex plane plot of the impedance of a single pore is displayed in Fig. 9.3.

Very large values of the impedance are related to the very low pore surface area.

This plot reveals a straight line at 45� at high frequencies followed by a vertical line
at low frequencies. These features originate from the properties of Eq. (9.7). At very

high frequencies Λ is large, coth(Λ1/2) ! 1, and it simplifies to

Ẑ pore ¼
ffiffiffiffiffiffiffi
rsẑ

p
¼ RΩ,p

Λ1=2
¼ ρ

1=2
sffiffiffi

2
p

πr3=2

ffiffiffiffiffiffiffi
Ẑ el

q
¼ ρ

1=2
s

2πr3=2ω1=2C
1=2
dl

1� jð Þ ð9:10Þ

0.00 0.01 0.02 0.03 0.04 0.05

-0.004

-0.002
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E
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0
 /
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x / cm

E
0

Fig. 9.2 Dependence of ac

voltage E(t), and its

amplitude, E0, on distance

in the pore according to

Eq. (9.4); E0 ¼ 0.005 V,

l ¼ 0.05 cm
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taking into account that 1=
ffiffi
j
p ¼ 1� jð Þ=

ffiffiffi
2
p

. Equation (9.10) indicates that the real

and imaginary parts of the impedance are identical, Z0 ¼ � Z00, which leads to a

straight line at 45� on the complex plane plots. Note that the pore length does not

appear in this equation.

At low frequencies coth (Λ1/2)/Λ1/2 � 1/3 + 1/Λ and Eq. (9.7) becomes

Ẑ pore ¼
RΩ,p

3
þ RΩ,p

Λ
¼ ρsl

3πr2
þ 1

jωCdl 2πrlð Þ ¼ Rpore þ
1

jωCpore

ð9:11Þ

corresponding to a Rpore – Cpore connection in series and it displays a straight capac-

itive line with resistanceRpore ¼ RΩ,p/3 and capacitance equal to the total capacitance

of the pore wall (specific capacitance Cdl times the surface area s ¼ 2πrl, Cpore ¼
Cdl2πrl). This means that from low-frequency measurements it is possible to deter-

mine the total electrode surface area, which allows for the determination of the real

surface area (if the specific double-layer capacitance of the electrode material is

known) and the solution resistance in pores, RΩ,p.

The observed complex plane plots may be explained in terms of the penetration

length of the ac signal into pores,
ffiffiffiffi
Λ

p
¼ l=λ or λ ¼ l=

ffiffiffiffi
Λ

p
¼ rẐ el=2ρs

 �1=2

. At high

frequencies, Ẑ S ! 0,Λ ! 1, λ � l , and the ac signal cannot penetrate to the

bottom of the pore, i.e., the pore behaves as a semi-infinite-length pore. On the other

hand, at low frequencies, λ � l, and the ac signal can penetrate to the bottom of the

pore and the porous system can be represented by an R � Cpore connection in

series. The dependence of λ on the frequency is presented in Fig. 9.5; the dashed

line corresponds to the pore length. At ω ¼ 102 rad s–1 the penetration length is

0 2 4
0

-2

-4

-6

-8

-10

Z
'' 

/ 
M

Ω
Z' / MΩ

Fig. 9.3 Complex plane

plot of impedance of single

pore; parameters:

ρs ¼ 10 Ω cm, l ¼ 0.05 cm,

r ¼ 10–4 cm,

Cdl ¼ 20 μF cm–2
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equal to the pore length. At much lower frequencies, λ � l, the ac signal can

penetrate to the bottom of the pore, and the measured capacitance corresponds to

the total capacitance of the pore walls. At much higher frequencies, λ � l, and the

ac signal cannot enter deeply into the pore because of the IR drop and a very low

impedance of the pore walls.

The porous electrode model described in Eq. (9.7) cannot be represented by a

simple connection of R, L, and C elements. However, it can be represented by a

semi-infinite series of R-C elements called a transmission line [410, 411], shown in

Fig. 9.4. Of course, this representation is equivalent to Eq. (9.7). Some authors tried

to use a transmission line to approximate experimental data using a sufficient

number of RC elements and verifying whether the number of these parameters

was sufficient. This procedure can approximate, then, experimental impedances,

but the use of Eq. (9.7) is more appropriate because it allows for the direct

estimation of certain parameters and their standard deviations. This model is

included in the recent version of the ZView program.

The model presented above is valid for the isolated pore. However, such pores are

usually present in an electrode material, and the capacitance of the top flat layer must

be taken into account and added to the total electrode impedance [352]. In such a case

the total impedance consists of the impedance of the porous part, Ẑ pore, and that of a

rs

cdl

rs rs rs

cdl cdl

rs

cdl

Fig. 9.4 Uniform transmission line representing impedance of flooded ideally polarized porous

electrode; rs and cdl are the solution resistance and double-layer capacitance, respectively, of a

small element of the pore length

0 2 4 6
10-4

10-3

10-2

10-1

λ 
/ 
c
m

log(ω / rad s-1)

λ = l

Fig. 9.5 Dependence of ac signal penetration length on frequency; parameters as in Fig. 9.3;

dashed line: pore length
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flat part of the electrode, Ẑ flat ¼ 1=jωCflat. The corresponding electrical equivalent

circuit is displayed in Fig. 9.6.

Its impedance is

Ẑ ¼ RS þ
1

jωCflat þ
1

Ẑ pore

: ð9:12Þ

The complex plane plots for different ratios of Cflat/Cpore, where Cpore ¼ Cdl s,

are presented in Fig. 9.7. With the increase of the importance of the external flat

surface there is a decrease in the low-frequency resistance, and the low-frequency

capacitance is the total capacitance of the porous and flat surface:

Rpore ¼
RΩ,p

3

1

1þ Cflat

Cpore

� 	2 CLF ¼ Cpore þ Cflat: ð9:13Þ

Cflat

Rs

Zpore

Fig. 9.6 Equivalent

electrical circuit

of electrode containing

porous and external flat part
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Fig. 9.7 Complex plane

plots for ideally polarizable

porous electrode containing

contribution from external

flat surface for different

ratios of flat external and

porous internal capacitances
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The preceding model was tested for different ideally polarizable gold-based

electrodes [352, 412]. The model porous electrodes were gold brush electrodes

consisting of 140 Au wires 1 cm in length and 0.25 mm in diameter fixed in a Teflon

sleeve and gold wire 0.1 mm in diameter in a glass capillary with 0.45 mm of

internal diameter. Calculated (taking into account the particular geometry of pores)

and experimental values of RΩ,p were very similar, as was the real surface area. In

addition, for other porous gold electrodes obtained by thermal decomposition of

Au2O3, AuCl, or amalgamated gold (after dissolution of mercury) the ratio of the

porous to flat surface area was obtained by the CNLS fit of the experimental

impedance to the model in Fig. 9.6. The obtained ratios of capacitance of the

porous to flat areas were between 0.46 and approximately 500.

Working in conditions of ideal polarizability allows for the easiest characteriza-

tion of porous electrodes. This can be achieved in the absence of a faradaic reaction

by changing the electrode potential or solution composition or by using nitrogen as a

feed gas in fuel cells. However, in many cases, such a characterization cannot be

performed because of the redox reactions. In subsequent sections it will be shown

that such a characterization is also possible in the presence of redox reactions.

9.1.2 Other Pore Geometry with Ohmic Drop

in Solution Only

The cylindrical pore model is an idealization of a real porous electrode. Other pore

geometries were also studied. De Levie [413] obtained an analytical solution for the

impedance of V-grooved pores. Such pores might be obtained, for example, by

scratching the electrode surface. A cross section of such a groove is displayed in

Fig. 9.8. Its impedance per unit of groove length is

eZ ¼ ρs

tan β

I0 λð Þ
λI1 λð Þ , ð9:14Þ

β

l a
Fig. 9.8 Cross section

of groove electrode
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where β is the angle between the groove wall and the normal to the surface, I0 and I1
are the modified Bessel functions of zero and first order, the dimensionless param-

eter λ is

λ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρsl

Ẑ el sin β

s
, ð9:15Þ

l is the groove depth (normal to the surface), and Ẑ el is the double-layer impedance

per unit of the true surface area. Equation (9.14) reduces to the impedance of a

perfectly flat surface for β ¼ 90� and to the impedance of cylindrical porous

electrode for β ¼ 0�. Gunning [414] obtained an exact solution of the de Levie

grooved surface not restricted to a pseudo-one-dimensional problem in the form of

an infinite series. Comparison with de Levie’s equation (9.14) shows that the

deviations arise at higher frequencies or, more precisely, at high values of the

dimensionless parameter Ω ¼ ωCdla/ρs, where a is half of the distance of the

groove opening, a ¼ l tan β (Fig. 9.8).

The impedance of porous electrodes having different pore shapes (Fig. 9.9) was

studied by Keiser et al. [415]. The complex plane plots obtained at high frequencies

depend on the pore shape’s changing from a straight line at more than 45� for the
groove shape to a semicircle for pear-shaped pores. These features are due to

geometric effects, are related to the coupling of the double-layer capacitance and

the solution resistance in pores, and appear at high frequencies. Because all the

electrodes are ideally polarizable at low frequencies, they display a vertical line

corresponding to the complete penetration of the ac signal into pores.

Fig. 9.9 Impedance curves

obtained for ideally

polarized porous electrodes

of different pore shapes

(From Ref. [415], copyright

(1976), with permission

from Elsevier)
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Similar simulations were later continued for the pear-shaped and spherical or

bispherical pores presented in Fig. 9.10, and the obtained impedances are

displayed in Fig. 9.11 [416]. The shape of the impedance curves depends on the

pore geometry and on the size of the opening. It is characterized by a ratio, f, of

the distance from the surface where the sphere was cut out to the sphere radius.

In the case of bispherical pores, the effects of each sphere can be observed at

different frequencies; at high frequencies, the ac signal penetrates only to the

first sphere, and at lower frequencies it penetrates up to the second (deeper)

sphere displaying two overlapping semicircles. Impedance of other arbitrary

noncylindrical pores was also simulated using division into small cylinders and

matrix calculations [417, 418].

The pear-shaped pores predict the formation of a semicircle on the complex

plane plots that might be confused with a semicircle related to the coupling of the

charge transfer resistance and double-layer capacitance. Such effects were observed

experimentally for hydrogen evolution on porous electrodes [415, 416, 419,

420]. This suggests that at some electrodes, pores of a pearlike shape are present

f = 0.01f = 0.01

Fig. 9.10 Pore shapes used in simulation of impedances; f is a fraction of the sphere radius at

which the pore was cut out for the opening (From Ref. [416], copyright (2001), with permission

from Elsevier)
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Fig. 9.11 Reduced impedance curves obtained for three pore shapes displayed in Fig. 9.10 for

different values of parameter f (From Ref. [416], copyright (2001), with permission from Elsevier)
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during the continuous gas evolution reaction. An example of such complex plane

curves registered during hydrogen evolution on porous Ni electrodes, obtained by

pressing Ni and Al or Zn powders and subsequent leaching out Al or Zn in alkaline

solution, is shown in Fig. 9.12. These impedances were modeled using a so-called

two-CPE model, R(R CPE )(R CPE ), consisting of a solution resistance and a

connection between two parallel R-CPE elements in series; the high-frequency

R-CPE element is related to the porosity, while the low-frequency element is

related to the kinetics of the hydrogen evolution reaction [416, 419–422].

In general, the formation of two semicircles on complex plane plots may be of

kinetic origin (see the case of one adsorbed species, Chap. 5, Sect. 5.1), or the first

semicircle might be of geometric and the second of kinetic origin. To distinguish

between these models, experimental tests were developed [416, 419, 420, 422].

If the first semicircle (or deformed semicircle) is of geometric origin, it should

depend less on the temperature (through the solution resistance), be independent of

the applied potential, and be insensitive to poisons. The dependence of the radius of

the first and second semicircles on the overpotential for the electrodes in Fig. 9.12 is

shown in Fig. 9.13. It is clear that the first semicircle is independent of the

Fig. 9.12 Complex plane

plots obtained on Ni

(Al) pressed powder porous

electrodes (after leaching

out Al) during hydrogen

evolution reaction in 1 M

NaOH at different

overpotentials (From Ref.

[420]. Reproduced with

permission of

Electrochemical Society)
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overpotential and is geometric in nature, while the second one depends on the

potential, as predicted for a kinetically limited process. These tests are easy to carry

out and furnish definitive answers.

9.1.3 Double or Triple Pore Structure

For a simple pore structure a straight line at 45� is predicted at high frequencies on

complex plane plots. In such a case, Eq. (9.26) predicts a linear relation of log |Z00|
versus log f with a slope of 0.5. In the case of more complex coatings, secondary

pores might appear from the primary pores, making a branched pore structure

[423–425]. In such a geometry, secondary pores perpendicular to the walls of the

primary pores [423] or fractal pores [424, 425] are formed. In such a case, complex

plane plots may display an angle of 22.5� [423, 425] at high frequencies (d log

jZ00j/d log f ¼ �0.25) on the complex plane plots for double pores and even 11.25�

[425] (d log |Z00|/d log f ¼ �0.125) for branched triple pores. By changing the

frequency, transitions between different slopes is possible.

9.1.4 Porous Electrode with Ohmic Drop in Solution

and in Electrode Material (idc ¼ 0, rs 6¼ 0, re 6¼ 0)

Earlier it was assumed that the electrode material was well conducting and its

resistance negligible. However, when the resistivity of the electrode material cannot

be neglected, i.e., it becomes comparable to or larger than that of the solution, a

Fig. 9.13 Dependence of

logarithm of parameter log

A ¼ �log Rct on

overpotential for hydrogen

evolution reaction, at two

different Ni(Al) electrodes;

conditions as in Fig. 9.12;

dashed lines: results for first

semicircle; continuous

lines: those for second

semicircle (From Ref.

[420]. Reproduced with

permission of

Electrochemical Society)
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more complex equation should be used. Such effects are observed for certain

conducting polymers, batteries, lithium intercalation compounds, semiconductors,

oxides, etc. The theory of such electrode materials was first developed by Paasch

et al. [426] and then discussed in detail by Bisquert et al. [427–429]. These authors

assumed ionic conduction by the solution in pores and electronic conduction in

solids. It should be stressed that the same result is obtained either assuming a

cylindrical pore or using an effective macrohomogeneous description of two

closely mixed phases [427]. In such cases the system can be described by a

transmission line in which the ohmic drop appears in two branches. This model is

shown in Fig. 9.14.

Assuming that the electrode impedance does not depend on the position in a pore

(macrohomogeneous material), an analytical equation describing this circuit was

developed [426–429]:

Ẑ pore ¼
rsre

rs þ re
lþ 2λ

sinh l
λ


 �
" #

þ λ
r2s þ r2e
rs þ re

coth
l

λ

� �
, ð9:16Þ

where rs and re are the resistances per unit pore length (Ω cm–1 ) of the electrolytic

solution and electrode material, λ is the ac signal penetration length,

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ẑ

rs þ re

s

, ð9:17Þ

and ẑ ¼ jωcdlð Þ�1 is the electrode interfacial impedance pore length (Ω cm�1) and
is the capacitance per unit length (in F cm–1). Láng et al. [430] proposed to

rearrange this equation in another form:

Ẑ pore ¼
rsre

rs þ re
lþ rs þ reð Þλ

2
coth

l

2λ

� �
þ rs � reð Þ2λ

2 rs þ reð Þ tanh
l

2λ

� �
: ð9:18Þ

rs

cdl

re

rs rs rs

re re

cdl cdl

re

cdl

Fig. 9.14 Transmission representing impedance of ideally polarizable porous electrode in pres-

ence of solution and electrode resistance; rs and re are resistances of small sections of solution and

electrode, respectively, and cdl is the double-layer capacitance of such a section
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Equation (9.16) can also be written in a form similar to that in Eq. (9.7):

ẑ pore ¼ R Ω,p 1þ 2

Λ1=2sinhΛ1=2

� 
þ RΩ,p

Λ1=2
cothΛ1=2, ð9:19Þ

where

R Ω,p ¼
rsre

rs þ re
l, RΩ,p ¼

r2s r
2
e

rs þ re
l ,

Λ1=2 ¼ l

λ
¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs þ reð Þ

ẑ

vuut ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs þ reð Þjωcdl

p
:

ð9:20Þ

Equation (9.19) differs from de Levie’s equation, Eq. (9.7), by the presence of

one additional term. It should be noted that when re ¼ 0, Eq. (9.19) reduces to

Eq. (9.6) or (9.7). When the frequency ω ! ∞, Λ ! ∞, the second term in

Eq. (9.19) goes to zero and the first term becomes R Ω,p, which corresponds to the

average harmonic resistance of the solution and the electrode. When ω ! 0, the

real part of the first term in parentheses goes to 2/3 and the first term becomes

2R Ω,p=3, while the real part of the second term goes toR Ω,p=3. This means that the

low-frequency impedance is real and equal to 2R Ω,p=3þ R Ω,p=3. At low frequen-

cies the imaginary parts of both terms go to infinity and the electrode displays its

capacitive behavior. The complex plane plots of the total impedance, as well as

those of the first and second terms, are compared in Fig. 9.15. The second term in

Eq. (9.19), Fig. 9.15c, shows a complex plane plot that is similar to that in the

absence of the electrode resistance (de Levie’s solution). The first term shows a
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Fig. 9.15 Complex plane

plots for porous electrode

according to Eq. (9.19); a –

total impedance, Eq. (9.19),

b – impedance of first term,

c – impedance of second

term; parameters:

re ¼ 200 Ω cm–1

rs ¼ 50 Ω cm–1,

ẑ ¼ 1=jωcdl,
cdl ¼ 0.001 F cm–1,

l ¼ 0.05 cm
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more complicated behavior passing through the positive imaginary part at high

frequencies and displays capacitive behavior at lower frequencies.

It is interesting to note that impedances simulated using Eq. (9.19) may in

practice be approximated by Eq. (9.7), which means that without separate knowl-

edge of rs and re one cannot obtain any new information from the experimental

impedances. This behavior is illustrated in Fig. 9.16. Although some deviations are

visible in the experimental conditions, noise could hide such deviations. These

deviations are smaller when the specific resistances of the electrode material and

the solution are similar.

9.2 Porous Electrodes in Presence of Redox Species
in Solution

First, let us consider a case where redox species are present in solution but there is

no dc current flowing, that is, the system is at the equilibrium potential. Later on,

cases in the presence of a dc current will be considered, in the absence and in the

presence of the concentration gradient in pores.

9.2.1 Ohmic Drop in Solution Only in Absence of DC

Current (idc ¼ 0, rs 6¼ 0, re ¼ 0)

In the absence of a dc current, there is no dc potential or dc concentration drop in the

pore; therefore, the faradaic impedance is constant along the pore. However, the ac

current will flow and the ac potential drop will appear. Such a case was solved by de
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Fig. 9.16 Comparison of complex plane and Bode phase angle plots simulated using Eq. (9.16),

symbols, and their approximation by de Levie’s model, Eq. (9.7), lines
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Levie [408], who assumed that the electrode was a perfect conductor. The problem

is formally identical to that described in Sect. 9.1.1, and the equations describing

the system, (9.1) and (9.2), are solved assuming that the impedance unit pore length

contains a faradaic reaction represented as the charge transfer resistance:

ẑ ¼ 1
1
rct
þ jωcdl

¼ 1

2πr 1
Rct
þ jωcdl

� 	 , ð9:21Þ

where rct is the charge transfer resistance pore length, cdl is the pore wall capaci-

tance per unit pore length, and Rct and Cdl are the specific parameters in Ω cm2

and F cm�2, respectively. The equation describing impedance of the pore has the

same form as in the absence of redox species, Eqs. (9.6) and (9.7), but the

impedance of the pore walls contains a charge transfer resistance and double-

layer capacitance in parallel:

Ẑ el ¼
1

1
Rct
þ jωCdl

, ð9:22Þ

and the parameter Λ is

Λ ¼ rsl
2

ẑ
¼ 2ρsl

2

r

1

Ẑ el

¼ 2ρsl
2

r

1

Rct

þ jωCdl

� �
: ð9:23Þ

Impedance in this case can be represented as a transmission line, shown in

Fig. 9.17, and is described by Eq. (9.7).

The impedance plots observed for such a system depend on the penetration

length of the ac signal into the pore. Three cases can be distinguished, as

follows [431].

1. General case, intermediate pores

In this case, the impedance of the porous electrode is described by Eq. (9.7).

The complex plane plot is presented in Fig. 9.18a. It represents a straight line at 45�

rs

z z z

rs rs rs rs

z z

Fig. 9.17 Transmission line representing impedance of porous electrode in presence of redox

reaction; rs and z are resistances and impedances of small sections of electrode
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at high frequencies followed by a semicircle at lower frequencies. At ω ! 0 the

impedance becomes real value; which is a so-called polarization resistance Rp:

Ẑ pore ω ¼ 0ð Þ ¼ Rp ¼
ffiffiffiffiffiffiffiffiffiffiffi
ρsRct

2π2r3

r
coth

ffiffiffiffiffiffiffiffi
2ρs

rRct

r
l

� �
: ð9:24Þ

The high-frequency section is similar to that observed for ideally polarizable

porous electrodes (Fig. 9.3), which corresponds to the coupling of the solution

resistance and double-layer capacitance in pores and does not contain information

about the redox reaction.

2. Shallow pores

When pores are shallow and wide, the ac signal penetration length λ � l, and the

signal can always penetrate to the bottom of the pore at all frequencies, and the

pore behaves as a flat surface. In this case, Λ ¼ (l/λ)2 ! 0, coth(Λ1/2) ! Λ–1/2,

and Eq. (9.7) becomes

Ẑ pore ¼
RΩ,p

Λ
¼ 1

2πrl
Ẑ el ¼

1

2πrl

1
1
Rct

þ jωCdl

: ð9:25Þ

In this case, the impedance of the pore equals to the impedance of a flat electrode

of the surface area is s ¼ 2πrl because it is assumed that only pore walls are

electrochemically active. It represents the impedance described by Eq. (9.25),

that is, a perfect semicircle (Fig. 9.18b). Of course, if the pores are too wide, the

assumption that the ac potential gradient is one-dimensional fails and the equation

cannot be used.
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Fig. 9.18 Normalized (Z/Z0
max) complex plane plots for a porous electrode in presence of redox

system in solution and in absence of dc current; (a) general case, ac signal penetration length

comparable with the pore length, λ ~ l; (b) shallow pores, λ � l; (c) semi-infinite-length pores,

λ � l, ac signal cannot penetrate bottom of pore
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3. Semi-infinite-length pores

When pores are very deep and narrow, i.e., l2/r very large, the ac signal

penetration length may be smaller than the pore length, λ � l, the general equation

can be simplified, Λ ! ∞, coth(Λ1/2) ! 1, and the impedance becomes

Ẑ pore ¼
RΩ,p

Λ1=2
¼ ρ

2n2π2r2

� 	1=2
Ẑ

1=2
el , ð9:26Þ

and the pore impedance is proportional to the square root of the pore wall imped-

ance and the pore length disappears from the equation. The corresponding complex

plane plot is shown in Fig. 9.18c and displays a straight line at 45� at high

frequencies followed by a skewed semicircle. Such a case is indistinguishable

from the fractal model, Eq. (8.17), for ϕ ¼ 0.5.

The skewed semicircle in Fig. 9.18c contains the square root of the impedance.

De Levie [408] showed a plot of the square of the impedances according to the

following equation:

Zre ¼ zj j2 cos 2φð Þ Zim ¼ zj j2 sin 2φð Þ ,
where

φ ¼ atan �Z
00
=Z

0
 �
Zj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z

02 þ Z
00 2

q ð9:27Þ

produces an ideal semicircle on the complex plane plots.

For semi-infinite-length pores the double-layer capacitance and the charge

transfer resistance cannot be determined because the accessible surface area

changes with the frequency [422]. However, Eq. (9.26) can be rearranged into

Ẑ pore ¼
ρS

2n2π2r3
1

1
Rct

þ 1
jωCdl

" #1=2
¼ 1

uRct

þ jωCdl

u

� �1=2

, ð9:28Þ

where u ¼ ρs/(2n
2 π2 r3 ), which is usually unknown because the exact geometry

and number of pores are not known for actual porous electrodes. The only param-

eters that can be experimentally determined are uRct and Cdl/u. However, the

product of the experimentally accessible parameters

uRct

Cdl

u
¼ RctCdl ð9:29Þ

equals the product of the specific charge transfer resistance and double-layer capaci-

tance. Because the specific double-layer capacitance ofmetallic electrodes is usually in

the range of 20–25μFcm–2, the kinetics of the reactionmight be estimated. Such studies

were carried out for Ni and Raney Ni and Ni-Mo electrodes, and it was found that,

although they displayed very high apparent activity toward hydrogen evolution, their

intrinsic activities were not larger than those of polycrystalline Ni electrodes, and the
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observed activity came from the increase in the real surface area [422]. It was found

experimentally that by changing the electrode potential or solution viscosity the

observed impedance model changed from a finite-length to a semi-infinite-length

pore model [416].

9.2.2 Ohmic Drop in Solution and Electrode Material

in Absence of DC Current (idc ¼ 0, rs 6¼ 0, re 6¼ 0)

In the presence of redox species and for porous electrodes containing a contribution

of the resistance of the solution and the electrode material the equations describing

the impedance are identical to those in the absence of redox species, Eqs. (9.16) and

(9.19), with exception of the impedance of the pore walls, which contains the

charge transfer resistance, Eq. (9.21). In this case the parameter Λ1/2 is defined as

Λ1=2 ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS þ reð Þ 1

rct
þ jωcdl

� �s
: ð9:30Þ

This model corresponds to the transmission line depicted in Fig. 9.19. The

complex plane plots of the total impedance, Eq. (9.19), as well as the first and

second terms of this equation, are displayed in Fig. 9.20. The total impedance starts

at high frequencies at R Ω, p and initially displays a straight line at 45
� followed by a

semicircle (Fig. 9.20a). The first term in Eq. (9.19) shows a small inductive loop at

high frequencies, followed by a semicircle, Fig. 9.20b, while the second term is

similar to that of the porous electrode with solution resistance only, Fig. 9.20c.
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re re

z
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Fig. 9.19 Transmission

line representing porous

electrode in presence of

redox species and resistance

of solution, rs, and

electrode, re
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Fig. 9.20 Complex plane plots for porous electrode in presence of redox species at equilibrium

potential according to Eq. (9.19); a – total impedance, Eq. (9.19); b – impedance of first term; c –

impedance of second term; rct ¼ 1 Ω cm; other parameters as in Fig. 9.15
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Similarly as in the case of the ideally polarized electrode, the total impedance

simulated using Eq. (9.19) may be well fitted by the simple de Levie model

involving the resistance of the solution, only with re ¼ 0. This is shown in

Fig. 9.21.

The results obtained there show again that without a priori knowledge of the

solution and electrode resistivities, the full Eq. (9.19) cannot be used because the

system may be well approximated by a simpler model involving the solution

resistance only, Eq. (9.7).

9.2.3 Porous Electrodes in Presence of DC Current, Potential

Gradient in Pores and No Concentration Gradient,

Ideally Conductive Electrode (idc 6¼ 0, dEdc/dx 6¼ 0,

dCdc/dx ¼ 0, rs 6¼ 0, re ¼ 0)

9.2.3.1 DC Solution

When a system containing redox species is no longer at the equilibrium potential, a

dc current must circulate. The presence of a dc current causes a potential and

concentration drop in the pores. First, let us consider the case where the dc

concentration gradient is negligible and only a dc potential drop is observed.

Such cases are observed at high concentrations of redox species in solutions or

for gas evolution reactions from concentrated solutions (hydrogen, oxygen, chlo-

rine evolution). Under such conditions the dc current circulates into the pore

flowing to the pore walls. The current flows through the solution resistance, and

the ohmic dc potential drop develops inside the pore. To solve this problem, two
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Fig. 9.21 Comparison of complex plane and Bode phase angle plots simulated using Eqs. (9.16)

and (9.30), symbols, and their approximation by de Levie’s model, Eq. (9.7), lines
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equations (for dc conditions) must be solved. The first is a dc analog of Eq. (9.2)

describing Ohm’s law:

dη

dx
¼ �rsI, ð9:31Þ

where η is the overpotential. The second equation describes a decrease in the axially

flowing current I with the distance in pores. Its decrease, –dI, is related to the

faradaic current, j, flowing to each section dx of the pole walls:

�dI ¼ 2πrdxð Þj, ð9:32Þ

where 2πrdx is the surface area of the pore section and the faradaic current density

is defined by the Butler-Volmer relation [17]:

j ¼ j0 e 1�αð Þnf η � e�αnf η
h i

: ð9:33Þ

From Eq. (9.32) one obtains after division by dx

dI

dx
¼ � 2πrdxð Þj

dx
¼ �2πrj, ð9:34Þ

and Eqs. (9.31) and (9.34) are dc analogs of Eqs. (9.1) and (9.2). Taking the second

derivative of Eq. (9.31) leads to

d2η

dx2
¼ rs

dI

dx
¼ 2πrrsj ¼

2ρsj0
r

e 1�αð Þnf η � e�αnf η
h i

: ð9:35Þ

To obtain the potential distribution in the pore, Eq. (9.35) must be solved using

the following boundary conditions:

x ¼ 0, η ¼ η0,

x ¼ l, dη=dx ¼ 0,
ð9:36Þ

where η0 is the potential at the pore orifice. This equation was solved in the

literature in terms of special functions [400, 403–405, 432] or assuming certain

simplifications [406, 433, 434]. The first integration of Eq. (9.35) gives

dη

dx
¼ 4ρs j0

r

� �
exp αf ηð Þ

αf
þ exp � 1� αð Þf η½ �

1� αð Þf

� exp αf ηlð Þ
αf

� exp � 1� αð Þf ηl½ �
αf

2
66664

3
77775

8
>>>><
>>>>:

9
>>>>=
>>>>;

1=2

, ð9:37Þ
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where ηl ¼ η(l ) is the potential at the bottom of the pore. This equation does not

have an analytical solution and it cannot be directly integrated because the value of

ηl is not known a priori. It was solved analytically using elliptic integrals for

α ¼ 1/2, 1/3, and 2/3 [405] and numerically searching for values of ηl satisfying

the condition dη/dx ¼ 0 at x ¼ l [435]. It could also be solved by initially finding ηl
by numerically solving the equation

Zηl

η0

dη

exp αf ηð Þ
αf

þ exp � 1� αð Þf η½ �
1� αð Þf � exp αf ηlð Þ

αf
� exp � 1� αð Þf ηl½ �

1� αð Þf

2
4

3
5
1=2

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρs j0
r

l

s
ð9:38Þ

and then numerically solving Eq. (9.37). Equation (9.35) may be simplified,

assuming a ¼ 0.5, to

d2η

dx2
¼ 4ρs j0

r
sinh 0:5nf ηð Þ ¼ 4ρs j0

r
sinh bηð Þ ð9:39Þ

and after the first integration

dη

dx
¼ �

ffiffiffiffiffiffiffiffiffiffi
8ρsj0
rb

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh bηð Þ � cosh bη1ð Þ

p
, ð9:40Þ

where b ¼ 0.5 f, solved using elliptic integrals by determining the value of x for a

given value of η0 and ηl.

For the semi-infinite-length pore, i.e., when ηl ¼ 0, cosh(bηl ) ¼ 1, this expres-

sion can be rearranged to

dη

dx
¼ �4

ffiffiffiffiffiffiffiffi
ρsj0
rb

r
sinh

bη

2

� �
, ð9:41Þ

and the analytical solution is

tanh
bη

4

� �
¼ tanh

bη0
4

� �
exp �2

ffiffiffiffiffiffiffiffiffi
ρj0b

r

r
x

 !
: ð9:42Þ

Note that this equation is formally identical with that obtained for the potential

distribution in the Guy-Chapman theory of double layers [17].
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Current entering the pore (at x ¼ 0), I0, can be calculated using Eqs. (9.31)

and (9.41):

I0 ¼ 4πr

ffiffiffiffiffiffiffi
rj0
bρs

s
sinh

bη0
2

� �
: ð9:43Þ

This equation for the semi-infinite-length pore can be compared with the clas-

sical Butler-Volmer formula for flat surfaces I ¼ sj0 sinh(bη). It is evident that the

classical logarithmic Tafel slope from the Butler-Volmer equation ln(10)/(b) ¼ ln

(10)/(0.5f ) ¼ 118.3 mV dec–1 at 25� is replaced by ln(10)/(b/2) ¼ ln(10)/

(0.25f ) ¼ 236.6 mV dec–1 for the semi-infinite-length porous electrode, that is,

the Tafel slope is doubled.

The numerical solution of Eq. (9.37) [435] shows the dependence of the poten-

tial and current in the pore. Examples of such plots are shown in Figs. 9.22 and 9.23.

At very low current densities there is practically no potential gradient (negligible IR

drop), and as a consequence, the current decreases linearly with distance. For higher

j0 a potential drop in pores appears and decreases to a constant value, η(l ) > 0, at

x ¼ l, while the current decreases nonlinearly. For faster kinetics, j0 > 10–3A cm–2,

the potential and current drop to zero inside the pore, that is, some part of the pore is

not used for the redox reaction.

Tafel curves at porous electrodes are shown in Fig. 9.24. Note that for low

exchange current densities, j0 < 10–3 A cm–2, and at lower overpotentials the Tafel

slope is 0.118 V dec–1, but it doubles to 0.2366 V dec–1 at higher exchange currents

and higher overpotentials. This higher slope is an indication of the fact that the

electrical current and potential cannot penetrate to the bottom of the pore. At higher

j0 the slope always remains doubled in the linear Tafel zone.
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Fig. 9.22 Dependence of overpotential in pore as a function of distance from pore orifice for

different exchange current densities and constant overpotential; parameters: η ¼ 0.2 V, α ¼ 0.5,

l ¼ 0.05 cm, r ¼ 10–4 cm, ρs ¼ 10 Ω cm; the values of j0 are displayed in the figure (From Ref.

[72] with kind permission from Springer Science and Business Media)
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9.2.3.2 AC Solution

Knowledge of the potential inside pores makes it possible to calculate the imped-

ances. In this case only a numerical solution exists. The impedance can be obtained

by summing the electrode admittances of N small sections, Δx (N ¼ 1,000 to 5,000

elements), of the pore starting from the bottom at x ¼ l [435]. For each segment the

electrode impedance consists of the solution resistance and the impedance of the

pore wall:

Ẑ i ¼ rsΔxþ Ẑ el, i ¼ rsΔxþ
Ẑ el, i, spec

2πrΔx

¼ ρs

πr2

� 	
Δxþ 1

2πrΔx 1
Rct
þ jωCdl

� 	 , ð9:44Þ
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where Ẑ el, i, spec is the specific impedance of pore walls (Ω cm�2) and

1

Ẑ f

¼ 1

Rct

¼ dj

dη
¼ j0nf αe�αnf η þ 1� αð Þe 1�αð Þnf η

h i
: ð9:45Þ

The pore impedance from the bottom to element i, Ẑ i!N, is a sum:

Ẑ i!N ¼
ρs

πr2

� 	
Δxþ 1

1

Ẑ el, i

þ 1

Ẑ i�1!N

, ð9:46Þ

where Ẑ i�1!N is the impedance of the section of the pore from the bottom to

element i–1. This process corresponds to the calculation of the impedances in

Fig. 9.25. As the summation progresses, the faradaic impedance, Ẑ f , changes

while the solution resistance stays the same.

Impedances computed using Eq. (9.46) are displayed in Figs. 9.26 and 9.27 and

compared with de Levie’s solution, which assumes that the faradaic impedance is

independent of the distance in the pore, i.e., the potential in the pores is constant and

equal to η0 . With the increase in the exchange current density, i.e., the electrode

activity, and of the overpotential, the pores behave as semi-infinite length.A semicircle

corresponding to the penetration of the ac signal to the bottom of the pore corresponds

to that of a semi-infinite-length and the complex plane plot is as predicted in Fig. 9.18c.

It is obvious that de Levie’s solution underestimates the impedance because, in a real

case, the impedance inside the pore increases with x as the overpotential decreases.

Note that for a semi-infinite-length pore the ratio of the impedances obtained at

ω ! 0 using the full model and that of de Levie is equal to
ffiffiffi
2
p

.

Because the correct numerical solution for a porous electrode in the presence of

a potential gradient in pores demands knowledge of the pore parameters and more

complex mathematics, in practice, a simplified de Levie equation (9.7) is used in

approximations, which means that the experimentally measured impedances are

fitted to Eq. (9.7). As was shown earlier, for the same pore and kinetic parameters,

de Levie’s equation underestimates low-frequency impedances by up to 100%,

which might not be that important for very porous electrodes characterized by a

very large surface area.
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Fig. 9.25 Electrical

equivalent circuit

representing determination

of impedance of porous

electrode
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The potential profile in pores depends on the transfer coefficient through

Eq. (9.37) and influences impedances through Eq. (9.45) [435]. Examples of the

complex plane plots for three different values of transfer coefficients are displayed

in Fig. 9.28, which shows the importance of knowing α.

As was mentioned earlier, the square of the semi-infinite-length pore impedance,

Eq. (9.27), produces a perfect semicircle; however, simulated impedances in the

presence of a constant current lead to somewhat distorted semicircles [407]. This

fact is clear from the CNLS approximations of the simulated impedances by de

Levie’s equation [435]. Such a fit is displayed in Fig. 9.29. However, when the CPE

was used in Λ in Eq. (9.23),

Λ ¼ 2ρsl
2

r

1

Rct

þ jωð ÞϕTdl

� 
, ð9:47Þ

the approximation was very good (Fig. 9.29), with ϕ ¼ 0.92, depending on the pore

parameters. Small deviations, which are visible in Fig. 9.29, would be indistinguishable
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Fig. 9.26 Complex plane plots at porous electrode in presence of redox process at constant

overpotential η0 ¼ 0.2 V and different exchange current densities; continues lines – simulations,

Eq. (9.46), dashed line – according to de Levie’s equation (9.7); Cdl ¼ 20 uF cm�2, other pore
parameters as in Fig. 9.22 (From Ref. [72] with kind permission from Springer Science and

Business Media)
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j0 ¼ 10 A cm–2 and different overpotentials; continues lines – simulations, Eq. (9.46), dashed

line – according to de Levie’s equation (9.7); other parameters as in Figs. 9.22 and 9.26 (From Ref.

[72] with kind permission from Springer Science and Business Media)
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coefficient, η0 ¼ 0.2 V, j0 ¼ 10–3 A cm2, other parameters as in Fig. 9.26 (From Ref. [72] with

kind permission from Springer Science and Business Media)
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and fit to de Levie’s model with CPE, dotted line; for η0 ¼ 0.5 V, j0 ¼ 10–5 A cm�2, pore
parameters as in Fig. 9.26 (From Ref. [72] with kind permission from Springer Science and
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in the presence of experimental noise. However, such a fit leads to higher double-layer

capacitances [435].

In summary, the presence of a dc current generates a potential gradient in pores

(the concentration gradient was neglected here). This gradient causes an increase in

the observed charge transfer resistance as the overpotential decreases and Rct

increases in the pore, and a certain deformation of the complex plane plots was

especially visible for semi-infinite-length pores. With an increase in the kinetics of

the redox reaction or pore parameter l2/r, the finite-length porous model becomes a

semi-infinite-length model. The obtained impedance cannot be well approximated

by de Levie’s equation, but it can be approximated by introducing a CPE. However,

such an approximation produces higher double-layer capacitances. Nevertheless,

for simplicity, de Levie’s equation is used in practical applications, although it

can overestimate the real surface area by a factor of up to ~2.7 [435]. For example,

for hydrogen evolution on porous Ni electrodes good approximations by de Levie’s

equation were found with ϕ between 1 and 0.88 [431].

9.2.4 Porous Electrodes in Presence of DC Current,

Concentration Gradient in Pores and No

Potential Gradient, Ideally Conductive Electrode

(idc 6¼ 0, dCdc/dx 6¼ 0, dEdc/dx ¼ 0, rs 6¼ 0, re ¼ 0)

Another limiting case is a porous electrode in the presence of redox species and a

concentration gradient in pores, dC/dx 6¼ 0, but in the absence of a potential

gradient, dE/dx ¼ 0. In what follows, the case of an ideally conductive electrode

and a resistive solution in pores will be considered.

9.2.4.1 DC Solution

During a redox reaction in a porous electrode the concentrations of the redox

species change with depth x. This problem was studied by several authors [411,

433, 436–443]. In this case, an analytical solution for the concentration gradient and

the impedance [443] might be obtained.

Let us assume the redox process

Oþ neÆ
kf
!

kb
 
R, ð9:48Þ

which is described by the current density-potential relation in the pore:

j x; tð Þ ¼ nF CO x; tð Þk
!
f � CR x; tð Þk

 
b

� 
, ð9:49Þ
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where CO(x) and CR(x) are the concentrations of the oxidized and reduced forms in

the pore at a distance x from the pore orifice, k
!
f ¼ ksexp �αnf E� E0


 �� �
and k

 
b

¼ ksexp 1� αð Þnf E� E0

 �� �

are potential-dependent rate constants, ks is the stan-

dard rate constant, α the cathodic transfer coefficient, and E0 the standard potential.

Let us assume that at the bulk of the solution CO ¼ C�O and CR ¼ 0. Then Eq. (9.49)

may be rearranged to

j x; tð Þ ¼ nFC�O a x; tð Þ k
!
f þ k

 
b

� �
� k
 

b

� 
, ð9:50Þ

where a ¼ CO/C�O assuming that the diffusion coefficients of both forms are equal

and, as a consequence, CO(x,t) + CR(x,t) ¼ C�O. The current density flowing to the

pore walls between the distance x and x + dx may also be described as

j xð Þ ¼ � nF

2πrdx

dNO xð Þ
dt

, ð9:51Þ

where N is the number of moles of the oxidized substance being reduced. It can

be rearranged by the introduction of concentrations in a small section dx of the pore,

CO x; tð Þ ¼ NO x; tð Þ
πr2dx

, ð9:52Þ

to

j x; tð Þ ¼ nF

2πrdx
πr2dx

 � d

dt

NO x; tð Þ
πr2dx

� �
¼ � nFr

2

dCO x; tð Þ
dt

¼ � nFrC�O
2

da x; tð Þ
dt

, ð9:53Þ

which yields

da x; tð Þ
dt

¼ � 2

nFrC�O
j x; tð Þ: ð9:54Þ

Fick’s equation in the pore, taking into account the current flowing to the pore

walls, contains a diffusion term and the loss of the electroactive substance due to

electroreduction:

∂a x; tð Þ
∂t

¼ D
∂
2
a x; tð Þ
∂x2

� 2

nFrC�O
j x; tð Þ, ð9:55Þ

or, introducing the dimensionless distance z ¼ x/l,

9.2 Porous Electrodes in Presence of Redox Species in Solution 231



∂a z; tð Þ
∂t

¼ D

l2

� �
∂
2
a z; tð Þ
∂z2

� 2

nFrC�O

� �
j z; tð Þ: ð9:56Þ

To obtain the concentration distribution in pores, we need to know the steady-

state solution, when da(z)/dt ¼ 0. This condition means that the flux of O entering

the pore equals the flux of R leaving the pore and that the concentration outside the

pore is uniform. Equation (9.56) is then simplified to

d2a zð Þ
dz2

¼ 2l2

nFrDC�O
j zð Þ with

a 0ð Þ ¼ 1,
da 1ð Þ
dz
¼ 0:

8
<
: ð9:57Þ

An analytical solution of Eq. (9.57) is [443]

a zð Þ ¼ 1

1þ P
Pþ cosh

ffiffiffi
B
p

1� zð Þ
� �

cosh
ffiffiffi
B
p� �

( )
, ð9:58Þ

where

B ¼ 2ksl
2

rD

0
@

1
A p�α þ p1�αð Þ ¼ 2Φ2

0 P�α þ P1�α
 �
,

Φ2
0 ¼

2k0l2

rD
P ¼ enf E�E0ð Þ

:

ð9:59Þ

The concentration in pores depends on the electrode potential, and parameter

B relates to the normalized Thiele modulus Φ0 [444], which characterizes the mass

transfer in pores. Examples of concentration gradients obtained at different poten-

tials E � E0 are presented in Fig. 9.30. As the potential becomes more negative,
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Fig. 9.30 Dependence of dimensionless concentration in pores as function of distance, z ¼ x/l,

from pore orifice at different potentials E � E0 indicated in graph (V); parameters: l ¼ 0.05 cm,

r ¼ 10–4 cm, k0 ¼ 106 cm s–1, D0 ¼ 10–5 cm2 s–1 (From Ref. [72] with kind permission from

Springer Science and Business Media)
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the concentrations of the oxidized species decrease (and those of the reduced

species increase). At some potentials the concentration drops to zero inside the

pore (for E � E0 < �0.1 V) and a part of the pore is not used for the electrochem-

ical reaction; for example, at E � E0 ¼ �0.2 V only approximately 30 % of the

pore is electrochemically active.

The current flowing to the pore walls increases with increases in the negative

potential (Fig. 9.31); however, the current divided by the maximal current flowing

at the pore orifice jmax ¼ j(z ¼ 0) behaves differently; the largest value is observed

for E � E0 ¼ 0 and identical values are obtained for the positive and negative

potentials, i.e., j(x)/jmax(E � E0) ¼ j(x)/jmax(E � E0)] (Fig. 9.31).

From the current flowing to the pore walls at any distance the total current

entering the pore can be calculated by integration [443]:

I ¼ 2πrl

Z1

0

j zð Þdz ¼ nF 2πrlð ÞC�O k
!

f

tanh
ffiffiffi
B
p
ffiffiffi
B
p : ð9:60Þ

This equation has two limiting cases:

a. For shallow (short and wide) pores, l2/r is small and B �1. In this case, tanhffiffiffi
B

p
=
ffiffiffi
B

p
! 1, and Eq. (9.60) reduces to

I ¼ nF 2πrlð ÞC�
O k
!
f , ð9:61Þ

and a normal Tafelian behavior is observed with the slope �ln10/αnf ¼
�118 mV dec–1 for α ¼ 0.5 at 25 �C.

b. In the case of long and narrow pores B � 1, tanh
ffiffiffi
B

p
! 1, and Eq. (9.60)

reduces to
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Fig. 9.31 Dependence of dimensionless current as function of distance in pore for potentials from

0.1 V to �0.1 V, every 0.05 V (arrow: direction of increase in negative potential) and dependence

of current in pore divided by maximal current flowing at pore orifice on dimensionless distance

(From Ref. [72] with kind permission from Springer Science and Business Media)
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I ¼ nF 2πrlð ÞC�O k
!

f

1ffiffiffi
B
p ¼ nFπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r3k0D
p

C�Offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pα þ P1þα

p , ð9:62Þ

and two slopes are observedon theTafel plots,�ln10/{[(1 + α)/2]nf} ¼ �78.9/n mV

atmore positive potentials and�ln10/[(α/2)nf] ¼ �237/n mVdec–1 atmore negative

potentials, assuming α ¼ 0.5 at 25 �C. The slope observed atmore negative potentials

corresponds to a doubling of the typical kinetic Tafel plot observed on flat electrodes.

The Tafel plots corresponding to these two cases are displayed in Fig. 9.32.

9.2.4.2 AC Solution

To obtain the expression for the impedance, the expression for current must be

linearized [407, 441, 443]:

Δj ¼ ∂j

∂E

� �

a

ΔEþ ∂j

∂a

� �

E

Δa, ð9:63Þ

where Δj ¼ ejexp jωtð Þ, ΔE ¼ eEexp jωtð Þ, Δa ¼ eaexp jωtð Þ, and the symbols ej, eE,
and ea are the phasors [407]. The faradaic impedance, Ẑ f , and admittance, Ŷ f are

1

eZ f

¼ eY f ¼ �
ej
eE
¼ � ∂j

∂E

� �
� ∂j

∂a

� �
ea
eE
, ð9:64Þ

where the negative sign appears because the reduction current was defined as positive.

To calculate the impedance, it is necessary to determine ea=eE, while the derivatives in
parentheses are easily calculated from Eq. (9.50). Therefore, Eq. (9.56), which
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Fig. 9.32 Tafel plots on

porous electrode;

continuous line: long pores,

l ¼ 0.5 cm, Φ0 ¼ 15.8;

dashed line: shallow pores,

l ¼ 0.001 cm, Φ0 ¼ 0.032;

other parameters as in

Fig. 9.30 (From Ref. [72]

with kind permission from

Springer Science and

Business Media)
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describes the diffusion of the redox species in the pore, must be solved for Δa.

Substitution of Δa followed by division by exp( jωt) gives

jωea ¼ D
d2ea
dz2
� 2l2

nFrC�O

∂j

∂a

� �
ea þ ∂j

∂E

� �
eE

� 
, ð9:65Þ

or, expressing the solution in terms of the parameter ea=eE necessary in Eq. (9.64),

d2 ea=eE
� 	

dz2
¼ ea

eE

� �
jωl2

D
þ 2l2

nFrDC�O

∂j

ja

� �� 
þ 2l2

nFrDC�O

∂j

∂E

� �� 
¼ ea

eE

� �
K̂ þ L,

ð9:66Þ

where

K̂ ¼ jωl2

D
þ 2l2

nFrDC�O

∂j

∂a

0
@

1
A ¼ jωl2

D
þ B; L ¼ 2l2

nFrDC�O

∂j

∂E

� �
, ð9:67Þ

with the following boundary conditions:

z ¼ 0

z ¼ 1

�
ea ¼ 0,

dea=dz ¼ 0:

The solution of Eq. (9.66) is

ea
eE
¼ L

K̂
�1þ

cosh
ffiffiffiffiffi
K̂

p
1� zð Þ

h i

cosh
ffiffiffiffiffi
K̂

p� 	

8
<
:

9
=
;: ð9:68Þ

The total impedance of the pore walls consists of the faradaic and the double-

layer impedances. They are connected in parallel, Eq. (9.22); therefore, the faradaic

admittance, Ŷf, tot, and double-layer admittance, Ŷdl, must be added in series:

Ŷ tot ¼ Ŷ f, tot þ Ŷ dl ¼ Ŷ f, tot þ jωCdl 2πrlð Þ ð9:69Þ

and

Ŷ f, tot ¼
Z1

0

Ŷ fdz: ð9:70Þ

Substitution of Eqs. (9.64) and (9.68) into Eq. (9.70) and assuming α ¼ 0.5 gives

the analytical solution
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Ŷ f, tot ¼ u
P

1þ P

0
@

1
A 1� B

K̂

0
@

1
Aþ u

α� 1� αð ÞP
1þ P

2
4

3
5 1� B

K̂

0
@

1
A tanh

ffiffiffi
B
p
ffiffiffi
B
p

þu P

1þ P

0
@

1
A B

K̂

tanh
ffiffiffiffiffi
K̂

p
ffiffiffiffiffi
K̂

p

þu α� 1� αð ÞP
1þ P

2
4

3
5 B

K̂

ffiffiffiffiffi
K̂

p
cosh

ffiffiffiffiffi
K̂

p
�

ffiffiffi
B
p

cosh
ffiffiffi
B
p

K̂ � B
,

ð9:71Þ

where u ¼ n2FfC�O k
!

f . This is a different form but equivalent to that shown earlier

[407, 443]. It simplifies at low and high frequencies. At very low frequencies,

ω ! 0, B/K̂ ! 1, and Eq. (9.71) simplifies to

Ŷ f, tot ω! 0ð Þ ¼ 1

Rp

¼ u
P

1þ P

tanh
ffiffiffi
B
p
ffiffiffi
B
p

þu α� 1� αð ÞP
1þ P

2
4

3
5 1

2
þ tanh

ffiffiffi
B
p

2
ffiffiffi
B
p � 1

2
tanh2

ffiffiffi
B
p

2
4

3
5,

ð9:72Þ

where Rp is the polarization resistance. At very high frequencies,ω ! ∞, B/K̂ ! 0,

1 � B/K̂ ! 1, and the admittance becomes

Ŷ f, tot ω!1ð Þ ¼ 1

Rt

¼ u
P

1þ P
u

α� 1� αð ÞP
1þ P

� 
tanh

ffiffiffi
B
p
ffiffiffi
B
p : ð9:73Þ

When Ŷ f, tot ω! 0ð Þ is different from Ŷ f, tot ω!1ð Þ, that is, at porous elec-
trodes in the presence of a concentration gradient, the faradaic impedance forms a

semicircle on the complex plane plots. This means that the total impedance exhibits

two semicircles for a simple redox reaction, which, on a flat electrode, exhibits only

one semicircle. The difference between the high- and low-frequency admittance

equals

Ŷ f, tot ω!1ð Þ � Ŷ f, tot ω! 0ð Þ ¼

u
P

1þ P
1� tanh

ffiffiffi
B
p
ffiffiffi
B
p

0
@

1
Aþ u

α� 1� αð ÞP
1þ P

2
4

3
5 tanh

ffiffiffi
B
p

2
ffiffiffi
B
p � 1

2
þ 1

2
tanh2

ffiffiffi
B
p

2
4

3
5:

ð9:74Þ

For flat electrodes B ! 0, tanh
ffiffiffi
B
p
! 0, tanh

ffiffiffi
B
p

=
ffiffiffi
B
p
! 1 , and Eq. (9.74)

becomes
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Ŷ f, tot ω!1ð Þ � Ŷ f, tot ω! 0ð Þ ¼ 0: ð9:75Þ

and

Ŷ f, tot ¼ u
P

1þ P
þ u

2

1� P

1þ P

� �
¼ 0:5u: ð9:76Þ

In this case, the high- and low-frequency impedances are the same as for flat

electrodes, and only one semicircle is observed on the complex plane plots.

For long pores, B ! ∞, and at very negative potentials these admittances are

Ŷ f, tot ω!1ð Þ ¼ u

2

1ffiffiffi
B
p ,

Ŷ f, tot ω! 0ð Þ ¼ u

4

1ffiffiffi
B
p ,

ð9:77Þ

and their ratio becomes constant equal to two:

Ŷ f, tot ω!1ð Þ
Ŷ f, tot ω! 0ð Þ

¼ Rp

Rt

¼ 2: ð9:78Þ

In this case, the faradaic impedance is represented as a semicircle starting at2
ffiffiffi
B
p

=u

and ending at 4
ffiffiffi
B
p

=u. When combined with the double-layer capacitance, the elec-

trode impedance displays two semicircles of the same radius on the complex plane

plots. Examples of complex plane plots at different concentrations of the active species

and the same potential are displayed in Fig. 9.33. In this case, the ratio of the highest to

the lowest faradaic impedance is constant; however, at low concentrations, the double-

layer capacitance causes poor visibility of the first semicircle. Two distinct semicircles

are well formed at higher concentrations of the electroactive species.

The influence of the electrode potential, E � E0, on the complex plane plots is

shown in Fig. 9.34. With an increase in the negative potential the faradaic imped-

ance changes and tends to the condition in Eq. (9.78). The total impedance always

displays two semicircles; however, their separation is most visible at around

E � E0 ¼ 0.

The influence of the electrode porosity is displayed in Fig. 9.35. At very low

porosities, i.e., for very shallow pores (l ¼ 0.005 cm), the electrode behaves

practically as flat, and one semicircle is observed on the complex plane plots.

With an increase in the pore length, two semicircles are observed (l ¼ 0.05 cm),

and with further increases, one semicircle is observed identical to the faradaic

impedance and the influence of the double-layer capacitance disappears.

To better acquaint ourselves with this problem, let us solve the same problem in

the case where both forms, Ox and Red, are present in solution.
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absence of potential gradient, C�O ¼ 0.1 M; other parameters as in Fig. 9.33; continuous line: total

impedances, dashed lines: faradaic impedances
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Example 9.1 Determine the concentration gradient and impedance of a porous

electrode in the presence of solution with both R and O forms present in solution;

their concentrations are C�O and C�R.
In this case the current is described by the current-overpotential equation:

j xð Þ ¼ j0
CO xð Þ
C�O

e�αnf η � CR xð Þ
C�R

e 1�αð Þnf η
� �

: ð9:79Þ

Assuming that the diffusion coefficients of both forms are identical one can write

the mass conservation equation in the pore:

C�O þ C�R ¼ CO xð Þ þ CR xð Þ: ð9:80Þ

Equation (9.79) can be rearranged introducing dimensionless concentrations:

a xð Þ ¼ CO xð Þ
C�O

and m ¼ C�O
C�R

, ð9:81Þ

j xð Þ ¼ j0 a xð Þ e�αnf η þ me 1�αð Þnf η � mþ 1ð Þe 1�αð Þnf η
 �� �
¼

¼ j0 a xð Þ P�α þ mP1�α
 �
� mþ 1ð ÞP1�α� �

: ð9:82Þ
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ent pore lengths, indicated in figures in centimeters, r ¼ 10–4 cm; other parameters as in Fig. 9.34,

at a constant potential E � E0 ¼ 0 V; continuous line: total impedance, dashed lines: faradaic

impedances

9.2 Porous Electrodes in Presence of Redox Species in Solution 239



The steady-state concentration in the pore, Eq. (9.57), becomes

d2a zð Þ
dz2

¼ 2l2

nFrDC�O
j zð Þ

¼ 2l2j0 P�α þ mP1�α
 �

nFrDC�O
a zð Þ � 2l2j0 1þ mð ÞP1�α

nFrDC�O
¼ Ba zð Þ � A:

ð9:83Þ

The solution of this equation is

a zð Þ ¼ 1þ mð ÞP
1þ mP

þ 1� P

1þ mP

cosh
ffiffiffi
B
p

1� zð Þ
� �

cosh
ffiffiffi
B
p� � : ð9:84Þ

It can be shown that at very negative potentials, the parameter a reaches zero and

at very positive potentials (1 + m)/m. Substitution into Eqs. (9.68) and (9.64) and

assuming n ¼ 1 leads to the faradaic admittance at a distance z from the orifice:

Yf zð Þ ¼ u2 1� B

K̂

0
@

1
Aþ u3 1� B

K̂

0
@

1
A cosh

ffiffiffi
B
p

1� zð Þ
� �

cosh
ffiffiffi
B
p� � þ u2

B

K̂

cosh
ffiffiffiffiffi
K̂

p
1� zð Þ

h i

cosh
ffiffiffiffiffi
K̂

ph i

þu3
B

K̂

cosh
ffiffiffi
B
p

1� zð Þ
� �

cosh
ffiffiffi
B
p� �

cosh
ffiffiffiffiffi
K̂

p
1� zð Þ

h i

cosh
ffiffiffiffiffi
K̂

ph i ,

ð9:85Þ

where

u2 ¼ j0f P
1�α 1þ mð Þ

1þ mP
and u3 ¼ j0f P

�α α� m 1� αð ÞP½ �
1þ mP

1� Pð Þ: ð9:86Þ

Integration of the faradaic admittance, Eq. (9.70), gives the total faradaic

impedance:

Yf, tot ¼ u2 1� B

K̂

0
@

1
Aþ u3 1� B

K̂

0
@

1
A tanh

ffiffiffi
B

p� �
ffiffiffi
B

p þ u2
B

K̂

tanh
ffiffiffiffiffi
K̂

ph i

ffiffiffiffiffi
K̂

p þ

þu3
B

K̂

tanh
ffiffiffi
B

p� �
� tanh

ffiffiffiffiffi
K̂

ph i

K̂ � B
:

ð9:87Þ

In summary, in the case of a concentration gradient in pores and in the absence of

a potential gradient, the faradaic impedance becomes a semicircle instead of a
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constant value. This translates into the formation of two semicircles of the total

impedance on complex plane plots. The formation of two semicircles was observed

experimentally on porous gold electrodes [412].

9.2.5 General Case: Potential and Concentration Gradient

9.2.5.1 DC Solution

In the general case, the potential and concentration gradients appear in pores

simultaneously [433, 436–441, 445]. It is assumed that the concentrations of the

redox species outside the pores are C�O and C�R and the current may be expressed in

terms of the overpotential as in Eqs. (9.79) and (9.82). To solve for the concentra-

tion and potential gradient, Eqs. (9.1) and (9.2) must be solved simultaneously:

dI xð Þ
dx
¼ �2πrj xð Þ and dη xð Þ

dx
¼ � ρs

πr2

� 	
I xð Þ: ð9:88Þ

Taking the second derivative of the overpotential and substitution of the current

gradient gives

d2η xð Þ
dx2

¼ 2ρs

r
j xð Þ, ð9:89Þ

or, in dimensionless form,

d2η zð Þ
dz2

¼ 2ρsl
2

r
j zð Þ: ð9:90Þ

This equation must be solved together with Eq. (9.57). They both represent

second-order differential equations for η(x) and a(x) with the following conditions:

z ¼ 0 a ¼ 1, η ¼ η0 ,

z ¼ 1, da=dz ¼ dη=dz ¼ 0 :
ð9:91Þ

Combination of these two equations gives

d2η zð Þ
d2z

¼ nFDC�Oρs

 � d2a zð Þ

dz2
¼ v

d2a zð Þ
dz2

, ð9:92Þ

where ν ¼ nFDC�Oρs. Equation (9.92) has an analytical solution:

η0 � η zð Þ ¼ v 1� a zð Þ½ �: ð9:93Þ

This solution means that there is a linear relation between the potential and

concentration in the pores. There are two limiting cases:
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a. When ν � 1 V, η0 � η(z) � 0, the overpotential is practically constant in the

pores and the system is determined by the concentration gradient; this case

corresponds to that described in Sect. 9.2.4.

b. When v � 1 V, the potential gradient in the pores is important, while the concen-

tration gradient is negligible; this case corresponds to that described in Sect. 9.2.3.

The value of the parameter v for typical experimental conditions, n ¼ 1, D

¼ 10–5 cm2 s–1, ρs ¼ 10 Ω cm, and concentrations, C�
O, 1 and 10 mM, equals

ν ~ 10–5 and 10–4 V, respectively. This means that for typical concentrations the

process is limited by the concentration gradient in the pores. Only in the case of

very large concentrations of electroactive species or solvent reduction/oxidation

(water electrolysis, chlorine evolution in concentrated solutions) might the potential

gradient be important.

Substitution of Eq. (9.93) into Eqs. (9.57) and (9.90) gives the following two

equations:

d2a

dz2
¼ 2j0l

2

nFrDC�
O

� �
a e�b η0�vð Þþbva þ meb η0�vð Þ�bva

 �

� mþ 1ð Þeb η0�vð Þ�bva

� 
, ð9:94Þ

d2η

dz2
¼ 2ρj0l

2

r

� �
1� η0

v
þ η

v

� 	
e�bη þ mebη

 �

� mþ 1ð Þebη
h i

: ð9:95Þ

It is sufficient to solve only one of these equations because the parameters a(z)

and η(z) are related by Eq. (9.93). The first integration can be carried out analyti-

cally, but the second one must be carried out numerically, searching for the values

of a(1) or η(1) at z ¼ 1 (i.e., x ¼ l ) satisfying the conditions da/dz ¼ dη/dz ¼ 0

[441]. These computations usually demand higher computing precision (quadruple

precision in FORTRAN using a procedure for stiff differential equations).
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Fig. 9.36 Tafel plots on porous electrode at different concentrations of active species. Concen-

trations: (a) 0.01, (b) 0.1, (c) 1 M, (d ) limit at infinite concentration (no concentration gradient);

pore parameters: l ¼ 0.05 cm, r ¼ 10–4 cm, ρs ¼ 10 Ω cm, D ¼ 10–5 cm2 s–1, m ¼ 1, j0 ¼ 10–7

A cm–2 (From Ref. [72] with kind permission from Springer Science and Business Media)
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Examples of the Tafel plots obtained at porous electrodes are shown in Fig. 9.36. At

lower concentrations of the electroactive species the electroreduction process is

controlled by the concentration gradient, and the Tafel slope at 25 �C is 2ln(10)/αf

¼ 237 mV dec–1 for α ¼ 0.5. At higher concentrations and lower overpotentials, the

Tafel slope becomes ln(10)/αf ¼ 118 mV dec–1 because the concentration gradient is

negligible; however, at higher overpotentials and, subsequently, higher currents, the

slope increases as the concentration and potential gradients appear again.

9.2.5.2 AC Solution

To obtain the ac solution, one must solve Eq. (9.63), which leads to the solution,

Eq. (9.68), for the local impedance in the pore [441]. To calculate the total

impedance, one must use the concentration and potential distribution in pores and

carry out numerical addition of impedances using Eq. (9.44), similarly to the case of

the potential gradient only [435] but using the full expression for the current,

Eq. (9.82), where both a(x) and η(x) are distance dependent. An example of the

complex plane impedance plot obtained in the case of the potential and concentra-

tion gradients in pores is shown in Fig. 9.37. It is evident that there are two

semicircles related to the concentration gradient at lower frequencies (Fig. 9.34)

and a straight line at 45� corresponding to the potential drop in pores at high

frequencies (Fig. 9.27).

An influence of the concentration on the impedance spectra is illustrated in

Fig. 9.38. At high frequencies, a short straight line at 45� is observed due to the

potential gradient. At lower frequencies, two semicircles appear, and their diameter

decreases with an increase in the concentration. In the case where there is no

concentration gradient (C�
0 ! ∞), impedance due to the potential gradient only is

observed (Fig. 9.38(4)).

The complex plane plots obtained in the general case involve concentration and

potential gradients. They display characteristic features corresponding to a concen-

tration gradient, i.e., two semicircles, and potential gradient, i.e., a straight line at
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Fig. 9.37 Complex plane plot on porous electrode in presence of potential and concentration

gradients; j0 ¼ 10–5 A cm–2, C�
0 ¼ 1 M, η ¼ �0.2 V; other pore parameters as in Fig. 9.36

(From Ref. [72] with kind permission from Springer Science and Business Media)
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45� at high frequencies. This theory was also applied to the dissolved hydrogen

concentration buildup in pores during the hydrogen evolution reaction where its

concentration increased inside the pore with the distance from the pore

orifice [441].

9.3 Distribution of Pores

All the simulations presented previously were carried out assuming the presence of

one or multiple uniform pores of the same geometry. However, in real systems,

there are many different pores of different geometry.

The simplest method of taking into account the distribution of pores of different

sizes is to use the transmission line ladder network (Fig. 9.4, 9.14, 9.17, or 9.19) and

use different values for the parameters ri, re, and ci or interfacial impedances zi and

calculate the total admittance by the addition of the admittances of the small pore

elements. Such a method was used, for example, by Macdonald et al. [446, 447] and

Pyun et al. [448]. Although such a model can be used to simulate impedance spectra

assuming changes in parameters with the position in the pore, it is difficult to obtain

the pore parameters from the experimental spectra.

Another method is to assume a certain distribution of pore parameters. Song

et al. [449–452], in a series of papers, considered the distribution of pore parameters

for electrodes in the absence of electroactive species, i.e., for purely capacitive

electrodes. De Levie’s equation (9.7) is applicable to individual pores, but for

different pores different values of the parameter Λ are obtained. The dimensionless

penetrability parameter, α, was defined as

α ¼ λ

l
¼ 1

2l

ffiffiffiffiffiffiffiffiffiffi
r

Cdlρs

r� �
ω�1=2 ¼ α0ω

�1=2, ð9:96Þ
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Fig. 9.38 Influence of concentration of electroactive species on impedance spectra. Concentra-

tions: (1) 10–4, (2) 10–3, (3) 10–2 mol cm–3, (4) limit at infinite concentration (potential gradient

only); η ¼ 0.2 V, j0 ¼ 10–6 A cm–2; other parameters as in Fig. 9.36 (From Ref. [72] with kind

permission from Springer Science and Business Media)
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where α0 is the so-called penetrability coefficient, in s–1/2, directly proportional toffiffi
r
p

=l. The authors used different distribution functions of α0: normal, lognormal,

Lorentzian, and log Lorentzian. The total impedance of the porous electrode was

calculated by integration over all pores:

1

Ztot

¼
Z1

�1

1

Zp α0ð Þ
f α0; μ; σð Þdα0, ð9:97Þ

where Zp(α0) is the impedance of a single pore characterized by the parameter

α0 and f(α0,μ,σ) is the continuous pore size distribution function of the parameter

α0 with mean value μ and standard deviation σ. The integration was carried out over

all values of α0. In the case of the lognormal distribution function at low frequen-

cies, the impedances displayed a quasi-CPE behavior. Later, these authors proposed

so-called electrochemical porosimetry in an attempt to determine the pore size

distribution function from impedance measurements [451, 452].

Recently, Musiani et al. [453] critically reviewed the aforementioned papers and

found that Song et al.’s calculation did not correspond to a lognormal pore radius

distribution because, in spite of a constant μ value, the median of the cumulative

distribution function depends on the standard deviation σ. Since the number of

pores is also affected by the σ value (at constant pore volumes), Song et al.’s

calculations correspond to allowing both n and median rμ to change when σ

changes. The new simulations were carried out [453] using the classical lognormal

distribution function for pore radiuses:

f rð Þ ¼ 1

r
ffiffiffiffiffi
2π
p

σ
exp � 1

2

ln rð Þ � ln rμ

 �

σ

� �2
" #

: ð9:98Þ

Under such conditions, a constant median of the pore radius, rμ, and adjusted

number of pores, n, made it possible to keep the total volume constant. Examples

of complex plane plots for such systems are presented in Fig. 9.39. The phase

angle changes from 45� at high frequencies to 90� at very low frequencies when the

ac signal can penetrate to the bottom of the pore. In the medium frequency range, the

impedance resembles CPE behavior. However, the surface area calculated using Brug

et al.’s equation (8.11) leads to a right order of magnitude but fails to yield the correct

value as the physical model used in Brug et al.’s equation is inappropriate here.

9.4 Continuous Porous Model

In the preceding sections the impedance of a single pore or the distribution of simple

pores of known geometry was treated. However, in real cases of porous electrodes

used in, for example, lithium or hydrogen storage batteries or fuel cells, one does not
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know the exact geometry of the electrode and the pores; they display a random

structure. Real porous electrodes often consist of particles of an electronic conduc-

tor, sometimes containing a nonconducting material, and the pores are filled with

solution containing electroactive species, for example, Li+ ions in the case of lithium

batteries and H2 or O2 in fuel cells. A continuous theory of porous electrodes in dc

conditions was presented byNewman [454]. Such amodel is schematically shown in

Fig. 9.40, where the ionic current, i2, is flowing from the solution into a porous

electrode. It gradually decreases in the porous electrode while the electronic current,

i1, increases as it is transferred from the solution to the solid matrix.

At the interface solution-electrode at x ¼ 0 there is only an ionic current, and the

total current I ¼ i2, the electronic current i1 ¼ 0, and the potential in solution

Φ2 ¼ 0 (by definition). On the other hand, at the electrode-solid contact interface

at x ¼ l there is only an electronic current, I ¼ i1,ionic current, i2 ¼ 0, and the

potential in the electrode is Φ1(l ). As x increases from zero to l, the ionic current

decreases and the electronic current increases, and inside the porous electrode

i1 + i2 ¼ I. In this model, a continuous variation of the potential Φ1 in the solid

and Φ2 in the solution is assumed.

Ohm’s law in the solid matrix and in solution may be written as

∂Φ1

∂x
¼ � i1

σ

∂Φ2

∂x
� i2

κ
, ð9:99Þ

where σ and κ are the conductivities of the solid phase and the solution, respec-

tively. The faradaic current that flows between the matrix and solution may be

Fig. 9.39 Complex plane

plots for lognormally

distributed pores with

ideally polarizable walls for

constant pore volume and

various standard deviations

σ (From Ref. [453],

copyright (2011), with

permission from Elsevier)
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described by the Butler-Volmer equation if the concentration polarization is

neglected:

if ¼ ai0 exp αaf ηsð Þ � exp �αcf ηsð Þ½ �, ð9:100Þ

where a is the specific interfacial area of the pore walls per unit volume of the

electrode (cm–1), i0 is the exchange current density, the indices a and c indicate

anodic and cathodic processes, respectively, the overpotential is ηs ¼ Φ1 � Φ2 �
Eeq, and Eeq is the open circuit (equilibrium) potential. In the case of concentration

polarization, the current-overpotential equation should be used:

if ¼ ai0
Cox

C�
ox

exp αaf ηsð Þ � Cred

C�
red

exp �αcf ηsð Þ
� 

: ð9:101Þ

The diffusion equation in pores is given by an analog of Eq. (9.55) [454, 455]:

ε
∂C

∂t
¼ εD

∂
2
C

∂x2
� a

F
if , ð9:102Þ

where ε is the electrode porosity. In the preceding equations, the parameters D, κ,

and σ are the effective values, which are different from the values outside of pores

[454, 455]:

D ¼ ε0:5D0; κ ¼ ε1:5κ0; σ ¼ 1� εð Þ1:5σ0, ð9:103Þ

where the index 0 denotes values outside pores.

The impedances may be evaluated by applying a small ac perturbation that

generates a small perturbations of the parameters around their dc values, adding

the charging current [456, 457],

Fig. 9.40 Schematic representation of continuous porous electrode (From Ref. [72] with kind

permission from Springer Science and Business Media)
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idl ¼ Cdl

∂ Φ1 �Φ2ð Þ
∂t

, ð9:104Þ

and solving the equations numerically. Such calculations were carried out by

Meyers et al. [457] for lithium intercalation in spherical particles, assuming a

lognormal distribution of particle dimensions. Examples of the complex plane

plots obtained on such electrodes are displayed in Fig. 9.41. At high frequencies,

Fig. 9.41 Complex plane

plots simulated for porous

electrodes with various

particle size distributions,

ψ; ψ ¼ 0 corresponds to

uniform particle size. The

lower figure is an expanded

view at high frequencies

(From Ref.

[457]. Reproduced with

permission of

Electrochemical Society)
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a skewed semicircle is observed, similar to those presented for a semi-infinite-

length porous electrode (Fig. 9.26), while the low-frequency part represents the

finite-length diffusion (Fig. 9.3).

This theory was later extended to rechargeable lithium batteries, including a

concentrated solution theory of binary electrolytes and assuming that transference

numbers were constant [456]. Devan et al. [455] developed an analytical solution

for the impedance of porous electrodes using the concentrated solution theory and a

linear electrode kinetics that was a linear form of the Butler-Volmer equation:

if ¼ i0 f (αa + αc) η. Such a solution (although formally rather complex) permitted

study of the influence of different parameters on impedance plots and the limiting

cases of the impedance parameters. An example plot is displayed in Fig. 9.42.

It represents two semicircles, the high-frequency kinetic skewed arc and the

low-frequency semicircle due to diffusion in pores. These plots might be compared

with the plots for single-pore impedance in the absence of a potential drop (Fig. 9.3)

or a general case of a single pore in the presence of potential and concentration

gradients (Fig. 9.37).

This method was also applied by other authors to hydrogen absorption in a

porous electrode consisting of spherical particles of AB5-type material [458] to

describe a whole polymer electrolyte fuel cell with gas diffusion in pores [459],

alkaline fuel cells [460], and intercalation electrodes [461]. Several authors

attempted to fit the experimental impedances to their models [456–461].

It is evident that a single-pore theory cannot describe more complex cases of real

porous electrodes containing particles of different sizes that are randomly distrib-

uted. Nevertheless, numerical simulations demand some additional information

about the electrode, particle size distribution, possible heterogeneity of the material,

conductivity of different phases, etc., and the electrode studied should be composed

of a uniform packing of the particles with their size being much smaller than the

electrode thickness.

Fig. 9.42 Complex plane

plot of porous electrode:

continuous line: analytical

solution, triangles:

numerical solution; inset:

high-frequency part of plot

(impedances are in Ω)

(From Ref. [455].

Reproduced with

permission of

Electrochemical Society)
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9.5 Conclusions

The impedance of porous electrodes is now relatively well understood. It depends

strongly on pore geometry and the presence and concentration of redox species. In

some cases involving the resistance of electrode and solution, it might be difficult to

obtain characteristic parameters from the experimental curves because often they

might be well approximated by a simpler model involving the solution resistance

only. Detailed knowledge of the porous material parameters permits simulations of

the impedance using continuous models, although obtaining certain parameters

from the experiment might be more difficult. Porosity effects usually appear at

high frequencies as a small line or a semicircle, and they are often confused with

faradaic reaction effects. However, some simple tests allow one to distinguish

between these two cases.

9.6 Exercises

Exercise 9.1 Using Maple or Mathematica simulate the impedance described by

Eq. (9.18) using data from Fig. 9.15.

Exercise 9.2 Simulate the impedances defined in Eq. (9.16) using ZView and then

approximate them using de Levie’s classical model. This model might be found in

the new version of ZView only. Use the following parameters: re ¼ 200 Ω cm1,

rs ¼ 50 Ω cm–1, cdl ¼ 0.001 F cm–1, l ¼ 0.05 cm.

Exercise 9.3 Using Maple or Mathematica simulate the impedance described by

Eqs. (9.16) and (9.30) using data from Fig. 9.20.

Exercise 9.4 Simulate the impedance of a porous electrode in the presence of

solution and electrode resistance and a redox system using ZView. Use the param-

eters from Fig. 9.20. Fit the obtained data to the simple de Levie model.
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Chapter 10

Semiconductors and Mott-Schottky Plots

10.1 Semiconductors in Solution

When a conductive electrode (e.g., metallic or glassy carbon) is in contact with an

electrolytic solution, the excess electronic charge is accumulated at the electrode

surface and charge distribution occurs in the solution only. This is related to the fact

that as the number of charged species increases, the space in which the redistribu-

tion of charges occurs shrinks. At a metallic electrode–solution interface, the charge

redistribution in solution depends on the applied potential and is described by the

Guy-Chapman-Stern theory. The characteristic thickness of the diffuse layer in

nonadsorbing electrolytes varies from 0.3 nm in 1 M to 3 nm in 0.01 M aqueous

electrolyte, while the thickness of the Helmholtz layer is much smaller [17].

In the case of semiconductor electrodes, the concentration of conductive species

(electrons or holes) is much smaller than that in solution. This creates a redistribu-

tion of the space charge in the semiconductor electrode at distances much larger

than that in solutions, 10–100 nm [462, 463]. This leads to much smaller capaci-

tances of the semiconductor electrodes. Passive films formed on metallic surfaces

behave as semiconductors, and their properties are important in studies of corrosion

protection.

Because of the charge redistribution in the conduction and valence band, poten-

tial bending appears at the surface. This effect is illustrated in Fig. 10.1. For the n-

type semiconductor electrode at an open circuit, the Fermi level is usually higher

than the redox potential of the electrolyte, and the electrons are transferred from the

electrode to the solution, producing a positive charge associated with the space

charge region, causing an upward bending of the band edges. The opposite effect,

that is, a downward bending of the band edges, is observed for p-type semiconduc-

tors [3, 17, 462, 463]. The magnitude and direction of bending depends on the

applied potential, as seen in Fig. 10.1. At a certain applied potential, no bending

is observed, and this potential is called a flatband potential, Efb. The value of

this potential may be determined electrochemically using Mott-Schottky plots

[464–466].

A. Lasia, Electrochemical Impedance Spectroscopy and its Applications,

DOI 10.1007/978-1-4614-8933-7_10, © Springer Science+Business Media New York 2014
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Under depletion conditions there is a relation between 1/C2
SC and the potential,

where CSC is the semiconductor electrode capacitance. For n-type semiconductors

the following relation is found:

1

C2
SC

¼ 2

εε0eND

E� Efb �
kT

e

� �
, ð10:1Þ

where ε is the dielectric constant of the semiconductor, ε0 is the dielectric

permittivity of the vacuum, e is the elementary electric charge, k is the

Fig. 10.1 Effect of applied

potential, E, on band edges

in interior of n-type

semiconductor; (a)
E > Efb, (b) E ¼ Efb,

(c) E < Efb
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Boltzmann constant, ND is the donor density, and kT/e ¼ 0.0257 V 25 25 �C.
A similar expression exists for p-type semiconductors:

1

c2sc
¼ �2

εε0eNA

E� Efb þ
kT

e

� �
, ð10:2Þ

where NA is the acceptor density.

10.2 Determination of Flatband Potential

Capacitance measurements are usually carried out at one frequency, and the

measured capacitance is determined as

c ¼ �1

ωZ
00 , ð10:3Þ

where C is the measured electrode capacitance. In general, it consists of the

connection between the space charge capacitance, Csc, and the double-layer capac-

itance, Cdl, in series:

1

C
¼ 1

CSC

þ 1

Cdl

, ð10:4Þ

but usually CSC � Cdl and C � CSC. Examples of Mott-Schottky plots are

presented in Fig. 10.2.

Fig. 10.2 Mott-Schottky

plots obtained on n-GaAs

( filled circles) and p-GaAs

(open circles) electrodes in

2:l AlC13 –

n-butylpyridinium chloride

molten salt electrolyte; the

frequency was 2 kHz (From

Ref. [467], copyright

(1983), with permission

from Elsevier)
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The intercept of these plots provides the value of the flatband potential, Efb,

and the slope gives the donor or acceptor density. In agreement with Eqs. (10.1) and

(10.2), the slope for n-type semiconductor is positive and that for p-type semi-

conductors is negative.

The use of Eq. (10.3) assumes that the semiconductor-electrolyte interface is

ideally capacitive and can be represented by the solution resistance, Rs, and the

interface capacitance, C, in series. However, such an interface is almost never

purely capacitive and must be represented by the CPE. This leads to different

slopes at different frequencies and sometimes different values of the flatband

potential. An example of such a behavior is shown in Fig. 10.3. It is evident that

measurements at different frequencies display different intercepts and slopes, and,

as a consequence, different Efb and ND.

In general, behavior described by Rs CPE or Rs(Rp CPE) circuits is observed,

that is, displaying impedances as in Figs. 8.3 and 8.4. Harrington and Devine

[468] and Rodriguez and Carranza [469] proposed to determine the average

double-layer capacitance from the CPE model using Brug et al. [305] and Hsu

and Mansfeld [306] models (Sect. 8.1). They found that the Hsu and Mansfeld

model leads to incorrect data, while that of Brug et al. gives correct results.

Fig. 10.3 Mott-Schottky

plots at Cr electrode using

capacitance measured at

one frequency (indicated),

Eq. (10.3), and using Brug

et al. [305] and Hsu and

Mansfeld [306] models

(From Ref.

[468]. Reproduced with

permission of

Electrochemical Society)

254 10 Semiconductors and Mott-Schottky Plots

http://dx.doi.org/10.1007/978-1-4614-8933-7_3
http://dx.doi.org/10.1007/978-1-4614-8933-7_4
http://dx.doi.org/10.1007/978-1-4614-8933-7_8


A comparison of the results obtained from these two models is shown in

Fig. 10.3. Of course, in such cases, at each potential the complete impedance

spectrum must be obtained, which leads to longer experiments and possible

changes in the surface layer with time.

Impedance of semiconductors in the presence of electron transfer through

surface states is much more complex; see, e.g., Ref. [470–472].
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Chapter 11

Coatings and Paints

Electrochemical impedance spectroscopy is very well suited to study paints and

coatings used to prevent corrosion. There are even ISO norms developed for such

tests [675] and technical notes from the equipment manufacturers [676, 681]. This

topic has also been reviewed in several books [473–475].

11.1 Electrical Equivalent Models

The ideal coating is a pure capacitor (Fig. 11.1a), where Rs is the solution resistance

and Cc the coating capacitance. However, real coatings in solutions rarely behave in

an ideal manner; they have defects and regions of low cross linking. An electrical

equivalent circuit for such coatings is displayed in Fig. 11.1b, in which the coating

capacitance is in parallel with the coating resistance, Rpo, and in series with the

capacitance of the diffuse layer at the coating (containing ions [474])/metal inter-

face, Cd
� [474]. The index 0 indicates that the geometric and real surface areas are

identical as the coating is adhering well to the metal surface. Because of the low

dielectric constant of the coating, this value is small, approximately 0.05 μF cm�2.

The capacitance of the coating, Cc, is usually one to two orders of magnitude lower

than Cd
�.

During further exposure of the coating to solution corrosion starts under the

pinholes and can spread around, but in general it is localized. This produces a

double-layer capacitance of the metal/solution interface under coating, Cd, greater

than that of metal/coating, Cd > Cd
0. The faradaic corrosion reaction is represented

by the resistance, Rc (Fig. 11.1c). When disbonding of the coating continues, the

solution can penetrate under the coating (Fig. 11.2). In such a case, the impedance

can be modeled as a transmission line (Fig. 11.1d). When the ohmic resistance under

the film, Rsi, becomes small, the transmission line can be simplified to the model in

Fig. 11.1e, where CD ¼ Σ Cdi and 1/RD ¼ Σ 1/Rdi.
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11.2 Water Absorption in Organic Coating

The capacitance of a dielectric depends on its dielectric constant, ε, and thickness, d:

Cc ¼
εε0A0

d
, ð11:1Þ

where ε0 is the dielectric permittivity of vacuum and A0 the geometric surface area.

When the coating is in contact with an aqueous solution, water penetrates into the

coating, changing its initial dielectric constant from 3–8 to larger values because

the dielectric constant of water is εW ¼ 78.5 at 25 �C. The most widely used model

to estimate the water content in a coating was put forward by Brasher and
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Fig. 11.1 Electrical

equivalent circuits for an

organic coating: (a) ideal
coating, (b) real coating
without corrosion, (c)
adhering coating with the
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disbonding, (e) coating with

disbonding and small Rsi

defect

coating coating

metal

Fig. 11.2 Schematic of

coating with defect and

delamination under coating
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Kingsbury [476], who proposed the following equation for the determination of the

volume fraction in a coating (see also Ref. [477]):

ϕ ¼ K
log CC tð Þ=CC 0ð Þ½ �

logεW
, ð11:2Þ

where the indices t and 0 indicate coating capacitances after time t and the initial

capacitance at time zero, and K accounts for the increase in volume, and it should

not exceed 1.25. Usually it is taken as K ¼ 1, corresponding to a constant volume.

It was found that this formula often (but not always) overestimates water content

(in comparison with the gravimetric method) [476, 478]. Castela and Simões [477]

proposed a different model, applicable to homogeneous coatings, that does not

suffer swelling:

ϕ ¼
CC tð Þ� CC 0ð Þ

Csol � Cair

, ð11:3Þ

where Csol and Cair are the capacitances of the solution and air determined using

Eq. (11.1). Equation (11.3) also usually overestimates water absorption.

In practical measurements, pure capacitances are rarely observed, and the CPE

should be used to approximate the experimental data. However, capacitances may

be easily obtained using the theory discussed in Sect. 8.1.

It should be kept in mind that organic coatings are characterized by low

capacitances and very high resistances, demanding work at high frequencies, and

it must be assured that the measuring equipment is able to measure such objects

(Sects. 16.1 and 16.2 and Refs. [675–681]).

11.3 Analysis of Impedances of Organic Coatings

The parameters appearing in electrical equivalent models depend on the surface

area [473, 474, 479–481]. There are two principal parameters: A0, the geometric

surface area of the sample, and Ad, the disbonded surface area under the coating.

Initially, only pinhole pores perpendicular to the electrode surface are formed

without delamination (Fig. 11.1b), Cc is as defined in Eq. (11.1), and

Rpo ¼ R0
po=Ad ¼ ρd=Ad, ð11:4Þ

where ρ is the specific resistivity of the pinhole, and Cd
0 is calculated with respect to

the geometric surface area. At this stage, Ad � A0. With the increasing delamina-

tion of the coating, the parameters must be recalculated with respect to the real

surface areas:
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Rc ¼ R0
c=Ad,

Cd ¼ C0
dAd,

Cc ¼ C0
c A0 � Adð Þ,

ð11:5Þ

where Rc
0 is the specific corrosion resistance of the metal and the value of Rpo

decreases as damage to the coating increases, leading to the solution penetration.

The complex plane plots of the circuits in Fig. 11.1a, b are as those in Figs. 2.32

and 2.35, respectively. In the analysis of coating, usually Bode plots are studied.

Bode magnitude plots for circuits in Fig. 11.1a, b are displayed in Fig. 11.3.

The complex plane plots corresponding to the circuits in Fig. 11.1c–e display

two semicircles, as in Fig. 2.39. The corresponding Bode plots are shown in

Fig. 11.4.
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With a decrease in the corrosion resistance, low-frequency impedance decreases,

displaying poorer coating protection. A practical example of the accelerated

corrosion of coated steel following exposure to concentrated NaCl solution is

displayed in Fig. 11.5, where a decrease in the low-frequency resistance from

over 107 to 104 Ω is observed after 162 days.

11.4 Conclusions

EIS has proven to be highly successful in studies of the quality of organic coatings,

leading to publication of ISO norms. The alternative electrochemical methods

based on corrosion current measurements are not sensitive enough, and methods

based on peeling off the coating and inspection of the corrosion are destructive and

cannot be applied to the initial stages of degradation. However, care must be taken

to assure that the measurements are carried out correctly and the measuring

equipment is able to measure very high resistances and low capacitances. Special-

ized equipment, such as the Solartron 1296 Dielectric Interface, is available

commercially.

Fig. 11.5 Bode plots of

steel coated with alkyd

enamel after exposure to

0.5 M NaCl for (a) 43 days,

(b) 90 days, and (c)
162 days (Reproduced with

permission from NACE

International, Houston,

TX. All rights reserved;

from Ref. [481] © NACE

International 1993)
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Chapter 12

Self-Assembled Monolayers, Biological
Membranes, and Biosensors

Adsorbed organic layers on surfaces are models for biological bilayers, lipid

membranes, and biosensors. EIS is an important tool in the study of these materials.

In this chapter, the study of self-assembled monolayers, bilayers, and biosensors

will be presented.

12.1 Self-Assembled Monolayers

Self-assembled monolayers (SAMs) [482–484] are usually formed by a spontane-

ous reaction of alkanethiols with solid metal surfaces (e.g., Au, Ag, Cu). They can

also be prepared using the Langmuir-Blodgett method. They form well-ordered,

close-packed monolayers and may be applied in the control of wetting and adhe-

sion, chemical resistance, photosensitization, molecular recognition for sensor

applications, in fundamental studies of electron transfer, and other applications.

The chains might be easily functionalized with various groups, e.g., hydrophilic or

redox groups, or become biocompatible. SAMs form a single hydrophobic layer of

hydrocarbon chains, usually strongly linked to the metallic support; however,

multiple layers might also be deposited. Thiols form chemically bonded mono-

layers Me–S–R (Fig. 12.1) where metal, Me, is gold.

Usually, quite compact layers are obtained. The simplest electrical equivalent

model represents the solution resistance in series with the capacitance of a SAM, Rs

CSAM (Fig. 12.2a). More detailed analysis reveals that the layers are rarely purely

capacitive and their capacitance is in parallel with their resistance, RSAM, leading to a

circuit: Rs(CSAM RSAM). Moreover, a diffuse double layer exists at the SAM/solution

interface [485, 486]. In such a case, the electrical equivalent circuit contains a diffuse-

layer capacitance, Cdl, in parallel with the resistance, Rdl (Fig. 12.2b).
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However, double-layer capacitance is usually neglected because it is much larger

than that of the SAM (the dielectric constant of the organic layer is much lower than

that of water), Cdl � CSAM. In a series connection of capacitances, the resulting

capacitance, 1/Ceq ¼ 1/Cdl + 1/CSAM, and only a small capacitance, becomes

important. In this case, the model reduces to that in Fig. 12.2a. This effect could

be more important when ionized groups are attached to alkyl chains [485]. It is

interesting to add that the reciprocal of the interfacial capacitance is linear with the

number carbon atoms for longer chains, confirming that the capacitance is inversely

proportional to the layer thickness [483, 487].

However, the SAMs formed are rarely ideal and they contain small defects

called pinholes, e.g., bare metal sites or other defects. In such cases, an additional

branch must be added in parallel (Fig. 12.2c) consisting of the resistance, Ra, in

series with the parallel connection of the pinhole resistance, Rph, and its capaci-

tance, Cph [488, 489]. The surface coverage of the pinholes is usually very small

and does not influence very much the electrode capacitance. The presence of such

pinholes can be easily detected using cyclic voltammetry or EIS [483, 490, 491].

The simplified electrical equivalent model of the redox reaction in the presence of

pinholes is displayed in Fig. 12.3 [490, 492].

The resistance of SAMs is rarely observed [490]. The faradaic impedance of

pinholes represented as charge transfer resistance, Rct, in series with the Warburg

mass transfer impedance, ZW, should be modified to account for the diffusion layer

overlap. In fact, an electrode covered with pinholes resembles a microarray electrode

[493], and the corresponding impedance developed for microarray electrodes should

be used [490, 494, 495]. On well-prepared SAMs a linear relationship between the

logarithm of the heterogeneous rate constant, ln k0 and the number of CH2 groups

exists for thicker layers. Protsailo and Fawcett [492] found such a relationship

for SAMs consisting of thiols C9–C18 at monocrystalline gold electrodes using

[Ru(NH3)6]
3+/2+ as a redox species. However, a better model to study electron tunnel-

ing through SAMs are SAMs with attached redox centers [483, 496, 497].

Redox processes at SAMs were recently reviewed [498].

EIS allows for a good characterization of SAMs in the absence and presence

of redox species in solution and attached to alkyl chains. These studies allowed

for testing the theory of electron tunneling. SAMs are also used in biosensors

(see below).

Rs

CSAM

Rct

ZW

RSAM

Fig. 12.3 Electrical

equivalent system for SAMs

with pinholes in presence
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12.2 Lipid Bilayers

A lipid bilayer is a thin, polar membrane made of two layers of lipid molecules.

These molecules contain one polar group attached to a nonpolar hydrophobic chain

and typically contain phospholipids. A schematic diagram of such a bilayer is

displayed in Fig. 12.4. In polar solvents, the polar groups are directed toward the

solution and hydrophobic tails toward the core of the bilayer. The cell membranes

of almost all living organisms and many viruses, as well as the membranes

surrounding cell nuclei and other subcellular structures, are made of lipid bilayers

[499]. However, most biological membranes are extremely complex structures

consisting of hundreds or thousands of different molecules. Bilayer lipid mem-

branes (BLMs) prepared in vitro resemble biomembranes and are used as models to

understand their functioning. Studies of a planar BLM model system led to their

applications in the fields of, for example, specific electrodes, biosensors, biomo-

lecular electronic devices, and solar energy transductors [500, 501].

BLMs may be prepared as supported or freestanding membranes. Membranes

deposited on solid supports are easier to prepare and more stable and have been

studied extensively [502–508]; however, the use of an unsupported bilayer mem-

brane separating two solutions is more important [509–517]. The resistances of the

membranes are large and the capacitances are on the order of approximately

1 μ F cm�2.

The impedance of freestanding membranes may be studied using the system

displayed in Fig. 12.5. It uses a homemade differential amplifier. Similar possi-

bilities occur with the use of two potentiostats, allowing for the grounding of

the working electrodes (e.g., from Bank Elektronik [518]) or using a Solartron

dielectric interface [519, 520].

For a simple planar bilayer membrane the impedance studies produce one

semicircle on the complex plane plots according to the model Rs(RmCm), from

which the resistance, Rm, and capacitance, Cm, of the membrane can be simply

determined.

Polar groups

Hydrophobic part

Lipid bilayer

Fig. 12.4 Schematic

representation of bilayer

lipid membrane
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Interesting studies were performed onmembranes composed of two components,

where the formation of complexes or domains was possible [510, 511, 514–516,

521–525].

Let us look at the example of interactions between phosphatidylethanolamine

and α-tocopherol in bilayer membranes [515]. In this case, the formation of lipid

domains consisting of phosphatidylethanolamine, 1, and phosphatidylethanolami-

ne-α-tocopherol, 3, of a certain composition is observed. Assuming that only these

two domains exist in the membrane and that the electrical parameters are additive,

one can write an equation for the capacitance and resistance of the membrane:

Cm ¼ C1c
S
1S1 þ C3c

S
3S3;

1

Rm

¼ 1

R1

cS1S1 þ
1

R3

cS3S3 , ð12:1Þ

where C1 and C3 are the capacitance of the membrane composed of pure components

1 and 3 (in F cm�2),R1 andR3 are the specific resistances of these components (Ω cm2),

cSi are the surface concentrations of these components (mol cm�2), and Si are the

surface areas occupied by 1 mol of pure components (cm2 mol�1). Introducing the

molar fraction of the components and the relation between surface concentrations,

x1 ¼
cS1

cS1 þ cS3
; x3 ¼

cS3
cS1 þ cS3

; cS1S1 þ cS3S3 ¼ 1, ð12:2Þ

and eliminating cSi it is possible to obtain relations for the membrane capacitance

and conductance:

Fig. 12.5 System allowing measurements of membrane impedance containing differential ampli-

fiers (From Ref. [512], copyright (2005), with permission from Elsevier)
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Cm ¼
C1S1 þ C3S3 � C1S1ð Þx3

S1 þ S3 � S1ð Þx3
;

1

Rm

¼
R�1
1 S1 þ R�1

3 S3 � R�1
1 S1

� �

S1 þ S3 � S1ð Þx3
: ð12:3Þ

These equations can be simplified for small values of x3 to

Cm

x3
¼

C1

x3
þ

C3 � C1ð ÞS3
S1

;
1

Rmx3
¼

1

R1x3
þ

1

R3

�
1

R1

0
@

1
AS3

S1

: ð12:4Þ

These equations represent linear plots versus x3
�1. It was found that these plots

were linear, fromwhich the surface area of the domain S3 ¼ 320Å2was determined

indicating that a stoichiometry of the phosphatidylethanolamine-α-tocopherol

domain of 4:1 was obtained [515]. A similar formalism was used for systems

containing three components when 1:1 complexes were formed in the membrane.

Ionic transport across membranes is of fundamental importance in physiology.

To model such processes, lipid bilayers without [526] and with the addition of

complexing compounds, such as crown ethers [527, 528], valinomycin [508, 513],

or gramicidin [502, 504, 529–531], were also studied.

12.3 Biosensors

Biosensors are analytical devices that are able to detect biological components.

SAMs and lipid bilayers are often used as platforms for the immobilization of

biosensors [532–534], but other supports, such as Si�SiO2 [535–537], TiO2 [538],

and polymers [539, 540], can also be used. Electrochemical biosensors [541, 542]

might use potentiometric, field-effect transistor, amperometric, or impedimetric

transducers.

Impedimetric [535, 543–547] biosensors monitor biointeractions using imped-

ance. Biomaterials that can interact with electronic transducers include proteins

such as, for example, enzymes, antibodies or antigens, and oligonucleotides or

DNA fragments. This is a relatively new domain, and a Scopus search for

impedimetric biosensor shows less than 200 citations.

Although they have been successfully applied at the academic level, commercial

devices are being developed [548, 549]. Impedimetric immunosensors could poten-

tially be used for qualitative purposes, such as, for example, in the detection of

bacteria, pregnancy tests, allergy screening tests, etc [546].

Impidimetric biosensors can be:

a. Capacitive (nonfaradaic), measuring changes in the electrode capacitance in the

absence of redox reactions; for example, antibody-antigen interactions cause

adsorption and a decrease in the electrode capacitance.
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b. Faradaic, in the presence of redox reactions measuring changes in the charge

transfer resistance. These changes occur during adsorption/desorption of

biomaterials.

In what follows, examples of the application of these methods will be presented.

It should be added that these methods might be used in solutions or in microfluidic

conditions [547].

An example of a capacitive biosensor is detection nucleic acids. SHARP Lab-

oratories [548, 549] developed low-cost, selective, and multiuse sensors based on

gold interdigitated microelectrodes with a microfluidic chamber. Gold electrodes

were functionalized with DNA oligonucleotide (complementary to the targets)

bound to the surface with thiol groups. They were applied to detect genes from

Escherichia coli bacteria. An increase in impedance (measured at one frequency)

with time was observed as the selective adsorption proceeded. After measurements

the chambers were washed and regenerated. The response was nonlinear, and the

slopes ΔZ/Δt versus log concentration were analyzed. The detection limit was

5–10 nM for DNA targets.

An inverse process of enzyme-catalyzed dissolution of a polymer coating [550,

551] leads to an easily detected increase in electrode capacitance. Such a process

was studied for urea and immunoglobulin G (IgG) [550] and urea and creatinine in

serum [551].

An example of redox sensors is a bacteria biosensor [552]. Gold working

electrodes were covered with SAMs of mercaptohexadecanoic acid, and antibodies

were attached covalently to the surface. K3[Fe(CN)6] was used as the redox probe.

Bacteria attached to the surface receptor, causing an increase in the charge transfer

resistance. The increase in Rct was plotted versus the logarithm of bacteria concen-

tration (Fig. 12.6), and it presented a nonlinear calibration curve with a detection

limit of 10–100 colony-forming units/mL.

Fig. 12.6 Left: Complex plane plots obtained for a sensor with antibodies immobilized by

covalent bonding as function of E. coli DNA. Right: Increase in Rct versus logarithm of concen-

tration. Concentrations are in colony-forming units per milliliter (From Ref. [552], copyright

(2009), with permission from Elsevier)
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The use of nanomaterials [545] such as gold nanoparticles and carbon nanotubes

increases the sensor surface and enhances analytical detection. The use of

PEGylated arginine functionalized magnetic nanoparticles for early detection

of cervical cancer has been reported [553]. This sensor displayed good selectivity

and sensitively down to 10 cells mL�1.

Impedimetric biosensors represent a new and rapidly developing research area

that permit the fast detection of biomaterials. Commercialization of such sensors

is only beginning. More applications may be found in recent reviews [535, 543,

544, 546].

12.4 Conclusions

The area of impedance studies of self-assembled monolayers, bilayers, and bio-

sensors is among the recent applications of EIS. They represent an area under

development that has interesting fundamental and possibly practical applications.

Research in this area falls somewhere between electrochemistry and biology and

requires a sound knowledge of both domains. Apparently, knowledge of EIS is

often insufficient.
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Chapter 13

Conditions for Obtaining Good Impedances

EIS has a great advantage in comparison with other electrochemical techniques

because it permits one to validate experimental data, that is, to determine whether

obtained data are good [1]. This property arises from Cauchy’s integral theorem

[3, 554] implying a relation between the real and imaginary components of a

complex function. Kramers [555, 556] and Kronig [557] introduced transforma-

tions allowing one to calculate the imaginary part from the real part and the real

part from the imaginary impedance component. They applied it first to optics.

In experimental impedance measurements, if the results obtained from the trans-

formations agree with the experimental data, then one can state that the data are

formally correct and are Kramers-Kronig compliant.

13.1 Kramers-Kronig Relations

The Kramers-Kronig relations allow one to calculate the real part of a complex

function from the imaginary part and the imaginary part from the real part only.

They were initially applied to electrical impedances by Bode [558] and further

discussed and applied to EIS [559–568]. To satisfy Kramers-Kronig relations, the

complex function must satisfy four criteria, as follows [223, 559–561]:

1. Linearity: a system is linear when its response to a sum of individual input signals

is equal to the sum of the individual responses: L(af1 + bf2) ¼ aL( f1) + bL( f2).

This condition implies that the system is described by a system of linear

differential equations. Electrochemical systems are usually highly nonlinear,

and the impedance is obtained by linearization of equations using small ampli-

tudes of the applied perturbation. In addition, for linear systems responses are

independent of the amplitude. This condition can be easily verified experimen-

tally: one should decrease the applied amplitude twice and compare the results. If

the obtained impedance is the same, the system is linear.
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2. Causality: the response of a system must be entirely determined by the applied

perturbation, that is, the output depends only on the present and past input

values. A causal system cannot predict its future because its future is determined

by the past events. This also means that the system does not generate noise

independently of the applied signal for t � 0. Causal systems are called phys-

ically realizable systems. If a system is at rest and a perturbation is applied

at t ¼ 0, then the response must be constrained for ω ! 0. In addition, the

response must be zero at ω ! ∞. However, in electrochemical systems, a

weaker condition can be applied requiring that the transfer function be bounded.

3. Stability: the stability of a system is determined by its response to inputs.

A stable system remains stable until excited by an external source, and it should

return to its original state once the perturbation is removed, that is, the system

cannot supply power to the output irrespective of the input. In other words,

the total energy generated by the system cannot exceed the total input energy.

A consequence of this condition is that the transfer function is bounded, i.e.,

jZ(ω)j2 < A, where A is a constant. A system is stable if its response to the

impulse excitation approaches zero after a long time or when every bounded

input produces a bounded output. The impedance Z(s) must satisfy the following

conditions: Z(s) is real when s is real (that is, when ω ! 0) and Re[Z(s)] � 0

when ν � 0 (where s ¼ ν + jω). This last condition ensures that there are no

negative resistances in the system. Impedance measurements must also be

stationary, that is, the measured impedance must not be time dependent. This

condition may be easily checked by repetitive recording of the impedance

spectra and comparison of the obtained results, which should be identical.

4. Finiteness: this condition was already implied earlier. It means that the real and

imaginary components of the impedance must be finite-valued over the entire

frequency range 0 < ω < ∞. In particular, the impedance must tend to a con-

stant real value for ω ! 0 and ω ! ∞.

Although these relations will be written below for impedances they also hold for

admittances and other complex transfer functions. Assuming that all the aforemen-

tioned conditions are met, the Kramers-Kronig relations are obtained allowing the

calculation of the imaginary impedance from the real part:

Z
00

ωð Þ ¼ �
2ω

π

� �ð1

0

Z
0

xð Þ � Z
0

ωð Þ

x2 � ω2
dx ð13:1Þ

and the real from the imaginary:

Z
0

ωð Þ ¼ Z
0

1ð Þ þ
2

π

ð1

0

xZ
00

xð Þ � ωZ
00

ωð Þ

x2 � ω2
dx, ð13:2Þ
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Z
0
ωð Þ ¼ Z

0
0ð Þ þ

ð1

0

ω

x

� �
Z
00
xð Þ� Z

00

ωð Þ

x2 � ω2
dx: ð13:3Þ

There are also similar relations for the phase angle and modulus [3]:

φ ωð Þ ¼
2ω

π

� �ð1

0

ln Z xð Þj j

x2 � ω2
dx, ð13:4Þ

ln Z ωð Þj j ¼
2

π

ð1

0

φ xð Þ

x� ω
dx: ð13:5Þ

Several other forms of these relations can be found in the literature [3]. Although

the preceding equations were written for impedances, they are valid for any

complex transfer function. Kramers-Kronig relations are very restrictive, and in

EIS some of them might be slightly relaxed, and instead of the impedances, the

admittances can be used. This will be discussed in what follows.

Kramers-Kronig relations demand integration in a wide frequency range from

zero to infinity, which is experimentally impossible. They are also sensitive to

stochastic errors, ε, and the average value of the errors of the real, ε0, and imaginary,

ε00, parts must be equal to zero as well as the average value of the integral [273]:

E
2ω

π

ð1

0

ε
0
xð Þ

x2 � ω2
dx

8
<
:

9
=
; ¼ 0: ð13:6Þ

Various methods have been proposed to carry out Kramers-Kronig transforma-

tions in practice; they are described in what follows.

13.1.1 Polynomial Approximation

One method is to approximate real and imaginary impedances as functions of the

frequency by polynomials in ω [560, 561, 568, 569],

Z ωð Þ ¼ a0 þ a1ωþ a2ω
2 þ a3ω

3 þ . . . ¼
Xn

i¼0

aiω
i, ð13:7Þ
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or log ω [564],

Z ωð Þ ¼ a0 þ a1logωþ a2 logωð Þ2 þ a3 logωð Þ3 þ . . . ¼
Xn

i¼0
ai logωð Þi, ð13:8Þ

and subsequent integration of the polynomials using Eqs. (13.1), (13.2), and (13.3).

Approximation by splines can also be used. However, there are two problemswith this

integration. First of all, integrations should be carried out in a frequency range from

zero to infinity. Because experimental data are acquired in a limited frequency range,

extrapolationmust be carried out outside the experimental limits. In certain cases (e.g.,

one or two semicircles), one knows these limits and the extrapolation is easier.

However, in some cases one does not know how the impedance should behave outside

the experimental range, and the extrapolation might be doubtful. Integration in a more

narrow frequency range could lead to significant errors [570]. Approximation by

splines is not well suited for extrapolation outside the experimental frequency range.

Another problem is related to the discontinuity of the integrated function at

x ¼ ω. Several authors have proposed a distribution of 1/(x2 � ω2) in series around

the point x ¼ ω and an integration of the sum of the elements [560, 561, 563, 570].

Although in principle Kramers-Kronig relations demand that the impedance

have a finite value at ω ¼ 0 and ω ! ∞, it has been shown that the CPE

Ẑ ¼
1

jωð ÞϕT
ð13:9Þ

transforms correctly for�1 � ϕ � 1, including the Warburg impedance (ϕ ¼ 0.5)

[561, 563, 571].

System with negative resistance cannot be represented by a passive circuit with

positiveR, L, andC elements. The stability criterion demands that there be no negative

impedances in the system (rule 3 of Kramers-Kronig conditions). For example, the

system shown in Fig. 13.1 contains negative resistance, and its impedance is not

transformable. However, Kramer-Kronig transforms can also be applied to admit-

tances. Admittance calculated for this case is also shown in Fig. 13.1, and it is perfectly

Kramers-Kronig transformable. Moreover, infinite impedance corresponds to zero

admittancewhich is transformable. This topic will be further discussed in Sect. 13.3.4.
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Fig. 13.1 Complex plane impedance and admittance plots for circuit in Fig. 2.34 with Rs ¼ 10Ω,

C ¼ 10�5 F, and R ¼ �100 Ω
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13.1.2 Checking Kramers-Kronig Compliance

by Approximations

It is possible to replace the Kramers-Kronig integration by approximation. If the

system can be well approximated by a linear circuit, then it must be Kramers-

Kronig transformable. Orazem and coworkers [572, 573] proposed using the Voigt

circuit displayed in Fig. 13.2.

Each element of this circuit consists of the connection of R and C in parallel, and

it is, of course, transformable; therefore, their sum is also transformable. The

impedance of the Voigt circuit is described by the following equation:

Ẑ ¼ R0 þ
Xn

i¼1

Ri

1þ jωτi
ð13:10Þ

where τi ¼ RiCi is the time constant of element i of the circuit. Using a sufficient

number of such elements the CPE or Warburg elements can also be approximated

[572]. To approximate circuits containing inductances, negative values of Ri may

be used keeping the time constants positive [572]. The number of Voigt elements

necessary for a correct approximation depends on the system random errors: the

greater the errors, the smaller the number of necessary elements.

Boukamp and Macdonald [574] and Boukamp [575] proposed fitting imped-

ances to a Voigt circuit with a fixed distribution of time constants, taking six to

seven time constants per decade or simply the time constant equal to the inverse of

the experimental frequency ωi, τi ¼ 1/ωi; in the latter case, a perfect approximation

is obtained even in the presence of the experimental noise, which should, in

principle, be avoided. By fixing the values of τi, the only unknown parameters in

Eq. (13.10) are Ri. The CNLS approximation becomes linear and no initial guess of

parameters Ri is necessary (Chap. 14). The approximating function becomes

Ẑ ωkð Þ ¼ R0 þ
Xn

i¼1

Ri

1þ jωkτi
¼

¼ R0 þ
Xn

i¼1

Ri

1þ ωkτið Þ2
� j
Xn

i¼1

ωkτkRi

1þ ωkτið Þ2
:

ð13:11Þ
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Ri
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Fig. 13.2 Voigt circuit

consisting of n(RC)

elements
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In the approximation, Boukamp suggested using modulus weighting. Moreover,

in some cases it might be necessary to add inductance or capacitance in series with

R0. Boukamp [575] presented an example of non-Kramers-Kronig-transformable

data analyzed by CNLS fit (Fig. 13.3), where the symbol Qi denotes a CPE. It is not

evident from the complex plane plot if the impedance data are really transformable.

To answer this question, the residual plots of the real and imaginary impedances,

Δ ¼ Zexp � Ztransformed, should be inspected. They are also presented in Fig. 13.3.

It is evident that the differences are systematic, not random, and cannot be ascribed

to random errors. This means that the impedance in Fig. 13.3a is not Kramers-

Kronig transformable. In fact, it was found that steady state was not reached in the

experiment, and the material properties changed with time.

In the case of blocking electrodes, the impedance increases to infinity as the

frequency approaches zero. In such cases, approximation with the Voigt circuit is

not appropriate. When a high-frequency impedance is finite, the easiest way to

verify the Kramers-Kronig compliancy is to fit the impedances to the admittance

representation of the circuit containing a ladder of (RC) element series (Fig. 13.4)

[575]. In addition, capacitance, C0, or inductance can be added in parallel.

Fig. 13.3 Example of experimental data for solid electrolyte that are not Kramers-Kronig

transformable, left, and residual plots: (a) real to imaginary and imaginary to real, (b) relative
errors of complex transformation, and (c) errors of CNLS fit to model in (a); circles: real-to-
imaginary; squares: imaginary-to-real transformations (From Ref. [575] Reproduced with permis-

sion of Electrochemical Society)
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The admittance of this circuit at a frequency ωk is

Ŷ ωkð Þ ¼
1

R1
þ
Xn

i¼1

1

Ri þ
1

jωkCi

þ jωkC0 ¼

¼ 1

R1
þ
Xn

i¼1

ω2
kτiCi

1þ ωkτið Þ2
þ j

Xn

i¼1

ωkCi

1þ ωkτið Þ2
þ ωkC0

0
@

1
A,

ð13:12Þ

where the values of ωk are predefined (six to seven per decade). An example of such

a test is shown in Fig. 13.5. Fewer than seven time constants per decade are

necessary to approximate well the experimental admittances.

The conditions necessary for the Kramers-Kronig transform demand that the

resistances be all positive. The values of Ri might be negative, but the corre-

sponding Ci must also be negative to produce positive values of time constants

[304]. However, in experimental work, negative dynamic impedances may appear,

although they might lead to a stable dynamic response (see subsequent discussion

on the Nyquist criterion of stability). Boukamp [575] suggested that to avoid this

problem, one could add computationally a parallel resistance to the dispersion data

so that the negative resistance is removed completely. An example of such an

operation is displayed in Fig. 13.6. It is evident from plot b that the computational

addition of the parallel resistor of 400 Ω eliminates negative resistance. However,

such a procedure is not necessary, as shown in Sect. 13.3.4.

C1

R∞

R1

C2 R2

C3 R3

C1 R1C1 R1

Cn
R

nC

C
0

Fig. 13.4 Circuit proposed

for fitting admittance of

blocking electrodes
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Analysis of the plot in Fig. 13.6b using linear approximation, Eq. (13.11), is

displayed in Fig. 13.7. Note that important deviations appear at ω > 103 rad s�1.

In further analysis, these data points were eliminated without any important loss of

information in the high-frequency zone in Fig. 13.6a [575].

It should be stressed that approximations by Eq. (13.11) or Eq. (13.12) are used

only for testing the compliance with the Kramers-Kronig transforms, and the

parameters found have no physical meaning.

Fig. 13.5 Complex plane impedance and admittance plots for hydrogen-doped Li3N monocrys-

tals; (a) impedance plot and fit to model indicated in inset; (b) admittance plot and fit to

Eq. (13.12); points experimental, line fits (From Ref. [575] Reproduced with permission of

Electrochemical Society)

Fig. 13.6 Impedance of corroding Cr electrode; (a) experimental data, (b) experimental data with

computational addition of parallel resistance of 400 Ω (From Ref. [575] Reproduced with

permission of The Electrochemical Society)
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Boukamp has prepared a simple and easy-to-use program, KKtest, which uses

Eq. (13.11) or Eq. (13.12) to check the validity of data. It is available on the Internet

[576] and presented in Example 13.1 (see also Exercise 13.2 and 13.3).

Example 13.1 Check the Kramers-Kronig compliance of the data including noise

and including drift using KKtest. A comparison of the original data with added

random noise and KK transformed data is displayed in Fig. 13.8. Transformed data

display no systematic differences from the original data, and one can say that the

data are Kramers-Kronig compliant. The same may also be observed on the

differences graph also displayed in the KKtest program.

Next the data drift should be analyzed. A comparison of the original and

transformed data is shown in Fig. 13.9. It is evident that the original and transformed

data are very different, which means that the original data are not Kramers-Kronig

compliant and cannot be used for further analysis. Such systematic deviations are

also observed on the difference graphs, see Exercises 13.2 and 13.3.

Fig. 13.7 Relative

residuals for complex linear

fit of data in Fig. 13.6b

using 7.6 time constants per

decade (From Ref. [575]

Reproduced with

permission of

Electrochemical Society)
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13.2 Linearity

The linearity of the observed impedance is directly related to the amplitude of the ac

signal applied to the system. Electrochemical systems are intrinsically nonlinear,

and a sufficiently small amplitude is necessary to linearize such systems. Smith [29]

suggested using an amplitude of � 8/n mV peak to peak. A more detailed analysis

was performed by Hirschorn et al. [577] and Hirschorn and Orazem [578] taking

into account differences in the transfer coefficients and solution resistance. Assum-

ing a simple model of the redox system without diffusion (Fig. 4.2) that is with

negligible mass transfer impedance ZW, the maximum ac voltage amplitude causing

an error of �0.5 % is [577]

ΔE ¼ 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kfbf þ kbbb

kbb
3
f þ kbb

3
b

1þ Rs

Rt,obs

� �s
, ð13:13Þ

where bi ¼ αinf, αi is the transfer coefficient, n is the number of electrons

exchanged, f ¼ F/RT, the indices f and b indicate forward and backward reactions,

respectively, Rs is the solution resistance, and Rt,obs is the charge transfer resistance.

Because of the solution resistance, the actual potential applied to the electrode is

lower than that used by the instrument, and this value depends on the frequency. For

a case where the transfer coefficient αf ¼ 0.5 and assuming Rs � Rt,obs and kf ¼
kb, the maximum amplitude for n ¼ 1, ΔE, is 10 mV, while for αf ¼ 0.2 it is

7.1 mV and depends on the slope of the current-potential curve. At high frequen-

cies, the circuit reduces to a simpler (Rs Cdl) model, and a characteristic frequency

for the transition from low- to high-frequency behavior is [578]
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f t ¼
1

2πRt,obsCdl

1þ R
t,obs

Rs

� �
: ð13:14Þ

Application of Kramers-Kronig transforms reveals that they are not very sensi-

tive to system nonlinearities [561]. Experimentally, nonlinearity affects the charge

transfer resistances, which decrease with increases in the amplitude [561,

578–580]. However, it has been shown that when the experimental frequency

passes through the transition frequency, Eq. (13.14), the Kramers-Kronig trans-

forms will be affected by the nonlinearity of the system.

It seems that the simplest way to check for nonlinearity is to takemeasurements at

different amplitudes and compare the obtained impedances, which should be iden-

tical for linear systems. In general, a 5 mV amplitude is recommended; however,

in certain conditions, it might be different; Eq. (13.13) gives a good indication in

simple conditions, but more information about the system kinetics is necessary.

13.3 Stability

13.3.1 Drift

One of the biggest problems in impedance measurements is related to changes in

a system with time. This effect appears when surface conditions or electrode

contamination evolves with time. An example of a corroding system in which a

slow potential sweep was applied during the experiment is displayed in Fig. 13.10.

This potential sweep simulates changes in the surface conditions of the corroding

electrode. A Kramers-Kronig transform easily detects such changes. Transforms of

Fig. 13.10 Impedance

of corroding iron electrode

with superimposed potential

sweep of 0.133 mV s�1

(From Ref. [561], copyright

(1990), with permission

from Elsevier)
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the experimental data in Fig. 13.10 are shown in Fig. 13.11. At low frequencies,

which take much more time during measurements, strong deviations are observed.

The influence of drift was recently simulated and discussed [579].

An odd harmonic test [125, 580] was also proposed in the literature to check

system linearity.

13.3.2 Dealing with Nonstationary Impedances

In practice, there are often cases where impedance changes continuously with time.

Such changes are observed in, for example, cases of active corrosion, fuel cell

poisoning, and surface changes. In these cases, during the frequency sweep, each

Fig. 13.11 Kramers-

Kronig transforms,

(a) real to imaginary and

(b) imaginary to real, of

data in Fig. 13.10 (From

Ref. [561], copyright (1990)

with permission from

Elsevier)
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measurement corresponds to a new electrode state. The theoretical foundations of

nonstationary systems were established by Stoynov and coworkers [581–584]; how-

ever, they were applied to simulated data only. Wagner and coworkers [585, 586]

proposed a relatively simple interpolation method dealing with such systems. They

recorded a series of impedance measurements at distinct time intervals, i.e., the time

of each measurement at one frequency was assumed to be short and known. Then

three-dimensional plots of impedance versus frequency and time were constructed

(Fig. 13.12). The experimental impedances (circles) were first plotted as a function of

frequency and time. Then data at each frequency were interpolated versus time (see an

example of one line at the lowest frequency in Fig. 13.12), and impedanceswere found

at a given time. This interpolation could supply impedances at various times. Such

interpolation should be repeated at all frequencies. It is obvious that data at the lowest

frequencies are most affected by drift because they take longer to be recorded. Such a

procedure should be repeated for real/imaginary or magnitude/phase angle data.

Although in general a smoothing function could be used for data interpolation

at one frequency, the authors found that in their case a linear interpolation was

sufficient. To further refine the obtained data, a Z-HIT transform (see Sect. 3.14)

was applied, and the results from this transformation were used for analysis.

An example of the results is displayed in Fig. 13.13.

13.3.3 Stability of Electrochemical Systems

In this section we will look in more detail at system stability [587]. In control

system theory, a stable system is one that produces a bounded response to a

bounded input. In general, system stability depends on the proprieties of the transfer

function, in this case of the impedance or the admittance [588]. Impedance and

Fig. 13.12 Experimental

impedance data (circles)

and method of obtaining

time-invariant impedances

(squares) (From Ref. [585]

with permission of Royal

Society of Chemistry)
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admittance are defined as a ratio of the Laplace transforms of the potential and

current:

Ẑ sð Þ ¼ 1

Ŷ sð Þ
¼ E sð Þ

i sð Þ , ð13:15Þ

where the parameter s ¼ σ + jω is a complex number. Let us suppose that the

potential is applied and the current is measured. Moreover, let us assume that

the potential is simply Dirac’s delta function, δ(t), applied at t ¼ 0. Its Laplace

transform is

Fig. 13.13 Complex plane

plots illustrating

compensation of time drift

for fuel cell under

galvanostatic control,

top – directly measured

impedance, middle – after

extrapolation procedure,

bottom – after additional

Z-HIT refinement;

continuous lines –

approximations (From

Ref. [585] with permission

of Royal Society of

Chemistry)
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L δ tð Þ½ � ¼ 1V=s, ð13:16Þ

and the current in the Laplace domain is

i sð Þ ¼
1

Ẑ sð Þ
¼ Ŷ sð Þ ¼

K
YM

m¼1

s� μmð Þ
YN

n¼1

s2 � 2vnsþ v2n þ β2n
� �	 


YQ

q¼1

s� λq
� �YR

r¼1

s2 � 2ρrsþ ρ2r þ ω2
r

� �	 

, ð13:17Þ

where the admittance is represented as a ratio of two polynomials factored in linear

and quadratic terms. Quadratic terms having real zeros (the delta of the quadratic

equation is larger than zero) can always be presented in the form s � λq; however,

when delta is negative, complex roots appear. The admittance hasM + N zeros and

Q + R poles, while the impedance has M + N poles and Q + R zeros. The param-

eters μm, vn, βn, λq, ρr, and ωr are constants. The zeros of the admittance are

s ¼ μm and s ¼ vn � jβn, ð13:18Þ

and the poles are

s ¼ λq and s ¼ ρr � jωr: ð13:19Þ

Therefore, there are real and complex conjugated zeros and roots. Examples of

such polynomials representing the impedance of a system were presented, for

example, in Eq. (2.91) for an R-C connection, Eq. (2.94) for an R-L connection,

and Eq. (2.97) for an R-L-C connection in series. This expression can be simplified

into partial fractions:

i sð Þ ¼ Ŷ sð Þ ¼
1

Ẑ sð Þ
¼ K

XQ

q¼1

Aq

s� λq
þ
XR

r¼1

Br

s2 � 2ρrsþ ρ2r þ ω2
r

� �
" #

, ð13:20Þ

where Aq and Br are called residues. The inverse Laplace transform gives the

dependence of the current as a function of the potential:

i tð Þ ¼ K
XQ

q¼1

Aqexp λqt
� �

þ
XR

r¼1

Br

1

ωr

exp ρrtð Þ sin ωrtð Þ

" #
: ð13:21Þ

When the poles λq are negative, the current relaxes to zero and the system is

stable. In the case of complex poles, Eq. (13.19), ρrmust be negative or zero, that is,

the real part of the root cannot be negative to assure stability. Solutions for different

values of λq and ρr are presented in Fig. 13.14. Stable systems are obtained only

when these values are negative or zero. When λq ¼ 0, a time-independent constant
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signal is obtained, and when ρr ¼ 0, a steady-state oscillation is produced. The

poles and zeros of Eq. (13.17) are presented on the s-plane, where the x-axis is real

(σ) and y-axis imaginary (jω). System theory [587] holds that a necessary and

sufficient condition for a system to be stable is that all poles of the transfer function

must have negative real parts. If some roots are positive, then the system becomes

unstable as its response becomes unbounded. The preceding conditions apply to

the system transfer function, which in Eq. (13.17) is written as the admittance.

However, in electrochemistry, the impedance is usually studied. Therefore, the

admittance transfer function should have all poles negative, which indicates that all

zeros of the impedance should be negative. The admittance/impedance transfer

function is usually written in the form

Ẑ sð Þ ¼ K

YNz

i¼1
s� zið Þ

YNp

k¼1

s� pið Þ

, ð13:22Þ

where there are Nz zeros zi and Np poles pi. A few examples are given in what

follows.

Let us consider a simple circuit R0(R1C1), shown in Fig. 2.26. Its impedance is

described by Eq. (2.128), which can be rearranged into the following form,

Eq. (13.22):

Ẑ sð Þ ¼ R0 þ
1

sC1 þ
1
R1

¼
R0 sþ 1

C1

1
R0
þ 1

R1

� �h i

sþ 1
R1C1

: ð13:23Þ

jω

σ

t

t

t

t t t

Fig. 13.14 Transients

obtained for different

positions and nature

of poles at s-plane
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This function has one pole,

p ¼ �
1

R1C1

, ð13:24Þ

and one zero,

z ¼ �
1

C1

1

R0

þ
1

R1

� �
: ð13:25Þ

If all circuit parameters are positive, then the pole and zero are negative and the

system is stable. For the impedances in Fig. 13.15 the poles and zeros are displayed

on the s-plane in Fig. 13.16. When all the circuit parameters are positive, the poles

and zeros are always negative. The complex plane plot in this case, which displays

well known behavior, is shown in Fig. 13.15a.

Let us now assume that Rct < 0. There are a few different cases, depending on

the relative values of R0 and R1.

When R0 < �R1, the zero-frequency impedance is negative, R(ω ¼ 0) ¼ R0 +

R1 < 0, the complex plane plot is shown in Fig. 13.15b, and the zero and pole are

shown in Fig. 13.16b. The impedance zero is negative, the pole is positive, and

therefore the system is stable.
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Fig. 13.15 Complex plane plots for a simple circuit R0(R1C1) consisting of resistance R0 in series

with parallel connection of capacitance C1 and resistance R1, Eq. (13.23); parameters: C1 ¼ 2

� 10�5 F, (a) R0 ¼ 10 Ω, R1 ¼ 100 Ω, (b) R0 ¼ 10 Ω, R1 ¼ �100 Ω, (c) R0 ¼ 100 Ω,

R1 ¼ �100 Ω, (d) R0 ¼ 110 Ω, R1 ¼ �100 Ω
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When R0 ¼ � R1, the low-frequency resistance is zero, R(ω ¼ 0) ¼ 0

(Fig. 13.15c). This means that the steady-state current does not perceive any

resistance. This leads to a so-called saddle-node bifurcation [588–592]. Such a

situation can be obtained for the system in Fig. 13.15b after adding an external

resistor in the working electrode connection. A saddle-node bifurcation indicates

that there are at least two stationary states and a hysteresis on current-potential

characteristics due to nonlinearities in the system exists [590]. Such a behavior is

observed, for example, in ethanol oxidation where negative resistances are detected

[593, 594]. By adding an external resistance, a sharp peak appears in the reverse

sweep of the cyclic voltammograms [595]. The position and shape of this peak

are very sensitive to the value of the resistance in the working electrode circuit.

At some point, the external resistance compensates the negative low-frequency

resistance and the current starts to increase rapidly (Fig. 13.17) [595]. Although at

some point the impedance at zero frequency becomes zero, surface conditions

change and the current cannot reach infinity.

When R0 > � R1, both R(ω ¼ 0) and R(ω ¼ ∞) are positive, but the direction

of the frequencies is opposite to that in Fig. 13.15a. Both the zero and the pole are

positive, and the system is unstable.

Let us look at some other examples of a circuit containing a series connection of

two (RC) elements in parallel and displaying two semicircles, as in Fig. 2.37, left.

Let us assume that one resistance related to the low-frequency loop is negative,

similar to that shown earlier in Fig. 5.3d for a system with one adsorbed species. An

example of the complex plane plots obtained at different values of the resistance R0

are displayed in Fig. 13.18. The impedance of this circuit is described as

a

z = -1.1×104

p = -103

σ

jω

σ

jω

d

z = 90.9

p = 103

σ

jω

σ

jω

b

z = -9×103

p = 103

c

z = 0

p = 103

Fig. 13.16 Representation

of poles (X) and zeros

(O) of impedance on

s-plane; parameters as in

Fig. 13.15; poles, p, and

zeros, z, are in units s�1
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Fig. 13.17 Cyclic

voltammograms at Pt in 1 M

EtOH and 0.5 M H2SO4

measured directly and after

adding various resistances

to working electrode

connection; sweep rate

50 mV s�1 (From Ref.

[595], copyright (2012),

with permission from

Elsevier)
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Fig. 13.18 Complex plane plots for circuit R0(R1C1)(R2C2) in Fig. 2.37 left. Parameters:

R1 ¼ 100 Ω, C1 ¼ 2 � 10�5 F, R2 ¼ �200 Ω, C2 ¼ 0.01 F; resistance in series R0: (a) 10 Ω,

(b) 100 Ω, (c) 120 Ω
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with zeros and poles

z1,2 ¼
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Figure 13.18 presents complex plane plots for this model for different values of

R0 and the values of the poles and zeros presented in Table 13.1.

There is always one negative and one positive pole, which are independent of the

value of R0. For the resistance R0 ¼ 10 Ω (Fig. 13.18a) there are two negative

zeros, and the system is stable. For R0 ¼ 100 Ω one zero equals zero. In this case,

the low-frequency impedance becomes zero, which indicates a saddle-node bifur-

cation. At R0 > 100 Ω, a positive zero appears, and the system is no longer stable.

The last example is of the same model as the preceding one, but with negative

capacitance C2. Its complex plane plot is shown in Fig. 13.19. This system has two

zeros: z1 ¼ �5.491 s�1 and z2 ¼ 2.91 s�1. Since one zero is positive, this system is

always unstable.

Example 13.2 Using the electrical equivalent model R0(C1(R1(R2C2))) in Fig. 2.27,

check its stability assuming the following parameters: R0 ¼ 10 Ω, C1 ¼ 10�5 F,

C2 ¼ �0.001 F; and R2: (a) �150 Ω, (b) �110 Ω, (c) �80 Ω.

Table 13.1 Zeros and poles

of impedances presented

in Fig. 13.18

R0/Ω z1/s
�1 z2/s

�1 p1/s
�1 p2/s

�1

10 �5,509 �0.408 �500 0.5

100 �1,000 0 �500 0.5

120 �917 0.0454 �500 0.5
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Fig. 13.19 Complex plane

plots for circuit in Fig. 2.37

left. Parameters:

R1 ¼ 100 Ω,

C1 ¼ 2 � l0�5 F,

R2 ¼ 100 Ω,

C2 ¼ �0.01 F, R0 ¼ 10 Ω
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First, the system impedance must be written in the form of Eq. (13.22):
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1
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Its zeros and poles were already presented in Eq. (2.160). The results are

presented in Table 13.2 and the impedance plots in Fig. 13.20.

From the results presented it is evident that in case (a), the impedance displays

one positive zero, which indicates that this system is unstable; in case (b), the

low-frequency zero is equal to zero, which indicates a saddle-node bifurcation; and

in case (c), both zeros are negative and poles are complex with negative real part;

therefore, the system is stable.

The method presented here allows for the determination of system stability

following determination of the system zeros and poles.

13.3.4 Nyquist Stability Criterion

Sometimes we would like to resolve system stability without modeling impedances

or determining the zeros and poles of the impedance. This can be done using the

Nyquist stability criterion [587, 588, 596] developed from the theory of complex

functions and Cauchy’s integral theorem, which can be stated as follows: an electro-

chemical system is stable if and only if the number of clockwise encirclements (#N)

of the origin of the Z0 � (�Z00) plane, going from low to high frequencies, equals the

number of positive poles (#P), i.e., in the right-hand s-plane. Therefore, the number

of instabilities, that is, positive zeros, equals #Z ¼ #P � #N.

Table 13.2 Zeros and poles

of impedance in Eq. (13.28)

for different values of

parameter R2

R2/Ω z1/s
�1 z2/s

�1 p1/s
�1 p2/s

�1

�150 �10,999 2.42 1.66 � j 81.6 1.66 � j 81.6

�110 �10,999 0 0.449 � j 95.3 0.449 + j 95.3

�80 �10,999 �3.41 �1.25 � j 112 �1.25 + j 112

13.3 Stability 291

http://dx.doi.org/10.1007/978-1-4614-8933-7_2


Let us look at the impedances in Fig. 13.15b–d. They all have a negative

resistance and one positive pole, #P ¼ 1, Eq. (13.24). In Fig. 13.15b, going from

ω ¼ 0 to ω ! ∞ (that is, from left to right), the origin is circled once, which means

that #N ¼ 1 and the number of instabilities #Z ¼ #P � #N ¼ 1 � 1 ¼ 0, and the

system is stable. In Fig. 13.15c, the impedance at ω ¼ 0 is Z ¼ 0, and a saddle-

node bifurcation occurs. In Fig. 13.15d, R1 is still negative; therefore, #P ¼ 1. The

impedance does not encircle the origin, and #N ¼ 0; therefore, the number of

instabilities is #Z ¼ #P � #N ¼ 1 � 0 ¼ 1, and this system is unstable.

Let us consider a system containing two parallel (RC) elements in series and

displaying two semicircles (R0(R1C1)(R2C2), Fig. 2.37, left). Let us assume that the

two resistances are negative, and the higher capacitance is negative given different

solution resistances R0. The complex plane plots corresponding to this circuit for

negative R1 ¼ R2, negative C2, and different values of the serial resistance R0 are

displayed in Fig. 13.21. They will be used for the illustration of the stability

criterion. The values of the zeros and poles of the impedances, calculated using

Eq. (13.27), are shown in Table 13.3. There is always one positive and one negative

pole. For R0 < 100 Ω the impedance zeros are both negative. Going from low to

high frequencies there is one clockwise encirclement of the origin, and as there is

only one positive pole, there are no instabilities, #Z ¼ #P � #N ¼ 1 � 1 ¼ 0.
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Fig. 13.20 Complex plane plots for model and data in Example 13.2
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When R0 ¼ �R2, there are two complex conjugate zeros with real part equal to

zero. On the complex plane plot, for one value of the frequency ωΗ 6¼ 0 the

impedance becomes zero. This is a so-called Hopf bifurcation, and the frequency

is called a Hopf frequency. At R0 > �R2, the zeros are complex with positive real

part, which indicates instability (Fig. 13.14). In fact, in Fig. 13.21d, there is only a

counterclockwise encirclement of the origin, and in case e, there are no encircle-

ments; therefore, on the basis of the Nyquist theorem, the system is unstable.
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Fig. 13.21 Influence of serial resistance on complex plane plots for circuit in Fig. 2.37 left.

Parameters: R1 ¼ R2 ¼ �100 Ω, C1 ¼ 2 � 10�5 F, C2 ¼ �0.01 F, R0 ¼ (a) 10 Ω, (b) 50 Ω, (c)
100 Ω, (d) 150 Ω, (e) 230 Ω

Table 13.3 Zeros and poles

of impedance defined in

Eq. (13.27) for parameters

in Fig. 13.21

R0/Ω z1/s
�1 z2/s

�1 p1/s
�1 p2/s

�1

10 �4,489 �2.12 500 �1

50 �496 �3.02 500 �1

100 0 � j 22.4 0 + j 22.4 500 �1

150 83.2 � j 82.2 83.2 + j 82.2 500 �1

230 141 � j 141 141 + j 141 500 �1
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Applying the Nyquist theorem to the impedances in Fig. 13.18 it is evident that

in case a, there is a negative low-frequency resistance and one pole is positive.

However, the impedance encircles the origin once in the clockwise direction (going

from low to high frequencies) and the number of instabilities is #Z ¼ #P � #N

¼ 1 � 1 ¼ 0; therefore, the system is stable. Other cases can be considered in a

similar way.

13.3.5 Negative Dynamic Resistances and Their Origin

Negative impedance cannot be read from the steady-state polarization curve.

However, in dynamic systems, for example, during a voltamperometric potential

sweep, such effects can appear. These phenomena are often observed in corrosion

in cases of active-passive transitions or transpassivity [588–600]. An example of

the i�E curve where negative charge transfer resistances are observed is displayed

in Fig. 13.22 (see also Refs. [599, 600]); they appear after the peak where the current

is decreasing with increasing potential, di/dE < 0. It should also be noted that

during potentiostatic experiments, one current value corresponds to one potential,

whereas for one applied current (galvanostatic conditions) (horizontal line) three

values of the current are possible because of multiple steady states.

Koper [597], Koper and Sluyters [598], and Krischer and Varela [601] discussed

the conditions under which negative faradaic impedance can be observed. In

general, current is described as

if ¼ nFAkfC 0ð Þ, ð13:29Þ

where A is the electrode surface area, C(0) is the surface concentration of the

electroactive species, and other parameters have their usual meaning. Faradaic

admittance is defined as
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Fig. 13.22 Example of

current-potential curve;

negative resistance may

appear when di/dE < 0;

parallel line indicates that

multiple states are possible

for one value of current
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Ŷ f ¼
1

Ẑ f

¼ dif

dE
¼ nF AC 0ð Þ dkf

dE
¼ Akf

dC 0ð Þ
dE

þ kfC 0ð Þ dA
dE

� �
: ð13:30Þ

To obtain a negative faradaic impedance, the expression in parentheses in

Eq. (13.30) must be negative. This can happen in one of three cases [597, 598]:

i. dkf/dE < 0: this condition may occur in the following situations:

(a) During potential-dependent adsorption of an inhibitor, which decreases the

available free surface area. For example, one can assume that the heteroge-

neous rate constant changes according to

kf θ;Eð Þ ¼ 1� θ Eð Þ½ �kf θ ¼ 0,Eð Þ þ θ Eð Þkf θ ¼ 1,Eð Þ, ð13:31Þ

where θ is the surface coverage with the inhibitor and kf (θ ¼ 0, E) > >
kf (θ ¼ 1, E).

(b) During potential-dependent desorption of a catalyst in whose presence a

reaction can proceed at a high rate. When the catalyst is desorbed, the

reaction rate decreases with the potential.

ii. dC(0)/dE < 0: this condition occurs during strong electrostatic repulsion of ions

in the double layer due to the Frumkin effect [17]. This effect is especially strong

at low supporting electrolyte concentrations as the value of the potential in the

outer Helmholtz plane becomes large (positive or negative for cations and

anions, respectively).

iii. dA/dE < 0: this effect can appear when the available electrode surface

decreases with increasing polarization due to the formation of a passivating or

strongly inhibiting film (potential-dependent processes).

As we saw earlier, systems with a negative faradaic resistance, such as in

Fig. 13.15, may be stable, depending on the value of the solution resistance.

However, such impedance is not Kramers-Kronig-transform compliant. This is

related to the general characteristics of transfer functions. However, there are two

types of impedance experiments: potentiostatic or galvanostatic.When an ac voltage

is applied and ac current measured, the corresponding transfer function (Laplace

transform of the output to the Laplace transform of the input) is admittance,

Ŷ ωð Þ ¼
L output½ �

L input½ �
¼

L i tð Þ½ �

L E tð Þ½ �
, ð13:32Þ

and when ac current is used as a perturbation, the transfer function is impedance,

Ẑ ωð Þ ¼
L E tð Þ½ �

L i tð Þ½ �
: ð13:33Þ

This means that if the data were acquired under a potentiostatic perturbation,

then one should use the admittance as the transfer function for the Kramers-Kronig
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transformations, but if the data were acquired under a galvanostatic perturbation,

then one should use impedance [561]. This fact is related to system stability.

Although it is possible to acquire data using potentiostatic control, during

galvanostatic control multiple states are possible for one value of current

(Fig. 13.22), and oscillations might be observed [588, 599, 600]. In fact, for a

system displaying negative resistance, as in Fig. 13.15b, impedances are not

Kramers-Kronig compliant, but admittances are transformable. This result is

displayed in Fig. 13.23.

These properties are understandable from the point of view of the stability of

transfer functions. As was mentioned earlier, a stable transfer function cannot have

any positive poles. In the foregoing case, the poles and zeros of the impedance are

shown in Fig. 13.16b, and there is one positive pole and one negative zero, which

means that the system is unstable. On the other hand, the admittance (inverse of

impedance) has one negative pole and one positive zero, indicating that it is stable.

Of course, systems containing only positive R, C, and L elements always have

negative poles and zeros, and they are always stable and transformable in the

admittance and impedance forms.

Example 13.3 Determine the current and impedance of a system displaying nega-

tive impedance (described below). It represents the irreversible metal dissolution

and electrosorption of a species A on the surface, which block metal dissolution:

Ms!
klf

Mþ þ e, ð13:34Þ

A�
Æ
k2f

k2b

As þ e: ð13:35Þ

Use the following parameters: k01 ¼ k02 ¼ 10�7 mol cm�2 s�1, α1 ¼ α2 ¼ 0.5,

σ1 ¼ 210 μC cm�2, E ¼ 0.1 V; neglect the diffusion of A�.

-100 -50 0

0

-50

Z
" 

/ 
Ω

Z' / Ω

-100 -50 0

0

-50

Z
" 

/ 
Ω

Z' / Ω

a b

Fig. 13.23 Complex plane impedance data (continuous lines) and their Kramers-Kronig

transformations (symbol +) for simple model with negative resistance; (a) transformation of

impedance, (b) transformation of admittance (displayed here as impedance); data as in Fig. 13.15b
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Reactions (13.34) and (13.35) are described by the following equations:

v1 ¼ k1f 1� θð Þ, ð13:36Þ

v2 ¼ k2f 1� θð Þ � k2bθ, ð13:37Þ

where the rate constants are potential dependent:

k1f ¼ k01exp α1fEð Þ; k2f ¼ k02exp α2fEð Þ; k2b ¼ k02exp � 1� α2ð ÞfE½ �: ð13:38Þ

First, the steady-state conditions must be described. At a steady state, adsorption

of species A is in equilibrium and v2 ¼ 0 and the surface coverage is

θ ¼
k2f

k2f þ k2b
, ð13:39Þ

and the steady-state current is

i ¼ Fv ¼ F v1 þ v2ð Þ ¼ F
k1fk2b

k2f þ k2b
: ð13:40Þ

Next, the dynamic conditions must be solved. In general, the total ac current is

written as

Δi ¼
∂v

∂E

� �
ΔEþ

∂v

∂θ

� �
Δθ, ð13:41Þ

where for each parameter a, Δa ¼ ãexp( jωt). This can be simplified to

ei ¼ F
∂v

∂E

� �
eE þ

∂v

∂θ

� �
eθ

� �
: ð13:42Þ

The adsorption reaction for reaction (13.35) is

Γ1
dθ

dt
¼ v2 ¼ k2f 1� θð Þ � k2bθ, ð13:43Þ

where Г
∞
is the maximum surface concentration of the adsorbed species and can

be expressed in terms of the maximal charge density necessary for full surface

coverage, Г
∞
¼ σ1/F. The linearized form is

Γ1jωeθ ¼
∂v2

∂E

� �
eE þ

∂v2

∂θ

� �
eθ: ð13:44Þ
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Equations (13.42) and (13.44) may be written in matrix form:

�
∂v

∂E

0
@

1
A

�
∂v2

∂E

0
@

1
A

2
6666664

3
7777775
¼

�
1

F

∂v

∂θ

0
@

1
A

0
∂v2

∂θ
� jω

σ1

F

0
@

1
A

2
6666664

3
7777775

ei
eE
eθ
eE

2
666664

3
777775
: ð13:45Þ

One notices the analogy to cases involving one adsorbed species. The system

faradaic admittance is easily obtained from Eq. (13.45):

eY f ¼ F
∂v

∂E

� �
þ

∂v

∂θ

� �
∂v2

∂E

� �

∂v2
∂θ

� �
� jω

σ1

F

2
664

3
775 ¼ F

∂v

∂E

� �
þ

�F2

σ1
∂v
∂θ

� �
∂v2

∂E

� �

jω�
F2

σ1

∂v2

∂θ

� � ð13:46Þ

¼ Aþ
B

jωþ C
:

This equation is similar to that used for one adsorbed species, Eq. (5.51), and

A ¼ 1/Rct. The total impedance must include a solution resistance and double-layer

capacitance,

Ẑ ¼ Rs þ
1

jωCdl þ
1
Zf

, ð13:47Þ

and it displays two semicircles on the complex plane plot. Results of the calcula-

tions might be easily obtained using Maple/Mathematica. The dependence of the

surface coverage and current on the potential is displayed in Fig. 13.24 and the total
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Fig. 13.24 Dependence of surface coverage and current on potential
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and faradaic impedances in Fig. 13.25. At negative potentials, two semicircles are

observed on the complex plane plots, whereas at positive potentials, where the

current is decreasing, negative resistance corresponding to a low-frequency loop

appears. Such plots were predicted for the case with one adsorbed species (Fig. 5.3).

13.4 Z-HIT Transform

Kramers-Kronig transforms require integration over frequencies from zero to

infinity, which, in practice, is difficult to carry out. There exists a Hilbert logarith-

mic transform [602, 603] that can be used to validate impedance data in a limited

frequency range. It is known under the name Z-HIT transform [585] and is used in

the Zahner software [604]. The logarithm of a transfer function known for frequen-

cies between ωs and ωo may be written as a function of the phase angle:

ln
H ω0ð Þ

 ¼ ln
H 0ð Þ

þ 2

π

ðω0

ωs

φ ωð Þ d ln ωþ
X

k�1, k odd
γk

dkφ ω0ð Þ

dlnωð Þk
,

γk ¼ �
2

π
ζ k þ 1ð Þ2�k for odd k, k � 1; ζ sð Þ ¼

X1

n¼1

n�s: ð13:48Þ

This series may be simplified to

ln
H ω0ð Þ

 	 constþ
2

π

ðωo

ωs

φ ωð Þ dlnωþ γ
dφ ωoð Þ

dlnω
, ð13:49Þ

where γ ¼ �π/6. Equation (13.49) indicates that the logarithm of the transfer

function may be calculated from the integral and the derivative of the phase angle

[585] and presents an alternative to the Kramers-Kronig transform.

Application of the coherence function instead of the classical Kramers-Kronig

transforms has also been proposed in the literature [37, 605] but is rarely used in

practice.
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Fig. 13.25 Complex plane

plots of total (continuous

line) and faradaic (pointed

line) impedances at

E ¼ 0.1 V
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13.5 Summary

Experimental impedance data should be validated before further analysis. Raw data

might be verified using Kramers-Kronig or Z-Hit transforms. It should be kept in

mind that these transforms are not very sensitive to system nonlinearities, and an

additional test with different amplitudes could be carried out. An alternative to

the aforementioned transforms is the approximation to linear circuits (Figs. 13.2

and 13.4).

If approximation by the transfer function in the form of Eq. (13.17) is possible,

then poles of the transfer function can be analyzed because the stable transfer

function cannot have positive poles. When such an analysis is not possible, one

can use the Nyquist stability criterion. Only validated data can be used for analysis.

13.6 Exercises

Exercise 13.1 Carry out a K-K transform of the data in the file 1.z.

Exercise 13.2 Carry out a K-K transform of the data in the file 2.z.

Exercise 13.3 Carry out a K-K transform of the data in the file 3.z.

Exercise 13.4 Perform a K-K transform of the data in the file 4.z.

Exercise 13.5 Perform a K-K transform of the data in the file 5.z.
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Chapter 14

Modeling of Experimental Data

14.1 Acquisition of “Good” Data

The purpose of analyzing EIS data is to determine the nature of the electrode

process and its characteristic parameters. As was mentioned earlier, EIS is a very

sensitive technique, but it does not provide a direct measure of physical phenomena.

Other electrochemical experiments (dc, transients) should also be carried out,

assuming good physical knowledge of the system (e.g., solution and surface

composition, electrode geometry, dimensions, porosity, presence of various layers,

hydrodynamic conditions). The interpretation of impedance data requires the use of

an appropriate model. This is a rather difficult and sensitive task that must be

carried out very carefully.

Initially, the experimental data must be acquired in a wide frequency range;

usually ten points per frequency decade are registered. The lowest frequency is

determined by the system stationarity. Usually, one should wait until the current

following application of the steady-state potential (or potential in the galvanostatic

mode) becomes stationary. It is also advisable to repeat the measurements at each

potential twice and compare complex plane and Bode plots to check whether or not

they are the same. Other tests may involve running measurements from low to high

and then from high to low frequencies. When experiments are carried out at

different potentials, they should be repeated from high to low and from low to

high potentials and compared. Only stationary, i.e., repeatable, results should be

used in the analysis.

For species in solution undergoing diffusion (without forced convection) the

lowest frequency that can be used depends also on the hydrodynamic conditions. It

is well known that the chronoamperometric curves in solutions might be measured

up to 60 s, after which natural convection affects the linearity of diffusion. This

means that measurements of the mass transport impedance are limited to approx-

imately 0.1 Hz (or slightly lower). However, measuring diffusion in solid materials

(e.g., hydrogen absorption in metals and alloys, lithium intercalation) is not

influenced by convection, and the measurements might be carried out to the
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millihertz range or lower. One should keep in mind that one ac cycle at 1 mHz takes

16.7 min and taking only one cycle might not always be sufficient because of

system noise. Data are usually registered sequentially from high to low (or vice

versa) frequencies, so the experimental time is longer than that of one cycle of the

lowest frequency. To decrease the experimental time, the EG&G software uses

single frequency scans at higher frequencies and applies the sum of frequencies at

lower frequencies, followed by Fourier transform analysis. A sum of all odd

frequencies might be used, although the experimental noise for individual frequen-

cies is often larger as the individual amplitudes must be reduced to assure system

linearity (Sect. 13.2).

If differences are detected, they indicate that the system is not stationary and

further modifications must be made to assure data reproducibility. This might

involve waiting longer at each potential or shortening the time of the experiment

by abandoning lower frequencies (which require longer measurement times). Some

systems evolve with time, e.g., during corrosion measurements, and each experi-

ment is carried out in a different surface state. In such cases, one must be sure that

during one experiment there are no important surface modifications and that

reproducible data can be obtained by repetition of the experiment with a new

sample.

Then the acquired data must be validated using Kramers-Kronig transforms.

Such validated data can be used in subsequent analysis and modeling.

14.2 Types of Modeling

Modeling of experimental data may be divided into two types, as follows.

Measurement [606, 607], formal [27], or mathematical [608, 609] modeling

explains experimental impedances in terms of mathematical functions or equivalent

electrical circuits to obtain a good fit between the calculated and experimental

impedances with a minimum number of parameters.

Physicochemical, process [566, 572, 606, 607], or structural [27, 610–612]

modeling links measured impedances with physicochemical parameters of the

electrochemical process (e.g., kinetic parameters, concentrations, diffusion coeffi-

cients, sample geometry, hydrodynamic conditions).

It is clear that in the measurement modeling, the parameters obtained often do

not have a clear physicochemical significance. It should be stressed that proper

modeling is the most difficult part of analysis and is often misunderstood and

wrongly interpreted.

Zoltowski [608, 609] proposed that one should first use measurement modeling

to determine the number and nature of the circuit elements and parameters describ-

ing the studied system. One could use equivalent circuits containing simple R, C,

and L parameters, or one could use more complex distributed elements such as the

CPE and other analytically described elements such as, for example, mass transfer

impedance and a porous model.
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The next step would be to construct a physicochemical model for a given

process. As was shown in earlier chapters, one can write faradaic impedance

equations for any mechanism. The problem is that complex mechanisms produce

equations (models) containing more parameters than really are observed in the

experimental data (determined by measurement modeling). It must be stressed that

a physicochemical model cannot contain more adjustable parameters than the

corresponding measurement model. More complex physicochemical models must

be correctly simplified. Several additional experiments are usually necessary to

determine the origin of certain elements, for example, by changing the concentra-

tion, hydrodynamic conditions, adding poisons, or changing the temperature.

The modeling process proposed by Zoltowski is schematically displayed in

Fig. 14.1. To characterize an electrochemical system, one performs impedance

measurements and the results are qualitatively analyzed. This analysis allows the

construction of a formal model and determination of the nature and number of the

Fig. 14.1 Steps in

modeling process as

suggested by Zoltowski

[608, 609]
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parameters describing such a system. With information from other electrochemical

and physicochemical methods, the process model is constructed leading to model

identification and determination of the physicochemical parameters. The process is

interactive, and repetitions/corrections might be necessary to finally describe the

electrochemical system.

It must be added that such a process is not always possible. Certain phenomena

cannot be described by analytical equations, for example, porous electrodes in the

presence of a faradaic current and potential gradient, nonhomogeneous porous

materials, diffusion to disk electrodes, and nonuniform diffusion. However, such

phenomena might often be approximated by simpler analytical equations, although

the obtained parameters might not have a clear meaning. For example, a semi-

infinite porous model in the presence of a potential gradient may be approximated

using a CPE, but the obtained parameters do not directly correspond to the electrode

capacitance [435] (Fig. 9.29).

The main problem with equivalent circuit modeling is related to the fact that the

same data may be exactly represented by different equivalent models. This problem

will be illustrated in the following examples.

Example 14.1 A complex plane plot displaying one semicircle (Fig. 2.34) may be

exactly described by two equivalent circuits (Fig. 14.2). The impedances of these

circuits are

Ẑ a ¼ R1 þ
1

1

R2

þ jωC2

¼ R1 þ R2ð Þ þ jω R1R2C2ð Þ
1þ jω R2C2ð Þ , ð14:1Þ

Ẑ b ¼
1

1

R2

þ 1

R1 þ
1

jωC2

¼ R1 þ jω R1R2C2ð Þ
1þ jωC2 R1 þ R2ð Þ : ð14:2Þ

These two equations may be written in a unified form:

Ẑ ¼ a0 þ a1jω

b0 þ b1jω
¼ a0 þ a1jω

1þ b1jω
, ð14:3Þ

where the parameters ai and bi are different for these two circuits:

a0 ¼ R1 + R2, a1 ¼ R1R2C2, b0 ¼ 1, and b1 ¼ R2C2 for circuit (a) and

a0 ¼ R1, a1 ¼ R1R2C2, b0 ¼ 1, and b1 ¼ C2(R1 + R2) for circuit (b).

R1

C2

R2

R2

R1

C2

a b
Fig. 14.2 Two electrical

equivalent circuits

producing one semicircle

on complex plane plot

and characterized by one

time constant
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It is evident that these two forms are indistinguishable and produce exactly the

same impedances and impedance complex plane and Bode plots for these two

circuits. All the equations have three adjustable parameters. However, additional

information is necessary to decide which circuit has a physical meaning in the given

case. For example, when studying a redox process on an electrode in solution,

circuit (a) is more probable because R1 and C2 have a meaning of solution resistance

in series, with the electrode impedance consisting of a parallel connection of the

double-layer capacitance, C2, and the charge transfer resistance, R2 (Sect. 4.1 and

Fig. 4.1).

Example 14.2 Let us consider now a circuit characterized by two time constants

producing two semicircles on complex plane plots. Three possible circuits

explaining the impedances are shown in Fig. 14.3. Circuit (a) represents so-called

a Voigt circuit consisting of the resistance in series with two (RC) circuits in

parallel; circuit (b) is a so-called ladder or nested circuit, and circuit (c) is a

mixed circuit. The impedance of each circuit can be written as

Ẑ a ¼ R1 þ
1

1
R2
þ jωC2

þ 1
1
R3
þ jωC3

¼ R1 þ R2 þ R3ð Þ þ jω R1R2C2 þ R1R3C3 þ R2R3C3 þ R2R3C2ð Þ þ jωð Þ2 R1R2R3C2C3ð Þ
1þ jω R2C2 þ R3C3ð Þ þ jωð Þ2 R2R3C2C3ð Þ

,

ð14:4Þ

R1

C2

R2

R3

C3

R1

C2

R2

C3

R3

R1

C2

R2

R3

C3

a

b

c

Fig. 14.3 Three circuits

representing a system

characterized by two time

constants: (a) Voigt, (b)
ladder, and (c) mixed
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Ẑ b ¼ R1 þ
1

jωC2 þ
1

R2 þ
1

1

R3

þ jωC3

¼ R1 þ R2 þ R3ð Þ þ jω R1R2C2 þ R1R3C2 þ R1R3C3 þ R2R3C3ð Þ þ jωð Þ2 R1R2R3C2C3ð Þ
1þ jω R2C2 þ R3C3 þ R3C2ð Þ þ jωð Þ2 R2R3C2C3ð Þ

,

ð14:5Þ
Ẑ c ¼ 1

R3 þ
1

jωC3

þ 1

R1 þ
1

1

R2

þ jωC2

¼ R1 þ R2ð Þ þ jω R1R2C2 þ R1R3C3 þ R2R3C3ð Þ þ jωð Þ2 R1R2R3C2C3ð Þ
1þ jωð Þ R1C3 þ R2C2 þ R2C3 þ R3C3ð Þ þ jωð Þ2 R1R2C2C3 þ R2R3C2C3ð Þ

:

ð14:6Þ

All these equations can be written in one simpler form:

Ẑ ¼ a0 þ a1 jωð Þ þ a2 jωð Þ2

b0 þ b1 jωð Þ þ b2 jωð Þ2
¼ a0 þ a1 jωð Þ þ a2 jωð Þ2

1þ b1 jωð Þ þ b2 jωð Þ2
, ð14:7Þ

which indicates that all three circuits will produce the same impedances at all

frequencies after proper adjustments of the parameters. All the equations have

five adjustable parameters (because b0 ¼ 1).

It should also be added that use of the equivalent circuits may introduce ambi-

guities. It is clear that in the Voigt circuit (a), permutation of the values of elements

R2 � C2 and R3 � C3 does not change the impedance values and the attribution of

values to one or another set is arbitrary, i.e. when fitting one can converge on either

set. This fact is important when the system is studied as a function of the electrode

potential (or other experimental parameter) to not exchange of these parameters (e.g.

set of parameters 2 and 3). However, such an ambiguity does not appear in the ladder

circuit (b).

Example 14.3 Compare systems with three time constants.

Three circuits characterized by three time constants are presented in Fig. 14.4:

(a) Voigt, (b) ladder, and (c) Maxwell circuits. Their impedances might be written

in one common form,

Ẑ ¼ a0 þ a1 jωð Þ þ a2 jωð Þ2 þ a3 jωð Þ3

b0 þ b1 jωð Þ þ b2 jωð Þ2 þ b3 jωð Þ3
, ð14:8Þ
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with b0 ¼ 1 and they produce identical impedance characteristics. Only by using

the additional mechanistic information can one decide which model should be

used. For example, the ladder circuit might appear in systems with two adsorbed

species (Sect. 5.3), while the Maxwell circuit appears in studies of dielectric

phenomena [574].

Note that the same equivalent circuits can be presented in different forms; for

example, the same ladder circuit is presented in Figs. 14.4b and 14.5, although at

first glance they look different.

It should be added that sometimes CPEs must be used and the corresponding

impedance adjusted to include such parameters [611]; however, using polynomial

notation for impedances makes the model more complicated. For example,

replacing C2 in Fig. 14.3b by the CPE (T2, ϕ2) changes Eq. (14.5) into

C

R2

R1

R1

C2

CC2

R2

C3

R3

C4

R4

C

R3

C3 C4

R4

R2

CC2

R1

C3 R3

C4 R4

a

b

c

Fig. 14.4 Three circuits

representing systems with

three time constants: (a)
Voigt, (b) ladder, (c)
Maxwell
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Ẑ b ¼ R1 þ
1

¼ jωð Þϕ2T2 þ
1

R2 þ
1

1

R3

þ jωC3

¼

R1 þ R2 þ R3ð Þ þ jωð Þϕ2 R1R2T2 þ R1R3T2ð Þ þ jω R1R3C3 þ R2R3C3ð Þ
þ jωð Þ1þϕ2 R1R2R3T2C3ð Þ

1þ jωð Þϕ2 R2T2 þ R3T2ð Þ þ jω R3C3ð Þ þ jωð Þ1þϕ2 R2R3T2C3ð Þ

ð14:9Þ

In such cases, it is simpler to use a direct fit to the equivalent circuit.

The same impedance behavior might be represented not only by permutation of

R and C elements but also by replacing capacitance by inductance and using

negative values of the parameters. This will be illustrated in Example 14.4.

Example 14.4 The faradaic impedance of a hydrogen evolution reaction can be

represented by four different circuits displaying the same values of impedances and

frequency dependence [211]. These circuits are displayed in Fig. 14.6. The faradaic

impedances of circuits (a)–(d) are

C3 C4

R R2R1 R3 R4

C2

Fig. 14.5 Another

representation of ladder

circuit presented in

Fig. 14.4b

Rct

Cp

Rp

a R∞

R0 Ls

b

Rf

Rs

c

Cs

R∞

Ru

Lp

d

Fig. 14.6 Electrical

equivalent circuits

describing faradaic

impedance of hydrogen

evolution reaction
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að Þ Ẑ f ¼ Rct þ
1

1

Rp

þ jωCp

¼ Rct þ RPð Þ þ jω RctRpCp

� �

1þ jω RpCp

� �

¼ Rct þ Rp

� �
1þ jω

RctRpCp

Rct þ Rp

0
@

1
A

1þ jω RpCp

� � ,

ð14:10Þ

bð Þ Ẑ f ¼
1

1
R1
þ 1

R0þjωLs
¼ R1R0

R1 þ R0

1þ jω Ls
R0

1þ jω Ls
R1þR0

, ð14:11Þ

cð Þ Ẑ f ¼
1

1
Rf
þ 1

Rsþ 1
jωCs

¼ Rf þ jω RfRsCsð Þ
1þ jω RfCs þ RsCsð Þ , ð14:12Þ

dð Þ Ẑ f ¼ Ru þ
1

1
RL
þ 1

jωLp

¼
Ru þ jω Lp þ LpRu

RL

� �

1þ jω
Lp
RL

� � , ð14:13Þ

and the parameters of other circuits can be expressed in terms of the circuit

(a) parameters:

bð Þ R1 ¼ Rct;R0 ¼ �
Rct Rct þ Rp

� �

Rp

; Ls ¼ �R2
ctCp;

cð Þ Rf ¼ Rct þ Rp;Rs ¼
Rct Rct þ Rp

� �

Rp

;Cp ¼
R2
pCp

Rct þ Rp

� �2 ;

dð Þ Ru ¼ Rct þ Rp;RL ¼ �Rp; Lp ¼ �R2
pCp:

ð14:14Þ

That is, assuming the following values for the elements of circuit (a):

að ÞRct ¼ 70 Ω; Rp ¼ 100 Ω; Cp ¼ 0:01 F ð14:15Þ

the parameters of the other circuits are

bð Þ R1 ¼ 70 Ω; R0 ¼ �119 Ω; Ls ¼ �49 H;

cð Þ Rf ¼ 170 Ω; Rs ¼ 119 Ω; Cs ¼ 0:0346 F;

dð Þ Ru ¼ 170 Ω; RL ¼ �100 Ω; Lp ¼ �100 H:

ð14:16Þ

This means that a simple complex plot presenting one capacitive semicircle can

be represented by other connections of R and C elements (as shown earlier) but also

by circuits containing negative inductance and resistance. Of course, as has been

proven in the literature, only the parameters of circuit (a) are more directly related
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to the mechanism, although other circuits give exactly the same frequency-

dependent impedances.

Example 14.5 Another example illustrates ambiguity in the position of the War-

burg element. In Chap. 6, Eq. (6.28), and Fig. 6.1, a model was developed for the

case of one adsorbed species with diffusion. However, the position of the Warburg

impedance element (Fig. 14.7a) can be changed to 14.7b without practically

affecting the quality of the fit that is both fits may be experimentally indistinguish-

able. Nevertheless, only the model in (a) has a physical meaning. Of course, the

total impedance might be fitted to the model in Fig. 4.1b, expressing the faradaic

impedance by Eq. (6.26).

14.3 Fitting the Experimental Data

The purpose of data fitting is to determine the values of the model parameters

together with their standard deviations.

Cp

Rp

Rct

ZW

Cdl

Rs

Cp

Rp

Rct

Cdl

Rs

ZW

a

b

Fig. 14.7 Electrical

equivalent model of

mechanism involving one

adsorbed species with

diffusion (a) and a model

with different position of

Warburg element (b)
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14.4 Error Classification

The observed impedance errors at each frequency, i, that is, the difference between

the experimental, Zi, and a fitted model impedance, Zi,calc, arises from three major

contributions [3]:

Zi � Zi,calc ¼ εi, fit þ εi, stochþεi,bias, ð14:17Þ

where εi,fit is the systematic error attributed to an incorrect model used in approx-

imation, εi,Stoch is the stochastic (random) error intrinsic to each experiment with

the average equal to zero, and εi, bias is the systematic error in the experiment arising

from drift and instrumental artifacts. The statistical methods of data analysis deal

with the stochastic errors only, but other more complex methods allow one to deal

with bias errors [613–615].

14.5 Methods for Finding the Best Parameters

The problem of fitting impedances is nonlinear, and the method usually used is the

complex nonlinear least-squares (CNLS) method [3, 24, 25, 616–618]. In this

method, a weighted sum of squares, S, of the differences between the experimental,

Z0i and Z00i, and the model, Z0i,calc and Z00i,calc impedances is minimized by choosing

the best values of the adjustable parameters and minimizing the weighted differ-

ences between the experimental and model (calculated) impedances:

S ¼
XN

i¼1
w
0
i Z

0
i � Z

0
i,calc

h i2
þ w

00
i Z

00
i � Z

00
i,calc

h i2� �

, ð14:18Þ

where w0i and w00i are the statistical weights of the data points and the summation

runs over all the N frequencies. This minimization is usually carried out using the

iterative Marquardt-Levenberg algorithm [619]. The initial estimation of the model

parameters must be supplied. Because the method is iterative and nonlinear, the

initial estimation of the parameters must be relatively close to the experimental

values; otherwise, a divergence is obtained and a message, for example “singular

matrix,” is obtained or the parameters are found with errors exceeding several times

their values. The latter case may be related to a local flat minimum and a new set of

initial parameters should be chosen. These problems are often observed for more

complicated circuits characterized by many adjustable parameters and in the pres-

ence of distributed elements as in porous electrodes or those with semi-infinite-

length or finite-length diffusion.

In more complicated cases, a part of the total circuit (usually the high-frequency

part) might be fitted, the elements found fixed, and additional elements added as

free parameters. Finally, all the parameters should be set as free and the final
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approximation parameters found. Examples of this type of modeling will be shown

in subsequent exercises.

Another method for finding the minimum is the so-called downhill simplex

method [3, 619]. It requires only a function evaluation and does not use either

function derivatives or matrix inversion. It may be relatively slow if one is trying to

optimize many parameters and a shallow minimum, but it will always find a

minimum (at least a local minimum). The problem with this technique is that it

does not calculate the parameters’ standard deviations directly. In such cases, it is

advisable, after finding the minimum by the simplex method, to use these param-

eters in the CNLS approximation, which should converge quickly and provide

standard deviations of the parameters.

Some new methods are based on the use of genetic algorithm optimization, but

although they are very promising they are still rarely used [620]. They could be used

in future to distinguish between some complex reaction mechanism, e.g. in corrosion.

14.6 Weighting Procedures

The proper choice of the statistical weighting in Eq. (14.18) is very important for

the determination of the system parameters. There are several popular choices:

a. Statistical weighting: w0i ¼ 1/(σ0i)
2 and w00i ¼ 1/(σ00i)

2

b. Unit weighting: w0i ¼ w00i ¼ 1

c. Modulus weighting [617, 622]: w0i ¼ w00i ¼ 1/|Z|2

d. Proportional weighting [24, 615, 623]: w0i ¼ 1/(Z0i)
2 and w00i ¼ 1/(Z00i)

2

e. Weighting from measurement model [3, 613, 624, 625]:

σ
0
i ¼ σ

00
i ¼ α Z

00
i

�

�

�

�þ β Z
0
i � Rs

�

�

�

�þ γ
Zij j2
Rm

:

These weighting choices will be discussed below.

14.6.1 Statistical Weighting

Statistical weighting is the statistically most straightforward method. The imped-

ance data should be acquired several (n) times and standard deviations calculated

for the real and imaginary parts separately using the average impedance Z i at each

frequency, i:

σ
0
i ¼

X

n

k¼1

Z
0
i kð Þ � Z

0

i

� �

n� 1

2

and σ
00
i ¼

X

n

k¼1

Z
00
i kð Þ � Z

00

i

� �

n� 1

2

: ð14:19Þ
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Then the statistical weight is calculated and used to calculate the sum of squares,

S, Eq. (14.18). However, the biggest problem with this method is that, besides the

fact that it is time consuming, the impedances may slowly change with time and the

average will contain a systematic (drift) error. Because of this problem, it is rarely

used. It could be replaced by weighting from the measurement model method.

The next three methods use information from one set of impedance measure-

ments to estimate the weighted sum of squares. In these cases, assumptions about

the weighting functions must be made.

14.6.2 Unit Weighting

Unit weighting is the simplest approach. It is assumed that each measured imped-

ance is characterized by the same standard deviation, that is, each measured value

has the same precision. This method might be useful for finding initial model

parameters for relatively simple models. However, the biggest problem with this

method is related to the fact that if the measured impedances change by orders of

magnitude, the large values determine the sum of squares, S, and the small features

may not be approximated at all. For example, for a model displaying one very small

and one large semicircle on the complex plane plot, the smaller semicircle might be

completely unnoticed by the approximating program. Of course, this deviation will

be easily noticed on Bode phase angle plots.

14.6.3 Modulus Weighting

If impedance measurements are carried out at the same sensitivity scale for the

real and imaginary components, the stochastic errors of the real and imaginary

impedances will be similar, and one can use modulus weighting. Modulus

weighting assumes the same statistical weights for real and imaginary parts,

and they are proportional to the impedance modulus. This means that small and

large impedances contribute in a similar way to the sum of squares and are

equally important.

There are two possible choices for calculations of the modulus:

a. Modulus of experimental impedances: Zij j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z
02
i þ Z

002
i

q

b. Modulus of calculated impedances: Zij j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z
0
i,calc

2 þ Z
00
i:calc

2

q

Because of the existence of random errors and the possibility of bias, it is

recommended to use modulus weightings based on calculated impedances

[626]. Macdonald [626] claims that modulus weighting introduces some bias to

approximations.
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14.6.4 Proportional Weighting

Proportional weighting was suggested by Macdonald [24, 615, 623, 626]. This

method is especially important when the real and imaginary components have much

different values. As in the case of modulus weighting, two choices are possible:

a. Using experimental data: w0i ¼ 1/(Z0i)
2and w00i ¼ 1/(Z00i)

2

b. Using calculated data: w0i ¼ 1/(Z0i,calc)
2and w00i ¼ 1/(Z00i,calc)

2

As before, it is recommended that calculated data be used [626]. Care must be

taken in those cases where the imaginary impedances pass the real axes and become

zero or very close to zero because their weight will go to infinity, exaggerating

the importance of such points.

Modern approximation programs usually provide users with a choice of the

weighting procedures and might contain other more advanced functions [626].

14.6.5 Weighting from Measurement Model

Orazem and coworkers [3, 624, 625] modified the method of statistical weighting in

such a way that it could be used in cases of mildly nonstationary systems. Data

should be acquired several times and fitted to the Voigt model, retaining a statis-

tically significant number of circuit elements. From the differences between the

experimental and model impedance values (each of which might be different for

sequentially acquired impedances), the standard deviations might be determined at

each frequency and then fitted to the model described earlier in (e). The calculated

values are used in the calculation of the sum of squares, Eq. (14.18). The proposed

procedure is detailed below:

a. Impedance measurements should be repeated several times (six repetitions were

used in Ref. [625]) in the same experimental conditions and at the same

frequencies. The authors suggested that the standard deviations of the real and

imaginary impedance components should be lower than 3 % of the impedance

modulus at each frequency.

b. A measurement series Voigt model, Figure 13.2, Eq. (13.10), should be fitted to

each experimental data set, keeping the time constants positive and the resis-

tances positive or negative. The number of Voigt elements should be increased

until the confidence intervals 2σ (i.e., 95.4 %) for one of the parameters include

zero. Then the number of the circuit elements should be decreased by one. If for

one data set the number of Voigt elements is lower, then all other approxima-

tions should be recalculated with this reduced number of elements. This proce-

dure satisfies the condition that the maximum number of parameters must be

statistically important.

c. The standard deviations of the residuals of the impedances, i.e., the differences

between the experimental and corresponding model values, should be calculated
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at each frequency. Such standard deviations should be bias free because they

are calculated from the differences for all data sets, which were approximated

separately.

d. These standard deviations were fitted to the model for the data structure

described earlier in point (e), p. 312.

The obtained standard deviations are used in the subsequent CNLS analysis of

one of the impedance data files. Unfortunately, typical software programs, such

as ZView, cannot perform this fitting. However, it can be easily done with

Macdonald’s LEVM program, although the experimental data should be prepared

in a special format. An example of such an analysis is presented in Exercise 14.1.

Several examples are discussed in the literature [613, 624, 627–632].

In practical approximations, modulus and proportional weighting procedures

are usually used.

14.7 Statistical Tests

The purpose of modeling is to find an appropriate model described by an electrical

circuit or equation by minimization of the sum of squares. Such model impedances

should lie very close to the experimental ones without any systematic deviations.

The first test is a visual comparison of the complex plane and Bode plots, which

should agree. To assure that the approximating model is correct, several statistical

tests might be used.

14.7.1 Chi-Square

The quality of fit may be verified by examining a χ
2 (chi-square) test. χ2 is

defined as

χ2 ¼
XN

i¼1

Z
0
i � Z

0
i,calc

σ
0
i


 �2

þ Z
00
i � Z

00
i,calc

σ
00
i


 �2
( )

: ð14:20Þ

This parameter should be small. Because it depends on the number of points (i.e.,

frequencies), usually the reduced [617] value, which is χ2 divided by the number of

degrees of freedom, ν ¼ 2N � m, is calculated:

χ2v ¼
χ2

v
¼ χ2

2N � m
, ð14:21Þ

where N is the number of frequencies, i.e., there are 2Nmeasured impedance values

(N real and N imaginary), and m is the number of adjustable parameters used in the
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model. If the estimates of σi are correct, this parameter should approach unity

[619]. If the values of χ2v are much larger than unity, the approximation or estima-

tion of σi is incorrect. Values much lower than unity might indicate overestimation

(too many parameters). The estimation of σi values might be accomplished by

repeating the impedance measurements several times, as described earlier in

Sects. 14.6.1 and 14.6.5. However, such data are not always available.

In CNLS approximations, modulus or proportional weightings are used. One can

define the reduced sum of squares, for example, for proportional weighting:

Sv ¼
S

v
¼ 1

v

XN

i¼1

Z
0
i � Z

0
i,calc

Z
0
i,calc


 �2

þ Z
00
i � Z

00
i,calc

Z
00
i,calc


 �2
( )

: ð14:22Þ

If proportional or modulus errors are assumed, then the standard deviations of

impedances are supposed to be proportional to the impedance values, σi ¼ ε Zi,

where ε is the relative error of the measured impedances. A comparison of

Eqs. (14.21) and (14.22) shows that

Sv ¼ ε2χ2v � ε2, ð14:23Þ

and the square root of the calculated reduced sum of squares is a measure of the

relative error of the measured impedances.

In practice, the values of Sv are shown in commercial programs (however, the

calculation details are rarely well documented). It should be stressed that for each

weighting choices the values Sv are much different. This will be illustrated in the

following example.

Example 14.6 Analysis of the experimental data are illustrated below. A numerical

example is shown in Exercise 14.2. The impedance data are shown as symbols in

Fig. 14.8. One should always start with the simplest possible model. The simplest

model that can be used in this case is R(RC ); it contains three adjustable parameters.

There are 67 data points, and ν ¼ 2 � 67 � 3 ¼ 131 degrees of freedom. In the

same figure, the results of approximations using three weighting methods –

(a) unity, (b) proportional, and (c) modulus – are presented. For these three models

the following values of S and Sv were obtained: (a) S ¼ 205.4, Sv ¼ 1.57;

(b) S ¼ 1.657, Sv ¼ 0.0126; (c) S ¼ 0.0524, Sv ¼ 0.00040. Of course, they cannot

be simply compared between themodels because different weighting procedureswere

used. Closer inspection of the results indicates that large differences were obtained for

the proportional model, but for other models some systematic differences between the

experimental and model data exist, which are visible on the Bode plots.

The differences can also be easily visualized by plotting the relative residuals,

that is, the differences between the experimental and model impedances. If the

model is correct, then the residuals should be randomly distributed around the zero

line. An example of such a plot is shown in Fig. 14.9. It is evident that the residuals

display systematic differences, which suggests that the model is not correct.
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The next model one can use is one in which the capacitance is replaced by

the CPE, that is, one more parameter is added. The results of the approximation to

the model R(QR) using different weighting methods are shown in Fig. 14.10. This

time the approximation looks better. The values of the parameters S and Sv for the

three weighting methods are as follows: (a) S ¼ 56.9, Sv ¼ 0.434; (b) S ¼ 0.0141,

Sv ¼ 0.00011; (c) S ¼ 0.00708, Sv ¼ 0.000054. An important decrease in the sum

of squares is observed after replacing the capacitance by the CPE. The plot of
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residuals is shown in Fig. 14.11. This time the residuals of the real and imaginary

parts seem to be distributed randomly, and the fit is satisfactory.

In summary, analysis of the values of χ2v or Sv is not sufficient to determine the

goodness of fit. Additional analysis of the residuals and their randomness is also

necessary.
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14.7.2 Test F

The Fisher-Snedecor test F [633] is used to compare two different variances (square

of standard deviations):

F ¼ σ21
σ22

: ð14:24Þ

This experimental value must be compared with F(α, v1, v2), where α is the

confidence level, and ν1 andv2 are the degrees of freedom of the numerator and

denominator, respectively. The theoretical values F(α, ν1, v2) are tabulated or might

be calculated in Excel using the function F.INV.RT (former FINV). In practice, the

most often used value for the confidence level are 0.05 and 0.01, corresponding to

probabilities of 95 % and 99 %.

In the modeling of the impedance data one can use the F-test for the importance

of the additional term [633]. One can add another parameter in the model only if

this produces a statistically important decrease in the sum of squares. In general, if

the sum of squares for the model containing m parameters is S1 and after adding

k parameters it is S2, the corresponding degrees of freedom are 2N � m and 2N �
m � k, respectively. Then one can write the following equation for the F-test:

Fexp ¼
S1�S2

2N�mð Þ� 2N�m�kð Þ
S2

2N�m�k
¼

S1�S2
k
S2

2N�m�k
¼
s21
s22
: ð14:25Þ

This should be compared with the theoretical value of F(α, k, 2N � m � k). If

Fexp > F(α, k, 2N � m � k), then the improvement is important and the new

model may be accepted. If it is lower, then there is no reason to accept the new

model and the simpler one should be retained. It is important to keep the number of

new parameters as low as possible, that is, to add one parameter each time. In some

cases, such as when a new (RC) parallel element is added to the Voigt circuit, one

can use k ¼ 2.

Example 14.7 Let us apply this test to the data in Example 14.6. In this case,

N ¼ 67, for the simpler model R(CR) there are three parameters, and for the

R(QR) model there are four. Therefore, v1 ¼ 1 and v2 ¼ 2 � 67 � 4 ¼ 130. Let

us apply this test to the unit weighting, where S1 ¼ 205.4 and S2 ¼ 56.9:

Fexp ¼
205:4�56:9

1
56:9
130

¼ 339:3: ð14:26Þ

The theoretical value is F(0.05, 1, 130) ¼ 3.91; therefore, Fexp is much larger

than the theoretical value and the addition of this one term is statistically justified at

the confidence level assumed. Of course, this addition is justified for all three

weighting procedures.

14.7 Statistical Tests 319



14.7.3 t-test for Importance of Regression Parameters

Another factor that should be considered is the standard deviation of the obtained

parameters. When the standard deviation of a parameter is comparable to or larger

than its value, such a parameter is unimportant in regression. This can be tested

using a t-test:

t ¼ p

sp
, ð14:27Þ

where p is the value of the parameter and sp its standard deviation. The experimental

value should be compared with that from the tables for t(α, 2N � m) for

the confidence level of α and the number of degrees of freedom 2N � m. If texp >
t(α, 2N � m), thismeans that the parameter is much larger than its standard deviation

and its presence is justified, but if it is lower, the parameter should be rejected.

Macdonald [634] proposed checking the precision of fitting parameters using

Monte Carlo data simulations followed by CNLS approximations. This provides

information about how accurately the parameters can be determined for an assumed

amount of error in impedances and may be used in the design of experiments to

extract such data precisely.

14.8 Conclusion

The experimental data that were checked by the Kramers-Kronig transforms may

be used in modeling. First, usually, fit to an electrical equivalent model is carried

out. It is important to use a proper weighting procedure and start with the simplest

model. Then additional parameters can be added and their importance verified by

the appropriate F- and t-tests. The number of adjustable parameters must be kept to

a minimum. Additionally, comparison of the experimental and model impedances

on complex plane and Bode plots should be carried out. Furthermore, plots of the

residuals indicate the correctness of the model used. Next, on the basis of this fit, a

physicochemical model might be constructed. One should check how the obtained

parameters depend on the potential, concentration, gas pressure, hydrodynamic

conditions, etc. If a strange or unusual dependence is obtained, one should check

whether the assumed model is physically correct in the studied case. This is the

most difficult part of modeling.

Exercises on impedance modeling are presented below.

14.9 Exercises

Exercise 14.1 Determine the error structure of the impedance in the files Z1.z, Z2.z,

Z3.z, and Z4.z using Orazem’s measurement model approach and determine the

impedance parameters for Z1.z using the circuit Rs(Cdl(RctZFLW)), where ZFLW is

the finite-length transmissive mass transfer impedance.
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Exercise 14.2 Find an electrical equivalent model describing data in the file 2.z.

Try different weighting techniques. Calculate the sum of squares, S, and reduce the

sum of squares, S
ν
. Carry out an F-test.

Exercise 14.3 Fit data 3.z into the nested model Rs(Cdl(Rct(CpRp))). Check whether

the use of CPEs instead of capacitances is statistically justified.

Exercise 14.4 Fit 4.z into the model Rs(Cdl(RctCp)). Check whether the use of

CPEs instead of capacitances is statistically justified.

Exercise 14.5 Fit the data in 5.z to the model R(C(RWs)), where Ws is the

transmissive mass transfer impedance. Check whether the use of the CPE is

justified.
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Chapter 15

Nonlinear Impedances (Higher Harmonics)

When linear electrical elements are used in circuits, the measured impedances are

independent of the amplitude of the ac perturbation. However, in electrochemistry,

the electrical equivalent parameters related to the kinetics, diffusion, and other

aspects are nonlinear because the current is a nonlinear function of the applied

potential. In such cases, as was already discussed in Sects. 4.2.1 and 13.2, a small

perturbation amplitude must be used to avoid the formation of harmonics. Now let

us look in more detail at the formation of nonlinearities and the applications of such

methods.

Second and higher harmonic responses were studied at the very beginning of the

development of impedance spectroscopy [15, 17, 29, 635, 636]. Let us look first at

the simplest case of the Tafel equation.

15.1 Simple Electron Transfer Reaction Without Mass
Transfer Effects

In the case of a simple one-electron transfer reaction in Tafel conditions (i.e.,

irreversible electrochemical process without mass transfer effects), the faradaic

current is described as

i ¼ iexexp αf ηð Þ, ð15:1Þ

where iex is the exchange current density, and η is the overpotential. Let us apply a

sinusoidal potential perturbation Δη on a dc potential ηdc:

η ¼ ηdc þ Δη ¼ ηdc þ E0cos ωtð Þ, ð15:2Þ
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where E0 is the applied ac amplitude. The total current is

i ¼ iexe
αf ηdceαf E0cos ωtð Þ ¼ idce

αf E0cos ωtð Þ: ð15:3Þ

An oscillating current can be expressed as a Maclaurin series, see also Eq. (4.15)

[15, 637, 638]:

i� idc ¼ Δi ¼ idc

1þ bcos ωtð Þ þ 1

2!
b2cos 2

�
ωt
�
þ 1

3!
b3cos 3

�
ωt
�

þ 1

4!
b4cos 4 ωtð Þ þ . . .� 1

2
6664

3
7775, ð15:4Þ

where b ¼ αfE0. Using simple trigonometric identities [637, 639] this expression

may be rearranged into harmonics:

Δi

idc
¼ i0 þ i1cos ωtð Þ þ i2cos 2ωtð Þ þ i3cos 3ωtð Þ þ i4cos 4ωtð Þ

þ i5cos 5ωtð Þ þ . . . , ð15:5Þ

where i0 is the frequency-independent term and ik are terms in front of cos(kωt):

i0 ¼
1

4
b2 þ 1

64
b4 þ 1

2304
b6 þ . . . ,

i1 ¼ bþ 1

8
b3 þ 1

192
b5 þ 1

9216
b7 þ . . . ¼

X1

k¼1

bk

22kk! k þ 1ð Þ!
,

i2 ¼
1

4
b2 þ 1

48
b4 þ 1

1536
b6 þ . . . ,

i3 ¼
1

24
b3 þ 1

384
b5 þ 1

15360
b7 þ . . . ,

i4 ¼
1

192
b4 þ 1

3840
b6 þ . . . ,

i5 ¼
1

1920
b5 þ 1

46080
b7 þ ::::

ð15:6Þ

In these expressions, the influence of up to the seventh term is shown. Note that

the frequency-independent term, i0, is not equal to zero; it is called a faradaic

rectification current. It approaches zero for small amplitudes E0. Moreover, a

current of odd frequencies contains only odd powers of bk and that of even

frequencies contains even powers. In addition, the importance of higher-order

terms decreases, and when the amplitude E0 is small, only the linear term is left

out, i1 ¼ b, all the other terms become negligible, and a classical linearized
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impedance is obtained. It is evident that at larger amplitudes, all terms are

influenced by higher-order terms.

The charge transfer resistance at the fundamental frequency, ω, may be obtained

as [637]

Rct ¼ lim
E0!0

E0

i1idc

� �
¼ 1

αf idc
, ð15:7Þ

but the charge transfer resistance, including nonlinearities, ℝct, is

ℝct ¼
E0

i1idc
, ð15:8Þ

that is, it is smaller than the Rct value. This effect is presented in Fig. (15.1) for the

fundamental harmonic impedance for two amplitudes of 5 and 50 mV rms. It is

obvious that a larger amplitude causes lower charge transfer resistances because the

higher harmonics influence the fundamental harmonic results.

Another approach to describing current nonlinearities is to use a Fourier series

[640, 641]:

Δi

idc
¼ I0 bð Þ � 1þ 2

X1

k¼1
Ik bð Þcos kωtð Þ, ð15:9Þ

where Ik(b) are modified Bessel functions of b of order k. This implies that the

currents in Eq. (15.6) converge to i0 ¼ I0(b) � 1 and ik ¼ Ik(b). In fact, they are

series representations of the In(b) Bessel functions. It should be mentioned that the

Bessel functions Ik(x) are available in Excel as BESSELI(x,k), and of course they

might be computed easily in other programs such as Mathematica or Maple. The

plot of the first few Bessel functions Ik(b) is presented in Fig. 15.2 for different

values of the ac impedance amplitude and α ¼ 0.5. These functions increase with

increases of the parameter b. Only I0 starts at one and all the other functions start at

zero. Nevertheless, in Eq. (15.9) the frequency-independent term is I0(b) � 1,

which also starts at zero for b ! 0.
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Fig. 15.1 Complex plane plots of fundamental harmonic impedances for simple redox reaction in

Tafel zone; ac amplitudes: 5 mV rms – continuous line, 50 mV rms – dashed line; other

parameters: α ¼ 0.5, iex ¼ 10�4 A, η ¼ 0.1 V
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Let us look at the influence of nonlinearities on observed spectra for typical

amplitudes of 5 and 50 mV rms, that is, amplitudes of 5
ffiffiffi
2
p

and 50
ffiffiffi
2
p

[641]. They

are shown in Fig. 15.3. At small amplitudes, the nonlinear effects are negligible.

However, for larger amplitudes the current observed in Tafel conditions is no

longer sinusoidal and contains contributions from higher harmonics.

Harrington [641] noticed that measurements of the first harmonics at different

amplitudes allow for the determination of the transfer coefficient. The ratio of the

fundamental harmonic current using the amplitude E0 and 2E0 equals

i ω, 2E0ð Þ
i ω;E0ð Þ ¼

I1 2bð Þ
I1 bð Þ ð15:10Þ

and allows for the determination of the parameter b and, as a consequence, the

transfer coefficient. Both amplitudes should be in the nonlinear zone, e.g., 30 and

60 mV.
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ac amplitude and α ¼ 0.5
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faradaic impedance in one-electron Tafel conditions with α ¼ 0.5. Amplitudes: left – 5 mV rms,
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One can proceed in a similar way when the current is described by the Butler-

Volmer equation [637, 641, 642]

i ¼ iaexp baηð Þ � icexp �bcηð Þ, ð15:11Þ

where ba and bc contain anodic and cathodic transfer coefficients. This leads to

Δi ¼ i� idc ¼ ia eba cos ωtð Þ � 1
� �

� ic e�bccos ωtð Þ � 1
� �

¼ ia I0 bað Þ � 1þ 2I1 bað Þcos ωtð Þ þ 2I2 bað Þcos 2ωtð Þ þ 2I3 bað Þcos 3ωtð Þ þ . . .½ �

� ic I0 �bcð Þ � 1þ 2I1 �bcð Þcos ωtð Þ þ 2I2 �bcð Þcos 2ωtð Þ½

þ2I3 �bcð Þcos 3ωtð Þ þ . . .�:
ð15:12Þ

Taking into account that Ik(�b) ¼ Ik(b) for k even and Ik(�b) ¼ �Ik(b) for

k odd Eq. (15.12) becomes

Δi ¼ ia I0 bað Þ � 1½ � � ic I0 bcð Þ � 1½ �

þ2
X

1

k¼1
iaIk bað Þ � �1ð ÞkicIk bcð Þ
h i

cos kωtð Þ:
ð15:13Þ

It simply contains the difference between two series. For small amplitudes the

first frequency-independent term and harmonics for k � 2 become zero and a

classical linear response (k ¼ 1) is observed. Nonlinear effects are observed for

larger ac amplitudes, generating larger values of ba and bc.

In the case of large applied amplitudes, the nonlinear effects depend on the

solution resistance. In fact, ac voltage is attenuated by solution resistance, leading

to the application of a lower amplitude. This effect was discussed in detail by Diard

et al. [642–644].

It should be stressed that in the case of nonlinear effects, response at the

fundamental frequency is perturbed.

15.2 Other Reaction Mechanism

Harmonic analysis was also applied to other reaction mechanisms. One of the

simplest reactions is a reversible redox process with Red and Ox forms in the

solution. When bulk concentrations and the diffusion coefficient of both forms are

identical, the dc current may be described as [637, 642, 645]
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i ¼
nFDC�

δ
tanh

nf E� E0
� �

2

	 


: ð15:14Þ

This equation can be written as an infinite series as was done previously. It

converges for low ac amplitudes. A detailed analytical method of obtaining har-

monic elements was described in Ref. [645]. Harmonic analysis was also applied to

quasi-reversible reactions on a rotating disk electrode [642].

Other mechanisms studied include electrosorption with Langmuir isotherm

[641] and a Volmer-Heyrovsky type of mechanism [641, 642]. The reader should

consult these references for more details.

Bond and coworkers [646–657] have proposed use of the ac voltammetry with

large ac signal superimposed on the linear sweep. The applied potential and

measured current are presented in Fig. 15.4.

Then, to analyze the obtained current, a Fourier transform is applied and the

responses at the fundamental, ω, and harmonic, 2ω, 3ω, 4ω,. . ., frequencies are

obtained. Next, the current responses at the fundamental and harmonic frequencies

are extracted by an inverse Fourier transform. Harmonics up to the eighth order

were obtained. Analysis of the kinetic parameters is carried out by comparison of

the experimental and simulated data. Theoretical ac voltammograms were simu-

lated using classical numerical simulations of the diffusion-kinetic process using an

implicit finite-difference method [658, 659] with a subsequent Fourier analysis of

the simulated data. An example of the comparison of the experimental and simu-

lated data is shown in Fig. 15.5. In this case, oxidation of ferrocenmethanol

appeared reversible, and a good agreement was found with the simulated data for

the reversible process.

Fourier transform analysis of higher harmonic data is well suited to differentiate

between the effects of the solution resistance and kinetics [649, 651]. It is well

Fig. 15.4 (a) Signal applied in large-amplitude ac voltammetry: (i) ac signal, (ii) dc sweep, (iii)

sum of two signals; (b) total current produced by application of signal (iii) in cyclic voltammetric

conditions (Reprinted with permission from Ref. [649]. Copyright 2004 American Chemical

Society)
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known that in cyclic voltammetry these two effects lead to an increase in the

potential difference between anodic and cathodic peaks. A Fourier transform of

higher harmonics can easily discriminate between these effects. An example is

shown in Fig. 15.6, where the effects of the solution resistance and electron transfer

Fig. 15.5 Large-amplitude

fundamental to fifth (a–e)
harmonic Fourier

transformed ac cyclic

voltammograms (black)

obtained for reversible

oxidation of 1 mM

ferrocenmethanol,

compared with simulations

of reversible process (red).

Conditions employed:

f ¼ 21.46 Hz, ac amplitude

E0 ¼ 100 mV, sweep rate

v ¼ 111.76 mV s�1

(Reprinted with permission

from Ref. [652] (Fig. 15.2)

Copyright 2008 American

Chemical Society)
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kinetics are completely different at higher harmonics. In general, linear elements

such as solution resistance and double-layer capacitance should disappear at higher

harmonics because they do not produce nonlinear effects. Bond and coworkers

[649] stated that (a) the dc cyclic component provides an estimate of E00 (because

the Ru and k0 effects are minimized); (b) the fundamental harmonic provides an

estimate of Cdl (because it has a high capacitance-to-faradaic current ratio); and

(c) the second harmonic provides an estimate of Ru, k
0, and α (because the Cdl effect

Fig. 15.6 Comparison of simulated FT large-amplitude ac voltammograms for a reversible

process with solution resistance Ru of 200 Ω and a quasi-reversible process with k0 ¼ 0.020 cm s�1

and Ru of 0 Ω. (a) dc component, (b) fundamental, (c) second, (d) third, (e) fourth, and (f) fifth
harmonics (Reprinted with permission from Ref. [651] (Fig. 15.2). Copyright 2007 American

Chemical Society)
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is minimized). They also studied the influence of noise on obtained results

[650]. Fourier transform analysis of higher harmonic data was applied to study

the kinetics of surface-bound molecules [647] and adsorbed films [653], chemical

reactions coupled with electron transfer [652, 654], fast electron transfer processes

[649, 655], and the low concentration of electroactive species [660, 652]. Its wider

use is limited by a lack of commercial software to simulate and analyze data. The

authors also discussed the use of square wave excitation to obtain similar informa-

tion [661–665].

Another approach using nonlinear frequency response analysis with the help of

the Volterra series expansion and generalized Fourier transform was also proposed

and applied to the study of methanol or ferrocyanide oxidation [666–668].

15.3 Conclusions

The use of larger amplitudes generates harmonics and influences responses at the

fundamental frequency. Analysis of higher harmonics may be carried out analyti-

cally in simpler cases or numerically in more complex cases of ac voltammetry.

Careful analysis of higher harmonics allows for the discrimination of solution

resistance and double-layer capacitance effects and of the kinetic parameters of

electron transfer reactions and homogeneous chemical kinetics coupled with elec-

trochemical reactions.
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Chapter 16

Instrumental Limitations

Typical EIS measurements are usually carried out in a frequency range from 20 to

50 kHz to 0.1 Hz. However, in dielectric [669] or fast kinetic studies [670], high

frequencies up to several megahertz are necessary. Such measurements cannot be

carried out with a potentiostat, which is too slow and introduces additional phase

shift. On the other hand, very slow frequencies in the millihertz or microhertz range

are necessary in studies of intercalation (batteries [671, 672], hydride formation

[673]). In addition, the measured impedance varies from several megaohms

(or gigaohms) for paints and coatings, corrosion in concrete, or solid materials to

milliohms or lower [674] for fuel cells or batteries. This puts high demands on the

measurement equipment and can lead to errors and artifacts. This measuring

equipment and cell problems will be described below.

16.1 Measurements of High Impedances

Measurements of high impedance, i.e., high-resistance and low-capacitance sam-

ples, are very demanding. Each potentiostat is characterized by a certain input

impedance that limits its applications. One ISO norm, ISO 16773 (parts 1–4) [675],

describes in detail equipment calibration and measurement procedures as well as

application notes from Gamry [676] and Solarton [677–681].

As a first step, the potentiostat should be tested in an open circuit in a

two-electrode setup. For this experiment the reference and auxiliary electrodes

should be connected together with no connection between them and the working

electrode (open circuit). Then the impedance measurements should be carried out in

a frequency range of 105–0.01 Hz. Although in typical electrochemical experiments

the amplitude used is 3.5 mV rms (i.e., 5 mV amplitude, 10 mV peak to peak), in

these measurements the amplitude might be larger, 20–30 mV rms. A higher

amplitude is necessary when the sample impedance is very high and the current

flow very low. The open-circuit impedance behaves as a parallel connection of the

input resistance and capacitance (RC) (Fig. 2.33). The sample impedance |Z| must
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be much smaller than the potentiostat open-circuit impedance; otherwise, erroneous

results will be obtained. If the potentiostat’s input impedance is too small, one can

use another piece of specialized equipment, such as the Solartron 1296 Dielectric

Interface, which works with a frequency analyzer and is able to measure imped-

ances up to 100 TΩ [677–681].

Accurate impedance measurements at high frequencies are affected by the input

and cable capacitance. Approaches to dealing with this problem are discussed in

Solarton Application Notes [679, 680].

Next, the equipment should be checked using a dummy cell, a simple (RC),

R1(R2C), or (C1(R1(R2C2))) circuit, but with R2 within a range of the measured

sample resistances, on the order of gigaohms and a capacitance on the order of

nanofarads [675]. This will give the accuracy of the measurements. One can also

consult the accuracy contour map from the manual of a given potentiostat [676].

Finally, the sample should be measured. It should be kept in mind that an

increase in the real surface area of a working electrode decreases its impedance.

The counter electrode should be made of a noncorroding material, for example, a

noble metal or other low-impedance electrode. Its surface area should be large,

comparable to that of a sample, and placed in parallel to the working electrode.

It might be necessary to place the measured cell in a Faraday cage.

Certain artifacts are also observed in studies in low-conductivity media [682].

In studies in pure 80 % and 100 % acetic acid a very important influence of the

distance between the tip of a Luggin capillary and a working electrode made of

stainless steel was observed (Fig. 16.1). These solutions were characterized by very

large resistivities, 8–10 kΩ cm for 80 % and 8–12 MΩ for 100 % acetic acid.

At short distances, high-frequency capacitive-inductive behavior is apparent. Sim-

ilar behavior was also observed when a Pt pseudo-reference electrode was used.

Such behavior was explained by the capacitive-resistive coupling between working

and reference, working-auxiliary, and reference-auxiliary electrodes [682].

Similar artifacts were observed at high frequencies in highly conducting solu-

tions [683] when the Luggin capillary was located too close to the electrode surface.

In general, it should be experimentally checked whether the distance between the

tip of a Luggin capillary and a reference electrode affects observed impedance

spectra. The only effect of changing this distance should be a parallel displacement

of the complex plane plot along the real axis, that is, the change in the

uncompensated solution resistance. The conditions for the reference electrode

will be discussed below.

16.2 Measurements at High Frequencies

The slow response of potentiostats limits studies at high frequencies. Although

many manufacturers claim that their potentiostat can work at very high frequencies

up to 1 MHz, in practice the upper limit is 50 to 100 kHz and in some cases as low as

20 kHz. This can be easily checked experimentally.
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Schöne and Wiesbeck [684] proposed using two working electrodes (disk-ring)

with electronic compensation of the solution resistance and frequency analyzer

without a potentiostat. The potentiostat was used only for slow dc polarization of

the working electrodes.

The use of two identical working electrodes was proposed by Sibert

et al. [685]. The electrodes should be placed close to each other to minimize the

solution resistance and be polarized by a small ac amplitude between them by a

FRA. The current is measured as a potential drop on a small calibrated resistance

Fig. 16.1 Influence of distance between tip of Luggin capillary and working electrode in 80 % and

100 % acetic acid at stainless steel electrode (From Ref. [682], copyright (1990), with permission

of Elsevier)
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and fed back to the frequency response analyzer. The dc polarization of these two

electrodes at the same potential is assured by a potentiostat through large resis-

tances. The electrical connections are shown in Fig. 16.2. This method was recently

used to measure the fast reaction of HUPD at Pt [686]. The system worked well up

to 1 MHz.

Fafilek [687] proposed another setup in which a potential is applied without

a potentiostat to two electrodes, one working and another a very large-surface-area

Pt electrode. In such an arrangement, the impedance of the large-surface-area Pt

electrode might be neglected. This method was also used later to measure HUPD

kinetics at a Pt electrode [686]. The connections are displayed in Fig. 16.3. This

system allowed for measurements up to 1 MHz.

The systems shown previously make it possible to work at high frequencies

without potentiostats, which have a limited response time, and to study fast

electrochemical processes.

Some studies without a potentiostat or with a specially constructed fast

potentiostat were carried out but with small currents at ultramicroelectrodes

[688–690].

16.3 Measurements of Low Impedances

In the case of low sample impedances, large currents flow in the system. Large

currents generate inductive effects in leads and measuring resistors at higher frequen-

cies [691]. However, even larger inductive effects are generated by cells [692].

An example of such an effect is presented in Fig. 16.4. It appears at high frequencies

and is similar to the effect of an inductance in series (compare with Fig. 2.41).

Fig. 16.2 Setup for high-frequency measurements using identical twin electrodes; ac generator G

produces higher amplitude, which is divided by potentiometer Rd; current is measured as potential

drop (V1) at Rsr; potential is measured at electrodes (V2), V1 and V2 are fed to FRA; both working

electrodes are dc polarized through large resistance from potentiostat (From Ref. [686], copyright

(2012), with permission from Elsevier)
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Fig. 16.3 Setup for high-frequency impedance measurements; WE1 working electrode, WE2

high-surface-area Pt electrode. Potential is applied and current measured by FRA; one electrode is

polarized by potentiostat (From Ref. [686], copyright (2012), with permission from Elsevier)

Fig. 16.4 Complex plane plots of impedance of lead acid battery using sense resistor of 10Ω (left)

and calibrated shortening bar (right) (From Ref. [691] with kind permission from Springer Science

+Business Media)
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This impedance was acquired using an internal resistance of commercial measuring

equipment of 10 Ω. As the cell impedance was less than 0.1 Ω, a lower sense resistor

was desirable. The authors used and calibrated a shortening bar as a 0.1245 Ω sensing

resistor, determined its characteristics, and subtracted its impedance to obtain the pure

impedance of the battery. The result is shown in Fig. 16.4 (right). In these measure-

ments long commercial cables with crocodile clips were replaced by short cables

bolted to the cell terminals. It is also recommended to use coaxial cables or twisted

cable pairs in which currents flow in opposite directions, decreasing the inductive

effect [693, 694].

Impedance measurements in such cases should be carried out in galvanostatic

mode. In fact, applying a 5 mV amplitude to a sample having low resistance, e.g.,

1 mΩ, causes a current of 5 A and for lower impedances even more. Because it is

technically difficult to apply amplitudes lower than 1 mV, the ac current is applied

and the ac voltage measured [693, 694]. Potentiostats are usually slower in the

galvanostatic than in the potentiostatic mode. However, they are faster in a two-

than a three-electrode mode.

Ordinary potentiostats are limited to a highest current of approximately 1 A. To

study higher currents, either booster potentiostats [695] or so-called load banks

should be used [696, 697]. In load banks, the ac current may be modulated

externally and the potential drop on a load resistor (proportional to current) and

potential difference at the studied object are applied to the frequency response

analyzer to measure the impedance. Analysis of the impedance of fuel cells with

the separation of impedances of the anode, cathode, and load were presented by

Diard et al. [698, 699]. A similar correction procedure was also described in

Ref. [700].

In general, in studies of very low impedances, the ac current might be measured

as a potential drop on a very small resistor and the ac voltage as a potential

difference at the studied object; both ac voltages should be fed to the frequency

response analyzer to measure the impedance. The impedance of the resistor and that

of the cables/connections should be subtracted from the total measured impedance.

16.4 Reference Electrode

The quality of the reference electrode is primordial in all EIS studies. Its impedance

must be low, below 1 kΩ; therefore, some reference electrodes used in pH determi-

nation cannot be used (although they may work in dc experiments). Reference

electrodes are usually equipped with a Luggin capillary probe to decrease the

uncompensated solution resistance. The tip of the Luggin capillary is usually

partially blocked with ceramic frits, Vycor glass frits, or asbestos threads to decrease

the flow of the filling solution and possible contamination. Ideally, the inner

reference electrode solution and the cell solution should be the same. This may be

obtained using calomel or Ag|AgCl electrodes when working with chlorides, Hg|

Hg2SO4|SO2
2� when working with sulfuric acid or sulfates, or HgO|OH� when
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working in alkaline solutions. The double junction reference electrodes is often used

to avoid contamination, but the total impedance must be checked, especially in

nonaqueous solutions.

It is simple to measure the impedance of the reference electrode. The reference

electrode must be immersed in the electrolyte in a beaker, a large-surface-area inert

electrode also immersed in this solution, and the impedance measured at the open-

circuit potential [701].

The response time of the measuring circuit is also limited by the resistance of the

electrolyte inside the Luggin capillary [702–704]. Strange impedances at high

frequencies were also observed in highly conducting solutions [683] when the

Luggin capillary was located too close to the electrode surface. To eliminate

these problems, a Pt wire connected to the reference electrode through a small

capacitor (100 pF to 10 nF) and immersed in the solution can be used [701, 702]. In

such a configuration, the high-frequency signal flows through the capacitor and the

dc signal through the reference electrode. It was also found that insertion of the Pt

wire into the Luggin capillary (with no connections) also improved the response

time of the reference electrode [704].

16.5 Conclusions

Modern impedance apparatus are capable of handling low or high impedances in a

wide frequency range. However, care must be taken when working in more extreme

conditions of high frequencies and very low or very high impedances. The mea-

surement possibilities of the system must be well checked, usually using appropri-

ate dummy cells.

One of the most often found artifacts is related to the reference electrode, its

impedance, and the distance of the Luggin capillary from the electrode. Its imped-

ance must be low, and if the distance from the working electrode is changed, only

the solution resistance should change without affecting the shape of the

impedances.
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Chapter 17

Conclusions

Electrochemical impedance spectroscopy is a mature technique, and its fundamental

mathematical problems are well understood. Impedances can be written for any

electrochemical mechanism using standard procedures. Modern electrochemical

equipment makes it possible to acquire data in a wide range of frequencies and

with various impedance values. The validity of experimental data can be verified by

standard procedures involving Kramers-Kronig transforms. Several programs either

allow for the use of predefined simple and distributed elements in the construction of

electrical equivalent circuits or directly fit data to equations (which should be

defined by the user).

The biggest challenge is correctly interpreting the experimental data and

assigning correct circuits/equations to the models. Formal fitting of the experimen-

tal impedances to electrical equivalent circuits is simple and represents the most

widely used procedure; however, this procedure generally conveys little informa-

tion about the electrochemical mechanism. The biggest problem in the analysis of

impedances is correctly assigning a physical meaning to the observed features

(physicochemical modeling). A casual perusal of the literature reveals that exper-

imental data are often misinterpreted. It must be stressed that correct modeling is

the most difficult part of analyzing impedance data. First, the steady-state current-

potential characteristics must be well understood. Next, additional experiments

with modifications to the concentration/partial pressure, temperature, hydrody-

namic conditions, electrode surface, and morphology might be necessary.

Finally, once a correct physicochemical model is found and its parameters

determined, then one may set about determining the kinetic parameters of the

system. It should be emphasized that impedance parameters (e.g., resistances,

capacitances, or other mechanism-related parameters) are derivatives of rates of

electrochemical and chemical reactions and are complex functions of the rate

constants and other parameters, for example, adsorption and concentration. Such

analyses are carried out using nonlinear approximations of the impedance param-

eters as functions of the electrode potential and other experimental parameters, and

these analyses are being performed on an increasingly frequent basis. Of course,

one cannot neglect error analysis to check the reliability of the procedure.
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Although most impedance spectra are relatively simple, in some cases – most

often in corrosion – they are very complex. Macdonald [1] suggested doing analysis

by pattern recognition using artificial neural networks coupled with extensive

libraries of reaction mechanisms. However, although such tools are very promising

they are still rarely used [620] and not yet commercially available.
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Appendix: Laplace Transforms
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(continued)
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127. T. Breugelmans, E. Trouvé, Y. Van Ingelgem, J. Wielant, T. Hauffman, R. Hausbrand,

R. Pintelon, A. Hubin, Electrochem. Commun. 12, 2 (2010)

128. J. Zhang, S.X. Guo, A.M. Bond, F. Marken, Anal. Chem. 76, 3619 (2004)

129. S.J.M. Rosvall, M. Sharp, A.M. Bond, J. Electroanal. Chem. 546, 51 (2003)

130. S.J.M. Rosvall, M.J. Honeychurch, D.M. Elton, A.M. Bond, J. Electroanal. Chem. 515,
8 (2001)

131. M.J. Honeychurch, A.M. Bond, J. Electroanal. Chem. 529, 3 (2002)

132. D.J. Gavaghan, A.M. Bond, J. Electroanal. Chem. 480, 133 (2000)

133. R.L. Sacci, D.A. Harrington, ECS Trans. 19(20), 31 (2009)

134. M. Martin, Étude de I’adsorption et de I’absorption d’hydrogene dans le palladium en milieu

alcalin, PhD Thesis, Universite de Sherbrooke, 2010

135. T. Breugelmans, J. Lataire, T. Muselle, E. Tourwe, R. Pintelon, A. Hubin, Electrochim. Acta

76, 375 (2012)

136. K. Darowicki, J. Orlikowski, G. Lentka, J. Electroanal. Chem. 486, 106 (2000)

137. K. Darowicki, J. Electroanal. Chem. 486, 101 (2000)

138. K. Darowicki, J. Kawula, Electrochim. Acta 49, 4829 (2004)

139. K. Darowicki, P. Slepski, Electrochim. Acta 49, 763 (2004)

140. K. Darowicki, P. Slepski, M. Szocinski, Prog. Org. Coat. 52, 306 (2005)

141. P. Slepski, K. Darowicki, K. Andrearczyk, J. Electroanal. Chem. 633, 121 (2009)

142. S.J.M. Rosvall, M.J. Honeychurch, D.M. Elton, A.M. Bond, J. Electroanal. Chem. 515,
8 (2001)

143. P. Slepski, K. Darowicki, E. Janicka, G. Lentka, J. Solid State Electrochem. 16, 3539 (2012)

144. J. Crank, The Mathematics of Diffusion (Oxford University Press, Glasgow, 1970)

145. S.R. Taylor, E. Gileadi, Corrosion 51, 664 (1995)

146. J. Sluyters, Rec. Trav. Chim. Pays-Bas 79, 1092 (1960)

147. T.J. VanderNoot, J. Electroanal. Chem. 300, 199 (1991)

148. J. Sluyters, J.J.C. Oomen, Rec. Trav. Chim. Pays-Bas 79, 1101 (1960)

149. J.R. Delmastro, D.E. Smith, J. Electroanal. Chem. 9, 192 (1965)

150. G. Brisard, L’electroreduction du Cd2+ dans le DMSO en presence du perchlorate de

tetraethylammonium, MSc Thesis, Universite de Sherbrooke, 1986

151. W.R. Fawcett, A. Lasia, J. Phys. Chem. 82, 1114 (1978)

152. R. de Levie, A.A. Husovsky, J. Electroanal. Chem. 22, 29 (1969)

153. D.E. Smith, Anal. Chem. 35, 610 (1963)

154. C. Gabrielli, P.P. Grand, A. Lasia, H. Perrot, J. Electrochem. Soc. 151, A1943–A1949 (2004)
155. L. Birry, A. Lasia, Electrochim. Acta 51, 3356 (2006)

156. M.H. Martin, A. Lasia, Electrochim. Acta 53, 6317 (2008)

157. C. Gabrielli, P.P. Grand, A. Lasia, H. Perrot, J. Electrochem. Soc. 151, A1943 (2004)

158. J.R. Macdonald, J. Phys. Chem. 60, 343 (1974)

159. D.R. Franceschetti, J.R. Macdonald, R.P. Buck, J. Electrochem. Soc., 138, 1368 (1991)

160. J.R. Macdonald, J. Phys. Condens. Matter 22, 495101 (2010)

161. J.R. Macdonald, L.R. Evangelista, E. Kaminski Lenzi, G. Barbero, J. Phys. Chem. C 115,
7648 (2011)

162. J.R. Macdonald, J. Phys. Chem. A 115, 13370 (2011)

350 References



163. L.R. Evangelista, E.K. Lenzi, G. Barbero, J.R. Macdonald, J. Phys. Condens. Matter 23,
485005 (2011)

164. J.R. Macdonald, J. Phys. Condens. Matter 24, 175004 (2012)

165. M. Fleischmann, S. Pons, J. Daschbach, J. Electroanal. Chem. 317, 1 (1991)

166. M. Fleischmann, S. Pons in Ultramicroelectrodes, ed. by M. Fleischmann, S. Pons,

D.R. Rolison, P.P. Schmidt, (Datatech, Morganton, 1987), p. 52.

167. T. Jacobsen, K. West, Electrochim. Acta 40, 255 (1995)

168. M. Fleischmann, S. Pons, J. Electroanal. Chem. 250, 277 (1988)

169. R. Michel, C. Montella, C. Verdier, J.-P. Diard, Electrochim. Acta 55, 6263 (2010)

170. V.G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, 1962)

171. J.M. Coueignoux, D. Schuhmann, J. Electroanal. Chem. 17, 245 (1968)

172. D.A. Scherson, J. Newman, J. Electrochem. Soc. 111, 110 (1980)

173. B. Tribollet, J. Newman, J. Electrochem. Soc. 130 (1983) 823; 2016

174. C. Deslouis, C. Gabrielli, B. Tribollet, J. Electrochem. Soc. 130, 2044 (1983)

175. E. Levart, D. Schuhmann, J. Electroanal. Chem. 53, 77 (1974)

176. B. Tribollet, J. Newman, W.H. Smyrl, J. Electrochem. Soc. 135, 134 (1988)

177. C. Deslouis, I. Epelboin, M. Keddam, J.C. Lestrade, J. Electroanal. Chem. 28, 57 (1970)

178. M.E. Orazem, M. Durbha, C. Deslouis, H. Takenouti, B. Tribollet, Electrochim. Acta 44,
4403 (1999)

179. M. Durbha, M.E. Orazem, B. Tribollet, J. Electrochem. Soc. 146, 2199 (1999)

180. J. Barber, S. Morin, B.E. Conway, J. Electroanal. Chem. 446, 125 (1998)

181. D.E. Smith, Anal. Chem. 35, 602 (1963)

182. T.G. McCord, D.E. Smith, Anal. Chem. 41, 116 (1969)

183. T.G. McCord, D.E. Smith, J. Electroanal. Chem. 26, 61 (1970)

184. T.G. McCord, D.E. Smith, Anal. Chem. 41, 1423 (1969)

185. T.G. McCord, H.L. Hung, D.E. Smith, J. Electroanal. Chem. 21, 5 (1969)

186. A.M. Band, R.J. O’Halloran, I. Ruzic, D.E. Smith, J. Electroanal. Chem. 132, 39 (1982)

187. J.W. Hayes, I. Ruzic, D.E. Smith, G.L. Booman, J.R. Delmastro, J. Electroanal. Chem. 51,
269 (1974)

188. H.R. Sobel, D.E. Smith, J. Electroanal. Chem. 26, 271 (1970)

189. I. Ruzic, H.R. Sobel, D.E. Smith, J. Electroanal. Chem. 65, 21 (1975)

190. J. Hayes, I. Ruic, D.E. Smith, G.L. Booman, J.R. Delmastro, J. Electroanal. Chem. 51,
245 (1974)

191. D.E. Smith, Anal. Chem. 35, 610 (1963)

192. I. Ruzic, H.R. Sobel, D.E. Smith, J. Electroanal. Chem. 65, 21 (1975)

193. R.J. Schwall, I. Ruzic, D.E. Smith, J. Electroanal. Chem. 60, 117 (1975)

194. R.J. Schwall, D.E. Smith, J. Electroanal. Chem. 94, 227 (1978)

195. T. Matusinovic, D.E. Smith, J. Electroanal. Chem. 98, 133 (1979)

196. H. Gerischer, Z. Physik. Chem. 198, 286 (1951)

197. B.A. Boukamp, H.J.M. Bouwmeester, Solid State Ion. 157, 29 (2003)

198. B.A. Boukamp, Solid State Ion. 169, 65 (2004)

199. B.A. Boukamp, M. Verbraeken, D.H.A. Blank, P. Holtappels, Solid State Ion. 177, 2539
(2006)

200. S.B. Adler, J.A. Lane, B.C.H. Steele, J. Electrochem. Soc. 143, 3554 (1996)

201. R.U. Atangulov, I.V. Murygin, Solid State Ion. 67, 9 (1993)

202. S. Havriliak, S. Negami, Polymer 8, 161 (1967)

203. F. Berthier, J.P. Diard, C. Montella, J. Electroanal. Chem. 460, 226 (1999)

204. F. Berthier, J.P. Diard, B. Le Gorrec, C. Montella, J. Electroanal. Chem. 458, 231 (1998)

205. E. Laviron, J. Electroanal. Chem. 97, 135 (1979); 195, 25 (1979); 105, 35 (1979); 112,
137 (1980); 117, 17 (1981)

206. P. Los, E. Laviron, J. Electroanal. Chem. 432, 85 (1997)

207. F. Prieto, M. Rueda, J. Hidalgo, E. Martinez, I. Navarro, Electrochim. Acta 56, 7916 (2011)

208. M.E. Huerta Garrido, M.D. Pritzker, J. Electroanal. Chem. 594, 118 (2006)

References 351



209. A. Lasia, J. Electroanal. Chem. 605, 77 (2007)

210. J.M. Chapuzet, A. Lasia, J. Lessard, in Electrocatalysis, ed. by J. Lipkowski, P.N. Ross

(Wiley VCH, New York, 1998)

211. D.A. Harrington, B.E. Conway, Electrochim. Acta 32, 1703 (1987)

212. J.P. Diard, B. LeGorrec, C. Montella, Electrochim. Acta 42, 1053 (1997)

213. A. Lasia, A. Rami, J. Electroanal. Chem. 294, 123 (1990)

214. F. Berthier, J.P. Diard, R. Michel, J. Electroanal. Chem. 510, 1 (2001)

215. F. Berthier, J.P. Diard, L. Pronzato, E. Walter, Automatica 32, 973 (1996)

216. F. Berthier, J.P. Diard, P. Landaud, C. Montella, J. Electroanal. Chem. 362, 13 (1993)

217. M.R.G. de Chialvo, A.C. Chialvo, J. Electrochem. Soc. 147, 1619 (2000)

218. J.P. Diard, B. LeGorrec, C. Montella, J. Electroanal. Chem. 205, 77 (1986)

219. J.P. Diard, P. Landaud, B. LeGorrec, C. Montella, J. Electroanal. Chem. 255, 1 (1988)

220. J.P. Diard, B. LeGorrec, C. Montella, J. Electroanal. Chem. 326, 13 (1992)

221. J.P. Diard, B. LeGorrec, C. Montella, C. Monteroocampo, J. Electroanal. Chem. 352,
1 (1993)

222. F. Berthier, J.P. Diard, C. Montella, I. Volovik, J. Electroanal. Chem. 402, 29 (1996)

223. J.J. DiStefano, III, A.R. Stubberud, I.J. Williams, Theory and Problems of Feedback and

Control Systems, Schaum’s Outline Series, 2nd edn. (McGraw-Hill, New York, 1990)

224. G. Doetsch, Laplace Transformation (Dover, New York, 1953)

225. C.-N. Cao, Electrochim. Acta 35, 837 (1990)

226. L. Bai, B.E. Conway, J. Electrochem. Soc. 137, 3737 (1990)

227. D.D. Macdonald, S. Real, S.I. Smedley, M. Urquidi-Macdonald, J. Electrochem. Soc. 135,
2410 (1988)

228. U. Krewer, M. Christov, T. Vidakovic, K. Sundmacher, J. Electroanal. Chem. 589,
148 (2006)

229. D.A. Harrington, J. Electroanal. Chem. 403, 11 (1996)

230. D.A. Harrington, J. Electroanal. Chem. 449, 9 (1998)

231. D.A. Harrington, J. Electroanal. Chem. 449, 29 (1998)

232. D.A. Harrington, P. van den Driessche, Electrochim. Acta 44, 4321 (1999)

233. J.D. Campbell, D.A. Harrington, P. van den Driessche, J. Watmough, J. Math. Chem. 32,
281 (2002)

234. D.A. Harrington, P. van den Driessche, J. Electroanal. Chem. 567, 153 (2004)

235. D.A. Harrington, P. van den Driessche, Electrochim. Acta 56, 8005 (2011)

236. W.R. Smith, R.W. Missen, Chemical Reaction Equilibrium Analysis: Theory and Algorithms

(Wiley, New York, 1982)

237. E. Leiva, Electrochim. Acta 41, 2185 (1996)

238. A. Lasia, J. Electroanal. Chem. 562, 23 (2004)

239. D.A. Harrington, B.E. Conway, J. Electroanal. Chem. 221, 1 (1987)

240. M.R. Gennero de Chialvo, A.C. Chialvo, Electrochim. Acta 44, 841 (1998)

241. A. Lasia, J. Electroanal. Chem. 562, 23 (2004)

242. B. Losiewicz, R. Jurczakowski, A. Lasia, Electrochim. Acta 80, 292 (2012)

243. B. Losiewicz, M. Martin, C. Lebouin, A. Lasia, J. Electroanal. Chem. 649, 19 (2010)

244. C. Gabrielli, P.P. Grand, A. Lasia, H. Perrot, J. Electrochem. Soc. 151, A1943 (2004)

245. H. Duncan, A. Lasia, Electrochim. Acta 52, 6195 (2007)

246. B. Losiewicz, R. Jurczakowski, A. Lasia, Electrochim. Acta 56, 5746 (2011)

247. R. Jurczakowski, B. Losiewicz, A. Lasia, Kinetics and thermodynamics of HUPD on iridium

in perchloric and sulfuric acids. 59th Meeting of the International Society for Electro-

chemistry, Seville, September 2008

248. F. Dion, A. Lasia, J. Electroanal. Chem. 475, 28 (1999)

249. S. Morin, H. Dumont, B.E. Conway, J. Electroanal. Chem. 412(1999), 39 (1996)

250. A. Lasia, Curr. Top. Electrochem. 2, 239 (1993)

251. E.R. Gonzalez, G. Tremiliosi-Filho, M.J. de Giz, Curr. Top. Electrochem. 2, 167 (1993)

252. M.R.G. de Chialvo, A.C. Chialvo, Electrochem. Commun. 1, 379 (1999)

352 References



253. P.M. Quaino, M.R.G. de Chialvo, A.C. Chialvo, Electrochim. Acta 52, 7396 (2007)

254. C. Hitz, A. Lasia, J. Electroanal. Chem. 532, 133 (2002)

255. L. Bai, D.A. Harrington, B.E. Conway, J. Electroanal. Chem. 32, 1713 (1987)

256. P. Gu, L. Bai, L. Gao, R. Brousseau, B.E. Conway, Electrochim. Acta 37, 2145 (1992)

257. D. Schonfufi, H.-J. Spitzer, L. Muller, Russ. J. Electrochem. 31, 930 (1995)

258. J.H. Barber, B.E. Conway, J. Electroanal. Chem. 461, 80 (1999)

259. M.J. de Giz, G. Tremiliosi-Filho, E.R. Gonzalez, Electrochim. Acta 39, 1775 (1994)

260. M.J. de Giz, G. Tremiliosi-Filho, E.R. Gonzalez, S. Srinivasan, A.J. Appleby, Int. J. Hydrog.

Energy 20, 423 (1995)

261. R.K. Shervedani, A. Lasia, J. Electrochem. Soc. 144, 511 (1997)

262. R.K. Shervedani, A. Lasia, J. Electrochem. Soc. 145, 2219 (1998)

263. L.L. Chen, A. Lasia, J. Electrochem. Soc. 138, 3321 (1991)

264. P. Los, A. Lasia, J. Electroanal. Chem. 333, 115 (1992)

265. L.L. Chen, A. Lasia, J. Electrochem. Soc. 139, 3214 (1992)

266. L.L. Chen, A. Lasia, J. Electrochem. Soc. 139, 3458 (1992)

267. E.B. Castro, M.J. de Giz, E.R. Gonzalez, J.R. Vilche, Electrochim. Acta 42, 951 (1997)

268. L.L. Chen, D. Guay, A. Lasia, J. Electrochem. Soc. 143, 3576 (1996)

269. N.A. Assungao, M.J. de Giz, G. Tremiliosi-Filho, E.R. Gonzalez, J. Electrochem. Soc. 144,
2794 (1997)

270. J.-P. Diard, B. Le Gorrec, C. Montella, J. Electroanal. Chem. 466, 122 (1999)

271. J. Barber, B.E. Conway, J. Electroanal. Chem. 466, 124 (1999)

272. A. Lasia, J. Electroanal. Chem. 593, 159 (2006)

273. J.O.’.M. Bockris, J. McBreen, L. Nanis, J. Electrochem. Soc. 112, 1025 (1965)

274. C. Montella, J. Electroanal. Chem. 497, 3 (2001)

275. S.Y. Qian, B.E. Conway, G. Jerkiewicz, Int. J. Hydrog. Energy 25, 539 (2000)

276. A. Lasia, D. Gregoire, J. Electrochem. Soc. 142, 3393 (1995)

277. C. Lim, S.-I. Pyun, Electrochim. Acta 38, 2645 (1993)

278. C. Lim, S.-I. Pyun, Electrochim. Acta 39, 363 (1994)

279. I.A. Bagotskaya, Zh. Fiz. Khim. 36, 2667 (1962)

280. A.N. Frumkin, in Advances in Electrochemistry and Electrochemical Engineering, ed. by

P. Delahay, vol. 3 (Interscience, New York, 1963), p. 287

281. J.S. Chen, J.P. Diard, R. Durand, C. Montella, J. Electroanal. Chem. 406, 1 (1996)

282. M.H. Martin, A. Lasia, Electrochim. Acta 53, 6317 (2008)

283. H. Duncan, A. Lasia, Electrochim. Acta 52, 6195 (2007)

284. M.H. Martin, A. Lasia, Electrochim. Acta 54, 5292 (2009)

285. H. Duncan, A. Lasia, J. Electroanal. Chem. 621, 62 (2008)

286. L. Birry, Etude des reactions d’insertion d’hydrogene dans des electrodes de palladium, PhD

Thesis, Universite de Sherbrooke, 2005

287. L.O. Valeen, S. Sunde, R. Tunold, J. Alloy Comp. 253–254, 656 (1997)

288. B.S. Haran, B.N. Popov, R.E. White, J. Power Sources 75, 56 (1998)

289. C. Wang, J. Electrochem. Soc. 145, 1801 (1998)

290. L.O. Valeen, A. Lasia, J.O. Jensen, R. Tunold, Electrochim. Acta 47, 2871 (2002)

291. P. Zoltowski, Electrochim. Acta 44, 4415(1999); 51, 1576 (2006); 55, 6274 (2010)

292. P. Zoltowski, J. Electroanal. Chem. 501, 89 (2001); 512, 64 (2001); 536, 55 (2002); 572,
205 (2004); 600, 54 (2007)

293. B. Legawiec, P. Zoltowski, J. Phys. Chem. B 106, 4933 (2002)

294. P. Zoltowski, Acta Mater. 51, 5489 (2003)

295. J.S. Chen, R. Durand, C. Montella, J. Chim. Phys. 91, 383 (1994)

296. Y.-G. Yoon, S.I. Pyun, Electrochim. Acta 40, 999 (1995)

297. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)

298. D.W. Davidson, R.H. Cole, J. Chem. Phys. 19, 1484 (1951)

299. P. Zoltowski, J. Electroanal. Chem. 443, 149 (1998)

300. G. Lang, K.E. Heusler, J. Electroanal. Chem. 457, 257 (1998)

References 353



301. A. Sadkowski, J. Electroanal. Chem. 481, 222 (2000); 232

302. A. Sadkowski, Electrochim. Acta 38, 2051 (1993)

303. M.E. Orazem, N. Pebere, B. Tribollet, J. Electrochem. Soc. 153, B129 (2006)

304. B.A. Boukamp, Solid State Ion. 169, 65 (2004)

305. G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Electroanal. Chem.

176, 275 (1984)

306. C.H. Hsu, F. Mansfeld, Corrosion 57, 747 (2001)

307. S.P. Harrington, T.M. Devine, J. Electrochem. Soc. 155, C381 (2008)

308. M.A. Rodriguez, R.M. Carranza, R.B. Rebak, J. Electrochem. Soc. 157, C1 (2010)

309. M.A. Rodriguez, R.M. Carranza, J. Electrochem. Soc. 158, C221 (2011)

310. V.M.W. Huang, V. Vivier, M.E. Orazem, N. Pebere, B. Tribollet, J. Electrochem. Soc. 154,
C99 (2007)

311. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Electrochim. Acta

55, 6218 (2010)

312. M.H. Martin, A. Lasia, Electrochim. Acta 54, 5292 (2009)

313. M.H. Martin, A. Lasia, Electrochim. Acta 56, 8058 (2011)

314. B.B. Mandenbrot, The Fractal Geometry of the Nature (Freeman, San Francisco, 1982)

315. R. de Levie, J. Electroanal. Chem. 281, 1 (1990)

316. F. Hausdorff, Math. Ann. 79, 157 (1919)

317. L. Nyikos, T. Pajkossy, Electrochim. Acta 30, 1533 (1985)

318. H. von Koch, Ark. Mat. Astron. Fys. 1, 681 (1904)

319. A. Le Mehaute, G. Crepy, Solid State Ion. 9(10), 17 (1983)

320. A. Le Mehaute, G. Crepy, A. Hurd, C. R. Acad. Sci. Paris 306, 117 (1988)

321. L. Nyikos, T. Pajkossy, J. Electrochem. Soc. 133, 2061 (1986)

322. L. Nyikos, T. Pajkossy, Electrochim. Acta 31, 1347 (1986)

323. T. Pajkossy, L. Nyikos, Electrochim. Acta 34, 171 (1989)

324. T. Pajkossy, J. Electroanal. Chem. 300, 1 (1991)

325. L. Nyikos, T. Pajkossy, Electrochim. Acta 35, 1567 (1990)

326. A.P. Borossy, L. Nyikos, T. Pajkossy, Electrochim. Acta 36, 163 (1991)

327. A. Sakharova, L. Nyikos, T. Pajkossy, Electrochim. Acta 37, 973 (1992)

328. T. Pajkossy, Heterog. Chem. Rev. 2, 143 (1995)

329. A.P. Borossy, L. Nyikos, T. Pajkossy, Electrochim. Acta 36, 163 (1991)

330. E. Chassaing, R. Sapoval, G. Daccord, R. Lenormand, J. Electroanal. Chem. 279, 67 (1990)

331. M. Filoche, B. Sapoval, Electrochim. Acta 46, 213 (2000)

332. T. Pajkossy, L. Nyikos, J. Electroanal. Chem. 332, 55 (1992)

333. M. Keddam, H. Takenouti, Electrochim. Acta 33, 445 (1988)

334. T. Pajkossy, J. Electroanal. Chem. 364, 111 (1994)

335. S.H. Liu, Phys. Rev. Lett. 55, 529 (1985)

336. T. Kaplan, L.J. Gray, Phys. Rev. 32, 7360 (1985)

337. T. Kaplan, S.H. Liu, L.J. Gray, Phys. Rev. 34, 4870 (1986)

338. T. Kaplan, L.J. Gray, S.H. Liu, Phys. Rev. B 35, 5379 (1987)

339. B. Sapoval, Solid State Ion. 23, 253 (1987)

340. B. Sapoval, J.-N. Chazalviel, J. Peyriere, Solid State Ion. 28–30, 1441 (1988)

341. B. Sapoval, J.-N. Chazalviel, J. Peyriere, Phys. Rev. A 38, 5867 (1988)

342. T. Pajkossy, L. Nyikos, Electrochim. Acta 34, 181 (1989)

343. R. de Levie, A. Vogt, J. Electroanal. Chem. 278, 25 (1990); 281, 23 (1990)

344. J.-Y. Go, S.-I. Pyun, Fractal approach to rough surfaces and interfaces in electrochemistry.

Mod. Asp. Electrochem. 39, 167 (2005)

345. R. de Levie, J. Electroanal. Chem. 261, 1 (1989)

346. W. Mulder, J. Electroanal. Chem. 326, 231 (1992)

347. G.P. Lindsay, G.D. Patterson, J. Chem. Phys. 73, 3348 (1980)

348. W. Schelder, J. Phys. Chem. 79, 127 (1975)

349. A. Sakharova, L. Nyikos, Y. Pleskov, Electrochim. Acta 37, 973 (1992)

354 References



350. A. Kerner, T. Pajkossy, J. Electroanal. Chem. 448, 139 (1998)

351. M.L. Tremblay, M.H. Martin, C. Lebouin, A. Lasia, D. Guay, Electrochim. Acta 55, 6283
(2010)

352. R. Jurczakowski, C. Hitz, A. Lasia, J. Electroanal. Chem. 572, 355 (2004)

353. Z. Kerner, T. Pajkossy, Electrochim. Acta 46, 207 (2000)

354. B. Emmanuel, J. Electroanal. Chem. 605, 89 (2007)

355. J. Newman, J. Electrochem. Soc. 113, 501 (1966)

356. J. Newman, J. Electrochem. Soc. 113, 1235 (1966)

357. J. Newman, J. Electrochem. Soc. 117, 198 (1970)

358. V.M.W. Huang, V. Vivier, M.E. Orazem, N. Pebere, B. Tribollet, J. Electrochem. Soc. 154,
C81 (2007)

359. V.M.W. Huang, V. Vivier, M.E. Orazem, N. Pebere, B. Tribollet, J. Electrochem. Soc. 154,
C89 (2007)

360. C. Blanc, M.E. Orazem, N. Pebere, B. Tribollet, V. Vivier, S. Wu, Electrochim. Acta 55,
6313 (2010)

361. S.L. Wu, M.E. Orazem, B. Tribollet, V. Vivier, J. Electrochem. Soc. 156, C28 (2009)

362. S.L. Wu, M.E. Orazem, B. Tribollet, V. Vivier, J. Electrochem. Soc. 156, C214 (2006)

363. J.B. Jorcin, M.E. Orazem, N. Pebere, B. Tribollet, Electrochim. Acta 51, 1473 (2006)

364. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, J. Electrochem.

Soc. 157, 452 (2010)

365. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, J. Electrochem.

Soc. 157, 458 (2010)

366. I. Frateur, V.M.W. Huang, M.E. Orazem, N. Pebere, B. Tribollet, V. Vivier, Electrochim.

Acta 53, 7386 (2008)

367. Z. Kerner, T. Pajkossy, Electrochim. Acta 47, 2055 (2002)

368. T. Pajkossy, T. Wandlowski, D.M. Kolb, J. Electroanal. Chem. 414, 209 (1997)

369. T. Pajkossy, Solid State Ion. 94, 123 (1997)

370. T. Pajkossy, D.M. Kolb, Electrochim. Acta 46, 3063 (2001)

371. Z. Kerner, T. Pajkossy, L.A. Kibler, D.M. Kolb, Electrochem. Commun. 4, 787 (2002)

372. T. Pajkossy, L.A. Kibler, D.M. Kolb, J. Electroanal. Chem. 582, 69 (2005)

373. T. Pajkossy, Solid State Ion. 176, 1997 (2005)

374. T. Pajkossy, D.M. Kolb, Electrochem. Commun. 9, 1171 (2007)

375. T. Pajkossy, L.A. Kibler, D.M. Kolb, J. Electroanal. Chem. 600, 113 (2007)

376. A.N. Frumkin, V.I. Melik-Gaykazyan, Dokl. Akad. Nauk 5, 855 (1951)

377. Z. Kerner, T. Pajkossy, Electrochim. Acta 47, 2055 (2002)

378. E. Tuncer, J.R. Macdonald, J. Appl. Phys. 99, 074106 (2006)

379. J.R. Macdonald, E. Tuncer, J. Electroanal. Chem. 602, 255 (2007)

380. L.M. Delves, J. Walsh, Numerical Solution of Integral Equations (Clarendon, Oxford, 1974)

381. T.J. VanderNoot, J. Electroanal. Chem. 386, 57 (1995)

382. F. Dion, A. Lasia, J. Electroanal. Chem. 475, 28 (1999)

383. P.C. Hansen, Numer. Algorithm 6, 1 (1994); 46, 189 (2007)

384. H. Schichlein, A.C. Muller, M. Voigts, A. Krugel, E. Ivers-Tiffee, J. Appl. Electrochem. 32,
875 (2002)

385. A. Leonide, V. Sonn, A. Weber, E. Ivers-Tiffee, J. Electrochem. Soc. 155, B36 (2008)

386. V. Sonn, A. Leonide, E. Ivers-Tiffee, J. Electrochem. Soc. 155, B675 (2008)

387. J.P. Schmidt, T. Chrobak, M. Ender, J. Illig, D. Klotz, E. Ivers-Tiffee, J. Power Sources 196,
5342 (2011)

388. http://jrossmacdonald.com/levminfo.html

389. E. Tuncer, S.M. Gubanski, IEEE Trans. Dielectr. Electr. Insul. 8, 310 (2001)

390. Z. Stoynov, Pol. J. Chem. 71, 1204 (1997)

391. D. Vladikova, P. Zoltowski, E. Makowska, Z. Stoynov, Electrochim. Acta 47, 2943 (2002)

392. D. Vladikova, Z. Stoynov, J. Electroanal. Chem. 572, 377 (2004)

393. D. Vladikova, Z. Stoynov, M. Viviani, J. Eur. Ceram. Soc. 24, 1121 (2004)

References 355

http://jrossmacdonald.com/levminfo.html


394. D. Vladikova, G. Raikova, Z. Stoynov, H. Takenouti, J. Kilner, S. Skinner, Solid State Ion.

176, 2005 (2005)

395. D. Vladikova, J.A. Kilner, S.J. Skinner, G. Raikova, Z. Stoynov, Electrochim. Acta 51, 1611
(2006)

396. D.E. Vladikova, Z.B. Stoynov, A. Barbucci, M. Viviani, P. Carpanese, J.A. Kilner,

S.J. Skinner, R. Rudkin, Electrochim. Acta 53, 7491 (2008)

397. M.Z. Krapchanska, D.E. Vladikova, G.S. Raikova, M.P. Slavova, Z.B. Stoynov, Bulg. Chem.

Commun. 43, 120 (2011)

398. G. Raikova, D. Vladikova, Z. Stoynov, Bulg. Chem. Commun. 43, 133 (2011)

399. R. Jurczakowski, A. Lasia, Impedance studies of platinum electrode in acidic solutions,

219 ECS Meeting, Montreal, May 2011

400. I. Rousar, K. Micka, A. Kimla, Electrochemical Engineering II (Elsevier, Amsterdam, 1986)

401. A.N. Frumkin, Zh. Fiz. Khim. 23, 1477 (1949)

402. O.S. Ksenzhek, V.V. Strender, Dokl. Akad. Nauk SSSR 106, 487 (1956)

403. O.S. Ksenzhek, Russ. J. Phys. Chem. 36, 331 (1962)

404. A. Winsel, Z. Elektrochem. 66, 287 (1962)

405. F.A. Posey, J. Electrochem. Soc. 111, 1173 (1964)

406. J.M. Bisang, K. Juttner, G. Kreysa, Electrochim. Acta 39, 1297 (1994)

407. A. Lasia, in Modern Aspects of Electrochemistry, ed. by M. Schlesinger, vol. 43 (Springer,

New York, 2009), p. 67

408. R. de Levie, in Advances in Electrochemistry and Electrochemical Engineering, ed. by

P. Delahay, vol. 6 (Interscience, New York, 1967), p. 329

409. L.M. Gassa, J.R. Vilche, M. Ebert, K. Juttner, W.J. Lorenz, J. Appl. Electrochem. 20,
677 (1990)

410. R. de Levie, Electrochim. Acta 8, 751 (1963)

411. I.D. Raistrick, Electrochim. Acta 35, 1579 (1990)

412. R. Jurczakowski, C. Hitz, A. Lasia, J. Electroanal. Chem. 582, 85 (2005)

413. R. de Levie, Electrochim. Acta 10, 113 (1965)

414. J. Gunning, J. Electroanal. Chem. 392, 1 (1995)

415. H. Keiser, K.D. Beccu, M.A. Gutjahr, Electrochim. Acta 21, 539 (1976)

416. C. Hitz, A. Lasia, J. Electroanal. Chem. 500, 213 (2001)

417. K. Eloot, F. Debuyck, M. Moors, A.P. Peteghem, J. Appl. Electrochem. 25, 326 (1995)

418. K. Eloot, F. Debuyck, M. Moors, A.P. Peteghem, J. Appl. Electrochem. 25, 334 (1995)

419. L. Chen, A. Lasia, J. Electrochem. Soc. 139, 3214 (1992)

420. L. Chen, A. Lasia, J. Electrochem. Soc. 140, 2464 (1993)

421. A. Lasia, in Current Topics in Electrochemistry, vol. 3, (Research Trends, Trivandrum,

1993), p. 239

422. L. Birry, A. Lasia, J. Appl. Electrochem. 34, 735 (2004)

423. Y. Gourbeyre, B. Tribollet, C. Dagbert, L. Hyspecka, J. Electrochem. Soc. 153, B162 (2006)

424. M. Itagaki, S. Suzuki, I. Shitanda, K. Watanabe, H. Nakazawa, J. Power Sources 164,
415 (2007)

425. M. Itagaki, Y. Hatada, I. Shitanda, K. Watanabe, Electrochim. Acta 55, 6255 (2010)

426. G. Paasch, K. Micka, P. Gersdorf, Electrochim. Acta 38, 2653 (1993)

427. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, A. Compte, Electrochem. Commun.

1, 429 (1999)

428. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N.S. Ferriols, P. Bogdanoff,

E.C. Pereira, J. Phys. Chem. B 104, 2287 (2000)

429. J. Bisquert, Phys. Chem. Chem. Phys. 2, 4185 (2000)

430. G. Lang, M. Ujvari, G. Inzelt, Electrochim. Acta 46, 4159 (2001)

431. P. Los, A. Lasia, H. Menard, L. Brossard, J. Electroanal. Chem. 360, 101 (1993)

432. I. Rousar, K. Micka, A. Kimla, Electrochemical Engineering, vol. II (Elsevier, Amsterdam,

1986), p. 133

433. K. Scott, J. Appl. Electrochem. 13, 709 (1983)

356 References



434. S.I. Marshall, J. Electrochem. Soc. 138, 1040 (1991)

435. A. Lasia, J. Electroanal. Chem. 397, 27 (1995)

436. J.S. Newman, C.W. Tobias, J. Electrochem. Soc. 109, 1183 (1962)

437. L.G. Austin, H. Lerner, Electrochim. Acta 9, 1469 (1964)

438. S.K. Rangarajan, J. Electroanal. Chem. 22, 89 (1969)

439. M. Keddam, C. Rakomotavo, H. Takenouti, J. Appl. Electrochem. 14, 437 (1984)

440. C. Cachet, R. Wiart, J. Electroanal. Chem. 195, 21 (1985)

441. A. Lasia, J. Electroanal. Chem. 428, 155 (1997)

442. A. Lasia, J. Electroanal. Chem. 454, 115 (1998)

443. A. Lasia, J. Electroanal. Chem. 500, 30 (2001)

444. H. Wendt, S. Rausch, T. Borucinski, in Advances in Catalysis, vol. 40 (Academic, New York,

1994), p. 87

445. S. Rausch, H. Wendt, J. Appl. Electrochem. 22, 1025 (1992)

446. D.D. Macdonald, M. Urquidi-Macdonald, S.D. Bhaktam, B.G. Pound, J. Electrochem. Soc.

138, 1359 (1991)

447. D.D. Macdonald, Electrochim. Acta 51, 1376 (2006)

448. S.-I. Pyun, C.-H. Kim, S.-W. Kim, J.-H. Kim, J. New Mat. Electrochem. Syst. 5, 289 (2002)

449. H.K. Song, Y.H. Jung, K.H. Lee, L.H. Dao, Electrochim. Acta 44, 3513 (1999)

450. H.K. Song, H.Y. Hwang, K.H. Lee, L.H. Dao, Electrochim. Acta 45, 2241 (2000)

451. H.K. Song, J.H. Sung, Y.H. Jung, K.H. Lee, L.H. Dao, M.H. Kim, H.N. Kim, J. Electrochem.

Soc. 151, E102 (2004)

452. H.K. Song, J.H. Jang, J.J. Kim, S.M. Oh, Electrochem. Commun. 8, 1191 (2006)

453. M. Musiani, M. Orazem, B. Tribollet, V. Vivier, Electrochim. Acta 56, 8014 (2011)

454. J.S. Newman, Electrochemical Systems, 2nd edn. (Prentice Hall, Englewood Cliffs, 1991)

455. S. Devan, V.R. Subramanian, R.E. White, J. Electrochem. Soc. 151, A905 (2004)

456. M. Doyle, J.P. Meyers, J. Newman, J. Electrochem. Soc. 147, 99 (2000)

457. J.P. Meyers, M. Doyle, R.M. Darling, J. Newman, J. Electrochem. Soc. 147, 2930 (2000)

458. A.M. Svensson, L.O. Valeen, R. Tunold, Electrochim. Acta 50, 2647 (2005)

459. T.E. Springer, T.A. Zawodzinski, M.S. Wilson, S. Gottesfeld, J. Electrochem. Soc. 143,
587 (1996)

460. A.M. Svensson, H. Weydahl, S. Sunde, Electrochim. Acta 53, 7483 (2008)

461. S. Sunde, I.A. Lervik, L.E. Owe, M. Tsypkin, J. Electrochem. Soc. 156, B927 (2009)

462. A.W. Bott, Curr. Sep. 17, 98 (1998)

463. K. Rajeshwar, in Encyclopedia of Electrochemistry, vol. 6, ed. by A.J. Bard, M. Stratmann,

S. Licht (Wiley-VCH, Weinheim, 2002), p. 1

464. W. Schottky, Z. Phys. 113, 367 (1939); 118, 539 (1942)

465. N.F. Mott, Proc. R. Soc. Lond. Ser. A 171, 27 (1939)

466. K. Gelderman, L. Lee, S.W. Donne, J. Chem. Educ. 84, 685 (2007)

467. R. Thapar, K. Rajeshwar, Electrochim. Acta 28, 195 (1983)

468. S.P. Harrington, T.M. Devine, J. Electrochem. Soc. 155, C381 (2008)

469. M.A. Rodriguez, R.M. Carranza, J. Electrochem. Soc. 158, C221 (2011)

470. D. Vanmaekelbergh, Electrochim. Acta 42, 1135 (1997)

471. Z. Hens, J. Phys. Chem. B 103, 122 (1999)

472. M. Parthasarathy, N.S. Ramgir, B.R. Sathe, I.S. Mulla, V.K. Pillai, J. Phys. Chem. 111, 13092
(2007)

473. J.D. Kellner, in Electrochemical Techniques for Corrosion Engineering, ed. by R. Baboian

(National Association of Corrosion Engineers, Houston, TX, 1986), p. 161

474. M.W. Kendig, S. Jeanjaquet, J. Lumsden, in Electrochemical Impedance: Analysis and

Interpretation, ASTM Special technical publication No. 1188, ed. by J.R. Scully,

D.C. Silverman, M.W. Kendig (ASTM, Philadelphia, 1993), p. 407

475. R.G. Buchheit, in Electrochemical Techniques in Corrosion Science and Engineering, ed. by

R.G. Kelly, J.R. Scully, D.W. Shoesmith, R.G. Buchheit (Marcel Dekker, New York, 2002),

p. 257

References 357



476. D.M. Brasher, A.H. Kingsbury, J. Appl. Chem. 4, 62 (1954)

477. A.S. Castela, A.M. Simoes, Corr. Sci. 45, 1631 (2003); 45, 1647 (2003)

478. F.S.A. Lindqvist, Corrosion 41, 69 (1985)

479. M. Kendig, J. Scully, Corrosion 46, 22 (1990)

480. F. Mansfeld, C.H. Tsai, Corrosion 47, 958 (1991)

481. C.H. Tsai, F. Mansfeld, Corrosion 49, 726 (1993)

482. H.O. Finklea, in Electroanalytical Chemistry, vol. 19, ed. by A.J. Bard, I. Rubinstein (Marcel

Dekker, New York, 1996), pp. 109–335

483. H.O. Finklea, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers, vol. 11 (Wiley,

New York, 2000), p. 10090

484. D.K. Schwartz, Annu. Rev. Phys. Chem. 52, 107 (2001)

485. R.P. Janek, W.R. Fawcett, A. Ulman, J. Phys. Chem. B 101, 8550 (1997)

486. S. Zhang, N. Hugo, W. Li, T. Roland, L. Berguiga, J. Elezgaray, F. Argoul, J. Electroanal.

Chem. 629, 138 (2009)

487. M.D. Porter, T.B. Bright, D.L. Allara, C.E.D. Chidsey, J. Am. Chem. Soc. 109, 3561 (1987)

488. M. Stelzle, G. Weissmuller, E. Sackmann, J. Phys. Chem. 97, 2974 (1993)

489. M. Cohen-Atiya, A. Nelson, D. Mandler, Electrochem. Commun. 9, 2827 (2007)

490. R.P. Janek, W.R. Fawcett, A. Ulman, Langmuir 14, 3011 (1998)

491. L.V. Protsailo, W. Ronald Fawcett, D. Russell, R.L. Meyer, Langmuir 18, 9342 (2002)

492. L.V. Protsailo, W.R. Fawcett, Electrochim. Acta 45, 3497 (2000)

493. K. Tokuda, T. Gueshi, H. Matsuda, J. Electroanal. Chem. 102, 41 (1979)

494. H.O. Finklea, D.A. Snider, J. Fedyk, E. Sabatani, Y. Gafni, I. Rubinstein, Langmuir 9, 3660
(1993)

495. X. Lu, H. Yuan, G. Zuo, J. Yang, Thin Solid Films 516, 6476 (2008)

496. H.O. Finklea, L. Liu, M.S. Ravenscroft, S. Punturi, J. Phys. Chem. 100, 18852 (1996)

497. K. Weber, L. Hockett, S. Creager, J. Phys. Chem. 101, 8286 (1997)

498. A.L. Eckermann, D.J. Feld, J.A. Shaw, T.J. Meade, Coord. Chem. Rev. 254, 1769 (2010)

499. H.T. Tien, Bilayer Lipid Membranes (BLM): Theory and Practice (Marcel Dekker, New

York, 1974)

500. Advances in Planar Lipid Bilayers and Liposomes, ed. by A. Iglic, Academic Press/Elsevier,

book series, 16 volumes, 2005–2012

501. A.L. Ottova, H.T. Tien, Bioelectrochem. Bioenerg. 42, 141 (1997)

502. S. Alonso-Romanowski, L.M. Gassa, J.R. Vilche, Electrochim. Acta 40, 1561 (1995)

503. E. Sackmann, Science 271, 43 (1996)

504. C. Steinem, A. Janshoff, H.-J. Galla, M. Siebert, Bioelectrochem. Bioenerg. 42, 213 (1997)

505. C. Steinem, A. Janshoff, K. von dem Bruch, K. Reihs, J. Goossens, H.-J. Galla,

Bioelectrochem. Bioenerg. 45, 17 (1998)

506. A.E. Vallejo, C.A. Gervasi, L.M. Gassa, Bioelectrochem. Bioenerg. 47, 343 (1998)

507. A.E. Vallejo, C.A. Gervasi, Bioelectrochemistry 57, 1 (2002)

508. R. Naumann, D. Walz, S.M. Schiller, W. Knoll, J. Electroanal. Chem. 550, 241 (2003)
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