

Basic Structured Grid Generation
with an introduction to unstructured grid generation

Basic Structured Grid
Generation

with an introduction to unstructured
grid generation

M. Farrashkhalvat and J.P. Miles

OXFORD AMSTERDAM BOSTON LONDON NEW YORK PARIS
SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

Butterworth-Heinemann
An imprint of Elsevier Science
Linacre House, Jordan Hill, Oxford OX2 8DP
200 Wheeler Rd, Burlington MA 01803

First published 2003

Copyright c© 2003, M. Farrashkhalvat and J.P. Miles. All rights reserved

The right of M. Farrashkhalvat and J.P. Miles to be identified as the authors of
this work has been asserted in accordance with the Copyright, Designs
and Patents Act 1988

No part of this publication may be
reproduced in any material form (including
photocopying or storing in any medium by electronic
means and whether or not transiently or incidentally
to some other use of this publication) without the
written permission of the copyright holder except
in accordance with the provisions of the Copyright,
Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd,
90 Tottenham Court Road, London, England W1T 4LP.
Applications for the copyright holder’s written permission
to reproduce any part of this publication should be
addressed to the publisher

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data
A catalogue record for this book is available from the Library of Congress

ISBN 0 7506 5058 3

For information on all Butterworth-Heinemann publications visit our website at www.bh.com

Typeset by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain

Contents

Preface ix

1. Mathematical preliminaries – vector and tensor analysis 1

1.1 Introduction 1
1.2 Curvilinear co-ordinate systems and base vectors in E3 1
1.3 Metric tensors 4
1.4 Line, area, and volume elements 8
1.5 Generalized vectors and tensors 8
1.6 Christoffel symbols and covariant differentiation 14
1.7 Div, grad, and curl 19
1.8 Summary of formulas in two dimensions 23
1.9 The Riemann-Christoffel tensor 26
1.10 Orthogonal curvilinear co-ordinates 27
1.11 Tangential and normal derivatives – an introduction 28

2. Classical differential geometry of space-curves 30

2.1 Vector approach 30
2.2 The Serret-Frenet equations 32
2.3 Generalized co-ordinate approach 35
2.4 Metric tensor of a space-curve 38

3. Differential geometry of surfaces in E3 42

3.1 Equations of surfaces 42
3.2 Intrinsic geometry of surfaces 46
3.3 Surface covariant differentiation 51
3.4 Geodesic curves 54
3.5 Surface Frenet equations and geodesic curvature 57
3.6 The second fundamental form 60
3.7 Principal curvatures and lines of curvature 63
3.8 Weingarten, Gauss, and Gauss-Codazzi equations 67
3.9 Div, grad, and the Beltrami operator on surfaces 70

vi Contents

4. Structured grid generation – algebraic methods 76

4.1 Co-ordinate transformations 76
4.2 Unidirectional interpolation 80

4.2.1 Polynomial interpolation 80
4.2.2 Hermite interpolation polynomials 85
4.2.3 Cubic splines 87

4.3 Multidirectional interpolation and TFI 92
4.3.1 Projectors and bilinear mapping in two dimensions 92
4.3.2 Numerical implementation of TFI 94
4.3.3 Three-dimensional TFI 96

4.4 Stretching transformations 98
4.5 Two-boundary and multisurface methods 103

4.5.1 Two-boundary technique 103
4.5.2 Multisurface transformation 104
4.5.3 Numerical implementation 106

4.6 Website programs 108
4.6.1 Subdirectory: Book/univariate.gds 109
4.6.2 Subdirectory: Book/Algebra 109
4.6.3 Subdirectory: Book/bilinear.gds 112
4.6.4 Subdirectory: Book/tfi.gds 114
4.6.5 Subdirectory: Book/analytic.gds 115

5. Differential models for grid generation 116

5.1 The direct and inverse problems 116
5.2 Control functions 119
5.3 Univariate stretching functions 120

5.3.1 Orthogonality considerations 121
5.4 Conformal and quasi-conformal mapping 122
5.5 Numerical techniques 125

5.5.1 The Thomas Algorithm 125
5.5.2 Jacobi, Gauss-Seidel, SOR methods 127
5.5.3 The conjugate gradient method 129

5.6 Numerical solutions of Winslow equations 131
5.6.1 Thomas Algorithm 132
5.6.2 Orthogonality 134

5.7 One-dimensional grids 136
5.7.1 Grid control 136
5.7.2 Numerical aspects 139

5.8 Three-dimensional grid generation 140
5.9 Surface-grid generation model 141
5.10 Hyperbolic grid generation 142
5.11 Solving the hosted equations 143

5.11.1 An example 143
5.11.2 More general steady-state equation 145

5.12 Multiblock grid generation 146
5.13 Website programs 148

5.13.1 Subdirectory: Book/Winslow.gds 148

Contents vii

5.13.2 Subdirectory: Book/one.d.gds 150
5.13.3 Subdirectory: Book/hyper.gds 150
5.13.4 Subdirectory: Book/p.d.Equations 151

6. Variational methods and adaptive grid generation 152

6.1 Introduction 152
6.2 Euler-Lagrange equations 153
6.3 One-dimensional grid generation 157

6.3.1 Variational approach 157
6.3.2 Dynamic adaptation 159
6.3.3 Space-curves 161

6.4 Two-dimensional grids 164
6.4.1 The L-functional and the Winslow model 165
6.4.2 The weighted L-functional 166
6.4.3 The weighted area-functional 167
6.4.4 Orthogonality-functional 167
6.4.5 Combination of functionals 168
6.4.6 Other orthogonality functionals 169
6.4.7 The Liao functionals 170
6.4.8 Surface grids 171

6.5 Harmonic maps 172
6.5.1 Surface grids 175

6.6 Website programs 177
6.6.1 Subdirectory: Book/var.gds 177
6.6.2 Subdirectory: Book/one.d.gds 179

7. Moving grids and time-dependent co-ordinate systems 180

7.1 Time-dependent co-ordinate transformations 180
7.2 Time-dependent base vectors 181
7.3 Transformation of generic convective terms 184
7.4 Transformation of continuity and momentum equations 185

7.4.1 Continuity equation 185
7.4.2 Momentum equations 185

7.5 Application to a moving boundary problem 187

8. Unstructured grid generation 190

8.1 Introduction 190
8.2 Delaunay triangulation 191

8.2.1 Basic geometric properties 191
8.2.2 The Bowyer-Watson algorithm 193
8.2.3 Point insertion strategies 196

8.3 Advancing front technique (AFT) 203
8.3.1 Introduction 203
8.3.2 Grid control 204
8.3.3 Searching algorithm 205
8.3.4 AFT algorithm 206

viii Contents

8.3.5 Adaptation and parameter space 216
8.3.6 Grid quality improvement 216

8.4 Solving hosted equations using finite elements 217
8.5 Website programs 221

8.5.1 Subdirectory: book/Delaunay 221

Bibliography 227

Index 229

Preface

Over the past two decades, efficient methods of grid generation, together with the
power of modern digital computers, have been the key to the development of numer-
ical finite-difference (as well as finite-volume and finite-element) solutions of linear
and non-linear partial differential equations in regions with boundaries of complex
shape. Although much of this development has been directed toward fluid mechanics
problems, the techniques are equally applicable to other fields of physics and engi-
neering where field solutions are important. Structured grid generation is, broadly
speaking, concerned with the construction of co-ordinate systems which provide co-
ordinate curves (in two dimensions) and co-ordinate surfaces (in three dimensions)
that remain coincident with the boundaries of the solution domain in a given problem.
Grid points then arise in the interior of the solution domain at the intersection of these
curves or surfaces, the grid cells, lying between pairs of intersecting adjacent curves
or surfaces, being generally four-sided figures in two dimensions and small volumes
with six curved faces in three dimensions.

It is very helpful to have a good grasp of the underlying mathematics, which is
principally to be found in the areas of differential geometry (of what is now a fairly
old-fashioned variety) and tensor analysis. We have tried to present a reasonably self-
contained account of what is required from these subjects in Chapters 1 to 3. It is
hoped that these chapters may also serve as a helpful source of background reference
equations.

The following two chapters contain an introduction to the basic techniques (mainly
in two dimensions) of structured grid generation, involving algebraic methods and dif-
ferential models. Again, in an attempt to be reasonably inclusive, we have given a
brief account of the most commonly-used numerical analysis techniques for interpo-
lation and for solving algebraic equations. The differential models considered cover
elliptic and hyperbolic partial differential equations, with particular reference to the
use of forcing functions for the control of grid-density in the solution domain. For
solution domains with complex geometries, various techniques are used in practice,
including the multi-block method, in which a complex solution domain is split up
into simpler sub-domains. Grids may then be generated in each sub-domain (using the
sort of methods we have presented), and a matching routine, which reassembles the
sub-domains and matches the individual grids at the boundaries of the sub-domains, is
used. We show a simple matching routine at the end of Chapter 5.

A number of variational approaches (preceded by a short introduction to variational
methods in general) are presented in Chapter 6, showing how grid properties such

x Preface

as smoothness, orthogonality, and grid density can be controlled by the minimization
of an appropriate functional (dependent on the components of a fundamental metric
tensor). Surface grid generation has been considered here in the general context of
harmonic maps. In Chapter 7 time-dependent problems with moving boundaries are
considered. Finally, Chapter 8 provides an introduction to the currently very active area
of unstructured grid generation, presenting the fundamentals of Delaunay triangulation
and advancing front techniques.

Our aim throughout is to provide a straightforward and compact introduction to grid
generation, covering the essential mathematical background (in which, in our view,
tensor calculus forms an important part), while steering a middle course regarding the
level of mathematical difficulty. Mathematical exercises are suggested from time to
time to assist the reader. In addition, the companion website (www.bh.com/companions/
0750650583) provides a series of easy-to-follow, clearly annotated numerical codes,
closely associated with Chapters 4, 5, 6, and 8. The aim has been to show the applica-
tion of the theory to the generation of numerical grids in fairly simple two-dimensional
domains, varying from rectangles, circles and ellipses to more complex geometries,
such as C-grids over an airfoil, and thus to offer the reader a basis for further progress
in this field. Programs involve some of the most frequently used and familiar stable
numerical techniques, such as the Thomas Algorithm for the solution of tridiagonal
matrix equations, the Gauss-Seidel method, the Conjugate Gradient method, Succes-
sive Over Relaxation (SOR), Successive Line Over Relaxation, and the Alternating
Direction Implicit (ADI) method, as well as Transfinite Interpolation and the marching
algorithm (a grid generator for hyperbolic partial differential equations). The program-
ming language is the standard FORTRAN 77/90.

Our objective in this book is to give an introduction to the most important
aspects of grid generation. Our coverage of the literature is rather select-
ive, and by no means complete. For further information and a much wider
range of references, texts such as Carey (1997), Knupp and Steinberg (1993),
Thompson, Warsi, and Mastin (1985), and Liseikin (1999) may be consulted. Unstruc-
tured grid generation is treated in George (1991). A very comprehensive survey of mod-
ern developments, together with a great deal of background information, is provided
by Thompson, Soni, and Weatherill (1999).

The authors would like to express their gratitude to Mr. Thomas Sippel-Dau, LINUX
Service Manager at Imperial College of Science, Technology and Medicine for help
with computer administration.

M. Farrashkhalvat

J.P. Miles

1

Mathematical
preliminaries – vector and tensor

analysis

1.1 Introduction
In this chapter we review the fundamental results of vector and tensor calculus which
form the basis of the mathematics of structured grid generation. We do not feel it
necessary to give derivations of these results from the perspective of modern dif-
ferential geometry; the derivations provided here are intended to be appropriate to
the background of most engineers working in the area of grid generation. Helpful
introductions to tensor calculus may be found in Kay (1988), Kreyzig (1968), and
Spain (1953), as well as many books on continuum mechanics, such as Aris (1962).
Nevertheless, we have tried to make this chapter reasonably self-contained. Some of
the essential results were presented by the authors in Farrashkhalvat and Miles (1990);
this book started at an elementary level, and had the restricted aim, compared with
many of the more wide-ranging books on tensor calculus, of showing how to use
tensor methods to transform partial differential equations of physics and engineer-
ing from one co-ordinate system to another (an aim which remains relevant in the
present context). There are some minor differences in notation between the present
book and Farrashkhalvat and Miles (1990).

1.2 Curvilinear co-ordinate systems and base
vectors in E3

We consider a general set of curvilinear co-ordinates xi , i = 1, 2, 3, by which points
in a three-dimensional Euclidean space E3 may be specified. The set {x1, x2, x3}
could stand for cylindrical polar co-ordinates {r, θ, z}, spherical polars {r, θ, ϕ}, etc.
A special case would be a set of rectangular cartesian co-ordinates, which we shall
generally denote by {y1, y2, y3} (where our convention of writing the integer indices
as subscripts instead of superscripts will distinguish cartesian from other systems),
or sometimes by {x, y, z} if this would aid clarity. Instead of {x1, x2, x3}, it may
occasionally be clearer to use notation such as {ξ, η, ς} without indices.

2 Basic Structured Grid Generation

The position vector r of a point P in space with respect to some origin O may be
expressed as

r = y1i1 + y2i2 + y3i3, (1.1)

where {i1, i2, i3}, alternatively written as {i, j, k}, are unit vectors in the direction of the
rectangular cartesian axes. We assume that there is an invertible relationship between
this background set of cartesian co-ordinates and the set of curvilinear co-ordinates, i.e.

yi = yi(x
1, x2, x3), i = 1, 2, 3, (1.2)

with the inverse relationship

xi = xi(y1, y2, y3), i = 1, 2, 3. (1.3)

We also assume that these relationships are differentiable. Differentiating eqn (1.1)
with respect to xi gives the set of covariant base vectors

gi = ∂r
∂xi

, i = 1, 2, 3, (1.4)

with background cartesian components

(gi)j = ∂yj

∂xi
, j = 1, 2, 3. (1.5)

At any point P each of these vectors is tangential to a co-ordinate curve passing
through P, i.e. a curve on which one of the xis varies while the other two remain
constant (Fig. 1.1). In general the gis are neither unit vectors nor orthogonal to each
other. But so that they may constitute a set of basis vectors for vectors in E3 we demand
that they are not co-planar, which is equivalent to requiring that the scalar triple product
{g1 · (g2 × g3)} �= 0. Furthermore, this condition is equivalent to the requirement that
the Jacobian of the transformation (1.2), i.e. the determinant of the matrix of partial
derivatives (∂yi/∂xj), is non-zero; this condition guarantees the existence of the inverse
relationship (1.3).

x1 varies

y1

y2

y3
x2 varies

x3 varies

O

P

i3

i1

g1

g2g3

i2

Fig. 1.1 Covariant base vectors at a point P in three dimensions.

Mathematical preliminaries – vector and tensor analysis 3

Given the set {g1, g2, g3} we can form the set of contravariant base vectors at P,
{g1, g2, g3}, defined by the set of scalar product identities

gi · gj = δi
j (1.6)

where δi
j is the Kronecker symbol given by

δi
j =

{
1 when i = j

0 when i �= j
(1.7)

Exercise 1. Deduce from the definitions (1.6) that the gis may be expressed in terms
of vector products as

g1 = g2 × g3

V
, g2 = g3 × g1

V
, g3 = g1 × g2

V
(1.8)

where V = {g1 · (g2 × g3)}. (Note that V represents the volume of a parallelepiped
(Fig. 1.2) with sides g1, g2, g3.)

The fact that g1 is perpendicular to g2 and g3, which are tangential to the co-ordinate
curves on which x2 and x3, respectively, vary, implies that g1 must be perpendicular
to the plane which contains these tangential directions; this is just the tangent plane to
the co-ordinate surface at P on which x1 is constant. Thus gi must be normal to the
co-ordinate surface xi = constant.

Comparison between eqn (1.6), with the scalar product expressed in terms of carte-
sian components, and the chain rule

∂xi

∂y1

∂y1

∂xj
+ ∂xi

∂y2

∂y2

∂xj
+ ∂xi

∂y3

∂y3

∂xj
= ∂xi

∂yk

∂yk

∂xj
= ∂xi

∂xj
= δi

j (1.9)

for partial derivatives shows that the background cartesian components of gi are
given by

(gi)j = ∂xi

∂yj

, j = 1, 2, 3. (1.10)

In eqn (1.9) we have made use of the summation convention, by which repeated
indices in an expression are automatically assumed to be summed over their range

g3

g2

g1

P

V

Fig. 1.2 Parallelepiped of base vectors at point P.

4 Basic Structured Grid Generation

of values. (In expressions involving general curvilinear co-ordinates the summation
convention applies only when one of the repeated indices appears as a subscript and
the other as a superscript.) The comparison shows that

∂xi

∂y1
i1 + ∂xi

∂y2
i2 + ∂xi

∂y3
i3 = ∇xi = gi , (1.11)

where the gradient operator ∇, or grad, is defined in cartesians by

∇ = i1
∂

∂y1
+ i2

∂

∂y2
+ i3

∂

∂y3
= ik

∂

∂yk

. (1.12)

For a general scalar field ϕ we have

∇ϕ = ik
∂ϕ

∂yk

= ik
∂ϕ

∂xj

∂xj

∂yk

=
(

ik
∂xj

∂yk

)
∂ϕ

∂xj
= gj ∂ϕ

∂xj
, (1.13)

making use of a chain rule again and eqn (1.11); this gives the representation of the
gradient operator in general curvilinear co-ordinates.

1.3 Metric tensors
Given a set of curvilinear co-ordinates {xi} with covariant base vectors gi and con-
travariant base vectors gi , we can define the covariant and contravariant metric tensors
respectively as the scalar products

gij = gi · gj (1.14)

gij = gi · gj , (1.15)

where i and j can take any values from 1 to 3. From eqns (1.5), (1.10), for the back-
ground cartesian components of gi and gi , it follows that

gij = ∂yk

∂xi

∂yk

∂xj
(1.16)

and

gij = ∂xi

∂yk

∂xj

∂yk

. (1.17)

If we write (x, y, z) for cartesians and (ξ, η, ς) for curvilinear co-ordinates, we have
the formulas

g11 = x2
ξ + y2

ξ + z2
ξ

g22 = x2
η + y2

η + z2
η

g33 = x2
ς + y2

ς + z2
ς (1.18)

g12 = g21 = xξxη + yξyη + zξ zη

Mathematical preliminaries – vector and tensor analysis 5

g23 = g32 = xηxς + yηyς + zηzς

g31 = g13 = xςxξ + yςyξ + zςzξ

where a typical partial derivative ∂x
∂ξ

has been written as xξ , and the superscript 2 now
represents squaring.

Exercise 2. For the case of spherical polar co-ordinates, with ξ = r , η = θ , ς = ϕ, and

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ

show that
 g11 g12 g13

g21 g22 g23
g31 g32 g33

 =

 1 0 0

0 r2 0
0 0 r2 sin2 θ

 , (1.19)

where (r, θ, ϕ) take the place of (ξ, η, ς).

Formulas for gij are, similarly,

g11 = ξ 2
x + ξ 2

y + ξ 2
z

g22 = η2
x + η2

y + η2
z

g33 = ς2
x + ς2

y + ς2
z (1.20)

g12 = g21 = ξxηx + ξyηy + ξzηz

g23 = g32 = ηxςx + ηyςy + ηzςz

g31 = g13 = ςxξx + ςyξy + ςzξz.

The metric tensor gij provides a measure of the distance ds between neighbouring
points. If the difference in position vectors between the two points is dr and the
infinitesimal differences in curvilinear co-ordinates are dx1, dx2, dx3, then

ds2 = dr · dr =
(

3∑
i=1

∂r
∂xi

dxi

)
·

 3∑

j=1

∂r
∂xj

dxj

 = ∂r

∂xi
· ∂r
∂xj

dxi dxj = gij dxi dxj ,

(1.21)
making use of the summation convention. As previously remarked, the summation
convention may be employed in generalized (curvilinear) co-ordinates only when each
of the repeated indices appears once as a subscript and once as a superscript.

We can form the 3 × 3 matrix L whose row i contains the background cartesian
components of gi and the matrix M whose row i contains the background cartesian
components of gi . We may write, in shorthand form,

L =

 g1

g2
g3

 , MT = (

g1 g2 g3
)

(1.22)

6 Basic Structured Grid Generation

and Lij = ∂yj

∂xi , Mij = ∂xi

∂yj
; it may be seen directly from eqn (1.6) that

LMT = I, (1.23)

where I is the 3 × 3 identity matrix. Thus L and MT are mutual inverses. Moreover

det L = {g1 · (g2 × g3)} = V (1.24)

as previously defined in eqn (1.8). Since MT = L−1, it follows that

det M = {g1 · (g2 × g3)} = V −1. (1.25)

It is easy to see that the symmetric matrix arrays (gij) and (gij) for the associated
metric tensors are now given by

(gij) = LLT , (gij) = MMT . (1.26)

Since MT = L−1 and M = (LT)−1, it follows that

(gij) = (gij)
−1. (1.27)

In component form this is equivalent to

gikg
jk = δ

j
i . (1.28)

From the properties of determinants it also follows that

g = det(gij) = (det L)2 = V 2, (1.29)

det(gij) = g−1, (1.30)

and
V = {g1 · (g2 × g3)} = √

g, (1.31)

where g must be a positive quantity.
Thus in place of eqn (1.8) we can write

g1 = 1√
g

g2 × g3, g2 = 1√
g

g3 × g1, g3 = 1√
g

g1 × g2. (1.32)

From eqn (1.27) and standard 3 × 3 matrix inversion, we can also deduce the fol-
lowing formula:

gij = 1

g

 G1 G4 G5

G4 G2 G6
G5 G6 G3

 , (1.33)

where the co-factors of (gij) are given by

G1 = g22g33 − (g23)
2, G2 = g11g33 − (g13)

2, G3 = g11g22 − (g12)
2

G4 = g13g23 − g12g33, G5 = g12g23 − g13g22, G6 = g12g13 − g23g11. (1.34)

Mathematical preliminaries – vector and tensor analysis 7

The cofactors of the matrix L in eqn (1.22) are the various background carte-
sian components of (gj × gk), which may be expressed, with the notation used in
eqn (1.18), as

α1 = yηzς − yςzη, α2 = xςzη − xηzς , α3 = xηyς − xςyη

β1 = yςzξ − yξ zς , β2 = xξ zς − xςzξ , β3 = xςyξ − xξyς (1.35)

γ1 = yξ zη − yηzξ , γ2 = xηzξ − xξ zη, γ3 = xξyη − xηyξ

so that

g2 × g3 = α1i + α2j + α3k, g3 × g1 = β1i + β2j + β3k, g1 × g2 = γ1i + γ2j + γ3k
(1.36)

and

g1 = 1√
g

(α1i+α2j+α3k), g2 = 1√
g

(β1i+β2j+β3k), g3 = 1√
g

(γ1i+γ2j+γ3k).

(1.37)
Since M = L−1, we also have, in the same notation, the matrix elements of M:

ξx = α1/
√

g, ξy = α2/
√

g, ξz = α3/
√

g

ηx = β1/
√

g, ηy = β2/
√

g, ηz = β3/
√

g (1.38)

ςx = γ1/
√

g, ςy = γ2/
√

g, ςz = γ3/
√

g.

Exercise 3. Using eqn (1.29) and standard determinant expansions, derive the follow-
ing formulas for the determinant g:

g = g11G1 + g12G4 + g13G5 = (α1xξ + β1xη + γ1xς)2

= g22G2 + g12G4 + g23G6 = (α2yξ + β2yη + γ2yς)2 (1.39)

= g33G3 + g13G5 + g23G6 = (α3zξ + β3zη + γ3zς)2.

From eqn (1.32) it follows that

gip = gi · gp = 1

g
(gj × gk) · (gq × gr),

where {i, j, k} and {p, q, r} are in cyclic order {1, 2, 3}. Using the standard Lagrange
vector identity

(A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C), (1.40)

we have

gip = 1

g
{(gj · gq)(gk · gr) − (gj · gr)(gk · gq)}

= 1

g
(gjqgkr − gjrgkq). (1.41)

For example,

g13 = 1

g
(g21g32 − g22g31).

8 Basic Structured Grid Generation

1.4 Line, area, and volume elements

Lengths of general infinitesimal line-elements are given by eqn (1.21). An element of
the x1 co-ordinate curve on which dx2 = dx3 = 0 is therefore given by (ds)2 =
g11(dx1)2. Thus arc-length along the xi-curve is

ds = √
gii dxi (1.42)

(with no summation over i).
A line-element along the x1-curve may be written ∂r

∂x1 dx1 = g1 dx1, and simi-
larly a line-element along the x2-curve is g2 dx2. The infinitesimal vector area of the
parallelogram of which these two line-elements form the sides is the vector product
(g1 dx1 × g2 dx2), which has magnitude

dA3 = |g1 × g2| dx1 dx2. (1.43)

Again by the Lagrange vector identity we have

|g1 × g2|2 = (g1 × g2) · (g1 × g2) = (g1 · g1)(g2 · g2) − (g1 · g2)(g1 · g2)

= g11g22 − (g12)
2.

Hence dA3 = √
g11g22 − (g12)2 dx1 dx2, giving the general expression

dAi =
√

gjjgkk − (gjk)2 dxj dxk = Gi dxj dxk, (1.44)

using eqn (1.34), where i, j, k must be taken in cyclic order 1, 2, 3, and again there is
no summation over j and k.

The parallelepiped generated by line-elements g1 dx1, g2 dx2, g3 dx3, along the co-
ordinate curves has infinitesimal volume

dV = g1 dx1 · (g2 dx2 × g3 dx3) = {g1 · (g2 × g3)}dx1 dx2 dx3.

By eqn (1.31) we have
dV = √

g dx1 dx2 dx3. (1.45)

1.5 Generalized vectors and tensors
A vector field u (a function of position r) may be expressed at a point P in terms of
the covariant base vectors g1, g2, g3, or in terms of the contravariant base vectors g1,
g2, g3. Thus we have

u = u1g1 + u2g2 + u3g3 = uigi (1.46)

= u1g1 + u2g2 + u3g3 = uigi , (1.47)

where ui and ui are called the contravariant and covariant components of u, respect-
ively. Taking the scalar product of both sides of eqn (1.46) with gj gives

u · gj = uigi · gj = uiδ
j
i = uj .

Mathematical preliminaries – vector and tensor analysis 9

Hence
ui = u · gi , (1.48)

and, similarly,
ui = u · gi . (1.49)

A similar procedure shows, incidentally, that

gi = gij gj , (1.50)

and
gi = gijgj . (1.51)

We then easily deduce that
ui = gijuj (1.52)

and
ui = giju

j . (1.53)

These equations may be interpreted as demonstrating that the action of gij on uj

and that of gij on uj are effectively equivalent to ‘raising the index’ and ‘lowering the
index’, respectively.

It is straightforward to show that the scalar product of vectors u and v is given by

u · v = uivi = uiv
i = giju

ivj = gijuivj (1.54)

and hence that the magnitude of a vector u is given by

|u| =
√

gijuiuj =
√

gijuiuj . (1.55)

It is important to note the special transformation properties of covariant and con-
travariant components under a change of curvilinear co-ordinate system. We consider
another system of co-ordinates xi , i = 1, 2, 3, related to the first system by the trans-
formation equations

xi = xi(x1, x2, x3), i = 1, 2, 3. (1.56)

These equations are assumed to be invertible and differentiable. In particular, dif-
ferentials in the two systems are related by the chain rule

dxi = ∂xi

∂xj
dxj , (1.57)

or, in matrix terms,
 dx1

dx2

dx3

 = A

 dx1

dx2

dx3

 , (1.58)

where we assume that the matrix A of the transformation, with i-j element equal to
∂xi/∂xj , has a determinant not equal to zero, so that eqn (1.58) may be inverted. We
define the Jacobian J of the transformation as

J = det A. (1.59)

10 Basic Structured Grid Generation

Exercise 4. Show that if we define the matrix B as that whose i-j element is equal to
∂xj /∂xi , then

ABT = I (1.60)

and
det B = J−1. (1.61)

We obtain new covariant base vectors, which transform according to the rule

gi = ∂r

∂xi
= ∂r

∂xj

∂xj

∂xi
= ∂xj

∂xi
gj , (1.62)

with the inverse relationship

gi = ∂xj

∂xi
gj . (1.63)

In background cartesian components, eqn (1.62) may be written in matrix form as

L = BL, (1.64)

where L is the matrix with i-j component given by ∂yj /∂xi , and from eqn (1.23) and
eqn (1.60) we deduce that

M = AM, (1.65)

where M is the matrix with i-j component ∂xi/∂yj .
The new system of co-ordinates has associated metric tensors given, in comparison

with eqn (1.26), by

(gij) = L L
T
, (gij) = M M

T
, (1.66)

so that the corresponding determinant g = det(gij) is given by

g = (det L)2.

Hence det L = √
g, det L = √

g, and det L = det B det L = J−1 det L from
eqn (1.64). Thus we have

J =
√

g

g
. (1.67)

Equation (1.65) yields the relation between corresponding contravariant base vectors:

gi = ∂xi

∂xj
gj . (1.68)

Expressing u as a linear combination of the base vectors in the new system gives

u = uigi = uigi . (1.69)

We now easily obtain, using eqn (1.62), the transformation rule for the covariant
components of a vector:

ui = u·gi = u·
(

∂xj

∂xi
gj

)
= ∂xj

∂xi
u · gj = ∂xj

∂xi
uj , (1.70)

Mathematical preliminaries – vector and tensor analysis 11

or, in matrix form,
 u1

u2
u3

 = B

 u1

u2
u3

 . (1.71)

The set of components ∂ϕ

∂xj (where ϕ is a scalar field) found in eqn (1.13) can be said
to constitute a covariant vector, since by the usual chain rule they transform according
to eqn (1.70), i.e.

∂ϕ

∂xi
= ∂xj

∂xi

∂ϕ

∂xj
.

Exercise 5. Show that the transformation rule for contravariant components of a
vector is

ui = ∂xi

∂xj
uj , (1.72)

or
 u1

u2

u3

 = A

 u1

u2

u3

 . (1.73)

Note the important consequence that the scalar product (1.54) is an invariant quantity
(a true scalar), since it is unaffected by co-ordinate transformations. In fact

uivi =
(

∂xi

∂xj
uj

) (
∂xk

∂xi
vk

)
=

(
∂xi

∂xj

∂xk

∂xi

)
ujvk = δk

j u
jvk = ujvj .

From eqns (1.64), (1.65), and (1.66), we obtain the transformation rules:

(gij) = L L
T = BLLT BT = B(gij)B

T , (1.74)

(gij) = M M
T = AMMT AT = A(gij)AT . (1.75)

In fact gij is a particular case of a covariant tensor of order two, which may be
defined here as a set of quantities which take the values Tij , say, when the curvilinear
co-ordinates xi are chosen and the values T ij when a different set xi are chosen, with a
transformation rule between the two sets of values being given in co-ordinate form by

T ij = ∂xk

∂xi

∂xl

∂xj
Tkl (1.76)

with summation over k and l, or in matrix form

T = BT BT . (1.77)

Similarly, gij is a particular case of a contravariant tensor of order two. This is
defined as an entity which has components T ij obeying the transformation rules

T
ij = ∂xi

∂xk

∂xj

∂xl
T kl (1.78)

12 Basic Structured Grid Generation

or, equivalently,
T = ATAT . (1.79)

We can also define mixed second-order tensors T
.j
i and T

j
.i , for which the transfor-

mation rules are

T
.j

i = ∂xk

∂xi

∂xj

∂xl
T .l

k (1.80)

T = BTAT , (1.81)

and

T
i

..j = ∂xi

∂xk

∂xl

∂xj
T k

.l (1.82)

T = ATBT . (1.83)

Exercise 6. Show from the transformation rules (1.80) and (1.82) that the quantities
T k

.k and T .k
k are invariants.

Given two vectors u and v, second-order tensors can be generated by taking products
of covariant or contravariant vector components, giving the covariant tensor uivj , the
contravariant tensors uivj , and the mixed tensors uivj and uiv

j . In this case these
tensors are said to be associated, since they are all derived from an entity which
can be written in absolute, co-ordinate-free, terms, as u ⊗ v; this is called the dyadic
product of u and v. The dyadic product may also be regarded as a linear operator
which acts on vectors w according to the rule

(u ⊗ v)w = u(v · w), (1.84)

an equation which has various co-ordinate representations, such as

(uivj)w
j = ui(vjw

j).

It may also be expressed in the following various ways:

u ⊗ v = uivj gi ⊗ gj = uivj gi ⊗ gj = uivj gi ⊗ gj = uiv
j gi ⊗ gj (1.85)

with summation over i and j in each case.
In general, covariant, contravariant, and mixed components Tij , T

ij , T
.j
i , T i

.j , are
associated if there exists an entity T, a linear operator which can operate on vectors,
such that

T = Tijgi ⊗ gj = T ij gi ⊗ gj = T
..j
i gi ⊗ gj = T i

..j gi ⊗ gj . (1.86)

Thus the action of T on a vector u could be represented typically by

Tu = (Tij gi ⊗ gj)u = Tij gi (gj · u) = Tij giuj = Tiju
j gi = v,

where v has covariant components

vi = Tiju
j .

Mathematical preliminaries – vector and tensor analysis 13

The Kronecker symbol δi
j has corresponding matrix elements given by the 3 × 3

identity matrix I . It may be interpreted as a second-order mixed tensor, where which-
ever of the covariant or contravariant components occurs first is immaterial, since if we
substitute T = I in either of the transformation rules (1.81) or (1.83) we obtain T = I

in view of eqn (1.60). Thus δi
j is a mixed tensor which has the same components on any

co-ordinate system. The corresponding linear operator is just the identity operator I,
which for any vector u satisfies

Iu = (δi
j gi ⊗ gj)u = δi

j giu
j = giu

i = u.

The following representations of I may then be deduced:

I = gijgi ⊗ gj = gijgi ⊗ gj = gj ⊗ gj = gj ⊗ gj . (1.87)

Thus gij , gij , and δi
j are associated tensors.

Covariant, contravariant, and mixed tensors of higher order than two may be defined
in terms of transformation rules following the pattern in eqns (1.76), (1.78), (1.80), and
(1.82), though it may not be convenient to express these rules in matrix terms. For
example, covariant and contravariant third-order tensors Uijk and U ijk respectively
must follow the transformation rules:

U ijk = ∂xl

∂xi

∂xm

∂xj

∂xn

∂xk
Ulmn , U

ijk = ∂xi

∂xl

∂xj

∂xm

∂xk

∂xn
U lmn . (1.88)

The alternating symbol eijk defined by

eijk = eijk =

1 if (i, j, k) is an even permutation of (1, 2, 3)

−1 if (i, j, k) is an odd permutation of (1, 2, 3)

0 otherwise

(1.89)

is not a (generalized) third-order tensor. Applying the left-hand transformation of
eqns (1.88) gives, using the properties of determinants and eqns (1.61) and (1.67),

∂xl

∂xi

∂xm

∂xj

∂xn

∂xk
elmn = (det B)eijk = J−1eijk =

√
g

g
eijk . (1.90)

Similarly we obtain

∂xi

∂xl

∂xj

∂xm

∂xk

∂xn
elmn = (det A)eijk = Jeijk =

√
g

g
eijk . (1.91)

It follows that third-order covariant and contravariant tensors respectively are
defined by

εijk = √
geijk (1.92)

and

εijk = 1√
g

eijk . (1.93)

Applying the appropriate transformation law to εijk now gives
√

g elmn = εlmn,
as required, and similarly for εijk . These tensors, known as the alternating tensors,

14 Basic Structured Grid Generation

are required, for example, when forming correct vector expressions in curvilinear co-
ordinate systems.

In particular, the vector product of two vectors u and v is given by

u × v = εijk ujvkgi = εijk ujvkgi , (1.94)

with summation over i, j, k. The component forms of the scalar triple product of
vectors u, v, w are

u · (v × w) = εijkuivjwk = εijk uivjwk. (1.95)

The alternating symbols themselves may be called relative (rather than absolute) ten-
sors, which means that when the tensor transformation law is applied as in eqns (1.90)
and (1.91) a power of J (the weight of the relative tensor) appears on the right-hand
side. Thus according to (1.90) eijk is a relative tensor of weight −1, while according
to eqn (1.91) eijk (although it takes exactly the same values as eijk) is a relative tensor
of weight 1.

1.6 Christoffel symbols and covariant differentiation

In curvilinear co-ordinates the base vectors will generally vary in magnitude and direc-
tion from one point to another, and this causes special problems for the differentiation
of vector and tensor fields. In general, differentiation of covariant base vectors eqn (1.4)
with respect to xj satisfies

∂gi

∂xj
= ∂2r

∂xj ∂xi
= ∂2r

∂xi∂xj
= ∂gj

∂xi
. (1.96)

Expressing the resulting vector (for a particular choice of i and j) as a linear com-
bination of base vectors gives

∂gi

∂xj
= [ij, k]gk = �k

ij gk, (1.97)

with summation over k. The coefficients [ij, k], �k
ij in eqn (1.97) are called Christoffel

symbols of the first and second kinds, respectively. Taking appropriate scalar products
on eqn (1.97) gives

[ij, k] = ∂gi

∂xj
· gk (1.98)

and

�k
ij = ∂gi

∂xj
· gk. (1.99)

Both [ij, k] and �k
ij are symmetric in i and j by eqn (1.96). We also have, by

eqn (1.51),

�k
ij = ∂gi

∂xj
· (gklgl) = gkl[ij, l] (1.100)

with summation over l. Similarly,

[ij, k] = gkl�
l
ij . (1.101)

Mathematical preliminaries – vector and tensor analysis 15

Evaluating the scalar products in eqns (1.98) and (1.99) on background cartesians
gives the formulas

[ij, k] = ∂2yl

∂xi∂xj

∂yl

∂xk
, �k

ij = ∂2yl

∂xi∂xj

∂xk

∂yl

. (1.102)

Exercise 7. Using eqns (1.100), (1.102), with (1.33) and (1.34), verify the formula

�k
ij = Kk ∂2x

∂xi∂xj
+ Lk ∂2y

∂xi∂xj
+ Mk ∂2z

∂xi∂xj
, (1.103)

where (in the obvious notation)

K1 = (G1xξ + G4xη + G5xς)

g
; K2 = (G4xξ + G2xη + G6xς)

g
;

K3 = (G5xξ + G6xη + G3xς)

g

L1 = (G1yξ + G4yη + G5yς)

g
; L2 = (G4yξ + G2yη + G6yς)

g
;

L3 = (G5yξ + G6yη + G3yς)

g

M1 = (G1zξ + G4zη + G5zς)

g
; M2 = (G4zξ + G2zη + G6zς)

g
;

M3 = (G5zξ + G6zη + G3zς)

g
.

Expressions for the derivatives of contravariant base vectors gi may be obtained by
differentiating eqn (1.6) with respect to xk , which gives

gi · ∂gj

∂xk
+ ∂gi

∂xk
· gj = 0.

Hence
∂gi

∂xk
· gj = −gi · ∂gj

∂xk
= −gi · �l

jkgl = −δi
l �

l
jk = −�i

jk. (1.104)

Comparison with eqn (1.99) now shows that

∂gi

∂xj
= −�i

jkgk. (1.105)

The metric tensor gij can also be differentiated:

∂gij

∂xk
= ∂

∂xk
(gi · gj) = gi · ∂gj

∂xk
+ ∂gi

∂xk
· gj = gi · [jk, l]gl + [ik, l]gl · gj

= [jk, l]δl
i + [ik, l]δl

j = [jk, i] + [ik, j]. (1.106)

Exercise 8. By differentiating both sides of eqn (1.28), and using eqns (1.101) and
(1.106), show that

∂glm

∂xk
= −gjl�m

jk − gjm�l
jk. (1.107)

16 Basic Structured Grid Generation

By simply substituting the result (1.106) for ∂gij /∂xk into the right-hand side of the
following equation, it is easy to verify the important result

[ij, k] = 1

2

(
∂gjk

∂xi
+ ∂gik

∂xj
− ∂gij

∂xk

)
. (1.108)

Neither [ij, k] nor �k
ij is a third-order tensor. In a system of cartesian co-ordinates,

with constant base vectors, all components of the Christoffel symbols are zero, and
tensor components which are all zero would remain zero under a transformation to a
different co-ordinate system. In fact the transformation rule for �k

ij under transformation

to co-ordinates xi may be derived as follows, using eqns (1.62), (1.68), and (1.96):

�
k

ij = ∂gi

∂xj
· gk = ∂

∂xj

(
∂xm

∂xi
gm

)
· ∂xk

∂xn
gn

= ∂2xm

∂xi∂xj

∂xk

∂xn
gm · gn + ∂xm

∂xi

∂xk

∂xn

(
∂gm

∂xl

∂xl

∂xj

)
· gn

= ∂2xm

∂xi∂xj

∂xk

∂xn
δn
m + ∂xm

∂xi

∂xk

∂xn

∂xl

∂xj
�n

ml

from eqn (1.99). Thus we have

�
k

ij = ∂2xm

∂xi∂xj

∂xk

∂xm
+ ∂xk

∂xn

∂xm

∂xi

∂xl

∂xj
�n

ml. (1.109)

This equation does not follow the transformation rule for a mixed third-order tensor
because of the presence of the first term on the right side.

A useful special case occurs when we let the new co-ordinates xi coincide with
the background rectangular cartesian co-ordinates y1, y2, y3. The components of the
Christoffel symbol associated with the new co-ordinates are then identically zero, and
eqn (1.109) becomes

0 = ∂2xm

∂yi∂yj

∂yk

∂xm
+ ∂yk

∂xn

∂xm

∂yi

∂xl

∂yj

�n
ml.

Multiplying through by ∂xp/∂yk (implying summation over k), using a chain rule
again, and re-arranging, we obtain

∂2xp

∂yi∂yj

= −∂xm

∂yi

∂xl

∂yj

�
p
ml. (1.110)

Contraction on i and j (putting j = i, implying summation) gives the formulas

∂2xp

∂yi∂yi

= ∇2xp = −∂xm

∂yi

∂xl

∂yi

�
p
ml = −gml�

p
ml = −gml ∂2yn

∂xm∂xl

∂xp

∂yn

, (1.111)

where ∇2 is the Laplacian operator

∂2

∂yi∂yi

= ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

Mathematical preliminaries – vector and tensor analysis 17

Equation (1.110) can be written, using eqn (1.102), as

∂2xp

∂yi∂yj

= −∂xm

∂yi

∂xl

∂yj

∂xp

∂yk

∂2yk

∂xm∂xl
. (1.112)

Another formula which will be found useful later may be derived directly from
eqn (1.112), i.e.

∂2xp

∂yi∂yj

∂yk

∂xp
= −∂xm

∂yi

∂xl

∂yj

∂2yk

∂xm∂xl
(1.113)

Exercise 9. Making use of eqn (1.17), deduce that

(∇2xp)
∂yk

∂xp
= −gml ∂2yk

∂xm∂xl
. (1.114)

Exercise 10. Derive eqn (1.113) more directly by taking the partial derivative with
respect to yj of the Chain Rule

∂xp

∂yi

∂yk

∂xp
= δik.

The transformation rule for [ij, k], by comparison with eqn (1.109), may be shown
to be

[ij, k] = ∂2xm

∂xi∂xj

∂xp

∂xk
gmp + ∂xm

∂xi

∂xn

∂xj

∂xp

∂xk
[mn, p]. (1.115)

From eqns (1.100) and (1.108) we obtain

�k
ij = 1

2
gkl

(
∂gjl

∂xi
+ ∂gil

∂xj
− ∂gij

∂xl

)
. (1.116)

Contraction on i and k then gives, exploiting the symmetry of gij and gij ,

�i
ij = 1

2
gil ∂gil

∂xj
. (1.117)

Now if we regard the determinant g of (gij) formally as a function of nine elements
gij (replacing g12 with 1

2 (g12 + g21), etc.), we have

∂g

∂gil

= Gil = ggil,

where (Gij) is the matrix of co-factors of (gij) given in eqns (1.33) and (1.34). So
another chain rule gives

∂g

∂xj
= ∂g

∂gil

∂gil

∂xj
= ggil ∂gil

∂xj
,

leading to the useful expressions

�i
ij = 1

2

1

g

∂g

∂xj
= 1

2

∂

∂xj
(ln g) = 1√

g

∂

∂xj
(
√

g). (1.118)

18 Basic Structured Grid Generation

Differentiating a vector field u with respect to xj gives

∂u
∂xj

= ∂

∂xj
(uigi) = ∂ui

∂xj
gi + ui ∂gi

∂xj
= ∂ui

∂xj
gi + ui�k

ij gk =
(

∂ui

∂xj
+ �i

kj u
k

)
gi ,

with some re-arrangement of indices. Thus ∂u/∂xj (itself a vector field) is given by

∂u
∂xj

= ui
,j gi , (1.119)

where

ui
,j = ∂ui

∂xj
+ �i

kj u
k (1.120)

is called the covariant derivative of the contravariant vector ui .
A similar calculation gives

∂u
∂xj

= ui,j gi , (1.121)

where the covariant derivative of the covariant vector ui is given by

ui,j = ∂ui

∂xj
− �k

ijuk. (1.122)

Exercise 11. Using the definitions (1.120) and (1.122) and the transformation rules
(1.70), (1.72), and (1.109), show that ui

,j and ui,j satisfy the transformation rules for
mixed and covariant second-order tensors, respectively.

These tensors are associated, since the equations

∂u
∂xj

= ui
,j gi = ui,j gi = ui,j g

ikgk

imply, comparing coefficients, that

ui
,j = gikuk,j , (1.123)

after some re-arrangement of indices; or, more simply, since

ui
,j gi ⊗ gj = ui,jgi ⊗ gj .

Clearly we also have

ui
,j = ∂u

∂xj
· gi and ui,j = ∂u

∂xj
· gi . (1.124)

Covariant differentiation can also be applied to tensor fields. With a second-order
tensor T as given in eqn (1.86), we give the following example:

∂T
∂xk

= ∂

∂xk
(Tij gj ⊗ gj) = ∂Tij

∂xk
gi ⊗ gj + Tij

∂gi

∂xk
⊗ gj + Tij gi ⊗ ∂gj

∂xk

= ∂Tij

∂xk
gi ⊗ gj − Tij�

i
klg

l ⊗ gj − Tijgi ⊗ �
j
klg

l

=
(

∂Tij

∂xk
− �l

kiTlj − �l
kjTil

)
gi ⊗ gj ,

Mathematical preliminaries – vector and tensor analysis 19

after some rearrangement of indices, with the help of eqn (1.105). Thus

∂T
∂xk

= Tij,kgi ⊗ gj , (1.125)

where

Tij,k = ∂Tij

∂xk
− �l

ikTlj − �l
jkTil (1.126)

is a covariant tensor of order three. For example, if we put Tij = gij , it follows, using
eqns (1.16) and (1.102) and substituting into (1.126), that

gij,k = 0 (1.127)

for all i, j, k. This result follows naturally from the tensor properties of the covariant
derivative and the fact that in cartesian co-ordinate systems covariant derivatives reduce
to straightforward partial derivatives. Since gij takes constant values in a cartesian
system, the partial derivatives of these values are all zero, and these will transform
to zero under tensor transformation to any other co-ordinate system. It can be shown
similarly that

g
ij
,k = 0 (1.128)

for all i, j, k, where the covariant derivative of general contravariant components T ij

is given by

T
ij
,k = ∂T ij

∂xk
+ �i

lkT
lj + �

j
lkT

il . (1.129)

Covariant derivatives of third-order tensors may also be defined, but it will suffice
here to mention the alternating tensor, which could be written as

εijk gi ⊗ gj ⊗ gk = εijk gi ⊗ gj ⊗ gk.

Since both covariant and contravariant components reduce to the array of constants
(1.89) in a cartesian system, a similar argument to that used above for gij shows that
the covariant derivatives must vanish, i.e.

ε
ijk
,l = 0 (1.130)

and
εijk ,l = 0 (1.131)

for all i, j, k, l.
It may be shown that the product rule for differentiation is valid for covariant

differentiation; for example,

(T ijuk),l = T ijuk,l + T
ij
,l uk.

1.7 Div, grad, and curl

The divergence of a vector field u, where

u = U1i1 + U2i2 + U3i3, (1.132)

20 Basic Structured Grid Generation

referred to background cartesian co-ordinates {yi}, is the scalar defined by div u =
∂Ui/∂yi , otherwise denoted by ∇ · u, with summation over i. In general curvilinear
co-ordinates this transforms to the sum (summation over i) of covariant derivatives

∇ · u = ui
,i . (1.133)

We may also deduce from eqn (1.119) that

∇ · u = gi · ∂u
∂xi

. (1.134)

By eqns (1.120) and (1.118), we have

∇ · u = ∂ui

∂xi
+ �i

kiu
k = ∂ui

∂xi
+ �i

iku
k

= ∂ui

∂xi
+ 1√

g

∂

∂xk
(
√

g)uk = ∂ui

∂xi
+ 1√

g

∂

∂xi
(
√

g)ui,

which gives the useful formula

∇ · u = 1√
g

∂

∂xi
(
√

gui), (1.135)

with summation over i. This is an expression for the divergence in conservative form.
In general, conservative form is preferred for operator expressions when numerically
solving partial differential equations (in particular, transport equations in fluid flow
problems) because numerical accuracy is enhanced. More examples are given below.

A vector identity which recurs frequently in the following is:

∂

∂x1 (g2 × g3) + ∂

∂x2 (g3 × g1)
− + ∂

∂x3 (g1 × g2) = 0. (1.136)

Exercise 12. By writing each gi as the appropriate ∂r/∂xi , performing the differen-
tiations using product rules, and finally exploiting the skew-symmetry of the vector
product, verify eqn (1.136).

We write eqn (1.136) as
3∑

i=1

∂

∂xi
(gj × gk) = 0, (1.137)

where for each i it is assumed that j and k are such that i, j, k are in cyclic order 1, 2, 3.
Now from eqns (1.135), (1.48) and (1.32) we have the two conservative forms

∇ · u = 1√
g

∂

∂xi
(
√

ggi · u) = 1√
g

3∑
i=1

∂

∂xi
{(gj × gk) · u} (1.138)

and the non-conservative form

∇ · u = 1√
g

3∑
i=1

(gj × gk) · ∂u
∂xi

, (1.139)

using eqn (1.137).

Mathematical preliminaries – vector and tensor analysis 21

The gradient operator was defined in eqns (1.12) and (1.13). We can also write

∇ϕ = 1√
g

3∑
i=1

(gj × gk)
∂ϕ

∂xi
(1.140)

in non-conservative form, using eqn (1.32), or, by eqn (1.137),

∇ϕ = 1√
g

3∑
i=1

∂

∂xi
{(gj × gk)ϕ} = 1√

g

∂

∂xi
(
√

ggiϕ) (1.141)

in conservative form, where again i, j, k when they appear together are always in cyclic
order 1, 2, 3.

The curl of the vector with cartesian components in eqn (1.132) is the vector

curlu =
∣∣∣∣∣∣

i1 i2 i3
∂/∂y1 ∂/∂y2 ∂/∂y3
U1 U2 U3

∣∣∣∣∣∣ ,
otherwise denoted by ∇ × u; this expression is equivalent to eijk

∂Uk

∂yj
ii with summation

over i, j, k, which, making use of (1.93), generalizes to

∇ × u = εijk uk,j gi = 1√
g

eijkuk,j gi (1.142)

in curvilinear co-ordinates. Since uk,j = gk · ∂u/xj , we have, writing out eqn (1.142)
in full,

∇ × u = 1√
g

(u2,3g1 − u3,2g1 + u3,1g2 − u1,3g2 + u1,2g3 − u2,1g3).

The expression in the brackets is[(
g2 · ∂u

∂x3

)
g1 −

(
g1 · ∂u

∂x3

)
g2 +

(
g3 · ∂u

∂x1

)
g2 −

(
g2 · ∂u

∂x1

)
g3

+
(

g1 · ∂u
∂x2

)
g3 −

(
g3 · ∂u

∂x2

)
g1

]

after some re-arrangement, so ∇ × u can be written as

∇ × u = 1√
g

3∑
i=1

{
(gj × gk) × ∂u

∂xi

}
, (1.143)

after using well-known identities for vector triple products. Here again j and k are
constrained, given any value of i, such that i, j, k are always in cyclic order 1, 2, 3.
Equation (1.143) is a non-conservative form for ∇ × u. However, by eqn (1.137) we
immediately have the conservative forms

∇ × u = 1√
g

3∑
i=1

∂

∂xi
{(gj × gk) × u} (1.144)

22 Basic Structured Grid Generation

and, using eqn (1.32),

∇ × u = 1√
g

∂

∂xi
(
√

ggi × u). (1.145)

Note that, again by eqn (1.32), eqn (1.143) can be written as

∇ × u = gi × ∂u
∂xi

(1.146)

with summation over i, which may be directly compared with eqn (1.134).
To obtain an expression for the Laplacian ∇2ϕ of a scalar field ϕ, where ∇2ϕ =

∇ · (∇ϕ), using eqns (1.133) or (1.135), the contravariant component of ∇ϕ is needed.
This is just

(∇ϕ)i = gij ∂ϕ

∂xj
,

where the effect of the gij term is to ‘raise the index’ of the covariant vector ∂ϕ/∂xj .
Then eqn (1.135) gives

∇2ϕ = 1√
g

∂

∂xi

(√
ggij ∂ϕ

∂xj

)
. (1.147)

Alternatively, we have, using the expressions for div and grad in eqns (1.13)
and (1.134),

∇2ϕ = gi · ∂

∂xi

(
gj ∂ϕ

∂xj

)
(1.148)

with summation over both i and j . Hence

∇2ϕ = gi · gj ∂2ϕ

∂xi∂xj
+ gi · ∂gj

∂xi

∂ϕ

∂xj
. (1.149)

But since, from eqn (1.148),

∇2xk = gi · ∂

∂xi

(
gj ∂xk

∂xj

)
= gi · ∂

∂xi
(gj δk

j) = gi · ∂gk

∂xi
,

the identity (1.149) may be written in the form

∇2ϕ = gij ∂2ϕ

∂xi∂xj
+ (∇2xj)

∂ϕ

∂xj
. (1.150)

Substituting ϕ = xk in eqn (1.147) gives another formula

∇2xk = 1√
g

∂

∂xi
(
√

ggij δk
j) = 1√

g

∂

∂xi
(
√

ggik). (1.151)

Thus, eqn (1.147) also gives

∇2ϕ = 1√
g

∂

∂xi

[
∂

∂xj
(
√

ggijϕ) − ϕ
∂

∂xj
(
√

ggij)

]

= 1√
g

∂2

∂xi∂xj
(
√

ggijϕ) − 1√
g

∂

∂xi
(ϕ

√
g(∇2xi)). (1.152)

Mathematical preliminaries – vector and tensor analysis 23

We have seen in eqn (1.125) that, for a second-order tensor T, ∂T/∂xk can be
regarded as a linear operator, acting on vectors in E3 to give vectors in E3. When it
acts on the contravariant base vector gk , the resulting vector is called the divergence
of T, and we write

∇ · T =
(

∂T
∂xk

)
gk (1.153)

with summation over k. In other words,

∇ · T = (T
ij

,k gi ⊗ gj)gk = T
ij

,k gi (gj · gk) = T
ij

,k giδ
k
j = T

ij

,j gi , (1.154)

expressed in terms of the covariant derivatives of the contravariant components of T.

Exercise 13. Verify the formulas

∇ · T = 1√
g

∂

∂xj
(
√

gT ij gi) =
(

1√
g

∂

∂xj
(
√

gT ij) + T kj�i
kj

)
gi . (1.155)

Exercise 14. Show that if p is a scalar field and I is the unit second-order tensor
(defined in eqn (1.87)), then

∇ · (pI) = ∇p. (1.156)

1.8 Summary of formulas in two dimensions

For two-dimensional situations in which field variables depend only on the rectangular
cartesian co-ordinates x and y but not z, it is straightforward to establish the reduced
form of the above results. We give a summary here of some of the main results for
convenience.

With y1 = x, y2 = y, and curvilinear co-ordinates with x1 = ξ , x2 = η (and
occasionally finding it useful to put y3 = x3 = z = ς), we have base vectors

g1 = ixξ + jyξ , g2 = ixη + jyη, g3 = k, (1.157)

where suffixes denote partial differentiation, e.g. xξ = ∂x/∂ξ . The components of the
covariant metric tensor are given by

 g11 g12 g13
g12 g22 g23
g13 g23 g33

 =

 x2

ξ + y2
ξ xξxη + yξyη 0

xξxη + yξyη x2
η + y2

η 0
0 0 1

 , (1.158)

with determinant
g = g11g22 − (g12)

2. (1.159)

Moreover

√
g = g1 × g2 · g3 =

∣∣∣∣∣∣
xξ xη 0
yξ yη 0
0 0 1

∣∣∣∣∣∣ = (xξ yη − xηyξ). (1.160)

24 Basic Structured Grid Generation

The contravariant base vectors are

g1 = 1√
g

g2 × k = 1√
g

(iyη − jxη),

g2 = 1√
g

k × g1 = 1√
g

(−iyξ + jxξ), (1.161)

g3 = k,

and in comparison with eqn (1.38) we have

ξx = yη/
√

g, ξy = −xη/
√

g, ηx = −yξ/
√

g, ηy = xξ /
√

g. (1.162)

The components of the contravariant metric tensor are given by
 g11 g12 g13

g12 g22 g23

g13 g23 g33

 =

 g22/g −g12/g 0

−g12/g g11/g 0
0 0 1

 . (1.163)

Note that the two-dimensional version of eqn (1.136) is

∂

∂ξ
(
√

gg1) + ∂

∂η
(
√

gg2) = ∂

∂ξ
(g2 × k) + ∂

∂η
(k × g1) = 0. (1.164)

From eqn (1.141) we have the two-dimensional form for ∇ϕ:

∇ϕ = 1√
g

{
∂

∂ξ
(
√

gg1ϕ) + ∂

∂η
(
√

gg2ϕ)

}

= 1√
g

{
∂

∂ξ
[(iyη − jxη)ϕ]

}
+ 1√

g

{
∂

∂η
[−iyξ + jxξ]ϕ

}

= i
1√
g

{
∂

∂ξ
(yηϕ) − ∂

∂η
(yξϕ)

}
+ j

1√
g

{
− ∂

∂ξ
(xηϕ) + ∂

∂η
(xξϕ)

}
(1.165)

in conservative form. Thus the cartesian components of ∇ϕ are given by

∂ϕ

∂x
= 1√

g

{
∂

∂ξ
(yηϕ) − ∂

∂η
(yξϕ)

}

and
∂ϕ

∂y
= 1√

g

{
− ∂

∂ξ
(xηϕ) + ∂

∂η
(xξϕ)

}
(1.166)

in conservative form. By further differentiation, or directly from eqn (1.13), we obtain
the non-conservative forms

∂ϕ

∂x
= 1√

g

(
yη

∂ϕ

∂ξ
− yξ

∂ϕ

∂η

)

and
∂ϕ

∂y
= 1√

g

(
−xη

∂ϕ

∂ξ
+ xξ

∂ϕ

∂η

)
. (1.167)

Mathematical preliminaries – vector and tensor analysis 25

From eqns (1.138) and (1.161) we deduce a conservative form for the diver-
gence ∇ · u:

∇ · u = 1√
g

{
∂

∂ξ
(
√

gg1 · u) + ∂

∂η
(
√

gg2 · u)

}

= 1√
g

{
∂

∂ξ
(yηU1 − xηU2) + ∂

∂η
(−yξU1 + xξU2)

}
, (1.168)

where u = U1i + U2 j. Again by further differentiation, or directly from eqn (1.134),
we deduce the non-conservative form:

∇ · u = 1√
g

(
yη

∂U1

∂ξ
− xη

∂U2

∂ξ
− yξ

∂U1

∂η
+ xξ

∂U2

∂η

)
. (1.169)

A similar treatment of eqns (1.145) and (1.146) yields a conservative form for ∇×u:

∇ × u = k
1√
g

{
∂

∂ξ
(xηU1 + yηU2) − ∂

∂η
(xξU1 + yξU2)

}
(1.170)

and the non-conservative form

∇ × u = k
1√
g

(
xη

∂U1

∂ξ
+ yη

∂U2

∂ξ
− xξ

∂U1

∂η
− yξ

∂U2

∂η

)
. (1.171)

Making use of both eqns (1.166) and (1.168), we obtain the two-dimensional Lapla-
cian ∇2ϕ = ∇ · (∇ϕ) in conservative form:

∇2ϕ = 1√
g

∂

∂ξ

[
yη√
g

(
∂

∂ξ
[yηϕ] − ∂

∂η
[yξϕ]

)
− xη√

g

(
− ∂

∂ξ
[xηϕ] + ∂

∂η
[xξϕ]

)]

+ 1√
g

∂

∂η

[
− yξ√

g

(
∂

∂ξ
[yηϕ] − ∂

∂η
[yξϕ]

)
+ xξ√

g

(
− ∂

∂ξ
[xηϕ] + ∂

∂η
[xξϕ]

)]
.

(1.172)
Note that eqn (1.152) also gives, making use of eqn (1.163), the form

∇2ϕ = 1√
g

{
∂2

∂ξ 2

(
g22√

g
ϕ

)
− 2

∂2

∂ξ∂η

(
g12√

g
ϕ

)
+ ∂2

∂η2

(
g11√

g
ϕ

)

− ∂

∂ξ
[(√g∇2ξ)ϕ] − ∂

∂η
[(√g∇2η)ϕ]

}
. (1.173)

Exercise 15. Using eqns (1.111), (1.162), and (1.163), show that

∇2ξ = g22

g3/2
(xηyξξ − yηxξξ) − 2

g12

g3/2
(xηyξη − yηxξη) + g11

g3/2
(xηyηη − yηxηη),

(1.174)

∇2η = g22

g3/2
(yξ xξξ − xξyξξ) − 2

g12

g3/2
(yξ xξη − xξyξη) + g11

g3/2
(yξ xηη − xξyηη).

(1.175)

26 Basic Structured Grid Generation

1.9 The Riemann-Christoffel tensor
The covariant third-order tensor ui,jk formed from the covariant components ui of
a vector by using eqn (1.126) to obtain the covariant derivatives of the covariant
second-order tensor ui,j given by eqn (1.122) is found to be

ui,jk = ∂2ui

∂xk∂xj
− �l

ij

∂ul

∂xk
− �l

jk

∂ui

∂xl
− �l

ik

∂ul

∂xj
− ∂�l

ij

∂xk
ul + �l

jk�
m
il um + �l

ik�
m
lj um.

(1.176)
We can investigate the commutativity of successive covariant differentiations by

subtracting from this expression a similar one with j and k interchanged. This gives

ui,jk − ui,kj =
(

∂�l
ik

∂xj
− ∂�l

ij

∂xk
+ �m

ik�
l
mj − �m

ij �
l
mk

)
ul = Rl

.ijkul, (1.177)

where

Rl
.ijk = ∂�l

ik

∂xj
− ∂�l

ij

∂xk
+ �m

ik�
l
mj − �m

ij �
l
mk. (1.178)

The left-hand side of eqn (1.177) represents a covariant third-order tensor, and it
follows that, for the right-hand side also to represent a tensor, Rl

.ijk must be a mixed
fourth-order tensor. It is called the Riemann-Christoffel tensor. In fact, since our back-
ground space is Euclidean and the Christoffel symbols all vanish when we take a
rectangular cartesian set of co-ordinates, all the components of Rl

.ijk will also be zero
in cartesian co-ordinates, and, moreover, will always transform to zero under tensor
transformation rules for any other choice of co-ordinates. We may also prove that

Rl
.ijk = 0 (1.179)

in E3 for all i, j, k, l, by substituting directly for �l
ik from eqn (1.102) (which also

assumes the existence of a background cartesian system) into eqn (1.178).
It will not be necessary here to consider non-Euclidean three-dimensional spaces,

in which non-vanishing Riemann-Christoffel tensors may exist, but in Chapter 3 we
shall need to consider a two-dimensional version of eqn (1.178) on an arbitrary curved
surface within a three-dimensional Euclidean space. So we now set out some general
results for three-dimensional non-Euclidean Riemann-Christoffel tensors (as defined by
eqn (1.178)) to serve as a basis for comparison with the Riemann-Christoffel tensor
defined on a curved two-dimensional surface, to appear later. First we note that the
covariant associated tensor Rijkl , called the curvature tensor, given by

Rijkl = gimRm
..jkl (1.180)

may be defined. Using eqns (1.100), (1.108), the symmetry of gij and gij , and the
relation gimgjm = δ

j
i , it may be shown that

Rijkl = 1

2

(
∂2gil

∂xj ∂xk
+ ∂2gjk

∂xi∂xl
− ∂2gik

∂xj ∂xl
− ∂2gjl

∂xi∂xk

)

+gmn([jk,m][il, n] − [j l,m][ik, n]). (1.181)

Mathematical preliminaries – vector and tensor analysis 27

It follows that Rijkl is skew-symmetric in the first two indices as well as the last
two, that is

Rijkl = −Rijlk

and
Rijkl = −Rjikl .

Furthermore
Rijkl = Rklij .

Hence Rijkl in any curved three-dimensional space has only six independent com-
ponents, namely R1212, R2323, R1313, R1213, R1223, and R2313.

In a Euclidean space, by eqns (1.179) and (1.180) all components of Rijkl are zero,
and so, according to eqn (1.177), second-order covariant derivatives of arbitrary covari-
ant vectors ui satisfy

ui,jk = ui,kj .

It can be shown that a similar commutative property applies to second-order covariant
derivatives of covariant or contravariant tensors of any order in a Euclidean space.

1.10 Orthogonal curvilinear co-ordinates

A curvilinear co-ordinate system {xi} = {ξ, η, ς} is orthogonal if the covariant base
vectors at any point are mutually orthogonal. It follows that the contravariant base vec-
tors are parallel to their respective covariant base vectors and also mutually orthogonal.
So we have

g12 = g23 = g13 = 0 (1.182)

and
g12 = g23 = g13 = 0.

An example mentioned above is a spherical polar co-ordinate system with metric
tensor given by eqn (1.19).

It is convenient to put
√

g11 = h1,
√

g22 = h2,
√

g33 = h3, (1.183)

with √
g11 = 1/h1,

√
g22 = 1/h2,

√
g33 = 1/h3,

where h1, h2, h3 are called scale factors. Then g = g11 g22 g33 and
√

g = h1h2h3. (1.184)

Using eqns (1.108) and (1.100) to evaluate Christoffel symbols, we get the useful
expressions

[ii, i] = hi

∂hi

∂xi
, �i

ii = 1

hi

∂hi

∂xi
, (no summation over i) (1.185)

28 Basic Structured Grid Generation

[ii, j] = −hi

∂hi

∂xj
,

�
j
ii = − hi

(hj)2

∂hi

∂xj
, (i, j different, no summation over i) (1.186)

[ij, i] = [ji, i] = hi

∂hi

∂xj
,

�i
ij = �i

ji = 1

hi

∂hi

∂xj
, (i, j different, no summation over i) (1.187)

[ij, k] = 0, �k
ij = 0, (i, j, k all different). (1.188)

Exercise 16. Use the identity ∇2xm = −gij�m
ij (see eqn (1.111)) to prove the identities

∇2ξ = 1√
g

∂

∂ξ

(
h2h3

h1

)
, ∇2η = 1√

g

∂

∂η

(
h3h1

h2

)
, ∇2ς = 1√

g

∂

∂ς

(
h1h2

h3

)
.

(1.189)

Note that these formulas can be substituted directly into eqn (1.150) to obtain an
expression for the Laplacian ∇2φ of a general scalar field φ in an orthogonal curvilinear
co-ordinate system.

Exercise 17. Use eqn (1.189) together with eqn (1.114) to show that there is a rela-
tionship between the orthogonal curvilinear co-ordinates and cartesian co-ordinates yk ,
k = 1, 2, 3, given by

∂

∂ξ

(
h2h3

h1

∂yk

∂ξ

)
+ ∂

∂η

(
h3h1

h2

∂yk

∂η

)
+ ∂

∂ς

(
h1h2

h3

∂yk

∂ς

)
= 0, k = 1, 2, 3. (1.190)

More identities may be obtained from the vanishing of the six independent compo-
nents of the curvature tensor given by eqn (1.181). These are the six Lamé Equations:

∂

∂xj

(
1

hj

∂hk

∂xj

)
+ ∂

∂xk

(
1

hk

∂hj

∂xk

)
+ 1

(hi)
2

∂hj

∂xi

∂hk

∂xi
= 0,

1

hj

∂hi

∂xj

∂hj

∂xk
+ 1

hk

∂hi

∂xk

∂hk

∂xj
− ∂2hi

∂xj ∂xk
= 0, (1.191)

where in each equation i, j, k must all be different and taken in the cyclic order 1, 2, 3.
So the three scale parameters must satisfy six compatibility equations.

1.11 Tangential and normal derivatives –
an introduction

The rates of change of scalar functions in directions tangential to co-ordinate curves and
normal to co-ordinate surfaces are often needed in grid-generation work in connection
with the formulation of boundary conditions. These derivatives may be obtained by

Mathematical preliminaries – vector and tensor analysis 29

taking the scalar product of the gradient vector of the given function with a unit vector
in the required direction.

Given a set of curvilinear co-ordinates ξ, η, ς in E3, consider the ξ co-ordinate
curve (on which η and ς are constant) at some point P in space. Tangential to the
curve is the covariant base vector g1, and a unit vector in this direction is given by
g1/|g1|. Thus the tangential derivative of the scalar function ϕ at the point P in the ξ -
direction is given by (

∂ϕ

∂T

)ξ

= g1

|g1| · ∇ϕ.

Reverting to the notation xi for the curvilinear co-ordinates, we can write the tan-
gential derivative in the xi-direction as(

∂ϕ

∂T

)xi

= gi

|gi | · ∇ϕ = gi

|gi | · gj ∂ϕ

∂xj
= 1

|gi |δ
j
i

∂ϕ

∂xj
,

where we have made use of eqn (1.13), and summation is assumed over j but not i.
So the tangential derivative is, by the usual properties of the Kronecker symbol,(

∂ϕ

∂T

)xi

= 1

|gi |
∂ϕ

∂xi
= 1√

gii

∂ϕ

∂xi
(1.192)

with no summation over i.
The rate of change of ϕ at a point P in a direction normal to the x1 co-ordinate

surface (the surface on which x1 is constant) passing through P may be obtained
similarly when it is recalled that the contravariant vector g1 is normal to this surface.
Thus we can write the normal derivative of ϕ to the x1 surface as(

∂ϕ

∂n

)x1

= g1

|g1| · ∇ϕ,

so that the normal derivative to the xi co-ordinate surface is given, using eqn (1.15), by(
∂ϕ

∂n

)xi

= gi

|gi | · gj ∂ϕ

∂xj
= 1

|gi |g
ij ∂ϕ

∂xj
= 1√

gii
gij ∂ϕ

∂xj
, (1.193)

where summation is assumed over j , but not over i, throughout.

2

Classical differential geometry
of space-curves

2.1 Vector approach

We consider smooth curves in E3 specified in terms of rectangular cartesian co-
ordinates x, y, z (or y1, y2, y3). Such curves are generated by three smooth functions
of a single real parameter, say t :

x = x(t), y = y(t), z = z(t),

so that the position vector r of points on the curve relative to some origin O is given by

r = r(t) = x(t)i + y(t)j + z(t)k. (2.1)

A frequently-quoted example is the circular helix, which could be specified by

x = a cos t, y = a sin t, z = ct, (2.2)

where a and c are constants. This curve lies on the surface of the circular cylinder
x2 + y2 = a2, and makes complete turns about the z-axis as t increases by 2π .

Distance along a curve is measured by the arc-length parameter s, where differentials
of arc-length ds satisfy the equation

ds2 = dx2 + dy2 + dz2 = dr · dr, (2.3)

or, in terms of derivatives with respect to the parameter t ,

ṡ2 = ẋ2 + ẏ2 + ż2 = ṙ · ṙ, (2.4)

where the dot denotes d
dt

, or

ds =
√

ẋ2 + ẏ2 + ż2 dt. (2.5)

An intrinsic definition of a space-curve is given when s is used as a parameter in
eqn (2.1). For example, the circular helix (2.2) gives

ds =
√

(−a sin t)2 + (a cos t)2 + c2 dt =
√

a2 + c2 dt

Classical differential geometry of space-curves 31

from eqn (2.5), which may be integrated to give t = (a2+c2)− 1
2 s and the intrinsic form

x = a cos

(
s√

a2 + c2

)
, y = a sin

(
s√

a2 + c2

)
, z = cs√

a2 + c2
. (2.6)

Thus the length of this curve in one complete turn about the z-axis is 2π
√

a2 + c2,
the distance advanced in the direction of the z-axis during this turn being 2πc.

Differentiating eqn (2.1) with respect to t at a point P on the curve gives a vector

ṙ = iẋ + jẏ + kż, (2.7)

which is tangential to the curve. The magnitude of this vector is ṡ = √
ẋ2 + ẏ2 + ż2,

so that a unit tangent vector is

t = ṙ
ṡ

= dr
ds

= i
dx

ds
+ j

dy

ds
+ k

dz

ds
. (2.8)

Differentiating the identity
t · t = 1

with respect to s gives

t · dt
ds

= 0,

which shows that the vector dt/ds is perpendicular to t. The direction of this vector at
a point P , given by the unit vector n, is the direction of the principal normal to the
curve at that point, and we write

dt
ds

= κn, (2.9)

where κ is called the curvature at that point. We usually assume that κ is a non-
negative function of s, although there are circumstances where it would be convenient
to let it take negative values in order to allow n to be a continuous vector func-
tion of s. If dt/ds = 0, which would be the case everywhere when the curve is a
straight line, then κ = 0, but n is not uniquely defined. The plane containing the
tangent and the principal normal at a point on a curve is called the osculating plane
at that point.

Introducing the shorthand notation d
ds

() = ()′, we have

t = r′

and
t′ = r′′ = ix′′ + jy′′ + kz′′ = κn. (2.10)

Hence

κ = |r′′| =
√

(x′′)2 + (y′′)2 + (z′′)2. (2.11)

The Chain Rule for differentiation gives

ṙ = r′ṡ (2.12)

32 Basic Structured Grid Generation

and
r̈ = r′′ṡ2 + r′s̈. (2.13)

Hence we obtain

κ2 = r′′ · r′′ = 1

ṡ4

(
r̈ − ṙ

s̈

ṡ

)
·
(

r̈ − ṙ
s̈

ṡ

)

= 1

ṡ4

(
r̈ · r̈ − 2

s̈

ṡ
ṙ · r̈ + s̈2

ṡ2
ṙ · ṙ

)
.

But using the identity ṙ · ṙ = ṡ2 together with its derivative ṙ · r̈ = ṡ s̈ reduces this
expression for κ to

κ = 1

(ṙ · ṙ)
3
2

√
(ṙ · ṙ)(r̈ · r̈) − (ṙ · r̈)2. (2.14)

By the Lagrange identity (1.40) this is equivalent to

κ = 1

(ṙ · ṙ)
3
2

√
(ṙ × r̈) · (ṙ × r̈) = |ṙ × r̈|

|ṙ|3 . (2.15)

For curves in two dimensions (the Oxy plane) eqn (2.15) reduces to the well-
known formula

κ = |ẋÿ − ẏẍ|
(ẋ2 + ẏ2)

3
2

, (2.16)

and if x is used as a parameter in place of t , this becomes

κ = |d2y/dx2|
[1 + (dy/dx)2] 3

2

. (2.17)

The radius of curvature ρ at a given point is given by

ρ = 1

κ
. (2.18)

Exercise 1. Show that for the twisted curve given by the parametric form x = ln cos t ,
y = ln sin t , z = √

2t (0 < t < π/2), we have κ = 1√
2

sin 2t .

2.2 The Serret-Frenet equations

Given a unit tangent vector t and a unit principal normal n at a point on a curve in
E3, we can define a third unit vector b, called the unit binormal vector, orthogonal to
both of them, such that

b = t × n. (2.19)

The system of vectors (t, n, b) then forms a right-handed set of unit vectors, which
forms the moving trihedron as s varies, i.e. as we move along the curve. By definition,
we also have t = n × b and n = b × t. The planes at a point of the curve containing
the directions n and b, and the directions b and t, are called the normal plane and
the rectifying plane, respectively, (see Fig. 2.1) at that point. Differentiating eqn (2.19)

Classical differential geometry of space-curves 33

b

n

t

P

Normal
plane

Osculating
plane

Rectifying
plane

Fig. 2.1 Osculating, normal, and rectifying planes at a point P on a curve.

with respect to s gives

db
ds

= dt
ds

× n + t × dn
ds

= κn × n + t × dn
ds

= t × dn
ds

, (2.20)

since n × n = 0. We deduce that db/ds is a vector orthogonal to t. Moreover, since b
is defined as a unit vector, with b · b = 1, it follows that b · db/ds = 0, so that db/ds

is also orthogonal to b.
Hence db/ds can only be parallel to n, and we can write

db
ds

= −τn,

where the scalar τ is called the torsion of the curve at a point. Not all writers follow
the convention of including a negative sign in this equation; the significance of the sign
can be shown by considering the special case of the circular helix given by eqn (2.6).
Here we obtain

t = r′ = 1√
a2 + c2

{
−ai sin

s√
a2 + c2

+ aj cos
s√

a2 + c2
+ ck

}
,

t′ = r′′ = κn = 1

a2 + c2

{
−ai cos

s√
a2 + c2

− aj sin
s√

a2 + c2

}
,

so that
κ = a

a2 + c2
(2.21)

and
n = −i cos

s√
a2 + c2

− j sin
s√

a2 + c2
.

Hence

b = t × n = 1√
a2 + c2

{
ci sin

s√
a2 + c2

− cj cos
s√

a2 + c2
+ ak

}

and

b′ = c

a2 + c2

{
i cos

s√
a2 + c2

+ j sin
s√

a2 + c2

}
= − c

a2 + c2
n.

34 Basic Structured Grid Generation

Thus
τ = c

a2 + c2
, (2.22)

a constant, in this case. Now if c is positive, so is τ . This is the case for a ‘right-handed’
helix, which twists around the z-axis in the same sense as a right-handed screwdriver
advancing in the direction of increasing z. But negative values of c give a left-handed
helix with the opposite sense, and the corresponding value of the torsion is negative
by eqn (2.22). Thus the convention used here for the sign of τ associates positive τ

with right-handed twisting about some axis and negative τ with left-handed twisting.
Right or left-handed twisting of a space-curve is also associated with a particular sense
of rotation of the osculating plane with increasing s. If the osculating plane does not
rotate, then b is a constant vector, the torsion is zero at every point, and the curve
must lie in a plane.

To evaluate dn/ds, we can differentiate n = b × t to obtain

dn
ds

= b × dt
ds

+ db
ds

× t = κb × n − τn × t = −κt + τb.

Summarising, we have the Serret-Frenet formulas:

dt
ds

= κn

dn
ds

= −κt + τb (2.23)

db
ds

= −τn,

where the skew-symmetric nature of the array of scalars on the right-hand side serves
as an aide-memoire.

If at a point in space initial values of t and n (and hence of b also, since b = t × n)
are given, and if functions κ(s) and τ(s) of arc-length parameter s are also specified,
then in principle eqns (2.23) can be integrated to determine t, n, and b as functions
of s, and thus determine the space-curve in its entirety. The fundamental theorem
of space-curves states that specification of the functions κ(s) and τ(s) determines a
space-curve uniquely apart from its precise position in space. A proof is not difficult,
though we do not include one here.

A useful formula for torsion may be derived as follows. We begin with the identities
t = r′, t′ = r′′, and t′′ = r′′′, where the prime again stands for d/ds. Now, regarding
everything as a function of s, we have

t′′ = (t′)′ = (κn)′ = κn′ + κ ′n = κ(−κt + τb) + κ ′n = −κ2t + κ ′n + κτb.

Hence

r′′ × r′′′ = t′ × t′′ = (κn) × (−κ2t + κ ′n + κτb) = κ3b + κ2τ t.

Finally
r′ · (r′′ × r′′′) = t · (κ3b + κ2τ t) = κ2τ,

so that

τ = 1

κ2
r′ · (r′′ × r′′′) = ρ2r′ · (r′′ × r′′′) = r′ · (r′′ × r′′′)

(r′′ · r′′)
, (2.24)

Classical differential geometry of space-curves 35

which can also be expressed as

τ = ρ2

∣∣∣∣∣∣
x′ y′ z′
x′′ y′′ z′′
x′′′ y′′′ z′′′

∣∣∣∣∣∣ . (2.25)

Exercise 2. If a curve is given in terms of a parameter t , show, making use of
eqns (2.12), (2.13), and a similar equation for

...
r , that

τ = ρ2 ṙ · (r̈ × ...
r)

ṡ6 = ρ2 ṙ · (r̈ × ...
r)

(ṙ · ṙ)3 , (2.26)

where ρ may be obtained from eqns (2.15) and (2.18).

Exercise 3. For the curve given by the parametric form

x = a(3t − t3), y = 3at2, z = a(3t + t3),

where a is a constant, show that κ = τ = 1
3a−1(1 + t2)−2.

2.3 Generalized co-ordinate approach

It may be instructive to derive the Serret-Frenet formulas using generalized co-ordi-
nates. In the process we introduce the concept of intrinsic differentiation. Given a set
of curvilinear co-ordinates x1, x2, x3, a space-curve may be specified in terms of a
parameter t and the functions

xi = xi(t), i = 1, 2, 3.

Arc-length is given in terms of the basic metric

ds2 = gij dxi dxj , (2.27)

or in terms of the parameter t as

s =
∫ t

t0

√
gij

dxi

dt

dxj

dt
dt, (2.28)

measured from some point on the curve where t = t0. Equation (2.27) can be re-
written as

gij

dxi

ds

dxj

ds
= 1, (2.29)

which according to eqn (1.55) may be interpreted as implying that the vector whose
contravariant components are dxi/ds, i = 1, 2, 3, has magnitude unity. Of course, this
is just the unit tangent vector t to the curve; here we write

t i = dxi

ds
. (2.30)

For any vector field u we have by the Chain Rule

du
ds

= ∂u
∂xj

dxj

ds
= ui

,j

dxj

ds
gi = ui,j

dxj

ds
gi

36 Basic Structured Grid Generation

in terms of the covariant derivatives, by eqns (1.119) and (1.121). Since du/ds is
a vector quantity, we can define the intrinsic derivatives of the contravariant and
covariant components of u by:

δui

δs
= ui

,j

dxj

ds
= ui

,j t
j ,

δui

δs
= ui,j

dxj

ds
= ui,j t

j , (2.31)

so that
du
ds

= δui

δs
gi = δui

δs
gi .

Another equation which will be useful later is

δui

δs
= ui

,j

dxj

ds
=

(
∂ui

∂xj
+ �i

kju
k

)
dxj

ds
= dui

ds
+ �i

kj u
k dxj

ds
. (2.32)

Similarly, intrinsic derivatives of second-order tensors can be defined in terms of
covariant derivatives. For example, the intrinsic derivatives of contravariant second-
order tensor components T ij are

δT ij

δs
= T

ij
,k

dxk

ds
, (2.33)

where the covariant derivatives of T ij are given by eqn (1.129). Thus it follows, from
eqn (1.128) that

δgij

δs
= 0.

Now rewriting eqn (2.29) as gij ti tj = 1 and taking intrinsic derivatives (with the
usual product rule) gives

δgij

δs
ti tj + gij δti

δs
tj + gij ti

δtj

δs
= 0 + 2gij ti

δtj

δs
= 0,

using the symmetry of gij . Thus

gij ti
δtj

δs
= 0. (2.34)

From eqn (1.54) it follows that δtj /δs represent the covariant components of a vector
orthogonal to t, and we can put

δti

δs
= κni, (2.35)

where ni are the covariant components of the unit vector n which satisfies

gijninj = 1 (2.36)

and
gij tinj = 0. (2.37)

We shall assume here that κ is non-negative.

Classical differential geometry of space-curves 37

Further intrinsic differentiation gives

gijni

δnj

δs
= 0, (2.38)

which implies that δnj/δs is a vector orthogonal to ni ; moreover,

gij ti
δnj

δs
+ gij δti

δs
nj = gij ti

δnj

δs
+ gij (κni)nj = gij ti

δnj

δs
+ κ

= gij ti
δnj

δs
+ κgij ti tj = gij ti

(
δnj

δs
+ κtj

)
= 0.

We deduce that
(

δnj

δs
+ κtj

)
are covariant components of a vector orthogonal to t,

and define
δni

δs
+ κti = τbi, (2.39)

where b is a unit vector satisfying

gij bibj = 1 (2.40)

and
gij tibj = 0, (2.41)

but with sense yet to be defined. Now b is orthogonal to n as well as t, since from
eqn (2.39)

gijnibj = 1

τ

(
gijni

δni

δs
+ κgijni tj

)
= 0, (2.42)

using eqns (2.37) and (2.38), assuming that the scalar τ is non-zero. So we can choose
the sense of b such that {t, n, b} form a right-handed set of unit vectors.

Any vector u can be expanded on a rectangular cartesian basis as

u = (u · i)i + (u · j)j + (u · k)k

and, in the same way,

u = (u · t)t + (u · n)n + (u · b)b.

Applying this to the vector δb/δs, taking covariant components with respect to the
given curvilinear co-ordinates, we get

δbi

δs
=

(
gjktj

δbk

δs

)
ti +

(
gjknj

δbk

δs

)
ni +

(
gjkbj

δbk

δs

)
bi

= −
(

gjk δtj

δs
bk

)
ti −

(
gjk δnj

δs
bk

)
ni + 0,

after differentiating eqns (2.40), (2.41), and (2.42). Hence from eqns (2.35) and (2.39)

δbi

δs
= −κ(gjknjbk)ti − gjk(−κtj + τbj)bkni = −τni,

again making use of eqns (2.40), (2.41), and (2.42).

38 Basic Structured Grid Generation

Summarizing, we have the Serret-Frenet formulas in covariant form:

δti

δs
= κni

δni

δs
= −κti + τbi (2.43)

δbi

δs
= −τni.

Alternatively, having established that {t, n, b} form an orthonormal set, we can write
the vector product b = t × n in component form as

bi = εijk tj nk,

and, making use of eqn (1.130), we have

δbi

δs
= εijk tj

δnk

δs
+ εijk δtj

δs
nk = εijk tj (−κtk + τbk) + κεijknjnk

= τεijk tj bk, (2.44)

the other terms vanishing due to the symmetry of tj tk and njnk and the skew-symmetry
of εijk in the summed indices j , k. The right-hand side now gives the scalar τ multiplied
by the contravariant component of the vector product t×b, which because of the choice
of the sense of b is equal to −n, with contravariant component ni .

Hence
δbi

δs
= −τni,

with associated covariant components

δbi

δs
= −τni

as expected.

2.4 Metric tensor of a space-curve

In this section we parametrise a space-curve C directly by a curvilinear co-ordinate ξ ,
so that

r = (x(ξ), y(ξ), z(ξ)) (2.45)

on the curve. In the context of grid generation, space-curves appear as boundaries of
surfaces and as edges of three-dimensional blocks, and it is convenient to map a given
finite length of space-curve onto an interval of the ξ -axis, say 0 � ξ � 1. A uniformly
spaced set of points in the ξ -interval will then map to a set of points along the curve.

Arc-length along the curve is then defined by

(ds)2 = dr · dr = dr
dξ

· dr
dξ

(dξ)2 = g11(dξ)2,

Classical differential geometry of space-curves 39

where

g11 = dr
dξ

· dr
dξ

= g1 · g1 (2.46)

is, by comparison with eqns (1.18), the solitary component of the metric tensor of the
curve, and g1 is tangential to C at any point.

Hence
ds

dξ
= √

g11 (2.47)

and the total length of C, if ξ varies monotonically from 0 to 1, is

L =
∫ 1

0

√
g11 dξ. (2.48)

A unit tangent vector to the curve is

t = dr
ds

= dr
dξ

dξ

ds
= 1√

g11

dr
dξ

. (2.49)

We also have

d

dξ

(
dr
dξ

)
= d

dξ
(
√

g11t) = d

dξ
(
√

g11)t + √
g11

dt
dξ

and, since we already know that dt/ds = κn, it follows that

d2r
dξ 2

= 1

2
(g11)

− 1
2

dg11

dξ
t + g11κn = 1

2

1

g11

dg11

dξ

dr
dξ

+ κg11n, (2.50)

which is the curve identity.
Taking the scalar product of both sides with n gives the expression for curvature

κ = 1

g11

d2r
dξ 2

· n. (2.51)

The Jacobian matrix of the transformation ξ → (x, y, z) may be defined as the 3×1
column vector

J =

 xξ

yξ

zξ

 , (2.52)

where suffixes denote derivatives with respect to ξ . Clearly we have

g11 = (xξ)
2 + (yξ)

2 + (zξ)
2 = J T J . (2.53)

Suppose now that the curve is parametrized by a different parameter χ , 0 � χ � 1,
where χ = χ(ξ), for some function χ(ξ) satisfying χ(0) = 0, χ(1) = 1. A set of
points on the curve could be generated by dividing the χ interval into n equal divisions,
with χi = i/n, i = 0, 1, 2, . . . , n, and locating the points on C corresponding to these
values of χ . The distribution of points may, however, not be suitable for various reasons
to serve as a grid. A more satisfactory distribution might be obtained by varying the
choice of parameter values χi according to the choice of the function χ(ξ), so that a
uniformly distributed set {ξi} of values in the ξ interval will map onto a non-uniformly
distributed set of values {χi} in the χ interval.

40 Basic Structured Grid Generation

Here we put

(ds)2 = dr
dχ

· dr
dχ

(dχ)2 = g̃11(dχ)2,

so that ds/dχ = √
g̃11. Clearly we have

g11 = dr
dξ

· dr
dξ

= dr
dχ

· dr
dχ

(
dχ

dξ

)2

= g̃11

(
dχ

dξ

)2

. (2.54)

If we wanted grid points on C to be evenly distributed in the sense that the length
of the curve between neighbouring points was always the same, we would require that∫ χi+1

χi

√
g̃11 dχ = const. = L/n, (2.55)

where L is the total length of the curve. This equation is an example of an equidistri-
bution principle; these principles in general are prescriptions for controlling the density
of grid points.

Equation (2.55) suggests that the mapping ξ → χ should satisfy the differential
equation

dχ

dξ
= L√

g̃11
, (2.56)

or, in approximate form,
χi+1 − χi

ξi+1 − ξi

= L√
g̃11

, (2.57)

with
√

g̃11 evaluated, say, at the mid-point χ
i+ 1

2
of the corresponding χ interval. Here

the ξi values are evenly distributed, so that (ξi+1 − ξi) = 1/n. Thus the spacing of
points on the χ interval is proportional to 1/

√
g̃11.

Equation (2.57) is satisfactory for numerical work except for cases where g̃11
becomes too small, or zero. A better choice might be based on

dχ

dξ
= c√

1 + g̃11
(2.58)

instead of eqn (2.56), for some constant c, or

dχ

dξ
= c√

1 + α2g̃11

, (2.59)

where extra flexibility in controlling grid density is provided by the parameter α.
The optimal spacing of grid points may also be influenced by the curvature κ of C.

To obtain higher grid-point density in regions of high curvature, the equation

dχ

dξ
= c

(1 + β2|κ|)√1 + α2g̃11

(2.60)

may be used.
Thus the grid generation procedure may be represented in general by

dχ

dξ
= cϕ(χ), χ(0) = 0, (2.61)

Classical differential geometry of space-curves 41

where ϕ(χ) is some weight function satisfying∫ 1

0

1

ϕ(χ)
dχ = c.

Note that the procedure involves the physical space E3 of the space-curve, the one-
dimensional computational space of the ξ parameter, and the intermediate parametric
space of χ .

3

Differential geometry of surfaces
in E3

3.1 Equations of surfaces

The classical differential geometry of curves and surfaces is presented in many text-
books, of which we quote several in the bibliography. Here we are concerned with
surfaces embedded in three-dimensional Euclidean space, which may be represented
by a variety of mathematical expressions in terms of rectangular cartesian co-ordinates
x, y, z.

A function of two variables f (x, y) gives a surface

z = f (x, y). (3.1)

A function of three variables F(x, y, z) gives a surface

F(x, y, z) = 0. (3.2)

Two real parameters u and v may be used to give a surface r = r(u, v), or, in terms
of three functions of two variables,

x = x(u, v), y = y(u, v), z = z(u, v). (3.3)

The parameters u and v here may be referred to as surface (or Gaussian) co-ordinates.
We assume that all functions are continuously differentiable unless otherwise stated.

In each of the above cases the functions may be defined only for a restricted range of
the independent variables. For example, the hemispherical surface obtained by slicing
the unit sphere x2 + y2 + z2 = 1 in half through the plane Oxy and discarding the
part with z < 0 may be expressed as

z = f (x, y) = +
√

1 − x2 − y2 with x2 + y2 � 1

or
F(x, y, z) = x2 + y2 + z2 − 1 = 0 with 0 � z � 1 and x2 + y2 � 1

or, in terms of spherical polar co-ordinates θ, ϕ as parameters (Fig. 3.1),

x = sin θ cos ϕ, y = sin θ sin ϕ, z = cos θ, with 0 � θ � π/2, 0 � ϕ � 2π.

(3.4)

Differential geometry of surfaces in E3 43

x y

z

O

P

q

f

Fig. 3.1 Surface of sphere with spherical polar co-ordinates.

Standard relations between the functions in (3.1) and (3.2), in the case where they
represent the same surface, may be obtained as follows. Suppose that at a point P
on the surface with co-ordinates (x0, y0, z0) the partial derivative ∂F/∂z �= 0. Then
the Implicit Function Theorem of calculus implies that in some neighbourhood of P
eqn (3.2) can be solved for z as a function of x and y, giving eqn (3.1). Thus in this
neighbourhood we have, for all x and y,

F(x, y, f (x, y)) = 0. (3.5)

Now differentiating partially with respect to x gives

∂F

∂x
+ ∂F

∂z

∂f

∂x
= 0,

from which we derive
∂f

∂x
= −∂F

∂x

(
∂F

∂z

)−1

, (3.6)

and similarly
∂f

∂y
= −∂F

∂y

(
∂F

∂z

)−1

. (3.7)

Of course, eqn (3.1) is just a special case of (3.3), in which x = u, y = v, and
z = f (u, v).

Given a representation (3.2) of a surface, the tangent plane to the surface at a point
P with co-ordinates (x0, y0, z0) is the best linear approximation to the surface at P.
Consideration of the first-order increment formula δF = Fxδx + Fyδy + Fzδz = 0
from P to a neighbouring point on the surface, where the partial derivatives of F at P
are denoted by Fx, Fy, Fz, shows that the equation of the tangent plane is

Fx(x − x0) + Fy(y − y0) + Fz(z − z0) = 0.

It follows that the vector of partial derivatives (Fx, Fy, Fz), i.e. the gradient vector
∇F , is normal to the tangent plane, and hence normal to the surface, at P. A point P
on the surface is said to be non-singular if ∇F �= 0 there; thus it is possible to specify
the normal to the surface at a non-singular point.

Another approach to non-singular points comes from considering the matrix M of
partial derivatives of the representation (3.3):

M =
(

∂x/∂u ∂y/∂u ∂z/∂u

∂x/∂v ∂y/∂v ∂z/∂v

)
. (3.8)

44 Basic Structured Grid Generation

If this matrix has rank 2 at a point P(x0, y0, z0), at least one of the second-order
sub-determinants is non-zero there. Suppose that this is

∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v
�= 0.

This is the condition for the non-vanishing of the Jacobian of the transformation
(u, v) → (x, y), which implies that the inverse mapping u = u(x, y), v = v(x, y)

exists in some neighbourhood of the projected point (x0, y0) in the plane Oxy. Hence
it is possible to write

z = z(u, v) = z(u(x, y), v(x, y)) = f (x, y),

as in eqn (3.1), which is equivalent to

F(x, y, z) = f (x, y) − z = 0

It follows that F has non-zero gradient (∂f/∂x, ∂f/∂y, −1) and thus P is non-singular
according to our previous definition.

Singular points arise when the rank of M is 0 or 1. When rankM = 1 at all points,
the surface reduces to a curve. For example, the equations

x = u + v, y = (u + v)2, z = (u + v)3

represent a curve.
It is possible for one sub-determinant of M to be zero, as in the case of the circular

cylinder of radius a

x = a cos u, y = a sin u, z = v (3.9)

and for two, as in the case of the planar surface

x = u, y = v, z = 1,

but rankM = 2 at all points in both cases.
Singular points may arise out of the nature of the surface, but may now also appear

due to a chosen parametrization (3.3) in the situation where rankM < 2. For example,
for the spherical surface (3.4) we have

M =
(

cos θ cos ϕ cos θ sin ϕ − sin θ

− sin θ sin ϕ sin θ cos ϕ 0

)
,

with rankM = 2, except for the singular point at the ‘North Pole’ of the sphere
(Fig. 3.1), where θ = 0 and rankM = 1.

A surface with an obvious singular point is the right circular cone (Fig. 3.2) with
semi-vertical angle α, which can be represented in terms of the parameters u, ϕ, by
the parametric equations

x = u sin α cos ϕ, y = u sin α sin ϕ, z = u cos α. (3.10)

Here

M =
(

sin α cos ϕ sin α sin ϕ cos α

−u sin α sin ϕ u sin α cos ϕ 0

)
,

Differential geometry of surfaces in E3 45

x
y

z

O

N

P

f

a

Fig. 3.2 Right circular cone with semi-angle α and vertex O.

Curves of
constant u

Curves of
constant v

P

rv

ru

Fig. 3.3 Surface with curvilinear co-ordinates u, v, and base vectors ru, rv.

with rankM = 2, except at the vertex of the cone, where u = 0 and rankM = 1. The
vertex will clearly be a singular point whatever the parametrization of the surface.

In general, when a surface is parametrized as in eqn (3.3), we may assume that the
surface can be covered by a grid consisting of two families of co-ordinate curves; on
the members of one family u varies but v is constant, while on the other v varies and
u is constant (Fig. 3.3). Through a point P of the surface there will generally pass one
member of each family, and tangent vectors in the directions of these curves will be
given by ∂r/∂u and ∂r/∂v, which we shall write here as ru and rv respectively.

Now the rows of M as defined in eqn (3.8) are just the cartesian components of ru

and rv , and the condition rankM = 2 is equivalent to the condition that ru and rv

should be non-zero and independent, i.e.

ru × rv �= 0. (3.11)

This condition holds good under a change of parametrization from (u, v) to (u, v),
given some relation u = u(u, v), v = v(u, v), provided that the Jacobian of the
transformation is non-zero, that is,

∂u

∂u

∂v

∂v
− ∂u

∂v

∂v

∂u
�= 0.

For, using Chain Rules, we have

ru × rv =
(

ru

∂u

∂u
+ rv

∂v

∂u

)
×
(

ru

∂u

∂v
+ rv

∂v

∂v

)
=
(

∂u

∂u

∂v

∂v
− ∂u

∂v

∂v

∂u

)
(ru × rv).

46 Basic Structured Grid Generation

3.2 Intrinsic geometry of surfaces

Intrinsic properties of surfaces are those which can be formulated without reference to
the space (in the present case E3) in which they are embedded, in particular without
reference to vectors normal to the surface. These properties depend essentially on a
certain quadratic differential form, the so-called first fundamental form, which contains
all the basic information about the metrical properties of the surface.

Here we assume that a given surface S is parametrized as in eqn (3.3), with param-
eters uα, α = 1, 2 (or, where this would make for clarity, u, v). It is again convenient
to use superscript indices, as the uα will serve as curvilinear co-ordinates for the sur-
face, but the convention now is that Greek indices can take only the values 1 or 2.
Moreover, repeated Greek indices in an expression normally imply summation over
the values 1 and 2, according to the corresponding summation convention. We shall
also retain the background rectangular cartesian co-ordinates y1, y2, y3 (or x, y, z), and
a set of curvilinear co-ordinates x1, x2, x3 (or ξ, η, ς) for the space E3. On S we have
yi = yi(u

1, u2), i = 1, 2, 3.
At a point P on S two co-ordinate curves uα = constant intersect, and vectors in the

tangent plane at P, tangential to these curves, are

aα = ∂r
∂uα

, α = 1, 2. (3.12)

With reference to the background space we have

aα = ∂r
∂yi

∂yi

∂uα
= ii

∂yi

∂uα
= ∂r

∂xi

∂xi

∂uα
= gi

∂xi

∂uα
, (3.13)

where ii and gi are the unit basis vectors and covariant base-vectors of the background
three-dimensional cartesian and curvilinear systems, respectively. Here the index i is
taken to be summed from 1 to 3.

A curve C on the surface S can be given in terms of a parameter t by

uα = uα(t), α = 1, 2. (3.14)

An infinitesimal line-segment of C may be represented by

dr = ∂r
∂uα

duα = aα duα, (3.15)

with α summed over the values 1 and 2. Hence differentials of arc-length ds are
given by

ds2 = dr · dr = (aα duα) · (aβ duβ) = aα · aβ duα duβ.

This gives the first fundamental form referred to above:

ds2 = aαβ duα duβ, (3.16)

with

aαβ = aα · aβ = ∂yi

∂uα

∂yi

∂uβ
=
(

gi

∂xi

∂uα

)
·
(

gj

∂xj

∂uβ

)
= gij

∂xi

∂uα

∂xj

∂uβ
, (3.17)

Differential geometry of surfaces in E3 47

where gij is the covariant metric tensor of the background curvilinear system; aαβ

is called the covariant metric tensor of the surface. The justification for calling it a
covariant tensor is that it has second-order covariant tensor properties with respect to
transformations of surface co-ordinates, in the sense that a transformation from (u1, u2)

to a different pair (u1, u2) produces a new set of values

aαβ = ∂yi

∂uα

∂yi

∂uβ
= ∂uγ

∂uα

∂yi

∂uγ

∂uδ

∂uβ

∂yi

∂uδ
= ∂uγ

∂uα

∂uδ

∂uβ
aγ δ (3.18)

by eqn (3.17). Thus aαβ transforms according to eqn (1.76), except that the indices
γ, δ are summed only over the values 1 and 2.

The first fundamental form is also commonly denoted in terms of u, v as

ds2 = E(du)2 + 2F du dv + G(dv)2, (3.19)

where clearly
E = a11, F = a12 = a21, G = a22. (3.20)

We also have the formula
ds

dt
=
√

aαβ

duα

dt

duβ

dt
, (3.21)

giving arc-length

s =
∫ t

t0

√
aαβu̇αu̇β dt (3.22)

measured from some point on the curve with t = t0, with derivatives with respect to
t denoted by a dot.

Exercise 1. For the surface z = f (x, y) parametrized with u1 = x, u2 = y, show that

a11 = 1 +
(

∂f

∂x

)2

, a12 =
(

∂f

∂x

)(
∂f

∂y

)
, a22 = 1 +

(
∂f

∂y

)2

. (3.23)

Exercise 2. For the surface r = r(u, v) = (u + v2, u2 + v, uv), show that

a11 = 1 + 4u2 + v2, a12 = 2u + 2v + uv, a22 = 1 + u2 + 4v2.

The quadratic form (3.16) must be positive definite, and this holds if and only if

a11 > 0 and a = a11a22 − (a12)
2 > 0, (3.24)

where a is the second-order determinant of the 2 × 2 matrix (aαβ).
If inequalities (3.24) are both satisfied, then we necessarily also have a22 > 0. Arc-

length along the u1 and u2 co-ordinate curves is given by
√

a11 du1 and
√

a22 du2

respectively. The second inequality in eqn (3.24) corresponds to the inequality

|a1 × a2|2 = |a1|2|a2|2 − (a1 · a2)
2 > 0,

which is guaranteed if the point P under consideration is non-singular. It follows,
incidentally, that

|a1 × a2| = √
a. (3.25)

48 Basic Structured Grid Generation

Exercise 3. Show (by taking determinants of both sides of eqn (3.18)) that the property
of positive definiteness of aαβ is preserved under co-ordinate transformations provided
the Jacobian of the transformation is non-zero.

Vectors in the tangent plane to S at a point P of the surface are linear combinations
of the tangent vectors a1 and a2, and may be called surface vectors. The vectors aα

thus serve as covariant base vectors for the tangent plane, and a surface vector A with
A = Aαaα has contravariant components Aα, α = 1, 2. An equation analogous to
eqn (1.55) now gives the length of a surface vector A :

|A| =
√

aαβAαAβ. (3.26)

We can also define surface contravariant base vectors aα, α = 1, 2, such that

aα · aβ = δα
β , (3.27)

and the surface contravariant metric tensor

aαβ = aα · aβ. (3.28)

The symmetric 2 × 2 matrix array corresponding to (3.28) is the inverse of that
corresponding to eqn (3.17), that is,

aαβaαγ = δ
γ
β . (3.29)

Thus we have, explicitly,

a11 = a22/a, a12 = a21 = −a12/a, a22 = a11/a. (3.30)

Exercise 4. Show that aα = aαβaβ with

a1 = 1

a
(a22a1 − a12a2) and a2 = 1

a
(−a12a1 + a11a2). (3.31)

Exercise 5. A surface of revolution may be generated in E3 by rotating the curve in
the cartesian plane Oxz given in parametric form by x = f (u), z = g(u) about the
axis Oz. This gives the parametric form

x = f (u) cos v, y = f (u) sin v, z = g(u), (3.32)

where u and v may be used as surface co-ordinates. Show that the covariant surface
base vectors, with u = u1 and v = u2, are

a1 = (f ′(u) cos v, f ′(u) sin v, g′(u)), a2 = (−f (u) sin v, f (u) cos v, 0)

in background cartesian co-ordinates and that the covariant metric tensor has
components

aαβ =
(

f ′2 + g′2 0
0 f 2

)
, (3.33)

which are functions of u but not v, while the contravariant metric tensor is

aαβ =
(

(f ′2 + g′2)−1 0
0 f −2

)
. (3.34)

Differential geometry of surfaces in E3 49

A surface vector A has covariant and contravariant components with respect to the
surface base vectors given, respectively, by

Aα = A · aα, Aα = A · aα. (3.35)

Since eqn (3.16) can be written

1 = aαβ

duα

ds

duβ

ds
, (3.36)

it follows by comparison with eqn (3.26) that duα/ds = λα represents the contravariant
components of a unit surface vector. Viewed from E3 this vector λ has cartesian
components

λi = dyi

ds
= ∂yi

∂uα

duα

ds
= ∂yi

∂uα
λα (3.37)

(which may be regarded as a set of direction cosines) and background contravariant
curvilinear components

λi = dxi

ds
= ∂xi

∂uα

duα

ds
= ∂xi

∂uα
λα. (3.38)

The angle θ between directions specified by unit surface vectors λ and µ each
satisfying aαβλαλβ = 1 and aαβµαµβ = 1 is given by

cos θ = λ · µ = λiµi

in cartesian components, or, by eqn (3.37),

cos θ = ∂yi

∂uα

∂yi

∂uβ
λαµβ = aαβλαµβ (3.39)

using eqn (3.17). This result may be compared with the general equations for a scalar
product in eqn (1.54).

Unit surface vectors λ, µ tangential to the u1 and u2 co-ordinate curves at a point
must have contravariant components given by, respectively,

λ1 = 1√
a11

, λ2 = 0 and µ1 = 0, µ2 = 1√
a22

. (3.40)

According to eqn (3.39) the angle θ between the co-ordinate curves is given by

cos θ = a12λ
1µ2 = a12√

a11a22
. (3.41)

The co-ordinate curves form an orthogonal network if a12 = F = 0 everywhere.
The element of surface area dσ given by the parallelogram with sides formed by

the line-segments a1 du1, a2 du2 tangential to the co-ordinate curves at a point is

dσ = √
a du1 du2, (3.42)

analogously to eqn (1.44).
It is sometimes convenient to have at our disposal the two-dimensional alternating

symbol eαβ = eαβ satisfying

e11 = e11 = e22 = e22 = 0, e12 = e12 = 1, e21 = e21 = −1. (3.43)

50 Basic Structured Grid Generation

Under transformations from surface co-ordinates (u1, u2) to (u1, u2) we then have

∂uγ

∂uα

∂uδ

∂uβ
eαβ = ∂uγ

∂u1

∂uδ

∂u2 − ∂uγ

∂u2

∂uδ

∂u1 = Jeγ δ,

and, similarly,
∂uα

∂uγ

∂uβ

∂uδ
eαβ = J−1eγ δ,

where J is the Jacobian of the transformation:

J =

∣∣∣∣∣∣∣∣
∂u1

∂u1

∂u1

∂u2

∂u2

∂u1

∂u2

∂u2

∣∣∣∣∣∣∣∣
.

Thus eαβ and eαβ transform like relative tensors. Derivations similar to those result-
ing in the definitions (1.92) and (1.93) show that absolute (surface) tensors are given
by εαβ and εαβ , where

εαβ = 1√
a
eαβ, εαβ = √

aeαβ. (3.44)

Note that
εαβεαγ = eαβeαγ = δ

γ
β . (3.45)

Exercise 6. Show that

εαβεγ δaαγ aβδ = εαβεγ δa
αγ aβδ = 2.

We can now say, for example, that, given two unit surface vectors λ and µ, a
consistent tensor expression is given by εαβλαµβ . Comparing this with eqn (1.94), we
see that it represents the component of the vector product of λ and µ in the direction of
a unit vector normal to the surface, a direction which remains invariant under changes
of surface co-ordinates. Thus, if θ is the angle between the directions λ, µ (in the sense
of a positive right-handed screw rotation from λ to µ), we have

sin θ = εαβλαµβ. (3.46)

The condition for the orthogonality of two surface directions λ,µ may now be
written either, using eqn (3.39), as

aαβλαµβ = 0, (3.47)

or, from eqn (3.46), as
εαβλαµβ = ±1. (3.48)

In this section it may be seen how the metrical properties of a surface, i.e. the
measurement of lengths of curves on the surface, angles between intersecting curves,
and areas, may be derived with reference to the first fundamental form of the surface,
and in particular to the covariant metric tensor aαβ . Since aαβ itself was derived by
using the properties of the enveloping Euclidean space, we may say that the metrical

Differential geometry of surfaces in E3 51

properties of the surface are induced by the Euclidean metric of E3. However, once
formulas for length, angle, and area have been established in terms of aαβ , measurement
may be carried out on the surface without regard to the embedding space.

When two surfaces (or parts of two surfaces) are such that they admit surface co-
ordinate systems which give identical first fundamental forms, then the intrinsic geom-
etry of the surfaces is the same. The existence of these surface co-ordinates implies the
existence of a mapping between points on the surfaces such that corresponding curves
have the same length or intersect at the same angle. This means that there is no differ-
ence locally between the surfaces as far as measurement of lengths, angles, and areas
is concerned, no matter how different the surfaces may appear from the standpoint of
the enveloping three-dimensional space. Such surfaces are called isometric.

A simple example is the isometry between the circular cylinder (3.9) and a portion
of a plane. The first fundamental form of the cylinder is easily seen to be

a2(dϕ)2 + (dz)2

which is equivalent to (dx)2 + (dy)2 for the plane with cartesian co-ordinates under
the transformation aϕ → x and z → y.

3.3 Surface covariant differentiation
Surface Christoffel symbols of first and second kinds can be defined. It is important to
note at the outset, however, that there is no immediate surface equivalent of eqn (1.97),
since in general ∂aα/∂uβ is not a surface vector and cannot be expressed in terms of a1
and a2. But we can effectively use the equivalents of eqns (1.98) and (1.99) to define
the surface Christoffel symbols, and then the same procedure that led to eqn (1.108)
gives

[αβ, γ] = ∂aα

∂uβ
· aγ = ∂2r

∂uα∂uβ
· ∂r
∂uγ

= 1

2

(
∂aαγ

∂uβ
+ ∂aβγ

∂uα
− ∂aαβ

∂uγ

)
(3.49)

and

�
γ
αβ = ∂aα

∂uβ
· aγ = aγ δ[αβ, δ], (3.50)

where the Greek indices can take only the values 1 and 2.
Explicitly, using eqns (3.30), we can write, putting u = u1, v = u2,

[11, 1] = 1

2

∂a11

∂u
, [11, 2] = ∂a12

∂u
− 1

2

∂a11

∂v
, [12, 1] = [21, 1] = 1

2

∂a11

∂v
,

[12, 2] = [21, 2] = 1

2

∂a22

∂u
, [22, 1] = ∂a12

∂v
− 1

2

∂a22

∂u
, [22, 2] = 1

2

∂a22

∂v
(3.51)

and

�1
11 = 1

2a

[
a22

∂a11

∂u
+ a12

(
∂a11

∂v
− 2

∂a12

∂u

)]

�1
12 = �1

21 = 1

2a

[
a22

∂a11

∂v
− a12

∂a22

∂u

]

52 Basic Structured Grid Generation

�1
22 = 1

2a

[
a22

(
2
∂a12

∂v
− ∂a22

∂u

)
− a12

∂a22

∂v

]
(3.52)

�2
22 = 1

2a

[
a11

∂a22

∂v
+ a12

(
∂a22

∂u
− 2

∂a12

∂v

)]

�2
11 = 1

2a

[
a11

(
2
∂a12

∂u
− ∂a11

∂v

)
− a12

∂a11

∂u

]

�2
12 = �2

21 = 1

2a

[
a11

∂a22

∂u
− a12

∂a11

∂v

]
.

There should be no difficulty in practice in distinguishing between the surface
Christoffel symbols and their three-dimensional version in eqn (1.99). The use of either
Greek or Roman indices will indicate the context.

Exercise 7. For the surface of revolution given by eqn (3.32), show that the Christoffel
symbols are

[11, 1] = f ′f ′′ + g′g′′, [12, 2] = [21, 2] = ff ′

[22, 1] = −ff ′, [11, 2] = [12, 1] = [21, 1] = [22, 2] = 0 (3.53)

and

�1
11 = (f ′2 + g′2)−1(f ′f ′′ + g′g′′), �2

12 = �2
21 = f −1f ′

�1
22 = −(f ′2 + g′2)−1ff ′, �1

12 = �1
21 = �2

11 = �2
22 = 0. (3.54)

Exercise 8. For the spherical surface defined by eqn (3.4), with u = θ , v = φ, show
that the only non-vanishing Christoffel symbols are

[12, 2] = [21, 2] = −[22, 1] = −�1
22 = sin θ cos θ, �2

12 = �2
21 = cot θ.

It is straightforward to obtain the results analogous to eqns (1.106) and (1.107),
namely

∂aαβ

∂uγ
= [γα, β] + [γβ, α] = aδβ�δ

γα + aδα�δ
γβ (3.55)

and
∂aαβ

∂uγ
= −aδα�

β
δγ − aδβ�α

δγ . (3.56)

Surface covariant differentiation and intrinsic surface derivatives along a surface
curve can now be defined. Following eqns (1.120), (1.122), and (2.31), a surface vector
A, for example, has surface covariant derivatives

Aα
,β = ∂A

∂uβ
· aα = ∂Aα

∂uβ
+ �α

γβAγ , Aα,β = ∂A
∂uβ

· aα = ∂Aα

∂uβ
− �

γ
αβAγ (3.57)

and intrinsic derivatives

δAα

δs
= Aα

,β

duβ

ds
= Aα

,βλβ,
δAα

δs
= Aα,β

duβ

ds
= Aα,βλβ (3.58)

along a surface curve with unit tangent vector λ.

Differential geometry of surfaces in E3 53

Moreover, we can have surface covariant and contravariant second-order tensors with
covariant derivatives given by formulas corresponding to eqns (1.126) and (1.129), but
with Greek rather than Roman indices. In particular, for the contravariant metric tensor
aαβ , we can deduce that its surface covariant derivatives are

aαβ
,γ = ∂aαβ

∂uγ
+ �α

δγ aδβ + �
β
δγ aαδ = ∂(aα · aβ)

∂uγ
+ �α

δγ aδβ + �
β
δγ aαδ

= aα · ∂aβ

∂uγ
+ ∂aα

∂uγ
· aβ + �α

δγ aδβ + �
β
δγ aαδ

= −�
β
δγ aαδ − �α

δγ aδβ + �α
δγ aδβ + �

β
δγ aαδ = 0, (3.59)

where we have made use of the surface equivalent of eqn (1.105). Similarly we can
show that

aαβ,γ = 0 (3.60)

for all α, β, γ ranging over the values 1, 2.
These results are equivalent to those for the metric tensor for general curvilinear co-

ordinates in Chapter 1. Note, however, that the supplementary argument given there
based on the existence of a background rectangular cartesian system in which all
the covariant derivatives are necessarily zero no longer applies, since a general two-
dimensional surface does not admit a cartesian system (unless it is planar).

The surface equation analogous to eqn (1.118) is

�α
αβ = 1√

a

∂

∂uβ
(
√

a), (3.61)

and this may be used in the process of proving that the covariant derivatives of εαβ

and εαβ satisfy
εαβ
,γ = εαβ,γ = 0. (3.62)

Investigation of the commutativity of repeated covariant differentiation of an arbi-
trary surface covariant vector Aα leads to the equation

Aα,βγ − Aα,γβ = Rδ
.αβγ Aδ, (3.63)

as in eqn (1.177), where the mixed surface Riemann-Christoffel tensor is given by

Rδ
.αβγ = ∂�δ

αγ

∂uβ
− ∂�δ

αβ

∂uγ
+ �µ

αγ �δ
µβ − �

µ
αβ�δ

µγ (3.64)

similarly to eqn (1.178). Moreover, we can define the covariant fourth-order surface
curvature tensor

Rαβγ δ = aαµR
µ
.βγ δ. (3.65)

Note that these fourth-order surface tensors do not in general vanish identically,
unlike their three-dimensional counterparts in a Euclidean space, as considered in
Chapter 1. They have the same skew-symmetric properties discussed there, however,
and it follows that the only possible non-vanishing components of Rαβγ δ are

R1212 = R2121 = −R1221 = −R2112.

54 Basic Structured Grid Generation

3.4 Geodesic curves
Another aspect of the intrinsic geometry of surfaces arises from the problem of deter-
mining the curve of minimum length which joins two given points on the surface.
For example, when the surface is a plane in E3, the shortest distance between two
points will be a straight line. If the general problem is approached through the usual
calculus of variations, differential equations are obtained which any solution must sat-
isfy. Curves which satisfy these equations are called geodesics, although in fact not all
solutions are necessarily curves of minimum length.

According to eqn (3.22) the length of a curve C on a surface with co-ordinates u1, u2

and covariant metric tensor aαβ is given by

L =
∫ t2

t1

√
aαβu̇αu̇β dt =

∫ t2

t1

f (u1, u2, u̇1, u̇2) dt, (3.66)

where t is used to parametrize the curve, each aαβ in general is a function of u1 and u2,
and we assume that t takes the fixed values t1, t2 at the given end-points. Moreover, f

is formally regarded as a function of four independent variables. Neighbouring curves,
having first-order variations δuα and δu̇α in the values of uα and u̇α at corresponding
values of t , but still having the same end-points, have a first-order variation in length

δL =
∫ t2

t1

δf dt =
∫ t2

t1

(
∂f

∂uα
δuα + ∂f

∂u̇α
δu̇α

)
dt

with summation over α. Integration by parts on the last term gives

δL =
[

∂f

∂u̇α
δuα

]t2

t1

+
∫ t2

t1

{
∂f

∂uα
− d

dt

(
∂f

∂u̇α

)}
δuα dt,

and the integrated part vanishes because of the fixed end-point requirement.
If L is to be a minimum for C, the first-order variation δL must be zero for arbitrary

variations δuα . Thus ∫ t2

t1

{
∂f

∂uα
− d

dt

(
∂f

∂u̇α

)}
δuα dt = 0

for arbitrary (first-order) variations δu1, δu2. A standard argument of the calculus of
variations then leads to the conclusion that the two differential equations

∂f

∂uα
− d

dt

(
∂f

∂u̇α

)
= 0, α = 1, 2, (3.67)

must hold everywhere on C. Curves for which these equations hold are geodesics.
Equations (3.67) are the Euler-Lagrange equations (or just the Euler equations) for
the variational problem δL = 0 with L given by (3.66).

Now since f =
√

aαβ(u1, u2)u̇αu̇β , we have

∂f

∂uγ
= 1

2f

∂aαβ

∂uγ
u̇αu̇β and

∂f

∂u̇γ
= 1

f
aγβu̇β .

Differential geometry of surfaces in E3 55

Hence, with γ in place of α, eqn (3.67) becomes

1

2f

∂aαβ

∂uγ
u̇αu̇β − d

dt

(
1

f
aγβu̇β

)
= 0, γ = 1, 2. (3.68)

A simpler form of these equations results if we express the parametric form of the
solution curve in terms of arc-length s rather than t . Along a solution curve we now
have f = 1, a constant, by eqn (3.36). Thus eqn (3.68) becomes

d

ds

(
aγβ

duβ

ds

)
− 1

2

∂aαβ

∂uγ

duα

ds

duβ

ds
= 0, (3.69)

that is,

aγβ

d2uβ

ds2
+ ∂aγβ

∂uα

duα

ds

duβ

ds
− 1

2

∂aαβ

∂uγ

duα

ds

duβ

ds
= 0,

which may be expressed as

aγβ

d2uβ

ds2
+ 1

2

(
∂aγβ

∂uα
+ ∂aγα

∂uβ
− ∂aβα

∂uγ

)
duβ

ds

duα

ds
= 0,

exploiting the symmetry of (duβ/ds)(duα/ds) with respect to β and α. In other words,
using eqn (3.49),

aγβ

d2uβ

ds2
+ [βα, γ]duβ

ds

duα

ds
= 0, γ = 1, 2. (3.70)

Re-writing α as δ, multiplying through by aαγ (implying summation over γ), and
using eqn (3.50), now gives

d2uα

ds2 + aαγ [βδ, γ]duβ

ds

duδ

ds
= d2uα

ds2 + �α
βδ

duβ

ds

duδ

ds
= 0, α = 1, 2. (3.71)

Equations (3.70) and (3.71) are second-order differential equations which define
geodesic curves, curves whose length is stationary (rather than necessarily being a
minimum) with respect to small variations given two fixed end-points. If we are given
starting values of uα and duα/ds at a point on a surface, we can in principle solve
either of these pairs of equations and obtain a geodesic curve.

By the two-dimensional version of eqn (2.32), we can express eqn (3.71) in the
simple form

δ

δs

(
duα

ds

)
= 0. (3.72)

In practice eqns (3.71) may be quite complicated. For the surface of revolution as
defined by eqn (3.32) they become, using eqn (3.54),

d2u

ds2
+ (f ′2 + g′2)−1(f ′f ′′ + g′g′′)

(
du

ds

)2

− (f ′2 + g′2)ff ′
(

dv

ds

)2

= 0,

d2v

ds2
+ 2f −1f ′

(
du

ds

)(
dv

ds

)
= 0.

(3.73)

56 Basic Structured Grid Generation

The first equation shows that circular cross-sections (parallels) of the surface u =
constant can be geodesics only when f ′(u) = 0, i.e. when the radius of the cross-section
is stationary with respect to u. The second equation shows that meridians v = constant
are geodesics. More generally, if the second equation is multiplied through by f 2 it
can then be integrated directly to give

f 2 dv

ds
= h

where h is a constant of integration. An explicit form for a geodesic then follows,
since by eqn (3.33)

f 4 dv2 = h2 ds2 = h2[(f ′2 + g′2) du2 + f 2 dv2],
and then, re-arranging,

f 2(f 2 − h2) dv2 = h2(f ′2 + g′2) du2,

so that

v = C ±
∫

h
√

f ′2 + g′2

f
√

f 2 − h2
du (3.74)

in terms of two constants of integration C, h. For example, in the case of a circular
cylinder, with f (u) = a, and g(u) = cu, where a and c are constants, we see that the
relationship between u and v must be linear. It follows that geodesics on a circular
cylinder are helices.

If we put u1 = u, u2 = v, the two eqns (3.71) may be combined into one by
assuming that the solution can be represented as a relation between the parameters u,
v. Since, with d/ds denoted by ()′,

dv

du
= v′

u′ and
d2v

du2
= d

du

(
v′

u′

)
1

u′ = u′v′′ − v′u′′

u′3 ,

substituting for u′′ and v′′ from eqn (3.71) leads directly to

d2v

du2 − �1
22

(
dv

du

)3

+ (�2
22 − 2�1

12)

(
dv

du

)2

+ (2�2
12 − �1

11)

(
dv

du

)
+ �2

11 = 0. (3.75)

For a planar surface on which we take surface co-ordinates to be rectangular carte-
sians u = X, v = Y , the Christoffel symbols are all zero, and eqn (3.75) reduces to

d2Y

dX2
= 0,

with straight line solutions Y = mX + C as expected.
Another, non-intrinsic, feature of geodesics arises when we consider their curvature

as viewed from E3. For any curve on the surface with points r = r(u1, u2), there are
unit tangent vectors

dr
ds

= ∂r
∂u1

du1

ds
+ ∂r

∂u2

du2

ds
= a1

du1

ds
+ a2

du2

ds
. (3.76)

Differential geometry of surfaces in E3 57

Further differentiation gives

d2r
ds2

= a1
d2u1

ds2
+ a2

d2u2

ds2
+ ∂a1

∂u1

(
du1

ds

)2

+
(

∂a1

∂u2
+ ∂a2

∂u1

)(
du1

ds

)(
du2

ds

)
+ ∂a2

∂u2

(
du2

ds

)2

= aβ

d2uβ

ds2
+ ∂aβ

∂uγ

(
duβ

ds

)(
duγ

ds

)
,

and hence, with d/ds denoted by ()′,

r′′ · aα = aα · aβuβ′′ + aα · ∂aβ

∂uγ
uβ′uγ ′ = aαβ

d2uβ

ds2
+ [βγ, α]duβ

ds

duγ

ds
, (3.77)

using eqns (3.17) and (3.49).
Comparison with eqn (3.70) now shows that for a geodesic

r′′ · aα = 0, α = 1, 2, (3.78)

which implies that the direction of r′′ is orthogonal to the tangent plane to the surface
at any point. Recalling the significance of r′′ from Chapter 2, we deduce that geodesics
have the property that the principal normal is always in the same direction as the normal
to the surface.

3.5 Surface Frenet equations and geodesic curvature

In Chapter 2 we looked at the curvature and torsion of a space-curve and derived the
Serret-Frenet equations. Now we discuss a general curve on a surface on which u1 and
u2 are surface co-ordinates. The curve is given by

uα = uα(s)

in terms of arc-length as parameter, and the unit surface contravariant tangent vector
λα at any point satisfies

aαβλαλβ = 1 (3.79)

by eqn (3.36). We can apply intrinsic differentiation to this equation, bearing in mind
that the aαβs are effectively constant with respect to intrinsic differentiation, because
of eqns (2.33) and (3.60).

We obtain

aαβλα δλβ

δs
+ aαβ

δλα

δs
λβ = 2aαβλα δλβ

δs
= 0, (3.80)

using the symmetry of aαβ . Thus by eqn (3.39) δλβ/δs are the contravariant compo-
nents of a surface vector which is orthogonal to λα .

Now let a contravariant unit vector parallel to δλα/δs be να . We choose the sense
of να such that

εαβλανβ = 1, (3.81)

58 Basic Structured Grid Generation

or, equivalently,
να = εβαλβ, (3.82)

in terms of the associated covariant components λβ , where lowering the index is
represented here by

λα = aαβλβ

rather than eqn (1.53). To verify eqn (3.82), note that, using eqn (3.45),

εαβλανβ = εαβλα(εγβλγ) = δγ
α λαλγ = λγ λγ = aβγ λβλγ = 1 (3.83)

and
aαβλανβ = aαβλα(εγβλγ) = εγβλβλγ = 0,

due to the symmetric and skew-symmetric natures of λβλγ and εγβ , respectively.
Similarly we can verify that

λα = −εβανβ. (3.84)

We now write
δλα

δs
= κgν

α, (3.85)

where the scalar magnitude κg is called the geodesic curvature of the curve at the point
in question.

Because of eqns (2.33) and (3.62), εαβ also acts as a constant for the purposes of
intrinsic differentiation. Hence eqn (3.82) yields

δνα

δs
= εβα δλβ

δs
= κgε

βανβ,

using the associated covariant components of the surface vector quantities δλ/δs, ν in
eqn (3.85). So, from eqn (3.84), we obtain

δνα

δs
= −κgλ

α. (3.86)

Equations (3.85) and (3.86) constitute the surface-Frenet equations for curves on
surfaces.

For an actual geodesic curve, eqn (3.72) shows that δλα/δs = 0. This means that
the geodesic curvature of a geodesic is zero.

The surface-Frenet equations may be expressed, using the surface form of eqn (2.32),
as

dλα

ds
+ �α

βγ λβ duγ

ds
= dλα

ds
+ �α

βγ λβλγ = κgν
α,

dνα

ds
+ �α

βγ νβ duγ

ds
= dνα

ds
+ �α

βγ νβλγ = −κgλ
α. (3.87)

An explicit formula for κg may be obtained by multiplying the first of these equations
through by εναλν , implying summation over α and ν, and making use of eqn (3.83).

Differential geometry of surfaces in E3 59

We obtain

κg = εναλν dλα

ds
+ ενα�α

βγ λνλβλγ

= √
a

(
eνα

duν

ds

d2uα

ds2
+ eνα�α

βγ

duν

ds

duβ

ds

duγ

ds

)

= √
a

(
du

ds

d2v

ds2
− dv

ds

d2u

ds2
+ �2

βγ

du

ds

duβ

ds

duγ

ds
− �1

βγ

dv

ds

duβ

ds

duγ

ds

)
.

Hence
κg√
a

= du

ds

d2v

ds2
− dv

ds

d2u

ds2
+ �2

11

(
du

ds

)3

− �1
22

(
dv

ds

)3

+(2�2
12 − �1

11)

(
du

ds

)2 (dv

ds

)
− (2�1

12 − �2
22)

(
dv

ds

)2 (du

ds

)
. (3.88)

Example: We calculate the geodesic curvature of a ‘circle of latitude’ (a parallel)
θ = θ0 of a sphere of radius a with surface co-ordinates given by spherical polars
θ, φ.

Take u1 = θ , u2 = φ, with the usual background cartesian co-ordinates defining the
spherical surface in the parametric form y1 = x = a sin θ cos φ, y2 = y = a sin θ sin φ,
y3 = z = a cos θ . The circle of latitude has radius r = a sin θ0, and arc-length s can
be measured from some given meridian as s = rφ. Hence this curve is uα = uα(s),
where

u1 = θ0, u
2 = s/r = s/(a sin θ0).

Now we have the unit tangent λα , with

λ1 = du1

ds
= 0, λ2 = du2

ds
= 1

a sin θ0
.

By eqn (3.17), a11 = (∂x
∂θ

)2 +
(

∂y
∂θ

)2 + (∂z
∂θ

)2 = a2, a12 = a21 = 0, a22 = a2 sin2 θ ,
similarly, and the only non-vanishing Christoffel symbols are, from eqn (3.49), [22, 1] =
[12, 2] =[21, 2] = a2 sin θ cos θ , and �1

22 = �2
12 = �2

21 = sin θ cos θ . Hence the first
of eqns (3.87) becomes, with α = 1, 2,

0 + (sin θ0 cos θ0)

(
1

a sin θ0

)2

= κgν
1 and 0 + 0 = κgν

2.

Thus ν2 = 0, and since ν is a unit vector, we have aαβνανβ = a2(ν1)(ν1) = 1.
Hence ν1 = a−1, and

κg = a−1 cot θ0.

Of course, viewed from E3, a parallel is just a circle with curvature κ = r−1 =
a−1cosecθ0. Note that the ‘equator’, the parallel with θ = π/2, is a geodesic with
geodesic curvature zero.

60 Basic Structured Grid Generation

3.6 The second fundamental form
The basic geometry of surfaces in E3 depends on two quadratic differential forms,
the first of which generates the metrical properties considered above. The study of the
shape of a surface S as viewed from the enveloping space gives rise to another quadratic
differential form bαβ duα duβ in the differentials of surface co-ordinates u1, u2. We
consider an arbitrary surface curve C on S passing through a point P at which the
curve has tangent vector t = dr/ds (in the direction in which the arc-length parameter
s is increasing) and principal normal n. Then

dt
ds

= κn = κ, (3.89)

where κ is the curvature of C at P and κ is the curvature vector.
If N is a unit normal to the surface at P, we can decompose κ into

κ = κN + κg, (3.90)

where κN is in the direction of N, κN (called the normal curvature of C at P) is the
component κ ·N, and κg is tangential to the surface at P. Since N ·t = 0, differentiation
with respect to s as parameter gives

N · dt
ds

+ dN
ds

· t = N · (κN + κg) + dN
ds

· dr
ds

= κN + dN
ds

· dr
ds

= 0,

which gives

κN = −dN
ds

· dr
ds

= − ∂N
∂uα

duα

ds
· aβ

duβ

ds
= bαβ

duα

ds

duβ

ds
= bαβ duα duβ

ds2
, (3.91)

where it is convenient to make bαβ explicitly symmetric, with

bαβ = −1

2

(
∂N
∂uα

· aβ + ∂N
∂uβ

· aα

)
. (3.92)

We can also write
κN = bαβλαλβ, (3.93)

where λα represents a unit surface contravariant tangent vector to C.
Note that the sign of κN does not depend on the orientation of C (the direction

in which s is measured), but it does depend on the direction in which the surface
normal N is taken.

Since N is normal to the surface tangent vectors, differentiating N · aα = 0 with
respect to uβ gives

∂N
∂uβ

· aα = −N · ∂aα

∂uβ
= −N · ∂2r

∂uα∂uβ
,

which we may note is in fact already symmetric in α and β. Thus an alternative
expression for bαβ is

bαβ = N · ∂2r
∂uα∂uβ

. (3.94)

Differential geometry of surfaces in E3 61

The second fundamental form bαβ duα duβ may be written, putting u1 = u, u2 =
v, as

L(du)2 + 2M du dv + N(dv)2,

where

b11 = L = N · ∂2r
∂u2

, b12 = b21 = M = N · ∂2r
∂u∂v

, b22 = N = N · ∂2r
∂v2

. (3.95)

If we define the direction of N in the usual right-handed sense with respect to the
tangent vectors a1, a2, we can write

N = a1 × a2

|a1 × a2| = 1√
a

a1 × a2, (3.96)

by eqn (3.25). Hence eqns (3.95) can be written as scalar triple products

L = 1√
a

[
∂2r
∂u2

,
∂r
∂u

,
∂r
∂v

]
, M = 1√

a

[
∂2r

∂u∂v
,

∂r
∂u

,
∂r
∂v

]
, N = 1√

a

[
∂2r
∂v2

,
∂r
∂u

,
∂r
∂v

]
(3.97)

or as determinants, for example, with cartesian co-ordinates x, y, z,

L = 1√
a

∣∣∣∣∣∣∣∣∣∣∣∣

∂2x

∂u2

∂2y

∂u2

∂2z

∂u2

∂x

∂u

∂y

∂u

∂z

∂u

∂x

∂v

∂y

∂v

∂z

∂v

∣∣∣∣∣∣∣∣∣∣∣∣
, (3.98)

and similarly for M and N .

Exercise 9. For the surface of revolution defined by eqn (3.32) show that

L = (f ′2(u) + g′2(u))
− 1

2 [f ′(u)g′′(u) − f ′′(u)g′(u)], M = 0,

N = (f ′2(u) + g′2(u))
− 1

2 f (u)g′(u). (3.99)

The second fundamental form is directly related to the distance, to second order
in small quantities, between points on the surface in a neighbourhood of the surface
point P and the tangent plane at P. The increment in position vector from P with
co-ordinates (u, v) to a neighbouring point Q(u + δu, v + δv) is, by Taylor Series
expansion,

δr = r(u + δu, v + δv) − r(u, v)

= a1δu + a2δv + 1

2

{
∂2r
∂u2

(δu)2 + 2
∂2r

∂u∂v
δu∂v + ∂2r

∂v2
(δv)2

}

to second order in δu, δv. The distance between Q and the tangent plane through P
is given by projecting δr in the direction of the unit normal N to the tangent plane,

62 Basic Structured Grid Generation

which gives

N · δr = 1

2
N ·
{

∂2r
∂u2

(δu)2 + 2
∂2r

∂u∂v
δuδv + ∂2r

∂v2
(δv)2

}

= 1

2

{
L(δu)2 + 2Mδuδv + N(δv)2

}
= 1

2
bαβδuαδuβ, (3.100)

since N is perpendicular to the surface tangent vectors a1 and a2. The sign of the
resulting expression will be different for points on S lying on different sides of the
tangent plane. So if the second fundamental form is positive definite or negative defi-
nite, which is the case if det(bαβ) > 0 at P, all points in the immediate neighbourhood
of P will lie on the same side of the tangent plane. Such points P may be called elliptic.
But if det(bαβ) < 0, there will be points in a neighbourhood of P lying on different
sides of the tangent plane, and P may be called hyperbolic.The third possibility is that
the second fundamental form is positive or negative semi-definite, which occurs when
det(bαβ) = 0. This is the case, for example, for a circular cylinder, all points on the
surface of which may be called parabolic.

Example: A surface which exhibits all three types of points is the torus, the surface
(Fig. 3.4) formed by revolving the circle

(x − b)2 + z2 = a2

in the Oxz plane, where b > a, about the z-axis (Fig. 3.5). This is a surface of
revolution of the form eqn (3.32), with f (u) = b + a cos u, and g(u) = a sin u.
Substituting into eqns (3.99), we obtain

L = a, M = 0, N = (b + a cos u) cos u.

Hence det(bαβ) = LN − M2 = a cos u(b + a cos u). Since (b + a cos u) > 0 for all
u, it follows that the sign of det(bαβ) is the same as the sign of cos u. Hence there are

Elliptic points

Parabolic points

Hyperbolic points

x

y

z

O

Fig. 3.4 Torus.

Differential geometry of surfaces in E3 63

z

xO

a u
b

Fig. 3.5 Circle of radius a to be rotated around Oz to form torus.

elliptic points where −π/2 < u < π/2, hyperbolic points where π/2 < u < 3π/2,
and a curve of parabolic points where u = ±π/2.

If a surface curve C is a normal section, obtained from the intersection of S with a
plane at P containing N, then κg = 0 and κ = κN , given by eqns (3.91) and (3.16) as
the ratio of quadratic forms

κN = bαβ duα duβ

aγ δ duγ duδ
= L(du)2 + 2M du dv + N(dv)2

E(du)2 + 2F du dv + G(dv)2
. (3.101)

If C is not a normal section, with principal normal n making an angle φ with the
surface normal N, then taking the scalar product of eqn (3.90) with N gives Meusnier’s
Theorem

κ cos φ = κN, (3.102)

which, expressed in terms of the radius of curvature ρ of C and the radius of curvature
ρN of the normal section with the same surface tangent at P, is equivalent to

ρ = ρN cos φ. (3.103)

If C is a geodesic, we know from eqn (3.78) that κ has the direction of N. Hence
for a geodesic, as for a normal section, κg = 0; a geodesic through a point in a certain
direction has the same curvature as a normal section through that point in the same
direction. In the case of a spherical surface, normal sections at a point on the surface
are the same as geodesics (great circles), but this is not generally the case.

In general, it can be shown that the magnitude κg of κg is the geodesic curvature
defined in the last section. It gives a measure of how much the curvature of a surface
curve differs at a point from that of a geodesic curve in the same direction passing
through that point. By eqn (3.90) we have

κ2 = κ2
N + κ2

g . (3.104)

3.7 Principal curvatures and lines of curvature

From eqn (3.101) the curvature κN of a normal section at a point P satisfies

(bαβ − κNaαβ) duα duβ = 0,

64 Basic Structured Grid Generation

or, in terms of the surface tangent vector λα = duα/ds where the normal section cuts
the surface,

(bαβ − κNaαβ)λαλβ = 0, (3.105)

that is,

(b11 − κNa11) + 2(b12 − κNa12)

(
dv

du

)
+ (b22 − κNa22)

(
dv

du

)2

= 0, (3.106)

writing (u, v) instead of (u1, u2). We may look for stationary values of κN as the
directional parameter dv/du varies (or as the plane of the normal section at P is rotated
about the normal N). Differentiation of eqn (3.106) with respect to this parameter,
assuming that κN is stationary, gives

(b12 − κNa12) + (b22 − κNa22)

(
dv

du

)
= 0,

and it follows, substituting this result in eqn (3.106), that we also have

(b11 − κNa11) + (b12 − κNa12)

(
dv

du

)
= 0.

The last two equations may be summarized in the form

(bαβ − κNaαβ)λβ = 0, α = 1, 2. (3.107)

This is a set of two homogeneous linear equations in the unknown quantities λα ,
with non-trivial solutions if κN satisfies the quadratic equation

det(bαβ − κNaαβ) = 0, (3.108)

which may be expressed as

0 = (b11 − κNa11)(b22 − κNa22) − (b12 − κNa12)
2

= (b11b22 − b2
12) − κN(a11b22 + a22b11 − 2a12b12) + κ2

N(a11a22 − a2
12).

Using eqns (3.24) and (3.30), we obtain

0 = det(bαβ) − aκN(a22b22 + a11b11 + 2a12b12) + aκ2
N.

In other words, the stationary curvatures are the roots of the quadratic equation

κ2
N − aαβbαβκN + 1

a
det(bαβ) = 0. (3.109)

The roots must give the maximum and minimum values of κN :

κmax,min = 1

2
aαβbαβ ±

√(
1

2
aαβbαβ

)2

− 1

a
(b11b22 − b2

12). (3.110)

These are called the principal curvatures of the surface at P. We can also define the
mean curvature of the surface

κm = 1
2 (κmax + κmin) = 1

2aαβbαβ, (3.111)

Differential geometry of surfaces in E3 65

as well as the Gaussian curvature

κG = κmaxκmin = 1

a
(b11b22 − b2

12) = det(bαβ)

det(aαβ)
= LN − M2

EG − F 2
. (3.112)

Exercise 10. Show that

κm = EN − 2FM + GL

2(EG − F 2)
. (3.113)

Exercise 11. For the surface z = f (x, y), with covariant metric tensor components
given by eqn (3.23), show that the unit surface normal, the coefficients of the second
fundamental form, and the Gaussian curvature, are given by

N =
(

−∂f

∂x
i − ∂f

∂y
j + k

)[
1 +

(
∂f

∂x

)2

+
(

∂f

∂y

)2
]− 1

2

, (3.114)

L = 1√
a

∂2f

∂x2
, M = 1√

a

∂2f

∂x∂y
, N = 1√

a

∂2f

∂y2
, (3.115)

where a =
(

1 +
[

∂f
∂x

]2 +
[

∂f
∂y

]2
)

, and

κG =
[(

∂2f

∂x2

)(
∂2f

∂y2

)
−
(

∂2f

∂x∂y

)2][
1 +

(
∂f

∂x

)2

+
(

∂f

∂y

)2
]−2

. (3.116)

For elliptic points, as defined in the last section, κmax and κmin have the same
sign, and κG is positive, whereas for hyberbolic points κmax and κmin have oppo-
site signs and κG is negative. At parabolic points either κmax or κmin is zero, and
so is κG.

If the surface tangents corresponding to these curvatures are λα
max and λα

min,
eqn (3.107) gives

bαβλβ
max = κmaxaαβλβ

max and

bαβλ
β

min = κminaαβλ
β

min.

Hence

(κmax − κmin)aαβλα
maxλ

β

min = κmaxaαβλβ
maxλ

α
min − κminaαβλα

maxλ
β

min

= bαβλβ
maxλ

α
min − bαβλα

maxλ
β

min = 0,

where the symmetry of both aαβ and bαβ has been used. It follows that, provided
κmax �= κmin,

aαβλα
maxλ

β

min = 0. (3.117)

We see from eqn (3.47) that the corresponding surface vectors λmax, λmin must
be orthogonal to each other, except when κmax = κmin, in which case all normal
sections through P have the same curvature. The two orthogonal directions are called

66 Basic Structured Grid Generation

the principal directions at P. Surface curves to which the tangents are everywhere in
the principal directions are called lines of curvature.

The case λmax = λmin arises at points where the components bαβ are proportional
to aαβ , in other words there is a constant k such that bαβ = kaαβ for all α, β ranging
over the values 1, 2. In this case the normal curvature at the point must be equal to
k for all normal sections, by eqn (3.101). Such points (for example, all points on the
surface of a sphere) are called umbilics.

Note that from bαβ we can derive the associated mixed second-order surface tensor
bα
γ = aαβbγβ , raising one index by the application of the surface metric tensor aαβ .

Equations (3.111) and (3.112) can now be written as

κm = 1
2bα

α = 1
2 (b1

1 + b2
2) and κG = det(bα

β) = b1
1b

2
2 − b1

2b
2
1. (3.118)

If we assume that we can choose our surface co-ordinates uα such that the surface
co-ordinate curves coincide with the lines of curvature, certain simplifications occur.
Firstly, since the lines of curvature are orthogonal to each other, we have a12 = F =
0, by eqn (3.41). Secondly, writing the principal curvatures as κa and κb (without
specifying which is the maximum or minimum), eqns (3.107) become, taking the unit
vector λα in the u1-direction, where the principal curvature is κa and λ1 = 1/

√
a11,

λ2 = 0 by eqn (3.40),

(b11 − κaa11)
1√
a11

= 0 and (b21 − κaa21)
1√
a11

= 0.

Hence we also have b12 = b21 = M = 0, and the principal curvatures are

κa = b11

a11
= L

E
and κb = b22

a22
= N

G
(3.119)

similarly.
Example: For the surface of revolution as given by eqn (3.32), we have already seen

that F = M = 0. Hence the co-ordinate curves are also lines of curvature in that case.
From eqns (3.33) and (3.99) we immediately obtain the principal curvatures

κa = (f ′2 + g′2)−
3
2 (f ′g′′ − f ′′g′) and κb = (f ′2 + g′2)−

1
2 g′

f
.

More generally, consider a unit directional vector µα making an angle ψ with the
κa line of curvature. Then

µ1 = 1√
a11

cos ψ and µ2 = 1√
a22

sin ψ

making use of eqns (3.39) and (3.40). The curvature of a normal section in this direction
is, by eqn (3.93), given by

κ = bαβµαµβ = b11

a11
cos2 ψ + b22

a22
sin2 ψ = κa cos2 ψ + κb sin2 ψ, (3.120)

and this is sometimes referred to as Euler’s Theorem.

Differential geometry of surfaces in E3 67

3.8 Weingarten, Gauss, and Gauss-Codazzi equations

Here we investigate the spatial derivatives of the surface covariant base vectors aα

and the surface normal N. Since N is a unit vector, we have N · N = 1, and partial
differentiation with respect to uα gives immediately

N · ∂N
∂uα

= 0,

which implies that the vectors ∂N/∂uα lie in the tangent plane and must be linear
combinations of a1, a2. We have already seen in eqn (3.91) that a definition of bαβ was

bαβ = − ∂N
∂uα

· aβ .

Consequently, if we write
∂N
∂uα

= cγ
α aγ

for some set of coefficients c
γ
α , taking scalar products of both sides with aβ gives

−bαβ = cγ
αaβγ .

It follows, using eqn (3.29), that

cγ
α = −bαβaβγ ,

and hence
∂N
∂uα

= −bαβaβγ aγ = −bγ
α aγ , α = 1, 2, (3.121)

which are Weingarten’s equations.

Exercise 12. Show that in an alternative notation Weingarten’s equations can be
written:

∂N
∂u

= MF − LG

EG − F 2
a1 + LF − ME

EG − F 2
a2,

∂N
∂v

= NF − MG

EG − F 2
a1 + MF − NE

EG − F 2
a2.

We have previously noted that the derivatives of the surface covariant base vectors
with respect to the surface co-ordinates are not themselves surface vectors. However,
recalling that ∂aα/∂uβ = ∂2r/∂uα∂uβ , it may be seen that eqns (3.50) and (3.94)
immediately provide the required projections of ∂aα/∂uβ in the directions a1, a2, and
N. Thus, as may be verified by taking scalar products of both sides of the following
with aµ and N,

∂aα

∂uβ
= �

γ
αβaγ + bαβN, (3.122)

which is Gauss’s formula.

68 Basic Structured Grid Generation

Further important equations may be obtained by considering the consistency of
different representations of Gauss’s formula through the equations

∂

∂uγ

(
∂2r

∂uα∂uβ

)
= ∂

∂uβ

(
∂2r

∂uα∂uγ

)
,

or
∂

∂uγ

(
∂aα

∂uβ

)
= ∂

∂uβ

(
∂aα

∂uγ

)
,

which gives

0 = ∂

∂uγ
(�

µ
αβaµ + bαβN) − ∂

∂uβ
(�µ

αγ aµ + bαγ N)

=
(

∂�
µ
αβ

∂uγ
− ∂�

µ
αγ

∂uβ

)
aµ + �

µ
αβ

∂aµ

∂uγ
− �µ

αγ

∂aµ

∂uβ

+bαβ

∂N
∂uγ

− bαγ

∂N
∂uβ

+
(

∂bαβ

∂uγ
− ∂bαγ

∂uβ

)
N

=
(

∂�
µ
αβ

∂uγ
− ∂�

µ
αγ

∂uβ
+ �δ

αβ�
µ
δγ − �δ

αγ �
µ
δβ − bαβbγ δa

δµ + bαγ bβδa
δµ

)
aµ

+
(

�
µ
αβbµγ − �µ

αγ bµβ + ∂bαβ

∂uγ
− ∂bαγ

∂uβ

)
N,

using both eqns (3.121) and (3.122). Since a1, a2, and N are an independent set of
vectors, it follows that we must have both

∂�
µ
αβ

∂uγ
− ∂�

µ
αγ

∂uβ
+ �δ

αβ�
µ
δγ − �δ

αγ �
µ
δβ − bαβbγ δa

δµ + bαγ bβδa
δµ = 0 (3.123)

and

�
µ
αβbµγ − �µ

αγ bµβ + ∂bαβ

∂uγ
− ∂bαγ

∂uβ
= 0 (3.124)

for all possible values of the free (unrepeated) indices.
We can appeal to eqn (3.64) to re-write eqn (3.123) as

R
µ
.αβγ = bαγ bβδa

δµ − bαβbγ δa
δµ (3.125)

and multiplication through by aνµ (with summation over µ), using eqn (3.65), gives

Rναβγ = bαγ bβν − bαβbγ ν. (3.126)

Since we know that the curvature tensor Rναβγ has only one independent component
R1212, eqns (3.126) reduce to a single equation

R1212 = b11b22 − (b12)
2 = det(bαβ), (3.127)

and this is Gauss’s equation. It has the consequence that since R1212 is an intrin-
sic quantity, derivable entirely in terms of the covariant metric tensor aαβ , then

Differential geometry of surfaces in E3 69

so also must det(bαβ) be intrinsic. Moreover, by eqn (3.112) we obtain Gauss’s
result

κG = R1212

a
, (3.128)

which shows that the Gaussian curvature is also an intrinsic quantity, that is, it depends
only on the tensor components aαβ and their derivatives. Such a quantity is sometimes
referred to as a bending invariant, as it remains unchanged by any deformation of
the surface which involves pure bending without stretching, shrinking, or tearing, thus
preserving distances between points, angles between directions at a point, and the
coefficients of the first fundamental form and their derivatives.

Equation (3.124) may be written in the form

∂bαβ

∂uγ
− �µ

αγ bβµ − �
µ
βγ bαµ = ∂bαγ

∂uβ
− �

µ
αβbγµ − �

µ
βγ bαµ

by subtracting the same term from each side, which gives covariant derivative
identities

bαβ,γ = bαγ,β . (3.129)

This contains only two non-trivial results:

b11,2 = b12,1 and b21,2 = b22,1. (3.130)

These are the Codazzi equations(or the Mainardi-Codazzi equations).

Exercise 13. Express the Codazzi equations in the form

∂L

∂v
− ∂M

∂u
= L�1

12 + M(�2
12 − �1

11) − N�2
11

∂M

∂v
− ∂N

∂u
= L�1

22 + M(�2
22 − �1

12) − N�2
12. (3.131)

Exercise 14. Deduce from eqns (3.131) and (3.52) that when the co-ordinate curves
coincide with lines of curvature (so that F = M = 0), the Codazzi equations may be
expressed as

∂L

∂v
= 1

2

∂E

∂v

(
L

E
+ N

G

)
= 1

2

∂E

∂v
(κa + κb)

∂N

∂u
= 1

2

∂G

∂u

(
L

E
+ N

G

)
= 1

2

∂G

∂u
(κa + κb). (3.132)

To derive the Gauss equation in the form due to Brioschi, we start with eqns (3.97)
and

LN − M2 = 1

a

{[
∂2r
∂u2

,
∂r
∂u

,
∂r
∂v

] [
∂2r
∂v2

,
∂r
∂u

,
∂r
∂v

]
−
[

∂2r
∂u∂v

,
∂r
∂u

,
∂r
∂v

]2}

= 1

a

∣∣∣∣∣∣

ruu · rvv ruu · ru ruu · rv

ru · rvv ru · ru ru · rv

rv · rvv rv · ru rv · rv

∣∣∣∣∣∣−
∣∣∣∣∣∣

ruv · ruv ruv · ru ruv · rv

ru · ruv ru · ru ru · rv

rv · ruv rv · ru rv · rv

∣∣∣∣∣∣

 ,

70 Basic Structured Grid Generation

using properties of determinants and suffixes to denote partial differentiation. We
deduce that

κG = LN − M2

EG − F 2

= 1

a2

∣∣∣∣∣∣∣

ruu · rvv [11, 1] [11, 2]
[22, 1] E F

[22, 2] F G

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣

ruv · ruv [12, 1] [12, 2]
[12, 1] E F

[12, 2] F G

∣∣∣∣∣∣∣

= 1

a2

∣∣∣∣∣∣∣

ruu · rvv − ruv · ruv
1
2Eu Fu − 1

2Ev

Fv − 1
2Gu E F

1
2Gv F G

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣

0 1
2Ev

1
2Gu

1
2Ev E F

1
2Gu F G

∣∣∣∣∣∣∣

 ,

again using simple properties of determinants and eqns (3.51). Moreover, it is straight-
forward to verify that

ruu · rvv − ruv · ruv = − 1
2Evv + Fuv − 1

2Guu. (3.133)

Hence we obtain the equation

κG = 1

(EG − F 2)2

∣∣∣∣∣∣∣

Fuv − 1
2Evv − 1

2Guu
1
2Eu Fu − 1

2Ev

Fv − 1
2Gu E F

1
2Gv F G

∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣
0 1

2Ev
1
2Gu

1
2Ev E F

1
2Gu F G

∣∣∣∣∣∣∣

 . (3.134)

Exercise 15. Verify that when the co-ordinate curves are orthogonal (so that F = 0),
this formula may be expressed in the simpler form

κG = − 1√
EG

{
∂

∂u

(
1√
E

∂
√

G

∂u

)
+ ∂

∂v

(
1√
G

∂
√

E

∂v

)}
. (3.135)

The significance of the Gauss-Codazzi eqns (3.127) and (3.130) may be appre-
ciated by referring to the fundamental existence theorem for surfaces (not proved
here), which states that given two quadratic differential forms aαβ duα duβ and
bαβ duα duβ , such that aαβ duα duβ is positive definite and that the six coefficients
a11, a12, a22, b11,b12, b22 satisfy the Gauss-Codazzi equations, then there exists a sur-
face, uniquely determined apart from its precise position in space, whose first and
second fundamental forms are given respectively by these forms.

3.9 Div, grad, and the Beltrami operator on surfaces

The purpose of generating grids is normally to solve a physical problem represented by
a partial differential equation, the so-called hosted equation. In this section we present

Differential geometry of surfaces in E3 71

some formulas which are often useful in the transformation from cartesian to general
surface co-ordinates of some of the standard vector operators which appear in hosted
equations.

Here we begin by deriving the surface metric identity

∂

∂u1

(
a22a1 − a12a2√

a

)
+ ∂

∂u2

(−a12a1 + a11a11√
a

)
= 2κm

√
aN. (3.136)

The left-hand side, by eqn (3.31), is equal to

∂

∂u1
(
√

aa1) + ∂

∂u2
(
√

aa2). (3.137)

Exercise 16. Show that

a1 = 1√
a
(a2 × N) and a2 = 1√

a
(N × a1). (3.138)

It follows that eqn (3.137) becomes

∂

∂u1 (a2 × N) − ∂

∂u2 (a1 × N) =
[

∂

∂u1

(
∂r
∂u2

)
− ∂

∂u2

(
∂r
∂u1

)]

×N + a2 × ∂N
∂u1

− a1 × ∂N
∂u2

= 0 × N + a2 × (−b1βaβγ aγ) − a1 × (−b2βaβγ aγ),

using the Weingarten eqns (3.121). The resulting expression is

−b1βaβ1a2 × a1 + b2βaβ2a1 × a2 = bαβaβαa1 × a2 = 2κm

√
aN

with the aid of eqns (3.96) and (3.111), thus proving the identity.
Now suppose there exists a surface scalar function φ(u1, u2). The gradient of this

function is the surface vector

∇ϕ = aα ∂ϕ

∂uα
, (3.139)

where ∂ϕ/∂uα are the surface covariant components. Here we shall also be concerned
with the background cartesian components of ∇ϕ.

By eqn (3.138) we can write

∇ϕ = 1√
a

[
(a2 × N)

∂ϕ

∂u1
+ (N × a1)

∂ϕ

∂u2

]
. (3.140)

If we now assemble the three background cartesian components of (a2 × N) and
(N × a1) into the two column vectors of a 3 × 2 matrix C, we can write the cartesian
components of ∇ϕ as

(∇ϕ)i = 1√
a
Ciα

∂ϕ

∂uα
, (3.141)

with C represented as

C = ((a2 × N) (N × a1)
) = √

a(a1, a2), (3.142)

72 Basic Structured Grid Generation

or, more explicitly, making use of eqn (3.31), and writing (x, y, z) for cartesians, (u, v)

for surface co-ordinates, and partial derivatives xu, etc.

C = 1√
a

a22xu − a12xv −a12xu + a11xv

a22yu − a12yv −a12yv + a11yv

a22zu − a12zv −a12zu + a11zv

 . (3.143)

Equation (3.141) represents a non-conservative expression for ∇ϕ. Summation is
implied over α from 1 to 2, although we have been a little less than rigorous here in
not writing the first α as a superscript.

Re-writing eqn (3.136) as

∂

∂u1
(a2 × N) + ∂

∂u2
(N × a1) = 2κm

√
aN, (3.144)

it follows that we can express eqn (3.140) in the conservative form

∇ϕ = 1√
a

[
∂

∂u1
((a2 × N)ϕ) + ∂

∂u2
((N × a1)ϕ)

]
− 2κmϕN, (3.145)

giving cartesian components

(∇ϕ)i = 1√
a

∂

∂uα
(Ciαϕ) − 2κmϕNi. (3.146)

Although C is not a square matrix, we can effectively define an inverse, at least
on the left. To see this, consider the 3 × 2 (Jacobian) matrix J of the transformation
(u, v) → (x, y, z), given by

J =

 xu xv

yu yv

zu zv

 = (a1 a2

)
. (3.147)

Since eqn (3.27) implies the matrix identity(
a1
a2

) (
a1 a2

) =
(

1 0
0 1

)
,

or, otherwise expressed, J T
(

1√
a
C
)

= I2, the 2 × 2 identity matrix, it follows that C

has a left inverse

C−1 = 1√
a
J T = 1√

a

(
xu yu zu

xv yv zv

)
, (3.148)

or (C−1)αi = (a)
− 1

2 ∂yi/∂uα .
We can now, by multiplication on the left, invert eqn (3.141) to obtain

∂φ

∂uα
= √

a(C−1)αi(∇ϕ)i (3.149)

with summation over i from 1 to 3. This equation in fact gives the general relationship
between the covariant components and the background cartesian components of a
surface vector.

Differential geometry of surfaces in E3 73

Exercise 17. Making use of eqn (3.26), show that if A is a surface vector with covari-
ant components given by the 2×1 column vector Ã (with elements Aα) and background
cartesian components given by the 3 × 1 column vector A (with elements Ai), then

Ã = √
aC−1A (3.150)

or, equivalently,
Aα = Ai∂yi/∂uα. (3.151)

Exercise 18. Show by direct matrix multiplication using eqns (3.143) and (3.147) that

C

(
1√
a
J T

)
= I3 − NNT , (3.152)

where here N stands for the column vector of cartesian components of the surface
normal vector and I3 is the unit 3 × 3 matrix, and hence that 1√

a
J T is not a right

inverse for C.

Now consider a surface vector field V(u1, u2), defined at all points of the surface and
having the property that it is everywhere tangential to the surface. Then the divergence
of V is given by an expression analogous to eqn (1.134):

∇ · V = aα · ∂V
∂uα

= a1 · ∂V
∂u1

+ a2 · ∂V
∂u2

= 1√
a

[
(a2 × N) · ∂V

∂u1
+ (N × a1) · ∂V

∂u2

]
(3.153)

= 1√
a
Ciα

∂Vi

∂uα
(3.154)

in terms of the background cartesian components Vi of V. (Here the index i is summed
from 1 to 3, while α is summed from 1 to 2.) These expressions are non-conservative.
A conservative form follows by using eqn (3.144):

∇ · V = 1√
a

[
∂

∂u1
((a2 × N) · V) + ∂

∂u2
((N × a1) · V)

]
− 2κmN · V,

but now the last term vanishes because V is a tangential vector. Hence we have

∇ · V = 1√
a

[
∂

∂u1
((a2 × N) · V) + ∂

∂u2
((N × a1) · V)

]
(3.155)

= 1√
a

∂

∂uα
(CiαVi). (3.156)

For any surface scalar field ϕ(u1, u2), the gradient ∇ϕ must be a surface vector
field, according to eqn (3.139). Thus we can combine the results of eqns (3.141) and
(3.156) to give a formula for the Laplacian ∇2ϕ = ∇ · ∇ϕ:

∇2ϕ = 1√
a

∂

∂uα

(
1√
a
CiαCiβ

∂ϕ

∂uβ

)
. (3.157)

74 Basic Structured Grid Generation

In fact, as the Laplacian operator associated with a particular surface, this second-
order differential operator is known as the Beltrami operator of the surface, and
given the special notation �B . Since the 2 × 2 matrix represented by CiαCiβ , using
eqn (3.142), is

CT C = a

(
(a1)T

(a2)T

) (
a1 a2

) = a

(
a11 a12

a12 a22

)
, (3.158)

we have
CiαCiβ = aaαβ. (3.159)

To make this identity appear consistent, we should have written the index α as a
superscript in the definition of C in eqn (3.141). However, a consistent form for the
Beltrami operator is now given, from eqn (3.157), by

�Bϕ = 1√
a

∂

∂uα

(√
aaαβ ∂ϕ

∂uβ

)
, (3.160)

which has precisely the same form as eqn (1.147). This can be written in terms of the
covariant metric tensor as

�Bϕ = 1√
a

 ∂

∂u1

a22

∂ϕ

∂u1
− a12

∂ϕ

∂u2√
a

+ ∂

∂u2

a11

∂ϕ

∂u2
− a12

∂ϕ

∂u1√
a

 , (3.161)

which leads to the identities

�Bu = 1√
a

{
∂

∂u

(
a22√

a

)
− ∂

∂v

(
a12√

a

)}
, �Bv = 1√

a

{
∂

∂v

(
a11√

a

)
− ∂

∂u

(
a12√

a

)}
,

writing uα as (u, v).
Using eqns (3.56) and (3.61), we also have

�Bϕ = ∂

∂uα

(
aαβ ∂ϕ

∂uβ

)
+ �γ

γαaαβ ∂ϕ

∂uβ

= aαβ ∂2ϕ

∂uα∂uβ
− (aδα�

β
δα + aδβ�α

δα)
∂ϕ

∂uβ
+ �γ

γαaαβ ∂ϕ

∂uβ

= aαβ ∂2ϕ

∂uα∂uβ
− aδα�

β
δα

∂ϕ

∂uβ
= aαβ

(
∂2ϕ

∂uα∂uβ
− �δ

αβ

∂ϕ

∂uδ

)
(3.162)

after some manipulation of indices.

Exercise 19. Show, using eqn (3.57), that �Bϕ = aαβϕ,αβ in terms of covariant
derivatives.

If we consider the special case ϕ = uγ , we obtain

�Buγ = −aδα�
β
δαδ

γ
β = −aδα�

γ
δα, (3.163)

which may be compared directly with eqn (1.111). Hence we can write

�Bϕ = aαβ ∂2ϕ

∂uα∂uβ
+ (�Buβ)

∂ϕ

∂uβ
. (3.164)

Differential geometry of surfaces in E3 75

We can establish a connection with the Gauss Formula, eqn (3.122), if we multiply
that equation through by aαβ to get

aαβ ∂2r
∂uα∂uβ

= aαβ�
γ
αβ

∂r
∂uγ

+ aαβbαβN.

Hence, by eqns (3.111) and (3.163),

aαβ ∂2r
∂uα∂uβ

+ (�Buγ)
∂r

∂uγ
= 2κmN, (3.165)

which may be written, in view of (3.164), as the identity

�Br = 2κmN. (3.166)

However, if we use the expression eqn (3.161) for �B , we see that we have again
derived the surface metric identity (3.136).

4

Structured grid
generation – algebraic methods

4.1 Co-ordinate transformations
Boundary-value problems of physics and engineering may usually be expressed in
terms of partial differential equations (the hosted equations) to be solved for certain
field quantities as functions of space and possibly time over some region of space,
subject to certain specified boundary (and possibly initial) conditions. When the equa-
tions are expressed in terms of cartesian co-ordinates, a standard numerical method of
solution is through finite differences, where a uniform rectangular grid of regularly-
arranged points is constructed to cover the physical region of space (more precisely,
its mathematical representation) and the partial derivatives in the equations are approx-
imated in terms of the differences between values of the field quantities at adjacent
points of the grid. The resulting equations may then in principle be solved by algebraic
methods.

The essential ideas of this section may be illustrated in two dimensions, with the
Oxy plane divided into equal rectangles with sides of length h, k parallel to the axes
(Fig. 4.1), and grid points x = ih, y = jk, with i,j taking integer values. Denoting
values of a field variable f (x, y) at the i, j grid-point by fi,j , we typically approximate
first derivatives at this point by either forward differences

∂f

∂x
� 1

h
(fi+1,j − fi,j), (4.1)

or backward differences
∂f

∂x
� 1

h
(fi,j − fi−1,j), (4.2)

each with ‘first-order’ accuracy, or, with greater (‘second-order’) accuracy, by central
differences

∂f

∂x
� 1

2h
(fi+1,j − fi−1,j), (4.3)

and similarly for ∂f/∂y. For second derivatives we have

∂2f

∂x2
� 1

h2
(fi+1,j − 2fi,j + fi−1,j), (4.4)

∂2f

∂y2
� 1

k2
(fi,j+1 − 2fi,j + fi,j−1), (4.5)

Structured grid generation – algebraic methods 77

O
x

y

(j −1)k

(i−1)h

i−1,j−1 i+1,j−1i,j−1

i−1,j+1 i+1,j+1i,j+1

i−1,j i+1,ji,j

(i+1)h

(j +1)k

jk

ih

Fig. 4.1 Rectangular array of points for finite differences.

and
∂2f

∂x∂y
� 1

4hk
(fi+1,j+1 + fi−1,j−1 − fi+1,j−1 − fi−1,j+1), (4.6)

all with second-order accuracy, as may be easily verified using Taylor Series expan-
sions. A variety of methods will generally be available to solve the resulting algebraic
equations for the grid-point values of the field quantities, provided that the boundary
or initial conditions can be incorporated in some way. However, this may not be an
easy task, particularly if the boundaries are not rectangular.

For boundary-value problems with relatively simple, non-rectangular boundaries,
other co-ordinate systems than cartesian may suggest themselves. To take a basic
example in two dimensions, consider the curved area bounded by the inequalities
r1 � r � r2, 0 � θ � α in terms of polar co-ordinates r , θ (Fig. 4.2). The mapping

x = r cos θ, y = r sin θ, (4.7)

gives a 1-1 correspondence between points (r, θ) in a rectangular region in which
r and θ are treated like cartesian co-ordinates and points (x, y) in ‘physical space’
(Fig. 4.3). One could imagine a sort of elastic sheet occupying the physical region

a

q=0

q=
a

y

x
O

r1 r2

Fig. 4.2 Generating grids using a polar co-ordinate system.

78 Basic Structured Grid Generation

x

y

O

O

a

r1

r1 r2 r

r2

q

a

Physical plane

Computational plane

Fig. 4.3 Mapping a curved region onto a rectangle.

which is deformed by stretching, compression, and shearing into a rectangular shape
in ‘computational space’ (the r , θ plane) under the (inverse) mapping

r =
√

x2 + y2, θ = tan−1(y/x). (4.8)

Boundary conditions specified on the curved boundaries r = r1, r = r2 of physical
space are then mapped to boundary conditions on straight boundaries in computational
space, and a partial differential equation may be conveniently solved using a uniform
rectangular grid in computational space. Solution values at a grid-point in compu-
tational space may then be associated with the corresponding grid-point in physical
space.

The price to be paid for the geometric simplification is that the hosted equation,
initially expressed in terms of cartesian co-ordinates, has itself to be transformed to
the new co-ordinates, and this may result in a more complicated equation to solve. For
example, as is well-known, Laplace’s equation in two dimensions,

∂2ϕ

∂x2 + ∂2ϕ

∂y2 = 0

becomes
∂2ϕ

∂r2
+ 1

r

∂ϕ

∂r
+ ∂2ϕ

∂θ2
= 0

in polar co-ordinates, which has an extra term, although it is clearly not much more
complicated in this case.

The mapping eqn (4.7) may be normalized by a further transformation of co-ordinates
from r , θ to ξ , η, where

ξ = r − r1

r2 − r1
, η = θ

α
, (4.9)

which maps the rectangle in Fig. 4.3 into a unit square 0 � ξ � 1, 0 � η � 1 in the
ξ , η plane. Then eqns (4.7) become

x = [(r2 − r1)ξ + r1] cos(αη), y = [(r2 − r1)ξ + r1] sin(αη), (4.10)

which now maps a unit square in the new computational space onto the original curved
physical region. Moreover, a uniform rectangular grid in the unit square, where incre-
ments in ξ and η along grid lines between adjacent grid-points are constant, maps to

Structured grid generation – algebraic methods 79

a grid in the physical region where increments in r and θ (or ξ and η) along grid
lines θ = const . and grid curves r = const ., respectively, are constant. This method of
generating a grid in the physical region, using a single analytical transformation (4.10)
or a combination of transformations (4.9) and (4.7), may be regarded as one form of
an algebraic method of grid generation.

Note, however, that eqns (4.9) are not the only way to transform the rectangle in
Fig. 4.3 into a unit square. Another one is given by the equations

ξ = ln(r/r1)

ln(r2/r1)
, η = θ

α
. (4.11)

It turns out that this transformation satisfies the requirements of one of the funda-
mental elliptic grid generation methods, as discussed in the first section of the next
chapter, namely that each of ξ , η satisfies Laplace’s equation (in two dimensions here):

∇2ξ = 0, ∇2η = 0.

A uniform grid in computational ξ , η space still maps to a grid in physical space, but
note now that equal increments in ξ do not correspond to equal increments in r . The
grid in physical space still consists of radial lines and concentric circles, but the distance
between the concentric circles diminishes as the inner boundary r = r1 is approached.
If this is not regarded as a desirable feature of the grid, the spacing of grid lines can
be adjusted using an additional transformation with stretching functions as shown in
Section 4.4 below or through the use of control functions as described in Chapter 5.

When α = 2π the physical region becomes a complete annulus between the circles
r = r1 and r = r2. The radial lines θ = 0 and 2π (imagined slightly separated) may
be regarded as forming a branch cut (Fig. 4.4), and the annulus can still be mapped
into a unit square using eqns (4.10) with α = 2π .

Of course there are many classical curvilinear co-ordinate systems which may be
used to represent physical regions analytically. Even for essentially two dimensional
problems we have, for example, elliptic cylindrical co-ordinates, parabolic cylindrical
co-ordinates, and bipolar co-ordinates at our disposal. If the physical domain has a con-
figuration which admits representation by a boundary-conforming system of this type,
then grids can be easily generated. We refer to this here as analytic grid generation,
and a number of examples are provided on the disk with this book (see Section 4.6.5).
However, if the geometry differs in any significant way from such an ideal config-
uration, then analytic co-ordinate transformation becomes useless. A primary object-
ive of structured grid generation is to obtain transformations between physical and
computational domains which are not subject to this limitation.

O O

r = r2

r1 r2 r

r = r1

q = 0 1

1 x

hq

q = 2p

2p

Fig. 4.4 Mapping an annulus with branch cut onto a unit square.

80 Basic Structured Grid Generation

In general we seek to avoid mappings of a sheet in the physical region into a square
in the computational region which would involve folding the sheet, resulting in a map
which is not one–one. A simple example of such a transformation is the mapping of
the rectangle 0 � x � 1, −1 � y � 1 into the square 0 � ξ � 1, 0 � η � 1, with

ξ = x, η = y2, (4.12)

which folds the sheet in the xy-plane along the x-axis. The Jacobian∣∣∣∣∣∣∣∣
∂ξ

∂x

∂ξ

∂y

∂η

∂x

∂η

∂y

∣∣∣∣∣∣∣∣
of the transformation vanishes when y = 0 (along the x-axis, where the fold is located),
and this is the mathematical cause of the difficulty. Hence, in order to generate good
grids, we seek to avoid mappings where the Jacobian is zero (or infinite, in which case
the Jacobian of the inverse mapping would be zero) at points inside the physical region.

Similar considerations apply in three dimensions, where we seek transformations
between a physical domain in which there is a cartesian co-ordinate system Oxyz and
a unit cube 0 � ξ � 1, 0 � η � 1, 0 � ς � 1 in computational space with ξ , η, ς

as co-ordinates. The transformations can be imagined to deform a sponge-like object
occupying the physical domain into the unit cube, or vice versa, with corresponding
transformations of co-ordinate curves and co-ordinate surfaces. Again, the Jacobians
of the transformations are required to be non-zero and finite.

Once we have recognized that the boundary curves (or boundary surfaces in three
dimensions) in the physical space can be regarded as co-ordinate curves which map onto
the sides of a square in computational space (or co-ordinate surfaces which map onto
the faces of a cube in three dimensions), certain simple methods of interpolating a set
of grid points may suggest themselves. These algebraic methods based on interpolation
are extensively used in computational fluid dynamics, exploiting their advantages of
ease of computation (compared with differential models involving the solution of partial
differential equations) and the capability of direct control over grid node location. On
the other hand, algebraic methods may not generate smooth grids; in particular, they
tend to preserve the features of boundaries, and any discontinuities in the slope of
boundary curves will generally propagate into the interior region. A common use of
algebraic methods is to generate a first attempt at a grid, which may then be used as a
starting point in the iterative implementation of differential models of grid generation,
to be considered in Chapter 5.

In the following section we review some basic methods of interpolation.

4.2 Unidirectional interpolation

4.2.1 Polynomial interpolation

A need for interpolation may arise when dealing with a boundary of complex shape. For
example, consider a plane curve representing an airfoil section, for which measurement

Structured grid generation – algebraic methods 81

gives a finite number of points with cartesian co-ordinates (x0, y0), (x1, y1), (x2, y2),

. . . , (xn, yn). It may be necessary to be able to represent the set of data mathematically
in terms of a functional relationship y = f (x), in order to enable us to perform
mathematical operations such as differentiation, integration, and also interpolation to
specify other boundary points. Curve-fitting from a discrete set of points may be carried
out by standard interpolation methods, in which a curve is found which passes through
all data points. Also well-developed are approximation methods, in which a curve of a
given type, say a polynomial of a certain degree, is obtained which passes as close as
possible, in some sense, to all points. Here we concentrate on interpolation methods.

It is easy to show that there is a unique polynomial of degree n which passes through
the above points, and it is convenient for some purposes to represent this polynomial
in terms of the well-known Lagrange basis polynomials

Li(x) = (x − x0)(x − x1) . . . (x − xi−1)(x − xi+1) . . . (x − xn)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
, i = 0, 1, . . . n,

(4.13)
of degree n, where the numerators omit the linear factors (x − xi). These functions
may be written as

Li(x) =
n∏

j=0

j �=i

(x − xj)

(xi − xj)
.

By inspection the Lagrange basis polynomials have the property that

Li(xj) = 0 for j �= i and Li(xi) = 1,

or, using the Kronecker delta with both indices written as suffixes (and with 0 included
as a possible value of the indices),

Li(xj) = δij . (4.14)

The polynomial of degree n which passes through the given points is then clearly

p(x) =
n∑

i=0

yiLi(x). (4.15)

Here we shall be mainly concerned with the simplest case in which a polynomial
of degree 1 (a straight line) may be constructed to pass through two points (x0, y0),
(x1, y1). In this case we have linear Lagrange basis polynomials

L0(x) = (x − x1)

(x0 − x1)
, L1(x) = (x − x0)

(x1 − x0)
, (4.16)

(Fig. 4.5) and the resulting straight line

y = y0
(x − x1)

(x0 − x1)
+ y1

(x − x0)

(x1 − x0)
= y0(1 − ξ) + y1ξ (4.17)

with a change of variable on the x-axis, where

x = x0 + ξ(x1 − x0),

so that ξ = 0, 1 when x = x0, x1, respectively.

82 Basic Structured Grid Generation

0

1

x0

L0(x) L1(x)

x1 x

Fig. 4.5 Linear Lagrange basis polynomials.

x0 x2

L0(x) L2(x)L1(x)

x1 x
0

1

Fig. 4.6 Quadratic Lagrange basis polynomials.

In the case where three points (x0, y0), (x1, y1), (x2, y2) are given, the three quadratic
Lagrange basis polynomials (Fig. 4.6) are

L0(x) = (x − x1)(x − x2)

(x0 − x1)(x0 − x2)
, L1(x) = (x − x0)(x − x2)

(x1 − x0)(x1 − x2)
,

L2(x) = (x − x0)(x − x1)

(x2 − x0)(x2 − x1)
, (4.18)

and the quadratic function passing through the three points is

p(x) = y0
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+ y1

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
+ y2

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
.

The situation could arise in principle, of course, that the three points lie on a straight
line, in which case the coefficient of x2 in this expression vanishes, and the quadratic
reduces to a linear function.

Unidirectional interpolation for algebraic grid generation may be carried out between
selected grid-points on opposite boundary curves (or surfaces) of a physical region.
With r0 the position vector of a chosen point on one boundary and r1 the position
vector of another on the opposite boundary, the simplest approach, taking our cue from
eqn (4.17), is to construct a straight line between the points, on which the parameter
ξ varies, with parametric representation

r = (1 − ξ)r0 + ξr1, (4.19)

with 0 � ξ � 1. Grid-points may then be selected on this line at uniformly-spaced ξ

values (Fig. 4.7), or in some other way, if uniform spacing is not desirable.

Structured grid generation – algebraic methods 83

O

r0
r1

x = 0 x = 1

Fig. 4.7 Linear interpolation between curves.

We may wish to interpolate using selected boundary points r0, r2, and an intermediate
point r1, in which case we can make use of quadratic Lagrange polynomials. Taking
x0 = 0, x1 = 1

2 , x2 = 1 in eqn (4.18) gives

L0(x) = 2
(
x − 1

2

)
(x − 1), L1(x) = 4x(1 − x), L2(x) = 2x

(
x − 1

2

)
(4.20)

and it follows that a parametric representation of a curve (not now a straight line in
general) passing through the three points is

r = 2
(
ξ − 1

2

)
(ξ − 1)r0 + 4ξ(1 − ξ)r1 + 2ξ

(
ξ − 1

2

)
r2, (4.21)

on which ξ may be regarded as a curvilinear co-ordinate, taking the values 0 and 1 at
the end-points r0, r2, and 1

2 at the intermediate point r1.
Given a set of n + 1 points with position vectors r0, r1, . . . , rn, the general form of

the interpolating curve is given by

r(ξ) =
n∑

i=0

Li(ξ)ri , (4.22)

where, just as in eqn (4.13),

Li(ξ) = (ξ − ξ0)(ξ − ξ1) . . . (ξ − ξi−1)(ξ − ξi+1) . . . (ξ − ξn)

(ξi − ξ0)(ξi − ξ1) . . . (ξi − ξi−1)(ξi − ξi+1) . . . (ξi − ξn)

=
n∏

j=0

j �=i

(ξ − ξj)

(ξi − ξj)
,

so that ξ takes the values ξi at the points ri , i = 0, 1, . . . , n. Functions of a single vari-
able ξ appearing in interpolation expressions such as eqn (4.22) are often called blend-
ing functions. Here we use blending functions to make the grid distribution match the
distribution of end-points r0, rn, and interior points r1, . . . , rn−1. In the next section we
see that blending functions can also be chosen to provide matching for grid directions
at given points.

To show the generation of a two-dimensional plane grid using unidirectional interpo-
lation, we consider a physical domain ABCD (Fig. 4.8) in which only the boundaries
AB and CD are specified at the outset. We shall take the curves AB and CD to be

84 Basic Structured Grid Generation

0

1

1C

D

B

A

C1
A1

A2

A3 C2

C3 x = 1
x = 0

h = 0

h
h = 1

x

Fig. 4.8 Linear interpolation between two curves.

co-ordinate lines for the η co-ordinate, and assume that we have already selected sets
of points on these curves in some way. As shown in Fig. 4.8, we have five points
AA1A2A3B, CC1C2C3D on each curve corresponding to certain values of η, varying
between η = 0 at A and C and η = 1 at B and D. Suppose we take η = 0.25 at A1,
C1, η = 0.5 at A2, C2, and η = 0.75 at A3, C3. Moreover we can take the co-ordinate
ξ to be constant on AB and CD; to be specific, we take ξ = 0 on AB and ξ = 1
on CD. Points in the physical domain will have cartesian co-ordinates (x, y) which
are functions of ξ and η. Unidirectional interpolation between the points on AC and
corresponding points on BD will map the unit square in the ξη plane onto the domain
shown in Fig. 4.8.

Employing linear interpolation between A and C according to eqn (4.19) then gives

r(ξ, 0) = (1 − ξ)r(0, 0) + ξr(1, 0),

while between A1 and C1 we obtain

r(ξ, 0.25) = (1 − ξ)r(0, 0.25) + ξr(1, 0.25).

Thus the parametric equation of the interpolating line is

r(ξ, ηj) = (1 − ξ)r(0, ηj) + ξr(1, ηj), (4.23)

where 0 � ηj = j−1
̃−1 � 1, j = 1, 2, . . . , ̃ , and we have taken ̃ = 5 here.

Marking off equal divisions along these straight lines then produces a grid. The
general grid-point corresponds to ξ = ξi , η = ηj , i = 1, 2, . . . , ı̃, j = 1, 2, . . . , ̃ ,
where ı̃ = 5 also and

0 � ξi = i − 1

ı̃ − 1
� 1.

Thus
r(ξi, ηj) = (1 − ξi)r(0, ηj) + ξir(1, ηj). (4.24)

Of course, the physical domain mapped out by this process will not coincide with
the actual physical domain, unless the physical boundaries AC and BD are straight.

The same process can be used to carry out a unidirectional linear interpolation in
the η-direction, starting with given curved boundaries AC and BD on which we take
η = 0 and 1, respectively. This will give a set of grid-points with

r(ξi, ηj) = (1 − ηj)r(ξi, 0) + ηjr(ξi, 1). (4.25)

Structured grid generation – algebraic methods 85

4.2.2 Hermite interpolation polynomials

While the Lagrange interpolation polynomials match function values provided by data-
points, it is possible to generate a polynomial which matches first derivative values as
well as function values at a given set of points. Suppose we have n + 1 data points
(x0, y0), (x1, y1), . . . , (xn, yn) as at the beginning of the previous section, together
with n + 1 corresponding values y′

0, y
′
1, . . . , y

′
n of the derivatives of y with respect

to x at these points. It is clear that a polynomial of degree 2n + 1 in general will be
required. We would like to be able to write the matching polynomial, in comparison
with eqns (4.15) and (4.14), as

p(x) =
n∑

i=0

yiHi(x) +
n∑

i=0

y′
i H̃i(x), (4.26)

where Hi(x) and H̃i(x) are polynomials of degree 2n + 1 satisfying

Hi(xj) = δij , H ′
i (xj) = 0, H̃i(xj) = 0, H̃i

′
(xj) = δij . (4.27)

A convenient set of formulas defines the Hermite interpolating polynomials Hi(x),
H̃i(x) in terms of the Lagrange polynomials as follows:

Hi(x) = {1 − 2L′
i (xi)(x − xi)}[Li(x)]2, (4.28)

H̃i(x) = (x − xi)[Li(x)]2. (4.29)

It is straightforward to verify, using eqn (4.14), that these definitions satisfy eqn (4.27).
The most commonly used form of Hermite interpolation makes use of the cubic

Hermite polynomial, for which n = 1; the corresponding Lagrange polynomials are
linear and given by eqn (4.16). Taking x0 = 0 and x1 = 1 for clarity, we have
L0(x) = 1 − x, L1(x) = x, and hence

H0(x) = {1 − 2L′
0(0)x}[L0(x)]2 = (1 + 2x)(1 − x)2 = 2x3 − 3x2 + 1 (4.30)

H1(x) = {1 − 2L′
1(1)(x − 1)}[L1(x)]2 = (3 − 2x)x2 = 3x2 − 2x3 (4.31)

H̃0(x) = x[L0(x)]2 = x(1 − x)2 = x3 − 2x2 + x (4.32)

H̃1(x) = (x − 1)[L1(x)]2 = (x − 1)x2 = x3 − x2. (4.33)

The graph of these polynomials is shown in Fig. 4.9
A unidirectional interpolation, now with some control over the gradient of the inter-

polating curve, can be carried out between points r0 and rn, with intermediate points
r1, . . . , rn−1, according to the formula

r(ξ) =
n∑

i=0

riHi(ξ) +
n∑

i=0

r′
i H̃i (ξ) , (4.34)

rather than eqn (4.22), where r′
i is the value of the derivative dr/dξ at the point ri .

Once again we can perform unidirectional interpolation starting with boundaries AB
and CD which we take as co-ordinate curves ξ = 0, 1 as in the previous section

86 Basic Structured Grid Generation

1

1
0 x

H0(x) H1(x)

H1(x)
∼

H0(x)
∼

Fig. 4.9 Hermite cubic polynomials.

with sets of corresponding points on each where η = η1, η2, . . . , η̃ . The parametric
equation of the interpolating curve between corresponding points with η = ηj is now

r(ξ, ηj) = r(0, ηj)(2ξ 3 − 3ξ 2 + 1) + r(1, ηj)(3ξ 2 − 2ξ 3)

+r′(0, ηj)(ξ
3 − 2ξ 2 + ξ) + r′(1, ηj)(ξ

3 − ξ 2), (4.35)

where the dash now denotes partial differentiation with respect to ξ . This equation
may be compared with eqn (4.23). By appropriate choice of r′, whose direction is
tangential to the interpolating curve, at the end-points, we are able to force the curve
to cut the boundary curves orthogonally.

Equation (4.35) may be written as

r = �1(ξ)rAB + �2(ξ)rCD + �3(ξ)r′
AB + �4(ξ)r′

CD, (4.36)

where the Hermite cubic polynomials, or blending functions, have been written as
�i(ξ), and are given by

�1(ξ) = (ξ 3, ξ 2, ξ, 1)(2, −3, 0, 1)T

�2(ξ) = (ξ 3, ξ 2, ξ, 1)(−2, 3, 0, 0)T

�3(ξ) = (ξ 3, ξ 2, ξ, 1)(1, −2, 1, 0)T

�4(ξ) = (ξ 3, ξ 2, ξ, 1)(1, −1, 0, 0)T ,

(4.37)

so that we have, using matrices,

r = �(ξ)

rAB

rCD

r′
AB

r′
CD

 , (4.38)

where

�(ξ) = (�1(ξ) �2(ξ) �3(ξ) �4(ξ))

= (ξ 3, ξ 2, ξ, 1)

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

 .

Structured grid generation – algebraic methods 87

We also have, in the obvious notation, rAB = r(0, ηj), rCD = r(1, ηj), r′
AB =

r′(0, ηj), r′
CD = r′(1, ηj).

4.2.3 Cubic splines

Fitting a single polynomial to a set of data points (x0, y0), (x1, y1), . . . , (xn, yn) is often
unsatisfactory, even for relatively low values of n, due to the fact that a polynomial
of degree N can have (N − 1) relative maxima and minima, so that the interpolating
curve may oscillate, or wiggle, excessively between data points and hence may not
appear to be a good fit. This difficulty may be overcome by generating a ‘composite’
interpolation curve, constructed out of low-degree polynomials fitted together in a
piecewise manner. Such curves are called splines. So when in a process of algebraic
grid generation we want to control grid distribution by prescribing a large number of
interior points, splines may be used as blending functions.

There are many ways in which piecewise interpolation may be carried out. Here
we concentrate on one of the commonest methods, that of cubic splines. In a cubic
spline fit the interpolating function between any two adjacent points is a third-degree
polynomial. For the (n+ 1) data points above there are n intervals between the points,
in each of which a cubic polynomial is required. We can write these as

φi(x) = ai + bix + cix
2 + dix

3 for xi−1 � x � xi, i = 1, 2, . . . , n, (4.39)

for some constants ai , bi , ci , di , to be found. Differentiation gives

φ′
i (x) = bi + 2cix + 3dix

2,

φ′′
i (x) = 2ci + 6dix. (4.40)

We denote the overall piecewise-cubic interpolating function by y(x); the smoothness
of this function is made possible by arranging that its first and second derivatives are
continuous at the interior points x1, x2, . . . , xn−1. So, in addition to the basic continuity
requirements

y(xi) = φi+1(xi) = yi, i = 0, 1, . . . , (n − 1),

y(xi) = φi(xi) = yi, i = 1, 2, . . . , n, (4.41)

the cubic spline must also satisfy (Fig. 4.10)

φ′
i (xi) = φ′

i+1(xi) = y′
i , i = 1, 2, . . . , (n − 1) (4.42)

y

x0
x0

y0
y1

y2

yn−1

yn

x1 x2 xn−1 xn

f1 f2 fn

Fig. 4.10 Cubic splines.

88 Basic Structured Grid Generation

0 x

ti ti+1

xi−1

y ″i−1

f″i f″i+1

y ″i

y ″i+1

xi+1xi

Fig. 4.11 Second derivatives of cubic splines.

and
φ′′

i (xi) = φ′′
i+1(xi) = y′′

i , i = 1, 2, . . . , (n − 1), (4.43)

where the values of y′
i and y′′

i , i = 1, 2, . . . , (n − 1), are not prescribed.
The basic equations for the cubic spline may be derived starting with the observation

that from eqns (4.40) and (4.43) y′′ must be a continuous piecewise-linear function
(Fig. 4.11). Thus we can immediately write

φ′′
i+1(x) = y′′

i + (x − xi)

(xi+1 − xi)
(y′′

i+1 − y′′
i), xi � x � xi+1 (4.44)

= y′′
i+1

(x − xi)

(xi+1 − xi)
+ y′′

i

(xi+1 − x)

(xi+1 − xi)
, i = 0, 1, . . . , (n − 1), (4.45)

where two more unprescribed quantities y′′
0 and y′′

n are needed.
Successive direct integrations now give

φ′
i+1(x) = 1

2
y′′
i+1

(x − xi)
2

ti+1
− 1

2
y′′
i

(xi+1 − x)2

ti+1
+ Ci+1, (4.46)

where ti+1 = (xi+1 − xi) is an interval width, and

φi+1(x) = 1

6
y′′
i+1

(x − xi)
3

ti+1
+ 1

6
y′′
i

(xi+1 − x)3

ti+1
+ Ci+1x + Di+1, (4.47)

where Ci+1 and Di+1 are constants of integration.
Substituting x = xi and x = xi+1 into eqn (4.47) gives the simultaneous equations

1
6y′′

i t2
i+1 + Ci+1xi + Di+1 = yi,

1
6y′′

i+1t
2
i+1 + Ci+1xi+1 + Di+1 = yi+1,

which may be solved for Ci+1 and Di+1 to give

Ci+1 = (yi+1 − yi)

ti+1
− 1

6
ti+1(y

′′
i+1 − y′′

i), (4.48)

Di+1 = (xi+1yi − xiyi+1)

ti+1
+ 1

6
ti+1(xiy

′′
i+1 − xi+1y

′′
i). (4.49)

Structured grid generation – algebraic methods 89

Substituting into eqn (4.47), we obtain the basic equations of the cubic spline:

φi+1(x) = 1

6
y′′
i

[
(xi+1 − x)3

ti+1
− ti+1(xi+1 − x)

]
+ 1

6
y′′
i+1

[
(x − xi)

3

ti+1
− ti+1(x − xi)

]

+yi

(xi+1 − x)

ti+1
+ yi+1

(x − xi)

ti+1
, i = 0, 1, . . . , (n − 1). (4.50)

The second derivatives y′′
i , i = 0, 1, . . . , n, however, appear as undetermined quanti-

ties in these equations. To proceed further, we still have the continuity condition (4.42)
to apply. Equations (4.46) and (4.48) give

φ′
i+1(x) = 1

2
y′′
i+1

(x − xi)
2

ti+1
− 1

2
y′′
i

(xi+1 − x)2

ti+1
+ (yi+1 − yi)

ti+1
− 1

6
ti+1(y

′′
i+1 − y′′

i).

(4.51)
Changing i to i − 1 gives

φ′
i (x) = 1

2
y′′
i

(x − xi−1)
2

ti
− 1

2
y′′
i−1

(xi − x)2

ti
+ (yi − yi−1)

ti
− 1

6
ti (y

′′
i − y′′

i−1).

Consequently, eqn (4.42) gives

−1

2
y′′
i ti+1 + (yi+1 − yi)

ti+1
− 1

6
ti+1(y

′′
i+1 − y′′

i) = 1

2
y′′
i ti + (yi − yi−1)

ti
− 1

6
ti (y

′′
i − y′′

i−1),

which may be written as

y′′
i−1ti + 2y′′

i (ti + ti+1) + y′′
i+1ti+1 = 6

[
(yi+1 − yi)

ti+1
− (yi − yi−1)

ti

]
,

i = 1, 2, . . . , (n − 1) . (4.52)

Here we have a set of (n−1) linear equations for the (n+1) quantities y′′
i , so clearly

there is still some indeterminacy in the system. To resolve the problem we need to
specify two more conditions. There are a number of standard ways of doing this.

Method 1 (Natural spline fit) Here we put y′′
0 = y′′

n = 0. This means that the curva-
ture of the spline is zero at the end-points. Equations (4.52) can be expressed in matrix
form as

A

y′′
1

y′′
2

y′′
3
–
–
–

y′′
n−1

=

6

(
y2 − y1

t2
− y1 − y0

t1

)

6

(
y3 − y2

t3
− y2 − y1

t2

)
−
−
−
−

6

(
yn − yn−1

tn
− yn−1 − yn−2

tn−1

)

, (4.53)

90 Basic Structured Grid Generation

where A is the (n − 1) × (n − 1) symmetric tridiagonal matrix

A =

2 (t1 + t2) t2 0 0 – – 0

t2 2 (t2 + t3) t3 0 – – –

0 t3 2 (t3 + t4) t4 – – –

0 0 t4 – – – –

– – – – – – –

– – – – – – tn−1

0 – – – – tn−1 2(tn−1 + tn)

(4.54)

Solution of the system (4.53) may result in a cubic spline that is flatter near the
end-points than we might want, given that y′′

0 and y′′
n are both zero.

Method 2 Here we make the assumption that the second derivative at each end of the
set of data points is the same at the two points adjacent to the ends. That is, we take
y′′

0 = y′′
1 and y′′

n = y′′
n−1. This hypothesis generally results in greater curvature in the

interpolating curve near the end-points than in the previous method.
We again have a matrix equation of the form (4.53), and the matrix A, still symmetric

and tridiagonal, is given by

A =

(3t1 + 2t2) t2 0 0 – – 0

t2 2(t2 + t3) t3 0 – – –

0 t2 2(t3 + t4) t4 – – –

0 0 t4 – – – –

− – – – – – –

− – – – – 2(tn−2 + tn−1) tn−1

0 – – – – tn−1 2tn−1 + 3tn

.

(4.55)

Method 3 Here it is assumed that y′′
0 and y′′

n are linear extrapolations of the values of
y′′ at the two nearest data points at each end. Thus at the left-hand end we put

y′′
1 − y′′

0

t1
= y′′

2 − y′′
1

t2
, (4.56)

or, rearranging,

y′′
0 = y′′

1
t1 + t2

t2
− y′′

2
t1

t2
. (4.57)

Similarly at the right-hand end we obtain the equation

y′′
n = y′′

n−1
tn−1 + tn

tn−1
− y′′

n−2
tn

tn−1
. (4.58)

It is easy to show that the matrix equation again has the form (4.53) with the same
matrix A as in (4.55), except that the first row is changed to(

(t1 + t2)(t1 + 2t2)

t2

(t2
s − t2

1)

t2
0 0 – – 0

)
(4.59)

Structured grid generation – algebraic methods 91

and the last row becomes(
0 – – – 0

(t2
n−1 − t2

n)

tn−1

(tn−1 + tn)(2tn−1 + tn)

tn−1

)
. (4.60)

Method 4 Here we prescribe the gradients y′
0, y′

n of the interpolating curve at the
end-points. If these gradients are known, we obtain the best cubic spline fit of all
these methods. However, we commonly have only estimates of their values at our
disposal.

Using eqn (4.51), we obtain

y′
0 = φ′

1(x0) = −1

2
y′′

0 t1 + y1 − y0

t1
− 1

6
t1(y

′′
1 − y′′

0) = −1

3
y′′

0 t1 − 1

6
y′′

1 t1 + y1 − y0

t1
,

and hence

y′′
0 t1 = −1

2
y′′

1 t1 − 3y′
0 + 3

y1 − y0

t1
. (4.61)

Substituting from (4.61) into the first equation (i = 1) of eqn (4.52) gives

y′′
1

(
3

2
t1 + 2t2

)
+ y′′

2 t2 = 6
y2 − y1

t2
− 9

y1 − y0

t1
+ 3y′

0 (4.62)

Similarly we can show that the last equation (i = n − 1) of eqn (4.52) becomes

y′′
n−2tn−2 + y′′

n−1

(
2tn−1 + 3

2
tn

)
= 9

yn − yn−1

tn
− 6

yn−1 − yn−2

tn−1
− 3y′

n. (4.63)

The other equations of (4.52) are unchanged, and hence we obtain the matrix
equation

A

y′′
1

y′′
2

y′′
3

–

–

–

y′′
n−1

=

6
y2 − y1

t2
− 9

y1 − y0

t1
+ 3y′

0

6
y3 − y2

t3
− 6

y2 − y1

t2

6
y4 − y3

t4
− 6

y3 − y2

t3

–

–

6
yn−1 − yn−2

tn−1
− 6

yn−2 − yn−3

tn−2

9
yn − yn−1

tn
− 6

yn−1 − yn−2

tn−1
− 3y′

n

, (4.64)

where again the matrix A is the same as in the above sections, except for the first row,
which becomes (

3
2 t1 + 2t2 t2 0 0 – – 0

)
, (4.65)

and the last row, which is(
0 – – – 0 tn−1 2tn−1 + 3

2 tn
)
. (4.66)

92 Basic Structured Grid Generation

In all the above approaches a matrix equation has to be solved for the values of
y′′

1 , y′′
2 , . . . , y′′

n−1. The matrix A is tridiagonal and diagonally dominant in each case,
and possesses a large degree of sparseness. There are standard numerical methods of
solving such a system, such as the Thomas Algorithm (see Section 5.2). It is then
straightforward to calculate y′′

0 and y′′
n , and we are then in a position to calculate the

interpolating cubic spline itself from eqn (4.50).
The same remarks hold for the following.

Method 5 Here we may consider a mixture of end-conditions of the type considered
in the previous four approaches. For example, one might have a natural spline at the
left-hand end (Method 1) with a specified slope at the right-hand end (Method 3). In
this case we simply have to take the matrix A as in eqn (4.54) but change the last row
in accordance with eqn (4.66). Moreover, the column vector on the right-hand side of
the matrix equation must agree with eqn (4.53), except that the last entry will have to
agree with the last entry in eqn (4.64). Other combinations of end-conditions can be
handled in a similar way.

4.3 Multidirectional interpolation and TFI

4.3.1 Projectors and bilinear mapping in two dimensions

Suppose there exists a transformation r = r(ξ, η) (or x = x(ξ, η), y = y(ξ, η))
which maps the unit square 0 < ξ < 1, 0 < η < 1 onto the interior of the region
ABDC in the xy (physical) plane (Fig. 4.12), such that the edges ξ = 0, 1 map to
the boundaries AB, CD, respectively, which we can formulate as r(0, η) and r(1, η),
the boundaries AC, BD being similarly given by r(ξ, 0), r(ξ, 1). We can write down
another transformation Pξ , called a projector, which maps points in computational
space to points (or position vectors) in physical space, defined by

Pξ (ξ, η) = (1 − ξ)r(0, η) + ξr(1, η). (4.67)

As we have seen in Section 4.2.1 this maps the unit square in the ξη plane onto the
region shown in Fig. 4.8, in which the boundaries AC, BD are replaced by straight
lines. The sides ξ = 0, 1 are mapped onto AB, CD respectively, and the sides η =
0, 1 are mapped onto the straight lines AC, BD. Furthermore, co-ordinate lines of
constant η are mapped into straight lines rather than co-ordinate curves in the physical
plane.

A

B

C

D

x

y

O
0

1

1

h

x

Fig. 4.12 Mapping unit square onto curved four-sided figure.

Structured grid generation – algebraic methods 93

A

B

C

D

x

y

O
0

1

1

h

x

Fig. 4.13 Projector Pη.

Similarly we can define the projector

Pη(ξ, η) = (1 − η)r(ξ, 0) + ηr(ξ, 1) (4.68)

which maps the unit square onto a region which preserves the boundaries AC, BD,
but replaces the boundaries AB, CD with straight lines (Fig. 4.13).

We can form the composite mapping Pξ Pη, such that

Pξ (Pη(ξ, η)) = Pξ ((1 − η)r(ξ, 0) + ηr(ξ, 1))

= (1 − ξ)[(1 − η)r(0, 0) + ηr(0, 1)] + ξ [(1 − η)r(1, 0) + ηr(1, 1)]
= (1 − ξ)(1 − η)r(0, 0) (4.69)

+(1 − ξ)ηr(0, 1) + ξ(1 − η)r(1, 0) + ξηr(1, 1).

This bilinear transformation has the property that the four vertices A, B, C, D are
preserved, but the boundaries are all replaced by straight lines; that is, the unit square
is mapped onto a quadrilateral ABDC (Fig. 4.14). Moreover, straight lines ξ = const .
and η = const . in computational space are mapped onto straight lines in physical space.

It is easy to show that this composition of projectors, often referred to as the tensor
productof Pξ and Pη, is commutative; that is,

Pξ Pη = PηPξ . (4.70)

The accompanying disk contains a program, listed in Section 4.6.3, to generate a
grid in a straight-sided quadrilateral using bilinear transformation.

Note also that we can form the composite map Pξ Pξ ; we obtain

Pξ (Pξ (ξ, η)) = Pξ [(1 − ξ)r(0, η) + ξr(1, η)] = (1 − ξ)r(0, η) + ξr(1, η) = Pξ (ξ, η).

Hence we can write
Pξ Pξ = Pξ , (4.71)

which is the usual defining property of projection operators.

A

B

C

D

x

y

O
0

1

1

h

x

Fig. 4.14 Bilinear transformation Pξ Pη .

94 Basic Structured Grid Generation

Let us now consider the various mappings of the side η = 0 of the unit square. Under
Pξ it is mapped to the straight line AC; under Pη it is mapped to the curved boundary
AC; finally under Pξ Pη it is mapped to the straight line AC. Similar considerations
applied to each side of the unit square show that the composite map (Pξ + Pη − Pξ Pη)

is a transformation which maps the entire boundary of the unit square onto the entire
curved boundary ABDC.

This map is called the Boolean sum of the transformations Pξ and Pη, and denoted
by Pξ ⊕ Pη. Thus

Pξ ⊕ Pη = Pξ + Pη − Pξ Pη. (4.72)

It is clear that Pξ ⊕ Pη = Pη ⊕ Pξ . The complete formulation is

(Pξ ⊕ Pη)(ξ, η) = Pξ (ξ, η) + Pη(ξ, η) − Pξ Pη(ξ, η)

= (1 − ξ)r(0, η) + ξr(1, η) + (1 − η)r(ξ, 0) + ηr(ξ, 1)

−(1 − ξ)(1 − η)r(0, 0) − (1 − ξ)ηr(0, 1)

−(1 − η)ξr(1, 0) − ξηr(1, 1). (4.73)

This transformation is the basis of transfinite interpolation (TFI) in two dimensions.
A grid will be generated by eqn (4.73) by taking discrete values ξi , ηj of ξ and η with

0 � ξi = i − 1

ı̃ − 1
� 1 and 0 � ηj = j − 1

̃ − 1
� 1, i = 1, 2, . . . , ı̃, j = 1, 2, . . . , ̃ ,

for some choice of ı̃ and ̃ .
Transfinite interpolation is the most common approach to algebraic grid generation.

It can produce excellent grids quickly in situations where other methods would be
difficult to apply, and it also allows for direct control of the location of grid nodes.
Many two-dimensional regions are easy to grid accurately using TFI. However, there
are some geometries, such as the airfoil, ‘backstep’, and C-grids, where TFI proves to
be unsatisfactory. The main disadvantages are (1) a lack of smoothness in the generated
grids, with any discontinuities in gradient in the boundary curves tending to propagate
into the interior, and (2) a tendency to fold when the geometries are complex.

The method can be extended in many ways. For example, the physical region can
be divided into several parts, with grids being generated in each separate part and
then matched together at the interfaces. This results in discontinuities of slope at the
interfaces, and Hermite polynomial interpolation may be exploited to match slopes
and thus remove the discontinuities. It is also possible to use TFI with higher-order
polynomials as blending functions.

4.3.2 Numerical implementation of TFI

We write eqn (4.73), with reference to Fig. 4.15, as

r(ξ.η) = (1 − ξ)rl(η) + ξrr (η) + (1 − η)rb(ξ) + ηrt (ξ) − (1 − ξ)(1 − η)rb(0)

−(1 − ξ)ηrt (0) − (1 − η)ξrb(1) − ξηrt (1), (4.74)

where the abbreviations l, r , b, t stand for ‘left’, ‘right’, ‘bottom’, ‘top’.

Structured grid generation – algebraic methods 95

x

y

O

0
1

1

h

x
A

B

C

D
rt (x)

rr (h)
rl (h)

rb (x)

Fig. 4.15 Mapping of boundary curves.

At the four vertices of the physical domain we need the consistency conditions

rb(0) = rl(0), rb(1) = rr (0), rr (1) = rt (1), rl (1) = rt (0). (4.75)

Equation (4.74) is equivalent to the two component equations

x(ξ.η) = (1 − ξ)xl(η) + ξxr(η) + (1 − η)xb(ξ) + ηxt (ξ) − (1 − ξ)(1 − η)xb(0)

−(1 − ξ)ηxt (0) − (1 − η)ξxb(1) − ξηxt (1) (4.76)

and

y(ξ.η) = (1 − ξ)yl(η) + ξyr(η) + (1 − η)yb(ξ) + ηyt (ξ) − (1 − ξ)(1 − η)yb(0)

−(1 − ξ)ηyt(0) − (1 − η)ξyb(1) − ξηyt(1). (4.77)

These equations can be discretized and evaluated through a ‘nested DO loop’. Sup-
pose we choose (m + 1) grid nodes on the bottom and top boundaries in the computa-
tional plane, with equal increments ξ = 1/m in ξ between nodes; similarly, (n + 1)

nodes on left and right, with equal increments η = 1/n in η. We need the boundary
data for the functions rb, rt , rl , rr , i.e. the values of the (x, y) co-ordinates at the
selected points corresponding to the chosen values of ξ and η on each part of the
boundary. This data can be made available to the main routine through a data-file. Or,
if the boundaries can be calculated according to some analytical expression, then this
can be done in a subroutine.

A basic program with a ‘double loop’ to compute eqns (4.76) and (4.77), setting
ξ = s, η = t , ξ = dX = 1/m, η = dY = 1/n, would then take the form:

DO J=2,n
t=(J-1)*dY

DO 2 I=2,m
s=(I-1)*dX
X(I,J)=(1.0-s)*Xl(J)+s*Xr(J)+(1.0-t)*Xb(I)+t*Xt(I)

-(1.0-s)*(1.0-t)*Xb(1)-(1.0-s)*t*Xt(1)
-s*(1.0-t)*Xb(m+1)-s*t*Xt(m+1)

Y(I,J)=(1.0-s)*Yl(J)+s*Yr(J)+(1.0-t)*Yb(I)+t*Yt(I)
-(1.0-s)*(1.0-t)*Yb(1)-(1.0-s)*t*Yt(1)
-s*(1.0-t)*Yb(m+1)-s*t*Yt(m+1)

2 Continue
1 Continue

96 Basic Structured Grid Generation

A complete program may be found on the accompanying disk as described in
Section 4.6.4.

4.3.3 Three-dimensional TFI

A simple approach to TFI in three dimensions is through the extension of the definition
of projectors to 3D. Suppose that we have a mapping r(ξ, η, ς) from the unit cube
0 � ξ � 1, 0 � η � 1, 0 � ς � 1 to a six-sided volume R of physical space.
The opposite planar faces of the cube given by ξ = 0, 1 map onto the (in general,
curved) opposite faces r(0, η, ς), r(1, η, ς) of R. On these faces there are curvilinear
co-ordinate systems with η and ς as co-ordinates. Edges of the cube such as that given
by η = ς = 0 (with 0 � ξ � 1) map into edges of R such as r(ξ, 0, 0), which is a
ξ -co-ordinate curve.

Using linear Lagrange polynomials as blending functions, the following projectors
may be defined:

Pξ (ξ, η, ς) = (1 − ξ)r(0, η, ς) + ξr(1, η, ς) (4.78)

Pη(ξ, η, ς) = (1 − η)r(ξ, 0, ς) + ηr(ξ, 1, ς) (4.79)

Pς (ξ, η, ς) = (1 − ς)r(ξ, η, 0) + ςr(ξ, η, 1). (4.80)

Now the projector Pξ still maps the opposite faces ξ = 0, 1 of the cube onto the
opposite faces r(0, η, ς), r(1, η, ς) of R. It also maps all the vertices of the cube,
(0, 0, 0), (1, 0, 0), etc., onto the vertices r(0, 0, 0), r(1, 0, 0), etc., of R. However, the
four edges of the cube which connect opposite vertices of the faces ξ = 0 and ξ = 1
are mapped onto straight lines connecting corresponding vertices of R.

For example, (ξ, 0, 0) → (1 − ξ)r(0, 0, 0) + ξr(1, 0, 0), 0 � ξ � 1.
Clearly the other projectors Pη, Pς have similar properties. Moreover they all satisfy

the basic projection property given by eqn (4.71).
If we started out with only two opposite faces of R specified and were able to

construct curvilinear co-ordinate systems on these surfaces with η and ς as co-
ordinates (Fig. 4.16), we could then have a grid on these faces corresponding to discrete

 = 0
 = 1

h = 1

h = 0

Fig. 4.16 Surface grid.

Structured grid generation – algebraic methods 97

values ηj , ςk with

0 � ηj = j − 1

̃ − 1
� 1, 0 � ςk = k − 1

k̃ − 1
� 1, j = 1, 2, . . . , ̃ , k = 1, 2, . . . , k̃

for some ̃ , k̃. We could then use Pξ , through eqn (4.78), to interpolate a grid between
these faces, taking discrete values of ξ also, with 0 � ξi = i−1

ı̃−1 � 1, i = 1, 2, . . . , ı̃.
The bilinear ‘tensor product’ Pξ Pη may be expressed in full as

Pξ Pη(ξ, η, ς) = (1 − ξ)(1 − η)r(0, 0, ς) + (1 − ξ)ηr(0, 1, ς)

+ξ(1 − η)r(1, 0, ς) + ξηr(1, 1, ς). (4.81)

The effect of this transformation on the unit cube is to map all four straight edges
parallel to the ς direction onto the corresponding four curved edges r(0, 0, ς), etc.,
of R. Between these curved edges we then have linear interpolation in both ξ and η

directions. This map could be used for linear interpolation if we started with just those
four edges of R. The other bilinear products have similar properties, and are given by

PηPς (ξ, η, ς) = (1 − η)(1 − ς)r(ξ, 0, 0)

+(1 − η)ςr(ξ, 0, 1) + η(1 − ς)r(ξ, 1, 0) + ηςr(ξ, 1, 1), (4.82)

Pξ Pς (ξ, η, ς) = (1 − ξ)(1 − ς)r(0, η, 0)

+(1 − ξ)ςr(0, η, 1) + ξ(1 − ς)r(1, η, 0) + ξςr(1, η, 1). (4.83)

Clearly these products all have the property of commutativity.
We can also formulate the ‘trilinear’ transformation Pξ PηPς , which may be ex-

pressed in full as

Pξ PηPς (ξ, η, ς) = (1 − ξ)(1 − η)(1 − ς)r(0, 0, 0)

+ξ(1 − η)(1 − ς)r(1, 0, 0) + (1 − ξ)η(1 − ς)r(0, 1, 0)

+(1 − ξ)(1 − η)ςr(0, 0, 1) + ξη(1 − ς)r(1, 1, 0)

+ξ(1 − η)ςr(1, 0, 1) + (1 − ξ)ηςr(0, 1, 1) + ξηςr(1, 1, 1).

(4.84)
This trilinear interpolant maps the unit cube onto a region of physical space with

the same vertices as R but with straight lines connecting the vertices.
The Boolean sum Pξ ⊕ Pη ⊕ Pς may be formulated in terms of the above mappings

by successively applying the definition (4.72). We have

Pξ⊕(Pη⊕Pς) = Pξ⊕(Pη+Pς−PηPς) = Pξ+Pη+Pς−PηPς−Pξ Pη−Pξ Pς+Pξ PηPς .

(4.85)
It is straightforward to show that the same result emerges from evaluating (Pξ ⊕

Pη) ⊕ Pς , which means that Boolean summation is associative. Putting ξ = 0 in the
expressions (4.78), (4.79), (4.80), (4.81), (4.82), (4.83), and (4.84), and combining the
results according to the vector sums in (4.85) shows that the face ξ = 0 of the unit
cube maps onto the curved face r(0, η, ς) of R under the Boolean sum (4.85). In fact
each face of the cube maps onto a face of R.

98 Basic Structured Grid Generation

From the above discussion it is clear that, in terms of projectors, the product Pξ PηPς

is ‘algebraically minimal’, in that it is the weakest member of the set of projectors
to generate a grid (based on TFI) in R, given that it interpolates only from the eight
vertices of R. The Boolean sum Pξ ⊕Pη⊕Pς , on the other hand, is ‘algebraically maxi-
mal’ and the strongest member of the projector set. To use it we need boundary data on
all six faces of R (including the twelve edges and eight vertices). Then eqn (4.85) will
generate a grid within R by trilinear interpolation, taking discrete values of ξ , η, ς .

In practice, however, we may not have a complete set of boundary data. Suppose,
for example, that we have only boundary data pertaining to the twelve edges of the
physical region R. Since eqn (4.81) showed that the product Pξ Pη interpolates linearly
from four edges of R, we might expect the appropriate grid generation formula to be
given by the Boolean product (Pξ Pη ⊕ PηPς ⊕ PςPξ). This can be easily evaluated in
terms of the ‘tensor products’ above with use of commutativity and the basic projection
property (4.71). We have

Pξ Pη ⊕ (PηPς ⊕ PςPξ) = Pξ Pη ⊕ (PηPς + PςPξ − PηPςPςPξ)

= Pξ Pη ⊕ (PηPς + PςPξ − PηPςPξ)

= Pξ Pη + (PηPς + PςPξ − PηPςPξ)

−Pξ Pη(PηPς + PςPξ − PηPςPξ)

= Pξ Pη + PηPς + PςPξ − PηPςPξ

−Pξ PηPς − Pξ PηPς + Pξ PηPς

= Pξ Pη + PηPς + PςPξ − 2Pξ PηPς . (4.86)

An explicit expression for this transfinite interpolation (based on twelve edges of
boundary data) may be written down by combining eqns (4.81), (4.82), (4.83), and
(4.84) according to eqn (4.86).

4.4 Stretching transformations

Algebraic grid generation may be used in combination with univariate stretching trans-
formations to control grid density. For example, in fluid dynamics it is essential
to increase the density of grid points near solid boundaries so that boundary layer
behaviour, involving sharp variations in flow properties, can be realistically simulated.
The stretching transformations discussed below are just a few of a family of general
stretching transformations proposed by Roberts (1971). We present the transforma-
tions initially in the simple context of a two-dimensional rectangular physical domain
0 � x � L, 0 � y � h being mapped directly onto a rectangular computational
domain, such that a non-uniform grid with the desired clustering of grid points trans-
forms to a uniform grid in the computational plane (Fig. 4.17), on which the ‘hosted’
partial differential equations can be solved. Stretching functions can also be applied
when the physical region is non-rectangular, as mappings between the square compu-
tational domain and an intermediate rectangular parametric domain, as in the example
(4.11) above, where the (r, θ) rectangular domain serves as the intermediate parameter

Structured grid generation – algebraic methods 99

x x

hy

h

L
0 0

1

1

Fig. 4.17 Mapping non-uniform grid in physical plane onto uniform grid in computational plane.

space. A further mapping between the parameter space and the physical domain is then
involved. We return to this subject in the next chapter.

Stretching transformations involve positive monotonic univariate functions, here
given by x = x(ξ) and y = y(η), with inverses ξ = ξ(x) and η = η(y). A suitable
transformation for dealing with two-dimensional boundary-layer flow along a wall at
y = 0 will concentrate grid lines in the neighbourhood of y = 0. Thus we require the
derivative dy/dη to take smaller values (and the derivative dη/dy larger values) near
y = 0 than in the rest of the region, so that uniform increments δη in the computational
domain will correspond to smaller increments δy in the physical domain.

One possible transformation is given by

ξ = x

η = 1 − ln{[β + 1 − y/h]/[β − 1 + y/h]}
ln{(β + 1)/(β − 1)}

(4.87)

for some chosen constant β with β > 1. This maps y = 0 directly to η = 0 and y = h

onto η = 1. While the grid spacing in the x-direction is unaffected, the variation in
spacing of grid lines in the y-direction, given a uniform spacing in the η-direction, is
governed by the derivative dη/dy, which increases, together with the grid-density near
the wall y = 0, as the parameter β approaches the limiting value 1.

Any such transformation has implications for the hosted equations, which would
need to be transformed in terms of ξ , η if they are to be solved on a uniform grid in
the ξη-plane. For example, the two-dimensional steady-state incompressible continuity
equation in fluid dynamics would become

∂u

∂x
+ ∂v

∂y
=
(

∂u

∂ξ

∂ξ

∂x
+ ∂u

∂η

∂η

∂x

)
+
(

∂v

∂ξ

∂ξ

∂y
+ ∂v

∂η

∂η

∂y

)
= ∂u

∂ξ
+ ∂v

∂η

∂η

∂y
= 0,

where ∂η/∂y may be obtained in terms of y from (4.87), or in terms of η from the
inverse relationship

x = ξ

y = h

{
(β + 1) − (β − 1)[(β + 1)/(β − 1)]1−η

[(β + 1)/(β − 1)]1−η + 1

}
.

(4.88)

A similar stretching transformation with an additional parameter α is

ξ = x

η = α + (1 − α)
ln{[β + y(1 + 2α)/h − 2α]/[β − y(1 + 2α)/h + 2α]}

ln[(β + 1)/(β − 1)] .
(4.89)

100 Basic Structured Grid Generation

Note that we still have the boundary y = h mapping into the boundary η = 1. But
the boundary y = 0 maps to

η = α + (1 − α)
ln{[β − 2α]/[β + 2α]}

ln[(β + 1)/(β − 1)] ,

so the computational domain is not in general the same rectangle as in the previous
example, except for the case when α = 1

2 . The variation of grid spacing in the y-
direction is again governed by the derivative dη/dy, which with α = 1

2 is given by

dη

dy
= 2β

h

{
β2 −

(
2y

h
− 1

)2
}

ln[(β + 1)/(β − 1)]
,

which takes its maximum values in the range 0 � y � h when y = 0 and y = h. Thus
clustering of grid lines occurs both near y = 0 and near y = h. An example of such
a grid for the case α = 0.5, β = 1.07, is shown in Fig. 4.18.

A univariate stretching transformation which gives a clustering of grid lines around
the line y = y0 is given by

ξ = x

η = B + 1

r
sinh−1

{(
y

y0
− 1

)
sinh(rB)

}
(4.90)

where

B = 1

2r
ln

{
1 + (er − 1)y0/h

1 − (1 − e−r)y0/h

}
(4.91)

and r is the ‘stretching’ parameter. As r approaches zero, eqns (4.90) approach the
zero-stretching case η = y/h. Larger values of r are required to give clustering around
y = y0.

Exercise 1. Verify that y = 0 maps to η = 0 and y = h to η = 1 under eqn (4.90).

The clustering around y = y0 is evident from the derivative

dη

dy
= sinh (rB)

ry0
{
1 + [(y/y0) − 1]2 sinh2(rB)

}1/2
.

which takes its maximum value at y = y0.

Fig. 4.18 Algebraic grid with grid clustering at both boundaries for beta = 1.07, alpha = 0.5.

Structured grid generation – algebraic methods 101

The inverse transformation is given by

x = ξ

y = y0

{
1 + sinh[r(η − B)]

sinh(rB)

}
. (4.92)

Other possible stretching functions are given in Section 4.6.1.

The Eriksson function
The following stretching transformation, due to Eriksson (1982), also involves expo-
nential functions, but has the simpler form

y = h

[
eαη − 1

eα − 1

]
(4.93)

for some constant α, with inverse

η = 1

α
ln
[
1 + y

h
(eα − 1)

]
. (4.94)

Here dy/dη takes its lowest values, thereby increasing grid density, as we approach
y = 0. Denoting the function in (4.93) by f (η), we can move the clustering to y = h

by forming the function {h − f (1 − η)}, which gives

y = h

{
eα − eα(1−η)

eα − 1

}
. (4.95)

It is straightforward to verify that, if we wish to create a clustering of grid lines
near the interior line y = y0 (corresponding to η = η0 = y0/h in the computational
plane), the above functions can be fitted together after appropriate scaling, with

y =
{

hη0[(eα − eα(1−η/η0))/(eα − 1)], 0 � η � η0

hη0 + h(1 − η0)[(eα(η−η0)/(1−η0) − 1)/(eα − 1)], η0 � η � 1.
(4.96)

This function is monotonically increasing, and has a continuous derivative at η = η0.
The functions (4.93) and (4.95), suitably scaled, can also be fitted together in the

opposite order at an arbitrary interior value y = y1 (with corresponding η = η1 =
y1/h) to give a stretching function which gives grid clustering near both boundaries
y = 0 and y = h. With f (η) again as given by eqn (4.93), the two parts of the function
are y = y1f (η/η1) for 0 � η � η1 and y = h − (h − y1)f ((1 − η)/(1 − η1)) for
η1 � η � 1.

Exercise 2. Show that the required function is given by

y =
{

hη1(e
αη/η1 − 1)/(eα − 1), 0 � η � η1

h − h(1 − η1)(e
α(1−η)/(1−η1) − 1)/(eα − 1), η1 � η � 1,

(4.97)

which has a continuous first derivative at y = y1.

Example – Flow in a Divergent Nozzle:

102 Basic Structured Grid Generation

x

y

0 L

y=h2(x)

y=h1(x)

Fig. 4.19 Divergent nozzle.

Here we extend the use of stretching functions to a non-rectangular physical domain.
Fig. 4.19 shows a two-dimensional divergent nozzle bounded by the curves y = h1(x)

and y = h2(x). The physical domain defined by 0 � x � L, h1(x) � y � h2(x) may
be mapped directly onto computational space 0 � ξ, η � 1 through{

ξ = x

η = [y − h1(x)]/[h2(x) − h1(x)] (4.98)

with inverse {
x = ξ

y = h1(ξ) + [h2(ξ) − h1(ξ)]η.
(4.99)

The accompanying disk contains a program for directly generating a grid using this
transformation, and is listed at Section 4.6.2.

We can concentrate the grid-lines near the boundaries by adapting eqn (4.97) in an
obvious way so that the mapping becomes (again with x = ξ)

y =

[h2(ξ) − h1(ξ)]η1(e
αη/η1 − 1)/(eα − 1) + h1(ξ), 0 � η � η1

[h2(ξ) − h1(ξ)][1 − (1 − η1)

× (eα(1−η)/(1−η1) − 1)/(eα − 1)] + h1(ξ), η1 � η � 1.

(4.100)

A grid generated by this transformation (using a uniform rectangular grid in the
computational plane) is shown in Fig. 4.20.

Returning to our rectangular physical domain 0 � x � L, 0 � y � h, we note that
similar piecewise fitting together of Eriksson functions can give stretching functions

Fig. 4.20 Algebraic grid with grid-clustering near boundaries.

Structured grid generation – algebraic methods 103

which cluster grids near any number of stipulated lines. For example, clustering near
the two lines y = y1 and y = y2 is achieved by the combination

y =

η1[h − f (1 − η/η1)], 0 � η � η1

hη1 + (η0 − η1)f ((η − η1)/(η0 − η1)), η1 � η � η0

hη0 + (η2 − η0)[h − f ((η2 − η)/(η2 − η0))], η0 � η � η2

hη2 + (1 − η2)f ((η − η2)/(1 − η2)), η2 � η � 1.

(4.101)

where f (η) is again given by eqn (4.93), y = y0 is any value intermediate to y1 and
y2, and ηj = yj/h, j = 0, 1, 2. Thus we have, explicitly,

y =

hη1[eα − eα(1−η/η1)]/(eα − 1), 0 � η � η1

hη1 + (η0 − η1)h(eα(η−η1)/(η0−η1) − 1)/(eα − 1), η1 � η � η0

hη2 − (η2 − η0)h(eα(η2−η)/(η2−η0) − 1)/(eα − 1), η0 � η � η2

hη2 + (1 − η2)h(eα(η−η2)/(1−η2) − 1)/(eα − 1), η2 � η � 1.

(4.102)

Similar expressions can be formulated on the basis of the stretching functions defined
in eqns (4.88) and (4.92), and similar monotonically increasing functions can be defined
to locate grid clustering near an arbitrary number of lines y = const..

4.5 Two-boundary and multisurface methods

4.5.1 Two-boundary technique

The example of the divergent nozzle in the previous section shows how a two-
dimensional grid can be generated in the physical domain between two boundaries,
using stretching functions to control grid-density. The techniques described here start
from these basic ideas, and incorporate Hermite interpolation to produce orthogonality
at the boundaries. Moreover, stretching functions are used along the curved boundaries
to produce the required position of grid-nodes.

Suppose we have to generate a grid between the two curves AB (η = η1), CD (η =
η2), shown in Fig. 4.21, consisting of curves ξ = const., η = const. The parameters
will be normalized so that η1 = 0 and η2 = 1; the curves connecting A to D and B to C
will be ξ = 0 and ξ = 1, respectively. The parameter ξ could represent a normalized
arc-length along the curves, and numerical integration will generally be required to

x

y

O

A B

D
C

h = h2

h = h1

Fig. 4.21 Two-boundary grid generation.

104 Basic Structured Grid Generation

calculate it. Stretching functions hAB(ξ) and hDC(ξ) can then be used to control the
location of grid-nodes along AB and DC. Here we present the stretching function

h = Pξ + (1 − P)

{
1 − tanh[Q(1 − ξ)]

tanh Q

}
, 0 � ξ � 1, (4.103)

originally due to Roberts (1971) and later modified by Eiseman (1979), where P and
Q are parameters to be chosen (for more details, see Section 4.6.1 below) on each
boundary. In principle we can then calculate the cartesian co-ordinates of grid-nodes
on the boundaries (xAB(hAB), yAB(hAB)) and (xDC(hDC), yDC(hDC)).

Stretching can also be used in the η-direction with a choice of similar stretching
functions hAD(η) and hBC(η). Linear interpolation could then lead to the following
expressions for cartesian co-ordinates:

x(ξ, η) =

{
1 − h̃(ξ, η)

}
xAB(hAB(ξ)) + h̃(ξ, η)xDC(hDC(ξ))

y(ξ, η) =
{

1 − h̃(ξ, η)
}

yAB(hAB(ξ)) + h̃(ξ, η)yDC(hDC(ξ)),
(4.104)

where h̃(ξ, η) = hAD(η) + ξ(hBC(η) − hAD(η)). To achieve orthogonality at the
two boundaries, however, it is possible to use the Hermite interpolation formula
(4.36). Since tangent vectors at the boundaries have direction dr/dh, with compo-

nents
(

dxAB

dhAB
,

dyAB

dhAB

)
and

(
dxDC

dhDC
,

dyDC

dhDC

)
, orthogonal directions will have components(

dyAB

dhAB
,− dxAB

dhAB

)
and

(
dyDC

dhDC
, − dxDC

dhDC

)
. Thus we can write the Hermite interpolation

formula in component form as

x(ξ, η) = �1(η)xAB(hAB) + �2(η)xDC(hDC) + T1�3(η)
dyAB

dhAB

+ T2�4(η)
dyDC

dhDC

y(ξ, η) = �1(η)yAB(hAB) + �2(η)yDC(hDC) − T1�3(η)
dxAB

dhAB

− T2�4(η)
dxDC

dhDC

,

(4.105)
where the two parameters T1, T2 that have been introduced, while not affecting orthog-
onality at the boundaries, can be used to control the extent to which the grid in the
interior domain is orthogonal. In fact these parameters may have to be tuned to avoid
folding of the grid in the interior.

The accompanying floppy disk contains a numerical code for generating a grid
around an NACA-0012 airfoil using the two-boundary method. This may be found in
the file Two-boundary.f listed in Section 4.6.4 below.

4.5.2 Multisurface transformation

The multisurface method introduced by Eiseman (1979) is another unidirectional inter-
polation technique for generating a grid between two given curves (or surfaces), allow-
ing additional control over grid-node distribution by the use of intermediate curves (or
surfaces). In the two-dimensional case, suppose that a given inner boundary is the curve
r = r1(ξ), the given outer boundary is rn(ξ), and we construct (n-2) non-intersecting
intermediate curves ri(ξ), i = 2, 3, . . . , (n−1), where ξ is a parameter for each curve.
We assume that each surface is given by constant values of the independent co-ordinate

Structured grid generation – algebraic methods 105

η which can be used to give an interpolation formula r(ξ, η) between inner and outer
curves, with

r(ξ, ηi) = ri(ξ), i = 1, 2, 3, . . . , n. (4.106)

Piecewise-linear curves from inner curve r1(ξ) to outer curve rn(ξ) may be con-
structed by linking together points on all n curves corresponding to the same value
of ξ . We assume that these piecewise-linear curves do not intersect each other. A
segment of such a curve between the curves ri(ξ) and ri+1(ξ) must be the vector
ri+1(ξ) − ri (ξ). The multisurface method produces smooth co-ordinate curves r(ξ, η)

with ξ fixed and η varying from η1 to ηn by matching tangent vectors ∂r/∂η at each sur-
face ri(ξ), i = 1, 2, 3, . . . , n−1, to the directions of the line segment ri+1(ξ)−ri(ξ).
Thus we take

∂r
∂η

=
n−1∑
i=1

ψi(η)Ti{ri+1(ξ) − ri(ξ)}, (4.107)

where the Tis are positive scalars associated with the surfaces r1, r2, . . . , rn−1, and the
ψis satisfy

ψi(ηk) = δik.

These could be Lagrange polynomials, given by eqn (4.13).
Integration then yields

r(ξ, η) = r1(ξ) +
n−1∑
i=1

{∫ η

η1

ψi(η
′) dη′

}
Ti{ri+1(ξ) − ri(ξ)}. (4.108)

Note that if we put

Ti =
{∫ ηn

η1

ψi(η
′) dη′

}−1

, (4.109)

we obtain an equation which is consistent at η = ηn, since the right-hand side of
eqn (4.108) reduces to

r1(ξ) +
n−1∑
i=1

{ri+1(ξ) − ri(ξ)},

which clearly telescopes down to the left-hand side r(ξ, ηn) = rn(ξ). Equation (4.108)
is, of course, also consistent at η = η1.

Thus the multisurface equation is taken to be

r(ξ, η) = r1(ξ) +
n−1∑
i=1

{∫ η

η1

ψi(η
′) dη′

}
{∫ ηn

η1

ψi(η
′) dη′

} {ri+1(ξ) − ri (ξ)}. (4.110)

In the case n = 3, where there is one intermediate surface r2(ξ), the approach we
take here is to choose parameter values η1 = 0, η2 = 1, and η3 initially unspecified,
with value greater than one. We can then use the linear Lagrange polynomials

ψ1 = 1 − η, ψ2 = η.

106 Basic Structured Grid Generation

The multisurface formula becomes

r(ξ, η) = r1 + η − 1
2η2

η3 − 1
2η2

3

(r2 − r1) +
1
2η2

1
2η2

3

(r3 − r2)

= (η3 − η)(2 − η3 − η)

η3(2 − η3)
r1 + 2η(η3 − η)

η2
3(2 − η3)

r2 + η2

η2
3

r3. (4.111)

Now if we take the value of η3 to be very close to 1, this reduces (approximately)
to the interpolation formula:

r(ξ, η) = (1 − η)2r1(ξ) + 2η(1 − η)r2(ξ) + η2r3(ξ). (4.112)

When n = 4 and there are two intermediate surfaces, a similar method involves
taking parameter values η1 = 0, η2 = a, η3 = 1, and η4 unspecified, with 0 < a < 1
and η4 > 1. Then we can take second degree Lagrange polynomials

ψ1 = 1

a
(a − η)(1 − η), ψ2 = η(1 − η)

a(1 − a)
, ψ3 = η(η − a)

(1 − a)
.

Equation (4.110) now yields the formula

r = r1 +
{

1
3η3 − 1

2 (1 + a)η2 + aη
}

{
1
3η3

4 − 1
2 (1 + a)η2

4 + aη4

} (r2 − r1)

+
(

1
2η2 − 1

3η3
)

(
1
2η2

4 − 1
3η3

4

) (r3 − r2) +
(

1
3η3 − 1

2aη2
)

(
1
3η3

4 − 1
2aη2

4

) (r4 − r3). (4.113)

Again, if we take η4 to be very close to 1, this expression reduces (approximately)
to the formula:

r(ξ, η) = (1 − η)2(1 − a1η)r1(ξ) + (2 + a1)η(1 − η)2r2(ξ)

+η2(1 − η)(2 + a2)r3(ξ) + η2(1 − a2 + a2η)r4(ξ), (4.114)

where

a1 = 2

3a − 1
and a2 = 2

2 − 3a
. (4.115)

Clearly we must avoid taking the values 1
3 or 2

3 for a.
Note that eqn (4.110) can also be applied in the trivial case where n = 2, when

there are no intermediate curves. Taking ψ1 to be a constant then leads to simple
linear interpolation between inner and outer curves:

r(ξ, η) = r1(ξ) + η{r2(ξ) − r1(ξ)}. (4.116)

4.5.3 Numerical implementation

Here we describe briefly the numerical implementation of the above methods for the
case of an airfoil NACA-0012. The relevant programs, Two-boundary.f and Multisur-
face.f, are listed at Section 4.6.4 and may be found in the directory Book/tfi.gds on

Structured grid generation – algebraic methods 107

Chord

F

E

A B C

D

Fig. 4.22 Airfoil profile.

the companion website (www.bh.com/companions/0750650583). The geometry of the
domain is shown in Fig. 4.22, with the curve AB representing the profile of an airfoil,
one of a family of airfoils with the generic name NACA-00t, where t indicates the
thickness as a percentage of the chord length as a two-digit number. Thus an NACA-
0012 airfoil has 12% thickness.

The profiles of this family of airfoils are given (with origin at A and chord length
unity) by the analytic expression

y = t
(
a1x

1
2 + a2x + a3x

2 + a4x
3 + a5x

4
)

, (4.117)

where a1 = 1.4779155, a2 = −0.624424, a3 = 1.727016, a4 = 1.384087,
a5 = −0.489769.

The airfoil has an axis of symmetry, and it is sufficient to generate a grid for the
upper half of the domain. We therefore consider the domain with inner boundary ABC,
consisting of the profile AB and the straight line CD, and outer boundary FED, where
FE is a quarter-circle of radius AE and ED is a straight line parallel to BC. The
left-hand boundary is taken as AF and the right-hand boundary as CD. Normalized
length parameters ξ can then be defined along the boundaries ABC and FED (0 �
ξ � 1), and similarly η along AF and CD (0 � η � 1). For the profile AB this
requires integration based on the length formula for plane curves and the analytical
expression (4.117).

The first step of the program Multisurface.f is to use the univariate stretching func-
tions given by eqn (4.103) with appropriate values of P and Q to generate grid-nodes
with the required clustering along the two boundaries AF and CD. The stretching func-
tions could be denoted by hAF (η) and hCD(η). The inner surface (curve) ABC can be
denoted r1.

The program now has three options. The first is the ‘no intermediate curve’ option,
in which the simple linear interpolation expression eqn (4.116) is used, subject to the
stretching used in step 1. The second option is the ‘one intermediate curve’ option,
in which eqn (4.112) is used. In this option, control of orthogonality of the grid is
possible at either the inner boundary or the outer boundary.

The third option, that of ‘two intermediate curves’, is the one we pursue here.
This allows control of orthogonality at both inner and outer boundaries. The first
attempt at constructing the intermediate curves uses linear interpolation between the
inner curve r1 and the outer one, denoted by r4. A subroutine ‘orthogonality’ is

108 Basic Structured Grid Generation

then called to adjust the positions of grid-nodes on the intermediate curves, denoted
by r2 and r3, so as to enforce orthogonality of the grid at the inner and outer
boundaries.

If we consider a typical grid node R with co-ordinates (x1, y1) on the inner boundary
r1, at which the gradient of the boundary is calculated to be m1, then the straight line
normal to the boundary through R has equation

y − y1 = − 1

m1
(x − x1). (4.118)

Suppose that the corresponding node S on the linearly interpolated curve ri
2 has

co-ordinates (xi
2, y

i
2) and that we can estimate the gradient of the curve ri

2 at this point
as m2. The tangent to the curve ri

2 at this node has equation

y − y2 = m2(x − x2). (4.119)

A better position for S should be at the intersection of these two straight lines; the
subroutine calculates the new co-ordinates. A similar procedure is applied to points on
the outer boundary r4 and the linearly interpolated curve r3. Having now constructed
new intermediate curves r2 and r3 such that grid-lines are orthogonal at inner and
outer boundaries, we can employ the multisurface transformation formula (4.114),
with a chosen value of a, in the form

r(ξ, η) = (1 − h)2(1 − a1h)r1(ξ) + (2 + a1)h(1 − h)2r2(ξ)

+h2(1 − h)(2 + a2)r3(ξ) + h2(1 − a2 + a2h)r4(ξ), (4.120)

where we define h in terms of a linear interpolation between the two stretching
functions,

h = hAF + ξ(hCD − hAF). (4.121)

The program Two-boundary.f is essentially a modification of Multisurface.f. The
subroutine orthogonality is removed, and instead Hermite interpolation is used in a
modified form of eqn (4.105),

x(ξ, η) = �1(h)xAB(ξ) + �2(h)xDC(ξ) + T1�3(h)

dyAB

dξ
+ T2�4(h)

dyDC

dξ

y(ξ, η) = �1(h)yAB(ξ) + �2(h)yDC(ξ) − T1�3(h)
dxAB

dξ
− T2�4(h)

dxDC

dξ
,

(4.122)
with h given by (4.121).

4.6 Website programs

Here we list the programs in the directory Book contained on the companion website
(www.bh.com/companions/0750650583) that are relevant to the material in this chapter.
First the subdirectories are specified and then the names of the files with a description
are given.

Structured grid generation – algebraic methods 109

4.6.1 Subdirectory: Book/univariate.gds

1. File: linear.f
This program simply generates a one-dimensional grid on a straight line based on
the linear interpolation

x = (1 − ξ)x0 + ξx1, 0 � ξ � 1.

2. File: Eriksson.f
This generates a one-dimensional grid on a straight line using the Eriksson stretching
function

x = (eβξ − 1)/(eβ − 1), 0 � ξ � 1.

Here the constant β controls the degree of clustering near x = 0.
3. File: Compress1.f

This generates another grid on a straight line using the stretching function

x = (pkb + cξ)1/b − pk, 0 � ξ � 1, (4.123)

where p, k, and b are constants, with c = (pk + 1)b − pkb.
4. File: Compress2.f

This generates a grid on a straight line with the stretching function

x = Pξ + (1 − P)

{
1 − tanh[Q(1 − ξ)]

tanh Q

}
, 0 � ξ � 1, (4.124)

mentioned above. For example, when the parameters P and Q take the values
P = 1.8, Q = 2.0, an equally spaced set of points in the ξ computational domain
maps into a set of points in the physical x domain with clustering near x = 1.
When P = 0.9, Q = 2.0, a fairly equally spaced set of points in physical space is
obtained, while the choice P = 0.1, Q = 2.0 gives clustering near x = 0.

4.6.2 Subdirectory: Book/Algebra

1. File: Algebraic1.f
This generates a two-dimensional planar boundary-conforming grid using the co-
ordinate transformation given by eqn (4.98), where the functions h1(x) and h2(x)

are specified by the user. The program calculates the so-called metrics of the trans-
formation, given by the partial derivatives ∂ξ/∂x, ∂ξ/∂y, ∂η/∂x, ∂η/∂y, which are
required in transforming the hosted partial differential equations to be solved.
In this example we can show that

∂ξ

∂x
= 1,

∂ξ

∂y
= 0,

∂η

∂x
= [h′

2(x)h1(x) − h′
1(x)h2(x) − yh′

2(x)]
×[h2(x) − h1(x)]−2,

∂η

∂y
= [h2(x) − h1(x)]−1.

110 Basic Structured Grid Generation

We also need in numerical calculations the partial derivatives

∂x

∂ξ
= J

∂η

∂y
,
∂x

∂η
= −J

∂ξ

∂y
,
∂y

∂ξ
= −J

∂η

∂x
,
∂y

∂η
= J

∂ξ

∂x
,

where the Jacobian J is given by

J = ∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
= h2(ξ) − h1(ξ).

Fig. 4.23 Boundary-conforming algebraic grid.

Fig. 4.24 Algebraic grid with grid-clustering near lower boundary.

Fig. 4.25 Algebraic grid with grid-clustering near lower boundary.

Structured grid generation – algebraic methods 111

2. File: Algebraic2.f
3. File: Algebraic3.f
4. File: Algebraic4.f
5. File: Algebraic5.f

Some typical grids in divergent nozzles calculated using these programs, both with-
out clustering and with clustering, are shown in figs 4.23–4.26.

Fig. 4.26 Algebraic grid with grid-clustering near boundaries.

Fig. 4.27 Transfinite interpolation.

Fig. 4.28 Transfinite interpolation.

112 Basic Structured Grid Generation

4.6.3 Subdirectory: Book/bilinear.gds

This subdirectory contains only one file.

1. File: bilinear.f
This generates a two-dimensional planar grid in a straight-sided quadrilateral using
bilinear interpolation given by

r(ξ, η) = (1 − ξ)(1 − η)rbl + (1 − ξ)ηrt l + ξ(1 − η)rbr + ξηrtr ,

Fig. 4.29 Transfinite interpolation.

Fig. 4.30 Transfinite interpolation.

Fig. 4.31 Two-boundary technique.

Structured grid generation – algebraic methods 113

Fig. 4.32 Multisurface grid generation with one intermediate curve.

Fig. 4.33 Multisurface grid generation with two intermediate curves.

Fig. 4.34 Multisurface grid generation with no intermediate curve.

114 Basic Structured Grid Generation

Fig. 4.35 Algebraic grid based on parabolic co-ordinates.

where r denotes the position vector
(
x
y

)
and the subscripts bl, tl, br, tr stand for

‘bottom left’, ‘top left’, ‘bottom right’, and ‘top right’, respectively. The cartesian
co-ordinates of the four corners of the quadrilateral must be specified by the user.

4.6.4 Subdirectory: Book/tfi.gds

In this subdirectory there are three files.

1. File: Transfinite.f
This code uses transfinite interpolation to generate a planar two-dimensional grid.
The boundaries of the physical domain are prescribed by specifying the cartesian
co-ordinates of boundary points in a subroutine called ‘boundary’. An option is
included to deal with three particular geometries: (a) a square (b) an annulus (c) a
trapezium.
Some examples of grids are shown in figs 4.27–4.30.

2. File: Two-boundary.f
A typical grid around an airfoil is shown in Fig. 4.31.

3. File: Multisurface.f
Examples are shown in figs 4.32–4.34.

Structured grid generation – algebraic methods 115

Fig. 4.36 Algebraic grid based on bipolar co-ordinates.

4.6.5 Subdirectory: Book/analytic.gds

This subdirectory contains three files. In the first two, planar two-dimensional grids
are generated by discretizing classical co-ordinate transformations.

1. File: parabolic.f
An example is shown in Fig. 4.35.

2. File: bipolar.f
An example is shown in Fig. 4.36.

5

Differential models for grid
generation

5.1 The direct and inverse problems

In Section 4.1 a number of examples were given in two dimensions of the way in which
grids could be generated in a non-rectangular physical domain by utilizing a transfor-
mation between the domain and a rectangular (or square) domain in computational
space, whereby the rectangular cartesian co-ordinates in computational space become
curvilinear co-ordinates in physical space. As curvilinear co-ordinates, moreover, they
are boundary-conforming, so that the physical boundaries become co-ordinate curves
on which one of the curvilinear co-ordinates is constant. In three dimensions, in the
same way, boundary surfaces of the physical domain become co-ordinate surfaces,
again with one of the three curvilinear co-ordinates constant. The principal advantage
of such transformations is naturally that physical boundary conditions expressed in
terms of the new curvilinear co-ordinates are simplified and thus easier to incorporate
in numerical work. This advantage comes at the cost of increasing the complexity of
the partial differential equations to be solved.

Thus the ‘direct problem’ in two dimensions, given a physical domain R in the plane
Oxy bounded by four segments of curves, is to determine two functions ξ(x, y), η(x, y)

for x and y within the domain, such that ξ is constant (say ξ = 0 and 1, although
other choices might be convenient) on two opposite boundaries and η is constant
(0 and 1 again, say) on the other two boundaries. Furthermore, on each boundary
where ξ is constant, η must increase monotonically (from 0 to 1) so as to make
η(x, y) continuous with a one–one relationship between points (x, y) and η on that
boundary curve; similarly on the other two boundaries, where η is constant and ξ

varies monotonically. The details of precisely how ξ and η vary monotonically on
the boundaries remain at our disposal. A structured grid can then be generated in
the physical domain by selecting a network of ξ and η co-ordinate curves. The same
considerations apply to a doubly-connected physical domain (Fig. 5.1) once we have
made a branch-cut, except that the cut introduces two artificial boundaries on which
any boundary conditions must coincide, since they correspond to the same points in
physical space.

Analysis of the accuracy of the numerical solution of the hosted partial differential
equations based on a grid indicates as one would expect that grid spacing needs to be
small to obtain accurate resolution where gradients in the solution are large. Moreover,

Differential models for grid generation 117

O

y

x

Fig. 5.1 Doubly-connected region with branch cut.

too high a rate of change of grid spacing and too large a departure from orthogonality
result in errors. For a given grid spacing, smoothness and orthogonality usually result
in smaller errors. However, it is not always possible to generate an orthogonal grid.

There will in principle be an infinite number of solutions to the direct problem,
and an infinite number of possible grids. We can single out one particular solution by
requiring the functions ξ(x, y), η(x, y) to satisfy certain partial differential equations
in R. These equations could be elliptic, parabolic, or hyperbolic, but with boundary
conditions specified over the entire boundary, as described in the previous paragraph,
they must be chosen to be elliptic, the most common example of which is Laplace’s
equation. The unknown functions are then solutions to a well-posed boundary-value
problem with Dirichlet-type boundary conditions (i.e. with function values specified
on the entire boundary).

In practice, however, it is usually more convenient to solve the ‘inverse prob-
lem’ for the cartesian co-ordinates x, y as functions of ξ, η. That is, we set up a
boundary-value problem in the transformed (computational) plane Oξη in which the
domain is a rectangle (or square), on the sides of which the values of x(ξ, η) and
y(ξ, η) are given by the distribution of cartesian co-ordinates on the corresponding
boundaries of R. (These are again Dirichlet boundary conditions, in which values
of the variables which we are attempting to solve for are prescribed over the whole
boundary.) The selected partial differential equations are inverted so that x and y

are expressed in terms of ξ and η, and can then be solved on a simple rectangular
grid constructed in the ξη plane, using the finite difference approximations given in
Section 4.1. Values of x and y given by the solution at the grid nodes in the com-
putational plane now directly give the cartesian co-ordinates of the grid nodes in the
physical plane.

The most widely used of such elliptic grid generators is the pair of Laplace’s
equations

∇2ξ = 0 and ∇2η = 0, (5.1)

familiar in fluid dynamics as generating networks of mutually orthogonal stream-
lines and equipotential lines in two-dimensional ideal fluid flows. An example of a
boundary-conforming co-ordinate system satisfying these equations has already been
given by eqn (4.11).

The system (5.1) has certain desirable features, including an extremum principle,
which guarantees that neither maxima nor minima in ξ, η can occur in the interior of
R. Given the imposed smooth monotonic variation of these variables on the boundaries

118 Basic Structured Grid Generation

of R, this suggests that they will also vary monotonically along the grid-lines, and
that folding will not occur. In fact it can be proved theoretically that the curvilinear
co-ordinate system generated in R is non-degenerate.

The partial differential equations for the corresponding inverse problem may be
obtained directly from the two-dimensional version of eqn (1.114):

(∇2xi)
∂yk

∂xi
= −gij ∂2yk

∂xi∂xj
.

Using eqn (5.1), we obtain

gij ∂2yk

∂xi∂xj
= 0, k = 1, 2. (5.2)

Hence, substituting x1 = ξ , x2 = η, y1 = x, y2 = y, and using eqn (1.163), we have

g22
∂2x

∂ξ 2
− 2g12

∂2x

∂ξ∂η
+ g11

∂2x

∂η2
= 0,

g22
∂2y

∂ξ 2 − 2g12
∂2y

∂ξ∂η
+ g11

∂2y

∂η2 = 0, (5.3)

for x and y as functions of ξ, η, with g11, g12, and g22 given by eqn (1.158). These
equations, which here we call the Winslow equations, Winslow (1967), are also elliptic.
However, although eqns (5.1) are linear and uncoupled in ξ and η, eqns (5.3) are in
general non-linear and coupled in x and y through the coefficients gij .

An intrinsic property of elliptic grid generators is that the grids generated are always
smooth. This means that discontinuities in slope at the boundaries are not propagated
into the interior of the physical domain. In fact, as will be shown in Chapter 6, the
grid generator based on Laplace’s eqns (5.1) produces a grid which minimizes (for all
admissible functions ξ(x, y), η(x, y)) the integral

I =
∫∫

R

(|∇ξ |2 + |∇η|2) dx dy (5.4)

evaluated over the physical domain R. Given that the grid in the computational plane
will be associated with equal increments in ξ and η, we might expect |∇ξ | and |∇η|
to give measures of grid-point density in the physical plane, with large gradients in ξ

and η where points are closely clustered together. Minimizing the integral I may then
be regarded as equivalent to generating the (in some sense) smoothest possible grid.

Since we have a choice of models of grid generation for any given problem, the
possibility of selecting the pair of Laplace equations

∂2x

∂ξ 2 + ∂2x

∂η2 = 0,

∂2y

∂ξ 2
+ ∂2y

∂η2
= 0, (5.5)

instead of the more complex system (5.3) suggests itself. However, although this model
may generate satisfactory grids in some cases, in general the non-vanishing of the
Jacobian of the transformation from the computational to the physical domain cannot
be guaranteed, and folding (or overlapping) of grid lines may occur.

Differential models for grid generation 119

5.2 Control functions
Sometimes it may be desirable to depart from the degree of smoothness resulting from
solving eqns (5.3) and introduce some variation of grid spacing. For example, where
we expect large gradients in fluid flow variables in a boundary-layer region, we may
seek a higher grid density there. If we simply use eqns (5.3) to generate the grid, we
have no control of grid density in the interior of R, and boundary layers cannot be
properly resolved. (Note that we can, however, select grid points on the boundary as we
please – this is one of the most desirable aspects of the ‘inverse problem’ approach to
grid generation.) A standard method for controlling grid density is to vary eqns (5.1)
by adding user-specified ‘inhomogeneous’ terms to the right-hand sides, so that the
equations become the Poisson equations

∇2ξ = P(ξ, η) and ∇2η = Q(ξ, η), (5.6)

where P(ξ, η), Q(ξ, η) are suitably selected control functions (or forcing functions).
We refer to this as the TTM Method (Thompson, Thames, and Mastin (1974)).

Exercise 1. Show that the equations of the inverse problem corresponding to eqn (5.6)
are

g22
∂2x

∂ξ 2
− 2g12

∂2x

∂ξ∂η
+ g11

∂2x

∂η2
+ g

(
P

∂x

∂ξ
+ Q

∂x

∂η

)
= 0

g22
∂2y

∂ξ 2
− 2g12

∂2y

∂ξ∂η
+ g11

∂2y

∂η2
+ g

(
P

∂y

∂ξ
+ Q

∂y

∂η

)
= 0. (5.7)

Typical control functions
A set of possible control functions was proposed by Thompson, Thames, and Mastin
(1974) as follows, and we state some properties of these functions without proof:

P(ξ, η) = −
N∑

n=1

an

(ξ − ξn)

|ξ − ξn| e
−cn|ξ−ξn| −

I∑
i=1

bi

(ξ − ξi)

|ξ − ξi | e
−di [(ξ−ξi)

2+(η−ηi)
2] 1

2

Q(ξ, η) = −
N∑

n=1

an

(η − ηn)

|η − ηn| e
−cn|η−ηn| −

I∑
i=1

bi

(η − ηi)

|η − ηi | e
−di [(ξ−ξi)

2+(η−ηi)
2] 1

2
.

(5.8)
Here N is the number of lines (co-ordinate lines ξ = ξn and η = ηn) and I the

number of points (with ξ = ξi, η = ηi , 0 � ξi, ηi � 1) to which the grid is to be
attracted, and an, cn, bi, di are positive parameters. The first term in the expression for
P(ξ, η) has the effect (with typical ‘amplitude’ an) of attracting ξ -lines (curves on
which ξ is constant) towards curves ξ = ξn in the physical domain, while the second
term (with amplitude bi) attracts ξ -lines towards points (and similarly for Q(ξ, η)). In
each case the attractive effect decays with distance in computational space from the
line or point in question according to the ‘decay’ parameters cn, di .

The functions (ξ − ξn)/|ξ − ξn| and (η − ηn)/|η − ηn| are functions which can take
only the values ±1, and are present to ensure that the attraction takes place on both

120 Basic Structured Grid Generation

sides of ξn-lines and ηn-lines and in the entire neighbourhood of points (ξi, ηi). Taking
the amplitudes to be negative turns the attractive effects into repulsive ones.

5.3 Univariate stretching functions

One straightforward way of controlling grid density in the physical domain is through
the use of stretching functions (several examples of which were given in Section 4.4),
combined with a differential model of grid generation. Suppose that the transformation
(x, y) → (χ, σ) takes the physical domain R in two dimensions onto the square
0 � χ, σ � 1 in χσ -space, such that the co-ordinates χ, σ are boundary-conforming.
We regard the χσ -space as an intermediate parameter space. A further mapping

χ = f1(ξ), σ = f2(η), (5.9)

with f1(0) = f2(0) = 0, f1(1) = f2(1) = 1, where the functions f1 and f2 are
one–one and onto, will map a square in ξη-computational space onto the square in
parameter space. But a regularly-spaced rectangular grid in computational space will in
general map onto an irregularly-spaced grid in parameter space, which will in turn map
onto a body-conforming grid in physical space (Fig. 5.2), with a different distribution
of grid lines from that which would be generated by a regular grid in χσ -space.
Appropriate choice of the stretching functions f1, f2 may yield a grid in physical
space with desirable features.

Suppose that the mapping from physical space to parameter space is achieved through
eqns (5.1). Then we have

∂2χ

∂x2 + ∂2χ

∂y2 = 0 and
∂2σ

∂x2 + ∂2σ

∂y2 = 0. (5.10)

Now
∂χ

∂x
= ∂ξ

∂x

dχ

dξ
= f ′

1(ξ)
∂ξ

∂x

and
∂2χ

∂x2
= f ′

1(ξ)
∂2ξ

∂x2
+ f ′′

1 (ξ)

(
∂ξ

∂x

)2

.

Similarly,
∂2χ

∂y2
= f ′

1(ξ)
∂2ξ

∂y2
+ f ′′

1 (ξ)

(
∂ξ

∂y

)2

.

O

y

x

s

x

h

x

Fig. 5.2 Intermediate parametric space.

Differential models for grid generation 121

Adding and using (5.10), we obtain

∂2ξ

∂x2
+ ∂2ξ

∂y2
= −f ′′

1

f ′
1

[(
∂ξ

∂x

)2

+
(

∂ξ

∂y

)2
]

= −f ′′
1

f ′
1
g11 = −

(
f ′′

1

f ′
1

)(
g22

g

)
. (5.11)

Similarly,

∂2η

∂x2
+ ∂2η

∂y2
= −
(

f ′′
2

f ′
2

)(
g11

g

)
. (5.12)

The effect of introducing the stretching functions is thus equivalent to using the Poisson
system (5.6) with

P(ξ, η) = −
(

f ′′
1

f ′
1

)(
g22

g

)
and Q (ξ, η) = −

(
f ′′

2

f ′
2

)(
g11

g

)
, (5.13)

although of course g11, g22, and g have to be determined as part of the solution.
Using eqn (5.7), the inverse problem is associated with the equations

g22
∂2x

∂ξ 2
− 2g12

∂2x

∂ξ∂η
+ g11

∂2x

∂η2
−
(

f ′′
1

f ′
1

)
g22

∂x

∂ξ
−
(

f ′′
2

f ′
2

)
g11

∂x

∂η
= 0,

g22
∂2y

∂ξ 2 − 2g12
∂2y

∂ξ∂η
+ g11

∂2y

∂η2 −
(

f ′′
1

f ′
1

)
g22

∂y

∂ξ
−
(

f ′′
2

f ′
2

)
g11

∂y

∂η
= 0,

(5.14)
where g11, g12, g22 are given by eqn (1.158).

5.3.1 Orthogonality considerations

Orthogonality is a desirable feature of grids, since the nearer a grid approaches to
orthogonality, the more accurate we generally expect numerical solutions to be. In
three dimensions it is clear from the discussion of surfaces in Chapter 3 that a co-
ordinate line can only be orthogonal at a point to two mutually orthogonal co-ordinate
lines lying in a surface if those lines are in the directions of principal curvature of the
surface at that point. This is a rather restrictive requirement, which makes orthogonality
difficult or impossible to achieve in general. Here we shall confine our discussion to
planar regions.

It is convenient to consider the parameter space above, in which the orthogonality
condition for the χ , σ co-ordinate curves at any point would be given by

∂r
∂χ

· ∂r
∂σ

= ∂x

∂χ

∂x

∂σ
+ ∂y

∂χ

∂y

∂σ
= 0. (5.15)

We can now put
∂y

∂σ
= ar

∂x

∂χ
, and

∂x

∂σ
= −ar

∂y

∂χ
, (5.16)

122 Basic Structured Grid Generation

where ar may be called the aspect ratio at a point, since we can write

ar =

√(
∂x

∂σ

)2

+
(

∂y

∂σ

)2

√(
∂x

∂χ

)2

+
(

∂y

∂χ

)2
,

which by eqns (1.42) and (1.158) implies that it is the ratio of the lengths of sides of an
infinitesimal grid element in physical space corresponding to an infinitesimal element
of a uniform grid in parameter space.

If we now apply stretching functions of the form (5.9), we easily obtain

∂y

∂η
= ar

f ′
2(η)

f ′
1(ξ)

∂x

∂ξ
, and

∂x

∂η
= −ar

f ′
2(η)

f ′
1(ξ)

∂y

∂ξ
. (5.17)

It follows that
∂x

∂ξ

∂x

∂η
+ ∂y

∂ξ

∂y

∂η
= 0, (5.18)

and hence orthogonality still holds for the ξ, η co-ordinate curves, i.e. it has not been
affected by the stretching transformation.

A differential model of grid generation which aims at orthogonality can be written
down immediately by regarding the g12 terms in eqns (5.14) as zero everywhere. Thus
we have

g22
∂2x

∂ξ 2
+ g11

∂2x

∂η2
=
(

f ′′
1

f ′
1

)
g22

∂x

∂ξ
+
(

f ′′
2

f ′
2

)
g11

∂x

∂η
,

g22
∂2y

∂ξ 2
+ g11

∂2y

∂η2
=
(

f ′′
1

f ′
1

)
g22

∂y

∂ξ
+
(

f ′′
2

f ′
2

)
g11

∂y

∂η
. (5.19)

These equations can be solved numerically in the computational domain subject to
Dirichlet boundary conditions on x and y. However, we can also seek to satisfy the
orthogonality condition (5.18) on the boundary. The numerical techniques are pursued
in Section 5.6.2.

5.4 Conformal and quasi-conformal mapping

In considering mappings ξ(x, y), η(x, y) from plane physical domains to computational
domains, it is sometimes mathematically advantageous to introduce complex variables
w = ξ + iη and z = x + iy, the domains then becoming part of complex w and
z planes. Since

x = (z + z)/2, y = (z − z)/2i, (5.20)

where the conjugate of z is given by z = x − iy, a mapping can be expressed as

w = ξ(x, y) + iη(x, y) = f (z, z) (5.21)

Differential models for grid generation 123

for some complex function f . In the case where f has no dependence on z and,
moreover, a derivative f ′(z) can be defined (so that f (z) is an analytic function), the
mapping is conformal. In this case the functions ξ(x, y), η(x, y) satisfy the Cauchy-
Riemann equations

∂ξ

∂x
= ∂η

∂y
and

∂ξ

∂y
= −∂η

∂x
. (5.22)

It follows from eqns (1.158), (1.160), and (1.162) that for a grid generated by a con-
formal transformation we have g11 = g22, and g12 = 0, which means that the grid is
orthogonal. Furthermore, not only do the functions ξ(x, y), η(x, y) satisfy Laplace’s
eqns (5.1), but it follows from eqns (5.3) that the inverse functions x(ξ, η), y(ξ, η) also
satisfy Laplace’s equations in the form (5.5). However, although conformal mapping
techniques are well-established for solving Laplace’s equations in two dimensions in
numerous areas of science and engineering (see for example Nehari (1975)), they have
the disadvantages in the area of grid generation that, firstly, they are essentially appli-
cable in two dimensions only, and, secondly, that grid density in the physical domain
is not controlled.

The same disadvantages apply to quasiconformal mapping, which can be used to
generate a wider range of grids. A positive feature of conformal and quasiconformal
mapping, however, is that the Jacobian of the transformation is always positive, so that
the grids generated are non-overlapping (not folded).

In quasiconformal mapping the complex function f (z, z) in eqn (5.21) is taken to
satisfy the Beltrami Equation

∂f

∂z
− H(z, z)

∂f

∂z
= 0, (5.23)

where the function H(z, z) has real and imaginary parts µ(x, y), ν(x, y), so that

H(z, z) = µ(x, y) + iν(x, y). (5.24)

The case of conformal mapping occurs when we take µ(x, y) = ν(x, y) = 0.
To substitute for f from eqn (5.21) into eqn (5.23), we need

∂f

∂z
= ∂

∂z
(ξ + iη) = ∂x

∂z

∂

∂x
(ξ + iη) + ∂y

∂z

∂

∂y
(ξ + iη)

= 1

2

(
∂ξ

∂x
+ i

∂η

∂x

)
− 1

2i

(
∂ξ

∂y
+ i

∂η

∂y

)

= 1

2

(
∂ξ

∂x
− ∂η

∂y

)
+ 1

2
i

(
∂ξ

∂y
+ ∂η

∂x

)
. (5.25)

Similarly,
∂f

∂z
= 1

2

(
∂ξ

∂x
+ ∂η

∂y

)
+ 1

2
i

(
−∂ξ

∂y
+ ∂η

∂x

)
. (5.26)

Exercise 2. Show that equating real and imaginary parts in eqn (5.23) gives the pair
of equations

(1 − µ)
∂ξ

∂x
+ ν

(
−∂ξ

∂y
+ ∂η

∂x

)
− (1 + µ)

∂η

∂y
= 0, (5.27)

124 Basic Structured Grid Generation

ν

(
∂ξ

∂x
+ ∂η

∂y

)
− (1 + µ)

∂ξ

∂y
− (1 − µ)

∂η

∂x
= 0, (5.28)

which are equivalent to

β
∂ξ

∂x
+ γ

∂ξ

∂y
= −∂η

∂x
, (5.29)

α
∂ξ

∂x
+ β

∂ξ

∂y
= ∂η

∂y
, (5.30)

where α = (1−µ)2+ν2

1−µ2−ν2 , β = −2ν
1−µ2−ν2 , γ = (1+µ)2+ν2

1−µ2−ν2 . Show that

αγ − β2 = 1. (5.31)

We also have, since H(z, z) = ∂f
∂z

/ ∂f
∂z

,

|H(z, z)|2 = µ2 + ν2 =

∣∣∣∣∂f∂z

∣∣∣∣
2

∣∣∣∣∂f∂z

∣∣∣∣
2

=

(
∂ξ

∂x
− ∂η

∂y

)2

+
(

∂ξ

∂y
+ ∂η

∂x

)2

(
∂ξ

∂x
+ ∂η

∂y

)2

+
(

−∂ξ

∂y
+ ∂η

∂x

)2
= g11 + g22 − 2

√
g

g11 + g22 + 2
√

g
,

using eqns (5.25), (5.26), (1.158), (1.160), and (1.162). The identity

α + γ = 2(1 + µ2 + ν2)

1 − µ2 − ν2
= g11 + g22√

g
(5.32)

then follows.
In the case of conformal mapping, we have α = γ = 1, and β = 0, and eqns (5.29),

(5.30) reduce to the Cauchy-Riemann equations. More generally, these equations form
a pair of first-order partial differential equations which could be used to generate a grid
for some choice of µ, ν. From eqns (1.162) the inverse equations can immediately be
written as

∂x

∂ξ
= α

∂y

∂η
− β

∂x

∂η
, (5.33)

∂y

∂ξ
= β

∂y

∂η
− γ

∂x

∂η
. (5.34)

Exercise 3. Show that the Jacobian of the transformation from (ξ, η) to (x, y) can be
expressed as

J = √
g = ∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
= 1

α

{(
∂x

∂ξ

)2

+
(

∂x

∂η

)2
}

= 1

γ

{(
∂y

∂ξ

)2

+
(

∂y

∂η

)2
}

.

(5.35)

Differential models for grid generation 125

This result shows that the Jacobian is generally positive as long as α is, and so grids
generated will be non-overlapping. In general the grids will not be orthogonal.

Eliminating η from eqns (5.29), (5.30) leads to the following second-order partial
differential equation for ξ , which is elliptic because of eqn (5.31):

α
∂2ξ

∂x2
+ 2β

∂2ξ

∂x∂y
+ γ

∂2ξ

∂y2
+
(

∂α

∂x
+ ∂β

∂y

)
∂ξ

∂x
+
(

∂β

∂x
+ ∂γ

∂y

)
∂ξ

∂y
= 0. (5.36)

It is straightforward to show that the same equation must be satisfied by η.
By eliminating ∂y/∂η from eqns (5.33) and (5.34) and using eqn (5.31), we obtain

the relation
∂y

∂ξ
= β

α

∂x

∂ξ
− 1

α

∂x

∂η
. (5.37)

Equating the mixed derivatives ∂2y/∂ξ∂η and ∂2y/∂η∂ξ obtained from eqns (5.33)
and (5.37) now yields the second order p.d.e. for x(ξ, η):

∂

∂η

(
β

α

∂x

∂ξ
− 1

α

∂x

∂η

)
= ∂

∂ξ

(
1

α

∂x

∂ξ
+ β

α

∂x

∂η

)
.

This becomes, on performing the differentiations, writing ∂α
∂ξ

= ∂α
∂x

∂x
∂ξ

+ ∂α
∂y

∂y
∂ξ

, etc.,
and simplifying,

∂2x

∂ξ 2
+ ∂2x

∂η2
−
(

∂β

∂y
+ ∂α

∂x

)√
g = 0, (5.38)

where
√

g is given by eqn (5.35). A similar calculation gives

∂2y

∂ξ 2
+ ∂2y

∂η2
−
(

∂β

∂x
+ ∂γ

∂y

)√
g = 0. (5.39)

If we take β = 0 and hence γ = α−1, eqns (5.33) and (5.34) reduce to the gener-
alized Cauchy-Riemann equations

∂x

∂ξ
= α

∂y

∂η

∂y

∂ξ
= − 1

α

∂x

∂η
.

(5.40)

As in conformal mapping, grid density in the interior of the physical domain is
not controlled by the quasiconformal mapping method. However, stretching func-
tions could be used to overcome this deficiency. More information can be found in
Mastin and Thompson (1984) and in Mastin (1991). Further details on quasiconformal
mapping are contained in Ahlfors (1996).

5.5 Numerical techniques

5.5.1 The Thomas Algorithm

In the numerical solution of the partial differential equations serving as differential
models of grid generation, finite-differencing frequently leads to a set of linear equations

126 Basic Structured Grid Generation

involving a tridiagonal matrix (one in which the only non-zero entries appear along
the main diagonal and the two adjacent parallel diagonals on either side). These can
usually be solved efficiently using the Thomas Algorithm (otherwise known as the
Tridiagonal Matrix Algorithm), which is based on Gaussian Elimination. A typical set
of equations for the (N − 1) unknowns u1, u2, . . . , uN−1, is

−aiui−1 + biui − ciui+1 = di, i = 1, 2, . . . , (N − 1), (5.41)

where the values of u0 and uN are supposed known due to the given boundary
conditions.

The equivalent matrix equation is

Au = d (5.42)

where

A =

b1 −c1 0 0 − – 0
−a2 b2 −c2 0 – – –

0 −a3 b3 −c3 – – –
0 0 – – – – –
− – – – – – 0
− −− – 0 −aN−2 bN−2 −cN−2

0 – – 0 0 −aN−1 bN−1

,

u =

u1

u2

−
−
−
−

uN−1

, d =

d1

d2

d3

−
−

dN−2

dN−1

.

Here we have transferred the terms −a1u0 and −cN−1uN to the right-hand side, where
they are assumed to have been incorporated into the d1 and dN−1 terms, respectively.
So now we can assume a1 = cN−1 = 0 in eqn (5.41).

A is diagonally dominant if

bi > 0 and bi > |ai | + |ci |, i = 1, 2, . . . , (N − 1) (5.43)

The Thomas Algorithm replaces eqn (5.41) with a simpler recurrence relation from
which ui−1 has been eliminated, thereby reducing A to an upper triangular matrix. The
equations can then be solved by simple back substitution.

Suppose that we seek a recurrence relation of the form

ui = Piui+1 + Qi, i = 1, 2, . . . , (N − 1) (5.44)

This is consistent with eqn (5.41) if

−ai(Pi−1ui + Qi−1) + biui − ciui+1 = di, i = 2, 3, . . . , (N − 1)

Differential models for grid generation 127

or
ui(bi − aiPi−1) = ciui+1 + di + aiQi−1,

which is itself consistent with eqn (5.44) if

Pi = ci

bi − aiPi−1
and Qi = di + aiQi−1

bi − aiPi−1
, i = 2, 3, . . . , (N − 1). (5.45)

Since we now have a1 = 0,

P1 = c1

b1
and Q1 = d1

b1
. (5.46)

We are now able to generate recursively the values of P2, P3, . . . ,

PN−2, and Q2, Q3, . . . , QN−1. Since we have taken cN−1 = 0, we also have
PN−1 = 0.

Equation (5.44) now gives the value of uN−1 as

uN−1 = QN−1. (5.47)

We can now use eqn (5.44) to solve successively for uN−2, uN−3, . . . , u1.
For the Thomas Algorithm to be well-conditioned, it is sufficient that

|Pi | � 1, i = 1, 2, . . . , N − 1, (5.48)

since by eqn (5.44) the error in the computed value of ui+1 is multiplied by Pi in
calculating ui . It may be shown that the conditions for diagonal dominance (5.43)
guarantee that (5.48) is satisfied.

The Thomas Algorithm is a powerful and convenient solution method for a set of
linear equations of the form (5.41), requiring computer storage and computer time of
the order of N rather than N2 or N3. It can be extended to ‘block-tridiagonal’ systems
in which ai, bi, ci are square matrices and the unknowns ui are vectors.

5.5.2 Jacobi, Gauss-Seidel, SOR methods

In solving matrix equations Au = d for the n × 1 column vector u when the n × n

matrix A is large but very sparse (i.e. the entries are mostly zeros), iterative methods
are usually employed. Suppose we write the equations as

u1 = 1

a11
[d1 − (a12u2 + a13u3 + · · · + a1nun)]

u2 = 1

a22
[d2 − (a21u1 + a23u3 + · · · + a2nun)]

. . .

un = 1

ann

[dn − (an1u1 + an2u2 + · · · + an(n−1)un−1)],

128 Basic Structured Grid Generation

assuming that none of the diagonal entries of A are zero. Then possible choices for
iterative schemes, given an initial guess u

(1)
i , i = 1, 2, . . . , n, are

u
(k+1)
1 = 1

a11
[d1 − (a12u

(k)
2 + a13u

(k)
3 + · · · + a1nu

(k)
n)]

u
(k+1)
2 = 1

a22
[d2 − (a21u

(k)
1 + a23u

(k)
3 + · · · + a2nu

(k)
n)]

. . .

u(k+1)
n = 1

ann

[dn − (an1u
(k)
1 + an2u

(k)
2 + · · · + an(n−1)u

(k)
n−1)], (5.49)

which is the Jacobi method, and

u
(k+1)
1 = 1

a11
[d1 − (a12u

(k)
2 + a13u

(k)
3 + · · · + a1nu

(k)
n)]

u
(k+1)
2 = 1

a22
[d2 − (a21u

(k+1)
1 + a23u

(k)
3 + · · · + a2nu

(k)
n)]

. . .

u(k+1)
n = 1

ann

[dn − (an1u
(k+1)
1 + an2u

(k+1)
2 + · · · + an(n−1)u

(k+1)
n−1)], (5.50)

called the Gauss-Seidel method, in which the new value u
(k+1)
1 is used in the second

equation to calculate u
(k+1)
2 , both of these values are used in the third equation to

calculate u
(k+1)
3 , and the continual updating proceeds until the last equation. Thus

Gauss-Seidel involves immediate replacement of old ui values in the appropriate loca-
tion and therefore requires less storage space than the Jacobi method. It is also generally
faster than the Jacobi method.

Equations (5.50) can be written as

u
(k+1)
i = 1

aii

di −

i−1∑
j=1

aiju
(k+1)
j −

n∑
j=i+1

aiju
(k)
j

 ,

i = 1, 2, . . . , n (i not summed). (5.51)

The SOR (Successive Over-Relaxation) method introduces an extra parameter ω,
called the acceleration parameter, which can speed up convergence of the iteration.
The scheme is given by

u
(k+1)
i = u

(k)
i + ω

aii

di −

i−1∑
j=1

aiju
(k+1)
j − aiiu

(k)
i −

n∑
j=i+1

aiju
(k)
j

 (5.52)

= ω

aii

di −

i−1∑
j=1

aiju
(k+1)
j −

n∑
j=i+1

aiju
(k)
j

+ (1 − ω)u

(k)
i , i = 1, 2, . . . , n,

(5.53)
which gives a weighted average of the old value of ui and the value given by eqn (5.51).
When ω = 1 the SOR method is the same as Gauss-Seidel. ‘Over-relaxation’ refers to

Differential models for grid generation 129

choosing a value of ω between 1 and 2, while ‘under-relaxation’ would involve taking
0 < ω < 1.

5.5.3 The conjugate gradient method

The conjugate gradient method involves an iterative scheme for solving the matrix
equation Au = d for the n× 1 column vector u, given the n×n matrix A and column
vector d, which is of general use, but it is particularly appropriate for matrices A which
are symmetric and positive definite, satisfying uT Au > 0 for any n × 1 column vector
u not identically zero. Under these circumstances this method solves an equivalent
problem, that of minimizing the function

E(u1, u2, . . . , un) = 1

2

n∑
i=1

n∑
j=1

aijuiuj −
n∑

i=1

diui, (5.54)

where aij and di are the elements of A and d respectively.

Exercise 4. Establish this equivalence, by demonstrating that E has one critical point
u (where all partial derivatives vanish) satisfying Au = d, and then showing that it is
a minimum (by representing E in the neighbourhood of the critical point in terms of
u = u+h, or directly evaluating the second-order terms in the Taylor Series expansion
of E about u.

The matrix formulation of E is

E = 1
2 uT Au − dT u. (5.55)

A simple numerical approach to the problem of minimization is provided by the method
of steepest descents, in which, starting from some given point ui (regarded as a point
in an n-dimensional space), an iterative step involves a search for a minimum in the
value of E along the direction of steepest decrease of E at u0. This direction r is that
opposite to the direction of the gradient vector (the vector of partial derivatives) of E,
which gives the direction of steepest increase. At a point u the gradient vector is given
by Au − d (since A is symmetric), so that we take

r = −(Au − d) = d − Au. (5.56)

Thus when u = ui we have r = ri = d − Aui , which we may also regard as the
residual at that point, bearing in mind the equivalent problem Au = d.

Putting u = ui + λiri = ui + λi(d − Aui) into eqn (5.55) (with no summation over
repeated indices) gives

E = 1
2 uT

i Aui − dT ui + λi

(
1
2 uT

i Ari + 1
2 rT

i Aui − dT ri

)
+ 1

2 (λi)
2rT

i Ari

= 1
2 uT

i Aui − dT ui + λi(uT
i Ari − dT ri) + 1

2 (λi)
2rT

i Ari

= 1
2 uT

i Aui − dT ui + λi(uT
i A − dT)ri + 1

2 (λi)
2rT

i Ari

= 1
2 uT

i Aui − dT ui − λirT
i ri + 1

2 (λi)
2rT

i Ari , (5.57)

130 Basic Structured Grid Generation

where, for example, the symmetry of A has been used in the identity

1
2 uT

i Ari =
(

1
2 uT

i Ari

)T = 1
2 rT

i AT ui = 1
2 rT

i Aui .

It is easy to see that the expression (5.57) is minimized when λi takes the (positive)
value

λi = rT
i ri

rT
i Ari

,

giving the iterative scheme

ui+1 = ui +
(

rT
i ri

rT
i Ari

)
ri . (5.58)

This scheme has the feature that the direction of search ri+1 is always orthogonal
to the direction ri at the previous iterative step, since the scalar product

rT
i+1ri = (dT − uT

i+1A)ri = dT ri −
[

uT
i +
(

rT
i ri

rT
i Ari

)
rT
i

]
Ari

= (dT − uT
i A)ri − rT

i ri = rT
i ri − rT

i ri = 0.

However, this can often lead to an inefficient solution procedure, and the method of
steepest descents can be quite slow. Various methods have been proposed to accelerate
the procedure, and the conjugate gradient method may be regarded as one of these. Here
the direction of search becomes pi , so that at each iterative step (when A is symmetric
and positive definite) we search for the minimum value of E with u = ui + λipi and
varying λi . Thus

E = 1
2 (uT

i + λipT
i)A(ui + λipi) − dT (ui + λipi)

= 1
2 uT

i Aui − dT ui + λi(uT
i A − dT)pi + 1

2 (λi)
2pT

i Api

= 1
2 uT

i Aui − dT ui − λirT
i pi + 1

2 (λi)
2pT

i Api ,

where the residual ri is given by

ri = d − Aui . (5.59)

We minimize E as a function of λi by taking

λi = rT
i pi

pT
i Api

. (5.60)

It remains to set up an iterative scheme for the selection of pi , and we choose

pi+1 = ri+1 + αipi (5.61)

for some scalar αi . The iteration will begin with u = u0 and p0 = r0, as in the method
of steepest descents.

Note that from eqn (5.59) we have

ri+1 = ri − A(ui+1 − ui) = ri − λiApi . (5.62)

Differential models for grid generation 131

It follows that
pT

i ri+1 = pT
i ri − λipT

i Api = 0 (5.63)

when λi satisfies eqn (5.60).
Suppose that, following a search for a minimum along the direction pi from the

‘point’ ui , we have reached the point ui+1. We can calculate ri+1 from eqn (5.62),
and now we seek the value of αi in eqn (5.61) which will yield the new direction of
search pi+1.

Substituting u = ui+1 +λi+1pi+1 = ui+1 +λi+1(ri+1 +αipi) into eqn (5.55) gives,
in a similar manner to the derivation of eqn (5.57),

E = 1
2 uT

i+1Aui+1 − dT ui+1 − λi+1rT
i+1ri+1 − λi+1αirT

i+1pi

+ 1
2 (λi+1)

2{rT
i+1Ari+1 + 2αi(pT

i Ari+1) + (αi)
2pT

i Api}
= Ei+1 − λi+1rT

i+1ri+1 + 1
2 (λi+1)

2{rT
i+1Ari+1 + 2αi(pT

i Ari+1) + (αi)
2pT

i Api},
using eqn (5.63), where Ei+1 is the value of E at ui+1. To minimize E, we clearly
must choose αi so that the final term in brackets is minimized, and thus we obtain

αi = −pT
i Ari+1

pT
i Api

. (5.64)

The iterative scheme is now complete, but we make the observation that

pT
i+1Api = rT

i+1Api + αipT
i Api = 0 (5.65)

when αi satisfies eqn (5.64). Thus the direction pi+1 is orthogonal to the direction of
the vector Api . Since A is symmetric, it is also the case that pi is orthogonal to the
vector Api+1. The two directions pi , pi+1 are said to be conjugate with respect to the
symmetric matrix A.

To summarize, given a starting guessed solution u0, an initial residual r0 = d−Au0,
and an initial direction p0 = r0, the conjugate gradient method is defined by the iterated
cycle of steps given by

• λi = (rT
i pi)/(pT

i Api);
• ui+1 = ui + λipi ;
• ri+1 = ri − λiApi ;
• αi = −(pT

i Ari+1)/(pT
i Api);

• pi+1 = ri+1 + αipi .

5.6 Numerical solutions of Winslow equations

Obtaining a grid in two dimensions typically involves the following steps:

1. Set up a rectangular grid in the computational domain and obtain an initial guess for
the values of x and y at the grid points. This may be achieved by Transfinite Inter-
polation, or Hermite interpolation, or simply by a univariate interpolation between
two opposite boundaries.

132 Basic Structured Grid Generation

2. Obtain the generating system of equations for the Inverse Problem, with x, y as the
dependent variables and ξ, η as independent variables.

3. Discretize the generating equations using second-order accurate finite-difference
approximations.

4. Solve the resulting system of algebraic equations iteratively in the computational
plane subject to the given boundary conditions.

5.6.1 Thomas Algorithm

Here we show how to solve eqns (5.3) using the Thomas Algorithm. Because we have
a two-dimensional problem, the method has to be used in a ‘line-by-line’ fashion.
Suppose that we have a grid in the square (or rectangular) computational ξη domain
with equal increments �ξ,�η in ξ and η and with grid points labelled by integer
values of i and j , for example as shown in Fig. 5.3. Finite differences applied to the
terms in eqn (5.3) give

(g11)i,j =
[(

∂x

∂ξ

)2

+
(

∂y

∂ξ

)2
]

i,j

=
(

xi+1,j − xi−1,j

2�ξ

)2

+
(

yi+1,j − yi−1,j

2�ξ

)2

(5.66)

(g22)i,j =
[(

∂x

∂η

)2

+
(

∂y

∂η

)2
]

i,j

=
(

xi,j+1 − xi,j−1

2�η

)2

+
(

yi,j+1 − yi,j−1

2�η

)2

(5.67)

(g12)i,j =
[(

∂x

∂ξ

)(
∂x

∂η

)
+
(

∂y

∂ξ

)(
∂y

∂η

)]
i,j

=
(

xi+1,j − xi−1,j

2�ξ

)(
xi,j+1 − xi,j−1

2�η

)

+
(

yi+1,j − yi−1,j

2�ξ

)(
yi,j+1 − yi,j−1

2�η

)
(5.68)

j =1
i =1 i =2 i =3 i =4 i =5

j =2

j =3

j =4

j =5

Fig. 5.3 Rectangular array of points.

Differential models for grid generation 133

(
∂2x

∂ξ 2

)
i,j

= xi+1,j − 2xi,j + xi−1,j

(�ξ)2
(5.69)

(
∂2x

∂η2

)
i,j

= xi,j+1 − 2xi,j + xi,j−1

(�η)2
(5.70)

(
∂2x

∂ξ∂η

)
i,j

= xi+1,j+1 + xi−1,j−1 − xi−1,j+1 − xi+1,j−1

4(�ξ)(�η)
, (5.71)

with similar expressions for the second derivatives ∂2y/∂ξ 2, ∂2y/∂η2, ∂2y/∂ξ∂η.
Equations (5.3) can now be written in the approximate form

(g22)i,j
(xi+1,j − 2xi,j + xi−1,j)

(�ξ)2 + (g11)i,j
(xi,j+1 − 2xi,j + xi,j−1)

(�η)2

−2(g12)i,j
(xi+1,j+1 + xi−1,j−1 − xi−1,j+1 − xi+1,j−1)

4(�ξ)(�η)
= 0, (5.72)

with a similar expression for y instead of x. Re-arranging, we get[
2(g22)i,j

(�ξ)2
+ 2(g11)i,j

(�η)2

]
xi,j = (g22)i,j

(�ξ)2
(xi+1,j + xi−1,j) + (g11)i,j

(�η)2
(xi,j+1 + xi,j−1)

−2(g12)i,j
(xi+1,j+1 + xi−1,j−1 − xi−1,j+1 − xi+1,j−1)

4(�ξ)(�η)
(5.73)

plus a similar equation for y.
If we now put

bi,j =
[

2(g22)i,j

(�ξ)2
+ 2(g11)i,j

(�η)2

]
, ai,j = ci,j = (g22)i,j

(�ξ)2
,

di,j = (g11)i,j

(�η)2 (xi,j+1 + xi,j−1)

−2(g12)i,j × (xi+1,j+1 + xi−1,j−1 − xi−1,j+1 − xi+1,j−1)

4(�ξ)(�η)

ei,j = (g11)i,j

(�η)2
(yi,j+1 + yi,j−1)

−2(g12)i,j × (yi+1,j+1 + yi−1,j−1 − yi−1,j+1 − yi+1,j−1)

4(�ξ)(�η)
,

we get an equation of the form (5.41), and a similar one for y:

−ai,j xi−1,j + bi,j xi,j − ci,j xi+1,j = di,j

−ai,j yi−1,j + bi,j yi,j − ci,j yi+1,j = ei,j . (5.74)

These equations may be solved ‘line-by-line’ at fixed j by the Thomas Algorithm,
as shown in Fig. 5.3. The method is iterative, and an initial guess for the values of x

and y at the interior grid nodes, given the values of x and y at the boundary nodes,

134 Basic Structured Grid Generation

j =1
i =1 i =2 i =3 i =4 i =5

j =2

j =3

j =4

j =5

Fig. 5.4 Interior grid nodes for j = 2.

could be obtained, for example, by Transfinite Interpolation. This would give starting
values for the coefficients ai,j , etc., in eqn (5.74). As indicated in Fig. 5.4, the next step
would be to use the Thomas Algorithm to evaluate x and y at interior grid points on
the line j = 2. Having updated x and y values on the line j = 2, and re-calculated the
coefficients, we would proceed to the line j = 3 and again use the Thomas Algorithm
to evaluate x and y there. Thus the method involves a sweep from ‘South’ to ‘North’
(with traverse, using the Thomas Algorithm, from ‘West’ to ‘East’). Clearly we could
re-formulate the method so that we exploit the Thomas Algorithm along lines of fixed
i, so that we sweep from West to East, while traversing from South to North. It can
be seen from eqn (5.73) that in this case we have to solve

−a∗
i,j xi,j−1 + bi,j xi,j − c∗

i,j xi,j+1 = d∗
i,j

−a∗
i,j yi,j−1 + bi,j yi,j − c∗

i,j yi,j+1 = e∗
i,j , (5.75)

where bi,j take the same values as above, a∗
i,j = c∗

i,j = (g11)i,j /(�η)2, and d∗
i,j and

e∗
i,j are given by different expressions which can easily be found.

The ADI (Alternating Direction Implicit) method is commonly used to organize the
sequence of traverses and sweeps. This procedure involves first carrying out a sweep
from South to North, say, with traverses from West to East according to eqn (5.74),
immediately followed by a sweep from West to East with traverses from South to
North according to eqn (5.75).

The accompanying disk contains five programs for solving the Winslow equations
in various situations using the Thomas Algorithm or SOR. See Section 5.13.

5.6.2 Orthogonality

Equations (5.19) may be discretized, given the univariate stretching functions
f1(ξ), f2(η), and solved using a line-by-line iterative procedure (Thomas Algorithm)
with ADI as described above. During any one iteration (involving one complete solu-
tion sweep) boundary values for x and y are temporarily held constant. However, after
the iteration step has been completed, we can adjust the boundary values of x and y

so as to satisfy the orthogonality condition (5.18) at the boundary.
The procedure is illustrated in Fig. 5.5. We focus on a grid point P in the physical

domain which is adjacent to a boundary curve with equation y = yB(x) in cartesians

Differential models for grid generation 135

Before adjustment After adjustment

O

y

x O

y

x

B

B
PP

(xP ,yP)
k +1 k +1

(xB ,yB)
k +1 k +1

(xB ,yB)k k

(xP ,yP)k k

Fig. 5.5 Adjusting position of nodes on boundary to achieve orthogonality.

and has been located with co-ordinates (xk+1
P , yk+1

P) at the (k+1)th iteration step. Point
B, with co-ordinates (xk

B, yk
B), is on the boundary, and these co-ordinates have been

used in the iteration to determine the position of P . The aim is to move B along the
boundary to a new position (xk+1

B , yk+1
B) such that the line PB will cut the boundary

curve at right angles.
The slope y′

B(xk
B) of the boundary curve at the old position of B is used to give an

approximate value −(y′
B)−1 for the required slope of PB, so that for the co-ordinates

(xk+1
B , yk+1

B) of the new position of B we have

yk+1
B − yk+1

P = −(y′
B)−1(xk+1

B − xk+1
P). (5.76)

Moreover, with first-order accuracy,

yk+1
B − yk

B = (y′
B)(xk+1

B − xk
B). (5.77)

These two simultaneous equations can be solved for xk+1
B , and then, instead of

solving for yk+1
B as well, a value can be obtained by substituting into the equation of

the boundary curve, i.e.
yk+1
B = yB(xk+1

B). (5.78)

In the case where y′
B is zero, a large value, say 1030, may be used for (y′

B)−1. This
effectively sets xk+1

B = xk+1
P . In the case where y′

B is infinite, we can switch the roles
of xk+1

B and yk+1
B by solving the simultaneous equations for yk+1

B and substituting into
the boundary curve in the inverse form x = xB(y) to obtain xk+1

B .
The solution procedure proposed here may be summarized as follows:

1. Guess values of x and y in the interior of the computational domain for the given
boundary data.

2. Calculate the coefficients g11, g22 and the ‘source’ terms on the right-hand side in
the discretized form of eqns (5.19), and solve for new interior values of x and then
y using the Thomas Algorithm applied in an ADI manner.

3. Adjust the boundary values of x and y so that orthogonality at the boundaries is
achieved.

4. Check whether the convergence criterion is satisfied. If not, return to step 2 until
the criterion is satisfied.

Finally, we can check how close the grid is to orthogonality by estimating the angle
of intersection between ξ and η lines. At a grid-point P this may be done by fitting

136 Basic Structured Grid Generation

W

N

P
E

S

x
O

y

h

x

Fig. 5.6 Assessing closeness to orthogonality at P.

a parabola to the nodes S, P, N and another to W, P, E as shown in Fig. 5.6. The
gradients of the tangents to these parabolas at P and the angles that they make with
Ox can then be found; summing these angles gives the required estimate.

The accompanying disk contains a program for carrying out this procedure with
specified stretching functions. It is listed in Section 5.13.

5.7 One-dimensional grids

5.7.1 Grid control

Some simple concepts of grid control, including the idea of a weight function, may be
illustrated in the construction of a one-dimensional grid (here just a set of grid points)
on the interval a < x < b in ‘physical’ space. This interval will be mapped onto the
one-dimensional interval 0 < ξ < 1 in ‘computational’ space.

The one-dimensional version of Laplace’s equation is

d2ξ

dx2
= 0,

with solution ξ = (x−a)/(b−a), the inverse being x = a+(b−a)ξ , a linear map which
takes a uniformly-spaced set of points in computational space to a uniformly-spaced
set of points in physical space.

If we introduce a control function P(ξ), continuous in ξ , the grid generating equation,
in place of eqn (5.6), is the ordinary differential equation

d2ξ

dx2
= P(ξ), (5.79)

where the mapping ξ = ξ(x) satisfies the end-conditions ξ(a) = 0, ξ(b) = 1. To
formulate the inverse problem, we have

d2x

dξ 2
= d

dξ

(
dx

dξ

)
= dx

dξ

d

dx

(
dξ

dx

)−1

= −dx

dξ

(
dξ

dx

)−2 d2ξ

dx2
= −
(

dx

dξ

)3 (d2ξ

dx2

)
.

Thus eqn (5.79) becomes
d2x

dξ 2
= −
(

dx

dξ

)3

P(ξ), (5.80)

Differential models for grid generation 137

with end-conditions x(0) = a, x(1) = b. Although this is a non-linear differential
equation, and the existence of solutions (in particular, single-valued solutions for which
x increases monotonically with ξ) is not guaranteed, we may integrate once to give(

dx

dξ

)−2

= 2
∫ ξ

c

P (t) dt

for some constant c. This indicates that some restrictions on the possible values of P

are necessary for solutions to exist (and not to involve folding).
Another approach to grid generation in this situation may be derived by specify-

ing a weight function ϕ(ξ), which has the property that the grid spacing between
points xi, xi+1 in the physical plane is proportional to the product of the grid spac-
ing between corresponding points ξi, ξi+1 in the computational plane and the weight
function evaluated at the mid-point of ξi and ξi+1. Thus

xi+1 − xi = Kϕ

(
ξi + ξi+1

2

)
(ξi+1 − ξi), (5.81)

where K is the constant of proportionality. The weight function is defined in the
computational domain 0 � ξ � 1 and takes only positive values.

Revising the definition a little so that it applies in a general way without having to
specify particular grid points, we proceed to the limit as the grid spacing tends to zero,
and re-write eqn (5.81) as

dx

dξ
= Kϕ(ξ). (5.82)

Eliminating K , we obtain the equation

d

dξ

(
1

ϕ (ξ)

dx

dξ

)
= 0, (5.83)

which is equivalent to
d2x

dξ 2
= 1

ϕ

dϕ

dξ

dx

dξ
. (5.84)

This is the non-conservative version of eqn (5.83). Thus, given ϕ(ξ), we have a
differential model of grid generation, with the same boundary conditions x(0) = a,
x(1) = b.

Comparing eqn (5.84) with (5.80) shows that they are equivalent if we put

P(ξ) = − 1

K2ϕ3

dϕ

dξ
. (5.85)

Note that integration of eqn (5.82) with respect to ξ over the whole range from
ξ = 0 to 1 gives

K = (b − a)

/∫ 1

0
ϕ(ξ) dξ. (5.86)

As an example, we take

ϕ(ξ) =
{

1, 0 � ξ � ξ0

2, ξ0 < ξ � 1
, (5.87)

138 Basic Structured Grid Generation

where the effect will be to double the spacing between grid points in one part of the
physical domain.

Exercise 5. With ϕ(ξ) given by eqn (5.87), show by integrating eqn (5.82) in the two
intervals 0 � ξ < ξ0 and ξ0 < ξ � 1 and eliminating K that

x(ξ) =

a + (b − a)

(2 − ξ0)
ξ, 0 � ξ < ξ0

2a − bξ0

2 − ξ0
+ 2ξ

(b − a)

2 − ξ0
, ξ0 < ξ � 1

. (5.88)

In this example the grid spacing in the physical plane changes at x = x0, where
x0 = a + (b − a)ξ0/(2 − ξ0). This gives

ξ0 = 2(x0 − a)

b + x0 − 2a
.

For more complicated weight functions, it may be difficult to ensure that changes in
grid spacing in the physical plane occur precisely where they are wanted. It may be
more convenient to use weight functions which are functions of physical co-ordinates,
so that in the one-dimensional case we have ϕ(x), with

xi+1 − xi = Kϕ

(
xi+1 + xi

2

)
(ξi+1 − ξi) (5.89)

instead of eqn (5.81), with the limiting forms

dx

dξ
= Kϕ(x), (5.90)

d

dξ

(
1

ϕ(x)

dx

dξ

)
= 0, (5.91)

in place of eqns (5.82) and (5.83), giving

d2x

dξ 2
= 1

ϕ

dϕ

dx

(
dx

dξ

)2

. (5.92)

This is a non-linear second-order differential equation (with the same end-conditions
x(0) = a, x(1) = b), with no guaranteed solution in general. Integration of eqn (5.90)
yields

K =
∫ b

a

1

ϕ(x)
dx. (5.93)

Equation (5.92) is equivalent to eqn (5.80) if we express P as a function of x and put

P(x) = − 1

Kϕ2

dϕ

dx
. (5.94)

Differential models for grid generation 139

5.7.2 Numerical aspects

Weight function equation
Here we present a standard finite-difference scheme for solving eqn (5.83). The interval
0 � ξ � 1 is divided into m equal intervals, and we can label (m + 1) discrete points
ξi = i�ξ , i = 0, 1, . . . , m, with �ξ = 1/m. It is useful to be able to evaluate certain
quantities at intermediate points, so that we have the finite-difference approximations
at the point corresponding to i:[

d

dξ

{
dx/dξ

ϕ

}]
i

� 1

�ξ

{(
dx/dξ

ϕ

)
i+ 1

2

−
(

dx/dξ

ϕ

)
i− 1

2

}
, (5.95)

with (
dx

dξ

)
i+ 1

2

� xi+1 − xi

�ξ
,

(
dx

dξ

)
i− 1

2

� xi − xi−1

�ξ
(5.96)

Then this finite-difference version of eqn (5.83) becomes

1

(�ξ)2

{
1

ϕ
i− 1

2

xi−1 −
(

1

ϕ
i− 1

2

+ 1

ϕ
i+ 1

2

)
xi + 1

ϕ
i+ 1

2

xi+1

}
= 0,

or
−aixi−1 + bixi − cixi+1 = 0, i = 1, 2, . . . , (m − 1) , (5.97)

with ai = 1
ϕ

i− 1
2

, bi =
(

1
ϕ

i− 1
2

+ 1
ϕ

i+ 1
2

)
, ci = 1

ϕ
i+ 1

2

, i = 1, 2, . . . , (m − 1). Note that

bi = ai + ci .
Incorporating the end-conditions x0 = a, xm = b, we obtain the tridiagonal matrix

equation

b1 −c1 0 0 − – 0
−a2 b2 −c2 0 – – –

0 −a3 b3 −c3 – – –
0 0 – – – – –
− – – – – – 0
− −− – 0 −am−2 bm−2 −cm−2
0 – – 0 0 −am−1 bm−1

x1
x2
−
−
−
−

xm−1

=

a1a

0
0
−
−
0

cm−1b

.

(5.98)
The matrix of coefficients is also symmetric, since ci = ai+1. Solutions may be obtained
efficiently using the Thomas Algorithm or SOR. On the accompanying disk the subdi-
rectory Book/one.d.gds contains the file line.SOR.f, which applies SOR to the problem.

Control function equation
A numerical scheme for solving eqn (5.80) is shown here. With the same uniform grid
as above along the computational ξ -axis, we have(

d2x

dξ 2

)
i

� xi+1 − 2xi + xi−1

(�ξ)2
and

(
dx

dξ

)
i

� xi+1 − xi−1

2(�ξ)
,

140 Basic Structured Grid Generation

with (P (ξ))i = P(ξi) = Pi . Hence eqn (5.80) becomes

xi+1 − 2xi + xi−1

(�ξ)2
= −Pi

(
xi+1 − xi−1

2(�ξ)

)3

,

which we write as

−aixi+1 + bixi − cixi+1 = hi, i = 1, 2, . . . , (m − 1), (5.99)

where ai = ci = 1, bi = 2, and hi = Pi(xi+1 − xi−1)
3/8(�ξ).

Because of the dependence of the terms hi on the solution, these equations can be
solved in an iterative manner as follows:

(a) Guess a reasonable initial set of values xi , for example by linear interpolation,
given the end-conditions x0 = a and xm = b.

(b) Evaluate the set of values hi .
(c) Solve the set of matrix equations for a new set of values xi ; this can be done by

Gaussian elimination.
(d) Return to step (b) and continue the iteration until the difference between succes-

sive sets of values xi , as measured by maxi |xnew
i − xold

i |, is less than some prescribed
tolerance.

5.8 Three-dimensional grid generation

Extending eqn (5.6) to three dimensions leads naturally to the set of Poisson equations
for the curvilinear co-ordinates xi :

∇2xi = P i, i = 1, 2, 3, (5.100)

where the P is are three control functions. Writing eqn (1.114) in its full three-dimens-
ional vector form

gij ∂2r
∂xi∂xj

= −(∇2xj)
∂r
∂xj

, (5.101)

leads immediately to the inverted form

ggij ∂2r
∂xi∂xj

+ gP j ∂r
∂xj

= 0, (5.102)

which may be expressed, using eqn (1.34) and putting x1 = ξ , x2 = η, x3 = ζ , as

Dr + gP j ∂r
∂xj

= 0,

where the second-order differential operator D is given by

D = G1
∂2

∂ξ 2 + G2
∂2

∂η2 + G3
∂2

∂ζ 2 + 2G4
∂2

∂ξ∂η
+ 2G5

∂2

∂ξ∂ζ
+ 2G6

∂2

∂η∂ζ
. (5.103)

Differential models for grid generation 141

5.9 Surface-grid generation model

A natural extension of the differential model given by eqns (5.6) to grid generation on
a surface in three dimensions is obtained by replacing the Laplacian operator by the
Beltrami operator, as defined in Section 3.9. Thus if the surface is to be covered by a
curvilinear co-ordinate system of ξα curves, we could force ξ(= ξ 1) and η(= ξ 2) to
satisfy the equations

�Bξ = P, �Bη = Q, (5.104)

where P , Q are control functions. Note that the surface may already be effectively
covered by parametric curves uα , α = 1, 2, but these may not give rise to a satisfactory
grid. We assume here that the surface has four edges (four known space-curve seg-
ments) which can be mapped onto the edges of a unit square in the ξα computational
plane.

Substituting into eqn (3.165) with the ξα system instead of uα immediately gives
the ‘inverse’ equation

aαβ ∂2r
∂ξα∂ξβ

+ P
∂r
∂ξ

+ Q
∂r
∂η

= 2κmN,

which after multiplying through by a may be written as

Dr + a

(
P

∂r
∂ξ

+ Q
∂r
∂η

)
= RN, (5.105)

where the operator D is given by

D = a22
∂2

∂ξ 2 − 2a12
∂2

∂ξ∂η
+ a11

∂2

∂η2 , (5.106)

and
R = 2aκm = aaαβbαβ = a22b11 − 2a12b12 + a11b22. (5.107)

Equation (5.105) comprises three scalar equations for the cartesian components
(x, y, z) of grid-points in physical space. These can be solved numerically when the
equation of the surface is given, either explicitly, implicitly, or in terms of parameters.
Specification of the two constraining eqns (5.104) provides the core of the method.

Here we shall just consider the case where P = Q = 0, and take the surface to be
defined by the explicit equation z = f (x, y). Then eqn (5.105) reduces to the three
equations

a22
∂2x

∂ξ 2
− 2a12

∂2x

∂ξ∂η
+ a11

∂2x

∂η2
= RNx

a22
∂2y

∂ξ 2
− 2a12

∂2y

∂ξ∂η
+ a11

∂2y

∂η2
= RNy (5.108)

a22
∂2z

∂ξ 2 − 2a12
∂2z

∂ξ∂η
+ a11

∂2z

∂η2 = RNz,

142 Basic Structured Grid Generation

where the cartesian components, from eqn (3.114), of N are, denoting partial derivatives
by subscripts,

Nx = − fx√
[1 + (fx)2 + (fy)2]

,

Ny = − fy√
[1 + (fx)2 + (fy)2]

(5.109)

Nz = 1√
[1 + (fx)2 + (fy)2]

,

and, moreover, making use of eqn (3.113),

R = a

{
[1 + (fx)

2]fyy − 2fxfyfxy + [1 + (fy)
2]fxx

[1 + (fx)2 + (fy)2]3/2

}
. (5.110)

In addition we have, of course,

a11 = (xξ)
2 + (yξ)

2 + (zξ)
2, a22 = (xη)

2 + (yη)
2 + (zη)

2,

a12 = xξxη + yξyη + zξ zη, a = a11a22 − (a12)
2 .

Given the values of x, y, z on the edges of the computational square (correspond-
ing to the four known space-curves), the aim now is to solve the partial differential
eqns (5.108) for the cartesian co-ordinates of grid-points in the interior of the computa-
tional domain. These equations depend on having an explicit representation z = f (x, y)

of the surface. In many cases in practice such a representation has to be constructed
from surface data involving a finite number of points, using least square fits or ‘bicu-
bic spline’ methods. Numerical solution of eqns (5.108) may be carried out using any
suitable method which has proved to be robust in elliptic grid-generation problems, for
example LSOR (line, or line-by-line, successive over-relaxation) based on an initially
guessed x, y, z field.

5.10 Hyperbolic grid generation

Grid generation based on the solution of elliptic partial differential equations with
Dirichlet boundary conditions can be expensive in terms of computer time. There
are situations where, instead of trying to match a curvilinear co-ordinate system to
four boundary curves in two dimensions, or six surfaces in three dimensions, it may
be more convenient to start with a single boundary and march outwards into the
physical domain, using a hyperbolic partial differential equation as the basis of com-
putation. This approach is suggested by the classical method of characteristics for
second-order hyperbolic equations, where, starting from some non-characteristic initial
curve in two dimensions, one may construct a network of characteristic curves in the
solution domain.

Here we present a system of non-linear equations proposed by Steger and Chaussee
(1980) for generating a two-dimensional grid with orthogonality and with control of

Differential models for grid generation 143

grid-cell area. We start with a single boundary curve on which η is taken to be zero.
The two first-order partial differential equations for the cartesian co-ordinates x, y as
functions of ξ , η are:

g12 = g1 · g2 = xξxη + yξyη = 0,

|g1 × g2| = xξyη − xηyξ = V, (5.111)

where the first equation imposes orthogonality, and the second implies, by eqn (1.43),
that V is a measure of cell-area (assuming that δξδη is the same for each grid cell).
In general we can let V be a function of ξ, η, so that, for example, we could increase
grid-density near the boundary η = 0 by ensuring that V is small there.

It follows from eqns (5.111) that

xη = − V

g11
yξ , yη = V

g11
xξ , (5.112)

where g11 = (xξ)
2 + (yξ)

2.
The subdirectory Book/hyper.gds on the accompanying disk contains a program for

solving these equations numerically using a marching procedure. The cell-area V is
prescribed in the form

V = K
√

g11e
−λ(1−η), (5.113)

where K and λ are constants, and the equations are discretized with first-order accuracy
in the η-direction and second-order accuracy in the ξ -direction as

(xi,j+1 − xi,j)

�η
= −
(

V

g11

)
i,j

(
yi+1,j − yi−1,j

2�ξ

)
,

(yi,j+1 − yi,j)

�η
=
(

V

g11

)
i,j

(
xi+1,j − xi−1,j

2�ξ

)
, (5.114)

where

(g11)i,j =
(

xi+1,j − xi−1,j

2�ξ

)2

+
(

yi+1,j − yi−1,j

2�ξ

)2

.

These equations determine explicitly the values xi,j+1 and yi,j+1 in terms of val-
ues xi−1,j , xi,j , xi+1,j , yi−1,j , yi,j , and yi+1,j . Hence the method itself may be called
explicit. Only data on values of x and y on the initial boundary η = 0 are required
to start the process. The numerical solution starts from this boundary and marches
outward in the direction of increasing η, eventually constructing new co-ordinate lines
ξ = 0, 1 and η = 1.

5.11 Solving the hosted equations

5.11.1 An example

In this section we illustrate the task of solving a partial differential equation, given
that the solution domain has been discretized by the generation of a suitable grid. We

144 Basic Structured Grid Generation

take the two-dimensional form of Laplace’s Equation as an example. The subdirec-
tory Book/p.d.Equation on the accompanying disk, as listed in the last section of this
chapter, contains two files, the first of which, Conjugate.Laplace.f, simply shows how
to solve Laplace’s Equation

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
= 0

in a square solution domain using the Conjugate Gradient method. Exact solutions,
such as u = ex sin y, with appropriate boundary conditions, may be used to assess the
numerical accuracy of the method.

For non-rectangular domains we need to be able to transform the equation to gen-
eral curvilinear co-ordinates ξ, η. A convenient expression for ∇2ϕ was obtained in
eqn (1.173), with the addition of eqns (1.174) and (1.175). The file laplacian.general.f
contains a program which solves the discretized form of these equations using SOR.
First we set

g11/
√

g = goo, −2g12/
√

g = got , g22/
√

g = gtt ,

√
g∇2ξ = Delzi,

√
g∇2η = Delet

so that eqns (1.174) and (1.175) can be written

Delzi = gtt

(xηyξξ − yηxξξ)√
g

+ got

(xηyξη − yηxξη)√
g

+ goo

(xηyηη − yηxηη)√
g

,

Delet = gtt

(yξ xξξ − xξyξξ)√
g

+ got

(yξ xξη − xξyξη)√
g

+ goo

(yξ xηη − xξyηη)√
g

.

Discretization of eqn (1.173) can now be represented by{
(gtt ∗ ϕ)j+1,k − 2(gtt ∗ ϕ)j,k + (gtt ∗ ϕ)j−1,k

}
+ {(goo ∗ ϕ)j,k+1 − 2(goo ∗ ϕ)j,k + (goo ∗ ϕ)j,k−1

}
+ 0.25

{
(got ∗ ϕ)j+1,k+1 + (got ∗ ϕ)j−1,k−1

−(got ∗ ϕ)j+1,k−1 − (got ∗ ϕ)j−1,k+1
}

+ 0.5
{
(Delzi ∗ ϕ)j+1,k − (Delzi ∗ ϕ)j−1,k

}
+ 0.5

{
(Delet ∗ ϕ)j,k+1 − (Delet ∗ ϕ)j,k−1

} = 0 (5.115)

in the transformed domain of curvilinear co-ordinates.
Taking terms containing ϕj,k to one side of the equation, we can generate a ‘tem-

porary’ value

ϕt
j,k =

{
(gtt ∗ ϕ)j+1,k + (gtt ∗ ϕ)j−1,k + (goo ∗ ϕ)j,k+1 + (goo ∗ ϕ)j,k−1

2[(gtt)j,k + (goo)j,k]
}

+0.5

{
(Delzi ∗ ϕ)j+1,k − (Delzi ∗ ϕ)j−1,k

2[(gtt)j,k + (goo)j,k]
}

Differential models for grid generation 145

+0.5

{
(Delet ∗ ϕ)j,k+1 − (Delet ∗ ϕ)j,k−1

2[(gtt)j,k + (goo)j,k]
}

+0.25

(got ∗ ϕ)j+1,k+1 + (got ∗ ϕ)j−1,k−1
−(got ∗ ϕ)j+1,k−1 − (got ∗ ϕ)j−1,k+1

2[(gtt)j,k + (goo)j,k]

 . (5.116)

An iterative scheme employing SOR is now given by

ϕn+1
j,k = ϕn

j,k + ω(ϕt
j,k − ϕn

j,k), (5.117)

where ω is an over-relaxation factor which we have taken in the program to be 1.5.
The program uses this method to solve Laplace’s equation in the region between con-

centric circular arcs shown in Fig. 4.2 of Chapter 4, subject to the Dirichlet boundary
conditions:

ϕ = 0 when θ = 0, ϕ = 1

r
sin α when ϕ = α,

ϕ = 1

r1
sin θ when r = r1, ϕ = 1

r2
sin θ when r = r2. (5.118)

For these boundary conditions the exact solution ϕ = 1
r

sin θ exists, and this enables
us to assess the accuracy of the numerical procedure.

5.11.2 More general steady-state equation

Suppose that the basic partial differential equation to be solved in physical space for
the field variable ϕ has the form

∇ · (vϕ) + ∇ · (ν∇ϕ) + S = 0, (5.119)

where S is a source term, ν could be a diffusion coefficient, and v is a vector field
(fluid velocity). In cartesian co-ordinates this takes the form

∂

∂yi

(viϕ) + ∂

∂yi

(
ν

∂ϕ

∂yi

)
+ S = 0,

which transforms to the consistent generalized tensor form

(viϕ),i + (νgijϕ,j),i + S = 0. (5.120)

Using eqns (1.128), (1.122), (1.111), and (1.134), this may be expressed as

viϕ,i +vi
,iϕ + gij (νϕ,j),i + S

= vi ∂ϕ

∂xi
+ ϕdivv + gij

[
∂

∂xi

(
ν

∂ϕ

∂xj

)
− �k

ij

(
ν

∂ϕ

∂xk

)]
+ S

= vi ∂ϕ

∂xi
+ ϕgi · ∂v

∂xi
+ gij ∂

∂xi

(
ν

∂ϕ

∂xj

)
+ (∇2xk)ν

∂ϕ

∂xk
+ S = 0,

146 Basic Structured Grid Generation

giving finally

[vi + ν(∇2xi)] ∂ϕ

∂xi
+ gij ∂

∂xi

(
ν

∂ϕ

∂xj

)
+ ϕgi · ∂v

∂xi
+ S = 0, (5.121)

where the gis are given by eqns (1.8) or (1.161), vi = gi ·v, and i, j are summed from
1 to 2 or from 1 to 3, depending on whether the problem is in one or two dimensions.

Exercise 6. Making use of eqns (1.120), (1.118), and (1.135), show that another (con-
servative) form of the equation is

∂

∂xi

[√
g

(
viϕ + νgij ∂ϕ

∂xj

)]
+ √

gS = 0. (5.122)

Now, following the generation of a structured grid for the physical space, with the
xi co-ordinate curves coinciding by definition with grid lines, the hosted equation may
be discretized and solved on the square or rectangular domain in xi computational
space, subject to the given boundary conditions.

Typical boundary conditions

c1ϕ + c2
∂ϕ

∂n
= c3 (5.123)

in physical space transform, according to eqn (1.193), into the condition

c1ϕ + c2
1√
gii

gij ∂ϕ

∂xj
= c3, (5.124)

with summation over j but not i, on a boundary xi = const . in computational space.

5.12 Multiblock grid generation

When the geometry of the solution domain is complex, as is generally the case in
engineering problems, one approach is to divide it into subdomains (blocks) of simpler
geometries. Structured grid generation can be carried out in each of the sub-domains
using algebraic methods or differential models, and the resulting grids can then be
patched together at the common boundaries. A major drawback of this ‘multiblocking’,
or ‘block-structuring’, technique has been the difficulty of automating the process of
domain decomposition. Dividing the domain into subdomains while keeping track of
data relating to the boundaries between the blocks and to the ‘connectivity’ of the
blocks is not difficult when the number of subdomains is relatively small, so that
the process can be performed manually. However, the generation of this initial data-
structure can be unacceptably time-consuming when the number of subdomains is large
(say, into the hundreds).

Approaches to automating this procedure were suggested by Allwright (1988) and
Eiseman, Cheng, and Hauser (1994), and there are currently commercially available
Computer Aided Design (CAD) codes which can be used. These perform block geom-
etry generation automatically, together with curve-fitting, typically using cubic splines,
along the common boundaries of the sub-domains. When the overall solution domain

Differential models for grid generation 147

geometry is not too complex, however, it may be convenient to decompose it into
a small number of blocks of fairly simple geometry, in each of which a grid can be
generated with desirable features, such as orthogonality. For two dimensional problems
the following procedure (as implemented on the accompanying disk in the subdirec-
tory Book/Winslow gds, file orthog.g.f) is proposed here for patching at the common
boundaries.

Consider typical (two-dimensional) blocks A and B, whose common boundary can
be represented as a cubic spline. Suppose that the length of this boundary, which may
be calculated using the integral formula for a plane curve, is LAB . Next suppose that
a structured grid is generated independently for each block using an elliptic generator,
say, so that block A may be mapped onto the square 0 < ξ < 1, 0 < η < 1 in
computational space, while block B is mapped onto a similar square using a different
mapping. The grid in block A is generated using a discrete set of ξ -values, 0 =
ξ1, ξ2, . . . , ξn = 1, and a discrete set of η-values. To give some measure of control the
sizes of successive intervals (ξi − ξi−1) between ξ -values are either taken to follow
a geometric progression in the program orthog.g.f., or are obtained using a stretching
function.

The same set of ξ -values is used to generate the grid in block B, according to the
mapping for block B. A point on the boundary in physical space corresponding to ξi

has known cartesian co-ordinates (xAi, yAi), according to the mapping of block A, with
respect to some set of cartesian axes. Similarly, these ξ -values produce grid-nodes along
the boundary according to the mapping of block B with, in general, different cartesian
co-ordinates (xBi, yBi). Note that the number of grid-nodes along the boundary here
is the same for both A and B.

The following algorithm is used to match the boundary grid-points of A to those in B:

1. The closeness of the matching is tested by calculating a residual defined by

ResMAT =
n∑

i=1

(|xAi − xBi |
LAB

+ |yAi − yBi |
LAB

)
.

2. If ResMAT is greater than some user-specified value, say10−4, then some adjustment
of the A nodes is carried out so that they will coincide more closely with those of B.

3. For typical grid-points of block A and block B corresponding to a value ξi , for
some i, the length L1 of the boundary curve between them may be calculated. In
the program this is done by dividing the difference (xBi − xAi) into ten equal parts
�x, calculating the corresponding �ys using the cubic spline expression for the
boundary curve, and then calculating the approximation

L1 =
10∑
1

√{
(�x)2 + (�y)2

}
.

4. A similar calculation gives the length L2 of the boundary curve between the grid-
nodes (xBi, yBi) and (xA(i+1), yA(i+1)). The sum (L1 + L2) then gives an approxi-
mation to the distance along the curve between (xAi, yAi) and (xA(i+1), yA(i+1)).

148 Basic Structured Grid Generation

5. A linear interpolation formula is now used to generate an improved value for ξi ,
namely

ξNew
i − ξi

L1
= ξi+1 − ξi

L1 + L2
.

which gives ξNew
i = ξi + L1

L1+L2
(ξi+1 − ξi).

6. Having adjusted (in a loop) all the values of ξi , we regenerate the two grids and
test again the value of ResMAT. The process is iterated until this value is within
the specified limit.

5.13 Website programs

5.13.1 Subdirectory: Book/Winslow.gds

This subdirectory contains six files. The first five solve the Winslow eqns (5.3) or the
Winslow equations with control functions (5.7) (TTM equations) for various planar
two-dimensional geometries, using either SOR or the Thomas Algorithm. They are:

1. W.SOR.f
2. W.adaptive.f
3. W.SOR.circle.f
4. W.adaptive.circle.f
5. W.trid.f

A number of grids obtained for domains of various shapes using these programs
are shown in Figs 5.7–5.12
The sixth file is

6. orthog.g.f

This program generates a two-dimensional planar orthogonal grid with grid-density
control by solving the Winslow eqns (5.19), incorporating univariate stretching
functions in both transformed co-ordinates ξ, η. The code has been written with the
possibility of employing finite-volume methods in mind, for example for solving the

Fig. 5.7 Grid generated employing Winslow equations.

Differential models for grid generation 149

Fig. 5.8 TTM equations.

Fig. 5.9 TTM equations.

Fig. 5.10 Winslow equations.

Fig. 5.11 Winslow equations.

Navier-Stokes equations. Thus the code contains provisions for calculating (using
numerical integration) internodal distances, grid-cell areas, and, when the underlying
physical problem is axi-symmetric, grid-cell volumes.

To run this program the user requires a NAG (Numerical Algorithm Group) Library.
If the physical boundary is obtained by direct physical measurement, cubic-spline
routines are used to construct a smooth curve. There is a switch in the program that

150 Basic Structured Grid Generation

Fig. 5.12 Winslow equations.

Fig. 5.13 Orthogonal Winslow.

by-passes these routines if the boundary-data is provided through an analytical function.
However, the program does not run without the presence of a NAG Library.

An example of a grid calculated using this program is shown in Fig. 5.13.

5.13.2 Subdirectory: Book/one.d.gds

This contains two files, the second of which listed below is relevant to the present
chapter. The first is explained in the next chapter.

1. curve.SOR.f
2. line.SOR.f

The program here solves eqn (5.97) by SOR, the weight function being specified
by the user. In fact the code prompts the user to choose one of the four following
functions, which are, respectively, constant, bilinear, quadratic, and exponential:

(a) ϕ(ξ) = 1, a constant;
(b) ϕ (ξ) = λ (|ξ − ξ0| + 1) ;
(c) ϕ (ξ) = λ

{
(ξ − ξ0)

2 + 1
} ;

(d) ϕ (ξ) = eλ(ξ−ξ0),

where the λs are constants, and 1s have been added to two right-hand sides to ensure
that the weight functions remain positive.

5.13.3 Subdirectory: Book/hyper.gds

There is one file in this subdirectory:

1. hyperbolic.f

The operation of the program in this file has been described in Section 5.10.

Differential models for grid generation 151

5.13.4 Subdirectory: Book/p.d.Equations

This contains two files, referred to in Section 5.11. They are:

1. Conjugate.Laplace.f
2. Laplacian.general.f

6

Variational methods and adaptive
grid generation

6.1 Introduction
Despite the availability of a variety of algebraic and differential models for grid genera-
tion, many practitioners experience substantial difficulties when applying these models
to new problems. The grids generated may turn out to be badly skewed (with large
departures from orthogonality), compressed, or expanded, folding may occur, and
sometimes even convergence fails. Ever since grid generation methods began to be
studied seriously in the late 1960s, variational approaches have been used in attempts
to attain a deeper understanding of the limitations and strengths of the various differ-
ential models. In this chapter we present an introduction to variational methods and
show how they may be used to control grid ‘quality’.

The quality of the grids used to discretize the physical domain when solving par-
tial differential equations very much affects the accuracy of the numerical solutions
obtained. Given that cost constraints allow only a limited number of grid nodes to be
introduced into a solution domain, one aspect of quality is related to the density of grid
nodes in regions where there are large gradients of field variables. A grid-generating
scheme should be able to allocate more grid nodes where large gradients occur (and
fewer where field variables vary smoothly). Moreover, in transient problems where the
solution develops in time, regions of high gradients may not be known a priori, and
there is therefore a need for some mechanism which can automatically detect regions
of high gradients as they arise, so that grid density can be increased there. In other
words, a grid generation procedure may be coupled to the numerical solution, produc-
ing grids which may be called solution-adaptive, or dynamically adaptive. Algorithms
which automatically concentrate and disperse grid nodes in this way are called adap-
tive. Adaptive methods may also be used in steady-state problems when regions of
high gradients are not known in advance.

As well as the optimum spacing of grid points, the quality of grids depends on
factors such as cell-areas (or volumes) and the angles between grid lines (how far
a grid departs from orthogonality). An ideal structured grid would be an orthogonal
grid with grid-node density able to cope with sharp solution gradients. In many cases,
however, the geometrical complexity of the physical domain makes the construction of
such a grid difficult or impossible, and a compromise has to be reached. The attraction

Variational methods and adaptive grid generation 153

of the variational approach [see Liseikin (1999) for detailed references] has been that
it can facilitate intuitive control over these various factors, while at the same time
providing firm theoretical foundations.

In the following section we review some basic ideas of variational calculus.

6.2 Euler-Lagrange equations

We have already considered one application of variational methods in Chapter 3, where
an outline of the derivation of the general equations for geodesics on surfaces in E3

was presented. These eqns (3.67) are necessary conditions that geodesics must satisfy
in order to make the integral in eqn (3.66) stationary. Such integrals, which depend
for their value on the particular functions, u1(t) and u2(t) in that case, being substi-
tuted into the integrand, are called functionals in the classical Calculus of Variations.
Sufficient conditions for maxima or minima are, however, usually more difficult to
establish than in the corresponding calculus of functions. Thus we may be able to
solve the Euler-Lagrange equations (the necessary conditions) to obtain solution func-
tions, which are called extremals, but it is not usually easy to establish their nature. It
may be pointed out, in addition, that variational problems may have no solution. For
example, the functional may be bounded below while at the same time a function that
actually minimizes it may not exist.

Here we give a brief account of the main types of variational problems that we shall
encounter, with a discussion of the corresponding Euler-Lagrange equations.

In Chapter 3 we met the functional of the form, writing x1, x2 in place of u1, u2,

I =
∫ b

a

F (x1, x2, ẋ1, ẋ2) dt,

where F is regarded formally as a function of four independent variables, and the
functions x1 and x2 are required to take prescribed values at the ends t = a and
b of the interval of integration. The Euler-Lagrange equations are the two ordinary
differential equations

d

dt

(
∂F

∂ẋ1

)
− ∂F

∂x1
= 0,

d

dt

(
∂F

∂ẋ2

)
− ∂F

∂x2
= 0. (6.1)

Since in general the terms ∂F/∂ẋ1 and ∂F/∂ẋ2 contain terms in ẋ1 and ẋ2, these
are two second-order differential equations, and there are four prescribed boundary
conditions to be satisfied.

The argument sketched in Chapter 3 also applies to the case

I =
∫ b

a

F (x1, x2, ẋ1, ẋ2, t) dt,

and the conclusions, eqns (6.1), are the same.

154 Basic Structured Grid Generation

It is also straightforward to generalize the argument to cover the case

I =
∫ b

a

F (x1, x2, . . . , xn, ẋ1,ẋ2, . . . , ẋn, t) dt (6.2)

for n extremal functions x1(t), x2(t), . . . , xn(t), to be determined subject to the condi-
tions that they make I stationary and that they satisfy certain prescribed end conditions.
The Euler-Lagrange equations are

d

dt

(
∂F

∂ẋi

)
− ∂F

∂xi

= 0, i = 1, 2, . . . , n, (6.3)

n second-order differential equations to be satisfied subject to 2n boundary conditions.
Of course, this also holds for the case n = 1.

The differentiation operators appearing in eqn (6.3) have to be interpreted carefully.
The partial derivatives involve formal differentiation of F as a function of (2n + 1)
variables, while the ordinary (or total) derivative operator d/dt acting in the first term
regards everything as a function of the single variable t .

In the case where F does not depend explicitly on t , we can infer from the ‘total
derivative’ Chain Rule and eqn (6.3) that extremals satisfy the equation

dF

dt
=

n∑
i=1

∂F

∂xi

dxi

dt
+

n∑
i=1

∂F

∂ẋi

dẋi

dt

=
n∑

i=1

[
d

dt

(
∂F

∂ẋi

)
dxi

dt
+ ∂F

∂ẋi

dẋi

dt

]
=

n∑
i=1

d

dt

(
ẋi

∂F

∂ẋi

)
.

Hence we obtain
d

dt

[
F −

n∑
i=1

ẋi

∂F

∂ẋi

]
= 0. (6.4)

A further generalization of (6.2) is the functional

I =
∫ b

a

F (x1, x2, . . . , xn, ẋ1, ẋ2, . . . , ẋn, ẍ1, ẍ2, . . . , ẍn, t) dt, (6.5)

where the unknown functions x1(t), . . . , xn(t) have their values and the values of their
derivatives prescribed at the end-points. Variations δx1, . . . , δxn (all functions of t) in
these functions from some supposed extremal functions should produce a variation in
I which is zero to first order. Thus, using first-order increment formulas,

0 = δI =
∫ b

a

δF dt =
∫ b

a

(
n∑

i=1

∂F

∂xi

δxi +
n∑

i=1

∂F

∂ẋi

δẋi +
n∑

i=1

∂F

∂ẍi

δẍi

)
dt

=
∫ b

a

n∑
i=1

[(
∂F

∂xi

− d

dt

(
∂F

∂ẋi

))
δxi − d

dt

(
∂F

∂ẍ

)
δẋi

]
dt

after integration by parts, the integrated parts vanishing because all δxi and δẋi , i =
1, 2, . . . , n, vanish at the ends because of the boundary conditions. Note that for the
integration by parts we assume that δ(ẋi) = d(δxi)/dt and δ(ẍ) = d(δẋ)/dt .

Variational methods and adaptive grid generation 155

One more integration by parts gives

0 = δI =
∫ b

a

n∑
i=1

[
∂F

∂xi

− d

dt

(
∂F

∂ẋi

)
+ d2

dt2

(
∂F

∂ẍi

)]
δxi dt

with another integrated part vanishing.
Since this must hold for arbitrary independent variations δxi , it follows straight-

forwardly (using a proof by contradiction) that the following equations must hold for
all t :

∂F

∂xi

− d

dt

(
∂F

∂ẋi

)
+ d2

dt2

(
∂F

∂ẍi

)
= 0, i = 1, 2, . . . , n. (6.6)

These are the n fourth-order ordinary differential equations (the Euler-Lagrange
equations for this case), with 4n end conditions, whose solutions are the extremals
for the variational problem δI = 0 with I given by eqn (6.5).

Another type of generalization arises from considering functionals

I =
∫∫

R

F (x, y, u, ux, uy) dx dy, (6.7)

which involve a double integral over a domain R of the xy-plane, where the integrand
depends explicitly on a function u(x, y) and its partial derivatives ux , uy . We assume
that the value of u is prescribed on the boundary C of R. To make I stationary we
equate to zero the first-order expression for the increment δI

0 = δI =
∫∫

R

δF dx dy =
∫∫

R

(
∂F

∂u
δu + ∂F

∂ux

δux + ∂F

∂uy

δuy

)
dx dy

corresponding to a variation δu (a function of x and y).
We also assume that δux = ∂(δu)/∂x, so that integration of the second term by

parts with respect to x with y fixed gives∫∫
R

∂F

∂ux

δux dx dy =
∫ (∫

∂F

∂ux

δux dx

)
dy

=
∫ ([

∂F

∂ux

δu

]x2

x1

−
∫ x2

x1

∂

∂x

(
∂F

∂ux

)
δu dx

)
dy,

where x1 and x2 are values of x on C at given values of y. Since u is prescribed on
C, we must have δu = 0 on C, and hence∫∫

R

∂F

∂ux

δux dx dy = −
∫∫

R

∂

∂x

(
∂F

∂ux

)
δu dx dy.

Similarly we get ∫∫
R

∂F

∂uy

δuy dx dy = −
∫∫

R

∂

∂y

(
∂F

∂uy

)
δu dx dy.

Consequently

δI =
∫∫

R

(
∂F

∂u
− ∂

∂x

(
∂F

∂ux

)
− ∂

∂y

(
∂F

∂uy

))
δu dx dy = 0,

156 Basic Structured Grid Generation

and this vanishes for arbitrary variations δu in R only if the extremal function u

satisfies the second-order partial differential equation (the Euler-Lagrange equation for
this problem)

∂F

∂u
− ∂

∂x

(
∂F

∂ux

)
− ∂

∂y

(
∂F

∂uy

)
= 0 (6.8)

everywhere in R. Some care is again required in interpreting this equation, in regard
to the partial derivatives in the second and third terms. In the case of the second term,
for example, the partial derivative ∂F/∂ux differentiates F formally (as a function of
the five variables x, y, u, ux , uy) with respect to ux . In the subsequent differentiation
∂/∂x, however, ∂F/∂ux must be regarded as a function of the two variables x and
y only.

As an example, consider

I = 1

2

∫∫
R

{(ux)
2 + (uy)

2} dx dy, (6.9)

where u takes prescribed values on the boundary of R. Then

F = 1

2
(ux)

2 + 1

2
(uy)

2,
∂F

∂ux

= ux,
∂F

∂uy

= uy,

and

∂F

∂u
− ∂

∂x

(
∂F

∂ux

)
− ∂

∂y

(
∂F

∂uy

)
= 0 − ∂

∂x
(ux) − ∂

∂y
(uy) = −(uxx + uyy).

Thus the extremal for the variational problem δI = 0 must satisfy Laplace’s equation

∂2u

∂x2
+ ∂2u

∂y2
= 0 (6.10)

in R. In this problem I can take only non-negative values, and so is bounded below
by zero. This suggests that the extremal must minimize I , and in this particular case
this is indeed quite straightforward to prove, due to the quadratic nature of F .

The more general case

I =
∫∫

R

F (x, y, u, v, ux, uy,vx, vy) dx dy (6.11)

with two functions u(x, y), v(x, y), leads to two Euler-Lagrange equations

∂F

∂u
− ∂

∂x

(
∂F

∂ux

)
− ∂

∂y

(
∂F

∂uy

)
= 0,

∂F

∂v
− ∂

∂x

(
∂F

∂vx

)
− ∂

∂y

(
∂F

∂vy

)
= 0, (6.12)

which are two simultaneous second-order partial differential equations for u and v. In
Section 6.4 of this chapter these equations will be the focus of interest.

Variational methods and adaptive grid generation 157

6.3 One-dimensional grid generation

6.3.1 Variational approach

According to the analysis of Section 5.7, the transformation x = x(ξ) between the one-
dimensional computational domain 0 � ξ � 1 and the physical domain a � x � b,
where the grid-point density is governed by a weight function ϕ(ξ), must satisfy
eqn (5.83). This equation is actually the Euler-Lagrange equation of the variational
problem δI = 0, where the functional I is given by

I = 1

2

∫ 1

0

1

ϕ(ξ)

(
dx

dξ

)2

dξ. (6.13)

In fact, because the integrand is reasonably simple, we can reach without difficulty
the stronger conclusion that the solution of (5.83), subject to the end conditions x(0) =
a, x(1) = b, minimizes I . For suppose that x = x̂(ξ) satisfies eqn (5.83) and the end
conditions. If we consider a varied function x = x̂(ξ) + v(ξ), also satisfying the end
conditions, so that v(0) = v(1) = 0, we obtain, substituting into eqn (6.13),

I = 1

2

∫ b

a

1

ϕ(ξ)

(
dx̂

dξ
+ dv

dξ

)2

dξ = Î +
∫ 1

0

1

ϕ(ξ)

dx̂

dξ

dv

dξ
dξ + 1

2

∫ 1

0

1

ϕ(ξ)

(
dv

dξ

)2

dξ,

where Î is the value of I when x = x̂. The middle term vanishes since, on integration
by parts, we get [

1

ϕ(ξ)

dx̂

dξ
v

]1

0
−

∫ 1

0

d

dξ

(
1

ϕ(ξ)

dx̂

dξ

)
v dξ,

where the integrated part is zero because of the end conditions satisfied by v(ξ) and
the integral is zero because x̂(ξ) satisfies eqn (5.83).

Hence we have the exact equation

I = Î + 1

2

∫ 1

0

1

ϕ(ξ)

(
dv

dξ

)2

dξ � Î ,

since ϕ(ξ) takes positive values. So the minimizing property of x̂(ξ) is established.
On the other hand, if we consider the functional

Ĩ = 1

2

∫ 1

0

1

[ϕ(x)]2

(
dx

dξ

)2

dξ, (6.14)

the extremal which makes I stationary must satisfy the Euler-Lagrange equation

d

dξ

(
∂Ĩ

∂xξ

)
− ∂Ĩ

∂x
= d

dξ

(
xξ

[ϕ(x)]2

)
+ 1

[ϕ(x)]3

dϕ

dx

(
dx

dξ

)2

= 1

[ϕ(x)]2

d2x

dξ 2
− 2

[ϕ(x)]3

(
dx

dξ

)2 dϕ

dx
+ 1

[ϕ(x)]3

dϕ

dx

(
dx

dξ

)2

= 1

[ϕ(x)]2

d2x

dξ 2
− 1

[ϕ(x)]3

dϕ

dx

(
dx

dξ

)2

= 0,

158 Basic Structured Grid Generation

giving finally
d2x

dξ 2
− 1

ϕ(x)

dϕ

dx

(
dx

dξ

)2

= 0. (6.15)

This is the same equation as (5.92), so the transformation x = x(ξ) which gives a
grid according to the weight function ϕ(x) makes I stationary (although minimizing
properties are now not so easy to prove).

Exercise 1. As an alternative derivation of the Euler-Lagrange equation, use the fact
that the integrand in eqn (6.14) is independent of ξ to show directly from eqn (6.4) that

1

[ϕ(x)]2

(
dx

dξ

)2

= const .

(differentiation of this equation yielding eqn (6.15)), and hence dx/dξ is proportional
to ϕ(x).

Returning to eqn (6.13), the variational approach suggests a way of discretizing the
problem. Taking x0 = a and xm = b as given end points and x1, x2, . . . , xm−1 as the
unknown interior points of the grid, a representation of the integral I , with a uniform
division of the range of integration into points ξi = i/m, i = 0, 1, 2, . . . , m, is

I �
m∑

i=1

1

2ϕ
i− 1

2

(
xi − xi−1

�ξ

)2

�ξ, (6.16)

where ϕ(ξ) is evaluated at mid-points of the sub-intervals; ϕ
i− 1

2
= ϕ(ξi − 1/2m).

Hence we have a problem of ordinary calculus in which, instead of minimizing a
functional, we want to minimize the function (since �ξ is a constant)

f (x1, x2, . . . , xm−1) =
m∑

i=1

(xi − xi−1)
2

2ϕ
i− 1

2

= (x1 − x0)
2

2ϕ 1
2

+ (x2 − x1)
2

2ϕ 3
2

+ · · · + (xm − xm−1)
2

2ϕ
m− 1

2

. (6.17)

Equating the partial derivatives ∂f/∂xj to zero gives the (m − 1) equations

(xj − xj−1)

ϕ
j− 1

2

− (xj+1 − xj)

ϕ
j+ 1

2

= 0, j = 1, 2, . . . , (m − 1). (6.18)

This is a system of (m−1) linear equations for (m−1) unknowns x1, x2, . . . , xm−1,
which we encountered in Chapter 5 at eqn (5.97). An equivalent system is clearly

(x1 − x0)

ϕ 1
2

= (x2 − x1)

ϕ 3
2

= · · · = (xm − xm−1)

ϕ
m− 1

2

= K ′, (6.19)

for some constant K ′. These equations are consistent with the condition (5.81) that the
distance between grid points is proportional to the value of the weight function at the
mid-point of the corresponding ξ -interval.

Variational methods and adaptive grid generation 159

6.3.2 Dynamic adaptation

Ideally the numerical solution of the hosted equations should be dynamically coupled
to the process of grid generation, so that, in regions of the physical domain where large
gradients (or higher-order spatial derivatives) of the dependent variables are found to
occur, grid density may be increased to allow more accurate resolution. In two or three
dimensions re-distribution of grid points can result in distortion of grid cells, but in
one dimension the task is simpler.

Here we present a grid generation technique which is equivalent to that defined by
the transformation from computational space to physical space given by eqn (5.90).
This is itself equivalent to the ‘Equidistribution Principle’ proposed by Boor (1974),
which requires that the errors in the numerical solution of a problem should be uni-
formly distributed throughout the solution domain. Given a set of grid points a = x0,
x1, . . . , xn−1, xn = b, this may be expressed as∫ xi+1

xi

W(x) dx = K, constant, i = 0, 1, . . . , (n − 1), (6.20)

where the weight function W(x) varies with the error at a point x. Clearly W(x) is
equivalent to the reciprocal of the weight function ϕ(x) as given in eqn (5.90) through
the modified form of eqn (6.20) given by

W(x)
dx

dξ
= K, with x(0) = a, x(1) = b, (6.21)

so that with an evenly distributed grid in the ξ interval 0 < ξ < 1 the distance between
corresponding points in the x interval a < x < b is inversely proportional to the local
value of W(x).

Integrating eqn (6.21) gives∫ b

a

W(x) dx = K

∫ 1

0
dξ = K, (6.22)

and ∫ x

a

W(x) dx = K

∫ ξ

0
dξ = Kξ,

showing that the transformation from the physical domain to the computational domain
is given by

ξ(x) =

∫ x

a

W(x) dx∫ b

a

W(x) dx

. (6.23)

In one-dimensional adaptive grid generation the weight function will in practice be
taken to depend directly on the derivatives of the solution to the hosted equation,
say u(x) in the physical domain, rather than on some explicit representation of the
error in the solution. Given that the largest numerical errors tend to occur where the
lowest derivatives have high values, we want W(x) to have a high value in regions in

160 Basic Structured Grid Generation

particular where the first derivative ux(= du/dx) has a high value so that grid-points
locally are close together. The most commonly used weight functions are

W (x) =

ux(x)√
1 + α2(ux)2

(1 + βκ)
√

1 + α2(ux)
2,

(6.24)

similar to the expressions given in eqns (2.58), (2.59), and (2.60), where here κ is the
curvature of the solution, given by

κ = |uxx |
[1 + (ux)2]3/2

(6.25)

as in eqn (2.17), and α, β are parameters to be chosen by the user.
Note that with W(x) = ux , eqn (6.21) becomes

du

dx

dx

dξ
= du

dξ
= K, (6.26)

which has the consequence that the increments in the values of u between the equally-
spaced points on the ξ interval and between the corresponding unequally-spaced grid
points in the x interval remain the same. Figure 6.1 shows an example where a decreas-
ing gradient of u with x results in a higher density of grid points at low values of x

where ux is higher.
This choice of weight function may have the disadvantage that the grid-point spacing

is too large when ux is small. An alternative is

W(x) =
√

1 + (ux)2 (6.27)

with the particular choice of α = 1 in (6.24), which approximates to ux when ux is
large. This choice can be neatly interpreted in the ux plane in terms of the distance s

between points on the solution curve, since

ds =
√

(du)2 + (dx)2 =
√

1 + (ux)
2 dx = W(x) dx,

so that eqn (6.21) becomes
ds

dx

dx

dξ
= ds

dξ
= K. (6.28)

O

u

a x

i
i +1

i +2

Fig. 6.1 Adaptation in one dimension.

Variational methods and adaptive grid generation 161

O

u

x0x1 x2 x3 x4 x5 x6 x

Fig. 6.2 Equidistant grid.

This has the consequence that the increments in arc-length on the solution curve
u(x) between points corresponding to the equally-spaced ξ points and the unequally-
spaced x points remain constant. See Fig. 6.2 for an illustration of a typical grid. Such a
grid in the physical domain which produces an equidistribution of arc-length along the
solution curve is sometimes referred to as equidistant. Clearly in parts of the physical
domain where ux is small the grid points will tend to be uniformly distributed.

When the parameter α is incorporated to give the second choice in eqn (6.24), it
is not difficult to see that the grid still has an equidistant property, provided that the
solution curve is plotted with u as a function of x/α. For then we can write arc-length as

ds̃ =
√

1 +
(

du

d(x/α)

)2

d(x/α) =
√

1 + α2(ux)2 d(x/α) = W(x) d(x/α),

giving from eqn (6.21)
ds̃

d(x/α)

dx

dξ
= α

ds̃

dξ
= K.

With α > 1, the solution curve is compressed, and the effect on regions where
solution gradients are high is to increase the density of grid-points compared with the
choice α = 1 above. In flatter regions of the solution curve the effect is to widen the
grid-spacing.

The weight functions presented so far may not be satisfactory close to extrema in
the solution curve where ux = 0. Such a neighbourhood may be treated as if it were
flat locally, and the density of grid points may be insufficient to resolve the behaviour
of the solution adequately. Incorporating the curvature term as in the third possible
weight function of eqn (6.24) tends to reduce the spacing between grid points where
the curvature of the solution curve is high. Appropriate adjustment of the parameters α,
β can help to achieve a successful balance between increasing grid-density in regions
of high solution gradient and of high curvature.

6.3.3 Space-curves

A fundamental aspect of generating a grid on a space-curve r = r(χ) was pre-
sented in Section 2.4. in terms of obtaining a re-parameterization χ → ξ , whereby

162 Basic Structured Grid Generation

a uniformly-spaced set of points in ξ -space (the computational space 0 � ξ � 1) maps
to a non-uniformly spaced set of points in χ-space (the parametric space 0 � χ � 1),
which generate a suitable set of points r(χ) on the curve. Here we show that map-
pings χ(ξ) may be obtained as the solutions of Euler-Lagrange equations for some
variational problems.

An appropriate functional incorporating a weight function ϕ(r) in physical space
suggested by eqn (6.14) would be

I = 1

2

∫ 1

0

g11

[ϕ(r)]2
dξ,

where g11 = (xξ)
2 + (yξ)

2 + (zξ)
2. We may regard r and hence ϕ as a function of the

parameter χ , and consider the slightly more general functional

I = 1

2

∫ 1

0

H(g11)

[ϕ(χ)]2 dξ, (6.29)

for some function H . By eqn (2.54), we can write

I = 1

2

∫ 1

0

H(g̃11[χξ]2)

[ϕ(χ)]2
dξ. (6.30)

where g̃11 = (xχ)2 + (yχ)2 + (zχ)2, which may be regarded as a function of χ .
Thus the integrand is not explicitly dependent on ξ , and we can call on eqn (6.4) to

write the Euler-Lagrange equation as

d

dξ

[
H

ϕ2
− χξ

1

ϕ2

∂

∂χξ

H(g̃11[χξ]2)

]
= 0,

from which we obtain

d

dξ

[
H − 2(χξ)

2g̃11H
′(g̃11[χξ]2)

ϕ2

]
= 0. (6.31)

In the particular case where H = g11, this equation reduces to

d

dξ

[
g̃11[χξ]2 − 2g̃11[χξ]2

ϕ2

]
= − d

dξ

[
g̃11[χξ]2

ϕ2

]
= 0, (6.32)

which yields
g̃11[χξ]2

ϕ2
= g11

ϕ2
= const . (6.33)

The end conditions are of course χ(0) = 0, χ(1) = 1.
For the special case ϕ = 1, we obtain g11 = const . and hence also

√
g11 = const .

By eqn (2.47), equally spaced points on the ξ interval will produce a set of points on
the curve with equal arc-length between points.

On the accompanying disk the subdirectory Book/one.d.gds contains a file curve.SOR.f
which solves eqn (6.32) in the case of a plane parabolic curve defined by{

x = χ

y = χ(1 − χ)
. (6.34)

Variational methods and adaptive grid generation 163

Here we have
g̃11 = 1 + (1 − 2χ)2 = 2 − 4χ + 4χ2. (6.35)

More generally, the program discretizes the non-linear eqn (6.32) as(
g̃11χ

2
ξ

ϕ2

)
i+ 1

2

−
(

g̃11χ
2
ξ

ϕ2

)
i− 1

2

�ξ
= 0,

and takes(
g̃11χ

2
ξ

ϕ2

)
i+ 1

2

=
(

g̃11χξ

ϕ2

)
i+ 1

2

(χξ)i+ 1
2

=
(

g̃11χξ

ϕ2

)
i+ 1

2

(
χi+1 − χi

�ξ

)

with, similarly, (
g̃11χ

2
ξ

ϕ2

)
i− 1

2

=
(

g̃11χξ

ϕ2

)
i− 1

2

(
χi − χi−1

�ξ

)
.

Thus, re-arranging terms, we have

1

�ξ

{(
g̃11χξ

ϕ2

)
i− 1

2

χi−1 −
[(

g̃11χξ

ϕ2

)
i+ 1

2

+
(

g̃11χξ

ϕ2

)
i− 1

2

]
χi

+
(

g̃11χξ

ϕ2

)
i+ 1

2

χi+1

}
= 0. (6.36)

This gives a tridiagonal matrix equation for χi , i = 1, 2, . . . , (m− 1), subject to the
boundary conditions χ0 = 0, χ1 = 1, which may be solved by the Thomas Algorithm or
by SOR. The elements of the matrix ‘lag’ the solution at each iteration. The idea here is
that we guess an initial distribution for χ(ξ), for example a uniform distribution χ = ξ ,
with corresponding values of the matrix elements to start the iteration. Then, having
solved the matrix equation, we evaluate the updated values of the matrix elements
according to the new values of χ and repeat the process.

The program on the disk evaluates the lagged elements as(
g̃11χξ

ϕ2

)
i+ 1

2

=
(

g̃11

ϕ2

)
i+ 1

2

(χξ)i+ 1
2

=
(

g̃11

ϕ2

)
i+ 1

2

(
χi+1 − χi

�ξ

)
,

(
g̃11χξ

ϕ2

)
i− 1

2

=
(

g̃11

ϕ2

)
i− 1

2

(χξ)i− 1
2

=
(

g̃11

ϕ2

)
i− 1

2

(
χi − χi−1

�ξ

)
,

with simple averaging to give(
g̃11

ϕ2

)
i+ 1

2

= 1

2

[(
g̃11

ϕ2

)
i+1

+
(

g̃11

ϕ2

)
i

]
,

(
g̃11

ϕ2

)
i− 1

2

= 1

2

[(
g̃11

ϕ2

)
i

+
(

g̃11

ϕ2

)
i−1

]
.

164 Basic Structured Grid Generation

For example, in the case considered here, from eqns (6.34) and (6.35), we would
have (

g̃11

ϕ2

)
i

= 1

ϕ2
i

(2 − 4χi + 4χ2
i). (6.37)

The presence of the user-specified weight function ϕ implies that the grid can be
generated adaptively, so that grid generation can be coupled dynamically to the solution
of the hosted equations. For example, the gradient of field variables can be used as a
weight function to ensure that the grid-density increases where there are sharp changes
in these variables.

The program on the file employs SOR, and takes constant ϕ = 1. Having obtained the
solution χ(ξ), we can find the set of χ points corresponding to a uniformly spaced set
of ξ points, and then from eqns (6.34) calculate the co-ordinates of the corresponding
points on the curve. According to the observations above for constant ϕ these points
should be equally spaced (in terms of arc-length) along the curve.

It may be pointed out that for this case (ϕ = 1) eqns (6.32) admit an analytic solution
which gives χ implicitly in terms of ξ , and in principle this may be compared with
the numerical one to assess accuracy.

6.4 Two-dimensional grids

In the variational approach grid properties such as grid-node spacing, cell area, and
orthogonality can be controlled by minimizing an appropriate functional. In fact
these properties can be controlled simultaneously by choosing a functional which is
a weighted combination of specific functionals which control individual properties.
The appropriate choice of weight functions may, however, not be clear-cut, since the
question of which grid generator is best is not as readily answered in two and three-
dimensional problems as it is in one dimension. But variational methods allow intuition
to be used in selecting functionals appropriate to a particular problem.

Here we shall be mainly concerned with ‘length’ (L) functionals, ‘area’ (A) func-
tionals, and ‘orthogonality’ (O) functionals, and various combinations of these. These
functionals will be expressed in terms of the transformation x = x(ξ, η), y = y(ξ, η)

from a computational domain to a two-dimensional physical domain (or its inverse),
with a uniform grid in computational space transforming to a curvilinear co-ordinate
grid in physical space. By eqn (1.42), the length of elements of grid lines in physical
space, given a fixed uniform grid in computational space, is governed by the terms g11
and g22 of the covariant metric tensor, while the angle between intersecting grid lines
is related to g12. In a completely orthogonal grid g12 would be zero everywhere. The
area of a grid cell, using eqns (1.44), (1.159), and (1.160), depends on the local value
of the Jacobian

√
g of the transformation. So here we discuss variational problems

where the functionals depend on g11, g22 g12, and
√

g. The associated Euler-Lagrange
equations then provide the corresponding differential model of grid generation. (On
the floppy disk included with this book we present a number of numerical examples
with various geometries and varying degrees of complexity to show how to solve the
Euler-Lagrange equations associated with certain functionals, and it is hoped that this

Variational methods and adaptive grid generation 165

will help readers to write their own programs to generate grids for different geometries
to match particular requirements.)

6.4.1 The L-functional and the Winslow model

We begin with the observation that according to eqns (6.9), (6.10), and (6.12), the
Euler-Lagrange equations for the functional

I = 1

2

∫∫
R′

{(xξ)
2 + (xη)

2 + (yξ)
2 + (yη)

2} dξ dη, (6.38)

where R′ is the computational domain 0 � ξ � 1, 0 � η � 1, are the pair of Laplace’s
equations

∂2x

∂ξ 2 + ∂2x

∂η2 = 0

∂2y

∂ξ 2 + ∂2y

∂η2 = 0. (6.39)

This is the differential model presented in eqns (5.5). So we see that the associated
transformation minimizes the functional I , which by eqns (1.158) may be written as

I = 1

2

∫∫
R′

(g11 + g22) dξ dη. (6.40)

In view of the remarks above on the properties of g11 and g22, we call this the
L(length)-functional. Equations (6.39) are to be solved subject to boundary conditions
such that x and y are specified on the four (b,t,l,r) boundaries of the physical domain.
Thus

x(ξ, 0) = xb(ξ); x(ξ, 1) = xt (ξ)

x(0, η) = xl(η); x(1, η) = xr(η)

y(ξ, 0) = yb(ξ); y(ξ, 1) = yt (ξ)

y(0, η) = yl(η); y(1, η) = yr(η).

As mentioned in Section 5.1, this transformation can generate satisfactory grids,
but the Jacobian is not guaranteed to be non-zero, and folding of the grid can occur,
particularly when the physical domain is not convex.

If, by contrast, we formulate the variational problem

δ

{
1

2

∫∫
R

[(
∂ξ

∂x

)2

+
(

∂ξ

∂y

)2

+
(

∂η

∂x

)2

+
(

∂η

∂y

)2
]

dx dy

}
= 0, (6.41)

where the integration is taken over the physical domain R and we seek the transforma-
tion ξ = ξ(x, y), η = η(x, y) which minimizes the integral, then the Euler-Lagrange
equations must be the pair of Laplace’s equations

∂2ξ

∂x2
+ ∂2ξ

∂y2
= 0

∂2η

∂x2
+ ∂2η

∂y2
= 0, (6.42)

166 Basic Structured Grid Generation

and this is the Winslow model, eqns (5.1). Thus transformations satisfying the Winslow
model are extremals of the functional (6.41), which may be written, using (1.158),
(1.162), and (1.163), as

1

2

∫∫
R

(g11 + g22) dx dy. (6.43)

Transforming the double integral to the computational domain gives

1

2

∫∫
R′

(
g22 + g11

g

)
(
√

g dξ dη) = 1

2

∫∫
R′

(
g11 + g22√

g

)
dξ dη. (6.44)

The Winslow transformation, mapping a square region to R, always gives an unfolded
grid, except for problems which can arise due to the nature of the discretization process
(i.e. truncation errors). In particular, this can happen when R is not convex.

6.4.2 The weighted L-functional

The concept of a weight function in one dimension can be generalized to higher
dimensions. Suppose that we wish the lengths of grid cells in the ξ and η directions
at a point corresponding to (ξ, η) in the computational plane to be proportional to the
positive weight functions ϕ(ξ, η), ψ(ξ, η), respectively. Then a functional analogous
to (6.13) is given by

IL = 1

2

∫∫
R′

(
(xξ)

2 + (yξ)
2

ϕ(ξ, η)
+ (xη)

2 + (yη)
2

ψ(ξ, η)

)
dξ dη

= 1

2

∫∫
R′

(
g11

ϕ(ξ, η)
+ g22

ψ(ξ, η)

)
dξ dη. (6.45)

The two Euler-Lagrange equations for the variational problem δI = 0 are

∂

∂ξ

(
1

ϕ

∂x

∂ξ

)
+ ∂

∂η

(
1

ψ

∂x

∂η

)
= 0

∂

∂ξ

(
1

ϕ

∂y

∂ξ

)
+ ∂

∂η

(
1

ψ

∂y

∂η

)
= 0, (6.46)

which we can write as the single vector equation

∂

∂ξ

(
1

ϕ

∂r
∂ξ

)
+ ∂

∂η

(
1

ψ

∂r
∂η

)
= 0, (6.47)

where r = (
x
y

)
.

Carrying out the partial differentiations gives the set of equations

A11rξξ + A12rξη + A22rηη + S = 0, (6.48)

where A11, A12, A22 are the symmetric 2 × 2 matrices

A11 = 1

ϕ

(
1 0
0 1

)
, A12 =

(
0 0
0 0

)
, A22 = 1

ψ

(
1 0
0 1

)
, (6.49)

Variational methods and adaptive grid generation 167

and

S = −

1

ϕ2
ϕξxξ + 1

ψ2
ψηxη

1

ϕ2
ϕξyξ + 1

ψ2
ψηyη

 = −

1

ϕ2
xξ

1

ψ2
xη

1

ϕ2
yξ

1

ψ2
yη

(
ϕξ

ψη

)
(6.50)

and partial differentiation (including that of the vector r) is denoted by suffixes.

6.4.3 The weighted area-functional

The area-functional generally provides a more satisfactory grid than the length-functional.
The objective here is to generate a grid such that the area of grid-cells is proportional to
some given positive weight function ϕ(ξ, η) in computational space. Given that the area
of grid-cells in the physical domain corresponding to uniform grid-cells of fixed area in
the computational domain is proportional to

√
g, a natural way to define a functional by

analogy with the length functionals above would be to put

IA = 1

2

∫∫
R′

g

ϕ(ξ, η)
dξ dη = 1

2

∫∫
R′

J 2

ϕ(ξ, η)
dξ dη, (6.51)

where the Jacobian J = (xξ yη − xηyξ).

Exercise 2. Show that the Euler-Lagrange equations in this case can be written as(
J rη

ϕ

)
ξ

−
(

J rξ

ϕ

)
η

= 0.

It may be seen that on further differentiation these equations reduce to

(J/ϕ)ξ rη − (J/ϕ)ηrξ = 0. (6.52)

Exercise 3. Show that this is equivalent to

A11rξξ + A12rξη + A22rηη + S = 0

as in (6.48), with

A11 =
(

(yη)
2 −xηyη

−xηyη (xη)
2

)
, A12 =

(−2yξyη xξyη + xηyξ

xξ yη + xηyξ −2xξxη

)
,

A22 =
(

(yξ)
2 −xξyξ

−xξyξ (xξ)
2

)
, S = −J

ϕ

(
yη −yξ

−xη xξ

)(
ϕξ

ϕη

)
. (6.53)

6.4.4 Orthogonality-functional

An orthogonality (O)-functional without weight function is

IO = 1

2

∫∫
R′

(g12)
2 dξ dη, (6.54)

168 Basic Structured Grid Generation

where g12 = (xξ xη +yξyη). Like the previous functionals, this takes only non-negative
values. It would take a minimum value of zero only for a completely orthogonal grid
(if one exists), with g12 = 0 everywhere.

Exercise 4. Show that the Euler-Lagrange equations may be expressed as

(g12rη)ξ + (g12rξ)η = 0 (6.55)

and also in the form (6.48), with

A11 =
(

(xη)
2 xηyη

xηyη (yη)
2

)
, A12 =

(
(4xξxη + 2yξyη) (xξ yη + xηyξ)

(xξ yη + xηyξ) (4yξyη + 2xξxη)

)
,

A22 =
(

(xξ)
2 xξyξ

xξ yξ (yξ)
2

)
, S =

(
0
0

)
. (6.56)

If the resulting minimum (or lower bound) for IO is greater than zero, then clearly
we are as close as we can get to an orthogonal grid in a ‘least-squares’ sense. With no
weight function involved, the ‘metric’ g12 may be said to be equidistributed. However,
in practice it is found that even equidistribution may fail to produce a satisfactory grid,
particularly in non-convex physical domains where a perfectly orthogonal grid may
fail to exist, and the functional (6.54) on its own is not recommended.

6.4.5 Combination of functionals

A weighted linear combination of length-, area-, and orthogonality-functional may be
formulated to achieve a compromise between the various properties controlled by these
functionals separately. So we may consider

I = wLIL + wAIA + wOIO, (6.57)

where the weights wL, wA, wO , are non-negative constants satisfying wL+wA+wO =
1. These weights can be used in numerical experiments to obtain the combination of
functionals that produces the most satisfactory grid. For example, the choice wL = 0.1,
wA = 0.9, wO = 0 of length and area functionals generally gives smooth, unfolded
grids, this combination usually overcoming the separate limitations of lack of smooth-
ness in the area-functional and a tendency for folding in the length-functional. However,
in certain geometries the resulting grid may suffer from severe skewness and/or a fail-
ure to converge. In such cases there is a need to experiment so as to ‘tune’ the weight
parameters to obtain a satisfactory grid.

The area-orthogonality-functional
The choice of weight parameters wL = 0, wA = 0.5, wO = 0.5 of area and orthog-
onality functionals leads to a robust automatic grid generator known as the Area-
Orthogonality(AO)-functional. A weight function ϕ(ξ, η) can also be employed, so
that we get a functional

IAO = 1

2

∫∫
R′

1

2

(
g

ϕ
+ (g12)

2

ϕ

)
dξ dη. (6.58)

Variational methods and adaptive grid generation 169

Since g = g11g22 − (g12)
2, this is equal to

IAO = 1

4

∫∫
R′

g11g22

ϕ
dξ dη. (6.59)

Exercise 5. Show that the Euler-Lagrange equations may be expressed as(
g22rξ

ϕ

)
ξ

+
(

g11rη

ϕ

)
η

= 0, (6.60)

and also in the form (6.48), with

A11 =
(

(xη)
2 + (yη)

2 0

0 (xξ)
2 + (yξ)

2

)
,

A12 =
(

4xξxη 2(xξ yη + xηyξ)

2(xξ yη + xηyξ) 4xξxη

)

A22 =
(

(xξ)
2 + (yξ)

2 0

0 (xη)
2 + (yη)

2

)
,

S = − 1

ϕ

(
xξ xη

yξ yη

)(
ϕξ ((xη)

2 + (yη)
2)

ϕη((xξ)
2 + (yξ)

2)

)
. (6.61)

The AO-eqns (6.48) with (6.61) are quasilinear and coupled, and can be solved iter-
atively. Unweighted AO grids (with ϕ(ξ, η) = 1) are generally smooth and unfolded,
being near to orthogonality and having near-uniform areas. The smoothness of the
grids is rather unexpected, since the generating equations are not elliptic.

A variation on the AO-functional is the ‘AO-squared functional’, which is given in
unweighted form by

IAO-squared =
∫∫

R′
(g11g22)

2 dξ dη. (6.62)

The Euler-Lagrange equations whose solutions minimize this functional generally
produce very good grids.

6.4.6 Other orthogonality functionals

Orthogonality two functional
This functional is given by

IO,2 =
∫∫

R′
(g12)

2

g11g22
dξ dη. (6.63)

Since
(g12)

2

g11g22
= (rξ · rη)

2

(rξ · rξ)(rη · rη)
=

(
rξ

|rξ | · rη

|rη|
)2

,

170 Basic Structured Grid Generation

the integrand represents the square of the scalar product of unit tangent vectors to the ξ

and η co-ordinate curves. Thus this functional controls the angle between intersecting
co-ordinate curves.

Orthogonality three functional
Another functional related to orthogonality is

IO,3 =
∫∫

R′
√

g11g22 dξ dη. (6.64)

Exercise 6. Show that the Euler-Lagrange equations for the functional (6.64) may be
expressed as (√

g22

g11
rξ

)
ξ

+
(√

g11

g22
rη

)
η

= 0. (6.65)

The connection between these equations and orthogonality may be seen by con-
sidering eqns (1.164). For an orthogonal grid it is clear that we must have g12 = 0
everywhere, g = √

g11g22, g1 = g1/g11, and g2 = g2/g22.
Thus it is necessary (but not sufficient) for a grid to be orthogonal that, by (1.164),

∂

∂ξ
(
√

g g1) + ∂

∂η
(
√

g g2) = ∂

∂ξ

(√
g22

g11
g1

)
+ ∂

∂η

(√
g11

g22
g2

)
= 0,

which is equivalent to eqn (6.65). Equation (6.65) has been much used in the context
of generating orthogonal grids – see, for example, Warsi and Thompson (1980) and
Ryskin and Leal (1983).

6.4.7 The Liao functionals

Liao and Liu (1993) proposed the grid generation functional

Ili =
∫∫

R′
[(g11 + g22)

2 − 2g] dξ dη =
∫∫

R′
[(g11)

2 + (g22)
2 + 2(g12)

2] dξ dη, (6.66)

but this has a tendency to produce folded grids. Experience has shown that this tendency
is apparently diminished by taking the same functional with the integrand divided by
g. This gives, after discarding a constant, the modified Liao functional

Iml =
∫∫

R′

(
g11 + g22√

g

)2

dξ dη (6.67)

which is similar to the Winslow functional (6.44).
The following table shows a list of unweighted functionals that are in use.

Functional Symbol Integrand

Length IL g11 + g22

Orthogonality-1 IO (g12)
2

Area IA (
√

g)2

Orthogonality-2 IO,2 (g12)
2/g11g22

Variational methods and adaptive grid generation 171

Functional Symbol Integrand

Orthogonality-3 IO,3
√

g11g22

Area-Orthogonality IAO g11g22

AO-squared IAO-squared (g11g22)
2

Winslow IWin (g11 + g22)/
√

g

Liao Ili (g11)
2 + (g22)

2 + 2(g12)
2

Modified Liao Iml ([g11 + g22]/√g)2

In all these variational problems the Euler-Lagrange equations lead to matrix equa-
tions of the form (6.48), in which the matrices A11, A12, A22 are symmetric, with coef-
ficients depending at most on the first partial derivatives of the cartesian co-ordinates
x, y and the weight functions. The subdirectory Book/var.gds on the accompanying
disk contains five files which solve these equations. Each file offers two choices of
geometry, and both SOR and the Thomas Algorithm have been used in the numerical
solution. The files are listed at the end of this chapter.

6.4.8 Surface grids

A similar approach may be taken to the generation of a grid on a surface, such as
one given in the parametric form (3.3) with parameters u, v. Surface metric tensors
aαβ , as defined in eqn (3.17), and their determinants a, given by eqn (3.24), can be
used in place of gij and g above. We assume that a surface can be mapped onto the
computational space 0 � ξ � 1, 0 � η � 1, and, indeed, we may seek the particular
mapping

u = u(ξ, η), v = v(ξ, η)

which minimizes some selected functional

I =
∫∫

H(a11, a22, a12,
√

a)

{ϕ(u, v)}2
dξ dη, (6.68)

where the weight function ϕ may be used for the purposes of adaptivity.
The metric tensor components here are defined according to the re-parameterization

r = r(ξ, η), so that

a11 = (xξ)
2 + (yξ)

2 + (zξ)
2, a22 = (xη)

2 + (yη)
2 + (zη)

2,

a12 = xξxη + yξyη + zξ zη.

According to eqn (3.18), these are related to the components ãαβ with respect to the
parameters (u, v) by

a11 = (uξ)
2ã11 + 2uξvξ ã12 + (vξ)

2ã22

a22 = (uη)
2ã11 + 2uηvηã12 + (vη)

2ã22 (6.69)

a12 = uξuηã11 + (uηvξ + uξvη)ã12 + vξ vηã22.

172 Basic Structured Grid Generation

As an example, we present an orthogonality-functional

I = 1

2

∫∫
(a12)

2 dξ dη. (6.70)

The two corresponding Euler-Lagrange equations are:

∂

∂u
(a12)

2 − ∂

∂ξ

(
∂

∂uξ

(a12)
2
)

− ∂

∂η

(
∂

∂uη

(a12)
2
)

= 0,

∂

∂v
(a12)

2 − ∂

∂ξ

(
∂

∂vξ

(a12)
2
)

− ∂

∂η

(
∂

∂vη

(a12)
2
)

= 0. (6.71)

If we put

A = uηã11 + vηã12, B = uηã12 + vηã22,

C = uξ ã11 + vξ ã12, D = uξ ã12 + vξ ã22, (6.72)

we get
a12 = Auξ + Bvξ = Cuη + Dvη, (6.73)

and eqns (6.71) may be expressed in the form:

∂

∂ξ
(A2uξ) + ∂

∂η
(C2uη) + ∂

∂ξ
(ABvξ) + ∂

∂η
(CDvη) = a12

∂a12

∂u
,

∂

∂ξ
(ABuξ) + ∂

∂η
(CDuη) + ∂

∂ξ
(B2vξ) + ∂

∂η
(D2vη) = a12

∂a12

∂v
. (6.74)

Note that by eqn (6.69)

∂a12

∂u
= uξuη

∂ã11

∂u
+ (uηvξ + uξvη)

∂ã12

∂u
+ vξvη

∂ã22

∂u
,

and similarly for ∂a12/∂v.

6.5 Harmonic maps

The Winslow method, with variational formulation based on the functionals (6.43) and
(6.44), together with its extension to surface grid generation discussed in Section 5.9,
can be regarded as an application of harmonic maps. These may be defined in the gen-
eral context of differentiable mappings from an n-dimensional ‘manifold’ M with co-
ordinates xi and contravariant metric tensor γ ij , which we may regard here simply as
the n-dimensional physical domain, to an n-dimensional manifold N with co-ordinates
ξ i and covariant metric tensor Gij , which will be the computational domain. Thus
for practical purposes here N is a square or rectangle in E2 or a cube in E3, and M

is a two-dimensional region in E2 or a two-dimensional surface or three-dimensional
region in E3.

Associated with any mapping is a so-called energy density

e(ξ i(x)) = 1

2
γ ij (x)Gkl(ξ

i(x))
∂ξk

∂xi

∂ξ l

∂xj
, (6.75)

Variational methods and adaptive grid generation 173

where the indices i, j , k, l are summed from 1 to n, and x represents the column vector
of curvilinear co-ordinates xi . The energy E of the map is defined as the integral of
the energy density over M:

E(ξ i(x)) =
∫

M

1

2
γ ij (x)Gkl(ξ

i(x))
∂ξk

∂xi

∂ξ l

∂xj
dM, (6.76)

where dM represents an element of area or volume of M . By eqns (1.44), (1.160),
(1.45), and (3.42), we can put dM = √

γ dx1 . . . dxn, where γ = det(γij) and γij is
the covariant metric tensor of M .

A harmonic map is then a twice-differentiable map ξ i(x) which is an extremal of
the functional (6.76). Since E can take only non-negative values due to the positive-
definiteness of Gkl , we would expect the extremal to minimize the functional. It has been
shown that, provided that there exists a smooth one–one mapping from M to N which
also maps the boundary of M to the boundary of N , and that N is convex with negative or
zero curvature, then there exists a harmonic map from M to N which is also unique. The
geometric conditions on N are satisfied if N is a unit square in E2 or a unit cube in E3.

In the special case where M is a region of E2 or E3, we may take xi to be cartesian
co-ordinates yi and take Euclidean metrics γij = δij , Gkl = δkl in M and N . The energy
functional then becomes, with γ = 1,

E =
∫

M

1

2

∂ξk

∂yj

∂ξk

∂yj

dM, (6.77)

which in two dimensions becomes

E = 1

2

∫∫
M

[(
∂ξ

∂x

)2

+
(

∂ξ

∂y

)2

+
(

∂η

∂x

)2

+
(

∂η

∂y

)2
]

dx dy

in the obvious notation. We have already encountered this functional at eqn (6.41) and
shown that the corresponding Euler-Lagrange equations are the Laplace eqns (6.42),
which give rise directly to the Winslow model. Thus the harmonic map in this case
involves harmonic functions (which satisfy Laplace’s equations). We also have

E = 1

2

∫∫
M

(g11 + g22) dx dy,

where gij may be regarded as the contravariant metric tensor induced in M by the
mapping r → ξ i .

In three dimensions we have, by eqn (1.20),

E = 1

2

∫∫∫
M

(g11 + g22 + g33) dx dy dz = 1

2

∫∫∫
M

gkk dx dy dz, (6.78)

with implied summation over k. The variational problem now involves three co-ordinate
functions, say ξ , η, ζ , of three variables x, y, z, and is a natural extension of the two-
dimensional problem defined by eqn (6.11). There are three Euler-Lagrange equations,
which reduce to

∇2ξ = ∇2η = ∇2ζ = 0, (6.79)

where ∇2 is the three-dimensional Laplacian (∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2).

174 Basic Structured Grid Generation

When M is a two-dimensional surface in E3, we can use surface co-ordinates uα

in place of xi , and the surface metric aαβ in place of γ ij . With N again a unit square
with Gij = δij , we get

E = 1

2

∫∫
M

aαβ(uγ)
∂ξk

∂uα

∂ξk

∂uβ

√
a du1 du2, (6.80)

where all indices are summed from 1 to 2. Thus we have a variational problem of the
form (6.11). The two Euler-Lagrange eqns (6.12) may be expressed here as

∂(e
√

a)

∂ξ i
− ∂

∂uγ

(
∂(e

√
a)

∂
(
∂ξ i/∂uγ

)
)

= 0, i = 1, 2, (6.81)

with summation over γ . Since no terms in e depend explicitly on ξ i , and

∂

∂
(
∂ξ i/∂uγ

) (
∂ξk

∂uα

∂ξk

∂uβ

)
= δikδ

γ
α

∂ξk

∂uβ
+ ∂ξk

∂uα
δikδ

γ
β = ∂ξ i

∂uβ
δγ
α + ∂ξ i

∂uα
δ
γ
β ,

we obtain the equations

1

2

∂

∂uγ

(√
a aαβ

(
∂ξ i

∂uβ
δγ
α + ∂ξ i

∂uα
δ
γ
β

))
= 1

2

∂

∂uγ

(√
a

(
aγβ ∂ξ i

∂uβ
+ aαγ ∂ξ i

∂uα

))
= 0.

Using the symmetry of aαβ , we have, finally,

∂

∂uγ

(√
a aγβ ∂ξ i

∂uβ

)
= 0, i = 1, 2. (6.82)

Pre-multiplying by 1/
√

a shows by eqn (3.160) that the harmonic mapping in this
case must satisfy the pair of Beltramian equations

�Bξ 1 = �Bξ 2 = 0 (6.83)

which are the same as eqns (5.104) in the absence of the control functions P , Q.
Returning to the more general form (6.76) with N a unit square or cube and Gkl =

δkl , a similar procedure shows that the Euler-Lagrange equations are

1√
γ

∂

∂xj

(√
γ γ jk ∂ξ i

∂xk

)
= 0, i = 1, . . . , n, (6.84)

which can be expressed as

γ jk ∂2ξ i

∂xj ∂xk
+ 1√

γ

∂ξ i

∂xk

∂

∂xj
(
√

γ γ jk) = 0. (6.85)

This equation can be inverted to produce a different partial differential equation
satisfied by xi(ξ k), by making use of the identity

∂2ξ i

∂xj ∂xk

∂xl

∂ξ i
= − ∂2xl

∂ξm∂ξ i

∂ξ i

∂xj

∂ξm

∂xk
,

Variational methods and adaptive grid generation 175

which follows, similarly to what was presented in Exercise 10, Chapter 1, in the deriva-
tion of eqn (1.113), from differentiating with respect to xk the Chain Rule

∂ξ i

∂xj

∂xl

∂ξ i
= δl

j .

Thus, multiplying eqn (6.85) by ∂xl/∂ξ i (implying summation over i) gives

γ jk ∂ξ i

∂xj

∂ξm

∂xk

∂2xl

∂ξm∂ξ i
= 1√

γ

∂ξ i

∂xk

∂xl

∂ξ i

∂

∂xj
(
√

γ γ jk),

which, with further use of the Chain Rule, gives

γ jk ∂ξ i

∂xj

∂ξm

∂xk

∂2xl

∂ξm∂ξ i
= 1√

γ

∂

∂xj
(
√

γ γ jl). (6.86)

Note that γ jk(∂ξ i/∂xj)(∂ξm/∂xk) is a tensor transformation rule for contravariant
second-order tensor components applied to the contravariant metric tensor γ jk . The
result is a set of contravariant components, say gim, representing the contravariant
metric tensor in the new curvilinear co-ordinate system ξ i in M . Hence we can
write

gim ∂2xl

∂ξm∂ξ i
= 1√

γ

∂

∂xj
(
√

γ γ jl). (6.87)

This is a quasi-linear system of elliptic partial differential equations which may be
used as the basis of an algorithm for generating structured two-dimensional adaptive
grids, grids on surfaces, and three-dimensional grids.

6.5.1 Surface grids

As an example, we consider M to be a two-dimensional surface in E3 defined in
terms of cartesian co-ordinates by z = f (x, y). In fact we take x, y to be para-
metric co-ordinates for the surface, so that x1 = x, x2 = y. The covariant metric
tensor components of the surface with these co-ordinates are given by eqn (3.23),
so that

γ11 = 1 + (fx)
2, γ12 = (fx)(fy), γ22 = 1 + (fy)

2, (6.88)

and
γ = det(γij) = 1 + (fx)

2 + (fy)
2, (6.89)

where subscripts denote partial derivatives.
From eqn (3.30) we immediately have the contravariant components

γ 11 = 1 + (fy)
2

1 + (fx)
2 + (fy)2 , γ 12 = − (fx)(fy)

1 + (fx)
2 + (fy)

2 ,

γ 22 = 1 + (fx)
2

1 + (fx)2 + (fy)2
. (6.90)

176 Basic Structured Grid Generation

A harmonic map will take M onto a unit square N in the (ξ, η) plane, with ξ 1 = ξ ,
ξ 2 = η. Straight lines ξ = const ., η = const . in N are what results from mapping ξ ,
η curvilinear co-ordinate curves in M . The ‘induced’ covariant metric components are
given by

g11 = (xξ)
2 + (yξ)

2 + (zξ)
2

g12 = xξxη + yξyη + zξ zη

g22 = (xη)
2 + (yη)

2 + (zη)
2.

However, since z = f (x, y), we have, using Chain Rules,

zξ = fxxξ + fyyξ and zη = fxxη + fyyη, (6.91)

giving

g11 = [1 + (fx)2](xξ)
2 + 2fxfyxξ yξ + [1 + (fy)

2](yξ)
2

g12 = [1 + (fx)2]xξxη + fxfy(xξ yη + xηyξ) + [1 + (fy)2]yξyη

g22 = [1 + (fx)2](xη)
2 + 2fxfyxηyη + [1 + (fy)

2](yη)
2. (6.92)

Exercise 7. Verify that

g = det(gij) = [1 + (fx)
2 + (fy)

2](xξ yη − xηyξ)
2 = γ J 2, (6.93)

where J is the Jacobian (xξ yη − xηyξ) of the mapping from the ξ is to the xis.

We now have

g11 = g22/g, g12 = −g12/g, g22 = g11/g.

Substituting into eqns (6.87) gives

L(x) = g22xξξ − 2g12xξη + g22xηη

− g√
γ

[
∂

∂x

(
1 + (fy)2

√
γ

)
− ∂

∂y

(
fxfy√

γ

)]
= 0,

L(y) = g22yξξ − 2g12yξη + g22yηη

− g√
γ

[
− ∂

∂x

(
fxfy√

γ

)
+ ∂

∂y

(
1 + (fx)2

√
γ

)]
= 0 (6.94)

with γ , g11, g12, g22, and g given by eqns (6.89), (6.92), and (6.93).
To solve these equations numerically, the second-order accurate finite difference

approximations (4.3) for first derivatives and (4.4), (4.5), and (4.6) for second deriva-
tives may be used, taking uniform differences h, k in ξ and η, respectively, in the
computational domain N . To calculate fx and fy we need to invert eqns (6.91), so that

fx = 1

J
(zξ yη − zηyξ) and fy = 1

J
(zηxξ − zξxη). (6.95)

Variational methods and adaptive grid generation 177

If we re-scale the computational domain so that h = k = 1, these equations yield
values of fx and fy at the i, j grid point given by the approximations

[fx]ij (6.96)

= (fi+1,j − fi−1,j)(yi,j+1 − yi,j−1) − (fi,j+1 − fi,j−1)(yi+1,j − yi−1,j)

(xi+1,j − xi−1,j)(yi,j+1 − yi,j−1) − (xi,j+1 − xi,j−1)(yi+1,j − yi−1,j)
,

[fy]ij (6.97)

= (fi,j+1 − fi,j−1)(xi+1,j − xi−1,j) − (fi+1,j − fi−1,j)(xi,j+1 − xi,j−1)

(xi+1,j − xi−1,j)(yi,j+1 − yi,j−1) − (xi,j+1 − xi,j−1)(yi+1,j − yi−1,j)
,

where [f]ij = f (xij , yij) is the value of z at a grid point.
For a given set of values [x]i,j and [y]i,j at all grid points, the grid point values of

the left-hand sides of eqns (6.94) can now be approximated:

[L(x)]ij = [g22xξξ]ij − [2g12xξη]ij + [g11xηη]ij

−
[
J 2√γ

{
∂

∂x

(
1 + (fy)2

√
γ

)
− ∂

∂y

(
fxfy√

γ

)}]
ij

(6.98)

and

[L(y)]ij = [g22yξξ]ij − [2g12yξη]ij + [g11yηη]ij

−
[
J 2√γ

{
− ∂

∂x

(
fxfy√

γ

)
+ ∂

∂y

(
1 + (fx)2

√
γ

)}]
ij

. (6.99)

The derivatives involving ∂/∂x and ∂/∂y in the last terms of these expressions may
be calculated using equations of the form (6.96) and (6.97).

A possible iterative solution scheme suggested by the terms −2[g22]ij xi,j−2[g11]ij xi,j

appearing on the right-hand side of eqn (6.98) and −2[g22]ij yi,j − 2[g11]ij yi,j in
eqn (6.99) is

xm+1
i,j = xm

i,j + σ
[L(x)]ij

2[g22 + g11]ij (6.100)

and

ym+1
i,j = ym

i,j + σ
[L(y)]ij

2[g22 + g11]ij , (6.101)

where σ is an iteration parameter lying between 0 and 1. Here the quantities on the
right-hand sides are all evaluated at the mth iteration step. The iteration will start with
a guessed field of x and y values, and the above equations can be used to calculate
a new set of values. The iteration will stop when some measure of convergence has
been achieved.

6.6 Website programs

6.6.1 Subdirectory: Book/var.gds

This contains five files:

178 Basic Structured Grid Generation

1. Area.trid.f
This program solves the Euler-Lagrange equations of the form (6.51) for the area
functional with weight function equal to a constant, so that the matrices in (6.48)
are given by eqn (6.53) with S = 0. Figure 6.3 shows an example of the resulting
grid in a trapezium.

Fig. 6.3 Area functional.

Fig. 6.4 Area functional.

Fig. 6.5 Area-orthogonality.

Fig. 6.6 Area-orthogonality.

Variational methods and adaptive grid generation 179

Fig. 6.7 Area-orthogonality.

2. Var1.ao.f
3. Var2.ao.f
4. SOR.ao.f

These programs solve the Euler-Lagrange equations based on the Area-Orthogonality
functional, with matrices given by eqns (6.61). The weight function ϕ is again a
constant, so that S = 0. Examples of the resulting grids for domains of various
shapes are shown in Figs 6.4–6.7.

5. Length.conjugate.f

This solves the Euler-Lagrange equations based on the Length-functional (6.40). Thus
it solves the pair of Laplace’s eqns (6.39). The numerical scheme used here is the
Conjugate Gradient method.

6.6.2 Subdirectory: Book/one.d.gds

This contains one file relevant to this chapter, as discussed in Section 6.3.3, namely

1. curve.SOR.f

7

Moving grids and time-dependent
co-ordinate systems

7.1 Time-dependent co-ordinate transformations

The numerical solution of time-dependent (otherwise known as transient, evolution,
or unsteady) transport equations may require time-dependent ‘moving’ grids in phys-
ical space. For example, transonic flow problems and similar applications involving
the propagation of shocks demand moving grids, with a continuing re-distribution of
grid-nodes, to capture a shock. Some problems will involve fixed boundaries in phys-
ical space, with internal grid-nodes moving in response to the flow developed. Other
problems involve moving boundaries, for example the internal combustion chamber.
In either case a time variable t enters the hosted equations and the grid generation
equations as an independent parameter. Any boundary-conforming grid at any time
t with curvilinear co-ordinates xi, i = 1, 2, 3 (in three dimensions), however, may
still be mapped to a fixed uniform rectangular grid in xi-computational space. The
transformation involved will now be time-dependent and of the form

yi = yi(x
1, x2, x3, t), i = 1, 2, 3, (7.1)

with inverse

xi = xi(y1, y2, y3, t), i = 1, 2, 3, (7.2)

where yi are the cartesian co-ordinates with respect to some rectangular cartesian
reference system of a point in physical space which at time t has curvilinear co-
ordinates xi . We assume that the Jacobian

J = det(∂yi/∂xj)

of the transformation remains non-zero at all times.
An arbitrary function f (r, t) of space (the physical domain) and time has differential

(small increment to first order)

df =
(

∂f

∂yi

)
t

dyi +
(

∂f

∂t

)
yi

dt,

Moving grids and time-dependent co-ordinate systems 181

where now subscripts outside brackets indicate (where clarity is needed) which vari-
ables are being held constant when partial differentiation is performed. But the trans-
formation (7.1) also gives

dyi =
(

∂yi

∂xj

)
t

dxj +
(

∂yi

∂t

)
xj

dt,

so that

df =
(

∂f

∂yi

)
t

(
∂yi

∂xj

)
t

dxj +
[(

∂f

∂yi

)
t

(
∂yi

∂t

)
xj

+
(

∂f

∂t

)
yi

]
dt,

which gives the Chain Rules(
∂f

∂xj

)
t

=
(

∂f

∂yi

)
t

(
∂yi

∂xj

)
t

, (7.3)

(
∂f

∂t

)
xj

=
(

∂f

∂yi

)
t

(
∂yi

∂t

)
xj

+
(

∂f

∂t

)
yi

. (7.4)

Note that in eqn (7.4) the left-hand side time derivative is carried out at fixed xj , i.e. at
a fixed point in computational space, which we may imagine corresponding to a given
(moving) grid point in physical space, whereas time derivatives evaluated at fixed yi

on the right-hand side are taken at fixed positions of physical space. This equation may
be written as(

∂f

∂t

)
xj

= ∇f ·
(

∂r
∂t

)
xj

+
(

∂f

∂t

)
yi

= ∇f · W +
(

∂f

∂t

)
yi

, (7.5)

where

W =
(

∂r
∂t

)
xj

(7.6)

is the rate of change of position of a given grid point in the physical domain, and may
be called the grid point velocity. Thus the time-derivative of the quantity f at a fixed
point of the physical domain is related to its time-derivative at a fixed point of the
computational domain by the equation(

∂f

∂t

)
yi

=
(

∂f

∂t

)
xj

− W · ∇f, (7.7)

with ∇f evaluated in the physical domain.

7.2 Time-dependent base vectors

As the curvilinear co-ordinate system moves in physical space, the covariant base
vectors gi must be functions of time t . In fact we have

gi = ∂r
∂xi

, i = 1, 2, 3,

182 Basic Structured Grid Generation

with cartesian components obtained from differentiating eqn (7.1):

(gj)i = ∂yi

∂xj

and time-derivatives

∂

∂t
(gj)i = ∂

∂t

(
∂yi

∂xj

)
= ∂

∂xj

(
∂yi

∂t

)
,

giving the vector equations

∂gj

∂t
= ∂W

∂xj
, j = 1, 2, 3. (7.8)

This variation of the base vectors with time as well as space complicates the trans-
formation of vector equations (such as the time-dependent Navier-Stokes equations) to
a curvilinear co-ordinate system. The variation of base vectors in space was consid-
ered in Chapter 1 by the introduction of Christoffel symbols, and a similar formalism
is convenient for dealing with time-variation.

Here we put t = x0 and regard this as a fourth generalized co-ordinate. We can also
define an associated covariant base vector

g0 =
(

∂r
∂x0

)
xj

=
(

∂r
∂t

)
xj

(7.9)

and thus we can write

gi = ∂r
∂xi

, i = 0, 1, 2, 3, (7.10)

with
∂gi

∂xj
= ∂2r

∂xj ∂xi
= ∂gj

∂xi
. (7.11)

By the definition of W in Section 7.1, we also have

g0 = W. (7.12)

The covariant metric tensor can also be extended to include the time variable, so that

gij = gi · gj

with the suffixes i, j ranging over the values 0 to 3, so that g00 = W · W = |W|2 and

g0j = W · gj = Wj . (7.13)

Similarly we have the Christoffel symbol [ij, k], which is given, as in eqn (1.108), by

[ij, k] = 1

2

(
∂gjk

∂xi
+ ∂gik

∂xj
− ∂gij

∂xk

)
. (7.14)

Here, however, we allow i and j but not k to take the value 0 as well as 1, 2, 3, so
that the equation

∂gi

∂xj
= [ij, k]gk, i, j = 0, 1, 2, 3, (7.15)

Moving grids and time-dependent co-ordinate systems 183

as in eqn (1.97), is valid, with k summed over the values 1 to 3. Thus it is not necessary
to extend the set of spatial contravariant base vectors gk , k = 1, 2, 3.

With suffixes restricted to the values 1, 2, 3, we now have

∂gi

∂xj
= [ij, k]gk,

∂gi

∂t
= [i0, k]gk,

∂gi

∂xj
= �k

ij gk,
∂gi

∂t
= �k

i0gk, (7.16)

where Christoffel symbols of the second kind are

�k
ij = gkl[ij, k], �k

i0 = gkl[i0, k]. (7.17)

Note that substituting f = xi in eqn (7.5) gives

0 = ∇xi · W +
(

∂xi

∂t

)
yj

= gi · W +
(

∂xi

∂t

)
yj

= Wi +
(

∂xi

∂t

)
yj

,

using eqns (1.11) and (1.48), so that we have the result(
∂xi

∂t

)
yj

= −Wi, i = 1, 2, 3, (7.18)

which states that the time-derivatives of the curvilinear co-ordinates at a fixed spatial
point of the physical domain as the co-ordinate system moves are equal to the negative
of the contravariant components of the grid point velocity.

Another useful formula gives the time-derivative at fixed xi of
√

g, where by
eqn (1.31) √

g = g1 · (g2 × g3).

We have, after re-arrangement of scalar and vector products, and with use of eqns (7.8),
(1.8), and (1.134),

1√
g

∂

∂t
(
√

g) = 1√
g

(
∂g1

∂t
· (g2 × g3) + ∂g2

∂t
· (g3 × g1) + ∂g3

∂t
· (g1 × g2)

)

= 1√
g

(
∂W
∂x1

· (g2 × g3) + ∂W
∂x2

· (g3 × g1) + ∂W
∂x3

· (g1 × g2)

)

= ∂W
∂x1

· g1 + ∂W
∂x2

· g2 + ∂W
∂x3

· g3 = ∇ · W. (7.19)

This is a fundamental identity in time-dependent co-ordinate theory; it is called
the Geometric Conservation Law. In Computational Fluid Dynamics it provides an
additional equation which has to be solved alongside the usual transport equations
when we have moving grids.

From eqn (7.12) we also have

∇ · W = ∇ · g0 = gk · ∂g0

∂xk
= gk · �j

0kgj = δk
j �

j

0k = �
j

0j ,

using (7.16). Hence

�
j

0j = 1√
g

∂

∂t
(
√

g). (7.20)

184 Basic Structured Grid Generation

7.3 Transformation of generic convective terms

Here we take a typical convective expression in the form

C =
(

∂ϕ

∂t

)
yi

+ ∇ · (vϕ) (7.21)

for some field quantity ϕ = ϕ(y1, y2, y3, t), where v is the local fluid (or continuum)
velocity, and we transform it to a time-dependent curvilinear co-ordinate system xi .
From eqn (7.7) we have immediately

C =
(

∂ϕ

∂t

)
xi

− W · ∇ϕ + ∇ · (vϕ) =
(

∂ϕ

∂t

)
xi

+ ϕ∇ · W + ∇ · [(v − W)ϕ]. (7.22)

Alternatively, using eqns (7.19) and (1.138), we can write

C =
(

∂ϕ

∂t

)
xi

+ ϕ√
g

∂
√

g

∂t
+ 1√

g

∂

∂xi
(
√

ggi · (v − W)ϕ)

= 1√
g

{(
∂

∂t
(
√

gϕ)

)
xi

+ ∂

∂xi
(
√

ggi · (v − W)ϕ)

}
(7.23)

in conservative form. It may be convenient to put

U = v − W, (7.24)

which clearly represents the continuum velocity relative to the moving grid points.

Exercise 1. Show that

√
gC = ∂

∂t
(
√

gϕ) + ∂

∂xi
(
√

gϕUi). (7.25)

It follows that if the hosted equations are given by

∂ϕ

∂t
+ ∇ · (vϕ) + ∇ · (ν∇ϕ) + S = 0, (7.26)

rather than the time-independent eqns (5.119), the transformed equations (on a fixed
grid in computational space) may be written in conservative form as

∂

∂t
(
√

gϕ) + ∂

∂xi

[√
g

(
Uiϕ + νgij ∂ϕ

∂xj

)]
+ √

gS = 0, (7.27)

with appropriate summation over i and j .

In place of eqn (5.121) we also have the non-conservative form

∂ϕ

∂t
+ [Ui + ν(∇2xi)] ∂ϕ

∂xi
+ gij ∂

∂xi

(
ν

∂ϕ

∂xj

)
+ ϕgi · ∂v

∂xi
+ S = 0. (7.28)

Moving grids and time-dependent co-ordinate systems 185

7.4 Transformation of continuity
and momentum equations

In this section we show the transformation of both the continuity and momentum
equations of continuum mechanics to a general time-dependent curvilinear co-ordinate
system. As indicated in the above sections, an important role is played by the grid-
point velocity vector W, and both the cartesian and the contravariant components of
W will be required at the grid nodes at any instant. With a differential model of
grid generation, a partial differential equation will have to be solved at each time-step
(a Dirichlet boundary-value problem) to obtain the new grid.

7.4.1 Continuity equation

The continuity equation of Continuum Mechanics can be written in terms of the density
function ρ(yi, t) as (

∂ρ

∂t

)
yi

+ ∇ · (vρ) = 0. (7.29)

This can be written with respect to a moving grid, using eqn (7.22), as(
∂ρ

∂t

)
xi

+ ρ∇ · W + ∇ · [(v − W)ρ] = 0, (7.30)

or, by (7.27), as

∂

∂t
(
√

gρ) + ∂

∂xi
(
√

gρUi) = ∂

∂t
(
√

gρ) + ∂

∂xi

(
√

gρ

[
vi +

(
∂xi

∂t

)
yj

])
= 0, (7.31)

using eqn (7.18).

7.4.2 Momentum equations

We start with the standard (non-conservative) cartesian form of the Momentum Equa-
tions for a viscous fluid with viscosity µ:

ρ

(
∂vi

∂t

)
yi

+ ρvj

∂vi

∂yj

= ∂σij

∂yj

, (7.32)

with the stress tensor σij given in terms of pressure p and viscous stress Tij by

σij = −pδij + Tij ,

where Tij is related to the strain-rate εij through the equations

Tij = 2µ

(
εij − 1

3

∂vk

∂yk

δij

)

and εij = 1/2(∂vi/∂yj + ∂vj /∂yi).

186 Basic Structured Grid Generation

Now eqn (7.32) may be expressed in vector form as

ρ

(
∂v
∂t

)
yi

+ ρ(v · ∇)v = ∇ · σ = −∇p + ∇ · T

and using eqn (7.7) gives

ρ

(
∂v
∂t

)
xi

− ρ(W · ∇)v + ρ(v·∇)v = −∇p + ∇ · T. (7.33)

Dropping the subscript xi for the moment, we have

∂v
∂t

= ∂(vkgk)

∂t
= ∂vk

∂t
gk + vk ∂gk

∂t
=

(
∂vk

∂t
+ vj�k

j0

)
gk. (7.34)

The second and third terms of eqn (7.33) may be combined to give

ρ[(v − W) · ∇]v = ρ(vj − Wj)
∂v
∂xj

= ρ(vj − Wj)vk
,j gk, (7.35)

where vk
,j is a covariant derivative. The right-hand side of eqn (7.33) may be written,

using eqns (1.12), (1.51), and (1.155), as

−gik ∂p

∂xi
gk +

[
1√
g

∂

∂xj
(
√

gT kj) + T ij�k
ij

]
gk. (7.36)

Putting eqns (7.34), (7.35), and (7.36) together into eqn (7.33), and observing that
the resulting contravariant coefficients of gk must be identical on both sides, gives

ρ

(
∂vk

∂t
+ vj�k

j0

)
+ ρ(vj − Wj)vk

,j = −gik ∂p

∂xi
+

[
1√
g

∂

∂xj
(
√

gT kj) + T ij�k
ij

]
.

(7.37)

Exercise 2. Making use of eqns (1.155) and (1.156), show that eqn (7.37) may be
expressed as

ρ

(
∂vk

∂t
+ vj�k

j0

)
+ ρ(vj − Wj)

∂vk

∂xj
+ 1√

g

∂

∂xj
[√g(pgkj − T kj)]

+ [ρvi(vj − Wj) + pgij − T ij]�k
ij = 0. (7.38)

In the last two equations there is summation over the i and j suffixes from 1 to 3, and
k can take any value from 1 to 3. We can also express T ij in generalized contravariant
form as

T ij = 2µ
(
εij − 1

3gij∇ · v
)

(7.39)

with εij = gikgjlεkl = 1/2gikgjl
(
vk,l + vl,k

)
.

Equations (7.38) are the momentum equations for a general time-dependent curvi-
linear co-ordinate system in non-conservative form.

Moving grids and time-dependent co-ordinate systems 187

7.5 Application to a moving boundary problem

The ‘in-cylinder’ calculation for an internal combustion engine gives us an application
of a time-dependent co-ordinate system. The physical domain in this case is the volume
between cylinder head and piston face. The piston moves between the B.D.C. (bottom
dead centre) position and the T.D.C. (top dead centre) position, and so the physical
domain has a moving boundary. Here we take a two-dimensional model of the situation,
as shown in Fig. 7.1.

Our objective is to obtain a set of co-ordinates such that the irregularly-shaped time-
dependent physical domain is mapped to a fixed rectangular computational domain at
all times. In Fig. 7.1 the shape of the cylinder head is given by the time-independent
function y = yb(x), while the shape of the moving piston is given by y = ya(x, t).

A possible time-dependent co-ordinate transformation is

ξ = x/l

η = y − ya(x, t)

yb(x) − ya(x, t)
. (7.40)

where l is the width of the cylinder head. This clearly maps the physical domain
onto a unit square in the computational plane, in which the transport equations are
to be solved, once they have been transformed to ξ , η co-ordinates. To carry out the
transformation of transport equations, we require the various components of the metric
tensors and Christoffel symbols.

We begin with

ξx = 1

l
, ξy = 0.

Exercise 3. Show that

ηx = −
[
(1 − η)

∂ya

∂x
+ η

dyb

dx

]
(yb − ya)

−1 , ηy = (yb − ya)
−1 . (7.41)

From eqns (1.160) and (1.162) the Jacobian of the transformation is

√
g = xξyη − xηyξ = g(ξxηy − ξyηx) = g

l
(yb − ya)

−1.

A

D C

B

0

A

D

B

C

L x

y

x

h

0

1

1

y =yb(x)

y =ya(x,t)

Fig. 7.1 Piston-cylinder assembly with irregular cylinder head and piston face.

188 Basic Structured Grid Generation

Hence √
g = l(yb − ya). (7.42)

Moreover,

xξ = l, xη = 0, yξ = l

[
(1 − η)

∂ya

∂x
+ η

dyb

dx

]
, yη = (yb − ya). (7.43)

It follows from eqn (1.158) that

g11 = l2

{
1 +

[
(1 − η)

∂ya

∂x
+ η

dyb

dx

]2
}

,

g22 = (yb − ya)
2 = g/l2, (7.44)

g12 = l

[
(1 − η)

∂ya

∂x
+ η

dyb

dx

]
(yb − ya).

where η is given in terms of x, y, and t by eqn (7.40).
Also, from (1.163),

g11 = 1/l2,

g22 =
{

1 +
[
(1 − η)

∂ya

∂x
+ η

dyb

dx

]2
}

(yb − ya)
−2, (7.45)

g12 = −1

l

[
(1 − η)

∂ya

∂x
+ η

dyb

dx

]
(yb − ya)

−1.

In evaluating Christoffel symbols through eqn (1.102) we have to obtain the second
partial derivatives

xξξ = xξη = xηη = 0,

yξξ = l2
[
(1 − η)

∂2ya

∂x2
+ η

d2yb

dx2

]
, (7.46)

yξη = l2
(

dyb

dx
− ∂ya

∂x

)
, yηη = 0.

Hence we get

�1
11 = �1

12 = �1
21 = �2

22 = 0,

�2
11 = l2

[
(1 − η)

∂2ya

∂x2
+ η

d2yb

dx2

]
(yb − ya)

−1, (7.47)

�2
12 = �2

21 = l2
(

dyb

dx
− ∂ya

∂x

)
(yb − ya)

−1.

Turning our attention now to the time variable, we can deduce from eqn (7.16) that

�k
i0 = ∂gi

∂t
· gk = ∂2yj

∂t∂xi

∂xk

∂yj

, (7.48)

Moving grids and time-dependent co-ordinate systems 189

which is similar to eqn (1.102). The required second derivatives are

∂2x

∂t∂ξ
= ∂2x

∂t∂η
= 0,

∂2y

∂t∂ξ
= l(1 − η)

∂2ya

∂t∂x
,

∂2y

∂t∂η
= −∂ya

∂t
. (7.49)

Hence from eqn (7.48) we obtain

�1
10 = �1

01 = �1
20 = �1

02 = 0,

�2
10 = �2

01 = l(yb − ya)
−1(1 − η)

∂2ya

∂t∂x
, (7.50)

�2
20 = �2

02 = −(yb − ya)
−1 ∂ya

∂t
.

In this example the moving grid has been generated essentially by algebraic interpola-
tion from the known moving boundaries.

8

Unstructured grid generation

8.1 Introduction
In structured grid generation, as we have seen, grids are constructed in the solution
domain (of the partial differential equations to be solved) in such a way that grid points
can be regarded as the points of intersection of curvilinear co-ordinate curves (in two
dimensions) or surfaces (in three dimensions). The manner in which grid points are
connected to each other (their connectivity) anywhere in the solution domain is thus
dependent on the overall generation scheme used. In two dimensions a grid point can
be specified by a pair of integers (i, j), and neighbouring points by (i + 1, j), etc.;
the cartesian co-ordinates x(i, j), y(i, j) of a point can conveniently be stored as the
elements of matrices.

In recent years, however, methods of unstructured grid generation have been devel-
oped, first in structural and solid mechanics and then in computational fluid dynamics,
in which the pattern of connections between grid points can vary from point to point.
The connectivity of grid points then has to be described explicitly by an appropriate
data structure, and this task will tend to make solution algorithms for partial differential
equations using unstructured grids more expensive than for structured grids. This extra
cost may be justified when the solution domains are of considerable geometric com-
plexity, when the additional geometric flexibility of unstructured grids compared with
structured grids can help to improve overall solution accuracy. Moreover, unstructured
grids have been found useful when employed in an ‘adaptive’ manner in the numerical
solution of transient flows or moving boundary problems.

The use of triangular grids in particular has grown rapidly in recent years, given that
in computing flow-fields around complex geometries it may be easier to create trian-
gular grids than quadrilateral grids (even if a quadrilateral grid can be created at all).
Unstructured grid generation methods based on Delaunay triangulation are frequently
used, and have been found particularly suited to adaptive solution strategies, because
of their capacity to allow the addition of new grid points to an existing triangulation
without affecting the grid as a whole. In other words, the addition of a new grid node
to a Delaunay grid alters the grid locally, but not globally.

In this chapter we introduce the two basic approaches to the generation of unstruc-
tured grids, namely (1) Delaunay triangulation, and (2) the Advancing Front method.
The presentation is confined to two dimensions here, but the extension of these meth-
ods to three dimensions is straightforward in principle. Mathematical proofs are mostly
omitted. In most cases results for triangles in two dimensions can be generalized to
tetrahedra in three dimensions.

Unstructured grid generation 191

8.2 Delaunay triangulation

8.2.1 Basic geometric properties

The principal objective here is to represent the two-dimensional solution domain of a
problem by a set of triangles. The method discussed here, Delaunay triangulation, was
first presented by Dirichlet in terms of connecting an arbitrary set of points together,
thus producing a set of triangles, in such a way that the resulting triangulation was as
near uniformly equilateral as possible.

Figure 8.1 shows a typical set of initial points N1, N2, . . . , N8, which give rise to
a so-called Dirichlet, or Voronoi, tessellation of the plane into convex polygons T1,
T2, . . . , T8, called tiles(or Voronoi regions), as shown. The tiles have the property that
any point in the interior of the tile Tj is closer to the point Nj than to any other point
Nk , j �= k. Hence the boundaries of the tiles consist of segments of the perpendicular
bisectors of lines joining the points N1, N2, . . . , N8 to each other. Tiles having a
common edge are called contiguous. A Delaunay triangulation is then obtained by
connecting together those initial points belonging to contiguous tiles (see Figure 8.2).
The convex polygon (N1N2N3N4N5N6 in Fig. 8.2) which is the outer boundary of the
triangulation is called the convex hull of the set of initial points.

A typical vertex of a Dirichlet tessellation (or Voronoi polygon) is clearly equidistant
from three initial points, and these points form a Delaunay triangle of which the given
vertex of the tessellation is the circumcentre (the centre of the circumcircle of the
triangle). Fig. 8.3 shows one such circumcircle. Thus to each Delaunay triangle there
corresponds a unique vertex of a Voronoi polygon lying at its circumcentre.

An important feature of a Delaunay triangulation is the Circumcircle Property : this
guarantees that in a Delaunay triangulation none of the points (vertices) of a triangle
can lie within the circumcircle of any other triangle. The triangles ABD and BCD in
Fig. 8.4, for example, cannot represent a Delaunay triangulation, since the circumcircle
of the triangle BCD contains the point A. However, changing the diagonal of the
quadrilateral ABCD to AC instead of BD produces the triangles ABC and ADC, which

T5

T6

T8

T7

T1

N1
N2

N6

N8

N5 N4

N7

N3

T2

T3

T4

Fig. 8.1 Dirichlet tessellation with Voronoi regions.

192 Basic Structured Grid Generation

N8

N7

N5 N4

N3

N2N1

N6

Fig. 8.2 Delaunay triangulation.

N5
N4

N7

N3

N2N1

N8

N6

Fig. 8.3 Circumcircle for N5, N6, N7.

A

D

B

C

Fig. 8.4 Circumcircle property.

do represent a Delaunay triangulation. (This procedure is called, naturally, diagonal
swapping.) Of the two possible choices of diagonal, it can be shown that the one
corresponding to the Delaunay triangulation maximizes the minimum of the six angles
in the resulting two triangles, and thus can be said to make the triangles as close to
equilateral as possible. This choice can also be shown to be the one for which the sum
of opposite interior angles ABC and ADC is less than 180 degrees (as opposed to the

Unstructured grid generation 193

sum of the angles BAD and BCD, which is greater than 180 degrees). This gives a
simple method for checking if the way in which four data points are connected to form
two triangles is Delaunay or not.

8.2.2 The Bowyer-Watson algorithm

Among various methods for implementing Delaunay triangulation by means of a
sequence of local operations, the Bowyer-Watson algorithm, due to Bowyer (1981)
and Watson (1981), has been found to be very convenient and efficient. We suppose
that there already exists a set of data points with a Delaunay triangulation, and seek to
incorporate further points, one at a time. To initiate the iterative procedure, we could
start if necessary with a sufficiently large equilateral triangle, large enough to contain
all the data points to be triangulated, using the three vertices as the initial points.
When all data points have been incorporated and triangulated, triangles containing the
original three points of the equilateral triangle could then be removed. A sufficiently
large square (divided by a diagonal into two triangles), with four initial vertices, could
also be used.

Suppose the existing Delaunay triangulation contains i data points x1, x2, . . . , xi ,
where the xs represent position vectors. Let the union of the triangles in the triangula-
tion be Ti and the union of all the circumcircles of the triangles be Bi . We now wish
to insert a new point xi+1 into the triangulation. There are three main possibilities:

1. xi+1 ∈ Ti ;
2. xi+1 /∈ Ti and xi+1 ∈ Bi ;
3. xi+1 /∈ Bi .

In case 1, the new point lies in one of the triangles of Ti . It is necessary to determine
the set S which is the union of those triangles belonging to Ti whose circumcircles
contain the new point. The next step of the algorithm is to remove the internal edges
of the triangles composing S, thus creating a ‘hole’ within the triangulation. Finally,
a new set of edges is obtained by connecting the new point to each vertex of S. This
process always produces a new Delaunay triangulation Ti+1.

Figure 8.5 shows an example of a Delaunay triangulation with five points
x1, x2, . . . , x5, with a new point x6 lying in one triangle and also within two cir-
cumcircles. In this case S is the quadrilateral with vertices x2, x3, x4, x5. The only
internal edge in S is that connecting x2 and x4. Removing this creates a hole in the

x1

x5 x4

x3
x6

x2

Fig. 8.5 Delaunay triangulation and new point X6.

194 Basic Structured Grid Generation

x5 x4

x3
x6

x2

x1

Fig. 8.6 New Delaunay triangulation.

x5

x8

x9 x2

x7 x1

x6

x4

x3

Fig. 8.7 New Delaunay triangulation with removal of four edges and creation of seven edges.

tessellation, and new edges are then created by connecting x6 to the four vertices of S,
as shown in Fig. 8.6.

Another example of the Bowyer-Watson procedure is shown in Fig. 8.7, where we
start from a Delaunay triangulation of eight points x1, x2, . . . , x8. To reduce the com-
plexity of the diagram this example has been given a degree of degeneracy, in that x5
lies on the circumcircle of triangle x2x3x4. In other words the circumcircles of trian-
gles x2x3x4 and x2x4x5 coincide. The new data point x9 is now found to lie within
the circumcircles of the five triangles x2x3x4, x2x4x5 (which coincide), x1x2x8, x5x6x8,
and x5x2x8. The set S thus consists of the (non-convex) polygon x1x2x3x4x5x6x8, and
removal of internal edges implies removal of the connections x2x8, x2x4, x2x5, and
x5x8. The large hole created in the triangulation is then filled with connections from
x9 to the points x1, x2, x3, x4, x5, x6, and x8 (dotted lines as shown), giving a new
Delaunay triangulation.

In case 2, the new point xi+1 lies outside the existing Delaunay triangulation but
within at least one circumcircle. We can define the set S as before as the union of the
triangles whose circumcircles contain xi+1, but now we remove those edges in S which
are nearest to (and ‘visible’ from) xi+1. The new Delaunay triangulation is obtained
by connecting xi+1 to all the vertices of the triangles composing S and to any other
vertex of Ti visible from xi+1.

Figure 8.8 shows an example of a Delaunay triangulation of five points x1,
x2, . . . , x5. A new data point x6 lies within the circumcircle of triangle x1x2x5, which
is the set S. The edge connecting x1 to x2 is the one visible to x6, and this is deleted.
The next Delaunay triangulation is obtained by connecting x6 to x1, x5, x2, and also x3.

Unstructured grid generation 195

x5
x4

x3

x6

x1

x2

Fig. 8.8 New point x6 lying outside triangulation and inside one circumcircle.

x7

x2

x1

x8

x3
x4

x5

x6

Fig. 8.9 New point lying outside triangulation and inside two circumcircles.

An example of a new point lying outside Ti but within two circumcircles is shown
in Fig. 8.9. Here we start with a Delaunay triangulation of seven points x1, x2, . . . , x7;
the new point x8 lies within the circumcircles of triangles x1x2x3 and x4x5x6, which
together make up the set S. We therefore remove edges x1x3 and x4x6, and connect
x8 to the points x1, x2, x3, x4, x5, x6. The remaining vertex x7 is not ‘visible’ from x8.

In the final case 3, the new point xi+1 lies outside the existing triangulation Ti and
the union of circumcircles. No deletion of edges in Ti is now necessary. All that is
required is to locate the external edges of Ti which are visible to xi+1. The triangulation
is completed by connecting xi+1 to each of the vertices on these external edges. An
example is shown in Fig. 8.10, which starts with a Delaunay triangulation of five
points x1, x2, . . . , x5. Here the outer edges of Ti visible to x6 (which is not contained
in any of the three circumcircles) are x1x2 and x2x3. So x6 must be connected to each
vertex x1, x2, and x3 for the new Delaunay triangulation to be complete. Clearly the
circumcircles of each of the new triangles x1x2x6 and x2x3x6 do not contain any of
the three remaining points, and the Circumcircle Property is satisfied.

As might be expected, the final Delaunay triangulation of a set of data points is
unaffected by the order in which individual points are inserted into a pre-existing
triangulation (using the Bowyer-Watson algorithm).

196 Basic Structured Grid Generation

x2

x5

x4

x3

x6

x1

Fig. 8.10 New point lying outside triangulation and outside all circumcircles.

8.2.3 Point insertion strategies

The initial Delaunay triangulation of a two-dimensional domain, based on a selection
of boundary points together with the application of the Bowyer-Watson algorithm, can
often yield an unsatisfactory grid. Improvement of the grid must then be sought by
inserting new points into the domain, and the resulting triangulations will be judged
according to various geometric and physical criteria. The geometric criteria will nor-
mally be that the triangulation (grid) should be smooth and that the triangles (grid-cells)
should be of uniform shape and size. The physical criterion will be that of adaptivity,
which normally requires the grid-point density in the solution domain to vary so that
areas of sharp variation in the solution of the hosted partial differential equations have
greater grid-point density (and areas of low variation smaller grid-point density).

In Delaunay triangulation (in two dimensions) there are two main approaches to the
insertion of new points. The first Shenton and Cendes (1985) and Holmes and Snyder
(1988) is to place new interior points at the circumcentres of the triangles in an existing
triangulation. The second is known as Voronoi-segment point insertion Rebay (1993),
according to which new points are placed along so-called Voronoi segments.

One difficulty associated with Delaunay triangulation is that, since a given set of
data points has a unique Delaunay triangulation, there is no guarantee that edges
connecting boundary points will be preserved. In other words, the triangulation may not
be boundary-conforming. It is possible to carry out a check on a triangulation to detect
all possible missing boundary edges, and, by inserting new nodes at the mid-points of
missing boundary edges, boundary-conforming triangulations can be produced.

Point insertion at triangle circumcentres
New points to be inserted should not be too close to existing grid nodes. Insertion at
the circumcentre of an existing triangle at least results in the point being equidistant
from the three vertices. This strategy thus involves insertion of a new point at the
circumcentre of a triangle, followed by re-triangulation of the whole domain. The only
remaining decisions to be made are which triangles to select for the insertion of new
points. The plan here is to devise a set of rules for identifying ‘unsuitable’ triangles
in the existing triangulation. These will be referred to as forming triangles. Points will

Unstructured grid generation 197

then be placed at their circumcentres and re-triangulation carried out until the grid is
satisfactory.

The following rules for the selection of forming triangles may be used:

1. The triangle with the largest area is selected. This rule works well when the initial
triangulation is based on a set of boundary data points that are distributed in a fairly
uniform manner. However, when this does not apply, the rule when used on its own
does not generally produce good grids.

2. The triangle with the largest circumcircle radius is selected. This rule has the desir-
able feature that it will eliminate triangles with obtuse angles, together with triangles
that are ‘skinny’ and have small area (so that they would be missed by Rule 1).

3. Obtuse-angled and skinny triangles are targeted directly. To this end a criterion for
recognizing skinny triangles is required. One such is provided by consideration of
the aspect ratio of a triangle.

The aspect ratio A.R. of a triangle ABC (Fig. 8.11) is defined as R/2r , where R is
the radius of the circumcircle and r is the radius of the inscribed circle. A standard
formula for the area of a triangle is

area = √
s(s − a)(s − b)(s − c) (8.1)

where

s = 1
2 (a + b + c). (8.2)

The following formulas are also straightforward to establish:

area = 1
2 (a + b + c)r = sr (8.3)

and (making use of the Sine Rule for triangles)

area = abc

4R
. (8.4)

A

C

B

R

ab

c

r

Fig. 8.11 Circumcircle and inscribed circle of triangle ABC.

198 Basic Structured Grid Generation

Equating these expressions for area, it is easy to show that the aspect ratio of the
triangle may be expressed in terms of the lengths of the sides as

A.R. = abc

8(s − a)(s − b)(s − c)
. (8.5)

For an equilateral triangle it follows that A.R. = 1. Clearly, the nearer the three
vertices of a triangle approach to lying on a straight line, the closer will s approach to
the values a, b, or c, and the larger the value of the aspect ratio will become. In that
sense the aspect ratio is a measure of the ‘skinniness’ of a triangle.

The following algorithm makes use of the above ideas:
Step 1 – Generate an initial triangular grid using boundary data points and the

Bowyer-Watson algorithm.
Step 2 – Apply Rule 1 to eliminate all triangles having an area larger than 1.5 times

the area of the equilateral triangle formed by the largest boundary segment between
two data sets. This step will eliminate all large triangles.

Step 3 – Apply a combination of Rules 2 and 3 to eliminate triangles with large
circumcircle radius and high aspect ratio. It may be convenient to leave alone triangles
near the boundary which are small but have a high aspect ratio (by applying Rule 2
only). The criterion for high aspect ratio is empirical. Often a critical aspect ratio of
1.5 is used; this would be the aspect ratio of isosceles triangles with apex angles of
about 24 or 104 degrees. This criterion can be applied to eliminate all triangles of high
aspect ratio, or until all triangles with high aspect ratio have an area of less than twice
the area of an equilateral triangle with sides equal to the minimum boundary-point
spacing.

However, when this algorithm is adopted, three situations may arise when point
insertion at circumcentres of the selected triangles must be rejected, namely:

Case 1 – The circumcentre of the selected triangle does not lie within the solution
domain.

Case 2 – The circumcentre of the selected triangle is too close to the boundary of
the solution domain.

Figure 8.12 shows an example of a solution domain with inner and outer boundaries
and a selection of boundary points (circled). The insertion of point B leads to a triangle
ABC of high aspect ratio. However, the circumcentre P of ABC lies outside the solution
domain and must be rejected. As an example of Case 2, insertion of point D leads to
a triangle EDA which may be of large area. The circumcentre Q is, however, close to
the boundary. The criterion for rejection often taken is that the distance of the point
from the boundary is less than one-third of the length of the nearest boundary segment.
In this case rejection would apply if QN < 1

3 EA.

Control of grid-density A drawback of the above method is that the grid-density of
triangulation over the whole (planar) domain is controlled by the grid-density along the
boundary of the domain. As a result, the size of triangles far from the boundary may
turn out to be unsatisfactory for the numerical solution of partial differential equations
in the domain.

To overcome this problem, it may be convenient to introduce a function of position
f (x) which specifies the required value of a characteristic dimension of a triangle, say
its circumradius, at a location x in the domain. For a triangle with circumradius R and

Unstructured grid generation 199

E

D

C

P

B

N
A

Q

Fig. 8.12 Constructing new points in a doubly-connected region.

circumcentre X we can then define the parameter α = R/f (X). New grid-points may
now be inserted at triangles having the largest value of α. After a number of iterations
it should be possible to arrive at a grid in which the maximum value of α for any
triangle is less than or equal to unity, which means that all triangles have reached their
target size.

Voronoi-segment point insertion method
An alternative point insertion strategy, as proposed by Rebay, is to place a new point
along a segment of a Voronoi polygon inside a triangle instead of at its circumcentre.
The locations at which new points are inserted in the circumcentre approach described
above are fixed (at the circumcentres of the chosen triangle), and the required size
of the grid cells (triangles) is achieved after a number of iterations. In the Voronoi-
segment approach, however, one can in principle aim to produce grid cells of the final
specified size as soon as the procedure is invoked.

For any given Delaunay triangulation of the domain, the triangles are divided into
external triangles, which have at least one side consisting of a boundary segment, and
internal triangles, which do not. (An initial triangulation based on boundary points
would consist of external triangles only.) The internal triangles are divided into so-
called accepted and non-accepted triangles, accepted triangles being those defined as
having circumradius less than 1.5 times the user-specified target value given by local
values of the function f (X) discussed in the previous section. The remaining triangles
are non-accepted.

The algorithm starts by considering non-accepted triangles which have an edge in
common with an accepted triangle and choosing the one with largest circumradius.
Figure 8.13 shows a typical situation, in which the triangle ABD is non-accepted, with
circumradius RABD , and ABC an accepted triangle. The common edge AB is called
an active edge. The Voronoi segment for the two triangles is the line EF connecting
the circumcentres E and F, which is the perpendicular bisector of AB, the point of
intersection being M. The idea now is to choose a new point X somewhere on the
segment EF such that the triangle ABD will be replaced by an accepted triangle ABX,
with a new Delaunay triangulation. The local target circumradius may be taken as the
value of f (X) at M, which we denote by fM .

200 Basic Structured Grid Generation

D
F

C

E

M

RABD

RABC

A B

Fig. 8.13 Non-accepted and accepted triangles.

Writing lengths AM = p and MF = q, it is straightforward to show that insertion
of a new point at the triangle circumcentre F (by choosing X to coincide with F) would
give a triangle AFB with circumradius given by (p2+q2)/2q. Since the smallest radius
of any circle passing through the points A and B is clearly p (the circle with centre
M), we must have

(p2 + q2)/2q � p

(which is also true for simple algebraic reasons). If fM � p, the best choice for X
is such that the circumradius RABX of the triangle ABX is equal to p. This occurs
when MX = p and the angle AXB is a right-angle. If fM > p, however, we locate X
so that

RABX = min(fM, (p2 + q2)/2q)

which will give a position for X between the previously stated position and F. In this
case we have

MX = RABX +
√

(RABX)2 − p2. (8.6)

In either case we can write as in Liseikin (1999)

RABX = min{max(fM, p), (p2 + q2)/2q}, (8.7)

with the position of X still given by (8.6).
Suppose that fM < p < 1.5fM and q is large compared with p. Then the point X is

chosen such that the angle AXB is a right-angle; moreover, the triangle AXB satisfies
the criterion to be accepted. The edges XA and XB will now be candidates for the
next active edge, assuming that the triangle DAX is non-accepted. Here we consider

Unstructured grid generation 201

D
F

XY

A

C

E

B

N

Mq

Fig. 8.14 Voronoi-segment point insertion.

Fig. 8.15 Delaunay triangulation. Voronoi-segment algorithm.

XA. We look for a new vertex Y on the perpendicular bisector of AX (Fig. 8.14). We
can re-label p as p0, and in the new construction, where the mid-point of AX is N,
we put AN = p1. Clearly, p1 = p0/

√
2.

Now if p1 > fN , where fN is the value of the target circumradius at N, then the
previous step is repeated, and Y will be chosen such that the angle AYX is a right-
angle. But if p1 < fN , we expect that, given that q is large compared with p0, the
circumradius RAYX = fN according to eqn (8.7), and, by eqn (8.6),

NY = d1 = fN +
√

(fN)2 − (p1)
2. (8.8)

202 Basic Structured Grid Generation

This means that since for the angle θ in Fig. 8.14

tan θ = d1

p1
= fN

p1
+

√(
fN

p1

)2

− 1,

provided that the value of f is essentially the same at M and N (and equal to fN), so
that p1 < fN <

√
2p1, we have

1 < tan θ <
√

2 + 1,

which implies that
45◦ < θ < 67.5◦.

If AY is taken as the next active edge, we will have

AY
2 = (2p2)

2 = (p1)
2 + (d1)

2,

and, using eqn (8.8), we obtain

(p2)
2 = 1

2

{
(fN)2 + fN

√
(fN)2 − (p1)2

}
. (8.9)

Since we are assuming that p1 < fN <
√

2p1, it follows that

1√
2

<
p2

p1
<

√
1 + 1√

2
.

If this procedure is repeated iteratively in the case where the value of f is assumed
to be effectively constant, the general step involves

(pn+1)
2 = 1

2

{
(fN)2 + fN

√
(fN)2 − (pn)

2

}
(8.10)

and

dn = fN +
√

(fN)2 − (pn)2. (8.11)

The values of pn then converge to a value p satisfying, according to eqn (8.10),

(
p

fN

)2

= 1
2

1 +

√
1 −

(
p

fN

)2

 . (8.12)

It is straightforward to show that the solution of this equation is

p =
√

3

2
fN, (8.13)

and, furthermore, the corresponding value of d , according to eqn (8.11), is

d = 3
2fN . (8.14)

These are characteristic measurements for an equilateral triangle of circumradius fN .
Thus this algorithm tends to produce approximately equilateral triangles of the target
circumradius after a few iterations.

Examples of triangulations in domains of various shapes using Voronoi point-
insertion are shown in Figs 8.15–8.18.

Unstructured grid generation 203

Fig. 8.16 Delaunay triangulation. Voronoi-segment algorithm.

Fig. 8.17 Delaunay triangulation for an airfoil. Voronoi-segment algorithm.

Fig. 8.18 Delaunay triangulation in an annulus. Voronoi-segment algorithm.

8.3 Advancing front technique (AFT)

8.3.1 Introduction

In certain problems, for example the computation of viscous flow solutions, the use
of Delaunay triangulation for generation of unstructured grids may not be satisfactory.
This could be due to the need to create triangular elements with high aspect ratio in
boundary-layer regions, which would be difficult with Delaunay Triangulation alone.
Another problem with Delaunay triangulation, as mentioned above, is that, even though
boundary nodes will be vertices in the final triangulation, there is no guarantee that

204 Basic Structured Grid Generation

boundary edges between nodes will be sides. In other words, boundary integrity may
not be preserved, and further steps may be necessary.

The advancing front technique, first formulated by George (1971), is an unstructured
grid generation method which preserves boundary integrity and has the capacity to
create the clustering of high aspect-ratio triangles in boundary-layer regions. In this
method, outer and inner (if any) boundary curves of the computational domain, which
are commonly defined as piecewise-cubic splines based on a user-specified set of
points, are discretized by being divided into straight-line segments which correspond
to a chosen node distribution of the boundary of the domain. These sets of straight
edges compose the initial ‘fronts’. The fronts then move into the interior of the domain
in a ‘marching’ process, in which new points (nodes) and edges are created, old edges
are deleted, and triangular elements produced. The vertices of a new triangle consist of
the two nodes of a segment of a front and another node either already in the front or
newly created. This process continues until there are no edges left in the front, i.e. the
front has been annihilated, leaving behind a triangulated domain. Note that the initial
choice of nodes on the boundary curves must be strongly dependent on the required
grid-cell size, since edges in the initial front will be edges in the final triangulation.

8.3.2 Grid control

Any grid-generation method should provide for adequate grid control regarding accept-
able size and shape of grid cells. The main approach to control of grid-cell size in
the AFT (in two dimensions) throughout the computational domain involves first the
definition of certain required grid-cell characteristics, and then the generation of a
background grid. Control over these characteristics is obtained by the specification of
a spatial distribution of appropriate grid parameters over the background grid.

The size, shape, and orientation of a triangular grid-cell (see triangle ABC in
Fig. 8.19) is roughly described by a set of three independent parameters:

• a size parameter δ;
• a ‘stretching’ parameter s;
• the orientation of the cell φ, which is associated with two mutually orthogonal

vectors s, n.

To define a grid-cell a user can input four grid generator parameters (δ, s, nx, ny),
where nx , ny specify the components of n with respect to the axes of the global cartesian

n

s

y

x

f

f

A

C

B
sd

d

Fig. 8.19 Descriptive parameters for triangular elements.

Unstructured grid generation 205

co-ordinate system Oxy. For control purposes, required values of these parameters are
specified at each node of the background grid. The initial background grid is usually
generated manually by the user, and can be quite coarse, even for complex domains. For
example, a background grid consisting of a single element, or two elements (triangles),
can be used to impose the requirement of linear variation of parameters, or of constant
spacing and stretching throughout the domain.

The background grid does not have to align with the boundary of the domain to be
triangulated. In cases where no initial background grid is supplied, a default background
grid is generated, consisting of two triangular elements with a uniform grid-density
requirement, based on empirical rules. The default grid-density value of δ is taken to
be five per cent of the length of the diagonal of the background grid. When adaptive
methods are required, the first grid generated could become the background grid for
the next grid, and then a more detailed specification of the spatial variation of grid
generator parameters can be achieved.

An alternative, or additional, method for grid control, particularly when complex
geometries are involved and there is a need to specify grid parameters in certain
regions, such as the leading and trailing edges of aircraft wings, is provided by a so-
called distribution of sources. In this approach a spatial distribution of grid-cell size is
specified as a function of the distance from a given point to a ‘source’, which could
be a point or a line. The distribution is ‘isotropic’ if it depends only on the distance x

measured in any direction from the source. The isotropic source function for a point
source at S is taken to be

δ(x) =

δ1 if 0 < x < xc

δ1 exp

({
x − xc

D − xc

}
ln 2

)
if x � xc,

(8.15)

where δ1, D, and xc are user-specified parameters that can be tuned to control the
variation of triangle size δ about S. A typical graph of δ(x) is shown in Fig. 8.20.

8.3.3 Searching algorithm

To be able to interpolate grid parameters from the background grid (in two dimensions),
it is necessary to locate the triangle of the background grid in which a given point in
the domain lies. This can be achieved by computing the so-called area co-ordinates of
the point. Suppose we have a triangle with vertices labelled 1, 2, 3. The area of this

O
D

d1

2d1

d(x)

xc x

Fig. 8.20 A possible source function.

206 Basic Structured Grid Generation

1

3

2
P

Fig. 8.21 Points 1, 2, 3 forming anti-clockwise sequence.

1

3

2

P

Fig. 8.22 Points 1, 2, P forming a clockwise sequence.

triangle, denoted by �123, will be taken to be positive if the order 1, 2, 3 follows an
anti-clockwise sequence of points (as in Fig. 8.21), but negative otherwise. The area
co-ordinates of a point P are then given as ratios of areas:

l1 = �23P

�123
, l2 = �31P

�123
, l3 = �12P

�123
, (8.16)

where areas are taken positive or negative following the same anti-clockwise or clock-
wise convention. Thus if P lies within a triangle with positive area, as in Fig. 8.21,
the area co-ordinates are all positive. However, for point P located as in Fig. 8.22, we
have l3 < 0, while l1 > 0, l2 > 0. It is clear that, when P lies outside the triangle 123,
at least one area co-ordinate is negative.

So, for a given point P(xP , yP), we take a triangle (for example, the last triangle
that has been generated) of the background grid, and calculate the area co-ordinates of
P with respect to that triangle. If we find a negative area co-ordinate, this will indicate
the direction of search for the next triangle to be tested. For example, in Fig. 8.22,
since l3 is found to be negative, we next test the triangle opposite to the vertex 3, i.e.
the triangle that shares the edge 12. We can continue this procedure until we reach a
triangle where all area co-ordinates are positive.

8.3.4 AFT algorithm

A principal feature of the AFT is the simultaneous generation of grid nodes and trian-
gular grid-cells. The validity of each new generated triangle is checked locally as soon

Unstructured grid generation 207

as it is created. Here we give the algorithmic steps of the AFT followed by a test-case
example.

The basic steps of the algorithm are as follows:

1. Set up the initial grid generation front, a set of oriented line-segments connecting
selected nodes on the boundary (in the direction of the orientation). Interpolate grid-
cell parameters for all the nodes in the front. Any nodes in the current position of
the front are called active.

2. Select the shortest side in the front, with length l. A value of δ is obtained by
averaging the interpolated values of δ corresponding to the two nodes.

3. Compute the position of an ‘ideal’ point Kideal on the perpendicular bisector of this
side such that an equilateral triangle is formed with Kideal as vertex.

4. Construct a circle with centre at Kideal and radius r given by the empirical formula
r = 0.8 ∗ δ′, where

δ′ =

0.55 ∗ l if δ < 0.55 ∗ l

δ if 0.55 ∗ l � δ � 2.0 ∗ l

2.0 ∗ l if δ > 2.0 ∗ l,

and δ takes its local value. This formula helps to avoid the creation of highly
distorted triangles and to ensure geometrical compatibility.

5. Find the active nodes that lie within this circle, and list them in terms of their
distance from Kideal . The closest would be the best candidate for the third vertex
of the next triangular element.

6. If there are no such active nodes, the validity of the equilateral triangle with Kideal
as a vertex must be checked. This requires that:

• The point Kideal does not lie inside another triangular element.
• The sides of the new element do not intersect any of the existing sides of the

active front.

If the triangle is not valid, look for an active node giving a triangle with the best
shape.

7. If step 6 fails, re-order the front, take the second shortest active side, and go to
step 3.

8. If step 5 or step 6 succeeds, generate a new triangular cell and update the front
(from which the chosen shortest side has been deleted). In the case of step 6 being
successful with Kideal as a vertex (which then becomes one of the active nodes of
the new front), interpolate the grid generation parameter for this new point.

9. If the updated front is ‘non-empty’, go to step 3 and repeat the procedure. Continue
until there are no edges left in the front. Thus all edges have become passive instead
of active, and the computational domain has been completely triangulated.

As a simple example, we consider the simply-connected two-dimensional domain
shown in Fig. 8.23, consisting of a square ABDC from which a semi-circle has been
removed. The background grid consists of the two triangles ACD, ABD, and grid
generation parameters on the background grid are specified to be δ = 1, s = 1,
nx = 1, ny = 0, at each point A, B, C, D. Here we show a simple step-by-step method
of grid generation.

208 Basic Structured Grid Generation

A

C D

B
5 4

3

2

1
8

7

6

Fig. 8.23 Domain for AFT with background grid.

Kid

5
4

3

2

1
8

7

6

Fig. 8.24 First front with ideal point.

Nodes 1 to 8 are chosen, and the first front is shown in Fig. 8.24. One of the
two shortest faces (1-2) is chosen and an ideal point is constructed as shown in the
same figure. The circle of radius δ′ is also indicated. This contains no nodes, and the
equilateral triangle created is valid. Hence the ideal point is acceptable, and can be
taken as a new node. The front is now updated. As shown in Fig. 8.25 we have:

• active nodes: 1, 9, 2, 3, 4, 5, 6, 7, 8
• active sides: 1-9, 9-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-1
• passive nodes: none
• passive faces; 1-2
• npoint (total number of points): 9
• nelem (total number of elements created): 1
• nptr (number of points remaining, i.e. active nodes): 9

Next the face 2-3 is chosen. This leads to a similar construction to that in the previous
step, as shown in Fig. 8.26, where again the ideal point is acceptable and taken as the
new node. The updated front is shown in Fig. 8.27, with

Unstructured grid generation 209

1

5
4

3

2

1
8

7

9

6

Fig. 8.25 Second front.

Kid

5
4

3

2

1
8

7

9

10

6

1

Fig. 8.26 Ideal point for side 2-3.

1

2

5
4

3

2

1
8

7

9

10

6

Fig. 8.27 Third front.

210 Basic Structured Grid Generation

• active nodes: 1, 9, 2, 10, 3, 4, 5, 6, 7, 8
• active sides: 1-9, 9-2, 2-10, 10-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-1
• passive nodes: none
• passive sides 1-2, 2-3
• npoint: 10
• nelem: 2
• nptr: 10

In the next step the chosen face is 10-3 (Fig. 8.28), but now Kideal does not lie in
the interior of the domain, and the equilateral triangle produced is not valid. Thus the
ideal point is not acceptable. Instead, we use the existing active node 4, and take 10-4
as a new active side. The updated front (Fig. 8.29) has properties as follows:

• active nodes: 1, 9, 2, 10, 4, 5, 6, 7, 8
• active sides: 1-9, 9-2, 2-10, 10-4, 4-5, 5-6, 6-7, 7-8, 8-1
• passive nodes: 3

1

2

5
4

3

2

1
8

7

9

10

6
Kid

Fig. 8.28 Side 3-10; ideal point.

1

2

3

5
4

3

2

1
8

7

9

10

6

Fig. 8.29 Fourth front.

Unstructured grid generation 211

• passive sides: 1-2, 2-3, 3-4
• npoint: 10
• nelem: 3
• nptr: 9

Next, the chosen side is 2-10, but the circle with centre Kideal now contains node 9
(Fig. 8.30) and so this is used as the vertex of the next element. The updated front is
shown in Fig. 8.31 with properties:

• active nodes: 1, 9, 10, 4, 5, 6, 7, 8
• active sides: 1-9, 9-10, 10-4, 4-5, 5-6, 6-7, 7-8, 8-1
• passive nodes: 2, 3
• passive sides: 1-2, 2-3, 3-4
• npoint: 10
• nelem: 4
• nptr: 8

1

2

3

5
4

3

2

1
8

7

9

10

6

Kid

Fig. 8.30 Side 2-10; ideal point.

1

2
4

3

5
4

3

2

1
8

7

9

10

6

Fig. 8.31 Fifth front.

212 Basic Structured Grid Generation

Next, the side 1-9 is chosen. This leads to a procedure symmetrical to that involved
in the choice 10-3 above. The resulting updated front is shown in Fig. 8.32, and has
the properties:

• active nodes: 9, 10, 4, 5, 6, 7, 8
• active sides: 9-10, 10-4, 4-5, 5-6, 6-7, 7-8, 8-9
• passive nodes: 1, 2, 3
• passive sides: 8-1, 1-2, 2-3, 3-4
• npoints: 10
• nelem: 5
• nptr: 7

The next chosen side is 8-9. This time Kideal is found to lie outside the computational
domain (as shown in Fig. 8.33) and is rejected since a side of the new equilateral
triangle cuts the current face. Point 7 is chosen instead, giving the updated front shown
in Fig. 8.34 with properties:

1

5

2
4

3

5
4

3

2

1
8

7

9

10

6

Fig. 8.32 Sixth front.

1

5

2
4

3

5
4

3

2

1
8

7

9

10

6

Kid

Fig. 8.33 Side 8-9; ideal point.

Unstructured grid generation 213

1

5

6

2
4

3

5
4

3

2

1
8

7

9

10

6

Fig. 8.34 Seventh front.

• active nodes: 9, 10, 4, 5, 6, 7
• active sides: 9-10, 10-4, 4-5, 5-6, 6-7, 7-9
• passive nodes: 8, 1, 2, 3
• passive sides: 7-8, 8-1, 1-2, 2-3, 3-4
• npoint: 10
• nelem: 6
• nptr: 6

Now the side 7-9 is chosen, and the new equilateral triangle with centre Kideal
(Fig. 8.35) is valid. Thus Kideal becomes the new point 11, and the updated front is
as shown in Fig. 8.36, with properties:

• active nodes: 9, 10, 4, 5, 6, 7, 11
• active sides: 9-10, 10-4, 4-5, 5-6, 6-7, 7-11, 11-9
• passive nodes: 8, 1, 2, 3
• passive sides: 7-8, 8-1, 1-2, 2-3, 3-4
• npoint: 11

1

5

6

2
4

3

5
4

3

2

1
8

7

10

6

Kid

9

Fig. 8.35 Side 7-9; ideal point.

214 Basic Structured Grid Generation

1

5

6

7 2
4

3

5
4

3

2

1
8

7

10
11

6

9

Fig. 8.36 Eighth front.

1

5

6

7 24

3

5
4

3

2

1
8

7

10
11

6

Kid9

Fig. 8.37 Side 11-9; ideal point.

• nelem: 7
• nptr: 7

Next the side 11-9 is chosen, and Kideal located. The equilateral triangle constructed
has one side which cuts the side 9-10 of the front (Fig. 8.37), and so Kideal is rejected
as a new point. Instead, the nearest active node 10 is chosen, and the updated front
shown in Fig. 8.38 has properties:

• active nodes: 7, 11, 10, 4, 5, 6
• active sides: 7-11, 11-10, 10-4, 4-5, 5-6, 6-7
• passive nodes: 8, 1, 2, 3
• passive sides: 7-8, 8-1, 1-2, 2-3, 3-4
• npoint: 11
• nelem: 8
• nptr: 6

Unstructured grid generation 215

1

5

6

7
8 2

4

3

5
4

3

2

1
8

7

10
11

6

9

Fig. 8.38 Ninth front.

1

5

6

7
8

9

11
10

12

2
4

3

5
4

3

2

1
8

7

6

Fig. 8.39 Completed triangulation.

If the algorithm is applied for a further four stages, the shortest face being chosen
at each stage, we arrive at the triangular grid shown in Fig. 8.39, in which the front
has finally disappeared and the following properties can be deduced:

• active nodes: none
• active sides: none
• passive nodes: 1, 2, 3, 4, 5, 6, 7, 8
• passive sides: 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-1
• npoint: 11
• nelem: 12
• nptr: none

Note that, in general, when a new point is found to be very close to an active node
on the front, it is replaced by this node. This avoids having to deal with a triangular
cell with a very small edge at some later stage.

216 Basic Structured Grid Generation

8.3.5 Adaptation and parameter space

If the stretching parameter s at a certain point of the computational domain is equal
to unity, the grid in the neighbourhood of that point should consist of approximately
equilateral triangles. However, as has already been mentioned, grid cells near boundary
segments are often required to be highly stretched (with high aspect ratio). A uniform
distribution of such cells can be created at the boundary, new points (vertices of the
stretched triangles) being situated along perpendicular bisectors of the initial bound-
ary segments in accordance with the required stretching. Stretched cells can then be
extended into the interior of the domain in a marching process, advancing one layer
at a time. When the boundary-layer region has been covered with stretched cells, the
rest of the domain can be covered according to the AFT as described above.

It may be convenient to generate stretched cells by means of a mathematical trans-
formation, such that grid generation takes place in a parameter (or ‘normalized’) space
in which the stretched triangles are transformed to approximately equilateral trian-
gles. The transformation from physical space to parameter space involves rotating and
shrinking an element, in which, referring to Fig. 8.19, a point with position vector x
in physical space is transformed to the point x̃, where

x̃ =
(1

s
sx

1
s
sy

nx ny

)
x, (8.17)

the components of s being given by (sx, sy) = (cos φ, sin φ) and those of n by
(nx, ny) = (− cos φ, sin φ). We also have

x̃ =
(

x̃

ỹ

)
=

(
1
s
s · x
n · x

)
. (8.18)

The effect of the transformation on a typical stretched triangle is shown in Fig. 8.40.
It follows that approximately equilateral triangles may be generated in parameter space
and may then be transformed back into stretched triangles in physical space by applying
the inverse transformation to that given in eqn (8.17).

8.3.6 Grid quality improvement

After an unstructured grid has been generated, two procedures may be applied in order
to improve it. These procedures do not change the total number of triangles and nodes
in the grid.

n

s

A

A

B C

D
B

C

D

Fig. 8.40 Transformation from physical space to parameter space.

Unstructured grid generation 217

A AB B

C C

D D

e1

e2

Fig. 8.41 Diagonal swapping.

A A

D

C

BBC

D

Fig. 8.42 No diagonal swapping in this case.

Diagonal swapping
This procedure, already referred to in Section 8.2.1, does not change the position of
the nodes, but may change their connectivities. A loop (i.e. a DO loop) over all the
triangle sides, excluding those elements on the boundary, is set up, in which for a
typical side such as AC in Fig. 8.41, which is common to the two triangles ABC,
ACD, the possibility of replacing AC by BD is considered. This diagonal swapping
is performed if the resulting configuration, consisting of the two triangles ABD and
BCD, is preferable according to some specified criterion. One such criterion would be
that the minimum angle in the two triangles in the changed configuration is larger than
the one in the original one.

No diagonal swapping is carried out if the original triangles compose a quadrilateral
which is not convex (Fig. 8.42).

Grid smoothing
In this procedure the positions of interior nodes are altered without changing any con-
nectivities. The idea is to regard the triangle sides as linear springs with identical
stiffnesses and tensions proportional to the lengths of the springs. The overall equilib-
rium position of the nodes is then sought by iteration. In each iteration a loop over
the interior nodes is carried out in which each node is moved to the centroid of the
three nodes to which it is connected. Between three and five iterations are generally
required to arrive at a satisfactory smoothed grid.

8.4 Solving hosted equations using finite elements

Here we present a very brief introduction to the solution of field equations (the hosted
equations) in a domain which has been triangulated, using linear triangular elements.

218 Basic Structured Grid Generation

For further information, standard texts on finite element methods such as Hinton and
Owen (1979), Taylor and Hughes (1981), and George (1991) may be consulted.

Suppose that the field equation for a field quantity φ, subject to certain boundary
conditions, in a planar domain D (assumed simply connected here) is

L(φ) = 0 (8.19)

where L is a second order partial differential operator. Suppose also that the domain
has been triangulated, with n triangles and m points (nodes).

In the Method of Weighted Residuals, we seek an approximate solution for φ from
the family of functions

φ̃ = f0(x, y) +
N∑
1

φifi(x, y), (8.20)

where usually the function f0 is chosen to satisfy the given boundary conditions and the
fis satisfy homogeneous boundary conditions in order to make φ̃ satisfy the boundary
conditions for any choice of the constant coefficients φi . In addition, we choose a set
of N weighting functions Wi(x, y) and impose the conditions∫∫

D

WiL(φ̃) dx dy = 0, i = 1, 2, . . . , N, (8.21)

to make L(φ̃) as close to zero as possible in some sense over the domain D. These
equations will generate a set of N equations for the N unknown constants φi and hence
the best (in some sense) approximate solution from our original set.

In the special case of the Galerkin Method, the weighting functions are taken to be
identical to the approximating functions, which gives the set of equations∫∫

D

fiL(φ̃) dx dy = 0, i = 1, 2, . . . , N, (8.22)

with φ̃ given by eqn (8.20).
In the particular form of the finite-element method which is appropriate here for a

plane triangulated region, we look for approximate solutions in the form

φ̃ =
m∑

i=1

φiRi(x, y), (8.23)

where the φis are constant coefficients to be determined and the known Ri(x, y) func-
tions are called roof functions, which are continuous and piecewise-linear in both x

and y, such that Ri takes the value unity at the ith node and zero at all other nodes.
Each node of the triangulation is assigned a global number between 1 and m. More-
over, a node constitutes one of three vertices of a triangular element, and is assigned
a local number between 1 and 3, these numbers being ordered in an anti-clockwise
sense. This assigning of numbers, together with the numbering of triangular elements
and the listing of cartesian co-ordinates of all nodes, is carried out in the Delaunay
grid generation program delaunay1.f listed below.

Roof functions may be built up from linear shape functions Ne
i (x, y) defined over

each triangular element. Here the suffix refers to the local number of a vertex; Ne
i (x, y)

Unstructured grid generation 219

takes the value unity at the ith vertex and zero at the other two. Over a particular triangle
with vertices numbered 1, 2, 3 in anti-clockwise manner, having known cartesian
co-ordinates (x1, y1), (x2, y2), (x3, y3), respectively, it is easy to show that a shape
function linear in x and y and taking the value 1 at the vertex 1 and zero at the
vertices 2 and 3 is given by

Ne
1 (x, y) = 1

2Ae
(a1 + b1x + c1y), (8.24)

where a1 = x2y3 −x3y2, b1 = y2 −y3, c1 = x3 −x2, and Ae is the area of the triangle.
Expressions for similar shape functions Ne

2 and Ne
3 which take the value 1 at the

vertices 2, 3, respectively, and zero at the other vertices may be immediately written
down by cyclic permutation of the suffixes in eqn (8.24). Over a typical triangular
element of the triangulation, we can then write the approximating solution as

φe = φe
1N

e
1 + φe

2N
e
2 + φe

3N
e
3 , (8.25)

where now the coefficients φe
1, φe

2, φe
3 represent the values of φe at the vertices.

As an example of a field equation, we take Poisson’s equation

κ

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
+ Q (x, y) = 0 (8.26)

where κ is a constant and in heat transfer problems Q(x, y) could be a heat source
function. The boundary conditions are taken to be that φ is specified on a part Cφ of
the boundary and the normal derivative ∂φ/∂n (in the direction of the outward normal)
takes the value q (possibly a function of position) on the remaining part Cq . This means
that at nodes on that part of the boundary of the triangulation which approximates Cφ

the value of the coefficients φi in eqn (8.23) is effectively specified.
Suppose that N of the nodes are in the interior of the triangulation or on the boundary

Cq and that nodes with global vertex numbers N + 1, N + 2, . . . , m lie on that part of
the boundary which approximates Cφ . Then instead of eqn (8.23) we can put

φ̃ =
m∑

i=N+1

φiRi(x, y) +
N∑

i=1

φiRi(x, y) = φ̃0(x, y) +
N∑

i=1

φiRi(x, y), (8.27)

where in the first term the coefficients φi are known from the boundary conditions.
This representation of the family of approximating functions has the same form as
eqn (8.20), since the roof functions Ri(x, y) take the value zero at the boundary nodes
N + 1, N + 2, . . . , m.

The Galerkin approach gives the integral form

∫∫
D

RiL(φ̃) dx dy =
∫∫

D

Ri

{
κ

(
∂2φ̃

∂x2
+ ∂2φ̃

∂y2

)
+ Q (x, y)

}
dx dy = 0,

i = 1, . . . , N, (8.28)

but to be able to deal with approximating functions with discontinuous slopes across
triangular edges, we need to transform the double integral by integration by parts (the

220 Basic Structured Grid Generation

Divergence Theorem, or Green’s formula) to

−
∫∫

D

{
κ

(
∂Ri

∂x

∂φ̃

∂x
+ ∂Ri

∂y

∂φ̃

∂y

)
− RiQ

}
dx dy +

∮
C

κRi

∂φ̃

∂n
ds = 0, (8.29)

where the contour integral is taken anti-clockwise around the boundary C of D. If we
replace ∂φ̃/∂n by q on Cq , and Ri by zero on Cφ , we obtain

∫∫
D

κ

(
∂Ri

∂x

∂φ̃

∂x
+ ∂Ri

∂y

∂φ̃

∂y

)
dx dy =

∫∫
D

RiQ dx dy +
∮

Cq

κRiq ds, i = 1, . . . , N.

(8.30)
Using eqn (8.27), this becomes, for i = 1, . . . , N ,

N∑
j=1

{∫∫
D

κ

(
∂Ri

∂x

∂Rj

∂x
+ ∂Ri

∂y

∂Rj

∂y

)
dx dy

}
φj

=
∫∫

D

RiQ dx dy +
∮

Cq

κRiq ds −
∫∫

D

κ

(
∂Ri

∂x

∂φ̃0

∂x
+ ∂Ri

∂y

∂φ̃0

∂y

)
dx dy.

(8.31)
The contribution of a triangular element to the terms∫∫

D

κ

(
∂Ri

∂x

∂Rj

∂x
+ ∂Ri

∂y

∂Rj

∂y

)
dx dy

in eqn (8.31) is then, using eqn (8.25),

3∑
j=1

{∫∫
e

κ

(
∂Ne

i

∂x

∂Ne
j

∂x
+ ∂Ne

i

∂y

∂Ne
j

∂y

)
dx dy

}
φe

j =
3∑

j=1

Ke
ijφ

e
j , say, (8.32)

where Ke
ij is clearly symmetric and can be regarded as the element stiffness matrix.

By eqn (8.24) we can write, in the present case,

Ke
ij =

∫∫
e

κ

(2Ae)2
(bibj + cicj) dx dy = κ

4Ae
(bibj + cicj). (8.33)

For a given triangulation, reducing eqns (8.31) to a global matrix equation

N∑
j=1

Kijφj = Fi (8.34)

involves first the evaluation of the stiffness matrices for all elements and then assem-
bling and adding them into a large N ×N matrix Kij . This is usually a straightforward
task once a connectivity table has been established listing the global and local ver-
tex numbers for each element in the triangulation. This enables global numbers to be
made to correspond to the row (and column) numbers of Kij so that the 3 × 3 entries
Ke

ij can be added in the correct places. The ‘force’ terms Fi can be calculated from
the RHS of eqn (8.31) using the values of Q and q at appropriate nodes. Finally a

Unstructured grid generation 221

numerical scheme must be used to solve the global matrix equation for the unknown
coefficients φi .

Similar procedures can be used to solve non-linear hosted equations, such as
the Navier-Stokes equations, using iterative methods based on an initial approxi-
mate solution. For example, see Rao, S.S. (1982) and Lewis, Morgan, Thomas, and
Seetharamu (1996).

8.5 Website programs

8.5.1 Subdirectory: book/Delaunay

This subdirectory contains two files, called Delaunay1.f and Delaunay2.f. The codes
involved are rather lengthy, and we do not give every detail here. However, they are
annotated to make them easier to follow.

1. Delaunay1.f
The ‘main’ routine contained in Delaunay1.f was written by S.W. Sloan
(Sloan (1987)). This is a small program, described as ‘A fast algorithm for con-
structing Delaunay triangulation in the plane’. It triangulates domains starting from
sets of boundary data, and generally produces completely unacceptable triangula-
tions. For domains with an internal boundary, such as the region around an airfoil,
not only is the quality of the triangles in the domain unacceptable, but the inner
circular region is also filled with unacceptable triangles. To make the grid accept-
able, (a) the unwanted triangles must be removed from the inner region, and (b) the
remaining triangles must be processed so that the final triangulation does not contain
triangles that are excessively large or skinny.
Delaunay1.f contains a subroutine called ‘Add-point’ which carries out the lengthy
process of refining the initial triangulation. The first task is the removal of unwanted
triangles from within any inner boundaries, and this is followed by the re-numbering
of the remaining triangles. Then the processing of these triangles is carried out.
The criteria used in this processing are those based on area and on aspect ratio,
as discussed in Section 8.2.3. Target values for area and aspect ratio, called here
‘amax’ and ‘armax’ respectively, are specified by the user.
All the triangles go through the ‘Add-point’ subroutine one at a time. From the
cartesian co-ordinates of the vertices of a triangle the lengths of the sides can be
calculated, and then eqns (8.1) and (8.5) permit the calculation of area and aspect
ratio. If either of these is greater than ‘amax’ or ‘armax’ respectively, then the
triangle qualifies for processing. (Otherwise we proceed to the next triangle for
consideration.)
If a triangle qualifies for processing, it is classified by the program according to
whether one of its sides is parallel to the x-axis (in which case it is called ‘horizon-
tal’), perpendicular to the x-axis (when it is called ‘vertical’), or neither of these
possible cases (when it is called ‘general’). Furthermore, given that in the initial
triangulation the vertices of a triangle are organized in an anti-clockwise manner,
and labelling them here as 1, 2, 3, we can label side 1-2 as side 1, side 2-3 as side 2,
and side 3-1 as side 3. This gives three further categories for classification. Finally

222 Basic Structured Grid Generation

1

3

2

x

y

1

1

3

2

3

2

x

y

x

y

1

3

2

x

y

1

3

2

x

y 1

12

3

3

2

x

y

Acute-angled

Obtuse-angled

Right-angled

Right-angled

Right-angled

x

y

12

3

x

y

12

3
x

y

12

3
x

y

Fig. 8.43 Triangles with side 1 parallel to the x-axis.

O x

y

1

3

2
M

P
R

a

Fig. 8.44 Locating the circumcentre of a triangle.

the triangle is classified according to whether it is acute-angled, obtuse-angled, or
right-angled.
For example, suppose that side 1 is parallel to the x-axis. Fig. 8.43 shows the
various cases into which the triangle can fall. Subroutine ‘Add-point’ contains six
subroutines of its own, called H1, H2, H3, V1, V2, V3, where, for example, H1
considers triangles whose side 1 is parallel to the x-axis and V1 triangles with
side 1 perpendicular to the x-axis. ‘General’ triangles are processed by subroutine
‘Add-point’ itself, and are classified as (a) acute-angled triangles, (b) obtuse-angled
triangles in which the longest side is either side 1 or not side 1, or (c) right-angled
triangles.
The main task of the subroutines is to calculate the position of the circumcentre of
the triangle being processed. When the co-ordinates of the circumcentre have been
calculated, tests are carried out to determine whether the circumcentre lies inside

Unstructured grid generation 223

Fig. 8.45 Initial Delaunay triangulation for an airfoil.

Fig. 8.46 Second stage Delaunay triangulation for an airfoil.

Fig. 8.47 Delaunay triangulation of a geometrically constructed aerofoil, amax = 0.04, armax = 2.0.

any inner boundary or outside any outer boundary of the domain. If so, then the
circumcentre is rejected as a new point. Otherwise it is accepted, added to the list of
data points, and a new triangulation carried out. This procedure is continued until
all the ‘bad’ triangles have been removed.
Calculation of the co-ordinates of the circumcentre is illustrated in Fig. 8.44 for a
general acute-angled triangle. Given the co-ordinates of the vertices, the circum-
radius R may be found by using the combination of eqns (8.1), (8.2), and (8.4).

224 Basic Structured Grid Generation

Fig. 8.48 Delaunay triangulation for a circle, amax = 2.2, armax = 5.5.

Fig. 8.49 Delaunay triangulation for an ellipse, amax = 1.4, amax = 5.5.

Fig. 8.50 Delaunay triangulation for a backstep, amax = 0.025, armax = 5.0.

The circumcentre P is located at (xP , yP) and the mid-point M of side 1-2 is at
(xM, yM), where

xM = 1
2 (x1 + x2), yM = 1

2 (y1 + y2)

in terms of the co-ordinates of the vertices 1, 2. We have

PM =
√

R2 −
(

1
2c

)2
,

where c is the length of side 1-2. Then if 1-2 makes an angle α with the x-axis
(positive if anti-clockwise), where

sin α = 1

c
(y2 − y1)

cos α = 1

c
(x2 − x1),

Unstructured grid generation 225

Fig. 8.51 Delaunay triangulation for two concentric circles, amax = 1.6, armax = 3.9.

Fig. 8.52 Delaunay triangulation for two semi-circles, amax = 1.0, armax = 4.0.

Fig. 8.53 Delaunay triangulation for two circles and one square, amax = 0.2, armax = 1.5.

we have
xP = xM − PM sin α

yP = yM + PM cos α. (8.35)

Figures 8.45–8.47 illustrate three stages of this program in operation as applied to
the region around an airfoil. More resulting triangulations for domains of various
geometries are shown in Figs 8.48–8.53.

226 Basic Structured Grid Generation

Fig. 8.54 Delaunay triangulation for NASA-0012, amax = 0.007, armax = 3.0.

2. Delaunay2.f
This program generates an unstructured grid around a NASA 0012 airfoil using
actual NASA boundary data. An example of a resulting triangulation is shown
in Fig. 8.54.

Bibliography

Ahlfors, L.V. (1996) Lectures on Quasiconformal Mappings, Van Nostrand, New York.

Allwright, S.E. (1988) Techniques in multiblock domain decomposition and surface grid gener-
ation. In: Sengupta, S., Thompson, J.F., Eiseman, P.R. and Hauser, J. (eds.) Numerical Grid
Generation in Computational Fluid Mechanics ’88. Pineridge Press, Miami, FL, 559–568.

Aris, R. (1962) Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Prentice-Hall,
Englewood Cliffs, NJ.

Boor, C. (1974) Good approximation by splines with variable knots. Lect. Notes Math. 363,
12–20.

Bowyer, A. (1981) Computing Dirichlet tessellations. Comput. J. 24(2), 162–166.

Carey, G.F. (1997) Computational Grids – Generation, Adaptation, and Solution Strategies,
Taylor and Francis.

do Carmo, M.P. (1976) Differential Geometry of Curves and Surfaces, Prentice-Hall.

Eiseman, P.R. (1979) A multi-surface method of co-ordinate generation. J.Comput.Phys. 33,
118–150.

Eiseman, P.R., Cheng, Z. and Hauser, J. (1994) Application of multiblock grid generation
with automatic zoning. In: Weatherill, N.P., Eiseman, P.R., Hauser, J. and Thompson, J.F.
(eds.) Numerical Grid Generation in Computational Fluid Mechanics and Related Stud-
ies – Proceedings of the 4th International Conference. The Cromwell Press Ltd., Melksham,
Wiltshire.

Erikkson, L.-E. (1982) Generation of boundary-conforming grids around wing-body configura-
tions using transfinite interpolation. AIAA Journal 20, 1313–1320.

Farrashkhalvat, M. and Miles, J.P. (1990) Tensor Methods for Engineers, Ellis Horwood,
Chichester.

George, A.J. (1971) Computer Implementation of the Finite Element Method, Stanford University
Department of Computer Science, STAN-CS-71–208.

George, P.L. (1991) Automatic Mesh Generation: Application to Finite Element Methods, Wiley,
New York.

Hinton, E. and Owen, D.R.J. (1979) An Introduction to Finite Element Computations, Pineridge
Press.

Holmes, D.G. and Snyder, D.D. (1988) The generation of unstructured triangular meshes using
Delaunay triangulation. In: Sengupta, S., Hauser, J., Eiseman, P.R., Thompson, J.F. (eds.)
Numerical Grid Generation in Computational Fluid Dynamics, Pineridge, Swansea.

Kay, D.C. (1988) Tensor Calculus, Schaum’s Outline Series, McGraw-Hill.

Knupp, P. and Steinberg, S. (1993) The Fundamentals of Grid Generation, CRC Press, Boca
Raton, Florida.

228 Bibliography

Kreyzig, E. (1968) Differential Geometry, Dover Publications.

Lewis, R.W., Morgan, K., Thomas, H.L. and Seetharamu, K.N. (1996) The Finite Element
Method in Heat Transfer Analysis, John Wiley & Sons Ltd., Chichester, England.

Liao, G. and Liu, H. (1993) Existence and C(0,α) regularity of a minimum of a functional related
to grid generation problems. Num. Math. PDEs. 9, 3.

Liseikin, V.D. (1999) Grid Generation Methods, Springer-Verlag, Berlin, Heidelberg.

Mastin, C.W. (1991) Elliptic grid generation and conformal mapping. In: Castillo, J.E. (ed.)
Mathematical Aspects of Numerical Grid Generation. SIAM, Philadelphia.

Mastin, C.W. and Thompson, J.F. (1984) Quasiconformal mappings and grid generation, SIAM
J. Sci. Stat.Comput., 5, 305–310.

Nehari, Z. (1975) Conformal Mapping, Dover Publications.

Parakash, N. (1981) Differential Geometry, McGraw-Hill, New Delhi.

Rao, S.S. (1982) The Finite Element in Engineering, Pergamon Press, Oxford, England.

Rebay, S. (1993) Efficient unstructured mesh generation by means of Delaunay triangulation
and Bowyer-Watson algorithm. J. Comput. Phys. 106, 125–138.

Roberts, G.O. (1971) Proceedings of the Second International Conference on Numerical Methods
in Fluid Dynamics, Springer, Berlin, Heidelberg.

Ryskin, G. and Leal, L.G. (1983) Orthogonal Mapping. J. Comput. Physics 50, 71–100.

Shenton, D.N. and Cendes, Z.J. (1985) Three-dimensional finite element mesh generation using
Delaunay tessellation. IEEE Trans. Magnetics MAG-21, 2535–2538.

Sloan, S.W. (1987) A fast algorithm for constructing Delaunay triangulations in the plane. Adv.
Eng. Software 9, 1.

Spain, B. (1953) Tensor Calculus, Oliver and Boyd, Edinburgh and London.

Steger, J.L. and Chaussee, D.S. (1980) Generation of body fitted co-ordinates using hyperbolic
differential equations. SIAM J. Sci. Stat. Comput. 1(4), 431–437.

Stoker, J.J. (1968) Differential Geometry, Wiley-Interscience.

Struik, D.J. (1950) Lectures on Classical Differential Geometry, Dover Publications.

Taylor, C. and Hughes, T.G. (1981) Finite Element Programming of the Navier-Stokes Equations,
Pineridge Press.

Thompson, J.F., Soni, B.K. and Weatherill, N.P. (eds.) (1999) Handbook of Grid Generation,
CRC Press.

Thompson, J.F., Thames, F.C. and Mastin, C.W. (1974) Automatic numerical generation of
body-fitted curvilinear co-ordinate system for field containing any number of arbitrary two-
dimensional bodies. J. Computat. Phys., 15, 299–319.

Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W. (1985) Numerical Grid Generation: Founda-
tions and Applications, North Holland.

Warsi, Z.U.A. and Thompson, J.F. (1980) A non-iterative method for the generation of two-
dimensional orthogonal curvilinear co-ordinates in a Euclidean space: in Numerical Grid
Generation Techniques NASA CP2166.

Watson, D. (1981) Computing the n-dimensional Delaunay tessellation with applications to
Voronoi polytopes. Comput. J. 24(2), 167–172.

Winslow, A.M. (1967) Equipotential zoning of two-dimensional meshes, J. Computat. Physics,
1, 149–172.

Index

Accepted and non-accepted triangles, 199
Adaptive methods, 153, 159–61, 216
ADI method, 134
Advancing front technique (AFT), 203–15
Algebraic grid generation:

interpolation, 80
multisurface methods, 104
transfinite interpolation (TFI), 92
two-boundary technique, 103

Alternating symbols, 13, 49
Alternating surface tensor, 50
Alternating tensor, 13
Area element, 8, 49
Area co-ordinates of a point relative

to a triangle, 205
Aspect ratio, 122

Background grid, 204
Beltrami operator, 74–5, 141
Bipolar co-ordinates, 114
Blending functions, 83
Boolean sum of transformations, 94, 98
Bowyer–Watson algorithm, 193–6

Chain rule, 3
Christoffel symbols:

for time-dependent problems, 182–3
of the first kind, 14–16
of the second kind, 14–16
in orthogonal curvilinear co-ordinates, 27–8
transformation equations, 16

Circumcentre location, 223
Circumcircle property, 191
Computational space, 78, 80
Conformal mapping, 123
Conjugate gradient method, 129–1
Connectivity table, 220
Continuity equation, 185
Contravariant:

base vectors, 3, 6–7, 24
components of vectors, 8–9

second-order tensors, 11
surface base vectors, 48
surface vectors, 49

Control functions, 119
Covariant:

base vectors, 2, 23
components of vectors, 8–9
second-order tensors, 11
surface base vectors, 48
surface vectors, 49

Covariant derivatives of:
contravariant vectors, 18
covariant vectors, 18
second-order and higher tensors, 19

Curl:
in rectangular cartesians, 21
in generalized form, 21–2
in two dimensions, 25

Curvilinear co-ordinate systems, 1–4
bipolar co-ordinates, 115
parabolic co-ordinates, 114–15
spherical polar co-ordinates, 5, 44, 52

Delaunay triangulation, 191–6
Diagonal dominance, 126
Diagonal swapping, 192, 217
Differential models for grid generation

control functions, 119
elliptic grid generators, 117
hyperbolic grid generation, 142
inverse problem, 117, 119
one-dimensional grids, 136
quasi-conformal mapping, 123
surface grids, 141
three-dimensional grids, 139
TTM equations, 119
Winslow equations, 118

Directional derivatives of a scalar
normal to a co-ordinate surface, 29
tangential to a co-ordinate curve, 29

Dirichlet tessellation, 191

230 Index

Distribution of sources, 205
Divergence:

in generalized form, 20–21
in rectangular cartesians, 20
in two dimensions, 25
of a second-order tensor, 23
surface form, 73

Equidistribution, 40, 159
Euler–Lagrange equations, 54, 153–6

Finite-difference formulas, 76–7
Finite element methods, 217–21

Galerkin method, 218
Gauss–Seidel method, 128
Generalized tensors:

alternating tensor, 13–14
associated components, 12
curvature tensor, 26
dyadic products, 12

Geodesic curvature, 57–9, 63
Geometric conservation law, 183
Gradient vector:

in generalized form, 4, 24
in rectangular cartesians, 4
surface forms, 71–2

Grid point velocity, 181
Grid smoothing, 217

Harmonic maps, 172–6
Hermite interpolation polynomials, 85
Hyperbolic grid generation, 142–3

Identity operator, 13
Index:

lowering, 9
raising, 9

Interpolation polynomials:
cubic splines, 87–92
Hermite polynomials, 85–7
Lagrange polynomials, 81–3

Intrinsic derivatives, 36, 52

Jacobian, 2, 9–10, 45, 50, 80, 180

Kronecker symbol (delta), 3, 13

L-functional, 165–166
Lagrange basis polynomials, 81–3
Lagrange vector identity, 7
Laplacian operator:

in cartesian co-ordinates, 16
in generalized co-ordinates, 22

in orthogonal curvilinear co-ordinates, 28
in two dimensions, 25

Liao functional, 170
Line element, 8, 47

Metric tensor:
contravariant, 4–7, 9, 11, 24
contravariant surface metric tensor, 48
covariant, 4–7, 9, 11, 23
covariant surface metric tensor, 46–7
in orthogonal curvilinear co-ordinates, 27
of a space-curve, 39

Metrics, 109
Modified Liao functional, 170
Momentum equations, 185
Multiblock grid generation, 147–8
Multisurface methods, 104–8

Numerical techniques:
ADI method, 134
conjugate gradient method, 129
Gauss-Seidel method, 128
Jacobi method, 128
LSOR method, 142
method of steepest descents, 129
SOR method, 128
Thomas Algorithm, 125

Orthogonal curvilinear co-ordinate
systems, 27–8

Orthogonality functional, 167–8
Orthogonality two functional, 169
Orthogonality three functional, 170
Orthogonality of grids, 108, 121–2, 134–6
Over-relaxation, 128

Point-insertion strategies, 196
at triangle circumcentres, 196
Voronoi-segment method, 199

Positive definite, 47, 129
Projectors, 92

Quasi-conformal mapping, 123–125

Relative tensors, 14, 50
Riemann–Christoffel tensor, 26–7, 53

SOR method, 128
Space-curves, 30–41

binormal vector, 32
controlling grid density, 40–1
curvature, 31–2
curve identity, 39
fundamental theorem, 34

Index 231

intrinsic definition, 30
intrinsic derivatives, 36
metric tensor, 38–40
principal normal, 31
radius of curvature, 31
Serret–Frenet formulas, 34, 38
tangent vector, 31
torsion, 33–5

Stretching transformations, 98, 109, 120–1
Eriksson function, 101
hyperbolic sin functions, 100
hyperbolic tangent functions, 109

Summation convention, 3–4
Surface of revolution, 48, 52, 55–6, 61, 66
Surfaces:

angle between co-ordinate curves, 49
Beltrami operator, 73, 141
Christoffel symbols, 51–2
Codazzi equations, 69
covariant derivatives, 52
elliptic, hyperbolic, parabolic points,

62, 65
Euler’s Theorem, 66
first fundamental form, 47
fundamental existence theorem, 70
Gaussian curvature, 65
Gauss’s equation, 68
Gauss’s formula, 67,
geodesic curves, 54–58
grid generation, 141, 171, 174, 175
lines of curvature, 66
mean curvature, 64
metric tensors, 47
Meusnier’s Theorem, 63
non-singular points, 43
normal curvature, 60, 63
Riemann–Christoffel tensor, 53,

68–9
second fundamental form, 61
surface Frenet equations, 58
tangent plane, 43
umbilics, 66
Weingarten’s equations, 67

Thomas Algorithm, 125–127, 132–134
Torus, 62–3
Transfinite interpolation (TFI):

bilinear transformation, 93
Boolean sum of projectors in three

dimensions, 97
Boolean sum of projectors in two

dimensions, 94
in three dimensions, 96
in two dimensions, 94
trilinear transformation, 97

Transformation law for:
Christoffel symbols, 16–17
contravariant second-order tensors, 11
contravariant vectors, 11
covariant second-order tensors, 11
covariant vectors, 10–11
mixed second-order tensors, 12
third-order tensors, 13

TTM equations, 119

Under-relaxation, 129

Variational methods:
for one-dimensional grids, 157
for plane two-dimensional grids, 164
for space-curves, 161
for surface grids, 171, 174, 175
harmonic maps, 172

Vectors:
magnitude, 9
scalar product, 9,11
vector product, 14, 50

Volume element, 8
Voronoi polygon, 191, 199

Weight functions:
one-dimensional grids, 137–9, 150, 157, 162
two-dimensional grids, 166–8

Weighted area functional, 167
Weighted L-functional, 166–7
Winslow equations, 118

	Contents
	Preface
	1. Mathematical preliminaries – vector and tensor analysis
	1.1 Introduction
	1.2 Curvilinear co-ordinate systems and base vectors in E3
	1.3 Metric tensors
	1.4 Line, area, and volume elements
	1.5 Generalized vectors and tensors
	1.6 Christoffel symbols and covariant differentiation
	1.7 Div, grad, and curl
	1.8 Summary of formulas in two dimensions
	1.9 The Riemann-Christoffel tensor
	1.10 Orthogonal curvilinear co-ordinates
	1.11 Tangential and normal derivatives – an introduction

	2. Classical differential geometry of space- curves
	2.1 Vector approach
	2.2 The Serret-Frenet equations
	2.3 Generalized co-ordinate approach
	2.4 Metric tensor of a space-curve

	3. Differential geometry of surfaces in E3
	3.1 Equations of surfaces
	3.2 Intrinsic geometry of surfaces
	3.3 Surface covariant differentiation
	3.4 Geodesic curves
	3.5 Surface Frenet equations and geodesic curvature
	3.6 The second fundamental form
	3.7 Principal curvatures and lines of curvature
	3.8 Weingarten, Gauss, and Gauss-Codazi equations
	3.9 Div, grad, and the Beltrami operator on surfaces

	4. Structured grid generation – algebraic methods
	4.1 Co-ordinate transformations
	4.2 Unidirectional interpolation
	4.3 Multidirectional interpolation and TFI
	4.4 Stretching transformations
	4.5 Two-boundary and multisurface methods
	4.6 Website programs

	5. Differential models for grid generation
	5.1 The direct and inverse problems
	5.2 Control functions
	5.3 Univariate stretching functions
	5.4 Conformal and quasi-conformal mapping
	5.5 Numerical techniques
	5.6 Numerical solutions of Winslow equations
	5.7 One-dimensional grids
	5.8 Three-dimensional grid generation
	5.9 Surface-grid generation model
	5.10 Hyperbolic grid generation
	5.11 Solving the hosted equations
	5.12 Multiblock grid generation
	5.13 Website programs

	6. Variational methods and adaptive grid generation
	6.1 Introduction
	6.2 Euler-Lagrange equations
	6.3 One-dimensional grid generation
	6.4 Two-dimensional grids
	6.5 Harmonic maps
	6.6 Website programs

	7. Moving grids and time-dependent co- ordinate systems
	7.1 Time-dependent co-ordinate transformations
	7.2 Time-dependent base vectors
	7.3 Transformation of generic convective terms
	7.4 Transformation of continuity and momentum equations
	7.5 Application to a moving boundary problem

	8. Unstructured grid generation
	8.1 Introduction
	8.2 Delaunay triangulation
	8.3 Advancing front technique (AFT)
	8.4 Solving hosted equations using finite elements
	8.5 Website programs

	Bibliography
	Index

