
Information Technology / IT Management

This book presents all aspects of modern project management practices, from project
initiation to requirements gatherings to estimation techniques and software testing all
the way to customer management and supplier management … includes a wealth of
quality templates that practitioners can use to build their own tools. … equally useful to
students and professionals alike. … the perfect blend of theory and practice providing
ample advice to the reader at every stage on such topics as how to select a particular
software methodology over others or how to estimate project costs/efforts etc. … As
a seasoned software product development expert with over 20 years of experience, I
would say this book will find a slot on my desk.

—Maqbool Patel, PhD, SVP/CTO/Partner, Acuitec

To build reliable, industry-applicable software products, large-scale software project groups
must continuously improve software engineering processes to increase product quality,
facilitate cost reductions, and adhere to tight schedules. Emphasizing the critical components
of successful large-scale software projects, Software Project Management: A Process-
Driven Approach discusses human resources, software engineering, and technology to a
level that exceeds most university-level courses on the subject.

•	 Includes testing and quality assurance metrics

•	Supplies in-depth coverage of process models and process improvement techniques

•	Covers related standards from the Software Engineering Institute, IEEE, and ISO

•	Features challenging practice questions with solutions

The book is organized into five parts. Part I defines project management with information on
project and process specifics and choices, the skills and experience needed, the tools available,
and the human resources organization and management that brings it all together. Part II
explores software life-cycle management. Part III tackles software engineering processes and
the range of processing models devised by several domestic and international organizations.

Part IV reveals the human side of project management with chapters on managing the team,
the suppliers, and the customers themselves. Part V wraps up coverage with a look at the
technology, techniques, templates, and checklists that can help your project teams meet
and exceed their goals. A running case study provides authoritative insight and insider
information on the tools and techniques required to ensure product quality, reduce costs,
and meet project deadlines.

ISBN: 978-1-4398-4655-1

9 781439 846551

90000

S
oftw

are P
roject M

anagem
ent

A
hm

ed

www.auerbach-publications.com

www.crcpress.com

K12087

K12087cvr mech.indd 1 11/8/11 12:02 PM

Software
Project

Management
A Process-Driven Approach

Design and Safety Assessment
of Critical Systems
Marco Bozzano and

Adolfo Villafiorita

978-1-4398-0331-8

Implementing and Developing
Cloud Computing Applications
David E. Y. Sarna

978-1-4398-3082-6

Secure Java: For Web Application
Development
Abhay Bhargav and B. V. Kumar

978-1-4398-2351-4

Scrum Project Management
Kim H. Pries and Jon M. Quigley

978-1-4398-2515-0

Engineering Mega-Systems:
The Challenge of Systems
Engineering in the
Information Age
Renee Stevens

978-1-4200-7666-0

Certified Function Point
Specialist Examination Guide
David Garmus, Janet Russac, and

Royce Edwards

978-1-4200-7637-0

Enterprise Systems Engineering:
Advances in the Theory and
Practice
George Rebovich, Jr.

and Brian E. White

978-1-4200-7329-4

Process-Centric Architecture for
Enterprise Software Systems
Parameswaran Seshan

978-1-4398-1628-8

Secure and Resilient Software
Development
Mark S. Merkow and

Lakshmikanth Raghavan

978-1-4398-2696-6

Real Life Applications of
Soft Computing
Anupam Shukla, Ritu Tiwari,
and Rahul Kala
978-1-4398-2287-6

Product Release Planning:
Methods, Tools and Applications
Guenther Ruhe
978-0-84932620-2

Process Improvement and
CMMI® for Systems and Software
Ron S. Kenett and Emanuel Baker
978-14200-6050-8

Applied Software Product
Line Engineering
Kyo C. Kang, Vijayan Sugumaran,
and Sooyong Park
978-1-42006841-2

CAD and GIS Integration
Hassan A. Karimi and Burcu Akinci
978-1-4200-6805-4

Applied Software Product-Line
Engineering
Kyo C. Kang, Vijayan Sugumaran,
and Sooyong Park, eds.
978-1-4200-6841-2

Enterprise-Scale Agile Software
Development
James Schiel
978-1-4398-0321-9

Handbook of Enterprise Integration
Mostafa Hashem Sherif, ed.
978-1-4200-7821-3

Architecture and Principles of
Systems Engineering
Charles Dickerson, Dimitri N. Mavris,
Paul R. Garvey, and Brian E. White
978-1-4200-7253-2

Theory of Science and Technology
Transfer and Applications
Sifeng Liu, Zhigeng Fang,
Hongxing Shi, and Benhai Guo
978-1-4200-8741-3

The SIM Guide to Enterprise
Architecture
Leon Kappelman

978-1-4398-1113-9

Getting Design Right:
A Systems Approach
Peter L. Jackson

978-1-4398-1115-3

Software Testing as a Service
Ashfaque Ahmed

978-1-4200-9956-0

Grey Game Theory and Its
Applications in Economic
Decision-Making
Zhigeng Fang, Sifeng Liu,

Hongxing Shi, and Yi LinYi Lin

978-1-4200-8739-0

Quality Assurance of
Agent-Based and
Self-Managed Systems
Reiner Dumke, Steffen Mencke,

and Cornelius Wille

978-1-4398-1266-2

Modeling Software Behavior:
A Craftsman’s Approach
Paul C. Jorgensen

978-1-4200-8075-9

Design and Implementation of
Data Mining Tools
Bhavani Thuraisingham, Latifur Khan,

Mamoun Awad, and Lei Wang

978-1-4200-4590-1

Model-Oriented Systems
Engineering Science:
A Unifying Framework for
Traditional and Complex Systems
Duane W. Hybertson

978-1-4200-7251-8

Requirements Engineering for
Software and Systems
Phillip A. Laplante

978-1-4200-6467-4

Books on software and systems
development and engineering

from auerBach puBlications and crc press

Software
Project

Management

Ashfaque Ahmed

A Process-Driven Approach

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20111103

International Standard Book Number-13: 978-1-4398-4656-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface... xix
Author...xxiii

PART I  PROJECT MANAGEMENT FUNDAMENTALS

  1	 Introduction to Software Project Management...3
1.1	 Introduction... 4
1.2	 What Is Project Management?.. 4
1.3	 What Is Software Project Management?... 4
1.4	 Importance of Software Projects... 7
1.5	 Problems in Project Management... 7
1.6	 Processes in Software Projects.. 9
1.7	 Project Processes, People, and Technology...10
1.8	 Successful Software Project Manager..11
1.9	 Project Management Processes... 12

1.9.1	 Software Project Initiation... 12
1.9.1.1	 Software Application Development Project Initiation................ 12
1.9.1.2	 Software Product Characteristics..13
1.9.1.3	 Software Product Development Project Initiation......................14
1.9.1.4	 Software Product Implementation Project Initiation..................15

1.9.2	 Software Project Planning..15
1.9.2.1	 Components of Project Planning..16

1.9.3	 Software Project Monitoring and Control..17
1.9.4	 Software Project Closure..17

1.10	 Configuration and Version Control Management...17
1.11	 Management Metrics...18
1.12	 Case Study.. 20

1.12.1	 Project Introduction.. 20
1.12.2	 Software Functionality...21
1.12.3	 New Functionality in Release 6.0.. 22

1.13	 Chapter Summary.. 22
Exercises.. 23
Review Questions.. 23
Recommended Readings... 23

vi  ◾  Contents

  2	 Project Initiation Management...25
2.1	 Introduction..25
2.2	 Define Project Charter... 26
2.3	 Define Project Scope.. 27
2.4	 Define Project Objectives... 28
2.5	 Practical Considerations... 28
2.6	 Estimate Initial Project Size.. 29
2.7	 Estimate Initial Project Effort and Costs.. 30
2.8	 Estimate Initial Project Schedule...31
2.9	 Create Initial Project Plan...31
2.10	 Project Initiation in Iterative Model..31
2.11	 Stakeholder Influence..33
2.12	 Quality Planning.. 34
2.13	 Feasibility Study... 34
2.14	 Project Division.. 34
2.15	 Artifacts of Project Initiation...35
2.16	 Case Study...35

2.16.1	 Project Charter...35
2.16.2	 Project Scope... 36
2.16.3	 Project Objectives.. 36

2.17	 Chapter Summary.. 37
Exercises.. 37
Review Questions.. 37
Recommended Readings... 38

  3	 Software Project Effort and Cost Estimation..39
3.1	 Introduction... 39
3.2	 Effort Estimation Techniques... 40

3.2.1	 Choosing a Suitable Effort Estimate Technique..41
3.2.2	 Function Point Analysis..41

3.2.2.1	 Function Point Analysis Usage.. 44
3.2.3	 Wide Band Delphi... 44
3.2.4	 COCOMO..45

3.2.4.1	 Basic COCOMO...45
3.2.4.2	 Intermediate COCOMO.. 46
3.2.4.3	 Detailed COCOMO... 46
3.2.4.4	 COCOMO Model Conclusion... 48

3.2.5	 Effort Estimation for Waterfall Model–Based Planning............................ 48
3.2.6	 Effort Estimation for Iterations Model–Based Planning............................ 49

3.3	 Cost Estimation..51
3.3.1	 Cost Factor Analysis...52
3.3.2	 Activity-Based Cost Estimation..53
3.3.3	 Cost Estimation for Iterations-Based Planning.. 54

3.4	 Schedule Estimation... 54
3.4.1	 Schedule Estimation for Waterfall Model–Based Planning....................... 54

3.5	 Resource Estimation..55

Contents  ◾  vii

3.6	 Artifacts of Effort and Cost Estimates.. 56
3.7	 Practical Considerations in Effort and Cost Estimates... 56
3.8	 Effort and Cost in Product Development..57
3.9	 Case Study...57

3.9.1	 History...57
3.9.2	 Current Project.. 58
3.9.3	 Effort and Cost.. 58

Exercises.. 58
Review Questions...59
Recommended Readings..59

  4	 Risk Management..61
4.1	 Introduction..61
4.2	 Causes of Risks... 63

4.2.1	 Quality Constraints... 63
4.2.2	 Resource Unavailability... 63
4.2.3	 Disinterest... 63
4.2.4	 Attrition.. 64
4.2.5	 Scope Creep... 64
4.2.6	 Cost Constraints... 64
4.2.7	 Bad Negotiation.. 64
4.2.8	 Unrealistic Estimate.. 64
4.2.9	 Human Error... 64
4.2.10	 Poor Management..65

4.3	 Risk Categories..65
4.3.1	 Budget Risks..65
4.3.2	 Time (Schedule) Risks..65
4.3.3	 Resource Risks.. 66
4.3.4	 Quality Risks...67
4.3.5	 Technology Risks...67

4.4	 Risk Analysis.. 68
4.5	 Balancing Act... 69
4.6	 Project Risk Management in Agile Models... 70
4.7	 Artifacts of Project Risk Management.. 70
4.8	 Practical Considerations for Risk Management.. 70
4.9	 Case Study.. 71

4.9.1	 Risks on This Project... 71
4.10	 Chapter Summary.. 73
Exercises.. 73
Review Questions.. 73
Recommended Readings..74

  5	 Configuration Management..75
5.1	 Introduction... 75
5.2	 Configuration Management..76
5.3	 Configuration Management Techniques.. 77

viii  ◾  Contents

5.4	 Artifacts of Configuration Management... 79
5.5	 Configuration Management Case Study... 80

5.5.1	 Configuration Management for an Incremental Iteration
Development Environment.. 80

5.6	 Chapter Summary...81
Exercises...81
Review Questions.. 82
Recommended Readings... 82

  6	 Project Planning..83
6.1	 Introduction... 83
6.2	 Project Planning Fundamentals.. 84

6.2.1	 Top-Down Plan... 84
6.2.2	 Bottom-Up Plan.. 86
6.2.3	 Work Breakdown Structure... 87
6.2.4	 Resource Allocation... 87
6.2.5	 Supplier Management Plan.. 88
6.2.6	 Configuration Management Plan.. 89
6.2.7	 Communication Management... 89
6.2.8	 Defect Prevention Strategy (Quality Assurance).. 90
6.2.9	 Project Duration.. 90
6.2.10	 Project Cost... 90
6.2.11	 Tool Management..91
6.2.12	 Scope Management..91
6.2.13	 Effort Estimate...91
6.2.14	 Risk Management..91

6.3	 Project Planning Techniques...91
6.3.1	 Critical Path Method..91
6.3.2	 Goldratt’s Critical Chain Method..91

6.4	 Project Planning Artifacts... 93
6.5	 Project Planning in Agile Models... 93

6.5.1	 Iteration Planning.. 96
6.6	 Planning at Project Management Office... 96
6.7	 Case Study.. 97

6.7.1	 Feature Selection... 97
6.7.2	 Heart of Planning.. 98

6.8	 Chapter Summary.. 99
Exercises.. 100
Review Questions.. 100
Recommended Readings... 100

  7	 Project Monitoring and Control...101
7.1	 Introduction..101
7.2	 Project Monitoring..102

7.2.1	 Monitor against Project Plan..102
7.2.2	 Measure Task Progress and Status Reports...103
7.2.3	 Identify Deviations...104

Contents  ◾  ix

7.2.4	 Performance Indicators...105
7.2.5	 Monitor against Project Schedule...105
7.2.6	 Periodic Measurement..105
7.2.7	 Earned Value Management...105
7.2.8	 Measure Resource Utilization...108
7.2.9	 Measure Resource Loading...108
7.2.10	 Monitor Skills and Knowledge of Project Team.......................................108
7.2.11	 Monitor Risks...109
7.2.12	 Monitor Issues..109
7.2.13	 Status Reports..109

7.3	 Project Control Techniques...110
7.3.1	 Resource Leveling...110
7.3.2	 Schedule Optimization...111
7.3.3	 Corrective Actions against Deviations..112
7.3.4	 Corrective Actions against Issues..113
7.3.5	 Resource Optimization...113

7.4	 Project Monitoring and Control Artifacts...113
7.5	 Project Monitoring and Control in Iterative Model...114

7.5.1	 Performance Measurements..114
7.5.2	 Risks... 115

7.6	 Case Study... 115
7.6.1	 Tracking Tools Used... 115
7.6.2	 Problems Encountered..116

7.7	 Chapter Summary...116
Exercises...117
Review Questions...117
Recommended Readings..117

  8	 Project Closure..119
8.1	 Introduction..119
8.2	 Source Code Management... 120
8.3	 Project Data Management...121
8.4	 Project Closure in Iterative Model.. 122
8.5	 Lessons Learned... 122
8.6	 Resource Release.. 123
8.7	 Data Structures.. 123
8.8	 Case Study.. 124
8.9	 Chapter Summary...125
Exercises...125
Review Questions...125
Recommended Readings..125

PART II  SOFTWARE LIFE-CYCLE MANAGEMENT

  9	 Introduction to Software Life-Cycle Management...129
9.1	 Introduction..129
9.2	 Software Engineering Management...131

x  ◾  Contents

9.3	 Software Life-Cycle Management Processes..132
9.3.1	 Software Life Cycle in Waterfall Model..132
9.3.2	 Software Life Cycle in Iterative Model..132

9.3.2.1	 Moving from Waterfall Model... 134
9.3.3	 Software Life Cycle in Concurrent Engineering Model........................... 134
9.3.4	 Software Life-Cycle Processes...135

9.3.4.1	 Software Requirements.. 136
9.3.4.2	 Software Design...137
9.3.4.3	 Software Build..138
9.3.4.4	 Software Testing...138
9.3.4.5	 Software Release...140
9.3.4.6	 Software Maintenance..140

9.4	 Software Life-Cycle Metrics..141
9.5	 Work Products...141
9.6	 Quality Assurance...142
9.7	 Case Study...142
9.8	 Chapter Summary...143
Exercises...143
Review Questions...143
Recommended Readings..143

10	 Software Requirement Management...145
10.1	 Introduction..145
10.2	 Software Requirements Development..146

10.2.1	 Develop Requirements..149
10.2.2	 Requirement Development Tasks...149

10.3	 Software Requirements Management..149
10.3.1	 Requirement Change Control..150
10.3.2	 Requirement Problems Diagnosis...150

10.4	 Requirement Life-Cycle Management... 151
10.4.1	 Requirement Development and Management in Waterfall Model............ 151
10.4.2	 Iterative Model...152

10.5	 Software Requirements Practical Strategy...153
10.6	 Software Requirements Artifacts...154
10.7	 Software Requirements Quality Control...154
10.8	 Case Study...155

10.8.1	 Major Components of Appointment Scheduling......................................155
10.8.2	 Loading/Unloading Time Calculation...156
10.8.3	 Quality Assurance..156

10.9	 Chapter Summary...157
Review Questions...157
Recommended Readings..157

11	 Software Design Management..159
11.1	 Introduction..159
11.2	 Software Design Fundamentals...160

11.2.1	 Design Types..161

Contents  ◾  xi

11.2.2	 Design Standards..161
11.2.3	 Design Activities...161

11.3	 Software Design Methods...161
11.3.1	 Top Down..161
11.3.2	 Bottom Up...162

11.4	 Design Version Control...163
11.4.1	 Subversions...163

11.5	 Design Characteristics...163
11.6	 Software Design Techniques...164

11.6.1	 Prototypes..165
11.6.2	 Structural Models...165
11.6.3	 Object-Oriented Design...165
11.6.4	 Systems Analysis...166
11.6.5	 Entity Relationship Models..166
11.6.6	 Design Reuse..166

11.7	 Software Design for Internet...167
11.8	 Software Design Quality...167
11.9	 Concurrent Engineering in Software Design...168
11.10	Design Life-Cycle Management..168
11.11	Module Division (Refactoring)..168
11.12	Module Coupling..170
11.13	Case Study...170

11.13.1	Software Design for Loading Calculation...170
11.13.2	Quality Assurance..172

11.14	Chapter Summary...172
Review Questions...173
Recommended Readings..173

12	 Software Construction..175
12.1	 Introduction..175
12.2	 Coding Standards..176

12.2.1	 Modularity...177
12.2.2	 Clarity..177
12.2.3	 Simplicity...177
12.2.4	 Reliability...177
12.2.5	 Safety..177
12.2.6	 Maintainability...178

12.3	 Coding Framework...178
12.4	 Reviews (Quality Control)..178

12.4.1	 Deskchecks (Peer Reviews)...179
12.4.2	 Walkthroughs...179
12.4.3	 Code Reviews...179
12.4.4	 Inspections...179

12.5	 Coding Methods...179
12.5.1	 Structured Programming..180
12.5.2	 Object-Oriented Programming...180
12.5.3	 Automatic Code Generation...180

xii  ◾  Contents

12.5.4	 Software Code Reuse..180
12.5.5	 Test-Driven Development...181
12.5.6	 Pair Programming..181

12.6	 Configuration Management..181
12.7	 Unit Testing..182
12.8	 Integration Testing..182
12.9	 Software Construction Artifacts..183
12.10	Software Construction in Iterative Model...183
12.11	Case Study...183

12.11.1	Continuous Integration..184
12.12	Chapter Summary...184
Review Questions...185
Recommended Readings..185

13	 Software Testing..187
13.1	 Introduction..187
13.2	 Problems with Traditional Development Model..188
13.3	 Verification and Validation..189
13.4	 Test Strategy and Planning..190

13.4.1	 Test Prioritization...190
13.4.2	 Risk Management..190
13.4.3	 Effort Estimation..191

13.4.3.1	 Test Point Analysis...192
13.5	 Test Automation..192

13.5.1	 Test Case Execution Automation..193
13.5.2	 Test Case Management Automation...193

13.6	 Test Project Monitoring and Control...193
13.6.1	 Test Case Design..194

13.6.1.1	 Test Types...194
13.6.2	 Test Case Management...194
13.6.3	 Test Bed Preparation..194
13.6.4	 Test Case Execution...195
13.6.5	 Defect Tracking..195

13.7	 Test Reporting...196
13.8	 Test Artifacts...196

13.8.1	 Management Artifacts..196
13.9	 Practical Considerations..196
13.10	Software Testing in Iterative Model...197
13.11	Case Study...197
13.12	Chapter Summary...198
Review Questions...198
Recommended Readings..199

14	 Product Release and Maintenance..201
14.1	 Introduction..201
14.2	 Product Release Management... 202
14.3	 Product Implementation... 203

Contents  ◾  xiii

14.4	 User Training... 203
14.5	 Maintenance Introduction.. 204
14.6	 Maintenance Types.. 204

14.6.1	 Corrective.. 205
14.6.2	 Adaptive.. 205
14.6.3	 Perfective... 205
14.6.4	 Preventive.. 205

14.7	 Maintenance Cost.. 205
14.8	 Maintenance Process.. 206
14.9	 Maintenance Life Cycle.. 207
14.10	Maintenance Techniques.. 208

14.10.1	Reengineering.. 208
14.10.2	Reverse Engineering.. 208
14.10.3	Forward Engineering... 208

14.11	Case Study.. 209
14.11.1	Software Release.. 209
14.11.2	Software Maintenance... 209

14.12	Chapter Summary.. 209
Review Questions...210
Recommended Readings..210

PART III  SOFTWARE ENGINEERING MANAGEMENT

15	 Process Standards Introduction..213
15.1	 Introduction..213
15.2	 Root Cause of Problems in Software Projects..214
15.3	 Solutions for Problems in Software Projects...215
15.4	 Standard Process for Software Projects..216

15.4.1	 Process Tailoring..217
15.5	 Standard Process across Software Projects...217
15.6	 Program Management...219
15.7	 Portfolio Management.. 220
15.8	 Statistical Process Control on Software Projects..221
15.9	 Cost of Nonstandard Processes... 222
15.10	Organization Training.. 222
15.11	Software Project Abandonment.. 223
15.12	Defect Prevention... 223
15.13	Software Project without Process.. 225
15.14	Process Improvement.. 226
15.15	Final Word... 227
Review Questions.. 227
Recommended Readings... 227

16	 Software Process Standards and Process Improvement..229
16.1	 Introduction... 229
16.2	 CMMI Standards... 230

16.2.1	 CMMI Standards in a Nutshell..231

xiv  ◾  Contents

16.3	 ISO Standards...233
16.3.1	 ISO Standards in a Nutshell...233

16.4	 IEEE Standards...233
16.4.1	 IEEE Standards in a Nutshell...235

16.5	 Rational Unified Process...235
16.5.1	 RUP in a Nutshell..235

16.6	 Agile Methodologies..235
16.6.1	 Extreme Programming in a Nutshell (Table 16.5)................................... 238

16.7	 Test Process Improvement Techniques.. 238
16.7.1	 Deming’s PDCA Technique.. 239
16.7.2	 Test Maturity Model... 239

16.7.2.1	 Level 1: Initial Level.. 240
16.7.2.2	 Level 2: Definition... 240
16.7.2.3	 Level 3: Integration... 240
16.7.2.4	 Level 4: Management and Measurement................................. 240
16.7.2.5	 Level 5: Optimize.. 240
16.7.2.6	 Further Developments in TMM.. 240

16.7.3	 Test Process Improvement..241
16.7.4	 Critical Testing Process..241
16.7.5	 Systematic Test and Evaluation Process... 242
16.7.6	 Process Improvement Life Cycle.. 243

16.8	 Process Standard Certifications.. 244
16.8.1	 Benefits of Certification... 244
16.8.2	 How to Apply for a Certification..245

16.8.2.1	 Certification Requirements...245
16.8.2.2	 Time and Cost of Certification...245

16.8.3	 Future of Certifications..245
Review Questions...245
Recommended Readings... 246

17	 Process Selection...247
17.1	 Introduction..247
17.2	 History of Plan-Driven Model.. 248
17.3	 Strengths of Plan-Driven Model..249
17.4	 Limitations of Plan-Driven Model...249
17.5	 History of Agile Methods..250
17.6	 Strengths of Agile Methods...250
17.7	 Limitations of Agile Methods..251
17.8	 Once and for All..252
17.9	 Best Practices for Process Selection... 254
17.10	Converting Traditional to Agile Model...256
17.11	Case Study...258
Exercise..259
Review Questions...259
Recommended Readings..259

Contents  ◾  xv

PART IV  PEOPLE MANAGEMENT

18	 Introduction to People Management...263
18.1	 Introduction... 263
18.2	 People Management... 264
18.3	 Team Management... 264
18.4	 Supplier Management..265
18.5	 Customer Management.. 266
18.6	 Communication Management...267
Review Questions...267

19	 Team Management..269
19.1	 Introduction... 269
19.2	 Organization Structure and Policies..271

19.2.1	 Project Organization... 272
19.2.2	 Line of Business Organization... 273
19.2.3	 Program Management Organization..274
19.2.4	 Internal IT Organization Structure..275

19.3	 Motivating the Team...275
19.4	 Team Effectiveness..276

19.4.1	 Appraisals...276
19.4.2	 Performance Measurement...276
19.4.3	 Job Allocation.. 277

19.5	 Training... 277
19.6	 Nurturing... 277
19.7	 Conflict Management.. 278
19.8	 Knowledge Management.. 278
19.9	 Communication Management.. 279
19.10	Case Study.. 280
Review Questions.. 280
Recommended Readings... 280

20	 Customer Management...283
20.1	 Introduction... 283
20.2	 Customer Expectation Management.. 285
20.3	 Negotiation Management... 286
20.4	 Rapport Building Management.. 287
20.5	 Reporting Management.. 287
20.6	 Return on Investment... 288
20.7	 Bottom Line... 288
20.8	 Case Study.. 289
Review Questions.. 290
Recommended Readings... 290

xvi  ◾  Contents

21	 Supplier Management...291
21.1	 Introduction..291
21.2	 Supplier Search Management... 292

21.2.1	 RFP and RFI... 292
21.2.2	 Supplier Qualifications...293
21.2.3	 Supplier Experience... 294

21.3	 Supplier Agreement Management... 294
21.3.1	 Short-Term Agreements... 294
21.3.2	 Long-Term Agreements... 294

21.4	 Supplier Communication Management.. 295
21.5	 Organization Structure... 295
21.6	 Account Management.. 296
21.7	 Project Offshore Transition.. 296
21.8	 Case Study.. 297
Review Questions.. 298
Recommended Readings... 298

PART V  TOOLS AND TECHNIQUES

22	 Software Project Management Tools Introduction...301
22.1	 Introduction..301
22.2	 Compatibility with Environment... 302
22.3	 Cost of Tool.. 303
22.4	 Data Integration among Tools.. 303
22.5	 Existing Skills on Tools.. 304
22.6	 Tool Obsolescence.. 304
22.7	 Scale of Operation.. 304
Review Questions.. 304

23	 Project Management and Software Life-Cycle Tools..305
23.1	 Introduction... 305
23.2	 Requirement Management Tools.. 306
23.3	 Software Design Management Tools.. 307

23.3.1	 CASE Tools... 308
23.3.2	 Modeling Tools... 308

23.4	 Software Build Management Tools... 308
23.4.1	 Integrated Development Environment Tools... 309
23.4.2	 Source Code Control Tools... 309
23.4.3	 Rapid Application Development...310

23.5	 Software Testing Management Tools...310
23.5.1	 Test Management...310
23.5.2	 Defect Tracking..311
23.5.3	 Automation Tools...311

23.6	 Project Management Tools..311

Contents  ◾  xvii

23.6.1	 Project Planning Tools..312
23.6.1.1	 Configuration Management Tools..312
23.6.1.2	 Communication Management Tools..312

Review Questions...313
Recommended Readings..313

24	 Software Project Templates...315
24.1	 Introduction..315
24.2	 Software Life-Cycle Template Guidelines..316

24.2.1	 Software Requirement Template Guidelines...316
24.2.2	 Software Design Template Guidelines..319
24.2.3	 Software Build Template Guidelines..321
24.2.4	 Software Testing Template Guidelines.. 323

24.3	 Project Management Template Guidelines..325
24.3.1	 Work Breakdown Structure (WBS) Template Guidelines.........................325
24.3.2	 Project Planning Guidelines.. 326
24.3.3	 Project Monitoring and Control Guidelines.. 326

Recommended Readings..327

25	 Future Tools and Techniques..329
25.1	 Introduction..329
25.2	 Software Industry Trends... 330

25.2.1	 Open Source.. 330
25.2.2	 Application Service Provider...331
25.2.3	 Software as a Service...331
25.2.4	 Service-Oriented Architecture..332
25.2.5	 Intelligent Web Sites...332
25.2.6	 Web Services..332
25.2.7	 Streaming Media..332
25.2.8	 Social Networks...333
25.2.9	 Influence of New Trends on Software Industry..333

25.3	 Software Requirement Management Tools..333
25.4	 Software Design Management Tools...333
25.5	 Software Build Management Tools... 334

25.5.1	 Automatic Code Generator.. 334
25.5.2	 Integrated Development Environment Tools..335
25.5.3	 Programming Language...335

25.6	 Software Testing Management Tools...335
25.6.1	 Test Management...335
25.6.2	 Defect Tracking..335
25.6.3	 Automation Tools.. 336
25.6.4	 Test Creation Tools.. 336
25.6.5	 Test Coverage Tools... 336

25.7	 Software Project Management Tools.. 336
Recommended Readings..337

xviii  ◾  Contents

Appendix A: CMMI Process Standards...339

Appendix B: ISO Standards...347

Appendix C: IEEE Standards...355

Appendix D: Agile Processes for Software Development...373

Appendix E: Impact of Offshoring on Standards...385

Appendix F: Review Question Answers..391

xix

Preface

When I was searching for good books on software project management, I found many interesting
ones that had been written by experts in this field. These books contained valuable information
on many topics covering software project management and related subjects. I was therefore sur-
prised when a friend of mine who is a professor at a renowned Indian university told me that his
students find it difficult to get good books on this subject. On going through the syllabus, though,
I realized that none of the books available in the market covered more than 50% of the syllabus.
My friend agreed that this was the case and that is why his students had to refer to several books
to cover their syllabus. Based on my friend’s suggestion, I decided to write a textbook that would
cover the entire syllabus of software project management. This book is the result of that effort.
Thus, students need not refer to other books for their courses any longer.

When I started writing this book, I wanted to ensure that it covers most of the syllabi pre-
scribed for software project management at major Indian universities. In the process, the book has
become comprehensive enough to cover most of the syllabi at major universities around the world.
I have ensured that major topics have been covered in depth. I have also provided a case study that
runs through the book covering most of the topics.

Structure of the Book
Most of the books available in the market are written with the intent of covering siloed informa-
tion. Chapters are grouped in broad areas such as “quality control,” “measurements,” etc. This
book has been written in the same flow as any software project. Part I covers project manage-
ment and Part II covers the software life-cycle management. Part III covers topics such as process
improvement, process selection, etc. Part IV covers people management and Part V deals with
technology management.

One of the most important aspects of large, modern software projects to build industry
strength and reliable software products is to continuously improve software engineering processes
so that cost can be reduced and schedules realized. At the same time, the quality of software
products should continuously be improved. Part III elaborates on how these goals can be achieved.

Any software project management book should cover the areas of software engineering man-
agement, project management, people management, and technology management. If any of these
areas are not covered, the book will not be of much use.

xx  ◾  Preface

Scope of the Book
This book covers several areas, including human resources, software engineering, and technology.
All the topics covering these areas are discussed up to the level required for software project man-
agement. For advanced studies in these areas, the reader should refer to books written exclusively
for these subjects. In this book, we will focus on areas that apply to managing software projects.

Part III focuses on software engineering processes and various software engineering process-
ing models devised by organizations like the Software Engineering Institute, the International
Organization for Standardization, and the Institute of Electrical and Electronics Engineers. Part IV
deals with the human side of project management and contains chapters on team management,
supplier management, and customer management. Part V deals with technology, techniques, tem-
plates, and checklists that help project teams in accomplishing their goals.

Work on software projects is primarily done by people. They take help from technological
tools and techniques to improve their productivity. Software engineering helps the project team
in accomplishing their work in a more organized, consistent, and efficient way by providing a
structured and well-defined process to do their work. This book is structured in such a way that
Part I describes how to do project management with detailed information on project and process
management using skills and experience needed (described in Part IV) with the help of tools
(described in Part V) in a structured manner (described in Part III) to develop work products
through processes described in Part II.

Case Study
I have purposely chosen a case study that pertains to a company that is developing a software
product. Agile development models are currently the rage, and this is for good reason. For prod-
uct development, agile methodology is truly amazing. Nevertheless, this methodology has some
shortcomings, one being difficulty in adapting it for geographically scattered teams that may be
working in different time zones. In such a situation, the most challenging aspect of project man-
agement is to be able to communicate effectively. Agile methods demand that all team members
be co-located so that high-bandwidth casual communication can take place among them. This
makes offshore teams a complete no-no. The other shortcoming of agile methods is lack of docu-
mentation. Five years down the line, when the product has grown enormously and most of the
original team has moved elsewhere, it will truly be a daunting task for a new member to under-
stand all that code and make required changes. It will be simply impossible! To understand what
I mean, look at the codes of some of the largest software products like Linux, which was built as
an open source project using some sort of agile methodology. It is indeed extremely difficult to
change any code inside the Linux kernel. The third shortcoming of agile methods is their inability
to adapt to parallel and concurrent development. This means that if a large product is needed to be
developed quickly, it will not be possible to do this with agile methods. So if a product containing
one million lines of code is needed to be developed in a short time of 1 year (that is right, 1 year to
be exact), then the total effort required for this project will be 500 months for one person to write
it if we take productivity figures of 2000 lines of code per month per person (which is quite reason-
able). This means about 42 years. Now if we want to do this in 1 year, we will need 42 people to
do it. Managing 42 people on an agile project is impossible. At the most any agile methodology
permits 20 people. Many projects are even bigger than one million lines of code. Most government,
banking, and large corporate software products consist of more than 10 million lines of code.

Preface  ◾  xxi

In these cases, agile methods will not work. You need to adapt some method that will permit par-
allel development where many teams can work on the project concurrently so that the product can
be developed within 1–2 years instead of, say, 10 years.

The case study presented in this book is a good example of how to adapt to given situations and
be successful. After all, offshoring provides several benefits and cannot be ignored. Documentation
too is a very important aspect of software product development and should be adhered to. This
case study provides a good insight as to how to address the challenges of communication manage-
ment, documentation, and concurrent development even when the development methodology is
to take the benefits of agile methods.

Students reading the book will have a chance to look at the inner workings of a real, success-
ful project. All aspects of a regular software project are covered in the book. To make it more
beneficial, the case study has been divided into several parts, and relevant parts are provided at
the end of most of chapters. Therefore, after getting a good grasp of the concepts provided in a
specific chapter, students can go through the case study and get a feel of the practical aspects of
those concepts.

I hope this book will be useful for the intended readers. For any suggestions to improve the
book in future editions, please write to me at ashfaque.a@gmail.com.

xxiii

Author

Ashfaque Ahmed has more than 22 years of experience in the
software industry. He has a BSc in engineering and an MBA in
information systems. He has worn many hats during his career,
including that of a project manager, test manager, system ana-
lyst, and business analyst. He has managed projects of sizes
varying from a few thousand dollars worth to projects worth
millions of dollars. Some of the larger projects ran for a span of
more than two years. He has also worked on software product
development projects that typically run for decades and that
keep adding new features and modifying existing product fea-
tures almost endlessly.

Ahmed is a popular author. He has recently authored a book titled Software Testing as a Service,
which was published by CRC Press, Boca Raton, FL, in September 2009. He has written more
than 15 research papers for Technology Evaluation Centers and Tech Target. He is also a contrib-
uting author at Technology Evaluation Centers (www.technologyevaluation.com) and an expert at
Tech Target Application Development Media Group (http://www.techtarget.com/).

IPROJECT
MANAGEMENT
FUNDAMENTALS

3

Chapter 1

Introduction to Software
Project Management

In Part I, we will learn

◾◾ What is software project management?
◾◾ What are various components of a software project?
◾◾ What are various processes of a software project?
◾◾ How are effort estimate, project plan, risk plan, etc., made?
◾◾ How are projects monitored and controlled?
◾◾ What is the impact of software development model on software project management?

In this chapter, we will learn

◾◾ What is a project?
◾◾ What is a software project?
◾◾ What processes are involved in a software project?
◾◾ How are people, processes, tools, and technology integrated in a project?
◾◾ What are the characteristics of a good project manager?
◾◾ What are the subprocesses in the area of project management processes?
◾◾ What management metrics are measured in software projects?

4  ◾  Software Project Management: A Process-Driven Approach

1.1  Introduction
As per data from Gartner and other research agencies, about 25% of world gross product is spent
on various kinds of projects. More than $10 trillion were spent on projects out of world gross prod-
uct output of $40.7 trillion in 2008. Most of the expenditures in information technology (IT) and
software are considered as expenses in IT and software projects. More than $2.7 trillion were spent
in 2008 on IT and software projects. That means out of all expenditures in all kinds of projects,
IT and software projects represent more than 25%.

In major economies of the world, millions of people are employed in the IT and software
sector. In 2008, more than 4 million people were employed in this sector in the United States.

Indeed the IT and software sector is one of the biggest employers in major world economies.
Moreover, more people are expected to be employed in this sector in the future as it is growing fast.

1.2  What Is Project Management?
Project management can be broadly defined as starting an activity to achieve some stated goals
using limited resources, budget, and time. During the project, resources and budget are consumed
in a limited span of time (Figure 1.1). After the project is finished, the unconsumed resources and
budget should be released. Since each project is started for a customer, a fourth dimension in the
project is also added. It is customer satisfaction. The customer must be satisfied with the goal
achieved by the project. This goal could be the creation of any product or service.

So we can see that there are inputs to the project in terms of resources, budget, and allocated
time duration, and the output of the project is the achieved goal. A project must be initiated. To
execute the project in a systematic manner, it is better to have a project plan. During project execu-
tion, some risks may arise, which may end up jeopardizing the project plan and in fact the entire
project. So we should have some controlling measures, which can be employed to tackle any risks
arising in the project successfully to avoid the project getting jeopardized. By the time project
execution ends, we must have a proper project closure so that we can end the project. In Figure 1.2,
you can see these project processes.

1.3  What Is Software Project Management?
Before moving to software projects, let us first discuss IT projects. But even before discussing IT proj-
ects, let us understand IT and software and their differences. IT is a field where an IT system refers
to a complete system comprising many parts like hardware systems, software systems, and any other
components from some other fields. A complete IT system can be used for any purpose like running
a business, doing research, use in robotics, use in automation systems, etc. For instance, a robot is

Project
consumes

Resources Budget Time

Figure 1.1  Any project consumes resources, time, and budget.

Introduction to Software Project Management  ◾  5

mostly a hardware device, but the information or instructions given to it to do some things are done
using a software system. In other words, we can say that the brain of the robot is a software system and
other parts of the robot like its limbs and sensing devices attached to it are hardware parts (Figure 1.3).

Generally, when we refer to IT, we mean the combination of software system and the computer
hardware in which the software system will be running. For example, a business software applica-
tion for doing transactions may be a complete IT system when the software system is installed in
the computer hardware system and is ready to be used by end users.

Since software is being used in many new industries and we use more and more software systems
in our daily lives, it is now becoming part of most things we see or interact with. Our vehicles now
have computers. (Computers were not part of automobiles up until the 1970s, but after the 1980s,
they slowly started appearing in many car models.) Our gadgets of daily use (music systems, air
conditioners, washing machines, etc.) now have some sort of computer built into them. In manufac-
turing industries, industrial robots have been used since the 1950s. Now these robots are becoming
sophisticated with more advanced software systems to control them. More recently, the ubiqui-
tous mobile phone handsets have been the major beneficiaries of advancement in software system
capabilities. In fact, more than 40% of all spending on IT budgets now goes to the telecom sector
(mostly mobile and communication applications), which is a part of the IT industry (Figure 1.4).

So an IT project could be for setting up an enterprise-wide software system (along with the
hardware to run it) to get business intelligence capability, manage store operations, or manage
warehouses, etc. Tasks involved in such a project could be building (developing) the software

Project
initiation

Project planning Project
closure

Project monitoring
and control

Figure 1.2  Project management processes.

Software system Hardware system

IT system
components

Other than
software/hardware

parts

Figure 1.3  IT system components.

6  ◾  Software Project Management: A Process-Driven Approach

system, buying the computer hardware to run it, installing the software in the computer hard-
ware, preparing the network of computers (if it is an enterprise-wide system), and finally config-
uring the software system so that it can run on the network of computers.

A software development project on the other hand is making software design based on cus-
tomer requirements and implementing it into source code. This source code is then tested to make
sure that it is defect free so that end users can use the software system without running into many
problems. In software maintenance project, an already existing software product is modified to
remove software defects, add new functionality, port the software product on some other operat-
ing system, etc. Software development and software maintenance projects together are referred to
as software projects (Figure 1.5).

Software projects demand not only general project management skills but also good soft-
ware engineering skills [1]. A goal of any software project management is to develop/maintain
a software product by applying good project management principles as well as software engi-
neering principles so that the software project is delivered at minimum cost, within minimum
time, and with good product quality. Good project management principles will ensure good
productivity. Good productivity in turn will ensure that the project is delivered in minimum
time at minimum cost. Good software engineering principles will ensure good product quality.
Even though how software engineering principles are formulated may not be in the domain
of software project management, adopting those principles in their projects definitely comes
under the purview of the job of a software project manager. For instance, a project manager
responsible for managing a civil construction project must have knowledge and experience
in civil engineering. An electrical engineer managing a civil project will not be a suitable fit.
Similarly, a project manager responsible for managing a software project must have knowledge
and experience in software engineering.

Automobiles Robotics Avionics

Software system
applications

Financial
systems

Manufacturing
industry

Retail and
distribution

Figure 1.4  Application of software systems in many industries.

Requirement
management

Design
management

Source code
building

Software project
tasks

Software
testing

Software
deployment

Software
maintenance

Figure 1.5  Tasks in software projects.

Introduction to Software Project Management  ◾  7

Project management processes may include project initiation, project planning, project moni-
toring and control, and finally project closure. The software engineering processes may include
requirement development, software design, software construction, software testing, and software
maintenance. These software engineering processes have to be somehow accommodated in project
management processes (see Figure 1.6).

In a nutshell, software project management can be defined as applying project management
and software engineering methods to develop/maintain a software product so that the goal of
developing/maintaining a software product can be achieved using minimum possible resources
and money and within the minimum time possible.

1.4  Importance of Software Projects
Importance of software project management can never be emphasized more when we observe that
it is the single most influencing factor that is touching our lives in many ways day by day. The pace
of software products used in many walks of life is increasing every day. This necessitates the devel-
opment of software products in new areas, which would not have been imagined 10 years back.
That is why the number of software projects and volume of work performed in these projects are
increasing tremendously. On average, money spent on IT and software projects has been increas-
ing on the order of 10% or more annually for the last 30 years worldwide. This increasing pace of
spending on IT will continue in the foreseeable future. Clearly, the software and IT industry is the
most significant change agent that is shaping our lives. In this context, people who are building
and managing software and IT systems are playing an increasingly important role in our society.

1.5  Problems in Project Management
In the previous section, we discussed the importance of software projects and the important role
played by the people who are managing these projects. But these people are also facing unique
problems. Unlike other industries where engineering practices are well established due to the vast

Project
initiation

Project planning
(requirement
development,

software design,
software

construction,
software testing,

software
deployment,

software
maintenance)

Project
closure

Project monitoring
and control

(requirement
development,

software design,
software

construction,
software testing,

software
deployment,

software
maintenance)

Figure 1.6  Software project management processes with software engineering processes.

8  ◾  Software Project Management: A Process-Driven Approach

amount of research and development done for hundreds of years, the software industry is rela-
tively new. Software engineering has been in existence only for last 60 years or so, starting from
the 1950s. Lack of sound engineering practices makes software project management a difficult
proposition. Requirements and software design specifications in the software industry are still
immature. Tools, technologies, and models for software projects are still evolving. Education and
training required to work on software projects are also still evolving, resulting in people working
on software projects with less than desired skills. A person responsible for managing a software
project thus truly feels inadequate due to less than perfect circumstances under which he is sup-
posed to perform (Figure 1.7).

Project management for any kind of project is a complicated matter. When the project size
is big and the nature of the project is complex, managing the project becomes a daunting task.
Project managers have to comply with government regulations, meet deadlines; deal with suppli-
ers, staff, and customers, report to higher authorities, and tackle issues and myriad tasks planned
or unplanned on a regular basis.

When it comes to big software development projects, some more complexities get added. In
the software industry, finding and retaining skilful and experienced resources is a big challenge.
Software projects are often outsourced. Software projects often involve teams located at many
sites. These sites may be scattered over geographically far flung locations. There may be large time
differences due to different time zones of these sites. People working on these projects are from
different cultures. They may have different work ethics, may have different productivity levels, and
may speak different languages.

Another highly important factor that makes software development/maintenance projects ever
so different from other kinds of projects is the level of innovation and creativity required to deliver
[2]. Software professionals are not only required to deliver as per specifications given to them but
they need to use their intuition and capability to think out of the box to deliver software design
or software prototype or software code. So software building is not only a science but also an art.

Due to these factors, communication, effort estimation, work distribution, reporting, work
tracking, team management, etc., get affected (Figure 1.8).

How can a software project manager handle his project successfully, given the difficulties
mentioned earlier? It may seem like a superhuman effort to manage modern day large software
development projects. Yet, a large number of software development projects are being executed
successfully even though these challenges always pose huge threats for these projects.

How do successful project managers manage their projects? What tools help them in their
job? What kind of preparation do they do for the project? What kind of processes do they adopt?

High level of
innovation

Immature
software

engineering
Lack of

proper skills

Software project
challenges

Immature
tools

Immature
techniques

Complexity Ambiguous
requirements

Figure 1.7  Typical challenges encountered in software projects.

Introduction to Software Project Management  ◾  9

What kind of experience is required to be a successful project manager? What makes them a suc-
cessful software project manager?

Any software development project has one goal: To develop a software application or product.
A given software application or product could be for internal use or sold to customers. When software
is developed for use by the organization itself, it is known as a software application. When software is
developed for the purpose of selling to customers and not for use by the organization itself then it
is known as a software product. The organizations who develop such software products are known
as software vendors. Now a business can decide to outsource development of the software product or
application instead of developing it in-house for many reasons. The software vendor can outsource part
or full software development activity to some software service provider. This way, the outsourcing and
supplier management angle gets added to project management.

Whatever the situation is, the development team that builds the software application or
product needs to focus on developing the application or product and not on any peripheral activi-
ties. But modern day software applications and products are large and complex. Building them
involves a lot of things, and in the process, the team may easily lose its main purpose, that is, to
develop the software application or product. One way to avoid this kind of drifting away from
the focus is to have a defined project process and use this process map to chalk out a project plan
as to which tasks will be done at what time, in what sequence, who will be responsible for these
tasks, etc. This kind of planning based on a process structure is extremely useful for large and
complex projects.

1.6  Processes in Software Projects
What is process? Process is a defined way of doing things. Any task we want to do in our daily life
needs to be done by taking a series of action steps that results in completion of the requested task.
That means a process to do a task can be broken down into certain series of steps. For instance, if
you want to withdraw money from your bank account using an automatic teller machine (ATM),
you need to first find a nearby ATM machine, then you need to insert your debit card in the slot
in the machine, enter your password, specify the amount you want to withdraw, take the money,
and finally remove your card from the machine.

In Figure 1.9, you can see all the steps involved in the process of withdrawing money from
an ATM.

Communication
difficulties

Team
management

Effort
estimate

Impact of
challenges on

software project

Work
distribution

Project
reporting

Work
tracking

Figure 1.8  Impact of challenges on software projects.

10  ◾  Software Project Management: A Process-Driven Approach

Coming to software projects, there are many processes going on in any software development
project [3]. We can classify these processes under the following categories based on their priorities:

	 1.	Evolving processes beyond a project: As can be seen from evolving software engineering prac-
tices, software projects are no longer seen in isolation. Software engineering is striving to
make sure that software projects should be completely predictive and measurable. Based on
project size and productivity, a project manager should be able to calculate project cost and
schedule for a software project easily. At the same time, software engineering also allows
for continuous improvement in project and organizational processes to improve quality and
productivity. So a continuous improvement process also runs above projects at the organiza-
tional level. These processes are discussed in Part III.

	 2.	Project management processes (project initiation, planning, control, monitoring, and closure):
These are the processes that get influenced by top-level processes and govern lower-level
processes related to software development. Project management processes are the ones that
help the management to see what is going on in the project and also allow them to control
the project. So these are management processes. These processes also include the processes
for project risk management, effort, cost estimation, etc.

	 3.	Software development life-cycle (SDLC) processes (requirements, design, build, testing, main-
tenance, etc.): These are the development processes that actually build the application
(Figure 1.10). These processes are discussed in Part II.

1.7  Project Processes, People, and Technology
Organization level processes are the top-level processes that influence working of a project from
outside while subprocesses in an SDLC process are the lowest-ranked processes. The other pro-
cesses come in between these processes. The way these processes are set up and implemented
impacts the way a software development project is handled [4].

Apart from these processes, there is a direct impact on the project by the customer, whether
external or internal. That is why customer expectation management is a complete subject in itself as
the customer has the most important influence on any project. Style of functioning of the project
manager also influences the way the project is executed. Then of course, it is a matter as to how to
deal with the project team members. Software developers are highly skilled people and they need to
be provided with the best environment to get maximum output from them. Then comes the case of

Press OK button Press OK button

Go to ATM Insert debit
card

Enter amount

Take money
from slot

Take back debit
card

Enter password

Figure 1.9  Process of withdrawing money from ATM and the process steps involved.

Introduction to Software Project Management  ◾  11

suppliers (service providers) who are increasingly deployed to get leverage in terms of getting skilled
manpower and expertise. Project managers need to get maximum value from every buck they have
to spend on these suppliers. So supplier management is an essential ingredient in projects where the
entire project or part of it is outsourced to software service providers (Figure 1.11).

Software projects are also greatly influenced by technology. What technology best suits a proj-
ect depends on a large number of factors including productivity, capability, reliability, technology
availability, technology maturity, technology skills, etc. Managing the technology in software
projects thus also becomes important. Each technology has its own limitations apart from the
benefits it offers. So choosing the right technology for the job in hand is a very important consid-
eration for any project manager. Technology selection will be based on considering the best fit in
the perspective of job requirement, skill availability in the project team, and productivity.

1.8  Successful Software Project Manager
A successful software project manager [5] should be able to understand not only how a project
should be planned and executed but also the processes beyond the project itself. He should
learn the environment in which he should be planning and executing the projects. No doubt,
software projects are extremely challenging; nevertheless a good framework to plan and execute

Organization processes

Project processes

Life-cycle processes

Figure 1.10  Processes involved in software development projects and their boundaries.

Supplier
management

Customer
management

Team
management

Factors influencing a
software project

Technology
management

Software
development

model

Figure 1.11  Influencing factors in software projects.

12  ◾  Software Project Management: A Process-Driven Approach

a project definitely helps. Human beings can think and can be creative; but they also make mis-
takes unlike robots or machines. But unlike robots and machines, human beings can do creative
things. Software project tasks require a lot of creativity and that is why they are very human-
intensive activities. At the same time, compliance to good framework ensures that these human
mistakes are avoided or at least minimized. Frameworks also ensure that there is a good way of
working on assigned tasks and outputs are measurable (Figure 1.12).

Software project managers should understand these practical aspects and should plan and
execute their projects accordingly to be successful.

More detailed information about the role of a software project manager, project management
skills, etc., are discussed further in Chapter 18.

1.9  Project Management Processes
Project management processes form the basis on which a project can be initiated, planned, moni-
tored, controlled, and closed. On the other hand, software engineering processes define structure,
steps, and procedures to do various tasks in software development. But these processes lack the
ability to schedule, plan, and control themselves. It is the project management processes that do
the job of scheduling, planning, and controlling software engineering processes.

1.9.1  Software Project Initiation
As we have seen in an earlier discussion, there are three kinds of processes running in an orga-
nization that develop software products or applications, namely, software life-cycle processes,
project management processes, and organization level processes. Next, we will learn project
management processes. The first among project management processes is the project initiation
process.

We can further divide the initiation process discussion into processes for application initiation,
product initiation, and product implementation initiation.

1.9.1.1  Software Application Development Project Initiation

A software development project not only involves huge costs but also much resources and time
even if the software project or a part of it is outsourced. Large software projects have great impact

Understand
project

management

Understand
software

engineering

Understand
technology and

tools

Requirements for a
successful software

project manager

Manage team,
customer and

suppliers

Work under
organization
framework

Figure 1.12  Requirements to be a successful software project manager.

Introduction to Software Project Management  ◾  13

on the company that will be using the software product, which is either developed in-house or
outsourced. So a large software development project carries many high risks. It becomes one of the
most important points on the agenda of the top executives.

All these things imply that large enterprise level software application development projects are
very important. They carry this tag and everybody can see it and feel it.

This also means that the project must have a give-away sanction from top management. If this
sanction is not there and if the top management is not able to back the project fully, the project
cannot move ahead. Even before its start, the project dies.

Now if the top management is excited and gives approval for the project and a project team is
being formed, then the project may start (Figure 1.13).

During the initiation phase of a software application development project, the project charter,
project scope, project objectives, and initial risk planning and effort estimate are prepared.

1.9.1.2  Software Product Characteristics

Before we move on to project initiation for building software products, we should know that they
are very different from software applications. Throughout this book, terms like software applica-
tion, software products, and software systems have been used interchangeably. If any of these terms
are used anywhere, please note that the subject matter discussed there applies to all of these three
things equally. Software applications are specifically built based on a limited set of user require-
ments. So they have limited features to fulfill the specific needs of end users.

Software products on the other hand are built with a large number of features to take care of
the needs of different kinds of users. Mature software products built over several years contain
many varied features so that end users with varying needs can use these features. Software vendors
also keep building new features, and over the years, the enterprise resource planning (ERP) and
big commercial off the shelf (COTS) systems become massive in size (ERP and COTS systems are
examples of large software products).

These COTS systems are also very robust. They can be run on all supported platforms without
any problem. Robustness is a special feature built into software products.

They are also reliable. They are thoroughly tested before they are introduced on the mar-
ket. Software vendors test thoroughly to make sure that their product does not have many bugs
because if the released product has many bugs, it will fail on the market and also will create a bad
reputation for the vendor. So they make sure that their products are defect free.

Most of these COTS systems have open interfaces so that they can be integrated easily with
other systems.

Initial
schedule
estimates

Project
charter

Project
scope

Project
objectives

Initial effort
estimates

Initial cost
estimates

Software project
initiation tasks

Figure 1.13  Software project initiation tasks.

14  ◾  Software Project Management: A Process-Driven Approach

1.9.1.3  Software Product Development Project Initiation

With increasing popularity of COTS systems [6], a large number of software vendors are devel-
oping their software products. Some software vendors are developing large enterprise level soft-
ware products like ERP, supply chain management (SCM), customer relationship management
(CRM), and many other large software products. Recently, some other kinds of software products
have also become popular. These are known as software as a service (SaaS). Most of these applica-
tions are smaller in size and they are not general-purpose applications. Instead they provide very
specific functionality, which can be used by any other software product or application to comple-
ment some aspects of their own features. For example, an online flight reservation application
provided by one service provider can have links where they can get information about fares offered
by different airline companies. This online reservation system will be a hosted application with
a Web site interface. Users of this application can use the Internet to access the Web site and use
this application to book their air tickets online. The fares of these airline companies keep chang-
ing. To provide end users with currently offered airfares, these fares must be shown in real time
to end users. Some service providers get this information from airline companies and provide this
information to the online airline reservation Web sites through the link provided in the reserva-
tion application. The real-time information provided by these service providers is through an SaaS
application. This application cannot be used directly by any end user. But in conjunction with
some other application, they provide a useful service.

SaaS applications [7] can be used by end users on a subscription basis. If the application is big
and involves creating and maintaining databases, the service provider creates these databases for
its customers. Examples of large scale SaaS applications include Salesforce.com (a CRM applica-
tion), OneNetwork.com (a retail management application), etc. These are large service providers
that provide their own application to customers using the SaaS model. Some other smaller SaaS
service providers provide services like market research, customer support, and many other special-
ized services (Figure 1.14).

How are these software products made? After all, development of these software products does
not start with end-user requirements. The software vendor sees a market opportunity of develop-
ing such a product. He develops the software product and sells it or provides services using this
software product to customers. So basically, software product development starts when a soft-
ware vendor sees a market opportunity and then decides to develop this product. He uses market
research data to decide which features will go into the product. Accordingly, he forms a project
team and hands this information to them so that they can develop the software product.

So whereas a software application is created based on end-user requirements, a software product
is made using market research data.

Market
analysis

Product
development
cost estimate

Product
features

Marketing
channels

Product
delivery
method

Product or
service

Software product
initiation tasks

Figure 1.14  Software product development initiation tasks.

Introduction to Software Project Management  ◾  15

During the initiation phase of any software product development project, the project scope,
risk planning, and effort estimate are made. But unlike a project that develops custom software,
effort and time estimates are also done beforehand. In fact, time to market for such a product is
a crucial factor, and thus, instead of time estimate calculation, team size calculation for boxing
the project under a tight time schedule is done. As per product development roadmap, a product
release plan is also developed.

1.9.1.4  Software Product Implementation Project Initiation

Small COTS applications do not need implementation. Mostly, they are installed from a CD
or downloaded from the Internet and installed. But bigger COTS applications like ERPs, SCM
systems, CRM systems, etc., require much effort to implement either at a customer site or at a hosted
site [8]. They are huge consisting of large modules. Their database layer is totally detached from the
application layer. In fact, the entire software product may consist of many layers.

Implementation of these huge packages is a different ball game altogether. If the product is
implemented without customization, then the project involves system installation, configuring
the application as per user requirements, database creation, data population, data migration from
legacy system, etc. It also involves integration between different modules of the application. This
kind of implementation is also known as plain vanilla implementation or bespoke implementa-
tion. This kind of implementation is done fast and can be completed in 1–3 months depending on
the size of individual tasks.

But most often, the application is implemented with some customization. Nowadays, an appli-
cation contains most of the business logic, which needs to be correctly configured. Customization
takes place more in reports. The application also needs to be integrated with other enterprise sys-
tems. A typical large-scale ERP system implementation takes somewhere around 1–3 years. But
this implementation time is shrinking due to increase in productivity of project teams as well as
advancement in technology.

During the initiation phase of any software product implementation project, the project char-
ter, project scope, project objectives, and initial risk planning and effort estimate are prepared
(Figure 1.15).

1.9.2  Software Project Planning
Depending on the characteristics of a project, detailed project planning is done either after project
initiation or after completion of project requirements. Generally, detailed project planning can be
done only after the project team has complete requirements for the project since the requirements
together with project scope determine effort, cost, and quality required. If complete details about
these things are not available, a baseline for the project cannot be made. In project planning the
main tasks that are to be planned are software life-cycle processes (refer to Part II for details about
these software life-cycle processes), which actually build the software product.

Any project faces external and internal risks. Software projects face risks related to people,
technology, process, and other areas. Due to these risks, the project schedule, cost, or quality may
get affected. Recognizing these risks and making proper plans to mitigate negative impact on the
project are taken care of by making a risk planning and executing them when they arise.

Depending on the software life cycle chosen, the project plan may vary. In the linear waterfall
model, the software engineering processes are executed linearly, and thus, in a software project,
each of the software engineering processes occurs just once. But in the case of an iterative life-cycle

16  ◾  Software Project Management: A Process-Driven Approach

model, the individual software engineering processes can occur more than once. In some iterative
models, the iteration occurs between construction and testing. So these two processes can occur as
many times within the project as the number of iterations. At the extreme end of iterative software
development model, iteration can happen for all of the software engineering processes. So all soft-
ware engineering processes will occur as many times within the project as the number of iterations.
These variations are depicted in Figures 1.16 and 1.17.

1.9.2.1  Components of Project Planning

Software projects need many inputs for making project plans. They also produce numerous out-
puts in the form of separate plans for risks, communication, configuration and version control,
schedules, resource requirement and allocation, etc. All of these project planning components in
fact are complete plans themselves. A separate chapter has been devoted for each of the planning
activities of risk management, effort and cost estimation, and configuration and version control
management in this book.

You will learn about software project planning in detail in Chapter 6.

Customization
effort

Initial schedule
estimates

Project
charter

Project
scope

Project
objectives

Initial effort
estimates

Initial cost
estimates

Migration from
legacy system

Software product
implementation
initiation tasks

Figure 1.15  Software product implementation initiation tasks.

Requirements

Design

Construction

Testing

Release

Maintenance

ClosureMonitoring and controlPlanningInitiation

Figure 1.16  Project management in waterfall model environment.

Introduction to Software Project Management  ◾  17

1.9.3  Software Project Monitoring and Control
There have been many methodologies for planning, monitoring, and controlling software projects
like waterfall, agile, iterative, and many other models (refer to Part III for details about these
models). Software development and maintenance is still an evolving discipline, and so the way a
software project is handled differs from one project to another. Software technologies also keep
evolving. So it is difficult to plan, let alone monitor or control, a software project.

Due to the inherently risky nature of software projects, constant monitoring and control is
required to rectify any event that may jeopardize the project.

To monitor and control effectively, the project manager needs measurement data. The mea-
surement data come from measuring processes and product. So first project processes should be
planned such that their measurement can be taken, and secondly, it should be ensured that proper
measurements are taken. Only then effective project monitoring and control is possible.

You will learn about software project monitoring and control in detail in Chapter 7.

1.9.4  Software Project Closure
With the increasing use of statistical process control, project closure has become an important
activity in projects. During project closure, all project artifacts are analyzed and completed.
Data from these artifacts are transferred to central project repository so that these data can be
used for future projects. It has to be ensured that all project data are normalized so that the data
are useful.

You will learn about software project closure in detail in Chapter 8.

1.10  Configuration and Version Control Management
The most prominent aspect about software projects is the change in requirements during almost
the whole product development life cycle. Due to changing requirements, work done in software
development life-cycle processes also needs to be changed accordingly. This leads to many versions

Requirements

Design

Construction

Testing

Release

Maintenance

ClosureMonitoring and controlPlanning

Iteration plan, monitor and control

Initiation

Figure 1.17  Project management in iterative model environment.

18  ◾  Software Project Management: A Process-Driven Approach

of work products in all phases of the development life cycle. Managing all these work products is
done using configuration and version control.

A project manager will be well equipped and prepared if he acknowledges the fact that require-
ments will keep changing. Once this need is established, the action plan for tackling it can be
established. The foremost need is to manage changes in requirements as and when they arrive.
Once this process is well established, the tasks affected due to these changes can be identified.
Once these tasks are identified, then a proper replan will have to be made.

The best solution for managing various requirement versions is to have a central repository
where all versions of requirements can be stored. All the team members working on the project
must have access to the requirements, irrespective of their scattered geographical locations. The
version control rights can be set as per requirements. People who have rights to change the require-
ment documents can make changes in documents and check in the documents back to the reposi-
tory. Other team members may have only viewing rights.

In organizations that are developing products, there could be many projects going on at the
same time. In those cases, it is the best policy to have many branches of the main requirement
folder. Each project team will have access to its respective requirement branch. Each team will be
responsible for managing its own branch.

You will learn about software configuration management in detail in Chapter 5.

1.11  Management Metrics
A business unit must keep improving its business processes over time; otherwise, it will become
extinct by the forces of fierce market competition. Improvement in business processes is impor-
tant because only through these improvements, a business unit can improve productivity of
its processes and improve quality of its products or services. If it is not done, the business unit
will become uncompetitive in comparison to its competitors and thus will face the danger
of becoming extinct. Better productivity provides means to cut costs and time, and better
product quality provides a chance to increase business as customer appreciation is the best
marketing tool.

Process improvement can only happen if you can measure it, compare it with best practices,
and then bring about changes in your processes. In the case of software development projects,
the management metrics are the productivity data for the projects [9]. The software work product
quality data are the technical metrics [10]. Throughout this book, both management and technical
metrics are discussed in detail at each level where it is possible to collect and analyze them and can
be used for making management and technical decisions (Figure 1.18).

Measurement of project processes during execution at regular intervals makes sure that the
product quality is always under control. These measurements also enable the organization to
improve its processes by assessing effectiveness of processes and making certain modifications in
these processes. When selecting any of the measurements for a project, the essential point should
be that they should be relevant to the project. It is also of utmost importance that the selected
measurements should have certain inherent characteristics so that they are meaningful to the
project. Again these measurements should be practical, should be calibratable, and should be done
at a minute level and not at a gross level. Gross level measurements fail to point to the root causes
of problems.

Over the years, several metrics have been defined and used in projects. Many of these
approaches use statistical process control (SPC) methods.

Introduction to Software Project Management  ◾  19

One SPC approach is popularly known as the Seven Tools of Quality [11]. Essentially, it is
made of seven distinct techniques developed by different organizations and individuals. These
quality tools are either used in isolation to each other or used in conjunction with other tools.
These are as follows:

	 1.	Check sheets: Check sheets are used to count the number of occurrences of issues over the
entire project or during specific phases of the project. If the same problem resurfaces during
a project or within a phase of the project many times, it is an indication of bad project man-
agement. Check sheets are a good measure to know whether project execution is smooth or
it has many issues. Check sheets are also useful during recording of lessons learned from the
project.

	 2.	Histograms: Histograms basically depict variance of outputs on either side of a central ten-
dency for a process output. Histograms are great tools for knowing whether any project
attribute or characteristic is falling within acceptable norms or it is deviating from standard
acceptable norms.

	 3.	Pareto charts: Pareto charts are used to identify problematic areas in the software develop-
ment process. If analysis is done for the occurrence of problems encountered in a project,
it will be found that 80% of the problems are encountered in only 20% of the project area.
That means 80% of the project area contains only 20% of problems. If we concentrate our
efforts on the problems in the 20% of the project area, we will solve 80% of the problems.
This strategy is far better compared to putting effort on the entire project. This is what
Pareto charts are all about. Pareto charts are one of the most popular metrics in the software
industry to measure process as well as product characteristics to find out problematic areas
and subsequently to fix them.

	 4.	Cause and effect diagrams: These diagrams are also known as fish bone diagrams because
they look like fish bones. They are also known as Ishikawa diagrams after the name of the
inventor Kaoru Ishikawa. These diagrams are used to find the root causes of a problem in
processes which results in a single identifiable problem and then list these causes in the dia-
gram against the identified problem. All the root causes are arranged and depicted in the
diagram based on the level of their impact on the problem area. This results in a hierarchy
of causes. From this kind of diagram, it is easy to compare different causes of problems and
finally find the right solution, which will help in tackling the root problems and the cor-
responding causes effectively.

Relevant Meaningful

Calibration
ability Activity level

Metric
characteristics

Practical

Figure 1.18  Quality characteristics required of software project metrics.

20  ◾  Software Project Management: A Process-Driven Approach

	 5.	Scatter diagrams: These diagrams are used for identifying correlation and suggesting causa-
tion. Scatter diagrams are as well used for finding root causes of problems in projects. Thus,
they are similar to cause and effect diagrams. Each effect (end result or problem caused by
a root cause) can be plotted against the root causes, and their relation over a series of inter-
related data can be found out. This will help in eliminating those root causes of problems
from the project.

	 6.	Control charts: These charts are used to identify processes that are out of control so that
they can be fixed. For example, a temperature measurement device (for any temperature-
sensitive process) is attached to a device that records temperature on a control chart. If
the temperature goes either above or below the acceptable limits, it can be easily traced
using the control chart. Similarly, a control chart can be used to measure defect den-
sity in different phases of a software project, and if the defect density is observed to be
going higher than acceptable limits, corrective action can be immediately taken so that
defect density can be brought under control. Control charts are very popular in many
industries.

	 7.	Graphs: Graphs are used to depict information about processes in a suitable manner.
Basically, graphs do not provide decision-making software metrics. However, they help in
conveying the bigger picture about the project.

1.12  Case Study
This case study is taken from the projects done by a software vendor who is building a state-of-the
art software product, which is used as a SaaS by its customers. We will cover the project consist-
ing of four iterations for the release of its 6.0 version. Project management–related processes are
covered in Part I. These project management processes include project initiation, project planning,
project execution, project monitoring, project control, project closure, risk management, effort
estimate, and cost estimate.

Elaborate project initiation is done only for the project for the release 6.0. At the four iterations
contained in this project, project initiation is minimally done at the iteration level. The minor
releases of 5.3, 5.5, and 5.8 coincide with iteration 1, iteration 2, and iteration 3. Iteration 4 and
major release 6.0 coincide with each other. (Minor releases of 5.4, 5.6, 5.7, and 5.9 are merged
with other releases.) Project planning, project execution, project monitoring, project control, proj-
ect closure, risk management, effort estimate, and cost estimate are done at the iteration level.
Aggregated project cost and project effort are done at the project level.

1.12.1  Project Introduction
The SaaS software vendor has some of the largest grocery retailers in the United States and
European countries as their customers, who have used the services of the SaaS software product
for quite some time. A market need was felt to have a functionality that could enable third-party
logistics service providers (3PL) to get instant information about the need to have trucks for trans-
portation of goods by its customers (manufacturers/distributors). This information should be in
advance so that the 3PL can plan for sending the required trucks to the desired locations at a speci-
fied time. The customers at the same time can plan for picking and packing of required goods at
the requested warehouse and make the load ready so that the goods can be picked by trucks at the

Introduction to Software Project Management  ◾  21

required time. The retailer (who will receive the goods) on the other hand can make preparation
at its desired warehouse (from advance information about the incoming truck) so that these goods
can be received without any delay.

In fact, to enable such functionality, a mechanism known as appointment scheduling is
employed. The complete details about this functionality are given in next section.

1.12.2  Software Functionality
A retailer has many retail outlets. Goods are sold at these outlets. The retail outlets keep a small
stock on the shelves and some more in store rooms located in the same retail outlet premises.
When the stock of a particular item becomes low in quantity, the outlet orders a fixed quantity of
the items from its own warehouse for replenishment. The replenishment order is received at the
nearest warehouse. The warehouse collects the required quantity of the item from the warehouse
and waits for a truck to arrive and dock. Then the warehouse staff loads the goods in the truck. The
truck then moves and reaches the retail outlet. The outlet staff unloads the goods from the truck
and fill their shelves and store rooms. The movement of truck from retailer’s warehouse to retail
outlet is known as outbound logistics (Figure 1.19).

The retailer’s warehouse orders goods from manufacturers/distributors when the stock of
particular goods in the warehouse becomes low. When a warehouse belonging to the manufac-
turer/distributor receives order for goods, it collects the goods from its warehouse and waits for
a truck to arrive and dock at its dock doors. Once a truck docks, the manufacturer/distribu-
tor staff loads the goods in the truck. The truck moves and reaches the retailer’s warehouse.
The warehouse staff unloads the goods and stores it in their warehouse. The movement of
truck from manufacturer’s/distributor’s warehouse to retailer’s warehouse is known as inbound
logistics.

For inbound logistics, the trucks usually belong to 3PLs. 3PLs charge the retailer or manufac-
turer on the basis of distance the truck travels, its capacity, and fuel cost. Generally, they charge
on a full truck basis regardless of whether the truck is fully loaded or not. For this reason, the
warehouse that loads the truck makes sure that it has enough orders for goods from the retailer
warehouse to make the truck full.

In the software product up to release 5, functionality was provided for calculating transporta-
tion cost, basic appointment functionality at warehouse for loading of truck, and appointment at
the other warehouse for unloading of truck. Functionality for what goods are loaded in the truck
is also provided.

Warehouse
(manufacturer/

distributor)

Dock doors

Truck 1 Truck 2

Dock doors

1 2 3 4 5

Warehouse
(retailer) Retail outlet

1 2 3 4 5

Figure 1.19  Retail outlet, warehouses, and movement of trucks.

22  ◾  Software Project Management: A Process-Driven Approach

1.12.3  New Functionality in Release 6.0
The most important feature that is added in release 6.0 is a very sophisticated appointment schedul-
ing of trucks at both receiving and shipping warehouses. In a fast-paced work environment, waiting
for trucks for loading and unloading is a waste of time. It was felt that on an average, the trucks were
waiting for 5 h at each warehouse. This situation was a cost-effective proposition for all the parties
including the manufacturer/distributor, 3PL service provider, and the retailer. A mechanism was
needed that would ensure that this waiting time can be reduced drastically. It was when a decision
was taken to have a very sophisticated appointment scheduling functionality in the software product.

Appointment scheduling is a complex concept. There are many factors to be considered to real-
ize this functionality. When a truck arrives at a warehouse for unloading, a quality control check
is performed for the received goods at the dock door. Quality control inspectors must be present at
the dock doors at the time of receiving. To unload the goods, labor should be available at the dock
doors. All dock doors at a warehouse are not the same. Some of them can receive a particular type
of goods while some other dock doors can receive some other types of goods. Similarly, all dock
doors cannot dock all kinds of trucks. Some dock doors can dock only a particular type of truck
while some other dock doors can dock some other types of trucks. The same considerations need
to be made at the shipping warehouse.

When orders are received at the shipping warehouse, they need to get a truck from a 3PL
service provider fast. They also need to pack goods in the warehouse as per the orders received.
When the truck arrives, the warehouse staff must inform it as to which door it has to dock at. On
the other hand, if just by processing orders, all these details become available at the warehouse
automatically, the warehouse staff just has to execute as per available details. They will pack goods
and then place the goods at the dock door from where it has to be loaded in the truck. The 3PL
service provider already has been informed in advance by the software system as to when a truck
is required at the designated dock door at the particular warehouse. Once the goods are loaded,
the truck leaves for the retailer warehouse. The retailer warehouse already has information as to
when and where the truck will arrive. So at the designated time, everything is ready at the retailer
warehouse. So theoretically, we can see that there is no loss of time anywhere right from truck
arrangement for loading to unloading of truck. However, in reality, there could be instances when
a suitable dock door is not available for loading or unloading, due to various reasons. These reasons
could be an already busy dock door, a dock door closed for out of operation hours, the unavailabil-
ity of quality control inspectors or labor, etc. But all of these are valid reasons for delays. Overall,
this functionality will help in cutting unnecessary delays.

We will discuss details about this project in most of the chapters throughout this book.

1.13  Chapter Summary
Work on projects constitutes a major proportion of world GDP (close to 25%). Software and IT
projects are in turn are important activities, which constitute close to 25% of all project works.
Software project management is all about managing diverse activities involved in typical software
project. A software project manager needs to manage project team, suppliers, customers, and
project tasks on a daily basis. To manage these activities in a controlled and consistent manner,
he needs to make a good project plan and then execute it effectively. He also needs to work in the
environment provided by the organization. All his activities and the project itself will be influ-
enced to a large extent by this environment. In modern software project management practices,

Introduction to Software Project Management  ◾  23

role of this organization-wide environment is increasing day by day. This factor is significantly
influencing software project management.

Exercises
1.1	 �It is said that government spending on IT is increasing as government departments take ini-

tiatives to improve customer service or have a wider reach of services. Find out what factors
are responsible for the increase of IT spending by government agencies. Also list and explain
the three biggest IT projects undertaken by the federal government in recent times?

1.2	 What you think are the major characteristics of a project?

Review Questions
1.1	 How do you define the word, “project”? How are software projects different from other

kinds of projects?
1.2	 Why do software development projects fail?
1.3	 What remedial measures can be taken so that software development projects do not fail?
1.4	 What is software project management?
1.5	 What are typical project management processes?
1.6	 What are the essential qualities of a software project manager?
1.7	 What are software project management metrics?
1.8	 How are project management and software development processes related to each other?

Recommended Readings
	 1.	F. F. Tsui, O. Karam (2006) Essentials of Software Development, Jones & Bartlett Publishers,

Sudbury, MA.
	 2.	 M. Hamilton (1999) Software Development: Building Reliable Systems, Prentice Hall PTR, Upper

Saddle River, NJ.
	 3.	 E. McGuire (1999) Software Process Improvement: Concepts and Practices, IGI Global, Hershey, PA.
	 4.	 A. Bahrami (2008) Object Oriented Systems Development, McGraw-Hill Education (India) Pvt Ltd.,

New Delhi, India.
	 5.	 D. Philips (2004) The Software Project Manager’s Handbook: Principles That Work at Work (Practitioners),

Wiley-IEEE Computer Society Press, New York.
	 6.	 R. Kazman (2008) COTS Based Software Systems: Third International Conference, ICCBSS 2004,

Redondo Beach, CA.
	 7.	 K.-J. Lin (2007) Service-Oriented Computing—ICSOC 2007: Fifth International Conference, Vienna,

Austria.
	 8.	 C. B. Tayntor (2005) Successful Packaged Software Implementation, CRC Press, Boca Raton, FL.
	 9.	 D. D. Galorath, M. W. Evans (2006) Software Sizing, Estimation, and Risk Management, CRC Press,

Boca Raton, FL.
	 10.	A. Kossiakoff, W. N. Sweet (2002) Systems Engineering Principles and Practice, Wiley-Interscience,

New York.
	 11.	 S. H. Kan (2002) Metrics and Models in Software Quality Engineering, 2nd edn., Addison-Wesley

Professional, Boston, MA.

25

Chapter 2

Project Initiation Management

In the previous chapter, we learned

◾◾ What is a project?
◾◾ What is a software project?
◾◾ What processes are involved in a software project?
◾◾ How are people, processes, tools and technology integrated in a project?
◾◾ What are the characteristics of a good project manager?
◾◾ What are the subprocesses in the project management processes area?
◾◾ What management metrics are measured on software projects?

In this chapter, we will learn

◾◾ How is a project initiated?
◾◾ What is a project charter?
◾◾ What is project scope?
◾◾ What are project objectives?
◾◾ What project activities are performed during project initiation?

2.1  Introduction
Software projects are notorious for initial hiccups and false starts. This usually has to do with an
unclear project charter, an unclear project scope and unclear requirements. While many project
stakeholders (mostly top management) realize that they are in need of a software system badly, they
hardly know exactly what they are looking for. This situation leads to chaos. Even though a project
team is formed at this stage, nobody is clear as what is to be done. This has led many projects to
fail even before they started.

26  ◾  Software Project Management: A Process-Driven Approach

However, if the project manager is adept and experienced, then he can handle such a situa-
tion. He can chart out some plan of action and can do some hard bargaining to get things going.
He can identify who exactly the stakeholders are and their needs. For this to happen, the project
manager must have a good idea of the business situation and what causes are exactly plaguing the
business. He also should strive hard to think about the software solution that can pave the way for
the business to help the management to come out of the morass. Generally this is not the typical
role of a project manager, but if this kind of situation is encountered, and if the project manager is
experienced to deal with it, then definitely it can boost chances of the project going forward. He
can then engage a project team for the task.

This is the scenario at most of the in-house software projects. In the case of outsourced proj-
ects, things are different. The project manager from the service provider’s side may have partici-
pated in project negotiation along with the marketing team to bag the project. In such cases, the
project charter and project scope are much better defined as compared to the previous situation,
and thus, the project has much better chances of going forward.

During project initiation, the project manager has to do a lot of ground work where he will pro-
vide initial and rough effort estimation, identify risks and make risk mitigation strategies, define
the project scope, prepare a project charter, etc., after consultation with the project stakeholders.
Most of these initial artifacts, which are just sketches at this stage, are refined and developed
further in later stages of the project whenever more understanding about the project is realized or
when project objectives get changed.

2.2  Define Project Charter
Most projects start on a high note. Stakeholders have high hopes. Accordingly, lofty project char-
ters are made. Unfortunately, as the project progresses, all the enthusiasm vanishes quickly. So
what could be done to avoid such situations?

The project stakeholders need to set their expectations with grounded realities. All their
hopes should be aligned with practical limitations and achievable goals. If this is not done
right from the inception of the project, the project is going to falter all the way. The project
charter [1] should include things like project goals, project objectives, major responsibilities
allocation, etc. But a simple project charter may be a simple statement from the top manage-
ment (Table 2.1).

The project charter is the place where a big picture of the effort, even beyond the project, is
captured. For instance, say, the project is part of a product development effort in which the prod-
uct is being developed incrementally. The product development consists of many small projects for
which a small set of features are being developed and added into the product each time a project
gets completed. The project charter will capture information for the entire effort to build the
ultimate product through these small projects, and in fact, during all of these projects, the project
charter may remain the same with not many changes. Similarly, the project charter should also

Table 2.1  Sample Project Charter

The project will provide a cutting edge software solution to our sales team to provide
excellent customer service for our customers so that all customer issues can be solved within
24 hours of lodging of a complaint.

Project Initiation Management  ◾  27

include the business goals for which the software project is being initiated, and also state that the
software project will help in achieving those business goals.

2.3  Define Project Scope
After analyses of failed projects, it has been found that most of the projects fail because of an
increase in the scope of the project over time. An increase in project scope [2] happens primarily
due to two factors. One factor is that as the project progresses and features are being built in
the application, the user community, after seeing the partially made application, may feel that
some additional functionality is also needed to do their job using the newly built application.
So they keep making change requests throughout the development cycle. This not only disrupts
development activity, it also makes the application susceptible to defects. But the most impor-
tant impact over the project is the increase in the volume of the project work [3], which results in
the escalation of costs and an elongation of the schedule. The other factor that results in change
in the project scope is a poor requirements definition. A poor understanding of requirements
or a poor definition of requirements leads to changes required later on in the software design
or software build to rectify this problem. In any case, the project scope increases due to these
factors. Table 2.2 shows a simple project scope.

To deal with scope creep, it has to be ensured that the requirements are lucid and clear
from the very start so that project effort estimation and project schedule are accurate. If any
changes are to be made in requirements, then there should be a proper change request mecha-
nism that will identify the impact of the change on the project and this should be commu-
nicated to the stakeholders. All these aspects should be clearly defined during the initiation
stage itself.

There is one more aspect about project scope, apart from the volume of work, in terms of the
number of features that has been discussed in the previous paragraphs. It is the fact that the soft-
ware product to be produced needs to have a specific level of quality [4]. This level of quality needs
to be frozen during the project initiation phase. Suppose you need to build a defense application
for national surveillance for detecting attacks by an enemy. This kind of system requires confi-
dential and limited access control, a sophisticated and bullet-proof information system, fast and
accurate access to information, and extreme reliability. Definitely, such a software system needs to
be of very high quality in terms of reliability, security, correctness, and efficiency. A high level of
quality for such a software system translates into high effort required for building this application.
In contrast, a game built for kids does not need to have such quality requirements, and thus, the
effort required to build that game will be much less.

So, a combination of a number of features and the quality level determines the total volume of
work. It is very important, early on in the project, to clearly lay out these aspects so that the volume
of work can be determined.

Table 2.2  Sample Project Scope Definition

The project will be delivered within 15 months from the date of start of the project. The
software product that will be made through this project will have features for customer
complaint logging, issue resolution, and issue closure. The software product should have the
capability of supporting our customer base of 10,000, who will be using the service through
an Internet connection by logging into our web portal.

28  ◾  Software Project Management: A Process-Driven Approach

2.4  Define Project Objectives
The project should have a set of well-defined objectives [5] that must be met. If any of these
objectives are not met upon completion of the project, then the project will be considered to be
a failure. The stakeholders state and set the project objectives. The objectives should be stated
in clear language and the set of objectives should be kept as small as possible. Examples of
project objectives could be reducing/completely eliminating paper-based transactions in the
organization after implementation of the proposed software application to reduce transaction
processing time, centralization of marketing function across the organization to reduce costs,
etc. (Table 2.3)

If clear project objectives are set at the project initiation, it would help the project team
to understand the importance of the project and will help the team to do its best to achieve
the goals.

2.5  Practical Considerations
One size does not fit all! You cannot have a cookie cutter to create a project plan from a simple tem-
plate. Different kinds of projects need different approaches. If you have a Web project, then you
have entirely different activities and tasks required to be completed for the project, compared to a
project to make a software application for a mainframe computer. Similarly, the quality required
for making a surveillance application for a defense project will be of higher quality, compared to
an application made for viewing information on the Web.

Some of the factors that make project management vary for different projects are as follows:

◾◾ Project size: Project size is the single-most important factor that makes the approach to
handling one project different from another. Smaller projects need less formal project man-
agement than the larger ones.

◾◾ Product quality: If the software product to be made requires stringent quality measures, then
an elaborate quality control mechanism will be required throughout the project process to
ensure that defects are prevented in the product at each stage of development. On the other
hand, if the software product to be made does not need stringent quality norms, then a cur-
sory quality control mechanism will be enough.

◾◾ Technology: Technology plays an important role in determining productivity on any project.
If the platform is some older technology, like a client server, and the programming language
is, say Ada, then the project effort will be considerably more than if a newer and more pro-
ductive technology, say Java, is used.

◾◾ Code reuse: Code reuse can considerably reduce the required project effort. So, the effort on
two projects will be very different if one project code reuse has been extensively used, com-
pared to some other project where code reuse has not been used.

Table 2.3  Sample Project Objectives

The organization will be able to increase customer satisfaction to 99.5% from the existing
level of 92%. This will help in reducing customer attrition, increasing repeat business from
existing customers, and enhancing our brand value.

Project Initiation Management  ◾  29

Due to these factors, each project has different needs for quality levels and has different pro-
ductivity levels. Understanding these factors and taking them into account when project initiation
takes place will give a proper start for the project.

Project initiation is the right time when project expectations, project scope, project deliver-
ables, quality standards, cost estimates, etc., should be correctly set so that a good project plan can
be made, which in turn can lead to smooth project execution.

2.6  Estimate Initial Project Size
At the project initiation stage, a rough project size [6] should be estimated so that a sketch of the
initial project plan can be realized. From the initial requirements (as available in a Request for
Information quote), a rough design estimate can be made. The rough design can include details
about how the product can be broken down into parts. These parts can be sized from estimating,
either the estimated number of lines of code required to build them or by using an estimated num-
ber of function points. After the size of each part or module is determined this way, the complete
size of the software product can be determined. Since at the initiation stage detailed information
about project parts is not clear, the estimate of the product size is also rough. However, this can
be taken as a starting point, and the product size estimate can be refined as the project progresses.

Especially on outsourced projects, a rough product size estimate should be made during the
initiation phase so that a general idea about the project can be made and passed on to the stake-
holders. This information will be helpful for them to make crucial decisions about the project.

In Figure 2.1, the software product to be made is shown as consisting of six main features.
These six features together constitute the entire software product to be made. To make the soft-
ware product, the software project will involve tasks consisting of project and software develop-
ment life-cycle-related tasks. Rough estimates about project and product size can thus be made on
the preliminary data available.

A study of data available for previously executed projects can throw some light while estimat-
ing the size of the software product to be made. So, if data is available for a similar sized project,
use it to show the customer how big the current project should be.

Feature 1 Feature 2 Feature 5

Feature 3 Feature 4 Feature 6

Software product

Software project

Figure 2.1  Initial software product and project size estimate.

30  ◾  Software Project Management: A Process-Driven Approach

2.7  Estimate Initial Project Effort and Costs
Initial project cost estimates [7] can be determined from the productivity of the members of the proj-
ect team, the effort estimate, the number of hours put in by software professionals, and the prevailing
hourly rate of software professionals who will be working on the project as project team members.

The cost of the project is one of the most important considerations of stakeholders. If the
project is going to cost more than they had anticipated and budgeted for, then most probably,
the project will be called off. In some cases, the stakeholders may agree to a reduction in the size
of the project so as to reduce the cost of the project.

From Figures 2.1 through 2.3, we have some initial data available for a project. The initial stage
data suggests that requirement specification development will take 2 months of time, and software
design, software construction, software testing, and software deployment will take 2, 6, 2, and
2 months, respectively. That means, the total schedule for the project is 14 months. For requirement
development, two people are required, and for software design, software construction, software test-
ing, and software deployment two, six, four and two people are needed, respectively. That means,

Feature 1 Feature 2 Feature 5

Feature 3 Feature 4 Feature 6

Software product

Software project

E	ort estimate

Cost estimate
Cost (S) = 56 × 4,000 +

 20% (56 × 4,000)
 = 268,800

Man months = 56

Figure 2.2  Initial software project effort and cost estimate.

Feature 1 Feature 2 Feature 5

Feature 3 Feature 4 Feature 6

Software product

Software project Schedule estimate

Req. spec. = 2 months

Design = 2 months

Construction = 6 months

Testing = 2 months

Deployment = 2 months

Total schedule = 14 months

Figure 2.3  Initial software project schedule estimate.

Project Initiation Management  ◾  31

the total effort required is 56 man months. On an average, the salary of each project team member
is $4000 per month. Overhead costs for the project are taken as 15% of the cost of salaries of the
project team members. So tentative development costs will be $268,800 for the project.

Data from previously executed projects can be used for estimating the cost for the current
project. Customers will love to know just how much their project will cost them very early in the
project, at the initiation stage itself.

2.8  Estimate Initial Project Schedule
Like project cost, the project schedule is one of the most critical aspects of the project. Stakeholders
may have the objective of gaining a marketing edge over the competition by implementing the
proposed software application. Many of such objectives are time sensitive, and the stakeholders
may like to see the new system implemented before a specified date.

During project initiation discussions, stakeholders may ask the project manager to reduce the
project schedule [8] that has been presented to them, even if project costs rise because of this. In
such cases, the project manager may have to adjust his project schedule to suit the needs of the
stakeholders. He will have to adjust his project plan, resource allocation, etc., accordingly.

2.9  Create Initial Project Plan
The project manager needs to create a tentative project plan [9] during the project initiation stage
to demonstrate to the customer what kind of resource requirements, effort required, and timelines
could be expected for the project. This will be one of the selling points for the project. The most
important aspect of this tentative project plan is to let the customer feel confident about the proj-
ect. If timelines, costs, or effort figures are not as per customer expectations, then discussions can
be held with the customer to win on some points and negotiate on others.

Nowadays, the time window of opportunity for businesses is limited, and the customers
look to utilizing this time window to the utmost. So, they need the fast development and
implementation of the software system to utilize this time window. Hence, even if costs are
on the high side, they will like to go in for faster software product development so that it is
implemented quickly, and they can start using it to tap the business opportunity within the
time window. For this reason, the project manager has to make a project plan that will enable
software development at a faster speed and thus realize customer expectations. So, it may often
happen that the project manager may need to revise his project plan and present a revised plan
to the customer.

2.10  Project Initiation in Iterative Model
One of the goals of the iterative model is to reduce project size and to make a number of smaller
projects instead of going in for a large project and building the entire software product in one go.
Project size is reduced by dividing the set of complete requirements into many smaller sets and
developing smaller software products out of these smaller sets of requirements, taking one set of
requirements at a time. So the big software project becomes a set of smaller projects. These smaller
projects are known as iterations. The first iteration starts from scratch as each building block for this

32  ◾  Software Project Management: A Process-Driven Approach

iteration is developed from scratch. Once this iteration is over and approved by the customer, the
next iteration begins. This time, the product is built over what was developed in the first iteration.

In the iterative model, planning the project is done at three levels. At the top level, the proj-
ect plan for the development of the entire product is conceived. The time span for such a plan
could run into several years. At the middle level, project planning is done at major releases of the
software product. The time span for such plans could be at the year or half year level. The lowest
project plan is the plan for each iteration. A better term for it could be the iteration plan. At this
level, the project plan could run from a few weeks to a few months. Many software vendors have
minor releases per quarter, and the iterations can coincide with these minor releases.

The product developed in each of these iterations could be a complete standalone product; dif-
ferent from products made in other iterations. But in general, products made from these iterations
are partial products and not fully functional products. However, the product made from the first
iteration is a fully functional product that can be run and whose features can be seen. In subse-
quent iterations, more features will be added on top of this product.

So, we can see that project initiation is a very low-key affair at the iteration level. The project
team decides/picks the next set of requirements to work on after they are through with delivering the
previous iteration. Even at project level, initiation is not a big and formal affair. At the most, it is an
informal and low-key affair. But at the top level, where the product is conceived and development
is planned, project initiation definitely plays a big role. It is indeed a big decision to start building
a software product whose market potential may be excellent; nevertheless, it is a big risk to invest
money and time in building a new product. At that level, management commitment is more than
just the product itself. It has to do more with benefiting from market opportunity, planning for the
successful launch of the product in the market, planning the market strategy, etc.

In the example discussed in Figures 2.2 through 2.4, the project in an iterative environment will
have some differences compared to the traditional development model employed on a project. The
same project will not be completed in one linear progression. The requirements will be so divided
as to be covered over many iterations. If six requirements were decided upon (the same as the num-
ber of features depicted in Figure 2.2), devoting one full iteration to each of these main features,
we end up having six iterations during the project. Suppose it was decided that the entire project
needs to be completed in 18 months, then each iteration will run for approximately two and a
half months. Each iteration will have requirement development, software design, software construc-
tion, software testing, and software release phases. In the agile world (all iteration-based software

Tentative project plan Tentative project schedule

Project schedule

Project cost

Communication plan

Resource plan

Quality plan

Tool plan

Risk plan

Figure 2.4  Tentative project plan.

Project Initiation Management  ◾  33

product development models), the development phases are called and operated in a different manner
compared to the traditional waterfall model. So, we have phases such as storyboard development,
design, test driven development, module integration, testing and release. Before an iteration starts,
the requirements to be worked on are chosen from the list of requirements. But even before that, each
requirement is given a priority. The highest priority requirements are reserved for the first iteration.
The other phases of the iteration will be planned accordingly. All activities for the first iteration will
be firmed up before the iteration starts. But for other iterations, no concrete plan will be made. They
will be tentative at the most. In fact, the requirements themselves will be tentative in nature and can
be changed when more understanding and insight about that particular requirement is gained.

On other kinds of projects, there will not be a large list of requirements to start with. Even
though there is the intention of building a large product, the stakeholders may first like to test the
waters. In those cases, a few initial iterations can be treated like a feasibility study. The stakehold-
ers may first seek feedback from end users on, for example, the necessity of building the software
product, and then try to portray an overall picture. If the feasibility looks good, then the stake-
holders signal a go-ahead for the project. If not, they will decide to scrap the project. The cost of
scrapping the project at this stage will be small, and thus, the risk of losing large sums of money
on a failed project can be avoided.

2.11  Stakeholder Influence
For a project to be successful, it is very important that it has strong support from the stakeholders [10].
Generally, stakeholders are personally interested in the project, and estimate the value the project will
deliver to their organization on completion. If, for some reason, the stakeholders do not have confidence
in the project, the project is bound to fail. Stakeholder interest is the paramount factor for the life of any
project. Therefore, their involvement in the project must be ensured. To make a success of the project,
they must take initiatives and influence its progress. Generally, stakeholders have very high influence at
the beginning of the project. As the project progresses and stakeholders see that it is going in the right
direction, they slowly start distancing themselves from the project. So their influence on the project
diminishes. This is natural. Once they see some good progress and status reports on the project, they
are assured of the success of the project and so divert their attention to other issues in their organization.
But if the project falters, and stakeholders see that the project is going in the wrong direction, they are
forced to attend to the project more closely. They start giving more time to the project and try to influ-
ence it more (Figure 2.5).

Influence

Time

Figure 2.5  Stakeholder influence on the project over project life.

34  ◾  Software Project Management: A Process-Driven Approach

2.12  Quality Planning
From the start, quality planning [3] should be made an integral part of all activities associated with the
project. This will ensure that the product being developed has the right quality. Large projects have a
large number of project activities, and many of them are very complex. During the execution of their
tasks, people may forget about quality, or due to time constraints, may be forced to ignore it.

Quality planning during project initiation could include a broad framework of how the quality
of each and every work product, developed during the life cycle could be ensured. It may involve
defining the process map and deciding on how the quality of work products will be measured
and ensured. Some of the time-tested process frameworks for ensuring quality include, measuring
work product attributes often and comparing them with the desired quality levels to know if the
quality of the work products is good or bad.

2.13  Feasibility Study
For most projects, initiation is the stage when a make or break decision about the project should be
made. If a project is allowed to keep going despite getting wrong signals, then at a point far down-
stream, it may prove to be a very costly mistake when the project is forced to be abandoned. It will be
far better if a feasibility study [11] is conducted at the beginning of the project to know what chances
the project has of achieving the desired goals. Once the feasibility study is completed and a report is
made, then a review can be done to ascertain if the project should be continued or abandoned.

2.14  Project Division
In instances when it is felt that the requirements are not clear enough to proceed with the later
stages of the project, it makes a lot of sense to divide the project into two parts [12]. The first part
will deal with developing the requirements to the point where they can be taken for designing the
application, and the second part will deal with the development of the software application. This
is a good way to remove all uncertainties from the project. The requirement development part of
the project may not have a fixed deadline denoting completion (as there is no previous knowledge
as to how many requirements are there in the first place), but when the requirements are crystal
clear, the other part of the project to develop the software application will have a lot of clarity, and
thus, timelines and cost can be predicted with some good accuracy.

One alternative to project division is also available. It can be done this way. First, the cus-
tomer can ask for open bids from service providers with just the preliminary information which
is available about the project. At this stage, price or any monetary information for the project is
not included. Once a suitable service provider is chosen, he can be asked to make detailed require-
ment specifications. These specifications are then handed over to a third party expert who provides
project size information based on the requirement specifications. He hands over the project size
information to the customer and the service provider. The customer in turn can calculate the
required budget for the project given the prevailing market rates for software development costs.
The service provider calculates the schedule and the number of people required to do the software
development on the project based on its productivity level. So at this stage, project budget, project
duration, and the number of people on the project is fixed. Later, if the requirements are modified,
then the impact of the change on project schedule, project budget, and project team size can be
calculated, and the project information can be adjusted accordingly (Figure 2.6).

Project Initiation Management  ◾  35

On paper, this arrangement looks good. But what are the weaknesses of this model? Well, one
point of contention is how good the bidding process will be. After all, without detailed informa-
tion being provided for the bid, how can service providers make good bids? Then, how is the cus-
tomer going to know which bid is good and which one is not in the absence of vital information on
bid responses like project cost, project schedule etc. So the bid selection will be mostly arbitrary.
This is the weak point in this model.

2.15  Artifacts of Project Initiation
Since project initiation forms a very early part of the project, much project information is still
not clear. Even customer requirements are not complete. So, it is too early to expect all details of
the project, including project plan, project schedule, resource allocation, etc., to be developed.
But we can definitely freeze the project scope, project charter, and project objectives at this stage.
Similarly, if a feasibility study has been conducted, then the feasibility report may be one of the
artifacts for the project.

2.16  Case Study
In Chapter 1, we saw the introduction of the project of our SaaS vendor. We will now continue
with our case study and discuss how the project initiation part of the case study was done for the
release 6.0 of the product of our SaaS software vendor.

2.16.1  Project Charter
In the industry there are no good solutions available for appointment scheduling. By creating this
functionality, the SaaS vendor wants to become a leader in this arena. Existing as well as potential
customers are also eagerly waiting for a good solution that could substantially cut the waiting time

1. Preliminary requirements
2. Invite bids
3. Select service provider
4. Select expert
5. Bear project cost
6. Initiate change request

Customer Expert Service
provider

1. Calculate project size
(revised project size)

1. Reply for bid
2. Calculate productivity
3. Calculate schedule
4. Make project team
5. Build software
6. Adjust project schedule
7. Adjust project team size
8. Hand over software product

Figure 2.6  Alternative model for project division.

36  ◾  Software Project Management: A Process-Driven Approach

during the shipping–transporting–receiving operations of goods. After building and implement-
ing the appointment scheduling solution, the SaaS vendor will be able to effectively satiate the
needs of its customers.

2.16.2  Project Scope
Appointment scheduling functionality is the biggest feature for the 6.0 release. It could not be
completed in one iteration. So, it was divided among four iterations. Calendars were created sepa-
rately for dock doors, warehouses, organization, etc. in the first iteration (release 5.3).

The existing functionality of appointment scheduling up to the release of 5.2 was limited only
as a mechanism to announce the arrival of the truck for either shipping or receiving at the ware-
houses. It was not actually making an appointment, as no constraints were considered for making
an appointment.

For truck appointments at dock doors for loading/unloading, there are a lot of constraints to be
considered. Therefore, it was decided to create the functionality over many phases. Thus, in release
5.3, only constraints of truck type and goods types were considered for making appointments. At
this juncture, calendars were also used for dock doors (if for instance, a dock door is open from 6
am to 6 pm on Mondays, then if any truck arrives after 6 pm its appointment will be considered only
for the next day). In release 5.5, the functionality was enlarged to consider constraints of labor avail-
ability, quality control inspector availability, expected arrival time of truck, time window for mak-
ing an appointment, and dock door type. In release 5.8, the functionality was enlarged to consider
constraints of business partner preference, truck capacity, reservation frequency on a dock door,
and reservation lead time. In the final iteration, the functionality was enlarged to consider the con-
straint of time gap between appointments. In this iteration, more time was given for testing than for
development as the vendor wanted to make sure that all the functionalities work well, and that the
software product do not fail. Instead of having a large number of poorly made features, it is better to
have a software product with a limited number of features that are robust and will not fail. Reliability
was the top priority.

After the four iterations and the entire 6.0 release, the software product should be able to be
implemented with the new functionality by all existing customers as well as new customers who
will sign contracts during this period.

2.16.3  Project Objectives
The software vendor could see that there was a large gap in the market for supply chain manage-
ment software solutions in the grocery retail segment. The software vendor’s flagship software
product already had functionality for transportation management, inbound logistics, outbound
logistics, fleet management, transportation rate calculation management etc., up to release 5.6 of
the software product. The project charter for the project to release 6.0 (through minor releases of
5.3, 5.5, and 5.8) was to create additional functionality, such as appointment scheduling for ware-
houses with incoming trucks and an audit trail for all transactions.

Most software planning systems use complex logic to implement solutions which could be
used in real world planning systems. Unfortunately, most of the systems fail miserably in deliver-
ing on promises. One reason is that real world happenings are far from ideal. There is always some
unplanned risk lurking around the corner that can upset the rhythm of even the most meticu-
lously planned activities. Then the planning logic is error prone.

Project Initiation Management  ◾  37

A good algorithm was needed in the first place. Secondly, it had to be implemented in such a
way that it would provide a real world solution. So, it was decided to go in for hard as well as soft
constraints for making the appointment scheduling of an incoming truck for loading/unloading
at a dock door. The soft constraints could be overridden if some other constraint that is higher in
hierarchy is satisfied in the current situation. But the hard constraints are such that they will never
be overridden. All the constraints are thus put in a hierarchy, with some of the constraints higher
up in the hierarchy and others lower.

2.17  Chapter Summary
Project initiation most often happens with a kick off meeting involving the project manager,
the stakeholders, and some key project members. They define the project charter, project scope,
and project objectives. A preliminary effort and cost estimate is chalked out. A preliminary
sketch is also made for the project schedule so that a tentative duration for the project can be
established.

At the initiation stage, everything about the project is tentative. But the goal is to see if the
project is itself feasible or not. For this purpose, a feasibility study can also be conducted in case
the confidence level for the project is still uncertain. If the project is found not viable after the
feasibility study, it can be abandoned. Abandoning an unfeasible project at this stage is less costly
than abandonment after investing large sums of money and effort. In cases when it is felt that the
requirements from customers are not clear or complete, then the project can be split so that the
requirements can be made clear and complete in the first phase of the project. In the second phase
of the project, the software product can be built on the basis of complete customer requirements.

Exercises
2.1	 �Project initiation is always fraught with the possibility of developing misunderstanding

between the project stakeholders and the project teams. Provide a list of actions that the
project team can take to avoid building such a situation.

2.2	 �Go to some open source projects and find out about their project charters. Find out why they
have those project charters.

Review Questions
2.1	 What is a project charter? How can you ensure that the project charter is useful for the

project?
2.2	 What things should go on the list containing project objectives?
2.3	 How can you ensure that the project scope for a given project is well defined at the initiation

phase so that it does not get over stretched later?
2.4	 What are the difficulties faced by software projects during project initiation?
2.5	 What is the relation between quality level and project scope?
2.6	 What other activities are performed during project initiation apart from defining project

charter, project objectives, and project scope?

38  ◾  Software Project Management: A Process-Driven Approach

Recommended Readings
	 1.	 H. Kerzner (2009) Project Management: A Systems Approach to Planning, Scheduling, and Controlling,

Wiley, Hoboken, NJ.
	 2.	 J. P. Lewis (2002) Fundamentals of Project Management: Developing Core Competencies to Help Outperform

the Competition, American Management Association, New York.
	 3.	 É. Verzuh (2005) The Fast Forward MBA in Project Management, 2nd edn., Wiley, New York.
	 4.	 A. Ahmed (2009) Software Testing as a Service, CRC Press, Boca Raton, FL.
	 5.	 R. J. Muller (1997) Productive Objects: An Applied Software Project Management Framework, Morgan

Kaufmann, San Francisco, CA.
	 6.	 E. Miranda (2003) Running the Successful Hi-Tech Project Office (Artech House Technology Management

and Professional Development Library), Artech House Publishing, Boston, MA.
	 7.	 C. F. Gray, E. W. Larson (2002) Project Management: The Managerial Process, McGraw-Hill/Irwin, Burr

Ridge, IL.
	 8.	 Q. Wang (2008) Making Globally Distributed Software Development a Success Story: International

Conference on Software Process, ICSP 2008, May 10–11, Leipzig, Germany.
	 9.	 H. A. Levine (2002) Practical Project Management: Tips, Tactics and Tools, Wiley, New York.
	 10.	 J. McManus (2004) Managing Stakeholders in Software Development Projects (Computer Weekly

Professional), Butterworth-Heinemann, Amsterdam, the Netherlands.
	 11.	 J. Sanchez, M. P. Canton (2007) Software Solutions for Engineers and Scientists, CRC Press, Boca Raton, FL.
	 12.	 S. Donaldson, S. G. Siegel, S. Siegel (2000) Successful Software Development, Prentice Hall, Upper

Saddle River, NJ.

39

Chapter 3

Software Project Effort
and Cost Estimation

In the previous chapter, we learned

◾◾ How is a project initiated?
◾◾ What is a project charter?
◾◾ What is project scope?
◾◾ What are the objectives in a project?
◾◾ What project activities are performed during project initiation?

In this chapter, we will learn

◾◾ How is an effort estimate for a project made?
◾◾ What are the different effort estimation techniques?
◾◾ How is a cost estimate for a project made?
◾◾ What are the different cost estimation techniques?
◾◾ How is a schedule estimate for a project made?
◾◾ How is a resource estimate for a project made?

3.1  Introduction
Effort estimation for any software project is very important. However, for outsourced projects it is
even more crucial. Effort estimate along with the schedule indicate to the customer what the cost
impact will be and when the software can be realized. The management in customer organiza-
tions typically expects a lot from software projects. Software projects are seen as strategic tools to

40  ◾  Software Project Management: A Process-Driven Approach

compete in the market. Therefore, a successful software implementation is regarded as a market
edge and can influence the fortunes of that organization.

Software projects are costly as software professionals are expensive to hire. The optimal usage
of time of these high-salaried people requires careful project planning to minimize wastage of
time of these high-cost resources. At the same time, the service provider should be able to bill its
customer for the actual effort put forth in delivering the project so that neither the customer nor
the service provider is at a loss for wrong billing in the costs involved. Therefore, an accurate effort
and cost estimate is of paramount importance for software projects.

With regard to effort for a software project, there are two aspects. One is to provide a good
effort estimate and present it to the customer. The other aspect is to use it to form the project team
based on the skills required for the project and the kind of budget that will be available for the
project so that the right kind of people can be staffed for the project within the specified budget.
Tight budgets and tight schedules are the general norm for most projects today and this makes
good and reliable effort, schedule and cost estimates for projects even more important.

3.2  Effort Estimation Techniques
Effort estimation is an evolutionary phenomenon. The beginning of any project sees an initial effort
estimate which is rough and mostly inaccurate at best [1]. The more the information available about
the project, the more accurate will be the estimate. As more and more information becomes available
for any project as it progresses, it makes sense to revise project estimate regularly to make the estimate
more accurate (Figure 3.1).

Statistical effort estimate techniques are extremely useful for effort estimation [2]. Actual effort
data from past projects provide good guidance as to what the effort required for the given project
could be. Comparing data available for current project with past executed projects should provide
this valuable estimated effort information. Thus, historical projects data come in handy for effort
estimation. But how can one make estimates for projects in cases when no information or no relevant
information is available for the current project or past projects? Here we have the following scenarios:

	 1.	Much relevant project data are available for the current project but not much information
about previous projects.

	 2.	Previous project data are available for the project but not much information about the cur-
rent project.

Deviation

–15%
Time

+15%

Figure 3.1  Effort estimate deviation with elapse of time.

Software Project Effort and Cost Estimation  ◾  41

	 3.	Project data are available for the current project as well as that of previous projects.
	 4.	Some project data are available for the current project.
	 5.	No project data are available for both current as well as previous projects.

3.2.1  Choosing a Suitable Effort Estimate Technique
Different effort estimation techniques can be used depending on the situation [3]. If you have good
information available for the current project but no data available for previous projects, the best
technique for effort estimation will be the COCOMO model, because this model uses project size
information from lines of code (LOC) as well as project attributes available from current project
information. COCOMO also uses industry averages for environment factor calculations. Therefore,
if no previously executed project information is available then the COCOMO model is the best.

If we have data available for both current as well as previous projects then the function point
analysis (FPA) technique is a good option. This is because FPA technique uses historical project
data for deriving adjustment factors. It also uses historical project data to derive productivity for
projects. Therefore, in cases where we have both project as well as previously executed projects
data, FPA can be used. Otherwise this technique is difficult to use if both these pieces of data are
not available.

If we have some or all data available for the current project, then the Wide Band Delphi model
is the best. Wide Band Delphi technique essentially is an experience-based technique. People who
will be doing the actual project tasks along with other project team members derive effort esti-
mates for various project tasks after many brainstorming sessions (Table 3.1).

If we have no project data available for the current project then it is simply impossible to esti-
mate effort.

3.2.2  Function Point Analysis
FPA [4] considers two things for effort estimates. First, it determines size of the project in terms
of the number of function points (FPs). Second, it determines productivity of the project team.
Project size is derived from customer specifications. Based on customer requirements, an estimate
is made for the number of functions to be built. These functions are contained in either internal
or external files. Each of these functions has interfaces for communication with internal and
external files. These functions also have interfaces for communication with devices. The number
of parameters for each of these functions is determined. The complexity of these functions is also
determined. Based on function complexity and number of parameters inside each function, the
number of FPs is determined for each function. Totaling all these FPs gives the total number of
unadjusted FPs for the entire system to be built and then the adjustment factor for the system is
determined (Figures 3.2 and 3.3).

Table 3.1  Estimation Technique Selection Based on Project
Information Availability

Project Details Estimation Technique

1 Historical project data + current project data FPA

2 Current project data COCOMO, Wide Band Delphi

3 No data No technique can be used

42  ◾  Software Project Management: A Process-Driven Approach

The process for calculation is as follows:

	 1.	Determine type of function count
	 2.	Identify scope and boundary of count
	 3.	Determine unadjusted FP count
	 4.	Determine value adjustment factor
	 5.	Calculate adjusted FP count

For function count calculations, three types of function count are defined: development project
FP count, enhance project FP count, or application FP count. Depending on the type of project in
hand (development, enhancement, or application type of project), the suitable function count type
(FP count type) is chosen. FP count type is used for determining how the number of FPs will be
summed up. The scope of count is determined from the data, screens, and reports which will be used
by the application. The boundary is determined by the integration needs of the application with
other applications. If the application is a stand-alone one and will not be integrated with other appli-
cations, then the boundary value will be zero. But if some integration is required then using the inte-
gration interface, function counts for integration will be calculated. Calculation is done on the basis
of the number of external interface files and the complexity of the functions contained in those files.

An unadjusted FP count consists of five function types. These types are grouped into two, namely,
data functions and transaction functions. Data functions are internal logical files and external
interface files. Transaction functions are external inputs, external outputs, and external inquiries.
These functions are defined with descriptions like User Identifiable, Control Information, Elementary
Process, Data Element Type (DET), and Record Element Type (RET). For each file, the complex-
ity is determined using these descriptions. You make a table and calculate the complexity values of
Low, Average, or High depending on the values for DETs and RETs present in the file (Table 3.2).

Determine
function count

type

Boundary and
scope of count

Calculate
unadjusted function

point count

Calculate
adjusted function

point count

Apply value
adjustment factor

Figure 3.2  Function point count process steps.

Enhanced project
FP count

Application
project FP count

Function count
types

Development
project FP count

Figure 3.3  Function count types.

Software Project Effort and Cost Estimation  ◾  43

Based on the complexity, a value of FP is assigned for the file. A complexity of Low yields a value
of 7, for Average it is 10, and for High it is 15 for internal logical files. For external interface files,
the values are 5, 7, and 10, respectively. You also notice that FPs for external files are less than those
for internal files, because internal files are used more often during system operation than external
files. Hence, more FPs are assigned to internal files.

The FP calculation for transaction functions is similar (Table 3.3).
Based on the complexity, a value of FP is assigned for the external input. Complexity of Low

yields a value of 3, for Average it is 4, and for High it is 6 (Table 3.4).
Based on the complexity, a value of FP assigned for the external output. Complexity of Low

yields a value of 4, for Average it is 5, and for High it is 7. In case of external inquiries, it is 3, 4,
and 6, respectively.

Once we have the number of FPs for the entire system, we can derive the effort estimate for the
project by multiplying this number with productivity.

Table 3.2  Complexity Calculation
for Files (Internal Logical Files and
External Interface Files)

RET

DET

1–19 20–50 51+

1 Low Low Average

2–5 Low Average High

6+ Average High High

Table 3.3  Complexity Calculation
for External Inputs

RET

DET

1–4 5–15 16+

0–1 Low Low Average

2 Low Average High

2+ Average High High

Table 3.4  Complexity Calculation
for External Outputs

RET

DET

1–5 6–19 20+

0–1 Low Low Average

2–3 Low Average High

4+ Average High High

44  ◾  Software Project Management: A Process-Driven Approach

	 Effort (in man months) No. of Function Points Productivi= × tty

The calculation for productivity is yet another time-consuming process. Based on the expe-
rience and skills of project team members, productivity is calculated. There is no fixed for-
mula for productivity calculation. Mostly it is calculated using statistical process control data
from previous projects. The industry norm for productivity calculation is arrived at in terms
of effective LOCs generated per month per person. This figure includes work done in other
phases of the development life cycle as well (requirement management, design, testing, etc.).
So even though in the construction phase, actual LOCs generation may be 6000 per month
per person, the effective LOCs for the project may come to less than 600 since effort for work
done in other phases is also included. The industry norm for productivity in software develop-
ment industry is 300–1000 LOCs per month per person. When SPC data are not available,
productivity has to be calculated from scratch or an industry average figure has to be taken for
effort calculations.

There are also some other formulae to calculate schedule and staff size required to execute
the project. These were derived by luminaries in software engineering like Barry Boheim.

Project duration = 2.5 × (effort)1/3

Minimum duration = 0.75 × (effort)1/3

Optimum staffing size = (effort)1/2

3.2.2.1  Function Point Analysis Usage

The FPA technique can be used at early stage of the project when only the customer requirements
are available. It is a standard effort estimation method and is recognized by many customers.
FPA is, therefore, widely used in the industry. On the flip side, it is a difficult and time-consuming
technique and only experts can use it. Hence, it is not advisable to use the FPA technique when the
project estimators do not have the requisite experience.

3.2.3  Wide Band Delphi
The Wide Band Delphi technique [5] is based on conducting brainstorming sessions with the
project team and arriving at consensus figures for effort estimates. When effort estimates are made
by people who will actually work on the assignments for which they give the estimate, then figures
are likely to be close to the actual effort that will be required. The raw effort figures by the proj-
ect team members about their own assignments are then normalized when other team members
debate about these figures and any inconsistencies in the raw figures are removed. There are two
to three such brainstorming sessions. In the first session the raw estimates are discussed just to get
the basis on which the estimate was made. In the next two sessions, estimates are taken from other
team members. Finally, the estimate for each task is normalized.

One practical way of coming to a consensus effort estimate using the Wide Band Delphi tech-
nique is through the following formula.

	 Effort estimate (pessimistic estimate likely estimate= + × 44 optimistic estimate)/6+

Here pessimistic estimate is the one where a team member’s estimate is the highest (in terms of
number of man months). The likely estimate is the average of the most common estimate figure.
In most cases, the likely estimate is the estimate given by the person who has been assigned to the

Software Project Effort and Cost Estimation  ◾  45

task for which the effort estimate is being made. The optimistic estimate is the one where a team
member’s estimate is the lowest (in terms of number of man months).

The Wide Band Delphi technique is commonly applied on small to medium-sized projects and
where the project team is composed of people who have been around and have worked with each
other for some time. The project manager also knows that in such a situation some team members
make good estimates and some are not able to do it with that much precision. So the effort esti-
mate figure thus derived has a good backing by the team and the project manager. At the same
time, taking into consideration all effort estimate figures from all team members makes the figure
rather objective and reliable.

3.2.4  COCOMO
COCOMO [6] is one of the original effort estimation models developed by software engineer-
ing experts. It is also a very popular technique for effort estimation for software projects. Since
COCOMO does not use SPC data, it can be used in cases where past project data are not
available. Rather COCOMO uses industry averages for inputs in providing effort estimation
calculations.

COCOMO uses project assumptions, definitions, and many cost factors in assessing an esti-
mate for any project. It uses source LOCs required to build the software as the volume of work to
be done for which the effort estimate is made. Apart from source LOCs, there are cost drivers and
scale drivers which influence effort. Cost drivers include software safety, developer skill, usage of
tools, etc. All of the cost drivers are categorized into personal factors, product factors, platform
factors, and project factors. Personal factors include analyst capability, application experience,
programmer capability, language and tool experience, etc. Product category includes database size,
required software reliability, product complexity, required reusability, documentation needs, etc.
Platform factors include execution time constraint, main storage constraint, virtual machine
volatility, platform volatility, platform difficulty, etc. Project factors include use of software tools,
modern programming practices, required development schedule, multisite development, require-
ment volatility, etc. The scale drivers include precedentedness, development flexibility, architecture/
risk resolution, team cohesion, and process maturity.

3.2.4.1  Basic COCOMO

There are many ways COCOMO calculations can be made, as variations of the original COCOMO
model have been improved upon or adapted to suit many environments. For a quick effort calcula-
tion, a variation of the COCOMO model is used which is known as basic COCOMO.

The basic COCOMO calculation equation is as follows:

	 Effort 2.94 ()= × ×EAF KLOC E

where
EAF is the effort adjustment factor derived from cost drivers
E is the exponent derived from scale drivers
KLOC is the kilo lines of software code

Values for EAF range from 1.0 to 2.0. Values for E range from 1.0 to 1.5.

46  ◾  Software Project Management: A Process-Driven Approach

Schedule duration is calculated as

	 Duration 3.67 (effort)= × SE

where SE is the schedule equation derived from scale drivers.
Staffing needs can be calculated by dividing effort with duration.
In the basic COCOMO model, hardware constraints, use of modern tools and techniques,

personal productivity, etc. are not taken into account.
Basic COCOMO is most suitable for making estimates at early stage of any project.

3.2.4.2  Intermediate COCOMO

In intermediate COCOMO, we make an effort estimate for the project with the product size
along with the cost drivers. The cost driver set includes assessment of attributes for product, proj-
ect, hardware, and the project team’s experience and skills. These attributes are categorized as
product attributes, which include required reliability, application database size, and application
complexity.

Hardware attributes include run-time performance constraint, memory constraint, virtual machine
environment volatility, turnabout time requirement.

Project team attributes include analyst capability, software engineer capability, application experi-
ence, virtual machine experience, and programming language experience.

Project attributes include software tool usage, software engineering methods usage, and develop-
ment schedule requirement.

How each of the cost drivers impacts the effort estimate is assessed by assigning appropriate
weights to these attributes. To assign these weights, first a six-point scale is created with scales of
very low, low, nominal, high, very high, and extra high. The values for these scales vary from a low
of 0.70 to a high of 1.60. For any project, each of the attributes is given relevant values based on
this scale. These attribute values are industry standard but at what scale value any attribute falls is
decided by the estimating person (Table 3.5).

The formula for intermediate COCOMO is given as E = a(KLOC)(E ). EAF, where a and E
are a coefficients whose values depend on the kind of software project (organic, semi-detached, or
embedded) for which the estimation is being made (Table 3.6).

3.2.4.3  Detailed COCOMO

In basic and intermediate COCOMO, the effort estimate is a gross estimate at the project level.
But a project is further divided into many phases. Each phase may need to have a separate effort
estimate calculation. This is done in the detailed COCOMO model.

In the initial stages of the project, when a rough estimate is needed for each project phase, the basic
COCOMO model is used. In later stages in the project when all project details are clear and an effort
estimate is needed for each project phase, the intermediate COCOMO is used to calculate the effort
estimate for each phase. The same values that are used for calculation at the project level can be used for
calculations at the phase level. The only difference will be that at this level, the effort estimate will take
values for relevant cost driver attributes and not for the entire project. For instance, for the design phase,
the effort estimate will take attribute values only for cost drivers that will influence the design phase.

Software Project Effort and Cost Estimation  ◾  47

Table 3.5  Scale and Scale Values for Attributes of Cost Drivers

Cost Drivers

Ratings

Very Low Low Nominal High Very High Extra High

Product attributes

Required software
reliability

0.75 0.88 1.00 1.15 1.40

Size of application
database

0.94 1.00 1.08 1.16

Complexity of the
product

0.70 0.85 1.00 1.15 1.30 1.65

Hardware attributes

Run-time performance
constraints

1.00 1.11 1.30 1.66

Memory constraints 1.00 1.06 1.21 1.56

Volatility of the virtual
machine environment

0.87 1.00 1.15 1.30

Required turnabout time 0.87 1.00 1.07 1.15

Personnel attributes

Analyst capability 1.46 1.19 1.00 0.86 0.71

Applications experience 1.29 1.13 1.00 0.91 0.82

Software engineer
capability

1.42 1.17 1.00 0.86 0.70

Virtual machine
experience

1.21 1.10 1.00 0.90

Programming language
experience

1.14 1.07 1.00 0.95

Project attributes

Use of software tools 1.24 1.10 1.00 0.91 0.82

Application of software
engineering methods

1.24 1.10 1.00 0.91 0.83

Required development
schedule

1.23 1.08 1.00 1.04 1.10

48  ◾  Software Project Management: A Process-Driven Approach

3.2.4.4  COCOMO Model Conclusion

Over the years, the COCOMO model has been refined by many experts. At the same time due to
changes in technology and growth in maturity of software development teams, the formulae for
calculation of effort, duration, and manpower requirements needed to be adjusted for many factors
so that the formulae remain relevant and can be effectively used. One popular variant is known as
COCOMO II. Many organizations have developed their own versions of the COCOMO model
based on the unique environments under which they operate. While some of them have added or
deleted more dimensions in calculation of effort estimate figures, some others have modified the
values of these dimensions to correspond to their environment.

3.2.5  Effort Estimation for Waterfall Model–Based Planning
Software projects with the waterfall or traditional development model have to plan for everything
in advance including making elaborate effort estimates [7]. But effort estimation cannot be made
without proper identification of project tasks that will be involved in making the estimate for the
project. The best way is to first break the project into phases and milestones and then estimate
which tasks will be involved in each phase. In traditional software development projects, a water-
fall model is adopted. So the project will have major phases and milestones of software require-
ments management, software design, software construction, software testing, and finally software
release. A software maintenance project may have reverse engineering, software construction, soft-
ware testing, and release phases. Sometimes a project could be small, consisting of a partial set
of activities, for instance, one needs to provide only the design of the software application, while
other services are provided by some other service provider. In any case, once phases of the project
are identified, then individual tasks of the project can be identified. Once these tasks are identi-
fied, then the size of these tasks can be measured from specifications such as quality level and
phase-specific information. For instance, suppose for the coding task in the construction phase, a
component needs to be developed using Java. The size of the component will depend on the number
of functions that will be built for this component. The complexity of the component will depend
on what kind of functions these will be. Will these functions have interfaces for other functions?
Once you have all details about the component, then you can make a size estimate for the com-
ponent precisely. Now you need to know who will code this component. Does this person have
prior experience of coding similar components and are they good at it? From here you can estimate
productivity. From size and productivity one can figure out how many days it will take to develop
that component. Estimates for all tasks in the project can be made likewise (Figures 3.4 and 3.5).

One important consideration for effort estimation for a project with the waterfall model is
calculating effort estimation for different phases of the software life cycle [8]. This can be done
in two ways. Effort estimate for a phase can be calculated by summing up effort required for all

Table 3.6  Coefficient Values a and E
for Various Project Types

Software Project Type a E

Organic 3.2 1.05

Semi-detached 3.0 1.12

Embedded 2.8 1.20

Software Project Effort and Cost Estimation  ◾  49

tasks associated with that phase. An effort estimate for all phases can also be calculated from total
effort required for the project by allocating percentage of effort for each phase. Thus, if total effort
required for the project is 1500 man hours, and if requirement management comprises 15% of
total effort, then the effort estimate for requirement management will be 225 man hours (1500 ×
15/100). Likewise, an effort estimate for other phases can be calculated.

3.2.6  Effort Estimation for Iterations Model–Based Planning
Agile, iterative, extreme programming, and many other forms of alternative models for software
development are fundamentally different from the waterfall model in that they have iterations
over one phase or many phases of the SDLC life cycle. Effort and schedule estimates for these
projects differ significantly compared to the waterfall model [9]. Many authors of books related to
software engineering and software project management have tried to explain differences in effort
and schedule estimation for different models. The agile model is best suited for projects where
the risk of software development is very high. That is why from the beginning, it was adopted for
projects where the software product to be developed was small or the software requirements were
not typical (no similar type of software products existed before due to new technology or new
industry). These kinds of projects are more like research and development projects with a high
degree of innovation and creativity required. Thus, instead of a fixed price/fixed duration model,
a time-and-material–based contract suits such projects. In this kind of arrangement, making an
effort and cost estimate for the project is difficult (Figure 3.6).

However, with the increasing maturity of iterative models, increasingly varied kinds of projects
are being executed with any of the iterative models. It is not uncommon for even large projects with
a size exceeding 1 million LOCs these days to use an iterative model. In such cases, an effort and
cost estimate for the project becomes necessary. However, empirical methods for effort and cost
estimation for such projects have not sufficiently developed and standards are not available that can
be used. Therefore, most organizations have developed their own methods for these calculations.

Team skills Team
experience

Productivity

Programming
language and
technology

Figure 3.5  Factors influencing productivity.

Product size Quality level

Effort size

Complexity

Figure 3.4  Factors influencing effort size.

50  ◾  Software Project Management: A Process-Driven Approach

Essentially, the iterations of tasks over different phases in the project make an effort esti-
mate difficult. For instance, suppose the design of a component needs to be iterated three
times (which is not known at the start of the project) then effort for designing the component
normally should be three times that of effort required for designing that component once.
However, this is not the case. In each iteration the effort required will be different, because the
component details will be different in each iteration, there will be different sets of tasks in dif-
ferent iterations, and the volume of work in each iteration for developing/modifying the same
component will be different. Therefore, the effort estimate will be different in each iteration.
Moreover, since it is not known how many iterations will be there in the first place and how
much work will actually be involved until each iteration starts, effort estimate simply becomes
impossible to calculate.

One more aspect in an iteration-based model is that iteration is done either for modifying the
same component or a complete iteration is made over all the phases of the product development
life cycle for developing a new functionality in the software. In the latter case, each iteration is
completely different from the other. Effort and cost estimates for each iteration will be different
and have to be computed separately.

One positive aspect about computing effort and cost estimates for iteration-based projects is
that the duration of each iteration is short; usually 2–8 weeks. In the few initial iterations, effort
and cost estimates may be wrong to a great degree. However, since the volume of work does not
much exceed that of any waterfall model–based project (may be 1/20 or even less), this variance
is not significant in terms of the amount of time and cost even though it may be large in percent-
age terms. In subsequent iterations, since the team has gained experience, estimates will be more
accurate and will not be a major risk factor.

Due to these reasons, for iteration-based projects, effort and cost estimates are not a major
concern for customers and thus, not a critical element of project management.

Again, effort and cost estimation is good only when the project activities can be well defined
and estimated measurements can be taken with some precision. When a software product is to be
developed using a new technology, it is extremely difficult to predict project activities and their
measurements in terms of duration and costs involved. Similarly, when a new software product is
to be developed using any agile model and since there is no significant body of knowledge available
that can be applied for effort estimates, then again effort and cost estimate is difficult. At the same
time, using established models like the waterfall or rational unified process is not practicable as
these types of projects are very risky (as outcomes of these projects are largely unknown). Iteration-
based product development models are extremely useful in such cases as they reduce exposure to
high risk by dividing it into many smaller risks in terms of small iterations. If the project outcome
after a few iterations is not encouraging, then the project can be abandoned with lesser impact in
terms of revenue and effort loss.

Team skills Team
experience

Estimation for
iterative projects

Number of
iterations

Figure 3.6  Factors influencing effort estimate for agile and iteration-based projects.

Software Project Effort and Cost Estimation  ◾  51

3.3  Cost Estimation
Once you have the effort estimate for the project, calculating costs for the project is required [10].
Here we are assuming that the project is based on a fixed cost–fixed duration basis. The most pop-
ular method involves first converting the effort estimate into man months if it is not already done.
Then a standard man month rate is applied for the project. Suppose for a project the effort figure
is 13 man months and a man month rate of $4,000 is applied. The project cost comes to $52,000.

If the project is outsourced, then the service provider may top this cost figure with some over-
head costs that are typically a percentage of this cost figure. Suppose the service provider applies
a 15% effort cost as overhead cost. Then in our case, the overhead cost will come to $7,800. Thus,
the total cost for the project will be $59,800.

Software projects have many kinds of associated costs, including expenses for hardware, man-
agement costs, software tool acquisition costs, training costs, etc. But the most expensive item
on the project budget is the salary of software professionals who will be working on the project.
Salaries of project staff comprise more than 70% of total project costs.

The biggest cost driver for any software project is the effort required to complete the project.
Increased effort drives up salary expenses for project staff. Therefore, the project manager always
has to keep an eye on the productivity of the staff so that the money spent on salary has a good
return value.

Moreover, the salary of software professionals is not directly linked to their productivity; two
software professionals with the same years of experience and same skill sets but with different
productivity levels may get the same salary. Similarly, the salary for different professionals with
same productivity may be different. This creates a problem in calculating project expenses.

If the salary structure of staff were as simple as depicted in Figure 3.7, cost calculations
could have been easy. But due to the fact that the salary, for example, of two junior developers
is different from each other makes cost calculation difficult. In that case, compared to the aver-
age effort put in by the two junior developers, the payment for the same effort is different. This
becomes an anomaly if the project manager calculates project costs based only on designation
(Figure 3.8).

Similarly, some other factors are to be considered when costs are calculated. We can conclude
from the earlier discussion that effort and project costs can vary due to variance in salaries and

120,000

100,000

80,000

60,000

40,000

20,000

0

Ju
ni

or
 te

st
en

gi
ne

er

Ju
ni

or
de

ve
lo

pe
r

Te
st

m
an

ag
er

Ju
ni

or
bu

sin
es

s
an

al
ys

t

Salary

Figure 3.7  Salary of project staff.

52  ◾  Software Project Management: A Process-Driven Approach

thus in such cases, correlating effort and project cost will be difficult. This is why you simply can-
not replace one resource with another (with different pay) without properly accounting for change
in project cost.

3.3.1  Cost Factor Analysis
Suppose a project manager has a project budget of $450,000 (+15% – 10%). The estimated
effort for development is 500 hours (including requirement gathering, design, and construc-
tion) and 300 hours for testing. The assumed overhead cost is 15%. So the budget range for
the project is from $517,500 to $405,000. Of this amount $77,625–$60,750 is earmarked for
meeting overhead expenses. From $439,875 to $344,250 is available as budget for spending on
staff salaries. The hourly wage for average development staff is $70 and for testing staff is $60.
The hourly wage for a test manager is $80 and for a project manager is $90. Effort required for
project planning, controlling and monitoring is 10% of development effort. Effort required for
test project planning, controlling, and monitoring is 10% of test effort. Table 3.7 presents the
cost analysis.

66,000

65,000

64,000

63,000

62,000

61,000

60,000

59,000

58,000

57,000
Junior developer 1 Junior developer 2

Salary

Figure 3.8  Salary of two junior developers.

Table 3.7  Project Cost Analysis for Salaries
of Project Staff

Effort Type Hours Costs/Hour Costs

Development effort 5,000 70 350,000

Test effort 3,000 60 180,000

Project management 500 90 45,000

Test management 300 80 24,000

Total cost 599,000

Software Project Effort and Cost Estimation  ◾  53

But from the project cost data mentioned earlier, only $439,875–$344,250 is to be spent on
salaries. What could be done in this situation? One option is to ask the stakeholders (customers)
for a revised budget. Or one may have to cut some features from the software to reduce effort
required. This situation must be communicated to the stakeholders as soon as possible.

On most projects costs play a vital role. Talent costs money and companies have no option but
to hire talented professionals to keep their crucial projects running successfully. How does one bal-
ance talent versus costs? One option is to utilize the time of your staff intelligently. Do not waste
any money by not properly loading your staff with project assignments. Use any good software
which will allow you to track how your staff is loaded with assignments. Plan ahead for future
assignments so that staff has assignments all the time and they do not sit idle between assignments.
Pay particular attention to assignment loading on highly paid staff, who should be assigned work
that is crucial and where the hourly rate for project work is high.

Use PMO (Program Management Office) to share staff hours diligently. PMO should ensure
that no overloading or underloading of staff hours are done on any project or across projects. To
deal with extreme cases when either project work is less than staff hours available or project work
is more than available staff hours, use flexible teams. The flexible team can include contracted staff
who can work when needed and can be removed when no work is available. These measures can
go a long way in ensuring proper staffing needs.

There are two types of projects: time and material based and fixed schedule–fixed costs based.
Fixed cost–fixed schedule based projects are the ones where requirements are concrete and most of
the project details are clear. Costing for such projects is also clear in the beginning of the project.
But not all projects have enough clarity to start with. Many projects start with lots of doubts,
ambiguities, and uncertainties. In such cases, costing and scheduling is very difficult to make.
Hence, these projects are executed on a time and material costs basis. The customer agrees on
recurring payment of time spent by a project team on his/her project. Generally, the recurring
payment is in the form of a monthly fee.

Many projects are a mix of the two forms of projects. For a certain period in the beginning, a
project is formed on the basis of time and material. Once certain amount of clarity is achieved on
the project, the project is converted into a fixed cost–fixed duration basis.

3.3.2  Activity-Based Cost Estimation
Accurate costing in any business scenario is a difficult task. Even when a reliable system is employed
for costing, it is often difficult to attribute a cost to a certain head. Accounting being a difficult
task, often it turns out that after much adjustment here and there, costs are attributed to certain
heads of expenses at a gross level.

Activity-based costing tries to ease this situation [11]. For each individual activity on the proj-
ect, all costs are calculated from starting of the activity to its finish. Whenever accounts are
prepared, all incurred costs are accounted for all activities on the project. This ensures there is
no irregularity in the accounts and the account reports are accurate. This helps the management
know how expenses are being incurred and whether there are any undue expenses incurred on
tasks. Coupled with activity-based costing, if baseline planned costs for activities can be compared
with actual costs for tasks, then it will be of immense help for the management to know which
project activities are not proceeding in the right direction, and thus necessary steps can be taken
to bring those activities on track (Table 3.8).

54  ◾  Software Project Management: A Process-Driven Approach

3.3.3  Cost Estimation for Iterations-Based Planning
There is not much difference when it comes to making cost estimates for iteration-based projects
compared to waterfall model–based projects. Total effort may determine the costs for the project
regardless of schedule and number of iterations. Costs are determined for each iteration separately as
well as for the major release of the software product being developed. Costing for the entire product
can also be made by summing up costs of each major release. So we have three levels of costs each at
the iteration level, major product release level, and at the entire product development level.

3.4  Schedule Estimation
The amount of effort and schedule put in terms of time is not equal [12]. There may be many paral-
lel processes where project tasks are being completed. In such a situation, effort will be greater than
the schedule. In cases where there are floats or slacks in the schedule, the schedule will be greater
than the effort. Therefore, the effort for the project is calculated first, followed by the schedule.

Once the schedule is made, the schedule duration will be the difference between the date when
the project starts and date when the project ends. From the PERT/CPM view, the project dura-
tion will be the difference between start date of the earliest project task and end date of the latest
project task.

3.4.1  Schedule Estimation for Waterfall Model–Based Planning
The effort for the entire project is based on adding all efforts required for each and every project
task. Of these tasks, one has to determine which tasks will be done in parallel. For instance, much
of the work in the construction phase is done in parallel as modules are distributed to different

Table 3.8  Cost Analysis Based on Activities

Activity
Start
Date

Schedule
(Months)

Effort
(Months)

Average
Staffing Cost ($)

Planning

Management

Requirements

Prototyping

Configuration management

Functional design

Design review 1

Detail design

Design review 2

Quality assurance

Coding

Reuse acquisition

Software Project Effort and Cost Estimation  ◾  55

teams who will be developing their modules in parallel to modules being developed by other
teams. Similarly, much of the software testing is done in parallel as many testers test their own
modules in parallel to modules being tested by other team members. Also it will have to deter-
mined if there will be slacks and floats between tasks.

Using PERT/CPM or network diagrams you can find the critical path for the project, and
thereafter, its schedule and duration (Figure 3.9).

For projects that have no parallel tasks (classical waterfall model), the schedule is the same
as the effort (if there are no slacks in the schedule). This is because the length of the critical path
for the project is the same as the duration of all project tasks (i.e., effort). But this is rare. In most
cases, some parallel tasks take place on the project and thus effort and schedule for the project are
different. Schedule and effort will also not be the same in cases where there are gaps between the
end of one task and the start of the next task in sequence even when they are in sequence. When
the schedule is calculated, the idle time (time gaps) between tasks is also added but in effort calcu-
lation these time gaps are not added.

3.5  Resource Estimation
After making the schedule, we estimate the resource requirements [13]. In order to do this, we should
first get the list of tasks on the project. For each task, we need to identify the required skills and level
of experience. A list of all skills and minimum necessary experience required for each task should
be marked. For each task we need to identify the resources available in the organization. So we will
be matching task skills and minimum experience requirements with skills and necessary experience

Initiation Requirements

Critical path

Testing

Total project schedule

Total project effort

Design 1

Design 2

Construction 1

Construction 2

Project

Integration Release

Initiation Requirements Design 2 Construction 2Design 1 Construction 1

Integration ReleaseTesting

Figure 3.9  Project effort and project schedule for a project.

56  ◾  Software Project Management: A Process-Driven Approach

possessed by resources. The names of “resources” that possess all skills and necessary experience
required for the task should be listed against that task.

The next step is to find the availability of resources for doing those tasks. From the list of
names of resources, identify resources that will be available between the task start and finish dates.
The other dimension is the amount of work involved in each task. How many resources will be
required for that task should be calculated. The productivity factor for the organization will come
in handy here. The number of resources required for the task will be the volume of tasks divided
by the productivity and time duration under which task is to be completed. For example, if volume
of work is equivalent to 2000 KLOC and productivity for the organization is 1000 KLOC per
person per month, and if the task has to be completed in 1 month, then we need two resources for
this task (2000)/(1000 × 1). Sometimes we may need less than one resource to do the task. In such
cases, a resource may be assigned to the task, who will also be doing some tasks on other projects.
Generally the loading factor for a resource should be kept at 1 (loading factor is the amount of
work which a resource can do in working hours on a working day). But sometimes due to unavail-
ability of resources, we may need to increase loading for a particular resource to more than 1. In
that case, the resource is overloaded and will be working overtime.

3.6  Artifacts of Effort and Cost Estimates
Essentially, an effort estimate provides project costs, project duration, and staffing needs. But it
does not provide a detailed schedule. A detailed schedule is derived from the work breakdown
structure. The actual staffing needs are also derived from the work breakdown structure after
staffing requirements are attached to the schedule. What we get from effort estimates are average
staffing needs for the project, which helps in deriving project costs. In most cases, customers need
project cost and project duration to sanction the project. The project manager needs to provide
these details early on in the project. In cases where the project is being outsourced, the bidders for
the project provide estimated costs and duration in their bid details. The more details about costs
and duration provided on the estimate sent to the customer, the better it will be. Details will help
the customer to understand how the project will progress and how costs are derived. This builds
customer confidence in the project team that the team is capable of delivering the project. This
goes a long way toward making a success of the project.

3.7  Practical Considerations in Effort and Cost Estimates
When the effort and cost estimates are derived using formula-based techniques like COCOMO
or FPA, it gives a raw estimate. The risk factors are not included. Any estimate should have a risk
factor as an essential ingredient. So the project manager should include some reserve in the project
for covering risks in the project. For details about risks please refer Chapter 4.

As has been repeatedly argued by Brooks, Boheim, and others, effort estimation for software
projects is a tricky affair. Only after the software design is well established that effort estimate can
be calculated with some accuracy. The best approach for effort and cost estimation for a project
should be to do it frequently after each major milestone is achieved. Adjust these figures when you
come to know more about the project as it progresses.

Generally we measure size as source lines of code (SLOC). The source code is written when
the project is in the construction phase. But we also have other phases when no source code is
written (requirement specification, software design, software testing, documentation, etc.).

Software Project Effort and Cost Estimation  ◾  57

Working in these phases takes time and effort. So how do we account for this effort and time
when we are reporting the effort and time in terms of SLOC? One good solution is to account for
the effort and time taken in these activities along with the one in the construction phase and then
calculate the effort and time required in terms of SLOC. For instance, suppose it took two business
analysts 2 months to develop requirement specifications; a system analyst developed the design in
2 months; and five developers developed the application in 5 months. Out of these 5 months they
spent around 2.5 months doing unit and integration testing. The two test engineers took 1 month
for doing the system testing. Code fixing for developers again took 15 days. Supposing the system
developed contained 30,000 SLOC, then what are the figures for effort?

Time spent by business analysts = 4 months (2 × 2 months)
Time spent by business analysts = 2 months
Time spent by developers on development = 12.5 months (5 × 2.5 months)
Time spent by developers on code fixing = 2.5 months (5 × 15 days)
Time spent by developers on testing = 12.5 months (5 × 2.5 months)
Time spent by testers = 2 months (1 × 2 months)
Total time spent by team members on the project = 35.5 months
Total code written on project = 30,000 SLOC
SLOC per month on project = 30,000/35.5 = 845 SLOC/month

3.8  Effort and Cost in Product Development
In the case of product development for software vendors, the effort and cost estimate does not
have much significance for just one iteration or one project. Their product development effort is
continuous in nature, as they continuously keep working on new releases of their product. When
one release (whether minor or major) is over, they immediately start working on the next release.
Sometimes they employ more than one team simultaneously to do their product development
faster in a time-boxing environment. Due to their continuous operation, they rather calculate
their development costs at quarterly, half yearly, and yearly bases and do not bother about costs
for just one iteration or one project. They have a constant-sized team and this team does not get
disbanded after each iteration or project. They may expand or contract team size due to long-term
market conditions, and not due to demands of any iteration or project. The software vendors rather
concentrate on the effort and cost involved in the entire product development that spans many
years. They make estimate for this entire cost and effort requirements when they decide to go for
building the software product. They keep revising this estimate at their yearly or half-yearly plans.

3.9  Case Study
In Chapter 2, we saw how the project of our SaaS vendor got initiated. We continue our story of
the software product vendor (or rather, SaaS service vendor).

3.9.1  History
When they decided to build the software product; they estimated that the size of their prod-
uct will be around 500,000 SLOC when they can start marketing their software product.
They had also decided that they will go for incremental software development so that they
can sell their product with a bare minimum of features and can keep developing their product

58  ◾  Software Project Management: A Process-Driven Approach

and keep adding new features, and at the same time they can keep selling their product in the
market with the already developed features.

They had estimated that they will be able to develop the initial product in 2 years time.
That meant they needed to develop the product at 21,000 SLOC per month (including the time
required to develop requirement specifications, software design, and software testing. In all of
these activities, no source code lines are added but they take time. This time is added along with
the time required to write the source code.). They had estimated that a good project team consist-
ing of around 22 people could do the job. On average, the salary of each project team member
would be around $6,000 per month. That meant the quarterly cost will be around $400,000. So
over a 2-year period, $3,200,000 will be the development cost. Later, when they were established
in the market and realized that they wanted a larger team to develop the software at a faster rate,
they thought about their options. They wanted a team of 50 people to speed the development at
two and half times compared to the present speed of product development. If they had hired the
additional staff locally, it would have cost them $1,000,000 per quarter for a development team
of 50 people. The option of hiring contractors would have cost more than this figure and, hence,
it was not an option. Moreover, they wanted to hire permanent staff instead of temporary staff
as they were looking for a long-term goal instead of short-term staffing. Thereafter they thought
of offshore service providers. Offshore development staff would cost one-third of what it costs if
they hired locally. They evaluated a few service providers and finally zeroed-in on two of them
and made contracts with both of them. Now they had a staff of more than 50 people and the total
development cost of $730,000 per quarter.

3.9.2  Current Project
The current project could be broadly categorized as developing the appointment scheduling
engine, developing search functionality, integrating the appointment scheduling functionality to
existing features, and finally testing the whole application thoroughly. Since a very complex logic
was to be implemented, the logic first needed to be thoroughly tested and, subsequently, integra-
tion of the logic with the rest of the application was to be tested. Therefore, the testing part was
crucial for the success of the project. At the same time, since this logic was being implemented for
the first time, the testing component for the project was comparatively large.

3.9.3  Effort and Cost
Over the proposed four iterations (minor releases) and the complete appointment scheduling
functionality to be achieved by end of the major release, it was estimated that the effort required
to complete the functionalities associated with appointment scheduling will be approximately
300,000 SLOC. This approximation was derived after using a bottom-up effort estimate. First
the functionality was broken down into lowest-level components. Effort for these components was
estimated. Summing up of efforts for component gave the overall effort for the entire functionality.

Exercises
3.1	 Find the relationship between effort and cost. What cost factors have more impact on effort

and which cost factors have lesser impact?
3.2	 Agile projects may have less effort required compared to traditional projects. What factors

are responsible for this phenomenon?

Software Project Effort and Cost Estimation  ◾  59

Review Questions
3.1	 Describe the Function Point Analysis technique for deriving effort and cost estimates for

software projects?
3.2	 Describe the COCOMO technique for deriving effort and cost estimates for software

projects?
3.3	 Which estimation technique will you use for a project where data for past projects are not

available and why?
3.4	 How are cost and schedule for a project related to each other?
3.5	 How do project scope and quality level affect the effort required for a project?

Recommended Readings
	 1.	 P. Jalote (2002) Software Project Management in Practice, Addison-Wesley Professional, Boston, MA.
	 2.	 J. C. Goodpasture (2003) Quantitative Methods in Project Management, J. Ross Publishing, Boca Raton, FL.
	 3.	 D. Brandon (2005) Project Management for Modern Information Systems: The Effects of the Internet and

ERP on Accounting, IRM Press, Hershey, PA.
	 4.	 F. P. Deek, J. A. M. McHugh, O. M. Eljabiri (2005) Strategic Software Engineering, CRC Press, Boca

Raton, FL.
	 5.	 D. D. Galorath, M. W. Evans (2006) Software Sizing, Estimation, and Risk Management, CRC Press,

Boca Raton, FL.
	 6.	 M. Zelkowitz (2004) Advances in Computers, Volume 62: Advances in Software Engineering (Advances in

Computers), Academic Press, Amsterdam, the Netherlands.
	 7.	 G. Lenz, T. Moeller (2003) Net—A Complete Development Cycle, Addison-Wesley Professional, Boston, MA.
	 8.	 J. Love (2007) Process Automation Handbook: A Guide to Theory and Practice, Springer, Berlin, Germany.
	 9.	 D. J. Anderson, D. Anderson (2003) Agile Management for Software Engineering: Applying the Theory of

Constraints for Business Results, Prentice Hall, Upper Saddle River, NJ.
	 10.	 E. Verzuh (2005) The Fast Forward MBA in Project Management, 2nd edn., Wiley, New York.
	 11.	 C. Jones (2007) Estimating Software Costs, McGraw-Hill Osborne Media, New York.
	 12.	 R. T. Futrell, D. F. Shafer, L. I. Shafer (2002) Quality Software Project Management, Prentice Hall PTR,

Upper Saddle River, NJ.
	 13.	 J. Greene, A. Stellman (2007) Head First PMP, O’Reilly, Sebastopol, CA.

61

Chapter 4

Risk Management

In the previous chapter, we learned

◾◾ How is an effort estimate for a project made?
◾◾ What are the different effort estimation techniques?
◾◾ How is a cost estimate for a project made?
◾◾ What are the different cost estimation techniques?
◾◾ How can a schedule estimate for a project be done?
◾◾ How can a resource estimate for a project be done?

In this chapter, we will learn

◾◾ What is a risk on a project?
◾◾ What kinds of risks exist for a project?
◾◾ What kind of impact may risks have on a project?
◾◾ What strategy is needed to deal with risks?

4.1  Introduction
Risks are unforeseen or unplanned happenings, which, when they occur, devastate or at least
adversely affect our future plans. When we analyze any software project, what kinds of risk come
to our mind? Basically, a project has these components: budget, time, resources, quality, and
technology. If any risk occurs that might affect any of these components, then the project may fail.
What is the best way to reduce or mitigate the risks? There could be many aspects to any project.
But a project manager must develop a comprehensive risk mitigation plan so that if any risk arises

62  ◾  Software Project Management: A Process-Driven Approach

during execution, he will be able to handle it comfortably. If he has not made a proper risk plan,
then if anything wrong happens, he will not be able to handle it (Figure 4.1).

Risks can be categorized as external and internal. If a risk to the project arises due to an aspect
being dealt with by the project team, then it is an internal risk. All other risks are external risks.
Suppose a project is to be coded using a particular programming language, and one developer on
the team is not conversant with it. In this case, he is given training so that he can pick up this
language. However, if even after training, this team member is not able to use the programming
language, he will not be able to do the task assigned to him, and his inability will be considered an
internal risk. Now, suppose that this particular training is not available from any training service
provider, then in that case, the risk becomes an external risk (Figure 4.2).

Many environmental factors affect a project. If any of these environmental factors impact a
project, then though the impact on the project is external (as environmental factors are external to
the project), it can still be substantial for that project. Some of the external risks can be managed
by a proactive approach. But many external risks cannot be managed. One good example is the
obsolescence of a technology. When the project starts, a particular technology is chosen (a prebuilt
vendor component, for instance) little realizing that the vendor will not support that component
by the time the project finishes. Similarly, the customer may go out of business due to economic
recession and the project may need to be scrapped.

At the project level, risks impact any of these project deliverables: schedule, quality, or budget (risks
affecting resources or technology ultimately impact budget, quality, or budget) [1]. At the beginning
of the project, the project manager is given (or he makes them after consultation with the customer)
limits for these three things, that is, to deliver the project within the stipulated time limit, within the
budget, and with the product quality of a stipulated standard. If any of these three are not delivered,
then the project is considered to have failed. So, the project manager has to ensure that these limits are

Budget

Quality

Resources

Technology

Time

Project

Internal
risks

External
risks

Figure 4.1  Internal and external risks for a project.

Resource
risks

Technology
risks

Major risk types

Budget
risks

Quality
risks

Time
risks

Figure 4.2  Major risk types.

Risk Management  ◾  63

communicated clearly to the project team. The project manager should make sure that the project team
understands these limits and delivers its part of the project within these limits. At the same time, he
also needs to work out his plan well, so that he and his team are ready to face any surprises if they arise
and handle those situations with ease.

4.2  Causes of Risks
What are the probable causes of risks on a software project? What can be done to prevent or mini-
mize the impact they can have on the project? How much impact do they have on the project?
What is the probability that they may occur and might impact the project?

For any good project manager, it is of utmost importance that he first of all makes a list of risks
which his project faces. After that, he can find solutions for tackling them. So here is a discussion
of some of the risks that may occur in any software project (Figure 4.3).

4.2.1  Quality Constraints
These days, quality is one of the major concerns for software products, as the high cost of sup-
porting these products is well understood, and thus, avoidance of providing product support for
bad quality products is a top policy among software vendors. Software vendors realize that it is
much cheaper to make a good quality software product with low support costs than to produce a
software product of poor quality and end up with high support costs. So an elaborate set of quality
constraints are imposed from the start of the project to the finish [2]. In fact, nowadays, a separate
software process group is formed that oversees the quality of projects. Indeed, meeting quality
requirements is a big risk for all projects.

4.2.2  Resource Unavailability
Resource unavailability is one of the major risk factors, as software professionals are in great
demand the world over [3]. Finding and procuring a good software professional is a complete
project in itself. Retaining him within the organization is yet another challenge.

4.2.3  Disinterest
Lack of interest is a concern that needs to be mitigated by project managers as it severely affects
productivity [4]. A good motivation program for individuals who lack interest in the project can
be organized.

Bad
negotiation

Cost
constraints

Quality
constraints Disinterest Resource

unavailability Attrition Scope
creep

Poor
management

Human
error

Unrealistic
estimateCauses of risks

Figure 4.3  Major causes of risks.

64  ◾  Software Project Management: A Process-Driven Approach

4.2.4  Attrition
Due to the high demand for software professionals, most professionals have many job offers in
hand at any given time. When they find a lucrative offer, they quit an organization to join another
organization, thus leaving a project midway. Attrition has become such a big issue that manage-
ments at big corporations have specialized programs to tackle it [5].

4.2.5  Scope Creep
Scope creep is one risk that affects most software projects, and it always impacts the project severely.
Requirements keep changing and new requirements keep piling up even after the project has com-
pleted the testing phase and is into the implementation phase. A good change management mechanism
can tackle this menace effectively.

4.2.6  Cost Constraints
Once a project is approved for commencement, a budget is allocated and procured for the project.
But due to unavoidable reasons, the budget can be constrained. In such situations, the project cannot
proceed as sources of funds have dried up and project expenses cannot be met. There is no solution
for this problem, but if this risk is known in advance (an unlikely occurrence), then the project could
be cut short and scrapping of the project could be avoided.

4.2.7  Bad Negotiation
If the project manager has good negotiation skills, then he can procure an additional/modified
budget, support, and resources, whenever the need arises. But sometimes due to bad negotiation
skills or for lack of foresight on the part of the customer, this kind of support is not provided and
the project lands in troubled waters [6].

4.2.8  Unrealistic Estimate
An unrealistic estimate is yet another risk that is very common on most projects [7]. It is also a
fact that effort estimates for software projects are difficult to make because of the uncertainties
involved. So, it is always possible that it is understated. It is always better to keep a buffer when an
estimate is made, to take care of uncertainties.

4.2.9  Human Error
The human brain has a processing power that no computer can match, but it has a limitation.
It cannot do repetitive work without making errors. These human errors are caused by the dis-
tractions of the brain because our brain keeps processing all signals sent by our sensory organs
continuously, and thus, the work we are doing gets less attention, which results in errors in the
work [8]. Due to human error, the requirements or design, or the construction may get injected
with defects. To overcome this, we must have review processes for the work done to remove
any defects.

Risk Management  ◾  65

4.2.10  Poor Management
Poor management is yet another human risk factor. Not all project managers are naturally talented.
Many of them learn managing things from experience. If a project manager lacks experience in
managing a project, then it is a big liability for the project and it will show up in project results [9].
Even if a project manager has experience, personal traits dictate whether he can handle the project
well or not. So the project manager for a project must be chosen carefully, taking into account his
experience and personal traits.

4.3  Risk Categories
All of the risks mentioned in the previous section can actually be broadly grouped into categories
of budget risks, resource risks, quality risks, schedule risks, and technology risks. How can these
categories of risks be tackled? Let us discuss this point in the following section.

4.3.1  Budget Risks
Risks that impact the project budget need the foremost consideration, and they need to be con-
trolled throughout the project [10]. If for some reason the budget goes above the permissible limit,
then the project manager must do something to control it. It is common practice for the project
steering committee to decide to cut short some product features to contain the project within
the budget. But this is not a good practice. Instead, remedial action must be taken as soon as the
project shows the risk of cost overrun, so as to prevent the problem from actually happening. That
is why, at all times, project expenses should be tracked and controlled.

Then there are cases when project cost control is not in the hands of the project manager.
For instance, due to market forces, the salaries of team members have to be increased, other-
wise they might leave the project to get a better salary. In such instances, the management may
decide to increase salaries so that they do not leave. In such a case, the project manager has no
choice but to revise the project costs and inform the customer about it. This fact can adversely
affect the project.

To reduce the impact of budget risks, the budget allowance should include reserve funds.
So when such risks occur, allowances can be taken up from the reserves to avoid the project
from failing.

4.3.2  Time (Schedule) Risks
The opportunity time window for businesses is slowly shrinking in today’s fast-paced and chang-
ing business environment. So, if the project looks to be slipping away from the targeted date of
deployment, then it will be a great business opportunity loss for the customer. For this reason, the
project should never be allowed to cross the targeted release dates [11]. Nevertheless, due to unfore-
seen circumstances, the project dates may get affected. Sometimes, unexpected rework to be done
on software construction will lead to the slippage of the task schedule. There may also be instances
when due to a lack of proper communication, customer requirements are completely misunder-
stood, resulting in an inappropriate product being delivered to the customer, and thus, complete
rework is required to prepare the software. This will again lead to project schedule slippage.

66  ◾  Software Project Management: A Process-Driven Approach

To reduce the impact of schedule slippages, a schedule allowance should be taken for each
time-related risk (Figure 4.4).

4.3.3  Resource Risks
Project team members are the most costly resources in software projects [12]. So, creating reserved
resources for the project is a difficult proposition. On one hand, the project manager needs to
keep project costs at the bare minimum, and on the other, he has to make a provision for reserved
project resources as contingency for any risk of losing any project team member at any time dur-
ing the execution of the project. It is a reality that software professionals are in great demand,
and most projects run the real risk of team members leaving the project for more lucrative offers.
In such a situation, a project may suffer if any team member decides to leave the project midway.
Whatever tasks the member had finished on the project is fine, but what about the remaining tasks
that have not been started yet, or have only been half finished? Generally, it is not a good idea to
keep a paid reserve on the project as it would add to the cost of the project. But keeping a pipeline
open for probable replacements is a good idea. When a replacement is needed, the project manager
can tap this pipeline and get the replacement. But sometimes getting the right replacement takes
time, and thus, the project suffers. This risk can be mitigated by keeping a reserve in the project
schedule for any delay in resource replacement. This reserve pool can consist of people sitting on
the bench or list of people who are working on other projects and the dates on they will be avail-
able (Figure 4.5).

Project team members leaving in the middle of the project is one of the biggest risks any
project may face. Such team members take the project task (the task he was working on) knowl-
edge with them as well. This results in a big loss to the project. This risk can be mitigated to
some extent by implementing a knowledge management system that will store all the knowledge
acquired by team members during the project. It will also store all the work performed by the
project team. So, when a team member leaves the project, the knowledge acquired and the work

Task 1 Task 2 Task 3

Project

Task 4

= Risk buffer

Figure 4.4  Schedule risk buffer provisions in a project.

Knowledge
management

system
Project team

Pool of talent
(people on

bench + dates
when released
from ongoing

projects)

Figure 4.5  Resource risk strategy.

Risk Management  ◾  67

done by him is in the knowledge management system. Thus, the project team will not lose all the
work that has been done and the knowledge acquired by the person who is leaving.

Knowledge management is discussed in further detail in Chapter 19.

4.3.4  Quality Risks
Industry strength software needs a rock solid reliability so that during operations, the support
costs can be kept at a minimum [13]. Otherwise, supporting a poor quality software product
becomes a losing proposition. So, the quality of the software product is always a concern and
a big risk. The quality of the product may be poor due to bad software design or bad software
construction. Even if it is good, there is still a chance of defects inadvertently creeping in due to
complexity, large integration interfaces, or due to the large number of changes in the design when
the requirements are altered.

To deal with quality risks, the best policy is to have a check for quality integrated in the project
schedule itself (quality planning). This will ensure that the quality at the work product level is on
par with the desired level, which in turn will ensure overall product quality. Peer reviews, code
reviews, and other formal quality review processes should be strictly followed for all work products
(Figure 4.6).

In fact, ensuring quality of the software product being developed has become so critical these
days that quality planning must be integrated tightly in the entire project plan to reduce quality-
related risks.

4.3.5  Technology Risks
Technology obsolescence is a fact of life [14]. With the rapid introduction of new products into
the market, older products quickly become obsolete. So, many projects face the prospect of having
an outdated technology on which the software product is being built. In such cases, the software
product becomes unusable even before it is implemented. Similarly, if any hardware component
that may have been integrated with the software and the hardware becomes obsolete, the soft-
ware product becomes unusable. An appropriate selection of programming language, hardware
platform, and user access methods will make sure that the software product does not become
obsolete during the expected lifespan usage of the product. When selecting technology tools and
techniques, contact the vendors to make sure that they will be providing support in future as well
for the tools you are buying from them.

Task 1 Task 2 Task 3

Project

= Quality check

Task 4

Figure 4.6  Quality checks at the end of a project task.

68  ◾  Software Project Management: A Process-Driven Approach

4.4  Risk Analysis
Dealing with any kind of risk requires some risk analysis [15]. The analysis should consider the
kind of impact risk can have on the project as well as the chance of it happening. Based on the
analysis, you then need to sort risks and put them in order. Risks with high probability and high
impact will be put on top of this list, while risks with low impact and low probability will be put
at the bottom. The project manager will then be better prepared to deal with all kinds of risks in
a systematic manner (Table 4.1).

Different risks occur at different times in the project. For instance, the product quality may not
meet the expected standards during the design stage, and the design may need to be reworked. The
rework may stretch the project schedule and the project plan may need to be redone. So, this is a risk
that can occur at the design stage. Similarly, during testing, a lot of unexpected defects might be
found, and the time taken to fix these defects will overshoot the budgeted time. Sometimes, it may
so happen that a team member may fall sick and it may take time to replace him. This may cause a
delay in finishing the assignment that was given to the team member (Figure 4.7).

In a nutshell, project risks are dynamic in nature. They can occur at any stage of the project. So
the project risk matrix where the project manager has listed risks and their impact as well as their
probability needs to be revised at regular intervals and the risks that are likely to happen at that
moment in time need to be assessed and remedial action should be taken.

Table 4.1  Matrix of Risks: Their Impact and Probability

Risk Category Risk Probability Impact

Budget Task budget overrun High High

Budget Wrong budget estimate of a task Medium High

Resource Not available High Medium

Resource Skill training Medium Medium

Schedule Wrong estimate of a task

Project scope Scope creep

Quality Bad quality of product

Quality Product reliability issues

Technology Technology obsolescence

Make prioritized
list of risks

Create list
of risks

Assign priority and
impact to risks

Update list when
priority of a risk

changes

Order list of risks
as per priority and

impact

Figure 4.7  Risk analysis life cycle.

Risk Management  ◾  69

4.5  Balancing Act
No project can be executed 100% as per the project plan. There is bound to be something differ-
ent than planned due to the occurrence of any kind of risk and the subsequent impact it has on
the project. How can the project manager justify whatever has been delivered? Can he justify any
schedule or budget overrun? What about deviation in the quality level? What about a less-than-
agreed on set of features being delivered?

There are no easy answers. Each project is different. It depends on the importance of each
deliverable on the project compared to the other deliverables. This is not an easy choice. At
the top level, quality level considerations come from the kind of application being developed,
and for what purpose. If the application is meant for a general purpose information displaying
system, and the end users do not mind occasional bugs, then the quality level for the project
can be compromised in preference for costs or schedules. On the other hand, if the application
needs accurate transactions without any compromise, then quality cannot be undermined.
In that case, costs or schedules can be allowed to overrun to get the desired level of quality
(Figure 4.8).

These are all subjective considerations. The project manager must decide what limits to
cross and what limits to abide with. In doing so, he also should have consent from the project
stakeholders.

The project manager may also come across situations (which are very common) where require-
ments as well as priorities are ambiguous. In those cases, it will be in the best interest of the
project manager to remove those ambiguities as much as possible. Clear, well defined, and feasible
requirements lead to a better control over the project. At the same time, priorities should also be
set appropriately. Delivering low priority requirements at the cost of high priority requirements
will lead to unsatisfactory project performance.

From a software engineering point of view; clear requirements are the most vital inputs to a
project. But every experienced project manager knows that clear requirements are not enough to
do the job. Priorities are equally important.

It is this balancing act that each project manager must perform to succeed in the project
at hand.

Product
quality

External
risks

External
risks

External
risks

Internal
risks

Schedule

Budget

Figure 4.8  Internal and external risks, and balance in product quality, project budget, and
project schedule.

70  ◾  Software Project Management: A Process-Driven Approach

4.6  Project Risk Management in Agile Models
Using a waterfall model to execute your project is a big risk. It is because the outcome of the project
(the software product) is ready only after the whole project is completed after a prolonged period of
time. Suppose the project duration is 6 months, then the outcome of the project is known only after
investing time and money for these 6 months. The outcome could be positive or negative. Waiting
for such a long time to get the result is a big risk indeed. To reduce this risk, iterative approaches to
software development have been tried. Instead of taking all the requirements and doing the entire
product development in one go, requirements are broken into small sets of manageable requirements.
Each small set of requirements is then used to develop a small product. The duration for making
these small products (software features) is kept at 4–6 weeks or even less. After each iteration, there is
a demonstrable product that can be tested to see if it works as intended, and as per the requirements.
This approach reduces the big risk into a set of small risks (Figure 4.9).

All the risks associated with the waterfall model are either miniaturized or totally eliminated
in the iterative model. They can be managed in a better way as well due to the small size of these
iterative projects.

4.7  Artifacts of Project Risk Management
Risk management deals with defining probable risks, their impact on the project, and the ways
of dealing with them to minimize their impact on the project. The outcome of risk management
planning is the risk management document. It contains the list of risks, their impact, probability,
and what measures are to be taken to overcome them if they occur. Since risk can occur at any
time during the entire course of the project, and their chances of occurring vary from time to time,
they are dynamic in nature. So the risk management document should be updated regularly to
keep risk information current.

4.8  Practical Considerations for Risk Management
All of the risks on a project can be categorized as manageable and unmanageable. The project
manager must make mitigation strategies for all manageable risks. The unmanageable risks
at hand cannot be managed, and thus cannot have a mitigation strategy. A good example of

Long
gestation

period

Large upfront
commitment

Risks due to large
number of

requirements

High
management

costs

Requirement
changes

Miscommuni-
cation

Figure 4.9  Major risks in traditional software development.

Risk Management  ◾  71

an unmanageable risk is a natural calamity, such as an earthquake. If an earthquake strikes,
then you cannot manage the earthquake. What can be managed to some extent, are the conse-
quences. The fire brigade, police, and volunteer teams can try to find people who are stuck in
the debris and try to save them. For human and capital losses, insurance companies can shell
out insurance benefits.

So for all unmanageable risks, the project manager can at best rely on external help if possible.
But for all manageable risks (that he can manage), he should make mitigation strategies. These
strategies will help him when these risks occur and impact the project in any way.

4.9  Case Study
In Chapter 3, we saw how effort and cost estimation were done for the project of our SaaS vendor.
In this chapter, we will see how risks on the project were identified and how risk mitigation plans
were made to tackle those potential risks.

Every business is constantly trying to find out what the current market size for the products
and services it sells, and where it stands in the market vis-à-vis its competitors. What is the total
market potential for the software product it wants to produce? Who are the other players in the
market? What are their market shares? How does it want to carve a share in the market for its
products and services? What strategies are other players making? What are the future prospects
and where is the future heading?

Based on these findings, the business makes its own strategy. It makes a market plan and
prepares a detailed roadmap to achieve the market position it wants to hold. It also assesses the
risks associated with its venture and formulates a strategy to deal with these risks. The survival
of the business entirely depends on how it perceives the risks and how it successfully mitigates
these risks.

For any software vendor, the biggest risk is whether its software product will become as
successful as envisaged by the market potential for the product, from its market research. Once
market potential is assessed, the vendor then starts implementing its strategy by commencing
building the software product, which is a costly affair. The development costs are determined in
advance, and an appropriate budget is allocated. A development team is formed, and the team
starts developing the software product. The development of the product itself may encounter
several risks.

4.9.1  Risks on This Project
Our SaaS vendor underwent many challenges and risks while developing its flagship software
product. The foremost risks envisaged by the development team were

◾◾ Viability of offshore teams and relationship with service providers
◾◾ Attrition
◾◾ Communication gaps (languages, understanding of tasks, understanding of messages, etc.)
◾◾ Development costs
◾◾ Development schedule
◾◾ Software product quality

72  ◾  Software Project Management: A Process-Driven Approach

For the 6.0 release, the development team formulated the following strategies to tackle these risks:

◾◾ First of all, a thorough check was made for competency and maturity of the offshore
service providers. Subsequently, a comprehensive service level agreement (SLA) was
drafted, and then the service providers were made to sign the agreement. As per the
SLA, the service providers would make a detailed weekly report for all tasks performed
by its employees and details of these tasks. These reports would be reviewed by the
software vendor. The hours spent on tasks and progress status on assignments per week
will be checked by the vendor. Only after review would the hours of work reported be
cleared.

◾◾ To tackle attrition, the software vendor made sure that its own employees were not only
given the best salary in the industry, but were also provided with a working environment
that satisfied their personal aspirations. Each employee was counseled, and based on his
aspirations and his ability, was given assignments. During performance review, if perfor-
mance was not up to the mark, then suggested measures were taken in consultation with the
employee. Likewise, the vendor had made sure that the staff at the service providers was also
treated in a similar manner.

◾◾ Communication gap between the onshore and offshore teams was a big challenge due to
distance, different time zones, and culture differences. To mitigate this risk, it was decided
to have a standard template for all communication among teams. Virtual meetings were
decided for knowledge transfers and issue resolutions. It was decided to use Webex (Cisco
Systems Inc.), Skype, Yahoo Instant Messenger, Microsoft Net meeting, and other media
for virtual meetings. VOIP phones were also used. Due to time zone differences, meetings
could take place either early in the mornings or late in the evenings (even if it meant work-
ing nonoffice hours).

◾◾ To make sure that project and iteration schedules were on track, the development team
decided to keep a buffer in the schedule of 10% of the schedule estimate. If the schedule
was going to be affected due to the occurrence of any risk, then the schedule buffer could be
used. This strategy worked fine throughout the project related to release 6.0 of the software
product. At the same time, for each iteration, the project manager would assign a priority
value to each feature, which was to be taken into the iteration. The most prioritized features
would be developed first. If the iteration permitted time, then lesser prioritized features
could be taken for development. So, if due to the occurrence of any risk, a feature took more
time for development than planned, then at least all prioritized features were developed in
the iteration even if some nonprioritized features could not be taken up.

◾◾ To make sure that the unavailability of any project team member for short durations did
not affect the project schedule, each team manager was authorized to ask for overtime
work from his team. In the absence of a team member for short durations, the other team
members performed those assignments to finish them on time. Similarly, if the schedule
was being affected for any other reason, then the project manager would ask for overtime
from his team to finish any pending assignments on time.

◾◾ To ensure that the quality of the software product was always high, reviews and checks were
incorporated into the process after each work product was completed. When the require-
ments were completed (in the form of requirement specifications), they were tested to make
sure that they did not have any deficiencies or defects. Similarly, the design and source code
were also reviewed thoroughly before wrapping up these tasks.

Risk Management  ◾  73

4.10  Chapter Summary
Software projects are a huge risk for stakeholders as their interests are at stake on the success or
failure of the project. Once they approve a project, then the burden of carrying the risk falls on
the shoulders of the appointed project manager. Each activity and project task has its own share of
risk. During project execution, risks that might adversely hamper the project lurk at every corner.
So, before starting execution, the project manager must ensure that he has a sound risk manage-
ment plan to tackle any risk that might crop up.

Any of the risks can impact schedule, cost, or quality. So all the risks should be categorized by
the kind of impact it has on any of these project components.

To make a sound risk mitigation plan, the project manager should first identify the risks that
can occur during project execution. He should make a list of all these potential risks. Then he
should find out the severity of impact each of these risks can have on the project. He can also
then make a priority for each risk for tackling it. Based on impact and priority, he can sort out
this list to come up with the risk with the most urgent need for tackling, and at the end of the
list, the risks that are the least likely to have any impact on the project and those that have the
least priority as well. For each risk, the project manager can find out the cost and effort required
to tackle them. Based on the cost and effort required for tackling probable risks, the project
manager can make buffers in the project plan. In this way, if any risk appears, the project man-
ager can save the project schedule or cost from going out of hand by consuming the budget or
schedule from the buffer.

To tackle risks that can impact quality, quality assurance measures must be ensured throughout
the project. All work products during the project must be checked for quality. Only when quality
norms are met with, should the project be allowed to proceed to the next phase, so that in the
next phase of the project, the input work product is defect free. For this arrangement, the project
schedule must have tasks for work product inspections as well as some time allowance so that the
work product can be reworked to make it defect free.

These risks can happen anytime during the project execution, and they may not crop up at the
expected time. So the project manager should keep revising his list of risks, so that they are always
arranged and ordered as per their probability of occurrence.

Exercises
4.1	 Find out all the reasons why risk management in the iterative development models is differ-

ent compared to the traditional waterfall model.
4.2	 Find out all the risks that cannot be managed on a software project. List the reasons why

these risks cannot be managed.

Review Questions
4.1	 List all the kinds of risks that can occur on a project.
4.2	 What strategy is adopted to minimize the impact of any risk on the project?
4.3	 Describe in detail the steps taken in preparing a risk management strategy.
4.4	 Why is risk management so important for any project?
4.5	 What strategy is adopted to minimize the risk of changing requirements?

74  ◾  Software Project Management: A Process-Driven Approach

Recommended Readings
	 1.	 J. Smith, P. McKee (2001) Troubled IT Projects: Prevention and Turnaround (IEE Professional Applications

of Computing Series, 3), Institute of Electrical & Electronic Engineers, Hertfordshire, U.K.
	 2.	 K. Heldman (2007) PMP: Project Management Professional Exam Study Guide, Sybex, Alameda, CA.
	 3.	 D. Lock (2007) Project Management, Ashgate Publishing Company, Aldershot, U.K.
	 4.	 M. D. Lewin (2001) Better Software Project Management: A Primer for Success, Wiley, Hoboken, NJ.
	 5.	 F. Tsui (2004) Managing Software Projects, Jones and Bartlett Publishers, Inc, Sudbury, MA.
	 6.	 P. C. Tinnirello (1999) Project Management, CRC Press, Boca Raton, FL.
	 7.	 D. D. Galorath, M. W. Evans (2006) Software Sizing, Estimation, and Risk Management, CRC Press,

Boca Raton, FL.
	 8.	 R. T. Futrell, D. F. Shafer, L. I. Shafer (2002) Quality Software Project Management, Prentice Hall PTR,

Upper Saddle River, NJ.
	 9.	 J. E. Tomayko, O. Hazzan (2004) Human Aspects of Software Engineering, Laxmi Publications,

New Delhi, India.
	 10.	 R. J. Muller (1997) Productive Objects: An Applied Software Project Management Framework, Morgan

Kaufmann, San Fransisco, CA.
	 11.	 R. E. Fairley (2009) Managing and Leading Software Projects, Wiley-IEEE Computer Society Press,

Hoboken, NJ.
	 12.	 J. T. Marchewka (2006) Information Technology Project Management, Wiley India Pvt. Ltd., New Delhi,

India.
	 13.	 J. W. Horch (1996) Practical Guide to Software Quality Management, Artech House, London, U.K.
	 14.	 K. Bittner, I. Spence (2006) Managing Iterative Software Development Projects (The Addison-Wesley

Object Technology Series), Addison-Wesley Professional, Boston, MA.
	 15.	 P. Jalote (2002) Software Project Management in Practice, Addison-Wesley Professional, Boston, MA.

75

Chapter 5

Configuration Management

In the previous chapter, we learned

◾◾ What is a risk on a project?
◾◾ What kinds of risks exist for a project?
◾◾ What kind of impact may risk have on a project?
◾◾ What strategy is needed to deal with risks?

In this chapter, we will learn

◾◾ What is a configuration management system?
◾◾ What are the parts of a configuration management system?
◾◾ Why is a configuration management system required on a software project?
◾◾ What strategies can be made to deploy a configuration management system success-

fully for a project?

5.1  Introduction
Configuration management is needed on software projects because numerous artifacts are pro-
duced during the entire product development life cycle. There needs to be a place where these
artifacts can be kept safely and from where they can be accessed easily and securely whenever
required. Configuration management is in fact a supporting process that runs alongside the devel-
opment process.

During the entire software development life cycle, requirements keep changing. This results
in many versions of work products. Each team member is supposed to work on the right version
of any work product. If these versions are not managed properly, there may be the possibility that

76  ◾  Software Project Management: A Process-Driven Approach

team members start working on wrong versions of work products. It is therefore very important
that documents and work products be kept at the right place and that project teams be aware of
the right locations of documents in the configuration management (Figure 5.1).

Continuous integration is adopted for many software development projects. A build of the
software product is kept at a central location and each new piece of software being developed is
integrated with the existing build. Thus, in a single day there could be more than 50 or more revi-
sions or more of the same build due to new codes being added by developers throughout the day.
There could also be many versions of the build at any given time. The new code must be checked
in the right software build. If a proper configuration and version control system is not provided,
this kind of software development (continuous integration) is not possible.

5.2  Configuration Management
The driving force behind configuration management is the need to store, archive, identify, retrieve,
and release work products and information items for the entire project team [1]. Change control
for different versions of information items is what makes configuration management a difficult
area. Each information item can be identified using tags associated with the information item.
Some common tags for item identification include

◾◾ Project name
◾◾ Year and time stamp
◾◾ Document name
◾◾ Document number
◾◾ Author
◾◾ Activity identifier
◾◾ Document type
◾◾ Version number

A configuration management system is used by the entire project team, which may consist of
one’s own team as well as contractors and service providers. To manage who can have access to
what information, a secured access system is required. To achieve this, we can define roles and
permissions centrally. Information items are stored inside folders. Each folder can have multiple
sub-folders. Each of these sub-folders can, in turn, have multiple sub-folders. This hierarchy is
maintained for each major classification of items. The items are then created and stored at the
appropriate place in the hierarchy (Figures 5.2 and 5.3).

Version
control

Auditable Centrally
located Secure Access to all

teams
Accessible to
remote teams

Continuous
integration

Artifact
location

Characteristics of
good configuration

management system

Figure 5.1  Characteristics of a good configuration management system.

Configuration Management  ◾  77

Each folder then has an access permission for each defined role. Each role may have edit/view
or view-only roles. Roles with proper access permission can only view or edit any item inside that
folder, or any sub-folders inside that folder. An account for each individual project team member is
created on the configuration management system. Each of these accounts is then linked to appro-
priate defined roles. Team members can then create/access documents and files on the system as
per their access rights.

5.3  Configuration Management Techniques
As has been mentioned previously, keeping track of the right versions of information and work
product items is very important in any project. So version control is one of the most important
aspects of any configuration management system. As most software projects are executed with
teams at different locations, which may be under different time zones, a central configuration
system is required that would allow smooth working of all teams from all locations. Consider the
problems this type of development work can face if a central configuration system is not avail-
able and a decentralized system has to be followed. Each team would have its own configuration
management system. The setup would vary between teams, with the same item being named and
known differently in each system (Figure 5.4).

Project name Time stamp Document
number

Information needed for a
document for a configuration

management system

Author Document
type

Version
number

Figure 5.2  Information required for keeping a document or work product in a configuration
management system.

Project 1

Requirements

Design

Construction

Testing Test ver. 1 Test ver. 2

Construction
ver. 1

Construction
ver. 2

Design ver. 1

Req. ver. 1

Design ver. 2

Req. ver. 2

Figure 5.3  Folder and item hierarchy structure inside a configuration management system.

78  ◾  Software Project Management: A Process-Driven Approach

This kind of arrangement would create chaos. It would be difficult to control versions of docu-
ments and would make it harder for teams to manage their work. If integration were required
between two components developed by two different teams, it would be difficult to know if
they were the right versions for the integration. In short, it would create a great many problems.
Moreover, synchronizing different versions of documents over different configuration manage-
ment systems is a tedious and error-prone task. It also adds unnecessary overhead.

In light of things we have seen so far related to different aspects of configuration management
systems, it makes sense to stick to some best practices that are relevant to these kinds of systems.
Following are some techniques and best practices [2] that are extremely useful:

	 1.	Centralized configuration management system [3]
	 2.	Secured access mechanism with role-based access control [4]
	 3.	Continuous integration of software build with smoke test facility [5]
	 4.	Easy branching mechanism to branch out an entire software version [6]
	 5.	Audit facility

As discussed earlier, a centralized configuration management with a role-based access mechanism
will allow smooth functioning of the system.

When it comes to managing the central source code build, some critical considerations need
to be made, especially if we are in continuous integration mode. Generally, when the project is in
construction phase, developers will write code and will check their code with the existing software
build whenever they complete a unit of a component on which they are working. If, for some
reason, the build gets broken due to faulty code, the configuration system will not allow other

Requirements

Configuration
 Management system 1

Design

Construction

Testing Test ver. 1 Test ver. 2

Construction
ver. 1

Construction
ver. 2

Design ver. 1

Req. ver. 1

Design ver. 2

Req. ver. 2

Configuration
Management system 2

Project 1

Configuration
Management system 3

Requirements

Design

Construction

Testing Test ver. 1 Test ver. 2

Construction
ver. 1

Construction
ver. 2

Design ver. 1

Req. ver. 1

Design ver. 2

Req. ver. 2

Figure 5.4  Folder and item hierarchy structure inside a decentralized configuration manage-
ment system.

Configuration Management  ◾  79

developers to check their piece of code until the build is rectified by the developer who had checked
in the last piece of code. (This functionality can be achieved by installing an automatic smoke
testing tool such as Cruise Control, which will keep generating error messages whenever a piece
of source code is checked in to the software build as long as the wrong piece of source code is not
rectified and checked in.) The current developer then rewrites his piece of code and checks his code
again. If the build is successful, other developers are allowed to check in their piece of code. This
kind of mechanism is important to maintain integrity of the software build. For a better manage-
ment of this build management; an automated smoke test facility is usually provided. Whenever a
new piece of code is checked in to the build, this test facility runs automatically. It checks integrity
of the build. If the build is fine, a success message is sent via e-mail to the current developer. If the
smoke test fails, a failed message is sent to the current developer and any other person whose e-mail
address is defined in the list of e-mails. This mechanism is indeed very useful. Together with other
good characteristics, this facility forms a good configuration system (Figure 5.5).

Generally, after a software product version is fully developed and tested, development work is
stopped on that version. The project team then starts working on the next version of the software
product. The person responsible for managing the configuration management system creates a
new work space on the configuration management system for the new version of the product.
There are thousands of folders and files on a typical software development project. Creating all
of them from scratch will take an inordinate amount of time. It is far more effective to create a
branch of the existing folders and files of the project and copy them in the new branch. So a new
work space will become ready quickly.

The configuration management system should also have a good audit facility. Whenever any
documents stored on the system are needed for verification, they should be easily available. If any
changes are needed on any archived document, both the new and the old versions should be avail-
able on the system. A time stamp should also be available for the changes made on any document.

5.4  Artifacts of Configuration Management
A configuration management system holds software build files, work products, and documents gener-
ated at each phase of the software development life cycle, and reviews, reports and other information
documents. All of these documents and files have many versions. Whenever there is a change required
in any document or artifact, a new set of new versions of files are created and saved on the system. Thus,
for each project, there will be requirement specification documents, design documents, software builds,
testing plans, testing cycle documents, training manuals, review documents, etc. on the system.

Secure

Continuous
integration

Branching

Centralized

Audit facility

Configuration
management

system with good
facilities

Figure 5.5  Facilities required of a good configuration management system.

80  ◾  Software Project Management: A Process-Driven Approach

5.5  Configuration Management Case Study
In Chapters 2 through 4, we learned about project initiation, effort estimation, and risk manage-
ment for the project undertaken at our SaaS vendor. Here is a case study on how to set up and
arrange a central configuration management system that can be used by internal, external, and
offshore teams at the same time.

5.5.1 � Configuration Management for an Incremental
Iteration Development Environment

A U.S.-based mid-market software vendor built a software system that allowed retailers, distribu-
tors, and manufacturers to manage their orders, inventories, shipment of goods, third-party logis-
tics service providers, warehouses, etc. This system is being used by many large customers in the
U.S., Europe, and other markets.

For development of this software system, they adopted the incremental iteration development
model. They have their own internal project team that works on developing the software. They
also have employed service providers at offshore locations in India, Russia, and other locations to
reduce their development costs and to shrink the development cycle. This arrangement is working
very well for them. Thanks to the efficient and reliable configuration management system that
they have deployed centrally and that is accessible to all teams regardless of their locations, they
have been able to do all their development work without encountering too many hurdles. The
configuration management system is available 24 h a day, 7 days a week, and there is virtually no
downtime. It is also very secure, and no hacks have occurred since it started working.

The access rights were of two types. Administration rights (edit, delete, add) were given only to
team members who were either owners of documents or responsible for maintaining documents.
Others were given view-only rights to download and view these documents. One super-user role
was also created—this could be used to create new branches and to add, delete, or modify any
folders or documents in the entire configuration management system.

The main branch of the version control contains the main build of the software containing all
the major updates that have taken place since the product was developed. This main branch also
contained all related artifacts for the main build (Figure 5.6).

Source code
check in

Main software build in
failed state

Main software build in
passed state

Main
software

build

Automatic smoke
test after source
code complied

Smoke test
failed

E-mail
notification

Website
report

Smoke test
passed

Figure 5.6  Workflow for smoke test on the main software build.

Configuration Management  ◾  81

An automated smoke testing software was installed on all branches where developed software
code was being checked. Whenever any fresh code is checked in the build by any developer, this
software will run automatically. It will check the compatibility of the new code with the existing
build. If any inconsistency is found and the build fails, it will show a failure notice on a status
page and also send this page to the designated people on the e-mail list, including the person who
checked in the fresh code. If the status page shows success, the developer can start working toward
his next assignment. If the build fails, he receives a failure notice and starts working to fix the
problem. He can either check back the code with which he checked in or can check in the cor-
rected code again. This practice ensures that the build is available for all developers located at any
geographical site most of the time. If, for some reason, the developer cannot rectify the build even
after checking back his code or is not aware of the failure, the problem is escalated. If any build is
not fixed within 1 h, the configuration tool will send an e-mail to the global program manager. He
can then take any appropriate action.

Each developer also keeps a local build and smoke test application on his personal computer.
He keeps this local build in synch with the build located at the central configuration tool. Before
checking his code in the central configuration tool, he runs his code on this local version. If the
code is built successfully and the smoke test application shows a success status, he checks his code
in the central build. This ensures that the central build does not fail often.

5.6  Chapter Summary
On software projects, many versions of the work products are developed due to defect fixing,
pending changes, change requests, etc. Configuration management on software projects plays an
important role in making sure that all these versions of work products are correctly maintained
and that project team members have access to all these work products and project documents.

Particularly, source code builds are very sensitive to version control. Source code build is the
repository where each developer checks in his source code after developing it. These check-ins can
be done several times during the day by each developer. If the source code checked in by a devel-
oper has defects, it will fail when the build is run. Finding and fixing the cause of failure becomes
a tedious and difficult task.

The configuration management system should have a good security mechanism in place so
that it is not hacked by unauthorized persons. Unauthorized access to the system may result in loss
or theft of vital project information. At the same time, the project team should have easy access to
the system so that they can archive, retrieve, edit, or remove project work products and documents
without any problems.

Apart from the regular role of configuration and version control management, these systems
also play an important role as keepers and providers of project information.

Exercises
5.1	 For any open source project, try to find the configuration management system log. Find

significant features of the maintained configuration system for the project. (You can find
many open source projects at www.sourceforge.net.)

5.2	 From requirement change request logs for any accessible project, find out the complete
change log for each work product.

82  ◾  Software Project Management: A Process-Driven Approach

Review Questions
5.1	 Why is a configuration management system required on software projects?
5.2	 What are the essential ingredients of a good configuration management system?
5.3	 What is a smoke test?
5.4	 Which is a better configuration management system: a centralized system or a decentralized

system? Explain the benefits and drawbacks of each.
5.5	 What is branching on a configuration management system?

Recommended Readings
	 1.	 J. Estublier (1995) Software Configuration Management: ICSE SCM-4 and SCM-5 Workshops. Selected

Papers (Lecture Notes in Computer Science), Springer, Berlin, Germany.
	 2.	 J. Keyes (2004) Software Configuration Management, CRC Press, Boca Raton, FL.
	 3.	 A. Mette Jonassen Hass (2002) Configuration Management Principles and Practice, Addison-Wesley

Professional, Boston, MA.
	 4.	 B. Barkley (2007) Project Management in New Product Development, McGraw-Hill Education (India)

Pvt Ltd., New Delhi, India.
	 5.	 S. P. Berczuk, B. Appleton (2002) Software Configuration Management Patterns: Effective Teamwork,

Practical Integration, Addison-Wesley Professional, Boston, MA.
	 6.	 M. E. Moreira (2004) Software Configuration Management Implementation Roadmap, Wiley, New York.

83

Chapter 6

Project Planning

In the previous chapter, we learned

◾◾ What is a configuration management system?
◾◾ What are the parts of a configuration management system?
◾◾ Why is a configuration management system required for a software project?
◾◾ What strategies can be made to deploy a configuration management system success-

fully for a project?

In this chapter, we will learn

◾◾ What is software project plan?
◾◾ What are the parts of a software project plan?
◾◾ What are the types of software project plans?
◾◾ What inputs go in making a software project plan?
◾◾ What techniques are used in making a software project plan?

6.1  Introduction
Project planning for any software project involves making the best trade-off among quality, schedule,
cost, and organization benefits which can accrue from the project. In in-house projects, the benefits
to the organization from the software are related to management gains in the form of increasing mar-
ket share, reducing operational costs, reducing risk exposure, complying with government regulations,
etc. Benefits to the end users include ease of work, reducing labor-intensive work, increasing work
performance, etc. Often the project manager may not be aware of these benefits; nevertheless, if he
has information about these things, it will help him to satisfy his customers’ needs in a better way.

84  ◾  Software Project Management: A Process-Driven Approach

For instance, if he knows that the main objective of the project is to enhance the productivity of the
staff, then he will choose a software design where the user input required in doing transactions is kept
to a minimum, thus increasing user productivity.

In outsourced projects, one important goal of the service provider is to make a profit from the
project. They keep a profit margin on top of estimated project costs. Accordingly, while doing
resource planning, the project manager should plan it in such a way that costs of resource for the
project do not impact the profit margins of the project.

There are so many details that the project manager has to be aware of; only then, can he make
a good plan for the project.

6.2  Project Planning Fundamentals
During project initiation, high-level project planning is done. But at that stage, not many of the
project details are available. So the project planning is at best a rough one. The effort estimate done
at that stage is also a rough one. Both these plans need to be refined at a later date when all or most
of the project details become available so that it becomes more usable for the project.

Depending on time frame requirement of a project, it can be either a top-down project plan-
ning or a bottom-up project planning [1]. Generally, in the case of product development by software
vendors, the project management is a top-down approach, and in the case of custom software devel-
opment, it is a bottom-up approach. The market forces dictate the software vendors to release new
versions with desired features within a specified time period. In this case, the release date is fixed,
and so the software development team is given a specified time period within which they have to
incorporate the desired features in the software and have to make it available on the market. Since
the time and the features are fixed, the development team has no choice but to develop the product
within that specified time frame. This is known as the top-down approach. In contrast, in custom
software development, the project team is given the software requirements, and from these require-
ments, they estimate how much time it will take to develop the product. Then the development
team decides on the release date of the project. This approach is known as the bottom-up approach.

For large outsourced software development projects, which are instituted to make industry
strength large software products, software engineering plays an instrumental role along with ser-
vice level agreements (SLAs), project scope, etc. Using software engineering will ensure that the
project and product development processes will be well defined and will ensure good product
quality at competitive cost and acceptable schedule. Project scope defines the volume of work to
be done on the project in conjunction with requirements. SLAs define deliverables, frequency of
status reports, legal and commercial liabilities, etc. (Figure 6.1).

The project plan itself consists of a large number of planning components [2]. It includes risk
planning, resource planning, task planning, effort estimation, cost estimation, communication
planning, configuration management planning, tool planning, supplier management planning,
quality planning, and scope planning. We will study all of these planning components in detail
later in the chapter.

6.2.1  Top-Down Plan
The product development company (software product vendor) always has product release dates
planned in advance. Similarly, any company who needs a software system for meeting the market
demands needs the system within some stipulated time. In fact, a large number of companies are

Project Planning  ◾  85

operating under acute market pressures and they need software systems within a certain time
window to accomplish their business goals. If the software system is not provided within this
time frame, then the business may experience severe losses. Under these circumstances, a software
project should be instituted with a top-down approach.

As you can see in Figure 6.2, there are a large number of inputs in the case of planning
top-down projects. Here, apart from project scope, SLAs, and chosen software engineering model
and requirements, we have project start date, project end date, project duration, and project budget.
All of these details are available to the project team before the start of the project.

In the case of top-down projects, the plan outputs include supplier management, configu-
ration management, communication management, defect prevention strategy, WBS structure,
resource allocation, tool management, scope management, effort estimate, and risk management
(Figure 6.3).

Risk planning

Scope
planning

Quality
planning

Supplier
planning

Configuration
management

planning

Communication
planning

Cost
estimation

Effort
estimation

Schedule
planning

Resource
planning

Tools
planning

Project
planning

components

Figure 6.1  Software project planning components.

Project scope Requirements
Service level
agreements Project budget

Project
duration

Software
engineering

Project
planning

inputs (top-down
planning)

Project start
date

Project end
date

Figure 6.2  Software project planning inputs for top-down approach.

86  ◾  Software Project Management: A Process-Driven Approach

6.2.2  Bottom-Up Plan
Large software projects devoid of much clarity at the beginning of the project tend to have a
bottom-up approach for their project planning. At the beginning of the project, effort is made to
find out what tasks should be involved in the project and how the project may span out. Obviously
there will be no sufficient information available at the beginning of the project, and the project
team has to strive to gather as much information as possible to make a reasonable plan for the
project. They collect information about project scope, requirements, and SLAs. Using any appro-
priate software engineering model, they define the development strategy (whether to use waterfall,
agile, or any custom approach) and accordingly settle for the kind of development tasks they will
employ in the project. Once these inputs are in place, then the project team can chalk out the
project plan, including the complete output (Figure 6.4).

Project scope Requirements Service level
agreements

Software
engineering

Project
planning

inputs
(bottom-up
planning)

Figure 6.4  Software project planning inputs for bottom-up approach.

Supplier
management

Configuration
management

Communication
management

Project
planning

outputs (top-
down

planning)

Risk
management Effort estimate

Project budget

Tools
management

Resource
allocation

WBS
structure

Quality
management

Figure 6.3  Software project planning outputs for top-down approach.

Project Planning  ◾  87

Project planning requires inputs based on which outputs will be created in form of project
plan. Inputs for project planning for bottom-up approach include project scope, SLAs, and chosen
software engineering model, along with the all important software requirements (Figure 6.5).

In the bottom-up project, the project plan output includes supplier management, configu-
ration management, communication management, defect prevention strategy, project duration,
project cost, work breakdown structure (WBS), resource allocation, project start and end dates,
tool management, scope management, effort estimate, and risk management.

6.2.3  Work Breakdown Structure
When a project plan is made, all project tasks are included in the plan [3]. Each of these tasks
has a start date and an end date. When all the tasks are listed in the plan, it will be difficult to
identify which task is dependent on another task, which task is on the critical path, which task
signifies a milestone, etc. It is also necessary to group the tasks that are part of the same phase in
the project and put them under a pseudo task with the name of the phase. The last tasks in each of
these pseudo tasks will be the milestone tasks, which are also pseudo tasks. In Microsoft Project
and other project management software, all tasks pertaining to the same group can be expanded
or collapsed at the parent task. This makes reading the WBS easier and manageable (Figure 6.6).

6.2.4  Resource Allocation
Software projects have variable staff requirements over the project [4]. While construction and
software testing phases need a large pool of resources, the requirement and design phases need
a far smaller number of resources. One more aspect about software projects is that skills are not
usually transferable. So a software architect who makes software design is usually not associated

Supplier
management

Configuration
management

Communication
management

Project
planning
outputs

(bottom-up
planning)

Risk
management Effort estimate

Scope
management

Tools
management

Resource
allocation

WBS
structureProject cost

Defect
prevention

Project
duration

Start date

End date

Figure 6.5  Software project planning outputs for bottom-up approach.

88  ◾  Software Project Management: A Process-Driven Approach

with software construction. Once he designs the software application, his job with the project is
complete and he can be assigned to some other projects. In general, about 50% of the resources are
required during the construction phase. For software testing, it is about 30% (Figure 6.7).

This uneven resource requirement over the project phases has led to the evolution of concur-
rent engineering models. Many teams are formed for software construction and testing who work
in parallel, and thus, project cycles get reduced.

6.2.5  Supplier Management Plan
If the entire project or project parts are to be done by outsourced project teams, then a supplier
management plan is needed for the project [5]. It will include creating the SLA, its compliance,
etc. (Figure 6.8).

It is important to manage suppliers so that parts developed by them are not inferior to the
parts made by your team. Similarly, if there are two or more suppliers, then the quality of work
products/products provided by them should be of the same level. One major area of concern is the
integration of software parts made by suppliers to the main software build. To mitigate this risk,
the central build should be employed so that from the start of the build, the outsourced team can

Sample project

Initiation

Requirements

Task 1

Requirement milestone

Design

Task 1

Task 1

Task 2

Design milestone

Construction milestone

Testing

Testing milestone

Implementation

Implementation milestone

Project closure Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Construction

Figure 6.6  Project plan with work breakdown structure.

Project Planning  ◾  89

keep checking their code. This will make sure that integration problems will not arise. Detailed
information about supplier management is provided in Part III.

6.2.6  Configuration Management Plan
With many scattered teams working on the same project in many cases, it is most important that
configuration management is done carefully. It should be ensured that all teams have the same
version of source code and document files; otherwise chances of rework will increase. It is the best
policy to have a centralized configuration management system used and maintained by all the
teams. Security and access control for this system should be of high quality so that project team
members can do their work securely and without any fear of losing their work. Detailed informa-
tion about configuration management is provided in Chapter 5.

6.2.7  Communication Management
Communication management depends solely on project organization structure, customer
management strategy, and supplier management needs [6]. For effective communication
among all of these parties, it is essential that a proper communication management strategy is
in place. The project manager must define what needs to be communicated to whom, in what

Number of resources

Requirements
Design

Construction

Testing

Figure 6.7  Resource (staff) requirements for a software project over different phases.

Service level
agreements

Part quality
check

Supplier
management plan

Communication
plan

Central
configuration

management system

Continuous
integration

Figure 6.8  Supplier management plan.

90  ◾  Software Project Management: A Process-Driven Approach

manner, and when. A good way to promote a uniform communication channel across all the
scattered project teams is to use a good set of project templates. A set of standard templates
will go a long way in establishing a smooth and uniform communication among all the project
teams. Detailed information about communication management is provided in Chapters 19
through 21.

6.2.8  Defect Prevention Strategy (Quality Assurance)
Quality assurance and control is the most important aspect of any software project [7]. Without
having a defect prevention strategy (quality assurance), the project will be doomed to fail. Defect
prevention strategy should be an integral part of the project (Figure 6.9).

After each project phase, the work products should be validated and verified, and only if they
pass the expected quality level, the project should be allowed to proceed further. Otherwise the
work products should be reworked until a satisfactory quality level is achieved.

6.2.9  Project Duration
Project duration is calculated using the critical path along the project tasks. The longest path is the
critical path of the project, and its length is the project duration. Detailed information about the
estimation of project duration can be found in Chapter 3.

6.2.10  Project Cost
Estimation of the project cost begins with effort estimation. Once we have effort estimate,
productivity, and hourly salary rate information about project team members, we can calculate
resource costs. Adding overhead expense to this figure will amount to project costs. Detailed
information about the estimation of project cost can be found in Chapter 3.

Requirements Requirements
verification

Maintenance
validation

System testing
Unit and

integration
testing

Construction

Design
verification

Design

Operation and
maintenance

User acceptance
testing

Deployment

Figure 6.9  Defect prevention mechanism (quality assurance) in the project.

Project Planning  ◾  91

6.2.11  Tool Management
Planning should be done for making selections for programming languages, software and hardware
platform, productivity tools, configuration management system, testing tools, project tracking, com-
munication systems, etc. Detailed information about tool management can be found in Part IV.

6.2.12  Scope Management
Requirement scope management is one of the most crucial aspects of any software project. It
along with a number of requirements and quality level determines the volume of work to be done.
Detailed information about scope management can be found in Chapter 10.

6.2.13  Effort Estimate
Effort estimation is discussed elaborately in Chapter 3. Please refer to that chapter for more details.

6.2.14  Risk Management
Risk management is discussed elaborately in Chapter 4. Please refer to that chapter for more details.

6.3  Project Planning Techniques
6.3.1  Critical Path Method
The critical path method (CPM) or program evaluation review technique (PERT) is a project planning
technique devised at Remington Rand Corporation by J. E. Kelly & E. I. Du Pont De Nemours
& Company in 1957 [8]. This technique is also called network analysis. This technique establishes
the schedule of a project. Generally, if a project has tasks that are to be executed mostly in a linear
fashion, then project planning for that project is easy. Problems start when parallel tasks have to be
planned. When there are a large number of parallel tasks, it is certainly very difficult to plan and
manage the tasks. The issues such as which task is dependent on which task, when a task has to start
and when it has to finish, how much slack/float is there between two tasks, etc., make the planning
and managing of the project a tough call. The CPM/PERT method allows tackling these issues.
All the tasks are first laid out on a sheet in an order based on their start dates. Then the order in
which tasks must be carried out is identified. Similarly tasks dependent on other tasks are identi-
fied and a relation is made between the tasks. Tasks with no relation among them are put in parallel.
When all the tasks are thus laid out, a path is made, which runs along the longest path of execution.
This is the critical path for the project, and it defines the duration of the project. The start date of
this path is the start date of the project and end date of this path is the end date of the project.
The length of this critical path is the duration of the project (Figure 6.10).

6.3.2  Goldratt’s Critical Chain Method
Eliyahu Goldratt has recognized that the CPM/PERT method proves to be insufficient for plan-
ning and tracking projects [9]. Earned value management is also not worthwhile. In the CPM/
PERT method, tasks are scheduled and a critical path is defined, which denotes the duration of
the project. See Figure 6.10 to understand it better. To take care of uncertainty and risks, tasks

92  ◾  Software Project Management: A Process-Driven Approach

are padded with some buffer. When people who are assigned these tasks, they always tend to take
their tasks lightly until the last minute. So even when ample buffer is provided for their tasks, this
entire buffer is lost without any gain for the project. They defer carrying out their tasks to the last
moment of the deadline, which invariably results in either poor quality or late completion of tasks.

To help project management practitioners, Eliyahu Goldratt introduced the theory of con-
straints. Due to constraints present in the environment, projects are always under threat. To pro-
tect projects from failing, it is important that these threats are understood and proper planning,
monitoring, and controlling are done so that when projects diverge from a planned course of
action, immediate action can be taken to put them back on track and make them emerge as suc-
cessful products.

Basically, these constraints (risks) can impact a project in terms of either cost or schedule or
content. In any project, there are some tasks that can be considered fixed while some others are
variable. These fixed tasks are the ones that are well defined, and they can be scheduled with cer-
tainty. On the other hand, variable tasks lack concrete details, and even though they are scheduled
with some probable time frame, the time frame for their completion is not certain. So a buffer is
provided for these tasks to take care of uncertainty (Figure 6.11).

Goldratt proposed that buffers for well-understood tasks should be removed (as effort
required for them can be easily calculated), but a buffer should be provided for uncertain tasks.

= Buffer

Initiation Requirements Design 2

Design 1

Construction 2

Design 3 Construction 3

Testing

Critical path

Integration Release

Construction 1

Figure 6.10  Critical path for a software project.

= Buffer

Initiation Requirements Design 2

Design 1

Construction 2

Design 3 Construction 3

Testing

Critical chain

Integration Release

Construction 1

Figure 6.11  Goldratt’s critical chain for a software project.

Project Planning  ◾  93

Buffers for uncertain tasks should be detached from those tasks and restored at the end of the
project. When monitoring the project, the project manager should actually monitor the buffer
and not the task durations. He should see if the buffer is getting consumed or not while the
project executes. Whenever he sees that the buffer is getting consumed, he takes action to con-
trol the project.

The critical chain method is extremely useful for managing projects. It helps in reducing the
uncertainty in projects and thus helps in delivering projects with much better certainty.

6.4  Project Planning Artifacts
Project planning is a large subject and generally it is claimed that it constitutes 10% of total project
effort. It is here that most of the project details are chalked out and a detailed project plan is made.
Project planning is the stage when most of the project documents are made. So we have a large
number of project artifacts here. The artifacts include project plan, risk management, effort esti-
mate, cost estimate, resource allocation, communication plan, configuration management plan,
WBS structure, supplier management plan, tool management plan, etc.

6.5  Project Planning in Agile Models
Agile models are best suited when either requirements are not clear or the customer wants
small deliveries at short intervals. Risk associated with agile or iterative models is negligible as small
deliveries require small efforts, and if delivery is not on a par with expectation, only a fraction of
the effort gets lost in rework as the rework itself will be small.

For details about software life-cycle models, waterfall method, agile methods, etc., please refer
to Part III.

Iteration occurs up to a certain level in the software development life cycle with different agile
models. At one extreme are the Scrum and eXtreme Programming models where there is a com-
plete iteration from requirement to release. The other extreme is where the least amount of iteration
occurs only from just one phase to another, or within one phase there could be some iterations. This
kind of behavior can be seen in models like open unified model or rational unified model.

Project planning with iterative models differs significantly compared to the waterfall model [10]
(Figure 6.12).

At the top level, a roadmap is created for the complete product. It is known as a product
plan. It is tentative in nature and lacks concrete details as all of it is planned in advance before
the actual product development starts. It can be made for 2–3 years or more and will have the
input from the top management as to what customer requirements that product will fulfill when
it is completely made.

At the middle level, we have a major product release plan. This plan includes several iterative
plans. Generally, most of the software vendors have major releases once in a year. So this plan
spans 1 year. It includes details as to what new product features will be developed in that major
release.

At the bottom is the iteration plan. Iteration plans correspond to the minor release of a soft-
ware product. Iteration plans have all the details as to what activities will be performed in that
iteration (Figures 6.13 through 6.15).

94  ◾  Software Project Management: A Process-Driven Approach

Time

Initiation

Requirement

Design

Construction

Construction
Iteration 1

Iteration 2

Testing

Project progress

Testing

Release

Closure

Figure 6.12  Project life cycle in limited iteration model (iteration occurs only for construction
and testing activities).

Time

Initiation

Requirement

Design

Construction

ReleaseIteration 1

Iteration 2

Iteration 3

Testing

Project progressProject progress

Closure

Requirement
Design
Construction
Testing
Release

Requirement
Design
Construction
Testing
Release

Figure 6.13  Project life cycle in Scrum or eXtreme Programming model.

Project Planning  ◾  95

Some of the salient features of extreme agile models:

◾◾ Customer feedback after each iteration.
◾◾ Adaptive rather than predictive: This means iteration planning and effort estimate are not

meant to be the most important things about the project. The ability to handle change request
is the most important aspect.

◾◾ Constant resource requirements: In waterfall models, each type of work product is worked on
by specialists. The moment they finish their tasks, they are no longer needed in the project
and they move to some other project. In the case of agile projects, project team members
keep working on the project continuously. This is because each iteration is of very short dura-
tion (sometimes as small as 1 week). Once each team member finishes with his assignment
on one iteration, he starts working on the next assignment on the next iteration without
much idle time between these two assignments.

Iteration 1

Major release 1

Major release 2

Complete product development plan

Requirement
management

Design
Construction
Testing
Release

Design
Construction
Testing
Release

Design
Construction
Testing
Release

Design
Construction
Testing
Release

Design
Construction
Testing
Release

Iteration 2

Requirement
management

Iteration 3

Requirement
management

Iteration 4

Requirement
management

Iteration 5
Requirement
management

Figure 6.14  Iterations, major releases, and complete product development plan.

Major release 1 Major release 2

Complete software product

Major release 3

Major release 4 Major release 5 Major release 6

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Figure 6.15  Complete software product, major releases, and iterations.

96  ◾  Software Project Management: A Process-Driven Approach

◾◾ Easier resource management: The project manager need not pay much attention to resource
allocation as each project team member is kept busy by work assignments in iteration after
iteration without any significant idle time.

◾◾ Refactoring: Since there is no elaborate design effort while developing software features in
each iteration, the software design becomes ungainly over many iterations. When the design
becomes unmanageable (when you start getting problems in integration of new features with
old features), it needs to be refactored. Planning for refactoring is an important consider-
ation while making plans for iterations.

6.5.1  Iteration Planning
Iteration planning is done based on a concept called velocity. Velocity is measured in terms of building
a number of feature points per iteration. Any software feature is analyzed for its size and complexity.
Accordingly, it is assigned some feature points. Based on team size and skill and experience of team
members, it is determined how many feature points the project team can make in an iteration of, say,
1 week. So the number of feature points developed per iteration becomes the velocity of the project
team. Based on the velocity, the project manager (or sprint master, if you are in a Scrum project) can
determine how many iterations will be there in a minor release, major release, or the complete product
development. For example, suppose the complete product to be developed has 10 features.

Feature 1 has 3 feature points.
Feature 2 has 2 feature points.
Feature 3 has 5 feature points.
Feature 4 has 6 feature points.
Feature 5 has 4 feature points.
Feature 6 has 2 feature points.
Feature 7 has 7 feature points.
Feature 8 has 3 feature points.
Feature 9 has 5 feature points.
Feature 10 has 4 feature points.

So in total we have 41 feature points in the project. There are nine people in the project and each
iteration will last 1 week. If velocity of the project team is determined to be four feature points per
1 week iteration, then the gross number of iterations will be 11. Some risk factors can be added
here. One risk is refactoring time. Other risk factors could be sick leaves, attrition, wrong velocity
calculation, etc. To tackle wrong velocity calculation, it is advisable not to promise a commitment
for the entire project to the customer. Let two to three iterations get executed. After that, you will
have a pretty good idea of the velocity of the project team. This is especially true if the project con-
sists of people who have never worked with each other before and the project manager is not aware
of their pace of work. To tackle other kinds of risks, the same kinds of strategies can be taken that
have been mentioned for waterfall projects.

6.6  Planning at Project Management Office
Many business organizations create an IT division that takes care of all software and information
technology needs. Other organizations, instead of creating a division, create a central organization
that takes care of their IT projects. This organization is known as the project management office

Project Planning  ◾  97

(PMO) [11]. The PMO takes care of organization level management for all projects. It helps in
providing resources for projects, monitoring and controlling projects, providing infrastructure,
providing funds, etc.

The PMO can take many forms. Organization structure of program management can become
very complicated in software service organizations. For some large corporations, the PMO can
include many programs (clustering of projects related to each other), project portfolio manage-
ment divisions, etc.

Planning at the PMO level includes resource planning, business planning, infrastructure
planning, etc. At one level, these plans are aimed at fulfilling the business needs of the parent
organization. At the project level, these plans help the projects plan for adequate project staff,
infrastructure, and budget.

More information about PMO organization structures can be found in Chapter 19.

6.7  Case Study
So far in previous chapters, we have seen how some of the essential planning components such
as risk planning, effort and cost estimation, and configuration planning are handled at our SaaS
vendor projects. In this chapter, we will see how planning for schedule and resources is made at
the iteration and project levels.
At the project level (coinciding with major release once per year), the following planning is done:

◾◾ Identify and prioritize features. (Feature set should be continually revised throughout the
project.)

◾◾ Identify iterations and loosely allocate features to each iteration.
◾◾ Plan for time-boxed iterations (if followed).
◾◾ Calculate cost and effort. Since the project is very stable, there is not much variation in cost

and effort from year to year.

At the iteration level, the following planning is done:

◾◾ Plan for iteration.
◾◾ Identify tasks to implement features.
◾◾ Allocate tasks to resources.
◾◾ Implement iteration.

6.7.1  Feature Selection
Which feature is to be taken for development in an iteration is often a bone of contention between
the marketing team and the development team. The development team has its own technical
reasons for feature selection. The marketing team, on the other hand, wants everything to be
developed based on the requirements that they identify through interaction with customers and
the market feedback they receive. Our SaaS vendor has a mechanism for sorting out this tussle.
Their chief technology officer is the final authority in feature selection. During the yearly project
plan, he makes a list of probable features that will be developed and added to the core software
product in the coming year after consultation with marketing department. At this stage, the

98  ◾  Software Project Management: A Process-Driven Approach

features are not marked with any priority. It means that all features have equal importance at this
stage. Before the start of an iteration, the marketing team gives priority for each feature. The top
priority features are taken for the iteration. The project manager estimates the effort required for
each feature. He then tries to make a balance between availability of resources, who will work on
the project and how much time should be allocated to each team member. Based on this infor-
mation, he can find out how many features can be taken for the next iteration in the 3 months
during which the iteration will run (iterations are taken on a quarterly basis). He also takes into
account some contingency allowances in case any risk or issue arises during the iteration. This list
of features is then locked for the iteration. In essence, in a time box of 3 months, these features
will be developed and integrated into the core software product.

6.7.2  Heart of Planning
The waterfall model of software development is completely plan driven. In contrast, pure agile
models are not plan driven. They are rather implemented in an “As you go!” spirit. The features
demanded by customers are implemented, and thus, nothing is planned in advance about any
project or iteration activity. Iteration planning is done only after the customer spells out a list of
features they want in the iteration. Without a plan, the project team is not able to provide a clear
picture to the customer, and at the same time, the team is not able to plan its own activity in
advance. This is a drawback. So how can our SaaS software vendor cope with its project and itera-
tions when there is virtually no planning done in advance?

We have discussed top-down and bottom-up planning in previous sections. In our case, since
the release date is fixed, we follow top-down planning for iterations. A complete list of features for
the major release of 6.0 is fixed. But at the iteration level, which feature out of the listed features
is to be implemented in the next iteration is not fixed. That means there could not be any iteration
planning in advance, and the project planning is hazy at best. So we have some problems here.
First, iteration plans are not easily possible. Second, even though the agile model is flexible, effort,
schedule, and budget are not able to be drawn in a situation where nothing is fixed. So essentially,
we have a conflict between flexibility and responsiveness on one hand and allocating resources and
budget for the iteration on the other hand.

The vendor is able to cope with this problem using a time-boxing concept. The release date
is fixed for iterations. Their marketing team comes up with a list of features that are to be imple-
mented in the next iteration. The list can be ordered according to priority. The top priority features
can be taken for implementation in the iteration first. Once they are implemented, and if time
permits, the low-priority features can be taken for implementation in the iteration. Remaining low-
priority features, which could not be implemented in the iteration, can be taken in future iterations.

In this arrangement, we have a cushion. If the iteration plan goes well, we take up more fea-
tures. If some issues arise during the iteration and if some high-priority features take more time
than planned, then some of the low-priority features cannot be implemented. So the low-priority
features act as a buffer.

This arrangement is good as it provides both flexibility and responsiveness. At the same time,
it allows for making plans and allocating resource and budget to the iterations.

For planning components related to effort and cost estimates, risk management, configuration
management, communication management, and resource management; see the relevant chapters.
These topics are covered in their respective chapters in detail (Table 6.1).

Project Planning  ◾  99

6.8  Chapter Summary
Project planning is a very important step in the software project. Any large software project has a
large number of important project tasks. Without proper project planning, it will be impossible to
manage such a large number of complex tasks when it is time for execution. So a detailed project
plan is mandatory.

In the case of agile and iterative kinds of projects, project planning is less important, and in
fact it should not have minute details. It is because the entire process is agile and these process
models work on the premise of responding to change quickly. Nevertheless, when an iteration is
firmed up and requirements for that iteration are clear, a project plan is needed to carry out the
project with clear goals. The other iterations in the future as well as the overall plan encompassing
all the iterations should have a project plan with fewer details. Generally, at these levels, it is best
to have a project plan without firm dates for project tasks.

The project plan has many components to manage different aspects. For managing commu-
nication, the project should have a communication plan. For managing efficient resource utiliza-
tion, the project should a resource plan. For managing quality aspects of the work products, there
should be a quality plan. For managing suppliers, a supplier plan is warranted. For managing
configuration and version control, the plan should have a configuration management plan. For
managing tools and technology aspects, the plan should have a tool and technology plan. Finally,
the most important aspects such as cost, schedule, and effort for the project should have respective
plans.

There are many methods that help in making project plans. For making project schedules,
Gantt charts, network diagrams, PERT/CPM charts, etc., are very important. For effectively
tracking and controlling projects, earned value management and Goldratt’s critical chain
methods are very important. During project planning, it is important to keep the require-
ments of these methods (base budget, base schedule, etc.) in mind when the project planning
is done.

There are many good tools available on the market that help in making project plans, for
example, MS Project, Primavera, etc. Some of the project planning tools are online and are avail-
able on the Web so that project teams that are located at many geographical sites can access the
tool and work collaboratively.

Table 6.1  Documents Planned and Generated
during the Project

Use Case Model

Supplementary Specification Nonfunctional Specifications

Risk assessment

Effort estimate

Master test plan

Phase plan Iteration plan with schedule

Software architecture document

100  ◾  Software Project Management: A Process-Driven Approach

Exercises
6.1	 Find some examples of project planning for a construction industry. Find how project

planning is done for that industry and what the planning components are. Compare it to
that for a software project.

6.2	 It is said that software project planning consists of tasks that are not elastic and their
schedule cannot be stretched or shrunk. Find out why it is so and if some remedies exist.

Review Questions
6.1	 What do you understand by a software project plan?
6.2	 Why is a software project plan needed?
6.3	 What are the components of a software project plan?
6.4	 What are the inputs for a top-down project plan?
6.5	 What are the inputs for a bottom-up software project plan?
6.6	 What precautions are taken while creating a project plan to tackle different risks?
6.7	 What kinds of project plans are devised for iterative models of software development?

Recommended Readings
	 1.	 M. E. McGrath (2004) Next Generation Product Development: How to Increase Productivity, Cut Costs,

and Reduce Cycle Times, McGraw-Hill, New York.
	 2.	 R. Wysocki (2006) Effective Software Project Management, Wiley India Pvt. Ltd., New Delhi, India.
	 3.	 D. A. Gustafson (2002) Schaum’s Outline of Software Engineering, McGraw-Hill, New York.
	 4.	 J. Taylor (2003) Managing Information Technology Projects: Applying Project Management Strategies to

Software, Hardware, and Integration Initiatives, American Management Association, New York.
	 5.	 C. Ebert, R. Dumke (2007) Software Measurement: Establish–Extract–Evaluate–Execute, Springer,

Berlin, Germany.
	 6.	 R. Muller (1997) Productive Objects: An Applied Software Project Management Framework, Morgan

Kaufmann, San Francisco, CA.
	 7.	 J. W. Horch (1996) Practical Guide to Software Quality Management, Artech House, Boston, MA.
	 8.	 J. P. Lewis (2004) Project Planning, Scheduling & Control, McGraw-Hill Education (India) Pvt. Ltd.,

New Delhi, India.
	 9.	 H. A. Levine (2002) Practical Project Management: Tips, Tactics, and Tools, Wiley, New York.
	 10.	 R. E. Fairley (2009) Managing and Leading Software Projects, Wiley-IEEE Computer Society Press,

Hoboken, NJ.
	 11.	 C. J. Letavec (2006) The Program Management Office: Establishing, Managing and Growing the Value of

a PMO, J. Ross Publishing, Boca Raton, FL.

101

Chapter 7

Project Monitoring
and Control

In the previous chapter, we learned

◾◾ What is a software project plan?
◾◾ What are the parts of a software project plan?
◾◾ What are the types of software project plans?
◾◾ What inputs go into making a software project plan?
◾◾ What techniques are used in making a software project plan?

In this chapter, we will learn

◾◾ What is project monitoring?
◾◾ What techniques are there for project control?
◾◾ How is project monitoring done in iterative projects?

7.1  Introduction
Projects are inherently dynamic in nature. They also have unpredictability about them. These two
factors call for continuous monitoring and control of projects lest they go haywire. In manufac-
turing, pace of work is fast, but all the activities are more or less predictable. You can plan the
order of tasks to be carried out; and depending on material, machines, and labor availability, you
produce goods without much consideration to worldly or not so worldly things. Routine machine
inspection, work product (work in process) samples for quality control, and skills training are all

102  ◾  Software Project Management: A Process-Driven Approach

it requires to produce goods with good quality. It is not so with projects. There are surprises and
there is something new about each project. More so with software projects (Figure 7.1).

To control and manage this element of unpredictability, you need to have tools and techniques
that can be employed to make the journey comfortable. For software projects, first of all you need
to have a well-defined process model, the application of which will help in reducing uncertainty
and in achieving consistency. The process model will set steps to be followed for completing all
project tasks and thus help in planning the project. A good process model also allows measuring
both project processes and the work products. Measuring project processes and comparing them
with those from best practices will provide information about productivity, costs and schedule,
and where the project is heading. Measuring the quality of product/work product and comparing
them against those achieved with best practices will provide information about the quality of the
work products developed as compared to what could be achieved using best practices. When you
have a good project plan in hand, you can execute your project with much ease.

In this chapter, we will discuss everything related to project monitoring and control for soft-
ware projects.

7.2  Project Monitoring
A project plan consists of a project schedule and project budget apart from other plan components
like communication plan, quality plan, configuration plan, resource plan, etc. To track the project
execution against the plan, there are major and minor milestones defined in the project schedule
[1]. When the execution reaches any of these milestones, costs and schedule can be compared to
know how the execution is faring against the project plan. Then there are tools like status reports,
Goldratt’s critical chain method, Gantt charts [2], earned value management (EVM) [3], etc. that
help in monitoring and controlling the project.

7.2.1  Monitor against Project Plan
Monitoring against the project plan is the most obvious method to get project progress reports. The
project plan is treated as a baseline against which the actual progress is measured. Major and minor
milestones are provided in the project plan for dividing the whole project plan for easy tracking.
If for some reason a milestone is not achieved as per plan, then the project manager has to explain to

Manufacturing Projects

Predictability

Figure 7.1  Process predictability for projects against manufacturing.

Project Monitoring and Control  ◾  103

the customer why the milestone could not be achieved as per plan. And if this occurs, what should
be done to achieve the next milestones on time? There are some techniques available like resource
leveling [4], resource optimization [5], schedule optimization [6], etc., which can be applied to put
the project on track (Figure 7.2).

7.2.2  Measure Task Progress and Status Reports
How can you measure the progress of a project task? If you have a task and you want to measure it,
then you need to have information about planned task and actual start dates, planned volume of
work, actual volume of work, and task duration. From the planned and actual volume of work, one
can figure out the remaining work to be done to complete the task (Figures 7.3 and 7.4).

If the volume of work is ignored and only dates are taken into consideration, task progress
calculation will be wrong. Suppose a task starts on April 11 and finishes on April 20. That means
the duration of the task is 10 days. If the project manager is asked to provide a status report of
the task up to April 16, then without measuring the volume of work if he says it is 60% (since 6
days of work has been done out of 10 days) then he is wrong. This figure is only the planned work

Volume of actual work
Volume of planned work

Legend

Figure 7.3  Progress tracking of a task.

April

InitiationInitiation Requirement Design Construction Testing Closure

June

Work volume

Legend
= Planned progress
= Actual progress

August October December February Month

Figure 7.2  Project plan vs. actual progress.

104  ◾  Software Project Management: A Process-Driven Approach

and not the actual work. Now suppose the work involves writing source code of size 5 KLOC
(kilo lines of code). That means his team should be writing 0.5 KLOC of source code per day.
Now if he measures and finds that up to April 16 his team has written 3.5 KLOC. That means
his team has completed 70% of work. Compared to the planned completion of 60% of work
(0.5 × 6/5% = 60%), his team is actually ahead of schedule.

This calculation is done for projects where volume and cost of work per day during the entire
project period are constant. But this does not happen in reality. To have meaningful calculations,
this aspect also has to be taken care of.

7.2.3  Identify Deviations
When project monitoring is done, the focus of the measurements is to find the deviations from the
planned schedule and costs [7]. In the example given earlier, the schedule performance achieved
is 70% compared to planned 60%. That means the team is ahead of schedule by a +10% margin
(Figure 7.4).

Planned and actual scheduleSchedule deviation

Schedule of work

Schedule of % planned work

Schedule of % actual work
Total schedule of work

Legend

Figure 7.4  Project schedule deviation.

Planned and actual costCost deviation

Cost of work
Cost of planned % work

Cost of actual % work

Total cost of planned work
Legend

Figure 7.5  Project cost deviation.

Project Monitoring and Control  ◾  105

Now suppose total planned cost for the task is $100. If you break the cost on a daily basis then
it comes to $10 per day. In our example, up to April 16, planned cost is $60. Now suppose the
actual cost comes to $65. So we have a deviation of +5%.

Again these calculations are based on constant volume of work and cost per day, which does
not happen in reality (Figure 7.5). In the EVM explained in a later section, we will see why it is so.

7.2.4  Performance Indicators
Performance indicators are used to know the performance of project in terms of cost, schedule, and
quality [8]. EVM is a good tool for creating and monitoring performance indicators. Performance
indicators work only if baseline information is available. If for some reason, baseline information
about cost, schedule, or quality could not be kept or is not accurate enough to be reliable, these
indicators do not work. It is because there is no accurate planned data available against which the
actual execution data can be compared.

EVM is explained in a subsequent section.

7.2.5  Monitor against Project Schedule
A project plan is generally a high-level plan for a project and it does not include details like resource
allocation to tasks, task details, etc. A project schedule includes these things, and thus, project
schedule tracking and monitoring means measuring the progress of tasks as well as evaluating the
performance of resources in the tasks on a daily basis. So while project plans are tracked at the
milestone level, project schedules are tracked at task level. Project schedule tracking and monitor-
ing may include information like resource utilization percent, resource loading, task progress, etc.

7.2.6  Periodic Measurement
As has been emphasized throughout this book, projects are extremely dynamic and unpredictable
in nature. It is very important that project progress at task level is tracked and measured very fre-
quently to know if everything is progressing well or if there are problems at any time [9]. Actual
measurements should be always compared with planned figures, and if any deviations are found,
a plan should be made to fix these deviations. In good organizations, each project team member
logs his daily activity in a centralized project monitoring system. Reports from this kind of system
can be used to track task progress in terms of schedule. For cost tracking, the project manager can
make a simple sheet and keep it updated with the number of hours the resources have worked on
the project tasks. Multiplying these hours by their hourly pay rate will give the expense of each
task. If more than one resource is working on a task, adding expenses for all the resources working
on that task will give the figures of expense of that task. You can then compare the actual expense
of the work done so far against the budgeted cost for that work.

7.2.7  Earned Value Management
For any project, specific time duration and specific budget are allocated while making the project
plan. In ideal conditions, execution of the project will be completed at exactly the same time and
at the same budget. In reality, this never happens. Sometimes, the project may be completed before
the stipulated time duration or at less cost. But these cases are rare. Most often, the project over-
runs both the time duration and cost. Large projects warrant huge budgets, resources, and time.

106  ◾  Software Project Management: A Process-Driven Approach

It is very important that they are tracked and monitored closely, and timely reports are given to the
stakeholders so that they know how the project is progressing. Their reputation and very often jobs
are at stake based on the success or failure of the project. So they must get timely status reports
about progress of the project. During reporting, if proper project monitoring information is not
communicated to the stakeholders, they may not know how the project is progressing. They may
be reported only about the percentage of project completion against planned schedule or about the
percentage of budget spent so far. But from this information, it is not clear if the project is actually
progressing as per plan or if it is lagging behind.

This is because there is a third dimension that has not been accounted in these calculations. This
dimension is the volume of work performed over different periods of time during the project are
not the same. Similar is the case for budget. For example, in software projects, when software
design work is in progress, the volume of work per day is low. But during software construction, a
great volume of work is accomplished per day as a lot of developers work on the project. Clearly, a
volume of work done per day at different phases of the project is very different. Similarly, budget
consumed per day over the project will vary considerably due to different pay rate for differently
skilled people and even for the same skilled people and the fact that at different phases of the proj-
ect, differently skilled people work on the project.

As you can see in Figure 7.6, it is difficult to conclude whether the project is progressing well
or not as the actual schedule and cost cannot be compared against any value.

However, if you look at Figure 7.7, the actual cost and schedule figures can actually be com-
pared against planned data. It is because this time, we are tracking the project progress using
earned value (EV). The project duration and the project budget are outlined at the beginning
of the project. When the project execution starts, we will be recording actual project progress in
terms of budget and time consumed by project tasks. Based on the budget consumed by a task,
task progress is measured and we also record how much task progress should have been done after
consuming that much of budget. This is known as EV. So we have three values here: planned value
(PV), EV, and actual value (AV).

As per definitions of EVM,
Schedule variance (SV) = EV − PV
Cost variance (CV) = EV − AC

Budget

$100,000

$60,000

$20,000

Actual cost
Planned value

Time

January February March April May June July

Figure 7.6  Project progress measurement without EVM.

Project Monitoring and Control  ◾  107

Apart from variances in cost and schedule, there are two more indicators available in EVM.
They are the cost performance indicator (CPI) and the schedule performance indicator (SPI). They
are calculated as follows:

CPI = EV/AC
SPI = EV/PV

Let us see an example to observe how EVM works.
Suppose we have a project with the schedule of 100 days. The budget for the project is allocated

at $100,000. After the elapse of 60 days, project measurements are taken. It is found that a bud-
get of $50,000 has been consumed up to this point in the project. Suppose at this stage, 40 days’
worth of project is actually complete. But from the planned schedule, it should have been 50 days’
worth of project completed. So how is the project progressing?

In Section 7.2.3, we have seen a simple scenario where project schedule and project budget
are allocated linearly (project budget and schedule are consumed linearly in proportion to total
budget and schedule). That means the project progress should be linear. Alas! It does not happen
that way. There is no linear progression of the project in reality. It is because a project has many
tasks and each of these tasks has its own volume of work to be performed at different rates over
a period of time. For instance, a software design task may be completed over a period of, say, 20
days. If the work is performed linearly, then each day, the percentage of work to be completed is
5% so that in 20 days, 100% of the work will be completed. In reality, however, on some days
the planned work may be 3%, 5%, or 6% or could be just any other value. It all depends on
the availability of resources on a particular day and the dependency of a task on another task.
Similarly, the budget consumption is not linear. Some tasks cost less to perform than other tasks.
So in a unit of time, a volume of work done for some tasks can be higher than that for other tasks
with the same budget. So far we have discussed the nonlinear behavior for a planned budget and
schedule. Likewise, the actual budget and schedule consumption will also be nonlinear. Once
we understand the nonlinear relation between percentage of completion of any task vis-à-vis
completion of total task for both planned and actual progress, it will be easy to understand the
concept of EVM.

Coming back to our example, we have actual cost (AC) of $50,000 and PV of $55,000
(corresponding to the planned days of work performed up to this point). The project manager has

Budget

$100,000

$60,000

$20,000

Actual cost

Planned
value

Earned value

Time

January February March April May June July

Schedule varianceSchedule variance

Cost varianceCost variance

Figure 7.7  Project progress measurement with EVM.

108  ◾  Software Project Management: A Process-Driven Approach

also been tracking the earned value of the project on a weekly basis. On this basis, he has been
plotting the earned value of the project as it progresses. From this figure, he has an EV of $45,000.

Now let us do some mathematics with the figures we have:

SV = 45,000 − 55,000 = −$10,000
CV = 45,000 − 50,000 = −$5,000
CPI = 45,000/50,000 = 0.9
SPI = 45,000/55,000 = 0.82

For both CPI and SPI, the ideal values are 1. In case CPI is 1, it means that the project budget is
consumed as per project plan. Similarly, if SPI is 1, the project schedule is progressing as per project
plan. In our example, we can see that at the point of measurement, the project is lagging behind both
in schedule and in budget consumption (as both are less than 1). The project manager can do well to
find out why the project is lagging behind and how the project can be put back on the right track.

7.2.8  Measure Resource Utilization
Resource utilization is a measure of efficiency with which available resources within an organization
are utilized in projects. Resource utilization is evaluated more frequently at program or line of busi-
ness level [10]. For instance, suppose a software service company has a practice division for applica-
tion development services for financial services. It has a total IT staff of 80 people. It has five projects
running. In these projects, a total of 76 people are engaged. That means there are four people who
are not assigned to any project. That means this practice division has 95% of resource utilization.

7.2.9  Measure Resource Loading
Resource utilization in projects can be tracked using information as to how many hours of project
work is allocated to the resource and how many hours of actual work the resource has put in. So if
a resource is allocated 20 h of work and he actually puts in 25 h of work, the resource utilization is
125%. From other points of view, resource loading also comes into picture [11]. Suppose a task requires
20 h to be completed. A resource allocated to this task works 8 h a day. So under normal loading
conditions, he will finish this task in 2.5 days. Now suppose as per schedule, this task needs to be com-
pleted in 2 days (16 h). In this situation, the resource can only complete 80% of the work under normal
loading conditions. The project manager then has two choices: he can assign additional resource to
this task to complete it in 16 h or he can increase the workload of the existing resource. To complete
this task within the schedule, the resource should be loaded with 125% of workload. He may need
to work some extra hours every day (overtime of 2 h per day in addition to his 8 h of regular work).

7.2.10  Monitor Skills and Knowledge of Project Team
During project planning and detailed scheduling, resource matching to project tasks is done.
When there is some gap in required and available skills, a training plan is made to bridge this
gap. During execution, this training part is also to be tracked to ensure that the planned training
has been successfully completed and that the resource who has received the training now can do
his task competently. Sometimes it may also happen that during planning, some tasks and the
required skills to do them are not properly planned. During execution, it is realized that training
may be needed. In such cases, arrangement should be quickly made for training. If there is a delay
in starting that task, the project plan should be adjusted accordingly. The additional time may
either be taken from the schedule buffer or be adjusted against any slack in the project schedule.

Project Monitoring and Control  ◾  109

One more possibility may be regarding resource skills. Sometimes, a resource may leave the project
and the project may need to find a replacement. In such a situation, the project manager may need
to do resource skills matching and find a suitable replacement.

7.2.11  Monitor Risks
Everything to be done in a project comes with a risk. If a software design is to be made, there is
a risk that the design is faulty. When doing software testing, there is a risk that the testing is not
good enough. When doing a particular project task, there is a risk that it may not be completed on
time due to resource shortage or underestimation of the effort required for the task.

For each kind of risk that may arise, a contingency plan is needed so that the project does
not get affected. Risk identification has to be done and its impact and probability has to be
assessed at all times during the execution of the project. A detailed study about risks is provided
in Chapter 4.

7.2.12  Monitor Issues
Several kinds of issues keep arising during the execution of the project [12]. These issues need to be
addressed and solutions to be found and applied so that project progress is not affected. There may
be some doubts about the design for which a developer needs a clarification. That clarification is to
be provided on time so that the developer’s time is not wasted. At the peer review meeting, it is felt
to refactor a source code construct, but there are still some team members who want to keep the
existing source code. Then there are team members who want to finish their work faster to take a
break later but the project manager feels that quality may go down.

All kinds of issues keep arising and the project manager needs to resolve them satisfactorily
and in time. Issues are time sensitive and thus require solution within a certain time frame. But all
issues are not same. Some have more impact on the project while others do not have much of an
impact. So if there is more than one issue at hand, then the project manager should first analyze
the impact and accordingly make a list of issues with set priorities and assigning top priority to
resolve the issues that have most severe impact on the project. He can defer attending to the issues
that do not have much impact on the project and can address issues immediately that may have
severe impact. In this respect, issue resolution is similar to mitigating risks.

7.2.13  Status Reports
The customer needs status reports to know whether the project is progressing well or lagging
behind in some respect. The project manager needs to prepare status reports and send them to the
customer. Generally, these status reports are sent after completion of any milestone in the project
[13]. These milestones could be anything and could be set after discussion with the customer. But
most often, these milestones denote completion of one phase of the project (requirements, design,
construction, testing, etc.). The status report should contain information about cost, schedule, and
quality as to how the project execution is faring against the project plan. If the project is lagging
behind in any of these aspects, then a good explanation should be included as to why it happened.
The report should also contain a remedy plan to put the project on track. The report should
also contain information regarding achievements, challenges faced, and issues resolved during the
report period. Depending on the requirements of the customer, the report can be detailed or suc-
cinct. Many project managers make a mistake of not making a good rapport with the customer.

110  ◾  Software Project Management: A Process-Driven Approach

If no rapport is made with the customer, the customer will never appreciate the effort and hard
work put into assignments by the team. So it is required that the project manager establish a good
rapport with the customer.

7.3  Project Control Techniques
Projects have so many risks and uncertainties that managing and controlling them is a tough task.
The project manager has to keep balancing many trade-offs to keep the project on track.

7.3.1  Resource Leveling
Resource leveling is one technique that is employed to resolve resource conflicts during project
execution. Sometimes, it so happens that a resource is to do more than one task. Now it is found
that one task will get delayed due to the delay in the other task. If there is a slack found in the
schedule, the other task that has not started yet can be taken to some other time frame so that it
will not be affected due to delay in the first task. Or if this is not possible, then adding some more
resources to the task can resolve this issue (Figures 7.8 and 7.9).

Tasks linked

Task 1

Task 2

Slipped task 1

Additional resources added to
task 2. Duration for task 2

reduced as a result

Figure 7.9  Additional resources allotted to a dependent task to complete it faster in less time.

Tasks linked

Task 1

Task 2

Slipped task 1

Slipped task 2

Task 2 slipped due to
slippage in task 1

Figure 7.8  Slippage in a task leads to slippage in the dependent task.

Project Monitoring and Control  ◾  111

When using software such as Microsoft Project for making the project schedule, the software
has tasks that conflict with other tasks in the schedule. These conflicts could be due to impractical
start or finish dates for tasks, resource overallocation, or dependency of tasks on each other (so that
if the first task gets delayed, the other will also get delayed). Adjusting those tasks manually or
automatically will resolve the conflict.

7.3.2  Schedule Optimization
Using PERT/CPM methods, we can determine the critical path of the project. But before drawing
the critical path, the project manager should ascertain that there is no unnecessary slack in the proj-
ect plan. If there is any slack anywhere on the critical path, it should be removed to make the project
plan optimized. Similarly, as there could be many critical paths for the same project plan, unneces-
sary slack on all paths should be identified and removed. Now the longest path out of these will be
the critical path for the project (Figures 7.10 and 7.11).

Schedule optimization can also be done during execution. If during execution, any task on
the critical path is found to be done earlier than planned, then the critical path can be shortened.

Legend
= Buffer

= Slack

Initiation Requirements Design 2

Design 1

Construction 2

Design 3 Construction 3

Testing

Critical path

Integration Release

Construction 1

Figure 7.10  Slack in the critical path of a project plan.

= Buffer

Legend

Initiation Requirements Design 2

Design 1

Construction 2

Design 3 Construction 3

Testing

Critical path

Integration Release

Construction 1

Figure 7.11  Optimized project plan after removal of slack on the critical path.

112  ◾  Software Project Management: A Process-Driven Approach

This way schedule for the project can be collapsed or the extra time available can be used for start-
ing dependent tasks earlier than planned schedule.

One more technique of schedule optimization is to find if any tasks can be put in parallel that
are currently in sequence. This way the schedule can be collapsed by a big margin.

Then we can also optimize the schedule by checking if any task can be split and then putting
these split tasks in parallel so that the schedule can be collapsed.

In fact, using concurrent engineering methods, we can successfully optimize a project sched-
ule. In the concurrent engineering technique, activities for downstream processes are planned
ahead during a previous process step. In software projects, we can design the software product in
such a way that the construction and/or testing work can be split easily. So when the project pro-
gresses to these stages, the work can be split and these split assignments can be assigned to many
teams. These teams can work on these assignments in parallel to the work carried out by other
teams. This way the project schedule can be collapsed by a large margin.

7.3.3  Corrective Actions against Deviations
From the project monitoring status reports, if it is observed that the project is deviating from plan,
then corrective actions are to be taken by the project manager. For taking corrective action, the
situation is to be analyzed and root causes are to be identified. Once root causes are found, solu-
tions to fix them can be thought of and then action can be taken accordingly. It is also advisable
to have a good measurement of all process- and product-related attributes that are relevant to the
project. Good measurements will help in decision-making process.

Some of the reasons for increased project cost include increase in overhead (higher cost of
procuring tools, infrastructure, etc.) or salary. It could also be due to schedule overrun. So cost
increases could either be schedule dependent or schedule independent. If procurement costs are
going higher, management can find alternatives to keep the cost from increasing. If the cost
increase is due to schedule overrun, then immediate action should be taken to correct the schedule
deviation.

Schedule deviation (almost always overrun) can happen due to faulty effort estimate, faulty
scheduling, resource unavailability, loss of critical resources midway in the project, requirement
creep, etc. Requirement creep is the most cited problem attributed to schedule overruns. The best
policy regarding requirement creep is to bargain with the customer whenever any requirement
change request comes. The customer should be made aware of the consequences of the change
request in project schedule. Accept a change request only after the customer understands and agrees
on the consequences in the project schedule. Risks of resource unavailability or loss of resources
pose a serious threat for the project. To deal with such risks, proper resource planning is needed.

The third deviation that can occur in the project is the quality of the work products. Bad qual-
ity cannot be forgiven even if schedule or cost overruns can be accepted. Software engineering
techniques help in ensuring that work product quality can be improved by means of improved
project and product processes. The software development life cycle should be divided into well-
defined phases, and at the end of each phase, there should be a list of defined work products. There
should always be a gate that will allow the project to proceed to the next level only after the work
products are verified to have the expected quality level by measuring them and comparing with
the expected quality levels. If any deficiency is found in any part of the work product, then it
should be rectified and only then should the project be allowed to proceed to the next phase. This
will ensure that quality of the work products is good. This in turn will ensure that quality of the
finished product is good.

Project Monitoring and Control  ◾  113

7.3.4  Corrective Actions against Issues
As we have seen in Section 7.2.12, issues should be classified into many categories and top-priority
issues should be tackled first. Issues are also time-sensitive, and if they are not tackled in time, they
will impact the project. How severe the impact will be depends on the kind of the issue itself. When
many issues are in hand at a given time, it is difficult to identify their priority. All of them seem impor-
tant. In such cases, it will be best to list them and put a weight against each of them. Time sensitivity
should also be considered (e.g., in how many days the issue should be sorted out). Now sort out your
list with these two values against each issue. If an issue with more weight has a bigger time window
and if an issue with lower weight has a smaller time window, then if time permits, both should be
tackled in parallel so that both can be resolved within their time windows. However, if the project
manager does not have much time to tackle both simultaneously, then it will be best to tackle the issue
with the higher weight. So if a lower-priority issue cannot be resolved, it will not have much impact
on the project, and at the same time, a bigger impact on the project can be avoided by resolving a
higher-priority issue.

7.3.5  Resource Optimization
in outsourced projects, the project manager from the outsourcing company may have to think
about benefits to his organization from the project. For instance, the service provider will have a
profit motive. When the company bid for a project, it would have taken the profit margin for the
project. During project execution, however, there are many factors that threaten to eat into the
profit margin. The project manager has to keep an eye on the expenses so that profit margin could
be kept intact. In this regard, one known source of threat is an increasing wage of employees. To
handle this issue, the project manager may have to make sure that productivity of the employees
gets increased commensurate with the hike in salaries.

There are many practical ways of optimizing your resources in projects. The best option is
to use project portfolio management to utilize your available resources to the best possible way.
When you have a pool of resources and a list of projects, you can staff the projects in such a way
that your pool of resources are utilized in such a way that no or least resources are sitting idle.
Even within the pool of resources, some are costlier than others. It definitely makes sense that
time of these higher-paid staff should be utilized to the maximum.

7.4  Project Monitoring and Control Artifacts
Project monitoring provides project process and work product data that we can use to make deci-
sion and control the project so that later on it can be kept on track despite derailings in the past.
The cost could have gone up from what was budgeted, the schedule could have overrun, or the
work product quality could have gone down from what was expected. So basically we have three
attributes of a project that should be monitored and controlled: schedule, cost and quality.

The artifacts belonging to the schedule include PERT/CPM charts, network diagrams, resource
charts, EVM, etc. The artifacts belonging to cost include budget analysis, resource optimiza-
tion, EVM, etc. The artifacts for quality include requirement document review, design document
review, source code review, test cycle logs, etc.

The most important artifacts of project monitoring and control are actual project cost, product
quality and schedule data. The overall project cost and schedule data in relation to project size and
quality level determines productivity on the project.

114  ◾  Software Project Management: A Process-Driven Approach

7.5  Project Monitoring and Control in Iterative Model
Software project planning for iterative development projects has been discussed in Chapter 6.
As discussed there, most of the action happens at the iteration level, and thus, most of the
planning is also done at this level. Since duration of each iteration is small (a few weeks to
2–3 months), impact on an individual iteration due to any unforeseen circumstances is not
that severe. Most of the project risks are tackled by dividing the entire project into small itera-
tions. Thus, for iterative projects, the risks are manageable because their sizes are reduced, and
they are distributed throughout the project by means of breaking the project into small itera-
tions. However, sometimes it may happen that the customer demands some drastic change in
his requirements, which may force an iteration to undergo a large change from the planned
activities. In such cases, the project monitoring and control will be out of control, and thus,
the project plan (iteration plan) will become invalid. A new project plan will have to be made
(Figure 7.12).

But in general, a project plan (or iteration plan) can be controlled using typical controlling
techniques. A good technique to control an iteration is using a priority system for requirements
or features. All the high-priority features will be completed in the iteration, and the low-priority
features can be kept as options if time permits in the iteration.

7.5.1  Performance Measurements
Unlike waterfall-based models, performance on agile projects is measured in different parameters.
Some of these measures include the following:

◾◾ Feature points delivered per iteration
◾◾ Number of defects found per iteration
◾◾ Productivity of team in terms of delivering features per person per iteration

Complete list of
requirements

Set of requirements
to be implemented

in the iteration

High-priority
requirements

High-priority requirements

Low-priority
requirements

Low-priority requirements

Figure 7.12  High- and low-priority requirements and keeping their schedule accordingly.

Project Monitoring and Control  ◾  115

7.5.2  Risks
Iterations are generally time boxed. You need to complete a certain number of feature points
(feature points are a number assigned to a feature depending on the size of the feature and its
complexity) in the iteration duration. If you are not able to complete them, it may be due to inac-
curate effort estimation, some issues arising, or some other risk that is responsible for problems in
the project. But these problems arise during the first few iterations. Otherwise agile environments
are pretty stable and devoid of risky propositions. There is no such thing as resource allocation in
these projects. Each person in these projects has his role well defined. He keeps on working on
successive iterations without being told by project manager what he would be doing in subsequent
iterations. From the stories to be worked on in a particular iteration, the developers write unit tests
and then start building the features. Whenever time permits, they also keep refactoring the old
source codes. In fact, refactoring is one of the most risky affairs in agile projects. If refactoring
is not done properly, subsequent iterations can face problems in writing code for new features as
design issues prevent old source code form integrating with the new code.

7.6  Case Study
In the previous chapter, we have seen how project and iteration planning is done at our SaaS ven-
dor. In this chapter, we will see how project and iteration control and monitoring are done.

Our SaaS vendor has major and minor releases of software coinciding with yearly project plan
and iterations within the project plan, respectively. During the execution of iterations, there are
bound to be issues and risks arising due to various internal and external factors. In such cases, risk
and issue mitigation strategies come in handy if they exist.

Luckily, the SaaS vendor project team has such contingency plans. They have weekly iteration
review meetings, led by the project manager and attended by project team members. Most of the
issues and risks encountered in the previous week are known to the team members before the
meeting takes place. In addition, any risk that has not affected the plan so far but is lurking around
the corner is also discussed. These potential risks are not on the meeting agenda and are discussed
after the agenda is discussed and a plan of action is taken for these risks.

Some of the risks encountered in the project include sick leaves, unplanned holidays, technical
problems encountered in implementing a design, a rush call from the marketing department for an
unplanned feature to be added, etc. An action plan generally consists of causal analysis of the prob-
lem, finding root cause of the problem, finding a suitable solution for the problem, implementing
the solution, checking if the solution works, and finally eliminating the risk. The analysis of impact
of the risk is also done. Generally, the resources are fixed and additional resources are not added
in the project for mitigating any risk. So the impact the risk has had on the schedule is considered.
The schedule is readjusted if necessary, and the rescheduled plan is made. If change in the affected
task also impacts other tasks, then those tasks are also rescheduled. If the impact is severe and the
entire iteration plan is going to be affected, then one more possibility is explored. It is the option of
working overtime to cover for the extra time required to finish the tasks.

7.6.1  Tracking Tools Used
The project manager uses Microsoft Project to track project plan, resources, and schedule. The
Gantt chart generated by Microsoft Project is used for project monitoring and control. For defect
tracking, Seapine Software’s TestTrack Pro is used.

116  ◾  Software Project Management: A Process-Driven Approach

7.6.2  Problems Encountered
The most complex and large component which was being developed in release 6.0 of the software
product was a feature called “Appointment Scheduling Engine.” The logic is complex and imple-
menting it was tough. Even testing this solution was a big challenge. Developing it required first
implementing the logic and then modifying the behavior of the component by using software and
hard constraints. For testing it, an elaborate plan was made.

When actual testing got started, it was found that the engine was failing in most of the
cases. It did not recognize any of the constraints. Initially for testing it, two test engineers were
assigned. But later, it was found that the engineers lacked experience to test such a complex
component. So they were replaced by two experienced business analysts who had also worked
on product management of the product, and they knew about the architecture and requirement
specifications well. They set up an elaborate suite of test cases and decided to do exploratory
testing of the component.

The business analysts found that the requirement and design documents were not up to the
mark. They decided to first make a pseudo logic for the component. They took some time in
assembling some documents and getting information from developers and software designers so
that they could make this logic. Once it was built, it helped them to make the strategy to test the
component. The junior analyst did the testing for load time calculations and the senior analyst did
the appointment scheduling part of the component. When the junior analyst finished his testing
for load calculation, he was assigned to test the user interface part including the calendars, searches
for appointments, shipments, etc.

Overall, the effort paid off and the appointment scheduling engine started working as per
requirements. It was the biggest success story of the project.

7.7  Chapter Summary
Software projects are indeed difficult to monitor and control. Difficulties arise due to the fact that
many specifications for work products are not clear even after the project begins. So the project
team takes some assumptions about the work products into consideration that are yet not so clear.
As the project progresses, some clarity is achieved. So before this happens, the project team tries to
manage the project work with some vagueness. This aspect is the most difficult problem in software
projects. In such a scenario, project monitoring and control thus become a difficult proposition.

There are many tools and techniques available for the project team to monitor and control
the project. For controlling purposes, the project plan has some schedule and budget buffers. So
when any risk occurs, a certain amount of budget and schedule are adjusted in the project by dip-
ping into the buffer. On the other hand, there are some tools that help in overcoming setbacks in
the project without consuming any buffers. Some of these techniques include resource leveling,
schedule optimization, taking corrective action against deviations, etc. Then of course, we have
the EVM technique, which can be employed to take corrective action. The EVM technique also
provides the facility to have a project dashboard with performance indicators. If any of the indica-
tors goes the wrong way, then the project manager can easily recognize it and take prompt action.

Project Monitoring and Control  ◾  117

Exercises
7.1	 What should be the best course of action if many quality issues arise? How can you deal

with a situation when the work products are found to have more than an expected number
of defects?

7.2	 A project has three software components developed by two teams. One team turns out to be
faster than the other team. What effects it will have on the project?

Review Questions
7.1	 What attributes of a software project are considered for monitoring and control?
7.2	 Explain what you understand by resource leveling.
7.3	 How can you measure progress of a task?
7.4	 What measures can be taken if it is found that the project schedule is deviating from the

planned schedule?
7.5	 What measures can be taken if it is found that the project cost is deviating from the planned

budget?
7.6	 What measures can be taken if it is found that the product quality is deviating from the

expected quality level?

Recommended Readings
	 1.	 H. Kerznerd (2009) Project Management: A Systems Approach to Planning, Scheduling, and Controlling,

Wiley, Hoboken, NJ.
	 2.	 C. F. Gray (2005) Project Management, McGraw-Hill Education (India) Pvt Ltd, New Delhi, India.
	 3.	 J. D. Frame (2003) Managing Projects in Organizations: How to Make the Best Use of Time, Techniques,

and People, Wiley, New York.
	 4.	 T. Kendrick (2004) Project Management Tool Kit: 100 Tips and Techniques for Getting the Job Done Right,

American Management Association, New York.
	 5.	 M. Marchesi (2003) Proceedings of Fourth International Conference on Extreme Programming and Agile

Processes in Software Engineering, XP 2003, Genova, Italy, May 25–29, 2003, Springer, Berlin, Germany.
	 6.	 R. J. Muller (1997) Productive Objects: An Applied Software Project Management Framework, Morgan

Kaufmann, San Francisco, CA.
	 7.	 P. Jalote (2002) Software Project Management in Practice, Addison-Wesley Professional, Boston, MA.
	 8.	 F. A. Goodman (2006) Process Based Software Project Management, Auerbach, New York.
	 9.	 T. D. Wells (2002) Dynamic Software Development: Managing Projects in Flux, Auerbach, New York.
	 10.	 R. A. Morris, B. McWhorter Sember (2008) Project Management That Works: Real-World Advice on

Communicating, Problem-Solving, and Everything Else You Need to Know to Get the Job Done, AMACOM,
New York.

	 11.	 J. M. Nicholas, H. Steyn (2008) Project Management for Business, Engineering, and Technology, 3rd edn.,
Butterworth-Heinemann, Oxford, U.K.

	 12.	 D. D. Galorath, M. W. Evans (2006) Software Sizing, Estimation and Risk Management, CRC Press,
Boca Raton, FL.

	 13.	 P. C. Tinnirello (1999) Project Management, Auerbach, New York.

119

Chapter 8

Project Closure

In the previous chapter, we learned

◾◾ What is project monitoring?
◾◾ What techniques are there for project control?
◾◾ How is project monitoring done in iterative projects?

In this chapter, we will learn

◾◾ What is project closure?
◾◾ What activities are performed during project closure?
◾◾ What are the lessons learned on a project and its importance for future projects?

8.1  Introduction
After successful execution of a project, things come to a close. How satisfying the journey has been
is determined from all the status reports and feedback from the customer. All along, there could
have been moments of anxiety, discovery, joys, and sorrows. There could also have been moments
when everything looked haywire and the project looked like a failure. But you have come to the
stage where the project will be closing soon, and this signifies that ultimately things worked and
things could be achieved even after going through some adverse situations.

A software project could be a software development, software customization, software integra-
tion, software maintenance, or just one phase of the software development life cycle (requirements,
design, construction, or testing a software product). As per the contract, the final deliverables have
to be handed over to the customer before the project deadline. While we can discuss project

120  ◾  Software Project Management: A Process-Driven Approach

closure formalities for any/all of these types of projects, it may become a large text. So we will limit
the discussion to project closure formalities and tasks for a typical software development project
(Figure 8.1).

Before the closure of the project, you need to check if all deliverables are going to be achieved
before the set deadline. The deliverables include the tested software product, user/training manu-
als, user training, and installation/implementation of the software product at client site. It may
also include product release information if the project is to develop a software product with many
iterations and is built incrementally.

Do not forget that you need to keep a record of what happened during the execution of the
project. If your company has a software engineering group and data from all projects that need
to be kept in a central repository for statistical process-control purposes, then you also need to
make sure that all relevant project data available before the closure of the project are fed into this
repository.

8.2  Source Code Management
Many versions of the source code get generated as requirements, and designs get changed during
the software development life cycle. During testing, many bugs are discovered and they are fixed.
The final source code thus has seen a lot of change, and which version will be shipped to customer
needs to be identified (Figure 8.2).

Software
product User manuals User training

Software project
deliverables

Software product
installation/

implementation

Resource
release Lessons learned

Figure 8.1  Software project deliverables before project closure.

Source code
original version

Source code
version after
test cycle 1

Source code
version after
test cycle 2

Source code
version after
test cycle 4

Source code
version after
test cycle 5

Source code
version after
test cycle 3

Figure 8.2  Many versions of source code.

Project Closure  ◾  121

The configuration management system should be kept up to date with all source code
changes [1]. Sometimes, developers keep a local copy of the source code on their machines and
forget to update the configuration management system with the changes they have made in
the source code. Similarly, the user manuals and documents are sometimes not updated with
the changes in code, which results in shipping wrong documentation to the customer. So it
should be made sure that the correct version of the source code along with the documentation
is shipped to the customer.

8.3  Project Data Management
Software service providers as well as internal teams maintain a large pool of project data for new
projects [2]. So when an existing project comes to an end, it is very important to archive project
data. The archived data help in estimating effort, schedule, costs, and quality level for new projects.
This information is very valuable for new projects. Providing project data as a performance indica-
tor to the customer not only boosts customer confidence about ability of the project team, but it
also helps in increasing productivity, project goal clarity, and reducing schedule and costs when
future projects actually get executed (Figure 8.3).

Statistical process-control quality methods work on the principle that collecting sample data
and comparing it with a trend or norms tell whether the quality is improving or going worse [3].
Similarly, having historical data about similar projects helps in setting goals for and estimating the
new project. Then when the project is executed, the trend data help in correcting any problems in
the project.

Just keeping project execution data in the archive is not of much help. When you need to
compare or use data, it should be clean and relevant. So before sending project execution data
into the repository, it should be made sure that the data are clean. Similarly, irrelevant project
data are not of much use. For any project, relevant data are the execution data from similar
projects. This similarity is in terms of project size, industry for which the software product
was made, programming language used, life-cycle methodology used, etc. So the repository
should be categorized accordingly. Depending on these variations, there will be many differ-
ent types of projects. When a new project is to be initiated, the repository should be searched
for similar projects. Data from these projects can then be used for the new project. This
cleaned and filtered data then will be very much relevant for the new project and thus will be
extremely useful.

Raw project data

Filters

D
at

a c
le

an
in

g

Ap
pl

ic
at

io
n

ar
ea

In
du

st
ry

Pr
oj

ec
t s

iz
e

Li
fe

-c
yc

le
 m

et
ho

do
lo

gy

Pr
og

ra
m

m
in

g
la

ng
ua

ge

Project data
archived

Figure 8.3  Strategy for project data archiving.

122  ◾  Software Project Management: A Process-Driven Approach

8.4  Project Closure in Iterative Model
The iterative development model is very popular in software product development these days. Software
vendors are always keen to launch new versions of their software product in the opportunity time
window lest the opportunity is lost. This results in some problems on the software development front.
Iteration closure is often a messy affair if care and restraint are not exercised. Due to market pres-
sure, top management is under pressure to incorporate all the requested features in the release. But
it is clearly not feasible to do so. It is better to prioritize features based on market demand and effort
required to make them. So release planning should be a part of the iteration planning at the beginning
of the iteration. Features with high demand but requiring lesser effort should ideally be included first in
the iteration. If time permits, then go for adding another feature. Keep doing it until you do not have
any time left for adding any more features. Care should also be taken not to compromise on quality.

8.5  Lessons Learned
In life, people learn from doing things, and when they become older, they become much wiser
as they accumulate all the learning over the years. Now when they apply this learning in their
assignments, they are much more effective. They tend to do things better and are generally more
productive.

Learning is a continuous process, and it should be done whenever someone gets a chance to do
things or see others doing things. Projects are an excellent platform for learning. Each project has
many new things that people may not have done earlier in their lives. Not only the project team
members but also the organization learns from a project. Such learning should be documented so
that it can be referenced for future projects [4] (Figure 8.4).

Some examples of lessons learned on the projects could be

◾◾ How to do a task in a better way
◾◾ How to manage the project in a better way
◾◾ Finding good solutions for issues faced
◾◾ How to negotiate with the customer
◾◾ How to mitigate an imminent risk
◾◾ Which techniques work and which do not in particular situations

Better
alternative

to do things

Better ways
to manage

projects

Solutions
for unique

issues

Lessons learned

Software project

Better
negotiation

with
customer

Better ways
to deal with

risks

Which
techniques
work and

which do not

Figure 8.4  Lessons learned on a project.

Project Closure  ◾  123

Differences between a good organization and a bad one could boil down to the learning, which is
wasted or used effectively on projects.

In a software project, we have many kinds of documents. We have project management-
related documents such as project plan, communication plan, project schedule, effort estimate,
cost estimate, resource plan, and resource allocation. Then, we have requirement documents,
design documents, user manuals, and maintenance manuals from life-cycle management.
We also have contract documents, statements of work, and legal documents from contract
management.

Due to change requests, we will have many versions of different life-cycle documents. All of
these documents go in the configuration management system. But most documents from contract
management and project management do not go in the configuration management system. At
the most project plan, project schedule, work breakdown structure, and resource plan go in the
configuration management system.

Communication documents are the ones that contain the most unstructured and informal
documentation. Nevertheless, e-mails and instant messages contain very useful pieces of infor-
mation. Once the project is over, all these good pieces of information get lost. There should be
some mechanism to extract this information and store it on the configuration management sys-
tem, or rather knowledge management system, so that it is permanently available to the entire
organization and not just one project. This information should be stored as lessons learned on
a project.

8.6  Resource Release
The moment the project appears to be winding up, the project manager should make a release plan
for resources so that the moment they are no longer needed on the project, they are immediately
absorbed in other projects running at their organization [3]. Similarly, if any hardware or licensed
software is being used specifically for the project, then a plan to release them should also be made.
Many project managers are so absorbed in their project that they do not realize that their project
will be winding up shortly, and the costly resources may not be utilized properly if they are not
released immediately.

8.7  Data Structures
Discussion on any project management topic may not be complete without a discussion on
unstructured data [5]. Let us admit it. Almost all project data come under the unstructured data
category. On the other hand, good examples of structured data are manufacturing process data.
In the manufacturing world, the manufacturing process is structured. That is why most manufac-
turing activity can be successfully automated. The boundaries of each and every manufacturing
activity are well defined, and the limits for process variations are short. In fact, all manufacturing
data can be easily digitized and thus can be easily used in computations. That is why they are
amenable to automation easily. Coming back to projects, do you think any project process step
can be precisely quantified? Well, it is difficult to do so. Even after implementing a strict process
model, there will be variations in process steps from one project to another. So process measure-
ments taken on one project will not be precisely the same compared to some other project. And
this is the crux of the problem. One futuristic solution to this problem is when code reuse will
become close to 100%. In that case, we will not be writing source code at all. In fact, we will have

124  ◾  Software Project Management: A Process-Driven Approach

software components available in the market, which we can buy and use to assemble a software
product, very similar to the case when a manufacturer assembles a car. In such a scenario, project
data will be highly structured, and thus more and more project tasks can be easily automated.

Until this becomes a reality, we have to keep writing source code whenever we have to develop a
new software product. Currently, what we have is some software components available in the market
that can be used, but the rest part of the application is to be developed from scratch by designing the
software system and then writing source code per this design. While we design software product and
write source code, we come across a jungle of unstructured data. And this is where pitfalls lie. But
then if projects become manufacturing, then they are not projects any longer!

For use with statistical methods, past project data must be qualified before it is quantified. As
discussed in previous paragraphs, most project data are unstructured. All these data are subjective as
well [6]. For instance, even though a project is shown to be completed on time without problems, in
reality, there would have been some amount of overtime to complete the project on time. Now, this
overtime data are not shown anywhere in the project data. Thus, the project data as shown formally
on records are not true. If the person evaluating that project does not have any idea about this fact,
then he may assume a wrong impression about the project. The bottom line is that each and every
data must be qualified before it is stored in the repository and be subsequently used. It is the task of
the project manager to ensure that he qualifies the project data at the closure of his project.

8.8  Case Study
In previous chapters, we have seen all of the things associated with the way projects and iterations
are initiated, planned, and executed. In this chapter, we will see how project and iteration closure
takes place with the projects at our SaaS vendor.

Since product development is a continuous process, resources released from a project are
immediately absorbed in subsequent projects. Of course, resources finish their work on a project,
and then they have nothing to do with that project. But their time is already planned for future
projects by the global program manager. The configuration manager also plays a crucial role in
saving all project documents and source code in a separate branch on the configuration manage-
ment system. This branch serves as the complete new version with back integration with previous
versions of the software product. Now, this branch is ready to be saved as the concrete version of
the software product, and a new branch can be created on the configuration management system
from this branch for the next version of the software product. Once the project is declared as
complete, the branch of the configuration management system containing the source code and
project documents is made read-only, and no changes are allowed in any of the source code or
project documents.

For knowledge management and lessons learned on the project, these same project docu-
ments available on the branch of the configuration management system are used. In release
6.0, the greatest lesson learned was that even when elaborate planning is done for project tasks,
things can turn nasty. The appointment scheduling functionality was really complex, and all
plans to design, construct, and test it failed. It was only after some hard and long brain-storming
sessions and much thinking that the functionality could be designed, constructed, and tested
properly.

Due to the difficulties faced on the project, the original plan was at risk of going out of hand.
Even the 10% schedule buffer was not sufficient. Finally, a compromise was made to do away with
an additional feature that was also planned in the same release. This feature was moved to the

Project Closure  ◾  125

next release. The resources allocated for designing, constructing, and testing this feature were also
pulled and used for the appointment scheduling feature.

8.9  Chapter Summary
Before project closure, many activities remain on the project. Many loose ends are to be knotted
before closure. In fact, the project team may be involved in many unfinished activities if the proj-
ect execution has not been smooth. However, the main tasks of closure include resource release,
preparing lessons learned on the project, source code management, and project data management.
Once project data and lessons learned are prepared, then they should be archived to be used for
future projects. Source code control is important, because during system testing, much defect fix-
ing would have been done, and thus a lot of changes in the source code would have occurred. At
this time, which version of the software should be deployed at customer site has to be determined.

For project data, care must be taken to make sure that it does not contain any extraneous data.
During archiving, care has to be taken to archive the project data correctly in the right place so
that this data is useful in the future.

Exercises
8.1	 In iterative projects, find out how project closure is different compared to project closure in

traditional projects.
8.2	 What are typical project tasks in project closure phase?

Review Questions
8.1	 Why are project data useful?
8.2	 What care should be taken before archiving project data?
8.3	 What tasks are done before closing a project?
8.4	 What strategies are taken to ensure that lessons are learned?
8.5	 Why is resource release important?

Recommended Readings
	 1.	 A. Stellman, J. Greene (2005) Applied Software Project Management, O’Reilly Media, Sebastopol, CA.
	 2.	 R. E. Fairley (2009) Managing and Leading Software Projects, Wiley-IEEE Computer Society Press,

Hoboken, NJ.
	 3.	 P. Jalote (2002) Software Project Management in Practice, Addison-Wesley Professional, Boston, MA.
	 4.	 G. Ruhe (2001) Learning Software Organizations: Methodology and Applications: 11th International

Conference on Software Engineering and Knowledge Engineering, Seke, Springer, Berlin, Germany.
	 5.	 A. Griffith, A. King, Engineering and Physical Sciences Research Council (2003) Best Practice Tendering

for Design and Build Projects, Thomas Telford Ltd, London, U.K.
	 6.	 P. Jalote (1997) An Integrated Approach to Software Engineering, Springer, New York.

IISOFTWARE LIFE-CYCLE
MANAGEMENT

129

Chapter 9

Introduction to Software
Life-Cycle Management

In Part II, we will learn

◾◾ What is software engineering?
◾◾ What impact does software engineering have on a software project?
◾◾ What are various life cycle models for software development?
◾◾ What are various phases in a software development life cycle?
◾◾ How are quality assurance and quality control done in the software life cycle?

In this chapter, we will learn

◾◾ What is software engineering?
◾◾ What are software development life-cycle phases?
◾◾ What development metrics are measured?
◾◾ What are the work products in a software life cycle?
◾◾ How is quality assurance done during software development?

9.1  Introduction
Suppose we are living in a world where software development is done automatically. There are
robots that gather the software requirements and feed it into a software program. This software
program designs the software and generates the code. Since there are virtually no defects in the
requirements (robots do not make any mistakes!), there will not be any defects in design and con-
struction. So, there will not be any need for testing the built software product. The design and

130  ◾  Software Project Management: A Process-Driven Approach

construction of the software product will be done in a matter of minutes. Don’t you think this
will be utopia!

Sadly, we are living in a world where it has not become a reality yet. We still have people
who visit customer sites and elicit customer software requirements. The customer happily dictates
requirements. The requirement gatherer documents these requirements in the best possible way
he understands them. Then, he converts these requirements into software features and hands it to
the software design team. The software designers convert these features into designs in the best
possible way they can do it. Then, they hand these designs to the construction team. The construc-
tion team works on these designs tirelessly to convert them into a beautifully constructed software
build. Now, this build is tested to remove the defects introduced during design and construction.
Finally, the product is implemented at the customer site.

Again, sadly, due to low quality of the software product, users start finding defects when they
start using it in their daily work. Due to rapid changes in business and work environments, the
software product they are using becomes unusable and may need changes after some time. Also
due to changes in business environment, some new functionality may need to be added to the
software product to make it more useful. Due to rapid changes in technology, the hardware or
software platform may become obsolete, and thus the software product may need to be ported to
a new platform.

To perform these activities successfully requires highly skilled, trained, and experienced
people. At the same time, all of these activities are resource intensive. So software personnel have
to toil hard and apply their skills creatively to perform these activities. But even then, the desired
software products take a long time to develop, and the customer may need to wait for many
months if not years to see the product in action.

So until we reach utopia sometime in the future, all software professionals need to toil hard
and perform the activities of the software development life cycle (Figure 9.1).

At the same time, some progress has been made in the field of software engineering.
Software engineering is not yet fully evolved and matured, but still, it has come a long way
in the last 50 years or so. Using any current software engineering framework, it is possible to
design and construct industry strength software products that are of reasonably good quality.
Time and effort required to build software products has gone down by a magnitude of more
than 20:1, thanks to rapid advancement in software engineering, increasing code reuse, devel-
opment and adoption of high productivity software design and coding platforms, improve-
ment in development life-cycle management, etc., which help software development projects
tremendously in all the three parameters of time, effort, and quality.

Code reuse
Maturing
software

engineering

Factors responsible for
productivity gain

Productivity
tools

Automatic
code

generation

Figure 9.1  Factors which helped in improving productivity on software projects.

Introduction to Software Life-Cycle Management  ◾  131

In this chapter, we introduce software engineering concepts related to development life cycles
on software projects. In later chapters in this part of the book, detailed discussions about each and
every activity involved in different phases in development life cycle are discussed.

9.2  Software Engineering Management
Software engineering is a vast field. It is also fast evolving. At the same time, it is currently more
art than science or engineering. It is because software engineering still does not have theories
that are based on solid applied science. Software engineering currently is based on best practices
derived after observations made on thousands of software projects.

For practical purposes, software engineering can be divided into two parts: software engineer-
ing management and software technical engineering (or software life-cycle management). The
technical aspects related to software engineering include good software design and good software
construction (Figure 9.2). Software engineering management, on the other hand, deals with con-
cerns with four primary areas. The first one is to how to build a software product with minimum
cost, within minimum time and with required quality. The second concerns maintaining a con-
sistent quality across all projects within an organization. But, the most crucial aspect is how to
keep improving productivity and quality on software projects with increasing organization process
maturity. The organization processes should keep maturing with experience gained on executing
projects. The last concern is how to choose an appropriate software engineering process for differ-
ent software projects (Figure 9.3).

Software
design

Software
construction

Software technical
engineering

Requirement
specifications

Software
maintenance

Figure 9.2  Software technical engineering (software life cycle).

Process
selection

Process
improvement

Software engineering
management

Process
standards

Processes
across

projects

Figure 9.3  Software engineering management.

132  ◾  Software Project Management: A Process-Driven Approach

All these areas discussed about software engineering have a very important role in software
project management [1]. Without these inputs, it is difficult to manage modern large-scale
software projects.

In this book, we will be discussing software engineering management aspects in Part
III and technical aspects in this part. The software engineering management topics include
process improvements, development process selection, developing and implementing mature
life cycles. The technical software engineering concerns different phases of development life
cycles, work products developed in these phases, and activities carried out within different
phases. In this part, we will concentrate on all these aspects related to technical software
engineering (software development life cycle). Process improvements and process selection
are discussed in Part III.

9.3  Software Life-Cycle Management Processes
Most projects involve requirements, design, testing, and construction activities. Software develop-
ment projects are no exception. Customer requirements are gathered and developed, and then an
appropriate software design is made that fulfills the needs of these requirements by converting
these requirements into a suitable software design. Software design is further converted into a
software product through software construction activities. During the entire development life
cycle, quality control and quality assurance activities are carried out to ensure that quality of the
end products is within agreed upon norms.

Let us discuss various software development life cycles in this section.

9.3.1  Software Life Cycle in Waterfall Model
The waterfall model is still a widely used methodology for software development, though some
other development models are also gaining wide acceptance. Some variations of the waterfall
model include concurrent development, incremental development, and prototyping. Standards
like CMM, CMMI, ISO, and IEEE introduced comprehensive quality assurance activities in the
software life cycle, and thus the waterfall model has incorporated many of these aspects.

The waterfall model is best suited for large software development projects for government,
military, and other industries. Again, the waterfall model is best suited for projects where well-
developed software requirement specifications (SRSs) exist [2]. The entire software development/
maintenance project is divided into well-defined phases. These phases are requirements manage-
ment, software design, software construction, software testing, software release, and software
maintenance. These phases are tightly divided and are phased out in time sequence, and once one
phase is complete, development moves into the next phase (Figure 9.4).

9.3.2  Software Life Cycle in Iterative Model
As can be seen from many discussions on software development project problems, it is a fact that
software projects are different from other kind of projects. Requirements are best captured in
many iterations and not in one go. In most cases, after end users see a working prototype, only
then they are able to provide inputs regarding their exact requirements. Then, there is the huge risk
a software project faces when the software product gets ready only after a long period of time and
when the product development goes from converting requirements into software design, which,

Introduction to Software Life-Cycle Management  ◾  133

in turn, is converted to construction. What if after this hard toil that goes on for months only to be
found out that what has been developed is not what end users expected. Definitely, it is a huge risk.

One solution to deal with this kind of situation is to adopt an iterative model for software
development [3]. Instead of taking all requirements and begin designing and developing the soft-
ware, we can take a few of the requirements and start designing and then building the software
only for this set of requirements. Once the software is built, it is delivered to the end users. They
can ask for some changes, and these changes can be done quickly. So the cycle for all these activi-
ties may last a few weeks (1–6 weeks). Once this is over, some more requirements can be taken
and again this cycle is repeated. This cycle is repeated until all requirements are converted into the
software product. In this way, the huge risk of delivering wrong software product at the end of a
long period of development can be avoided. Customers also like this kind of model as they keep
getting deliveries at short intervals, and so their confidence with the development team is high.

To do things this way, some methodologies have been developed over the years. Some well-
known methodologies include Scrum, eXtreme Programming, incremental iteration model, and
spiral development. There is one more iteration-based model, which was developed by Rational
Corporation (part of IBM). It is known as the rational unified process model. This model is dis-
cussed at length in Chapter 16 along with the other major agile models like Scrum and eXtreme
Programming. At the heart of all these methodologies is the concept of using only a few of the
requirements developing the software product, and delivering it after a short cycle of development.
The goal is to iterate until all of the requirements are converted into a software product (Figure 9.5).

There are some negative aspects about this kind of software development as well [4]. Not all
software products can be developed this way. The iterative model is suited only for lightweight or
smaller software products. For large software products, the waterfall model is still the preferred
model, though iterative models are also catching up in this space. In fact, many large software
products need to be developed using concurrent engineering, where many development teams
participate simultaneously on building the same software product. For large software products,
you need to build a large base framework on which the product has to be developed. This base
framework includes creating data model, conceptual model, logical model, and physical model.
This base framework corresponds to the complete software design phase as depicted in the water-
fall model of software development. If the base framework is not done, then the software product
can be unstable. Once the base is ready, then software functions can be developed using any suit-
able software development process model. At the same time, it is difficult to create the complete

Requirements

Design

Construction

Testing

Release

Maintenance

Figure 9.4  Software life cycle in waterfall model.

134  ◾  Software Project Management: A Process-Driven Approach

software design when your requirements themselves are not crystal clear, and in fact many of the
requirements are not even properly understood either by the end users or the project team. Some
agile models tackle this problem of making elaborate and complete software design by resorting to
a technique known as refactoring. This concept is discussed in detail in Chapter 11.

Iterative software development models are still evolving though. One good framework has
been developed by the open source community of Eclipse (see http://www.eclispse.org). They
have developed a software development framework similar to the rational unified process and
called it unified process framework [5]. Using this framework, even large software products
can be developed. The basic building blocks in this framework are the development of software
components. The architecture is known as “service oriented architecture” (SOA). More about SOA
is discussed in Chapter 11.

9.3.2.1  Moving from Waterfall Model

Sometimes, due to problems faced in the waterfall model, a project needs to move to an iterative
model [6]. In such cases, a complete change may be needed not only with the project organiza-
tion structure but with the top layer, which controls at the organization level as well. The project
management has to be done at three layers, as compared to two levels in waterfall model. In the
waterfall model, there is a project level and a program management level (program management
office [PMO]). In an iterative model, there is an organization level where the complete product
management is taken care of. The lower level structure concerns major releases of the product, and
finally, the lowest level where most of the actual product development is done using iterations.
More details about organization structures can be found in Chapter 19.

9.3.3  Software Life Cycle in Concurrent Engineering Model
Concurrent engineering is a field that espouses the cause of rapid product development using many
teams that work on product development simultaneously [7]. The most labor-intensive phases in the
software development process are software construction and software testing. If tasks involved in
these phases can be broken into smaller parts and if many teams can be employed to do these tasks

Waterfall

Requirement Design Construction Testing Release

Check

Check

Incremental

Iterative

Extreme

Figure 9.5  Software life cycle in various software development models.

Introduction to Software Life-Cycle Management  ◾  135

in parallel, then the software development life cycle can be shrinked substantially. The task of prod-
uct development is divided into smaller tasks in such a way that each of these tasks can be executed
independently of each other. So unrelated teams can work on completing each part of the product
without the need to know what other teams are developing. This mechanism makes it easy for con-
current working of many teams. Once these parts of the product are complete, they are assembled to
make the complete product (Figure 9.6).

In software development, dividing the software product is difficult. Decision about division of
the software product to be developed is taken during the design phase so that many parts of the
software can be constructed or tested parallely. To enable concurrent development, the software
product is divided in such a way that each of the parts has defined interfaces through which they
can be integrated with other parts. To test these parts, dummy parts are used for these interfaces
so that the part can be tested (also known as test oracles). Once these parts are developed by each
independent team, they are integrated to make the complete software product. Similarly, for test-
ing, each test part is assigned to a different team so that they can test their own parts in parallel and
thus the length of the testing cycle can be reduced (Figure 9.7).

9.3.4  Software Life-Cycle Processes
Even though different process models have different process phases or steps defined, neverthe-
less, process steps are best represented by the waterfall model. In the case of the rational unified
process, phases are represented in matrix with workflows. These workflows do not get completed

Requirements Design Testing

Construction +
integration

Construction
team 1

Construction
team 2

Construction
team 3

Figure 9.6  Many construction teams in a concurrent engineering environment.

Requirements Design

Testing

Test team 1

Test team 2

Test team 3

Construction

Figure 9.7  Many testing teams in a concurrent engineering environment.

136  ◾  Software Project Management: A Process-Driven Approach

within one phase but instead they cross more than one phase. This is true in most life-cycle cases
as many processes are completed in cycles, and thus they are nonlinear in nature.

Here, we discuss the life-cycle processes in detail.

9.3.4.1  Software Requirements

After the project initiation is over and statement of work (SOW) is signed, the project team starts
gathering software requirements from the customer. After the requirements are gathered, they
need to be developed to make them suitable for system modeling. Some of the techniques used for
software requirements include elicitation techniques and analysis techniques.

To produce a software product, you need to get good requirements. A problem starts here.
Requirements for software products are never very clear. Most of the time, the requirements are
to replace processes that are currently done manually with those that use software. But this is
not all. Management wants to use software to get a strategic advantage. For instance, manage-
ment believes that by using software, they will be able to reduce substantially inventory from
current levels. Now, this kind of expectation cannot be clearly defined. It could be a fact that
software can provide visibility and tools to better manage inventory, but it cannot be said that
using software will help in reducing inventory by a certain percentage. Similarly, people expect
that their workload will get reduced after the software product is implemented. It is true in most
of instances, but, initially, a lot of master data must be entered in the software system, and this
needs a lot of work in the early stage when the software product is being implemented. In such
cases, false expectations are not met, and users start blaming the project team for not meeting
their expectations.

Requirement gathering and subsequent requirement management is a difficult task. A good
process must be defined so that both these tasks can be done in a good and consistent manner. The
requirement gathering differs from one place to another. At some places, user interviews and many
formal methods are employed to get requirements. At other places, informal methods are used.
Also, the size of the software product also influences as to what methods are to be deployed for
requirement gathering. To reduce variability in processes involved in requirement management, a
good requirement gathering template can help.

Some of the challenges in requirement gathering include unclear requirements, difficulty in
getting requirements, difficulty in understanding requirements, and translating those require-
ments into a suitable software design. Requirements changes take place throughout the proj-
ect. This makes software development difficult. Incorporating changed requirements is a difficult
proposition. Suppose a design has been made and the project is in the build phase, and then
imagine a change request arrives. The software architect feels that a large change will be required
in design. He has no option but to do it as the change request has been accepted. He takes time to
make changes in the design. The build team will have to stop their work as this change in design
will cause many of changes in code. In effect, much rework has to be done by the project team.
This kind of rework can take place many times during the project. This makes design and code
changes vulnerable for failures. So more defects can be expected in such a software product that
has experienced many rework requirements.

This scenario is not an isolated case. But in fact it is a prevalent malady in most software
projects.

Traditionally, a waterfall model has been adopted for software development projects. There
is a strict division of phases in the project. The requirements phase comes first and when it gets

Introduction to Software Life-Cycle Management  ◾  137

completed, a sign off is made supposedly to mark the end of requirements phase (though in reality
requirement change requests keep coming). Next comes the software design phase. When it gets
completed, a sign off is made. Then comes the building phase. Here, coding is done. Then, in the
testing phase, the built software is tested. Once testing gets completed, the go live phase (also known
as deployment or release phase) comes, and after completion of this phase, the software is imple-
mented at customer site. Once the go live phase is over, software goes into the production phase.

This approach is good in many respects. It assures good quality in the software being pro-
duced. It is well organized. But there is one great disadvantage with this approach. This approach
cannot incorporate changing business requirements. In today’s turbulent business environment,
things change fast. So even if a software requirement looks very good today, it may not look so
good tomorrow. Without incorporating changes required tomorrow, the software being developed
may prove to be a sitting duck.

So what could be a good approach for countering the malady of requirement changes? Over
the years, many organizations proposed and practiced some new approaches for software proj-
ect management to tackle this perennial issue. Some of them include the iterative model, agile
methods, spiral method, and extreme programming. In all of these approaches, the fundamental
shift to requirement management is that the requirements should be collected and developed
iteratively so that unclear or unknown requirements can be incorporated once they become clear.
Collectively, we can term them as iterative development models.

The iterative model suits software projects, because only a small set of requirements is taken for
starting the software project instead of collecting the entire set of customer requirements. So even
if end users are not clear about their exact requirements, the project can be started with a handful
of known requirements. The software can be designed and built for this set of requirements and
delivered to the end users. All of these activities are performed in a short cycle of a few weeks or a
few months. Then, the next set of requirements can be taken, and the next iteration can be done
based on this set of requirements. Users are happy to see the results so early and thus have more
confidence in the project team. This definitely makes a good business sense.

We will learn about requirement management in Chapter 10 in detail.

9.3.4.2  Software Design

Software design follows the software requirement phase. Based on the requirements, software is
designed in such a way that the features required in the requirements document can be imple-
mented in the software design. Apart from how the features as per functional requirements can
be implemented, design also considers factors such as reliability, robustness, security, ease of use,
internationalization, localization, and compatibility. All of these are collectively termed as non-
functional design requirements.

Large enterprise systems have many kinds of users. They use the system to do their everyday
tasks. To make a good user experience, it is important that the user should be presented only the
information that he needs to do his job and not everything that the software product can do. So
software features should be linked to roles, and these roles should be linked to software features
that are required by these roles. Similarly, the information presented to the user should be in a
manner that is easy for the user to use the information and be able to perform his everyday activi-
ties easily. All of these aspects should be part of the software design.

Some of the challenges in software design include difficulty in modeling due to changes or
unclear requirements, limitations of representation of requirements into system design, etc.

138  ◾  Software Project Management: A Process-Driven Approach

Software design plays an important role in software development. If the design is good, soft-
ware will have fewer defects and may be considered reliable. Due to requirement creep as men-
tioned in a previous section, the design may get unstable, which may lead to a poor quality
product.

Enterprise software products though may have a lot of features; nevertheless, they need to have
open interfaces so that they can be integrated with other software products. This is because even
big ERP products may not have everything an enterprise may need, and so it must be integrated
with other software products that may be providing the other needed features.

There are good processes available that help in designing different kinds of software products.
For instance, software applications to be deployed over the Web need a different kind of design
than an application that will have to be deployed offline.

New discoveries in the software engineering field are also forcing software design to change.
The latest discovery of SOA is forcing project teams to design their products as per requirements
of SOA. SOA indeed is an exciting field that is paving the way for software reuse on a mass scale.
We will discuss SOA and related technologies in Chapter 25.

We will study more on software design in Chapter 11.

9.3.4.3  Software Build

Software coding (also known as building or construction) is the most labor-intensive task in soft-
ware development projects. For good coding management, a well-planned approach needs to be
adopted for configuration and version control, sticking to good coding standards, and using a
good object-oriented approach.

Software building (construction) requires a team effort to build a software application. Some of the
challenges in software construction include lack of team work, rework due to changes in design, lack of
clarity in design, bad allocation of work, and bad component structure.

Whether it is waterfall or agile development, rework in the coding phase should be avoided as
far as possible. Software coding is characterized by a large team of developers for large projects.
How the project is divided and how developers are assigned their task, and how these tasks are
tracked is a major decision in the project. It is very important that proper planning for these tasks
is made well. It is also important that a very good version control management tool is deployed so
that each version of the software being developed can be maintained and development can happen
without any interruption due to version issues, etc.

We will learn more about software construction in Chapter 12.

9.3.4.4  Software Testing

Software testing is very important area, because most critical bugs should be trapped here.
Otherwise, fixing bugs in the maintenance phase becomes very costly. Software testing is under-
taken as a separate project on many software development projects as it provides a lot of addi-
tional value. In such cases, it is known as independent verification and validation (IV&V). IV&V
helps in trapping defects at all phases and in all work products during the entire development
life cycle. These defects are subsequently removed. Making a separate project for testing thus helps
in increasing reliability of the software product.

Some of the challenges for software testing include too many defects in the software applica-
tion that increases load on software testers, lack of test strategy, lack of test planning, etc.

Introduction to Software Life-Cycle Management  ◾  139

Software testing has been gaining importance over the years. Customers now expect much
better quality from their software products than was the case a few decades back.

Software testing includes unit testing, integration testing, system testing, user acceptance test-
ing, performance testing, and usability testing. IV&V includes requirement specification review,
design inspection, construction inspection, and integration inspection. So scope of testing has
increased on software projects manifold after the advent of IV&V.

Developed software contains many bugs introduced due to faults in requirements, software
design, and software coding. The purpose of software testing is to find these bugs so that they
can be removed. This kind of software testing is known as functional testing. Functional testing
is of two types: white box testing and black box testing. When developers check their own code
for testing logic of the conditional statements or checking formatting of data, etc., then this kind
of white box testing is known as unit testing. In integration testing, developers test whether data
are passing correctly between functions. So most white box testing revolves around testing at the
function level.

When it comes to testing at the system level, black box testing techniques are used. Black
box testing is also used for user acceptance testing. In black box testing, requirements and design
documents are referred to assess whether the built system adheres to customer requirements.

Apart from the functional aspects, the built system is also to be checked for many other
aspects, for instance, whether the built system can withstand load of transaction requests made
by users on the server on which the application is installed. Then, usability, system integration,
and many other kinds of aspects are to be tested to verify if the system is working as per these
expectations.

The software system may contain a large number of bugs. It will be very difficult to detect all
of the bugs. Even if you employ a large testing team, it may take a considerable amount of time
to detect a fraction of all bugs. This kind of exercise will not be of much use. If we are testing a
software product, then the marketing team cannot wait for long, as they need to put the product
in the market within a specified time frame. If we are testing a software application specifically
built for an organization, then that organization cannot wait for long to get to use the application.
Moreover, the cost of such a large testing effort will be huge. This kind of testing activity is simply
not acceptable.

A better approach is to have an effective testing. There will be a time limit under which all
testing activities have to be performed. There will also be a cut-off quality level that is acceptable
to the customers. So a compromise between quality level and time to test the application has to be
made. For example, we can have a schedule of 15 days to test the application and acceptable quality
level of 100 critical bugs to be fixed after the system goes live.

For all kinds of testing to be effective, a comprehensive framework is needed. As has been
stated previously, user acceptance testing needs a requirement document and a good understand-
ing of what exactly the customer needs in the system. The system testing is based on the system
design document. The integration and unit tests are also based on the design document, but they
are done at much lower levels. System testing is done at the system level whereas unit and integra-
tion testing is done at the function level.

Testing should also be prioritized based on needs of the project. For instance, of all the require-
ments, some are of high priority and some others are not. Definitely high priority requirements
should be tested first so that they are covered even if time does not permit further testing. In such
cases, low priority requirements may not get tested, but the impact on the project in such instances
will be much lower compared to cases when high priority requirements could not be tested due to
time constraints.

140  ◾  Software Project Management: A Process-Driven Approach

Similarly, when it comes to system testing, the testing team should have a very good idea about
the design and architecture of the system. Only then they can do testing effectively.

These things can happen only when the testing team gets involved early in the development
life cycle.

9.3.4.5  Software Release

Some of the challenges in the release phase include too many bugs found in user acceptance test-
ing, incomplete, or superficial testing due to a limited testing phase, poor documentation, and
poor user training due to unplanned release.

When software is made ready for released, then you not only need to make sure that the
software application runs per customer requirements, but also it should be easy to main-
tain after production. Processes involved in the software release phase include preparing user
manuals, user acceptance testing, user training, system configuration, and installation. A
software release can be an alpha, beta, or final release. Depending on the kind of release, the
processes may vary. In an alpha release, the software is released only to internal users and
not to the public or customers. Even if it is released to customers, it is offered for free just
for testing purposes. In case of a beta release, the software is released for free to the public
and customers before the final release so that the product is thoroughly tested by the users
themselves, and all defects found by them are removed. This ensures that there are no defects
in the final release.

9.3.4.6  Software Maintenance

Software maintenance is an area that can be more demanding than software development. It is
because, most of the time, it is done by a team that is different from the team that developed the
software. Even if they did a good documentation job during development, understanding those
documents and the code is a difficult for anybody. That is why it is best if the software develop-
ment team also do maintenance; but in practice, it is difficult if not impossible.

Some of the techniques used for maintenance include reverse engineering and re-engineering.
Some of the challenges in maintenance include inadequate maintenance plan, inadequate strategy,
and inadequate technique.

Software maintenance is often neglected when software is developed. This leads to many prob-
lems when it goes into production and then needs maintenance. So it is of utmost importance that
maintenance is kept in consideration during software development. Some of the issues that arise
in software maintenance include

◾◾ Software code is not readable
◾◾ Design and construction documents are either outdated, nonexistent, or insufficient
◾◾ Unstructured code
◾◾ Maintenance personnel having insufficient knowledge of the software application

If any of these problems exist, then the software application is difficult to change during
maintenance.

Introduction to Software Life-Cycle Management  ◾  141

9.4  Software Life-Cycle Metrics
When it comes to measuring work product and process attributes in the development life cycle, what
comes to mind? Definitely, all the work products and the final product that are produced during
the development life cycle. Then, there are different steps that are involved in producing these work
products [5]. During the requirement development and specification stage, the work product being
worked on is the SRS document. The SRS must have attributes like testability, maintainability, com-
pleteness, and nonambiguousness. The size of the SRS does not make any sense itself because there
is no relationship of SRS size to the size of the software product. Similarly, during design, construc-
tion, and testing, there will be a large number of work products being produced. Measuring quality
of these work products will provide good insight as to how the project team is faring against bench-
marks or any other standard against which the measurements are to be compared. For producing
these work products, there will be a large number of processes undertaken. Measuring productivity
of these processes will provide good insight as to how the project team is faring against benchmarks
or any other standard against which the measurements are to be compared [8].

9.5  Work Products
In manufacturing, intermediate products created during product manufacturing are known as
works in process (WIP). These WIP products result after a processing step done during manufac-
turing. In the software industry, these intermediate unfinished products are known as work prod-
ucts. During the software development project, each software development process produces work
products. It is important to identify these work products, and there should be a mechanism that will
measure quality of the work product. This will ensure that defects are trapped and removed before
development proceeds to the next phase (Figure 9.8).

Requirement
phase Design phase

Release phase

User
accepted

product + user
manuals

Construction
phase

UAT testing
phase

Requirement
specification

document

Product
model

Untested
product

UAT tested
product

Figure 9.8  Work products from various software life-cycle phases.

142  ◾  Software Project Management: A Process-Driven Approach

9.6  Quality Assurance
There is an inherent drawback in waterfall and other models of software development. Software
testing had been relegated to be done after software construction. There was no mechanism to find
out if requirement specifications were correct. Similarly, no mechanisms were provided to check
whether the software design was correct. What if there were faults in the requirement specifica-
tions or in software design? Obviously, if there were faults in requirement specifications, then the
software design will be faulty. Similar will be the case with software construction, because it will
be based on faulty software design. A faulty work product as an input to a process step will always
result in a faulty work product output. Instead of building subsequent work products based on
faulty input work products, it makes sense to check the input work products to verify if they are
correct and do not contain any defects. The downstream activities in the development life cycle
should start only after verifying that the input work products do not contain any defects.

After each phase of software development gets completed, there should be exit criteria that will
ensure that all work has finished per project plan and that these work products are defect free. Only
then, the project can move on to the next phase. The exit criteria should include completion of all
processes for the phase, completion of work products, and finally acceptable quality of work prod-
ucts. For quality control, formal review processes should be included in each phase (Figure 9.9).

If any of the three exit criteria is not met, rework may be needed, and, thus, instead of the
project moving forward, it will move back [9].

9.7  Case Study
We discussed project management-related aspects with our SaaS vendor in Part I. In Part II, we will
discover how the development life cycle evolved and was being used by the SaaS vendor. We will dis-
cover how the requirement specification was prepared, how software design was made, how software
code was written, how software testing was done, how user training was conducted, how the product
was deployed, and how maintenance was performed.

Requirement
phase

Exit
criteria

Exit
criteria

Exit
criteria

Exit
criteria

 Processes completed?

Design phase

Construction
phase

Testing phaseRelease phase

Exit criteria

 Work product delivery?
 Formal review for quality?

Figure 9.9  Quality assurance mechanism for software projects.

Introduction to Software Life-Cycle Management  ◾  143

9.8  Chapter Summary
In introduction to software development life cycles, we have learned what constitutes a software
development life cycle. We have also learned some of the techniques employed for rapid development
such as concurrent engineering. We have also learned about software measurements and how a good
set of software metrics helps in achieving a good software product. We have also learned about soft-
ware quality control and what exact measures are required on software projects. We have also learned
about work products that are made during different phases of the software life cycle. This chapter
will prepare us for the next chapters of Part II, where we will learn about various major phases in
the software development life cycle: software requirements, software design, software construction,
software testing, software release, and, finally, software maintenance.

Exercises
9.1	 Find out which software development life-cycle model was adopted for any open source

project. What are significant aspects about the adopted model?
9.2	 Find out the rationale for selecting the development life cycle on that open source project?

Review Questions
9.1	 What are the phases in the software development life cycle?
9.2	 What statistical process control methods can be employed on software development projects?
9.3	 What is concurrent engineering? How can concurrent engineering be used in software

development projects?
9.4	 What are work products in the software life cycle?
9.5	 What metrics are utilized on software projects?

Recommended Readings
	 1.	 J. Keyes (2002) Software Engineering Handbook, Auerbach, New York.
	 2.	 M. Silver (2004) Exploring Interface Design, Thomson Learning, Australia.
	 3.	 D. Leffingwell, D. Widrig (1999) Managing Software Requirements: A Unified Approach, Addison-

Wesley, Boston, MA.
	 4.	 J. Lind (2001) Iterative Software Engineering for Multiagent Systems: The Massive Method (Lecture Notes

in Computer Science), Springer, Berlin, Germany.
	 5.	 Q. Wang, D. M. Raffo (2008) Making Globally Distributed Software Development a Success Story,

Springer, Berlin, Germany.
	 6.	 C. Larman (2003) Agile and Iterative Development: A Manager’s Guide, Addison-Wesley Professional,

Boston, MA.
	 7.	 P. Ghodous, R. Dieng-kuntz, G. Loureiro (2006) Leading the Web in Concurrent Engineering: Next

Generation Concurrent Engineering, Volume 143 Frontiers in Artificial Intelligence and Applications,
IOS Press, Amsterdam, the Netherlands.

	 8.	 S. Datta (2007) Metrics-Driven Enterprise Software Development: Effectively Meeting Evolving Business
Needs, J. Ross Publishing, Fort Lauderdale, FL.

	 9.	 J. Parnaby, S. Wearne, A. K. Kochhar (2003) Managing by Projects for Business Success, Wiley, London, U.K.

145

Chapter 10

Software Requirement
Management

In the previous chapter, we learned

◾◾ What is software engineering?
◾◾ What are software development life-cycle phases?
◾◾ What development metrics are measured?
◾◾ What are the work products in a software life cycle?
◾◾ How quality assurance is done during software development?

In this chapter, we will learn

◾◾ What are customer requirements?
◾◾ How are customer requirements gathered?
◾◾ How are customer requirements managed?
◾◾ What is the role of the configuration management system in requirement management?
◾◾ How is quality assurance done during software requirements management?

10.1  Introduction
Software requirement development and management is one area where the project team needs to
do a lot of work. Requirements are one of the most important parts of the software project. After
all, the software application or product is to be built based on these requirements.

146  ◾  Software Project Management: A Process-Driven Approach

For government projects, requirements come with all the details. It is simply because at gov-
ernment offices, everything should be accounted for, and so they need minute details of every-
thing including information about why and how the software will be developed and exactly
what are the requirements for which the software will be developed. These requirements are
sometimes documented more than required. But they always come with correct and complete
details. Requirements for internal software projects come with fewer details. In the case of
commercial and business software development for external customers, the details of require-
ments can vary. For outsourced software projects, great details are available. But in case of
offshore outsourced projects, complete requirement details are needed and hence are provided
by customers.

10.2  Software Requirements Development
Consider this request from the marketing department of a software vendor: “We need to develop
an online access system for our banking application by next month.” Yes, this is a requirement
with the timeline from the marketing department’s point of view. The project manager may just
get bewildered, but this is what happens to software project managers. If you get requirements
like this, then you need to pay attention to find out actually what is required and then develop the
requirements accordingly.

Developing the requirement is done by software engineering folks. Even if detailed require-
ments come from a customer, analysis of these details must be done [1]. Some of the requirements
may need to be elaborated further. Some of the requirements may not be feasible. In those cases,
some alternative solution has to be suggested to the customer and approval obtained from him.

Once most of the requirements are made clear and approved, then software design processes
can begin.

Requirements can be broadly grouped into two categories: functional requirements and
nonfunctional requirements [2]. Functional requirements pertain to those requirements that state the

Security Performance

Nonfunctional
requirements

Usability Compatibility

Figure 10.2  Nonfunctional software requirement sub types.

Functional
requirements

Nonfunctional
requirements

Software
requirement types

Figure 10.1  Software requirement types.

Software Requirement Management  ◾  147

functionality required in the software system that the customer is looking for (Figures 10.1 and 10.2).
A functional requirement could be, for instance, to have a transaction ability so that the user can pur-
chase certain goods from the Web site using a credit card.

Nonfunctional requirements are those requirements that do not belong to the core functional
requirements. Instead, they state how the software system will behave in certain conditions.
Some of the nonfunctional requirements include security, performance, usability, compatibility,
etc. A customer requirement may be stated that the software system should be secure so that
unauthorized access to the software system is not allowed. In that case, a comprehensive secu-
rity mechanism should be incorporated in the software system so that unless a user has been
provided privileges for access, he cannot access the software system. In the requirements, if it is
stated that the response time for a page loading should be less than 10 s, then the software sys-
tem and the hardware on which it will run should be made load pages within 10 s even during
expected peak loads.

Some of the considerations associated with requirement development include

◾◾ Well-defined required functionality (both functional and nonfunctional) to make an appro-
priate software product.

◾◾ Defined details of the operational environment in which the software system will operate.
◾◾ Maintenance and final retirement plan should be in place.
◾◾ All limitation factors should be stated before the development life cycle starts, including

limitation factors for design, construction, maintenance, and testing activities. Otherwise,
during development, unpleasant surprises may crop up.

Limitations and constraints to be considered for developing the software product during the
requirement development stage itself should be considered. They should include

◾◾ Cost and cost drivers
◾◾ Risks associated with requirements (incomplete/ambiguous/wrong requirements) that can

have impact on the project
◾◾ Factors related to customer’s unique business considerations, regulations, and laws to better

relate requirements to software design
◾◾ Time constraints and schedule drivers
◾◾ Consideration of issues implied but not explicitly stated by the customer or end-user
◾◾ Technological limitations

During requirement development, the customer requirements are analyzed, and a detailed
software requirement is developed. If complete information is not available at this stage, then
some assumptions are made. These assumptions are noted down for further discussion with
customer and to get their approval. At this stage, care is also taken to view requirements,
constraints, and limitations of design, construction, maintenance, and testing of the proposed
software product. Due to these considerations, some additional requirements may also need to
be added [3].

All the requirements need to be converted into software features (logical entities) [4]. All
these features need to be categorized under some major heads (top level features). All other
features that are dependent on the main feature should be put under these heads in hierarchical
order. Whenever new requirements are added, they are refined, derived, and allocated to these

148  ◾  Software Project Management: A Process-Driven Approach

logical entities. These logical entities are then allocated to products, product components, people,
or associated processes (Figure 10.3).

Involvement of relevant stakeholders in both requirement development and analysis gives
them a view into the evolution of requirements. This activity continually assures them that the
requirements are being properly defined.

There are many techniques employed to elicit requirements from customers or from other
sources [5]. Some of them include interface control working groups, interim project reviews,
operational walkthroughs and end-user task analysis, technical control working groups, technol-
ogy demonstrations, prototypes and models, brainstorming, customer satisfaction surveys, qual-
ity function deployment, market surveys, questionnaires, interviews, and operational scenarios
obtained from end users, beta testing, extraction from sources such as documents, standards, or
specifications, observation of existing products, environments, and workflow patterns, use cases,
business case analysis, and reverse engineering (Figure 10.4).

Examples of sources of requirements that might not be identified by the customer include the
following:

◾◾ Standards
◾◾ Business environmental requirements (e.g., laboratories, testing and other facilities, and

information technology infrastructure)
◾◾ Technology
◾◾ Business policies
◾◾ Legacy products or product components (reuse product components)

Top level
requirements

Next level
requirements

Next level
requirements

Bottom level
requirements

Figure 10.3  Software requirement hierarchies.

Increased
revenue
potential

Users Standards Business
environment Maintenance Customer

feedback
Cost saving

potential
Technology

changes

Business
policies
changes

Sources of
requirements

Figure 10.4  Sources of software requirements.

Software Requirement Management  ◾  149

10.2.1  Develop Requirements
The initial requirements, whether from customers or from other sources, need to be made usable
as input for making software requirements. Any irrelevant information from the gathered infor-
mation must be purged. Any information missing should be sought from responsible sources.
Conflicts between any pieces of information should be resolved. Once the collected information
looks complete, it should be consolidated.

10.2.2  Requirement Development Tasks
Some of the tasks done during requirement development include

◾◾ Customer requirements are refined and elaborated to develop product and product compo-
nent requirements.

◾◾ Establish and maintain product and product component requirements that are based on
customer requirements.

◾◾ Allocate the requirements for each product component.
◾◾ Identify interface requirements.
◾◾ The requirements are analyzed and validated, and a definition of required functionality is

developed.
◾◾ Establish and maintain operational concepts and associated scenarios.
◾◾ Establish and maintain a definition of required functionality.
◾◾ Analyze requirements to ensure that they are necessary and sufficient.
◾◾ Analyze requirements to balance stakeholder needs and constraints.
◾◾ Validate requirements to ensure that the resulting product will perform as intended in the

user’s environment.

For a large enterprise application development, a large number of requirements may be found
in specific areas. In such cases, a team of business analysts may be required who may gather the
requirements and later develop them. For instance, if an enterprise system requirement is to
have functional areas like finance, supply chain management, customer relationship manage-
ment, and human resources, then we can have at least four business analysts who will gather and
develop requirements specific to their areas. Once these requirements are developed, then they
may need to be consolidated. Once the consolidation is done, then a system model may need
to be developed. In fact, it is possible that functional models for each functional area may be
developed separately and later consolidated. These models need to be developed using a standard
language like UML (unified meta language). For a user interface, some UI flow model is also to
be developed.

10.3  Software Requirements Management
As has been stressed throughout this book, requirement change requests are the order of the
day. Even when the project team initially feels that all requirements are clear, during design,
or test strategy process, some confusing points may arise relating to any of the requirements.

150  ◾  Software Project Management: A Process-Driven Approach

When that happens, then that particular requirement has to be discussed, and only after clear
understanding between the customer and the project team may that requirement be incorpo-
rated into design.

A very good requirement change management and version control is definitely necessary for
a successful software development project. When analyzed, most failed software projects reveal
that the failure was due to unclear requirements or too many requirement changes. In the case
of unclear requirements, the development team assumes certain things in the absence of concrete
details and that assumption may be wrong. In that case, the developed system may not match
customer expectation and so the project may fail.

10.3.1  Requirement Change Control
Whenever requirements are changed, there must be a system that will notify each person whose
work is affected due to change in requirement. How the change will impact their work also
must be assessed. How much rework will be involved should also be calculated and docu-
mented [6].

Most of the impact on late requirement change is on construction and testing. This is because
they are the two most labor-intensive activities. It is estimated that more than 40% of all effort in
software development life cycle is done in construction phase. In software testing, this comes to
25%–30%.

One more aspect of requirement change is the severe impact it has when the development and
testing are being carried out by distributed teams. With a distributed team scenario, communicat-
ing the change request immediately and effectively so that rework can be avoided is a big chal-
lenge. If some of the distributed teams are located in different countries and are service providers
instead of in-house teams, then many other issues also get involved [7]. Understanding the change
becomes difficult.

One more issue with requirement changes pertain to version control. It is difficult to know
whether all distributed teams are working on the correct version of the requirements or not. There
will be instances when some of the teams may be unaware of the latest requirement changes, and
so, unknowingly, they may be working on the wrong version.

10.3.2  Requirement Problems Diagnosis
When distributed teams are working on a project, the best option is that requirements are kept in
a central repository with access permissions to all project teams. Whenever any changes happen,
then there should be provision for automated e-mails to be sent to all concerned teams. People
with less experience should be identified, and care should be taken that they understand these
changes and do their work accordingly.

The configuration and version control system should be located centrally and should be easily
accessible to all teams. Requirement allocation should be done in such a way that each team and
their individual members are always aware of what requirement they are working against, and
where on the configuration management server the relevant work products are located. In case of
any doubts, there should be a responsible person who can clarify any issues immediately within
an agreeable timeframe.

Software Requirement Management  ◾  151

10.4  Requirement Life-Cycle Management
Software requirements are the first phase of any software life-cycle management [8]. The journey
of any software application starts from here. Refer to figures of software life cycle for different soft-
ware development process models provided in Chapter 9. Here, we will discuss processes involved
in requirement development (Figures 10.5 and 10.6).

10.4.1  Requirement Development and Management in Waterfall Model
The waterfall model is modeled on the fundamental notion that software development is done in
phases, and each phase commences after the previous phase gets completed, and they follow each
other in time sequences. So in one software project, there is just one iteration of each phase, and
once it is completed, there is no option to come back to this phase. In real life, most organizations
use a modified version of the waterfall model. So once requirements are developed, a review pro-
cess is initiated to check whether the requirements are incomplete, ambiguous, or are otherwise
faulty. A check is also done to ensure all requirements meet characteristics like maintainability and

Rework

Requirement
speci�cation Change request Communication

of change

Impact analysis

Changes in
design,

construction

System
validation

Figure 10.6  Software requirement change management life cycle.

Requirement
elicitation

Requirement
documentation

Requirement
analysis

Requirement
specification
development

Requirement
verification and

validation

Verified and
validated

requirements

System
modeling

Figure 10.5  Software requirement development life cycle.

152  ◾  Software Project Management: A Process-Driven Approach

testability. If, during review, it is found that either some work is not complete or there are defects
in the work product, then a rework is done to remove that defect. Once the work is approved, then
the project is allowed to enter into next phase.

In the requirement development and management phase, the work product is the requirement
specification document. The complete list of requirements is verified and validated during review meet-
ings. If any requirements do not meet the validation criteria (e.g., testability), then requirements
should be reworked, and only then system design phase can be allowed to start (Figure 10.7).

10.4.2  Iterative Model
In iterative models (including eXtreme Programming, agile methodology, and Scrum), complete
requirements may be gathered but not used for product development in one go. Instead, a subset of
requirements is taken, and development is done for those requirements in any iteration. Once that
iteration gets completed, then a new set of requirements is taken for development (Figure 10.8).

In Scrum, the list of requirements is kept in a repository, which is known as the “backlog.”
Whenever any requirement becomes available, it is stored in this backlog. When a sprint (iteration)

Requirement
development

Requirement
management

Complete list
of requirements

Verification and
validation of
requirements

System design

Figure 10.7  Waterfall model—requirement management and verification life cycle.

Complete list
of requirements

Requirement
management

Subset of
requirements

Verification and
validation of
requirements

System design

Figure 10.8  Iterative model—requirement management and verification life cycle.

Software Requirement Management  ◾  153

is planned, the relevant requirements are pulled from this backlog. Most requirements in the back-
log are not fully developed. So, when some requirements are pulled from the backlog, they are
developed to be complete, and then the iteration or sprint proceeds. When any change request
comes, generally, it is taken in the next iteration.

In agile models like Scrum and eXtreme Programming, the sources of requirements are the
customers, customer feedback after iteration completion, found defects during development, and
many other sources mentioned earlier in this chapter.

Requirement management on agile projects is much better. There are generally no incidents
when a change request has to be incorporated during the course of an iteration. Change requests
are generally taken in the next iteration, and thus there is no rework involved due to change
requests.

10.5  Software Requirements Practical Strategy
Making requirement specifications from diverse and unstructured documents from many sources
is a challenging task [9]. Here is a list of best practices for gathering and managing requirements.

	 1.	Requirements come in many forms (e-mail, chats, customer request, meetings, reviews, etc.).
So initial form varies. Use a standard template to get all requirements so that requirement
format is consistent and that it is easy when they are to be incorporated in design. Capturing
all requirements is also possible this way.

	 2.	Requirements should be verified with the source so that there is no communication gap and
requirements are captured as accurately as possible.

	 3.	Requirements should be complete, and no requirement should be incomplete. Also, delivery
dates should also be captured.

	 4.	Requirements should be prioritized based on urgency, ROI, etc.
	 5.	Communicate requirements as early as possible across all teams especially to distributed

teams.
	 6.	Trace dependency among requirements so that if one requirement is important but is depen-

dent on another requirement that is not a priority, then it has to be made sure that both
requirements are delivered.

	 7.	Track requirement changes.

No matter how much attention is paid in collecting requirements, some omissions or mistakes do
happen. This results in delivering an inadequate software product to the customer.

Nonstandard requirement specifications are the most dangerous aspect of software develop-
ment projects. Consider an instance when the customer has specified that the software application
should be used by sales department to take orders from customers. It does not provide details
about various options while taking orders. The design team from the software project simply
designs the system with the assumption that any person in the sales department takes the orders
over the phone and has a list of products against which he books the orders. When the software is
developed and presented to customers, they expect other options to be available to the sales staff
while booking orders. It turned out that the customer was looking for a solution for configurable
items that it sells. For configurable items, each main product has options for subitems to choose
from. Any configurable item can have options at many levels. For instance, a desktop system
can be bought with options for processor model, memory card, sound card, network card, hard

154  ◾  Software Project Management: A Process-Driven Approach

disk, CD ROM drive, etc. The customer can choose company name, specific brand, and then
specific model for each of the computer parts while giving the order.

See Figure 10.9 to better understand configuration items. A desktop computer can have
options to choose either Intel or AMD processor. The Intel processor can be a quad processor,
Celeron, or Pentium processor. A Celeron processor can be of 2.2, 2.0, or 1.6 GHz capacity. The
order management system must have the capability to choose the specific options provided by the
customer. If configuration capability is not present in the ordering system, then it will be of no
use to the sales department as they cannot book any customer orders using the software applica-
tion (Figure 10.9).

Understanding the requirement and finding the correct solution for that requirement is the
most important aspect of software development projects.

10.6  Software Requirements Artifacts
Software requirements are among the most unstructured data in a software project. They need to
be converted into a good structure in the form of software features (requirement specifications).
Only then, this data becomes useful to the project team. So the software requirement specifica-
tions document (SRS document) must contain specifications in the most structured form. For
the test team, a verification and validation document for the SRS document is the artifact of this
phase.

10.7  Software Requirements Quality Control
Software requirements can be checked or tested for defects. Found defects can subsequently be
removed, and, thus, quality of the software requirements can be improved. Some kinds of defects
in the requirements may include incoherent specification, wrong specification, wrong assump-
tion, incomplete specification, and wrong relationship between requirements. Through a thorough
check, these defects from requirement specifications can be removed.

The requirement development team itself can do these tests, or a test team can perform
these tests.

Desktop

Intel
processor

Quad
processor

Celeron

Pentium 1.6 GHz

2.0 GHz

2.2 GHz

AMD
processor

Figure 10.9  Configuration options for a desktop computer.

Software Requirement Management  ◾  155

10.8  Case Study
We continue our case study in Part II with the way our SaaS vendor’s development team develops
and manages software requirements in this chapter.

The SaaS vendor decided to build the appointment scheduling functionality only after exist-
ing customers, and market surveys revealed that there was a market gap for this functionality.
So a business analyst was recruited to visit existing customers and gather the requirements.
Already during interaction and user feedbacks from customers, there was some idea about the
features required by them. Based on this existing knowledge and further interaction with custom-
ers, the business analyst completed the requirement gathering. Later, he built the requirement
specifications.

10.8.1  Major Components of Appointment Scheduling
An appointment of any truck to a dock door of any warehouse even before arrival of the truck at
the said warehouse can be made if some advance knowledge about the truck and what it contains
is available. Here is a list of information needed to create this kind of appointment.

Information about the arriving truck includes truck capacity, truck type, kind of goods loaded/
to be loaded, and expected arrival date (time) at the warehouse.

Information about the origin warehouse includes warehouse site information, warehouse com-
pany information, and distance from target warehouse.

Information about the target warehouse includes warehouse site information, warehouse
company information, and number of dock doors.

Information about the dock doors of the target warehouse includes number of doors, types of
trucks, which can be docked at each door, types of goods, which can be unloaded at each door,
dock door calendars, partners whose goods can unloaded at specific doors, labor availability, qual-
ity assurance personnel availability, already docked trucks, already scheduled trucks, and unavail-
ability of dock door at specific times.

The most important aspect about the appointment scheduling engine is that the user can
first search a shipment (truck) that is not scheduled yet and then run the engine, so that a suit-
able schedule can be made for the shipment at any dock door of the target warehouse. There
are so many factors to be considered for this appointment that humanly it is not possible to
make a suitable schedule. The appointment engine is provided with all possible and practical
constraints, and it honors or ignores those constraints depending on the rules defined for them
in the engine. All these constraints are divided into two groups, soft and hard constraints. The
soft constraints can be overridden if a hard constraint does not permit it to be made applicable.
For instance, if a soft constraint does not allow a shipment to be made at 3:30 pm on October
10, 2010, at dock door 1 of warehouse A for a duration of 2 h, and if a hard constraint does
allow this time window for appointment then the soft constraint will be overridden and an
appointment will be made. Then, inside each of the category of hard and soft constraints, there
is a hierarchy. Suppose a higher ranked constraint is applicable for a shipment, and that a lower
ranked constraint does allow a shipment to be made within a time window. However, due to
this higher ranked constraint, an appointment cannot be made. On the other hand, if no higher
ranked constraint is applicable for a shipment, then a lower ranked constraint will determine if
an appointment can be made for a shipment.

156  ◾  Software Project Management: A Process-Driven Approach

The appointment scheduling engine is used to calculate two things. First, it would determine
the start date and time for an appointment. Then, it would calculate the duration of the appoint-
ment if the appointment duration is variable and depends on many factors.

Here is the requirement specification for the loading/unloading calculation part of the
requirements.

10.8.2  Loading/Unloading Time Calculation
	 1.	For some dock doors, a fixed load/unload time is mentioned. Even if the actual time is

more or less than this fixed time, this fixed time should be recorded and not the actual
load time.

	 2.	There is a maximum and minimum time allowed (reservation time) for each dock door for
specific business partners, in which all load/unload activities should be performed. If any
load/unload time calculation is coming above or below this set, then the reservation time
is the allowed time (maximum or minimum whichever applies), and this time should be
recorded for making reservation at the dock door. If the calculated load time is less than
the reservation time, then the calculated time should be recorded.

	 3.	A default load time should be provided for each dock door group. If no fixed or variable load/
unload time is defined for a dock door in that group, then this default load time should be
recorded for all loading/unloading on that dock door.

	 4.	The variable load/unload time should be calculated by the number of quantities of pieces of
goods to be unloaded/loaded multiplied by loading/unloading time per piece of goods.

There were also requirements developed for calendars for dock doors, dock door groups, ware-
houses, organization, and enterprise. Requirements for search functionality for specific shipments
based on origin, destination, shipping date, expected arrival date, etc., were also developed. Finally,
the requirements for appointment scheduling functionality were also developed. This functional-
ity also included options for manual appointment, cancellation of appointment, and grouping of
appointment.

Overall, there were some 560 requirements for the entire project for release 6.0.

10.8.3  Quality Assurance
Quality assurance is an integral part of all software development activities at our SaaS vendor
projects. The requirement specifications or software features to be developed are thoroughly tested
(reviewed) before software design and architecture activities start. Each requirement specifica-
tion is reviewed for completeness, flaws, maintainability, and testability. For example, there was
a requirement that any shipment can be searched by providing partial information like shipment
number and partial shipping address information. The complete address information consisted of
street, county, state, country, and zip code. The partial address information could be a combina-
tion of any of the pieces of these address parts. To search a shipment with partial address, it is
important that these pieces of information are linked loosely with each other. A zip code of 10994
belongs to New York state. So the search result should not show any shipments with this zip code
belonging to some other state. There could be more than one city with the same name belonging to
different states. In that case, all shipments with that city name (belonging to more than one state)
can be displayed in search results if zip code and state are not mentioned.

Software Requirement Management  ◾  157

Apart from the functional completeness aspect for a requirement, testability, maintainability,
and other kinds of flaws also need to be checked and reviewed. Performance issues should also be
checked if the requirement specifies that a large number of users will be using that software feature
simultaneously.

10.9  Chapter Summary
In this chapter, we have learned all about software requirement gathering techniques, requirement
management, change management, version control, etc. Change in requirements and unclear
requirements are the two pitfalls that affect most software projects. To deal with this problem,
there are two methods. One method is to take only a few requirements at a time and do the entire
development for these requirements. This will mitigate the risk of change in requirements. The
other technique is to manage the entire development process so that the changes can easily be
incorporated in the entire development process.

To ensure that the requirement specifications built are defect free, we must go through a
review process. All requirement specifications should be checked to see that they are not ambigu-
ous and are indeed properly defined. They should be checked to see that they can be easily tested.
They should be checked for maintainability.

Review Questions
10.1	 What methods and means are available for requirement gathering?
10.2	 What is the process flow for requirement development?
10.3	 �What quality control mechanism can be employed during requirement development and

management?
10.4	 Why is requirement management important? Why it is needed?
10.5	 What is the process flow for requirement management?

Recommended Readings
	 1.	 A. Jaaksi (1998) Tried and True Object Development, Cambridge University Press, Cambridge, U.K.
	 2.	 L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos (2000) Non-Functional Requirements in Software

Engineering, Springer, Berlin, Germany.
	 3.	 P. C. Tinnirello (2001) New Directions in Project Management, CRC Press, Boca Raton, FL.
	 4.	 A. Aurum, C. Wohlin (2005) Engineering and Managing Software Requirements, Springer, Berlin,

Germany.
	 5.	 S. F. Ochoa, G.-C. Roman (2006) Advanced Software Engineering: Expanding the Frontiers of Software

Technology, Springer, Berlin, Germany.
	 6.	 S. E. Donaldson, S. G. Siegel (2001) Successful Software Development, Prentice Hall PTR, New York.
	 7.	 R. Sangwan, N. Mullick, M. Bass, D. J. Paulish (2006) Global Software Development Handbook, CRC

Press, Boca Raton, FL.
	 8.	 H. Jonasson (2007) Determining Project Requirements, CRC Press, Ann Arbor, MI.
	 9.	 J. Dyché, E. Levy (2006) Customer Data Integration: Reaching a Single Version of the Truth, Wiley,

Hoboken, NJ.

159

Chapter 11

Software Design Management

In the previous chapter, we learned

◾◾ What are customer requirements?
◾◾ How are customer requirements gathered?
◾◾ How are customer requirements managed?
◾◾ What is the role of a configuration management system in requirement management?
◾◾ How is quality assurance done during software requirements management?

In this chapter, we will learn

◾◾ What is software design?
◾◾ What are the considerations for making a sound software design?
◾◾ What techniques are used to design software?
◾◾ How is quality assured during software design?

11.1  Introduction
Software design development can be likened to designing a physical product. Suppose a new car
model is to be developed. The car design is broken down into separate components and in the end
assembling them will become a complete design for the car model. Various factors are considered
during the design of the components. Suppose one factor to be considered is that during a car
accident, the car body should take most of the impact and the passengers should get the least
impact, so that injury to car passengers can be minimized during accidents. For this to happen,
the car body should be made of material that can collapse on impact and thus take most of the impact.

160  ◾  Software Project Management: A Process-Driven Approach

So during design, when selecting the material of the car with safety in mind, the body is one
of the prime considerations. Similarly, an aerodynamic body helps in keeping the car from
rolling over during accidents, and thus it is a prime safety factor that the car body should be
aerodynamic.

During design, one consideration is also made that though each component is developed sepa-
rately, after assembly, the components should work with each other without any problems. That
means assembling does not create any problems in the product itself.

Similar considerations are also done when software products are designed. In fact, in design-
ing software systems, consideration is given to things like how well the system will be maintained
during operation and how easily the system will be actually developed and be tested [1].

Software design is done using modeling languages like UML and using notation methods like
use cases and activity diagrams.

We will learn all about software design considerations, workflows involved in design, etc.

11.2  Software Design Fundamentals
When a building is constructed, a good foundation is laid out for the building, so that the
building will have a long lifespan and will not collapse. Similarly, it is given a strong and resil-
ient structure, so that even in case of an earthquake, it will not fall down. Similarly, software
design provides the foundation and structure upon which the software system is constructed.
The design should provide a sound, resilient, and scalable structure to support the software
system (Figure 11.1).

In these days, most software systems are built incrementally. In the beginning, a software sys-
tem may consist of only a few features. The feature set is expanded in future releases as and when it
becomes necessary to include them in the system. If proper structure is not provided from the very
beginning, the addition of these new features will make the system unstable. To deal with this
problem, a technique called refactoring is used on these agile projects where incremental software
development is done. Some of the design techniques that help make good software design include
open architecture, modularity, and scalability [2].

The current trend of service-oriented architecture (SOA) has also helped tremendously in
changing the design concepts. SOA is built on Web services and loose coupling of software com-
ponents. The asynchronous messaging method of integration of SOA is a vital aspect for develop-
ing Web-based applications [3].

Open
architecture Modularity Robustness

Characteristics of a good
software design

Security Scalability Simplicity

Figure 11.1  Characteristics of a good software design.

Software Design Management  ◾  161

11.2.1  Design Types
Software design on any project may consist of many work products, which together can be termed
the software design for the software product that will be built during the software project. Some
examples include prototypes, structural models, object-oriented design, systems analysis, and
entity relationship models.

11.2.2  Design Standards
If design standards [4] are implemented on a project, then it will help in streamlining activi-
ties that are involved during the software design phase. Some industry standards for software
design include operator interface standards, test scenarios, safety standards, design constraints,
and design tolerances.

11.2.3  Design Activities
Software design activities produce many intermediate documents and work products [5]. These
include product architecture description, allocated requirements, product component descriptions,
product-related life-cycle process descriptions, key product characteristic descriptions, required
physical characteristics and constraints, interface requirements, verification criteria used to ensure
that requirements have been achieved, operating environments, modes and states for operations,
support, training, manufacturing, disposal, and verifications throughout the life of the product.

11.3  Software Design Methods
There are two methods for designing software products or components, the bottom-up and
top-down approach.

11.3.1  Top Down
In the top-down approach [6], the top structure of the product is conceived and designed first.
Once the structure is perfected, components that will make the product are designed. Once the
major components are designed, the features that make the component are designed (Figure 11.2).

Apart from the functional consideration for making the structure, nonfunctional consider-
ations are also considered from the top level for example, how the security, performance, usability,
aspects will be provided in the product.

There are many benefits to the top-down approach. Nonfunctional aspects are taken care of
at the beginning of design, and hence they are an integral part of the product and not an after-
thought. This makes a secure, robust, and usable product. A top-down approach also helps in
creating reusable components and hence increases productivity as well as maintainability. This
approach also promotes integrity, as the whole product is designed inside a single framework. So a
fragmented and dissimilar approach for designing different parts of the product is avoided.

The drawback of the top-down approach is that it is a risky model. The whole design has to
be made in one go instead of making attempts to incrementally building the design, which is rela-
tively a safer option. Generally, the top-down design approach is adopted on waterfall model-based
projects.

162  ◾  Software Project Management: A Process-Driven Approach

11.3.2  Bottom Up
In the bottom-up approach [7], first, the minute functions of the software product are struc-
tured and designed. Then, the middle-level components are designed, and, finally, the top-level
structure is designed. Once some components are designed, they can be shown to the customer,
and a buy in can be made for the project.

There are some benefits to the bottom-up approach. It leads to incremental building of design
that ensures that any missing information can be accommodated later in the design (Figure 11.3).

With increasing use of incremental and iterative development methodologies, the bottom-up
design approach is becoming more popular than the top-down approach. In fact, nowadays, agile
models do not go for elaborate and complete software design from the beginning of the project.
In each iteration, a design is thought of for the requirements that are taken during the iteration.
To compensate for a sturdy and elaborate design upfront, the project team engages in refactoring
(discussed later in the chapter) the design to make sure that it does not become bulgy and unman-
ageable in later iterations.

Top-level software
design

Middle-level software
components

Middle-level software
components

Bottom-level software
components

Bottom-level software
components

Bottom-level software
components

Figure 11.2  Top-down software design.

Top-level software
design

Middle-level software
components

Middle-level software
components

Bottom-level software
components

Bottom-level software
components

Bottom-level software
components

Figure 11.3  Bottom-up software design.

Software Design Management  ◾  163

11.4  Design Version Control
In product development for a software vendor, many versions of the same product have to be
developed for fulfilling different customers. With changes in requirements whenever they occur,
software design also changes accordingly. These factors call for many versions of design of the
product. When we have many versions of the design, then we need to have a dependable mecha-
nism to control and manage all these versions of the designs of the same product [8].

At the top level of the hierarchy of files on the configuration and version control tool, the direc-
tory name should be the project/product name. This main directory should branch out with one
branch for each version of the product. Inside each branch, all design files should be kept inside
one subdirectory named something like “design documents.” This way, each distinct design ver-
sion should be completely separate from design documents of other versions of the product.

11.4.1  Subversions
During the software development life cycle, the design changes with changes in requirement speci-
fications or when it is felt to change design as it no longer supports additional requirements. In such
cases, the main design is changed to meet new conditions. However, the main design version is also
kept. The new design is saved as a separate file. So we have two design documents now. Whenever
the design has to be changed, a new file should be created from the old one and saved as a new file.
All of these new files become subversions of the old files. This process is known as subversioning.

11.5  Design Characteristics
When we create software designs, we need to make sure that the design not only fulfills require-
ment specification needs but also ensures that the design is robust, versatile, and defect free. So
the design needs to have some characteristics that make it useful. Here, we discuss some design
characteristics [9].

Modular: The design should be modular, so that construction can be done in modules, and thus
construction tasks can be divided and done in parallel to each other. This helps in reducing the
project schedule and makes a better-managed software product even during maintenance. The
biggest advantage of modular design is that complexity can be reduced by means of breaking
software features into smaller software parts. Complexity in any software product is the biggest
enemy, which creates problems like high-defect injection rates, difficult coding, difficult mainte-
nance, and many other related difficulties.

Simple: The design should be simple, so that it will be easier to understand by developers and other
project team members. This will make sure that the construction work can be carried out without
many problems that are associated with difficult or complex designs.

Maintainable: To reduce maintenance costs, the design should be such that when any mainte-
nance is needed, it can be performed without much overhead work. Some of the requirements of
a software design to be maintainable are that the modules are well formed, reference to calls are
well documented, modules are self-contained, and not many calls are made for other modules. If
the software design is well structured, then maintaining it will be much easier.

Verifiable: The software design should be verifiable, so that it can be easily verified as to whether it
suits the needs of the construction work that follows the design.

164  ◾  Software Project Management: A Process-Driven Approach

Portable: The design should have portability built into it, so that the same design can be used for
writing source code for different hardware/software platforms.

Reliable: The software design should be reliable, so that it does not introduce software defects
when source code is written based on the design. Generally, when a software design is complex,
large, or difficult to understand, then probability of defect injection during software construction
is higher. Thus, a reliable software design should not be complex or large or difficult. Larger soft-
ware designs should be modularized.

Secure: The software design should take into consideration the security needs of the users for
whom the software product is being made. This is especially true for software products, which
are meant to be deployed outside of the firewall of any organization (accessible from the Internet).

Scalable: The software design should be scalable, so that when the smaller software product is
scaled up, no design changes should be required. Even if some design changes are required, then
it should not lead to rewriting of parts of the source code. For example, the design should be such
that when additional features are to be added to the existing software product then the external
interfaces of software design parts should not to be changed in order to add those additional fea-
tures and only internal structures may need to be changed. This strategy will make sure that even
if some parts of the software construction need to be rewritten, it will not affect other parts of the
software product.

11.6  Software Design Techniques
Software design is the phase when a short sighted or myopic vision can turn the software product
development into a nightmarish affair for downstream phases. A good software design not only
ensures a smooth transition to the development phase but also ensures that the software product
has a good shelf life during operation. So what are the keys to a good design? A good design should
start from the most possible abstract architecture of the software product often termed as “high level
design” [10]. Subsequent transition of the abstract design should lead to platform-specific design
often termed as “low level design” [11]. The platform-specific design or low level design will be in
terms of a good database model and a good application model (Figure 11.4).

Over the years, many software design techniques have evolved with the evolution of different
programming paradigms. Starting with the early procedural programming paradigms, program-
ming has evolved into present day “service-oriented architecture.” Software design has kept the
pace with these evolving paradigms, and thus it has also been evolving. So, we have early structural
design paradigms to modern day SOA designs. Let us discuss some of these design techniques.

Prototyping Design
reuse

Structural
modeling

Software design
techniques

System
analysis

Object
oriented
modeling

Entity
relationship

models

Figure 11.4  Software design techniques.

Software Design Management  ◾  165

11.6.1  Prototypes
What better way to establish a good rapport with the end users than to sketch out a prototype
of an application after you have all the customer requirements? Prototyping is cheap and fast.
It also gets a buy in from customer at an early stage of the project. If not a full prototype of the
application, a partial prototype can help you win over your customer. There are many automatic
code generation tools that allow you to drag and drop some components on screens, and the tool
generates the code and makes a working prototype of the application that you can demonstrate
to your customer. An miscommunication or misunderstanding between the customer and the
project team gets cleared once the differences of opinion are sorted out early on during the pro-
totype demonstration sessions. This greatly helps in reducing the risks of not meeting customer
expectations. In any case, customers do not care about internal workings of the application. They
are always concerned about what the application screens look like and how the application behaves
with different kind of inputs and events.

The downside about prototypes is that many customers assume the prototype is the fully func-
tional application and later on wonder why the application is taking so much time in development
when they saw the working demonstration so early in the project. Customer expectations become
difficult to manage in such instances. Prototypes can only show the user interface screens. When
complex logic is involved in developing applications, that logic cannot be depicted in prototypes,
as program logic is mostly not visible and cannot be developed in prototypes.

11.6.2  Structural Models
Most software applications are built using components. At the bottom are the smallest units of
functions and procedures in a software application. These functions are contained within classes
or packages depending on the programming language used. Many classes together build a com-
ponent. Components in turn make modules. Modules in turn make the complete application. For
ease of working, maintenance, and breaking development tasks to allocate to group of developers,
it is essential that an application is broken down into manageable parts. Breaking into parts for an
application can best be done using a structural analysis.

From requirement specifications, a feature set is made to decide what features will be in the appli-
cation. This feature set is analyzed and broken down into smaller sets of features, which will go into
different modules. This is represented in a structural model of the application.

11.6.3  Object-Oriented Design
It has always been difficult to represent business entities and business information flow in a soft-
ware model. With object-oriented design, this problem was solved. Business entities are repre-
sented as objects in the object-oriented software design. Properties of these objects are made in
such a way that they are similar to the properties of the business entities. These objects are instanti-
ated from classes in the form of child classes. These child classes inherit all the properties of their
parent class, and they can have some more properties of their own in addition. So if we have a
group of similar objects with somewhat different properties, then we can implement classes in such
a way that a base parent class has child classes with different properties. This concept aligns very
much to the real-world scenarios.

Object-oriented design takes input from use cases, activity diagrams, user interfaces etc.

166  ◾  Software Project Management: A Process-Driven Approach

11.6.4  Systems Analysis
System analysis is the process of finding solutions in the form of a system designed from the
inputs coming from business needs. The fundamental question addressed in system analysis is
whether a business scenario can be converted into a software application, so that the user can
use the software application to do his routine business tasks. For instance, a person may want to
access his bank account using an Internet connection to the online Web site of the bank. This
scenario calls for many things that are involved in the whole chain of objects and events. The
system analysis will be concerned with user activities, what objects on the Web site act with user
activities, how these objects interact with the underlying software system of the bank, and how
connections are made between the user and the Web site and between the Web site and the bank
system. System analysis will analyze all these things. Based on the analysis, a system model can
be made that will be used in developing the application.

11.6.5  Entity Relationship Models
Entity relationship models are one of the ways to represent business entities and their relationships
to each other through diagrams. These diagrams are used for creating databases and database
tables. How many tables are needed to fulfill the needs of the software product, how these tables
are related to each other, and in what form data are to be kept inside these tables, etc. are decided
through these diagrams.

With object-oriented modeling, it is possible to correlate each object with a corresponding
database object. This kind of representation helps to make a clean database design.

11.6.6  Design Reuse
For large software products, the design can be broken into many design parts representing each
module of the product. Each of these design modules contain a lot of design information that
can be represented as design components. Many details inside these design components can be
repeated inside different components. If we can use a standard method of representing the same
information for these components, then it is possible to use these pieces of information in many
components by reusing them. It will reduce effort in designing the product. This method of design
reuse is known as internal design reuse.

A more potent design reuse is becoming available after the advent of the open source para-
digm and SOA. In the case of open source, the design reuse is in fact a case of copying existing
design and then using it exactly as it is or modifying it to suit your needs. But in the case of
SOA, you are not copying or modifying a software design. You are using the existing design as
it is. You are also not buying the application/component whose design you want. You are simply
buying a service from the owner of the application/component and using that service in building
your application. The owner of that application/component publishes full details as to how to
integrate your application with his application/component. The full interface details are provided
by the owner. Using this information, you design your own application. You assume as if the
application/component provided as a service is available with you, and your application uses this
application/component.

SOA is indeed leading to a reuse model that is going to transform the world of computing and
our lives in years to come.

Software Design Management  ◾  167

11.7  Software Design for Internet
Given the fact that the majority of software development these days is for the Internet, it is impor-
tant to recognize how Internet applications are different from traditional software products and
what design considerations are involved in developing them. In these days, even if some applica-
tion being developed is meant to be running inside a company firewall, it makes sense to structure
it like an Internet application for future use as well as for maintenance needs (Figure 11.5).

Internet applications are inherently different. Thus, their design is also different from legacy
client/server applications. Some of the characteristics that impact their design include:

◾◾ They are used by a large number of people. So they need to have good performance built
into design.

◾◾ Many of these users are novice when it comes to using computers and software applications.
So the design should be such that the application does not break down easily even when the
user keeps clicking on wrong places in the application.

◾◾ They are information providers with lots of content.
◾◾ They are asynchronous.
◾◾ The front end is a browser with all the processing is done at the back end.
◾◾ They are stateless.

Due to these unique features of Internet applications, they need a different kind of design. For
instance, since they are used by a large number of users concurrently, the design should incorpo-
rate provision for light features, which will not fail even during peak loads on the application serv-
ers. Similarly, an asynchronous connection facility can be provided by designing loosely coupled
components. All transactions should be made stateless, so that if any transaction is in progress and
the connection between server and user machine breaks, the transaction is reverted back.

11.8  Software Design Quality
Quality in the design of the software application can be built by adhering to best practices (soft-
ware engineering principles) in processes adopted for the design as well as making sure that
requirements have been converted into good design. After the design is complete, design work
products (design documents) should be reviewed, and the project should only be allowed to pro-
ceed further if the design documents pass the quality criteria. If any defect is found during review,
then it should be rectified.

Stateless Asynchronous High
performance Robustness Security Content

design
Back end

processing

Characteristics of a good
software design for Internet

applications

Figure 11.5  Characteristics of a good software design for Internet applications.

168  ◾  Software Project Management: A Process-Driven Approach

From the qualitative point of view, the software design should adhere to attributes like
reliability, usability, and simplicity. The design should avoid complexity, inconsistency, and inef-
ficiency. Complexity issues should be addressed by thinking about coupling and cohesion issues
related to relation of code units, modules, function, etc. to each other. Inefficiency issues should
be addressed from user perspective as to how much time and effort they may need to take to per-
form a transaction using the application. Inconsistency issues can be addressed by having a solid
architecture on which units and other program units should be based.

From quantitative perspective, good software design can be thought of in terms of how many
procedure calls may be involved in a transaction, how many steps need to be taken to perform a
transaction, etc.

Quality control for software designs can be done by checking the design after it is built for
defects. Removing these defects will ensure better quality of the software design and hence the
software product. Quality assurance for software designs can be done by ensuring that there is a
well thought out process exist for the entire design exercise, so that defect injection in the design
can be prevented.

11.9  Concurrent Engineering in Software Design
Concurrent engineering deals with taking advance information from an earlier stage for a later
stage in project, so that both the stages can be performed simultaneously. Though project activities
are planned ahead in time, most often there are dependencies between a previous task and the next
task in line. So, the latter task cannot start until the previous task finishes. That is why you cannot
start developing an application until its design is complete. Moreover, the development will depend
on the design. Until all details about design are made, you cannot start development. So, the devel-
opment team cannot start their job until they have a software design in their hands.

Still some aspects about latter tasks can be done in advance. For instance, what development
language will be used and how the application can be partitioned for development work can be
decided at the design stage itself. Similarly, how maintenance and support functions will be done
for the application can be determined at the design stage itself. Knowing in advance helps in tak-
ing care of issues that may arise in later stages.

11.10  Design Life-Cycle Management
Software requirements go through design process steps to become a full-fledged software design.
At the high level, system analysis is performed. System analysis includes a study of requirements
and finding feasibility of converting them into software design. Once the feasibility is done, then
the actual software design is made. The software design is in the form of activity diagrams, use
cases, prototypes, etc. Once the design process is complete, these design documents are verified
and validated through design reviews. Once the design is reviewed and approved, then the design
phase is over (Figure 11.6).

11.11  Module Division (Refactoring)
Whenever a software product is designed, it is done with good intentions. Care is taken to ensure
that the design is extensible, so that when customer needs increase over time, the product can be
extended to take care of those increased needs. Unfortunately, even this foresight is not enough,

Software Design Management  ◾  169

and it becomes difficult to extend the product functionality further. In such cases, it becomes
necessary to change the internal structure of software code without changing external behavior of
the software product. To do this, one technique is employed, which is known as refactoring. Using
refactoring, the internal design of a piece of software code is improved by decreasing coupling
among classes of objects and increasing cohesion among classes. Refactoring is very similar to the
concept of normalization in relational databases (Figure 11.7).

Some of the indications of code analysis that may suggest that the code needs refactoring
include duplicate code at many places, using long methods, a large class with many concepts,
the need to pass a large number of parameters, too much communication between classes
resulting from a large number of calls for methods in code, and message chaining by calling
one method which in turn calls another method. When software code starts having these
characteristics, then it is better to go for code cleaning or refactoring. Going for refactoring
will be justified by savings in time due to better code reuse and make it easier to maintain code
and scale up the product.

Refactoring can be achieved by dividing cumbersome classes into smaller classes that can be
managed and used in a better way. In the new code, the functions will be the same, but many of
the functions will be moved now into new classes.

On agile projects, the project team builds the software product without making an elaborate
design from start. One product module is built after another in the subsequent project iterations.
This fact makes it necessary to adjust the software design as the product evolves in this fashion.
The adjustment in the software design in such cases is done using refactoring.

Requirement
specification

System
analysis

Activity
diagram

Use case model

Prototype

Design
verification and

validation

Figure 11.6  Software design life cycle.

Duplicate
code

Long
methods

Large
number
of call

parameters

Cases requiring
refactoring

Message
chaining

Classes
with many
concepts

Large
class size

Figure 11.7  Characteristics of a software product code that requires refactoring.

170  ◾  Software Project Management: A Process-Driven Approach

11.12  Module Coupling
One area similar to refactoring is coupling between modules. As products mature and more and
more lines of code are added to the existing product, coupling between modules tends to increase.
This has a profound impact when any changes in code are required. Changes in code result in
more than normal occurrence of defects as dependency between modules keeps increasing with
increase in the size of the product.

To reduce the chances of product defects, it is necessary to reduce the number of calls among
different modules and classes. SOA architecture provides great help here. SOA architecture essen-
tially promotes loose coupling, and this implies more or less self-contained classes having less
dependency on other classes.

Increasing module coupling with increase in size of software product is always a concern.
Frequent refactoring can help in reducing module coupling among classes.

11.13  Case Study
In the previous chapter, we have seen how requirements for the project were made. Now we will
see how the software design was made for appointment scheduling component. The complete
design consisted of user interface decision flow diagrams, activity diagrams, use cases, and entity
relationship diagrams. We will see the logic implemented in the activity diagram for loading/
unloading calculations for trucks in this chapter.

11.13.1  Software Design for Loading Calculation
The logic for the loading calculation can be represented by a piece of pseudo-logic. It is presented here.

If variable load time then
     If calculated load time > Max reservation time then
          load time = max reservation time
     elseif calculated load time < Min reservation time then
          load time = min reservation time
     else load time = calculated load time
  else load time = fixed load time
end if
elseIf default receiving load time is true then
  if default receiving load time = fixed load time then
     load time = fixed default receiving load time
  elseif default receiving load time = variable load time then
     If calculated load time > Max reservation time then
             load time = max reservation time
     elseif calculated load time < Min reservation time then
             load time = min reservation time
     else load time = calculated load time
     end if
  end if
else load time = default reservation time
endif

Software Design Management  ◾  171

In this pseudo-logic, some specialized terms are used related to the domain for which the applica-
tion was made. Those terms are explained here.

Variable load time = If the loading/receiving time for a truck varies with some factors like goods
to be loaded/received and truck types, then loading/receiving time will be variable and needs to
be calculated.

Fixed load time = If the loading/receiving time for a truck does vary irrespective of factors like
goods to be loaded/received and truck type, then the load time is fixed, and it is always stated.

Max reservation time = reservation time on a dock door is given as minimum or maximum reser-
vation time. Max reservation time is the upper limit of this timeframe.

Min reservation time = opposite of Max reservation time (lower limit of timeframe).

Default receiving load time = each dock door or a group of dock doors is given an option of what
could be the loading/receiving time. The options are fixed or variable load time.

The activity diagram for the loading/receiving load time calculation is given in Figures 11.8
and 11.9. Please note that the calculation for both loading and receiving is exactly the same.

Load time calculation

Load time = Fixed
load time

If load
time
xed?

If calculated load
time > Maximum
reservation time?

Load time = Maximum
reservation time

Load time = Minimum
reservation time

If calculated load
time < Maximum
reservation time?

Load time = Calculated time

Yes

Yes

Yes

No

No

No

Figure 11.8  Load time calculation logic.

172  ◾  Software Project Management: A Process-Driven Approach

11.13.2  Quality Assurance
The completed software design is reviewed for flaws, maintainability, implementability, and test-
ability. If a design is not implementable into source code, then it must be modified to make it
implementable.

11.14  Chapter Summary
Software design is carried out in two parts. First, a high level design is made. At this stage, a high
level representation of the software product to be made is carried out. The high level design con-
tains the macrostructure of the product, including division of the product into modules, relation
between these modules for the software internal structure. Moreover, at this stage, decisions about
the data layer, application layer, and presentation layer are made.

Once we have the high level design, then the finer level of details about the software product is
done during low level design. At this stage, decisions about how much abstraction and encapsula-
tion will be made at the class level, and how functionality can be achieved by class instantiation if
object-oriented design is chosen.

Receiving time calculation

Receiving time =
Fixed receiving time

If receiving
time
xed?

If calculated
receiving time > Maximum

reservation time?

Receiving time = Maximum
reservation time

Receiving time = Minimum
reservation time

If calculated
receiving time < Maximum

reservation time?

Receiving time = Calculated time

Yes

Yes

Yes

No

No

No

Figure 11.9  Receiving time calculation logic.

Software Design Management  ◾  173

For quality assurance at the design level, a design review should be conducted to check if the
software design has any defects. The defects could be anything from outright design flaw to miss-
ing of any requirement specifications in the design or not representing the requirement specifica-
tion in a proper way. A design defect could also be in terms of how the design is not testable or
maintainable. If any defects are found, then they should be rectified.

Review Questions
11.1	 What is a software design?
11.2	 What constraints are considered while making the software design?
11.3	 What techniques can be used for making a software design?
11.4	 How can quality of a software design be ensured?
11.5	 What is a design life cycle?
11.6	 What are the design methods?

Recommended Readings
	 1.	 H. Zhu (2005) Software Design Methodology, Butterworth-Heinemann, New York.
	 2.	 R. Mall (2005) Fundamentals of Software Engineering, Prentice Hall Learning India, New Delhi, India.
	 3.	 M. Rosen, B. Lublinsky, K. T. Smith, M. J. Balcer (2008) Applied SOA: Service-Oriented Architecture

and Design Strategies, Wiley, New York.
	 4.	 R. T. Futrell, D. F. Shafer, L. Shafer (2002) Quality Software Project Management, Prentice Hall PTR,

Upper Saddle River, NJ.
	 5.	 H. Fujita, D. M. Pisanelli (2007) New Trends in Software Methodologies, Tools and Techniques, IOS Press,

Amsterdam, the Netherlands.
	 6.	 D. M. Buede (2009) The Engineering Design of Systems: Models and Methods, Wiley, Hoboken, NJ.
	 7.	 G. A. Lancaster (2001) Software Design and Development, Pascal Press, New South Wales, Australia.
	 8.	 V. Grimm, S. F. Railsback (2005) Individual-Based Modeling and Ecology, Preinceton University Press,

Princeton, NJ.
	 9.	 S. L. Pfleeger, J. M. Atlee (2006) Software Engineering: Theory and Practice, Prentice Hall, Upper Saddle

River, NJ.
	 10.	 A. J. Lattanze (2008) Architecting Software Intensive Systems: A Practitioners Guide, CRC Press, Boca

Raton, FL.
	 11.	D. Phillips (2004) The Software Project Manager’s Handbook: Principles That Work at Work, Wiley,

New York.

175

Chapter 12

Software Construction

In the previous chapter, we learned

◾◾ What is software design?
◾◾ What are the considerations for constructing sound software?
◾◾ What techniques are used to design software?
◾◾ How is quality assurance done during software design?

In this chapter, we will learn

◾◾ What is software construction?
◾◾ What are the considerations for sound software construction?
◾◾ What techniques are used to construct software?
◾◾ How is quality assurance done during software construction?

12.1  Introduction
A layman believes that software construction is the entire software development process. But, in
fact, it is just one of the crucial tasks in software development; software requirement manage-
ment, software design, software testing, and software deployment are all equally crucial tasks.
Furthermore, the process of software construction itself consists of many tasks; it not only includes
software coding, but also unit testing, integration testing, reviews, and analysis.

Construction is one of the most labor intensive phases in the software development life cycle.
It comprises 30% or more of the total effort in software development. What a user sees as the
product at the end of the software development life cycle is merely the result of the software code
that was written during software construction.

176  ◾  Software Project Management: A Process-Driven Approach

Due to the labor intensive nature of the software construction phase, the work is divided not
only among developers, but also small teams are formed to work on parts of the software build.
In fact, to shrink the construction time, many distributed teams, either internal or through con-
tractors, are deployed. The advantage to this is that these project teams do the software coding
and other construction work in parallel with each other and thus the construction phase can be
collapsed. This parallel development is known as concurrent engineering, which is discussed in
Chapter 9.

Constructing an industry strength software product of a large size requires stringent cod-
ing standards [1]. The whole process of construction should follow a proven process so that the
produced code is maintainable, testable, and reliable. The process itself should be efficient so that
resource utilization can be optimized and thus cost of construction can be kept at a minimum.

12.2  Coding Standards
Developers are given software design specifications in the form of use cases, flow diagrams, UI
mock ups, etc., and they are supposed to write a code so that the built software matches these speci-
fications. Converting the specifications into software code is totally dependent on the construction
team. How well they do it depends on their experience, skills, and the process they follow to do
their job. Apart from these facilities, they also need some standards in their coding so that the work
is fast as well as has other benefits like maintainability, readability, and reusability (Figure 12.1).

At any time, a code written by a developer will always be different from that written by any
other developer. This poses a challenge in terms of comprehending the code while reusing the
code, maintaining it, or simply reviewing it. A uniform coding standard across all construction
teams working on the same project will make sure that these issues can be minimized if not
eliminated (Figure 12.2).

Software design

User interface Conversion

Using coding
standards,

techniques,
etc.

Source code
production
(software
product)

Entity
relationship

diagram

Use cases

Figure 12.1  Source code production (conversion) from software design.

Modularity Clarity Reliability

Software construction
characteristics

Safety Simplicity Maintainability

Figure 12.2  Software construction characteristics.

Software Construction  ◾  177

Some of the coding standards include standards for code modularity, clarity, simplicity, reli-
ability, safety, and maintainability.

12.2.1  Modularity
The produced software code should be modular in nature [2]. Each major function should be con-
tained inside a software code module. The module should contain not only structure, but it should
also process data. Each time a particular functionality is needed in the software construction, it
can be implemented using that particular module of software code. This increases software code
reuse and thus enhances productivity of developers and code readability.

12.2.2  Clarity
The produced code should be clear for any person who would read the source code [3]. Standard
naming conventions should be used so that the code has ample clarity. There should be sufficient
documentation inside the code block, so that anybody reading the code could understand what
a piece of code is supposed to do. There should also be ample white spaces in the code blocks, so
that no piece of code should look crammed. White spaces enhance readability of written code.

12.2.3  Simplicity
The source code should have simplicity and no unnecessary complex logic; improvisation should be
involved, if the same functionality can be achieved by a simpler piece of source code [4]. Simplicity
makes the code readable, and will help in removing any defects found in the source code.

Simplicity of written code can be enhanced by adopting best practices for many programming
paradigms. For instance, in the case of object-oriented programming, abstraction and informa-
tion hiding add a great degree of simplicity. Similarly, breaking the product to be developed into
meaningful pieces that mimic real life parts makes the software product simple.

12.2.4  Reliability
Reliability is one of the most important aspects of industry strength software products [5]. If the software
product is not reliable and contains critical defects, then it will not be of much use for end users. Reliability
of source code can be increased by sticking to the standard processes for software construction. During
reviews, if any defects are found, they can be fixed easily if the source code is neat, simple, and clear.

Reliable source code can be achieved by first designing the software product with future enhance-
ment in consideration as well as by having a solid structure on which the software product is to be
built. When writing pieces of source code based on this structure, there will be little chance of
defects entering into the source code. Generally during enhancements, the existing structure is not
able to take load of additional source code and thus the structure becomes shaky. If the development
team feels that this is the case, then it is far better to restructure the software design and then write a
code based on the new structure than to add a spaghetti code on top of a crumbling structure.

12.2.5  Safety
Safety is important, considering that software products are used by many industries where human
lives are concerned, and that human lives could be in danger because of faulty machine opera-
tion or exposure to a harmful environment [5]. In these industries, the software product must be

178  ◾  Software Project Management: A Process-Driven Approach

ensured to operate correctly and chances of error are less than 0.00001%. Industries like medicine
and healthcare, road safety, hazardous material handling need foolproof software products to
ensure that either human lives are saved (in case of medicine and healthcare) or human lives are
not in danger. Here the software code must have inbuilt safety harnesses.

12.2.6  Maintainability
As has been pointed out after several studies, maintenance costs are more than 70% of all costs
including software development, implementation, and maintenance [6]. To make sure that
maintenance costs are under limit during software construction, it should be made sure that the
source code is maintainable. It will be easy to change the source code for fixing defects during
maintenance.

12.3  Coding Framework
Like most construction work, you need to set up an infrastructure based on which construction
can take place. For software construction, you need to have a coding framework that will ensure a
consistent coding production with standard code that will be easy to debug and test [7]. In object
oriented programming, what base classes are to be made, which will be used throughout construc-
tion, is a subject that is part of the coding framework. In general, coding frameworks allow con-
struction of the common infrastructure of basic functionality which can be extended later by the
developers. This way of working increases productivity and allows for a robust and well structured
software product. It is similar in approach to house building where a structure is built based on a
solid foundation.

12.4  Reviews (Quality Control)
It is estimated that almost 70% of software defects arise from faulty software code. To com-
pound this problem, software construction is the most labor intensive phase in software devel-
opment. Any construction rework means wasting a lot of effort already put in. Moreover, it is
also a fact that it is cheaper to fix any defects found during construction at the phase level itself.
If those defects are allowed to go in software testing (which is the next phase), then fixing those
defects will become costlier [8]. That is why review of the software code and fixing defects is
very important. There are some techniques available like deskchecks [9], walkthroughs [10],
code reviews, inspections, etc. that ensure quality of the written code (Figure 12.3).

Source code Deskchecks

Final
inspection Code reviews

Walkthroughs

Figure 12.3  Source code review methods and their operation sequence.

Software Construction  ◾  179

These different kinds of reviews are done at different stages in software code writing. They also
serve different purposes. While inspections provide the final go/no go decision for approval of a
piece of code, other methods are less formal and are meant for removing defects instead of deciding
whether a piece of code is good enough or not.

12.4.1  Deskchecks (Peer Reviews)
Deskchecks are employed when a complete review of the source code is not important. Here, the
developer sends his piece of code to the designated team members. These team members review
the code and send feedback and comments to the developer as suggestions for improvement in the
code. The developer reads those feedbacks and may decide to incorporate or to discard those sug-
gestions. So this form of review is totally voluntary. Still, it is a powerful tool to eliminate defects
or improve software code.

12.4.2  Walkthroughs
Walkthroughs are formal code reviews initiated by the developer. The developer sends an invi-
tation for walkthrough to team members. At the meeting, the developer presents his method
of coding and walks through his piece of code. The team members then make suggestions for
improvement, if any. The developer then can decide to incorporate those suggestions or discard
them.

12.4.3  Code Reviews
Code reviews are one of the most formal methods of reviews. The project manager calls for a meet-
ing for code review of a developer. At the meeting, team members review the code and point out
any code errors, defects, or improper code logic for likely defects. An error log is also generated
and is reviewed by the entire team.

12.4.4  Inspections
Code inspections are final reviews of software code in which it is decided whether to pass a piece
of code for inclusion into the main software build.

12.5  Coding Methods
Converting design into optimal software construction is a very serious topic that has generated
tremendous interest over the years. Many programming and coding methods were devised and
evolved as a result. As is well known in the industry, the early software products were of small
size due to limited hardware capacity. With increasing hardware capacity, the size of software
products has been increasing. Software product size affects the methods that can be used to con-
struct specific sized software products. Advancement in the field of computer science also allows
discovery of better construction methods. To address needs of different sized software products in
tandem with advancement in computer science, different programming techniques evolved. These
include structured programming, object-oriented programming, automatic code generation,
test-driven development, pair programming, etc.

180  ◾  Software Project Management: A Process-Driven Approach

12.5.1  Structured Programming
Structured programming evolved after mainframe computers became popular [11]. Mainframe
computers offered vast availability of computing power compared to primitive computers that
existed before. Using structured programming, large programs could be constructed that could
be used for making large commercial and business applications. Structured programming enabled
programmers to store large pieces of code inside procedures and functions. These pieces of code
could be called by any other procedures or functions. This enabled programmers to structure their
code in an efficient way. Code stored inside procedures could be reused anywhere in the applica-
tion by calling it.

12.5.2  Object-Oriented Programming
In structured programming, data and structured code are separate and accordingly are modeled
separately. This is an unnatural way of converting real life objects into software code because
objects contain both data and structure. Widely used as an example in object-oriented program-
ming books, a car consists of a chassis, an engine, four wheels, body, and transmission. Each of
these objects has some specific properties and has specific functions. When a software system
is modeled to represent real-world objects, both data and structure are taken care of in object-
oriented programming. From outside of a class that is made to represent an object, only the behav-
ior of the object is visible or perceived. Unnecessary details about the object are hidden, and in
fact are not available from outside. This kind of representation of objects makes them robust, and
a system built on using them has relatively few problems [12].

12.5.3  Automatic Code Generation
Constructing and generating software code is very labor intensive work. So there has always been
fascination about automatic generation of software code. Unfortunately, this is still a dream. Some
CASE and modeling tools are available that generate software code. But they are not sophisticated.
They are also not complete. Then there are business analyst platforms developed by many ERP
software vendors that generate code automatically when analysts configure the product. These
analyst platforms are first built using any of the software product development methodologies. The
generated code is specific to the platform and runs on the device (hardware and software environ-
ment) for which the code is generated.

Generally, any code consists of many construction unit types. Some of these code types include
control statements such as loop statements, if statements, etc., and database access, etc. Generating
all of the software code required to build a software application is still difficult. But some compa-
nies like Sun Microsystems are working to develop such a system.

12.5.4  Software Code Reuse
Many techniques have evolved to reduce the labor intensive nature of writing source code. Software
code reuse is one such technique. Making a block of source code to create a functionality or gen-
eral utility library and using it at all places in the source code wherever this kind of functionality
or utility is required is an example of code reuse. Code reuse in procedural programming tech-
niques is achieved by creating special functions and utility libraries and using them in the source
code. In object-oriented programming, code reuse is done at a more advanced level. The classes

Software Construction  ◾  181

containing functions and data themselves can not only be reused in the same way as functions and
libraries, but the classes can also be modified by way of creating child classes and using them in
the source code (Figure 12.4).

Apart from creating and using libraries and general purpose classes for code reuse, a more
potent code reuse source has evolved recently. It is known as “service oriented architecture” (SOA).
More about SOA can be found in Chapter 25.

12.5.5  Test-Driven Development
This concept is used with iteration-based projects especially with eXtreme Programming tech-
nique. Before developers start writing source code, they create test cases and run the tests to see if
they run properly and their logic is working. Once it is proved that their logic is perfect, only then
they write the source code. So here, tests drive software development, and hence it is appropriately
named test-driven development.

12.5.6  Pair Programming
Pair programming is a quality driven development technique employed in the eXtreme
Programming development model. Here, each development task is assigned to two developers.
While one developer writes the code, the other developer sits behind him and guides him through
the requirements (functional, nonfunctional). When it is the turn of the other developer to write
the code, the first developer sits behind him and guides him on the requirements. So developers
take turns for the coding and coaching work. This makes sure that each developer understands the
big picture and helps them to write better code with lesser defects.

12.6  Configuration Management
Configuration management plays an important role in the construction phase. Due to changes
in requirements and design, an already developed source code needs to be changed. So it happens
that the development team ends up with many versions of a source code during the project. If the
version control management is not handled properly, then many developers may start working on
a wrong version of source code, and thus a lot of rework may be needed in the end. There is one
more dimension to configuration management for the construction phase. During construction,
many software builds are maintained for different versions of the product being developed. These
builds can break if a bad piece of code is checked into the build by any developer. When the build
is broken, then no other developer can check in his code. Thus, development is halted until the

Libraries Open source

Software code
reuse methods

Software as
a service Inheritance

Figure 12.4  Code reuse methods.

182  ◾  Software Project Management: A Process-Driven Approach

build is rebuilt with the correct code. Imagine what may happen in the case of distributed teams
located at far-flung locations with different time zones and a central build is being maintained.
It will be difficult to communicate and manage the build process in such a scenario. In such sce-
narios, smoke test application can be deployed, which can run whenever a new code is checked-in
in the build. If the smoke test fails, that means the build has failed and thus the automated system
can e-mail the build information to concerned people. If the build fails, then the developer who
had checked-in in the code gets the message and immediately tries to fix the build. Once the build
is fixed, then other developers can check-in their code.

Thus, configuration management plays an important role in construction phase.

12.7  Unit Testing
Whenever a developer writes a piece of code, he feels confident that he has written a clean code
and that it does not need testing. But most of the time he is wrong. It is because no source code is
perfect, especially the first time. Only after some rounds of review it becomes perfect. At the same
time, it is very difficult to review one’s own code. That is why a quality control measure is taken in
form of unit testing to ensure that developers test their codes themselves and only then can submit
their code if the code passes the unit tests (Figure 12.5).

For unit testing, generally developers are comfortable as long as there are no changes required
(due to change in design or requirements) in their code. But once some change takes place in the
code somewhere, other things change. What would be the impact of that change on other parts of
the software product under development? Similarly what impact will it have on their own code if
changes take place in other modules being written by other people? Generally, it is one of the most
challenging situations in software construction to find the impact of change on other parts of the
product under development. Such situations call for unit testing of the written code, and no piece
of code should go to build without doing this. A formal and rigid adherence to unit tests should
be a must for all source codes being written and no liberty should be allowed.

12.8  Integration Testing
Most software development is done after partitioning the software application under develop-
ment first and then allocating it to distributed teams. Generally, modules of code are developed
first. Later, they need to be integrated with each other to make a complete software application.
Modules are integrated with each other through open interfaces. Whether or not the integration

New code

Unit testing
required in cases

Code change
by developer

Code change
in other
modules

Figure 12.5  Scenarios when unit testing must be done.

Software Construction  ◾  183

is working fine, it must be tested to ensure integration has been achieved. This kind of testing is
known as integration testing.

Integration testing has been becoming more and more important, as most software being
developed is modular in nature. With the advent of SOA, which is all about loosely coupled soft-
ware components, integration testing has become even more important.

12.9  Software Construction Artifacts
The software construction phase is one of the most labor intensive phases in software development
cycle. This phase generates the complete source code of the application. Apart from source code,
documentation is also made so that when any maintenance is required on the built application, the
source code could be well understood, and changing any source code will be easy. Review reports
are also generated after reviews are conducted.

12.10  Software Construction in Iterative Model
Iteration-based development for any project signifies a lesser extent of risk and perfection in craft.
Iterative development is definitely a good approach, as it provides an opportunity to spread the risk
over many iterations and thus helps in stopping any catastrophe to occur. Since software design
will be based on just a handful of requirements, it helps to avoid complexity in the construction
work. The main bug bear of software construction is complexity. Sans complexity, development
work would be more productive and will have a lower number of defects (Figure 12.6).

Using techniques like pair programming, test-driven development, continuous integration,
formal reviews, etc., ensures that good quality is achieved from the very beginning of construction
and keep the same level of quality throughout the development process.

12.11  Case Study
In the construction management part of our continuing case study, we will see how the software
product source code was being written as well other activities performed.

Here are some key statistics about the project:

Number of developers: 21
Average speed of writing source code (developer productivity): 2000 SLOC per month, per
developer

Pair
programming

Test driven
development

Continuous
integration

Construction quality techniques
in iterative models

Formal
reviews

Figure 12.6  Quality-driven construction in iterative development.

184  ◾  Software Project Management: A Process-Driven Approach

Total source code written in one iteration: 126,090 SLOC
Total source code written in the whole project: 475,901 SLOC
Number of defects fixed in one iteration: 121
Number of defects fixed in the project: 434

12.11.1  Continuous Integration
Continuous integration of source code is an important aspect of all software development work
at the SaaS vendor. The central source code build is continuously integrated from the source code
developed by all development teams. Once any developer checks and tests his own code for unit
and integration on his own local build of the software product, he checks in his code on the central
build. This exercise is depicted in Figure 12.7.

Some other highlights of the product development effort for release 6.0 included having quality
assurance and quality control measures built into the development life cycle. The developers used to
do unit and integration testing for their own written source code, while the development team also
used to do code walkthroughs and code inspections.

12.12  Chapter Summary
Software construction is the phase in which the actual software product is built. On all other
development phases of the software project, some work products are built that help in building
the actual product. However, from the user perspective, construction is where their actual prod-
uct gets developed. Software construction is labor intensive and thus it consumes a big chunk
of the project schedule. To reduce the schedule for construction work, concurrent engineering

New piece
of code Unit test Unit test

passed
Local

integration test

Local
integration
test passed

Local
integration
test failed

Rework
Unit test

failedRework

Rework

Main software
build ready for

new piece of code

Automatic
smoke test

Smoke test
passed

Smoke test
failed

Main
software

build

Figure 12.7  Software continuous build and integration life-cycle management.

Software Construction  ◾  185

techniques are employed. In applying concurrent engineering, software design is made in such
a way that construction work can be easily divided among several teams, so that they can work
parallel to each other and thus complete the construction work in less time. To make the software
source code maintainable and reliable, a host of techniques are used including a standard coding
framework, standard coding conventions, etc. To ensure code quality, unit testing and integration
testing are done whenever a source code unit is completed or integrated with the main software
build. At the completion of major construction work, code inspections and other methods of
reviews are done to ensure defects are discovered and removed. To increase productivity, several
techniques are used like pair programming, code reuse, etc.

Finally, the source code should be checked for defects. This can be done by using static methods
and dynamic methods. The static methods are code inspections, code analysis, code walkthroughs,
deskchecks, and peer reviews. The dynamic methods are unit and integration testing.

Review Questions
12.1	 �What are the common activities conducted during construction phase in the software

development life cycle?
12.2	 What quality control measures are taken during construction phase?
12.3	 What is done to construct a software application at faster speed?
12.4	 Define pair programming.
12.5	 What coding standards should be followed during source code writing?
12.6	 Describe different kinds of reviews performed during software construction.

Recommended Readings
	 1.	 B. Hook (2005) Write Portable Code: An Introduction to Developing Software for Multiple Platforms, No

Starch Press, San Francisco, CA.
	 2.	 R. Garud, A. Kumaraswamy, R. N. Langlois (2003) Managing in the Modular Age: Architectures,

Networks, and Organizations, Wiley, New York.
	 3.	 M. Fomitechev (2006) Enterprise Application Development with Visual C++ 2005, Wiley India Pvt. Ltd.,

New Delhi, India.
	 4.	 D. Pilone, R. Miles (2007) Head First Software Development, O’Reilly, Sebastopol, CA.
	 5.	 M. Pecht (2009) Product Reliability, Maintainability, and Supportability Handbook, 2nd edn., CRC

Press, Boca Raton, FL.
	 6.	R. O. Lewis (1992) Independent Verification and Validation: A Life Cycle Engineering Process, Wiley,

New York.
	 7.	 S. McConnell (2004) Professional Software Development: Shorter Schedules, Higher Quality Products,

More Successful Projects, Enhanced Careers, Addison-Wesley, Reading, MA.
	 8.	 C. Jones (2007) Estimating Software Costs: Bringing Realism to Estimating, McGraw-Hill Osborne

Media, New York.
	 9.	 J. Tian (2006) Software Quality Engineering: Testing, Quality Assurance and Quantifiable Measurements,

Wiley India Pvt. Ltd., New Delhi, India.
	 10.	 J. McManus (2004) Risk Management in Software Development Projects, Butterworth-Heinemann, Oxford, U.K.
	 11.	 E. E. Brent, R. E. Anderson (1990) Computer Applications in the Social Sciences, Temple University

Press, Philadelphia, PA.
	 12.	 M. E. Henderson, S. L. Lyons (1999) Object oriented methods for interoperable scientific and engineer-

ing computing, Proceedings in Applied Mathematics, 99, Society for Industrial & Applied Mathematics.

187

Chapter 13

Software Testing

In the previous chapter, we learned

◾◾ What is software construction?
◾◾ What are the considerations for making software construction?
◾◾ What techniques are used to construct software?
◾◾ How is quality assurance done during software construction?

In this chapter, we will learn

◾◾ What is software testing?
◾◾ What is verification and validation?
◾◾ What techniques are used for testing software?
◾◾ How does software testing help in increasing quality of a software product?

13.1  Introduction
It is a fact that the exact number of defects in a software product is difficult to find. At best it
can be predicted using some defect estimation tools. It is also impossible to detect all defects in a
software product. Nevertheless, finding and fixing critical bugs up to an acceptable limit as per
expectations is important. If there are more defects in the product after the product enters produc-
tion, then the project team will be in big trouble. The support costs for a bug ridden product will
be too high. So, less than required testing is a certain call for rebuke from stakeholders.

188  ◾  Software Project Management: A Process-Driven Approach

Testing more than required will increase project costs unnecessarily [1]. When the project
starts, the customer specifies what level of quality for the product is expected. The project manager
needs to first make sure that the processes to be followed for building the product are at least so
good that the produced product will have a certain level of quality with a certain level of defects.
Then, he should have a test plan such that the product defects are further reduced by finding
defects and fixing them. So the testing phase must be well planned with required budget, sched-
ule, and testing processes that will ensure that a certain number of critical defects are caught and
fixed (Figure 13.1).

13.2  Problems with Traditional Development Model
Traditionally, software testing was done only after software was constructed. This used to limit the
scope of software testing in the development life cycle (see Figure 13.2).

This practice led to a situation that was too little and too late. By the time software was
constructed, already faulty requirement specifications and faulty software design had resulted in
defect ridden software. Removing all the defects originating from different phases of the project

More than
required testing

Waste of time
and money

High cost of
support

Impossible to
support

Software testing
scenarios

Less than
required testing No testing

Figure 13.1  Software testing scenarios.

Requirement specification

Software design

Software construction

Software testing

Deployment

Too late too
little

Figure 13.2  Traditional software development model (too little, too late testing).

Software Testing  ◾  189

in one go is a huge challenge. That is why this approach always used to result in defect ridden
software products. Even if there was an attempt to remove defects so late in the life cycle, it would
be exorbitantly costly to do so in one go and it would also mean devoting a considerable amount
of time in detecting and fixing all those defects. This would likely be infeasible.

Definitely a better approach was needed to make better quality software products.

13.3  Verification and Validation
The problems encountered in the traditional approach to software testing led to the practice of
verification and validation.

In most quality standards documents, software testing is divided into two parts: “validation”
and “verification.” While verification implies that the developed software is working as intended
by checking the requirement specifications, design, source code, etc., in static mode, validation
implies that the software has been validated to be working after running it and checking whether
all functionality meets the requirements [2].

Verification techniques are also known as static testing, since the source code is not run to do
testing. Figure 13.3 shows that each work product including requirement specifications, design,
and source code during software development is tested using static methods. The requirement
specifications are reviewed for completeness, clarity, design ability, testability, etc. The software
design is reviewed for robustness, security, implementability, scalability, complexity, etc. The
source code is reviewed for dead code, unused variables, faulty logic, constructs, etc.

Once the source code is ready to be run as a system, validation testing can be started. Validation
testing is also known as dynamic testing as, in this case, the source code is actually run to deter-
mine that it is running per specifications. During validation, unit, integration, system, and finally
user acceptance testing are performed. Unit testing is done to ensure each unit piece of source code
is free from defects. Once unit testing is done, then this piece of code is integrated with the main
source code build. But before integrating to the main build, it is strongly advisable to do local
integration testing on the developer’s own computer. Only when the source code runs smoothly
and all integration tests pass, the source code should be integrated with the main build. When all

Requirement specification Requirement specification review

Software design Design review

Software construction Source code review and validation

Validation

Deployment Validation

Verification

Figure 13.3  Software verification and validation.

190  ◾  Software Project Management: A Process-Driven Approach

source code is thus integrated, the main build is ready for system testing. All system tests are then
performed and defects are fixed. When the system testing is over, and in fact the software product
is shipped to customers, they do user acceptance testing.

13.4  Test Strategy and Planning
Software testing is a vast field in itself, and so the common practice is to consider it as a separate
project. In those cases, it is known as an independent verification and validation project. As such,
a separate project plan is made for that project and is linked to the parent software development
project.

There are many techniques available to execute software test projects. It depends on the kind of
test project. However, most test projects must have a test plan and a test strategy before the project
can be ready for execution.

Often due to time constraints, testing cycles are cut short by project managers [3]. This leads to
a half-tested product that is pushed out the door. In such cases, a large number of product defects
are left undetected. Ultimately, end users discover these defects. Fixing these defects at this stage is
costly. Moreover, they cannot be fixed one at a time. They are to be taken in batches and are incor-
porated in maintenance project plans. This leads to excessive costs in maintaining the software. It
is lot cheaper to trap those bugs during the testing cycle and fix them. It is appropriately said that
“testing costs money but not testing costs more!”

Test strategies should include things like test prioritization, automation strategy, risk analysis,
etc. Test planning should include a work breakdown structure, requirement review, resource allo-
cation, effort estimation, tools selection, setting up communication channels, etc.

13.4.1  Test Prioritization
Even before the test effort actually starts, it is of utmost importance that the test prioritization
should be made. First of all, all parts of the software product will not be used by end users with
the same intensity. Some parts of the product are used by end users extensively, while other parts
are seldom used. So the extensively used parts of the product should not have any defects at all and
thus they need to be tested thoroughly.

For making such a strategy, you must prioritize your testing. Put a high priority on tests which
are to be done for these critical parts of the software product and put a low priority on uncritical
parts. Then test the high priority areas first. Once testing is thoroughly done for these parts, then
you should start testing low priority areas.

13.4.2  Risk Management
The test manager should also do plan for all known risks that could impact the test project. If
proper risk mitigation planning is not done, and a mishap occurs, then the test project schedule
could be jeopardized, costs could escalate, and/or quality could go down.

Some of the risks that can have severe, adverse impact on a test project include an unre-
alistic schedule, resource unavailability, skill unavailability, frequent requirement changes, etc.
Requirement changes pose a serious threat to testing effort, because for each requirement change,
the whole test plan gets changed. The test team has to revise its schedule for additional work as
well as to assess impact of the change on the test cases they have to recreate. Some enthusiastic

Software Testing  ◾  191

test engineers estimate much less effort than it actually should be. In that case, the test manager
would be in trouble trying to explain why testing is taking more than the scheduled time schedule.
In such cases, even after loading testing engineers more than 150%, the testing cycle get delayed.
This is a very common situation on most of the test projects. This also happens because the mar-
keting team agrees on unrealistic schedules with the customer, in order to bag the project. Even
the test manager at that time feels that somehow he will manage it, but later on it proves impos-
sible to achieve. Other test engineers unnecessarily pad their estimate, and later on, when the cus-
tomer detects it, the test manager finds himself in a spot. When the software development market,
along with the software testing market, is hot (this is the case most of the time, as businesses need
to implement software systems more and more and so software professionals are in great demand),
software professionals have many job offers in hand. They leave the project at short notice and the
test manager has to find a replacement fast. Sometimes, a project may have some kind of testing
for which skilled test professionals are hard to find. In both situations, the test manager may not
be able to start those tasks in need of adequate resources.

For test professional resources, a good alternative resource planning is required. The test man-
ager should, in consultation with human resource manager, keep a line of test professionals who
may join in case one is needed on his project.

For scheduling problems, the test manager has to ensure in advance that schedules do not get
affected. He has to keep a buffer in the schedule for any eventuality.

To keep a tab on the project budget, the test manager has to ensure that the schedule is
not unrealistic and also has to load his test engineers appropriately. If some test engineers are
not loaded adequately, then project costs may go higher. For this reason, if any test profes-
sionals do not have enough assignments on one project, they should be assigned work from
other projects.

13.4.3  Effort Estimation
For making scheduling, resource planning, and budget for a test project, the test manager should
make a good effort estimate [4]. Effort estimate should include information such as project size,
productivity, and test strategy. While project size and test strategy information comes after con-
sultation with the customer, the productivity figure comes from experience and knowledge of the
team members of the project team.

The wideband Delphi technique uses brainstorming sessions to arrive at effort estimate figures
after discussing the project details with the project team. This is a good technique because the
people who will be assigned the project work will know their own productivity levels and can
figure out the size of their assigned project tasks from their own experience. Initial estimates from
each team member are then discussed with other team members in an open environment. Each
person has his own estimate. These estimates are then unanimously condensed into final estimate
figures for each project task.

In an experience-based technique, instead of group sessions, the test manager meets each team
member and asks him his estimate for the project work he has been assigned. This technique works
best when team members are well aware, particularly, of their prior experience of similar project
tasks.

Effort estimation is one area where no test manager can have a good grasp, at the initial stages
of the project. This is because not many details are clear about the project. As the project unfolds,
after executing some of its related tasks, things become clearer. At that stage, any test manager
can comfortably give an effort estimate for the remaining project tasks. But that is too late.

192  ◾  Software Project Management: A Process-Driven Approach

Project stakeholders want to know, at the very beginning of the project, what would be the cost
estimates and when the project would be delivered. These two questions are very important for
project stakeholders and it is on top of their mind. Unfortunately, test managers are not equipped
to provide accurate an schedule and costs for the project at those initial stages, because of unclear
project scope, size, etc. Nevertheless, it is one of their critical tasks that they have to finish and
provide the requested information. The best solution is to find a relatively objective method of
effort estimation and provide the requested information.

13.4.3.1  Test Point Analysis

There are many methods available for effort estimation for test projects. Some of them include test
point analysis [5], the wideband Delphi technique [6], experience-based estimation [7], etc. In the
test point analysis technique, three inputs required are project size, test strategy, and productiv-
ity. Project size is determined by calculating the number of test points in the software application
which is being developed. Test points, in turn, are calculated from function points. The number of
function points is calculated from the number of functions and function complexity. If the number
of function points in the application has been calculated by the development team, then test points
are calculated from the available function point information. Otherwise rough function point
data can be used (Figure 13.4).

A test strategy is derived from two pieces of information from the customer, what will be the
quality level for the application, and which features of the application will be used most frequently.
Productivity is derived from knowledge and experience of the test team members. While produc-
tivity can be calculated objectively without taking reference from any statistical data, it makes
sense to use past productivity data from previously executed projects to make productivity figures
more realistic.

In case of iterative development, testing cycles will be short and iterative in nature. The test man-
ager should make the test effort calculations accordingly.

13.5  Test Automation
Most testing tasks are done manually, as they are still difficult to automate. Wherever automation is
possible, it can be evaluated. Care should also be taken not to do automation blindly [8]. This is because
the initial effort for automation is more than manual testing.

Testing tasks include requirements and design document review, test case scenario cre-
ation, test case creation, test case execution, test case management, and defect tracking. Out

Product size
(number of

function points)

Test point analysis

Test strategy
(quality level +
priority areas)

Productivity
(experience +

skills)

Figure 13.4  Test point analysis components.

Software Testing  ◾  193

of these tasks, test case execution and test case management are the only tasks for which good
automation tools are available.

13.5.1  Test Case Execution Automation
If a test case has to be executed only a few times, then automating that test case will be more
expensive compared to manually running it, the reason being that automation effort for a
test case is more than manually executing the test case. Usually, the efforts break even when
a test case is executed around 13 times [9]. So, only if it has to be executed at least 13 times,
it makes sense to automate it. But first of all, why does a test case have to be executed more
than once at all? Because, in software product development, new versions of the software
keep getting developed to cater to the needs of the market. The newer versions may contain
old features as well as new features. The older version of the software was tested using exist-
ing or newly created test cases, at that time. With addition of new features, it is important
to retest the old features to make sure they still work. So old functional tests now become
regression test cases. The suite of regression test cases keeps increasing with newer releases
of the software [10]. At some point, the regression test suite becomes so large that manually
executing tests becomes a liability. Nobody wants to keep executing those large numbers
of test cases again and again. Keep in mind most software vendors have minor releases of
their product each quarter. So an ever increasing suite of regression test cases has to be run
each quarter. It takes a considerable period of time to execute them. As the software has to
be released fast, the project manager cannot wait just because regression test cases are still
being implemented. Thus, in this case, automating the whole suite of regression test cases
is going to be profitable.

The current trend for automation is to create a keyword framework [11] as follows: For each
major function create a keyword. Write the automation script for that function and then save
the function with same name as the keyword. After all the required functions are created, relate
these functions with the test cases that would have been already created before automation
scripts were written. Now when you run the scripts, it will cover all the test cases and it will be
same as executing the test cases, manually. This way of inducing automation is known as key-
word driven automation framework. The benefit of such a strategy is that it allows for reuse of
script and makes automation creation modular. This also makes maintenance of scripts easier.
If any test case gets changed, the whole script does not have to be changed. Only the script for
which the keyword was affected due to a change in test case has to be changed.

13.5.2  Test Case Management Automation
Test case management is also a good candidate for automation. There are some good tools that
facilitate it. They allow keeping many versions of test cases and a repository of automation scripts,
which allows teams located at many sites to work more effectively.

13.6  Test Project Monitoring and Control
Test projects involve a large variety of activities including test case design, test case management,
test case automation, test execution, defect tracking, verifying, and validating the application
under test, etc. [12] (Figure 13.5).

194  ◾  Software Project Management: A Process-Driven Approach

13.6.1  Test Case Design
A proper test case design plan goes a long way in ensuring that test cases are designed properly. The
test manager has to ensure which kind of tests are to be designed, how many test cases have to be
written for particular modules, and which test areas are priority areas.

13.6.1.1  Test Types

An application may have to be tested for functionality, performance, usability, compatibility, and
many other kinds of things, to make sure it is really useful for end users. For each kind of testing,
a set of test cases has to be written and executed and, finally, the system should be verified and
validated. For applications that have many versions, regression tests also have to be performed.
Managing all these kinds of testing is a big task for the test manager. A good test manager will first
divide the testing tasks on the basis of test types. Then tasks can be further divided by modules.
After that, he can allocate testing tasks to test engineers appropriately.

There is one more way of segregating tests. Depending on the project phase, we need to per-
form system testing, integration testing, or user acceptance testing. Usually when the application
is built after the construction phase, it has to be tested and verified whether it is functioning per
requirements. Integration testing is performed when the application needs to be integrated with
any other external application to ensure that integration is proper. User acceptance testing is done
by end users. If any defect is found during these tests, they are fixed so that the application goes
into production with as few defects as possible.

13.6.2  Test Case Management
There could be existing test cases as well as new test cases that also need to be created. Test case
management involves managing different versions of test cases, keeping track of changes in them,
keeping a separate repository of test cases based on type of tests, as well as creating and managing
automation scripts.

13.6.3  Test Bed Preparation
Test bed preparation involves installing the application on a machine that is accessible to all test
teams [5]. Care is taken to ensure that this machine is free of any interference from unauthorized
access. Test data is populated in the application. Care should also be taken to ensure that the test
bed resembles the production environment as closely as possible, including all software and hard-
ware configurations.

Test case
design

Test case
writing

Test script
creation

Test case
execution

Test case
closure

Defect
tracking

Figure 13.5  Test life cycle.

Software Testing  ◾  195

For all types of testing, it is very important that the “application under test” (UAT) should
be tested under an environment that is as close to the environment under which the proposed
application will be deployed for production. That is why test bed preparation is very important.
The application should be installed on a dedicated server that has the same configuration as the
proposed production environment. This server should not be used for any other purpose except
for testing. It should be installed centrally, so that even distributed teams, contractors, or service
providers can easily access it using remote desktop sharing or any peer to peer networking protocol
over the Internet. If the application can be directly accessed over the Internet, then it is even better.

There should not be any testing done on applications that are deployed on the local test engi-
neer’s machine. To gain familiarity with the application and preliminary testing, it is acceptable to
have a local copy of the application, but never for testing when defects are to be logged and verified
by many people. It is because it is very important to reproduce the defect when the developer or any
concerned person asks for it. In case of disputes, if a defect cannot be reproduced, then it becomes
difficult for the test team to justify why a defect has been logged when others cannot reproduce it.
That is the reason for which the test bed should be prepared very carefully and kept as isolated from
any other environment as much as possible to preserve its integrity.

The test data preparation is also a very tricky affair. The test data should closely resemble what
the end users use in their daily transactions. For this, the test team can get some business data
already used by the end users. The test bed should be populated with a similar kind of data.

13.6.4  Test Case Execution
Test case execution involves executing prepared test cases manually or using automation tools to
execute them. For regression tests, automated test execution is a preferred method. After each test
case is executed, it may pass or fail. If it fails then defects have to be logged.

Exit criteria for test case execution cycle are generally defined in advance. Generally, when a
certain level of quality of the application is reached, then test execution stops.

13.6.5  Defect Tracking
Defect tracking is one of the most important activities in a test project [13]. During defect tracking
it is ensured that defects are logged and get fixed. All defects and their fixing are tracked carefully
(Figure 13.6).

Defect count per hour per day is a common way of measuring performance of a test team. If the
testing is done for an in-house software product, traditionally, it used to not be a performance evalu-
ation measurement. What really counted was the number of defects found in production when the
software product was deployed and used by end users. But it is too late a performance measurement.
What if many of the test team members left before the product was deployed? In fact this is a

Defect
logging

Assign
defect Fix defect Defect

verification

Defect
closure

Figure 13.6  Defect life cycle.

196  ◾  Software Project Management: A Process-Driven Approach

reality, given the high attrition rate (as much as 20% at many corporations) of software profes-
sionals. Once they are gone, there is no point in measuring the performance. Thus, a better
measurement would allow for more immediate results. This is achieved by measuring the defect
count per hour per day. Then there is the case of outsourced test projects. If the contract is only
for testing up to deployment and not afterward, then measurement does not make sense after
the contract has ended.

A good defect tracking application should be deployed on a central server that is accessible to
all test and development teams. Each defect should be logged in such a way that it could be under-
stood by both development and testing teams. Generally, the defects should be reproducible, but
in many instances, this is difficult. In such instances, a good resolution should be made by the test
and development managers.

13.7  Test Reporting
During the execution of a test project, many initial and final reports are made. But status
reports also need to be made. Test reports include test planning reports, test strategy reports,
requirement document review comments, number of test cases created, automation scripts cre-
ated, test execution cycle reports, defect tracking reports, etc. Some other reports include trace-
ability matrix reports, defect density, test execution rate, test creation rate, test automation
script writing rate, etc.

13.8  Test Artifacts
Software testing involves making a test strategy, test project plan, resource requirements, test
case repository creation, running test cycles, defect tracking, bug verification and validation and,
finally, certifying the developed product. So the test artifacts include test plan document, test
strategy document, test cases, test cycle logs, defect list, verification and validation reports, and
product certification.

13.8.1  Management Artifacts
Customers are concerned not only with project cost and schedule, but they are also concerned
with critical defects, which the test team has either detected or not. So the management artifacts
(metrics) include project cost compliance, project schedule compliance, and quality (number of
critical defects caught versus number of critical defects which went into production).

Some other management artifacts include traceability matrix, defect density rate, resource
loading, etc.

13.9  Practical Considerations
The most important consideration for any test project is whether the testing was effective for the
time and money spent for the whole testing effort. Effectiveness is measured in terms of how many
critical defects have been caught by the test team and how many critical defects have escaped
into the product and caught by end users. All other considerations about the project could only

Software Testing  ◾  197

be circumferential. If the test team has done a lot of work but has failed to catch enough critical
defects, then the whole effort is a failure.

That is why the test manager has to show that the test effort was worth spending the money
and time by showing number of critical defects caught.

13.10  Software Testing in Iterative Model
In an iterative model, each iteration is a short cycle. So the amount of testing in each iteration is
also small. Thus, unlike in waterfall model, software testing has a lesser role in the iterative devel-
opment life cycle.

Generally, software defects tend to increase with the size of software products. Since in itera-
tion mode the software product is small, there will be fewer defects in the product. Although in
reality, as the software product grows in size over many iterations, the number of defects per line of
software code is bound to increase. In iterative development, regression testing is also a big issue.
In each iteration, there will be a large number of regression test cases to run. As the product size
increases with iterations, the set of regression test cases also increases. It becomes a liability after a
while. Manually running all those regression tests takes a lot of time, which becomes a hindrance
for the release schedule. In such cases, the best option is to go for automation of these regression
test cases. Automated test cases take much less time (sometimes if the manual running of test cases
was taking 5 days, after automation it took only 5 h) to run.

13.11  Case Study
We continue our case study with our SaaS software vendor. Whenever they started any project
whether a customer specific or new product release, the software testing team was taken onboard
early on the project. After the test manager received the software requirement specification docu-
ment (SRS), he would go through it. He would make a test strategy and decide which testing team
out of two teams (both outsourced and offshored) would be involved with the project. Then, he
would make a test strategy and do some rough estimates for effort required, managing risks, auto-
mation required, types of tests required, etc. When the software design documents (in the form
of mock-ups and flowcharts) are received, the test team starts writing test cases. It also determines
how many test cases are to be automated, and hence how many test scripts are to be written. Then,
how many existing test scripts are to be changed to make them work with the change in software
design is also determined. A final effort estimate for writing test cases and test scripts is based on
all these factors. An effort estimate is also made for running test cases and then completing the
defect life cycle. Effort estimation for defect life cycle is a bit difficult, as nobody knows just how
many defects will crop up in the defect cycle. But from historical figures using SPC methods, an
estimate is made that is close to reality.

Effort estimation differs depending on whether a new version or a customer version is to be
developed. For a new version release, the release date is fixed in advance. So time duration for the
project is fixed along with the volume of work (number of features to be developed). The effort in
such a case is calculated and accordingly the project team size is determined. However, in case of
our SaaS software vendor, there is not much effort estimation difference between development for
a customer version and development for a new version of the software product. The reason is that
they sign a contract with customers on fixed price/fixed schedule basis. It is because they study

198  ◾  Software Project Management: A Process-Driven Approach

customer requirements and the contract is signed only after this study. So the customer study is,
in fact, done for free and they charge only for the implementation. Thus, at the onset of the project
itself, there is always a fixed due date. Functional black box testing is the most prevalent kind of
testing done. Then come regression tests, which are all automated. Apart from functional testing,
integration testing, usability testing, security testing, etc., are also done. Some of their application
runs on hand held devices. So mobile testing is also done using emulators. They also have software
parts that integrate with hardware devices like printers (for printing RFID tags, for instance).
Testing of these components is also done.

For automation, a keyword driven framework is used. Thus, when the test cases are written,
care is taken so that the test cases can be used by the scripting for automation. Each time in a test
case, a set of steps is to be executed in sequence, it is captured as a keyword and a specific keyword
is assigned for it. Each test case containing these keywords must be identified to have the specific
keyword. For instance, a keyword named “Login” can have fixed steps of going to the URL of the
website, key in username, password, and then clicking on the OK button. Instead of recording
activities in each test case where it is required, the script will store all the steps for these activities
and assign them to the keyword “Login,” and thus these steps will be recorded only once. This
saves a lot of future maintenance effort. All automation tests follow this convention.

Since the SaaS software vendor is also supposed to maintain the production instances of the
software product for its customers as well as its own versions, there is a maintenance and support
group which looks after these operations. The center, which keeps all the hardware including serv-
ers, back up servers, routers, etc., and from where all production instances are hosted, is known as
the network operations center. The testing team also plays an important role in support function
by running sanity tests daily on all production instances of the application. If any problems are
encountered, they are reported to the support team and they fix it immediately.

13.12  Chapter Summary
Software testing is one of the most important activities carried out in software projects. It is here
that the software product developed is verified and validated. If the product contains a large
number of defects that could not be fixed before the release due date, then the product cannot be
shipped by the shipping date. A software product containing too many defects is extremely costly
in terms of providing support. It is most important to detect and remove most critical defects
before shipping the product. Software testing helps in achieving these goals.

To make sure that the software product being made is of good quality, the work products from a
very early stage (project initiation) should be tested. In fact, there should be a comprehensive quality
assurance plan so that each and every work product is tested for defects that should be removed at the
point of origin itself. For this, a verification and validation approach should be employed.

Review Questions
13.1	 What is independent verification and validation?
13.2	 Why is software testing necessary?
13.3	 What are testing types?
13.4	 What activities are done in a software testing phase/project?
13.5	 What are the benefits of test automation?
13.6	 Describe the defect life cycle.

Software Testing  ◾  199

Recommended Readings
	 1.	 K. M. Gardner, A. R. Rush (1998) Cognitive Patterns: Problem-Solving Frameworks for Object Technology,

Cambridge University Press, New York.
	 2.	 E. Dustin, J. Rashka, J. Paul (1999) Automated Software Testing: Introduction, Management, and

Performance, Addison-Wesley, Boston, MA.
	 3.	 S. De Cesare, M. Lycett, R. Macredie (2005) Development of Component-Based Information Systems,

M. E. Sharpe, Armonk, NY.
	 4.	 E. Dustin (2002) Effective Software Testing: 50 Specific Ways to Improve Your Testing, Addison-Wesley,

Boston, MA.
	 5.	 A. Ahmed (2009) Software Testing as a Service, CRC Press, Boca Raton, FL.
	 6.	 D. Huizinga, A. Kolawa (2007) Automated Defect Prevention: Best Practices in Software Management,

Wiley, Hoboken, NJ.
	 7.	 W. E. Perry (2006) Effective Methods for Software Testing, 3rd edn., Wiley, New York.
	 8.	 K. Li, M. Wu (2004) Effective Software Test Automation: Developing an Automated Software Testing Tool,

Sybex, Alameda, CA.
	 9.	 C. Kaner, J. Bach, B. Pettichord (2006) Lessons Learned in Software Testing, Wiley, New York.
	 10.	 P. Jorgensen (2002) Software Testing: A Craftsman’s Approach, CRC Press, New York.
	 11.	 B. A. Posey (2002) Just Enough Software Test Automation, Prentice Hall PTR, Upper Saddle River, NJ.
	 12.	 W. E. Lewis, G. Veerapillai (2005) Software Testing and Continuous Quality Improvement, CRC Press,

Boca Raton, FL.
	 13.	 R. D. Craig, S. P. Jaskiel (2002) Systematic Software Testing, Artech House, Norwood, MA.

201

Chapter 14

Product Release
and Maintenance

In the previous chapter, we learned

◾◾ What is software testing?
◾◾ What is verification and validation?
◾◾ What techniques are used for testing software?
◾◾ How does software testing help in increasing quality of a software product?

In this chapter, we will learn

◾◾ What is software release?
◾◾ What is software maintenance?
◾◾ What activities are performed in software release?
◾◾ What activities are performed in software maintenance?

14.1  Introduction
The software product which you have been building for so long is now complete. You need to take
it to the customer’s site and get it implemented so that the end users can start using it. However, do
not run fast in anticipation of wrapping things as early as possible. After all this is your magnum
opus and you need to be careful. You need to make sure that all your tasks are completed,
for example, product support cost estimate, walk around for known bugs, which version of the

202  ◾  Software Project Management: A Process-Driven Approach

software product to be released, if release should be an alpha, beta, or normal release, training
needs fulfilled, and customer support strategy (Figure 14.1).

14.2  Product Release Management
Project teams working for software product vendors struggle to keep pace with release of the
software product. There is pressure from the market to launch new versions by certain dates. New
features are to be added, porting the product to new platforms, old features are to be enhanced,
existing bugs are to be removed, and yet it has to meet the deadline. It is a constant struggle that
calls for good product release strategies. Depending on the situation, the project manager may
need to convince the management to cut short some of the product features to meet the deadline
as well as meet quality standards. A half-baked product will never have any takers; instead the
project manager may be blamed for its poor quality issues. Bargaining also has to be done for other
requirements of bug fixes, feature enhancements, etc. If quality concerns are paramount, then
moving some of the tasks of new features to a future release may be the best solution for meeting
quality standards. If the software vendor is not too sure about product quality, then he may opt
for an alpha or beta release of the product. In that case, the product will be released only among
a few selected groups and not in the market as a whole. The controlled product release is the best
option in these conditions [1] (Figure 14.2).

In fact, product release management is such a dynamic environment that if proper planning is
not done at a minute level and constant vigilance is not applied over project activities, then a huge
mess can be created and there will be no time to clear it. So the project manager must be vigilant
all the time (Figure 14.2).

Estimate cost
of providing

support

Product release
management tasks

Selection of
software

version to be
shipped

Decision for
alpha, beta
or regular

release

Create walk
around for

known defects

Provide
training to

support staff

Make
customer
support
strategy

Figure 14.1  Task list for software product release.

Alpha
release

Beta
release

Product release
types

Internal
release

Normal
release

Figure 14.2  Software product release types.

Product Release and Maintenance  ◾  203

Finally, for the product’s scheduled release, how the customer support will be provided should be
chalked out. Walk arounds for known issues, estimated number of critical bugs still remaining in the
product, training for the support staff, etc., should be done. The cost of support, depending on the
number of estimated users, walk arounds, and remaining bugs should be figured out. These measures
will ensure that the product is transitioned into market without facing major difficulties.

14.3  Product Implementation
The product that has been developed and thoroughly tested now needs to be implemented at a
customer site. You need to prepare all master data and test transaction data for testing the imple-
mented product. You need to get all required hardware and software that need to be there for
installing your software product. You need to make sure that you have developed and tested all
the hardware and software interfaces for integrating your product, with existing legacy systems
and infrastructure. You also need to make sure that your product will run smoothly on customer
premises without any interference with their existing applications [2] (Figure 14.3).

Often project teams run into problems during implementation, due to unforeseen circum-
stances or negligence on part of the production team or customer’s team. Therefore, prepare a
list of your own requirements and hand it over to your customer’s support team so that they are
prepared when you arrive for implementation.

14.4  User Training
Make sure that the user manual prepared by your team is up to date and in synch with the ver-
sion of your software product, which you will implement at the customer site. It is not possible to
provide training to all users. So prepare a list of roles that are needed to operate the product. Give
this list to the end users and ask them to select one user per role who will receive the training.
Apart from the user manual, you also need to prepare a tutorial to include probable scenarios that
may arise during operation of the product. The tutorial will provide a step-by-step guide for using
the product under those scenarios. This will be a very important step in training, because if users
do not learn it during training, then they will contact you later after implementation and ask you
to provide information as to how to use the product in those circumstances [3]. This will lead to a
waste of your support team’s time. It is lot better to train them now, during user training, rather
than face user requests later.

Check
software

interfaces

Product
implementation

tasks

Check
hardware
interfaces

Create
master data

Create test
data

Create user
accounts

Check
infrastructure

for
installation

Figure 14.3  Task list for software product implementation.

204  ◾  Software Project Management: A Process-Driven Approach

14.5  Maintenance Introduction
Software products do not age or wear out like physical products. Then why is there a need to have
maintenance of software products? Well, there are some factors which make it absolutely necessary.
Here are some of the reasons:

	 1.	Technology obsolescence [4]: The software platform (operating system, medium of user, inter-
face) or the hardware platform on which the software product runs gets obsolete.

	 2.	Software defects: There are major software defects in the product and it is difficult to oper-
ate. For this reason, a software patch may be needed to be applied so that these defects are
removed.

	 3.	Change in user requirements: The business organization that was using the software product
has seen a change in business transactions or business workflows that are not supported by
the software product (Figure 14.4).

It is estimated that more than 70% of all costs associated with software product development,
implementation, and support and maintenance is consumed in the activities of supporting and
maintaining software products [5]. Why is it so? What can be done to change this situation, so
that support and maintenance costs get minimized as compared to development and implementa-
tion costs?

These kinds of queries have always puzzled the business community. This recognition has
resulted in an awareness of the importance of finding ways to build such a software product. This
situation has led to including maintainability characteristics during the entire product develop-
ment cycle. Yet, a lot of work remains to be done during the maintenance phase of any software
product. How to manage these activities so that costs can be minimized is an area of concern yet
to be resolved.

14.6  Maintenance Types
Software maintenance is of four types: corrective, adaptive, preventive, and perfective mainte-
nance [5]. If the software has some defects, then it will take a corrective maintenance to rectify it.
If there are some changes in the operating environment of the software product, then the product
can be made useful by doing adaptive maintenance. If there is an insecurity that although the
product is running fine in future we may have difficulty in using it, then preventive maintenance
is employed. If there are some deficiencies in the product that must be rectified, then perfective
maintenance will fit the bill (Figure 14.5).

Software
defects

New user
requirement

Changed user
requirement

Technology
obsolescence

Better
technology

Reasons for
software

maintenance

Figure 14.4  Reasons for software maintenance.

Product Release and Maintenance  ◾  205

14.6.1  Corrective
Even after thorough reviews and testing, the software product contains many defects when it
goes into production. These defects are uncovered as users start using the application. They are
logged with the support staff and after a sizable number of errors are detected, the software vendor
instructs his maintenance team to create a patch to rectify them. The maintenance team then
makes a plan and fixes those defects. After application of the patch containing the fixes, the
software starts running without these defects [6].

14.6.2  Adaptive
The operating environment in which a software product runs in operation includes the hardware
and software platform as well as the interfaces for human and other machine interactions. If any of
these change over time, it becomes difficult to run the software product. In such cases, it becomes
necessary to do adaptive maintenance so that the software product becomes reusable. This kind of
maintenance may involve changing the interface or porting the application to another hardware/
software platform [7].

14.6.3  Perfective
This kind of maintenance is needed when there is a change in the business environment, and
thereby users need additional/modified functionality in the software product to do their tasks. A
business workflow may have changed, a business transaction may have changed, or an altogether
new business transaction was represented in the software product. For all these kinds of require-
ments, a perfective maintenance may be needed [8].

14.6.4  Preventive
Generally after a lapse of time, there are likely changes in business or operative environment, or
there may be changes in hardware/software environment. These changes are bound to occur and
they affect the way the software product operates. Many of these changes can be perceived in
advance. In such cases, preventive maintenance on the software product can make sure that the
product will be useful even after these environmental changes occur [9].

14.7  Maintenance Cost
A software product is generally very valuable to an organization if it is used for doing a large por-
tion of their daily business. If for some reason the software product has become unusable, then the
organization in fact will be making losses on their revenue. Moreover, large enterprise software

Corrective Preventative

Software
maintenance

types

Perfective Adaptive

Figure 14.5  Software maintenance types.

206  ◾  Software Project Management: A Process-Driven Approach

products are that much crucial! When the organization faces such a case, it is left with no alterna-
tive but to either get an entirely different software product that will replace the existing one or do
maintenance of an existing product to make it usable.

Following are some financial reasons for which a maintenance may be needed:

	 1.	Loss in business revenue: It may happen that business transactions are faulty and thus the
business may lose revenue.

	 2.	Opportunity loss: Sometimes there could be some business opportunity in the marketplace,
but due to some software problems it could not be availed.

	 3.	Productivity loss: If the software product becomes difficult to operate due to many walk arounds
or lengthy processing then productivity will become lower for business personnel (Figure 14.6).

Maintenance of an existing software product has its own share of problems. The maintenance will
incur costs. A profit/loss analysis can be done, to see if it is more profitable to conduct a mainte-
nance program on the software or keep using it as it is. The losses due to problems with the soft-
ware can be compared to probable cost of maintenance and an ROI (return on investment) can be
done. If we get a desirable ROI then it is better to go for maintenance.

14.8  Maintenance Process
For any work, it is always better to have a process model instead of doing things on an ad hoc
basis. When it comes to software maintenance, some process models have been defined. Some of
the popular ones include the quick fix model, Boehm’s model, Osborne’s model, iterative enhance-
ment model, and reuse oriented model (Figure 14.7).

Revenue loss Opportunity
loss

Productivity
loss

Software
maintenance

financial reasons

Figure 14.6  Financial reasons for software maintenance.

Quick fix
model

Boehm’s
model

Osborne’s
model

Iterative
enhancement

model

Reuse
oriented
model

Software
maintenance

process models

Figure 14.7  Software maintenance models.

Product Release and Maintenance  ◾  207

Quick fix model: This is the simplest of maintenance models; whenever any defects with the soft-
ware products are found they are immediately fixed. There is no planning involved in the whole
process and it is mostly an ad hoc approach.

Boehm’s model: Boehm’s model is based on economic models and often involves calculating ROI,
for any planned maintenance. If ROI turns out to be good, then it is carried out or else it is
dropped.

Osborne’s model: Osborne realized that difficulties in carrying out maintenance work are due to
gaps in communication. He proposed four steps to prevent this situation. He stated that a mainte-
nance plan should include all change requests in the form of maintenance requirements. A quality
assurance plan should accompany the maintenance plan. Metrics should be developed to measure
and assess quality of work carried out during maintenance. Finally, reviews should be held after
maintenance work to assess quality of work done.

Iterative enhancement model: This model is based on the similar concept of iterative software devel-
opment. All software defects and change requests are logged and then a small set from this list is
taken for making fixes. This set is prepared based on the priority of changes required. High prior-
ity fixes are done before low priority fixes.

Reuse oriented model: This type of process is adopted for component-based software products.
For fixing any defects, existing components are analyzed and then the appropriate changes
are made.

14.9  Maintenance Life Cycle
Like the software development, software maintenance also has a life cycle. Requirements for soft-
ware maintenance come from the list of defects that have been logged. Either the list of defects can
be taken as a whole or a subset of defects from this list can be taken for a fixing plan. It makes a
lot of sense to go for an iterative approach. This approach is similar to the concept of iterative soft-
ware development. This way it can be ensured that highly visible, important, and priority defects
are fixed first and other defects which do not make much impact on operations of the product are
tackled later (Figure 14.8).

In the software maintenance life cycle, testing is a crucial phase. This phase also consumes a lot
of time and effort. But the value addition in all this effort and time spent helps in reducing defects,
which in the long run is a much cheaper alternative compared to no testing/cursory testing and
later spending money in providing support.

List of
defects

Subset of
defects

Defect fixing
planning/
execution

Maintenance
complete

Test
application

Patch
application

Figure 14.8  Maintenance life cycle.

208  ◾  Software Project Management: A Process-Driven Approach

14.10  Maintenance Techniques
Maintenance of software products sometimes becomes a tough proposition. There is no proper
documentation that can be used for understanding how the product is designed and constructed.
Sometimes there is no documentation at all. Even if documentation is there, it is not up to date.
This out-of-date documentation is not of much use for any maintenance work (Figure 14.9).

Sometimes even if the documentation is up to date, the maintenance work is difficult due to
dirty design or construction work.

All these situations call for some specific techniques for maintenance work depending on the
situation. Some of the common maintenance techniques include reengineering, reverse engineer-
ing, and forward engineering.

14.10.1  Reengineering
Reengineering is also known as reuse engineering. This technique is a standard method for main-
tenance work for component-based software products. Details about all components in the soft-
ware products are well known. When any maintenance work is needed, from the list of defects,
each defect is specifically analyzed to find out the root cause of the defect. Once this analysis is
successful, then fixing that defect becomes easy.

14.10.2  Reverse Engineering
Reverse engineering technique is most useful when nonexistent or sketchy documentation is avail-
able for the software product. Due to unavailability of documentation, there is no information as
to what the design is and how the product is constructed. In such a situation, it is almost impos-
sible to do any modification in the source code for any maintenance work.

In such cases, the reverse engineering technique is adopted. Using this technique, similar
components or product parts are constructed as compared to existing product components/parts.
This way the software product functionality is changed as the new constructed parts will have the
desired functionality.

14.10.3  Forward Engineering
Forward engineering is just the opposite of reverse engineering. In this situation, we have
ample documentation about the existing product. Due to new customer needs, the exist-
ing product needs to be extended so that the new needs can be fulfilled. All new extended

Reengineering Forward
engineering

Reverse
engineering

Software maintenance
engineering
techniques

Figure 14.9  Software maintenance engineering techniques.

Product Release and Maintenance  ◾  209

development is based on the existing design and construction methods and will be made for
the same hardware/software platform.

14.11  Case Study
In our series of case studies, here is the piece related to software release and maintenance.

14.11.1  Software Release
Our SaaS vendor releases minor versions of its product on a quarterly basis and major versions on
a yearly basis. For each minor release, new features to be added are carefully planned. The product
manager makes sure that the release plan for a minor release will be on time by assigning priority
to each new feature. The high priority features will be definitely added and the low priority fea-
tures for that iteration will be added if any time remains in the iteration.

Our SaaS vendor does not release alpha or beta releases of its product as they do not serve
mass markets. Their product is an enterprise computing product and is used by large retailers,
government offices, logistics providers, manufacturers, and distributors. They always release new
versions of their product to their existing customers. Since they do not do alpha or beta releases,
they make sure that their new version is tested thoroughly by their testing team, and no major
defects are passed in the production instances. Since there are no immediate customers who will
be available for doing user acceptance testing, the internal testing team does the user acceptance
testing as well.

14.11.2  Software Maintenance
The software vendor keeps all of the production instances of its software product at its data center
(also known as operations center). All previous versions of the software as well as the current work-
ing version of the software product run at this center as production instances of different versions
of their software product. The maintenance team makes sure that all versions of the product are
available for users. They run sanity test scripts daily on all instances. If any problems are found,
they is immediately resolved. These scripts are run at night. If any problems are found then, it is
made sure that they are rectified before office hours start and people start using the application.

In packaged software or custom built software that are not used in an SaaS environment, this
kind of quick fix is not possible. So in those cases, a maintenance plan is made to fix all or most
defects found by users during a time span of 3 months or more. But with SaaS environments, this
kind of maintenance is not needed at all. All defects are quickly and easily fixed, without hamper-
ing work of end users.

14.12  Chapter Summary
Software product release is a messy affair for most project teams. Even when a project team is
working with the most pessimistic schedule estimates, things get delayed and create problems
in completing tasks on time. It is human nature that they tend to relax at the beginning of an
assigned task, and thus when the schedule deadline approaches a large part of the task is not
complete. This puts pressure on the individual as well as the project team. This is precisely what

210  ◾  Software Project Management: A Process-Driven Approach

happens around the product release dates most of the time. So apart from what the project team
will be exactly doing at the time of software release (product implementation and user training),
the team ends up doing some backlog work as well. For user training, appropriate users should be
identified out of the pool of probable users. These users who will get the training should be excel-
lent students (and teachers) who will later train other users.

When first implementing a product, the right version of the software should be identified,
as the project team usually has a number of release candidates. The required infrastructure, data
preparation, hardware configuration, etc., should be chalked out and people responsible for this
work should be informed in advance, before the implementation team actually visits the imple-
mentation site. If the software product is distributed via the web, then it should be made sure that
the link to download the software works fine. Mirroring sites should also be made available so that
users will be able to download the software even during peak load hours. Customers of the soft-
ware should be clearly identified and targeted. For instance, depending on whether the software
product is an alpha, beta, or regular release, the customers will be different.

Software development may involve developing a software product spanning from a few months
to a few years. But the product will be used anywhere from 5 years to more than 10 years. Many
software applications are in fact used even after their expected service life has expired. During this
whole time span, the software needs to be supported and maintained. Support and maintenance
involve costs. Due to this large time span, in fact the support and maintenance costs are more than
development costs. Sometimes it can be as high as 1500% of the development costs. To minimize
support and maintenance cost, it has to be ensured during development that the software can be
easily maintained.

Review Questions
14.1	 Why is maintenance needed for software products?
14.2	 What techniques are employed for software maintenance projects?
14.3	 What is the life cycle of a maintenance project?
14.4	 �Define maintainability. How can a software product be made maintainable?
14.5	 List common maintenance processes.
14.6	 What activities are involved in software release?

Recommended Readings
	 1.	 D. J. Anderson (2004) Agile Management for Software Engineering: Applying the Theory of Constraints for

Business Results, Prentice Hall PTR, Upper Saddle River, NJ.
	 2.	 K. Bittner, I. Spence (2007) Managing Iterative Software Development Projects, Addison-Wesley, Boston, MA.
	 3.	 N. D. Birrell, M. A. Ould (1988) A Practical Handbook for Software Development, Cambridge University

Press, Cambridge, U.K.
	 4.	 G. Ramesh (2005) Managing Global Software Projects, Tata McGraw-Hill, New Delhi, India.
	 5.	 C. Jones (2007) Estimating Software Costs, Tata McGraw-Hill, New Delhi, India.
	 6.	 P. Grubb, A. A. Takang (2003) Software Maintenance: Concepts and Practice, World Scientific Publishing

Company, River Edge, NJ.
	 7.	 S. Fishman (2007) Legal Guide to Web and Software Development, Nolo, Berkeley, CA.
	 8.	 C. B. Tayntor (2003) Six Sigma Software Development, Auerbach, New York.
	 9.	 S. Beydeda, M. Book, V. Gruhn (2005) Model-Driven Software Development, Springer, New York.

SOFTWARE
ENGINEERING
MANAGEMENT

III

213

Chapter 15

Process Standards
Introduction

In Part III, we will learn

◾◾ What is software process improvement?
◾◾ How can process selection be made for a software project?
◾◾ What are the benefits and drawbacks of the waterfall model of software development?
◾◾ What are the benefits and drawbacks of the agile model of software development?

In this chapter, we will learn

◾◾ What is software engineering management?
◾◾ How are statistical process control techniques useful for software projects?
◾◾ What are the benefits of the standard process model implemented across the organization?

15.1  Introduction
The quality of any product/service is one of the most important factors for its success in the market.
A shoddy quality product/service is simply not acceptable. Consumers will reject such a product.

Therefore, a good quality product/service is a must. But how do consumers know whether
a product/service is of good quality? By getting its quality certified by some certifying agency.
These certifying agencies use some standards to measure physical, aesthetic, chemical, or any other
aspect of the product/service to know if it meets those exacting standards. If it does, then they
certify it; if not, they do not. Consumers see this certificate and know that the product/service is
of good quality and, only then, they buy it.

214  ◾  Software Project Management: A Process-Driven Approach

The manufacturer/service provider uses standard methods to manufacture/devise any product/
service of good quality. Without standard methods a good quality product/service is possible, but
it cannot be repeated. So once in a while the product/service will be of good quality, but most
of the time it will not be good. Nevertheless, if a good standard method is employed, then, most
of the time, quality of the product/service will be good. This is why a good quality method or
process is very important, as it enables to produce good quality product/service consistently and
repeatedly.

When it comes to software development projects, a good quality process becomes even more
important because software products or applications are very complex and difficult to produce.
Even when the product specifications devised during system design are good, there is no guar-
antee that the software produced will be of good quality because the coding may be of shoddy
quality.

15.2  Root Cause of Problems in Software Projects
Software development projects are plagued by many problems. The most important problems
include lack of visibility, variability in quality, cost and schedule escalation, etc. [1]. Lack of
visibility in software projects can be attributed to unclear software requirement specifications
and frequent change in requirement specifications. Due to these two factors, downstream activi-
ties in the software development cycle get affected and thus it becomes difficult to schedule these
activities with good accuracy. Variability in quality, cost, and schedule from one project to another
results from nonstandard methods employed to execute projects (Figure 15.1).

Apart from nonstandard methods, lack of clear specifications of work products also plays a major
role in variability from one project to another [2]. Suppose the requirement says the application
should have a search facility for available flights for a certain city on a given date and time. This
problem can be modeled in many different ways. Again, how this functionality is going to be imple-
mented may not be clear to the software architect initially. So in the initial estimate, he can give a
rough figure. Only when the design is actually to be made, the actual implementation becomes clear
and the software architect can provide an accurate estimate. Similarly, integration of different mod-
ules is a tricky affair. Estimation for effort required for integration is mostly a guess. Many issues arise
when integration is actually done. Effort estimation techniques like function point analysis (FPA),
wideband Delphi technique (WBD), COCOMO, etc., try to provide effort estimation but none of
them have good accuracy. At most, they help in making a rough estimate.

Many details at the beginning of the project are not clear. They become clear only after a few
iterations over specific project tasks. The requirements themselves start changing over the project
execution and they make the baseline project plan totally irrelevant. The project manager has to

Changing
requirements

Unclear/
incomplete

requirements

Problems on
software projects

Lack of visibility Not enough
specifications

Figure 15.1  Problems on software projects.

Process Standards Introduction  ◾  215

incorporate necessary changes in project tasks due to these changes in requirements and adjust his
project plan accordingly [3].

It is not obvious how to design from given requirements even if they are written in the best
way. Even if the design is good, it is not obvious how to construct the application. Due to lack
of clarity, the development team resorts to iterations. Iterations make the project plan vulnerable
and the initial project plan becomes invalid, and the project manager has to make adjustments in
project plan to accommodate these iterations.

15.3  Solutions for Problems in Software Projects
To make software projects more amenable to predictable results and better control, the most
potent tool is to use software engineering methods on the project as much as possible. Consistent
process modeling across varied projects will ensure consistency in quality, cost, and schedule.
A well-defined process model will ensure good visibility in the entire life cycle of product devel-
opment. Quality assurance methods built into the process model will ensure that both process
and work products can be measured at frequent intervals during the entire project execution
cycle. Once you can measure process and work products accurately, you will be able to manage
them better.

When you want to make a product feature, characteristics of the feature should be well known.
Suppose you are making a warehouse application. In reality, physical warehouses are of different
sizes, used for different purposes, are located at different distances from certain places, and have
many other specific characteristics. When a warehouse is represented in a software application, the
size of the software product should be well known from exact requirement specifications given by
the customer. This will freeze the volume of work to be done. This product part can be made in a
certain number of ways. Specific programming language, specific platform, and specific architec-
ture can be employed to make this product. Again this will give an accurate volume of work to be
performed. The people who will be doing this work have a certain level of experience and skills.
So the productivity factor can be determined from this fact. Productivity and size can provide
an accurate estimate for total effort required for the project. In such a scenario, everything in the
project is measurable and so can be managed with ease.

This kind of standardization on projects is possible in the future, and can totally eliminate
uncertainty from the project. This is where software engineering comes in. Software engineering
ensures that software projects and the tasks associated with them can be accurately scheduled.
Thus, a perfect project plan can be accurately made and executed. Currently, however, it is a bit
difficult as standardization of software development processes is still in its infancy. However, defi-
nitely it is evolving fast and in the not so distant future, it will become a reality.

As can be imagined, software projects have three components to be managed: quality,
schedule, and budget. The major components of costs in software development projects are the
human resources. This cost component can be controlled and reduced by efficient utilization
of time of the involved team members. Once project size and project team productivity are
measured and can be treated, almost fixed, once the team is formed, the schedule will be very
well known. Before the project team is formed, it can be tweaked by selecting a balanced team
for the project. Tasks that are critical and impact the project the most should be manned by
experienced and higher paid professionals. Tasks that are not so critical should be manned
by people with lower experience and lower salary. These same factors will also influence budget
for the project.

216  ◾  Software Project Management: A Process-Driven Approach

The third dimension in software projects is quality. Software engineering helps here as well.
When standard processes are strictly followed and all possible causes of errors are eliminated or
reduced, software product quality will improve (Figure 15.2).

One more solution for software projects is to go the lean way. In other industries, lean and
just-in-time concepts helped to overcome many problems including quality, inventory, costs, etc.
On software projects, if we do not try to take the entire requirements and instead try to build the
software product incrementally by taking a few requirements at a time, then the same benefits of
just-in-time methods can be reaped here. More about these concepts are presented in the iterative
and agile model of software development elsewhere in this book.

15.4  Standard Process for Software Projects
Any standard process can be applied to produce similar sized products/services that have similar
characteristics. Let us suppose we have one software development project formed to make a soft-
ware product having 100 KLOC (kilo lines of code), and we have another software development
project formed to make a software product having 10,000 KLOC. Can the same standard process
be applied for both projects?

The answer is yes and no.
The real answer lies in the details.

The waterfall model establishes a process framework of having firm phases in the development
life cycle for software products. The phases include requirements, design, build, test, and release.
This top level of process framework can be applied to all software development projects. What
about other kinds of projects? In a typical maintenance project, the product life cycle could be
reported as bug analysis, bug fixing, testing, bug closure, release, etc.

Similarly, the process for product development is different from that of application devel-
opment. This is because software products are inherently different from software applications.
Software products are characterized by frequent releases of the product at short intervals. Most
software vendors have a minor release of their software every quarter and a major release on a
yearly basis. In such an environment, iterative and incremental development model is far more
suitable than a traditional waterfall model.

Due to these differences in processes, different process models were developed by standards
creation organizations like SEI (Software Engineering Institute) at Carnegie Mellon University,
ISO, IEEE, etc. On the other hand, for iterative and incremental development models like eXtreme
Programming, Scrum, and cleanroom engineering were developed [4].

Just-in-time
methods

Quality
assurance
methods

Solutions for
software projects

Adherence to
process

standards

Standard
processes across

organization

Figure 15.2  Solutions for problems on software projects.

Process Standards Introduction  ◾  217

Given that project resources are limited, the project manager has to deliver the project within those
limited resources. He has limited time, project team size, and budget. He has to optimize his resources
to produce the best results from his project. Using standard processes may seem to increase his work.
Although he may resist using those standard processes, it nevertheless ensures better quality.

15.4.1  Process Tailoring
Standard SDLC processes need not fit requirements of any specific project [5]. For instance, the
project needs to be delivered over many iterations. These iterations are complete right from soft-
ware requirements to software testing. This process is different from standard process of delivering
the entire project, without any iterations involved and in a sequential manner. So how can a pro-
cess model like CMMI be applied for this project? Clearly in this case, an iterative development
model would be more appropriate. Now suppose we need to develop a software product for a cus-
tomer where we strongly feel that instead of developing the software from scratch, we should take
an existing open source software product and customize it per customer requirements. This kind
of project definitely will not fit any of the standard development models. So how can we choose
a model for this project? (Figure 15.3). By tailoring the process! More information about process
tailoring can be found in Chapter 16.

15.5  Standard Process across Software Projects
For most organizations, each software project is a stand-alone affair. There is no connection
between one project and the other even if the two projects are executed one after another by the
same project team, and that the two projects are almost identical. This was the scenario up to
the 1990s. Many practitioners had observed that each project team was reinventing the wheel in
executing these stand-alone projects. So, even though reusable components were on one hand,
being developed based on these projects to prevent reinventing the wheel in building a software
system, the project management practice on the other hand was never benefiting from the lessons
learned from previously executed projects.

This scenario is still true for many in-house projects, and even on a few outsourced ones. But
some people started seeing the light at the end of the tunnel and realized that if lessons learned
from previously executed projects can be applied to new projects, a large improvement is possible
on these new projects in terms of gains in productivity.

For small projects consisting of a few people and lasting for a few months, informal project
management without a process model, is fine. Since complexity is low and not many people are

Standard process
model does

not fit

Unique product
to be made

Process tailoring
needed when

No similar
previous project

Customer
requires it

Figure 15.3  Process tailoring for software projects.

218  ◾  Software Project Management: A Process-Driven Approach

involved in such projects, error due to communication gaps is not there. But on large modern day
projects, complexity and size is considerable. Many people will be involved and will work on the
project for several months, if not several years. Management of such projects will also have many
layers. At such engagements, error due to communication gaps is inevitable. If informal methods
for doing work are employed, chances of error are even higher.

Apart from errors there is one more dimension to project management. How does one ensure
that a software product being produced out of these projects has the same consistent quality
project after project? Due to differences in management styles, knowledge and experience of team
members, environment factors, etc., quality of one project is very different from the other [6].

Let us take an example from manufacturing and compare it with software projects.
In manufacturing, when raw material is processed in sequence (e.g., assembly line), we get

products with the same quality. Similarly, from another assembly line, different kinds of products
of the same quality are produced. Coming to software projects, a service provider can set up many
software development models and process software projects. In our example (see Figure 15.4), we
have two process models, CMMI and rational unified process (RUP). All projects that are pro-
cessed using CMMI will produce software products with the same quality. Similarly, all projects
which are processed using RUP will produce software products of similar quality to each other
(Figure 15.5). This is how consistent quality across all projects is achieved.

Some of the benefits of using standard processes across projects are

	 1.	Better quality
	 2.	Opportunity to use metrics data from previously executed projects
	 3.	Same quality across projects
	 4.	Opportunity to use shared resources
	 5.	Less effort as learning from one project can be applied to other projects
	 6.	Making software project management more science than art

Manufacturing
process 2 Process

Process
Manufacturing

process 1

Same quality products

Same quality products

Product
B

Product
A

Product
A

Product
A

Product
A

Product
B

Product
B

Product
B

Raw
material 2

Raw
material 2

Raw
material 1

Raw
material 1

Figure 15.4  Manufacturing processes and products with same quality from same process.

Process Standards Introduction  ◾  219

15.6  Program Management
Program management deals with managing a group of projects at a higher level and using
shared resources and common management practices so that all the projects under the same
program management can be managed effectively with fewer resources, and lower costs.
At the same time, program management also helps in meeting some set objectives for an
organization.

How does program management fit into the overall organizational objectives?
One of the problems in a project-based organization is that resource utilization cannot be

achieved 100%. In environments such as manufacturing where the process is continuous, resources
(like machines, man power, etc.) are used 100% without any problems. But projects are not neces-
sarily continuous. A project is started, executed, and finally closed. When a project starts, it needs
resources until it gets finished. The moment it gets finished, all the resources it was using need
to be released. Now resources are of two types. One is consumable and another is fixed. Fixed
resources include machinery and human resources. So when a project completes, human resources
and machinery become idle. They must be utilized on another project or the organization that
owns them or they will lose their capital (in terms of salary for human resources, depreciation for
machinery), since these resources will not be doing any productive work which can bring revenues.
At the same time, on one project, not all resources are employed for the entire duration of the
project. They may be assigned to tasks, and when that task gets completed then they are no longer
needed on that project (see Figure 15.6).

These resources must be assigned to other projects so that they do not sit idle. One of the
topmost objectives of any program management is to strive to achieve resource utilization close
to 100%.

Software process
(RUP) Process

Process

ProjectsProjects

ProjectsProjects

Software process
(CMMI)

Same quality products

Same quality products

Product
B

Product
A

Product
A

Product
A

Product
A

Product
B

Product
B

Product
B

Figure 15.5  Software development processes and products of the same quality from the
same process for many projects.

220  ◾  Software Project Management: A Process-Driven Approach

15.7  Portfolio Management
Portfolio management concerns itself with the objective of maximizing returns from the collection
of projects, in a portfolio. They work in the same way as mutual fund portfolios. A mutual fund
invests money into many stocks and bonds in such a way that the return on the invested money
is the maximum possible, and at the same time as it is looking to minimize the risks. Some of the
stocks and bonds have high return potential with higher risks, whereas some other stocks and
bonds have a much lower return potential but have a very low risk as well. Based on research, the
portfolio manager decides how much of the money from the mutual fund should be invested in
high risk–high growth potential stocks and how much in low risk–low return potential stocks. This
balanced approach ensures a good return on money invested with much lower risks (Figure 15.7).

On similar terms, a project portfolio determines how to make an approach so that from a port-
folio of projects, maximum returns can be achieved with the lowest possible risks. A portfolio of
projects may contain some low risk–low return projects, some medium risk–medium return proj-
ects, and some high risk–high return projects. An organization should create a strategy by which
it can decide how many low risk–low return, medium risk–medium return, and high risk–high
return projects should be taken in the portfolio, so that the objective of maximum returns can be
achieved with minimum risks.

Program management

Portfolio projects 1

Projects
1

Projects
2

Projects
3

Projects
1

Projects
2

Projects
3

Portfolio projects 2 Portfolio projects 3

Figure 15.7  Portfolio management.

Task 1 (resource 1,2)

Task 4 (resource 2,7,8)

Software project

Task 3 (resource 5,6,4)

Task 2 (resource 3,4)

TimeTime

Figure 15.6  Tasks and associated resources on a project.

Process Standards Introduction  ◾  221

15.8  Statistical Process Control on Software Projects
Sometime back, in a paper titled “Is Statistical Process Control Applicable to Software
Development Processes?” [7] Bob Raczynski had argued that measuring software develop-
ment processes and using statistical process control (SPC) is not useful. Bob argued that since
software development processes involve intellectual but prone to error inputs, in the form of
coding done by human beings, SPC processes cannot be applied. SPC processes are better
suited for mass manufacturing, where the same process steps can be repeated again and again
with the same inputs. In such cases, if any variation occurs in quality of output, then the root
cause of the quality problem can be immediately traced using SPC.

I beg to differ with Bob. I have accepted that software development is a labor intensive activ-
ity, and any human activity is prone to errors. I have also accepted that in such environments,
it is difficult to implement SPC methods. Still, the fact remains that human activity can be
measured and compared in a controlled environment. That is why we have different hourly pay
rates for different people. Highly skilled people get higher hourly rates and low skilled people
get lower hourly rates. Definitely, higher paid people have better output than lower paid people.
So a person’s quality of output is measurable. Similarly when a task is assigned to a person with
his known ability, the quality of output can be anticipated in advance. This is especially true
in environments where process standards are implemented successfully and people work in a
predictable environment.

As mentioned in Section 15.3, through software engineering techniques it is possible to rea-
sonably quantify project tasks. Project size can be measured and estimated, and productivity can
also be found out. Although some elements of subjectivity may still persist in these estimates,
SPC helps in making better estimates for size and productivity as it further eliminates subjective
elements. Using project data from previously executed projects, estimates can be improved.

SPC data is also useful for quality control. How many defects were found in a similar
sized project and how much effort was required in finding and fixing those bugs, gives a good
idea for the coming project to estimate time and resources required for achieving a certain
quality level.

It is also a fact that software development activities are creative activities. When cre-
ativity is involved, it is difficult to apply a standard process framework. Measured output
is also difficult. On the other hand, providing a totally free-for-all environment results in
unpredictable output. The goal of any project is to provide a measurable output during and
after project execution. Using a standard process can ensure that a measurable and predict-
able output can be achieved and ensures starting, progress, and closure of any activity in a
controlled manner.

Once we start thinking in terms of measurable output on projects, we are getting closer
to comparing project activities to manufacturing activities. And when we are dealing with
thousands of projects going on at a development center of outsourcing companies, we start
treating projects on a mass scale. When that happens, uniqueness of projects starts fading
and a mass projects environment starts taking shape. See what is happening to other services.
Take for example, a call center. Using shared resources and standard processes and methods,
it is possible to provide good call center services to customers at very low prices, and yet with
much better quality. When software development projects are executed at such a mass scale,
we see the possibility of introducing “mass servicing” concepts for these projects. It provides
benefits like shared resources, high level of productivity, provisions to access highly skilled
resources, expert services, etc., at one place.

222  ◾  Software Project Management: A Process-Driven Approach

So, we are observing that software projects are no longer viewed as projects in the traditional
sense. They are evolving more like mass services. This trend is helping customers to reduce software
development projects costs, substantially. The more that software development projects become simi-
lar to mass services, the more they will become cheaper. It is exactly what happened when manufac-
turing turned into mass manufacturing, a long time ago.

15.9  Cost of Nonstandard Processes
Many project managers and team members resist in complying with standard processes [8].
They feel it makes them work more and they try to adopt shortcuts. By doing so, are they doing
any good? Suppose a customer requirement change has arrived. Without consulting all people
down the line, the architect makes changes in the design. The project manager makes no further
effort to properly document the changes made by the architect. So now, the architect is work-
ing on a different version of the requirement and the coding team is working on a different one
(because they have a copy of the design that was made for the earlier version). Somehow the cod-
ing team gets to know that they are working on a wrong requirement version. By the time they
realize this, they have already lost a good number of man hours working on the wrong version.

Consider another example. A requirement change comes and the project manager thinks
changing the design may increase the work to be done. He decides a quick fix in coding can do the
job. So he gets this quick fix done by the coding staff. Of course he and his team purposefully for-
get to document this change (documenting may have added a few extra hours). Now, when a new
requirement change request comes, nobody knows exactly what changes were done in the previous
build of the software. After incorporation of this changed requirement, the team inadvertently
will be introducing defects in the software.

Again suppose the project manager decides to take a shortcut by not going through design,
and incorporates new requirement changes directly into the code. The changed features are
not reflected in the design documents but are there in codes. Similarly, due to a time crunch,
the project manager cuts short testing of the application and ships it without proper testing.

As long as there are not many changes in the project plan, noncompliance with standard pro-
cesses is manageable. But the moment there are changes everywhere, the downstream processes
get affected. Without proper documentation and absence of process for change control, chances
of error increase. The larger the project, the greater is the risk of defects entering into the prod-
uct. They are one of the biggest risks any project can face. Given the nature of software projects,
requirements get changed often, especially with iterations. So it is very important that proper
documentation and process are followed.

15.10  Organization Training
The software industry is always in flux; it is always changing. Furthermore, the rate of change is
increasing. What used to be a cutting-edge technology just yesterday is today obsolete. What is
considered today as advanced technology will become stale tomorrow. Fifty years ago, if somebody
learned a trade, it would help him to earn livelihood for life. Today, if a software professional
learns a programming tool, he will have to relearn a new programming tool tomorrow, as the old
one becomes obsolete. This constantly changing technology has necessitated retraining for new
tools and technologies so that all professionals’ skills are current.

Process Standards Introduction  ◾  223

In this scenario, any software development/maintenance organization must keep retraining
its staff so that they have current skills and thus can work on software projects without any
problems [9].

15.11  Software Project Abandonment
Sometimes due to various reasons, a software development project may not be completed and
may have to be abandoned. Reasons for such decisions could be many, but the most important
reasons include cost overrun, schedule overrun, lack of technological expertise, change in need of
the organization, organization closure, etc. Some external factors could be a change in political
circumstances, war, civil unrest, natural calamity, etc.

In some other instances, the project could be completed, but the project may have failed on
many counts. The project could have a schedule overrun, cost overrun, less than expected number
of features, poor quality, etc. In fact it is estimated that more than 70% of all software projects fail
on some account or an other [10].

Nevertheless, the success rate of software projects is improving. The biggest factor contribut-
ing to this fact is the increase in maturity level of software development/maintenance processes.
Increase in maturity level of software engineering and software project management is definitely
a factor which will help in keeping up the increasing success rate of software projects. Mature
software development processes help in reducing risks of schedule, cost overrun, and poor prod-
uct quality.

15.12  Defect Prevention
During software testing many software defects can be detected and subsequently rectified [11].
What is the cost of defect removal in software testing? Is there any alternative way to produce
quality software products with an acceptable number of defects at a lesser cost?

Research has shown that defect prevention during design and coding is cheaper than defect
detection and removal during software testing. Why is it so? How can any software development
organization take advantage of the information stated previously?

Let us study it. Suppose, during design some defects were introduced in the software design
due to faulty blueprint. This faulty design was used and coding was done. Since the design was
faulty, naturally the coding will also have faults. This scenario will be similar to the process
depicted in Figure 15.8 where an already defective part is being further processed to produce a
defective part.

For instance, suppose we have a module for tax calculation that has two components. One
component calculates federal government tax and another component calculates tax for the state.
Depending on the state, the tax rate is different from that of another state. In the design, this fact
was not taken into account, even by mistake. Now coding was done with this faulty design. So
coding also has the defect that a flat state tax is being calculated for all states. Due to faulty cod-
ing, the rounding of decimal places was wrong. The end result is that the application has some
defects. How many defects do we have now?

This information can now be found either during testing or when the application is deployed
and used by end users. But first of all, let us see how many defects were introduced in the applica-
tion. Suppose the state tax calculation is used at 100 places in the application. So we have 100

224  ◾  Software Project Management: A Process-Driven Approach

defects from the faulty design. Now suppose the decimal rounding is used at 200 places in the
application including doing the sum of taxes (federal and state). In total we have 300 defects in
the application.

Now let us analyze the cost impact in different scenarios (Table 15.1).
There are two scenarios when we consider the defect at the design stage. In first case, the

design defect is caught during design review stage and is fixed there so that this defect does not
enter the coding stage. In another scenario, the design defect is not caught and the entire coding
is done based on a faulty design. The defect was caught in testing and so now not only design is
to be changed but the coding is also to be changed. So the coding hours are also lost. In design
review the defect could have been caught within 2 h. But instead the design defect entered into
coding and so depending on the language and code reuse, a certain amount of coding hours are
lost. If the tax calculation component was developed using any object oriented language and the
code was reused throughout the application then may be 20 h of coding hours are lost. But if code
reuse was not implemented or any procedural language used, then chances are that all of 200 h
of coding are lost (100 defects to be fixed at 2 h per defect fixing). Coming to the coding defect,
since the defect is at 200 places and it takes 3 h to fix each defect, it will require 600 h to fix all
these coding defects. Compared to these costly scenarios, if the defects were caught at the point

Table 15.1  Defect Cost Analysis

Stage
No. of

Defects
Defect

Multiplication

Time
Required for

Fixing (h)
Hourly

Billing Rate
Cost of

Fixing ($)

Design defects 1 2 100 200

Coding defects due
to design defects

100 100 200 60 12,000

Coding defects 1 3 60 180

Coding defects into
testing

200 200 600 60 36,000

Defective
part from

process 1 is
being fed

Wrong
product

Process 2 Process 3 Process 4 Process 5

Wrong
product

Wrong
product

Wrong
product

Figure 15.8  Input defective part is being processed to produce a defective part.

Process Standards Introduction  ◾  225

of origin of the defects, the fixing could have been achieved at a fraction of these costs. Even if it
would have taken some extra hours in conducting inspections, then those few hours could have
been spent well, in view of saving time and costs at downstream activities.

The moral of the story is that defect prevention is the best policy in software development
projects. The earlier the defect is caught in the development life cycle, the better.

That is why defect prevention is an integral part of software development projects. Defect
prevention is implemented using software engineering techniques.

15.13  Software Project without Process
In software industry parlance, there is a term called “jumping to the code”. On many software
development projects, the project teams start coding the moment they get the requirements. The
management at these places also thinks that making a project and process plan is a waste of time.
Steve McConnell, of Construx Software and the author of such books as Code Complete and
Rapid Development: Taming Wild Software Schedules argues that on many projects, jumping to
the code creates more rework and quality issues than it lets the project team do some productive
work. On many such projects, the actual schedule overruns by as much as 1500% with associated
cost overruns. These kinds of projects are characterized by more firefighting than anything else.

Here is a case study which shows how the lack of a well-defined process standard can severely
affect software projects.

Suppose a company realized that it was losing market share due to its obsolete technology infra-
structure. The root cause was that the order fulfillment cycle was taking more than 2 days compared
to the average of 1 day for the competitors. It was due to the fact that arranging trucks and loading
them from their warehouses was taking more than 10 h on average compared to an average of 3 h
for the competitors. This was happening because the warehouse application was not integrated with
their transportation management system. A team was formed to study and present recommendations
for improving the situation. After their study, the team suggested that the two applications should be
integrated seamlessly so that information from the transportation system would be available to the
warehousing system whereby the warehouses would have advance information about available trucks
and what kind of content can be loaded on these trucks. Using this information, they can plan for
truck loading and intimate the same to logistics service providers who supply trucks.

A software development team was formed with the task of integrating these applications. They
analyzed the interfaces of the two applications and started work on integration. After 2 months of
the start of their work, the MIS manager asked the project manager to submit a status report on the
project. The project manager submitted a report saying that the project would be completed 1 month
late because of difficulty faced by the team in understanding the interfaces for integration. The MIS
manager, in turn, called for a status review meeting and asked the project team to discuss the issues
on the project. In the meeting, the MIS manager realized that the project will not be completed even
within 1 month of delay as the team still lacked understanding of the tasks involved. Next day after
the meeting, the MIS manager met the CIO of the company and informed him about the situation.
The CIO then decided to scrap the project and decided to hire a specialist service provider that was a
expert on integration work. Later, the service provider team was able to do integration within 3 weeks.

During his study on why the project failed in the first place, the CIO found that his MIS
team failed because they were not following a standard process. Everything done by the team was
on ad hoc basis. The team lacked skills on specialized tasks like integration, and so a plan should
have been made first to train the team for the associated skills. Only then they should have started

226  ◾  Software Project Management: A Process-Driven Approach

working on their tasks. He also found out that the project manager had not included a quality
review process in his project plan. Without sticking to quality control at each stage of the project,
it is impossible to achieve worthwhile quality at the end of the project.

The CIO published his findings on the company intranet and later set up a process control
group at the MIS level whose task was to ensure each project would incorporate quality control as
well as adherence to standard processes.

So we see that if any project is executed without a standard process then there are risks of proj-
ect failures in terms of quality, costs, and schedules.

15.14  Process Improvement
One of the goals of CMMI standards is to select and deploy incremental, innovative improve-
ments that measurably improve the organization’s processes and technologies [12]. How an orga-
nization is currently using processes to execute projects and how performance on these projects
can be improved further is a continuous process that needs to be measured, analyzed, and correc-
tive actions taken. This will help in improving productivity and quality further, which in turn will
result in increased customer satisfaction and reduced costs of operations.

Some techniques that can provide substantial gains include peer reviews, code inspections,
automation, and standard templates (Figure 15.9).

Process improvement is the most important aspect of implementing software process models.
The CMM model has a maturity level of 5 when companies reach optimization level. At this level,
companies have a separate software engineering process group (SEPG) that not only oversees
implementation and observation of follow-up of process standards on projects, but also keeps
looking for opportunities to improve processes further. Whenever they find that some process can
be improved, it makes a plan of implementing an improved process on projects. It develops the
new process model and then chooses an appropriate project to pilot it. The project is then executed
with this new process model. Results of that project are analyzed and assessed to determine if the
project benefited from the new improved process model. If it does then this new process model is
applied to all projects that get executed with the same base model.

Problem areas
encountered Review reports

Customer
suggestions

Customer
complaints

Process
improvement
opportunity

Audit results

Figure 15.9  Process improvement opportunities.

Process Standards Introduction  ◾  227

15.15  Final Word
Any person or organization can learn a new thing in two ways. It can either do trial and error
or use past experience (both success and failure) to learn. If the person or organization is always
resorting to trial and error, then it can be said that it is not learning from past experience. Most
people learn through experience. As they age, they have ample experience to cope with even dif-
ficult situations in life. This is because they apply the learning they have gained in the past to deal
with the current situation. Sadly in context of organizations, past experience is often not applied
to deal with new challenges. In software services companies, they may have executed hundreds
of projects in the past but when a new project arrives, they reinvent the wheel in planning and
executing this project (not using the experience of past projects). They simply do not apply the past
learning. In effect, they resort to trial and error for dealing with a new situation.

If these companies want to improve, then repeatable process techniques (in form of software
development process standards) is extremely useful. For using statistical methods, data from past
projects is saved in a repository. When a new project arrives, past data can be retrieved and put to
use. For instance, effort and cost estimates for a new project can be calculated using the data from
similar past projects.

This is true for most activities that are similar to past projects. If some task that is totally differ-
ent from past projects arrives, in those cases, statistical methods will not work. In such cases, the
project is to be treated like a research and development project and should be executed accordingly.

Review Questions
15.1	 Discuss if quality processes alone can produce a quality product.
15.2	 What is the difference between process quality and product quality?
15.3	 Name some of the standards for software development projects.
15.4	 What are the costs of nonstandard processes in software development projects?
15.5	 What kinds of processes are involved in any software development project?
15.6	 What factors contribute to software development/maintenance project abandonment?
15.7	 What can be done to avoid project abandonment?

Recommended Readings
	 1.	 K. Ewusi-Mensah (2003) Software Development Failures: Anatomy of Abandoned Projects, MIT Press,

Cambridge, MA.
	 2.	 H. Fujita, M. Mejri (2005) New Trends in Software Methodologies, IOS, Amsterdam, The Netherlands.
	 3.	 M. Wiener (2006) Critical Success Factors of Offshore Software Development Projects, Springer, London,

U.K.
	 4.	 T. Li (2008) An Approach to Modelling Software Evolution Processes, Springer, Berlin, Germany.
	 5.	 R. Conradi (2006) Software Process Improvement: Results and Experience from the Field, Springer, Berlin,

Germany.
	 6.	 J. T. Marchewka (2006) Information Technology Project Management, Wiley, New York.
	 7.	 S. H. Kan (2003) Metrics and Models in Software Quality Engineering, Addison-Wesley, Boston, MA.
	 8.	 B. Meyer, M. Joseph (2007) Software Engineering Approaches for Offshore and Outsourced Development

Projects, Springer, Berlin, Germany.

228  ◾  Software Project Management: A Process-Driven Approach

	 9.	 S. Datta (2007) Metric-Driven Enterprise Software Development: Effectively Meeting Evolving Needs,
J. Ross Publishing, Fort Lauderdale, FL.

	 10.	 J. McManus (2004) Risk Management in Software Development Projects, Butterworth-Heinemann,
Oxford, U.K.

	 11.	 D. Huizinga, A. Kolawa (2007) Automated Defect Prevention: Best Practices in Software Management,
Wiley, Hoboken, NJ.

	 12.	 E. McGuire (1999) Software Process Improvement: Concepts and Practices, Idea Group Inc, Hershey, PA.

229

Chapter 16

Software Process Standards
and Process Improvement

In the previous chapter, we learned

◾◾ What is software engineering management?
◾◾ How are statistical process control techniques useful for software projects?
◾◾ What are the benefits of the standard process model implemented across the

organization?

In this chapter, we will learn

◾◾ What are the major process standard models for software development?
◾◾ What are the major process improvement models?
◾◾ What is a process improvement life cycle?
◾◾ How does process improvement help on software projects?

16.1  Introduction
Software product development for large software products, especially belonging to governments or
global corporations, needs highly structured project management methodologies. The size of these
projects is in excess of 1 million lines of code. They require software development teams in excess
of 50 or more professionals. Sometimes the team size could be in excess of 500 professionals. In
fact, to manage such large numbers, the product itself is broken down into many product compo-
nents and the project team is divided into many smaller project teams; each team is responsible for
the development of one product component.

230  ◾  Software Project Management: A Process-Driven Approach

An informal and unstructured approach to manage such large teams is impossible. To manage
such large sized teams, a structured and well-defined process and project management is a must [1].
The entire process should also be very formal. A formal, rigid, and structured approach prevents
chances of miscommunication and errors.

To facilitate such structures, organizations like the ISO, IEEE, and Software Engineering
Institute at Carnegie Mellon University developed many process standards. These process stan-
dards define what process steps must be followed during planning and execution of projects. They
also define how to keep improving the process so that better product quality and process produc-
tivity can be achieved continuously.

On the other hand, on many projects, agility is required to take care of changing business
requirements so that the software product being built takes these changes into its design instantly,
and fulfills the purpose for which it is being built. This concept is in direct contrast to the formal
and rigid approach of plan driven methodology.

Any software project has to adjust itself between these two extremes. Depending on the
requirements, it can be a purely plan driven project, a rather agile one, or something in between.

16.2  CMMI Standards
The Software Engineering Institute (SEI) at Carnegie Mellon University has been engaged in doing
pioneering work related to software engineering for more than two decades. It has been develop-
ing standards for software engineering. These standards have been helping software services and
products companies to develop, maintain, and operate software systems in an economical man-
ner. But their more important objective is to help companies in producing software products and
applications with extremely high quality.

Over the years, they have developed many standards. Some of their popular standards include
the CMM (Capability Maturity Model), PCMM (People Capability Maturity Model), SECM
(Systems Engineering Capability Model), etc. With the passage of time, these standards were
modified or discontinued as market conditions changed as well as due to increasing maturity of
developing and maintaining software products and systems; processes of doing these activities also
changed.

Creation of separate process models for different aspects of product development or mainte-
nance resulted in some problems for companies adopting these standards. For instance, when a
software product was being developed, a CMM was used. When the product was released and
went into production, SECM was followed. So the software vendor had to keep developing and
maintaining two separate models for its processes.

Adopting, refining, and maturing any single process model is a Herculean task. It not only
involves hiring experts and outside consultants for benchmarking and then certifying processes,
but it also involves management commitment and demands a deep involvement of all employees of
the organization. It requires everybody to change the way they do their jobs. Change management
is one of the most difficult tasks in any organization.

One more consideration that goes against having more than one process is that of keeping
two teams for doing similar work. When any bug fixes are required in the maintenance of a
software product, a separate development team will do the fixing. Keeping two teams doing
almost the same job is costly. On the other hand, if only one team is doing both development

Software Process Standards and Process Improvement  ◾  231

and maintenance, then the team will have to follow two processes, which is very difficult. It may
lead to quality and productivity issues.

To overcome these things, a single process definition was conceptualized which can be applied
across all processes of software development, maintenance, and integration. SEI released CMMI
(Capability Maturity Model Integration) to provide a single platform of processes for all kinds of
activities related to software development, integration, and maintenance [2].

In this book we will follow conventions as stipulated in CMMI standards.

16.2.1  CMMI Standards in a Nutshell
The CMMI process model is divided into two parts: CMMI-DEV and CMMI-ACQ. CMMI-
DEV is for organizations that either develop and maintain their own software products or applica-
tions or outsource it to service providers. CMMI-ACQ is for service providers. Both parts have the
same high-level process model so that they are compatible with each other. SEI is also developing
a version of CMMI for services (CMMI-Services).

Each of these parts is divided into the main process area categories of process management,
project management, support, and acquisition. The process-management process provides details
as to how any organization can refine and improve its processes within the organization that will
be doing the outsourced project. This aspect of CMMI standards differs from standards developed
by other agencies like ISO or IEEE. These agencies develop standards that are more at project level
and not at organization level.

Process areas inside the project management category include project planning (PP), project
monitoring and control (PPC), integrated project management (IPM), requirements management
(REQM), and risk management (RSKM).

Process areas inside the acquisition category include solicitation and supplier agreement devel-
opment (SSAD), agreement management (AM), acquisition requirements development (ARD),
acquisition technical management (ATM), acquisition verification (AVER), and acquisition vali-
dation (AVAL).

Process areas inside the support category include configuration management (CM), decision analy-
sis and resolution (DAR), measurement and analysis (MA), and process and product quality assurance
(PPQA).

These categories of processes in CMMI are divided horizontally. CMMI is also divided verti-
cally in the form of maturity or capability levels. Any company looking to certify its processes
needs to certify certain processes in a phased manner, over time. In staged implementation, certi-
fication is done for a single maturity level instead of multiple maturity levels. They should get to
level 1 from level 0 by certifying processes so that many of its processes can be performed using
some ad hoc measures. If any company wants to improve its processes from level 1 to level 2 then it
should be able to demonstrate that its processes can be managed. At level 3, it should have its pro-
cesses well-defined. At level 4, its processes should be improved using statistical processes’ meth-
ods. At level 4, its processes should also be repeatable. At level 5, its processes should be optimized.

At level 2, “requirement management,” “project planning,” “project monitoring and control,”
“supplier agreement management,” “measurement analysis,” “process and product quality assur-
ance,” and “configuration management” processes should be certified. At level 3, “requirements
development,” “technical solution,” “product integration,” “verification,” “validation,” “organiza-
tion process focus,” “organization process definition + IPPD,” “organization training,” “integrated

232  ◾  Software Project Management: A Process-Driven Approach

Table 16.1  CMMI Standards in a Nutshell

Process Area SDLC Phase
Management

Area Features

Organizational innovation
and deployment

All Organization
management

Project process change

Organizational process
definition + IPPD

All Organization
management

Project process definitions

Organizational process
focus

All Organization
management

Identify key process areas at
project level to modify

Organization process
performance

All Organization
management

Evaluate changed project
process areas for performance

Organization training All Organization
management

Identify key process areas for
training staff

Project monitoring and
control

All Project
management

Monitor and control project
to keep project on track

Project planning All Project
management

Make sound project plan

Process and product
quality assurance

All Project
management

Use SPC methods and process
compliance for both process
and product quality

Quantitative project
management

All Project
management

Use SPC methods to monitor
and control project

Risk management All Project
management

Define and mitigate risks on
projects

Supplier agreement
management

Any Project
management

Manage suppliers effectively

Causal analysis and
resolution

Any Project
management

Risk and issue mitigation and
project control

Integrated project
management + IPPD

All Project
management

Collaboration of all disciplines

Measurement analysis Any Project
management

Taking process and product
measurements

Configuration
management

All Project
management

Change management

Decision analysis and
resolution

Any Project
management

Project control

Requirements
development

Software
requirements

Product
life-cycle
management

Use standard defined
processes for requirement
development

Software Process Standards and Process Improvement  ◾  233

project management + IPPD,” “risk management,” and “decision analysis and resolution” areas
need to be certified. At level 4, “organization process performance,” and “quantitative project
management” areas need to be certified. At level 5, “organization innovation and deployment,”
and “causal analysis and resolution” areas need to be certified.

In Table 16.1 we can see that out of 21 process areas, 5 areas are defined for a software devel-
opment life cycle, 11 areas for project management, and 5 areas for organization processes. So
clearly there is a strong process focus on improving organizational processes that help in delivering
consistent product quality across projects.

16.3  ISO Standards
ISO (International Organization for Standards) develops standards for certifying business pro-
cesses [3]. This approach is a fundamental shift from the traditional approach of certifying
only end products or services for quality. In fact, ISO standards do not make any standards for
certifying end products or services at all. They believe if any product or service is produced/
delivered using a standard process, then quality of that product/service will be high. On the
contrary, if no process or bad process is applied to produce/deliver any product/service, then
quality of the produced/delivered product/service will be most likely bad.

ISO standards are very abstract because the top-level standards are meant to be applied to just
any kind of organization engaged in manufacturing or providing services or any kind of business.
At a very detailed level, these standards are branched out. So specific detailed standards apply to
organizations operating in specific industries. For each standard there are specific requirements.
When any organization applies for certifications, they are audited first for top-level requirements
and then for specific detail level requirements.

For organizations involved in providing software related services, the detail level requirements
relate to the way software services are performed.

16.3.1  ISO Standards in a Nutshell
If you study ISO standards, you will see that most emphasis is given on project management.
The other emphasis is given on process quality. It is believed that by achieving process quality we
can automatically achieve product quality. Though this is debatable, it is quite clear that without
process quality, product quality cannot be achieved (Table 16.2).

16.4  IEEE Standards
IEEE is a global organization developing, maintaining, and publishing standards for many areas
related to software development, maintenance, and operation. They also have the goal to make
computer science and computer engineering recognized disciplines, similar to the status enjoyed
by other science and engineering disciplines, like electrical engineering, mechanical engineering,
physics, etc. They believe computer science and computer engineering currently are in a prescience
and preengineering stage, and will evolve to become fully legitimate disciplines in the near future.
They have also advocated that computer science and computer engineering are two separate disci-
plines and should be separate from each other to help them evolve.

234  ◾  Software Project Management: A Process-Driven Approach

To make these disciplines fully legitimate disciplines and professions the IEEE Computer
Society has formed joint committees with organizations such as ACM and the Open Group. They
have taken following initiatives to achieve their goal:

	 1.	Help, advocate, and initiate start of professional education system.
	 2.	Help in accreditation of professional education programs.
	 3.	Help in skills development mechanisms for professionals entering the practice.
	 4.	Help in creation of certification for professionals administered by the profession.
	 5.	Advocate licensing of professionals administered by government authorities.

Table 16.2  ISO Standards in a Nutshell

Section Process Area SDLC/Project Area Features

Section 1 Introduction Project management General usage
guidelines

Section 2 Implementation
approach

Project management Approach for
implementation

Section 3 Definitions Project management Definitions of terms
used in the guide

Section 4 Systemic and resource
requirements

Project management Resource requirements
planning for software
and hardware resources

Section 5 Quality planning and
control

Project management Quality planning and
control

Section 6 Resource
requirements for
quality control

Project management Resource requirements
planning for quality
control

Section 7 Software life-cycle
processes

Section 7.1 Product realization Product planning Product planning

Section 7.2 Customer priorities Software requirements Software requirements

Section 7.3 Software design,
construction testing

Software design,
construction and testing

Section 7.4 Supplier management Supplier management

Section 7.5 Software build and
release

Software build and
release

Section 7.6 Project monitoring Project monitoring

Section 8 Remedial measures Project control Project control

Software Process Standards and Process Improvement  ◾  235

	 6.	Help in creation of professional development programs to maintain currency of knowledge
and skills.

	 7.	Help in creation of code of ethics.
	 8.	Help in creation of professional societies.

The IEEE Computer Society is also developing a body of knowledge for the computer engineer-
ing profession. It is known as SWEBOK (Software Engineering Body of Knowledge).

16.4.1  IEEE Standards in a Nutshell
IEEE standards are focused toward using standard processes and tools to achieve project excel-
lence and make software projects successful. Apart from guidelines for process compliance, IEEE
also addresses key issues and practical considerations which arise on software projects. Apart from
process definitions for SLDC phases, it also provides guidelines for supporting processes like con-
figuration management; software engineering (project planning/control); process and product
quality; methods and tools; and related disciplines like mathematics, computer science, etc., which
are needed to execute software projects (Table 16.3).

16.5  Rational Unified Process
When things do not work at extremes, then a middle ground is sought. This is how you can describe
Rational Unified Process (RUP). RUP has a linear structure like waterfall models as well as iterative
steps like those in agile methods. When Grady Booch, James Rumbaugh, and Ivar Jacobson worked
together and merged their own theories to form a unified process model at Rational Corporation
(later IBM Corporation), they had one thing in mind: remove the bottlenecks from the waterfall
model and make a framework that will allow smooth software development, even if uncertainties
exist in the development process. The model allowed linear progression for straightforward tasks that
are crystal clear. For not so clear tasks, the model advocated iterations so that clarity can be achieved
and tasks can be completed over many iterations. The model is a matrix, where project phases of
inception, elaboration, construction, and deployment are pitted against the disciplines of business
modeling, requirements, analysis and design, implementation, and test and deployment. There are
three supporting engineering disciplines of configuration management, project management, and
environment management. Later the RUP model was modified to include production maintenance.

16.5.1  RUP in a Nutshell
Table 16.4 depicts the important aspects of RUP.

16.6  Agile Methodologies
You can easily discern the difference between manufacturing and engineering if you can visu-
alize a car assembly line and a sea bridge. Agile methodologies in manufacturing and in soft-
ware development are entirely different concepts. Whereas in manufacturing, agile methods were
introduced to reduce inventory costs and to improve product quality. In the software industry,

236  ◾  Software Project Management: A Process-Driven Approach

Table 16.3  IEEE Standards in a Nutshell

Process Area SDLC Phase Management Area Features

Software
requirements

Software
requirements

Project management Requirement
elicitation,
development,
validation,
management

Software design Software
design

Project management Key issues, structure
and architecture

Software construction Software
construction

Project management Managing activities,
practical
considerations

Software testing Software
testing

Project management Test levels, test
strategy, verification,
validation, practical
considerations

Software maintenance Software
maintenance

Project management Maintenance
method, cost
economics, practical
considerations

Software configuration
management

Project management

Software engineering
management

Project management/
organizational
management

Project planning and
control, review and
evaluation

Software engineering
process

Project management/
organization
management

Process change
management,
process assessment,
measurement

Software engineering
tools and methods

Project management Tools for
requirements, design,
construction, testing,
maintenance,
methods for all SDLC
processes

Software quality Project management/
organization
management

Quality management,
practical
considerations

Knowledge areas of
the related

Project management

Software Process Standards and Process Improvement  ◾  237

agile methods were introduced to deal with uncertainties and subsequent change requests in soft-
ware requirements. One point is common in the agile concept at both places. While agile methods
in manufacturing ensure smooth operations by controlling inventory intake, agile methods in soft-
ware development ensure smooth project progress by controlling requirement intake. That is the
crux of the existence of agile models for software development.

Extreme programming is the perfect example of extreme agility. It only takes a handful of
requirements at a time and delivers a fully functional product by developing the product only for
these requirements. When an iteration is complete, another batch of requirements is taken in the
next iteration. Extreme programming introduced some noticeable concepts in software develop-
ment like test-driven development, pair programming, story boards, etc. The Scrum model is simi-
lar to extreme programming in that only a handful of requirements are taken to develop a fully
functional product to meet these requirements. Scrum introduced concepts like requirement log,
scrum master, product owner, etc.

Table 16.4  RUP in a Nutshell

Process Area
(Workflow)

SDLC Phase
(RUP Phase) Management Area Features (Artifacts, etc.)

Business modeling Inception Project management

Requirements Inception Project management Requirement specification
document

Analysis and design Elaboration Project management Use cases, activity diagrams

Implementation Construction Project management Source code, source code
documentation

Test Transition and
all other phases

Project management Test strategy, defect log

Deployment Transition and
all other phases

Project management User and system manuals,
user training

Operations and
support

Production and
all other phases

Program
management

Maintenance plans, bug
list

Configuration and
change control

All phases Project management Artifact versions, software
code versions

Management
environment

All phases Program
management

Process improvement
documents, project
support tools and methods

Project
management

All phases Project management Project plans, status
reports

Infrastructure
management

All phases Program
management

Process improvement
documents for operations,
project support tools and
methods for operations

238  ◾  Software Project Management: A Process-Driven Approach

16.6.1  Extreme Programming in a Nutshell (Table 16.5)

16.7  Test Process Improvement Techniques
All the major software process standards are meant to help software projects in all aspects of the
project. They provide a process model so that a specific software development life cycle can be
established. They provide a mechanism so that software development process can be improved (for
increasing productivity and quality).

There are also some process improvement models which have been devised exclusively to
improve the testing part of the software projects. Some of the techniques that have been devised
over the years include Test Maturity Model (TMM), Critical Test Process (CTP), Test Process
Improvement (TPI), and Systematic Test and Evaluation Process (STEP).

There have also been efforts made by people and organizations to devise mechanisms for pro-
cess improvement that are not specific to the software industry, but in fact they are generic in
approach and thus can be applied to any industry. One of the most famous of these techniques is
Deming’s PDCA approach.

Table 16.5  Extreme Programming in a Nutshell

Process Area SDLC Phase Management Area
Features

(Artifacts, etc.)

Pair programming Construction Project management

Planning game All Project management Release planning,
iteration planning

Test driven development Construction,
test

Project management Unit tests, source
code

Whole team concept All Project management Customer is a team
member

Continuous integration
refactoring

Construction Project management Central and single
code repository

Design Project management Improving design

Small releases All Project management Lower risk

Coding standards Construction Project management Maintainable code

Collective code ownership Construction Project management Anybody can change
code

Simple design Design Project management Maintainable design

System metaphor Requirements Project management One requirement at a
time

Sustainable pace All Project management Avoid overloading
resources

Software Process Standards and Process Improvement  ◾  239

16.7.1  Deming’s PDCA Technique
The earliest process improvement concept can be traced back to Deming’s Plan, Do, Check and
Act (PDCA) model, which was a general purpose method. It can be applied by anybody who
wants to improve his or the organization’s processes. It is cyclical in nature, and so its scope is
continuous.

The quality of a software product can be achieved either by doing quality control of the prod-
uct (by means of thorough testing the product for quality), or by observing development processes
rigorously as well as improving them so that quality of the software product is improved. In other
words, instead of keeping focus on the quality of the product, improving the process that creates
the software product will improve quality of the software product. The ISO standard model for
software development is based solely on this assumption. Other process models also stress this fact
(Figure 16.1).

16.7.2  Test Maturity Model
SEI-CMU has a CMM process model for software development. Test Maturity Model (TMM)
was developed to complement CMM as it lacked a maturity model for software testing. TMM
has a five level process for improving testing processes that correspond to the five levels of CMM
(Figure 16.2).

Do

Check

Act

Plan

Figure 16.1  Deming’s PDCA process improvement cycle.

TMM level 1

TMM level 2

TMM level 3

TMM level 4

Ad hoc testing

Test policy and goals

Integration with development

Metrics and measurements

TMM level 5 Continuous test improvement

Figure 16.2  TMM levels and process definition.

240  ◾  Software Project Management: A Process-Driven Approach

16.7.2.1  Level 1: Initial Level

An organization can be placed at level 1 if its testing functions are immature. Testing function is
considered to be secondary to software development and testing is carried out after the software
is developed. There is no planning for testing and all testing on the project is done on an ad hoc
basis.

16.7.2.2  Level 2: Definition

An organization can reach level 2 in the TMM when the testing function can be organized by
means of setting of a testing policy and a goal. The company is also able to make a testing plan and
can employ basic testing techniques and methods.

16.7.2.3  Level 3: Integration

An organization reaches level 3 when it can create a distinct testing function on a software devel-
opment project. At this level, an organization is able to integrate this distinct testing function with
the development function. The testing life cycle will include a testing function complete with its
own methods, processes, and standards.

16.7.2.4  Level 4: Management and Measurement

At level 4, an organization can effectively measure all testing processes and methods. Managing
anything requires that it should be measured first. If measurement is not possible, then it cannot
be managed. Thus, when any organization reaches level 4 in TMM, its testing processes can be
effectively measured and thus managed.

16.7.2.5  Level 5: Optimize

At level 5, an organization will be able to improve its processes to cut costs and improve quality
by evolving its processes beyond the current status. At this stage, an organization will be able to
reduce defects in the software product by implementing a comprehensive quality assurance policy
during the entire software development life cycle.

16.7.2.6  Further Developments in TMM

In the TMM, goals and subgoals are defined for each level of maturity. An organization must be
able to achieve these goals to reach to that level. The goals are allocated to roles of manager, devel-
oper/tester, and customer/user. People assigned to these roles must achieve their own set of goals
as defined in the TMM level for a particular level.

After the advent of CMMI (Capability Maturity Model Integration) by SEI-CMU, the TMMi
(Test Maturity Model integration) model was developed, which replaced the TMM. The TMM
was meant only for software development projects and not for software maintenance projects.
TMMi is aimed to work both for software development as well as for software maintenance
projects.

Software Process Standards and Process Improvement  ◾  241

16.7.3  Test Process Improvement
TMM is essentially a staged model. The maturity of an organization is improved through stages
that correspond to levels of the model. The TPI (Test Process Improvement) model is, in contrast,
a continuous model where the test function is improved not through stages or levels but rather
through a continuous approach (Figure 16.3).

TPI has a set of four key areas, and a successful implementation of this model is achieved when
the corresponding cornerstones are achieved. These key areas and their associated cornerstones
include life cycle, organization, infrastructure and tools, and techniques. When an evaluation
of an organization is done for implementing the TPI process model, each of these key areas are
assessed on a scale of A–D, A being the lowest rank. If any key area is not mature enough to be
given even a low value of A, then that key area is not given any marks at all. Again, not all areas
can be given the full rating of D or even a C. They may be restricted to be given marks only up to
B. Some such areas include estimating and planning (under techniques key area).

When scoring is done for each key area and its subareas, the scores should also be linked to
each other. So if one area is related to another, a high score in the former and a low score in the lat-
ter cannot be done. It is because performance in one area will be directly or indirectly influenced
or related to the performance in the other area.

In a nutshell, TPI is a process reference model. Once a process model is assessed then it can be
classified on a scale of controlled, efficient, or optimizing rating. The optimizing rating means the
most mature process model, and controlled rating means the process model that can be managed
and process measurements can be taken. An efficient rating lies between these two ratings.

16.7.4  Critical Testing Process
Critical Testing Process (CTP) assumes that only some, not all, activities on a test function are
critical. If these critical activities can be measured, controlled, and managed, then the entire test-
ing function can be managed well. This concept is very different from other process models in
that other process models stress managing the entire test function. This process model works on
the same concept as defined by the Pareto method, which says 20% of the software product parts
contain 80% of defects and doing exhaustive testing of this 20% area will improve software qual-
ity tremendously.

Life cycle

Organization

Infrastructure and tools

Techniques

Test cycles, defect cycles

Initiatives, policies

Knowledge, skills, tools

Planning, estimating

Figure 16.3  TPI process definition—key areas, subareas, and associated cornerstones.

242  ◾  Software Project Management: A Process-Driven Approach

The CTP model is a content reference model. A context specific tailoring of the process
model is needed to make any improvement in the existing model. The tailoring consists of iden-
tification of any challenges, recognition of attributes of any good processes, and selection of the
order and importance of implementation of process improvements. During process assessment,
strong and weak process areas are identified. Based on the assessment, a list of process areas to
be improved is prepared and prioritized. The priority areas are marked per organization needs.
During the CTP assessment, some typical quantitative areas examined include defect detection
percent, return on investment on testing function, requirement coverage, risk coverage, test
release overhead, and defect report rejection rate. Some qualitative areas include test team role
and effectiveness, test plan utility, test team skills (in testing, domain knowledge, technology),
defect report utility, test result report utility, change management utility, and balance (Figure
16.4).

A plan is prepared to improve all the weak areas identified in the assessment. The CTP itself
makes generic suggestions for improvements in those areas. But to make the implementation effec-
tive, the implementation team should better tailor the suggested recommendation to suit the needs
of the organization.

16.7.5  Systematic Test and Evaluation Process
STEP (Systematic Test and Evaluation Process) is similar in its approach to that of CTP; STEP
is a content reference model and not a process reference model. The implementation team can
implement the process improvement project in any order or priority of process areas. This concept
is different from the TMM model where the organization seeking TMM implementation must
implement it in process areas in the order specified by the TMM model.

This model recommends that a testing process should have certain specific characteristics.
These characteristics include a requirement based testing strategy. Testing should start at the
beginning of the software development life cycle. Test cases are used as requirements and usage
models. Testware design is the basis for software design. Defects are detected at their origin and
should be removed at that point. Defects are systematically analyzed, testers and developers work
together on defects.

Defect
detection (%)

Risk
coverage

Release
overhead

Defect
rejection (%)

Quantitative
improvement areas

CTP model

Return on
investment

Requirement
coverage

Roles
e�ectivenes

Defect report
utility

Change
management

utility

Team
balance

Qualitative
improvement areas

Test plan
utility

Team
skills

Figure 16.4  CTP process model.

Software Process Standards and Process Improvement  ◾  243

The STEP model is a complementary process that works with agile methodologies of software
development like Scrum and eXtreme Programming. The software development life cycle starts by
making test cases that form the basis for requirements. The source code development starts with writ-
ing code to validate these test cases. This approach is known as test-driven development (Figure 16.5).

In the STEP model, three areas of testing are focused for improvement: planning, acquisition,
and measurement. An interview across the organization is arranged to assess qualitative improve-
ment, and quantitative improvement is sought from measured metrics. The quantitative metrics
include test status over time, test requirements, defect trends including detection, severity and clus-
tering, defect density, defect removal effectiveness, defect detection percentage, defect life cycle, and
cost of testing. Qualitative metrics include defined test process utilization, and customer satisfaction.

16.7.6  Process Improvement Life Cycle
When we strive for process improvement, we need to start with a launching pad. Process standard
models provide this launching pad. Process improvements cannot be done in a big bang approach.
Every new approach should be first tested on a pilot basis, and when the results are found satisfac-
tory, then the new approach can be applied across the board on all projects.

Any process improvement strategy can be implemented using some basic steps (Figure 16.6).

Test status

Defect
density

Defect
removal e�.

Defect
detection (%)

Test process
utilization

Customer
satisfaction

Qualitative
improvement areas

Quantitative
improvement areas

STEP model
(acquisition, plan, measurement)

Test
requirement

Defect
trends

Figure 16.5  STEP process model.

Initiate and find
gaps

Evolve

Validate Implement Define and
redefine

Measure and
compare

Prioritize and
plan

Figure 16.6  Steps for implementing process improvement.

244  ◾  Software Project Management: A Process-Driven Approach

The entire exercise is taken as a project. At the beginning of the project, the initiative is taken
to start the process improvement project. The stakeholders make their commitment for the project
and a team is formed of outside consultants and process champions sourced from the organiza-
tion. First, they compare the existing process model with the standard model and find and record
all deviations (and gaps) that exist. The project team then starts making stocks and measurements
of attributes of existing processes. Once measurements are taken, they are compared with the
standard values for attributes of processes as defined in the standard process model that is being
implemented. At the end of this exercise, the project team is able to make a list of process areas that
need improvement and new process areas that are to be introduced. The project team then finds
which of the areas (that need improvement) has more importance compared to others and assigns
higher priority to these high importance areas. Then it can make a project plan to implement the
changes in the process model based on these priorities. It will define process design for the new
process areas to be introduced and redefine design for process areas that need to be improved. This
exercise will create a roadmap for implementing the improved process model. Once this roadmap
of implementation is ready, it can be implemented on a pilot basis. Results from this pilot study
can be validated. If the results are good, then the process model can be implemented organization
wide.

This exercise of process improvement is in general a continuous approach. Once a new and
improved process model is working fine, this model can be further improved by evolving it. The
same cycle of process improvement done previously can be repeated to get more benefits from
further process improvements.

16.8  Process Standard Certifications
If an organization certifies its processes with any of the major certification organizations like
IEEE, ISO, SEI-CMU, etc., then they get various kinds of benefits, some of them obvious and
some of them not so obvious. Let us see some of the benefits here.

16.8.1  Benefits of Certification
All of the major certifications provide a framework and a systematic approach to managing
business processes to produce a product/service that conforms to customer expectations [4]. If a
supplier (software services provider) has certified its processes to any of these standards, then its
customers can be assured that the products or services shipped by them will have a certain level
of quality. This creates a comfort level for customers in doing business with its supplier.

There are many benefits to these certifications:

◾◾ These certifications help in improving business processes and thus savings in operation
costs.

◾◾ These certifications help in improving business processes waste/scrap reducing, and improv-
ing product quality.

◾◾ These certifications are used by many corporations as a marketing tool, as they help to bag
projects from customers. Many customers make it mandatory for its suppliers to have this
certification.

◾◾ Many countries impose certification on exporters so that their product/services have a cer-
tain level of quality.

Software Process Standards and Process Improvement  ◾  245

16.8.2  How to Apply for a Certification
To become certified, a business must develop a quality system that meets the requirements
specified by the standard for which it has approached, for certification in the area and product
for which the kind of products or services the organization produces/delivers [5]. Once the
organization quality system has been documented and implemented, the organization must
invite an accredited external auditor to evaluate the effectiveness of their system. If the audi-
tor determines that the quality system meets all certification requirements, they will certify
the system.

16.8.2.1  Certification Requirements

	 1.	A supported language for documenting quality practices
	 2.	A system to track and manage evidence that these practices are being followed in the

organization
	 3.	An independent audit to assess and certify compliance

16.8.2.2  Time and Cost of Certification

There are many advantages to these certifications, but certification process is time consuming and
costly. It can take anywhere from 6 to 18 months to document business operations. Then it may
take another 1–3 months to verify actual operations. So in total, it can take from 7 to 21 months
for the certification process, depending on the size of the organization and complexity of the busi-
ness processes.

The certification process may cost anywhere from $10,000 to $20,000 in the form of consul-
tant fees and fees for certification registration. Apart from fees, additional costs include the time
that has to be spent by the employees in the whole process.

16.8.3  Future of Certifications
Most certification agencies work with governments to help them adopt standards so that products/
services produced/delivered by government bodies have good quality. These agencies keep devel-
oping new standards for software development, software services, software products. Most of the
time they are developing hardware/software interface standards for many new devices as well as
their delivery.

Review Questions
16.1	 Do CMMI standards support iterative software development?
16.2	 How are SDLC processes supported in CMMI?
16.3	 How are ISO standards different compared to other standards like CMM or IEEE?
16.4	 Do IEEE standards support iterative software development?
16.5	 Describe the STEP process. What are the main components of this process?
16.6	 What are the major areas of Deming’s PDCA process?
16.7	 Describe the TMM process.

246  ◾  Software Project Management: A Process-Driven Approach

Recommended Readings
	 1.	 P. Rook (1990) Software Reliability Handbook, Springer, New York.
	 2.	 M. B. Chrissis, M. Konrad, S. Shrum (2003) CMMI: Guidelines for Process Integration and Product

Improvement, Addison-Wesley, Reading, MA.
	 3.	 R. W. Miller (2004) Managing Software for Growth: Without Fear, Control, and the Manufacturing

Mindset, Addison-Wesley, Reading, MA.
	 4.	 D. F. Rico (2004) ROI of Software Process Improvement: Metrics for Project Managers, J. Ross Publishing,

Boca Raton, FL
	 5.	 L. Batten (2008) CMMI 100 Success Secrets, Emereo Pty. Ltd., Singapore.

247

Chapter 17

Process Selection

In the previous chapter, we learned

◾◾ What are the major process standard models for software development?
◾◾ What are the major process improvement models?
◾◾ What is a process improvement life cycle?

In this chapter, we will learn

◾◾ What are the differences between plan driven and agile software development?
◾◾ What are the strengths and weaknesses of plan-driven software development?
◾◾ What are the strengths and weaknesses of agile software development?
◾◾ What are the best practices for a software life cycle?
◾◾ How is the best model for software development chosen?

17.1  Introduction
The traditional waterfall model (also known as plan driven), as a software development life cycle,
has been criticized for issues like high risk, long time in delivery, heavy upfront commitment,
and inflexiblity [1]. Although the waterfall model has positive attributes and is extremely useful
for large projects, organizations and individuals have been in search of alternative approaches
for software development that can help in mitigating the negative aspects. Rational Corporation
introduced such an alternative with its Unified Process Model for software development proj-
ects. Similarly, other popular approaches like Scrum [2], eXtreme Programming [3], Cleanroom

248  ◾  Software Project Management: A Process-Driven Approach

Software Engineering [4], Microsoft Solutions Framework, Oracle Unified Method, etc., have
offered different life-cycle models to overcome the shortcomings of the waterfall model.

Today agile and waterfall model camps both claim they are better than the other. Who is right
and who is wrong?

17.2  History of Plan-Driven Model
Any work undertaken as a project must have some purpose, stated or otherwise. The work must
have a start date and an end date. If not a firm end date then a probable one may do. How much it
will cost (probable cost) should also be known at the beginning. What exactly will be the result of
this work should also be stated. The stakeholders, ensure these things are known in advance. They
also should know status of goings on during execution of the software project at regular intervals
so that they know that things are going smoothly or not (Figure 17.1).

When the size of a software project is large and may consume a considerable amount of time
and money, the stakeholders will have to pay considerable attention to most details about the
project. If this project is failing in any of the parameters mentioned so far (start date, end date,
project cost, project reports, project results, etc.) then the stakeholders will be in trouble as they
have large stakes in the success of the project. For this reason, the stakeholders evaluate the project
carefully before sanctioning it to make sure that the risk to start the project is worthwhile. In the
early days of computers and software, hardware used to cost many times more than the software.
So stakeholders paid more attention to hardware purchases and little attention to software. So
software projects were easily sanctioned, even when the software project team’s credentials were
not convincing enough. So in those days, software projects used to get delayed, or cost more than
planned, etc., due to little attention from stakeholders. Slowly, due to advancement in technology,
the computer hardware started becoming cheaper while software costs remained the same. Thus,
while the cost of hardware to software in early days was in the ratio of 100:1, now it has completely
reversed, it is now 1:100. So stakeholders today pay a lot of attention to software costs and do not
think twice about hardware costs.

Now, the software project teams have to continuously provide justification for every dollar
spent to the stakeholders showing their worth. Moreover, they have no option but to increase
their productivity and quality of work, consistently, to keep their jobs. Stakeholders also started
demanding visibility in the project so that they can know what is going on at any given time,
so that they may monitor progress. They started demanding a complete picture of the project
including a firm end date, cost, and product quality before sanctioning the project. The soft-
ware industry responded by implementing process standards, which could help in answering

Started on
time

Ended on
time

Success factors
for a project

Within
budget

Right
quality

Figure 17.1  Success factors for a project.

Process Selection  ◾  249

the questions of the stakeholders. The earliest models were the pure waterfall models. The water-
fall model had some shortcomings and so some refined waterfall models were developed in later
years.

When the stakeholders started having business models that were changing frequently, they
started asking the software industry to shrink the project duration, even if it meant higher costs.
The software industry in response came up with concurrent and parallel engineering methods of
software development so that the schedules could be collapsed and development cycles could be
reduced.

After analysis of hundreds of projects, many standards development organizations came up
with process standards. Some of them include CMM, CMMI, ISO, IEEE-SWEBOK, etc. These
standards come with a promise that if they are implemented, the software development processes
will be repeatable, predictable, matured, and will have the ability to improve processes continu-
ously, so that product quality and process productivity can be improved.

17.3  Strengths of Plan-Driven Model
Plan-driven or waterfall models have many strengths [5]. The entire software project can be
planned before work is even started on the project. Each phase of the project is well-defined and
all processes involved have firm start date and end dates. Each process also has well-defined rela-
tionship with other processes (Figure 17.2).

This allows for a preview of the entire project. The effort and cost estimate is provided at
the beginning of the project so that the stakeholders can decide if they want to proceed or not,
depending on the kind of expected project budget.

17.4  Limitations of Plan-Driven Model
In the plan-driven model, a working software product is available only after the complete devel-
opment life cycle is executed. That means if a project for building a software product is of 1 year
duration, the software product is available only after one year. For the entire year, the stakeholders
have no idea if the software product is being built correctly or not. Suppose the project took a year
for completion. After one year, the stakeholders see the software product and find that it is not
suitable for them, then the entire effort wasted along with the money spent on the project. This is
the single major risk in waterfall models (Figure 17.3).

Project
visibility Predictability

Waterfall model
strengths

Fine grained
project details Accountability

Figure 17.2  Strengths of waterfall model.

250  ◾  Software Project Management: A Process-Driven Approach

The second weakness of the waterfall model is that once the project plan is fixed, no changes
are allowed. This means that the software requirements cannot be changed. But, in practice,
due to various reasons, software requirements need to be changed many times during proj-
ect execution. If the software requirements are permitted to be changed, then the issue of
rework arises. Many parts of the already made software design and construction may need to
be changed and thus a lot of rework emerges. Rework causes project schedule and budget to
increase from planned figures. The escalated project schedule and budget then becomes a night-
mare for stakeholders.

17.5  History of Agile Methods
During the 1990s, Grady Booch, James Rumbaugh, and Ivar Jacobson had separately developed
some models for managing different parts of software life cycle [6]. Rational Corporation (IBM)
invited them to work on a project to make a complete model for managing the entire software
life cycle. This life cycle tried to eliminate all the problems associated with waterfall models. It
contained provisions for iterations, for tasks which are not very clear and need revision more than
once. This is the first time that concept of iterations for project tasks was conceived. Later, many
agile models were put forth by people and organizations who tried to solve some problems related
to software development models and came with good solutions in the end. Some of these models
include Scrum, eXtreme Programming, Oracle AIM, etc.

The crux of all these agile models is the concept that software development is a complex under-
taking and it can be best achieved using iterations. In the initial iteration, only the tasks which are
well-defined and well understood are taken in the project, and undefined or not so well defined
tasks are left for subsequent iterations. Over time, when these tasks are well understood, they are
taken in an iteration and worked on.

17.6  Strengths of Agile Methods
For most of the software development industry in the early days, projects never had any formal
methods to develop software products [7]. Everything was done on an ad hoc basis. This resulted
in schedule and cost creep and bad product quality. Then after the famous software crisis of the
1970s, the waterfall software development model was evolved. This model was further refined and
some variants were developed. Unfortunately, these rigid formal models also did not have much
success. Then came agile methods. Agile methods introduced some formal methods that ensured
the software projects could be handled and managed so that these problems could be resolved.

Upfront
investment High risk

Waterfall model
weaknesses

Rigid Long gestation
period

Figure 17.3  Weaknesses of waterfall model.

Process Selection  ◾  251

A basic cause of problems associated with software projects is unclear or changed requirements
or unclear software design. In such situations, a very formal and rigid method is not successful
for project management. Agile methods tackle this problem, by allowing the project to begin
with only a small set of requirements. Whenever changes in requirements are needed, the project
allows incorporating those changes. Thus, the fundamental flaw in software project management
is removed with agile methods (Figure 17.4).

Agile methods are really great for one more very important aspect about software products.
They allow for incrementally building software products. Instead of going for a big bang approach,
software vendors can develop their products incrementally. In fact, since 2000 onward, most
software vendors have taken this approach, as it provides flexibility and risk mitigation. They keep
doing market surveys to know which kinds of features customers are looking for. Based on the
results of these surveys, they decide to develop and then add the features that are in demand. This
approach saves them a lot of money by not investing it in developing and adding product features
which are not in demand.

17.7  Limitations of Agile Methods
Agile methods are great for time- and material-based projects as well as for incrementally developed
products [8]. However, here is a list of their shortcomings (Figure 17.5).

Size: It is difficult to increase team size beyond 20 people or so, if the situation warrants. It is
because agile methodology demands that the communication among team members should
be a face to face affair rather than through the written word. This obviously constrains the
team size.

Flexible Low risk

Agile model
strengths

Incremental
development

Low initial
investment

Figure 17.4  Strengths of agile model.

Small team size
(low development

speed)
Negligible

documentation

Agile model
weaknesses

 No third party
involvement

No knowledge
management

Figure 17.5  Limitations of agile model.

252  ◾  Software Project Management: A Process-Driven Approach

Offshoring: Mode of communication again constrains options of availing benefits of offshoring.
Offshoring requires an elaborate framework of communication so that onshore and offshore teams
can communicate effectively. But agile methods do not permit such a mode of communication.

Documentation: Projects based on agile methods produce bare minimum documentation. For
scenarios where contracts need to have transactions documented, lack of documentation creates a
problem. In any case, good documentation provides a means to audit a project. If documentation
is missing then it is difficult to audit a project. This means that if failure occurs, it is difficult to
trace the root cause of the problem. Similarly, if any project is a success, it is difficult to find the
success factors in the absence of documentation.

Third party involvement: A third party can never get involved on a project if there is not enough
documentation. Third parties can get involved on projects for many reasons. The most obvious
reason is that a project is done not by just one project team. In most cases, a bigger project is
split into many smaller projects and each of these is done by a different project team. In many
industries, this is how projects are done. Then why should it be different for software projects?

Close ended: Everything on a project is done by a small cohesive and tightly integrated team in
agile projects. This makes it impossible to contract a part of the project work to a third party ser-
vice provider.

Knowledge management: All the lessons learned and knowledge gained on a project is left only in
the brains of the team members. There is no way this information can be shared outside the project
team. When a person leaves the organization, there is no way the knowledge gained by him can
be retailed in the organization.

17.8  Once and for All
From all the discussion, one thing is final: One size does not fit all! While some process methods
may suit a particular kind of project, some other process method may suit other kinds of projects.
Even the so-called no process methodology may suit some kind of project, as evidenced by small
projects, where trying to force a formal process method is no doubt a suicide attempt. If there are
only one or two brains working, then there is simply no point in having an arrangement for well-
defined documentation, quality process, etc.

For projects where 4–20 people are needed to be working on the project, agile methods fit the
bill. Here some documentation and formal methods are adopted but they are not excessive. They
work for projects where the amount of effort required is to produce a million lines of code per
year, or less. They can employ anywhere from 5 to 20 people on the project. With some amount of
process customization it is possible to scale them up. Even though they suit colocated project team
environment, with process customization, they have also been successfully offshored. Agile (or itera-
tive) methods suit well for projects where the software product does not need to be developed at an
extremely fast pace (e.g., employing more than 50 people to complete it faster than say employing
only 20 people). Using any of the agile methods, the maximum size of the product that can be
developed over a period of 1 year is 500,000 SLOC (source lines of code). For larger products, the
development effort can span several years (Table 17.1).

For even larger projects where 20–100 people need to work on a project, Rational Unified Process
model, Unified Process model, Oracle Process model, or some other well known process model can

Process Selection  ◾  253

be used. These projects can run from a few months to few years. They typically produce software
products ranging from 500,000 to 2,000,000 SLOC per year. In an open source or SOA environ-
ment, the product size could be even bigger and the project can run longer. Sometimes these projects
run for more than 10 years.

Apart from size and speed of development considerations, one more factor is vital in appropri-
ate process selection. It deals with the fact that not all of the project information is available at the
beginning of the project. For instance, if in a project the features of the product to be made are
largely unknown, then it is extremely difficult to gauge the size of the project. In such a situation,
the project team will be in a fix to find out the appropriate process, team size, and project duration
and cost. In such a situation, it will be best to take a slow and cautionary approach instead of a big
bang approach. Agile methods are the best when it comes to taking a cautionary approach. The
waterfall model and its variants fit right at the other end, where a big bang approach is needed.
In the middle of the road are the processes that provide take best of both worlds. They have
iterations, but they can also take all of the requirements at one go and make a complete product
instead of making small pieces of the product in successive iterations. The iterations used here
are for refinement, and they are different from those found in extreme agile methods. In extreme
agile methods, the iterations are complete. Each iteration runs from requirements to release cycle.
In contrast, in the middle of the road approach, iterations run only to remove defects that were
injected in the previous iteration. So we can have two iterations for the requirements phase, three
iterations for the design phase, and so on.

When we speak of software engineering at the process level (and not at the project level), we are
usually concerned with things like process improvement, increasing productivity, and increasing
quality. At the same time we also imply decreasing variability, increasing visibility, and collapsing
project schedules. When we analyze the way we do things under an agile methodology, we real-
ize that there are not many of these aims built in the agile methodology. In contrast, plan-driven

Table 17.1  Software Development Process Selection Decision Chart

Requirements Appropriate Methodology

Large project size Waterfall

Unclear requirements Iterative/agile

Rapid development projects Waterfall with concurrent engineering

Outsourced projects Waterfall/modified agile

COTS implementation projects Waterfall/agile (depending on size and speed)

SaaS implementation projects Waterfall/agile (depending on size and speed)

Open source projects Waterfall/agile (depending on size and speed)

Mid sized projects Rational unified process

Knowledge management requirements Waterfall model

Process improvement requirements Waterfall/modified angle

Same process across organization Waterfall/modified angle

Statistical process control requirement Waterfall/modified angle

254  ◾  Software Project Management: A Process-Driven Approach

methodologies always strive to have these goals. So from this perspective, plan-driven methodolo-
gies outscore agile methodologies.

The bottom line is that the best approach, when it comes to process selection for any project,
depends on many factors. Of course there is one more dimension to process selection for software
projects. All these goals of process improvement, productivity improvement, quality improvement,
etc., work only in environments where we have a pool of many projects. And these pools are avail-
able mostly with large service providers. Internal IT departments and small service providers mostly
execute a small number of projects at any given time. In these environments, it is difficult to imple-
ment these strategies due to their small size operations. Thus, agile methods suit them better.

An incremental software development model suits software vendors that make software prod-
ucts in anticipation of market demand. The market demand dictates which software features they
should develop so that they will be able to add them in their core software product. Here the
agile methodology comes to the rescue, as it allows the software vendor to build and then add the
required software features instead of wasting time and resources on developing something that is
not wanted by the markets.

17.9  Best Practices for Process Selection
Most people in the software industry know that contracts for software development projects are of
two types: fixed cost/fixed schedule and time and material based [9]. If both the customer and the
software developer know exactly what software is to be developed with a clear project scope (i.e.,
complete knowledge of requirements) at the beginning of the project, then a fixed cost/fixed sched-
ule contract can be made. But if many project details are not clear at the outset, then time- and
material-based contracts are most suitable. Thus a plan-driven project methodology is best suited
for fixed cost/fixed schedule contracts and agile methodology is best suited for time- and material-
based contracts. From this perspective, selection of a process model based on size of the product
does not arise. A decision is best made from the perspective of clarity of scope of the project.

Agile methods are good when project clarity can be at best described as subdued and not crystal
clear. Due to their nature of working, these agile methods are not suitable for product development
where the product is supposed to be large and where a large team needs to be deployed to it so it can
be developed fast. Parallel and concurrent development is needed in such cases. On the other hand,

Communication
management

Configuration
management

Best practices for
software projects

Supplier
management

Documentation

Visibility and
control

Quality
assurance

Concurrent
engineering

Continuous
process

improvement

Figure 17.6  Best practices for software projects.

Process Selection  ◾  255

projects adopting methodologies like CMMI, ISO, or IEEE tend to be highly so structured that
sometimes the heavy structure stifles product development (Figure 17.6).

There could be a middle road somewhere that can permit a plan-driven approach with the
flexibility of agile methods, and where the best of both worlds can be taken and limitations
from either approach (plan driven vs. agile) can be avoided. Such approaches are now possible.
Many software vendors now customize agile methods and insert planning components in their
customized models to make a hybrid model. On the other extreme, a waterfall model is cus-
tomized to put iterations over tasks which need elaboration over many iterations due to lack of
clarity.

It cannot be overemphasized if we say that there are some considerations to be thought of when
selecting a process. We need to find out some of the best ways of doing things so that we come up
with the best process for our needs. Regardless of the software development model chosen, here
are some best practices available for many components of the project:

Communication: Communication is the most vital component of any large software project. If
there are many teams located at many sites, then a good and effective medium of communica-
tion is a must so that each team can communicate with other team effectively and effortlessly. As
Internet use has become widespread and offices are equipped with high bandwidth connections,
using Internet-based communication media makes available to the project teams easy, afford-
able, and effective communication. Some of the communication media available currently include
modern instant messengers and e-mails along with video conferencing, desktop sharing, virtual
whiteboards, and some other media. All of these media can be easily used if teams are located at
many different geographies.

Configuration management: A Web-based central configuration management system is the best
option for distributed teams. It can enable storing and accessing of all documents, artifacts, code
builds, and project documents to all distributed teams. Modern configuration management systems
are highly secure and reliable. Having a centralized configuration management system for all teams
makes sure that there is just one current version of each document, code build, and other project
artifacts to deal with. In short, there should be only one version of the truth for the entire project.

Third party involvement: From cost and time to market and quality aspects, it is important that
if any opportunity exists for availing services of third party service providers, the opportunity
should be tapped instantly, even if it means hiring a service provider who is located at a different
geographical location. A central configuration management along with modern communication
channels will ensure that services of third parties can be obtained without many problems.

Documentation: A good approach to documentation must be provided so that different teams
working on the same project will not have any difficulty in communicating and working with
each other. Furthermore, it will also ensure that maintenance work after implementation of the
software product can be done without much difficulty.

Predictability and visibility: A project plan will be made with most of known project details and some
assumptions, wherever project details are not known. The project plan will be updated whenever
project details for which assumptions were made become known. The assumptions will be replaced
by the known details. This practice will ensure good predictability and visibility into the project.

Quality control: Quality control checks, in the form of reviews and inspections, should be inserted in
each phase of the project to ensure only checked work products pass through to the next phase in the

256  ◾  Software Project Management: A Process-Driven Approach

project. For each project phase, there should always be entry and exit criteria to ensure good quality
of the work products.

Concurrent engineering: For large sized projects, if a short timeframe is desired (which is often the
case), then concurrent engineering principles can be applied for project work so that many large teams
can be deployed to do the project work, so that they can work simultaneously to collapse the project
schedule.

Process improvement: Process improvement is vital from a business point of view. If at any organi-
zation, there is no process improvement program in place, after some time they will not be able
to compete in the market as their costs will be high and quality will be low compared to their
competition. For process improvement, a separate Software Quality Assurance (SQA) department
should be in place to keep an eye to see if any existing project processes can be improved.

17.10  Converting Traditional to Agile Model
Suppose you are given a software development project and asked to use an agile model for develop-
ment, instead of a traditional model. How can you do it?

Suppose you have broken down the application functionality into a set of three features.
The corresponding work products in this case will be as follows:

Feature 1: requirement specification 1 → design specification 1 → construction model 1
Feature 2: requirement specification 2 → design specification 2 → construction model 2
Feature 3: requirement specification 3 → design specification 3 → construction model 3

In the traditional waterfall model, the development phases may resemble those depicted in
Figure 17.7:

TimeTime

Requirement specification 1D
ev

el
op

m
en

t s
ta

ge
D

ev
el

op
m

en
t s

ta
ge

Requirement specification 2

Requirement specification 3

Design 1

Design 2

Design 3

Construction 1

Construction 2

Construction 3

Figure 17.7  Development life cycle in waterfall model.

Process Selection  ◾  257

In this waterfall model, all features are taken at once and development means writing require-
ment specifications for all three features at the same time. Then design is also made for all three
requirement specifications. Similarly, construction also begins simultaneously for all three
features.

To convert the development to an agile model, however, we should take one feature at a
time for development. In one full iteration, we will make requirement specification, design, and

Requirement
specification 1

Iteration 1

Design 1

Construction 1

TimeTime

D
ev

el
op

m
en

t s
ta

ge
D

ev
el

op
m

en
t s

ta
ge

Figure 17.8  Development life cycle in agile model for iteration 1.

Iteration 2

TimeTime

D
ev

el
op

m
en

t s
ta

ge
D

ev
el

op
m

en
t s

ta
ge

Requirement
specification 2

Design 2

Construction 2

Figure 17.9  Development life cycle in agile model for iteration 2.

258  ◾  Software Project Management: A Process-Driven Approach

construction for that feature. Once we finish the iteration, we can move onto the next iteration
by taking the next feature. Finally, when all the features are developed, the project is complete
(Figures 17.8 through 17.11).

Of course, only the development activities on the project are shown. There will be regular veri-
fication and validation activities during the development life cycle for quality assurance purposes.

17.11  Case Study
Here is a case study taken from a real example to show how an appropriate process selection can
be made based on the business requirements.

When our SaaS software developer/service vendor decided to find the best process to develop
its product, way back in 2003, there were many factors to be considered. Some of the major factors
for consideration included

◾◾ Tap benefits of offshoring (talent and lower costs of development)
◾◾ Go for product development in such a way that it can win some customers even when the

product is still being developed

Iteration 3

TimeTime

D
ev

el
op

m
en

t s
ta

ge
D

ev
el

op
m

en
t s

ta
ge

Requirement
specification 3

Design 3
Construction 3

Figure 17.10  Development life cycle in agile model for iteration 3.

Iteration 2

Iteration 1

Iteration 3

TimeTime

D
ev

el
op

m
en

t s
ta

ge
D

ev
el

op
m

en
t s

ta
ge

Figure 17.11  Development life cycle in agile model for complete product development.

Process Selection  ◾  259

◾◾ Fully functional product at early stage even with fewer features
◾◾ Flexible product development road map so that product features can be preponed/postponed

as per market conditions
◾◾ Software development at a speed of 1,000,000 SLOC per annum

These were some of the requirements, which the vendor wanted to consider for an appropriate
software development process selection. Agile methods (including Scrum, eXtreme Programming,
etc.) are great for product development. But they could not be selected because of the need to
engage offshore teams and speed of development (at best with an agile method, a speed of 50,000
SLOC could be achieved per annum). From a documentation point of view, agile methods were
again not suitable as the vendor wanted to have good documentation for its products. Any vari-
ant of the waterfall model was out of question, because the vendor wanted to develop the product
incrementally. They were using the Eclipse platform for software development. Luckily they had a
solution available with the Eclipse platform itself. Eclipse has introduced a software development
process model called Unified Process Model which is refined from the Rational Unified Process.
This process model meets most of the requirements of the vendor. So they chose this as their soft-
ware development process model.

Exercise
17.1	 Discuss the rationale for selecting the development life cycle on any software project.

Review Questions
17.1	 For a small project of size 2000 SLOC, which process model may suit the best and why?
17.2	 What factors determine selection of a process model?
17.3	 What are the benefits of a plan-driven (waterfall) model?
17.4	 What are the benefits of an agile model?
17.5	 What are the drawbacks of a plan-driven (waterfall) model?
17.6	 What are the drawbacks of an agile model?

Recommended Readings
	 1.	 D. B. Yoffie (1997) Competing in the Age of Digital Convergence, Harward Business Press, Boston, MA.
	 2.	 G. Lenz, T. Moeller (2003) NET: A Complete Development Cycle, Addison-Wesley, Boston, MA.
	 3.	 K. Beck (2000) Extreme Programming Explained: Embrace Change, Addison-Wesley, Reading, MA.
	 4.	 J. F. Peters, W. Pedrycz (2003) Software Engineering: An Engineering Approach, Wiley, New York.
	 5.	 A. Jaaksi (1999) Tried & True Object Development: Practical Approaches with UML, Cambridge

University Press, Cambridge, U.K.
	 6.	 J. Hunt (2006) Agile Software Construction, Springer, London, U.K.
	 7.	 M. Cohn (2004) User Stories Applied: For Agile Software Development, Addison-Wesley, Boston, MA.
	 8.	 D. J. Anderson (2004) Agile Management for Software Engineering: Applying the Theory of Constraints,

Prentice Hall PTR, Upper Saddle River, NJ.
	 9.	 R. T. Futrell, D. F. Shafer, L. Shafer (2002) Quality Software Project Management, Prentice Hall PTR,

Upper Saddle River, NJ.

PEOPLE MANAGEMENT IV

263

Chapter 18

Introduction to People
Management

In Part IV, we will learn

◾◾ What is people management on software projects?
◾◾ How can team performance be improved on software projects?
◾◾ How should supplier management be done on software projects?
◾◾ How can customer expectation be effectively managed on software projects?

In this chapter, we will learn

◾◾ What is people management on software projects?
◾◾ What characteristics are required for successful software project management?
◾◾ How can software project managers effectively manage teams, suppliers, and customers?

18.1  Introduction
Projects, after all, are all about people. This is especially true in the case of software projects. More
than 90% of software costs can be attributed to labor costs. Hardware and infrastructure costs
pale in comparison to costs associated with salaries of software professionals.

Software development is a creative activity. Without creative inputs from project team mem-
bers, no software system can be developed. Software skills are not easy to learn and practice.

At the same time, managing a software project is not easy. A typical software project manager
needs many qualities that will enable him to manage the project. In this chapter, we discuss vari-
ous qualities needed to become a successful project manager.

264  ◾  Software Project Management: A Process-Driven Approach

18.2  People Management
The internal project teams need to be constantly in touch with the business end users and understand
their needs. They need to find ways so that the existing software systems used by them can be made
more user friendly and thus increase productivity of end users with these systems. Whenever new
projects come, they will be able to deliver it since they know the needs of the business end users. They
also have to be constantly in touch with suppliers so that the suppliers understand the exact needs
of end users and thus provide the right functionality in the software systems they are building. In
a nutshell, the internal project team needs to have both technical expertise and good knowledge of
business so that the software systems they build satisfy the needs of businesspeople.

On software projects, there are customers, suppliers, and project teams. People involved on
software projects from each of these groups have to play different roles.

Suppliers (software service providers) are given service level agreements (SLAs). They need to stick
closely to these SLAs. Successful suppliers not only deliver services based on these SLAs but in fact
provide more value to their customers through the experience they have accumulated from executing
past projects and delivering unmatched quality services. They continuously refine their processes and
thus are able to cut delivery costs and schedules. They also certify their processes with CMMI, ISO,
or IEEE certifications so that new customers have confidence in their delivery competence.

Customers need to specify exactly what they want from the software system. They need to
arrange for the budget, steer the project in the right direction, and allocate people who will be end
users of the proposed system to provide inputs for the requirements on which the software system
will be built (Figure 18.1).

18.3  Team Management
How can you make sure that your team is performing well? Are you getting the right performance
from your team? What should you do to better the performance of your team? These are questions
that any project manager is always concerned with. After all it is his team that has to deliver the
goods. They are the most important resources that he has at his disposal.

Customers Internal team

People
management for
software projects

Suppliers

Expectation
management

Mentoring,
motivating,
rewarding

Service level
agreements

Figure 18.1  People management on software projects.

Introduction to People Management  ◾  265

Good project managers recognize these aspects well. They constantly strive to improve team
performance. They use modern management techniques, best practices that are available with pro-
cess standards like ISO, CMMI, IEEE, etc., and the knowledge gained by their organization in
executing past projects for constantly improving team performance. Some specific techniques for
doing this include skills training, performance-linked rewards, and team mentoring (Figure 18.3).

Some of the biggest challenges faced by project managers are attrition, unavailability of IT
professionals with the right skill set, and lack of training (Figure 18.2).

Team management is discussed in detail in Chapter 19.

18.4  Supplier Management
Software service suppliers have grown to become truly global players. Their success stems from the
increasing need of software services by customers the world over. These software service suppliers
have accurately recognized the needs of their customers and have come up with fitting solutions
to fulfill these needs with innovative delivery models and by making constant efforts to improve
their services (Figure 18.4).

Customers, on the other hand, have developed good mechanisms to effectively deal with their
suppliers to get more and more value for the money spent. In Chapter 21, we will discuss organiza-
tion structures, contract agreement methods, supplier communication management, and account
management.

Attrition High cost of
retention Office politics

Unavailability
of skilled

professionals

Lack of
specific
training

Team
management

challenges

Figure 18.2  Team management challenges.

Skills training
Performance

linked
rewards

Mentoring Motivating
Good

appraisal
system

Team
management

solutions

Figure 18.3  Solutions for team management challenges.

266  ◾  Software Project Management: A Process-Driven Approach

18.5  Customer Management
How does one deal effectively with an internal or external customer? Different organizations have
different software product needs. IT organizations must fulfill these needs; otherwise, their exis-
tence is at stake. They need to effectively meet customer expectations. If these expectations are
based on some wrong notions, the project manager must convince the customer about the infeasi-
bility of such a solution (Figure 18.5).

If the project manager comes to a point where he needs to bargain about something on the proj-
ect with the customer, he must present his case convincingly. He also needs to present good status
reports to the customer so that the customer sees good value in the project. If some issues arise on
the project, the project manager must resolve them amicably with the customer (Figure 18.6).

Wrong
expectations

Lack of
negotiation

skills
Gold plating

Wrong effort
and cost
estimates

Quality
concerns

Customer
management

challenges

Figure 18.5  Customer management challenges.

Set
expectations

right

Negotiate
well

Deliver what
is promised

Accurate cost
and effort
estimate

Implement
good quality

assurance

Customer
management

solutions

Figure 18.6  Solutions for customer management challenges.

Process
standards

compliance

Continuous
process

improvement

Aggressive
marketing

Low cost
locations

Skills training
and

enhancement

Supplier
success factors

Figure 18.4  Success factors for software services suppliers.

Introduction to People Management  ◾  267

18.6  Communication Management
Communication management is one of the most important facets of any project. If communica-
tion is not effective, the customer or the supplier or the team members may misunderstand that
piece of information and the project will be botched. What communication methods should be
deployed on the project? It is important to take into consideration the effectiveness of communica-
tion methods as well as the ease of understanding. The project manager must ensure smooth and
effective communication across customers, suppliers, and internal team members.

Review Questions
18.1	 What are the typical challenges on software projects related to managing people?
18.2	 What are the typical challenges on software projects related to managing the project team?
18.3	 What are the typical challenges on software projects related to managing the customer?
18.4	 What are the typical challenges on software projects related to managing suppliers?

269

Chapter 19

Team Management

In the previous chapter, we learned

◾◾ What is people management in software projects?
◾◾ What characteristics are required for a successful software project management?
◾◾ How can software project managers effectively manage teams, suppliers, and

customers?

In this chapter, we will learn

◾◾ What is team management in software projects?
◾◾ How does one motivate the team?
◾◾ What are various organization structures for software projects?
◾◾ How does one foster good communication within the project?
◾◾ How might one plan for good knowledge management?

19.1  Introduction
In any project team, there are many kinds of people with different personalities, attitudes, learning
abilities, skills, and experiences. Efficiently managing the resources is vital for the success of a
project.

There are people who vouch that other things do not matter on the project. What really mat-
ters is people. But not all people are the same. Some are good performers while others may have dif-
ficulty with their assignments. People with difficulty with their assignments cause the productivity

270  ◾  Software Project Management: A Process-Driven Approach

of the team to go down. The project manager must identify the performers and nonperformers
and deal with each of them accordingly [1]. But how do you rate people? After all, you need
your team members to perform in the project. The people who are real performers in the project
should be acknowledged for their contributions. Other not-so-good performers should be period-
ically interviewed and apprised about the expectations the management has from them. So there
should be good tools to assess the performance of each project team member. If performance is
good, they should be rewarded, and if not, measures should be taken to see if performance can
be improved.

Sometimes team members have attitude problems. They think they are the best and they are
above the system. This kind of situation is aggravated when the project manager also feels the same
way. So these people who consider themselves as some sort of a tsar are left to do things in their
own way. If these kinds of things happen, then it destroys the team’s discipline. It also demoral-
izes other team members. This in turn severely affects the performance of the entire project team.
So the project manager should never allow this kind of thing to happen. Everybody must work
according to the conventions of the system. If somebody is good at some work, he can do that
work better than others. But it does not mean that he is entitled to violate the system’s protocol [2].

Project managers should be adept at handling different kinds of people. It is the best policy
to stick to a defined process to carry out any kind of work. No shortcuts should be ever allowed.
Shortcuts are always detrimental in the long run and especially in large complex projects, they
make the job even more difficult. A project manager must be aware of what is going on. If he finds
any noncompliance in the process, he should immediately cut it short [3].

The best-managed projects are the one where a project manager does not stick his nose into every
activity of the project. Rather, he should keep an eye as to what is going in the right direction and
what is going in the wrong direction. For things going wrong, he should take immediate action to
rectify the errors. He should also be a good mentor, coach, and leader for the entire project team [4].
For junior members of the team, he should have a good policy in place so that they are mentored
properly and are able to deliver their assignments as quickly as possible. If a team member needs
training, the project manager should ensure that proper training is arranged.

Also, motivation and lack of it affects productivity. In a highly structured and process-oriented
environment, chances of putting individual creativity to solve work-related problems are limited.
Most work becomes monotonous and people working in such environments develop a feeling that
they are human machines. They start losing motivation to continue working in such environments.
This results in high attrition rates. On the other hand, less structured and less process-oriented
work environments encourage people to apply their creativity in their work. Here people are indeed
happy to continue doing their work and have a high motivation level. The attrition rate is thus far
less compared to the other workplace where work is monotonous. This discussion is important
because software service organizations deal with these issues and find it difficult to handle many
issues related to this subject. On one hand, process-oriented environments are more productive and
outcome of the work done by people here is very much predictable. Customers like to place their
work with such companies. But service providers find it difficult to deal with their attrition rates,
which are very high. On the other hand, in less-structured environments, creativity is high but pro-
ductivity is low and outcome of the work done by people working is less predictable. This kind of
environment exists in captive units of software vendors or large global companies who develop their
own software products for their own use. In the current business scenario, they cope with lower
productivity and thus face a dent in their business margins, but days are not far when this situation
will change. They will have to succumb to the pressure from software service companies that enjoy
higher productivity levels [5].

Team Management  ◾  271

To deal with the problem of attrition, service companies employ some management techniques
(Figure 19.1). They provide very good work environments for their employees and encourage them
to further their studies or adopt hobbies or causes so that employees find something worthwhile
to keep working with them [6].

Project managers should recognize these deep and far-reaching issues and find ways to keep
work assignments of their team members interesting. Further, they not only have to fulfill the
objectives of the project but also have to realize the objectives of the organization and find ways
to fulfill both.

19.2  Organization Structure and Policies
People who work in organizations follow the policies laid down by the organization [7]. Within
this framework they try to do their assigned work. There is a always mixed population of efficient
and not-so-efficient employees in any organization. Generally the collective outcome of their work
is what can be seen at the organization level. As a rule of thumb, 80% of people do their work sat-
isfactorily. That means if a project is executed in normal conditions, more or less the performance
results should not be far away from the expectations of the customer.

Let us look at a case study in an organization with regard to its performance. An organization
is facing problems continuously about its performance in its projects. They tried many times to find
out a solution for this perennial problem but nothing seemed to work. Initially they blamed some
of their staff for poor performance and fired some of them. But the problem still persisted. Finally
after all attempts to rectify things failed, they called in a renowned consultant. The consultant
studied how the people were doing things. After deep study he prepared a report and called for a
meeting of top executives of the company to present his findings (Figure 19.2).

After going through the findings; the management was in for a shock. The report said that
the organization did not have a defined process model. Each project was being managed with ad
hoc measures. So even when the staff on these projects was working overtime and putting in more
hours of work, the performance on projects was poor. The consultant suggested that the company
must adopt a standardized process model. Adopting the model means changing the organization
structure as well. The model will help in setting a structured approach to everything done in the

Career growth
opportunities

Performance
linked

rewards

Dealing with attrition

Flexible
working

times

Work from
home options

Free advice
for personal

problems

Interesting
assignments

Figure 19.1  Strategies to deal with attrition.

272  ◾  Software Project Management: A Process-Driven Approach

organization, including project management. The model will help in streamlining each organiza-
tion process. This will result in reduced rework. This means better resource utilization and saving
of costs. The model will help in keeping the quality of work consistent throughout the organiza-
tion and project after project. A central process improvement unit also needed to be set up so that
further improvement in the process model would also be possible over time by refining and fine
tuning the process model (Figure 19.3).

This case study shows the importance of having good organization policies. Even a good
project team may fail to deliver if the organization for which it is working has bad policies. So
organization policies play the most important role in the success of any project.

19.2.1  Project Organization
There could be many forms of project organization structures depending on the type of project and
the methodology chosen to execute it [8]. In the case of making a custom software application, a
type of waterfall methodology is chosen with a linear project structure. Different kinds of work in

Ad hoc
management

No process at
organization

level

Organizational
problems

Poor
performance

Bad
organizational

structure

Late delivery
of projects

High costs of
projects
delivery

Figure 19.2  Organization problems.

Standard
process model
across projects

Sticking to
process model

Solutions for
organizational

problems

Streamlining
of organization

structure

Good
accounting
practices

Quality
assurance

Continuous
process

improvement

Figure 19.3  Solutions for organizational problems.

Team Management  ◾  273

the project will be done by people with the right skills. Once their assignment is over, they are no
longer in the project team and will move to some other project. For instance, a design engineer will
do the software design, and once the design is completed, he is taken off of the project.

In the case of software product development, the best way is to do it in iterations. Align each
iteration with a minor release of the product. For every two to four minor releases, there will be a
major release of the product. Align the major release with one cycle of the project. The iterations
can be time boxed. In such an arrangement, there will be more than one iteration executed at any
given time. There will also be more than one team working. Each team will be working with its
own iteration. Figure 19.4 depicts three teams that are working with three iterations. The project
manager should always make project plans ahead of execution of these iterations. At the top of
the hierarchy is the complete project development roadmap, which may contain more than one
project.

In such environments, the phases of the project are very much blurred. So we have software
design, software requirement, software construction, and software testing going almost together.
So people with different roles (software designing, software construction, and software testing)
keep working on the project all the time. Each iteration is of short duration and by the time the
tasks on the present iteration finishes, it is time to start working on the next iteration. So all project
team members with different roles keep working on the same project (consisting of these itera-
tions) all the time and thus do not need to move on to another project.

19.2.2  Line of Business Organization
Software projects that require a large number of functional inputs may contain functional experts
who are from different departments and have been sourced to work on the project. The project
manager may not be able to evaluate the work done by these functional experts. In such cases,
these experts may report both to the project manager and to their line managers. The project
manager may assign tasks to them but the completed tasks will be evaluated by the line manag-
ers who understand and can rate the work done by these functional experts. So we end up with a
matrix structure for the project where team members may be reporting to more than one manager
[9] (Figure 19.5).

Iteration 3—
team 3

Iteration 3—
team 3

Iteration 2—
team 2

Iteration 2—
team 2

Iteration 1—
team 1

Iteration 1—
team 1

Project 1

Product development—many project teams

Project 2

Figure 19.4  Time-boxed product development and software team deployment.

274  ◾  Software Project Management: A Process-Driven Approach

19.2.3  Program Management Organization
In-house IT organizations have a single program management office. This office takes care of all
software projects running or in the pipeline. So in general, the program management office and
the IT organization are the same thing. Software service companies, on the other hand, have a
very complex organization structure into which the program management fits (Figure 19.6). More
details about organization structures at service companies are discussed in Chapter 21 [10].

A large business organization needs a large number of software systems. Some are needed at
the department level while others are needed at the business unit level. Then some software sys-
tems belong to the enterprise class while others are used for personal productivity enhancement

Project
manager

Program
manager

IT department
head

Accounting
department head

Manufacturing
operations head

Business
analyst 1

Business
analyst 2

Figure 19.5  Example of a matrix organization.

Project
manager 1

Project
manager 2

Project
manager 3

Program
manager

IT department
head

Program management
organization structure

Software
developer 1

Software
developer 2

Business
analyst 1

Business
analyst 2

Figure 19.6  Program management organization.

Team Management  ◾  275

reasons. So different kinds of software are either acquired (purchased) by the organization or
developed in-house. The IT organization not only needs to deal with new software but also needs
to provide support for existing software that is in operation.

So an in-house IT organization has a myriad of projects to look after and should utilize its
resources thoughtfully to fulfill the needs of its internal customer.

19.2.4  Internal IT Organization Structure
The IT department of a business unit has its own internal team that develops software products to
fulfill the needs of the business. It also procures IT systems from suppliers whenever it is not viable
for an internal team to develop the product in-house. Sometimes the IT systems from suppliers
are prebuilt and they only have to be implemented at the business site. At other times, the soft-
ware needs to be developed by the supplier. So essentially the suppliers are of two types: software
product vendors and software service companies who build software products on requests from its
customers (Figure 19.7).

19.3  Motivating the Team
Salary is the most important motivating factor for any employee. But it is not the only motivating
factor. The monetary benefits, that is, salary and other incentives fulfill the needs his or her of
food, shelter, medicine, entertainment, and retirement security. These are basic needs of a human
being. But meeting these needs alone cannot satisfy a human being. He looks for something more.
Once the basic needs are fulfilled, he is driven by a higher level of need. And this need has to do
with recognition in society. In the software industry, salaries of professionals are very high. So
they can easily fulfill their basic needs from the high salary they get from their organizations. It is
observed that attrition rates at software service companies are much higher than that at product
development companies. At software service companies, professionals are forced to do monoto-
nous tasks compared to the tasks at product development companies where any professional’s job

Internal customer IT department

Product delivery

Supplier 1

Project 1 Project 2 Project 1 Project 2 Project 1 Project 2

Supplier 2 Internal team

RequirementsRequirements

ProductsProducts

Figure 19.7  Organization structure for internal IT department with outsourced part of project
while another part of the project is done by internal team.

276  ◾  Software Project Management: A Process-Driven Approach

content requires more creativity. Professionals at these organizations feel a sense of fulfillment
because they are allowed to use their creativity. In turn, the organization recognizes this fact and
appreciates their efforts. In comparing salaries at these two places, there is no difference. So it is
not the salary that determines attrition rates.

Project managers must understand the needs of the professionals working on their proj-
ect teams and find ways to fulfill them. Only then they will be able to motivate their team
members [11].

19.4  Team Effectiveness
When people work in a team environment, it becomes difficult to assess who has done good
work and who has not. After all, based on the performance of individual team members, their
career growth can be determined. They also need to be rewarded for their work based on their
performance. If the performance of a team member is not satisfactory, he needs to be counseled
to determine what has caused his poor performance and how the performance can be improved
in future projects.

Project managers use tools and techniques for determining the performance of their team
members. Analyzing performance data also helps to create strategies to improve team effectiveness
and thus increase productivity and customer satisfaction [12].

19.4.1  Appraisals
Conducting appraisals is an integral procedure used to evaluate the performance of individual
team members. Appraisals can be done through self-assessment, management assessment, or both.
In self-assessment, a blank appraisal form is given to each team member and he is asked to com-
plete and return it to the manager. The form contains many objective and subjective questions and
the team member uses his own conscience to answer these questions. Some of these questions are
about the work he has done for the assessment period (usually yearly or half yearly). He is sup-
posed to write about his achievements and failures. In other part of the form, there are questions
regarding his views about the team members, the manager, and the organization environment that
affect his productivity. There may be some other sections in the appraisal form as well. Once the
manager receives the completed form, he assesses it and later calls each member to discuss what
he has written. He also compares his own assessment about the team member. Finally, he rates the
performance of the team members based on these assessments. This form of performance assess-
ment is a good technique as the team members feel that they are involved in the whole process and
it is fair to them.

The management appraisal assessment process is more autocratic in nature as the team mem-
ber does not have any say in the whole process. This appraisal assessment process is slowly falling
out of favor and is being replaced with the self-assessment method.

19.4.2  Performance Measurement
For measuring performance, a good time-tested mechanism should used to easily identify top,
average, and poor performers. The poor performers should be interviewed to identify what has
caused their poor performance. After this interview, they should be given a trial period to improve
their performance. After the trial period, they should be again evaluated. If they perform well,

Team Management  ◾  277

they can continue as a valuable resource for the organization. If they do not improve their perfor-
mance, they should be placed in the list of people who should undergo a check as to whether they
should continue with the organization or given a pink slip.

Generally, immediately firing employees from their job is not the right solution. They should
be given an opportunity to improve their performance. For some personal or organizational issues,
they might not have performed well in the first instance. So in the second instance, they should
be provided with an environment devoid of factors that might have caused the poor performance.
The employee himself should be given an opportunity to list these factors.

19.4.3  Job Allocation
In manufacturing, production targets are set months in advance [14,15]. Production schedules are
chalked out monthly or weekly. Each processing center is allotted a target production. Employees
work toward achieving these targets. Some incentives in the form of bonuses are given on achieving
these targets. Employees also receive their salaries and other benefits. Most of the people working
in these manufacturing environments are not ambitious. They are content with their jobs and lives.
Most of them work with the same employer for their entire career. In such environments, most of
the things are pretty stable. The only thing that is dynamic is a continuous improvement in pro-
ductivity and product quality. Improvement in productivity is achieved by introducing automation,
reduction in production cycle times, etc.

However, the software industry boldly contrasts with the scenario found in the manufacturing
industry. Here, people are highly skilled and are in high demand in the market for their skills. If
they are not satisfied with their assignments, they do not think twice to quit their job and accept
an offer from another company. So software project managers are always under pressure to appease
their staff with their demands whether reasonable or not.

To diffuse this kind of situation, project managers try to find ways to keep the software pro-
fessionals in their teams satisfied. One of the good measures to do that is to provide them with
some challenging assignments. Similarly job rotation also helps especially when it comes to onsite
assignments.

So while doing job allocation, the project manager should keep these things in mind.

19.5  Training
The software industry is characterized by a constantly changing technology. Change in tech-
nology calls for new technical skills. Software professionals need to keep learning new skills.
Otherwise they will be in danger of possessing obsolete skills, which may no longer be useful
for any projects. Whenever a need or an opportunity arises for training, the project manager
should tap it and send his team members for the training. He also needs to assessment which
team member needs training based on their assignments. He should make a training schedule
accordingly [15].

19.6  Nurturing
Any project team consists of experienced as well as inexperienced team members [16]. Inexperienced
team members need to be nurtured so that they become productive and do their assignments. The
project manager plays a vital role in nurturing the potential talent in his staff. He should involve

278  ◾  Software Project Management: A Process-Driven Approach

senior team members in this effort. The project manager should assign small project tasks to these
inexperienced team members and ask senior team members to help them complete the assign-
ments. With the help of experienced team members, the juniors learn how to do these assignments
in the right way.

In offshore projects, junior team members need to learn to work with people from different
cultures. They need to learn how to communicate effectively with these people. For this, the proj-
ect manager should give them training for learning effective communication methods.

19.7  Conflict Management
Sometimes, some team members indulge in office politics or try to offload their assignment on
others or find ways to avoid or delay their assignments. Sometimes due to some personal reasons,
two or more team members may develop some conflict with each other. All these scenarios affect
the project badly, and in the best interest of the project, the project manager should recognize the
early signs of trouble and take some proactive action. If that action does not help and the conflict
does not get resolved, the project will be in deep trouble. The project manager must have good
conflict resolution skills. He should consult the parties involved in the conflict and try to find out
the cause of it. Once the cause is identified correctly, then a proper solution should be found that
will be acceptable to both parties [17].

19.8  Knowledge Management
I have worked with a textile company that developed its own in-house ERP system. The com-
pany had its own IT department and a development team. The in-house-built ERP system
was being used by all departments, marketing, sales, production, finance, and accounting. It
was working fine for them over the years. The development team was maintaining the opera-
tions of the deployed ERP system as well. They also kept modifying this system and adding
new functionality as per end-user requests. But slowly team members from the development
team started leaving the organization. All of them were finding lucrative job offers from fast-
expanding software service companies. The textile company paid very low salaries to their
IT staff and the management was not willing to increase their salary on a par with software
service companies. They feared that this would cause an imbalance in salary between IT staff
and people in other departments. The result was that most of the original members of devel-
opment team who had built the system left the organization. This created a big vacuum in
the IT department. The IT department was no longer able to support the ERP system as the
creators of the system had left and with them the knowledge about the system was also gone.
Ultimately the company decided to scrap this legacy system and implement a standard ERP
system from a software vendor.

As the aforementioned case shows, knowledge acquired over the years is very important for
any organization. But when people leave the organization, all the acquired knowledge goes out of
the organization with them. How can such incidents be prevented? One good solution is to keep
a knowledge repository where all lessons learned in the projects, documents about products being
used, processes being followed, issues resolved, project specific information, etc., should be kept.
But the most important consideration here is that old and not updated information is of no use.

Team Management  ◾  279

All information in the repository must be updated. Whenever a product is updated with a new
version or patch, documents about that product should also be updated. Process changes must be
documented immediately in the repository. It is the best policy to keep all information updated
with clear history of changes reflected.

With a good and well-maintained knowledge repository in place, the company no longer needs
to worry if any key staff decide to leave the organization. The knowledge gained during their ten-
ure with the company is safely kept in the knowledge repository. Now the company is no longer
dependent on star performers of the company, or at least for the knowledge they have acquired
while working for the company. However, it should be kept in mind that all knowledge is not only
in written form. A large percentage of knowledge still resides in the minds of the people, but at
least keeping a knowledge repository ensures that all is not lost when somebody leaves.

A knowledge repository also helps when statistical process control techniques or historical
data–based decisions are used. For instance, effort estimation for a project is a very difficult task.
But if you have information about past projects in the repository, then effort estimates for new
projects become easy using the information from old projects.

In a nutshell, we can say that knowledge comes from people working in the organization, and
storing and keeping this valuable information in a repository in turn becomes extremely impor-
tant for the organization [18]. Any organization should develop its knowledge management in
such a way to ensure that it is not dependent on people so that when anybody leaves the organiza-
tion, it does not affect the organization much.

19.9  Communication Management
Proper communication in software projects is one of the most important factors that cannot be
ignored [19]. If the communication is unstructured and on an ad hoc basis, it will lead to chaos.
What are the customer requirements? Where are they kept? What is meant by a specific require-
ment? The same requirement stated in one document may mean different things to different project
team members. Specifications mentioned in the same design document may mean different things
to different developers. The scale of chaos will be exacerbated further if many distributed teams
located at geographically distant places work on the project. Due to the differences in culture and
language, they will assume different meanings for things mentioned in project documents. In fact,
it may become a free for all environments where no productive work may be possible.

So it is very important that all project team members speak the same project language, which
means that all project-related communication is done in a language that is understood by all
the team members of the project. The responsibility for setting the common project language
rests with the project manager. All specification documents, including requirement specifications,
design specifications, coding standard specifications, test case creation specifications, etc., should
be written in such a way that they follow a specific language pattern including a common naming
convention, standard document templates, etc.

Experienced software professionals get used to most of the naming conventions and mean-
ing of specifications after working on software projects. But inexperienced team members may
find it a bit difficult. It is the responsibility of the project manager to quickly educate new staff
in project language skills. These fresh team members should be constantly helped by senior
staff. After working on two to three projects, the inexperienced professionals will get used to
the project language used.

280  ◾  Software Project Management: A Process-Driven Approach

19.10  Case Study
In our continuing case study, in this chapter, we will see how people management is exercised at
our SaaS vendor. The in-house team of the software vendor does product management, require-
ment gathering, requirement analysis, software design, software development, software testing, and
software maintenance. There are three database administrators (DBAs) who look after development,
testing, and production databases. One of the DBAs is an in-house team member and the other
two are from the partner teams. There is a product manager who is responsible for all the product
development/maintenance activities and who reports to the chief technology officer of the company.
Then there is a global project manager who is responsible for all the development projects whether
customer specific or new product version development. The global project manager is also responsible
for coordination work between the in-house team and the outsourced teams. Each project manager
reports to the global project manager. There is a technical support manager who looks after both
software testing and technical support. Under his control, there is a technical support lead and a test
lead. The test lead does not have any in-house test teams, but he manages test teams located at two
offshore locations. The technical support lead has three members on his in-house team and rest of the
team is located at the two offshore locations. There are five business analysts who travel to customer
sites to gather their requirements. These requirements are then developed into software specifications
and put in a software requirement specification document (SRS). These business analysts also work
with the marketing team and help in demonstrating the software product to potential customers.
Whenever a project team is formed, the project manager decides which business analyst will work
on the project after a consultation with the global project manager. The project manager also selects
software architects for the project. The test manager assigns testing jobs to software testers after a
consultation with the project manager. Once a product version is implemented and goes into produc-
tion, end users start using it. If any defects are found by the end users, it will be fixed. The testing
team also runs sanity test scripts daily on all production instances of the application. The problems
found are reported to the support team. The support team immediately fixes them.

As things stand, all four teams (two in-house teams located at two sites and two outsourced
teams located at offshore locations) are working seamlessly. They heavily use Internet-based
communication tools like instant messengers, e-mail, virtual whiteboards, desktop sharing, voice
over IP (VOIP), etc., for fast communication. Team members also travel from one location to
another once in a while. This makes for a good camaraderie among different teams.

Review Questions
19.1	 Define software project team management in your own words.
19.2	 What motivation techniques are available to motivate the project team?
19.3	 Explain in brief what you understand by knowledge management.
19.4	 Explain in brief what you understand by communication management.
19.5	 Briefly describe a software project organization structure.
19.6	 How can you evaluate performance of project team members effectively?

Recommended Readings
	 1.	 M. Sliger, S. Broderick (2008) The Software Project Manager’s Bridge to Agility, Addison-Wesley, Upper

Saddle River, NJ.
	 2.	 I. Evans (2004) Achieving Software Quality through Teamwork, Artech House, Norwood, MA.

Team Management  ◾  281

	 3.	 C. Ravindranath Pandian (2004) Applied Software Risk Management: A Guide for Software Project
Managers, CRC Press, Boca Raton, FL.

	 4.	 M. D. Lewin (2004) Better Software Project Management: A Primer for Success, Wiley, New York.
	 5.	 R. Fincham (1994) Expertise and Innovation: Information Technology Strategies in the Financial Software

Sector, Oxford University Press, Oxford, U.K.
	 6.	 S. Sahay, B. Nicholson, S. Krishna (2003) Global IT Outsourcing: Software Development across Borders,

Cambridge University Press, Cambridge, U.K.
	 7.	 C. G. O’Regan (2002) A Practical Approach to Software Quality, Springer, Berlin, Germany.
	 8.	 P. Morris, J. K. Pinto (2007) The Wiley Guide to Project Organization and Project Management

Competencies, Wiley, New York.
	 9.	 M. van Genuchten (1992) Towards a Software Factory, Springer, Berlin, Germany.
	 10.	 E. Verzuh (2003) The Portable MBA in Project Management, Wiley, New York.
	 11.	 R. E. Fairley (2009) Managing and Leading Software Projects, Wiley, New York.
	 12.	 S. L. Mcshane (2008) Organizational Behavior, McGraw-Hill Education (India) Pvt Ltd., New Delhi,

India.
	 13.	 K. Heldman, C. M. Baca, P. M. Jansen (2007) PMP Project Management Professional Exam Study Guide,

Wiley, Hoboken, NJ.
	 14.	 J. E. Tomayko, O. Hazzan (2004) Human Aspects of Software Engineering, Firewall Media, New Delhi,

India.
	 15.	 M. V. Zelkowitz (1995) Advances in Computers, Academic Press, New York.
	 16.	 L. Bass, P. Clements, R. Kazman (2003) Software Architecture in Practice, Addison-Wesley, Boston, MA.
	 17.	 E. G. Carayannis, Y.-H. Kwak, F. T. Anbari (2005) The Story of Managing Projects: An Interdisciplinary

Approach, Praeger Publishers, Westport, CT.
	 18.	 S. Debowski (2007) Knowledge Management, Wiley, New York.
	 19.	 J. Phillips (2003) PMP Project Management Professional Study Guide, McGraw-Hill Professional,

New York.

283

Chapter 20

Customer Management

In the previous chapter, we learned

◾◾ What is team management on software projects?
◾◾ How does one motivate the team?
◾◾ What are the various organization structures for software projects?
◾◾ How does one foster good communication planning within the project?
◾◾ How might one plan for good knowledge management?

In this chapter, we will learn

◾◾ What is customer management on software projects?
◾◾ What are typical customer expectations from software projects?
◾◾ How can a good rapport be established with customers?
◾◾ Why should one avoid temptations for gold plating on software projects?
◾◾ How can one negotiate well with customers on software projects?

20.1  Introduction
Unlike in other industries, close contact with the customer in the software industry is very
important. In other industries, the specifications for the project supplied by the customer are
more often than not very specific and do not need much clarification or elaboration. It is not
so with software projects. Software requirement specifications are never specific or elaborate [1]
(Figures 20.1 and 20.2).

That is why the project team needs to work closely with the customer, whether external or
internal, to get their software requirements right. Getting the requirements right is very crucial

284  ◾  Software Project Management: A Process-Driven Approach

to building the software, which will serve the customer and fulfill their needs. One of the biggest
causes of most of the failed projects is not understanding customer requirements properly. On
the extreme end, even after spending a lot of time with the customer, the customer is not able to
communicate their true requirements to the project team. The basic reason lies with the miscom-
munication between the two parties. End users understand the business aspect while the software
development project team understands technology. So there is no common ground between the
two sides. To overcome this situation, project teams should hire good functional consultants who
understand the business aspects and how software can meet those business requirements. These
functional consultants are people who have worked in the same industry as a line manager for
which the software is to be developed. They should also have undergone training on software
systems that are used to solve business needs of that particular industry to understand both sides
of the coin.

Still customer management is an area that needs a lot of effort from the project team to ensure
that they are able to satisfy the customer. One major area where the project team needs to do a lot
of rework is the requirement change request that the customer places with the project team. The
project team needs to incorporate these changes in their software design so that the software meets
customer expectations. There are also issues related to wrong or misplaced expectations of the
customer regarding what the software can do or cannot do. Similarly, customers sometimes falsely

Customer

I want 20 buildings to be made at
my site in 2 years. Each building

should be 30 stories high, and
each should have office space of

2,000,000 ft2.

Figure 20.1  Customer requirements in a construction industry.

Customer

I may want x number of
features that will be used by

y number of people. �is
system should be made by z

month of ab year.

Figure 20.2  Customer requirements in a software industry.

Customer Management  ◾  285

expect to get the software quicker than agreed by the project team. They wonder why developing
that particular software is taking so much time.

The bottom line is that the customers (stakeholders) are spending money and time for the
project. This investment must be justified; otherwise there is no point in continuing with the
project [2].

20.2  Customer Expectation Management
Software development is a costly and time-consuming task [3]. It uses costly resources (software
professionals are highly paid because of the high demand of software skills in the market) and is
often a laborious task. Software development is not just software coding (as is imagined by many
novice customers). It involves developing and managing requirements, making sound software
design, analyzing the design, writing source code, testing, and making user manuals and other
documents. On top of these activities, the work products are to be verified and validated at each
step to ensure that the software product does not contain many defects. If it takes one full workday
to write software code, it takes four more days to do all these other activities. If these activities are
not performed well while developing the software product, the software product may not be of
much use (due to bad quality). It will not possess reliability, security, usability, maintainability and
other characteristics which are so essential for the software product to be used effectively.

If the software product does not possess these qualities, we will end with a software
product that

◾◾ Will be very difficult to use as it may crash, or a defect may surface most of the time, pre-
venting the end user from using it in his day-to-day business work

◾◾ Will be prone to hacks and loss/theft of critical business data
◾◾ Will be very time consuming, as doing even a small task may require a long navigation

through the software product
◾◾ Will be very difficult to work with when a new business need arises and is to be incorporated

in the product
◾◾ May need a high level of costly support from the support team for operating it

For all of these reasons, it makes sense to make a sound software product instead of dishing
out a half-baked one.

One more aspect about customer expectations is about delivering goods with something extra
for free. Many project managers believe in the saying “commit less and deliver more!” Is this saying
true? Let us discuss this. If you have delivered extras apart from what you had committed to the
customer, the following things may happen:

◾◾ The customer may believe that what he expected could have been delivered for less money.
◾◾ The customer may believe that what he expected could have been delivered in less time.
◾◾ The customer may believe that the number of errors in the software product could have been

less if the time spent on creating those extra features could have been utilized in testing instead.
◾◾ You believe the extras are good for the customer, but the customer may think otherwise.
◾◾ The next time you send an estimate for the next project, the customer may think it is over-

estimated because the estimate may include time you will spend on working on those extras
(Figure 20.3).

286  ◾  Software Project Management: A Process-Driven Approach

If you complete the project before the due date and deliver it to the customer (whether due to
overestimate or overtime or for some other reason), then

◾◾ You may antagonize other project managers working on other projects because they are
strapped of cash, whereas you are wasting cash and may have to return unused budget to
the customer.

◾◾ Next time you send an estimate for the next project, the customer may think it is overesti-
mated even if that is not the case.

So it makes sense to deliver only what has been committed and to stick to the due date.

20.3  Negotiation Management
During project execution, many situations arise when the project manager has to choose among
many less-than-desired choices. Sometimes, due to a lot of rework, the project schedule gets
delayed and the project manager is forced to discuss options with the customer. At some other
times, some technology issue arises, which forces the project manager to make some alterna-
tive choices. In all of those situations, the project manager needs to explain convincingly to the
customer what the choices are and the benefits and drawbacks of opting for those choices. If the
project manager is convinced about a particular choice, he should try to make the best bargain
with the customer [4].

Sometimes, the customer may have a false notion about a particular feature and be bent on
getting it implemented. But the project manager knows that it is not appropriate for the software
and that it is not feasible in the given budget and time frame. In such a case, he should be able to
convince the customer why such an idea is not feasible. Similarly, when forced to cut some features
short because of schedule constraints, the project manager should be able to convince the customer.

Sometimes, during the course of the project, the project manager may see the requirement of
incorporating a feature that was originally not planned. In such a situation, the project manager
can do some hard bargaining with the customer to get that feature incorporated in the project
plan (Figure 20.4).

In product development for a software vendor, the project team often works with a top-down
project plan. They have a deadline ahead of the project and they need to develop new features.
In such cases, the project manager needs to do a lot of hard talking in order to convince the top
management to drop features from the project plan that are not feasible in the given time frame.

Overblown
budget

More than
required

time

Drawbacks of
gold plating

Less than
desired
quality

Bad precedent
for future
projects

Useless for
customer

Figure 20.3  Drawbacks of gold plating.

Customer Management  ◾  287

He needs to convince the top management about quality issues if the project team is not given
adequate testing time on the project.

In short, the project manager has to do much negotiation during the project with the customer
and so needs good negotiation skills to be successful.

20.4  Rapport Building Management
No matter how hard the project team has worked, customers may not be impressed if this fact is
not communicated to them in a proper manner [5]. If the project manager is of the type who does
not indulge in rapport building, the project team may lose an important leveraging handle—that
of building a good rapport with the customer! Every human being expects some appreciation for
his honest and hard work. Appreciation also happens to be one of the best motivating factors. If
the appreciation comes from the customer, there is no match for it. It is one of the best rewards
any project team can get.

From the onset, the project manager must start gelling with the members of the customer
team. He should share light moments with them. He should share his honest concerns about the
project and some of the hardships his team may face given the budget, costs, quality expectation,
and the technical and functional difficulties that may arise on the project. Good rapport will also
help the project team get more information from the customer about the project than what is
mentioned in the contract and the project documents. This will help them in delivering the goods
with more customer satisfaction than what could be possible with just those documents.

20.5  Reporting Management
Customers are always looking for timely status reports. In these reports, they look for performance
indicators and see if all things are going in the right direction [6]. If something in the report looks
to be going in the wrong direction, a customer will look for further details as to what is the root
cause for this problem. The project manager should also attach explanation for any deviations and
should indicate the course of action to rectify the deviation. The customer will be more than happy
to see this proactive approach.

Project managers use project reporting tools to create good project status reports. Some of the
reporting techniques include Gantt charts, earned value management, etc. They also incorporate
proper milestones in their project planning so that status reports can be sent whenever these
milestones are achieved.

Quality
issues

Support
costs

Negotiation
points

Unstable
product

Unplanned
feature

addition

Not meeting
deadline

Figure 20.4  Negotiating factors in top-down software product development projects.

288  ◾  Software Project Management: A Process-Driven Approach

20.6  Return on Investment
When any project is proposed, the stakeholders try to find out how it will benefit their orga-
nization and what will be the costs incurred [7]. From these figures, they try to find out what
will be the return they will get on the investment they will make in terms of expenses they
will incur on the project. For instance, a large law firm may decide to have a software product
that will manage their customer appointments and billing. Currently, these functions are
done manually. Suppose due to manual appointments, the law firm has estimated that they
are losing approximately 500 h of time of their lawyers in the form of waiting for appoint-
ments, unutilized time, or due to wrong appointments per month. If, on average, each lawyer
bills $200 per hour, the law firm stands to lose $100,000 per month. The law firm may thus
decide to reduce this wastage of waiting time and to find a software solution. They invited
some software vendors and software services vendors to find out an appropriate solution for
their problem. Quotations of appointment and billing software systems from software ven-
dors were estimated to be in the range of $200,000 – $300,000. The implementation time
(including customization and development of new interfaces) was quoted in the range of 1–3
months. The law firm would thus hire a consultant to compare, evaluate, and finally suggest
the best solution among those presented (Figure 20.5).

The consultant would study all the solutions and make a report. He would then present the
report to the law firm pointing out the costs, time, feature benefits, and other considerations to the
management. After much deliberation, the law firm may decide to choose a solution that would cost
them $350,000 (including software licenses, implementation, and customization) and that would
be implemented in 3 months time. The most important consideration for the management would
be to see how much time could be saved from being wasted. They find that this solution would
reduce wastage of time to the tune of 50 h per month from the current 500 h. So, per calculations
the ROI came at good 300% per annum (per month saving of $100,000 – $200 × 50 = $90,000.
Per annum saving of 12 × 90,000 = $1,080,000. Expenses = $350,000. ROI = $1,090,000 ×
100/$350,000 = 308%).

20.7  Bottom Line
Value proposition for the project is the bottom line on which any customer sanctions the project.
If the customer does not see a good value proposition, he will not sanction the project in the first
place. If the project is sanctioned and work is started on the project but priorities change midway,

Licensing
cost

Support
cost

Comparison and
selection factors

Customization
cost

Suitability of
features

Implementation
time frame

Figure 20.5  Software solution comparison and selection factors.

Customer Management  ◾  289

the project may be abandoned. The project can also be abandoned if the project team fails to
deliver the values that the customer is looking for. If the project costs rise more than anticipated
by the customer, the project will be in danger of getting scrapped. Similar is the case with project
delays. The project manager must stand on his toes to do everything to save the project if these
things occur. No matter what kinds of maladies are being faced by the project manager on the
project, the top priority for him should always be to make the customer happy.

20.8  Case Study
We continue our case study about the mid-market software vendor here. The vendor has some of
the largest retailers, manufacturers, and distributors in the United States, the United Kingdom,
Western Europe, and Russia as its customers. They also have some large customers in the gov-
ernment sector. They partner with logistics service providers to create hubs and infrastructure
through which they service their customers. This strategy pays off well for them. While logistics
service providers provide physical infrastructure to move goods for the customers, the vendor pro-
vides its cutting-edge software solution to help provide visibility into movement of goods from one
warehouse to another. This visibility is very crucial for customers as they plan to replenish their
warehouses and stores using this information. All the partners in the supply chain (manufacturers,
distributors, logistics service providers, and retailers) will get to know in advance when a replenish-
ment will be fulfilled, when a truck will be needed at a warehouse for loading/unloading, what
merchandize will be sought by customers, the status of a truck in transit, the freight charges for
goods movements, etc. Indeed without all this information, the customers will find it difficult to
do their everyday business.

When a new customer signs for implementation of the system, a project team is formed.
The business analyst visits the customer site and gathers customer requirements. He makes
the customer requirement specifications and puts them in the SRS document. Generally, the
implementation cycle is 2–4 months long. Most of the features sought by the customer are
already present in the software product. Some minor customization may be needed in these
features per requirements. Sometimes, the customer requirement may also turn out to be a
new feature that is not present in the existing product. In such cases, this feature is to be made
for the customer. Once all these issues have been chalked out, the software architect designs
the software. The development team then makes the required new features or customizes the
existing features. All along, the testing team reviews the design, SRS, and construction for
defects. Any defects found are fixed. Finally, the system is implemented. Once the system
goes up, the end users start using the application. Any defects found are fixed easily and
quickly or a walk around is provided to users for those defects in cases when fixing those
defects is not possible.

The vendor finds one area of concern from customers. It deals with concern of security of
business transaction data. Since the application is a SaaS application, the vendor hosts the applica-
tion for the customer. Thus, the vendor has access to business transaction data of its customers.
Customers thus fear that their data can be stolen or misused by the software vendor or its employ-
ees. To mitigate this concern, the vendor signs a confidentiality agreement with its customers. The
terms of the contract are such that if any loss or theft of data happens, the vendor is fully respon-
sible for it and the customer can sue the vendor for breach of trust. This is the single-most concern
almost all new customers face.

290  ◾  Software Project Management: A Process-Driven Approach

Review Questions
20.1	 How can you ensure that customer expectations are met by your project team?
20.2	 Why should the project manager have good negotiation skills?
20.3	 What should a project manager do in case there are deviations in project execution?
20.4	 Why is rapport building with the customer important?

Recommended Readings
	 1.	 D. Leffingwell, D. Widrig (2003) Managing Software Requirements: A Use Case Approach, Addison

Wesley, Boston, MA.
	 2.	K. F. Cross, J. J. Feather, R. L. Lynch (1994) Corporate Renaissance: The Art of Reengineering, Wiley,

New York.
	 3.	 B. Barkley, J. H. Saylor (2001) Customer-Driven Project Management: Building Quality into Project

Process, McGraw-Hill Professional, New York.
	 4.	G. Pitagorsky (2007) The Zen Approach to Project Management, International Institute of Learning,

New York.
	 5.	 R. Lethbridge (2004) Object-Oriented Software Engineering, Tata McGraw-Hill, New Delhi, India.
	 6.	 R. K. Wysocki (2006) Effective Software Project Management, Wiley, New York.
	 7.	 K. El Emam (2005) The ROI from Software Quality, CRC Press, Boca Raton, FL.

291

Chapter 21

Supplier Management

In the previous chapter, we learned

◾◾ What is customer management on software projects?
◾◾ What are typical customer expectations from software projects?
◾◾ How can a good rapport be established with customers?
◾◾ Why should one avoid temptations for gold plating on software projects?
◾◾ How can one negotiate well with customers on software projects?

In this chapter, we will learn

◾◾ What is supplier management on software projects?
◾◾ What are the typical outsourcing arrangements made for software projects?
◾◾ How should one manage suppliers on software projects?
◾◾ What are some of the organization structures of large software service suppliers?
◾◾ How can suppliers effectively manage contracts?

21.1  Introduction
Software projects are characterized by labor-intensive processes like software construction,
software maintenance, and software testing. They are also characterized by high levels of software
skills. Due to the high level of skills required, software professionals are costly. For any organiza-
tion, keeping these highly costly resources idle after completion of a project is not a viable option.
This has led to the proliferation of contracting companies that keep software professionals on
their payroll and contract them to customers whenever they have any software project coming up.
Thus, a large number of software professionals have become contractors who work with different

292  ◾  Software Project Management: A Process-Driven Approach

customers on different projects depending on the availability of work. This arrangement worked
fine until some smart entrepreneurs discovered the benefits of outsourcing software projects to
low-cost countries like India. Thus, a new form of outsourcing emerged, which is known as off-
shore outsourcing. Some of the large software service companies bagged projects from customers
and began to execute them using their development centers in low-cost countries, thus reducing
the development costs. This phenomenon also came in handy because customers could hire large
teams and execute the projects faster, thus collapsing the project schedule. This helped them to
go to market fast and tap the market opportunity quickly, providing them with a distinct market
edge [1] (Figure 21.1).

This kind of new arrangement necessitated good strategy to control these offshore service
providers. Over a period of time, supplier management techniques matured and customers started
using them effectively.

There are indeed various challenges when software services of offshore suppliers are obtained.
Nevertheless, the benefits far exceed these challenges and hence this model has become a huge
success. To avail the benefits, however, one must understand the process of evaluating, selecting,
and working with suppliers.

21.2  Supplier Search Management
Software service suppliers come in many shapes and sizes [2]. There are some large service provid-
ers who operate successfully in many verticals. On the other hand, there are many small service
providers who work in niche market segments. As a customer, you should be able to know if a par-
ticular service provider will be able to do your work. You should know about the services offered
and about the provider’s track record. Thorough research will help you find a list of reliable and
potential service providers who can do your work.

21.2.1  RFP and RFI
A request for proposal (RFP) and a request for information (RFI) are great tools to evaluate and
compare suppliers [3]. An RFI is usually a pre-RFP stage where the customer asks potential suppliers
to send information about what they do, how they do it, and if given a chance to work on a specific
project, how they will go about it. An RFI is not a formal invitation by a customer to the supplier to
bid on a project. RFPs, on the other hand, are part of a bidding process for a project. Thus, RFIs play
a role in evaluating a supplier, whereas RFPs are used for selecting suppliers (Figure 21.2).

In-house IT
team

Independent
IT contractors

Same location
service

providers

Offshore
location service

providers

Figure 21.1  Evolution of IT service providers.

Supplier Management  ◾  293

An RFI can contain a lot of information, but a basic minimal RFI contains information about
the supplier’s legal status, supplier’s service office locations, past experience on projects, customer
references, supplier’s qualifications and certifications, etc. Project-specific details are also included
but are not required or not expected to be provided in detail (Figure 21.3).

An RFP, on the other hand, must contain details about the supplier as well as all details about
the proposed project. Project-specific details may include pricing, tentative schedule, and proj-
ect methodologies adopted. The customer sends the RFP questionnaire to all potential suppliers.
Once the customer receives these filled-in RFP responses, each response is evaluated. The ones
which do not meet the customer selection criteria are rejected. The selected responses are com-
pared to each other and finally the best RFP response is selected.

21.2.2  Supplier Qualifications
Supplier qualifications should be evaluated thoroughly [4]. It is necessary to ascertain (a) whether
the supplier has any quality standards certifications like CMMI, ISO, etc.; (b) whether the sup-
plier has industry certifications, like the ones provided by Microsoft, Sun Microsystems, and
Oracle, etc. for the company; (c) whether the supplier’s employees have these industry certifica-
tions; and (d) whether the supplier workforce is equipped with basic undergraduate- or graduate-
level qualifications, including technical degrees.

Supplier
legal status

RFI contents with
project details

Office
locations

Past
experience

Customer
references Certifications Qualifications

Figure 21.2  Contents of an RFI.

Supplier
legal status

RFP contents with
project details

Office
locations

Past
experience

Customer
references Certifications

Pricing Tentative
schedule

Development
model

Effort
estimate

Qualifications

Figure 21.3  Contents of an RFP.

294  ◾  Software Project Management: A Process-Driven Approach

21.2.3  Supplier Experience
Even if a supplier has all the requisite qualifications, one may not be sure if they can deliver what
one is looking for [5]. The supplier’s past experience and customer references are good measures to
know if they can deliver the goods or not. For instance, suppose you want to build a supply-chain
planning solution for your distribution network of a food retail chain with over 10,000 stores in
the network. What you should look for in such an instance is whether the service provider has
built a software solution for a similar industry to take care of the needs of a similar-sized business.
If the supplier insists on having done it before and you have doubts about his customer references
then you should plan on a site visit of those customers and cross-check the supplier’s claims. If
the claims are true then you can go ahead in the negotiation for the contract with the supplier.
Otherwise, it is better to look further and find another supplier.

21.3  Supplier Agreement Management
If the supplier has never worked with the customer in the past, then the customer is not aware
of how good the supplier is. Even though the supplier’s qualifications, certifications, and experi-
ence help, still the customer should not take any chances. An elaborate agreement must be made
with the supplier that will be legally binding and commercially viable for both parties [6]. The
agreement should take into account service-level agreements, penalties for poor performance,
rewards for excellent performance, and need for revising the contract in future depending on
changed needs.

21.3.1  Short-Term Agreements
Short-term agreements are made for small jobs that are mostly one-time affairs [7]. In such cases,
the customer is not looking for a long-term relationship with the supplier. The customer’s intentions
will be to find a supplier who can do the job cheaply. To protect customer interest, a clause may be
included to receive support from the supplier in future if any problems are faced with the product.

Generally, there are freelancers in the market who undertake these short-term contracts. They
take the contract, do it quickly, and move on to their next assignment.

21.3.2  Long-Term Agreements
Large software services engagements are characterized by long-term agreements [8]. This is where
most of the software services providers operate. Some of the large engagements are multi-year and
multibillion dollar agreements. No customer can sign a deal of such magnitude without being
fully satisfied with the supplier’s ability and past experience. These agreements have elaborate
details as to how the work will be performed, how many people will be engaged, detailed scope
definition of the assignment, and legal clauses for any lapses from either party when contract
agreements are not fulfilled. Generally, the customer opts for a review at the end of each year and
revision of the contract, based on any changes in his needs.

These contracts are written or reviewed by lawyers and are signed by legal counsel from each
party as there is a big risk involved. The supplier prepares detailed project plan and shares it with
the customer. Top managers from suppliers are involved in such contracts apart from the project
manager who will oversee the project for the contract.

Supplier Management  ◾  295

If elaborate details about the project are not clear then a time-and-material-based contract is
signed. The project team from the supplier bills the customer for the amount of time spent by the
team on the project, generally on a monthly basis. Once all details about the project are clear, the
project can be converted into a fixed-cost/fixed-budget project.

21.4  Supplier Communication Management
Communication with the supplier is very important [9]. Right from contract terms to actual work
on the project, communication needs to be precise and unambiguous. The customer must ensure
that the supplier team understands what is to be done. The supplier needs to provide all deliverables
with proper documentation so that their work is understood well by the customer. This two-way
communication with complete details about work to be done and work that has been done increases
the amount of documentation. The positive side of higher amount of documentation is that there is
complete reference of all work done. Any third party will be able to understand what was required to
be done and what actually has been delivered. This helps when any dispute arises between the cus-
tomer and the supplier. The documentation also serves as a reference material for the product made.
So when the software product has to be supported, the reference manuals become extremely useful.

When the supplier team is from a different culture another country then communication
needs are increased manifold. All instruction for the work to be done should be in fair detail so
that it is understood by the supplier team. Description about what is to be made and how to make
it is provided with all the details. The supplier team reads these instructions and works accord-
ingly. Chances of error thus get eliminated.

The downside of the need to provide too much detail is that the project schedule gets pro-
longed. After all, preparing these details requires much of time. But doing it reduces risk of mis-
communication and chances of making errors. In real life, a balance needs to be established
between providing too much detail or not providing any details at all. If the customer and sup-
plier teams have been working for sometime then a rapport is built between these two teams.
Consequently, even a small amount of detail is sufficient for doing any contract work. Although
in the beginning, the amount of detail required may be high, it gets reduced once a good rapport
is built between the two teams.

21.5  Organization Structure
Software services providers have grown to become large global companies. Most software profes-
sionals from countries like India are employed in these organizations. Therefore, it is important to
understand the organizational structures of these companies.

With increase in size, companies found it difficult to manage their businesses. Though at the
top functional level, organization structure remained the same—vice presidents for marketing and
sales, finance, human resources, etc.—things started changing at the middle level. Under market-
ing and sales they now have heads that look after services for different verticals. These verticals
are divided into banking, finance, securities and insurance services (BFSI), supply chain manage-
ment services, and other miscellaneous services. Each vertical is further divided into business con-
sulting services, software development services, and miscellaneous services. Each of these service
groups is again divided into account management where each account represents a customer with
all ongoing projects for that customer. At the bottom of the hierarchy are the projects.

296  ◾  Software Project Management: A Process-Driven Approach

This kind of arrangement evolved as these service providers increasingly refined their offer-
ings with concomitant increase in their organization size, to offer better services to customers [10]
(Figure 21.4).

21.6  Account Management
Each customer is very important for software services companies. To keep customer satisfaction at
maximum, these companies do everything. They appoint an account manager who looks after all
ongoing projects [11]. These account managers may have one or more customers assigned to them.
They not only ensure smooth functioning of the projects, they also ensure that the relationship
with the customer is a long-lasting one. They regularly visit customer sites and try to ensure that all
issues with the customers are resolved satisfactorily. They keep satisfying all needs of the customer
so that the customer is willing to give more business.

21.7  Project Offshore Transition
When an in-house project is outsourced, some changes are needed on the project so that it can be
carried out by an external team [12]. The foremost change is establishing a service-level agreement
with the contractor or service provider so that they will deliver their services, based on the require-
ments of the customer who has outsourced the project to them. This is followed by knowledge

Software services
provider

Software services

Supply chain
management services

Miscellaneous
services

Miscellaneous
services

Banking, finance,
securities and insurance

services

Business consulting
services

Software development
services

Account management

Project management

Figure 21.4  Organization structure for a software services provider.

Supplier Management  ◾  297

transfer about what the requirements are, what the customer wants from the project, and what
work has already been done by the internal team. Only then does the external team take over the
project.

When dealing with offshoring a project then some new issues arise. The external team now
belongs to a country having altogether a different culture and work ethic. The team members may
not have good English-language writing and speaking skills. They will be working in a time zone
which may make virtual meetings impossible. Productivity of these team members will be differ-
ent. Government regulations about labor laws, taxes, etc. will be different. So unlike in same-shore
outsourcing (where the outsourcer is located in the same country) offshore outsourcing is a different
ball game altogether.

Thus when a project goes offshore, many things need to be checked. The most important check
is about the people who will execute the project.

For project transitioning, a well-defined approach is needed. It will help if the outsourcing
company has any recognized process standards certification. A pilot project to start with will be
the best approach. A few people from the offshore team should be sent to the customer site to get
first-hand information about the project. This team should be briefed about the project by the
internal team that has been downsized. Once this part of the external team receives knowledge
transfer from the onshore team, they will come back to their offshore location. They will now
transfer the knowledge acquired about the project to the rest of the team. Now the full team will
start working on the project. Whenever any major or minor milestones are met, a report is sent to
the customer. Whenever any issues arise, they are resolved and work continues. When the pilot
project completes satisfactorily, the customer can decide to opt for full-fledged offshoring of its
projects.

21.8  Case Study
We continue our case study about the mid-market software vendor here. The vendor has out-
sourced a large part of its software development to two outsourcing service providers who are
located at offshore locations.

The vendor has done this outsourcing deal to take advantage of cost reduction and tap global
talent for its product development. They have outsourced many parts of software testing, soft-
ware development, and some software design. They have also outsourced some part of software
maintenance. The cost arbitrage through outsourcing has come to 3:1. That means the outsourced
staff costs just one-third of the cost of onshore staff. Productivity of the outsourced staff is the
same as that of their own staff. If the entire staff would have been onshore then their total annual
development cost would have been $50,000,000. But thanks to outsourcing, the total costs are
$30,000,000 (onshore costs $20,000,000 and offshore costs $10,000,000. A staff of 20 people is
working at the onsite location and a total of 30 people are working at two offshore locations). In
effect they are saving $20 million per annum on their software development costs.

The customer ensured that the productivity level of people at the offshore location would be the
same as its own staff. So even though it had no influence in the selection of people by its outsourcing
partner, it had made sure that the final selection of each team member working at its partner site
would be made by the customer. The customer would provide the partner with a list of positions to
be filled on the project. The partner would then shortlist a number of candidates and would provide
this list to the customer. The customer would then interview these candidates and select the right
candidates for the job. One of the most important objectives during candidate selection is to make

298  ◾  Software Project Management: A Process-Driven Approach

sure that the candidate has prior experience and exposure to tools, technologies, methodologies, and
working on similar outsourced projects. This will make sure that the candidate will be productive
sooner after a short training period.

Review Questions
21.1	 Define supplier management in your own words.
21.2	 What are the key components of a supplier agreement?
21.3	 What are the tools used for supplier evaluation and selection?
21.4	 What do customers consider for supplier selection?
21.5	 How can you transition a project to an offshore location?

Recommended Readings
	 1.	 M. F. Corbett (2004) The Outsourcing Revolution: Why It Makes Sense and How to Do It Right, Kaplan

Publishing, New York.
	 2.	 J. L. Bossert (2004) The Supplier Management Handbook, ASQ Quality Press, Milwaukee, WI.
	 3.	 M. Wiener (2006) Critical Success Factors of Offshore Software Development Projects, DUV, Wiesbaden,

Germany.
	 4.	 Q. Wang, D. M. Raffo (2008) Making Globally Distributed Software Development: A Success Story,

Springer, New York.
	 5.	T. Kendrick (2003) Identifying and Managing Project Risk, American Management Association,

New York.
	 6.	 F. Alan Goodman (2005) Defining and Deploying Software Processes, CRC Press, Boca Raton, FL.
	 7.	 J. T. Marchewka (2006) Information Technology Project Management, Wiley, New York.
	 8.	 G. Walker (2003) Modern Competitive Strategy, McGraw-Hill/Irwin, New York.
	 9.	 J. McManus (2004) Risk Management in Software Development Projects, Butterworth-Heinemann,

Oxford, U.K.
	 10.	 R. Sangwan, N. Mullick, M. Bass, D. J. Paulish (2006) Global Software Development Handbook, CRC

Press, Boca Raton, FL.
	 11.	 T. Davis, R. Pharro (2003) The Relationship Manager: The Next Generation of Project Management,

Gower Publishing Ltd., Hampshire, U.K.
	 12.	 K. Berkling, M. Joseph, B. Meyer, M. Nordio (2009) Software Engineering Approaches for Offshore and

Outsourced Development, Springer, Berlin, Germany.

TOOLS AND
TECHNIQUES

V

301

Chapter 22

Software Project Management
Tools Introduction

In Part V, we will learn

◾◾ What is technology management on software projects?
◾◾ How can team performance be improved on software projects by use of tools?
◾◾ What are some of the common tools and techniques that are used on software projects?
◾◾ What tools and techniques will be available in the future for software projects?

In this chapter, we will learn

◾◾ What is tools and techniques management for software projects?
◾◾ What characteristics of tools are required for a software project?
◾◾ How is tool selection done?

22.1  Introduction
Every business move is all about either increasing market share or improving productivity. Increase
in market share brings more revenue, and increase in productivity reduces costs. Both of these
factors are eternal business considerations no matter what is the status of economy or industry
or the business unit itself. If it has to survive, it has to battle on both of these fronts all the time.
Depending on the situation, the degree of emphasis on either of the two may vary; neverthe-
less, their presence will never go away. Top level growth of any organization is determined by its

302  ◾  Software Project Management: A Process-Driven Approach

ability to innovate its products and services and enhance quality. Bottom level cost improvement
is achieved by continuously increasing productivity. There are many ways in which this bottom
line productivity can be improved.

Tools, in any form, are used by human beings to increase their productivity. For instance, a
software developer can write his code on a plain text editor. When he has to compile or debug his
code, he will have to run the code against the compiler. His productivity can be increased if the
text editor integrates with the compiler as he will now have a single interface to work with instead
of two interfaces on two separate applications. If he is provided with a smart debugging facility
that can provide detailed information about why and where his code is failing, he can quickly fix
his code. This will save a lot of time in debugging and thus increase his productivity (Figure 22.2).

Modern software projects use a lot of tools in all areas of the project, including project man-
agement, product life-cycle management, etc. In software projects, tools are not only used for
increasing productivity but they are also used for improving product quality (Figure 22.1).

However, when choosing tools for software development projects, one should not only consider
how much productivity each tool will provide but also how the tool will fit into the overall environ-
ment of the project and the project team (Figure 22.2). Let us consider many of these aspects in
this chapter.

22.2  Compatibility with Environment
A project manager always keeps looking for the best tools that will help improve the produc-
tivity of his team. Therefore, most project managers and their teams keep evaluating the latest
tools in the market that promise to increase productivity. Nevertheless, if a tool, however good
it may be, does not fit properly in the environment in which it has to be used, it is of no use
to the project team. They will not be able to use it effectively. For instance, a remarkably good

Environment
compatibility

Cost of
ownership

Integration
with other

tools

Existing
skills on the

tool

Tool
obsolescence

Scale of
operation

Tools selection
criteria

Figure 22.2  Tool selection considerations.

Increase
productivity

Increase
quality

Benefits of tools

Fast delivery Doing manually
impossible tasks

Figure 22.1  Benefits of tools.

Software Project Management Tools Introduction  ◾  303

database access management tool may not serve much purpose if the team has only limited work
to do with databases. Instead, the team should invest in tools that will be used extensively on
the project.

22.3  Cost of Tool
Some tools may be too expensive to afford. But if its cost of use per seat is good compared to some
other tools, it can be a viable option. For instance, there are two tools in the market that seem to
be equally good. The price of one tool is $400 (server license) plus $15 per seat. The price of the
other tool is $1000 (server license) plus $10 per seat. Suppose you have team of 100 people and all
of them will be using this tool. In this situation, your price for the first tool will be $1900 and that
for the second tool $2000 (Figure 22.3).

The price difference, thus, is just $100 even though the second tool seemed to be more expen-
sive than the first one. If you feel that the second tool is more compatible to your needs, buying it
would be a better decision than buying the first one.

22.4  Data Integration among Tools
Suppose a project team uses 10 tools and none of these tools can be integrated with each other. In
this scenario, data generated from each tool will have its own version of truth. For example, the
static analyzer tool may report that the total number of software defects is 25 but the configura-
tion management system may report the static defects in the source code as 36. Which version is
true? Similarly, the test management system may report the total number of defects in the system
testing as 140 but the configuration management system may report the system defects as 360.
Again which version is true? (Figure 22.4).

Server
license fee

Implementation
cost

Per seat
license fee Training cost

Time
required in

learning tool

Tool cost
components

Figure 22.3  Tool cost components.

Assured
accuracy

Increase in
productivity

Tools integration
importance

Instant status
information

Instant
decision

enablement

Figure 22.4  Importance of tool integration to each other/project environment.

304  ◾  Software Project Management: A Process-Driven Approach

When you decide to buy a tool, remember your existing configuration and find out if the new
tool can be integrated with your existing tools. If the new tool cannot be integrated, or it is too
difficult to integrate it with the existing tools, it is simply not worth it. Seamless integration of new
tools with existing tools is a must.

22.5  Existing Skills on Tools
Providing training to the project team on a new tool is expensive. It is not only the price of training
but also the time invested on the training instead of getting any productive work done. No doubt
training is important and essential; nevertheless, if it is not required or if it can be avoided then it
is better. If many team members already have good skills on a particular tool, that tool should be
used on the project even if the tool is costlier than other tools. In this way, the cost of training on
learning new tools can be saved.

22.6  Tool Obsolescence
Like many commodities, tools also have a shelf life. They start their journey with their birth, they
mature, and finally they die when they become irrelevant in the market. If you are going to buy a
tool, make sure that it is mature and it is not at a stage in its life when it may see its demise soon.
Check with the tool vendors how they provide support for their discontinued products. Some
vendors provide support for their obsolete products for a long time. Some others do not. If that is
the case, what options does the vendor provide to its customers when it decides to discontinue its
support for the tool? Do they provide free training and licenses for their newer tools? If not, what
kind of discount do they provide to their existing customers?

22.7  Scale of Operation
Some projects are long term in nature. Sometimes they also grow in size over time. So it can hap-
pen that a project has 10 people at the start of the project grows to more than hundred 3 years
down the line. It is very much possible that if a tool had been bought for a project that was sup-
porting 10 people, it could no longer be used as it does not support more people to work with that
tool. When you invest in a tool, ensure that it can support your team even if the team size grows.

Review Questions
22.1	 �Why should a new tool be integrated with existing tools? Explain the benefits of integration

of tools.
22.2	 �What steps can you take if a tool becomes obsolete? What steps should you take to make

sure that you are not buying a tool that is already obsolete or will become obsolete soon?
22.3	 What cost factors are considered when a new tool is evaluated?
22.4	 Why is it required that the tool can be used even when the scale of your project goes up?

305

Chapter 23

Project Management and
Software Life-Cycle Tools

In the previous chapter, we learned

◾◾ What is tools and techniques management on software projects?
◾◾ What characteristics of tools are required for a software project?
◾◾ How is tool selection done?

In this chapter, we will learn

◾◾ What are the common tools and techniques available on software projects?
◾◾ What are the tools available for software life-cycle management?
◾◾ What are the tools available for software project management?

23.1  Introduction
It is very true that software development projects are all about people. But imagine you have a
fabulous team and you start on your project without any tools at your disposal. No integrated
development environment (IDE) tools, no modeling tools, no testing tools, etc. Can you imagine
your life and that of your team? We take it for granted that we have these tools at our disposal.
We do not realize how useful these tools are for our work and that without them our work would
be crippled [1].

In this chapter, we will study tools that are used in different software development project
life-cycle phases.

306  ◾  Software Project Management: A Process-Driven Approach

23.2  Requirement Management Tools
During requirement development and management, we use many tools [2], listed as follows:

◾◾ Requirement elicitation tools: User questionnaires, database reports from a customer manage-
ment system to get customer suggestions/complaints, voice recorder, taking minutes of the
meeting

◾◾ Requirement development tools: Data normalization and structuring tools (Figure 23.1)

During requirement elicitation, requirements are gathered using questionnaires, meetings, etc.
Indirect requirements are gathered from customer feedbacks/complaints, etc. The project team
can give a demo of the product and during question hour, customers can ask questions about
certain features of the software product. These can form a basis for developing requirements.
The project team can also visit work locations of customer sites and interact with people who
can provide inputs, which again can be the basis for requirements (Figures 23.2 through 23.4).

Once we have gathered all the requirements, we need to develop them. First of all we need to
normalize all the data from different sources. We also need to structure these requirement data so
that all data are in one form and can be taken on one document or database. We also need to find
dependency between these requirements. For all of these activities, we need tools. If not advanced
tools, then basic tools like word processors, Excel sheets, etc., can be used.

Requirement
elicitation

tools

Requirement
change

management tools

Requirement
management tools

Requirement
development

tools

Figure 23.1  Requirement management tools.

User
interviews

Questionnaire Customer
feedbacks

Requirement
elicitation tools

Maintenance
back logs

Customer
complaints

Figure 23.2  Requirement elicitation tools.

Project Management and Software Life-Cycle Tools  ◾  307

23.3  Software Design Management Tools
During software design, many models are made, including entity relationship diagrams, use
case models, data flow diagrams, and UI navigation charts [3]. Based on these design specifica-
tions, software construction is done by writing source code manually. For some time, efforts
have been made so that source code can be generated automatically when the software design
is made. Though automatic generation of complete source code has still not become a reality,
many tools generate skeletons of source code and some amount of rudimentary code along with
some documentation. This is useful as a basic structure is made on which source code writing
can be based (Figure 23.5).

Requirement
hierarchy Feature lists Clear unclear

requirement

Requirement
development tools

Aggregate
from many

sources

Complete/
incomplete

requirements

Figure 23.3  Requirement development tools.

Requirement
priority lists

Requirement
change

management

Requirement
version

management

Requirement
management tools

Requirement
selection

management

Optional
requirements

Figure 23.4  Requirement management tools.

CASE tools

Design
management tools

Modeling
tools

Figure 23.5  Design management tools.

308  ◾  Software Project Management: A Process-Driven Approach

23.3.1  CASE Tools
Computer-aided software engineering (CASE) tools try to integrate software design with soft-
ware construction in one phase [4]. When software is designed, the source code is automatically
generated. Users can also select the programming language in which the source code needs to be
generated. CASE tools include tools for creating entity relationship diagrams, data flow diagrams,
use cases, activity diagrams, etc. Examples of some of the CASE tools include ERWIN, Rational
Unified Processing Model, etc. (Figure 23.6).

23.3.2  Modeling Tools
Software design mostly involves modeling different parts of the software using standard notations
[5]. Both physical and logical models are available. The most commonly accepted notation lan-
guage is Unified Modeling Language (UML). The system is designed using tools like Microsoft
Word, Visio, rational tools, etc. (Figure 23.7).

23.4  Software Build Management Tools
When we have software design ready, we start writing the source code. Much source code must
be written before a software system actually takes shape. Due to the large volume and labor-
intensive nature of the work, it takes a lot of time to write source code. Various tools and techniques

Requirement
management

tools

Design
management

tools

CASE tools

Code
generation

tools

Figure 23.6  CASE tools.

Entity
relationship

diagrams
Use cases Activity

diagrams

Modeling tools

Data flow
diagrams

User interface
flow diagrams

Figure 23.7  Modeling tools.

Project Management and Software Life-Cycle Tools  ◾  309

have been developed over the years to enable developers to write source code faster. Some other
tools also help developers to write better source code so that it may be free of defects (Figure 23.8).

23.4.1  Integrated Development Environment Tools
IDEs are the most popular programming tools used by almost all developers [6]. An IDE is an
integrated set of tools that has text editors, compilers, debuggers, and many other tools built
in. Some IDEs are so advanced that developers do not need any external tool when they are
writing, debugging, integrating, or doing any work related to software construction. Microsoft
has Visual Studio IDE, which has a text editor, compiler, debugger, etc. Connection to ver-
sion control tool, database, etc., is easy. It supports writing source code in Visual Basic, C#,
and some other Microsoft programming languages. Similarly, many other vendors have created
good IDEs for Java (Figure 23.9).

23.4.2  Source Code Control Tools
When many developers concurrently work on building a software product, they write their code
in their IDEs on their local machines [7]. They test the code on their local machine. Finally, they
check in their source code at the central server. This server maintains a clean build of the software
product being developed. If for any reason this build breaks, no developer will be able to check
in their source code on this server. This hampers the work of other developers. It is, therefore,
very important that the build on the central server should always be clean and it should never
be allowed to break. A software product under development breaks when you try to run it, and
it throws an exception and the run interrupts. This happens to programming errors. When a

Integrated
development
environments

Source code
control RAD tools

Construction
management tools

Debugging
tools

Database
management

Figure 23.8  Software construction management tools.

Test editors Debugging
tools

Database
connection

tools

IDE tool features

Compiling
tools

Executable
code

generators

Figure 23.9  Integrated development environment tool features.

310  ◾  Software Project Management: A Process-Driven Approach

software build is broken, if somebody checks in his code on top of the broken build, nobody will
know if this fresh code is clean or if it would break the build. Most version control tools, there-
fore, have a mechanism that does not allow check-in of a new code if the build is already broken.
Chapter 5 provides a more detailed discussion on version control tools.

23.4.3  Rapid Application Development
Rapid application development (RAD) tools have been used in the software industry since the
1990s to increase productivity of software construction activity, that is, in writing source code [8].
RAD tools are similar to IDEs with additional features to enhance productivity. They have many
features in their environment that make the developer’s work easier and more productive.

The original RAD tools were used for prototyping. Subsequently, they became part of regular
source code writing tasks.

23.5  Software Testing Management Tools
Software testing is also a resource-intensive phase in the software development life cycle like soft-
ware construction. Software testing involves tasks like test case creation, test case execution, test
case automation, defect reporting, defect tracking, test case management, etc. For most of these
tasks, some sort of tools are available, and these are being used by project teams (Figure 23.10).

23.5.1  Test Management
When test cases are created, the local copy of the test case is with the test engineers. One copy of
the test case should also be kept at a central repository. When new versions of the software need
to be tested, the old test cases become handy for regression testing. If domain experts are working
on the test team and if automation of test cases is also to be done, a central repository becomes
very useful. Both test cases and test scripts can be stored in the repository. Thus, manual testers,
domain experts, and automation engineers can all work simultaneously. A good test management
software tool should be used that will integrate with automation tools so that automation scripts
stored on the test management tool can be run from within the tool. Similarly, defect-tracking
tools can also be integrated with the test management tool. In this way, all the testing activities
can be centralized, which will provide an excellent platform for clear visibility and task tracking
and will definitely increase productivity [9].

Test
management

Defect
tracking

Test
execution

automation

Test management
tools

Test
creation

automation

Test bed
preparation

Figure 23.10  Test management tools.

Project Management and Software Life-Cycle Tools  ◾  311

23.5.2  Defect Tracking
When test cases are run against the software Application under Test (AUT), the result can be
either pass or fail. When a test case passes, this means that the application is working fine and vice
versa. When a test case fails, this means that the application has a defect. This defect is logged
using a defect-tracking tool. The defect information passes on to the developer. The developer fixes
the defect on the AUT. The tester tests to know if the defect has been fixed properly. If it is fixed
properly, he will close the defect. If not, he will reopen the defect. This continues until the defect
is fixed.

There are good defect-tracking tools from both open source as well as traditional software
vendors in the market. Some of them include BugZilla from Mozilla, Test Track Pro from Seapine
Software, etc.

23.5.3  Automation Tools
Regression, performance, sanity, and other kinds of test cases are automated using automation
tools. For test case automation, some tools only involve record and play kind of automation. Some
tools support more features like manually enhancing the test script, allowing integration with the
AUT (vendor dependent), etc. To reduce maintenance efforts, some automation framework is also
used along with automation (Figure 23.11).

23.6  Project Management Tools
Software project management involves preparing and maintaining several documents. These
documents contain a lot of project data. These data are measured and recorded and then analyzed
in comparison to results achieved with best practices.

For carrying out these measurements, the project manager and the project team need good
tools and techniques, which should be selected based on the specific needs of the project. It will
be a waste of time and resources if inappropriate and irrelevant measurements are taken and
maintained.

In this chapter, let us look at some of the tools and techniques that are used for project plan-
ning, monitoring, and control.

The project plan consists of documents like WBS, resource allocation, risk planning, commu-
nication planning, and configuration management.

Regression
testing

Sanity
testing

Smoke
testing

Use of automated
execution tools

Integration
testing

Performance
testing

Figure 23.11  Use of test execution automation tools.

312  ◾  Software Project Management: A Process-Driven Approach

23.6.1  Project Planning Tools
Project planning tools will provide WBS structure, resource planning, schedule, and cost, and will
provide the platform to monitor and control the project. Some of the tools available for project
management include MS Project and Primavera. Many other tools that can be used for this pur-
pose are also available in the market (Figure 23.12).

23.6.1.1  Configuration Management Tools

Configuration management tools not only provide configuration and version control for source
code and project documents but also provide facilities for controlling software evolution, main-
taining product integrity, changing control and version control, and other tasks. Popular configu-
ration management tools include Visual Source Safe and Perforce (Figure 23.13).

23.6.1.2  Communication Management Tools

On software projects, much communication goes on among team members, customers, and sup-
pliers. Communication includes sharing project documents, task status information, meetings,
reviews, issues, status reports, etc. These documents and tasks are done using methods like meet-
ings, virtual meetings, instant messengers, Web demonstration tools, e-mails, whiteboards, remote
desktop connections, etc. (Figures 23.14 and 23.15).

WBS
creation

Resource
planning

Detailed
schedule

Project
management tools

usage

Cost
planning

Network
diagrams

Figure 23.12  Project management tools usage.

Configuration
management

Version
control

Software
evolution
control

Configuration
management tools

usage

Product
integrity

Project
document

management

Figure 23.13  Configuration management tools usage.

Project Management and Software Life-Cycle Tools  ◾  313

Review Questions
23.1	 Why are integrated development environments used?
23.2	 What does a defect-tracking tool do?
23.3	 Explain what is meant by CASE tools.
24.4	 What kinds of tools are used in requirement management?

Recommended Readings
	 1.	 V. Sikka (2004) Maximizing ROI on Software Development, CRC Press, Boca Raton, FL.
	 2.	 C. T. Leondes (2001) Computer-Aided Design, Engineering, and Manufacturing, CRC Press, Boca

Raton, FL.
	 3.	 N. F. Kock (2006) Systems Analysis and Design Fundamentals, Sage, London, U.K.
	 4.	 A. W. Brown, D. J. Carney (1994) Principles of CASE Tool Integration, Oxford University Press,

Oxford, U.K.
	 5.	 L. C. Briand, C. Williams (2005) Model Driven Engineering Languages and Systems, Springer, Berlin,

Germany.
	 6.	 J. McGovern, S. W. Ambler (2003) A Practical Guide to Enterprise Architecture, Prentice Hall PTR,

Upper Saddle River, NJ.
	 7.	 R. J. Muller (1998) Productive Objects: An Applied Software Project Management Framework, Morgan

Kaufmann, San Francisco, CA.
	 8.	 J. W. Rittinghouse (2003) Managing Software Deliverables: A Software Development Management

Methodology, Digital Press, Clifton, NJ.
	 9.	 D. Graham, E. Van Veenendaal, I. Evans, R. Black (2008) Foundations of Software Testing: ISTQB

Certification, Cengage Learning, Independence, KY.

Meetings Reviews Issue
management

Communication
management tools

usage

Project
reporting

Project
status

Figure 23.14  Communication management tools usage.

Virtual
meetings

Instant
messaging E-mail

Communication
management tools

Virtual white
boards

Remote
desktop
sharing

Figure 23.15  Communication management tools.

315

Chapter 24

Software Project Templates

In the previous chapter, we learned

◾◾ What common tools and techniques are available in software projects?
◾◾ What tools are available for software life-cycle management?
◾◾ What tools are available for software project management?

In this chapter, we will learn

◾◾ What common templates are available in software projects?
◾◾ Why should templates used in software projects?
◾◾ What common attributes are there for various kinds of templates which are used in

software projects?

24.1  Introduction
Templates and common shared libraries provide two things. They ensure that a common platform is
used for documentation and project communications. So we have uniformity in project communica-
tions for all parts of the project. This makes it easier for all project stakeholders and team members
to understand all the communication, and the chances of miscommunication get reduced. It also
ensures that the productivity of communication gets increased. After reading any communication,
understanding the message does not take much time contrary to a situation where disparate kinds of
documents with no uniformity across each other are communicated and thus understanding them
becomes difficult [1].

The other benefit of using standard templates is that people will not miss any project work due
to forgetfulness. Suppose task A is a part of the project and it consists of six steps of work to finish.

316  ◾  Software Project Management: A Process-Driven Approach

Suppose a person working on it finishes five steps and forgets to finish the sixth step and checks in
his work. Other people are not aware of it and in fact the project is proclaimed to be complete after
all others are finished. The unfinished product is now being used by users. When using it, users
report some defects in the product. The support analyst analyzes the defect and then the defect is
passed on to the support team to fix. When a postmortem of the project is done, it is discovered
that the defect originates from the missing step in Task A. When people use standard templates,
the person who owns a particular project template never fails to document any task or task step or
requirements to check before finishing a task. In essence, these filled templates become checklists
for the team members.

But the most important benefit of using templates is that project and development data can
later be sent to databases and thus this information can be stored permanently. At the basic level,
templates provide a mechanism to put data into good structures. When data are stored this way,
they can be extracted easily and can be stored in database repositories. In contrast, unstructured data
(e.g., in form of e-mails, chat sessions on instant messengers, and data in unformatted documents)
is difficult to get extracted. These unstructured data are, thus, not of much use. Knowledge man-
agement systems are in fact built from data extracted from structured project templates [2].

In this chapter, we will study what essential ingredients go in different types of project tem-
plates used in software projects.

24.2  Software Life-Cycle Template Guidelines
Software life-cycle templates are used during the entire period when software work products are
being made. In the requirement management phase, requirements are gathered, developed, and
managed. A good template with required steps will ensure that these activities are performed cor-
rectly, and no vital steps go missing. Similar templates are used for other development phases in
the project.

24.2.1  Software Requirement Template Guidelines
The requirement management template contains information about functional and nonfunctional
requirements that need to be gathered, analyzed, and developed [3]. Nonfunctional requirements
include requirements for performance, security, quality level, usage intensity, and safety. The pro-
posed solution should be able to meet levels and criteria prescribed by the customer, and these
pieces of information should be recorded in the template. Functional requirements should contain
information about system features, external interfaces, user interfaces, hardware interfaces, soft-
ware interfaces, communication interfaces, etc.

Here is the list of parts of requirements:
Functional requirements

◾◾ System features
◾◾ External interface requirements
◾◾ User interfaces
◾◾ Hardware interfaces
◾◾ Software interfaces
◾◾ Communication interfaces

Software Project Templates  ◾  317

Nonfunctional requirements

◾◾ Performance requirements
◾◾ Safety requirements
◾◾ Security requirements
◾◾ Software quality level requirements
◾◾ Usage intensity

Inputs for the requirement management process:

◾◾ High-level requirements
◾◾ System operation concepts
◾◾ Customer needs

Outputs from the requirement management process:

◾◾ Baselined, validated requirements
◾◾ Interface documents
◾◾ Reuse plans
◾◾ Traceability matrices
◾◾ Operational scenarios
◾◾ Historical records

Major tasks in requirement management (Table 24.1)

Table 24.1  Major Requirement Management Task List

Analyze high-level requirements

a. Examine, discuss, and understand the high-level requirements and operation concepts

b. �Identify the scope of the requirements and the purpose of the software, and analyze any
constraints affecting the software requirements from the perspective of cost, schedule,
technology, or quality

c. Limit requirements scope within technology constraints

d. Develop operational scenarios

e. Perform make/buy/reuse (Reuse/COTS) study and document the results

f. Document major assumptions made in conducting the analysis

Define detailed requirements and specifications

a. �Refine operation concepts and operational scenarios to ensure that all functionality is
documented

b. Expand the high-level requirements to detailed requirements

c. Define external interface requirements

d. �Allocate the detailed requirements and specifications to subsystems or major
components

(continued)

318  ◾  Software Project Management: A Process-Driven Approach

Requirement review checklist (Table 24.2)

Table 24.2  Requirement Review Check List

a. �Compliance with standards—Does the requirement specification comply with standard
software process model or tailored branch/project-level standards and naming conventions?

b. �Completeness of specifications—Does the requirement specification document address
all known requirements? Have “TBD” requirements been kept to a minimum or
eliminated entirely?

c. �Clarity—Are the requirements clear enough to be turned over to an independent group for
implementation?

d. �Consistency—Are the specifications consistent in notation, terminology, and level of
functionality? Are any required algorithms mutually compatible?

e. External interfaces—Have external interfaces been adequately defined?

f. �Testability—Are the requirements testable? Will the testers be able to determine whether
each requirement has been satisfied?

g. �Design-neutrality—Does the requirement specification state what actions are to be
performed, rather than how the sections will be performed?

h. �Readability—Does the requirement specification use the language of the intended testers
and users of the system, not software jargon?

Table 24.1 (continued)  Major Requirement Management Task List

e. Analyze detailed requirements to make sure that they are within technology constraints

f. �Trace detailed requirements to high-level requirements and subsystems, find verification
methods for each of the detailed requirements, and prepare a matrix that contains all the
relationships among verification methods and detailed requirements

g. Document the detailed requirements and specifications developed

Verify requirements and specifications

a. �Conduct requirement peer reviews to ensure agreement regarding the intent and
purpose of each requirement and the reason for limits, tolerance, and margin in each
specification�

b. Clarify ambiguous requirements

c. �Determine the technical feasibility of each requirement and any risks inherent in
candidate approaches

d. �Verify consistency, necessity, and completeness both internal to the requirements and
against driving documents

e. Model performance or prototype as needed

Validate requirements and specifications

a. Determine and document the method of validation to be used for each requirement

Software Project Templates  ◾  319

24.2.2  Software Design Template Guidelines
A software design template enables the project team to capture and record modeling tools to be
used, architecture details, model details (activity diagrams/use cases/work flow diagrams, etc.),
module details, component details, etc. [4]. It should also contain information on what design
metrics will be used in the project.

Inputs required for software design process:

◾◾ Preliminary software design (if available)
◾◾ Validated and project-approved requirements
◾◾ Operation scenarios
◾◾ Interface documents
◾◾ Reuse plans
◾◾ Test plan
◾◾ Requirement traceability matrix
◾◾ Requirement inspection documents from reviews

Outputs from software design process:

◾◾ Design documentation
◾◾ Requirement change requests
◾◾ Software design document presentation materials
◾◾ Updated requirement traceability matrix
◾◾ Lessons learned
◾◾ Suggested refined estimates of system size, effort, and schedule
◾◾ Requirement inspection documents from reviews collected and placed under appropriate

configuration control for tracking to closure

Major tasks in software design process (Table 24.3)

Table 24.2 (continued)  Requirement Review Check List

i. �Level of detail—Are the requirements at a fairly consistent level of detail? Should any
particular requirement be specified in more detail? In less detail?

j. �Requirements singularity—Does each requirement address a single concept, topic,
element, or value?

k. �Definition of inputs and outputs—Have the internal interfaces, that is, the required inputs
to and outputs from the software system, been fully defined? Have the required data
transformations been adequately specified?

l. �Scope—Does the requirement specification adequately define boundaries for the scope
of the target software system? Are any essential requirements missing?

m. �Design constraints—Are all stated design and performance constraints realistic and
justifiable?

n. Traceability—Has a bidirectional traceability matrix been provided?

320  ◾  Software Project Management: A Process-Driven Approach

Table 24.3  Major Design Management Task List

Expand and refine architecture

a. �Define functions—In conjunction with the operating system requirements for the
structure of application programs and communication between application programs.
Decompose the designated processing into lower-level component processing

b. �Identify lower-level reusable software from prior efforts—Identify any reusable components
that can be incorporated into the design according to the reuse strategy specified in the
project plan

c. �Identify software units—Identify the software unit names. Follow the naming conventions
defined for the project

d. �Identify software unit interactions/interfaces—Define the software unit interface
requirements for all software units in the system

e. �Select IT security components if applicable—Identify components of the system that
could be vulnerable to a breach of system security. Develop a security assurance strategy
to ensure that the design for the identified software components minimizes or eliminates
the potential for breaches of system security

f. �Establish failure detection and correction—Identify the components of the system that could
fail. Develop a correction/recovery strategy to ensure that the design for the identified
software minimizes or eliminates the potential for failures of the system

Design software units

a. �Establish I/O for each unit—Generate and coordinate data and control definitions for the
software unit inputs and outputs

b. �Select algorithms—For each software unit (or operation on each class), select algorithms
to accomplish the required function. Develop this internal logic in accordance with the
standards specified in the project plan

c. �Select data structures—For each software unit (or operation on each class), select
appropriate data structures to accomplish the required function

d. �Define unit-level data requirements/communication protocols—Define unit-level data
requirements and communication protocols and formats between each software unit in the
functional group

e. �Determine reusability requirements for each unit—When future reuse is an objective of the
software being developed, determine applicable design requirements to facilitate reuse

f. Develop software unit design for each unit

g. Finalize user interface(s)

h. �Estimate utilization and size of each component of the system or unit as appropriate—
Estimate resource utilization for the component of software being designed. Include CPU
throughput, memory utilization, and I/O channel usage

i. Conduct one or more design walkthrough/inspections so that each unit is inspected

Prepare material

a. Critical design review presentation materials

b. Traceability matrix updates

c. Planning refinements/updates

d. Lessons learned

Software Project Templates  ◾  321

Design review task checklist (Table 24.4)

24.2.3  Software Build Template Guidelines
Software build management is concerned with what programming language can be used, how
integration with various internal and external interfaces can be achieved, which team will develop
what, how unit and integration testing will be performed, etc. [5]. These pieces of information are
to be covered in the build template. It should also contain information as to which build metrics
will be used.

Inputs required for software construction process:

◾◾ Software design
◾◾ Validated and project-approved requirements
◾◾ Operation scenarios
◾◾ Interface documents
◾◾ Reuse plans
◾◾ Test plan
◾◾ Requirement traceability matrix
◾◾ Requirement inspection documents from reviews

Table 24.4  Design Review Check List

1. Completeness

a. Review requirement traceability matrix to ensure the coverage of all requirements

b. �Ensure the coverage of real-time requirements, performance issues (memory and
timing), spare capacity (CPU and memory), maintainability, understandability, database
requirements, loading and initialization, error handling and recovery, user interface
issues, software upgrades, software reuse and modifications, and all inputs and
outputs

c. Clearly and correctly identify interfaces

d. All functions clearly and accurately described in sufficient detail

e. All interfaces clearly and (appropriately) precisely defined

f. Adequate data structures defined

g. All error codes documented

2. Suitability

a. Deviations from the requirements are documented and approved

b. Assumptions are documented

c. Major design decisions are documented

d. The design is expressed in precise unambiguous terms

e. Dependencies on other functions, operating system, hardware, etc., are documented

f. The design follows notational conventions

322  ◾  Software Project Management: A Process-Driven Approach

Outputs from software construction process:

◾◾ Software source code
◾◾ User manual
◾◾ Software coding documentation
◾◾ Updated requirement traceability matrix
◾◾ Lessons learned
◾◾ Requirement inspection documents from reviews collected and placed under appropriate

configuration control for tracking to closure

Major tasks in software construction process (Table 24.5)

Table 24.5  Major Construction Management Task List

Build preparation

a. �Decompose function—In conjunction with the operating system requirements for
structure of application programs and communication between application programs.
Decompose the designated processing into lower-level component processing

b. �Identify lower-level reusable software from prior efforts—Identify any reusable
components that can be incorporated into the construction according to the reuse
strategy specified in the project plan

c. �Identify software units—Identify the software unit names. Follow the naming conventions
defined for the project

d. �Identify software unit interactions/interfaces—Define the software unit interface
requirements for all software units in the systems

e. �Select IT security components (if applicable)—Identify components of the system that
could be vulnerable to a breach of system security. Develop a security assurance strategy
to ensure that the design for the identified software components minimizes or eliminates
the potential for breaches of system security

f. �Establish failure detection and correction—Identify components of the system that could
fail. Develop a correction/recovery strategy to ensure that the construction for the
identified software minimizes or eliminates the potential for failures of the system

Construct software units

a. �Establish I/O for each unit—Generate and coordinate data and control definitions for the
software unit inputs and outputs

b. �Select algorithms—For each software unit (or operation on each class), select algorithms
to accomplish the require function. Develop this internal logic in accordance with the
standards specified in the project plan

c. �Select data structures—For each software unit (or operation on each class), select
appropriate data structures to accomplish the required function

d. �Define unit-level data requirements/communication protocol—Define unit-level data
requirements and communication protocol and formats between each software unit in the
functional group

Software Project Templates  ◾  323

Construction review task checklist (Table 24.6)

24.2.4  Software Testing Template Guidelines
A set of software testing templates include templates for test strategy document, test plan document,
test metrics document, resource plan document, etc. [6].

Table 24.6  Major Construction Review Check List

1. Completeness

a. Review requirement traceability matrix to ensure the coverage of all requirements

b. �Ensure the coverage of real-time requirements, performance issues (memory and
timing), spare capacity (CPU and memory), maintainability, understandability, database
requirements, loading and initialization, error handling and recovery, user interface
issues, software upgrades, software reuse and modifications, and all inputs and outputs

c. Clearly and correctly identify interfaces

d. All functions clearly and accurately described in sufficient detail

e. All interfaces clearly and (appropriately) precisely defined

f. Adequate data structures defined

g. All error codes documented

2. Suitability

a. Deviations from the requirements are documented and approved

b. Assumptions are documented

c. Major construction decisions are documented

d. Dependencies on other functions, operating system, hardware, etc., are documented

3. Correctness

a. The logic is correct

Table 24.5 (continued)  Major Construction Management Task List

e. �Determine reusability requirements each unit—When future reuse is an objective of the
software being developed, determine applicable design requirements to facilitate reuse

f. Develop software unit construction for each unit

g. Build user interface(s)

h. Estimate utilization and size of each component of the system or unit as appropriate

i. �Conduct one or more construction walkthrough/inspections so that each unit is inspected

Prepare material

a. Critical construction review presentation materials

b. Traceability matrix updates

c. Planning refinements/updates

324  ◾  Software Project Management: A Process-Driven Approach

Software testing task checklist (Table 24.7)

Test effort success criteria
The criteria for deeming a test effort successful are as follows (Table 24.8):

Table 24.8  Test Effort Success Criteria List

Adequate test plans are completed and approved for the system under test

Adequate identification and coordination of required test resources are completed

Previous component, subsystem, and system test result form a satisfactory basis for
proceeding into planned tests

Risk level is identified and accepted by program/competency leadership as required

Plans to capture any lessons learned from the test program are documented

The objectives of the testing have been clearly defined and documented; and the review of
all the test plans, as well as the procedures, environment, and configuration of the test item,
provides a reasonable expectation that the objectives will be met

The test cases have been reviewed and analyzed for expected results, and consistent with the
test plans and objectives

Test personnel have received appropriate training in test operation and safety procedures

Table 24.7  Major Testing Task List

The objectives of the testing have been clearly defined and documented, and all of the test
plans/procedures, environment, and configuration of the test item(s) support those
objectives

Configuration of the system under test has been defined/agreed to

All interfaces have been placed under configuration management or have been defined in
accordance with an agreed-upon plan. A version description document has been made
available to test team prior to the review

All applicable functional, unit-level, subsystem system, and qualification testing has been
conducted successfully

All test-specific materials, such as test plans/test cases/procedures, have been made available
to all team members prior to conducting the review

All known system discrepancies have been identified and disposed in accordance with an
agreed-upon plan

All required test resource people, facilities, test articles, test instrumentation, and other
test-enabling products have been identified and are available to support required tests

Roles/responsibilities of all test participants are defined and agreed to

Test contingency planning has been accomplished, and all personnel have been trained

Software Project Templates  ◾  325

24.3  Project Management Template Guidelines
24.3.1  Work Breakdown Structure (WBS) Template Guidelines
Guidelines for creating and maintaining WBS structure for the project plan (Table 24.9) [7]:

Table 24.9  Work Breakdown Task List

1. �A project WBS may be tailored and constructed to reflect unique characteristics of the
product effort as appropriate

2. �The WBS is a tree-structured, activity-oriented list of all work needed to meet the
requirements of the project

a. �The WBS is organized by product or service such that activities for a product (or
subproduct or service) are normally grouped within a section of the WBS

b. �The WBS provides a mechanism for the collection of cost and schedule data on a
product-by-product (or service) basis, as well as for the project overall

c. �It provides a framework for identifying material, services, schedules, staffing, and cost
associated with each work element of the project

d. �It addresses all work required, including organizing, planning, monitoring, controlling, and
reporting the status of all work elements across the project

e. �The WBS is used as the set of activities to be scheduled for the project. Estimation of
resources required is also frequently based on the work defined in the WBS. If there is
work you must do that is not reflected in your WBS, it is likely to have no schedule or
resources. It will probably result in a schedule and/or cost variance

f. �The checklist provides a list of most high-level activities that a project may have to
perform. It includes a WBS dictionary to assist in selecting the appropriate items. Use
the example of a project WBS in Figure 6.6 (Chapter 6) as a guide in creating,
formatting, and documenting your WBS. Your WBS will have many different WBS items
but will need many of the same items as in the example.

3. �Although the WBS is product or service based, remember to include management and
process activities (e.g., reporting, integration, training, requirements management) that must
be accomplished to meet the project requirements. These must be included as WBS
elements or they will not be scheduled and they will have no resources allocated to them.
Some of the management processes that must be covered are planning, monitoring and
control, measurement and analysis, requirements management, acquisition management,
and risk management

4. �Organize the specific work elements that must be accomplished into successively smaller
work elements such that

a. The subdivisions (or decomposition) of work elements are referenced in terms of levels

b. The highest levels usually reflect the major deliverable work areas or milestones

326  ◾  Software Project Management: A Process-Driven Approach

24.3.2  Project Planning Guidelines
Inputs to project planning process are as follows [8]:

◾◾ Requirement document(s) or statement of customer needs or replanning criteria (change in
requirements or constraints, or significant variance from the original plan)

The outputs of project planning process are as follows:

◾◾ The baselined project plan and its subsidiary plans
◾◾ The plan for tracking the progress and cost of work elements

Major tasks (Table 24.10)

24.3.3  Project Monitoring and Control Guidelines
Inputs for project monitoring and control [9]:

◾◾ Baselined software project plan and subsidiary plans
◾◾ Established development environment
◾◾ Initial progress tracking worksheet
◾◾ Project status information
◾◾ Technical review materials

Review packages
Change requests
Requests for action (RFAs)
Review item dispositions (RIDs)
Impact analysis (for requirements changes), etc.

Table 24.10  Project Planning Task List

a. Identify (or update) software deliverables and external dependencies

b. Identify (or update) the development and/or acquisition strategy

c. Define (or update) the management and technical approaches to completing the work

d. Develop (or update) the work breakdown structure

e. Develop (or update) the schedule

f. Estimate (or update) product size and project effort and cost

g. Define (or update) the organization and resources needed

h. �Develop and document (or update) strategies for data management, risk
management, stakeholder management, and measurement and analysis

i. Write and baseline the project plan

j. Maintain the project plan as needed

Software Project Templates  ◾  327

Outputs from project monitoring and control:

◾◾ Project status reports
◾◾ Issues
◾◾ Lessons learned
◾◾ Risk information
◾◾ RFAs
◾◾ RIDs

Major tasks (Table 24.11)

Recommended Readings
	 1.	 K. Elleithy (2007) Advances and Innovations in Systems, Computing Sciences and Software Engineering,

Springer, Berlin, Germany.
	 2.	 E. McGuire (1999) Software Process Improvement: Concepts and Practices, Idea Group Inc., Hershey, PA.
	 3.	 R. F. Goldsmith (2004) Discovering Real Business Requirements for Software Project Success, Artech

House, Boston, MA.
	 4.	 J. Highsmith, J. A. Highsmith (2002) Agile Software Development Ecosystems, Addison Wesley, Boston, MA.
	 5.	 B. W. Boehm, V. R. Basili, H. D. Rombach, M. V. Zelkowitz (2005) Foundations of Empirical Software

Engineering: The Legacy of Victor R. Basili, Springer, New York.
	 6.	 G. D. Everett, R. McLeod (2007) Software Testing: Testing across the Entire Software Development Life

Cycle, Wiley, Hoboken, NJ.
	 7.	 D. Milošević (2003) Project Management Toolbox, Wiley, Hoboken, NJ.
	 8.	 R. E. Fairley (2009) Managing and Leading Software Projects, Wiley, Hoboken, NJ.
	 9.	 J. P. Lewis (2004) Project Planning, Scheduling, and Control, Tata McGraw-Hill, New Delhi, India.

Table 24.11  Project Monitoring
and Control Task List

1. Monitor project activities and resources

2. Monitor work products and project data

3. Monitor software acquisition

4. Monitor commitments

5. Manage corrective actions

6. Generate reports and review progress

7. Conduct milestone reviews

8. Document lessons learned

329

Chapter 25

Future Tools and Techniques

In the previous chapter, we learned

◾◾ What common templates are available in software projects?
◾◾ Why should templates be used in software projects?
◾◾ What common attributes are there for various kinds of templates that are used in

software projects?

In this chapter, we will learn

◾◾ What future tools and techniques will be available in software projects?
◾◾ What tools will be available for software life-cycle management?
◾◾ What tools will be available for software project management?

25.1  Introduction
In a very good article about the future of programming, it was said that limitations in advance-
ment of any technology is not the limitation of the technology but of the human brain. We created
robots but then suppose androids came. Is it possible that these androids would become smarter
than human beings anytime in the future? As far as physical capacities are concerned, there doesn’t
seem to be any constraints. Androids can have massive memory and storage power, which may
make them superior than human beings in the future. They could also have lightning speed
processing power in the future. Would these factors make androids have superior intelligence
compared to human beings? It is most unlikely, because whatever intelligence is being provided

330  ◾  Software Project Management: A Process-Driven Approach

to androids is being supplied by human beings. The way human beings think and the way human
beings memorize is what will go into these androids. It is simply impossible that what human
beings do not know can go to androids. After all human beings can teach only up to what they
know and not more. So limitations of intelligence of the ultimate androids will be same as that
of human beings. With conscious effort, human beings would always create robots and androids
who will obey the commands of human beings, and under no circumstances, would they will
disobey any command given by a human. So after all, human beings would be safe from androids
and robots.

This discussion is interesting. But now let us come to our main topic. What holds for the
future of programming, programming tools, techniques, and software development in general?

There is one caveat here though. We all hear about computer science, computer engineering,
and software engineering, but has any of us heard about software science? Computer engineering
goes with computer science, but what goes with software engineering? Why is there no such thing
as software science? Probably because computer science has usurped all areas that could have gone
under software science if it ever existed!

25.2  Software Industry Trends
There is no denying that there has been tremendous progress in all areas covering computer science,
software engineering, hardware engineering, artificial intelligence, and many areas related to or
dealing with computers and software after the advent of computers and their software [1]. Indeed
the efforts of millions of people over these years have really paid off. The software industry is one
of the fastest growing and changing fields in the history of human kind (Figures 25.1 and 25.2).

Here let us find out what the latest trends are in the software industry today.

25.2.1  Open Source
Today, open source has become an established force in the software industry [2]. The open source
community voluntarily develops software products or components and makes then available to the
entire world with the source code for free or for a small fee. Since the source code is available, other
developers can see it, evaluate it, and can make changes in the source code. They in turn can pub-
lish it to the wide and vast community of open source people. This is a very strong business model.

Service
oriented

architecture
Open source Intelligent

Web site
Web

services
Streaming

media
Talking

Web sites
Social

networks

Future software
industry trends

Figure 25.1  Future software industry trends.

Future Tools and Techniques  ◾  331

In stark contrast, for any proprietary software product, development is constrained by the amount
of time and money a software vendor can afford. So there is a limit up to how much the product
can be tested or further developed. This constraint does not apply to the open source community.
Each developer involved in open source development works on his own and can contribute as
much as he wants. And since it is open to anybody in the world, a large number of developers can
contribute to the same product.

Currently open source is a big success story. It is suitable for developing small neatly built soft-
ware products to some of the large products like Linux, MySQL, etc. It is going to expand further
in the future and will remain a strong force in the software development community.

25.2.2  Application Service Provider
The application service provider (ASP) model is based on the idea of providing access to software
product via subscription instead of the traditional model where you must purchase the license of
a product to install and use it [3]. Users pay subscription fees at regular time intervals much like
cable TV. If any user fails to pay, his access to the application is denied. It is a very good model
because users do not need to pay the hefty price usually associated with a software product. Here
they pay only a small subscription fee. ASP is still around but has not gained much ground due to
low awareness, data theft worries, partial but not full control of the application, etc.

The term, “ASP,” originated in the 1990s. Now it is known as software as a service (SaaS) [4].

25.2.3  Software as a Service
SaaS can be a complete application per se, but it can also be a service that can provide
valuable information or service in conjunction with another application. Some of the SaaS
applications that work with other applications include live feeds (news, broadcasts, etc., ser-
vices), live services (airline fares, online tickets, etc.), Internet searches (for goods or services),
software applications, etc. When SaaS is a complete application, it can provide its services
on its own and may not need services from any other SaaS service (www.salesforce.com and
www.onenetwork.com).

SaaS has a great future. With evolution of the Internet and usage of the Internet becoming
even more widespread, SaaS will have expanded market and will grow more.

Automatic
formatting

Automatic
pull from
sources

Automatic
hierarchy

Future software requirements
tool capabilities

Automatic
aggregation

Text
converters

Figure 25.2  Future capabilities of management tools for software requirements.

332  ◾  Software Project Management: A Process-Driven Approach

25.2.4  Service-Oriented Architecture
Service-oriented architecture (SOA) was invented for SaaS products [5]. Traditional software products
were not made for mass markets. Rather they were made for use by limited groups (offices, organi-
zations, etc.). SaaS has changed all that. Now software products are made for mass markets. It has
fundamentally changed the architecture of software products to suit the needs of providing access to
mass markets. As software products are now being marketed more as a service, these products should
have facilities that can effectively make it work as service rather than as a product. All of these are
taken care of by adopting SOA architecture. As SaaS grows, so will SOA.

The most important aspect of SOA applications is their ability to integrate with other applica-
tions. But before integration, they also should have some properties that will make them search-
able so that people looking for an appropriate SaaS service can easily find them. For this, the
service providers register themselves in searchable directories at appropriate places so that their ser-
vice can be easily found. Once somebody finds a suitable service, they can register themselves for
this service. Here comes the role of integration. The integration is done using Web Services (WSs).
WSs integrate with other applications using what is known as loose coupling. When two or more
SaaS applications get integrated, there is never a permanent integration among these applica-
tions. They integrate only for the time they need to integrate. For instance, a user’s computer may
integrate with one SaaS application if he has registered for it. Later, the user finds a better SaaS
application for his needs and decides to register for it. The moment he registers for it, there is a new
integration between the user computer and the new SaaS application. The old integration between
the user computer and the old SaaS application vanishes without a trace.

25.2.5  Intelligent Web Sites
What can you expect in the future from the current trend of sophisticated Web sites? In fact, what
we are seeing today can still be considered as a nascent stage in the development of the Internet.
In the future, we can have Web sites that can store a profile of a user’s habits and preferences and
will present content based on the specific user’s requirements. This kind of Web site will be intel-
ligent in a true sense.

25.2.6  Web Services
With SOA, we have a great technology that defines new trends in software industry. But without
WSs, this technology will not be able to tap the promise it invokes. WSs allow asynchronous and
on-demand integration between two SOA-based applications. It is this capability that will trans-
form the way any software application will be used. Without WSs, SOA architecture is like a great
innovation sitting on a shelf which is just a showpiece.

25.2.7  Streaming Media
We already have some great Web sites with streaming media (e.g., YouTube). We are actually
experiencing just the beginning of a revolution. All kinds of media will become available on the
Internet in the future. Currently, bandwidth is a constraint in the choice of richness of streaming
media to be deployed. With increase in bandwidth in the future, a great number of rich media can
be deployed. So the true functionality of television, radio, and other media will be fully available
on the Internet.

Future Tools and Techniques  ◾  333

25.2.8  Social Networks
Google is a phenomenon that has changed the Internet forever. In fact, it has made an impact on
other kinds of businesses as well. The advertising network of Web sites has changed the way the
advertising is done. Now even costly products and services can be offered for free by generating
revenue not from sale of products and services but from advertising.

Social networks are an offshoot of this phenomenon. In social networks, the user of a Web site
is not open to anyone who is surfing the Internet but only to those whom the user has given access.
Orkut, Twitter, Facebook are some of the most popular social network.

25.2.9  Influence of New Trends on Software Industry
Innovation in technology opens new ways of doing business and new ways for fulfilling personal
goals. At the same time, new trends and innovations in our business and personal life result in
the creation of new technology to fulfill those needs. So this works both ways. The new trends in
technology that we are observing have not started on its own. Some of them have started to fulfill
the existing needs, and the remaining part has been conceived by brilliant people and organizations
who created these innovations that are driving creation of new needs.

25.3  Software Requirement Management Tools
There are not many specialty tools that are currently used for requirement management [6]. Most
people do their gathering of requirements and management jobs with word processors and simple
databases. Some tools, however, let users analyze the requirements that they have gathered and
allow them to be stored in specific ways so that users can manage their requirements better. The
malady with requirements is that they come from many sources in many formats (like e-mails,
questionnaire responses, interviews, old archived requirements, etc.). Formatting these require-
ments and then putting them in the right perspective is still a daunting task.

In the near future, however, there will be specialty tools to help people do the tasks associated
with requirement management. There will be data retrieving and data cleansing programs to get
requirements from customer complaints/suggestions and other sources. The voice into text con-
verters will become usable so that programs can convert spoken voice during user interviews into
text and store them. There will be efficient tools that will convert unformatted requirements from
many sources into uniform requirements.

25.4  Software Design Management Tools
Computer-aided software engineering (CASE) tools ably handle such tasks as configuration man-
agement, data modeling, model transformation, source code generation, and the creation of many
kinds of diagrams. Most of these tasks are related to software design. Currently there are CASE
tools on the market that produce the skeletal framework of source code when the software design
is to be made by software architects manually. There are many kinds of documents needed as part
of software design to construct the software product (Figure 25.3).

Some common types of documents made include entity relationship diagrams, use cases, activity
diagrams, workflow diagrams, etc. All of these different types of documents are made manually.

334  ◾  Software Project Management: A Process-Driven Approach

It will become possible in the future to create one type of design document manually and other types
automatically. When the original manual document is changed, automatically created documents
will also change without the need to change them manually. The software source code generated by
these tools will also become more usable.

25.5  Software Build Management Tools
Software construction is the most labor-intensive phase in software development life cycle. So
although software design is ready, it takes a lot of time before the software product actually gets
into shape and users can see it. Naturally increasing productivity for software construction activi-
ties will shrink the time required to build any product. Much work has been done by many ven-
dors to bring tools for this purpose (Figure 25.4).

Right from automatic code generators to IDEs to CASE tools, much work has been done to
increase source code generation speed. Some tools are successful while others could not do much.
Let us see some of these efforts.

25.5.1  Automatic Code Generator
Automatic code generators have not succeeded so far, but they will become a reality in the future [7].
To build functionality to provide automatic building capability of all kinds of widgets with all
possible properties is a gargantuan task. It is like building an industrial robot that can build a
complete car from scratch. It is possible to build such a generator in the future but it may take
some time.

Design
conversion

Automatic
deisgn

Source code
generation

Future software design
tool capabilities

Automatic
design

updation

Source code
updation

Figure 25.3  Future capabilities of software design tools.

Powerful
IDEs

True code
reuse

Automatic
code

generator

Future software construction
tool capabilities

Powerful
programming

languages

Easier code
maintainability

Figure 25.4  Future capabilities of software construction tools.

Future Tools and Techniques  ◾  335

25.5.2  Integrated Development Environment Tools
Currently some IDEs are on the market that allow developers to carry out all kinds of program-
ming tasks visually, but functionality is still not complete [8]. They can have a database.

25.5.3  Programming Language
Currently Java is the most popular programming language because of its rich library and func-
tionality [9]. Ruby is becoming popular these days because of its easy language structure. In the
future, some newly introduced programming languages may become popular. But their success
will depend on how easy they are to use, how good their libraries are, how productive they will be,
and how much support they will provide to different platforms.

25.6  Software Testing Management Tools
Software testing will become, moreover, a verification and validation service for the complete prod-
uct development life cycle. This is in line with the software engineering approach to reduce defects in
the work products instead of finding defects and then fixing them after the software is constructed.
So the role of software testing will increase along with that of software engineering (Figure 25.5).

25.6.1  Test Management
Test management will be completely involved with all work product reviews starting from require-
ment reviews to design reviews to build review to final inspection of the software product [10]. The
tools used for managing test projects will incorporate these changes in the future so that they will
be able to support the changing role of software testing.

25.6.2  Defect Tracking
Defect tracking tools will no longer be stand-alone tools. They will be part of an integrated test
management suite. This will not only help to keep track of all defects in the software product, but
these defects will be visible and can be tracked easily. Defect tracking will also become an integral
part of evaluating the performance of the test team.

Complete
integrated

tools

Central
testing

management

Integration
with

development

Future software testing
tool capabilities

Automatic
reporting

More
automation

Figure 25.5  Future capabilities of software testing tools.

336  ◾  Software Project Management: A Process-Driven Approach

25.6.3  Automation Tools
Automation tools play an important role in increasing the productivity of a test effort. These tools
are used in recoding test scripts based on test cases, and when we want to test the application,
we run these scripts. Currently, they are used for automating performance and functional test
cases. In the future, these tools will be able to support more environments, recognize new kinds of
user interface components, and support many types of testing.

25.6.4  Test Creation Tools
Some tools on the market unsuccessfully try to automate test creation. Test creation is still not
within the reach of software tools. It requires smarter tools that can think like human beings. It
will take quite a long time to have a good test creation tool.

25.6.5  Test Coverage Tools
There are two types of test coverage tools. One kind inserts software test code in the source code
of the application for finding test coverage. The other type of tool generates test codes inside the
tool itself and runs this code against the application to find out test coverage.

25.7  Software Project Management Tools
Software project management uses tools and techniques similar to those used in project manage-
ment in other industries apart from software project specific tools [11]. Most of them are well
established and time tested. For project planning, we have tools for making project and schedule
plans, resource plans, earned value management, risk plans, effort estimation, cost estimation,
quality plans, communication plans, configuration plans, etc.

Traditional planning techniques like Gantt charts, EVM, PERT/CPM charts, etc., are still
good and being used. Software tools like Project, Primavera, and others are good for making and
tracking these plans. They are also used for making resource plans, project tracking, etc. These and
similar other tools are going to be used widely in future. Software vendors will mostly keep enhanc-
ing the existing features though some more features may be added from time to time. Already there
are many good project management tools on the market that do their work online. Using such
tools, project teams update their reports on these tools so that project managers and other managers
responsible for evaluating their work can get the reports online. The online tools are really useful as
there is no discrepancy due to inundated data or report not sent in time or similar excuses. Online
tools also enable managers to get reports even when they are traveling (Figure 25.6).

The most popular effort estimation techniques used currently are function point analysis, wide
band Delphi, COCOMO, and some others. For effort estimation, the currently used techniques
will also be used in future.

With the advent of distributed teams working on the same project, the need for good com-
munication tools, such as virtual meetings, instant messaging, virtual white boards, and voice over
IP, arises; teams located at geographically far distances could communicate effectively and in real
time without the need to travel. It is one area that has seen tremendous progress in the past decade.
Without these tools, it is almost impossible for distributed teams to work on projects. In the future
more and more new kinds of tools will be developed. Existing tools will definitely be enhanced.

Future Tools and Techniques  ◾  337

Configuration and version control tools also have witnessed a lot of progress to be in synch
with trends in software development methodologies. For distributed teams, centralized configura-
tion management tools like Perforce, Visual Source Safe, etc. provide a lot of features. These sys-
tems provide totally secure access, accurate version control, ability to integrate with other systems
easily, and ability to configure them as per user requirements. In future, existing features will be
enhanced and some more new features will be added.

Recommended Readings
	 1.	 H. Fujita, I. Zualkernan (2008) New Trends in Software Methodologies, Tools and Techniques, IOS Press,

Amsterdam, the Netherlands.
	 2.	 J. Feller (2005) Perspectives on Free and Open Source Software, MIT Press, Cambridge, MA.
	 3.	 S. M. Levy (2002) Project Management in Construction, McGraw-Hill Professional, New York.
	 4.	 G. Blokdijk (2008) SaaS 100 Success Secrets—How Companies Successfully Buy, Manage, Host and Deliver

Software as a Service (SaaS), Emereo Pty Ltd., Queensland, Australia.
	 5.	 D. Krafzig, K. Banke, D. Slama (2005) Enterprise SOA: Service-Oriented Architecture Best Practices,

Prentice Hall PTR, Upper Saddle River, NJ.
	 6.	 M. Khosrow-Pour (2006) Emerging Trends and Challenges in Information Technology Management, Idea

Group Inc., Hershey, PA.
	 7.	 J. Carne (2007) Challenging the Boundaries of Symbolic Computation, Imperial College Press, London,

U.K.
	 8.	 J. A. Jacko (2009) Human–Computer Interaction. New Trends, Springer, Berlin, Germany.
	 9.	 H. Fujita, D. M. Pisanelli (2007) New Trends in Software Methodologies, Tools and Techniques, IOS Press,

Amsterdam, the Netherlands.
	 10.	 H.-J. Bullinger (2009) Technology Guide: Principles, Applications, Trends, Springer, Berlin, Germany.
	 11.	 M. Rao (2007) Knowledge Management Tools and Techniques, Butterworth-Heinemann, Oxford, U.K.

Web
based

Remote team
accessibility

Automatic
progress
updates

Future project management
tool capabilities

Integrated
functionality

Automatic
estimates

Figure 25.6  Future capabilities of software project management tools.

339

Appendix A: CMMI
Process Standards

CMMI process standards are the most recent set of standards for software projects and their
organizations, devised by Software Engineering Institute at Carnegie Mellon University. They are
divided into organization level, project level, and development life-cycle level process standards.

A.1  Organizational Level Process Standards
CMMI has one of the most elaborate definitions for organization level processes. Any organiza-
tion following CMMI standards for its software development processes will benefit immensely in
terms of consistent project delivery with a certain level of quality. Costs will also get reduced as
productivity will increase. Using a set of five process areas at the organization level, CMMI puts
emphasis on creating and implementing process improvements across the entire organization,
which results in better productivity and quality. Better productivity, in turn, translates to lesser
costs and time in executing and delivering projects. Better quality, in turn, translates to customer
satisfaction, which in turn translates into more business.

A.1.1  Organization Innovation and Deployment
The purpose of organizational innovation and deployment is to select and deploy incremental
and innovative improvements that measurably improve the organization’s processes and technolo-
gies. The improvements support the organization’s quality and process performance objectives as
derived from the organization’s business objectives.

The biggest challenge in any organization is change. Changing any process that may affect
any person’s work always faces resistance. But improvement is not possible without change. Using
an elaborate framework for change will allow dissipating the resistance as this framework will be
pervasive throughout the organization and there will be management control in implementing it.
So its success rate will be high.

340  ◾  Appendix A: CMMI Process Standards

A.1.2  Organization Process Definition + IPPD
The purpose of organizational process definition (OPD) is to establish and maintain a usable set
of organizational process assets and work environment standards. Integrated product and process
definition (IPPD) helps in defining an integrated approach for product development with the goal
of improving product attribute quality along with the process quality improvements using col-
laboration among various disciplines.

OPD helps in creating and maintaining a set of organizational processes that are common
across all divisions of the organization. When integrated teams are involved (such as development
and maintenance teams), a process definition that covers such teams will govern the processes.
Whenever a new project is to be started, it will tailor (modify) these processes according to the
requirements of the project.

IPPD includes application of defined processes on the projects.

A.1.3  Organization Process Focus
The purpose of organizational process focus is to plan, implement, and deploy organizational pro-
cess improvements based on a thorough understanding of the current strengths and weaknesses of
the organization’s processes and process assets.

This process area involves assessing current practices and processes and comparing them with
best practices and benchmarks. Thus, this process area involves gathering process data from all
areas of the organization. These data are then properly formatted and refined.

A.1.4  Organization Process Performance
The purpose of organizational process performance (OPP) is to establish and maintain a quantita-
tive understanding of the performance of the organization’s set of standard processes in support
of quality and process-performance objectives, and to provide the process performance data, base-
lines, and models to quantitatively manage the organization’s projects.

Organization process performance is gauged by measuring data from processes and com-
paring them with a set of desired performance indicators. Tailoring of processes for different
projects results in different kinds of data from each project. Therefore, organizations should
not allow too much of tailoring of processes for projects. If significant tailoring happens across
projects, project data should be grouped separately for similar projects. Some of the data that
is collected include schedule and cost, reliability, defect identification and removal data, defect
removal effectiveness, latent defect estimation, response time, project progress, and a combina-
tion of these areas.

A.1.5  Organization Training
The purpose of organizational training is to develop the skills and knowledge of people so they can
perform their roles effectively and efficiently.

Training can be imparted for any area that is common to organizations. Specific training can
be imparted when required by a project team. The objectives of any training should be to increase
effectiveness of business processes and meet business objectives.

Appendix A: CMMI Process Standards  ◾  341

A.2  Project Management Processes
CMMI has ten process areas that support software project management processes. CMMI sup-
ports all kinds of project management methodologies and using CMMI ensures that project
management is done in an effective way. All project management processes are tailored from
organization level standards so that consistent quality, schedule, and cost are maintained across all
projects for any organization.

A.2.1  Causal Analysis and Resolution
The purpose of causal analysis and resolution is to identify causes of defects and other problems
and take action to prevent them from occurring in the future. It makes more sense to prevent
defects entering into software products than to detect defects and remove them. This is more cost
effective. That is why finding out what is going wrong in the development process and eliminating
the cause of the problem helps in reducing defects entering into the product. Using statistical pro-
cess control techniques, data from previous projects about common causes of defects are analyzed,
and then this knowledge is applied to the current project. Apart from causes of defects, other fac-
tors such as productivity, quality, cycle time, etc., are also analyzed from previous project data and
are applied to the current project to improve the project.

A.2.2  Configuration Management
The purpose of configuration management (CM) is to establish and maintain the integrity of work
products using configuration identification, configuration control, configuration status account-
ing, and configuration audits.

Indeed, there are many versions of software parts, documents, and project artifacts in the same
project. If a proper version of these parts is not maintained, team members may be working on
wrong versions of documents and software parts.

A.2.3  Decision Analysis and Resolution
The purpose of decision analysis and resolution (DAR) is to analyze possible decisions using a
formal evaluation process that evaluates identified alternatives against established criteria.

Issues arise due to many reasons. All issues are not of the same importance. Some issues are
critical while others are not so critical. Resolving critical issues immediately is a prime concern
for any project manager so that its adverse effect on the project can be minimized. Identifying,
prioritizing, establishing a proper channel for resolution, and determining the required action are
some of the areas that are decided using DAR.

A.2.4  Integrated Project Management + IPPD
The purpose of integrated project management (IPM) is to establish and manage the project and
the involvement of the relevant stakeholders according to an integrated and defined process that
is tailored from the organization’s set of standard processes. When integrated teams are involved
on a project, IPPD also applies.

342  ◾  Appendix A: CMMI Process Standards

This is also known as tailoring of processes to suit the needs of a specific project. When
there is no set of established processes at any organization, each project will have its own set
of processes decided by the project manager. This leads to substantial differences in quality,
productivity, and schedule among projects. A better way to reduce variability among projects is
to take established processes at the organization and tailor (modify) them to suit specific needs
of the project. This is what is achieved using IPM processes. Basically four groups of processes
are tailored here: development activities, service activities, acquisition activities, and support
activities.

A.2.5  Measurement and Analysis
The purpose of measurement and analysis (MA) is to develop and sustain a measurement capabil-
ity that is used to support management information needs.

It is a fact that you cannot manage anything if you cannot measure it. All processes involved
in planning, executing, and controlling any project should be measurable; only then can a project
manager manage it. So measuring project processes and then analyzing them against best prac-
tices or benchmarks empowers a project manager to take appropriate actions.

A.2.6  Project Monitoring and Control
The purpose of project monitoring and control (PMC) is to provide an understanding of the proj-
ect’s progress so that appropriate corrective actions can be taken when the project’s performance
deviates significantly from the plan.

This is one of the most important process areas related to projects. Work breakdown structure,
project baseline information, CM, and many support areas are linked to this process. Using this
process, a project manager can keep his project on track using various control measures.

A.2.7  Project Planning
The purpose of project planning (PP) is to establish and maintain plans that define project activ-
ities. PP is done by tailoring organizational processes to suit the specific needs of the project.
Whenever there is a change in plan, it is to be updated accordingly. PP is related to the technical
solution, risk management, and requirement management process areas. It needs an estimation
for effort and a workable schedule taking into account the productivity and risks involved.

A.2.8  Quantitative Project Management
The purpose of quantitative project management is to quantitatively manage the project’s defined
process to achieve the established quality and process-performance objectives.

Using statistical process control methods ensures that all processes are repeatable and devia-
tions are minimized. This ensures consistent quality of a process, which results in consistent
quality of products being developed. All processes related to PMC, MA, OPP, IPM, etc., are
followed per organizational objectives. Project attributes that are monitored here include defect
density, cycle time, and test coverage. Some of the subprocesses measured for improvement
include requirement volatility; project size, schedule, and cost planned versus actual values;
peer review coverage; test coverage; training effectiveness; reliability; number of defects found
in each project phase; etc.

Appendix A: CMMI Process Standards  ◾  343

A.2.9  Risk Management
The purpose of risk management is to identify potential problems before they occur so that risk-
handling activities can be planned and invoked as needed across the life of the product or project
to mitigate adverse impacts on achieving objectives.

To determine risks for a project, sources of risk are identified. A risk management strategy is
then defined based on analysis of risk and its projected impact. The strategy is then implemented
to mitigate those risks. Work products for risk management include risk source lists and risk
category lists. Some of the causes of risk include uncertain requirements; estimates not available
as similar projects were not executed previously; infeasible design; unavailable technology; unre-
alistic schedule; inadequate staffing; incapable subcontractor; inadequate communication; and
disruption to operations due to natural, political, business, or any other cause.

A.2.10  Supplier Agreement Management
The purpose of supplier agreement management is to manage the acquisition of products from
suppliers.

This process area includes supplier selection, supplier relationship management, contract and
agreement creation and execution, product and services acquisition, etc.

A.3  Software Development Life-Cycle Processes
CMMI has elaborate supporting processes for all phases of the software development life cycle.
In fact, right from requirements, it supports maintenance and retirement of software products.

A.3.1  Requirements Management
In any business, demand from consumers is fulfilled by appropriate supply. In the case of software
development, demand from customers comes through software requirements. The software devel-
opment organization, whether internal or external, fulfills this demand by developing the required
software and delivering it to the customer.

In most industries, the demand is precise, concrete, and measurable. But in the software devel-
opment industry, the demand is not clear even after the software is delivered. That is why most
software development projects fail on some account or another. Due to lack of clear requirements
at the very beginning of the project, requests for change in requirements keep coming in through-
out the entire software development life cycle. As discussed throughout this book, this creates
many kinds of problems in software development.

It is a fact of life that requirements keep changing or that additional requirements keep com-
ing. A software development project manager, therefore, has to devise a way so that his project can
accommodate this aberration. One good way to handle this is to choose and use a standard process
for requirements management that suits your needs.

Even if you have an umbrella process model that covers every aspect of work getting done in
your organization, for example, the CMMI model, the model itself has many alternative compo-
nents for doing individual tasks. So there could be many alternative standard ways for managing
requirements. Some of the standard methods for managing requirements include using a standard
template for gathering requirements, using version control to manage requirement changes, using
an iterative model for managing requirements, etc.

344  ◾  Appendix A: CMMI Process Standards

A.3.1.1  Requirements Development

This process area describes three types of requirements: customer requirements, product require-
ments, and product component requirements. Taken together, these requirements address the
needs of relevant stakeholders, including those pertinent to various product life-cycle phases (e.g.,
acceptance testing criteria) and product attributes (e.g., safety, reliability, and maintainability).
Requirements also address constraints caused by the selection of design solutions (e.g., integration
of commercial off-the-shelf products).

Requirement development is very important because the whole software project depends on it.
If requirements are not defined properly or are ambiguous, the software design and construction
will be faulty. Requirements should be gathered and developed with utmost care.

A.3.1.2  Requirement Management

Requirements are managed and inconsistencies with project plans and work products are identi-
fied. Whenever any doubts about any requirement arise, a clarification is sought from the con-
cerned stakeholder and the changes made are then incorporated. It is also part of requirement
management to obtain commitment to the requirements from the project participants. Changes
to the requirements are also managed as they evolve during the project. Bidirectional traceability
among the requirements and work products is also maintained. Inconsistencies between the proj-
ect plans and work products and the requirements are also identified. Configuration and version
control for all changed requirements are also part of requirement management.

A.3.2  Design and Construction (Technical Solution)
The technical solution process area is applicable at any level of the product architecture and to
every product, product component, and product-related life-cycle process. Throughout the pro-
cess areas, where we use the terms product and product component, their intended meanings also
encompass services and their components.

The design process should ensure that all the requirements and changed requirements are
incorporated in the correct version of the software design. It should also be ensured that due to
any changes in requirements, defects should not be introduced into the design.

The construction process produces all the software code in large volume. Each developer is
assigned a piece of the software design. So after developing the pieces, these source code pieces
need to be integrated so that the application built from those pieces works as intended and envis-
aged in requirement documents. That is why unit and integration testing should be carefully done
at each iteration of development.

A.3.3  Validation
The purpose of validation is to demonstrate that a product or product component fulfills its
intended use when placed in its intended environment.

Validation ensures that the produced product works as intended. Typical work products
include validation deficiency reports, validation criteria, validation procedures, etc.

Validation is done for requirements and design, product and product components, user inter-
faces, user manuals, training materials, and process documentation.

Appendix A: CMMI Process Standards  ◾  345

A.3.4  Verification
The purpose of verification is to ensure that selected work products meet their specified
requirements.

For verification, a proper software testing plan and execution is needed. A separate test plan is
recommended. The test plan should incorporate all functional and nonfunctional requirements.

A.3.5  Product Integration
The purpose of product integration (PI) is to assemble the product from the product components,
ensure that the product, as integrated, functions properly, and deliver the product.

There should be defined processes for PI so that incremental or one-stage integration between
software products or software components can be achieved. Most of the technical solution process
areas are covered when PI is done.

A.3.6  Process and Product Quality Assurance
The purpose of process and product quality assurance is to provide staff and management with
objective insight into processes and associated work products.

The objective at the organization level should be to align and refine processes so that the high
quality of project processes is maintained. Whenever noncompliance is found, it is to be rectified.
Evaluation of the processes followed is done periodically and it is assessed for any noncompliance.

347

Appendix B: ISO Standards

The International Standards Organization (ISO) is an independent body that devises different sets
of standards for products, services, and processes. These standards are used by private and govern-
ment organizations to trade with each other. For instance, a manufacturer makes power generation
equipment in Germany and wants to sell it to some customers in South Africa. If the manufacturer’s
power generation equipments are certified by ISO standards, the South African customer will know
that the equipments will be of a specific quality and thus will not have to worry about the quality
aspect. If the price is right, he may like to buy this merchandise. Similarly, when a service provider’s
processes are certified by ISO, the buyer will know that he can rely on the services, which will con-
vince him buy those services.

ISO has developed an elaborate set of standards for processes involved in developing software
products. Software service providers can get their processes certified by an assessor for ISO stan-
dards so that their potential customers can be confident about their quality of work.

B.1  Requirements
ISO itself does not audit and certify any organization for ISO standards. It only does research,
develops ISO standards, and publishes those standards. Business process verification and certifica-
tion for ISO standards is done by consulting companies authorized by ISO. There are many con-
sulting companies authorized by ISO that audit and certify the business processes of organizations
to assess if these organizations can be certified with ISO standards.

Before they audit and assess business processes, they first observe if the organization that has
applied for ISO certification meets the requirements for certification.

	 1.	An applicant organization is required to develop a set of procedures that covers all key pro-
cesses in the business

	 2.	An applicant organization is required to monitor processes to ensure they are effective
	 3.	An applicant organization is required to keep adequate records
	 4.	An applicant organization is required to check output for defects, with appropriate and cor-

rective action where necessary
	 5.	An applicant organization is required to review individual processes regularly and the qual-

ity system itself for effectiveness, facilitating continual improvement

348  ◾  Appendix B: ISO Standards

B.2  ISO Family of Standards
Over the years, ISO has been developing many standards for the certification needs of many kinds
of organizations. Over time, some standards have become obsolete due to the dynamic nature of
markets and changes in business processes due to these changes in market conditions. In those cases,
ISO discontinues obsolete standards and develops new ones. These new standards then replace old
ones. Some of the standards that were developed for software-related services are described next.

The ISO 9000 family of standards includes the following standards:

	 1.	ISO 9000:2000 Quality management systems—Fundamentals and vocabulary: This set of
standards covers the basics of what a quality management system is and contains the core
language of the ISO 9000 series of standards. These documents are used only for guidance
purposes and not for certification purposes. However, these documents provide important
reference material to understand terms and vocabulary related to quality management sys-
tems. ISO revised this standard to ISO 9000:2005 in 2005.

	 2.	ISO 9001:2000 Quality management systems—Requirements: This set of standards is
intended for use in any organization that designs, develops, manufactures, installs, and/or
services any product or provides any form of service. It provides a number of requirements
that an organization needs to fulfill if it is to achieve customer satisfaction through consis-
tent products and services that meet customer expectations. It includes a requirement for
the continual (i.e., planned) improvement of the quality management system for which ISO
9004:2000 provides many hints.

	 	   This is the only implementation for which third-party auditors may grant certification. It
should be noted that certification is not described as any of the “needs” of an organization
as a driver for using ISO 9001, but does recognize that it may be used for such a purpose.

	 3.	ISO 9004:2000 Quality management systems—Guidelines for performance improvements:
This set of standards covers continual improvement. It gives you advice on what you could
do to enhance a mature system. This standard very specifically states that it is not intended
as a guide to implementation.

	 	   There are many more standards in the ISO 9001 family, many of them not even carry-
ing “ISO 900x” numbers. For example, some standards in the 10,000 range are considered
part of the 9000 family: ISO 10007:1995 discusses configuration management, which for
most organizations is just one element of a complete management system. ISO notes: “The
emphasis on certification tends to overshadow the fact that there is an entire family of ISO
9000 standards… Organizations stand to obtain the greatest value when the standards in
the new core series are used in an integrated manner, both with each other and with the
other standards making up the ISO 9000 family as a whole.”

	 	   Note that the previous members of the ISO 9000 family, 9001, 9002, and 9003, have all
been integrated into 9001. In most cases, an organization claiming to be “ISO 9000 regis-
tered” refers to ISO 9001.

B.3  Salient Features of ISO 9001 (ISO IEC 90003)
ISO has merged discontinued series of standards 9001, 9002, and 9003 into a single standard which
is referred to as ISO 9001. The latest version is ISO IEC 90003 for software-related services. ISO
IEC 90003 is a quality management standard for computer software and related services. It replaces

Appendix B: ISO Standards  ◾  349

the old ISO 9000-3 1997 software standard. ISO IEC 90003 explains how ISO 9001 2000 can be
applied to software and related services.

ISO standards are divided into sections at the top level. ISO presents quality management
requirements and guidelines in sections 4–8 of ISO 90003. Sections 1–3 cover technical topics that
are introductory in nature. Section 1 is the description for the set of standards as well as require-
ments to implement this certification. Section 2 provides information for the approach to be taken
to implement this certification. Section 3 contains a description of all the definitions used in this
certification. Sections 4–8 provide guidelines that actually describe what this version of ISO stan-
dard is all about.

Here are the salient features of this set of standards (sections 4–8).

Section 4: Systemic Requirements and Guidelines

Section 4.1: Establish a Quality Management System for Software Products

Here major process areas include developing a quality system for software products and software
services. To achieve these goals, suitable processes are identified for building the quality system,
including software development, software development planning, software quality planning, soft-
ware operation, and software maintenance. The sequencing of the process steps and their interac-
tion with each other are described. The implementation of quality management systems, their
effectiveness, and the support for these processes are documented. How improvement will be
done in the quality management system using effectiveness monitoring, measuring effectiveness,
improving effectiveness is determined.

Section 4.2: Document Your Software-Oriented Quality System

Section 4.2.1: Developing Quality Management System Documents

This section deals with taking care of documentation for quality system, software processes, and
life-cycle models.

Section 4.2.2: Preparing a Quality Management System Manual

This section deals with preparing user manuals for processes, process interactions, process scope,
and procedure to increase or decrease scope.

Section 4.2.3: Control Quality Management System Documents

This section deals with version control of documents and handling issues like obsolescence and
usability of documents.

Section 4.2.4: Maintain Quality Management System Records

This section deals with issues regarding record retention, record keeping management system, and
how records are used.

350  ◾  Appendix B: ISO Standards

Section 5: Management Requirements and Guidelines

Section 5.1: Support Quality

This section deals with the role of management in influencing the organization toward adhering
to quality processes in fulfilling customer and product requirements. It also involves creating a
management system that helps in setting and achieving quality norms. It specifies the need to have
adequate resources that will help in implementing the quality management system. Once imple-
mented, measures are to be taken so that the system is used by people. After-implementation effort
also involves improving the quality management system by doing periodic reviews and assigning
resources for quality system improvement efforts.

Section 5.2: Focus on Your Customers

This section deals with identifying customer requirements accurately and then meeting them
through the fulfillment cycle. Customer satisfaction should be the hallmark of service. Effort
should be made to enhance customer experience.

Section 5.3: Establish a Quality Policy

If you want to be a quality-conscious organization, you need to define your quality policy, which
will serve your organization’s purpose, meet your requirements, and ensure that your quality
objectives are met through policy adherence. To ensure that everybody adheres to the quality
policy, the policy needs to be communicated properly so that it reaches everybody. Review of
policy implementation should be done at regular intervals so that changes required in the policy
can be done per the current business environment.

Section 5.4: Perform Quality Planning

Once you have defined your quality objectives for functional areas at all organizational levels,
you can start planning on how to implement them. They should include quality management for
software products and a mechanism for quality improvement of the process.

Section 5.5: Control Your Quality System

You need to find a mechanism to control and manage your quality system. For this, assign people
with proper authority and responsibility and communicate this change within the entire organiza-
tion. A person from top management should be appointed to oversee work. Assess the effective-
ness of the quality system and get status reports at regular intervals. Whenever required, include
a provision so that the quality system maintenance can be done for effecting required changes in
the system. Communication on all things regarding the system should be done in such a way that
it reaches all employees in the organization.

Section 5.6: Perform Management Reviews

A procedure for management reviews of status reports should be made. This should include mecha-
nisms for doing regular reviews, effectiveness evaluation of the quality program, and maintenance of
status reports. Proper examination of the audit (review) results should be done so that opportunities

Appendix B: ISO Standards  ◾  351

for improvements can be identified, customer feedback can be examined and incorporated in the
quality system, produced software product quality data can be examined and process performance
information, effectiveness of corrective and preventive actions, and finally overall management
review reports can be provided. The review reports should be used to make improvements in the
quality system to make it more effective, improve software product quality, and also address current
and future manpower needs of the organization.

Section 6: Resource Requirements and Guidelines

Section 6.1: Provide Quality Resources

This area covers the needs to address resource requirements for meeting customer requirements, regu-
latory requirements, and the supporting quality system. Resources needed for the quality system can
be categorized as resources for support, resources for implementation, resources for quality system
improvement, resources for meeting customer requirements, and resources for meeting regulatory
requirements.

Section 6.2: Provide Quality Personnel

The employees selected for the quality department should have appropriate experience, educa-
tion, training, and skills to do their job effectively. Proper training programs should be arranged
for software development staff and software project management staff, and regular status checks
should be done to know if these programs are effective.

Section 6.3: Provide Quality Infrastructure

For implementing a quality system you need to set up an infrastructure on which the system can
be built. The infrastructure needs should be identified first based on hardware, software, and
physical facilities needed for software development. Tools that will facilitate software development
and that will support, protect, and control these activities should be identified. Tools will also
be needed to manage these activities. Proper guidelines should be drawn to maintain this entire
infrastructure so that these activities do not get hampered in need of maintenance.

Section 6.4: Provide Quality Environment

The work environment for the people in the organization should help in facilitating productivity.
A suitable work environment should be identified, and this should be implemented and managed.

Section 7: Realization Requirements and Guidelines

Section 7.1: Control Software Product Realization Planning

Here, processes that help in setting quality objectives for software products as well as risk mitiga-
tion strategies are identified. Once a realization process is identified, these processes should be
developed. The software production life-cycle model should be identified and all project activi-
ties associated with that model should be chosen. All software projects should be planned and
executed according to the chosen model. Correlation between the life-cycle model and quality
management system should also be made.

352  ◾  Appendix B: ISO Standards

Section 7.2: Control Customer Processes

Software requirements from customers should be identified clearly. Parameters that affect the use
of the software product should be identified. Compliance to regulations imposed by the govern-
ment and other agencies in operation of the software product should also be ensured. To get cus-
tomer requirements, tools and methods appropriate for the occasion should be employed. Once
requirements are gathered, they should be analyzed. Analysis should be done in view of contract,
software engineering, software maintenance, and software quality requirements. If there are any
concerns regarding supporting information from the customer, concerns from design and develop-
ment points of view, etc., should be clarified. Before making a commitment, evaluate your own
capabilities, weaknesses, profitability, etc. Also evaluate the capability of your suppliers. Appoint a
senior level executive as account manager for fulfilling customer requirements and communicat-
ing with customers. Create a communication channel for consistent and regular communication
with your customer. Also ensure that regular reviews and assessments are conducted for the project
work being done. Establish problem resolution mechanisms so that whenever any issues arise, they
are resolved satisfactorily.

Section 7.3: Control Software Design and Development

Once the requirements are analyzed and the project team is ready to go ahead, they will start doing
software design and development. To facilitate this process, they should first have information
about the stages involved in these activities. They should also have controlling procedures for these
activities lest something goes wrong. The project team should have a clear organizational struc-
ture and every member’s responsibilities should be clearly defined. Clear communication chan-
nels need to be established for interaction among the design and development teams. Whenever
changes occur, all team members should be informed. The project plan should be updated accord-
ingly as well. Each and every activity should be clearly defined in the project plan so that people
know the activities that are to be performed and the activities are in the pipeline. Outputs from
each activity should be documented. Management activities should also be clearly defined. The
support that will be needed for these activities should be stated. The training requirements should
also be specified. Verification and validation needs should be identified as should the rules, tools,
techniques, and conventions that will be needed for the design and development. Elaborate plan
for verification and validation activities should be specified for development, maintenance, and
operation. Service level agreements should be the guiding principles for all these activities.

What input, input definitions, and their evaluation for fitness will be needed for design and
development? Use inputs only after reviewing them. These inputs must come from functional,
performance, quality, security, and any other requirements from the customer. The possible out-
puts from software product design and development should be determined. Based on the output,
control activities related to design and development. Keep a record of what outputs were pro-
duced. Once design and development are ready, review them before moving forward in the proj-
ect. During reviews, establish procedures for problem resolutions. Keep a record of how a problem
was fixed for future reference. Also keep records of nonconformities, errors, and defects in the
product encountered during reviews.

After reviews, perform verification of design and development of the software product. Keep a
record of activities and outputs performed during verification. After verification, perform valida-
tion of design and development to know if the product conforms to the specifications outlined in
the requirements. Conduct software testing activities and fix errors.

Appendix B: ISO Standards  ◾  353

Once testing is complete, incorporate any change request in the design and development.
Repeat verification, validation, and testing after making changes. After finding that the software
product meets the specifications of the customer, hand over the product to the customer.

Section 7.4: Control Your Purchasing Function

Here, you manage your suppliers, contractors, and subcontractors. Establish procedures to ensure
that products and services supplied by your suppliers meet your requirements. Establish procedures
to control your purchases of services, products, and outsourced activities. Also ensure procedures
for purchases of parts and components including software components.

Establish mechanisms to ensure that parts, components, products, and services are delivered
with proper documentation. Establish procedures for inspection and verification of purchased
goods and services.

Section 7.5: Manage Production and Service Provision

After the software product has been installed and used by the customer, it needs to be maintained,
and timely updates for defects found by end users need to be made. All the activities here are
related to making the software product usable. Thus, apart from user training and guidance, a
good service mechanism also needs to be established so that end users’ problems can be logged and
a satisfactory solution can be provided so that work does not get hampered.

During the software project, many artifacts and their different versions are developed. It is
very important that all of them are maintained and tracked during the life cycle of the project.
Establish a mechanism that will ensure that all artifacts can be safely and accurately archived and
easily retrieved whenever required. The software built during development also needs to be kept in
such a way that incremental development can be done.

Section 7.6: Control Monitoring Devices

A large number of devices are used for project control and monitoring. This section identifies
monitoring and measuring devices depending on the needs of the project. First, needs for monitor-
ing and measuring are identified and then suitable devices are described. Here, calibration needs
of these devices are also identified and measures for calibration are adopted. Monitoring and mea-
suring devices also need proper protection against unauthorized use, damage, deterioration, and
obsolescence. From time to time, these devices also need to be validated so that their measuring
ability is intact and that they measure correctly. It is also important that the users of these devices
be trained in the correct use of the devices. Therefore, proper documentation, guidelines, and
training should be provided to those doing the measurement using these devices.

Section 8: Remedial Requirements and Guidelines

Section 8.1: Carry Out Remedial Processes

Whenever deviations in execution of a project are found, they have to be corrected. To find these
deviations, you need to plan for remedial processes. But first you need to monitor, measure, and
analyze project processes to know whether they conform to the project plan. Embedded in the
project plan is the quality plan. By monitoring, measuring, and analyzing project processes you

354  ◾  Appendix B: ISO Standards

continuously evaluate your project processes. You can in fact plan your quality plan so that it will
help in improving effectiveness of the quality management system itself.

Section 8.2: Monitor and Measure Quality

Once your quality management system is set up and used in projects, you are ready to monitor
and measure your quality metrics. You can use many methods to do this, as described in your
quality management system. Some of the metrics include customer satisfaction through data from
helpdesk calls, direct and indirect customer feedback, internal and external audits, etc.

Section 8.3: Control Your Nonconforming Software Products

This area discusses software products you have made that do not conform to the quality norms as
set in the requirements document. You need to identify which of your software products are not
conforming by measuring their quality attributes and comparing them with the quality norms.
Once identified, take appropriate measures to control software products so that they conform
to the norms. This can be done by planning for devising work-arounds or applying patches that
will remove the defects in the production instance. Sometimes due to faulty documentation or
improper training, users may be using the products wrongly. These instances should also be identi-
fied and corrected. Once these nonconformities are removed, the product should be demonstrated
to the customer and these issues should be closed.

Section 8.4: Analyze Quality Information

The quality management system should have all the relevant metrics—monitoring, measuring,
and analyzing capability—otherwise it will not be effective. The first thing in this regard should
be to identify what kind of metrics information is needed for your project. Once these metrics are
identified, information required for these metrics needs to be gathered from your project data. The
data can be collected from your internal systems, customers, suppliers, products, processes, etc.
Once you have metrics data, you can easily analyze it.

Section 8.5: Take Required Remedial Actions

Once you have vital project metrics data, you can take remedial action to rectify the nonconforming
process areas as well as improve effectiveness of your quality management system. The data avail-
able from the audits done with your process will help in improving the effectiveness of the quality
management system. Management reviews will also help to increase effectiveness of the quality
management system. Any nonconformity whenever found should be strictly dealt with; otherwise,
it will promote wrong practices with project teams. If any data show that nonconformity may likely
occur in future, process areas where these observations are found need to be reviewed and necessary
actions should be taken to prevent future nonconformities.

355

Appendix C: IEEE Standards

C.1  IEEE Standards Organization
The IEEE standard has defined major phases of software product life cycle as Software Requirements,
Software Design, Software Construction, Software Testing, and Software Maintenance. These are
known as Knowledge Areas (KAs). They are further divided into subareas. Then, there are sup-
port processes like Software Configuration Management, Software Engineering Management,
Software Engineering Tools and Methods, Software Quality, and Knowledge Areas of the Related
Disciplines. They are further divided into subareas.

IEEE standards are presented in a manner that is very close to how a software project is
planned and executed in the real world. Unlike other standards, IEEE standards do not appear to
be imposed from outside on any typical software projects. They look more like a model on which
any software project can be modeled, instead of just as a guide. Implementing these standards on
any large-sized software projects is easy.

C.2  IEEE Standards Knowledge Areas
IEEE standards are first divided into primary and supporting knowledge areas. These knowledge
areas are then divided into subknowledge areas. Each of these subareas then has major tasks. These
tasks then may contain subtasks.

Software Requirements: Software requirements knowledge area is divided into many subareas
as follows.
Software requirements fundamentals: Provides definition of software requirements and how they
are distinct from system requirements.
Requirements process: Defines the process involved in gathering and managing software
requirements.
Requirements elicitations: Provides methods of gathering software requirements including interviews,
meetings, and questionnaire.
Requirements analysis: Provides methods as to how to analyze software requirements.

356  ◾  Appendix C: IEEE Standards

Requirements specifications: Provides information as to how to make specifications, so that software
requirements are understood by any project stakeholders or project team members without requir-
ing further reference.
Requirements validations: Provides information as to how to validate any software requirement
whether the requirement is not ambiguous or incomplete.
Practical considerations: When software requirements are being elicited they are in crude form.
Only after many iterations, these requirements become clear. Then, requirement changes are order
of the day. Over the project duration, many versions of requirements are formed. Managing these
versions and relating them with the correct version of software being developed is a complex and
difficult task. These practical considerations are discussed in this standard.

Software Design: The subareas of Software Design are as follows.
Software design fundamentals: This area provides information for different aspects of activities that
are performed in software design.
Key issues in software design: This area discusses issues that arise due to either difficulty in convert-
ing requirement into a software equivalent or sometimes difficulty in meeting any requirements
due to any reason except technical issues.
Software structure and architecture: What will be the architecture of the product and how will it
be structured?
Software design, quality analysis and evaluation: How will software be designed? How will quality
be taken care of in design?
Software design notations: This area provides information about how to present the architecture and
structure in an acceptable form, so that it may be understood by project team members easily.
Software design strategies and methods: What strategy will be taken for software design? What
method will be adopted for the design?

Software Construction: The subareas of Software Construction are as follows.
Software construction fundamentals: General description of construction methodology.
Managing construction: How will the construction process be managed?
Practical considerations: What practical limits, constraints, and trade offs will be adopted for con-
structing the product?

Software Testing: The subareas of Software Testing are as follows.
Software testing fundamentals: General description of testing methodology.
Test levels: Will unit testing, integration testing, and system testing be done?
Test techniques: What test techniques (code based/simulation based/UI based, etc.) will be
employed during testing phase?
Test-related measures: What metrics will be used for measuring effectiveness of testing?
Test process: What processes (performance, functional, usability, automation, etc.) will be employed
for testing?

Software Maintenance: The subareas of Software Maintenance are as follows.
Software maintenance fundamentals: General description of software maintenance process areas
that will be followed.

Appendix C: IEEE Standards  ◾  357

Key issues in software maintenance: Documentation of issues faced during maintenance.
Software maintenance process: Description of processes adopted for software maintenance.
Techniques for software maintenance: Techniques adopted for software maintenance (reengineer-
ing/reverse engineering, etc.).

C.3  IEEE Supporting Knowledge Areas
Software Configuration Management: The subareas of Software Configuration Management
are as follows.

Management of the SCM process
Software configuration identification
Software configuration control
Software configuration status accounting
Software configuration auditing
Software release management and delivery

Software Engineering Management: The subareas of Software Engineering Management are as
follows.

Initiation and scope definition
Software project planning
Software project enactment
Review and evaluation
Closure
Software engineering measurement

Software Engineering Process: The subareas of Software Engineering Process are as follows.
Process implementation and change
Process definition
Process assessment
Process and product measurement

Software Engineering Tools: The subareas of Software Engineering Tools are as follows.
Software tools
Software requirements tools
Software design tools
Software construction tools
Software testing tools
Software maintenance tools
Software configuration management tools
Software engineering management tools
Software engineering process tools
Software quality tools
Miscellaneous tool issues

Software Engineering Methods: The subareas of Software Engineering Methods are as follows.
Numeric methods
Formal methods
Prototyping methods

358  ◾  Appendix C: IEEE Standards

Software Quality: The subareas of Software Quality are as follows.
Software quality fundamentals
Software quality management processes
Practical considerations

Knowledge Areas of Related Disciplines: The subareas of Knowledge Areas of Related
Disciplines are as follows.

Computer engineering
Computer science
Management
Mathematics
Project management
Quality management
Software ergonomics
Systems engineering

C.4  Software Requirements
Software requirements are governed by the IEEE 12207 standard. IEEE has a comprehensive
process definition for the software requirements area.

C.4.1  Software Requirements Fundamentals
The software requirements fundamental subarea is divided into the following subareas:

C.4.1.1  Definition of a Software Requirement

Product and process software requirement: Software requirement must provide information for both
product and the process to build that software product. For example, a Web-based information
system may have a login page. The product information may include the form and fields as well
as how the login functionality is structured. The process information to make this functionality
may include information about which programming language and which front end will be used
to make it.
Functional and nonfunctional requirements: Functional requirements include information about
the product features and how they work. Nonfunctional information includes information like
security, performance, and usability.

C.4.1.2  Emergent Properties

Quantifiable requirements: The requirement specification should provide information about the
total number of requirements as well as size and scope of requirements.
System requirements and software requirements: In IEEE standards, a system requirement is defined
as a complete set of inputs and outputs for a transaction between all actors including the human
operator, the software application, and any physical instrument or device that will be involved
in completing that transaction. A software requirement on the other hand discusses inputs and
outputs from the software application alone.

Appendix C: IEEE Standards  ◾  359

C.4.2  Requirements Process
The Requirements Process subarea is divided into the following subareas:
Process models: This area describes information as to what process model is used for requirement
elicitation and requirement management.
Process actors: This area describes information about who will be actors for any transaction in the
software application and what their role in that software application transaction is.
Process support and management: What supporting mechanism is available for managing require-
ments (version control, quality control, etc.).
Process quality and improvement.

C.4.3  Requirements Elicitation
The Requirements Elicitation subarea is divided into the following subareas:
Requirement sources: From where have the software requirements been sourced and can the require-
ments be validated?
Elicitation techniques: What elicitation techniques will be used (questionnaire, interviews, meetings,
document exchange, and existing documentation)?

C.4.4  Requirements Analysis
The Requirements Analysis subarea is divided into the following subareas:
Requirement classifications: Can requirements be classified into many classes? What could those
classes be?
Conceptual modeling: Could requirements be modeled into a conceptual system?
Architecture design and requirement allocation: Could requirements be allocated into different
design parts? What kind of architecture will be employed for designing the application?
Requirements negotiations: Is any negotiation required with customer for trade-offs in designing
the application?

C.4.5  Requirements Specification
Software requirements specification subarea is divided into the following subareas:

System definition document
System requirement specification
Software requirement specification

C.4.6  Requirements Validation
The Requirements Validation subarea is divided into the following subareas:

C.4.6.1  Requirement Reviews

Prototyping: What kind of prototype will be designed based on requirements?
Model validation: If the design model will be validated, what method will be used to validate the
design?
Acceptance tests: Will acceptance tests be made based on requirements?

360  ◾  Appendix C: IEEE Standards

C.4.7  Practical Considerations
The Practical Considerations subarea is divided into the following subareas:
Iterative nature of requirements process: Will iterative methodology be employed in case all/any
requirements are not clear or there are changes in requirements?
Change management: How will requirement changes be managed?
Requirements attributes: Will attributes of requirements be defined and measured?
Requirements tracing: Will any technique be used for tracing requirements vis-à-vis software design?
Measuring requirements: Will requirements be measured using any metrics for design/construction/
testing?

C.5  Software Design
Software design is defined in the IEEE 610 6-12 standard. The Software Design subarea includes
software design fundamentals, key issues in software design, software structure and architecture,
software design, quality analysis and evaluation, software design notations, and software design
strategies and methods.

Subareas of these subknowledge areas are given below.

C.5.1  Software Design Fundamentals
The Software Design Fundamentals subarea is divided into the following subareas:
General design concepts: What design methodology will be used for designing the application?
Context of software design: What context (previous design experience, customer preference, etc.)
will be used for designing the application?
Software design process: What methodology and processes will be adopted for designing the
application?
Enabling techniques: What techniques will be used for making the design (CASE tools, modeling
tools, etc.)?

C.5.2  Key Issues in Software Design
The Key Issues in Software Design subarea is divided into the following subareas:
Concurrency: Will the design permit concurrent running of business processes in the application?
Control and handling of events: How will the control flow of events be handled during transactions
in the application? How will events be handled in design?
Distribution of components: How will the application be broken into components?
Error and exception handling and fault tolerance: How will fault tolerance be implemented in the
application design? How will exceptions be handled in the application?
Interaction and presentation: How will users of the application be interacting with the application
(input/output devices)? How and where will information be presented from the application (com-
puter screen/printer/any other output devices)?
Data persistence: How will data persistence be achieved? Will any client part of the application be
used for data persistence?

Appendix C: IEEE Standards  ◾  361

C.5.3  Software Structure and Architecture
The Software Structure and Architecture subarea is divided into the following subareas:
Architectural structure and viewpoints: How will the logical, physical model of the application be
designed?
Architectural styles: Which architectural design will be adopted to model the application?
Design patterns: What pattern will be used to model the application?
Families of programs: If application can be divided into parts, which will form the complete
application after integration of all parts?

C.5.4  Software Design Quality Analysis and Evaluation
The Software Design Quality Analysis and Evaluation subarea is divided into the following subareas:
Quality attributes: What quality attributes will be used for modeling the application?
Quality analysis and evaluation techniques: How will the quality of the design be analyzed and evaluated?
Measures: What metrics will be used to assess quality of the prepared design?

C.5.5  Software Design Notations
The Software Design Notations subarea is divided into the following subareas:
Structural descriptions: How will the design structure be represented (UML/any other design
language)?
Behavioral descriptions: How will the behavior of the application be represented (use cases)?

C.5.6  Software Design Strategies and Methods
The Software Design Strategies and Methods subarea is divided into the following subareas:
General strategies: What strategies will be used in designing the application?
Function oriented design: Will the design be function oriented?
Object oriented design: Will the design be object oriented?
Data structure oriented design: Will the design be data structure oriented?
Component based design: Will the design be component based?
Other methods.

C.6  Software Construction
The Software Construction subknowledge area includes software construction fundamentals,
managing construction, and practical considerations.

C.6.1  Software Construction Fundamentals
The Software Construction Fundamentals subarea is divided into the following subareas:
Minimizing complexity: How will the complexity of the application be minimized (application parti-
tioning, encapsulation)?

362  ◾  Appendix C: IEEE Standards

Anticipating change: How will changes in design be handled (normalization, general purpose com-
ponent implementation)?
Construction for verification: How will construction be verified for defects (if verification is in
built)?
Standards in construction: What coding standards were used in construction?

C.6.2  Managing Construction
The Managing Construction subarea is divided into the following subareas:
Construction models: What methodology will be used for software construction (agile/waterfall)?
Construction planning: How will construction be planned (resource allocation and iterative
development)?
Construction measurement: What metrics will be used for construction for assessing quality, sched-
ule performance, and budget performance?

C.6.3  Practical Considerations
The Practical Considerations subarea is divided into the following subareas:
Construction design: What trade offs were taken in construction design (combining two or more
requirements into one, splitting one requirement into two or more, functionality achievement
through work around, omitting a functionality, etc.)?
Construction language: Does construction language have any limitation in achieving the required
functionality?
Coding: Could standard coding practices at some places not be followed?
Construction testing: Could unit/integration testing not be performed for some reason?
Reuse: Could reuse of components not be done for some reason?
Construction quality: How will quality of construction be ensured?
Integration: How will components be integrated to each other?

C.7  Software Testing
Most areas under software testing are covered in IEEE 610 and IEEE 982. The Software Testing
subknowledge area includes software testing fundamentals, test levels, test techniques, test-related
measures, and test process.

C.7.1  Software Testing Fundamentals
The Software Testing Fundamentals subarea is divided into the following subareas:
Software testing terminology: What testing terminology will be used for the project?
Key issues: What key issues can be expected and how they can be tackled?
Relationship of testing to other activities: How will testing activities be related to requirements,
design, and construction activities?

Appendix C: IEEE Standards  ◾  363

C.7.2  Software Testing Levels
The Software Testing Levels subarea is divided into the following subareas:
Test target: What level of testing will be desired?
Testing objectives: Unit testing, integration testing, performance testing, system testing, user-
acceptance testing, alpha testing, beta testing, regression testing, and usability testing.

C.7.3  Software Testing Techniques
The Software Testing Techniques subarea is divided into the following subareas:
Tester intuition and experience: Has software tester experience level been documented?
Specification-based testing: Will testing be based on specifications or will exploratory testing
be done?
Code-based testing: Will only software code will be tested (white box testing) or will black box
testing also be done?
Fault-based testing: Will negative testing be done or just positive testing?
Usage-based testing: Will testing be done based on how the application will be used by end users?
Nature of application-based testing: What kind of testing will be performed (functional/
nonfunctional)?
Selecting and combining testing techniques: Will a single testing technique be used or a combination
of testing techniques?

C.7.4  Software Testing-Related Measures
The Software Testing-Related Measures subarea is divided into the following subareas:
Evaluation of program under test: How will the application be evaluated for testing effectiveness
(number of bugs found/not found during testing)?
Evaluations of test performed: How will the testing activity be evaluated (number of bugs found
per hour)?

C.7.5  Software Testing Process
The Software Testing Process subarea is divided into the following subareas:
Practical considerations: Test process management IEEE 12207, test documentation IEEE 829,
independent verification & validation, test reuse, effort estimation IEEE 982
Test activities: Test planning IEEE 1008, test bed preparation, test execution, defect tracking

C.8  Software Maintenance
Some of the standards used for software maintenance include IEEE1219 and IEEE12207. Subareas
under Software Maintenance include software maintenance fundamentals, key issues in software
maintenance, maintenance process, and techniques for maintenance.

364  ◾  Appendix C: IEEE Standards

C.8.1  Software Maintenance Fundamentals
The Software Maintenance Fundamentals subarea is divided into the following subareas:

C.8.1.1  Definitions and Terminology

Nature of maintenance: Preventive/breakdown/remedial/enhancement
Need for maintenance: Reasons for maintenance (bug fixing and enhancement)
Majority of maintenance costs: Cost breakdown of maintenance
Evolution of software: Software evaluation for doing maintenance (maintenance required/not
required)
Categories of maintenance: Migration from old platform/Web enablement

C.8.2  Key Issues in Software Maintenance
The Key Issues in Software Maintenance subarea is divided into the following subareas:
Technical issues: What are the key issues during maintenance?
Management issues: What are the management issues during maintenance?
Maintenance cost estimation: What are the estimates of costs for maintenance?
Software maintenance measurement: What metrics are used for maintenance work for its effective-
ness (if goals of taking maintenance work met?).

C.8.3  Software Maintenance Process
The Software Maintenance Process subarea is divided into the following subareas:
Maintenance processes: What processes were followed for maintenance work?
Maintenance activities: What activities were performed for maintenance work?

C.8.4  Software Maintenance Techniques
The Software Maintenance Techniques subarea is divided into the following subareas:
Program comprehension: If a detailed planning was led out for maintenance work?
Re-engineering: Were the same methodology and technology employed for maintenance work as
were used for software construction?
Reverse engineering: Was the source code changed for maintenance or was maintenance done using
only the exposed interfaces of the application?

C.9  Software Configuration Management
Software Configuration Management (SCM) is a supporting software life-cycle process
(IEEE12207.0-96) that benefits project management, development and maintenance activities,
assurance activities, and the customers and users of the end product. Subareas in SCM include
management of SCM process, software configuration identification, software configuration con-
trol, software configuration status accounting, software configuration auditing, and software
release management and delivery.

Appendix C: IEEE Standards  ◾  365

C.9.1  Management of SCM Process
The Management of SCM Process subarea is divided into the following subareas:
Organization context for SCM: In what context will SCM be used on the project (maintaining ver-
sions of software, building software, keeping versions of project documents, etc.)?
Constraints and guidance for SCM process: What constraints will be imposed on the SCM process
(user access, privileges for read/write)?

Planning for SCM
SCM organization and responsibilities: How will SCM organization be set up? Who will be

responsible for what activities for maintaining SCM system?
SCM resources and schedules: What schedules will be followed for maintaining SCM

system?
Tool selection and implementation
Vendor/subcontractor control
Interface control

SCM plan
Surveillance of SCM

SCM measures and measurement: What metrics will be employed to manage the SCM
process?

In-process audit of SCM: Can SCM system be audited online/offline?

C.9.2  Software Configuration Identification
The Software Configuration Identification subarea is divided into the following subareas:

Identification of items for SCM control
Software configuration
Software configuration items
Software configuration item relationship
Software versions
Baseline
Acquiring software configuration items

Software library

C.9.3  Software Configuration Control
The Software Configuration Control subarea is divided into the following subareas:

Requesting, evaluating, and approving software changes
Software configuration control board
Software change request process

Implementing software changes
Deviations and waivers

366  ◾  Appendix C: IEEE Standards

C.9.4  Software Configuration Status Accounting
The Software Configuration Status accounting subarea is divided into the following subareas:

Software configuration status information
Software configuration status reporting

C.9.5  Software Configuration Auditing
The Software Configuration Auditing subarea is divided into the following subareas:

Software functional configuration audit
Software physical configuration audit
In process audit of the software baseline

C.9.6  Software Release Management and Delivery
The Software Release Management and Delivery subarea is divided into the following subareas:

Software building
Software release management

C.10  Software Engineering Management
Software Engineering Management can be defined as the application of management activities—plan-
ning, coordinating, measuring, monitoring, controlling, and reporting—to ensure that the devel-
opment and maintenance of software is systematic, disciplined, and quantified (IEEE610.12-90).
Commonly, this is what is known as software project management (SPM), but, in IEEE terminology,
it is known as software engineering management.

Major subareas of software engineering management include initiation and scope definition,
software project planning, software project enactment, review and analysis, closure and software
engineering measurement.

C.10.1  Initiation and Scope Definition
The Initiation and Scope Definition subarea is divided into the following subareas:

Determination and negotiation for requirements
Feasibility analysis
Process for review and revision of requirements

C.10.2  Software Project Planning
The Software Project Planning subarea is divided into the following subareas:

Process planning
Determine deliverables
Effort, schedule, and cost estimation
Resource allocation
Risk management
Quality management
Plan management

Appendix C: IEEE Standards  ◾  367

C.10.3  Software Project Enactment
The Software Project Enactment subarea is divided into the following subareas:

Implementation of project plans
Supplier contract management
Implementation of measurement process
Monitor process
Control process
Reporting

C.10.4  Software Project Review and Analysis
The Software Project Review and Analysis subarea is divided into the following subareas:

Satisfaction of requirement determination
Review and analysis of performance

C.10.5  Software Project Closure
The Software Project Closure subarea is divided into the following subareas:

Closure determination
Closure activities

C.10.6  Software Engineering Measurement
The Software Engineering Measurement subarea is divided into the following subareas:

Establish and sustain measurement commitment
Plan for measurement process
Perform the measurement process
Evaluate measurement

C.11  Software Engineering Process
The Software Engineering Process knowledge area can be examined on two levels. The first level
encompasses the technical and managerial activities within the software life-cycle processes that
are performed during software acquisition, development, maintenance, and retirement. The sec-
ond is the meta-level, which is concerned with the definition, implementation, assessment, mea-
surement, management, change, and improvement of the software life-cycle processes themselves.
Most of knowledge areas for this subarea are covered in IEEE1220 and IE12207.

Major subareas of the Software Engineering Process include process implementation and
change, process definition, process assessment, and process and product measurement.

C.11.1  Process Implementation and Change
The Process Implementation and Change subarea are divided into the following subareas:

Process infrastructure
Software process management cycle
Models for process implementation and change
Practical considerations

368  ◾  Appendix C: IEEE Standards

C.11.2  Process Definition
The Process Definition subarea is divided into the following subareas:

Software life-cycle models
Software life-cycle processes
Notation for process definitions
Process adaptation
Automation

C.11.3  Process Assessment
The Process Assessment subarea is divided into the following subareas:

Process assessment models
Process assessment methods

C.11.4  Process and Product Measurement
The Process and Product Measurement subarea is divided into the following subareas:

Process measurement
Software products measurement
Quality of measurement results
Software information models
Process measurement techniques

C.12  Software Engineering Tools and Methods
Software development tools are the computer-based tools that are intended to assist the software
life-cycle processes. Tools allow repetitive, well-defined actions to be automated, reducing the cog-
nitive load on the software engineer who is then free to concentrate on the creative aspects of the
process. Tools are often designed to support particular software engineering methods, reducing
any administrative load associated with applying the method manually. Like software engineering
methods, they are intended to make software engineering more systematic, and they vary in scope
from supporting individual tasks to encompassing the complete life cycle.

Software engineering methods impose structure on the software engineering activity with
the goal of making the activity systematic and ultimately more likely to be successful. They also
enable process activities to be measurable. Methods usually provide a notation and vocabulary,
procedures for performing identifiable tasks, and guidelines for checking both the process and the
product. They vary widely in scope, from a single life-cycle phase to the complete life cycle. The
emphasis in this KA is on software engineering methods encompassing multiple life-cycle phases,
since phase-specific methods are covered by other KAs.

C.12.1  Software Engineering Tools
While there are detailed manuals on specific tools and numerous research papers on innovative
tools, generic technical writings on software engineering tools are relatively scarce. One difficulty
is the high rate of change in software tools in general. Specific details alter regularly, making it
difficult to provide concrete, up-to-date examples.

Appendix C: IEEE Standards  ◾  369

The Software Engineering Tools subarea is divided into the following subareas:

Software requirement tools
Requirement modeling
Requirement tracing

Software design tools (e.g., UML and CASE tools)
Software construction tools

Program editors (e.g., Integrated Development Environments like Visual Studio and Eclipse)
Compilers and code generators
Interpreters
Debuggers

Software testing tools
Test generators
Test execution framework
Test evaluators
Test management (e.g., HP Test Director)
Performance analysis

Software maintenance tools
Comprehension tools
Reengineering tools

Software configuration management tools
Defect, enhancement, issue, and problem tracking
Version management (e.g., Visual Source Safe and Perforce)
Release and build (e.g., ant and cruise control)

Software engineering management tools
Project planning and tracking (e.g., Microsoft Project)
Risk management
Measurement

Software engineering process tools
Process modeling
Process management
Integrated CASE management tools
Process centered software

Software quality tools
Review and audit
Static analysis

Miscellaneous tool issues
Tool integration techniques
Meta tools
Tool evaluation

C.12.2  Software Engineering Methods
The Software Engineering Methods subarea is divided into the following subareas:

Heuristic methods
Structured methods

370  ◾  Appendix C: IEEE Standards

Data oriented methods
Object oriented methods

Formal methods
Specifications and language notations
Refinement
Verification

Prototyping methods
Styles
Prototyping targets
Evaluation techniques

C.13  Software Quality
Software quality is now the most important concern on software projects. Even up to the 1990s,
quality was considered a secondary concern on software projects. The top concern used to be
whether software project deliverables can be met even if they are of secondary quality. After mas-
tering many processes in software development projects, organizations have realized software
quality plays an important role and it must be improved. Lower quality software products have
many critical defects. Providing customer support for such software products becomes very costly.
First of all, preventing measures for defects entering into any stage of software development should
be employed. Then, in the testing phase, an attempt should be made to trap and remove defects
that entered into the software product. Subareas in Software Quality include software quality
fundamentals, software quality management processes, and practical considerations.

C.13.1  Software Quality Fundamentals
The Software Quality Fundamentals subarea is divided into the following subareas:

Software engineering cultures and ethics
Value and costs of quality
Models and quality characteristics
Quality improvements

C.13.2  Software Quality Management Processes
The Software Quality Management Processes subarea is divided into the following subareas:

Software quality assurance
Verification and validation
Reviews and audits (code walkthroughs, management reviews, inspections, etc.)

C.13.3  Software Quality Practical Considerations
The Software Quality Practical Considerations subarea is divided into the following subareas:

Software application quality requirements
Defect characteristic
Software quality management techniques
Software quality measurement

Appendix C: IEEE Standards  ◾  371

C.14  Related Disciplines of Software Engineering
Software engineering cannot operate in isolation if it has to be practiced. Definitely any discipline
for that matter depends on many other disciplines.

These disciplines include computer science, mathematics, computer engineering, management,
project management, quality management, software ergonomics, and systems engineering.
Software engineering needs mathematics for making algorithms, doing calculations, etc. Software
engineering needs quality management fundamentals for solving quality-related matters. Computer
science needs software engineering to build software applications. Software engineering needs com-
puter engineering for building interfaces between hardware and software applications. Similarly,
other disciplines either depend on software engineering or software engineering depends on them.

373

Appendix D: Agile Processes
for Software Development

The traditional waterfall model poses issues like high risk, long time in delivery, heavy upfront
commitment, and inflexible process. Though the waterfall model certainly has advantages and
is extremely useful for large projects, organizations and individuals have been in search of alter-
native approaches for software development that can help in mitigating these issues. Rational
Corporation came up with its Unified Process Model for software development projects in
search of a better alternative to the waterfall model. Similarly, some other popular approaches
include Scrum, eXtreme Programming, Cleanroom software engineering, Microsoft Solutions
Framework, Oracle unified method, etc.

D.1  Rational Unified Process Overview
Rational Corporation introduced an alternative life cycle called the Rational Unified Process (RUP).
This includes a matrix of processes and workflows that comprise a new way of developing software.
The traditional processes of software development are now known as workflows, which span over what
Rational called processes. In this model, there are four process areas and nine workflows (Figure D.1).

The traditional software development process model lacked proper integration between project
management processes and software development processes. With RUP, this lacuna was removed.
It proposed the phases of inception, elaboration, construction, and transition. The six main work-
flows of business modeling, requirements, analysis and design, construction, test, and deployment
along with the three supporting workflows of configuration and change management, project man-
agement, and environment pass through these phases during project execution. These workflows
are not restricted to any single phase but span across many phases.

Parallel to the phases are the iterations. The iterations during any phase are determined by the
need for clarity during the phase. There will be more iterations during any phase where more clar-
ity is needed (Figure D.2).

The initial unified process had some drawbacks. One of them was not having any process
definition for production phase of the software life cycle. Rational Corporation thus introduced a
new process model and called it enhanced unified process. Now the production phase was added
to the existing four phases. At the same time, two workflows were also added to the existing nine

374  ◾  Appendix D: Agile Processes for Software Development

Business modeling

Workflows

Inception Elaboration Construction Transition Production

Phases

Requirements

Analysis and design
Implementation

Test
Deployment

Operations and support

Supporting workflows

Configuration management
Project management

Environment

Infrastructure management
1 2 3 1 12 2

Iterations

Figure D.2  Enhanced Rational Unified Process.

Inception Elaboration Construction Transition

Workflows

Business modeling

Requirements

Analysis and design

Implementation

Test

Deployment

Supporting workflows

Configuration management

Project management

Phases

Environment
1 2 3 1 2 1 2

Iterations

Figure D.1  Rational Unified Process.

Appendix D: Agile Processes for Software Development  ◾  375

workflows (Figure D.2). One was the operations and support workflow, which accounts for the
work needed for deploying and running the application in the production environment. This was
needed as when the software is in development process, user manuals, support plans, and training
manuals are to be prepared. The supporting process of infrastructure management was also added.
This process allows the operations support team to plan and arrange for the infrastructure, includ-
ing software, hardware, computer operators, etc., needed to run the installed software system. But
more than that, the most important aspect of infrastructure management is to provide resources
beyond a single project. Aspects like reuse, resource pooling, consolidation, and process improve-
ment processes are integrated at organization level. The project phases of inception, elaboration,
construction, transition, and production are described here.

D.1.1  Inception Phase
The inception phase is where the project scope is defined in the context of project budget and
schedule. A project charter consisting of success factors, business case, and financial forecast is
established. The business case is elaborated by creating use cases, basic project plan, risk assess-
ment, and project description. To reach the milestone before completing the inception phase,
stakeholder feedback on project scope, schedule, and budget is made. Primary use cases validate
the requirements. Design and prototype are also validated. A baseline is created to track project
budget and schedule. All of these artifacts are validated at milestones to ensure if the project can
go ahead. If not, then the project must be scrapped.

D.1.2  Elaboration Phase
In the elaboration phase, the design and architecture of the product takes shape. The milestone
after the elaboration phase is known as the life-cycle architecture milestone. The checklist for the
milestone includes the following:

	 1.	When at least 80% of the use cases and activity diagrams along with actors have been identified.
	 2.	The software architecture has been created.
	 3.	The architecture has been validated against most of the use cases.
	 4.	A detailed and concrete plan for the entire project has been made.
	 5.	Risk mitigation strategy has been defined.

If the project does not pass through this checklist, the project must be scrapped or redesigned.

D.1.3  Construction Phase
The construction phase is where the software design is converted into software code. It is the
most labor-intensive phase in the entire software project. To take care of the large code-building
requirement, concurrent engineering and other techniques for rapid application development can
be used. If there is a need to get customer feedback on the partial build, iterations can be used.

D.1.4  Transition Phase
Once the product is made, it has to be made available for deployment so that end users can use
it. However, before that, the application has to be beta tested to ensure that there are no critical
bugs in the application. The application is assessed to validate whether the quality level meets the
agreement made during the inception phase. User training also needs to be arranged.

376  ◾  Appendix D: Agile Processes for Software Development

D.1.5  Production Phase
The production phase was introduced in the enhanced model to take care of software processes
model after the application is installed and used by end users. Production phase activities involve
support and operation activities as well as training for end users so that they can use the applica-
tion effectively. It also involves rectifying the application when bugs are reported. Enhancement
to the application is also made in this phase.

D.2  Engineering Workflows
D.2.1  Business Modeling Workflow
Business modeling is the workflow used by the business engineering team and the software engi-
neering team get to know the real business requirements of the customer and how the proposed
software product will help in achieving those business objectives.

Most of the business modeling workflow is done in the inception phase.

D.2.2  Requirements Workflow
Using this workflow, the project team elicits requirements from the customers and end users for
the proposed software product. They use techniques like interviews, personal meetings, electronic
communications, study existing documents, etc., to get all requirements from end users.

Most of the requirement workflow is done in the inception phase.

D.2.3  Analysis and Design Workflow
This workflow determines how the proposed software product will be implemented. Use cases,
activity diagrams, and other tools are used to model the software product. Using these tools,
the project team covers all requirements in the product model. The analysis model describes
how the proposed product will work against end user requirements. The design model con-
tains all details related to the structure and logic of the proposed product. It also includes
information as to how the product will be designed using software components and how these
components will be integrated with each other. The design model acts like a blueprint for con-
structing the product.

Most of the design and analysis workflow is done in the elaboration phase.

D.2.4  Implementation Workflow
Using this workflow, the software design is converted into software code. But before writing the
code, organization of the classes, packages, and components is done according to the design docu-
ment. The components are tested as a unit to ensure that they are perfectly implemented. Once
these components have been integrated, an integration testing is done to ensure that integration
between the components is working fine.

Most of the implementation workflow is done in the construction phase.

Appendix D: Agile Processes for Software Development  ◾  377

D.2.5  Test Workflow
Once the software system is implemented, it is handed over to the test team. Using test workflows,
they perform system testing, performance testing, compatibility testing, and other tests necessary
to verify if the software product is working as per requirements. If defects are found, they are fixed.
Finally, the product is validated against the requirements using tools like traceability matrix. In
this workflow system and beta testing is done.

Test activities span many phases, but most of the work is done during the transition phase.

D.2.6  Deployment Workflow
Once the product is developed and system tested, user acceptance testing is done by end users.
User and system manuals are created and end users are provided training to use the product.
Finally, the product is installed and is ready to be used.

In the enhanced unified model, a deployment plan has been added in the inception phase itself
since all work done on the product through the phases should include supportability and main-
tainability of the product after the product goes in production.

Deployment activities span many phases but most of the work is done during the elaboration,
construction, and transition phases.

D.2.7  Operations and Support Workflow
This workflow was added in the enhanced model after it was decided that the unified process
should also support processes when the product goes into production. During the software con-
struction phase, you need to include a provision in the software build itself for good maintenance
and operations support. Some of the work belonging to this workflow is done in the construction
phase. The remaining work is done in the production phase.

Operations and support workflow span many phases, but most of the work is done during the
construction, transition, and production phases.

D.3  Supporting Workflows
D.3.1  Configuration and Change Control Workflow
Artifacts generated during workflow execution during the entire project need to be managed
throughout the project. There are iterations and changes in the version of these artifacts. All ver-
sions of each artifact need to be managed so that the project team as well as the stakeholders have
a complete view of the project and can review these artifacts at any time.

The software code building is done in such a way that the new code created by any developer
does not break the current build of the product. The software build has to be maintained at a
central location so that developers can check in their new developed code and merge it with the
existing build. There are generally many versions of the same product. All of these versions as well
as the current version that is being developed need to be kept neatly so that they are available to
the entire project team.

Configuration and change control workflow run through all phases of the project.

378  ◾  Appendix D: Agile Processes for Software Development

D.3.2  Project Management Workflow
Project management workflow is where we define the project as well as the iteration plans. As can
be seen from the diagrams, there are two levels at which project plans are made. One is at the
project level where we have five phases in the project in the enhanced process model. Inside each
of these phases there is provision for iterations.

The phase plan consists of measurement plan, risk management plan, problem resolution plan,
and product acceptance plan. The iteration plan consists of fine-grained planning within a phase
and consists of time-sequenced activities and tasks pertaining to the phase within which the itera-
tion exists. At any given point of time, there are two parallel iterations going on. One is the current
iteration plan and the second is the next iteration plan. This is so because the project manager has
not only to take care of the current activities but has also to keep working on the next iteration
so that there is no time lost between the two iterations. During iteration planning, use cases or
scenarios are created. Some other tasks include problem resolution, risk mitigation, change request
incorporation in the software product, work on object classes, etc.

The work products (artifacts) of a project plan include iteration assessment, project measure-
ment, periodic status assessment, work order, and issue list.

Project management workflow spans the entire project and covers all phases and iterations.

D.3.3  Environment Workflow
Environment workflow controls and directs all activities that are to be done for a project. It pro-
vides all the tools and methods that help the project team work on the project. Apart from the sup-
porting tools and methods for the project, this workflow also defines the ways to refine the unified
process itself. This ensures that over time the process of executing projects matures, resulting in
better quality, better resource utilization, and project schedule shrinkage.

D.3.4  Infrastructure Management Workflow
This workflow was included in the enhanced model when the production phase was added in the
existing unified process model. This workflow spans all phases of the development life cycle. This
workflow ensures that the proper tools and methods are provided during operations and mainte-
nance of the product in production.

D.4  Rational Unified Process in a Nutshell
The traditional waterfall model had many shortcomings. The unified process model has tried
to eliminate those shortcomings. Apart from these shortcomings, representation of the waterfall
model also lacked flow of activities that go through different phases of the project. The unified
process model has addressed this issue by introducing workflows in the process model.

D.5  Cleanroom Software Engineering
In the electronics industry, cleanrooms are used to prevent defects entering into the product
when semiconductor circuits are fabricated. The same name was used when a process model
was developed to make software products where defects are prevented rather than removed
during the software development process. This results in certifiable software products with
reliability.

Appendix D: Agile Processes for Software Development  ◾  379

There are four major process areas in cleanroom software engineering: incremental develop-
ment, software design specification, code verification, and statistically sound testing.

D.5.1  Incremental Development
Each increment of a software product is developed separately in a project and is then tested in a
simulated production environment. If testing of the new increment of the software proves that it is
working satisfactorily, only then does the next increment of development take place. This testing
is done against a pre-established quality standard. Each increment is developed using complete
iteration over all phases of the software development.

D.5.2  Formal Method for Design and Specification
Software design and specification is based on the box structure method. The software application
is expressed as a mathematical function. The software design is compared against the specification
to check whether the design is correctly using the functional specification. The rules for functions
of the system are defined by the box structure method at three levels of abstractions: behavioral
view, finite state machine view, and procedural view. In other words, they are defined as black,
state, and clear boxes. At the black box level, the interaction of the system with the application
environment is defined. The state box defines the movement of data across the application. The
clear box defines the procedures present in the application.

D.5.3  Correctness Verification of Developed Code
A team review is conducted to assess correctness of the developed code. Mathematical verification
methods are used for the verification process. This ensures that code errors are detected quickly
and rectified.

D.5.4  Statistically Sound Testing
Even though a defect-preventive approach is applied right from system analysis and design, some
defects are introduced in the application. An independent testing is performed to remove these
introduced defects.

D.6  Scrum
Scrum is an iterative incremental model and was introduced for software development projects.
Sometimes, it is also used for maintenance or program management. Scrum is characterized by
one cross-functional team that does the entire software development. The process phases overlap
and thus are not distinct. Development is done in iterations that are known as “sprints” and cover
the complete development life cycle. The project manager is known as a “scrum master.” The
stakeholder is known as a “product owner” and the development team is simply known as
the “team.” A sprint typically lasts between 2 and 4 weeks and the duration is entirely determined
by the team. During each sprint, an executable code is developed. The features that go into the
development of each sprint are determined by the product owner. These features are taken from a
feature repository called the “product backlog.” At the start of an iteration, a planning meeting is

380  ◾  Appendix D: Agile Processes for Software Development

held, where it is decided which features will go in the next iteration. The team then determines if it
is feasible to commit to all or a partial list of features. Depending on the feasibility, they commit to
develop a list of features in the next sprint. Once the sprint starts, the features are never changed.
Once the sprint completes, the team demonstrates the product to the product owner.

Scrum is a methodology that does not require a structured approach to software development.
No documentation is needed. Everything is done very informally. Communication between the
customer and team members is done verbally. There is little risk as the product is delivered to the
customer after each iteration of less than 4 weeks.

D.7  Extreme Programming
EXtreme Programming (XP) is very similar in approach to Scrum for developing software. XP is
defined by activities like coding, testing, listening, and designing. The project team is generally
small, consisting of up to 12–15 members. XP is characterized by 12 practices. These practices
include pair programming, planning game, test-driven development, whole team concept, contin-
uous integration, refactoring, small releases, coding standards, collective code ownership, simple
design, system metaphor, and sustainable pace. These practices can be compared to traditional
software development terminology.

D.7.1  Extreme Programming in a Nutshell
XP suits smaller software development projects. During system metaphor practice, a story is told
that actually forms the requirement. Based on the system metaphor, a planning game is arranged
where the project (iteration) plan is discussed. Based on the planning game, test-driven develop-
ment starts. The development is based on small release concept. The iteration lasts from a few
weeks to a maximum of 5–6 weeks. At the end of the iteration, a fully functional and executable
release is demonstrated to the customer. If the products meet customer expectation, the team may
move to the next iteration. If not, suggested changes are made and again sent to the customer
for approval. Some of the techniques used during system design include refactoring and simple
design. During coding, techniques like coding standards, pair programming, and collective code
ownership are used.

D.8  Oracle Unified Method
Oracle Unified Method (OUM) is a modified version of the Rational Unified Process. It has
phases of inception, elaboration, construction, transition, and production, the same as in the
enhanced unified process. The workflows are known as project processes. These processes
include project management, business requirements, requirement analysis, analysis, design,
implementation, testing, performance management, technical architecture, data acquisition
and conversion, documentation, organization change management, training, transition, and
operations and support. There are iterations inside each of the phases. At the top of the phases
are milestones to denote the successful conclusion of each phase.

Project phases in the OUM model are similar in scope to the ones present in the enhanced
unified process model. These phases are described in detail in Section D.1 earlier in this Appendix.
Let us discuss now the process of the OUM model.

Appendix D: Agile Processes for Software Development  ◾  381

The business requirement process deals with the tasks of requirement elicitation using standard
elicitation techniques. Here the work products include business objectives, goals, and detailed and
documented requirements. In the requirement analysis process area, the documented requirements
are converted into use cases. Work products include use case model, user interface prototypes, and
a high level description of the proposed system architecture. In the analysis process area, require-
ments are further refined to form the analysis model. The language used to make the analysis
model should be closer to the development language rather than any business user language. The
work product from this process area is the reviewed analysis model, which also includes class dia-
grams. In the design process area, the system architecture is represented as a set of classes, objects,
and components that will be constructed during the implementation process. The work product of
the design process area is the reviewed design model that forms the basis for actual construction.
Using iterations, the project team develops the software code using the reviewed design model.
Each component developed should be unit tested to ensure it meets design specifications before it
is taken for integration with other components. After integrating the components, testing is done
to ensure that the components are working properly with each other as per requirements. In the
testing process area, the system is tested to verify that it meets requirements. It involves doing
system, integration, and many kinds of nonfunctional testing. The performance management pro-
cess area is closely related to the technical architecture process area. Both these areas ensure that
the overall performance of the developed application meets end user performance requirements.
The technical architecture process area ensures that the software product being developed has
the required capability for running in production environment without any problems. The data
acquisition and conversion process area ensures that appropriate tools and methods are used for
data to be extracted from legacy systems, and these data are appropriately formatted, converted,
and sent to the suitable storage devices. These data then become suitable to be used with the new
product being developed. Often due to lack of proper documents, a good application is not prop-
erly used by end users. Then again in case of any maintenance needs, the application could not be
enhanced or defects removed as there was poor documentation about the design and implementa-
tion of the application. The documentation process area ensures that these things do not happen
and good quality documentation is available for operations and maintenance of the application. It
is very important that processes required to execute projects should be refined and should mature
over time. This requires change across the organization. Any change thrust upon the employees is
resisted. A proper mechanism is required so that these changes are accepted by the people and thus
the adoption rate is high, which in turn will make it easier for the people to go about their tasks as
per the new process norms. This aspect is taken care of in the organization change management
process. From time to time, retraining of staff is required so that they have the required skills to
execute projects. The training process area addresses all issues related to training aspects.

OUM works in conjunction with Oracle Project Management Method (PJM). PJM consists
of three phases: project start-up phase, project execution and control phase, and project closure
phase. Combining PJM with OUM results in a complete mechanism that can execute any soft-
ware development, maintenance, or implementation project. The combined process model starts
with the project start-up phase. The phases of OUM (inception, elaboration, construction, transi-
tion, and production) go inside the project execution and control phase. Finally, the project closure
phase is executed (Figure D.3).

PJM has 13 process areas that run on top of all processes of OUM. These are bid transition,
scope management, financial management, work management, risk management, issue and prob-
lem management, staff management, communication management, quality management, config-
uration management, infrastructure management, procurement management, and organization

382  ◾  Appendix D: Agile Processes for Software Development

change management. These processes either define boundaries under which OUM processes
should operate or they facilitate execution of OUM processes by providing a platform.

D.9  Microsoft Solutions Framework
Microsoft Solutions Framework (MSF) consists of five process areas, namely, envisioning, plan-
ning, developing, stabilizing, and deploying. To check that these process areas are complete, there
are milestones (gates), namely, vision/scope approved, project plans approved, scope complete,
release readiness approved, and deployment complete.

MSF incorporates the best elements from both the waterfall model and the spiral model. The
milestones concept has been taken from the waterfall model while the incremental iteration con-
cept has been taken from the spiral model.

MSF has three disciplines, namely, project management, risk management, and readiness
management. These disciplines control and govern MSF process areas. The project management
discipline has been conceived from and aligned with major project management disciplines like
Prince2, or prescribed by institutions like the International Project Management Association and
the Project Management Institute.

D.10  Process Tailoring
Each and every project is unique in its scope, objective, and mission. Projects differ from each
other in many respects. However, there are standard process methodologies that can be used to
plan, monitor, and control projects. Project managers try to fit project objectives and requirements
into any of these process models. It is not always possible, however, to fit the project into any stan-
dard process model. In such cases, the process has to be modified so that it fits the needs of the
particular project. This process is known as process tailoring.

The advantage of process tailoring is that it allows fitting nonstandard elements of a project
into a process model. The disadvantage is that once the project is over, the data from the project
becomes nonstandard and so is not of much use. Statistical quality control methods need previous
project data to be used for future projects. It has to be kept in mind that statistical process control
techniques have become extremely useful tools for software projects, and so usefulness of previous
project data has become very important. Here it is also important that project data of only similar
projects be used for future projects. So if you have data from a project that was executed using
very different kinds of process standards, then these data will not be of much use. This is because

Project
startup

Project
closure

Project execution and control

Oracle uni
ed model (OUM) processes
(inception, elaboration, construction,

transition, production)

Project management (PJM) processes

Figure D.3  Combined OUM and PJM processes.

Appendix D: Agile Processes for Software Development  ◾  383

these data cannot be compared with data from projects that followed other process standards. For
instance, suppose a project required that the effort estimate be made using a method supplied by
the customer, but this method is not used anywhere except by this customer. The effort estimate
data for the project thus cannot be used for any future project even though the future project may
have similar scope and project objectives.

Process tailoring, therefore, has this major limitation. However, there is a solution to overcome
this problem. Instead of tailoring any process to any extent, we can tailor a process within a defined
limit. There is another option for tailoring. Many popular process standards have some predefined
tailored processes or variations of the parent process standard. For instance, the Rational Unified
Process standard has variations such as open unified process (used by open source developers),
essential unified process (simplified model), unified process for education, enterprise unified pro-
cess (for larger-scale projects), etc. Using a predefined tailored process ensures that even though a
project has been executed using a tailored process, its project data will still be relevant for future
projects when those projects are going to be using the same predefined tailored process model.

385

Appendix E: Impact of
Offshoring on Standards

Offshoring is, no doubt, influencing the way software development projects are being planned
and executed. Project teams can no longer depend solely on verbal communication. Proper and
elaborate documentation is the norm now. While this improves the quality of communication
and, in turn, improves process quality, it also increases turnaround time. For any change to be
successful, the first requirement is to communicate the change clearly to all concerned. Once the
change request is approved, changes can be made to the documentation in such a way that it is
understandable to everybody. Even the first draft of any work plan needs to be written in a lan-
guage that is easy to understand by teams located at different sites.

Apart from communication and turnaround time, the other problem is concerns about quality.
Customers do not feel comfortable about quality when their partners are located far away. On-time
delivery is another concern, which is only heightened due to the increase in documentation.

Can process-driven project management help in mitigating these concerns?

E.1  Communication Concerns and Solutions
For the discussion here, it is assumed that only electronic and voice communication are allowed
for all projects. Paper-based communication has not been considered here at all.

No doubt distance, different time zones, different cultures, and many other factors wreak
havoc on communication among teams situated at remote locations. These concerns can be miti-
gated by adopting a common language and way of communication. For team members who have
no prior experience working on offshore projects, training in communication may be needed.
There is some good news here. Most professionals in locations like India have good experience in
working on offshore projects. They have learned how to communicate on these projects. So for
them, communication is not a problem. Any team may comprise one or two professionals who are
new to such projects. They may need some training. Overall, project teams have experience and
so the inexperienced professionals can quickly learn from their team members. Experienced team
members can also help them in handling their communication.

Experience has shown that there is a steep curve involved when a majority of team members
have no prior experience. But, if only a few have no experience and the majority is conversant, the
project does not face any challenges as far as communication is concerned.

386  ◾  Appendix E: Impact of Offshoring on Standards

Of course, when the customer is from a country like China, Japan, or any European country
where English is not the language of communication, then language is definitely the biggest challenge
for any project. On those projects, learning the language of communication is the topmost priority.

The other issue of communication is turnaround time. How to deal with this challenge?
E-mails are not foolproof. They take time to be delivered and sometimes cannot be delivered. It
may even take 1–2 days before it is known that the e-mail was not delivered. E-mails are also not
synchronous. Nevertheless, they are very important as they are more formal than other communi-
cation channels. They are more reliable than any other alternative mode of communication. But,
for instant and real-time communication, instant messengers have no competition. They are cheap
(most of the time, free). Team members keep themselves online on these messengers so that, if any
team member wants to communicate instantly, they can do that easily. Desktop sharing, too, is a
good tool for accessing resources located on a remote computer. Web demonstrations are a good
tool for conducting knowledge transfer sessions.

Then there are online applications like forums and wikis to share knowledge. Central configu-
ration management systems can also be used for sharing documents.

So, how does a standard process come into the picture for project-related communications?
Well, standard processes help in making these communications meaningful to every team mem-
ber on the project. The same terminology and documents are used by everybody. The same pro-
cesses are followed by everybody. Things are done the same way on all locations. This reduces
chances of communication errors. Standards play an important role in communication when
projects are outsourced to offshore locations.

E.2  Quality Concerns and Solutions
Quality is the top concern on software projects. When the project is moved offshore customers
have concerns about quality because they have doubts about the capability of the offshore project
team. They are also concerned about the turnaround time required to fix any quality issues.

By certifying all business processes with a standard like CMMI or ISO or IEEE, service pro-
viders demonstrate to the customer that they have standard business processes and that they will
apply them so that the customer’s project will also have those process standards. Software products
developed using such high quality standards will definitely have good product quality. Once cus-
tomers are assured about the quality of processes, they can trust the service provider. Thus, process
standard quality plays an important role in mitigating the quality concerns of customers.

E.3  On-Time Delivery Concerns and Solutions
Distance, different cultures, different productivity levels, and some other factors make customers
insecure about on-time delivery of projects. How to convince customers that their projects will
be delivered as per the schedule that was agreed upon? Again standard processes come in handy.
Since the project plan was made with certainty because most of the project details were made
clear at the beginning of the project, the regular deliveries and reports will be done on time. This
is because the offshore project team will be working with detailed processes with well-defined
schedules. Only when some parts of customer requirements are not clear can the project schedule
deviate; otherwise, known deliveries will be made with certainty. Well-defined processes make
accurate schedules, as project size and productivity factors have been calculated well in advance.
Making deliveries on time becomes a lot easier.

Appendix E: Impact of Offshoring on Standards  ◾  387

E.4  Tips for Offshore Projects
With the added stresses of differing cultures, languages, and time zones, managing a global team
requires specific considerations. Here are six tips for making your global software development
efforts work.

More companies are looking toward globally dispersed software development teams to solve
project staffing problems and make critical time-to-market deadlines. This trend is a fundamental
change in how software projects are organized and implemented. Using the idea of “concurrent
engineering” to deliver projects faster, you break up a project into smaller, less complex pieces
and hire staff scattered throughout the globe who work asynchronously around the clock. This is
not the same as adding more people to a project at a later stage to finish the project faster. What
it means is that, if you are able to break the development (construction) work in such a way that
it allows many teams to work simultaneously without hindering the work of other teams, then
development work will be very fast. This is one fascinating factor that contributes to the success
of offshoring of projects.

Culture affects global teams in many ways, from what is acceptable to project team members,
to how overtime and vacations are used. For example, it is a typically American attitude that if
the project is running a week late, project members will forgo or reschedule their vacations. This
is not common in European countries where vacations are more important than meeting project
deadlines.

Communication can be tricky—especially if not everyone on the team speaks the same lan-
guage. But even if the language is the same, what we say may not express exactly what we mean.
When everyone is located in the same place, we have many opportunities for informal communi-
cations to clarify what we said in person or e-mail. Body language also helps co-located teams to
remove barriers while communicating. In global projects, developers have few—if any—face-to-
face communication opportunities to clarify what is said.

Communicating across time zones is another challenge. Although working asynchronously
can help a team progress faster, not everyone is available at the same time. This may slow down
communication and decision making. It is difficult to find common meeting times, whether for
project meetings or formal technical reviews. A project manager or team lead working on such a
project must balance organizational skills, communication, and tools to make the project work.
In my experience leading globally dispersed teams, six rules of thumb have made my teams more
productive and effective.

	 1.	Define complementary processes and agree on the meaning of important terms: Global projects
are generally composed of teams that do things differently. Some differences are cultural,
while others stem from management styles and strategies. What is certain is that each team’s
reaction to the other teams’ processes and terminology will not be the same.

	 	   Product development processes do not have to be the same, but they do need to be com-
plementary. By complementary, I mean the outputs of each group’s processes should match
the expectations of the other groups.

	 2.	Use configuration management systems and defect tracking systems: When using these systems,
it is important to make sure everyone uses them in the same way. Everyone on the project
needs to know where the source files are stored, what their state is, and what can be done
with them.

	 3.	Formally inspect requirement documents with all development teams: Getting the requirements
right is key to project success, no matter what kind of project you are leading. In a global project,

388  ◾  Appendix E: Impact of Offshoring on Standards

it is even more critical. Because it may not be easy to talk to the person who has the necessary
information, it is critical to write down, review, and track requirements. It is especially useful
to keep requirements in a repository so people can go to one place to continually verify what is
going on with the requirements.

	 	   Requirement reviews must also be more formal. You cannot simply do a casual walk-
through with whoever is available or do an informal review over coffee. Formal reviews
should include one representative from each team. These participants sign off that the
requirements are correct and ready for their team to implement.

	 	   Electronic whiteboards can be particularly useful if you need to discuss design or archi-
tecture issues and draw pictures. Normal video communications may be most useful for
standard project meetings, rather than meetings focused on carefully reviewing a technical
document for defects.

	 4.	Provide all team members with project plans: Project leaders sometimes forget that not every-
one has access to—or knows—all the intricate pieces of the project schedule. In a global
project, this can lead to project failure. Once the project plan is developed, everyone needs
access to it. Joint development of the project schedule will ensure all the hand-offs and mile-
stones are well understood and articulated by everyone. At the very least, I recommend the
major milestones and their commitment dates be pulled out of the schedule and dissemi-
nated to the entire global team by e-mail. It is even better to have the whole schedule and
project plan available online in a workgroup tool.

	 5.	Organize project teams by product feature: I have seen global teams organized by product
development function and by product feature. Although it is possible to have developers in
one place, writers in another, and testers in a third, they may find it harder to do the actual
work of product development. On the other hand, if teams are organized by product fea-
tures, then all developers, testers, designers, etc., working on the same product feature are
located on the same site, or, at least, are part of the same subproject. In such a case, commu-
nication inside the team will be effective and chances of miscommunications will be remote
as team members are well versed with the same features and know what other team members
are talking about.

	 6.	Use collaborative tools to bring the project together: Especially in a global project, collaborative
workgroup and workflow tools let people see all of the documents in one place. Workgroup
and workflow tools such as Lotus Notes help bridge communications gaps of time and lan-
guage and lessen the effects of cultural differences on processes.

E.5  Future Trends for Project Offshoring
Changing needs create opportunities for new products/services. Changing business scenarios cre-
ate opportunities for new ways of doing business.

Normally, political boundaries determine limitation for growth of any business. In free econo-
mies, there is virtually no limitation for any business’ growth. On the other hand, no private
business is allowed in a truly socialist economy. In some other economies that come in between
these two extremes (most of the countries in the world have political environments that are a mix
between these two extremes), some barriers are enacted which limit growth prospects for any pri-
vate enterprise. In recent times, many countries have started opening their gates to foreign inves-
tors. This has led to the rise of many global enterprises. The trend of global business houses has
created concepts like global markets, local markets, global sourcing, global suppliers, etc.

Appendix E: Impact of Offshoring on Standards  ◾  389

The software industry has also witnessed this trend. Software projects have started getting off-
shored because of cost factors. Some countries that benefited from this trend have started investing
heavily in upgrading technology, government deregulation, tax reduction, upgrading education
system, etc., as this is a high-growth and high-potential market. Thus, they not only offer lower
costs for these projects but have also become more competitive and quality-conscious, providing,
as a result, better quality processes and products.

This trend is going to continue in the future because it makes good business sense to get things
done less expensively and with better quality. Governments will also keep wooing foreign com-
panies by providing facilities and changing policies to make their country better positioned for
getting these projects.

391

Appendix F: Review
Question Answers

Part I
Chapter 1

1.1	 A project is an activity undertaken to accomplish a stated goal, using limited budget and
resources, to be completed within a specified time span. A project has a starting date and a
finishing date. The stated goal could be to create or modify a product or service, it could also
be to do some research and provide a report as the outcome of the project. Software projects
are different from other kinds of projects in many ways. Software projects largely involve
manual effort to create software products. The manual effort required on these projects
requires specialized skills on the part of the people involved on the project team. Software
projects also require a great deal of creativity on the part of the people working on them. To
create databases, units of source code, software architecture, etc., definitely requires a great
deal of creativity when hard specifications are not provided (and are not possible, as well)
to do these tasks. Due to lack of hard specifications, the person responsible for doing these
tasks requires his own creativity to accomplish them. Due to involvement of a great deal of
creativity, it is difficult to make a good estimate of effort required to do these tasks. This fac-
tor makes it a tough task to create accurate project schedules as it is not known in advance
as to how much time it will take to finish a task.

1.2	 Software development projects are difficult to handle because of some unique characteristics
of such projects. The foremost challenges faced on software projects are unclear requirements,
soft specifications, and changing requirements. Unclear requirements and soft specifications
lead to problems of uncertain task durations; changing requirements lead to adjusting proj-
ect plans. These factors make it extremely difficult to create a plan for a software project.
And, when a software plan is made after much thought, it will fail during execution due to
the factors mentioned earlier.

1.3	 Due to unclear requirements, changing requirements, and soft specifications, software proj-
ects often fail to meet the expectations of stakeholders. To mitigate these problems some
strategies can be implemented. Instead of taking all requirements in one go, we may take
only a few of the requirements and completely make the software product only for these
requirements. Then take a few more requirements and make a software product on top of the

392  ◾  Appendix F: Review Question Answers

first product. Incrementally, we can build the complete software product this way. This will
eliminate the risks associated with unclear and changing requirements. To eliminate the risks
emanating from soft specifications, we can deploy functional consultants who have extensive
experience in the industry for which the software product is being made. These functional
consultants can help in the functional design with hard specifications, so that no ambiguity
is left in the software functional design. The software design consultants then can create hard
specifications for implementing this design into software construction.

1.4	 Software projects are used to make or modify software products. When a new software
product is needed then a software product is built from scratch. This kind of project is
known as a software development project. On the other hand, an existing software product
sometimes needs to be modified due to changes in business environment, technology obso-
lescence, etc.; this kind of project is known as software maintenance project.

1.5	 Projects need to be initiated, planned, controlled, executed, and, finally, closed. Accordingly,
we have project processes like project initiation, project planning, project monitoring and
control, and project closure.

1.6	 A software project involves three basic types of process, viz., project management, software
development, and organization level processes. The project management processes include
project initiation, project planning, project monitoring and control, and project closure. The
software development processes include software requirements, software design, software
construction, software testing, software deployment, and software maintenance. The orga-
nization level processes include program management, process improvement initiatives, and
process standards. To become a successful software project manager, it is essential that the
person must have knowledge and experience in managing all these processes.

Apart from managing processes, the software project manager also needs to handle
expectations of customer/stakeholders effectively. He should also be able to manage his team
as well as the suppliers.

1.7	 Measurement and control of costs, productivity, and schedule for the project is required at
frequent intervals to keep these major project metrics under control. To do it, some tech-
niques and measurement methods have been devised by organizations and project manage-
ment experts over the years. We have graphs, Pareto charts, cause and effect diagrams, scatter
diagrams, check sheets, histograms, control charts, etc., measurement methods available
to measure and control project processes. Some of these methods, like Pareto charts, scatter
diagrams, and cause and effect diagrams, help in identifying root causes of problems, so that
appropriate control measures can be taken. Check sheets, control charts, and histograms
are used to find deviations in the processes, so that they can be corrected.

1.8	 Project initiation is the place where project feasibility, project scope, etc., are determined.
To do these things, you need to make a rough estimate for costs, effort, and schedule dura-
tion. This is possible only if you have some rough idea about software development tasks to
be done on the project. During project planning, requirement specifications, project scope,
and, optionally, start and finish dates need to be gathered as project inputs. Based on these
inputs, complete project schedule, project costs, and other project planning components
like communication plan, configuration plan, resource plan, and supplier plan are prepared.
Again, at this stage, complete ideas about software development processes like software
design, software construction, software testing, and software release, which need to be used
across the project, are required. These processes are the project tasks to be completed to
make the software product. When the project execution starts, these project tasks (software
development processes) need to be monitored and controlled, so that the project can be kept

Appendix F: Review Question Answers  ◾  393

within control in terms of project costs, product quality, and project schedule. All these
project tasks need to be completed before project closure.

We can clearly see that software development processes fall within the boundaries of
project management processes.

Chapter 2

2.1	 The project charter is the high-level document describing what the project stakeholders are
looking for out of the project in hand. Generally, the project charter does not delve into
project details, rather, it is a statement that contains the stakeholders’ vision for the project.
For instance, a project charter for a software project could be to achieve 100% accuracy in
order management for a business house as well as to cut order management costs by 25%
from existing costs involved in order management activities.

2.2	 Project objectives are the list of tasks describing how the project charter can be achieved. In
the example given for project charter in answer 1, a list of tasks which will help in achieving
100% accuracy and 25% reduction in order management costs can be prepared. These tasks
can include cutting offline work from order management and making the order manage-
ment process a complete online activity, and introducing checks into the order management
process, so that no errors will occur in taking and processing the customer orders.

2.3	 Project scope defines what is required to be done on the project to accomplish project objec-
tives. The outcome of project scope preparation is a detailed document which is also known
as project deliverables. Project scope is often a bone of contention between the customer and
the software vendor/project team. That is why project deliverables should be well defined,
so that there should not be any area of dispute or ambiguity when the project deliverables
are actually made and delivered. If any project deliverables have any ambiguities or disputed
areas, they should be sorted out during project initiation. The project scope should not only
describe the deliverables in detail, but expected quality level should also be well-defined, as
it influences project scope considerably.

2.4	 Software projects are inherently difficult. Problems stemming from soft specifications and
unclear requirements mean visibility into the project is very poor. During project initiation,
this lack of visibility can hamper efforts to define rough project effort, cost, and schedule.
Misunderstanding between the project team and project stakeholders thus becomes a common
occurrence. Lack of confidence in the project from the stakeholders is also not uncommon. The
project team itself can find it difficult to convince the stakeholders about their competence.

In fact, all these problems during project initiation can lead to a turbulent project execu-
tion later, which ultimately leads to project failure.

2.5	 Project scope is essentially a list of deliverables, which are agreed by the two parties, viz., the
project stakeholders and the project team. But even if the project team delivers the promised
functionalities in the software product, stakeholders may not be happy with the quality of
the software product. The software product can contain critical defects that may prevent
the end users from using it effectively. These defects can even cause monetary losses to the
customer. So, software product quality is a must.

But achieving stringent quality norms is a hard and laborious task. It will also be costly
and may consume enormous amount of time. Obviously, achieving very high software prod-
uct quality may not be necessary or required for all software products. So, the project scope
document must specify what level of software product quality is required, so that amount of
project work can be determined.

394  ◾  Appendix F: Review Question Answers

2.6	 At project initiation level, making an elaborate project plan is impossible because a large
number of project-related information is not available. However, rough estimates about
project costs, effort, number of resources required, and project schedule are desirable. The
project team should make initial and rough estimates about these project-specific details.
During initiation, the project team can present these rough estimates to project stakehold-
ers. If the project stakeholders have some specific demands after seeing this rough estimate, then
these demands can be incorporated, and the project initiation phase can be signed off.

Chapter 3

3.1	 Function point analysis (FPA) technique tries to find out effort and cost estimates for a
software project by finding out how many functions will be needed to create the required
functionality in the software product to be made. Depending on the number of functions,
complexity, and number of interfaces, the unadjusted function point is calculated. A value
adjustment factor is applied to get the final FPA estimate.

In the initial stage of a software project, there will be many assumptions about various aspects
of the project. So, at that point, FPA calculations will be crude and far from accurate due to these
assumptions. Once the project is on its way and these assumptions have mostly been converted
into solid project details, then the FPA effort estimate will be close enough to being accurate
enough.

3.2	 The COCOMO (Constructive Cost Model) for estimating effort and cost for software proj-
ects was proposed by Barry Boehm. He studied execution data from a large number of
previously-executed software projects and found that there are environmental and internal
influencing factors (known as attributes) that affect effort required on a software project. He
incorporated these attributes into his famous COCOMO effort estimate model.

One advantage of the COCOMO model is that it can be applied at any stage of the project.
For this, there are three versions of the COCOMO model. In the initial stages of a software
project, when project specific information is mostly not available, industry average values for all
the attributes are applied. This version of the COCOMO model is known as Basic COCOMO.
During the middle stages of a project, when almost all of the project specific information is avail-
able, then these attributes are applied to calculate effort estimate. This version of COCOMO is
known as Intermediate COCOMO. The third version of COCOMO, which is used to calcu-
late effort estimates for various phases of the project, is known as Detailed COCOMO.

3.3	 When data for past projects are not available, then both Wide Band Delphi and COCOMO
models can be used. Neither of these models use past projects data in deriving effort esti-
mates. COCOMO modeling uses current project attributes as well as industry trends attri-
butes in effort calculations. In Wide Band Delphi, team members derive effort estimates
after going through some brainstorming sessions. For these sessions, only current project
attributes are used for estimation work.

3.4	 Generally, project schedule for software projects is considered to be a constant. This because
it is believed that, even if you add more resources to a project to make project schedule
shorter, it does not result in shorter schedules. This assumption is not true. Using concur-
rent engineering techniques, tasks can be split into many smaller tasks, which can be done
in parallel to each other, while at the same time as they are independent from each other.
Many independent teams can be deployed to complete these parallel tasks. This technique
will result in making the project schedule shorter. Since many teams will be involved in
such an arrangement, a larger pool of resources will be needed to do these tasks. At the same

Appendix F: Review Question Answers  ◾  395

time there is a larger overhead due to the introduction of many layers of management, which
stems from the large number of people included by using many teams. This means the proj-
ect’s budget will be higher, in comparison, than it would be in a situation where parallel task
processing was neither sought nor employed, thus keeping the management for the project
on just one layer.

3.5	 Project scope is a list of deliverables that are to be made during and after project completion.
There should also be a rider on these deliverables; the quality aspect. This rider should clearly
state what level of quality is acceptable for the software product being made. A high level of
quality requires more effort. Indeed, if stringent quality is required, as in the case of life-
critical applications, then effort could be several times higher compared to the effort required to
develop a general purpose application. It is commonly accepted that a project undertaken by a
group of students as a class assignment to develop a software product could have a development
speed of 5000 lines of source code per person per month. When an industry strength software
product is developed by a professional project team then the development speed sharply drops
to the tune of 1000 lines of source code per person per month. This drop in development speed
is due to extra effort in building high quality, defect-free software products. This extra effort
goes in reviews, inspections, and testing to ensure that quality of all work products throughout
the development cycle remains within agreeable limits.

Chapter 4

4.1	 The most critical risks on a software project include resource unavailability, skill shortage,
technology obsolescence, incorrect effort estimate, quality, escalating costs, requirement
changes, misunderstanding, and miscommunication. Each of these risks have potential to
jeopardize a software project.

4.2	 The best strategy for tackling risks on software projects is to keep some buffer so that, when
any risk occurs, the buffer is consumed and the project schedule remains intact. This is true
for all risks which can impact project costs, quality, or project schedule. So, we can have
a buffer in the project schedule for schedule related risks. We can have a budget buffer to
tackle budget-related risks.

For technology-related risks, we can research and make sure that any aspect of the soft-
ware product will not become obsolete for its projected lifespan.

For quality-related risks, we can have a comprehensive quality assurance plan. Each
work product should be reviewed and tested to make sure that quality level throughout the
development life cycle has excellent quality, and, thus, the final product will also have above
expected quality level.

4.3	 Risks are unpredictable by nature. They can suddenly occur at time during the project.
But, at the same time, some risks are more likely to occur at a specific time than other risks.
It is important to not only make a prioritized list of risks, but to keep this list updated so that
the most likely risks at any point in time are kept on top of the list, that way, if they occur,
the project manager is ready to take appropriate action to mitigate it.

To make a risk management plan, first of all, you need to identify and list all risks that can
impact the project. Each risk can have an impact that can be mild to severe on the project.
Note the severity level of each risk; high severity risks have more severe impact on the project.
Therefore, these risks should also have higher priority compared to lower-severity risks.

The prioritized list of risks should be reviewed frequently and order of risks should be
sorted so that the most likely risks in immediate future are kept on the radar.

396  ◾  Appendix F: Review Question Answers

4.4	 Projects need to deliver the agreed-upon deliverables within the agreed-upon budget, sched-
ule, and quality level. If any of these limits are violated, then the project will fail. There may
be many risks associated with occurrences impacting any of these limits. A project manager
must be able to tackle these risks successfully or else the project will be in trouble. If a
project is going to be safeguarded from these risks, a good risk-mitigation strategy should
be in place. For instance, highly skilled resources are highly in demand. To retain them, a
comprehensive retention plan is adopted by all employers in the IT field.

4.5	 To mitigate the risks posed by changing requirements, either an iterative product develop-
ment strategy or a comprehensive change request policy is adopted for software projects. In
iterative models, only a few requirements are taken at a time for development and complete
development is performed for those requirements. When the cycle of developing a software
product for those requirements is complete, then the next batch of requirements can be
taken for development. Since these iterative cycles are short (a week to 5–6 weeks), it is pos-
sible to incorporate all requirements even with some changes.

The other strategy is to enforce a stringent change management policy so that, whenever
changes are requested in requirements, an impact analysis is performed first. This analysis
will show how much reworking will be needed in already-made software design and writ-
ten source code. If the customer agrees to go ahead with the additional amount of time and
cost involved in doing those changes, only then those change requests will be incorporated.

Chapter 5

5.1	 Configuration management systems are vital parts of any software project. They are the
central repository for all project documents, requirement specifications, software designs,
source code, testing artifacts, etc. As a project progresses, a large number of versions of these
artifacts get generated to take care of change requests, defect fixes, etc. So, they also contain
all versions of these documents and artifacts.

A large number of software projects involve many teams working on the project from many
locations. A centralized management system helps them work together by keeping all project
artifacts at a central location and providing secured access to all project teams.

5.2	 A good configuration management system should have a secured access mechanism, so that
only authorized people can access it. The system should be able to be audited frequently to
make sure that all the artifacts it stores are safe and are not tampered with. It should also
have a foolproof reliability, so that all the stored artifacts do not get corrupted. It should have
a role-based security, so that only authors of project artifacts have the rights to edit or delete
any stored artifact. All other users should have access to view or download the artifacts.
Continuous integration of software builds should be provided, so that developers can check
in their source code whenever they finish their already-tested units of source code.

5.3	 When a new piece of source code is integrated with a software build, it can lead to many prob-
lems if the source code to be integrated is not clean (has defects, compiling issues, etc.). If the
software build is not tested frequently for defects and compiling errors, it will be very difficult
to debug and find defects when the build becomes large. Good practice is that, whenever a new
piece of source code is added to the main build, the build should be tested for compiling issues
and defects. This way it can be made sure that the build is always clean. This kind of testing
performed each time a new piece of code is added is known as smoke test.

5.4	 For most purposes, a centralized configuration management system is a better option than
a decentralized one. A centralized system works on the principles of “one version of truth.”

Appendix F: Review Question Answers  ◾  397

This kind of environment promotes accuracy of information, immediacy (information in
real time), faster information delivery, etc. On the flip side, there can be security issues with
this system. If many teams are working from many locations and if access is provided to
them through internet, then security issues can definitely arise. A totally secure connection
and access permission is needed in such scenarios.

A decentralized system, on the other hand, is comparatively secure. But if many
teams are working from many locations with their own configuration management sys-
tem, then all those disparate systems will need to be synchronized frequently using some
sort of connection among them. This will pose security issues. Since each system has its
own repository of project artifacts, then one version of truth may not be always possible.
Moreover, each system may be different from each other (different vendors, different ver-
sions, etc.). Integration and synchronization among them will be very difficult in such a
scenario.

5.5	 When a software vendor makes a software product, he keeps adding new functionality in
the product over a period of time. Each time a major version of the software product is
released, all artifacts related to that version of the product need to be kept at a secured place
for reference in the future. If any patches are to be developed in future for the defects found
in that version, then the reference documents belonging to that version can be retrieved and
defect fixing can be done. Similarly, if reverse engineering is required at any time in future,
these reference materials can come in handy.

Most of the configuration and version control management systems come with a facil-
ity to make branches in file system. Each branch can be configured to contain all artifacts
belonging to a particular version. When a new version of the software product is initiated, it
is a good idea to create a new branch, so that all existing artifacts are copied from previous
version. If this is not done, then all required copies of artifacts will need to be copied manu-
ally, which may take considerable amount of time.

Chapter 6

6.1	 Project plans typically consist of a project schedule, communication plan, risk plan, supplier
plan, quality plan, effort and cost estimates, etc. Software projects also configuration
management plans as part of the project plan. The schedule plan itself can be divided into
tasks related to the chosen software development life cycle. Depending on the software
development life cycle, the project plan itself varies considerably and, when this happens,
then other plans get affected considerably.

When a traditional waterfall model is adopted for the project, then all of the planning
components will be outlined in all details and much in advance. But, for iterative projects,
concrete planning is done only for the next iteration while rest of the plans for future itera-
tions are done tentatively.

6.2	 Software projects are, after all, an undertaking to produce or modify a software product
within a given time span starting from a fixed date, with limited budget and resources.
To be successful, the project must be completed within specified limits. If no planning is
done for the project, then it will not be known in advance if the project will be completed
within these limits. Only when projects are done in an orderly manner will the outcome
be controlled. If no project plan was made, then the amount of budget and resources to be
consumed on the project will not be clear, nor will the time in which the project will be
completed. Due to these factors, a detailed project plan is a must.

398  ◾  Appendix F: Review Question Answers

6.3	 Software project planning is done with many details included. There are a number of project
components for which planning is done. These planning components include communica-
tion, configuration, resources, project schedules, effort estimation, cost estimation, and
quality planning. If there are suppliers involved on the project, then supplier planning needs
to be done.

Planning for all these components also has an effect on the software development life-
cycle method adopted on the project.

6.4	 Top-down project planning is employed when the software product to be developed has a
definite release date. In such cases, beginning from the start date, there is a fixed amount of
time in which the software product needs to be developed. Since the time duration is fixed,
only a limited amount of software features can be developed.

Some of the inputs in such cases include start date, end date, project duration, software
requirements, software development life-cycle method, and service level agreements.

6.5	 Bottom-up project planning inputs include software development life-cycle method, project
scope, software requirements, and service level agreements.

6.6	 To tackle risks, project plans include buffers. For risks impacting schedule, a schedule buf-
fer is provided. For risks impacting budget, a budget buffer is provided. For quality risks, a
quality plan is provided.

6.7	 In iterative models of software development, planning is done at three levels. The topmost
level is where a complete product development roadmap is conceived. It is more like a charter
for long range planning. It is made after a thorough study of the market, where there is need
for a product to fulfill a gap, etc., and a full executive management buy-in is sought (in the
case of software product vendors). In the middle level is the plan for major version releases
of the software product. This is done on or around a yearly basis. This planning is done after
getting the market feedback for tapping immediate market opportunities. At the bottom
is the iteration level planning. This corresponds to minor releases of the software product.
Generally, they are done on a quarterly basis.

Iterative planning is also done for other kinds of projects. In those cases, the project
planning can be done at only two levels; even though the complete roadmap may be present,
no planning is required to be done at that level. The product manager may be involved only
in the middle and iterative levels of planning.

Chapter 7

7.1	 On software projects, not only are schedule and cost to be monitored but quality of the
products is also extremely important.

7.2	 Sometimes, a project task may be slipping; this could be for many reasons like lateness of a
precedent task, an item being reworked, or the unexpectedly increased amount effort required.
This situation can be controlled by adding some more resources to the slipping task, so that
it can be done in a shorter span of time. Similarly, a job may be completed earlier than the
planned date. In that case, some resources from that task can be moved to another task.

Movement of resources on a project in anticipation deviations on the project schedule is
known as resource leveling.

7.3	 Any project task will have a planned schedule and budget associated with it. When the proj-
ect gets started, we can put in the baseline dates and budget for this task (same as planned).
When the task begins, we can measure the consumption of budget and elapsed time against
actual work being done. Suppose we need to write 5000 lines of source code in 30 days.

Appendix F: Review Question Answers  ◾  399

There are two developers involved in writing the source code. Salary of one developer is
$4000 per month and that of another $5000 per month. After 15 days time, a work progress
measurement was taken. It was found that 2000 lines of source code was done. The ideal
situation would have been 2500 lines of code by this time. In percentage terms, we can say
that the schedule is lagging behind by (2500 – 2000)/2500% = 20%. For writing 2000 lines
of code, the developers together should have taken 2000/5000 × 30 = 12 days. So, budget is
being consumed more than planned by (15–12)/30% = 10%.

Project schedule is tracked from the planned schedule to the actual progress on the
project against time. To make the tracking easier, there should be some well-defined marks
on the schedule so that, when they are achieved, a definite report about the project can be
made. These marks on the schedule can be done using major and minor milestones. Major
milestones should denote completion of major phases on the project, for example, software
design phase completion and software testing completion.

7.4	 Deviations in project schedule can be remedied using many techniques. Some of the popular
techniques include overloading of resources, partitioning of tasks, and performing tasks in
parallel, but not all kinds of tasks are amenable to these techniques. For instance, a software
design cannot be divided meaningfully among many software designers if the design is sup-
posed to be monolithic in nature and not a modular one. Similarly, if the software design is
large, and it is being designed in a modular architecture, then the tasks cannot be divided
below the module level. So, there is a limit to the extent of the divisibility of tasks. Whenever
it is possible to further divide a task, the divided tasks can be processed in parallel by adding
extra resources on the project and thus correcting any deviation in the project schedule.

In case of overloading of resources, they can be asked to work overtime to complete their
assignment in time.

If none of these measures are feasible, then we can consume time from the project sched-
ule buffer. Project schedule buffers are safety valves in the project schedule, so that when any
deviation occurs, the project buffer can be consumed.

7.5	 There could be many reasons why a project budget deviation occurs. One could be simply
because the tasks could not be completed on schedule and extra time is needed to complete
them; this will involve extra budget for the project. In some other instances, project budget
could be affected due to rise in salaries of project personnel. Then, cost of tools or services
can rise unexpectedly and project budget can be affected. These personnel-related deviations
in project budget are irrespective of project schedule.

To tackle these deviations, we can keep a buffer in the project budget. When these devia-
tions occur, we can consume from the project budget buffer.

7.6	 During project planning, we make a quality plan regarding the overall quality of software
products and work products. In the quality plan, there are tasks (reviews/testing) that mea-
sure the quality and, if any defects are found, revision is to be done on those products.
Sometimes, number of defects found during such tasks can cause the project schedule to
deviate if the allotted revision time is not enough and more time is needed. In such cases,
the project schedule buffer can be used.

Chapter 8

8.1	 Project data are extremely useful for future projects. This is due to the fact that effort estima-
tion on a project in the early stages is very difficult. Agreement between the customer and the
development team can become difficult because of these problems. No side is sure about what

400  ◾  Appendix F: Review Question Answers

the effort and costs required for the project could be. Similarly, it becomes difficult to make
a good plan for the project. Using previously executed project data, it is possible to do process
selection, project sizing, determine required quality level and number of resources required,
determine project schedule, etc. In fact, the entire project can be planned with little effort.

8.2	 Before we think about archiving project data, it is of utmost importance that we care about
where the project data is coming from, the accuracy of the data, the formats the data have
been recorded in the project attributes (industry, project size, use of application, etc.), and
such details. The first task should be to cleanse the data to make sure that it is pure. The next
thing to do is to find the formats of all data and then convert them into a uniform format.
Finally, the attributes should be studied, so that the project data could be placed in an appro-
priate project data category.

8.3	 Project closure is the stage where all development activities will come to an end. Activities
like project data archiving, lessons learned, resource release, and source code management
are performed during project closure.

8.4	 Data for lessons learned reside in many places like in memory of team members, emails, proj-
ect management systems, and configuration management systems. Extracting and cleaning
this data is a tough job. Once it is done, the data should be formatted and then aggregated
in a uniform manner. Only then it is useful.

There is a large difference between data and meaningful information. Jumbled, without for-
mat, and without context, data is simply useless. On the extreme side, arranged, well-formatted,
relevant, and context-sensitive data, which can be termed as information, is extremely useful
even if it does not contain much data. This concept should be kept in mind when a lessons
learned list is made.

8.5	 Any project needs resources, budget, and time for their execution. In software projects,
resources in the form of software professionals are, in fact, the most costly. They should
be used very efficiently, so that the project costs can be kept in check. When any resources
are no longer needed on a project, they should be released immediately so that they can be
assigned on other projects.

Part II
Chapter 9

9.1	 Software projects have typical phases like software requirement development, software design,
software construction, software testing, software release, and software maintenance. Depending
on the kind of process model selected, these phases may overlap or might be rigidly separated
from each other. Similarly, the phases may be completed sequentially, in loops or spirally.

9.2	 Software development is mostly a human activity with negligible amounts of automation. So
many people think that statistical process control (SPC) cannot be used on software projects
successfully. After all, SPC methods work with processes where precise process data are avail-
able. This data then can be compared with a standard set of data, and results can be analyzed
to find process areas for improvement so that the existing problems due to faulty process areas
will not happen. SPC techniques work well to measure data when data comes from machines.
It is because process steps with machines are repeatable, and thus all process data coming from
machines have a definite pattern. Finding a set of data that deviates from this pattern is easy
and, thus, finding the cause of the error is also easy. The same cannot be said about activities
performed by human beings. Humans cannot do things the same way again and again.

Appendix F: Review Question Answers  ◾  401

Since software projects are a mostly human activity, measuring process data, finding
a problem area, and then fixing it is difficult. Nevertheless, with maturity of software
engineering techniques, software processes have become more repeatable. Now, it is pos-
sible to predict quality, effort, schedule, and budget for a software project with accuracy.
So, SPC processes can be applied on software projects. In the development process, checks
can be applied at many places so that work products can be checked for defects, and all
found defects should be immediately removed. Similarly, process checks can be applied
so that process deviations, in terms of schedule or budget, can be checked and controlled
immediately. In all these areas, SPC methods are extremely useful.

  9.3	 �Concurrent engineering deals with dividing work into parts, which can be processed or
executed in parallel so that project schedule can be significantly reduced, and thus project
duration can be made shorter. To do this, we need to make provision for dividing a task
inside a process by designing the previous process in such a way that the next process can
be easily divided. For example, if we need to divide the construction process in a software
project, then we need to make the software design modular, so that the software construc-
tion can be easily divided into separate modules and thus work on these modules can be
done concurrently.

  9.4	 �Different phases of software development produce different work products. The require-
ment phase produces requirement specifications, the design phase produces design docu-
ments, and the construction phase produces source code.

  9.5	 �The software development cycle produces many products. The metrics deployed on the
project need to measure quality of these work products to ensure that it is maintained
throughout the development process. Reviews are conducted to ensure the quality of the
work products. Requirement specifications, software design, and software construction are
reviewed and tested, to ensure that there are no defects.

Chapter 10

10.1	 �Requirement gathering can be done using many means and methods. Requirements
from end users can be elicited using techniques like interviews and questionnaires.
Indirect requirements can be gathered from customer feedback, complaints, polls, etc.
Requirements can also be gathered from customer support, end-user tests, etc.

10.2	 �Requirement development process flow entails gathering requirements, formatting require-
ment data, aggregating requirements, maintaining hierarchy and relationship of requirements
to each other, and, finally, prioritizing requirements.

10.3	 �During requirement development, a lot of quality aspects need to be checked. The relation-
ship between requirements, dependency of requirements, hierarchy of requirements, etc.,
need to be checked. Formatting of requirements also need to be checked. Apart from correct-
ness, other aspects like maintainability, testability, and reliability also need to be checked.

During requirement management, the most critical aspect to be checked is to assess
the impact of change on the entire development cycle. At the same time, the right version
of the requirement also needs to be checked to ensure that no processes downstream use
wrong version of the requirement specifications.

10.4	 �Software development is initiated only to fulfill the demands put by the customer require-
ments. In fact, if the development team is engaged in doing anything else, then this will be
a waste of time. Now, requirements cannot be converted into a finished software product
in one go. First, an appropriate software design is made based on which the source code

402  ◾  Appendix F: Review Question Answers

will be written. If the requirement specifications are not made properly or some informa-
tion is missing, then software design cannot be made properly. Subsequently, the software
source code would also be not made properly.

For all these reasons, properly formatted and correct requirements are needed.
10.5	 �Requirement management is all about managing change. Whenever any changes are made

in any requirements, the entire project gets affected. Many already-completed work prod-
ucts may need to be reworked; many planned work products need to be revised. This leads
to a thorough change in project plan.

The requirement management process flow involves receiving the change request,
doing impact analysis on the project, making a proposed revised project plan, send-
ing it to stakeholders, getting approval from stakeholders, and implementing the new
project plan.

Chapter 11

11.1	 �Software design involves making a software architecture and a software design that will
convert the requirement specifications into an appropriate design for the proposed software
product. The software design can include use cases, activity diagrams, and entity relation-
ship diagrams. From design documents, the software construction can be made properly
only if the software design is good and implementable.

11.2	 �The most obvious constraints while making software design include implementability,
reliability, modularity, economic construction ability, and reusability. Construction test-
ing activities are very labor-intensive, and thus costly, activities. If software design is not
modular, then the software construction activities cannot be divided and done in parallel.
If software design does not lead to an economic software construction, then the total cost
of software development will become exorbitant.

11.3	 �There are many techniques available to make good software designs. Some of them include
software reuse, structural models, modular models, system design, and object-oriented
designs. In the early days of software development, structural software designs were preva-
lent with programming languages including COBOL, PASCAL, and FORTRAN being
used. With the advent of the object-oriented paradigm, object-oriented designs became
popular and the programming languages used included Java, C++, and many other object-
oriented programming languages.

11.4	 �Software designs can be reviewed to make sure that their quality is acceptable. The
review can take into account whether or not the design is testable, reliable, modular, and
implements all requirement specifications, or whether design consists of nonrequired
features. If the review process finds any defects, then they should be fixed in the review
process itself.

11.5	 �The design life cycle involves finding the best design for the given requirement specifica-
tions, creating the designs, reviewing the designs, and finally fixing any defects found.

11.6	 �There are basically two methods of software design, viz., top-down and bottom-up. The
top-down design is used when a centrally-controlled configuration of the software system
is desired. In top-down design, the software architecture is always balanced, and there is
no chance of imbalances in design. In the top-down approach, the top structure of the
software is designed first, and then the internal parts of the software are designed later.
Some of the benefits of top-down design is that the main considerations of software design
like performance, reuse, and scalability are always part of the central theme of the software

Appendix F: Review Question Answers  ◾  403

design, and thus the design is very stable even when the design is later changed for any
reason. The limitation of this design is that it suits only for traditional way of doing things
like being used only with waterfall model for software development. This is a risky model
for building software.

The bottom-up method of software design is used when the smallest units of software
components are built first, and the software design and, in fact, the entire software devel-
opment are built incrementally. This is new way of building software, and all agile models
of software development are built this way.

Chapter 12

12.1	 �Common activities performed during software construction include: analyzing software
design specifications, converting the design into source code, unit testing pieces of source
code, integrating pieces of source code, and, finally, doing integration testing of the main
build each time a new piece of code is added to it.

12.2	 �Both static and dynamic testing of the source code are performed during software con-
struction activities as quality control measures. Dynamic tests include unit and integration
testing. Static tests include finding dead code, unused variables, datatype mismatches, and
source code standards deviations.

12.3	 �There are some methods for rapid application development, for example, concurrent engi-
neering techniques, rapid application development tools, code reuse, and service-oriented
architecture.

12.4	 �Pair programming is a technique which is used with extreme programming. For each
development assignment, instead of one developer, two developers are assigned the same
task. While one developer writes the source code, the other developer looks after the
functional aspects of the assignment. They rotate their roles at defined intervals. This prac-
tice makes sure that the developers not only write source code, but they also understand
the larger picture of their task by understanding the functional aspects of the pieces of
source code they write.

12.5	 �It is very important that the written source code should be legible, easy to understand, sim-
ple, modular, and should be strictly under a framework. The modular design enables con-
struction teams to work independently from each other and in parallel, so that the entire
source code writing exercise can be completed in a shorter duration by employing more
people on the divided work. The reliability aspects of the source code ensure that there are
no major defects in the software product. The simple aspect ensures that the source code is
not complex and thus is free from tendency of developing defects. Simplicity and legibility
also ensure that the source code is easy to maintain. The developers who are assigned to
the maintenance of the source code will be able to understand the source code written by
some other developers and will be able to make appropriate changes in the source code. The
source code should also contain ample comments, so that the source code will be easier to
understand.

12.6	 �Some of the popular review methods used in software construction include desk checks,
peer review, code inspections, and walkthroughs. Desk checks are the most informal and
preliminary way of checking code. A developer informally asks any of his colleagues to
check his code for defects. Peer reviews can be done formally or informally by one or more
colleagues to check source code. Walkthroughs are done formally by calling a meeting
and reviewing the source code. If defects are found, then they are marked for removal.

404  ◾  Appendix F: Review Question Answers

Code inspections are the final and most formal method of code review. Its main purpose
is to certify quality of the source code. The certification is when a decision can be made on
whether or not a piece of source code can be integrated with the main build or whether the
code can be frozen for further development and to be handed over to the testing team for
testing the application.

Chapter 13

13.1	 �Software testing is an activity that should be kept apart from software development to keep
it unbiased and uninfluenced. When testing is done in close proximity to software devel-
opment, then the development team tries to influence the testing team and thus testing
activity becomes biased and thus its effectiveness diminishes. This results in the develop-
ment of a poor-quality software product.

A good solution for this kind of problem is to make the testing function independent
from development. In fact, the testing should be done by some independent agency. This
kind of arrangement is known as independent verification and validation.

13.2	 �It is said that software testing costs money but not testing costs even more! How absolutely
true is this observation! Software development lasts for a few months to a few years, but
software maintenance lasts for the entire life of the software product in use. This life could
be from 5 to 6 years to even 20 years or more. So even if software maintenance costs are
10% of the cost of software development per annum, total cost of maintenance often sur-
passes the cost of software development. This exorbitant cost of software maintenance is a
nagging problem for software developers. Ultimately, it is the developers who have to bear
the maintenance costs. Customers also become wary of buying software products from
those software developers who have poor quality software products.

Keeping cost of software maintenance low is possible only when software defects can
be minimized in the software product during development. So, effective and rigorous soft-
ware testing becomes the only option to get out of this situation.

13.3	 �Software testing can broadly be classified as dynamic and static types. The static type can
further be divided into requirement review, design review, code review, etc. Dynamic test-
ing can be further divided into four levels: unit, integration, system, and user-acceptance
testing levels. System and user-acceptance testing can be further divided into functional
and nonfunctional testing. Nonfunctional testing can again be divided into performance,
security, usability, portability, etc., kinds of testing.

13.4	 �The first thing that should be done for any testing phase or testing project is to study the
testing requirements for the project. It will involve analyzing the requirement specifica-
tions, design documents, testing requirement documents, etc. Then, based on the require-
ments, a test plan needs to be made. The test plan may include analyzing specification
documents, designing test cases, writing test cases, writing test scripts, executing test cases,
preparing test reports, analyzing test reports, logging defects, evaluating defect fixes, and
closing defects.

13.5	 �Automation brings many benefits. Cost of operation gets reduced, operation execution
gets faster, repeated, and boring work is not done by humans and is taken care of by auto-
mation tools; costly human resources can be taken away from mundane tasks and can be
deployed on critical tasks, human errors can be avoided, reporting can be made better and
automated, etc. Software testing tasks have same benefits mentioned earlier when they get
automated.

Appendix F: Review Question Answers  ◾  405

13.6	 �The defect life cycle deals with all aspects related to defects. When the test team executes
test cases, some of the test cases fail. These failures are due to any kind of defect. A defect
report is logged in a defect tracking system by the testing team. The defect tracking admin-
istrator verifies the defect and then assigns it to a developer. The developer fixes the defect
and changes the status of the defect to fixed. The fixed defect is then verified by the test
engineer. If he finds that the defect is fixed, then he closes the defect. If he finds that the
defect is not fixed properly, then he reopens the defect.

Chapter 14

14.1	 �During software development, all efforts are put toward ensuring that most of software
defects are removed before the software product goes to production. But still, many defects
escape into production and are found by the end users.

Software products are used to perform business and other functions for which the
software product was made; when these intended functions change, the software product
no longer supports the new or changed functions. Sometimes, the software product or the
hardware or software components with which the software product is used become obso-
lete. Again, in these circumstances, the software product becomes unusable.

Due to all these reasons, the software product needs to be changed to make it usable
again. That is the reason software maintenance is needed.

14.2	 �Reverse engineering, forward engineering, and reengineering are the three techniques for
software maintenance. In reverse engineering, the existing code base of a software product
is studied and all aspects of the programming and design are analyzed and grasped. Based
on this knowledge, new extensions in the software product are developed. In forward
engineering, instead of studying and analyzing existing source code, the new parts of the
software product are developed solely by the knowledge of documentation or by the devel-
opment team that built the software product. This technique is used when the develop-
ment team who developed the software also does the maintenance. Reengineering is used
to develop similar components from existing components. That is why this technique is
also known as reuse engineering.

14.3	 �The maintenance life cycle starts with getting the list of defects to be fixed and required
changes to be done in the software product. This can be termed the requirement list. Out
of this list, it is not possible to make all requirements in one maintenance cycle. So, a selec-
tion will be made from this list for which maintenance will be done. A detailed project
planning will be done based on this selected list of requirements. Once the software is
developed and thoroughly tested, it needs to be patched to the production instance. After
applying the patch, the production instance will be tested by the end users. Once it is
found satisfactory, then the software maintenance project is closed.

14.4	 �When a software product is developed, it is implemented in a production environment.
The end users start using it; as long as there are no defects or no changes are required in the
existing software product, everything is fine. But, when maintenance is needed either to fix
defects, or change a functionality, or both, then the software design and source code will
need to be changed. Due to complex or badly designed source code, changing code may be
difficult or may be too laborious a task.

To ensure that this kind of difficulty does not arise during maintenance, some pre-
cautions can be taken during the software development stage. This kind of precaution is
known as putting maintainability in the software design and source code.

406  ◾  Appendix F: Review Question Answers

14.5	 �Some common maintenance process models include the quick-fix model, Boehm’s model,
Osborne’s model, iterative enhancement model, and reuse-oriented model. As the name
suggests, the quick-fix model works on the principle of immediately fixing defects when-
ever they are traced. In this model, the maintenance team does not wait to gather a long
list of defects and then planning to fix them in one batch. Boehm’s model works on the
ROI principle in that the only changes considered for implementation are those justified
by their ROI. Other changes are not implemented and may be discarded. Osborne’s model
stresses that the maintenance plan should be followed strictly as demonstrated in the
model. The four steps in the model include first gathering the maintenance requirements,
then a maintenance project plan alongside a quality assurance plan should be drawn up,
then, during project execution, measurement of work products should be carried out, and,
finally, corrections in the work products should be done to correct deviations. The itera-
tive enhancement model works in the same way as any iterative model works for software
development. Maintenance work should be done by taking a bunch of requirements, doing
the entire development process, and then taking on some more requirements. This process
continues until all requirements are implemented. The reuse maintenance model works on
the principle that, before any maintenance project plan is drawn up, care should be taken
to make reusable components instead of just developing components, so that components
can be reused through out the project and thus project cost and duration can be reduced.

14.6	 �Releasing software involves making decisions about what kind of release to be made, what
markets to release to, user training, product implementation, and which version of the
software to be released.

Part III
Chapter 15

15.1	 �Suppose a software development team makes a good plan and starts building the software
product thinking that they will build the product first and will then test and fix defects
to make it a good-quality product. When they finally developed the software and gave it
to the testing team to test, the testing team came up with a large number of defects. The
development team started fixing those defects, but the number of defects were so large
that the defect fixing continued for a long time. Finally, the project manager discussed this
with the project stakeholders. The stakeholders decided to scrap the project and start the
project all over again by giving the project to a software service provider instead of doing
it in-house. Later, the service provider’s team was able to finish the project in time and
in-budget with immaculate software product quality. They were able to do it because they
had vast experience and they had a good process plan with the built-in quality assurance
that helped them to develop software product with required quality.

This is true for any project case. Without having a good quality assurance plan built in
to the software project, it is difficult to produce a good-quality software product.

15.2	 �Product quality is assessed after it is produced by taking measurements of its attributes like
physical dimensions, internal chemical composition, and aesthetics (smell, appearance,
etc.), and if all these attributes are found to be satisfactory, then the product quality is
considered good. Otherwise, the product quality is considered bad and points to the fact
that the product contains defects.

Appendix F: Review Question Answers  ◾  407

Process quality, on the other hand, ensures of project activities comply with the process
model that was adopted for the project. This compliance ensures that whatever the process
model has envisaged to be can be achieved by doing things the way it is defined there;
those objectives can be achieved. Generally, the objective is delivery of the project within
the agreed-upon budget and time. It also ensures that the quality of the software product
will be good, as these process models also include quality assurance.

15.3	 �There are many standards for software development projects developed by different organi-
zations and individuals. The foremost of them include Capability Maturity Model (CMM)
and Capability Maturity Model Integration (CMMI) by the Software Engineering Institute
of Carnegie Mellon University; ISO 9003 by International Standards Organization, IEEE-
SWEBOK by the Institute of Electrical & Electronics Engineers; Rational Unified Process
by Rational Corporation (IBM). Oracle Corporation and Microsoft Corporation have
their own versions of software development models; Eclipse has their own version named
Unified Process Model.

15.4	 �When a software project is undertaken without sticking to a standard process model or
best practices, there are bound to be some surprises to the stakeholders and the project
team down the line. If the project team consists of experienced people, then they will be
able to do their assignments in their own ways. But, in the absence of a proper process
model, everybody will do their work in their own ways and in their own schedules. Even if
they are given task deadlines, there will be issues like incompatibility among components
being developed and some tasks getting delayed. The most difficult aspect will be invisibility
across the project. Nobody will know what is going on with the different project tasks. In
such a scenario, tracking and controlling will simply be impossible. Definitely, such proj-
ects are bound to falter at delivering within budget and schedule.

One more aspect about such projects is that they cannot be planned well. There will be
no upfront information regarding project cost and time estimates. This situation is simply
not acceptable in a competitive business environment.

15.5	 �There are essentially three layers of processes that go into a project. The bottom-most layer
is the development life-cycle processes, like software design and software construction. On
top of this layer is the project processes, like project initiation, project planning, and proj-
ect monitoring. The topmost layer is the process improvement and program management
layer.

15.6	 �Software projects must be planned and controlled to achieve the desired target of creating
a quality software product within limited budget and time. If any of these targets could
not be achieved, then the software project could be in trouble. Sometimes, due to either
internal or external problems, the software project may be abandoned. Sometimes, it may
be due to some external factors over which the stakeholders do not have control (bad economy,
changing market trends, natural disaster, etc.) that the project is abandoned. Sometimes,
due to organization’s own problems, the project may be abandoned.

But, in many cases, the project is forced to be abandoned due to internal problems
on the project. Bad project management, poorly-skilled project team, unclear require-
ments, or too-frequently changing requirements can make a project so problematic
that the project needs to be abandoned. These kinds of situations can be managed.
Bringing well-trained and experienced people on project, finding and establishing best
practices for projects, controlling changes in requirements, reducing risk by using an
agile model for software development, etc., are some of the techniques that can prevent
such disasters.

408  ◾  Appendix F: Review Question Answers

Chapter 16

16.1	 �CMMI framework is not a specification; rather, it is more like a guideline. It does not specify
exactly how SDLC processes should be executed; it describes what things are important in
each SDLC phase but does not specify in what sequence these things should be done.

So, the CMMI standard is applicable to any SDLC model be they waterfall, extreme
programming, or any other model of software development. This is why we also have
a concept like process tailoring, wherein any defined process model with well-defined
process areas is changed to suit specific project requirements. CMMI supports process
tailoring.

Moreover, the main thrust of the CMMI model is on process improvement rather than
on specifying SDLC process steps. That is why the organization level process improvement
areas are stressed more than the low level SDLC process areas.

16.2	 �CMMI has five process areas for SDLC processes. These areas are requirement devel-
opment, requirement management, technical solution, verification, and validation.
Requirement development deals with gathering, refining, formatting, and relating
requirements to each other. Requirement management deals with allocating, prioritizing,
and selecting requirements. It also deals with handling change requests. The technical
solution area deals with software design and software construction. The verification area
concerns doing static tests for software design and software construction. The validation
area concerns doing dynamic tests at various levels (unit, integration, system, and user
acceptance) and doing different kinds of tests (performance, functional, security, usabil-
ity, reliability, portability, etc.).

16.3	 �ISO standards focus entirely on improving quality of process areas to improve quality of
work products. In fact, they do not have any process area that deals with improving quality
of work products through some work to be done directly on the work products. In CMMI,
there are two process areas known as verification and validation which deal with improv-
ing product quality through testing work products and final products, finding defects, and
then removing those defects. ISO does not have any similar process area.

16.4	 �IEEE process standards have concepts similar to CMMI when it comes to SDLC process
areas; they are more guidelines than specifications and they do not enforce how the SDLC
process areas should be carried out. They just define what activities are performed in each
major areas.

IEEE standards are well-suited to many SDLC process models like agile, water-
fall, and others. The SDLC process area can be easily tailored for the needs of specific
projects.

16.5	 �Systematic Testing and Evaluation Process (STEP) is a content reference model rather than
a process reference model. So, STEP can be implemented in any way suitable to the orga-
nization and not in a strict phase implementation. The STEP model is the accompanying
testing process model, which goes with any agile model for software development. All the
process improvement areas in STEP can be categorized as either quantitative or qualitative
areas. The qualitative areas include test process utilization and customer satisfaction. The
quantitative areas include test status, test requirement, defect trends, defect density, defect
removal efficiency, and defect detection percentage.

16.6	 �Deming has proposed a process improvement technique, which is applicable to any indus-
try. He proposed that the technique should have four steps, viz., Plan, Do, Check, and
Apply (PDCA). First of all, the organization should plan for process improvement.

Appendix F: Review Question Answers  ◾  409

Then, this plan should be implemented (Do) on a pilot basis. Once implementation is
complete, results should be checked (analyzed). If the pilot project results are encouraging,
then the process improvement plan should be applied organization wide.

16.7	 �Test maturity model (TMM) was conceived to complement the CMM as CMM lacked
process improvement areas for software testing. Similar to the structure of CMM, the
TMM model has five levels of maturity processes, and each level has many process areas.
Level 1 is identified by ad hoc measures for testing process. By level 2, there should be test
policies and goals defined. By level 3, the testing processes should be clearly linked with
the development processes. By level 4, the organization should be using measurements and
metrics to control test processes. By level 5, the organization should be able to take initia-
tives to improve test processes.

Chapter 17

17.1	 �If the project size itself is small, then it does not make sense to break it further. That means
an iterative model is not needed for small projects. All the requirements can be taken for
development in one go.

However, if some of the requirements are not clear or the development team does not
know how to convert them, initially, then an iterative model can be used.

17.2	 �Selecting the right process model for a software project is always challenging. However,
it is of utmost importance that the right process model should be selected. Project factors
that determine process selection include project size, complexity, area of maturity, team
location, documentation level required, and organization maturity.

One aspect of process model selection is the ability of the model itself to support dif-
ferent kinds of project and development processes. While iterative models support risk
reduction, incremental development, less management overhead, and better communica-
tion, they also have drawbacks like slower development and location constraint. In the
case of the waterfall model, the benefits include high speed of development and no loca-
tion constraint. One more benefit of the waterfall model is the utilization of gains in
software engineering like process improvement and knowledge management. But, at the
same time, the drawbacks of the waterfall model include high management overhead,
excessive documentation, and high risk.

Based on the benefits and drawbacks for a project, the project team can decide on
process model.

17.3	 �Plan-driven software development models have the biggest benefit in that everything is
well-planned on the project. Then, these models allow for process improvement, which,
in turn, result in higher productivity and quality. When software is to be developed at a
higher speed, these models support concurrent engineering, and, thus, many teams can be
formed and assigned development tasks, which can be done in parallel to each other. These
models also allow teams to work from any location. Thus, benefits of offshoring such as
lower costs and skilled manpower can be realized.

17.4	 �Agile, or iterative, models are a new phenomenon. Once organizations started to realize the
limitations of the traditional waterfall model, they started looking for alternative options.
The typical problems they faced on their projects were unclear requirements, requirement
changes, large upfront risk, etc. Agile models eliminate all these problems. By doing incre-
mental development, requirement changes can be incorporated in the next iteration in
the development. Similarly, unclear requirements do not need to be touched until they

410  ◾  Appendix F: Review Question Answers

become clear. Since the development team keeps demonstrating the product in a working
condition after each iteration, the stakeholders feel more confident about the project and
can play with the developed parts of the software product to see if this is what they were
looking for. Meanwhile, the development team is busy developing software for next set of
requirements.

17.5	 �Waterfall-model-based projects are notorious for budget and schedule overruns. The prob-
lems on these projects are large risk exposure, upfront investment, invisibility into the
project from outside (what is going on the project, how much work has been completed, if
the software design and construction are going smoothly, etc.), etc. In fact, waterfall model
projects can be considered to be a monolith operation from outside. The software product
for which the project team was instituted can be visible only after the project runs for its
entire duration (sometimes as much as 3–4 years). Only after this long span of time can
the project’s stakeholders see the software in action. This is, indeed, a big risk, making all
that investment commitment in time and money some four years back and then finding
that the delivered product does not function as expected.

These are the biggest drawbacks of waterfall-model-based projects.
17.6	 �Agile models are maturing fast, and project teams are using them more and more. The

current drawback of agile models is their comparative immaturity. They have around only
for a short while. So, if somebody wants to adopt best practices and is looking for best
practices related to agile models, he will be disappointed since there are no empirical data
available which can demonstrate what is a best practice for any process related to the agile
models. However, data may become available in future.

Currently, agile models dictate that the project team should be located at the same site
as that of the customer; the project team cannot be located at some other site; the com-
munication among team members should be only verbal and face to face. Due to these
requirements, the project team cannot be enlarged if high speed development is required.
Similarly, concurrent engineering cannot be employed. Benefits of offshore development
can also not be taken.

Part IV
Chapter 18

18.1	 �Software projects are different from other kinds of projects in that, for software projects, the
specifications for work products are not rigid. This necessitates constant interaction among
customers, project teams, and suppliers. Without proper and constant communication, peo-
ple will never understand what is required of them. Only after good communication can the
communication gaps be eliminated, and people will be on the same page.

18.2	 �Software project teams consist of highly trained and skilled software professionals, but
it does not mean that they are responsible and disciplined. In fact, office politics, moti-
vation issues, long working hours, etc., are the kinds of issues that keep coming, and
the project manager needs to handle these issues tactfully. Software professionals have
large salaries and they have high demand in the market. Every project faces the risk that
a team members will leave the project in the middle and join some other organization
because of higher pay. Office politics and motivation issues can be attributed to manual
and unchallenging work.

Appendix F: Review Question Answers  ◾  411

18.3	 �Software project teams need to be constantly in touch with the customers and end users
because the requirements given by the customer are not specific. From these software
requirements, business analysts make requirement specifications. These specifications may
or may not be the exact requirements end users are looking for, as business analysts may
not be able to capture exactly how the end users may be thinking about their requirements.
Moreover, despite so much advancement in the software development industry, the soft-
ware specifications (requirements, design, and construction) are not exact. So, every new
feature added to the software must be shown to the customer to know if this is what they
were looking for.

There is one more challenge to software projects related to customers. Customers do
not know what actually goes on in the project and may have or develop some incorrect
expectations. Getting these expectations right is a big challenge.

18.4	 �Project teams from software services suppliers may be located at offshore locations. They
may have cultural, language, productivity, and other differences from the in-house project
team. They may also have higher organizational maturity level. The bottom line is that
they need to deliver the same of quality component that is expected by the customer. Their
operations may be cheaper, but on-time delivery cannot be compromised.

Again, due to lack of rigid specifications, communication between the in-house project
team and the supplier’s team is of paramount importance. The supplier’s team must under-
stand what is required to be delivered.

Chapter 19

19.1	 �Software projects are executed in environments that demand tight deadlines, high levels of
skill, and understanding specifications, and, working accordingly, communicating clarifica-
tions and guidance, etc., are some of the typical tasks. Project assignments are also demand-
ing, and, often, team members need to work overtime to finish their assignment on time. At
the same time, the project manager needs to do a lot of work to ensure many things.

Often, training may be needed for some team members. Arranging training on time is
important. Similarly, there are junior team members who need mentoring. Some assign-
ments may be too complex or labor intensive, and project team members may need to get
help in completing those assignments.

19.2	 �The obvious means of motivation is the monetary benefit that each team members gets
but this is not the only factor that can motivate. Apart from salary and other monetary
benefits, the project team members should be given incentives like free training, skill
development opportunities, challenging assignments, promotion opportunities, and good
workplace ambience, can motivate team members. Good relationship building, cheerful
disposition of managers, recognizing team members whenever they achieve something
important, etc., are some other measures that can motivate the project team.

19.3	 �When people work on projects, they learn a lot of things. When they leave the project
or the organization, all this learning is lost. The new person who replaces him will have
to spend some time on the job to learn all these little things, which add up to a substan-
tial learning curve for anybody. For example, a customer who likes to get an immediate
response in a certain manner is known only to people who have worked with that customer
for some time. The new person will not know this little secret to pleasing the customer.
Similarly, if a particular tool on the project needs to be set up before it can be appropri-
ately used, the information is known only to people who have worked on the project for

412  ◾  Appendix F: Review Question Answers

sometime. Similarly, making a good design for a software product is known to the person
who worked on that project.

How can these little secrets be saved even when a person leaves? A knowledge manage-
ment system can capture some of these little facts. When a person leaves, these important
pieces of information are not lost as they now reside in the knowledge management system.

19.4	 �Communication management deals with exchanging information between project teams,
suppliers, and customers using communication media. When communication is done
among many teams, it is important that the communication should be in a structured way.
The best way is to use standard templates, this will ensure that there are no communica-
tion gaps or miscommunication. The more layers of management, the more structured and
formal the communication should be.

19.5	 �Software project organization structure will depend a lot on the kind of project, project
size, development speed, development model, and way of execution (outsourced/contracted
out/offshored, etc.). If the development model is incremental integration with iterative
model and speed of development is a concern, then a timeboxing structure will be needed.
Here, more than one project team may be involved. If the project is offshored, then there
will be project teams located at far-flung sites with a need for comprehensive infrastructure
for communication. On projects where cross-functional expertise is required, a matrix
organization is more appropriate. Larger project size invariably involves bringing many
layers of management.

19.6	 �On large projects where communication is more formal and impersonal, it is difficult to
know which team member has done his job well and which did not. To evaluate the per-
formance of team members effectively, it is important to have good performance measure-
ment metrics available, and ensure that they are used effectively.

Some popular techniques for performance evaluations include self-appraisal, peer
reviews, and managerial appraisals. In the appraisal, the most important things to capture
are whether an individual has performed well on the job or not, has worked well in the
team or not, has supervised his junior members well or not, has mentored anyone or not,
and what his worth was on the project. Based on his worth, he should be given appropriate
pay raises, bonuses, promotions, etc.

Chapter 20

20.1	 �Sometimes, customers have the right expectations from the software project, but, most
often, there is a mismatch between customer expectations and reality. In these cases, the
project manager must set the right tone from the very beginning of the project. If his
expectation about project schedule is wrong then the project manager must present the
project schedule to the customer with good explanations of how much time is realistic for
each kind of activity on the project and why the project should take so much time. If the
customer has incorrect expectations about the project budget, then the project manager
must explain about the cost involved in each activity convincingly. If customer has incor-
rect expectations about quality, then the project manager must convince the customer
about why a certain level of quality is achievable with the given technology, time, and
process constraints.

20.2	 �Projects are never set in a fixed mold. There is always scope for degrees of change from
the agreed-upon contract. Besides, the customers always come up with requests, and the
project manager may find it difficult to fulfill those requests.

Appendix F: Review Question Answers  ◾  413

In such situations, the project manager must evaluate the impact these changes and
requests may have on the project. Based on the assessment, he can return to the customer
with feasibility of acceptance. At this juncture, he can negotiate with the customer, justly
the project goals, customer requests, and his own interests.

Sometimes, when there are many problems faced on the project, the project manager
may not be able to finish the project as originally planned. In such situations, the project
manager must make a realistic assessment and negotiate with the customer to cut down
some features so that other product features can be finished on the project.

20.3	 �Project deviations are the most obvious cause of worry to project stakeholders and the
project team. Despite good intentions and honest efforts, deviations in budget, schedule,
or quality may arise. In such situations, the project manager must have a recorded evidence
to show for himself as well as to explain the causes, which derailed the project schedule or
budget to the customer.

To tackle project deviations, the project manager must keep some buffers in the project
plan so that, when any deviations happen, then he can use time from that buffer. This way,
the project schedule or project budget will not deviate in the overall project plan.

20.4	 �To be completely objective is a desirable state. Unfortunately, no project or people on the
project can be 100% objective. So assessment of work performed, quality of work, per-
formance of people, etc., are never assessed at face value. There is always some amount of
subjectivity, and, thus, objective assessment is never possible.

So, when it comes to giving a report to, or negotiating with the customer, the customer
may have their own reservations, judgments, etc. If the project manager and the project
team have developed a good rapport with the customer, then these adverse assessments can
be mitigated to some extent.

Chapter 21

21.1	 �The software industry has come a long way since its beginning. Nowadays, there are good
software service providers (suppliers) who not only help on software projects but possess some
specialized expertise as well as offering their services for fees which are lower than what it
would cost to do it in-house. So, most modern-day large software projects involve suppliers.

Managing these suppliers requires in fields like a wide range of expertise law, contract-
ing, managing, evaluating, etc.

21.2	 �The supplier agreement should have legal clauses, penalty clauses, service level agreements,
severance of service conditions, confidentiality agreements, etc. On many software projects,
the supplier may get access to confidential and critical information, and, thus, it should be
ensured that this information is not abused or leaked. Some software projects themselves
are of high strategic importance, and, thus, disclosing any information about the project
may harm interests of the customer. There should be elaborate service level agreements, so
that the service offered by the supplier can be managed properly. There should be penalty
clauses, so that if the supplier fails in any service level agreements and the customer suffers
any losses, the supplier could be penalized.

21.3	 �When a customer seeks services from service providers, he can try to find out if any suitable
suppliers are available who can do the job. For this purpose, customers can use Request
For Proposal (RFP), Request For Quotation (RFQ), or Request For Information (RFI)
techniques to get information about suppliers, their competencies, and how they can do the
required job. RFIs are the most preliminary forms that are used to learn about suppliers.

414  ◾  Appendix F: Review Question Answers

RFQs are forms that are used to get quotation from suppliers for any suitable job. RFPs are
forms that are used to get complete proposal with project planning, and all other details
about the way things will be carried out during the project.

21.4	 �When a customer evaluates bids from many suppliers, he will try to see competencies
for the given job. There past record, customer references, project team profile, cost (bid
amount), long-term stability of the supplier, etc., for each of the bids. He will then compare
the bids based on his evaluation of each bid. Based on this comparison, he can then select
the best bid.

21.5	 �When a project is to be offshored, there will be many considerations before doing so. The
considerations include cultural differences, productivity, language, time zones, and infra-
structure. Before the project is offshored, it must be ensured that the project should not
suffer due to these differences and that appropriate measures are taken. Before the offshore
team takes over, they should be given training and existing knowledge about the project
should be transferred to them.

Part V
Chapter 22

22.1	 �The project team uses tools to do their work and, when they are finished with their work,
they need to report it. If the tool is a standalone tool, then the person will need to get data
from the tool, paste it into his report, and send it to the project manager and other team
members as required. This way of doing things is not desirable. First of all, authenticity of
the report becomes questionable. Then, the productivity of the person goes down. Then, if
the person does not report at that time, it is difficult to know status of his work. Report of
his work in this case is almost offline.

The benefits of working online are obvious! It provides instant access to information
in real time, improves productivity, improves transparency, allows automatic reporting of
results, provides access to information to many people, etc. So, if the tools used by project
teams are integrated to the main project tools (configuration management, test management,
etc.), then information and status about all project tasks will be visible to project managers
and other people who need to know the information. For these reasons, if a new tool is being
used on a project, then it must be able to be integrated with existing project tools.

22.2	 �Tool support is very important as, whenever there is some problem with the tool, the tool
support staff can provide assistance. If a project tool becomes obsolete then, first of all, you
need to get in touch with the tool vendor to get support for the tool in future. If this is not
possible, then discuss alternatives with the vendor. If the vendor has closed down, then some
service providers can still provide support for the tool. If this avenue is also not possible, then
tool documentation can be useful. If there are a lot of problems with the tool and there simply
are no avenues to get help, then it will be better to get some alternative tool.

Before buying any tool for the project, the project manager must ensure that the tool
should be supported by the vendor. Even when the tool’s life ends, the vendor should con-
tinue to provide support for the tool.

22.3	 �There are many costs involved in purchasing, maintenance, and training for a tool. The purchase
cost itself has many components. If the tool is an enterprise tool, then it may have a server cost
component and a number of seat cost components. Total purchase cost will be the sum of these

Appendix F: Review Question Answers  ◾  415

two costs. Then, there will be support cost for the tool. Generally, support cost is a percentage of
the server cost and is incurred annually. Apart from that, there may be some incidental support
costs. Finally, a cost is involved in providing training for the tool. This cost may include cost for
training and the time spent by the project team members for attending the training.

22.4	 �Most of the software projects start on a smaller scale. When the early versions of the
software being developed grow to some stature and get some good market response, the
stakeholders get more confident. They expand the project team to develop more features at
a greater speed. So, scale of the project team goes up.

If the project team is using some tools that cannot scale well to meet the needs of proj-
ect team, then the project team may be in trouble. The expanded project team may not be
able to use the tool appropriately. So, the tools must have the ability to scale, so that they
can support bigger teams.

Chapter 23

23.1	 �When software developers write their code, they need to do many things like compiling their
code, running a debugger to check and fix their code, using a text editor to write their code,
using a version control tool to manage different versions of their source code, and accessing a
database. If, for each of these activities, they are using separate tools that are standalone, then
their productivity will go down substantially. For each activity, they may need to start the
program, do the appropriate work in the program, close it, then start the other program and
do their work there, etc. If they are provided with an integrated tool that can take care of most
of their needs without resorting to many separate tools, then it will be a lot easier for them to
do their work. Such tools are known as integrated development environments (IDEs).

23.2	 �On software projects, a lot of defects are detected during testing cycles. These defects are then
fixed by the developers. Once a fixed defect is verified to be fixed by a testing engineer, then the
defect is closed. Otherwise, the defect is reopened, so there is a complete life cycle of defects.

A defect tracking tool helps in managing the defect life cycle. From defect logging to
defect fixing, defect fix verification, defect closing, and defect reopening, the tool helps in
managing the entire defect life cycle. The online tools are capable of supporting distributed
teams who may be working from many sites.

23.3	 �Computer-Aided Software Engineering (CASE) tools help in performing many activities
during development life cycle. Some CASE tools help in requirement development. Some
other tools help in design development. Some designs are made in a CASE tool; many
CASE tools are capable of generating skeleton source code, which helps in software con-
struction as this generated code helps in enforcing programming standards. Some CASE
tools also help in converting one design into another. For example, if a use case diagram is
made in a CASE tool then, without any effort, the use case diagram can be converted into
an entity relationship diagram.

CASE tools are very productive as many activities during development life cycles can
be automated using CASE tools.

23.4	 �Requirement management deals with providing a hierarchy of requirements, clubbing
requirements, establishing relationship among requirements, prioritizing requirements,
requirement selection, etc. Various requirement management tools help in doing these activi-
ties even though not all activities are supported in one tool. So, sometimes, a combination of
tools is used. Still, the requirement management tools are not mature enough, and thus many
project teams do not have many options and thus end up doing many of these tasks manually.

Information Technology / IT Management

This book presents all aspects of modern project management practices, from project
initiation to requirements gatherings to estimation techniques and software testing all
the way to customer management and supplier management … includes a wealth of
quality templates that practitioners can use to build their own tools. … equally useful to
students and professionals alike. … the perfect blend of theory and practice providing
ample advice to the reader at every stage on such topics as how to select a particular
software methodology over others or how to estimate project costs/efforts etc. … As
a seasoned software product development expert with over 20 years of experience, I
would say this book will find a slot on my desk.

—Maqbool Patel, PhD, SVP/CTO/Partner, Acuitec

To build reliable, industry-applicable software products, large-scale software project groups
must continuously improve software engineering processes to increase product quality,
facilitate cost reductions, and adhere to tight schedules. Emphasizing the critical components
of successful large-scale software projects, Software Project Management: A Process-
Driven Approach discusses human resources, software engineering, and technology to a
level that exceeds most university-level courses on the subject.

•	 Includes testing and quality assurance metrics

•	Supplies in-depth coverage of process models and process improvement techniques

•	Covers related standards from the Software Engineering Institute, IEEE, and ISO

•	Features challenging practice questions with solutions

The book is organized into five parts. Part I defines project management with information on
project and process specifics and choices, the skills and experience needed, the tools available,
and the human resources organization and management that brings it all together. Part II
explores software life-cycle management. Part III tackles software engineering processes and
the range of processing models devised by several domestic and international organizations.

Part IV reveals the human side of project management with chapters on managing the team,
the suppliers, and the customers themselves. Part V wraps up coverage with a look at the
technology, techniques, templates, and checklists that can help your project teams meet
and exceed their goals. A running case study provides authoritative insight and insider
information on the tools and techniques required to ensure product quality, reduce costs,
and meet project deadlines.

ISBN: 978-1-4398-4655-1

9 781439 846551

90000

S
oftw

are P
roject M

anagem
ent

A
hm

ed

www.auerbach-publications.com

www.crcpress.com

K12087

K12087cvr mech.indd 1 11/8/11 12:02 PM

	Title Page

	Contents

	Preface

	Author

	Chapter 1: Introduction to Software Project Management

	Chapter 2: Project Initiation Management

	Chapter 3: Software Project Effort and Cost Estimation

	Chapter 4: Risk Management

	Chapter 5: Configuration Management

	Chapter 6: Project Planning

	Chapter 7: Project Monitoring and Control

	Chapter 8: Project Closure

	Chapter 9: Introduction to Software Life-Cycle Management

	Chapter 10: Software Requirement Management

	Chapter 11: Software Design Management

	Chapter 12: Software Construction

	Chapter 13: Software Testing

	Chapter 14: Product Release and Maintenance

	Chapter 15: Process Standards Introduction

	Chapter 16: Software Process Standards and Process Improvement

	Chapter 17: Process Selection

	Chapter 18: Introduction to People Management

	Chapter 19: Team Management

	Chapter 20: Customer Management

	Chapter 21: Supplier Management

	Chapter 22: Software Project Management Tools Introduction

	Chapter 23: Project Management and Software Life-Cycle Tools

	Chapter 24: Software Project Templates

	Chapter 25: Future Tools and Techniques

	Appendix A: CMMI Process Standards

	Appendix B: ISO Standards

	Appendix C: IEEE Standards

	Appendix D: Agile Processes for Software Development

	Appendix E: Impact of Offshoring on Standards

	Appendix F: Review Question Answers

	Back Cover

