o)l Softwar'e

Project
Management

A Process-Driven Approach

Software
Project
Management

A Process-Driven Approach

BOOKS ON SOFTWARE AND SYSTEMS
DEVELOPMENT AND ENGINEERING
FROM AUERBACH PUBLICATIONS AND CRC PRESS

Design and Safety Assessment
of Critical Systems

Marco Bozzano and

Adolfo Villafiorita
978-1-4398-0331-8

Implementing and Developing
Cloud Computing Applications
David E. Y. Sarna
978-1-4398-3082-6

Secure Java: For Web Application
Development

Abhay Bhargav and B. V. Kumar
978-1-4398-2351-4

Scrum Project Management
Kim H. Pries and Jon M. Quigley
978-1-4398-2515-0

Engineering Mega-Systems:
The Challenge of Systems
Engineering in the
Information Age

Renee Stevens
978-1-4200-7666-0

Certified Function Point
Specialist Examination Guide
David Garmus, Janet Russac, and
Royce Edwards
978-1-4200-7637-0

Enterprise Systems Engineering:
Advances in the Theory and
Practice

George Rebovich, Jr.

and Brian E. White
978-1-4200-7329-4

Process-Centric Architecture for
Enterprise Software Systems
Parameswaran Seshan
978-1-4398-1628-8

Secure and Resilient Software
Development

Mark S. Merkow and
Lakshmikanth Raghavan
978-1-4398-2696-6

Real Life Applications of
Soft Computing

Anupam Shukla, Ritu Tiwari,
and Rahul Kala
978-1-4398-2287-6

Product Release Planning:
Methods, Tools and Applications
Guenther Ruhe
978-0-84932620-2

Process Improvement and
CMMI® for Systems and Software
Ron S. Kenett and Emanuel Baker
978-14200-6050-8

Applied Software Product

Line Engineering

Kyo C. Kang, Vijayan Sugumaran,
and Sooyong Park
978-1-42006841-2

CAD and GIS Integration
Hassan A. Karimi and Burcu AKinci
978-1-4200-6805-4

Applied Software Product-Line
Engineering

Kyo C. Kang, Vijayan Sugumaran,
and Sooyong Park, eds.
978-1-4200-6841-2

Enterprise-Scale Agile Software
Development

James Schiel
978-1-4398-0321-9

Handbook of Enterprise Integration
Mostafa Hashem Sherif, ed.
978-1-4200-7821-3

Architecture and Principles of
Systems Engineering

Charles Dickerson, Dimitri N. Mavris,
Paul R. Garvey, and Brian E. White
978-1-4200-7253-2

Theory of Science and Technology
Transfer and Applications

Sifeng Liu, Zhigeng Fang,
Hongxing Shi, and Benhai Guo
978-1-4200-8741-3

The SIM Guide to Enterprise
Architecture

Leon Kappelman
978-1-4398-1113-9

Getting Design Right:
A Systems Approach
Peter L. Jackson
978-1-4398-1115-3

Software Testing as a Service
Ashfaque Ahmed
978-1-4200-9956-0

Grey Game Theory and Its
Applications in Economic
Decision-Making

Zhigeng Fang, Sifeng Liu,
Hongxing Shi, and Yi LinYi Lin
978-1-4200-8739-0

Quality Assurance of
Agent-Based and
Self-Managed Systems
Reiner Dumke, Steffen Mencke,
and Cornelius Wille
978-1-4398-1266-2

Modeling Software Behavior:
A Craftsman’s Approach
Paul C. Jorgensen
978-1-4200-8075-9

Design and Implementation of
Data Mining Tools

Bhavani Thuraisingham, Latifur Khan,
Mamoun Awad, and Lei Wang
978-1-4200-4590-1

Model-Oriented Systems
Engineering Science:

A Unifying Framework for
Traditional and Complex Systems
Duane W. Hybertson
978-1-4200-7251-8

Requirements Engineering for
Software and Systems

Phillip A. Laplante
978-1-4200-6467-4

Software
Project
Management

A Process-Driven Approach

Ashfaque Ahmed

CRC Press
Taylor & Francis Group
Boca Raton London New York
CRC P i i int of th
S

rrrrrrrrrrrrrrrrrrrrrr
AAAAAAAAAAAAAA

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20111103

International Standard Book Number-13: 978-1-4398-4656-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

PART I PROJECT MANAGEMENT FUNDAMENTALS

1

Introduction to Software Project Management..........couveruerenesnesenesuesnsessesnssessesnssennes 3
L1 INErodUCHion ..ot 4
1.2 What Is Project Management?..........coeivirueuirinieiiiiniiininieiniseesseeeeee e 4
1.3 What Is Software Project Management?..........occeevrueeninicuinineininicinneesieceenenns 4
1.4 Importance of SOftware ProjJEcts.....c.cooereririirierieinieininicieinicee et 7
1.5 Problems in Project Management........oceevveueuinieueinieieiniereenereiseeeeeeeseeneeeseenenes 7
1.6 Processes in SOftWare ProJects.....ccuvveuiririeirinieirieieirieieineeteeseeteeseeeeee e 9
1.7 Project Processes, People, and Technology.........cocceveveeineicineennccineienccnen 10
1.8 Successful Software Project Manageroeeevveeueeerieueninercceneeineceneceseeenene 11
1.9 Project Management Processescccccuiviiiiiiiiniiiiiiiiiiiiiiccccccce 12
1.9.1 Software Project Initiation........c.cceeuiuiuiiiiiiiiiniiiiiiicccccce 12
1.9.1.1 Software Application Development Project Initiation............... 12

1.9.1.2 Software Product Characteristics.......cvrveveeruererinrerirenierenenrenennns 13

1.9.1.3 Software Product Development Project Initiation 14

1.9.1.4 Software Product Implementation Project Initiation 15

1.9.2 Software Project Planningccococcoiveiniiniiincinniiiicinccccenn 15
1.9.2.1 Components of Project Planning........ccccccecevvivncicncinncnns 16

1.9.3 Software Project Monitoring and Controlcccceeuivvcinneinnccinenne. 17

1.9.4 Software Project ClOSUIEcecirveuiirieriinieiiireicenieeeeeeeeee s 17

1.10 Configuration and Version Control Managementoeeeevveueineereeennenirennerennnnen. 17
1.11 Management MetriCs......ccccivuiiiiiiiiiiiiiiiiiicicci s 18
112 CaS€ STUAY . veueeuiitiieiieteie ettt ettt sttt enes 20
1.12.1 Project INtroduction «....c.coveeieerieeininieininieiniecineietneieeseevee e 20

1.12.2 Software FUNCtionalitycccoeveoerirueinieiinieiiccrccc s 21

1.12.3 New Functionality in Release 6.0coceceriruiininieiniininccnccneeeee 22

1.13 Chapter SUMMATYccccouiiiiiiiiiiiiiiiiice s 22
BXEICISES ...ttt 23
ReVIEW QUESTIONS. c..c.viiiiieiiiitiiciesie ettt e 23
Recommended Readings.........ccouvueuiiiiiciiniiiciniiiiiniciececeee e 23

<

vi ® Contents

2 Project Initiation Managementceceurceesuecesssnscsussescssssessssssesesssscsssssscssssssssssssscsses 25
2.1 INErOAUCTION caiiiiiiicctetcc ettt ettt 25
2.2 Define Project Chartercoccucuiuiiiiiiniiiiiiciccctirsec s 26
2.3 Define Project SCOPE ...cvoviiiuciciiiiiiiieieieieic ettt 27
2.4 Define Project ODJECTIVESuevuvuiuiiiiiiieieicieicicttiriei et 28
2.5 Practical Considerationscccoueueeririeirinieiniiieinieciseeeseee e 28
2.6 Estimate Initial Project SIZe......cocveiviiieiniciineeicinieicineceneereeeeeee e 29
2.7 Estimate Initial Project Effort and Costsc.eceeirevevinierereneininicieeineccneenenes 30
2.8 Estimate Initial Project Schedulec.ooveeiniiiiiniiiiiiiiiicciecccceceee 31
2.9 Create Initial Project Plan.........ccccoooiiiiiiiiiiiiiiiicccces 31
2.10 Project Initiation in Iterative Modelccovveiniiicniininieineinccnece e 31
2.11 Stakeholder INflUENCE ...cvveuiiiiiiiiiiciic e 33
212 Quality PIanning.......ccccooiviiiiiiiiiiiiiiiiiiiccc s 34
2.13 Feasibility StUAY .ceeevvevieiiiiieinecec s 34
2.14 Project DIVISION ...ceeiruirieiriiieiiercnee ettt et 34
2.15 Artifacts of Project Initiationccocoviviiiiiiiiiiiiiiiiiccccc e 35
2,16 CaSE STUAY . .veuvviiinieiirtiteitetet ettt ettt ene 35

2.16.1 Project CRArteroeviieuiiieiiieieiieetceee et 35
2.16.2 PrOJECE SCOPE ...vnvuiiiiiiiiiiceeietceee ettt 36
2.16.3 Project ODJECTIVES ..evuveviuirieieirieiiinieetrteeretee ettt 36
2.17 Chapter SUMMATYc.coivieuiirieiiirieeeeetrrecee ettt ettt senes 37
EXEICISES ..vviiiiiiiiitccicc s 37
ReEVIEW QUESTIONS. ..ttt et ettt et e e bt e e bt e sbeesabeesabeesneeenne 37
Recommended Readings...........ccccciiiiiiiiiiiiiiiiiiiiccc 38

3 Software Project Effort and Cost Estimationc.ceceereeurueresuncresnncsesuscsnsssscssssescenes 39
3.1 INErOUCHON cetiiiieictctet ettt 39
3.2 Effort Estimation Techniques..........cccccuiuiiiiiiiiiiiiiiiiiiiiiccccccccs 40

3.2.1 Choosing a Suitable Effort Estimate Technique......cccccevvvveinneccnncinenene, 41

3.2.2 Function Point Analysis.........ccccooviiiiniiiniiiiiiiiicece 41
3.2.2.1 Function Point Analysis Usageccccoveivniinncnnniinnnnn, 44

3.2.3 Wide Band Delphi....cocoivinieoiiniiiniiciiicineceneccseeenceeseeeeene 44

324 COCOMO ...t 45
3.2.4.1 Basic COCOMOccomiiiirieiiriiiiriccseeeeeeese e 45

3.2.4.2 Intermediate COCOMO.......ccoriuinineriinieininicineeeeneeeseenenes 46

3.2.4.3 Detailed COCOMO......ccoviiiiriiinieiinieirseeneeeneeeeenenes 46

3.2.44 COCOMO Model Conclusioncceeerreuervnueinerccinereeneenene 48

3.2.5 Effort Estimation for Waterfall Model-Based Planningc.cccccccunee. 48

3.2.6 Effort Estimation for Iterations Model-Based Planning............cccccccunee. 49

3.3 Cost EStimation......c.ccooiiiiiiiiiiiiiiiiii s 51
3.3.1 Cost Factor ANalysis.......cccoueeeeirieininiecininieineseeeeseeeieseee e 52

3.3.2 Activity-Based Cost Estimationcccceevevieinenecininieineneineneceeeeenne 53

3.3.3 Cost Estimation for Iterations-Based Planning..........ccccoccoeeiniiiniinnee. 54

3.4 Schedule EStIMationcccoeiiiiiiiiniiiiiiiiiiniceccee e 54
3.4.1 Schedule Estimation for Waterfall Model-Based Planning 54

3.5 Resource EStimation.........ccooiiiiiiiiiiiiiiiiiiiiiiicee s 55

Contents ® vii

3.6 Artifacts of Effort and Cost EStimates.......cccceevievieeieieieiieierieciecieeie e 56
3.7 Practical Considerations in Effort and Cost Estimates........c.cccccoeevievrereeeieiesienennn. 56
3.8 Effort and Cost in Product Developmentcccoeueririeuininieininieinieicneeccseeeeee 57
3.9 CASE STUAY.c.eiiiiiiciiictcicct e 57
3.9.1 HISEOIY teuieiieiieiieieietenesteett ettt st 57
3.9.2 Current Project. ..o 58
3.9.3 Effort and Costuu ettt 58
EXOICISES vttt ettt sttt et sttt ettt ettt et e n e n e e s nreene e 58
ReEVIEW QUESTIONS. .ttt ettt ettt et st e st et e et e et e e e e e eaees 59
Recommended Readings.........cceuvueeiriiiiniiiciniiiinecinieisccceneeiceseeree e 59
Risk Management.....icienrersessesessessessessnsssssnessessessessessessessessassassasssssssssessessessessessesss 61
4.1 INEFOAUCTION cavitiiiiiteicicst ettt ettt ene s 61
4.2 Causes Of RisKS....eoieiririeiiiieinec s 63
4.2.1 Quality COnStIAINTS..ecveuertireeertirieiirietetetete sttt sreneene 63
4.2.2 Resource Unavailabilitycccecevueirerieniiiniiininieeceeeee e 63
4.2.3 DISINTEIEST vvvveteneetirienietistetete sttt ste ettt et et bt e e b s be st eb e ste st ebesteneenes 63
424 ACCIHTON ottt ettt ettt 64
4.2.5 SCOPE CLEEP.c.viveueeuirieiieienteieit sttt sttt 64
4.2.6 COSt COMSIIAINLS. c.euveveetienieietentesiesteeteeteettettestetentestesbesbesbeebeebeeseensensensens 64
4.2.7 Bad Negotiationccceeiiiiiiiiiiiiiiiiiiiiiiccnce s 64
4.2.8 Unrealistic EStIMAate «......covevieriiiiiiriiiiieeeeee e 64
4.2.9 Human Error....cooiiciiccececctee et 64
4.2.10 Poor Managementccoeueueiueuiinieieninieiiieetesesieteee et 65
4.3 RiSK CalEZOIIES....cuiuiireviiieiiiiieiieteteeee ettt 65
4.3.1 Budget RISKS c.ooveveiieiiiiccccc s 65
4.3.2 Time (Schedule) RiSKS.....ccooiiiiiiiiiiiiiiieiie ettt 65
4.3.3 Resource Risks.....oooveirinieniiinieieiee s 66
434 Quality RISKS .eoveveririeiiiriciiictenccrc s 67
4.3.5 Technology Riskscccoeveuinimieininieiniciinccrnc e 67
44 RISK ANALYSIS c.ervereirieiiicc et 68
4.5 Balancing ACT....o.coueiruerieiiieireeeee et 69
4.6 Project Risk Management in Agile Models..........ccccoovniiiiiiiiiinniiccce, 70
4.7 Artifacts of Project Risk Management...........cccccocoiiiininiiiiiiiciiiniiccccccae 70
4.8 Practical Considerations for Risk Management........ccoccoeeeveinncinncnnccnenee, 70
4.9 Case StUAY..cueiieiciiccc s 71
4.9.1 Risks 0n This Project ..ccoeeeireriiiriiciiiciirecincceeeesee e 71
4.10 CRapter SUMMATY ..c.coevieiriiieiirientetrietei ettt ettt ettt ettt st b e enes 73
EXEICISES .ttt 73
ReEVIEW QUESTIONS. ..ttt ettt et e bt e st e st e e sabeesneeeane 73
Recommended Readings.........ccovvueeiriiuiiniiiciniiiinccineiesecctneeieene et 74
Configuration Management.. . ceeieieieinnininnensesesesesesssssmmsisiseseesssssses 75
5.1 INEEOAUCTION 1ttt ettt 75
5.2 Configuration Managementc..eevrveueeriereinierieeniereniniereeeresesesseesseseseseesesessenenes 76

5.3 Configuration Management Techniquesc.oeeeeneueinieenneinnecneceneeenene 77

viii

m Contents

5.4 Artifacts of Configuration Management...........ccccceuvurueucuciiiniiininiiicccccceiienens 79

5.5 Configuration Management Case Study.........ccccceuriririiuiuieiiiniiininiicicecceeeeeens 80
5.5.1 Configuration Management for an Incremental Iteration

Development Environment.......c..ccveeveininieinenieneniencseeenceeeseeeenens 80

5.6 Chapter SUMMATY c..c.oeuerieieierieieieteteterte ettt ettt sa et enes 81

EXEICISES ..cviiiiiiiiiciiicc s 81

REVIEW QUESTIONS. ..ttt ettt sttt et esbe e et e st esabeesaneeeneeeane 82

Recommended Readings.........ceeuvueuirirueininieinieeiniicinenctneteineeee e 82

Project Planning.....ccoeveveeseiseesncsuesnininsinsinsinsissiiseissississississessessessssssssessssssssssssssssssens 83

6.1 INTrOQUCTON ettt 83

6.2 Project Planning Fundamentals..........cccoceoiviiiiiiiiniiiiiccs 84

6.2.1 Top-Down Plan.....ccccoceciiiiiiiniiiiiiiiiiiiiccece s 84

6.2.2 Bottom-Up Plan .ccccevueiiiniiiiiniiiiiieiicescctneeeeeee e 86

6.2.3 Work Breakdown Structure......c.ccooeivivieininiiniciniiccecceece, 87

6.2.4 Resource Allocation........co.cuceivieuiiinieuiniiieineceecereee e 87

6.2.5 Supplier Management Plan.......c.ccocceviveininciinnciniinccneeeeeeeee 88

6.2.6 Configuration Management Plancocccovvvecenniccinnirnecnneienece, 89

6.2.7 Communication Management..........cccecueuerueiruenieineneeenieneeeseeeeseeeeneas 89

6.2.8 Defect Prevention Strategy (Quality Assurance)c..ccceeeeeveeenverceenrerenennen 90

6.2.9 Project DUration..........ccoeevieciiiniiininieiieieseeeteeeeeeeee e 90

6.2.10 Project COStuuuumuinieieiinieiieiinieieiinteteestet ettt ettt ae et 90

6.2.11 Tool Managementccceevueeeuinieinienieenienieeetentee ettt 91

6.2.12 Scope Managementcccviuiiiiiiiiiniiiiiiiiiceese s 91

6.2.13 Effort ESMATe . .ccveerietiiieiiiriei ettt ettt 91

6.2.14 Risk Managementccccoeeveiiiniiiniiiiiiiiiceccc e 91

6.3 Project Planning Techniquescccoccciviiuiinieininiiincccceecec e 91

6.3.1 Ciritical Path Method.........ccocvveiniiiiiiiiiiiineceeceeecee 91

6.3.2 Goldratt’s Critical Chain Methodccccoeeiineinneiinincnccenee, 91

6.4 Project Planning Artifacts....c.c.eeeerueirieeinieieineceneeineeee e 93

6.5 Project Planning in Agile Modelsccooeeiriiecinieiiiniiiicincccceeeceeees 93

6.5.1 Treration Planning.......cccocoeeerieirineinnieinncineietneieeneeeseenee e 96

6.6 Planning at Project Management OflIcec.eecurveuiinieieninieineneinnieienecnsieeees 96

6.7 CaSE STUAY.c.eveteuirieiiirictetrtet ettt ettt ettt 97

6.7.1 Feature SeleCtionc..eueoirieueririeuiiniciininieteiceeteest ettt 97

6.7.2 Heart of Planning..........cccccceoiiiiiiiiiiiiiiiiiiiccccceeeceees 98

6.8 Chapter SUMMATY ...ccooiiiiiiiiiicie e 99

EXEICISES vttt 100

RevIEW QUESTIONS. ..ceuvteutiiiiieiieitiettet ettt ettt ettt ettt st e bt et et eae 100

Recommended Readings.........cecuvveuiiriiiiinieiiinieiiicctnecseeseeeee e 100

Project Monitoring and Controlcieiiiiiniinninninenininineneneiencnecse 101

7.1 INEEOAUCTON 1ottt ettt ettt 101

7.2 Project MONItoringc.coiviiiiiiiiiiiieieiccciccc s 102

7.2.1 Monitor against Project Plancccccoviiiiiiiiiiniiiniicns 102

7.2.2 Measure Task Progress and Status Reports.........ccoeucuiiiiiininininiiccnnne 103

7.2.3 Identify Deviations........cocceveciruerieirienieiniiieinenctnceeeseee et 104

Contents ® ix

7.2.4 Performance INAiCators........cccuvivuiiiouiiiieiiiieeeieeeeee e 105

7.2.5 Monitor against Project Schedule ... 105

7.2.6 Periodic MeasUIementc..ceeveeevieereeenreeereeeeteeeeteeeereeereeeveeeaeeeereeeeveeennes 105

7.2.7 Earned Value Management..........ccceeuvieuiiniciininicnieincinneieeecseneeees 105

7.2.8 Measure Resource Utilization........coeevveeeveeereeeereeeeeee e 108

7.2.9 Measure Resource Loading........ccovveveeireuiinieieninieinenieineeieeecneeneeees 108
7.2.10 Monitor Skills and Knowledge of Project Team......ccccccevvreineeccrnrennes 108
7.2.11 MoOnitor RISKS.....iieviieuiieetieeeei ettt et 109
7.2.12 MONItOr ISSUES .uvvviieeiiieeiiiiie ettt e e e eetrae e e e e e e abbaeeeeeeaas 109
7.2.13 Status REPOrtscccuiiiiiiiiiiiiiiiiiiiicic 109

7.3 Project Control Techniquesc.cocvueueeirieuininicininicinicecerec e 110
7.3.1 Resource Leveling.......oeoivieieoinieiiiniciiiniciciricicisccene et 110

7.3.2 Schedule Optimization.........cccccoviiiviiiiiiiiiiiiiiiiccccc e 111

7.3.3 Corrective Actions against Deviationscccceeviviiiiiniiinniinnnenn, 112

7.3.4 Corrective Actions against ISSUEScceiiriiiiiieiniiiiiciiecces 113

7.3.5 Resource Optimization.......cecuecveierieriiniininieieiereienenese e 113

7.4 Project Monitoring and Control Artifacts.........ccccvvveveiveccineininccnieieeces 113
7.5 Project Monitoring and Control in Iterative Model........ccoeeinvvioniicniienae. 114
7.5.1 Performance Measurements.......c..covveeeveeeeeeereeeereeeieeeerreeeieeeeseeeeresenseeennes 114

2 T Y < TSR 115

7.6 Case STUAY.cveuiiiieirieicieetetr ettt 115
7.6.1 Tracking Tools Used.......ccceeeimeuiirieieninieriinieieninieienieeneeeeeeneeseeneneees 115

7.6.2 Problems Encountered.........cccoiuiiiiiiiiiiciieeeie e 116

7.7 Chapter SUMMATYcccoiiiiiiiiiiiiiiiiic e 116
EIXEICISES .ttt e e e e e e e e e e e e e e e aaa 117
RevIEW QUESTIONS. ..ceuvteutiriieeitett ettt ettt ettt ettt e bt et esbe s enaees 117
Recommended Readings.........ccouvieuiiiiiiiiiiciniiiiiniicincceccee s 117
8 Project ClOSUTE ...uuuiucrunuiinricisninctssiistsseissssessssssissessscsssssssssssssssssasssssssssssssasssssssssss 119
ST B N5 oY L Lol T) NPT 119
8.2 Source Code Management.........ccueueirueuiirierinirienininieiesieieiseeree s 120
8.3 Project Data Management.......ccccccueiiiiiiiiiiiiiiiiiiiiiiciceiceccc s 121
8.4 Project Closure in Iterative Modelcocoeeiiviiiciininiiniciicineccceeeee, 122
8.5 Lessons Learnedc..ooouviivueieiiiieieeee ettt ns 122
8.6 ReSOUICE REICASE ...uvviiuviiieeieeeeeeceeeee ettt ee ettt enae e 123
8.7 DALa STITUCTULES veeeeeieeiriieeeeeeeiiiee e e e eeecirt e e e e e e eetreeeeeeeeetbaeeeeeeeetassaeesesasnsseeseeeannnnes 123
8.8 S STUAY vttt 124
8.9 Chapter SUMMATYccocoiiiiiiiiiiiiiiiiii s 125
EIXEICISES .ttt e nanas 125
RevIEW QUESTIONS. ..ceuveeutiriiitieiteteet ettt ettt ettt b ettt saeenaeen 125
Recommended Readings.........ccccoveiiiiiiiiiiiiiiniiiiiciiccc s 125

PART Il SOFTWARE LIFE-CYCLE MANAGEMENT

9 Introduction to Software Life-Cycle Managementocevuererceresesnsnessscsescnescnnens 129
9.1 INCEOAUCTION .ttt et e e e e e e e e e e e eeeeeeeeeeaneeeeeesaaanes 129
9.2 Software Engineering Management..........cccoceucivireininicininciniencineeeseceeenenes 131

x B Contents

10

11

9.3 Software Life-Cycle Management Processescccoueuviriririnicicieccnininininienenenes 132
9.3.1 Software Life Cycle in Waterfall Model........cccoeenneinncinncinnceee, 132

9.3.2 Software Life Cycle in Iterative Model......cccoceveininecinincniinciicncene, 132
9.3.2.1 Moving from Waterfall Model.........cccooviiinniiniiinninns 134

9.3.3 Software Life Cycle in Concurrent Engineering Model.........cc.cccceueee. 134

9.3.4 Software Life-Cycle Processes.......oveiririeirenerinienieinenieieenieeseseeenes 135
9.3.4.1 Software ReqUIremMEnts.cccveuirvrrererirreiniereineieineeeeneeneenes 136

9.3.4.2 Software Designccovvvueirierecirniiineieineceneereee e 137

9.3.4.3 Software Build......cocecevieiniiiciniiiecncicccee 138

9.3.4.4 Software TeStiNg.....ecerrrueiriereiriereiinieietneereeseee et 138

9.3.4.5 Software Release......cccovueinirecinniirinieiinieiinceneceseeeee 140

9.3.4.6 Software Maintenancec.cececerveveriruerererierenenierenenierenesnesenennens 140

9.4 Software Life-Cycle MELriCs .c.cvveviririeuiririeiinirieiininieenisietnterees ettt 141
9.5 WOIK Products..c.cveveuirieteiieieiriet ettt 141
9.6 QUALILY ASSUIAINCE . .eveieuieuiieiieiertetet ettt sttt ae s 142
9.7 CaSE STUAY.c.evtiiiiiiiietctec s 142
9.8 Chapter SUMMATY ..coevueieiirieieiertet ettt ettt 143
EXEICISES o vttt ettt sttt 143
REVIEW QUESTIONS. 1. eveevreeienieieieste st eieete et etete st e stestesseeseeseeseessessesesessessessesssessessensensenes 143
Recommended Readings.........ceeuvieuerinieiininieinineininicieeecneteeeeseeieese e 143
Software Requirement Management.......ceeiveevecsncsuessessesessessensessessecsscssessessessssseenes 145
10.1 INErOAUCTION caeiiiiiiicctieet sttt 145
10.2 Software Requirements Development..........ccccccuviiiiiiiiiiiiiiniiiiiccccccne 146
10.2.1 Develop Requirements.........ccoeuiiiiiiiiiiiiiiiiiiiniiiiiiniiiccseeccnennn 149

10.2.2 Requirement Development Taskscocecererueinirieininieeninieininiecneeeees 149

10.3 Software Requirements Management.........ccceeeivieuiinicicinienininceniniceeseeseeens 149
10.3.1 Requirement Change Controlccccveiineiinincininiincieccnecen 150

10.3.2 Requirement Problems Diagnosisc.ccceeveveiririeinineininicineeeneeneen 150

10.4 Requirement Life-Cycle Managementcccoveeireeueinieiecinieineneeeneieeeeenens 151
10.4.1 Requirement Development and Management in Waterfall Model........... 151

10.4.2 Trerative Model ..ottt 152

10.5 Software Requirements Practical Strategycececevveveinerecinieninneenneieneeeneeee 153
10.6 Software Requirements Artifactscoeeereeueinieieinieieineieinieceneesenieveeseveneneene 154
10.7 Software Requirements Quality Controlcccoiiiiiiiiiiiiiiiicciiae 154
10.8 Case STUAY ..veuiteteiirieteirtct ettt ettt 155
10.8.1 Major Components of Appointment Scheduling...........ccccccoceiiiinnniins 155

10.8.2 Loading/Unloading Time Calculationccccociviiinniiinniinninns 156

10.8.3 Quality ASSUIANCE ...ovviuiiiiiiieiiinicicirie e 156

10.9 Chapter SUMMATY ..c.coeoieiriiieinieeiret ettt 157
RevIEW QUESTIONS. ..eeuvieutieiiieiiestieieet ettt ettt ettt b b et e b esbesaaenaean 157
Recommended Readings.........c.ecvvueuiirieiininieiineinicieeeeneeteeee s 157
Software Design Managementcuceceeesenseisecseisncssessessiesessessessessesssesssssssscssssssenes 159
11,1 INErOAUCTION caviiiiitecteic sttt 159
11.2 Software Design Fundamentals...........cccccccoiiiiiiiiiiiiiiccce 160

11.2.1 Design TYPes..c.ccucueiiiiuiiiiiiiiiiciiiscciriet e 161

12

Contents ® xi

11.2.2 Design Standards.........ccoovuevieiniiiiiniiiiiiiiiiiceceeas 161
11.2.3 Design ACUVILIES.....cviuiiiiiiiiiiiiiiiiciii s 161
11.3 Software Design Methodsccociviiiiiiiiiiiiiiiiiccccce 161
11.3.1 Top DOWN oo 161
11.3.2 Bottom UP ..cceiuiiiiiiiiiiiiiiiicicicicicice s 162
11.4 Design Version CONrOl.......ccoourueirinieiniieininieineetneetseereeseereesae et 163
L1141 SUDVEISIONS ...vviieiieiietiiirieicereeice ettt 163
11.5 Design CharaCteriStcs ..oveuererreuiriruerirenieirieieineereetreereeessesetseeseessesesesaeseessesesessens 163
11.6 Software Design Techniquesoveeverveirinieineicinieicineceneceseeere e 164
L1.6.1 PrOTOTYPES ceveuvviiiieiieiiieiieieetce ettt sttt 165
11.6.2 Structural Models....co.eueoirieirinieiiiinicinciccic e 165
11.6.3 Object-Oriented Designc.ceueuiuiiiiiiiiiiiniiiiicciiicccceas 165
11.6.4 Systems ANalysis.....cceceruerieirieririneiiinceeneeetree et 166
11.6.5 Entity Relationship Modelscccoeirireinineininicinnceccneeecseeee 166
11.6.6 Design Reuse.......ccciiiiiiiiiiiiiiiiiiiiiiic s 166
11.7 Software Design for INternetcceevvieiririiiniiinincieecreceseeee e 167
11.8 Software Desigh QUAlityc.ccovueuiriiieiiiieiniicircerceee s 167
11.9 Concurrent Engineering in Software Desig.......oecevevueiniericinncnnieenecenenee 168
11.10 Design Life-Cycle Managementc.coceueeveeveineereinieieineereineeeeneeeseeneesnenesesnens 168
11.11 Module Division (Refactoring)......c.oceeererueirereiniriiniereinieieneesenieeesnevenennene 168
11.12 Module Coupling.....c.covvueueririeuininieininieirieicineetnetee ettt 170
11,13 Case STUAY..cveuirtereirieteirteetrtet ettt ettt ettt sttt 170
11.13.1 Software Design for Loading Calculation........cocoeeviruecnniccinnccnncnnnes 170
11.13.2 QUuality ASSUIANCEeeveveuieiiieieiieteeeieseeeeeeteee ettt 172
11.14 Chapter SUMMATYcccocuiuiuiiiiiiiiiee e 172
RevIEW QUESTIONS. ..ceuvteutiriieeitett ettt ettt ettt ettt e bt et esbe s enaees 173
Recommended Readings.........ccouvieuiiiiiiiiiiciniiiiiniicincceccee s 173
Software CONSIIUCTION ..uvirrirreressessessensensnesnissessessessessessessessessasssssssssessessessessessassssses 175
12,1 INCEOAUCTON 1ottt ettt 175
12.2 Coding Standards.......ccoeererieininieininieieceneetrec et 176
12.2.1 MOdUIATIEY ceeveiiiiiieieietee et 177
12.2.2 CLATIEY 1ttt ettt ettt 177
12.2.3 SIMPLCITY ..ot 177
1224 Reliability c.coveveeinieiiinieiiinicccccet e 177
12.2.5 SALELY.eiiiuiirieiiiteie ettt 177
12.2.6 Maintainability.......ccooirieviiiinieiiiriicecc e 178
12.3 Coding Frameworkcccoouiiiiiiiiiiniiiiiiiiccc e 178
12.4 Reviews (Quality Control)......c.cocevueiriniiiininieiiinieinecreeeece e 178
12.4.1 Deskchecks (Peer REVIEWS)cccovuiiiiiuieeiiiiieeeieeeeceee et eeeeaeee e 179
12.4.2 Walkthroughs......cccoveiiiniiiiiiiicccceeee e 179
12.4.3 Code REVIEWS ...ovevieirieiiiiciciriciieeecret ettt 179
1244 TNSPECTONS cuvuvvinvereeirietiireetetreettt ettt 179
12.5 Coding Methodsccouiiiiiiiiiiiiiiiiiiies 179
12.5.1 Structured Programming..........cccccciiiiiiininiiiiiiiiiiiccccins 180
12.5.2 Object-Oriented Programming..........ccccceviviriiiiiiiiiiiniiiiccciiins 180

12.5.3 Automatic Code Generation........eeeeeuveeieeiieeeeieeeeeeeeeeeeeeeeeeeeeeseseeeeseiaeeens 180

xii

13

14

m Contents

12.5.4 Software Code ReUSE......cveuirieieuiriiieiiiieieieeteiete et 180

12.5.5 Test-Driven Development.........ccccociviniciiiiiinniciiiiiniciccccae 181

12.5.6 Pair Programmingccccociviiiiiiiiiiiiniiiiiiiiiicci s 181

12.6 Configuration Managementccueueueueueueuiininirerieieeeseiesettseeeesesesesesesesssenenenes 181
12,7 Unit TeSHUNG c.vveeiieiiiiiiciicice s 182
12.8 Integration TESTINEc.ccueuiiiiiiiiiiiiiiiiiiieeee et 182
12.9 Software Construction Artifacts.....c.ceereeererieirerieinenieneeeeee e 183
12.10 Software Construction in Iterative Modelcccoevieirineininiiiniieece 183
1211 CaS€ STUAY . .veueeuirtiieiieteieteieee sttt ettt 183
12.11.1 Continuous INtegrationccveueverrererinieuirinieininieineeeenereeseereeseerenenen 184

12.12 Chapter SUMMATY .c..eveirteueirieiiirteieeeietse ettt ettt ettt st 184
RevIEW QUESTIONS. ..ceuveeutiiiieriietteie ettt ettt ettt sbe bt ettt s enaeen 185
Recommended Readings.........ccccoveiiiiiiiniiiiiiiiiiiicccs 185
SOftware Testing....cevuerrerrerresresessensensensessuisnissessessessessessessessessasssssssssessessessessessassssses 187
13,1 INEFOAUCTION catitiiiiietecitt ettt 187
13.2 Problems with Traditional Development Model........ccoeeeineininecnncininccen 188
13.3 Verification and Validationccoeoeririeirinieiiinieneneeeeeee e 189
13.4 Test Strategy and Planning...........ccocviiiiiiiiiniiiiiiiiiccccas 190
13.4.1 Test Prioritizationceeeveeeeirierieeesieeeesiee ettt 190

13.4.2 Risk Managementccccccueuiiiiiiiiiiiiiiiiiiccccise e 190

13.4.3 Effort EStimation......ceceeuerieirierieieieiecsieeitsee et 191
13.4.3.1 Test Point Analysiscccoevveererieinenieinieiecreeenceeseeenes 192

13.5 TSt AULOMATION c..evtiiieiieteeiteeite sttt ettt ettt et st sbte bt e bt et eatesbeenbeebeeateene 192
13.5.1 Test Case Execution AUtOMAtiON......ccevviviriiieieieieiiencceeceeeeeen 193

13.5.2 Test Case Management AUtOMAtIONccceivuiiiiiiiiiiiiiiieiieieeeeeeens 193

13.6 Test Project Monitoring and Control........c.ooeciveeeinineciniecinecireeneeeeneees 193
13.6.1 Test Case Designccovuiiiuiiiiiiiiiiiiiicicicceeeeee e 194
13.6.1.1 Test TYPes...covuiiviiiiiiiiiiiiccicc e 194

13.6.2 Test Case Management.........c.ceeuirueeeuinieieuinieieesieeeeeeeseee e 194

13.6.3 Test Bed Preparationc.cecceeveeuieiniereninieuininieeninieetneeneeneneeseereeseeneenen 194

13.6.4 Test Case EXECULION. ..c.iiviuiiiiiieieiiiteieicsieeeee et 195

13.6.5 Defect Tracking.....cccoeueririeiiririeiiriniciineineerse et 195

13.7 Test REPOITINgG.....cviuiiiiiiiiiiiiiiiiiiiici e 196
13.8 TSt ATTIFACES cvevvveneeuietiieieteeee ettt ettt ettt ettt sttt st ae et ebesseneens 196
13.8.1 Management Artifactscccccvueuiiiiiiiiiniiiiiiiiceece e 196

13.9 Practical Considerationsc.ceeveeeririeinenieininieenenee et 196
13.10 Software Testing in Iterative Model.......ccoccoiviiiiniiiiniiiiiiccccee 197
13,11 CaSE STUAY.c.euveviuirieiiiricieiriette ettt 197
13.12 CRhapter SUMMAaTY ..c.coveoueiriiieienienteeneeeeteste ettt 198
ReEVIEW QQUESTIONS . ..eutte ettt ettt ettt ettt st e st e st e st e e sbaeenee s 198
Recommended Readings.........c.eevvueuiinieieninieinineiniicieeecnetneeeeneeeesee e 199
Product Release and Maintenanceceeeeeesucesucsrensinsucssenssinsacsssssssssacssscessssassssessas 201
14,1 INEIOAUCTION ttutitiiiitieiieteese ettt ettt s be st sbe st e eens 201
14.2 Product Release Management.........ccccoueuiviriciniiiciiiniiiniicinccsceeeecees 202

14.3 Product Implementation.........c.ccoeueiirieuiiiniciniiiciiieeiet e 203

Contents ™| xiii

14.4 User Trainingccccoviiiniiiniiiiiiiiiiicee e 203
14.5 Maintenance INtrodUCtiOn.........couiiiiuiiiiiiiieiieee et eaee e eeneees 204
14.6 Maintenance TYPes......ccceiiiiiiiniiiiiiiiiicccne e 204
14.6.1 COITECEIVE ..ccuvieeteeeteeeree et eeeeeeeeeetee et e eeteeetaeeeaaeeeaeeereeereeenaeeeseeenseeenns 205
14.6.2 AdAPTIVE ceeeviiiiiiiiicieiecec ettt 205
14.60.3 PerIfECtIVE cuveeeuvieteeeeee e et ettt ee et e et ereeeeeeeneeeeseeenns 205
14.0.4 PIEVEIIVE ..eocvvieteeeteeeeeeeeeeeee ettt e et eeeeeteeeeaeeeeaeeereeenreeeneeeeneeensesenees 205
14.7 Maintenance CoOStouuiivuieeeieeeieeeeeeeeeetee et e eteeeeeeereeeeteeenaeesteeeseeesseeensesenseeanees 205
14.8 Maintenance PrOCESScouiiieiieiiieeeieeeeeetee et e eeteeeeree et eaeesaeeeaaeesneeeereseaeeenees 206
14.9 Maintenance Life Cycle......cooiiiiriiiiiiieiiiieseeee e 207
14.10 Maintenance TechniqUeS........c.eovrueueririeuirinieinncene ettt 208
14.10.1 REENZINEEIINE. c...veveuiruiieiiiiiieieiinteeeestee ettt 208
14.10.2 Reverse Engineering ..o 208
14.10.3 Forward Engineering.........ccccveiiviiiiiniiininiiiiceccecneeeenes 208
14.11 CaSe STUAY . .veuveviriiieiirieictrtct ettt ettt ettt sttt 209
14.11.1 Software Release......cocueeiueeceieeieeeeieeeeieeceeeeeee e et e 209
14.11.2 Software Maintenance........ccvveeeueeeereeeereeereeeeeeeeeeeeeeeereeeereeeeeeeseeeeseeennes 209
14.12 Chapter SUMMATY .c.cc.eeerieeirieieienieteiestet ettt ettt ettt 209
ReEVIEW QQUESTIONS . ..eeutte ettt ettt ettt ettt st e st e st e e sateesbaeenee s 210
Recommended Readings.........ceevvveueinieuininieiineininicieeecneeeeeeeseereeseee e 210

PART Il SOFTWARE ENGINEERING MANAGEMENT

15

16

Process Standards INtroductione.eeeeerrseeeeeecrssneeeeeessseeeeesesssnseeecsssssssessssssassassssssns 213
DT N 65T e Ye AR Tl (o) WU 213
15.2 Root Cause of Problems in Software Projectscccoeveervereeenieuinenieennieinencecneeene 214
15.3 Solutions for Problems in Software Projects.........cccceeuiuiiiiiiiiinininiiiiiiiiae 215
15.4 Standard Process for Software Projects........cccccouviiiiiiiciciiiiiiiininiiiccccccens 216

15.4.1 Process Tailoringccccovvuciiiiiiiiiiniiiniiiiiccc e 217
15.5 Standard Process across Software Projectsccovevveerenieinenieinenicenenieeneneenenne 217
15.6 Program Management.........occiiuiiiiiiiiiiiiiiiniiiiiesiec e 219
15.7 Portfolio Management.......ccoeuiirueuiirieuiiinieieirieieeeessteete e seeneenes 220
15.8 Statistical Process Control on Software Projectsoeeeiveereireccineecinecinenene, 221
15.9 Cost of Nonstandard ProCesses.........oveevreeevreeeieeeereeeeeeeeseeeeseeeeeeeeneeseeessesensesennes 222
15.10 Organization Training.........ccccovirieiiiiiiiininciieeeeeeeeee e 222
15.11 Software Project Abandonment.......couvveuiverveerinieinineinnieineecenecteeeeneieeees 223
15.12 Defect Preventionoouiiicuieceeieceeieceeeeeteeeeeee et e eeteeeereeeeteeeaeesrveeeaeseeneeesneseseeenees 223
15.13 Software Project without ProCess.....cocvveviririeuiririeririnieiinnietneeieieneeieetneereeneeieneeen 225
15.14 Process IMprovement......c.ooecveuirerieiriiieinieieinieneeeteeee ettt 226
15.15 FINAl WOId oottt e et e e e enaeas 227
RevIEW QUESTIONS. ...euvteuiieiiieiieeitet ettt ettt ettt et be et 227
Recommended Readings.........ccovvveuiiiiiiiiniiiiiiiiiccicceecee e 227
Software Process Standards and Process Improvementcoeevevversersecsecsecsncsncsneenes 229
T B o1 e Yo 18 et u (o) o WU 229
16.2 CMMI Standards.......oooveiieeeiiiieeeie ettt e et eeeneeas 230

16.2.1 CMMI Standards in a Nutshell.......c..ccooovviiiiiiiiiiiiiiiceecceecceee 231

xiv ® Contents

17

16.3 ISO Standardscocueieieieiiiciie et 233
16.3.1 ISO Standards in a Nutshell.........coocvoiviiiiiiiiiiiiieee e 233

16.4 TEEE Standards.....cceoiiiuiiiiiiiiiieiie ettt ettt e eaaeas 233
16.4.1 1EEE Standards in a Nutshell.........ccoooiieiiiiiiiiiiccieceeee e 235

16.5 Rational Unified ProcCessccoeeeueeeeeiieeeieeeereeeeeeeeeeeteeeeeee et e eeeeeeeeeaeeeeveeeneens 235
16.5.1 RUP in a NUtshellcooovviiiiiiiiiiicee e 235

16.6 Agile Methodologies........cueeurieuiririeiniiieiiniciieetnecee et 235
16.6.1 Extreme Programming in a Nutshell (Table 16.5) .c.ccccevvvereeeneuinnnenee. 238

16.7 Test Process Improvement Techniques......coveueevrveeinircinnieinencinicineeceneeeees 238
16.7.1 Deming’s PDCA Technique ..c..cuecevveveinieucrinieiciniecnecincceneceseeenes 239
16.7.2 Test Maturity Modelc.coveveeiniiuiiniiiiniciincineccnecnecceeeesee s 239
16.7.2.1 Level 1: Initial Levelcccoooouviiiiiiiiiiieieeciecceeee e 240

16.7.2.2 Level 2: Definition......cccuvivuiicieieieiieieeeeeeeeeeee e 240

16.7.2.3 Level 3: Integration.........ccccceeiviriiininicininiinncineeineens 240

16.7.2.4 Level 4: Management and Measurementcceeevrurueennnns 240

16.7.2.5 Level 5: Optimize....ccovveuiviricininiiniiiciniecinecnececseeees 240

16.7.2.6 Further Developments in TMM.....cccccoevivininiincnnnenne 240

16.7.3 Test Process IMProvementc.ceevueveeerieieenienieinieieeneneeesiee e 241
16.7.4 Critical Testing Processccocvevirirrerernieinineinneieeeeseereeseeneeseeseenen 241

16.7.5 Systematic Test and Evaluation Processccoeoevvevirenencineniecnenenns 242

16.7.6 Process Improvement Life Cycleoevineiiniiinieccneirinccneceneenne 243

16.8 Process Standard CertifiCationscueevueeivueiiveeeeereeie e e e e eeeeeneeeereeeeaee e 244
16.8.1 Benefits of CertifiCation.......ccueveueeieieeeeeeieieceeeecee et eee e 244
16.8.2 How to Apply for a Certificationcoeererueerinieininieeninieinerecneeeees 245
16.8.2.1 Certification Requirements..........ccceeieiriririniciccciiiiininiins 245

16.8.2.2 Time and Cost of Certification..........ccccevvveuveveereeeeeeieeeseeennnenn 245

16.8.3 Future of Certificationscceevveeveerieereeireeeeereeereeereeereeeeereeeseereeveeneas 245
ReEVIEW QUESTIONS. ¢.ve.vteveeeieiieieteste sttt ettt ettt et te sttt eae st et e st etesbesbesbeebeeneeneeneensensenes 245
Recommended Readings.........ccouvveuiiriiiiinieiiiniiiceineeseeseeee e 246
Process SELECHION ..cceveeeeeeerrrsereeceesssneeeecssssneseesssssnseesessssnsaseessssansassssssansssssssssansassssssan 247
D R Y e Ye ATl (o3 s WO 247
17.2 History of Plan-Driven Model.......cccveuirinieinnieinineinncieeccnictneeeeneieeees 248
17.3 Strengths of Plan-Driven Model.........cccccciiiiiiniiiiiiiiiiiiiiicccce 249
17.4 Limitations of Plan-Driven Model........cccoovuiiiiiiiiiiiicieceeeeceeeeeeeeeeee e 249
17.5 History of Agile Methods.......ccoivieininiiiniiiiiciccccceee e 250
17.6 Strengths of Agile Methodsccccooiiiiiiiiiiiiiiiiiciicccccce 250
17.7 Limitations of Agile Methods........ccccoeiviiiiiiiiiiniiiiciccccces 251
17.8 Once and for Aloooiiiiicee e 252
17.9 Best Practices for Process Selection............ccvievueeevueeeeeeeeeeeiee e 254
17.10 Converting Traditional to Agile Modelccccovviiiniiiniiiniicccecee, 256
17.11 Case StUAY..cveuiriereirieieireeere ettt 258
EXEICISE vttt et e et e e et e e e e e e b aa e e e e e trraaeaaeaaas 259
ReEVIEW QQUESTIONS. ..eeutte ettt ettt ettt ettt st e st e st e e saeeesbaeeeee s 259

Recommended Readings.........eeeurieuirinieiininieininieininicieeiecnsieceerceneeieeee e 259

Contents ® xv

PART IV PEOPLE MANAGEMENT

18

19

20

Introduction to People Management........ceuevrerrernesressessesessessensessessncsnessesessessessenses 263
18.1 INEIrOAUCTION cuveviriiiiitieieieetet ettt sttt 263
18.2 People Management ...c.ceueueeerieuiirieueirieiiisieieeniette et st sesesseneseseenenenes 264
18.3 Team Management......cc.cueiueieuiruiieuiiieieiesieeeit ettt sr et et sae e 264
18.4 Supplier Management. .. cceerueueirueuirinieiinieieiinteieetneeteseseereeseereeseesesesaeseesaeseseseene 265
18.5 Customer Managementccueuevueueuirierieuirienieinieneeeeieseeeeeteseesesseseeessesnesessesaenens 266
18.6 Communication Management........c.coeeveueruerieerienieenenietnieneeeereseeeenesaeeesessenene 267
ReVIEW QQUESTIONS. ..eeuttieiiie ettt ettt et et s ettt e e et e e bt e enbeesnbeesaseesaseesseeenseean 267
Team Management ... ueeeiieieesenssesseessesssesssessnsssessaessasssesssesssessasssssssessssssasssassassns 269
191 TNEFOAUCTION cutetttintettteietee ettt ettt ettt ettt sbeneeneas 269
19.2 Organization Structure and Policiescccoooiiiviiiiiiiiiiiiiiiicccccce 271

19.2.1 Project Organizationcccceceviiiiiiiiiiiiiiiiiiiiiiceseses 272

19.2.2 Line of Business Organizationc.ccccceevuviriricicicciininininiecenceeenes 273

19.2.3 Program Management Organizationccceceeiviiiiiininiiinininneneenn, 274

19.2.4 Internal IT Organization STrUCTULEoveuiirueiiririeiieeeicieee e 275
19.3 Motivating the Teamccccveiiiiieiniiieicecee e 275
19.4 Team EffECtiVEnesscoevieiriiniiineieinieiei ettt 276

19.4.1 Appraisals.......ccooiiiiiiiiiiiiii 276

19.4.2 Performance Measurementceevveeeuerieieuinieneeienieniesesieneeesieseesesieneeneene 276

19.4.3 JOD AlLOCAtION....ctitietieeietieiieeieieie e ste et eee et esbeseesteeeeeseessessesenes 277
19.5 Training ..o 277
19.6 NUITULING ottt 277
19.7 Conflict Management.........c.ccueuiuiiiiniiiiiiiiicicicciiiiice s 278
19.8 Knowledge Management........coouvucuiiniiiiiiniiininiciiicisiceeceseeeee e 278
19.9 Communication Management..........ccocueiiiniiiiiiiiiiiiiiicee e 279
19.10 CaSe STUAY . .veuveviiiieiirieeetrteteteteet ettt ettt ettt sb ettt sae e 280
RevIEW QUESTIONS. ...euveeuiiriiieiiesiteitet ettt ettt ettt ettt et be et et eae 280
Recommended Readings.........ccovvveueiiiiiiinieiiiniiiincciecececee e 280
Customer Managementceeereeeieeniensseessessnssesssesssssesssesssssssssssessesssssassssessasssssssess 283
20.1 INTOAUCTION ttutiiiiiieiieitetete ettt ettt st sbe et et ees 283
20.2 Customer Expectation Managementccovviiiininiiininiiiiciciicicns 285
20.3 Negotiation Management.........cocviiiiiiiiiiiiiiiiiieiee e 286
20.4 Rapport Building Management...........cccccevueuieiiiiiiniiininieiieiecceeeeeees 287
20.5 Reporting Management..........cccoueiiiiiiiiiiniiniiiieiiieiec e 287
20.6 Return on INVEStMENT....cc.evviriiririiiieieieieieeie sttt 288
20.7 Bottom LINe ..ccueeoviiiiniiiiiiiiiiece e e 288
20.8 CaSE STUAY..veueeuirienieiertiieiesiet ettt 289
ReEVIEW QQUESTIONS. ..ttt ettt sttt e et e et e st e e saneeaae s 290

Recommended Readings.........e.evveeueiniiuiinieiineiiniccnecsecenee e 290

XVi

21

m Contents

Supplier Managementcueeiueieneniessnesesisessesisessessssessesssssssssssssssesssssssesssssssessens 291
211 INErOdUCHON ..o 291
21.2 Supplier Search Managementcceueurueucuciiiniiininiiiccccccrseeee s 292
21.2.1 RFP and RFL..ccocioiiiiiiiiiciic ettt 292
21.2.2 Supplier QUalificationscccvveueuirieieririeiiirieierse et 293
21.2.3 Supplier EXPeriencecocouvivieiriricininieiiinicetseteeseeeese e 294
21.3 Supplier Agreement Management.........c.ecevueueirieuieriereninieieereeseeseeseereeseenennnes 294
21.3.1 ShortTerm AGIeCments .. .ccevrvereeerirreireereeerieietreereeseereesseseesaeseesnesenes 294
21.3.2 Long-Term AGreementsccceerueeruiruereinieieiinieeeesieeeesneseeesnesneneas 294
21.4 Supplier Communication Management........oeeeerueueriruereninierinennerennneeneererenennens 295
21.5 Organization STIUCTULE.....cc.eoueuiruerieiirieeeieeteeeie ettt see et se s e e ssesaeneas 295
21.6 Account Managementcccuvuiiiiiiiiiiiiininiiicieeess e 296
21.7 Project Offshore Transitioncceeueeerieuiirieririniciiriccrseceere e 296
21.8 CCaSE STUAY veuveuiienieiirteieitetet ettt ettt 297
RevIEW QUESTIONS. ...euvteutiriiiriteitiet ettt ettt et et st be e et 298
Recommended Readings.........ccoivueuiiniiiiiniiiiiiiiiicciieccee e 298

PART V. TOOLS AND TECHNIQUES

22

23

Software Project Management Tools Introductioncoeeeirensensenseisecsncsncsscsnessennes 301
221 INEFOAUCTION cuttitinietiteiei ettt ettt sttt eb et 301
22.2 Compatibility with Environmentccoeveerinieininieinniciieccnnccneiecneieeees 302
22.3 €08t Of TOOL.uiuietieeieiieiieieeieee ettt ettt ettt sbe et eaeeasess s bennas 303
22.4 Data Integration among Tools.........cccoeiiiiiiniiiiniiic, 303
22.5 Existing SKills 0n TOOLSc.ccuiuiuiiiiiiiiiciciciiiccccee s 304
22.6 TOOl ODSOLESCENCEeuvinrviiiniiiniiicitrtcetrtee ettt 304
22.7 Scale of OPerationc..ccueuerueieirienieinieieenieeetstete sttt ettt neeaea 304
RevIEW QUESTIONS. ...euvieutieiiieiiesiieitet ettt ettt ettt b et st e bt e e enseene 304
Project Management and Software Life-Cycle Toolsccouvuruerunenreinnienuesniennennene 305
23.1 INErOAUCTION ttutiiiiiieiieietee ettt ettt st e e eas 305
23.2 Requirement Management Tools..........ccccociiiniiiiniiiiniicc, 306
23.3 Software Design Management Toolscccccuveiiiniiinniiiniiinccceces 307
23.3.1 CASE TOOIS c..cuiiiiiiiriiicieicteecee ettt 308
23.3.2 Modeling ToOlscorivieiriiieiiiiinctec s 308
23.4 Software Build Management Tools.......c.ccveuieirieiiniinniciieceeenices 308
23.4.1 Integrated Development Environment Toolscccceveuevniccnncinnenene. 309
23.4.2 Source Code Control TOOlsccceverueiiirieirinieieireieeeesee e 309
23.4.3 Rapid Application Development..........ccccocuiiiiiiiiniiiiiiiiiiiiiiie, 310
23.5 Software Testing Management Tools........cceruriecinieininiecniecinecneceeeeeeee 310
23.5.1 Test Management........ccuvueeueiruinieiirieneeeeieteieeteeee et 310
23.5.2 Defect Tracking.....ccoueveirieieoinieiiinicicirietctret ettt 311
23.5.3 Automation ToolS....c.cccuerieriieriieiieiesieieeie e 311

23.6 Project Management Toolsccooouviiiiiiiiniiiiiniiiiiccc 311

24

25

Contents ® xvii

23.6.1 Project Planning Tools.........ccoeiiiiiiiiiiiiiiiiiiiicicccccns 312
23.6.1.1 Configuration Management Tools...........ccoeuruiiiiiiininnnnnes 312

23.6.1.2 Communication Management Toolscccoccoevvciiniinnnee, 312

RevIEW QUESTIONS. ..ceuveeutieiieeiieteeteet ettt ettt ettt st sbt et et st e saaenaeen 313
Recommended Readings.........c.ccuvueuiiiieiininieiinieiiicieeeceteee s 313
Software Project Templatescceceerrensensenrensiisuisncsninnississessensensensesseissessessessessesseses 315
0 B U3V e Yo AR Lol (o) WP 315
24.2 Software Life-Cycle Template Guidelines......c.coecerirueinniecinieinneinnicinccneen, 316
24.2.1 Software Requirement Template Guidelines...........ccccocciiiiinininiincnen 316
24.2.2 Software Design Template Guidelines..........ccoouviriiiiiiiiinnnniccnnn 319
24.2.3 Software Build Template Guidelinesccccceveviecininieinencincnncncnne, 321
24.2.4 Software Testing Template Guidelines.........occcvveeciniiiinciinnninnenne, 323

24.3 Project Management Template Guidelinescccooeveiniiioiniiinicnnieinecee, 325
24.3.1 Work Breakdown Structure (WBS) Template Guidelines.........ccecenueeeee. 325
24.3.2 Project Planning Guidelinescccoeveeivuerecininerineccneiineceneeenenenes 326
24.3.3 Project Monitoring and Control Guidelinesccccveveeineccneinnnenne. 326
Recommended Readings.........c.eovvieueinieiininieinineininicieeiecneeneeceseeieeseevee e 327
Future Tools and Techniquesccceverversensensensensisnisuinisesessensensensessessesssssscssssssenes 329
25.1 INEEOAUCHION 1.ttt ettt e e et e et e eaeeeaneeenaeeenee s 329
25.2 Software Industry Trendscc.eceverieinienieininicineeec et 330
25.2.1 OPECI SOULCE...uveutenriririieieeiteiteieetesteste sttt et et nesnenesresaesre et eseeneenesnenne 330
25.2.2 Application Service Provider.......ccoeeeiveuioinieinnieieieinneieeecneeeees 331
25.2.3 SOfTWALE @S @ SEIVICE..cvviiriieiteeieeeeteeeteeeeteeeeteeeeteeeeeeeeaeeeeeeeseeeeteeenreeenees 331
25.2.4 Service-Oriented ArchiteCtureoouvivvieciieeiieeeeeeeee e 332
25.2.5 Intelligent Web SITes.....ccoeveeireriineieinieiitrieieineceere et 332
25.2.6 WD SEIVICES...ciiuviiieiiieteieeteeeeeee ettt et eeeae e e re e e aeeenes 332
25.2.7 Streaming Mediacccocuiuiiiiiiiiiiiniiiiiii e 332
25.2.8 S0CIal NEtWOIKS....oovviieeiiieiiceie ettt 333
25.2.9 Influence of New Trends on Software Industryccccccvivinirininicicnnee 333

25.3 Software Requirement Management Tools.........ccceeiniiiinniiniiniiiice, 333
25.4 Software Design Management Toolsccccouveiniiiniiiiinniinccneieces 333
25.5 Software Build Management Tools.......c.cccoeieiiiiiiniinnciicciccces 334
25.5.1 Automatic Code GENEIatOr......cccuiieuvreereeeerieeeeeeteeeeeeeereeeereeereeeeeeeree e 334
25.5.2 Integrated Development Environment Toolsccooveveinnccineccnncnnes 335
25.5.3 Programming Languageccccoeiviviiiiiiniiiiiiiiin 335

25.6 Software Testing Management Tools.........cccrvrveinieiiniiecneeinecneceecenee 335
25.6.1 Test Management......cccvvuiiiiiiniiiiiiiiiiiiicecs e 335
25.6.2 Defect Tracking.....cccoueveirieieoinieiiinieicinieinecse ettt 335
25.6.3 Automation ToolS......cccviiuiiiiiiceiiectieeeeee et 336
25.6.4 Test Creation TOOIS.....cuiiiiieieieieiieeiee ettt eeeaaee e 336
25.6.5 Test Coverage Tools......ccccocuiviiiiiniiiiiniiiiiicicce 336

25.7 Software Project Management Toolscccccvciiiiiiiiniiinnicics 336

Recommended Readings.........ccouvueuiiiiiiiiiniciiiiiiicincctec s 337

xviii ® Contents

Appendix A: CMMI Process Standardscovevevveiseiseisninnininecessensensensensessesssssscssssscessenes 339
Appendix B: ISO Standardscoeeevenenieneninsinniinienieneenienenenesinesnininsseesesesessssaes 347
Appendix C: IEEE Standards.......cucoiiniinenniinniininnniniininnniniiniiseoiinisesisosesensos 355
Appendix D: Agile Processes for Software Development........coceeecenseieirnesnesnesneseesessenaes 373
Appendix E: Impact of Offshoring on Standards........cceevevrevenrensensensennisennncsnesnesnesensennes 385

Appendix F: Review QUEStion ANSWELS...coucereiereisecsuissensesssessesssesssecsesssesssessssssesssessssssesnns 391

Preface

When I was searching for good books on software project management, I found many interesting
ones that had been written by experts in this field. These books contained valuable information
on many topics covering software project management and related subjects. I was therefore sur-
prised when a friend of mine who is a professor at a renowned Indian university told me that his
students find it difficult to get good books on this subject. On going through the syllabus, though,
I realized that none of the books available in the market covered more than 50% of the syllabus.
My friend agreed that this was the case and that is why his students had to refer to several books
to cover their syllabus. Based on my friend’s suggestion, I decided to write a textbook that would
cover the entire syllabus of software project management. This book is the result of that effort.
Thus, students need not refer to other books for their courses any longer.

When I started writing this book, I wanted to ensure that it covers most of the syllabi pre-
scribed for software project management at major Indian universities. In the process, the book has
become comprehensive enough to cover most of the syllabi at major universities around the world.
I have ensured that major topics have been covered in depth. I have also provided a case study that
runs through the book covering most of the topics.

Structure of the Book

Most of the books available in the market are written with the intent of covering siloed informa-
tion. Chapters are grouped in broad areas such as “quality control,” “measurements,” etc. This
book has been written in the same flow as any software project. Part I covers project manage-
ment and Part II covers the software life-cycle management. Part III covers topics such as process
improvement, process selection, etc. Part IV covers people management and Part V deals with
technology management.

One of the most important aspects of large, modern software projects to build industry
strength and reliable software products is to continuously improve software engineering processes
so that cost can be reduced and schedules realized. At the same time, the quality of software
products should continuously be improved. Part I1I elaborates on how these goals can be achieved.

Any software project management book should cover the areas of software engineering man-
agement, project management, people management, and technology management. If any of these
areas are not covered, the book will not be of much use.

xx M Preface

Scope of the Book

This book covers several areas, including human resources, software engineering, and technology.
All the topics covering these areas are discussed up to the level required for software project man-
agement. For advanced studies in these areas, the reader should refer to books written exclusively
for these subjects. In this book, we will focus on areas that apply to managing software projects.

Part III focuses on software engineering processes and various software engineering process-
ing models devised by organizations like the Software Engineering Institute, the International
Organization for Standardization, and the Institute of Electrical and Electronics Engineers. Part IV
deals with the human side of project management and contains chapters on team management,
supplier management, and customer management. Part V deals with technology, techniques, tem-
plates, and checklists that help project teams in accomplishing their goals.

Work on software projects is primarily done by people. They take help from technological
tools and techniques to improve their productivity. Software engineering helps the project team
in accomplishing their work in a more organized, consistent, and efficient way by providing a
structured and well-defined process to do their work. This book is structured in such a way that
Part I describes how to do project management with detailed information on project and process
management using skills and experience needed (described in Part IV) with the help of tools
(described in Part V) in a structured manner (described in Part III) to develop work products
through processes described in Part II.

Case Study

I have purposely chosen a case study that pertains to a company that is developing a software
product. Agile development models are currently the rage, and this is for good reason. For prod-
uct development, agile methodology is truly amazing. Nevertheless, this methodology has some
shortcomings, one being difficulty in adapting it for geographically scattered teams that may be
working in different time zones. In such a situation, the most challenging aspect of project man-
agement is to be able to communicate effectively. Agile methods demand that all team members
be co-located so that high-bandwidth casual communication can take place among them. This
makes offshore teams a complete no-no. The other shortcoming of agile methods is lack of docu-
mentation. Five years down the line, when the product has grown enormously and most of the
original team has moved elsewhere, it will truly be a daunting task for a new member to under-
stand all that code and make required changes. It will be simply impossible! To understand what
I mean, look at the codes of some of the largest software products like Linux, which was built as
an open source project using some sort of agile methodology. It is indeed extremely difficult to
change any code inside the Linux kernel. The third shortcoming of agile methods is their inability
to adapt to parallel and concurrent development. This means that if a large product is needed to be
developed quickly, it will not be possible to do this with agile methods. So if a product containing
one million lines of code is needed to be developed in a short time of 1 year (that is right, 1 year to
be exact), then the total effort required for this project will be 500 months for one person to write
it if we take productivity figures of 2000 lines of code per month per person (which is quite reason-
able). This means about 42 years. Now if we want to do this in 1 year, we will need 42 people to
do it. Managing 42 people on an agile project is impossible. At the most any agile methodology
permits 20 people. Many projects are even bigger than one million lines of code. Most government,
banking, and large corporate software products consist of more than 10 million lines of code.

Preface ®m xxi

In these cases, agile methods will not work. You need to adapt some method that will permit par-
allel development where many teams can work on the project concurrently so that the product can
be developed within 1-2 years instead of, say, 10 years.

The case study presented in this book is a good example of how to adapt to given situations and
be successful. After all, offshoring provides several benefits and cannot be ignored. Documentation
too is a very important aspect of software product development and should be adhered to. This
case study provides a good insight as to how to address the challenges of communication manage-
ment, documentation, and concurrent development even when the development methodology is
to take the benefits of agile methods.

Students reading the book will have a chance to look at the inner workings of a real, success-
ful project. All aspects of a regular software project are covered in the book. To make it more
beneficial, the case study has been divided into several parts, and relevant parts are provided at
the end of most of chapters. Therefore, after getting a good grasp of the concepts provided in a
specific chapter, students can go through the case study and get a feel of the practical aspects of
those concepts.

I hope this book will be useful for the intended readers. For any suggestions to improve the
book in future editions, please write to me at ashfaque.a@gmail.com.

Author

Ashfaque Ahmed has more than 22 years of experience in the
software industry. He has a BSc in engineering and an MBA in
information systems. He has worn many hats during his career,
including that of a project manager, test manager, system ana-
lyst, and business analyst. He has managed projects of sizes
varying from a few thousand dollars worth to projects worth
millions of dollars. Some of the larger projects ran for a span of
more than two years. He has also worked on software product
development projects that typically run for decades and that
i keep adding new features and modifying existing product fea-
tures almost endlessly.

Ahmed is a popular author. He has recently authored a book titled Software Testing as a Service,
which was published by CRC Press, Boca Raton, FL, in September 2009. He has written more
than 15 research papers for Technology Evaluation Centers and Tech Target. He is also a contrib-
uting author at Technology Evaluation Centers (www.technologyevaluation.com) and an expert at
Tech Target Application Development Media Group (http://www.techtarget.com/).

xxiii

PROJECT I I

MANAGEMENT
FUNDAMENTALS

Chapter 1

Introduction to Software
Project Management

In Part I, we will learn

What is software project management?

What are various components of a software project?

What are various processes of a software project?

How are effort estimate, project plan, risk plan, etc., made?

How are projects monitored and controlled?

What is the impact of software development model on software project management?

In this chapter, we will learn

What is a project?

What is a software project?

What processes are involved in a software project?

How are people, processes, tools, and technology integrated in a project?
What are the characteristics of a good project manager?

What are the subprocesses in the area of project management processes?
What management metrics are measured in software projects?

w

4 m Software Project Management: A Process-Driven Approach

1.1 Introduction

As per data from Gartner and other research agencies, about 25% of world gross product is spent
on various kinds of projects. More than $10 trillion were spent on projects out of world gross prod-
uct output of $40.7 trillion in 2008. Most of the expenditures in information technology (IT) and
software are considered as expenses in I'T and software projects. More than $2.7 trillion were spent
in 2008 on IT and software projects. That means out of all expenditures in all kinds of projects,
IT and software projects represent more than 25%.

In major economies of the world, millions of people are employed in the IT and software
sector. In 2008, more than 4 million people were employed in this sector in the United States.

Indeed the IT and software sector is one of the biggest employers in major world economies.
Moreover, more people are expected to be employed in this sector in the future as it is growing fast.

1.2 What Is Project Management?

Project management can be broadly defined as starting an activity to achieve some stated goals
using limited resources, budget, and time. During the project, resources and budget are consumed
in a limited span of time (Figure 1.1). After the project is finished, the unconsumed resources and
budget should be released. Since each project is started for a customer, a fourth dimension in the
project is also added. It is customer satisfaction. The customer must be satisfied with the goal
achieved by the project. This goal could be the creation of any product or service.

So we can see that there are inputs to the project in terms of resources, budget, and allocated
time duration, and the output of the project is the achieved goal. A project must be initiated. To
execute the project in a systematic manner, it is better to have a project plan. During project execu-
tion, some risks may arise, which may end up jeopardizing the project plan and in fact the entire
project. So we should have some controlling measures, which can be employed to tackle any risks
arising in the project successfully to avoid the project getting jeopardized. By the time project
execution ends, we must have a proper project closure so that we can end the project. In Figure 1.2,
you can see these project processes.

1.3 What Is Software Project Management?

Before moving to software projects, let us first discuss I'T projects. But even before discussing I'T proj-
ects, let us understand IT and software and their differences. IT is a field where an IT system refers
to a complete system comprising many parts like hardware systems, software systems, and any other
components from some other fields. A complete IT system can be used for any purpose like running
a business, doing research, use in robotics, use in automation systems, etc. For instance, a robot is

Project
consumes

A

Resources Budget Time

Figure 1.1 Any project consumes resources, time, and budget.

Introduction to Software Project Management ® 5

Project Project planning | Project monitoring Project
initiation and control closure

Figure 1.2 Project management processes.

IT system
components
y
Other than
Software system Hardware system software/hardware
parts

Figure 1.3 IT system components.

mostly a hardware device, but the information or instructions given to it to do some things are done
using a software system. In other words, we can say that the brain of the robot is a software system and
other parts of the robot like its limbs and sensing devices attached to it are hardware parts (Figure 1.3).

Generally, when we refer to IT, we mean the combination of software system and the computer
hardware in which the software system will be running. For example, a business software applica-
tion for doing transactions may be a complete I'T system when the software system is installed in
the computer hardware system and is ready to be used by end users.

Since software is being used in many new industries and we use more and more software systems
in our daily lives, it is now becoming part of most things we see or interact with. Our vehicles now
have computers. (Computers were not part of automobiles up until the 1970s, but after the 1980s,
they slowly started appearing in many car models.) Our gadgets of daily use (music systems, air
conditioners, washing machines, etc.) now have some sort of computer built into them. In manufac-
turing industries, industrial robots have been used since the 1950s. Now these robots are becoming
sophisticated with more advanced software systems to control them. More recently, the ubiqui-
tous mobile phone handsets have been the major beneficiaries of advancement in software system
capabilities. In fact, more than 40% of all spending on IT budgets now goes to the telecom sector
(mostly mobile and communication applications), which is a part of the IT industry (Figure 1.4).

So an IT project could be for setting up an enterprise-wide software system (along with the
hardware to run it) to get business intelligence capability, manage store operations, or manage
warehouses, etc. Tasks involved in such a project could be building (developing) the software

6 m Software Project Management: A Process-Driven Approach

Software system

applications
. . - Fi ial [Manufacturi Retail and
Automobiles Robotics Avionics inancia a.n wacturing) - fe ;'11 ax?
systems industry distribution

Figure 1.4 Application of software systems in many industries.

system, buying the computer hardware to run it, installing the software in the computer hard-
ware, preparing the network of computers (if it is an enterprise-wide system), and finally config-
uring the software system so that it can run on the network of computers.

A software development project on the other hand is making software design based on cus-
tomer requirements and implementing it into source code. This source code is then tested to make
sure that it is defect free so that end users can use the software system without running into many
problems. In software maintenance project, an already existing software product is modified to
remove software defects, add new functionality, port the software product on some other operat-
ing system, etc. Software development and software maintenance projects together are referred to
as software projects (Figure 1.5).

Software projects demand not only general project management skills but also good soft-
ware engineering skills [1]. A goal of any software project management is to develop/maintain
a software product by applying good project management principles as well as software engi-
neering principles so that the software project is delivered at minimum cost, within minimum
time, and with good product quality. Good project management principles will ensure good
productivity. Good productivity in turn will ensure that the project is delivered in minimum
time at minimum cost. Good software engineering principles will ensure good product quality.
Even though how software engineering principles are formulated may not be in the domain
of software project management, adopting those principles in their projects definitely comes
under the purview of the job of a software project manager. For instance, a project manager
responsible for managing a civil construction project must have knowledge and experience
in civil engineering. An electrical engineer managing a civil project will not be a suitable fit.
Similarly, a project manager responsible for managing a software project must have knowledge
and experience in software engineering.

Software project
tasks

Requirement
management

Design
management

Source code
building

Software
testing

Software
deployment

Software
maintenance

Figure 1.5 Tasks in software projects.

Introduction to Software Project Management ® 7

software testing,

construction,

Project Project planning Project monitoring Project
initiation (requirement and control closure
development, (requirement
software design, development,

software software design,
construction, software

software software testing,
deployment, software
software deployment,
maintenance) software
maintenance)

»
-

Figure 1.6 Software project management processes with software engineering processes.

Project management processes may include project initiation, project planning, project moni-
toring and control, and finally project closure. The software engineering processes may include
requirement development, software design, software construction, software testing, and software
maintenance. These software engineering processes have to be somehow accommodated in project
management processes (see Figure 1.6).

In a nutshell, software project management can be defined as applying project management
and software engineering methods to develop/maintain a software product so that the goal of
developing/maintaining a software product can be achieved using minimum possible resources
and money and within the minimum time possible.

1.4 Importance of Software Projects

Importance of software project management can never be emphasized more when we observe that
it is the single most influencing factor that is touching our lives in many ways day by day. The pace
of software products used in many walks of life is increasing every day. This necessitates the devel-
opment of software products in new areas, which would not have been imagined 10 years back.
That is why the number of software projects and volume of work performed in these projects are
increasing tremendously. On average, money spent on IT and software projects has been increas-
ing on the order of 10% or more annually for the last 30 years worldwide. This increasing pace of
spending on IT will continue in the foreseeable future. Clearly, the software and IT industry is the
most significant change agent that is shaping our lives. In this context, people who are building
and managing software and IT systems are playing an increasingly important role in our society.

1.5 Problems in Project Management

In the previous section, we discussed the importance of software projects and the important role
played by the people who are managing these projects. But these people are also facing unique
problems. Unlike other industries where engineering practices are well established due to the vast

8 m Software Project Management: A Process-Driven Approach

Software project

challenges
/
. Immature .
ngh levgl of software Lack of Immature Imma}ture Complexity Amplguous
innovation engineering proper skills tools techniques requirements

Figure 1.7 Typical challenges encountered in software projects.

amount of research and development done for hundreds of years, the software industry is rela-
tively new. Software engineering has been in existence only for last 60 years or so, starting from
the 1950s. Lack of sound engineering practices makes software project management a difficult
proposition. Requirements and software design specifications in the software industry are still
immacure. Tools, technologies, and models for software projects are still evolving. Education and
training required to work on software projects are also still evolving, resulting in people working
on software projects with less than desired skills. A person responsible for managing a software
project thus truly feels inadequate due to less than perfect circumstances under which he is sup-
posed to perform (Figure 1.7).

Project management for any kind of project is a complicated matter. When the project size
is big and the nature of the project is complex, managing the project becomes a daunting task.
Project managers have to comply with government regulations, meet deadlines; deal with suppli-
ers, staff, and customers, report to higher authorities, and tackle issues and myriad tasks planned
or unplanned on a regular basis.

When it comes to big software development projects, some more complexities get added. In
the software industry, finding and retaining skilful and experienced resources is a big challenge.
Software projects are often outsourced. Software projects often involve teams located at many
sites. These sites may be scattered over geographically far flung locations. There may be large time
differences due to different time zones of these sites. People working on these projects are from
different cultures. They may have different work ethics, may have different productivity levels, and
may speak different languages.

Another highly important factor that makes software development/maintenance projects ever
so different from other kinds of projects is the level of innovation and creativity required to deliver
[2]. Software professionals are not only required to deliver as per specifications given to them but
they need to use their intuition and capability to think out of the box to deliver software design
or software prototype or software code. So software building is not only a science but also an art.

Due to these factors, communication, effort estimation, work distribution, reporting, work
tracking, team management, etc., get affected (Figure 1.8).

How can a software project manager handle his project successfully, given the difficulties
mentioned earlier? It may seem like a superhuman effort to manage modern day large software
development projects. Yet, a large number of software development projects are being executed
successfully even though these challenges always pose huge threats for these projects.

How do successful project managers manage their projects? What tools help them in their
job? What kind of preparation do they do for the project? What kind of processes do they adopt?

Introduction to Software Project Management ® 9

Impact of
challenges on
software project

Communication Team Effort Work Project Work
difficulties management estimate distribution reporting tracking

Figure 1.8 Impact of challenges on software projects.

What kind of experience is required to be a successful project manager? What makes them a suc-
cessful software project manager?

Any software development project has one goal: To develop a software application or product.
A given software application or product could be for internal use or sold to customers. When software
is developed for use by the organization itself; it is known as a software application. When software is
developed for the purpose of selling to customers and not for use by the organization itself then it
is known as a software product. The organizations who develop such software products are known
as software vendors. Now a business can decide to outsource development of the software product or
application instead of developing it in-house for many reasons. The software vendor can outsource part
or full software development activity to some software service provider. This way, the outsourcing and
supplier management angle gets added to project management.

Whatever the situation is, the development team that builds the software application or
product needs to focus on developing the application or product and not on any peripheral activi-
ties. But modern day software applications and products are large and complex. Building them
involves a lot of things, and in the process, the team may easily lose its main purpose, that is, to
develop the software application or product. One way to avoid this kind of drifting away from
the focus is to have a defined project process and use this process map to chalk out a project plan
as to which tasks will be done at what time, in what sequence, who will be responsible for these
tasks, etc. This kind of planning based on a process structure is extremely useful for large and
complex projects.

1.6 Processes in Software Projects

What is process? Process is a defined way of doing things. Any task we want to do in our daily life
needs to be done by taking a series of action steps that results in completion of the requested task.
That means a process to do a task can be broken down into certain series of steps. For instance, if
you want to withdraw money from your bank account using an automatic teller machine (ATM),
you need to first find a nearby ATM machine, then you need to insert your debit card in the slot
in the machine, enter your password, specify the amount you want to withdraw, take the money,
and finally remove your card from the machine.

In Figure 1.9, you can see all the steps involved in the process of withdrawing money from
an ATM.

10 m Software Project Management: A Process-Driven Approach

Go to ATM o Insert debit »| Enter password
card
Press OK button | Enter amount | Press OK button
Take money | Take back debit
from slot card

Figure 1.9 Process of withdrawing money from ATM and the process steps involved.

Coming to software projects, there are many processes going on in any software development
project [3]. We can classify these processes under the following categories based on their priorities:

1. Evolving processes beyond a project: As can be seen from evolving software engineering prac-
tices, software projects are no longer seen in isolation. Software engineering is striving to
make sure that software projects should be completely predictive and measurable. Based on
project size and productivity, a project manager should be able to calculate project cost and
schedule for a software project easily. At the same time, software engineering also allows
for continuous improvement in project and organizational processes to improve quality and
productivity. So a continuous improvement process also runs above projects at the organiza-
tional level. These processes are discussed in Part IIL.

2. Project management processes (project initiation, planning, control, monitoring, and closure):
These are the processes that get influenced by top-level processes and govern lower-level
processes related to software development. Project management processes are the ones that
help the management to see what is going on in the project and also allow them to control
the project. So these are management processes. These processes also include the processes
for project risk management, effort, cost estimation, etc.

3. Software development life-cycle (SDLC) processes (requirements, design, build, testing, main-
tenance, etc.): These are the development processes that actually build the application
(Figure 1.10). These processes are discussed in Part II.

1.7 Project Processes, People, and Technology

Organization level processes are the top-level processes that influence working of a project from
outside while subprocesses in an SDLC process are the lowest-ranked processes. The other pro-
cesses come in between these processes. The way these processes are set up and implemented
impacts the way a software development project is handled [4].

Apart from these processes, there is a direct impact on the project by the customer, whether
external or internal. That is why customer expectation management is a complete subject in itself as
the customer has the most important influence on any project. Style of functioning of the project
manager also influences the way the project is executed. Then of course, it is a matter as to how to
deal with the project team members. Software developers are highly skilled people and they need to
be provided with the best environment to get maximum output from them. Then comes the case of

Introduction to Software Project Management ® 11

Organization processes

Project processes

Life-cycle processes

Figure 1.10 Processes involved in software development projects and their boundaries.

Factors influencing a
software project

Y

Supplier Customer Team Technology Software
development
management management management management model

Figure 1.11 Influencing factors in software projects.

suppliers (service providers) who are increasingly deployed to get leverage in terms of getting skilled
manpower and expertise. Project managers need to get maximum value from every buck they have
to spend on these suppliers. So supplier management is an essential ingredient in projects where the
entire project or part of it is outsourced to software service providers (Figure 1.11).

Software projects are also greatly influenced by technology. What technology best suits a proj-
ect depends on a large number of factors including productivity, capability, reliability, technology
availability, technology maturity, technology skills, etc. Managing the technology in software
projects thus also becomes important. Each technology has its own limitations apart from the
benefits it offers. So choosing the right technology for the job in hand is a very important consid-
eration for any project manager. Technology selection will be based on considering the best fit in
the perspective of job requirement, skill availability in the project team, and productivity.

1.8 Successful Software Project Manager

A successful software project manager [5] should be able to understand not only how a project
should be planned and executed but also the processes beyond the project itself. He should
learn the environment in which he should be planning and executing the projects. No doubt,
software projects are extremely challenging; nevertheless a good framework to plan and execute

12 ® Software Project Management: A Process-Driven Approach

Requirements for a
successful software
project manager

Y

Understand Understand Understand Manage team, ‘Work under
project software technology and customer and organization
management engineering tools suppliers framework

Figure 1.12 Requirements to be a successful software project manager.

a project definitely helps. Human beings can think and can be creative; but they also make mis-
takes unlike robots or machines. But unlike robots and machines, human beings can do creative
things. Software project tasks require a lot of creativity and that is why they are very human-
intensive activities. At the same time, compliance to good framework ensures that these human
mistakes are avoided or at least minimized. Frameworks also ensure that there is a good way of
working on assigned tasks and outputs are measurable (Figure 1.12).

Software project managers should understand these practical aspects and should plan and
execute their projects accordingly to be successful.

More detailed information about the role of a software project manager, project management
skills, etc., are discussed further in Chapter 18.

1.9 Project Management Processes

Project management processes form the basis on which a project can be initiated, planned, moni-
tored, controlled, and closed. On the other hand, software engineering processes define structure,
steps, and procedures to do various tasks in software development. But these processes lack the
ability to schedule, plan, and control themselves. It is the project management processes that do
the job of scheduling, planning, and controlling software engineering processes.

1.9.1 Software Project Initiation

As we have seen in an earlier discussion, there are three kinds of processes running in an orga-
nization that develop software products or applications, namely, software life-cycle processes,
project management processes, and organization level processes. Next, we will learn project
management processes. The first among project management processes is the project initiation
process.

We can further divide the initiation process discussion into processes for application initiation,
product initiation, and product implementation initiation.

1.9.1.1 Software Application Development Project Initiation

A software development project not only involves huge costs but also much resources and time
even if the software project or a part of it is outsourced. Large software projects have great impact

Introduction to Software Project Management ® 13

Software project
initiation tasks

Initial
schedule Project Project Project Initial effort | Initial cost
. charter scope objectives estimates estimates
estimates

Figure 1.13 Software project initiation tasks.

on the company that will be using the software product, which is either developed in-house or
outsourced. So a large software development project carries many high risks. It becomes one of the
most important points on the agenda of the top executives.

All these things imply that large enterprise level software application development projects are
very important. They carry this tag and everybody can see it and feel it.

This also means that the project must have a give-away sanction from top management. If this
sanction is not there and if the top management is not able to back the project fully, the project
cannot move ahead. Even before its start, the project dies.

Now if the top management is excited and gives approval for the project and a project team is
being formed, then the project may start (Figure 1.13).

During the initiation phase of a software application development project, the project charter,
project scope, project objectives, and initial risk planning and effort estimate are prepared.

1.9.1.2 Software Product Characteristics

Before we move on to project initiation for building software products, we should know that they
are very different from software applications. Throughout this book, terms like software applica-
tion, software products, and software systems have been used interchangeably. If any of these terms
are used anywhere, please note that the subject matter discussed there applies to all of these three
things equally. Software applications are specifically built based on a limited set of user require-
ments. So they have limited features to fulfill the specific needs of end users.

Software products on the other hand are built with a large number of features to take care of
the needs of different kinds of users. Mature software products built over several years contain
many varied features so that end users with varying needs can use these features. Software vendors
also keep building new features, and over the years, the enterprise resource planning (ERP) and
big commercial off the shelf (COTS) systems become massive in size (ERP and COTS systems are
examples of large software products).

These COTS systems are also very robust. They can be run on all supported platforms without
any problem. Robustness is a special feature built into software products.

They are also reliable. They are thoroughly tested before they are introduced on the mar-
ket. Software vendors test thoroughly to make sure that their product does not have many bugs
because if the released product has many bugs, it will fail on the market and also will create a bad
reputation for the vendor. So they make sure that their products are defect free.

Most of these COTS systems have open interfaces so that they can be integrated easily with
other systems.

14 ® Software Project Management: A Process-Driven Approach

1.9.1.3 Software Product Development Project Initiation

With increasing popularity of COTS systems [6], a large number of software vendors are devel-
oping their software products. Some software vendors are developing large enterprise level soft-
ware products like ERP, supply chain management (SCM), customer relationship management
(CRM), and many other large software products. Recently, some other kinds of software products
have also become popular. These are known as software as a service (SaaS). Most of these applica-
tions are smaller in size and they are not general-purpose applications. Instead they provide very
specific functionality, which can be used by any other software product or application to comple-
ment some aspects of their own features. For example, an online flight reservation application
provided by one service provider can have links where they can get information about fares offered
by different airline companies. This online reservation system will be a hosted application with
a Web site interface. Users of this application can use the Internet to access the Web site and use
this application to book their air tickets online. The fares of these airline companies keep chang-
ing. To provide end users with currently offered airfares, these fares must be shown in real time
to end users. Some service providers get this information from airline companies and provide this
information to the online airline reservation Web sites through the link provided in the reserva-
tion application. The real-time information provided by these service providers is through an Saa$S
application. This application cannot be used directly by any end user. But in conjunction with
some other application, they provide a useful service.

Saa$ applications [7] can be used by end users on a subscription basis. If the application is big
and involves creating and maintaining databases, the service provider creates these databases for
its customers. Examples of large scale Saa$ applications include Salesforce.com (a CRM applica-
tion), OneNetwork.com (a retail management application), etc. These are large service providers
that provide their own application to customers using the SaaS model. Some other smaller Saa$S
service providers provide services like market research, customer support, and many other special-
ized services (Figure 1.14).

How are these software products made? After all, development of these software products does
not start with end-user requirements. The software vendor sees a market opportunity of develop-
ing such a product. He develops the software product and sells it or provides services using this
software product to customers. So basically, software product development starts when a soft-
ware vendor sees a market opportunity and then decides to develop this product. He uses market
research data to decide which features will go into the product. Accordingly, he forms a project
team and hands this information to them so that they can develop the software product.

So whereas a software application is created based on end-user requirements, a software product
is made using market research data.

Software product
initiation tasks

Product Product
Market Product Marketing . Product or
. development delivery .
analysis . features channels service
cost estimate method

Figure 1.14 Software product development initiation tasks.

Introduction to Software Project Management ® 15

During the initiation phase of any software product development project, the project scope,
risk planning, and effort estimate are made. But unlike a project that develops custom software,
effort and time estimates are also done beforehand. In fact, time to market for such a product is
a crucial factor, and thus, instead of time estimate calculation, team size calculation for boxing
the project under a tight time schedule is done. As per product development roadmap, a product
release plan is also developed.

1.9.1.4 Software Product Implementation Project Initiation

Small COTS applications do not need implementation. Mostly, they are installed from a CD
or downloaded from the Internet and installed. But bigger COTS applications like ERPs, SCM
systems, CRM systems, etc., require much effort to implement either at a customer site or at a hosted
site [8]. They are huge consisting of large modules. Their database layer is totally detached from the
application layer. In fact, the entire software product may consist of many layers.

Implementation of these huge packages is a different ball game altogether. If the product is
implemented without customization, then the project involves system installation, configuring
the application as per user requirements, database creation, data population, data migration from
legacy system, etc. It also involves integration between different modules of the application. This
kind of implementation is also known as plain vanilla implementation or bespoke implementa-
tion. This kind of implementation is done fast and can be completed in 1-3 months depending on
the size of individual tasks.

But most often, the application is implemented with some customization. Nowadays, an appli-
cation contains most of the business logic, which needs to be correctly configured. Customization
takes place more in reports. The application also needs to be integrated with other enterprise sys-
tems. A typical large-scale ERP system implementation takes somewhere around 1-3 years. But
this implementation time is shrinking due to increase in productivity of project teams as well as
advancement in technology.

During the initiation phase of any software product implementation project, the project char-
ter, project scope, project objectives, and initial risk planning and effort estimate are prepared
(Figure 1.15).

1.9.2 Software Project Planning

Depending on the characteristics of a project, detailed project planning is done either after project
initiation or after completion of project requirements. Generally, detailed project planning can be
done only after the project team has complete requirements for the project since the requirements
together with project scope determine effort, cost, and quality required. If complete details about
these things are not available, a baseline for the project cannot be made. In project planning the
main tasks that are to be planned are software life-cycle processes (refer to Part II for details about
these software life-cycle processes), which actually build the software product.

Any project faces external and internal risks. Software projects face risks related to people,
technology, process, and other areas. Due to these risks, the project schedule, cost, or quality may
get affected. Recognizing these risks and making proper plans to mitigate negative impact on the
project are taken care of by making a risk planning and executing them when they arise.

Depending on the software life cycle chosen, the project plan may vary. In the linear waterfall
model, the software engineering processes are executed linearly, and thus, in a software project,
each of the software engineering processes occurs just once. But in the case of an iterative life-cycle

16 ® Software Project Management: A Process-Driven Approach

Software product
implementation
initiation tasks

Migration from
legacy system

Customization
effort

Initial schedule Project Project Project Initial effort Initial cost
estimates charter scope objectives estimates estimates

Figure 1.15 Software product implementation initiation tasks.

Requirements

L Design
L

Construction

N

Testing

N

Release

L.

Maintenance

\

Initiation | Planning Monitoring and control Closure

Figure 1.16 Project management in waterfall model environment.

model, the individual software engineering processes can occur more than once. In some iterative
models, the iteration occurs between construction and testing. So these two processes can occur as
many times within the project as the number of iterations. At the extreme end of iterative software
development model, iteration can happen for all of the software engineering processes. So all soft-
ware engineering processes will occur as many times within the project as the number of iterations.
These variations are depicted in Figures 1.16 and 1.17.

1.9.2.1 Components of Project Planning

Software projects need many inputs for making project plans. They also produce numerous out-
puts in the form of separate plans for risks, communication, configuration and version control,
schedules, resource requirement and allocation, etc. All of these project planning components in
fact are complete plans themselves. A separate chapter has been devoted for each of the planning
activities of risk management, effort and cost estimation, and configuration and version control
management in this book.

You will learn about software project planning in detail in Chapter 6.

Introduction to Software Project Management ® 17

Requirements

X

L 5] Design

Pl

Construction

P L

Testing

<> Release

L.

A A

Iteration plan, monitor and control Maintenance

Initiation | Planning Monitoring and control Closure

Figure 1.17 Project management in iterative model environment.

1.9.3 Software Project Monitoring and Control

There have been many methodologies for planning, monitoring, and controlling software projects
like waterfall, agile, iterative, and many other models (refer to Part III for details about these
models). Software development and maintenance is still an evolving discipline, and so the way a
software project is handled differs from one project to another. Software technologies also keep
evolving. So it is difficult to plan, let alone monitor or control, a software project.

Due to the inherently risky nature of software projects, constant monitoring and control is
required to rectify any event that may jeopardize the project.

To monitor and control effectively, the project manager needs measurement data. The mea-
surement data come from measuring processes and product. So first project processes should be
planned such that their measurement can be taken, and secondly, it should be ensured that proper
measurements are taken. Only then effective project monitoring and control is possible.

You will learn about software project monitoring and control in detail in Chapter 7.

1.9.4 Software Project Closure

With the increasing use of statistical process control, project closure has become an important
activity in projects. During project closure, all project artifacts are analyzed and completed.
Data from these artifacts are transferred to central project repository so that these data can be
used for future projects. It has to be ensured that all project data are normalized so that the data
are useful.

You will learn about software project closure in detail in Chapter 8.

1.10 Configuration and Version Control Management

The most prominent aspect about software projects is the change in requirements during almost
the whole product development life cycle. Due to changing requirements, work done in software
development life-cycle processes also needs to be changed accordingly. This leads to many versions

18 ®m Software Project Management: A Process-Driven Approach

of work products in all phases of the development life cycle. Managing all these work products is
done using configuration and version control.

A project manager will be well equipped and prepared if he acknowledges the fact that require-
ments will keep changing. Once this need is established, the action plan for tackling it can be
established. The foremost need is to manage changes in requirements as and when they arrive.
Once this process is well established, the tasks affected due to these changes can be identified.
Once these tasks are identified, then a proper replan will have to be made.

The best solution for managing various requirement versions is to have a central repository
where all versions of requirements can be stored. All the team members working on the project
must have access to the requirements, irrespective of their scattered geographical locations. The
version control rights can be set as per requirements. People who have rights to change the require-
ment documents can make changes in documents and check in the documents back to the reposi-
tory. Other team members may have only viewing rights.

In organizations that are developing products, there could be many projects going on at the
same time. In those cases, it is the best policy to have many branches of the main requirement
folder. Each project team will have access to its respective requirement branch. Each team will be
responsible for managing its own branch.

You will learn about software configuration management in detail in Chapter 5.

1.11 Management Metrics

A business unit must keep improving its business processes over time; otherwise, it will become
extinct by the forces of fierce market competition. Improvement in business processes is impor-
tant because only through these improvements, a business unit can improve productivity of
its processes and improve quality of its products or services. If it is not done, the business unit
will become uncompetitive in comparison to its competitors and thus will face the danger
of becoming extinct. Better productivity provides means to cut costs and time, and better
product quality provides a chance to increase business as customer appreciation is the best
marketing tool.

Process improvement can only happen if you can measure it, compare it with best practices,
and then bring about changes in your processes. In the case of software development projects,
the management metrics are the productivity data for the projects [9]. The software work product
quality data are the technical metrics [10]. Throughout this book, both management and technical
metrics are discussed in detail at each level where it is possible to collect and analyze them and can
be used for making management and technical decisions (Figure 1.18).

Measurement of project processes during execution at regular intervals makes sure that the
product quality is always under control. These measurements also enable the organization to
improve its processes by assessing effectiveness of processes and making certain modifications in
these processes. When selecting any of the measurements for a project, the essential point should
be that they should be relevant to the project. It is also of utmost importance that the selected
measurements should have certain inherent characteristics so that they are meaningful to the
project. Again these measurements should be practical, should be calibratable, and should be done
at a minute level and not at a gross level. Gross level measurements fail to point to the root causes
of problems.

Over the years, several metrics have been defined and used in projects. Many of these
approaches use statistical process control (SPC) methods.

Introduction to Software Project Management ® 19

Relevant Meaningful Practical

Metric
characteristics

Calibration

ability Activity level

Figure 1.18 Quality characteristics required of software project metrics.

One SPC approach is popularly known as the Seven Tools of Quality [11]. Essentially, it is
made of seven distinct techniques developed by different organizations and individuals. These
quality tools are either used in isolation to each other or used in conjunction with other tools.
These are as follows:

1. Check sheets: Check sheets are used to count the number of occurrences of issues over the
entire project or during specific phases of the project. If the same problem resurfaces during
a project or within a phase of the project many times, it is an indication of bad project man-
agement. Check sheets are a good measure to know whether project execution is smooth or
it has many issues. Check sheets are also useful during recording of lessons learned from the
project.

2. Histograms: Histograms basically depict variance of outputs on either side of a central ten-
dency for a process output. Histograms are great tools for knowing whether any project
attribute or characteristic is falling within acceptable norms or it is deviating from standard
acceptable norms.

3. Pareto charts: Pareto charts are used to identify problematic areas in the software develop-
ment process. If analysis is done for the occurrence of problems encountered in a project,
it will be found that 80% of the problems are encountered in only 20% of the project area.
That means 80% of the project area contains only 20% of problems. If we concentrate our
efforts on the problems in the 20% of the project area, we will solve 80% of the problems.
This strategy is far better compared to putting effort on the entire project. This is what
Pareto charts are all about. Pareto charts are one of the most popular metrics in the software
industry to measure process as well as product characteristics to find out problematic areas
and subsequently to fix them.

4. Cause and effect diagrams: These diagrams are also known as fish bone diagrams because
they look like fish bones. They are also known as Ishikawa diagrams after the name of the
inventor Kaoru Ishikawa. These diagrams are used to find the root causes of a problem in
processes which results in a single identifiable problem and then list these causes in the dia-
gram against the identified problem. All the root causes are arranged and depicted in the
diagram based on the level of their impact on the problem area. This results in a hierarchy
of causes. From this kind of diagram, it is easy to compare different causes of problems and
finally find the right solution, which will help in tackling the root problems and the cor-
responding causes effectively.

20 ®m Software Project Management: A Process-Driven Approach

5. Scatter diagrams: These diagrams are used for identifying correlation and suggesting causa-
tion. Scatter diagrams are as well used for finding root causes of problems in projects. Thus,
they are similar to cause and effect diagrams. Each effect (end result or problem caused by
a root cause) can be plotted against the root causes, and their relation over a series of inter-
related data can be found out. This will help in eliminating those root causes of problems
from the project.

6. Control charts: These charts are used to identify processes that are out of control so that
they can be fixed. For example, a temperature measurement device (for any temperature-
sensitive process) is attached to a device that records temperature on a control chart. If
the temperature goes cither above or below the acceptable limits, it can be easily traced
using the control chart. Similarly, a control chart can be used to measure defect den-
sity in different phases of a software project, and if the defect density is observed to be
going higher than acceptable limits, corrective action can be immediately taken so that
defect density can be brought under control. Control charts are very popular in many
industries.

7. Graphs: Graphs are used to depict information about processes in a suitable manner.
Basically, graphs do not provide decision-making software metrics. However, they help in
conveying the bigger picture about the project.

1.12 Case Study

This case study is taken from the projects done by a software vendor who is building a state-of-the
art software product, which is used as a Saa$ by its customers. We will cover the project consist-
ing of four iterations for the release of its 6.0 version. Project management—related processes are
covered in Part I. These project management processes include project initiation, project planning,
project execution, project monitoring, project control, project closure, risk management, effort
estimate, and cost estimate.

Elaborate project initiation is done only for the project for the release 6.0. At the four iterations
contained in this project, project initiation is minimally done at the iteration level. The minor
releases of 5.3, 5.5, and 5.8 coincide with iteration 1, iteration 2, and iteration 3. Iteration 4 and
major release 6.0 coincide with each other. (Minor releases of 5.4, 5.6, 5.7, and 5.9 are merged
with other releases.) Project planning, project execution, project monitoring, project control, proj-
ect closure, risk management, effort estimate, and cost estimate are done at the iteration level.
Aggregated project cost and project effort are done at the project level.

1.12.1 Project Introduction

The SaaS software vendor has some of the largest grocery retailers in the United States and
European countries as their customers, who have used the services of the SaaS software product
for quite some time. A market need was felt to have a functionality that could enable third-party
logistics service providers (3PL) to get instant information about the need to have trucks for trans-
portation of goods by its customers (manufacturers/distributors). This information should be in
advance so that the 3PL can plan for sending the required trucks to the desired locations at a speci-
fied time. The customers at the same time can plan for picking and packing of required goods at
the requested warehouse and make the load ready so that the goods can be picked by trucks at the

Introduction to Software Project Management ® 21

required time. The retailer (who will receive the goods) on the other hand can make preparation
at its desired warehouse (from advance information about the incoming truck) so that these goods
can be received without any delay.

In fact, to enable such functionality, a mechanism known as appointment scheduling is
employed. The complete details about this functionality are given in next section.

1.12.2 Software Functionality

A retailer has many retail outlets. Goods are sold at these outlets. The retail outlets keep a small
stock on the shelves and some more in store rooms located in the same retail outlet premises.
When the stock of a particular item becomes low in quantity, the outlet orders a fixed quantity of
the items from its own warehouse for replenishment. The replenishment order is received at the
nearest warehouse. The warehouse collects the required quantity of the item from the warehouse
and waits for a truck to arrive and dock. Then the warehouse staff loads the goods in the truck. The
truck then moves and reaches the retail outlet. The outlet staff unloads the goods from the truck
and fill their shelves and store rooms. The movement of truck from retailer’s warehouse to retail
outlet is known as outbound logistics (Figure 1.19).

The retailer’s warechouse orders goods from manufacturers/distributors when the stock of
particular goods in the warchouse becomes low. When a warchouse belonging to the manufac-
turer/distributor receives order for goods, it collects the goods from its warchouse and waits for
a truck to arrive and dock at its dock doors. Once a truck docks, the manufacturer/distribu-
tor stafl loads the goods in the truck. The truck moves and reaches the retailer’s warehouse.
The warchouse staff unloads the goods and stores it in their warehouse. The movement of
truck from manufacturer’s/distributor’s warehouse to retailer’s warehouse is known as inbound
logistics.

For inbound logistics, the trucks usually belong to 3PLs. 3PLs charge the retailer or manufac-
turer on the basis of distance the truck travels, its capacity, and fuel cost. Generally, they charge
on a full truck basis regardless of whether the truck is fully loaded or not. For this reason, the
warehouse that loads the truck makes sure that it has enough orders for goods from the retailer
warehouse to make the truck full.

In the software product up to release 5, functionality was provided for calculating transporta-
tion cost, basic appointment functionality at warchouse for loading of truck, and appointment at
the other warchouse for unloading of truck. Functionality for what goods are loaded in the truck
is also provided.

Dock doors Dock doors

112(3]4]|5 112(3|4]|5
Warehouse ‘Warehouse

(manufacturer/ (retailer) Retail outlet
distributor)

Figure 1.19 Retail outlet, warehouses, and movement of trucks.

22 m Software Project Management: A Process-Driven Approach

1.12.3 New Functionality in Release 6.0

The most important feature that is added in release 6.0 is a very sophisticated appointment schedul-
ing of trucks at both receiving and shipping warchouses. In a fast-paced work environment, waiting
for trucks for loading and unloading is a waste of time. It was felt that on an average, the trucks were
waiting for 5h at each warehouse. This situation was a cost-effective proposition for all the parties
including the manufacturer/distributor, 3PL service provider, and the retailer. A mechanism was
needed that would ensure that this waiting time can be reduced drastically. It was when a decision
was taken to have a very sophisticated appointment scheduling functionality in the software product.

Appointment scheduling is a complex concept. There are many factors to be considered to real-
ize this functionality. When a truck arrives at a warehouse for unloading, a quality control check
is performed for the received goods at the dock door. Quality control inspectors must be present at
the dock doors at the time of receiving. To unload the goods, labor should be available at the dock
doors. All dock doors at a warehouse are not the same. Some of them can receive a particular type
of goods while some other dock doors can receive some other types of goods. Similarly, all dock
doors cannot dock all kinds of trucks. Some dock doors can dock only a particular type of truck
while some other dock doors can dock some other types of trucks. The same considerations need
to be made at the shipping warehouse.

When orders are received at the shipping warehouse, they need to get a truck from a 3PL
service provider fast. They also need to pack goods in the warehouse as per the orders received.
When the truck arrives, the warehouse staff must inform it as to which door it has to dock at. On
the other hand, if just by processing orders, all these details become available at the warehouse
automatically, the warehouse staff just has to execute as per available details. They will pack goods
and then place the goods at the dock door from where it has to be loaded in the truck. The 3PL
service provider already has been informed in advance by the software system as to when a truck
is required at the designated dock door at the particular warehouse. Once the goods are loaded,
the truck leaves for the retailer warehouse. The retailer warehouse already has information as to
when and where the truck will arrive. So at the designated time, everything is ready at the retailer
warehouse. So theoretically, we can see that there is no loss of time anywhere right from truck
arrangement for loading to unloading of truck. However, in reality, there could be instances when
a suitable dock door is not available for loading or unloading, due to various reasons. These reasons
could be an already busy dock door, a dock door closed for out of operation hours, the unavailabil-
ity of quality control inspectors or labor, etc. But all of these are valid reasons for delays. Overall,
this functionality will help in cutting unnecessary delays.

We will discuss details about this project in most of the chapters throughout this book.

1.13 Chapter Summary

Work on projects constitutes a major proportion of world GDP (close to 25%). Software and IT
projects are in turn are important activities, which constitute close to 25% of all project works.
Software project management is all about managing diverse activities involved in typical software
project. A software project manager needs to manage project team, suppliers, customers, and
project tasks on a daily basis. To manage these activities in a controlled and consistent manner,
he needs to make a good project plan and then execute it effectively. He also needs to work in the
environment provided by the organization. All his activities and the project itself will be influ-
enced to a large extent by this environment. In modern software project management practices,

Introduction to Software Project Management ® 23

role of this organization-wide environment is increasing day by day. This factor is significantly
influencing software project management.

Exercises

1.1

1.2

It is said that government spending on IT is increasing as government departments take ini-
tiatives to improve customer service or have a wider reach of services. Find out what factors
are responsible for the increase of I'T spending by government agencies. Also list and explain
the three biggest IT projects undertaken by the federal government in recent times?

What you think are the major characteristics of a project?

Review Questions

1.1

1.2
1.3
1.4
1.5
1.6
1.7
1.8

How do you define the word, “project” How are software projects different from other
kinds of projects?

Why do software development projects fail?

What remedial measures can be taken so that software development projects do not fail?
What is software project management?

What are typical project management processes?

What are the essential qualities of a software project manager?

What are software project management metrics?

How are project management and software development processes related to each other?

Recommended Readings

1.

2.

10.

11.

E E Tsui, O. Karam (2006) Essentials of Software Development, Jones & Bartlett Publishers,
Sudbury, MA.

M. Hamilton (1999) Software Development: Building Reliable Systems, Prentice Hall PTR, Upper
Saddle River, NJ.

. E. McGuire (1999) Software Process Improvement: Concepts and Practices, IG1 Global, Hershey, PA.
. A. Bahrami (2008) Object Oriented Systems Development, McGraw-Hill Education (India) Pvt Ltd.,

New Delhi, India.

. D. Philips (2004) 7he Software Project Manager’s Handbook: Principles That Work at Work (Practitioners),

Wiley-IEEE Computer Society Press, New York.

. R. Kazman (2008) COTS Based Software Systems: Third International Conference, ICCBSS 2004,

Redondo Beach, CA.

. K.-J. Lin (2007) Service-Oriented Computing—ICSOC 2007: Fifth International Conference, Vienna,

Austria.

. C. B. Tayntor (2005) Successful Packaged Software Implementation, CRC Press, Boca Raton, FL.
. D. D. Galorath, M. W. Evans (20006) Software Sizing, Estimation, and Risk Management, CRC Press,

Boca Raton, FL.

A. Kossiakoff, W. N. Sweet (2002) Systems Engineering Principles and Practice, Wiley-Interscience,
New York.

S. H. Kan (2002) Mezrics and Models in Software Quality Engineering, 2nd edn., Addison-Wesley
Professional, Boston, MA.

Chapter 2

Project Initiation Management

In the previous chapter, we learned

What is a project?

What is a software project?

What processes are involved in a software project?

How are people, processes, tools and technology integrated in a project?
What are the characteristics of a good project manager?

What are the subprocesses in the project management processes area?
What management metrics are measured on software projects?

In this chapter, we will learn

B How is a project initiated?

B What is a project charter?

B What is project scope?

B What are project objectives?

B What project activities are performed during project initiation?

2.1 Introduction

Software projects are notorious for initial hiccups and false starts. This usually has to do with an
unclear project charter, an unclear project scope and unclear requirements. While many project
stakeholders (mostly top management) realize that they are in need of a software system badly, they
hardly know exactly what they are looking for. This situation leads to chaos. Even though a project
team is formed at this stage, nobody is clear as what is to be done. This has led many projects to
fail even before they started.

26 m Software Project Management: A Process-Driven Approach

However, if the project manager is adept and experienced, then he can handle such a situa-
tion. He can chart out some plan of action and can do some hard bargaining to get things going.
He can identify who exactly the stakeholders are and their needs. For this to happen, the project
manager must have a good idea of the business situation and what causes are exactly plaguing the
business. He also should strive hard to think about the software solution that can pave the way for
the business to help the management to come out of the morass. Generally this is not the typical
role of a project manager, but if this kind of situation is encountered, and if the project manager is
experienced to deal with it, then definitely it can boost chances of the project going forward. He
can then engage a project team for the task.

This is the scenario at most of the in-house software projects. In the case of outsourced proj-
ects, things are different. The project manager from the service provider’s side may have partici-
pated in project negotiation along with the marketing team to bag the project. In such cases, the
project charter and project scope are much better defined as compared to the previous situation,
and thus, the project has much better chances of going forward.

During project initiation, the project manager has to do a lot of ground work where he will pro-
vide initial and rough effort estimation, identify risks and make risk mitigation strategies, define
the project scope, prepare a project charter, etc., after consultation with the project stakeholders.
Most of these initial artifacts, which are just sketches at this stage, are refined and developed
further in later stages of the project whenever more understanding about the project is realized or
when project objectives get changed.

2.2 Define Project Charter

Most projects start on a high note. Stakeholders have high hopes. Accordingly, lofty project char-
ters are made. Unfortunately, as the project progresses, all the enthusiasm vanishes quickly. So
what could be done to avoid such situations?

The project stakeholders need to set their expectations with grounded realities. All their
hopes should be aligned with practical limitations and achievable goals. If this is not done
right from the inception of the project, the project is going to falter all the way. The project
charter [1] should include things like project goals, project objectives, major responsibilities
allocation, etc. But a simple project charter may be a simple statement from the top manage-
ment (Table 2.1).

The project charter is the place where a big picture of the effort, even beyond the project, is
captured. For instance, say, the project is part of a product development effort in which the prod-
uct is being developed incrementally. The product development consists of many small projects for
which a small set of features are being developed and added into the product each time a project
gets completed. The project charter will capture information for the entire effort to build the
ultimate product through these small projects, and in fact, during all of these projects, the project
charter may remain the same with not many changes. Similatly, the project charter should also

Table 2.1 Sample Project Charter

The project will provide a cutting edge software solution to our sales team to provide
excellent customer service for our customers so that all customer issues can be solved within
24hours of lodging of a complaint.

Project Initiation Management ®m 27

include the business goals for which the software project is being initiated, and also state that the
software project will help in achieving those business goals.

2.3 Define Project Scope

After analyses of failed projects, it has been found that most of the projects fail because of an
increase in the scope of the project over time. An increase in project scope [2] happens primarily
due to two factors. One factor is that as the project progresses and features are being built in
the application, the user community, after seeing the partially made application, may feel that
some additional functionality is also needed to do their job using the newly built application.
So they keep making change requests throughout the development cycle. This not only disrupts
development activity, it also makes the application susceptible to defects. But the most impor-
tant impact over the project is the increase in the volume of the project work [3], which results in
the escalation of costs and an elongation of the schedule. The other factor that results in change
in the project scope is a poor requirements definition. A poor understanding of requirements
or a poor definition of requirements leads to changes required later on in the software design
or software build to rectify this problem. In any case, the project scope increases due to these
factors. Table 2.2 shows a simple project scope.

To deal with scope creep, it has to be ensured that the requirements are lucid and clear
from the very start so that project effort estimation and project schedule are accurate. If any
changes are to be made in requirements, then there should be a proper change request mecha-
nism that will identify the impact of the change on the project and this should be commu-
nicated to the stakeholders. All these aspects should be clearly defined during the initiation
stage itself.

There is one more aspect about project scope, apart from the volume of work, in terms of the
number of features that has been discussed in the previous paragraphs. It is the fact that the soft-
ware product to be produced needs to have a specific level of quality [4]. This level of quality needs
to be frozen during the project initiation phase. Suppose you need to build a defense application
for national surveillance for detecting attacks by an enemy. This kind of system requires confi-
dential and limited access control, a sophisticated and bullet-proof information system, fast and
accurate access to information, and extreme reliability. Definitely, such a software system needs to
be of very high quality in terms of reliability, security, correctness, and efficiency. A high level of
quality for such a software system translates into high effort required for building this application.
In contrast, a game built for kids does not need to have such quality requirements, and thus, the
effort required to build that game will be much less.

So, a combination of a number of features and the quality level determines the total volume of
work. It is very important, early on in the project, to clearly lay out these aspects so that the volume
of work can be determined.

Table 2.2 Sample Project Scope Definition

The project will be delivered within 15 months from the date of start of the project. The
software product that will be made through this project will have features for customer
complaint logging, issue resolution, and issue closure. The software product should have the
capability of supporting our customer base of 10,000, who will be using the service through
an Internet connection by logging into our web portal.

28 ®m Software Project Management: A Process-Driven Approach

Table 2.3 Sample Project Objectives

The organization will be able to increase customer satisfaction to 99.5% from the existing
level of 92%. This will help in reducing customer attrition, increasing repeat business from
existing customers, and enhancing our brand value.

2.4 Define Project Objectives

The project should have a set of well-defined objectives [5] that must be met. If any of these
objectives are not met upon completion of the project, then the project will be considered to be
a failure. The stakeholders state and set the project objectives. The objectives should be stated
in clear language and the set of objectives should be kept as small as possible. Examples of
project objectives could be reducing/completely eliminating paper-based transactions in the
organization after implementation of the proposed software application to reduce transaction
processing time, centralization of marketing function across the organization to reduce costs,
etc. (Table 2.3)

If clear project objectives are set at the project initiation, it would help the project team
to understand the importance of the project and will help the team to do its best to achieve
the goals.

2.5 Practical Considerations

One size does not fit all! You cannot have a cookie cutter to create a project plan from a simple tem-
plate. Different kinds of projects need different approaches. If you have a Web project, then you
have entirely different activities and tasks required to be completed for the project, compared to a
project to make a software application for a mainframe computer. Similarly, the quality required
for making a surveillance application for a defense project will be of higher quality, compared to
an application made for viewing information on the Web.

Some of the factors that make project management vary for different projects are as follows:

B Project size: Project size is the single-most important factor that makes the approach to
handling one project different from another. Smaller projects need less formal project man-
agement than the larger ones.

B Product quality: If the software product to be made requires stringent quality measures, then
an elaborate quality control mechanism will be required throughout the project process to
ensure that defects are prevented in the product at each stage of development. On the other
hand, if the software product to be made does not need stringent quality norms, then a cur-
sory quality control mechanism will be enough.

B Technology: Technology plays an important role in determining productivity on any project.
If the platform is some older technology, like a client server, and the programming language
is, say Ada, then the project effort will be considerably more than if a newer and more pro-
ductive technology, say Java, is used.

B Code reuse: Code reuse can considerably reduce the required project effort. So, the effort on
two projects will be very different if one project code reuse has been extensively used, com-
pared to some other project where code reuse has not been used.

Project Initiation Management ®m 29

Due to these factors, each project has different needs for quality levels and has different pro-
ductivity levels. Understanding these factors and taking them into account when project initiation
takes place will give a proper start for the project.

Project initiation is the right time when project expectations, project scope, project deliver-
ables, quality standards, cost estimates, etc., should be correctly set so that a good project plan can
be made, which in turn can lead to smooth project execution.

2.6 Estimate Initial Project Size

At the project initiation stage, a rough project size [6] should be estimated so that a sketch of the
initial project plan can be realized. From the initial requirements (as available in a Request for
Information quote), a rough design estimate can be made. The rough design can include details
about how the product can be broken down into parts. These parts can be sized from estimating,
cither the estimated number of lines of code required to build them or by using an estimated num-
ber of function points. After the size of each part or module is determined this way, the complete
size of the software product can be determined. Since at the initiation stage detailed information
about project parts is not clear, the estimate of the product size is also rough. However, this can
be taken as a starting point, and the product size estimate can be refined as the project progresses.

Especially on outsourced projects, a rough product size estimate should be made during the
initiation phase so that a general idea about the project can be made and passed on to the stake-
holders. This information will be helpful for them to make crucial decisions about the project.

In Figure 2.1, the software product to be made is shown as consisting of six main features.
These six features together constitute the entire software product to be made. To make the soft-
ware product, the software project will involve tasks consisting of project and software develop-
ment life-cycle-related tasks. Rough estimates about project and product size can thus be made on
the preliminary data available.

A study of data available for previously executed projects can throw some light while estimat-
ing the size of the software product to be made. So, if data is available for a similar sized project,
use it to show the customer how big the current project should be.

Software project

Software product

Figure 2.1 Initial software product and project size estimate.

30 ®m Software Project Management: A Process-Driven Approach

2.7 Estimate Initial Project Effort and Costs

Initial project cost estimates [7] can be determined from the productivity of the members of the proj-
ect team, the effort estimate, the number of hours put in by software professionals, and the prevailing
houtly rate of software professionals who will be working on the project as project team members.

The cost of the project is one of the most important considerations of stakeholders. If the
project is going to cost more than they had anticipated and budgeted for, then most probably,
the project will be called off. In some cases, the stakeholders may agree to a reduction in the size
of the project so as to reduce the cost of the project.

From Figures 2.1 through 2.3, we have some initial data available for a project. The initial stage
data suggests that requirement specification development will take 2 months of time, and software
design, software construction, software testing, and software deployment will take 2, 6, 2, and
2 months, respectively. That means, the total schedule for the project is 14 months. For requirement
development, two people are required, and for software design, software construction, software test-
ing, and software deployment two, six, four and two people are needed, respectively. That means,

Software project

Effort estimate
Software product

Man months =56

i Feature1 ! ! Feature?2 ! : Feature5 :

Cost estimate
Cost (S) =56 x 4,000 +

'
'
'
'
- - - -3
'
'
'
'
'

Feature 3 | ! Feature4 : ! Feature6 !

S I S S SO 20% (56 x 4,000)
=268,800
Figure 2.2 Initial software project effort and cost estimate.
Software project Schedule estimate
Software product Req. spec. =2 months

Design = 2 months
i i Feature 2 . Construction = 6 months

Testing = 2 months

Deployment =2 months

Total schedule = 14 months

Figure 2.3 Initial software project schedule estimate.

Project Initiation Management m 31

the total effort required is 56 man months. On an average, the salary of each project team member
is $4000 per month. Overhead costs for the project are taken as 15% of the cost of salaries of the
project team members. So tentative development costs will be $268,800 for the project.

Data from previously executed projects can be used for estimating the cost for the current
project. Customers will love to know just how much their project will cost them very early in the
project, at the initiation stage itself.

2.8 Estimate Initial Project Schedule

Like project cost, the project schedule is one of the most critical aspects of the project. Stakeholders
may have the objective of gaining a marketing edge over the competition by implementing the
proposed software application. Many of such objectives are time sensitive, and the stakeholders
may like to see the new system implemented before a specified date.

During project initiation discussions, stakeholders may ask the project manager to reduce the
project schedule [8] that has been presented to them, even if project costs rise because of this. In
such cases, the project manager may have to adjust his project schedule to suit the needs of the
stakeholders. He will have to adjust his project plan, resource allocation, etc., accordingly.

2.9 Create Initial Project Plan

The project manager needs to create a tentative project plan [9] during the project initiation stage
to demonstrate to the customer what kind of resource requirements, effort required, and timelines
could be expected for the project. This will be one of the selling points for the project. The most
important aspect of this tentative project plan is to let the customer feel confident about the proj-
ect. If timelines, costs, or effort figures are not as per customer expectations, then discussions can
be held with the customer to win on some points and negotiate on others.

Nowadays, the time window of opportunity for businesses is limited, and the customers
look to wtilizing this time window to the utmost. So, they need the fast development and
implementation of the software system to utilize this time window. Hence, even if costs are
on the high side, they will like to go in for faster software product development so that it is
implemented quickly, and they can start using it to tap the business opportunity within the
time window. For this reason, the project manager has to make a project plan that will enable
software development at a faster speed and thus realize customer expectations. So, it may often
happen that the project manager may need to revise his project plan and present a revised plan
to the customer.

2.10 Project Initiation in Iterative Model

One of the goals of the iterative model is to reduce project size and to make a number of smaller
projects instead of going in for a large project and building the entire software product in one go.
Project size is reduced by dividing the set of complete requirements into many smaller sets and
developing smaller software products out of these smaller sets of requirements, taking one set of
requirements at a time. So the big software project becomes a set of smaller projects. These smaller
projects are known as iterations. The first iteration starts from scratch as each building block for this

32 m Software Project Management: A Process-Driven Approach

iteration is developed from scratch. Once this iteration is over and approved by the customer, the
next iteration begins. This time, the product is built over what was developed in the first iteration.

In the iterative model, planning the project is done at three levels. At the top level, the proj-
ect plan for the development of the entire product is conceived. The time span for such a plan
could run into several years. At the middle level, project planning is done at major releases of the
software product. The time span for such plans could be at the year or half year level. The lowest
project plan is the plan for each iteration. A better term for it could be the iteration plan. At this
level, the project plan could run from a few weeks to a few months. Many software vendors have
minor releases per quarter, and the iterations can coincide with these minor releases.

The product developed in each of these iterations could be a complete standalone product; dif-
ferent from products made in other iterations. But in general, products made from these iterations
are partial products and not fully functional products. However, the product made from the first
iteration is a fully functional product that can be run and whose features can be seen. In subse-
quent iterations, more features will be added on top of this product.

So, we can see that project initiation is a very low-key affair at the iteration level. The project
team decides/picks the next set of requirements to work on after they are through with delivering the
previous iteration. Even at project level, initiation is not a big and formal affair. At the most, it is an
informal and low-key affair. But at the top level, where the product is conceived and development
is planned, project initiation definitely plays a big role. It is indeed a big decision to start building
a software product whose market potential may be excellent; nevertheless, it is a big risk to invest
money and time in building a new product. At that level, management commitment is more than
just the product itself. It has to do more with benefiting from market opportunity, planning for the
successful launch of the product in the market, planning the market strategy, etc.

In the example discussed in Figures 2.2 through 2.4, the project in an iterative environment will
have some differences compared to the traditional development model employed on a project. The
same project will not be completed in one linear progression. The requirements will be so divided
as to be covered over many iterations. If six requirements were decided upon (the same as the num-
ber of features depicted in Figure 2.2), devoting one full iteration to each of these main features,
we end up having six iterations during the project. Suppose it was decided that the entire project
needs to be completed in 18 months, then each iteration will run for approximately two and a
half months. Each iteration will have requirement development, software design, software construc-
tion, software testing, and software release phases. In the agile world (all iteration-based software

Tentative project plan Tentative project schedule

e Project schedule

e Project cost

e Communication plan
¢ Resource plan

e Quality plan

e Tool plan

e Risk plan

\

Figure 2.4 Tentative project plan.

Project Initiation Management ®m 33

product development models), the development phases are called and operated in a different manner
compared to the traditional waterfall model. So, we have phases such as storyboard development,
design, test driven development, module integration, testing and release. Before an iteration starts,
the requirements to be worked on are chosen from the list of requirements. But even before that, each
requirement is given a priority. The highest priority requirements are reserved for the first iteration.
The other phases of the iteration will be planned accordingly. All activities for the first iteration will
be firmed up before the iteration starts. But for other iterations, no concrete plan will be made. They
will be tentative at the most. In fact, the requirements themselves will be tentative in nature and can
be changed when more understanding and insight about that particular requirement is gained.

On other kinds of projects, there will not be a large list of requirements to start with. Even
though there is the intention of building a large product, the stakeholders may first like to test the
waters. In those cases, a few initial iterations can be treated like a feasibility study. The stakehold-
ers may first seek feedback from end users on, for example, the necessity of building the software
product, and then try to portray an overall picture. If the feasibility looks good, then the stake-
holders signal a go-ahead for the project. If not, they will decide to scrap the project. The cost of
scrapping the project at this stage will be small, and thus, the risk of losing large sums of money
on a failed project can be avoided.

2.11 Stakeholder Influence

For a project to be successful, it is very important that it has strong support from the stakeholders [10].
Generally, stakeholders are personally interested in the project, and estimate the value the project will
deliver to their organization on completion. If, for some reason, the stakeholders do not have confidence
in the project, the project is bound to fail. Stakeholder interest is the paramount factor for the life of any
project. Therefore, their involvement in the project must be ensured. To make a success of the project,
they must take initiatives and influence its progress. Generally, stakeholders have very high influence at
the beginning of the project. As the project progresses and stakeholders see that it is going in the right
direction, they slowly start distancing themselves from the project. So their influence on the project
diminishes. This is natural. Once they see some good progress and status reports on the project, they
are assured of the success of the project and so divert their attention to other issues in their organization.
But if the project falters, and stakeholders see that the project is going in the wrong direction, they are
forced to attend to the project more closely. They start giving more time to the project and try to influ-
ence it more (Figure 2.5).

A

Influence

Time

Figure 2.5 Stakeholder influence on the project over project life.

34 m Software Project Management: A Process-Driven Approach

2.12 Quality Planning

From the start, quality planning [3] should be made an integral part of all activities associated with the
project. This will ensure that the product being developed has the right quality. Large projects have a
large number of project activities, and many of them are very complex. During the execution of their
tasks, people may forget about quality, or due to time constraints, may be forced to ignore it.

Quality planning during project initiation could include a broad framework of how the quality
of each and every work product, developed during the life cycle could be ensured. It may involve
defining the process map and deciding on how the quality of work products will be measured
and ensured. Some of the time-tested process frameworks for ensuring quality include, measuring
work product attributes often and comparing them with the desired quality levels to know if the
quality of the work products is good or bad.

2.13 Feasibility Study

For most projects, initiation is the stage when a make or break decision about the project should be
made. If a project is allowed to keep going despite getting wrong signals, then at a point far down-
stream, it may prove to be a very costly mistake when the project is forced to be abandoned. It will be
far better if a feasibility study [11] is conducted at the beginning of the project to know what chances
the project has of achieving the desired goals. Once the feasibility study is completed and a report is
made, then a review can be done to ascertain if the project should be continued or abandoned.

2.14 Project Division

In instances when it is felt that the requirements are not clear enough to proceed with the later
stages of the project, it makes a lot of sense to divide the project into two parts [12]. The first part
will deal with developing the requirements to the point where they can be taken for designing the
application, and the second part will deal with the development of the software application. This
is a good way to remove all uncertainties from the project. The requirement development part of
the project may not have a fixed deadline denoting completion (as there is no previous knowledge
as to how many requirements are there in the first place), but when the requirements are crystal
clear, the other part of the project to develop the software application will have a lot of clarity, and
thus, timelines and cost can be predicted with some good accuracy.

One alternative to project division is also available. It can be done this way. First, the cus-
tomer can ask for open bids from service providers with just the preliminary information which
is available about the project. At this stage, price or any monetary information for the project is
not included. Once a suitable service provider is chosen, he can be asked to make detailed require-
ment specifications. These specifications are then handed over to a third party expert who provides
project size information based on the requirement specifications. He hands over the project size
information to the customer and the service provider. The customer in turn can calculate the
required budget for the project given the prevailing market rates for software development costs.
The service provider calculates the schedule and the number of people required to do the software
development on the project based on its productivity level. So at this stage, project budget, project
duration, and the number of people on the project is fixed. Later, if the requirements are modified,
then the impact of the change on project schedule, project budget, and project team size can be
calculated, and the project information can be adjusted accordingly (Figure 2.6).

Project Initiation Management ®m 35

1. Preliminary requirements 1. Cal.culate p‘rojecF size 1. Reply for bid N

2. Invite bids (revised project size) 2. Calculate productivity

3. Calculate schedule

4. Make project team

5. Build software

6. Adjust project schedule

7. Adjust project team size

8. Hand over software product

N V-

3. Select service provider
4. Select expert

5. Bear project cost

6. Initiate change request

o O o O o O
Customer Expert Ser\{lce
provider

Figure 2.6 Alternative model for project division.

On paper, this arrangement looks good. But what are the weaknesses of this model? Well, one
point of contention is how good the bidding process will be. After all, without detailed informa-
tion being provided for the bid, how can service providers make good bids? Then, how is the cus-
tomer going to know which bid is good and which one is not in the absence of vital information on
bid responses like project cost, project schedule etc. So the bid selection will be mostly arbitrary.
This is the weak point in this model.

2.15 Artifacts of Project Initiation

Since project initiation forms a very early part of the project, much project information is still
not clear. Even customer requirements are not complete. So, it is too early to expect all details of
the project, including project plan, project schedule, resource allocation, etc., to be developed.
But we can definitely freeze the project scope, project charter, and project objectives at this stage.
Similarly, if a feasibility study has been conducted, then the feasibility report may be one of the
artifacts for the project.

2.16 Case Study

In Chapter 1, we saw the introduction of the project of our SaaS vendor. We will now continue
with our case study and discuss how the project initiation part of the case study was done for the
release 6.0 of the product of our Saa$ software vendor.

2.16.1 Project Charter

In the industry there are no good solutions available for appointment scheduling. By creating this
functionality, the SaaS vendor wants to become a leader in this arena. Existing as well as potential
customers are also eagerly waiting for a good solution that could substantially cut the waiting time

36 m Software Project Management: A Process-Driven Approach

during the shipping—transporting—receiving operations of goods. After building and implement-
ing the appointment scheduling solution, the SaaS vendor will be able to effectively satiate the
needs of its customers.

2.16.2 Project Scope

Appointment scheduling functionality is the biggest feature for the 6.0 release. It could not be
completed in one iteration. So, it was divided among four iterations. Calendars were created sepa-
rately for dock doors, warchouses, organization, etc. in the first iteration (release 5.3).

The existing functionality of appointment scheduling up to the release of 5.2 was limited only
as a mechanism to announce the arrival of the truck for either shipping or receiving at the ware-
houses. It was not actually making an appointment, as no constraints were considered for making
an appointment.

For truck appointments at dock doors for loading/unloading, there are a lot of constraints to be
considered. Therefore, it was decided to create the functionality over many phases. Thus, in release
5.3, only constraints of truck type and goods types were considered for making appointments. At
this juncture, calendars were also used for dock doors (if for instance, a dock door is open from 6
AM to 6 PM on Mondays, then if any truck arrives after 6 pMm its appointment will be considered only
for the next day). In release 5.5, the functionality was enlarged to consider constraints of labor avail-
ability, quality control inspector availability, expected arrival time of truck, time window for mak-
ing an appointment, and dock door type. In release 5.8, the functionality was enlarged to consider
constraints of business partner preference, truck capacity, reservation frequency on a dock door,
and reservation lead time. In the final iteration, the functionality was enlarged to consider the con-
straint of time gap between appointments. In this iteration, more time was given for testing than for
development as the vendor wanted to make sure that all the functionalities work well, and that the
software product do not fail. Instead of having a large number of poorly made features, it is better to
have a software product with a limited number of features that are robust and will not fail. Reliability
was the top priority.

After the four iterations and the entire 6.0 release, the software product should be able to be
implemented with the new functionality by all existing customers as well as new customers who
will sign contracts during this period.

2.16.3 Project Objectives

The software vendor could see that there was a large gap in the market for supply chain manage-
ment software solutions in the grocery retail segment. The software vendor’s flagship software
product already had functionality for transportation management, inbound logistics, outbound
logistics, fleet management, transportation rate calculation management etc., up to release 5.6 of
the software product. The project charter for the project to release 6.0 (through minor releases of
5.3, 5.5, and 5.8) was to create additional functionality, such as appointment scheduling for ware-
houses with incoming trucks and an audit trail for all transactions.

Most software planning systems use complex logic to implement solutions which could be
used in real world planning systems. Unfortunately, most of the systems fail miserably in deliver-
ing on promises. One reason is that real world happenings are far from ideal. There is always some
unplanned risk lurking around the corner that can upset the rhythm of even the most meticu-
lously planned activities. Then the planning logic is error prone.

Project Initiation Management ®m 37

A good algorithm was needed in the first place. Secondly, it had to be implemented in such a
way that it would provide a real world solution. So, it was decided to go in for hard as well as soft
constraints for making the appointment scheduling of an incoming truck for loading/unloading
at a dock door. The soft constraints could be overridden if some other constraint that is higher in
hierarchy is satisfied in the current situation. But the hard constraints are such that they will never
be overridden. All the constraints are thus put in a hierarchy, with some of the constraints higher
up in the hierarchy and others lower.

2.17 Chapter Summary

Project initiation most often happens with a kick off meeting involving the project manager,
the stakeholders, and some key project members. They define the project charter, project scope,
and project objectives. A preliminary effort and cost estimate is chalked out. A preliminary
sketch is also made for the project schedule so that a tentative duration for the project can be
established.

At the initiation stage, everything about the project is tentative. But the goal is to see if the
project is itself feasible or not. For this purpose, a feasibility study can also be conducted in case
the confidence level for the project is still uncertain. If the project is found not viable after the
feasibility study, it can be abandoned. Abandoning an unfeasible project at this stage is less costly
than abandonment after investing large sums of money and effort. In cases when it is felt that the
requirements from customers are not clear or complete, then the project can be split so that the
requirements can be made clear and complete in the first phase of the project. In the second phase
of the project, the software product can be built on the basis of complete customer requirements.

Exercises

2.1 DProject initiation is always fraught with the possibility of developing misunderstanding
between the project stakeholders and the project teams. Provide a list of actions that the
project team can take to avoid building such a situation.

2.2 Go to some open source projects and find out about their project charters. Find out why they
have those project charters.

Review Questions

2.1 What is a project charter? How can you ensure that the project charter is useful for the
project?

2.2 Whar things should go on the list containing project objectives?

2.3 How can you ensure that the project scope for a given project is well defined at the initiation
phase so that it does not get over stretched later?

2.4 Whar are the difficulties faced by software projects during project initiation?

2.5 What is the relation between quality level and project scope?

2.6 Whar other activities are performed during project initiation apart from defining project
charter, project objectives, and project scope?

38

B Software Project Management: A Process-Driven Approach

Recommended Readings

1.

2.

NS

11.
12.

H. Kerzner (2009) Project Management: A Systems Approach to Planning, Scheduling, and Controlling,
Wiley, Hoboken, NJ.

J. 2. Lewis (2002) Fundamentals of Project Management: Developing Core Competencies to Help Outperform
the Competition, American Management Association, New York.

. E. Verzuh (2005) 7he Fast Forward MBA in Project Management, 2nd edn., Wiley, New York.
. A. Ahmed (2009) Soﬁware Testing as a Service, CRC Press, Boca Raton, FL.
. R.J. Muller (1997) Productive Objects: An Applied Software Project Management Framework, Morgan

Kaufmann, San Francisco, CA.

. E. Miranda (2003) Running the Successful Hi-Tech Project Office (Artech House Technology Management

and Professional Development Library), Artech House Publishing, Boston, MA.

. C. E Gray, E. W. Larson (2002) Project Management: The Managerial Process, McGraw-Hill/Irwin, Burr

Ridge, IL.

. Q. Wang (2008) Making Globally Distributed Software Development a Success Story: International

Conference on Software Process, I[CSP 2008, May 10-11, Leipzig, Germany.

. H. A. Levine (2002) Practical Project Management: Tips, Tactics and Tools, Wiley, New York.
. J. McManus (2004) Managing Stakeholders in Software Development Projects (Computer Weekly

Professional), Butterworth-Heinemann, Amsterdam, the Netherlands.

J. Sanchez, M. P. Canton (2007) Software Solutions for Engineers and Scientists, CRC Press, Boca Raton, FL.
S. Donaldson, S. G. Siegel, S. Siegel (2000) Successfuul Software Development, Prentice Hall, Upper
Saddle River, NJ.

Chapter 3

Software Project Effort
and Cost Estimation

In the previous chapter, we learned

B How is a project initiated?

B What is a project charter?

B What is project scope?

B What are the objectives in a project?

B What project activities are performed during project initiation?

In this chapter, we will learn

How is an effort estimate for a project made?

What are the different effort estimation techniques?
How is a cost estimate for a project made?

What are the different cost estimation techniques?
How is a schedule estimate for a project made?
How is a resource estimate for a project made?

3.1 Introduction

Effort estimation for any software project is very important. However, for outsourced projects it is
even more crucial. Effort estimate along with the schedule indicate to the customer what the cost
impact will be and when the software can be realized. The management in customer organiza-
tions typically expects a lot from software projects. Software projects are seen as strategic tools to

39

40 ®m Software Project Management: A Process-Driven Approach

compete in the market. Therefore, a successful software implementation is regarded as a market
edge and can influence the fortunes of that organization.

Software projects are costly as software professionals are expensive to hire. The optimal usage
of time of these high-salaried people requires careful project planning to minimize wastage of
time of these high-cost resources. At the same time, the service provider should be able to bill its
customer for the actual effort put forth in delivering the project so that neither the customer nor
the service provider is at a loss for wrong billing in the costs involved. Therefore, an accurate effort
and cost estimate is of paramount importance for software projects.

With regard to effort for a software project, there are two aspects. One is to provide a good
effort estimate and present it to the customer. The other aspect is to use it to form the project team
based on the skills required for the project and the kind of budget that will be available for the
project so that the right kind of people can be staffed for the project within the specified budget.
Tight budgets and tight schedules are the general norm for most projects today and this makes
good and reliable effort, schedule and cost estimates for projects even more important.

3.2 Effort Estimation Techniques

Effort estimation is an evolutionary phenomenon. The beginning of any project sees an initial effort
estimate which is rough and mostly inaccurate at best [1]. The more the information available about
the project, the more accurate will be the estimate. As more and more information becomes available
for any project as it progresses, it makes sense to revise project estimate regulatly to make the estimate
more accurate (Figure 3.1).

Statistical effort estimate techniques are extremely useful for effort estimation [2]. Actual effort
data from past projects provide good guidance as to what the effort required for the given project
could be. Comparing data available for current project with past executed projects should provide
this valuable estimated effort information. Thus, historical projects data come in handy for effort
estimation. But how can one make estimates for projects in cases when no information or no relevant
information is available for the current project or past projects? Here we have the following scenarios:

1. Much relevant project data are available for the current project but not much information
about previous projects.

2. Previous project data are available for the project but not much information about the cur-
rent project.

+15%

Deviation

l Time

-15%

Figure 3.1 Effort estimate deviation with elapse of time.

Software Project Effort and Cost Estimation ® 41

3. Project data are available for the current project as well as that of previous projects.
4. Some project data are available for the current project.
5. No project data are available for both current as well as previous projects.

3.2.1 Choosing a Suitable Effort Estimate Technique

Different effort estimation techniques can be used depending on the situation [3]. If you have good
information available for the current project but no data available for previous projects, the best
technique for effort estimation will be the COCOMO model, because this model uses project size
information from lines of code (LOC) as well as project attributes available from current project
information. COCOMO also uses industry averages for environment factor calculations. Therefore,
if no previously executed project information is available then the COCOMO model is the best.

If we have data available for both current as well as previous projects then the function point
analysis (FPA) technique is a good option. This is because FPA technique uses historical project
data for deriving adjustment factors. It also uses historical project data to derive productivity for
projects. Therefore, in cases where we have both project as well as previously executed projects
data, FPA can be used. Otherwise this technique is difficult to use if both these pieces of data are
not available.

If we have some or all data available for the current project, then the Wide Band Delphi model
is the best. Wide Band Delphi technique essentially is an experience-based technique. People who
will be doing the actual project tasks along with other project team members derive effort esti-
mates for various project tasks after many brainstorming sessions (Table 3.1).

If we have no project data available for the current project then it is simply impossible to esti-
mate effort.

3.2.2 Function Point Analysis

FPA [4] considers two things for effort estimates. First, it determines size of the project in terms
of the number of function points (EPs). Second, it determines productivity of the project team.
Project size is derived from customer specifications. Based on customer requirements, an estimate
is made for the number of functions to be built. These functions are contained in either internal
or external files. Each of these functions has interfaces for communication with internal and
external files. These functions also have interfaces for communication with devices. The number
of parameters for each of these functions is determined. The complexity of these functions is also
determined. Based on function complexity and number of parameters inside each function, the
number of FPs is determined for each function. Totaling all these FPs gives the total number of
unadjusted FDs for the entire system to be built and then the adjustment factor for the system is
determined (Figures 3.2 and 3.3).

Table 3.1 Estimation Technique Selection Based on Project
Information Availability

Project Details Estimation Technique

1 | Historical project data + current project data | FPA

2 | Current project data COCOMO, Wide Band Delphi

3 | No data No technique can be used

42 m Software Project Management: A Process-Driven Approach

Determine Boundary and Calculate
function count Y » unadjusted function
scope of count .
type point count

Calculate
adjusted function
point count

- Apply value
adjustment factor

Figure 3.2 Function point count process steps.

Function count

types
y
Development Enhanced project Application
project FP count FP count project FP count

Figure 3.3 Function count types.

The process for calculation is as follows:

1. Determine type of function count

2. Identify scope and boundary of count
3. Determine unadjusted FP count

4. Determine value adjustment factor

5. Calculate adjusted FP count

For function count calculations, three types of function count are defined: development project
FP count, enhance project FP count, or application FP count. Depending on the type of project in
hand (development, enhancement, or application type of project), the suitable function count type
(FP count type) is chosen. FP count type is used for determining how the number of FPs will be
summed up. The scope of count is determined from the data, screens, and reports which will be used
by the application. The boundary is determined by the integration needs of the application with
other applications. If the application is a stand-alone one and will not be integrated with other appli-
cations, then the boundary value will be zero. But if some integration is required then using the inte-
gration interface, function counts for integration will be calculated. Calculation is done on the basis
of the number of external interface files and the complexity of the functions contained in those files.

An unadjusted FP count consists of five function types. These types are grouped into two, namely,
data functions and transaction functions. Data functions are internal logical files and external
interface files. Transaction functions are external inputs, external outputs, and external inquiries.
These functions are defined with descriptions like User Identifiable, Control Information, Elementary
Process, Data Element Type (DET), and Record Element Type (RET). For each file, the complex-
ity is determined using these descriptions. You make a table and calculate the complexity values of
Low, Average, or High depending on the values for DETs and RETs present in the file (Table 3.2).

Software Project Effort and Cost Estimation ® 43

Table 3.2 Complexity Calculation
for Files (Internal Logical Files and
External Interface Files)

DET
RET 1-19 20-50 57+
1 Low Low Average
2-5 | Low Average | High
6+ Average | High High

Based on the complexity, a value of FP is assigned for the file. A complexity of Low yields a value
of 7, for Average it is 10, and for High it is 15 for internal logical files. For external interface files,
the values are 5, 7, and 10, respectively. You also notice that FPs for external files are less than those
for internal files, because internal files are used more often during system operation than external
files. Hence, more FPs are assigned to internal files.

The FP calculation for transaction functions is similar (Table 3.3).

Based on the complexity, a value of FP is assigned for the external input. Complexity of Low
yields a value of 3, for Average it is 4, and for High it is 6 (Table 3.4).

Based on the complexity, a value of FP assigned for the external output. Complexity of Low
yields a value of 4, for Average it is 5, and for High it is 7. In case of external inquiries, it is 3, 4,
and 6, respectively.

Once we have the number of FPs for the entire system, we can derive the effort estimate for the
project by multiplying this number with productivity.

Table 3.3 Complexity Calculation
for External Inputs

DET
RET 1-4 5-15 16+
0-1 | Low Low Average
2 Low Average | High
2+ Average | High High

Table 3.4 Complexity Calculation
for External Outputs

DET
RET 1-5 6-19 20+
0-1 | Low Low Average
2-3 | Low Average | High
4+ Average | High High

44 m Software Project Management: A Process-Driven Approach

Effort (in man months) = No. of Function Points X Productivity

The calculation for productivity is yet another time-consuming process. Based on the expe-
rience and skills of project team members, productivity is calculated. There is no fixed for-
mula for productivity calculation. Mostly it is calculated using statistical process control data
from previous projects. The industry norm for productivity calculation is arrived at in terms
of effective LOCs generated per month per person. This figure includes work done in other
phases of the development life cycle as well (requirement management, design, testing, etc.).
So even though in the construction phase, actual LOCs generation may be 6000 per month
per person, the effective LOC:s for the project may come to less than 600 since effort for work
done in other phases is also included. The industry norm for productivity in software develop-
ment industry is 300-1000 LOCs per month per person. When SPC data are not available,
productivity has to be calculated from scratch or an industry average figure has to be taken for
effort calculations.

There are also some other formulae to calculate schedule and staff size required to execute
the project. These were derived by luminaries in software engineering like Barry Boheim.

Project duration = 2.5 x (effort)!”?
Minimum duration = 0.75 x (effort)'
Optimum staffing size = (effort)"/?

3.2.2.1 Function Point Analysis Usage

The FPA technique can be used at early stage of the project when only the customer requirements
are available. It is a standard effort estimation method and is recognized by many customers.
FPA is, therefore, widely used in the industry. On the flip side, it is a difficult and time-consuming
technique and only experts can use it. Hence, it is not advisable to use the FPA technique when the
project estimators do not have the requisite experience.

3.2.3 Wide Band Delphi

The Wide Band Delphi technique [5] is based on conducting brainstorming sessions with the
project team and arriving at consensus figures for effort estimates. When effort estimates are made
by people who will actually work on the assignments for which they give the estimate, then figures
are likely to be close to the actual effort that will be required. The raw effort figures by the proj-
ect team members about their own assignments are then normalized when other team members
debate about these figures and any inconsistencies in the raw figures are removed. There are two
to three such brainstorming sessions. In the first session the raw estimates are discussed just to get
the basis on which the estimate was made. In the next two sessions, estimates are taken from other
team members. Finally, the estimate for each task is normalized.

One practical way of coming to a consensus effort estimate using the Wide Band Delphi tech-
nique is through the following formula.

Effort estimate = (pessimistic estimate + likely estimate X 4 + optimistic estimate)/6

Here pessimistic estimate is the one where a team member’s estimate is the highest (in terms of
number of man months). The likely estimate is the average of the most common estimate figure.
In most cases, the likely estimate is the estimate given by the person who has been assigned to the

Software Project Effort and Cost Estimation ® 45

task for which the effort estimate is being made. The optimistic estimate is the one where a team
member’s estimate is the lowest (in terms of number of man months).

The Wide Band Delphi technique is commonly applied on small to medium-sized projects and
where the project team is composed of people who have been around and have worked with each
other for some time. The project manager also knows that in such a situation some team members
make good estimates and some are not able to do it with that much precision. So the effort esti-
mate figure thus derived has a good backing by the team and the project manager. At the same
time, taking into consideration all effort estimate figures from all team members makes the figure
rather objective and reliable.

3.2.4 COCOMO

COCOMO [6] is one of the original effort estimation models developed by software engineer-
ing experts. It is also a very popular technique for effort estimation for software projects. Since
COCOMO does not use SPC data, it can be used in cases where past project data are not
available. Rather COCOMO uses industry averages for inputs in providing effort estimation
calculations.

COCOMO uses project assumptions, definitions, and many cost factors in assessing an esti-
mate for any project. It uses source LOCs required to build the software as the volume of work to
be done for which the effort estimate is made. Apart from source LOCs, there are cost drivers and
scale drivers which influence effort. Cost drivers include software safety, developer skill, usage of
tools, etc. All of the cost drivers are categorized into personal factors, product factors, platform
factors, and project factors. Personal factors include analyst capability, application experience,
programmer capability, language and tool experience, etc. Product category includes database size,
required software reliability, product complexity, required reusability, documentation needs, etc.
Platform factors include execution time constraint, main storage constraint, virtual machine
volatility, platform volatility, platform difficulty, etc. Project factors include use of software tools,
modern programming practices, required development schedule, multisite development, require-
ment volatility, etc. The scale drivers include precedentedness, development flexibility, architecture/
risk resolution, team cohesion, and process maturity.

3.2.4.1 Basic COCOMO

There are many ways COCOMO calculations can be made, as variations of the original COCOMO
model have been improved upon or adapted to suit many environments. For a quick effort calcula-
tion, a variation of the COCOMO model is used which is known as basic COCOMO.

The basic COCOMO calculation equation is as follows:

Effort = 2.94 x EAF x(KLOC)*¥

where
EAF is the effort adjustment factor derived from cost drivers

E is the exponent derived from scale drivers
KLOC is the kilo lines of software code

Values for EAF range from 1.0 to 2.0. Values for £ range from 1.0 to 1.5.

46 m Software Project Management: A Process-Driven Approach

Schedule duration is calculated as

Duration = 3.67 X (effort)*

where SE is the schedule equation derived from scale drivers.

Stafling needs can be calculated by dividing effort with duration.

In the basic COCOMO model, hardware constraints, use of modern tools and techniques,
personal productivity, etc. are not taken into account.

Basic COCOMO is most suitable for making estimates at eatly stage of any project.

3.2.4.2 Intermediate COCOMO

In intermediate COCOMO, we make an effort estimate for the project with the product size
along with the cost drivers. The cost driver set includes assessment of attributes for product, proj-
ect, hardware, and the project team’s experience and skills. These attributes are categorized as
product attributes, which include required reliability, application database size, and application
complexity.

Hardware attributes include run-time performance constraint, memory constraint, virtual machine
environment volatility, turnabout time requirement.

Project team attributes include analyst capability, software engineer capability, application experi-
ence, virtual machine experience, and programming language experience.

Project attributes include software tool usage, software engineering methods usage, and develop-
ment schedule requirement.

How each of the cost drivers impacts the effort estimate is assessed by assigning appropriate
weights to these attributes. To assign these weights, first a six-point scale is created with scales of
very low, low, nominal, high, very high, and extra high. The values for these scales vary from a low
of 0.70 to a high of 1.60. For any project, each of the attributes is given relevant values based on
this scale. These attribute values are industry standard but at what scale value any attribute falls is
decided by the estimating person (Table 3.5).

The formula for intermediate COCOMO is given as £ = 2«(KLOC)®. EAF, where 2 and E
are a coeflicients whose values depend on the kind of software project (organic, semi-detached, or

embedded) for which the estimation is being made (Table 3.6).

3.2.4.3 Detailed COCOMO

In basic and intermediate COCOMO, the effort estimate is a gross estimate at the project level.
But a project is further divided into many phases. Each phase may need to have a separate effort
estimate calculation. This is done in the detailed COCOMO model.

In the initial stages of the project, when a rough estimate is needed for each project phase, the basic
COCOMO model is used. In later stages in the project when all project details are clear and an effort
estimate is needed for each project phase, the intermediate COCOMO is used to calculate the effort
estimate for each phase. The same values that are used for calculation at the project level can be used for
calculations at the phase level. The only difference will be that at this level, the effort estimate will take
values for relevant cost driver attributes and not for the entire project. For instance, for the design phase,
the effort estimate will take attribute values only for cost drivers that will influence the design phase.

Software Project Effort and Cost Estimation W 47

Table 3.5 Scale and Scale Values for Attributes of Cost Drivers

Ratings
Cost Drivers Very Low | Low | Nominal | High | Very High | Extra High
Product attributes
Required software 0.75 0.88 1.00 1.15 1.40
reliability
Size of application 0.94 1.00 1.08 1.16
database
Complexity of the 0.70 0.85 1.00 1.15 1.30 1.65
product
Hardware attributes
Run-time performance 1.00 111 1.30 1.66
constraints
Memory constraints 1.00 1.06 1.21 1.56
Volatility of the virtual 0.87 1.00 1.15 1.30
machine environment
Required turnabout time 0.87 1.00 1.07 1.15
Personnel attributes
Analyst capability 1.46 1.19 1.00 0.86 0.71
Applications experience 1.29 1.13 1.00 0.91 0.82
Software engineer 1.42 117 1.00 0.86 0.70
capability
Virtual machine 121 1.10 1.00 0.90
experience
Programming language 1.14 1.07 1.00 0.95
experience
Project attributes
Use of software tools 1.24 1.10 1.00 0.91 0.82
Application of software 1.24 1.10 1.00 0.91 0.83
engineering methods
Required development 1.23 1.08 1.00 1.04 1.10
schedule

48 m Software Project Management: A Process-Driven Approach

Table 3.6 Coefficient Values a and E
for Various Project Types

Software Project Type a E

Organic 3.2 1.05
Semi-detached 3.0 1.12
Embedded 2.8 1.20

3.2.4.4 COCOMO Model Conclusion

Over the years, the COCOMO model has been refined by many experts. At the same time due to
changes in technology and growth in maturity of software development teams, the formulae for
calculation of effort, duration, and manpower requirements needed to be adjusted for many factors
so that the formulae remain relevant and can be effectively used. One popular variant is known as
COCOMO II. Many organizations have developed their own versions of the COCOMO model
based on the unique environments under which they operate. While some of them have added or
deleted more dimensions in calculation of effort estimate figures, some others have modified the
values of these dimensions to correspond to their environment.

3.2.5 Effort Estimation for Waterfall Model-Based Planning

Software projects with the waterfall or traditional development model have to plan for everything
in advance including making elaborate effort estimates [7]. But effort estimation cannot be made
without proper identification of project tasks that will be involved in making the estimate for the
project. The best way is to first break the project into phases and milestones and then estimate
which tasks will be involved in each phase. In traditional software development projects, a water-
fall model is adopted. So the project will have major phases and milestones of software require-
ments management, software design, software construction, software testing, and finally software
release. A software maintenance project may have reverse engineering, software construction, soft-
ware testing, and release phases. Sometimes a project could be small, consisting of a partial set
of activities, for instance, one needs to provide only the design of the software application, while
other services are provided by some other service provider. In any case, once phases of the project
are identified, then individual tasks of the project can be identified. Once these tasks are identi-
fied, then the size of these tasks can be measured from specifications such as quality level and
phase-specific information. For instance, suppose for the coding task in the construction phase, a
component needs to be developed using Java. The size of the component will depend on the number
of functions that will be built for this component. The complexity of the component will depend
on what kind of functions these will be. Will these functions have interfaces for other functions?
Once you have all details about the component, then you can make a size estimate for the com-
ponent precisely. Now you need to know who will code this component. Does this person have
prior experience of coding similar components and are they good at it? From here you can estimate
productivity. From size and productivity one can figure out how many days it will take to develop
that component. Estimates for all tasks in the project can be made likewise (Figures 3.4 and 3.5).

One important consideration for effort estimation for a project with the waterfall model is
calculating effort estimation for different phases of the software life cycle [8]. This can be done
in two ways. Effort estimate for a phase can be calculated by summing up effort required for all

Software Project Effort and Cost Estimation ® 49

Effort size

A

Complexity Product size Quality level

Figure 3.4 Factors influencing effort size.

Productivity
Y
Programming
language and Team skills ex T:rai:errlme
technology P

Figure 3.5 Factors influencing productivity.

tasks associated with that phase. An effort estimate for all phases can also be calculated from total
effort required for the project by allocating percentage of effort for each phase. Thus, if total effort
required for the project is 1500 man hours, and if requirement management comprises 15% of
total effort, then the effort estimate for requirement management will be 225 man hours (1500 x
15/100). Likewise, an effort estimate for other phases can be calculated.

3.2.6 Effort Estimation for Iterations Model-Based Planning

Agile, iterative, extreme programming, and many other forms of alternative models for software
development are fundamentally different from the waterfall model in that they have iterations
over one phase or many phases of the SDLC life cycle. Effort and schedule estimates for these
projects differ significantly compared to the waterfall model [9]. Many authors of books related to
software engineering and software project management have tried to explain differences in effort
and schedule estimation for different models. The agile model is best suited for projects where
the risk of software development is very high. That is why from the beginning, it was adopted for
projects where the software product to be developed was small or the software requirements were
not typical (no similar type of software products existed before due to new technology or new
industry). These kinds of projects are more like research and development projects with a high
degree of innovation and creativity required. Thus, instead of a fixed price/fixed duration model,
a time-and-material-based contract suits such projects. In this kind of arrangement, making an
effort and cost estimate for the project is difficult (Figure 3.6).

However, with the increasing maturity of iterative models, increasingly varied kinds of projects
are being executed with any of the iterative models. It is not uncommon for even large projects with
a size exceeding 1 million LOCs these days to use an iterative model. In such cases, an effort and
cost estimate for the project becomes necessary. However, empirical methods for effort and cost
estimation for such projects have not sufficiently developed and standards are not available that can
be used. Therefore, most organizations have developed their own methods for these calculations.

50 ® Software Project Management: A Process-Driven Approach

Estimation for
iterative projects

Y

Number of . Team
. . Team skills .
iterations experience

Figure 3.6 Factors influencing effort estimate for agile and iteration-based projects.

Essentially, the iterations of tasks over different phases in the project make an effort esti-
mate difficule. For instance, suppose the design of a component needs to be iterated three
times (which is not known at the start of the project) then effort for designing the component
normally should be three times that of effort required for designing that component once.
However, this is not the case. In each iteration the effort required will be different, because the
component details will be different in each iteration, there will be different sets of tasks in dif-
ferent iterations, and the volume of work in each iteration for developing/modifying the same
component will be different. Therefore, the effort estimate will be different in each iteration.
Moreover, since it is not known how many iterations will be there in the first place and how
much work will actually be involved until each iteration starts, effort estimate simply becomes
impossible to calculate.

One more aspect in an iteration-based model is that iteration is done either for modifying the
same component or a complete iteration is made over all the phases of the product development
life cycle for developing a new functionality in the software. In the latter case, each iteration is
completely different from the other. Effort and cost estimates for each iteration will be different
and have to be computed separately.

One positive aspect about computing effort and cost estimates for iteration-based projects is
that the duration of each iteration is short; usually 2—8 weeks. In the few initial iterations, effort
and cost estimates may be wrong to a great degree. However, since the volume of work does not
much exceed that of any waterfall model-based project (may be 1/20 or even less), this variance
is not significant in terms of the amount of time and cost even though it may be large in percent-
age terms. In subsequent iterations, since the team has gained experience, estimates will be more
accurate and will not be a major risk factor.

Due to these reasons, for iteration-based projects, effort and cost estimates are not a major
concern for customers and thus, not a critical element of project management.

Again, effort and cost estimation is good only when the project activities can be well defined
and estimated measurements can be taken with some precision. When a software product is to be
developed using a new technology, it is extremely difficult to predict project activities and their
measurements in terms of duration and costs involved. Similarly, when a new software product is
to be developed using any agile model and since there is no significant body of knowledge available
that can be applied for effort estimates, then again effort and cost estimate is difficult. At the same
time, using established models like the waterfall or rational unified process is not practicable as
these types of projects are very risky (as outcomes of these projects are largely unknown). Iteration-
based product development models are extremely useful in such cases as they reduce exposure to
high risk by dividing it into many smaller risks in terms of small iterations. If the project outcome
after a few iterations is not encouraging, then the project can be abandoned with lesser impact in
terms of revenue and effort loss.

Software Project Effort and Cost Estimation ® 51

3.3 Cost Estimation

Once you have the effort estimate for the project, calculating costs for the project is required [10].
Here we are assuming that the project is based on a fixed cost—fixed duration basis. The most pop-
ular method involves first converting the effort estimate into man months if it is not already done.
Then a standard man month rate is applied for the project. Suppose for a project the effort figure
is 13 man months and a man month rate of $4,000 is applied. The project cost comes to $52,000.

If the project is outsourced, then the service provider may top this cost figure with some over-
head costs that are typically a percentage of this cost figure. Suppose the service provider applies
a 15% effort cost as overhead cost. Then in our case, the overhead cost will come to $7,800. Thus,
the total cost for the project will be $59,800.

Software projects have many kinds of associated costs, including expenses for hardware, man-
agement costs, software tool acquisition costs, training costs, etc. But the most expensive item
on the project budget is the salary of software professionals who will be working on the project.
Salaries of project staff comprise more than 70% of total project costs.

The biggest cost driver for any software project is the effort required to complete the project.
Increased effort drives up salary expenses for project staff. Therefore, the project manager always
has to keep an eye on the productivity of the staff so that the money spent on salary has a good
return value.

Moreover, the salary of software professionals is not directly linked to their productivity; two
software professionals with the same years of experience and same skill sets but with different
productivity levels may get the same salary. Similarly, the salary for different professionals with
same productivity may be different. This creates a problem in calculating project expenses.

If the salary structure of staff were as simple as depicted in Figure 3.7, cost calculations
could have been easy. But due to the fact that the salary, for example, of two junior developers
is different from each other makes cost calculation difficult. In that case, compared to the aver-
age effort put in by the two junior developers, the payment for the same effort is different. This
becomes an anomaly if the project manager calculates project costs based only on designation
(Figure 3.8).

Similarly, some other factors are to be considered when costs are calculated. We can conclude
from the earlier discussion that effort and project costs can vary due to variance in salaries and

120,000

@ Salary
100,000

80,000
60,000
40,000 -
20,000 -]
0 T T T T T T T

+~ S St wv
v [i) [N 4
S8 5 & 2 ® RN
- =9 S Z ZE3
S & 5¢ H g 35 g
[=h=] — o & a
2 @ o

Figure 3.7 Salary of project staff.

52 ®m Software Project Management: A Process-Driven Approach

66,000
65,000 [Salary

64,000
63,000
62,000
61,000
60,000
59,000

58,000

57,000
Junior developer 1 Junior developer 2

Figure 3.8 Salary of two junior developers.

thus in such cases, correlating effort and project cost will be difficult. This is why you simply can-
not replace one resource with another (with different pay) without properly accounting for change
in project cost.

3.3.1 Cost Factor Analysis

Suppose a project manager has a project budget of $450,000 (+15% —10%). The estimated
effort for development is 500 hours (including requirement gathering, design, and construc-
tion) and 300 hours for testing. The assumed overhead cost is 15%. So the budget range for
the project is from $517,500 to $405,000. Of this amount $77,625-$60,750 is earmarked for
meeting overhead expenses. From $439,875 to $344,250 is available as budget for spending on
staff salaries. The hourly wage for average development staff is $70 and for testing staff is $60.
The hourly wage for a test manager is $80 and for a project manager is $90. Effort required for
project planning, controlling and monitoring is 10% of development effort. Effort required for
test project planning, controlling, and monitoring is 10% of test effort. Table 3.7 presents the
cost analysis.

Table 3.7 Project Cost Analysis for Salaries

of Project Staff
Effort Type Hours | Costs/Hour | Costs
Development effort 5,000 70 350,000
Test effort 3,000 60 180,000
Project management 500 90 45,000
Test management 300 80 24,000
Total cost 599,000

Software Project Effort and Cost Estimation ® 53

But from the project cost data mentioned eatlier, only $439,875-$344,250 is to be spent on
salaries. What could be done in this situation? One option is to ask the stakeholders (customers)
for a revised budget. Or one may have to cut some features from the software to reduce effort
required. This situation must be communicated to the stakeholders as soon as possible.

On most projects costs play a vital role. Talent costs money and companies have no option but
to hire talented professionals to keep their crucial projects running successfully. How does one bal-
ance talent versus costs? One option is to utilize the time of your staff intelligently. Do not waste
any money by not propetly loading your staff with project assignments. Use any good software
which will allow you to track how your staff is loaded with assignments. Plan ahead for future
assignments so that staff has assignments all the time and they do not it idle between assignments.
Pay particular attention to assignment loading on highly paid staff, who should be assigned work
that is crucial and where the hourly rate for project work is high.

Use PMO (Program Management Office) to share staff hours diligently. PMO should ensure
that no overloading or underloading of staff hours are done on any project or across projects. To
deal with extreme cases when either project work is less than staff hours available or project work
is more than available staff hours, use flexible teams. The flexible team can include contracted staff
who can work when needed and can be removed when no work is available. These measures can
go a long way in ensuring proper staffing needs.

There are two types of projects: time and material based and fixed schedule—fixed costs based.
Fixed cost—fixed schedule based projects are the ones where requirements are concrete and most of
the project details are clear. Costing for such projects is also clear in the beginning of the project.
But not all projects have enough clarity to start with. Many projects start with lots of doubts,
ambiguities, and uncertainties. In such cases, costing and scheduling is very difficult to make.
Hence, these projects are executed on a time and material costs basis. The customer agrees on
recurring payment of time spent by a project team on his/her project. Generally, the recurring
payment is in the form of a monthly fee.

Many projects are a mix of the two forms of projects. For a certain period in the beginning, a
project is formed on the basis of time and material. Once certain amount of clarity is achieved on
the project, the project is converted into a fixed cost—fixed duration basis.

3.3.2 Activity-Based Cost Estimation

Accurate costing in any business scenario is a difficult task. Even when a reliable system is employed
for costing, it is often difficult to attribute a cost to a certain head. Accounting being a difficult
task, often it turns out that after much adjustment here and there, costs are attributed to certain
heads of expenses at a gross level.

Activity-based costing tries to ease this situation [11]. For each individual activity on the proj-
ect, all costs are calculated from starting of the activity to its finish. Whenever accounts are
prepared, all incurred costs are accounted for all activities on the project. This ensures there is
no irregularity in the accounts and the account reports are accurate. This helps the management
know how expenses are being incurred and whether there are any undue expenses incurred on
tasks. Coupled with activity-based costing, if baseline planned costs for activities can be compared
with actual costs for tasks, then it will be of immense help for the management to know which
project activities are not proceeding in the right direction, and thus necessary steps can be taken
to bring those activities on track (Table 3.8).

54 m Software Project Management: A Process-Driven Approach

Table 3.8 Cost Analysis Based on Activities

Start Schedule Effort Average
Activity Date (Months) | (Months) | Staffing | Cost ($)

Planning

Management

Requirements

Prototyping

Configuration management

Functional design

Design review 1

Detail design

Design review 2

Quality assurance

Coding

Reuse acquisition

3.3.3 Cost Estimation for Iterations-Based Planning

There is not much difference when it comes to making cost estimates for iteration-based projects
compared to waterfall model-based projects. Total effort may determine the costs for the project
regardless of schedule and number of iterations. Costs are determined for each iteration separately as
well as for the major release of the software product being developed. Costing for the entire product
can also be made by summing up costs of each major release. So we have three levels of costs each at
the iteration level, major product release level, and at the entire product development level.

3.4 Schedule Estimation

The amount of effort and schedule put in terms of time is not equal [12]. There may be many paral-
lel processes where project tasks are being completed. In such a sicuation, effort will be greater than
the schedule. In cases where there are floats or slacks in the schedule, the schedule will be greater
than the effort. Therefore, the effort for the project is calculated first, followed by the schedule.

Once the schedule is made, the schedule duration will be the difference between the date when
the project starts and date when the project ends. From the PERT/CPM view, the project dura-
tion will be the difference between start date of the earliest project task and end date of the latest
project task.

3.4.1 Schedule Estimation for Waterfall Model-Based Planning

The effort for the entire project is based on adding all efforts required for each and every project
task. Of these tasks, one has to determine which tasks will be done in parallel. For instance, much
of the work in the construction phase is done in parallel as modules are distributed to different

Software Project Effort and Cost Estimation ® 55

Project

Design 1 | Construction 1

Initiation | Requirements | : Design 2 | Construction 2 | : | Integration | Release

B S —— ? o

Critical path ———

‘ Testing

Total project schedule

Total project effort

iInitiation Requirements | Design 1 | Construction 1 | Design 2 [Construction 2

tegration Testing Release

Figure 3.9 Project effort and project schedule for a project.

teams who will be developing their modules in parallel to modules being developed by other
teams. Similarly, much of the software testing is done in parallel as many testers test their own
modules in parallel to modules being tested by other team members. Also it will have to deter-
mined if there will be slacks and floats between tasks.

Using PERT/CPM or network diagrams you can find the critical path for the project, and
thereafter, its schedule and duration (Figure 3.9).

For projects that have no parallel tasks (classical waterfall model), the schedule is the same
as the effort (if there are no slacks in the schedule). This is because the length of the critical path
for the project is the same as the duration of all project tasks (i.c., effort). But this is rare. In most
cases, some parallel tasks take place on the project and thus effort and schedule for the project are
different. Schedule and effort will also not be the same in cases where there are gaps between the
end of one task and the start of the next task in sequence even when they are in sequence. When
the schedule is calculated, the idle time (time gaps) between tasks is also added but in effort calcu-
lation these time gaps are not added.

3.5 Resource Estimation

After making the schedule, we estimate the resource requirements [13]. In order to do this, we should
first get the list of tasks on the project. For each task, we need to identify the required skills and level
of experience. A list of all skills and minimum necessary experience required for each task should
be marked. For each task we need to identify the resources available in the organization. So we will
be matching task skills and minimum experience requirements with skills and necessary experience

56 ® Software Project Management: A Process-Driven Approach

possessed by resources. The names of “resources” that possess all skills and necessary experience
required for the task should be listed against that task.

The next step is to find the availability of resources for doing those tasks. From the list of
names of resources, identify resources that will be available between the task start and finish dates.
The other dimension is the amount of work involved in each task. How many resources will be
required for that task should be calculated. The productivity factor for the organization will come
in handy here. The number of resources required for the task will be the volume of tasks divided
by the productivity and time duration under which task is to be completed. For example, if volume
of work is equivalent to 2000 KLOC and productivity for the organization is 1000 KLOC per
person per month, and if the task has to be completed in 1 month, then we need two resources for
this task (2000)/(1000 x 1). Sometimes we may need less than one resource to do the task. In such
cases, a resource may be assigned to the task, who will also be doing some tasks on other projects.
Generally the loading factor for a resource should be kept at 1 (loading factor is the amount of
work which a resource can do in working hours on a working day). But sometimes due to unavail-
ability of resources, we may need to increase loading for a particular resource to more than 1. In
that case, the resource is overloaded and will be working overtime.

3.6 Artifacts of Effort and Cost Estimates

Essentially, an effort estimate provides project costs, project duration, and staffing needs. Buc it
does not provide a detailed schedule. A detailed schedule is derived from the work breakdown
structure. The actual stafling needs are also derived from the work breakdown structure after
stafling requirements are attached to the schedule. What we get from effort estimates are average
stafling needs for the project, which helps in deriving project costs. In most cases, customers need
project cost and project duration to sanction the project. The project manager needs to provide
these details early on in the project. In cases where the project is being outsourced, the bidders for
the project provide estimated costs and duration in their bid details. The more details about costs
and duration provided on the estimate sent to the customer, the better it will be. Details will help
the customer to understand how the project will progress and how costs are derived. This builds
customer confidence in the project team that the team is capable of delivering the project. This
goes a long way toward making a success of the project.

3.7 Practical Considerations in Effort and Cost Estimates

When the effort and cost estimates are derived using formula-based techniques like COCOMO
or FPA, it gives a raw estimate. The risk factors are not included. Any estimate should have a risk
factor as an essential ingredient. So the project manager should include some reserve in the project
for covering risks in the project. For details about risks please refer Chapter 4.

As has been repeatedly argued by Brooks, Boheim, and others, effort estimation for software
projects is a tricky affair. Only after the software design is well established that effort estimate can
be calculated with some accuracy. The best approach for effort and cost estimation for a project
should be to do it frequently after each major milestone is achieved. Adjust these figures when you
come to know more about the project as it progresses.

Generally we measure size as source lines of code (SLOC). The source code is written when
the project is in the construction phase. But we also have other phases when no source code is
written (requirement specification, software design, software testing, documentation, etc.).

Software Project Effort and Cost Estimation ®m 57

Working in these phases takes time and effort. So how do we account for this effort and time
when we are reporting the effort and time in terms of SLOC? One good solution is to account for
the effort and time taken in these activities along with the one in the construction phase and then
calculate the effort and time required in terms of SLOC. For instance, suppose it took two business
analysts 2 months to develop requirement specifications; a system analyst developed the design in
2 months; and five developers developed the application in 5 months. Out of these 5 months they
spent around 2.5 months doing unit and integration testing. The two test engineers took 1 month
for doing the system testing. Code fixing for developers again took 15 days. Supposing the system
developed contained 30,000 SLOC, then what are the figures for effort?

Time spent by business analysts = 4 months (2 x 2 months)

Time spent by business analysts = 2 months

Time spent by developers on development = 12.5 months (5 x 2.5 months)

Time spent by developers on code fixing = 2.5 months (5 x 15 days)

Time spent by developers on testing = 12.5 months (5 x 2.5 months)

Time spent by testers = 2 months (1 x 2 months)

Total time spent by team members on the project = 35.5 months

Total code written on project = 30,000 SLOC

SLOC per month on project = 30,000/35.5 = 845 SLOC/month

3.8 Effort and Cost in Product Development

In the case of product development for software vendors, the effort and cost estimate does not
have much significance for just one iteration or one project. Their product development effort is
continuous in nature, as they continuously keep working on new releases of their product. When
one release (whether minor or major) is over, they immediately start working on the next release.
Sometimes they employ more than one team simultaneously to do their product development
faster in a time-boxing environment. Due to their continuous operation, they rather calculate
their development costs at quarterly, half yearly, and yearly bases and do not bother about costs
for just one iteration or one project. They have a constantsized team and this team does not get
disbanded after each iteration or project. They may expand or contract team size due to long-term
market conditions, and not due to demands of any iteration or project. The software vendors rather
concentrate on the effort and cost involved in the entire product development that spans many
years. They make estimate for this entire cost and effort requirements when they decide to go for
building the software product. They keep revising this estimate at their yearly or half-yearly plans.

3.9 Case Study

In Chapter 2, we saw how the project of our SaaS vendor got initiated. We continue our story of
the software product vendor (or rather, SaaS service vendor).

3.9.1 History

When they decided to build the software product; they estimated that the size of their prod-
uct will be around 500,000 SLOC when they can start marketing their software product.
They had also decided that they will go for incremental software development so that they
can sell their product with a bare minimum of features and can keep developing their product

58 ®m Software Project Management: A Process-Driven Approach

and keep adding new features, and at the same time they can keep selling their product in the
market with the already developed features.

They had estimated that they will be able to develop the initial product in 2 years time.
That meant they needed to develop the product at 21,000 SLOC per month (including the time
required to develop requirement specifications, software design, and software testing. In all of
these activities, no source code lines are added but they take time. This time is added along with
the time required to write the source code.). They had estimated that a good project team consist-
ing of around 22 people could do the job. On average, the salary of each project team member
would be around $6,000 per month. That meant the quarterly cost will be around $400,000. So
over a 2-year period, $3,200,000 will be the development cost. Later, when they were established
in the market and realized that they wanted a larger team to develop the software at a faster rate,
they thought about their options. They wanted a team of 50 people to speed the development at
two and half times compared to the present speed of product development. If they had hired the
additional staff locally, it would have cost them $1,000,000 per quarter for a development team
of 50 people. The option of hiring contractors would have cost more than this figure and, hence,
it was not an option. Moreover, they wanted to hire permanent staff instead of temporary staff
as they were looking for a long-term goal instead of short-term staffing. Thereafter they thought
of offshore service providers. Offshore development staff would cost one-third of what it costs if
they hired locally. They evaluated a few service providers and finally zeroed-in on two of them
and made contracts with both of them. Now they had a staff of more than 50 people and the total
development cost of $730,000 per quarter.

3.9.2 Current Project

The current project could be broadly categorized as developing the appointment scheduling
engine, developing search functionality, integrating the appointment scheduling functionality to
existing features, and finally testing the whole application thoroughly. Since a very complex logic
was to be implemented, the logic first needed to be thoroughly tested and, subsequently, integra-
tion of the logic with the rest of the application was to be tested. Therefore, the testing part was
crucial for the success of the project. At the same time, since this logic was being implemented for
the first time, the testing component for the project was comparatively large.

3.9.3 Effort and Cost

Over the proposed four iterations (minor releases) and the complete appointment scheduling
functionality to be achieved by end of the major release, it was estimated that the effort required
to complete the functionalities associated with appointment scheduling will be approximately
300,000 SLOC. This approximation was derived after using a bottom-up effort estimate. First
the functionality was broken down into lowest-level components. Effort for these components was
estimated. Summing up of efforts for component gave the overall effort for the entire functionality.

Exercises

3.1 Find the relationship between effort and cost. What cost factors have more impact on effort
and which cost factors have lesser impact?

3.2 Agile projects may have less effort required compared to traditional projects. What factors
are responsible for this phenomenon?

Software Project Effort and Cost Estimation ® 59

Review Questions

3.1

3.2

3.3

3.4
3.5

Describe the Function Point Analysis technique for deriving effort and cost estimates for
software projects?

Describe the COCOMO technique for deriving effort and cost estimates for software
projects?

Which estimation technique will you use for a project where data for past projects are not
available and why?

How are cost and schedule for a project related to each other?

How do project scope and quality level affect the effort required for a project?

Recommended Readings

1.
2.
3.

o)

10.
11.
12.

13

P. Jalote (2002) Software Project Management in Practice, Addison-Wesley Professional, Boston, MA.

J. C. Goodpasture (2003) Quantitative Methods in Project Management, J. Ross Publishing, Boca Raton, FL.
D. Brandon (2005) Project Management for Modern Information Systems: The Effects of the Internet and
ERP on Accounting, IRM Press, Hershey, PA.

. E P Deek, J. A. M. McHugh, O. M. Eljabiri (2005) Strategic Software Engineering, CRC Press, Boca

Raton, FL.

. D. D. Galorath, M. W. Evans (20006) Software Sizing, Estimation, and Risk Management, CRC Press,

Boca Raton, FL.

. M. Zelkowitz (2004) Advances in Computers, Volume 62: Advances in Software Engineering (Advances in

Computers), Academic Press, Amsterdam, the Netherlands.
. G. Lenz, T. Moeller (2003) Net—A Complete Development Cycle, Addison-Wesley Professional, Boston, MA.
. J. Love (2007) Process Automation Handbook: A Guide to Theory and Practice, Springer, Berlin, Germany.
. D.]. Anderson, D. Anderson (2003) Agile Management for Software Engineering: Applying the Theory of
Constraints for Business Results, Prentice Hall, Upper Saddle River, NJ.
E. Verzuh (2005) 7he Fast Forward MBA in Project Management, 2nd edn., Wiley, New York.
C. Jones (2007) Estimating Software Costs, McGraw-Hill Osborne Media, New York.
R. T. Futrell, D. E Shafer, L. I. Shafer (2002) Quality Software Project Management, Prentice Hall PTR,
Upper Saddle River, NJ.
. J. Greene, A. Stellman (2007) Head First PMP, O’Reilly, Sebastopol, CA.

Chapter 4

Risk Management

In the previous chapter, we learned

How is an effort estimate for a project made?

What are the different effort estimation techniques?
How is a cost estimate for a project made?

What are the different cost estimation techniques?
How can a schedule estimate for a project be done?
How can a resource estimate for a project be done?

In this chapter, we will learn

B What is a risk on a project?

B What kinds of risks exist for a project?

B What kind of impact may risks have on a project?
B What strategy is needed to deal with risks?

4.1 Introduction

Risks are unforeseen or unplanned happenings, which, when they occur, devastate or at least
adversely affect our future plans. When we analyze any software project, what kinds of risk come
to our mind? Basically, a project has these components: budget, time, resources, quality, and
technology. If any risk occurs that might affect any of these components, then the project may fail.
What is the best way to reduce or mitigate the risks? There could be many aspects to any project.
But a project manager must develop a comprehensive risk mitigation plan so that if any risk arises

62 m Software Project Management: A Process-Driven Approach

Project
Budget Time
External
Quality Technology risks
Resources ‘i\\
Internal
risks

Figure 4.1 Internal and external risks for a project.

during execution, he will be able to handle it comfortably. If he has not made a proper risk plan,
then if anything wrong happens, he will not be able to handle it (Figure 4.1).

Risks can be categorized as external and internal. If a risk to the project arises due to an aspect
being dealt with by the project team, then it is an internal risk. All other risks are external risks.
Suppose a project is to be coded using a particular programming language, and one developer on
the team is not conversant with it. In this case, he is given training so that he can pick up this
language. However, if even after training, this team member is not able to use the programming
language, he will not be able to do the task assigned to him, and his inability will be considered an
internal risk. Now, suppose that this particular training is not available from any training service
provider, then in that case, the risk becomes an external risk (Figure 4.2).

Many environmental factors affect a project. If any of these environmental factors impact a
project, then though the impact on the project is external (as environmental factors are external to
the project), it can still be substantial for that project. Some of the external risks can be managed
by a proactive approach. But many external risks cannot be managed. One good example is the
obsolescence of a technology. When the project starts, a particular technology is chosen (a prebuilt
vendor component, for instance) little realizing that the vendor will not support that component
by the time the project finishes. Similarly, the customer may go out of business due to economic
recession and the project may need to be scrapped.

At the project level, risks impact any of these project deliverables: schedule, quality, or budget (risks
affecting resources or technology ultimately impact budget, quality, or budger) [1]. At the beginning
of the project, the project manager is given (or he makes them after consultation with the customer)
limits for these three things, that is, to deliver the project within the stipulated time limit, within the
budget, and with the product quality of a stipulated standard. If any of these three are not delivered,
then the project is considered to have failed. So, the project manager has to ensure that these limits are

Major risk types
i
Resource Technology Budget Quality Time
risks risks risks risks risks

Figure 4.2 Major risk types.

Risk Management ® 63

communicated clearly to the project team. The project manager should make sure that the project team
understands these limits and delivers its part of the project within these limits. At the same time, he
also needs to work out his plan well, so that he and his team are ready to face any surprises if they arise
and handle those situations with ease.

4.2 Causes of Risks

What are the probable causes of risks on a software project? What can be done to prevent or mini-
mize the impact they can have on the project? How much impact do they have on the project?
What is the probability that they may occur and might impact the project?

For any good project manager, it is of utmost importance that he first of all makes a list of risks
which his project faces. After that, he can find solutions for tackling them. So here is a discussion
of some of the risks that may occur in any software project (Figure 4.3).

4.2.1 Quality Constraints

These days, quality is one of the major concerns for software products, as the high cost of sup-
porting these products is well understood, and thus, avoidance of providing product support for
bad quality products is a top policy among software vendors. Software vendors realize that it is
much cheaper to make a good quality software product with low support costs than to produce a
software product of poor quality and end up with high support costs. So an elaborate set of quality
constraints are imposed from the start of the project to the finish [2]. In fact, nowadays, a separate
software process group is formed that oversees the quality of projects. Indeed, meeting quality
requirements is a big risk for all projects.

4.2.2 Resource Unavailability

Resource unavailability is one of the major risk factors, as software professionals are in great
demand the world over [3]. Finding and procuring a good software professional is a complete
project in itself. Retaining him within the organization is yet another challenge.

4.2.3 Disinterest

Lack of interest is a concern that needs to be mitigated by project managers as it severely affects
productivity [4]. A good motivation program for individuals who lack interest in the project can
be organized.

Bad . Unrealistic
. < Causes of risks —- .
negotiation estimate
Cost / \ Human
constraints error
P A .
alit .. Resource -, Scope Poor
Qu 1'y Disinterest .u o Attrition P
constraints unavailability creep management

Figure 4.3 Major causes of risks.

64 ®m Software Project Management: A Process-Driven Approach

4.2.4 Attrition

Due to the high demand for software professionals, most professionals have many job offers in
hand at any given time. When they find a lucrative offer, they quit an organization to join another
organization, thus leaving a project midway. Attrition has become such a big issue that manage-
ments at big corporations have specialized programs to tackle it [5].

4.2.5 Scope Creep

Scope creep is one risk that affects most software projects, and it always impacts the project severely.
Requirements keep changing and new requirements keep piling up even after the project has com-
pleted the testing phase and is into the implementation phase. A good change management mechanism
can tackle this menace effectively.

4.2.6 Cost Constraints

Once a project is approved for commencement, a budget is allocated and procured for the project.
But due to unavoidable reasons, the budget can be constrained. In such situations, the project cannot
proceed as sources of funds have dried up and project expenses cannot be met. There is no solution
for this problem, but if this risk is known in advance (an unlikely occurrence), then the project could
be cut short and scrapping of the project could be avoided.

4.2.7 Bad Negotiation

If the project manager has good negotiation skills, then he can procure an additional/modified
budget, support, and resources, whenever the need arises. But sometimes due to bad negotiation
skills or for lack of foresight on the part of the customer, this kind of support is not provided and
the project lands in troubled waters [6].

4.2.8 Unrealistic Estimate

An unrealistic estimate is yet another risk that is very common on most projects [7]. It is also a
fact that effort estimates for software projects are difficult to make because of the uncertainties
involved. So, it is always possible that it is understated. It is always better to keep a buffer when an
estimate is made, to take care of uncertainties.

4.2.9 Human Error

The human brain has a processing power that no computer can match, but it has a limitation.
It cannot do repetitive work without making errors. These human errors are caused by the dis-
tractions of the brain because our brain keeps processing all signals sent by our sensory organs
continuously, and thus, the work we are doing gets less attention, which results in errors in the
work [8]. Due to human error, the requirements or design, or the construction may get injected
with defects. To overcome this, we must have review processes for the work done to remove
any defects.

Risk Management ®m 65

4.2.10 Poor Management

Poor management is yet another human risk factor. Not all project managers are naturally talented.
Many of them learn managing things from experience. If a project manager lacks experience in
managing a project, then it is a big liability for the project and it will show up in project results [9].
Even if a project manager has experience, personal traits dictate whether he can handle the project
well or not. So the project manager for a project must be chosen carefully, taking into account his
experience and personal traits.

4.3 Risk Categories

All of the risks mentioned in the previous section can actually be broadly grouped into categories
of budget risks, resource risks, quality risks, schedule risks, and technology risks. How can these
categories of risks be tackled? Let us discuss this point in the following section.

4.3.1 Budget Risks

Risks that impact the project budget need the foremost consideration, and they need to be con-
trolled throughout the project [10]. If for some reason the budget goes above the permissible limit,
then the project manager must do something to control it. It is common practice for the project
steering committee to decide to cut short some product features to contain the project within
the budget. But this is not a good practice. Instead, remedial action must be taken as soon as the
project shows the risk of cost overrun, so as to prevent the problem from actually happening. That
is why, at all times, project expenses should be tracked and controlled.

Then there are cases when project cost control is not in the hands of the project manager.
For instance, due to market forces, the salaries of team members have to be increased, other-
wise they might leave the project to get a better salary. In such instances, the management may
decide to increase salaries so that they do not leave. In such a case, the project manager has no
choice but to revise the project costs and inform the customer about it. This fact can adversely
affect the project.

To reduce the impact of budget risks, the budget allowance should include reserve funds.
So when such risks occur, allowances can be taken up from the reserves to avoid the project
from failing.

4.3.2 Time (Schedule) Risks

The opportunity time window for businesses is slowly shrinking in today’s fast-paced and chang-
ing business environment. So, if the project looks to be slipping away from the targeted date of
deployment, then it will be a great business opportunity loss for the customer. For this reason, the
project should never be allowed to cross the targeted release dates [11]. Nevertheless, due to unfore-
seen circumstances, the project dates may get affected. Sometimes, unexpected rework to be done
on software construction will lead to the slippage of the task schedule. There may also be instances
when due to a lack of proper communication, customer requirements are completely misunder-
stood, resulting in an inappropriate product being delivered to the customer, and thus, complete
rework is required to prepare the software. This will again lead to project schedule slippage.

66 ®m Software Project Management: A Process-Driven Approach

x Proct S
Task 1 § Task 2 § Task 3 & Task 4

N

§ = Risk buffer

N

Figure 4.4 Schedule risk buffer provisions in a project.

To reduce the impact of schedule slippages, a schedule allowance should be taken for each
time-related risk (Figure 4.4).

4.3.3 Resource Risks

Project team members are the most costly resources in software projects [12]. So, creating reserved
resources for the project is a difficult proposition. On one hand, the project manager needs to
keep project costs at the bare minimum, and on the other, he has to make a provision for reserved
project resources as contingency for any risk of losing any project team member at any time dur-
ing the execution of the project. It is a reality that software professionals are in great demand,
and most projects run the real risk of team members leaving the project for more lucrative offers.
In such a situation, a project may suffer if any team member decides to leave the project midway.
Whatever tasks the member had finished on the project is fine, but what about the remaining tasks
that have not been started yet, or have only been half finished? Generally, it is not a good idea to
keep a paid reserve on the project as it would add to the cost of the project. But keeping a pipeline
open for probable replacements is a good idea. When a replacement is needed, the project manager
can tap this pipeline and get the replacement. But sometimes getting the right replacement takes
time, and thus, the project suffers. This risk can be mitigated by keeping a reserve in the project
schedule for any delay in resource replacement. This reserve pool can consist of people sitting on
the bench or list of people who are working on other projects and the dates on they will be avail-
able (Figure 4.5).

Project team members leaving in the middle of the project is one of the biggest risks any
project may face. Such team members take the project task (the task he was working on) knowl-
edge with them as well. This results in a big loss to the project. This risk can be mitigated to
some extent by implementing a knowledge management system that will store all the knowledge
acquired by team members during the project. It will also store all the work performed by the
project team. So, when a team member leaves the project, the knowledge acquired and the work

Pool of talent
(people on

Knowledge ' bench + dates
management > Project team - when released
system

from ongoing
projects)

Figure 4.5 Resource risk strategy.

Risk Management ®m 67

done by him is in the knowledge management system. Thus, the project team will not lose all the
work that has been done and the knowledge acquired by the person who is leaving.
Knowledge management is discussed in further detail in Chapter 19.

4.3.4 Quality Risks

Industry strength software needs a rock solid reliability so that during operations, the support
costs can be kept at a minimum [13]. Otherwise, supporting a poor quality software product
becomes a losing proposition. So, the quality of the software product is always a concern and
a big risk. The quality of the product may be poor due to bad software design or bad software
construction. Even if it is good, there is still a chance of defects inadvertently creeping in due to
complexity, large integration interfaces, or due to the large number of changes in the design when
the requirements are altered.

To deal with quality risks, the best policy is to have a check for quality integrated in the project
schedule itself (quality planning). This will ensure that the quality at the work product level is on
par with the desired level, which in turn will ensure overall product quality. Peer reviews, code
reviews, and other formal quality review processes should be strictly followed for all work products
(Figure 4.6).

In fact, ensuring quality of the software product being developed has become so critical these
days that quality planning must be integrated tightly in the entire project plan to reduce quality-
related risks.

4.3.5 Technology Risks

Technology obsolescence is a fact of life [14]. With the rapid introduction of new products into
the market, older products quickly become obsolete. So, many projects face the prospect of having
an outdated technology on which the software product is being built. In such cases, the software
product becomes unusable even before it is implemented. Similarly, if any hardware component
that may have been integrated with the software and the hardware becomes obsolete, the soft-
ware product becomes unusable. An appropriate selection of programming language, hardware
platform, and user access methods will make sure that the software product does not become
obsolete during the expected lifespan usage of the product. When selecting technology tools and
techniques, contact the vendors to make sure that they will be providing support in future as well
for the tools you are buying from them.

\ mt \
Task 1 § Task 2 & Task 3 & Task 4

N

§ = Quality check

N\

Figure 4.6 Quality checks at the end of a project task.

68 ®m Software Project Management: A Process-Driven Approach

4.4 Risk Analysis

Dealing with any kind of risk requires some risk analysis [15]. The analysis should consider the
kind of impact risk can have on the project as well as the chance of it happening. Based on the
analysis, you then need to sort risks and put them in order. Risks with high probability and high
impact will be put on top of this list, while risks with low impact and low probability will be put
at the bottom. The project manager will then be better prepared to deal with all kinds of risks in
a systematic manner (Table 4.1).

Different risks occur at different times in the project. For instance, the product quality may not
meet the expected standards during the design stage, and the design may need to be reworked. The
rework may stretch the project schedule and the project plan may need to be redone. So, this is a risk
that can occur at the design stage. Similarly, during testing, a lot of unexpected defects might be
found, and the time taken to fix these defects will overshoot the budgeted time. Sometimes, it may
so happen that a team member may fall sick and it may take time to replace him. This may cause a
delay in finishing the assignment that was given to the team member (Figure 4.7).

In a nutshell, project risks are dynamic in nature. They can occur at any stage of the project. So
the project risk matrix where the project manager has listed risks and their impact as well as their
probability needs to be revised at regular intervals and the risks that are likely to happen at that
moment in time need to be assessed and remedial action should be taken.

Table 4.1 Matrix of Risks: Their Impact and Probability

Risk Category Risk Probability | Impact
Budget Task budget overrun High High
Budget Wrong budget estimate of a task | Medium High
Resource Not available High Medium
Resource Skill training Medium Medium
Schedule Wrong estimate of a task

Project scope | Scope creep

Quality Bad quality of product
Quality Product reliability issues
Technology Technology obsolescence
Create list _ | Assign priority and _ aCS)rcLerr hrsito;)ii;lziii
of risks o impact to risks o perp
impact
\
Update list when Lo
priority of a risk |« Make prioritized
changes list of risks

Figure 4.7 Risk analysis life cycle.

Risk Management ® 69

4.5 Balancing Act

No project can be executed 100% as per the project plan. There is bound to be something differ-
ent than planned due to the occurrence of any kind of risk and the subsequent impact it has on
the project. How can the project manager justify whatever has been delivered? Can he justify any
schedule or budget overrun? What about deviation in the quality level? What about a less-than-
agreed on set of features being delivered?

There are no easy answers. Each project is different. It depends on the importance of each
deliverable on the project compared to the other deliverables. This is not an easy choice. At
the top level, quality level considerations come from the kind of application being developed,
and for what purpose. If the application is meant for a general purpose information displaying
system, and the end users do not mind occasional bugs, then the quality level for the project
can be compromised in preference for costs or schedules. On the other hand, if the application
needs accurate transactions without any compromise, then quality cannot be undermined.
In that case, costs or schedules can be allowed to overrun to get the desired level of quality
(Figure 4.8).

These are all subjective considerations. The project manager must decide what limits to
cross and what limits to abide with. In doing so, he also should have consent from the project
stakeholders.

The project manager may also come across situations (which are very common) where require-
ments as well as priorities are ambiguous. In those cases, it will be in the best interest of the
project manager to remove those ambiguities as much as possible. Clear, well defined, and feasible
requirements lead to a better control over the project. At the same time, priorities should also be
set appropriately. Delivering low priority requirements at the cost of high priority requirements
will lead to unsatisfactory project performance.

From a software engineering point of view; clear requirements are the most vital inputs to a
project. But every experienced project manager knows that clear requirements are not enough to
do the job. Priorities are equally important.

It is this balancing act that each project manager must perform to succeed in the project

at hand.

External
risks

Product

; Budget
quality

Internal
risks

External External

risks Schedule risks

Figure 4.8 Internal and external risks, and balance in product quality, project budget, and
project schedule.

70 m Software Project Management: A Process-Driven Approach

Risks due to large

number of
requirements
y
Lon, High . . .
.g Large upfront 5 Requirement | | Miscommuni-
gestation . management .
. commitment changes cation
period costs

Figure 4.9 Major risks in traditional software development.

4.6 Project Risk Management in Agile Models

Using a waterfall model to execute your project is a big risk. It is because the outcome of the project
(the software product) is ready only after the whole project is completed after a prolonged period of
time. Suppose the project duration is 6 months, then the outcome of the project is known only after
investing time and money for these 6 months. The outcome could be positive or negative. Waiting
for such a long time to get the result is a big risk indeed. To reduce this risk, iterative approaches to
software development have been tried. Instead of taking all the requirements and doing the entire
product development in one go, requirements are broken into small sets of manageable requirements.
Each small set of requirements is then used to develop a small product. The duration for making
these small products (software features) is kept at 4—6 weeks or even less. After each iteration, there is
a demonstrable product that can be tested to see if it works as intended, and as per the requirements.
This approach reduces the big risk into a set of small risks (Figure 4.9).

All the risks associated with the waterfall model are either miniaturized or totally eliminated
in the iterative model. They can be managed in a better way as well due to the small size of these
iterative projects.

4.7 Artifacts of Project Risk Management

Risk management deals with defining probable risks, their impact on the project, and the ways
of dealing with them to minimize their impact on the project. The outcome of risk management
planning is the risk management document. It contains the list of risks, their impact, probability,
and what measures are to be taken to overcome them if they occur. Since risk can occur at any
time during the entire course of the project, and their chances of occurring vary from time to time,
they are dynamic in nature. So the risk management document should be updated regularly to
keep risk information current.

4.8 Practical Considerations for Risk Management

All of the risks on a project can be categorized as manageable and unmanageable. The project
manager must make mitigation strategies for all manageable risks. The unmanageable risks
at hand cannot be managed, and thus cannot have a mitigation strategy. A good example of

Risk Management ® 71

an unmanageable risk is a natural calamity, such as an earthquake. If an earthquake strikes,
then you cannot manage the earthquake. What can be managed to some extent, are the conse-
quences. The fire brigade, police, and volunteer teams can try to find people who are stuck in
the debris and try to save them. For human and capital losses, insurance companies can shell
out insurance benefits.

So for all unmanageable risks, the project manager can at best rely on external help if possible.
Buct for all manageable risks (that he can manage), he should make mitigation strategies. These
strategies will help him when these risks occur and impact the project in any way.

4.9 Case Study

In Chapter 3, we saw how effort and cost estimation were done for the project of our Saa$ vendor.
In this chapter, we will see how risks on the project were identified and how risk mitigation plans
were made to tackle those potential risks.

Every business is constantly trying to find out what the current market size for the products
and services it sells, and where it stands in the market vis-3-vis its competitors. What is the total
market potential for the software product it wants to produce? Who are the other players in the
market? What are their market shares? How does it want to carve a share in the market for its
products and services? What strategies are other players making? What are the future prospects
and where is the future heading?

Based on these findings, the business makes its own strategy. It makes a market plan and
prepares a detailed roadmap to achieve the market position it wants to hold. It also assesses the
risks associated with its venture and formulates a strategy to deal with these risks. The survival
of the business entirely depends on how it perceives the risks and how it successfully mitigates
these risks.

For any software vendor, the biggest risk is whether its software product will become as
successful as envisaged by the market potential for the product, from its market research. Once
market potential is assessed, the vendor then starts implementing its strategy by commencing
building the software product, which is a costly affair. The development costs are determined in
advance, and an appropriate budget is allocated. A development team is formed, and the team
starts developing the software product. The development of the product itself may encounter
several risks.

4.9.1 Risks on This Project

Our SaaS vendor underwent many challenges and risks while developing its flagship software
product. The foremost risks envisaged by the development team were

Viability of offshore teams and relationship with service providers

Attrition

Communication gaps (languages, understanding of tasks, understanding of messages, etc.)
Development costs

Development schedule

Software product quality

72 m Software Project Management: A Process-Driven Approach

For the 6.0 release, the development team formulated the following strategies to tackle these risks:

First of all, a thorough check was made for competency and maturity of the offshore
service providers. Subsequently, a comprehensive service level agreement (SLA) was
drafted, and then the service providers were made to sign the agreement. As per the
SLA, the service providers would make a detailed weekly report for all tasks performed
by its employees and details of these tasks. These reports would be reviewed by the
software vendor. The hours spent on tasks and progress status on assignments per week
will be checked by the vendor. Only after review would the hours of work reported be
cleared.

To tackle attrition, the software vendor made sure that its own employees were not only
given the best salary in the industry, but were also provided with a working environment
that satisfied their personal aspirations. Each employee was counseled, and based on his
aspirations and his ability, was given assignments. During performance review, if perfor-
mance was not up to the mark, then suggested measures were taken in consultation with the
employee. Likewise, the vendor had made sure that the staff at the service providers was also
treated in a similar manner.

Communication gap between the onshore and offshore teams was a big challenge due to
distance, different time zones, and culture differences. To mitigate this risk, it was decided
to have a standard template for all communication among teams. Virtual meetings were
decided for knowledge transfers and issue resolutions. It was decided to use Webex (Cisco
Systems Inc.), Skype, Yahoo Instant Messenger, Microsoft Net meeting, and other media
for virtual meetings. VOIP phones were also used. Due to time zone differences, meetings
could take place either early in the mornings or late in the evenings (even if it meant work-
ing nonofice hours).

To make sure that project and iteration schedules were on track, the development team
decided to keep a buffer in the schedule of 10% of the schedule estimate. If the schedule
was going to be affected due to the occurrence of any risk, then the schedule buffer could be
used. This strategy worked fine throughout the project related to release 6.0 of the software
product. At the same time, for each iteration, the project manager would assign a priority
value to each feature, which was to be taken into the iteration. The most prioritized features
would be developed first. If the iteration permitted time, then lesser prioritized features
could be taken for development. So, if due to the occurrence of any risk, a feature took more
time for development than planned, then at least all prioritized features were developed in
the iteration even if some nonprioritized features could not be taken up.

To make sure that the unavailability of any project team member for short durations did
not affect the project schedule, each team manager was authorized to ask for overtime
work from his team. In the absence of a team member for short durations, the other team
members performed those assignments to finish them on time. Similarly, if the schedule
was being affected for any other reason, then the project manager would ask for overtime
from his team to finish any pending assignments on time.

To ensure that the quality of the software product was always high, reviews and checks were
incorporated into the process after each work product was completed. When the require-
ments were completed (in the form of requirement specifications), they were tested to make
sure that they did not have any deficiencies or defects. Similarly, the design and source code
were also reviewed thoroughly before wrapping up these tasks.

Risk Management ® 73

4.10 Chapter Summary

Software projects are a huge risk for stakeholders as their interests are at stake on the success or
failure of the project. Once they approve a project, then the burden of carrying the risk falls on
the shoulders of the appointed project manager. Each activity and project task has its own share of
risk. During project execution, risks that might adversely hamper the project lurk at every corner.
So, before starting execution, the project manager must ensure that he has a sound risk manage-
ment plan to tackle any risk that might crop up.

Any of the risks can impact schedule, cost, or quality. So all the risks should be categorized by
the kind of impact it has on any of these project components.

To make a sound risk mitigation plan, the project manager should first identify the risks that
can occur during project execution. He should make a list of all these potential risks. Then he
should find out the severity of impact each of these risks can have on the project. He can also
then make a priority for each risk for tackling it. Based on impact and priority, he can sort out
this list to come up with the risk with the most urgent need for tackling, and at the end of the
list, the risks that are the least likely to have any impact on the project and those that have the
least priority as well. For each risk, the project manager can find out the cost and effort required
to tackle them. Based on the cost and effort required for tackling probable risks, the project
manager can make buffers in the project plan. In this way, if any risk appears, the project man-
ager can save the project schedule or cost from going out of hand by consuming the budget or
schedule from the buffer.

To tackle risks that can impact quality, quality assurance measures must be ensured throughout
the project. All work products during the project must be checked for quality. Only when quality
norms are met with, should the project be allowed to proceed to the next phase, so that in the
next phase of the project, the input work product is defect free. For this arrangement, the project
schedule must have tasks for work product inspections as well as some time allowance so that the
work product can be reworked to make it defect free.

These risks can happen anytime during the project execution, and they may not crop up at the
expected time. So the project manager should keep revising his list of risks, so that they are always
arranged and ordered as per their probability of occurrence.

Exercises

4.1 Find out all the reasons why risk management in the iterative development models is differ-
ent compared to the traditional waterfall model.

4.2 Find out all the risks that cannot be managed on a software project. List the reasons why
these risks cannot be managed.

Review Questions

4.1 Listall the kinds of risks that can occur on a project.

4.2 What strategy is adopted to minimize the impact of any risk on the project?
4.3 Describe in detail the steps taken in preparing a risk management strategy.
4.4 Why is risk management so important for any project?

4.5 What strategy is adopted to minimize the risk of changing requirements?

74 ®m Software Project Management: A Process-Driven Approach

Recommended Readings

1.

- NIV NSO

10.

11.

12.

13.
14.

15.

J. Smith, P. McKee (2001) Zroubled IT Projects: Prevention and Turnaround (IEE Professional Applications
of Computing Series, 3), Institute of Electrical & Electronic Engineers, Hertfordshire, U.K.

. K. Heldman (2007) PMP: Project Management Professional Exam Study Guide, Sybex, Alameda, CA.
. D. Lock (2007) Project Management, Ashgate Publishing Company, Aldershot, U.K.

M. D. Lewin (2001) Better Software Project Management: A Primer for Success, Wiley, Hoboken, NJ.

. E Tsui (2004) Managing Software Projects, Jones and Bartlett Publishers, Inc, Sudbury, MA.
. P C. Tinnirello (1999) Project Management, CRC Press, Boca Raton, FL.

D. D. Galorath, M. W. Evans (2006) Software Sizing, Estimation, and Risk Management, CRC Press,
Boca Raton, FL.

. R.T. Futrell, D. E Shafer, L. I. Shafer (2002) Quality Software Project Management, Prentice Hall PTR,

Upper Saddle River, NJ.

. J. E. Tomayko, O. Hazzan (2004) Human Aspects of Software Engineering, Laxmi Publications,

New Delhi, India.

R. J. Muller (1997) Productive Objects: An Applied Software Project Management Framework, Morgan
Kaufmann, San Fransisco, CA.

R. E. Fairley (2009) Managing and Leading Software Projects, Wiley-IEEE Computer Society Press,
Hoboken, NJ.

J. T. Marchewka (2006) Information Technology Project Management, Wiley India Pvt. Ltd., New Delhi,
India.

J. W. Horch (1996) Practical Guide ro Software Quality Management, Artech House, London, U.K.

K. Bittner, 1. Spence (2006) Managing Iterative Software Development Projects (The Addison-Wesley
Object Technology Series), Addison-Wesley Professional, Boston, MA.

P. Jalote (2002) Soffware Project Management in Practice, Addison-Wesley Professional, Boston, MA.

Chapter 5

Configuration Management

In the previous chapter, we learned

B What is a risk on a project?

B What kinds of risks exist for a project?

B What kind of impact may risk have on a project?
B What strategy is needed to deal with risks?

In this chapter, we will learn

B What is a configuration management system?

B What are the parts of a configuration management system?

B Why is a configuration management system required on a software project?

B What strategies can be made to deploy a configuration management system success-
fully for a project?

5.1 Introduction

Configuration management is needed on software projects because numerous artifacts are pro-
duced during the entire product development life cycle. There needs to be a place where these
artifacts can be kept safely and from where they can be accessed easily and securely whenever
required. Configuration management is in fact a supporting process that runs alongside the devel-
opment process.

During the entire software development life cycle, requirements keep changing. This results
in many versions of work products. Each team member is supposed to work on the right version
of any work product. If these versions are not managed properly, there may be the possibility that

75

76 m Software Project Management: A Process-Driven Approach

Characteristics of
good configuration
management system

Version | ——— >~ Artifact
control location

Centrally Secure Access to all | Accessible to | Continuous
located teams remote teams | integration

Auditable

Figure 5.1 Characteristics of a good configuration management system.

team members start working on wrong versions of work products. It is therefore very important
that documents and work products be kept at the right place and that project teams be aware of
the right locations of documents in the configuration management (Figure 5.1).

Continuous integration is adopted for many software development projects. A build of the
software product is kept at a central location and each new piece of software being developed is
integrated with the existing build. Thus, in a single day there could be more than 50 or more revi-
sions or more of the same build due to new codes being added by developers throughout the day.
There could also be many versions of the build at any given time. The new code must be checked
in the right software build. If a proper configuration and version control system is not provided,
this kind of software development (continuous integration) is not possible.

5.2 Configuration Management

The driving force behind configuration management is the need to store, archive, identify, retrieve,
and release work products and information items for the entire project team [1]. Change control
for different versions of information items is what makes configuration management a difficult
area. Each information item can be identified using tags associated with the information item.
Some common tags for item identification include

Project name

Year and time stamp
Document name
Document number
Author

Activity identifier
Document type
Version number

A configuration management system is used by the entire project team, which may consist of
one’s own team as well as contractors and service providers. To manage who can have access to
what information, a secured access system is required. To achieve this, we can define roles and
permissions centrally. Information items are stored inside folders. Each folder can have multiple
sub-folders. Each of these sub-folders can, in turn, have multiple sub-folders. This hierarchy is
maintained for each major classification of items. The items are then created and stored at the
appropriate place in the hierarchy (Figures 5.2 and 5.3).

Configuration Management ® 77

Information needed for a
document for a configuration
management system

. . Document Document Version
Project name| Time stamp Author
number type number

Figure 5.2 Information required for keeping a document or work product in a configuration
management system.

Project1 [
Requirements Req. ver. 1 Req. ver. 2
Design [Designver.1 Design ver. 2
Construction Construction
Construction ver. 1 ver. 2
Testing [Test ver. 1 Test ver. 2

Figure 5.3 Folder and item hierarchy structure inside a configuration management system.

Each folder then has an access permission for each defined role. Each role may have edit/view
or view-only roles. Roles with proper access permission can only view or edit any item inside that
folder, or any sub-folders inside that folder. An account for each individual project team member is
created on the configuration management system. Each of these accounts is then linked to appro-
priate defined roles. Team members can then create/access documents and files on the system as
per their access rights.

5.3 Configuration Management Techniques

As has been mentioned previously, keeping track of the right versions of information and work
product items is very important in any project. So version control is one of the most important
aspects of any configuration management system. As most software projects are executed with
teams at different locations, which may be under different time zones, a central configuration
system is required that would allow smooth working of all teams from all locations. Consider the
problems this type of development work can face if a central configuration system is not avail-
able and a decentralized system has to be followed. Each team would have its own configuration
management system. The setup would vary between teams, with the same item being named and
known differently in each system (Figure 5.4).

78 m Software Project Management: A Process-Driven Approach

Project 1
Y
Configuration Configuration Configuration
Management system 1 Management system 2 Management system 3

Requirements Req.ver.1 Req.ver.2 Requirements Req.ver.1 Req. ver. 2

l
l

Design Design ver. 1 Design ver. 2 Design Design ver.1 Design ver. 2

- Construction Construction - Construction Construction
Construction ver. 1 ver. 2 | | [Construction ver. 1 ver. 2

Test ver. 1 Test ver. 2 Test ver. 1 Test ver. 2

Testing Testing

1t
It

Figure 5.4 Folder and item hierarchy structure inside a decentralized configuration manage-
ment system.

This kind of arrangement would create chaos. It would be difficult to control versions of docu-
ments and would make it harder for teams to manage their work. If integration were required
between two components developed by two different teams, it would be difficult to know if
they were the right versions for the integration. In short, it would create a great many problems.
Moreover, synchronizing different versions of documents over different configuration manage-
ment systems is a tedious and error-prone task. It also adds unnecessary overhead.

In light of things we have seen so far related to different aspects of configuration management
systems, it makes sense to stick to some best practices that are relevant to these kinds of systems.
Following are some techniques and best practices [2] that are extremely useful:

1. Centralized configuration management system [3]

2. Secured access mechanism with role-based access control [4]

3. Continuous integration of software build with smoke test facility [5]

4. Easy branching mechanism to branch out an entire software version [6]
5. Audit facility

As discussed earlier, a centralized configuration management with a role-based access mechanism
will allow smooth functioning of the system.

When it comes to managing the central source code build, some critical considerations need
to be made, especially if we are in continuous integration mode. Generally, when the project is in
construction phase, developers will write code and will check their code with the existing software
build whenever they complete a unit of a component on which they are working. If, for some
reason, the build gets broken due to faulty code, the configuration system will not allow other

Configuration Management ® 79

Audit facility
Secure Centralized
Configuration
management
system with good
facilities \
Continuous Branching

integration

Figure 5.5 Facilities required of a good configuration management system.

developers to check their piece of code until the build is rectified by the developer who had checked
in the last piece of code. (This functionality can be achieved by installing an automatic smoke
testing tool such as Cruise Control, which will keep generating error messages whenever a piece
of source code is checked in to the software build as long as the wrong piece of source code is not
rectified and checked in.) The current developer then rewrites his piece of code and checks his code
again. If the build is successful, other developers are allowed to check in their piece of code. This
kind of mechanism is important to maintain integrity of the software build. For a better manage-
ment of this build management; an automated smoke test facility is usually provided. Whenever a
new piece of code is checked in to the build, this test facility runs automatically. It checks integrity
of the build. If the build is fine, a success message is sent via e-mail to the current developer. If the
smoke test fails, a failed message is sent to the current developer and any other person whose e-mail
address is defined in the list of e-mails. This mechanism is indeed very useful. Together with other
good characteristics, this facility forms a good configuration system (Figure 5.5).

Generally, after a software product version is fully developed and tested, development work is
stopped on that version. The project team then starts working on the next version of the software
product. The person responsible for managing the configuration management system creates a
new work space on the configuration management system for the new version of the product.
There are thousands of folders and files on a typical software development project. Creating all
of them from scratch will take an inordinate amount of time. It is far more effective to create a
branch of the existing folders and files of the project and copy them in the new branch. So a new
work space will become ready quickly.

The configuration management system should also have a good audit facility. Whenever any
documents stored on the system are needed for verification, they should be easily available. If any
changes are needed on any archived document, both the new and the old versions should be avail-
able on the system. A time stamp should also be available for the changes made on any document.

5.4 Artifacts of Configuration Management

A configuration management system holds software build files, work products, and documents gener-
ated at each phase of the software development life cycle, and reviews, reports and other information
documents. All of these documents and files have many versions. Whenever there is a change required
in any document or artifact, a new set of new versions of files are created and saved on the system. Thus,
for each project, there will be requirement specification documents, design documents, software builds,
testing plans, testing cycle documents, training manuals, review documents, etc. on the system.

80 m Software Project Management: A Process-Driven Approach

5.5 Configuration Management Case Study

In Chapters 2 through 4, we learned about project initiation, effort estimation, and risk manage-
ment for the project undertaken at our SaaS vendor. Here is a case study on how to set up and
arrange a central configuration management system that can be used by internal, external, and
offshore teams at the same time.

5.5.1 Configuration Management for an Incremental
Iteration Development Environment

A U.S.-based mid-market software vendor built a software system that allowed retailers, distribu-
tors, and manufacturers to manage their orders, inventories, shipment of goods, third-party logis-
tics service providers, warehouses, etc. This system is being used by many large customers in the
U.S., Europe, and other markets.

For development of this software system, they adopted the incremental iteration development
model. They have their own internal project team that works on developing the software. They
also have employed service providers at offshore locations in India, Russia, and other locations to
reduce their development costs and to shrink the development cycle. This arrangement is working
very well for them. Thanks to the efficient and reliable configuration management system that
they have deployed centrally and that is accessible to all teams regardless of their locations, they
have been able to do all their development work without encountering too many hurdles. The
configuration management system is available 24 h a day, 7 days a week, and there is virtually no
downtime. It is also very secure, and no hacks have occurred since it started working,.

The access rights were of two types. Administration rights (edit, delete, add) were given only to
team members who were either owners of documents or responsible for maintaining documents.
Others were given view-only rights to download and view these documents. One super-user role
was also created—this could be used to create new branches and to add, delete, or modify any
folders or documents in the entire configuration management system.

The main branch of the version control contains the main build of the software containing all
the major updates that have taken place since the product was developed. This main branch also
contained all related artifacts for the main build (Figure 5.6).

Source code Main Automatic smoke
check in soft\fvare test after source
build code complied
Main software build in Smoke test E-mail
failed state failed notification
Main software build in Smoke test Website
passed state passed report

Figure 5.6 Workflow for smoke test on the main software build.

Configuration Management ® 81

An automated smoke testing software was installed on all branches where developed software
code was being checked. Whenever any fresh code is checked in the build by any developer, this
software will run automatically. It will check the compatibility of the new code with the existing
build. If any inconsistency is found and the build fails, it will show a failure notice on a status
page and also send this page to the designated people on the e-mail list, including the person who
checked in the fresh code. If the status page shows success, the developer can start working toward
his next assignment. If the build fails, he receives a failure notice and starts working to fix the
problem. He can either check back the code with which he checked in or can check in the cor-
rected code again. This practice ensures that the build is available for all developers located at any
geographical site most of the time. If; for some reason, the developer cannot rectify the build even
after checking back his code or is not aware of the failure, the problem is escalated. If any build is
not fixed within 1h, the configuration tool will send an e-mail to the global program manager. He
can then take any appropriate action.

Each developer also keeps a local build and smoke test application on his personal computer.
He keeps this local build in synch with the build located at the central configuration tool. Before
checking his code in the central configuration tool, he runs his code on this local version. If the
code is built successfully and the smoke test application shows a success status, he checks his code
in the central build. This ensures that the central build does not fail often.

5.6 Chapter Summary

On software projects, many versions of the work products are developed due to defect fixing,
pending changes, change requests, etc. Configuration management on software projects plays an
important role in making sure that all these versions of work products are correctly maintained
and that project team members have access to all these work products and project documents.

Particularly, source code builds are very sensitive to version control. Source code build is the
repository where each developer checks in his source code after developing it. These check-ins can
be done several times during the day by each developer. If the source code checked in by a devel-
oper has defects, it will fail when the build is run. Finding and fixing the cause of failure becomes
a tedious and difficult task.

The configuration management system should have a good security mechanism in place so
that it is not hacked by unauthorized persons. Unauthorized access to the system may result in loss
or theft of vital project information. At the same time, the project team should have easy access to
the system so that they can archive, retrieve, edit, or remove project work products and documents
without any problems.

Apart from the regular role of configuration and version control management, these systems
also play an important role as keepers and providers of project information.

Exercises

5.1 For any open source project, try to find the configuration management system log. Find
significant features of the maintained configuration system for the project. (You can find
many open source projects at www.sourceforge.net.)

5.2 From requirement change request logs for any accessible project, find out the complete
change log for each work product.

82 m Software Project Management: A Process-Driven Approach

Review Questions

5.1 Why is a configuration management system required on software projects?

5.2 What are the essential ingredients of a good configuration management system?

5.3 What is a smoke test?

5.4 Which is a better configuration management system: a centralized system or a decentralized
system? Explain the benefits and drawbacks of each.

5.5 What is branching on a configuration management system?

Recommended Readings

1. J. Estublier (1995) Software Configuration Management: ICSE SCM-4 and SCM-5 Workshops. Selected
Papers (Lecture Notes in Computer Science), Springer, Berlin, Germany.

2. J. Keyes (2004) Software Configuration Management, CRC Press, Boca Raton, FL.

3. A. Mette Jonassen Hass (2002) Configuration Management Principles and Practice, Addison-Wesley
Professional, Boston, MA.

4. B. Barkley (2007) Project Management in New Product Development, McGraw-Hill Education (India)
Pvt Ltd., New Delhi, India.

5. S. P Berczuk, B. Appleton (2002) Software Configuration Management Patterns: Effective Teamwork,
Practical Integration, Addison-Wesley Professional, Boston, MA.

6. M. E. Moreira (2004) Software Configuration Management Implementation Roadmap, Wiley, New York.

Chapter 6

Project Planning

In the previous chapter, we learned

B What is a configuration management system?

B What are the parts of a configuration management system?

B Why is a configuration management system required for a software project?

B What strategies can be made to deploy a configuration management system success-
fully for a project?

In this chapter, we will learn

What is software project plan?

What are the parts of a software project plan?
What are the types of software project plans?
What inputs go in making a software project plan?

What techniques are used in making a software project plan?

6.1 Introduction

Project planning for any software project involves making the best trade-off among quality, schedule,
cost, and organization benefits which can accrue from the project. In in-house projects, the benefits
to the organization from the software are related to management gains in the form of increasing mar-
ket share, reducing operational costs, reducing risk exposure, complying with government regulations,
etc. Benefits to the end users include ease of work, reducing labor-intensive work, increasing work
performance, etc. Often the project manager may not be aware of these benefits; nevertheless, if he
has information about these things, it will help him to satisfy his customers’ needs in a better way.

83

84 m Software Project Management: A Process-Driven Approach

For instance, if he knows that the main objective of the project is to enhance the productivity of the
staff, then he will choose a software design where the user input required in doing transactions is kept
to a minimum, thus increasing user productivity.

In outsourced projects, one important goal of the service provider is to make a profit from the
project. They keep a profit margin on top of estimated project costs. Accordingly, while doing
resource planning, the project manager should plan it in such a way that costs of resource for the
project do not impact the profit margins of the project.

There are so many details that the project manager has to be aware of; only then, can he make
a good plan for the project.

6.2 Project Planning Fundamentals

During project initiation, high-level project planning is done. But at that stage, not many of the
project details are available. So the project planning is at best a rough one. The effort estimate done
at that stage is also a rough one. Both these plans need to be refined at a later date when all or most
of the project details become available so that it becomes more usable for the project.

Depending on time frame requirement of a project, it can be either a top-down project plan-
ning or a bottom-up project planning [1]. Generally, in the case of product development by software
vendors, the project management is a top-down approach, and in the case of custom software devel-
opment, it is a bottom-up approach. The market forces dictate the software vendors to release new
versions with desired features within a specified time period. In this case, the release date is fixed,
and so the software development team is given a specified time period within which they have to
incorporate the desired features in the software and have to make it available on the market. Since
the time and the features are fixed, the development team has no choice but to develop the product
within that specified time frame. This is known as the top-down approach. In contrast, in custom
software development, the project team is given the software requirements, and from these require-
ments, they estimate how much time it will take to develop the product. Then the development
team decides on the release date of the project. This approach is known as the bottom-up approach.

For large outsourced software development projects, which are instituted to make industry
strength large software products, software engineering plays an instrumental role along with ser-
vice level agreements (SLAs), project scope, etc. Using software engineering will ensure that the
project and product development processes will be well defined and will ensure good product
quality at competitive cost and acceptable schedule. Project scope defines the volume of work to
be done on the project in conjunction with requirements. SLAs define deliverables, frequency of
status reports, legal and commercial liabilities, etc. (Figure 6.1).

The project plan itself consists of a large number of planning components [2]. It includes risk
planning, resource planning, task planning, effort estimation, cost estimation, communication
planning, configuration management planning, tool planning, supplier management planning,
quality planning, and scope planning. We will study all of these planning components in detail
later in the chapter.

6.2.1 Top-Down Plan

The product development company (software product vendor) always has product release dates
planned in advance. Similarly, any company who needs a software system for meeting the market
demands needs the system within some stipulated time. In fact, a large number of companies are

Project Planning m 85

. . Resource Schedule Effort
Risk planning . . S
planning planning estimation
Scope Cost
planning estimation
. Project -
?ual%ty planning COI’I;I[’I;;IE:IZUOH
planning components
Supplier Configuration
planning management
planning
Tools
planning

Figure 6.1 Software project planning components.

operating under acute market pressures and they need software systems within a certain time
window to accomplish their business goals. If the software system is not provided within this
time frame, then the business may experience severe losses. Under these circumstances, a software
project should be instituted with a top-down approach.

As you can see in Figure 6.2, there are a large number of inputs in the case of planning
top-down projects. Here, apart from project scope, SLAs, and chosen software engineering model
and requirements, we have project start date, project end date, project duration, and project budget.
All of these details are available to the project team before the start of the project.

In the case of top-down projects, the plan outputs include supplier management, configu-
ration management, communication management, defect prevention strategy, WBS structure,
resource allocation, tool management, scope management, effort estimate, and risk management
(Figure 6.3).

Service level
agreements

Project scope Requirements Project budget

Project start
date

Project
/ duration

Project
planning
inputs (top-down
planning)

Software
engineering

Project end
date

Figure 6.2 Software project planning inputs for top-down approach.

86 m Software Project Management: A Process-Driven Approach

Supplier Risk
management management

Effort estimate

Configuration Project budget

management
Communication Tools
management management
Project
planning
outputs (top-
down
planning)
Quality WBS Resource
management structure allocation

Figure 6.3 Software project planning outputs for top-down approach.

6.2.2 Bottom-Up Plan

Large software projects devoid of much clarity at the beginning of the project tend to have a
bottom-up approach for their project planning. At the beginning of the project, effort is made to
find out what tasks should be involved in the project and how the project may span out. Obviously
there will be no sufficient information available at the beginning of the project, and the project
team has to strive to gather as much information as possible to make a reasonable plan for the
project. They collect information about project scope, requirements, and SLAs. Using any appro-
priate software engineering model, they define the development strategy (whether to use waterfall,
agile, or any custom approach) and accordingly settle for the kind of development tasks they will
employ in the project. Once these inputs are in place, then the project team can chalk out the
project plan, including the complete output (Figure 6.4).

Service level Software

Project scope Requirements . .
agreements engineering

Project
planning
inputs
(bottom-up
planning)

Figure 6.4 Software project planning inputs for bottom-up approach.

Project Planning m 87

Supplier Risk .
12 Effort estimate
management management
Configuration Scope
management management
Communication Tools
management management
Project
planning
Defect outputs
. Start date
prevention (bottom-up
planning)
Project
) . End date
duration
. WBS Resource
Project cost .
structure allocation

Figure 6.5 Software project planning outputs for bottom-up approach.

Project planning requires inputs based on which outputs will be created in form of project
plan. Inputs for project planning for bottom-up approach include project scope, SLAs, and chosen
software engineering model, along with the all important software requirements (Figure 6.5).

In the bottom-up project, the project plan output includes supplier management, configu-
ration management, communication management, defect prevention strategy, project duration,
project cost, work breakdown structure (WBS), resource allocation, project start and end dates,
tool management, scope management, effort estimate, and risk management.

6.2.3 Work Breakdown Structure

When a project plan is made, all project tasks are included in the plan [3]. Each of these tasks
has a start date and an end date. When all the tasks are listed in the plan, it will be difficult to
identify which task is dependent on another task, which task is on the critical path, which task
signifies a milestone, etc. It is also necessary to group the tasks that are part of the same phase in
the project and put them under a pseudo task with the name of the phase. The last tasks in each of
these pseudo tasks will be the milestone tasks, which are also pseudo tasks. In Microsoft Project
and other project management software, all tasks pertaining to the same group can be expanded
or collapsed at the parent task. This makes reading the WBS easier and manageable (Figure 6.6).

6.2.4 Resource Allocation

Software projects have variable staff requirements over the project [4]. While construction and
software testing phases need a large pool of resources, the requirement and design phases need
a far smaller number of resources. One more aspect about software projects is that skills are not
usually transferable. So a software architect who makes software design is usually not associated

88 m Software Project Management: A Process-Driven Approach

Sample project

— Initiation | | Startdate | Enddate | Resource |
—> Requirements | | Startdate | Enddate | Resource |
L[kt] [Swrdwe | Endime | Rewouce]
—| Requirement milestone |
—> Design | | Startdate | Enddate | Resource |
Task1 | | Startdate | Enddate | Resource |
—> Construction | | Startdate | Enddate | Resource |
—>{ Task1 | | Startdate | Enddate | Resource |
L Task2 | | Startdate | Enddate | Resource |
| Construction milestone |
> Testng | | Startdate | Enddate | Resource |
— Implementation | | Startdate | Enddate | Resource |
| Implementation milestone |
L—»| Project closure | | Startdate | Enddate | Resource |

Figure 6.6 Project plan with work breakdown structure.

with software construction. Once he designs the software application, his job with the project is
complete and he can be assigned to some other projects. In general, about 50% of the resources are
required during the construction phase. For software testing, it is about 30% (Figure 6.7).

This uneven resource requirement over the project phases has led to the evolution of concur-
rent engineering models. Many teams are formed for software construction and testing who work
in parallel, and thus, project cycles get reduced.

6.2.5 Supplier Management Plan

If the entire project or project parts are to be done by outsourced project teams, then a supplier
management plan is needed for the project [5]. It will include creating the SLA, its compliance,
etc. (Figure 6.8).

It is important to manage suppliers so that parts developed by them are not inferior to the
parts made by your team. Similarly, if there are two or more suppliers, then the quality of work
products/products provided by them should be of the same level. One major area of concern is the
integration of software parts made by suppliers to the main software build. To mitigate this risk,
the central build should be employed so that from the start of the build, the outsourced team can

Project Planning ®m 89

A

Number of resources

Construction

Testing

Design

Requirements

Figure 6.7 Resource (staff) requirements for a software project over different phases.

Supplier
management plan

/

. . - Central .
Service level Part quality |Communication Continuous

configuration . .
agreements check plan integration
management system

Figure 6.8 Supplier management plan.

keep checking their code. This will make sure that integration problems will not arise. Detailed
information about supplier management is provided in Parc III.

6.2.6 Configuration Management Plan

With many scattered teams working on the same project in many cases, it is most important that
configuration management is done carefully. It should be ensured that all teams have the same
version of source code and document files; otherwise chances of rework will increase. It is the best
policy to have a centralized configuration management system used and maintained by all the
teams. Security and access control for this system should be of high quality so that project team
members can do their work securely and without any fear of losing their work. Detailed informa-
tion about configuration management is provided in Chapter 5.

6.2.7 Communication Management

Communication management depends solely on project organization structure, customer
management strategy, and supplier management needs [6]. For effective communication
among all of these parties, it is essential that a proper communication management strategy is
in place. The project manager must define what needs to be communicated to whom, in what

90 ®m Software Project Management: A Process-Driven Approach

. Requirements X
Requirements [P Design
verification
Design
Operation and Maintenance verification
maintenance validation
User acceptance Construction
testing
Unit and
Deployment System testing integration
testing

Figure 6.9 Defect prevention mechanism (quality assurance) in the project.

manner, and when. A good way to promote a uniform communication channel across all the
scattered project teams is to use a good set of project templates. A set of standard templates
will go a long way in establishing a smooth and uniform communication among all the project
teams. Detailed information about communication management is provided in Chapters 19
through 21.

6.2.8 Defect Prevention Strategy (Quality Assurance)

Quality assurance and control is the most important aspect of any software project [7]. Without
having a defect prevention strategy (quality assurance), the project will be doomed to fail. Defect
prevention strategy should be an integral part of the project (Figure 6.9).

After each project phase, the work products should be validated and verified, and only if they
pass the expected quality level, the project should be allowed to proceed further. Otherwise the
work products should be reworked until a satisfactory quality level is achieved.

6.2.9 Project Duration

Project duration is calculated using the critical path along the project tasks. The longest path is the
critical path of the project, and its length is the project duration. Detailed information about the
estimation of project duration can be found in Chapter 3.

6.2.10 Project Cost

Estimation of the project cost begins with effort estimation. Once we have effort estimate,
productivity, and hourly salary rate information about project team members, we can calculate
resource costs. Adding overhead expense to this figure will amount to project costs. Detailed
information about the estimation of project cost can be found in Chapter 3.

Project Planning m 91

6.2.11 Tool Management

Planning should be done for making selections for programming languages, software and hardware
platform, productivity tools, configuration management system, testing tools, project tracking, com-
munication systems, etc. Detailed information about tool management can be found in Parc IV.

6.2.12 Scope Management

Requirement scope management is one of the most crucial aspects of any software project. It
along with a number of requirements and quality level determines the volume of work to be done.
Detailed information about scope management can be found in Chapter 10.

6.2.13 Effort Estimate

Effort estimation is discussed elaborately in Chapter 3. Please refer to that chapter for more details.

6.2.14 Risk Management

Risk management is discussed elaborately in Chapter 4. Please refer to that chapter for more details.

6.3 Project Planning Techniques
6.3.1 Critical Path Method

The critical path method (CPM) or program evaluation review technique (PERT) is a project planning
technique devised at Remington Rand Corporation by J. E. Kelly & E. I. Du Pont De Nemours
& Company in 1957 [8]. This technique is also called network analysis. This technique establishes
the schedule of a project. Generally, if a project has tasks that are to be executed mostly in a linear
fashion, then project planning for that project is easy. Problems start when parallel tasks have to be
planned. When there are a large number of parallel tasks, it is certainly very difficult to plan and
manage the tasks. The issues such as which task is dependent on which task, when a task has to start
and when it has to finish, how much slack/float is there between two tasks, etc., make the planning
and managing of the project a tough call. The CPM/PERT method allows tackling these issues.
All the tasks are first laid out on a sheet in an order based on their start dates. Then the order in
which tasks must be carried out is identified. Similarly tasks dependent on other tasks are identi-
fied and a relation is made between the tasks. Tasks with no relation among them are put in parallel.
When all the tasks are thus laid out, a path is made, which runs along the longest path of execution.
This is the critical path for the project, and it defines the duration of the project. The start date of
this path is the start date of the project and end date of this path is the end date of the project.
The length of this critical path is the duration of the project (Figure 6.10).

6.3.2 Goldratt’s Critical Chain Method

Eliyahu Goldratt has recognized that the CPM/PERT method proves to be insufficient for plan-
ning and tracking projects [9]. Earned value management is also not worthwhile. In the CPM/
PERT method, tasks are scheduled and a critical path is defined, which denotes the duration of
the project. See Figure 6.10 to understand it better. To take care of uncertainty and risks, tasks

92 ®m Software Project Management: A Process-Driven Approach

Design 1 Construction 1 m

Initiation Requirements Design2 | Construction 2 Integration | Release

Critical path ————» Design 3 @ Construction 3

Testing

m = Buffer

Figure 6.10 Critical path for a software project.

are padded with some buffer. When people who are assigned these tasks, they always tend to take
their tasks lightly until the last minute. So even when ample buffer is provided for their tasks, this
entire buffer is lost without any gain for the project. They defer carrying out their tasks to the last
moment of the deadline, which invariably results in either poor quality or late completion of tasks.

To help project management practitioners, Eliyahu Goldratt introduced the theory of con-
straints. Due to constraints present in the environment, projects are always under threat. To pro-
tect projects from failing, it is important that these threats are understood and proper planning,
monitoring, and controlling are done so that when projects diverge from a planned course of
action, immediate action can be taken to put them back on track and make them emerge as suc-
cessful products.

Basically, these constraints (risks) can impact a project in terms of either cost or schedule or
content. In any project, there are some tasks that can be considered fixed while some others are
variable. These fixed tasks are the ones that are well defined, and they can be scheduled with cer-
tainty. On the other hand, variable tasks lack concrete details, and even though they are scheduled
with some probable time frame, the time frame for their completion is not certain. So a buffer is
provided for these tasks to take care of uncertainty (Figure 6.11).

Goldratt proposed that buffers for well-understood tasks should be removed (as effort
required for them can be easily calculated), but a buffer should be provided for uncertain tasks.

Design 1 Construction 1

Initiation | Requirements | i | Design2 | Construction 2 Integration | Release m

Critical chain ——»

Design 3 | Construction 3

Testing

m = Buffer

Figure 6.11 Goldratt’s critical chain for a software project.

Project Planning m 93

Buffers for uncertain tasks should be detached from those tasks and restored at the end of the
project. When monitoring the project, the project manager should actually monitor the buffer
and not the task durations. He should see if the buffer is getting consumed or not while the
project executes. Whenever he sees that the buffer is getting consumed, he takes action to con-
trol the project.

The critical chain method is extremely useful for managing projects. It helps in reducing the
uncertainty in projects and thus helps in delivering projects with much better certainty.

6.4 Project Planning Artifacts

Project planning is a large subject and generally it is claimed that it constitutes 10% of total project
effort. It is here that most of the project details are chalked out and a detailed project plan is made.
Project planning is the stage when most of the project documents are made. So we have a large
number of project artifacts here. The artifacts include project plan, risk management, effort esti-
mate, cost estimate, resource allocation, communication plan, configuration management plan,
WBS structure, supplier management plan, tool management plan, etc.

6.5 Project Planning in Agile Models

Agile models are best suited when either requirements are not clear or the customer wants
small deliveries at short intervals. Risk associated with agile or iterative models is negligible as small
deliveries require small efforts, and if delivery is not on a par with expectation, only a fraction of
the effort gets lost in rework as the rework itself will be small.

For details about software life-cycle models, waterfall method, agile methods, etc., please refer
to Part II1.

Iteration occurs up to a certain level in the software development life cycle with different agile
models. At one extreme are the Scrum and eXtreme Programming models where there is a com-
plete iteration from requirement to release. The other extreme is where the least amount of iteration
occurs only from just one phase to another, or within one phase there could be some iterations. This
kind of behavior can be seen in models like open unified model or rational unified model.

Project planning with iterative models differs significantly compared to the waterfall model [10]
(Figure 6.12).

At the top level, a roadmap is created for the complete product. It is known as a product
plan. It is tentative in nature and lacks concrete details as all of it is planned in advance before
the actual product development starts. It can be made for 2—-3 years or more and will have the
input from the top management as to what customer requirements that product will fulfill when
it is completely made.

At the middle level, we have a major product release plan. This plan includes several iterative
plans. Generally, most of the software vendors have major releases once in a year. So this plan
spans 1 year. It includes details as to what new product features will be developed in that major
release.

At the bottom is the iteration plan. Iteration plans correspond to the minor release of a soft-
ware product. Iteration plans have all the details as to what activities will be performed in that
iteration (Figures 6.13 through 6.15).

94 ®m Software Project Management: A Process-Driven Approach

Closure
A Iteration 2
Release
Time
Testing
Iteration 1 I
Construction
Testing
Construction
Design
K [
Requirement
Initiation Project progress

»

Figure 6.12 Project life cycle in limited iteration model (iteration occurs only for construction
and testing activities).

Closure
Iteration 3
Requirement
Design
Construction
Testing
Release
Iteration 2
A Requirement
Design
' Construction
Time Testing
Release
Iteration 1 Release
Testing

Construction

Design

Requirement

Project progre
Initiation r|0) progress

»

Figure 6.13 Project life cycle in Scrum or eXtreme Programming model.

Project Planning m 95

A Complete product development plan
Major release 2 Iteration 5
i ---------------------------- Iteration 4 Requirement
Major release 1 Iteration 3 Requirement management
Iteration 2 Requirement management Design
Iteration 1 Requirement management Design Construction
Requirement management Design Construction Testing
management Design Construction Testing Release
Design Construction Testing Release
Construction Testing Release
Testing Release
Release :

Figure 6.14 Iterations, major releases, and complete product development plan.

Complete software product

Major release 1 Major release 2 Major release 3

Iteration 1 Iteration 2 Iteration 1 Iteration 2 Iteration 1 Iteration 2

Iteration 3 Iteration 4 Iteration 3 Iteration 4 Iteration 3 Iteration 4

Major release 4 Major release 5 Major release 6

Iteration 1 Iteration 2 Iteration 1 Iteration 2 Iteration 1 Iteration 2

Iteration 3 Iteration 4 Iteration 3 Iteration 4 Iteration 3 Iteration 4

Figure 6.15 Complete software product, major releases, and iterations.

Some of the salient features of extreme agile models:

B Customer feedback after each iteration.

B Adaptive rather than predictive: This means iteration planning and effort estimate are not
meant to be the most important things about the project. The ability to handle change request
is the most important aspect.

B Constant resource requirements: In waterfall models, each type of work product is worked on
by specialists. The moment they finish their tasks, they are no longer needed in the project
and they move to some other project. In the case of agile projects, project team members
keep working on the project continuously. This is because each iteration is of very short dura-
tion (sometimes as small as 1 week). Once each team member finishes with his assignment
on one iteration, he starts working on the next assignment on the next iteration without
much idle time between these two assignments.

96 ®m Software Project Management: A Process-Driven Approach

B Easier resource management: The project manager need not pay much attention to resource
allocation as each project team member is kept busy by work assignments in iteration after
iteration without any significant idle time.

B Refactoring: Since there is no elaborate design effort while developing software features in
each iteration, the software design becomes ungainly over many iterations. When the design
becomes unmanageable (when you start getting problems in integration of new features with
old features), it needs to be refactored. Planning for refactoring is an important consider-
ation while making plans for iterations.

6.5.1 Iteration Planning

Iteration planning is done based on a concept called velocity. Velocity is measured in terms of building
a number of feature points per iteration. Any software feature is analyzed for its size and complexity.
Accordingly, it is assigned some feature points. Based on team size and skill and experience of team
members, it is determined how many feature points the project team can make in an iteration of, say,
1 week. So the number of feature points developed per iteration becomes the velocity of the project
team. Based on the velocity, the project manager (or sprint master, if you are in a Scrum project) can
determine how many iterations will be there in a minor release, major release, or the complete product
development. For example, suppose the complete product to be developed has 10 features.

Feature 1 has 3 feature points.
Feature 2 has 2 feature points.
Feature 3 has 5 feature points.
Feature 4 has 6 feature points.
Feature 5 has 4 feature points.
Feature 6 has 2 feature points.
Feature 7 has 7 feature points.
Feature 8 has 3 feature points.
Feature 9 has 5 feature points.
Feature 10 has 4 feature points.

So in total we have 41 feature points in the project. There are nine people in the project and each
iteration will last 1 week. If velocity of the project team is determined to be four feature points per
1 week iteration, then the gross number of iterations will be 11. Some risk factors can be added
here. One risk is refactoring time. Other risk factors could be sick leaves, attrition, wrong velocity
calculation, etc. To tackle wrong velocity calculation, it is advisable not to promise a commitment
for the entire project to the customer. Let two to three iterations get executed. After that, you will
have a pretty good idea of the velocity of the project team. This is especially true if the project con-
sists of people who have never worked with each other before and the project manager is not aware
of their pace of work. To tackle other kinds of risks, the same kinds of strategies can be taken that
have been mentioned for waterfall projects.

6.6 Planning at Project Management Office

Many business organizations create an I'T division that takes care of all software and information
technology needs. Other organizations, instead of creating a division, create a central organization
that takes care of their IT projects. This organization is known as the project management office

Project Planning m 97

(PMO) [11]. The PMO takes care of organization level management for all projects. It helps in
providing resources for projects, monitoring and controlling projects, providing infrastructure,
providing funds, etc.

The PMO can take many forms. Organization structure of program management can become
very complicated in software service organizations. For some large corporations, the PMO can
include many programs (clustering of projects related to each other), project portfolio manage-
ment divisions, etc.

Planning at the PMO level includes resource planning, business planning, infrastructure
planning, etc. At one level, these plans are aimed at fulfilling the business needs of the parent
organization. At the project level, these plans help the projects plan for adequate project staff,
infrastructure, and budget.

More information about PMO organization structures can be found in Chapter 19.

6.7 Case Study

So far in previous chapters, we have seen how some of the essential planning components such
as risk planning, effort and cost estimation, and configuration planning are handled at our Saa$S
vendor projects. In this chapter, we will see how planning for schedule and resources is made at
the iteration and project levels.

At the project level (coinciding with major release once per year), the following planning is done:

B Identify and prioritize features. (Feature set should be continually revised throughout the
project.)

B Identify iterations and loosely allocate features to each iteration.

B Plan for time-boxed iterations (if followed).

B Calculate cost and effort. Since the project is very stable, there is not much variation in cost
and effort from year to year.

At the iteration level, the following planning is done:

B Plan for iteration.

B [dentify tasks to implement features.
® Allocate tasks to resources.

B Implement iteration.

6.7.1 Feature Selection

Which feature is to be taken for development in an iteration is often a bone of contention between
the marketing team and the development team. The development team has its own technical
reasons for feature selection. The marketing team, on the other hand, wants everything to be
developed based on the requirements that they identify through interaction with customers and
the market feedback they receive. Our SaaS vendor has a mechanism for sorting out this tussle.
Their chief technology officer is the final authority in feature selection. During the yearly project
plan, he makes a list of probable features that will be developed and added to the core software
product in the coming year after consultation with marketing department. At this stage, the

98 ®m Software Project Management: A Process-Driven Approach

features are not marked with any priority. It means that all features have equal importance at this
stage. Before the start of an iteration, the marketing team gives priority for each feature. The top
priority features are taken for the iteration. The project manager estimates the effort required for
each feature. He then tries to make a balance between availability of resources, who will work on
the project and how much time should be allocated to each team member. Based on this infor-
mation, he can find out how many features can be taken for the next iteration in the 3 months
during which the iteration will run (iterations are taken on a quarterly basis). He also takes into
account some contingency allowances in case any risk or issue arises during the iteration. This list
of features is then locked for the iteration. In essence, in a time box of 3 months, these features
will be developed and integrated into the core software product.

6.7.2 Heart of Planning

The waterfall model of software development is completely plan driven. In contrast, pure agile
models are not plan driven. They are rather implemented in an “As you go!” spirit. The features
demanded by customers are implemented, and thus, nothing is planned in advance about any
project or iteration activity. Iteration planning is done only after the customer spells out a list of
features they want in the iteration. Without a plan, the project team is not able to provide a clear
picture to the customer, and at the same time, the team is not able to plan its own activity in
advance. This is a drawback. So how can our SaaS software vendor cope with its project and itera-
tions when there is virtually no planning done in advance?

We have discussed top-down and bottom-up planning in previous sections. In our case, since
the release date is fixed, we follow top-down planning for iterations. A complete list of features for
the major release of 6.0 is fixed. But at the iteration level, which feature out of the listed features
is to be implemented in the next iteration is not fixed. That means there could not be any iteration
planning in advance, and the project planning is hazy at best. So we have some problems here.
First, iteration plans are not easily possible. Second, even though the agile model is flexible, effort,
schedule, and budget are not able to be drawn in a situation where nothing is fixed. So essentially,
we have a conflict between flexibility and responsiveness on one hand and allocating resources and
budget for the iteration on the other hand.

The vendor is able to cope with this problem using a time-boxing concept. The release date
is fixed for iterations. Their marketing team comes up with a list of features that are to be imple-
mented in the next iteration. The list can be ordered according to priority. The top priority features
can be taken for implementation in the iteration first. Once they are implemented, and if time
permits, the low-priority features can be taken for implementation in the iteration. Remaining low-
priority features, which could not be implemented in the iteration, can be taken in future iterations.

In this arrangement, we have a cushion. If the iteration plan goes well, we take up more fea-
tures. If some issues arise during the iteration and if some high-priority features take more time
than planned, then some of the low-priority features cannot be implemented. So the low-priority
features act as a buffer.

This arrangement is good as it provides both flexibility and responsiveness. At the same time,
it allows for making plans and allocating resource and budget to the iterations.

For planning components related to effort and cost estimates, risk management, configuration
management, communication management, and resource management; see the relevant chapters.
These topics are covered in their respective chapters in detail (Table 6.1).

Project Planning m 99

Table 6.1 Documents Planned and Generated
during the Project

Use Case Model

Supplementary Specification Nonfunctional Specifications

Risk assessment

Effort estimate

Master test plan

Phase plan Iteration plan with schedule

Software architecture document

6.8 Chapter Summary

Project planning is a very important step in the software project. Any large software project has a
large number of important project tasks. Without proper project planning, it will be impossible to
manage such a large number of complex tasks when it is time for execution. So a detailed project
plan is mandatory.

In the case of agile and iterative kinds of projects, project planning is less important, and in
fact it should not have minute details. It is because the entire process is agile and these process
models work on the premise of responding to change quickly. Nevertheless, when an iteration is
firmed up and requirements for that iteration are clear, a project plan is needed to carry out the
project with clear goals. The other iterations in the future as well as the overall plan encompassing
all the iterations should have a project plan with fewer details. Generally, at these levels, it is best
to have a project plan without firm dates for project tasks.

The project plan has many components to manage different aspects. For managing commu-
nication, the project should have a communication plan. For managing efficient resource utiliza-
tion, the project should a resource plan. For managing quality aspects of the work products, there
should be a quality plan. For managing suppliers, a supplier plan is warranted. For managing
configuration and version control, the plan should have a configuration management plan. For
managing tools and technology aspects, the plan should have a tool and technology plan. Finally,
the most important aspects such as cost, schedule, and effort for the project should have respective
plans.

There are many methods that help in making project plans. For making project schedules,
Gantt charts, network diagrams, PERT/CPM charts, etc., are very important. For effectively
tracking and controlling projects, earned value management and Goldratt’s critical chain
methods are very important. During project planning, it is important to keep the require-
ments of these methods (base budget, base schedule, etc.) in mind when the project planning
is done.

There are many good tools available on the market that help in making project plans, for
example, MS Project, Primavera, etc. Some of the project planning tools are online and are avail-
able on the Web so that project teams that are located at many geographical sites can access the
tool and work collaboratively.

100 ® Software Project Management: A Process-Driven Approach

Exercises

6.1

6.2

Find some examples of project planning for a construction industry. Find how project
planning is done for that industry and what the planning components are. Compare it to
that for a software project.

It is said that software project planning consists of tasks that are not elastic and their
schedule cannot be stretched or shrunk. Find out why it is so and if some remedies exist.

Review Questions

6.1
6.2
6.3
6.4
6.5
6.6
6.7

What do you understand by a software project plan?

Why is a software project plan needed?

What are the components of a software project plan?

What are the inputs for a top-down project plan?

What are the inputs for a bottom-up software project plan?

What precautions are taken while creating a project plan to tackle different risks?
What kinds of project plans are devised for iterative models of software development?

Recommended Readings

1.

2.

11.

M. E. McGrath (2004) Next Generation Product Development: How to Increase Productivity, Cut Costs,
and Reduce Cycle Times, McGraw-Hill, New York.
R. Wysocki (2006) Effective Software Project Management, Wiley India Pvt. Ltd., New Delhi, India.

3. D. A. Gustafson (2002) Schaum’s Outline of Software Engineering, McGraw-Hill, New York.
4.

J. Taylor (2003) Managing Information Technology Projects: Applying Project Management Strategies to
Software, Hardware, and Integration Initiatives, American Management Association, New York.

. C. Ebert, R. Dumke (2007) Software Measurement: Establish—Extract—FEvaluate—Execute, Springer,

Berlin, Germany.

. R. Muller (1997) Productive Objects: An Applied Software Project Management Framework, Morgan

Kaufmann, San Francisco, CA.

. J. W. Horch (1996) Practical Guide to Software Quality Management, Artech House, Boston, MA.
. J. P Lewis (2004) Project Planning, Scheduling ¢ Control, McGraw-Hill Education (India) Pvt. Ltd.,

New Delhi, India.

. H. A. Levine (2002) Practical Project Management: Tips, lactics, and Tools, Wiley, New York.
. R. E. Fairley (2009) Managing and Leading Software Projects, Wiley-IEEE Computer Society Press,

Hoboken, NJ.
C. J. Letavec (2006) 7he Program Management Office: Establishing, Managing and Growing the Value of
a PMO,]. Ross Publishing, Boca Raton, FL.

Chapter 7

Project Monitoring
and Control

In the previous chapter, we learned

B What is a software project plan?

B What are the parts of a software project plan?

B What are the types of software project plans?

B What inputs go into making a software project plan?

B What techniques are used in making a software project plan?

In this chapter, we will learn

B What is project monitoring?
B What techniques are there for project control?
B How is project monitoring done in iterative projects?

7.1 Introduction

Projects are inherently dynamic in nature. They also have unpredictability about them. These two
factors call for continuous monitoring and control of projects lest they go haywire. In manufac-
turing, pace of work is fast, but all the activities are more or less predictable. You can plan the
order of tasks to be carried out; and depending on material, machines, and labor availability, you
produce goods without much consideration to worldly or not so worldly things. Routine machine
inspection, work product (work in process) samples for quality control, and skills training are all

101

102 m Software Project Management: A Process-Driven Approach

A Predictability

Manufacturing Projects

Figure 7.1 Process predictability for projects against manufacturing.

it requires to produce goods with good quality. It is not so with projects. There are surprises and
there is something new about each project. More so with software projects (Figure 7.1).

To control and manage this element of unpredictability, you need to have tools and techniques
that can be employed to make the journey comfortable. For software projects, first of all you need
to have a well-defined process model, the application of which will help in reducing uncertainty
and in achieving consistency. The process model will set steps to be followed for completing all
project tasks and thus help in planning the project. A good process model also allows measuring
both project processes and the work products. Measuring project processes and comparing them
with those from best practices will provide information about productivity, costs and schedule,
and where the project is heading. Measuring the quality of product/work product and comparing
them against those achieved with best practices will provide information about the quality of the
work products developed as compared to what could be achieved using best practices. When you
have a good project plan in hand, you can execute your project with much ease.

In this chapter, we will discuss everything related to project monitoring and control for soft-
ware projects.

7.2 Project Monitoring

A project plan consists of a project schedule and project budget apart from other plan components
like communication plan, quality plan, configuration plan, resource plan, etc. To track the project
execution against the plan, there are major and minor milestones defined in the project schedule
[1]. When the execution reaches any of these milestones, costs and schedule can be compared to
know how the execution is faring against the project plan. Then there are tools like status reports,
Goldratt’s critical chain method, Gantt charts [2], earned value management (EVM) [3], etc. that
help in monitoring and controlling the project.

7.2.1 Monitor against Project Plan

Monitoring against the project plan is the most obvious method to get project progress reports. The
project plan is treated as a baseline against which the actual progress is measured. Major and minor
milestones are provided in the project plan for dividing the whole project plan for easy tracking.
If for some reason a milestone is not achieved as per plan, then the project manager has to explain to

Project Monitoring and Control ® 103

A Work volume

Legend
— = Planned progress

....... = Actual progress

Initiation Requirement Design Construction Testing Closure

\/

April June August October December February Month

Figure 7.2 Project plan vs. actual progress.

the customer why the milestone could not be achieved as per plan. And if this occurs, what should
be done to achieve the next milestones on time? There are some techniques available like resource
leveling [4], resource optimization [5], schedule optimization [6], etc., which can be applied to put
the project on track (Figure 7.2).

7.2.2 Measure Task Progress and Status Reports

How can you measure the progress of a project task? If you have a task and you want to measure it,
then you need to have information about planned task and actual start dates, planned volume of
work, actual volume of work, and task duration. From the planned and actual volume of work, one
can figure out the remaining work to be done to complete the task (Figures 7.3 and 7.4).

If the volume of work is ignored and only dates are taken into consideration, task progress
calculation will be wrong. Suppose a task starts on April 11 and finishes on April 20. That means
the duration of the task is 10 days. If the project manager is asked to provide a status report of
the task up to April 16, then without measuring the volume of work if he says it is 60% (since 6
days of work has been done out of 10 days) then he is wrong. This figure is only the planned work

A

Legend
- Volume of planned work
- Volume of actual work

Figure 7.3 Progress tracking of a task.

104 ®m Software Project Management: A Process-Driven Approach

Legend
- Total schedule of work

- Schedule of % actual work
- Schedule of % planned work

Schedule of work

Schedule deviation Planned and actual schedule

»

Figure 7.4 Project schedule deviation.

and not the actual work. Now suppose the work involves writing source code of size 5 KLOC
(kilo lines of code). That means his team should be writing 0.5 KLOC of source code per day.
Now if he measures and finds that up to April 16 his team has written 3.5 KLOC. That means
his team has completed 70% of work. Compared to the planned completion of 60% of work
(0.5 x 6/5% = 60%), his team is actually ahead of schedule.

This calculation is done for projects where volume and cost of work per day during the entire
project period are constant. But this does not happen in reality. To have meaningful calculations,
this aspect also has to be taken care of.

7.2.3 Identify Deviations

When project monitoring is done, the focus of the measurements is to find the deviations from the
planned schedule and costs [7]. In the example given eatlier, the schedule performance achieved
is 70% compared to planned 60%. That means the team is ahead of schedule by a +10% margin
(Figure 7.4).

Legend
I Total cost of planned work
I Cost of actual % work
I Cost of planned % work

Cost of work

Cost deviation Planned and actual cost

Figure 7.5 Project cost deviation.

Project Monitoring and Control ® 105

Now suppose total planned cost for the task is $100. If you break the cost on a daily basis then
it comes to $10 per day. In our example, up to April 16, planned cost is $60. Now suppose the
actual cost comes to $65. So we have a deviation of +5%.

Again these calculations are based on constant volume of work and cost per day, which does
not happen in reality (Figure 7.5). In the EVM explained in a later section, we will see why it is so.

7.2.4 Performance Indicators

Performance indicators are used to know the performance of project in terms of cost, schedule, and
quality [8]. EVM is a good tool for creating and monitoring performance indicators. Performance
indicators work only if baseline information is available. If for some reason, baseline information
about cost, schedule, or quality could not be kept or is not accurate enough to be reliable, these
indicators do not work. It is because there is no accurate planned data available against which the
actual execution data can be compared.

EVM is explained in a subsequent section.

7.2.5 Monitor against Project Schedule

A project plan is generally a high-level plan for a project and it does not include details like resource
allocation to tasks, task details, etc. A project schedule includes these things, and thus, project
schedule tracking and monitoring means measuring the progress of tasks as well as evaluating the
performance of resources in the tasks on a daily basis. So while project plans are tracked at the
milestone level, project schedules are tracked at task level. Project schedule tracking and monitor-
ing may include information like resource utilization percent, resource loading, task progress, etc.

7.2.6 Periodic Measurement

As has been emphasized throughout this book, projects are extremely dynamic and unpredictable
in nature. It is very important that project progress at task level is tracked and measured very fre-
quently to know if everything is progressing well or if there are problems at any time [9]. Actual
measurements should be always compared with planned figures, and if any deviations are found,
a plan should be made to fix these deviations. In good organizations, each project team member
logs his daily activity in a centralized project monitoring system. Reports from this kind of system
can be used to track task progress in terms of schedule. For cost tracking, the project manager can
make a simple sheet and keep it updated with the number of hours the resources have worked on
the project tasks. Multiplying these hours by their hourly pay rate will give the expense of each
task. If more than one resource is working on a task, adding expenses for all the resources working
on that task will give the figures of expense of that task. You can then compare the actual expense
of the work done so far against the budgeted cost for that work.

7.2.7 Earned Value Management

For any project, specific time duration and specific budget are allocated while making the project
plan. In ideal conditions, execution of the project will be completed at exactly the same time and
at the same budget. In reality, this never happens. Sometimes, the project may be completed before
the stipulated time duration or at less cost. But these cases are rare. Most often, the project over-
runs both the time duration and cost. Large projects warrant huge budgets, resources, and time.

106 ®m Software Project Management: A Process-Driven Approach

It is very important that they are tracked and monitored closely, and timely reports are given to the
stakeholders so that they know how the project is progressing. Their reputation and very often jobs
are at stake based on the success or failure of the project. So they must get timely status reports
about progress of the project. During reporting, if proper project monitoring information is not
communicated to the stakeholders, they may not know how the project is progressing. They may
be reported only about the percentage of project completion against planned schedule or about the
percentage of budget spent so far. But from this information, it is not clear if the project is actually
progressing as per plan or if it is lagging behind.

This is because there is a third dimension that has not been accounted in these calculations. This
dimension is the volume of work performed over different periods of time during the project are
not the same. Similar is the case for budget. For example, in software projects, when software
design work is in progress, the volume of work per day is low. But during software construction, a
great volume of work is accomplished per day as a lot of developers work on the project. Clearly, a
volume of work done per day at different phases of the project is very different. Similarly, budget
consumed per day over the project will vary considerably due to different pay rate for differently
skilled people and even for the same skilled people and the fact that at different phases of the proj-
ect, differently skilled people work on the project.

As you can see in Figure 7.6, it is difficult to conclude whether the project is progressing well
or not as the actual schedule and cost cannot be compared against any value.

However, if you look at Figure 7.7, the actual cost and schedule figures can actually be com-
pared against planned data. It is because this time, we are tracking the project progress using
carned value (EV). The project duration and the project budget are outlined at the beginning
of the project. When the project execution starts, we will be recording actual project progress in
terms of budget and time consumed by project tasks. Based on the budget consumed by a task,
task progress is measured and we also record how much task progress should have been done after
consuming that much of budget. This is known as EV. So we have three values here: planned value
(PV), EV, and actual value (AV).

As per definitions of EVM,
Schedule variance (SV) = EV - PV
Cost variance (CV) = EV - AC

Budget

Planned value

$100,000 Actual cost

$60,000

$20,000

Time

\/

January February March April May June July

Figure 7.6 Project progress measurement without EVM.

Project Monitoring and Control ®m 107

A
Budget
Actual cost
Cost variance
Planned
$100,000 Schedule variance ~ Value
$60,000
Earned value
$20,000
Time

\

January February March April May June July

Figure 7.7 Project progress measurement with EVM.

Apart from variances in cost and schedule, there are two more indicators available in EVM.
They are the cost performance indicator (CPI) and the schedule performance indicator (SPI). They

are calculated as follows:

CPI = EV/IAC
SPI = EV/PV

Let us see an example to observe how EVM works.

Suppose we have a project with the schedule of 100 days. The budget for the project is allocated
at $100,000. After the elapse of 60 days, project measurements are taken. It is found that a bud-
get of $50,000 has been consumed up to this point in the project. Suppose at this stage, 40 days’
worth of project is actually complete. But from the planned schedule, it should have been 50 days’
worth of project completed. So how is the project progressing?

In Section 7.2.3, we have seen a simple scenario where project schedule and project budget
are allocated linearly (project budget and schedule are consumed linearly in proportion to total
budget and schedule). That means the project progress should be linear. Alas! It does not happen
that way. There is no linear progression of the project in reality. It is because a project has many
tasks and each of these tasks has its own volume of work to be performed at different rates over
a period of time. For instance, a software design task may be completed over a period of, say, 20
days. If the work is performed linearly, then each day, the percentage of work to be completed is
5% so that in 20 days, 100% of the work will be completed. In reality, however, on some days
the planned work may be 3%, 5%, or 6% or could be just any other value. It all depends on
the availability of resources on a particular day and the dependency of a task on another task.
Similarly, the budget consumption is not linear. Some tasks cost less to perform than other tasks.
So in a unit of time, a volume of work done for some tasks can be higher than that for other tasks
with the same budget. So far we have discussed the nonlinear behavior for a planned budget and
schedule. Likewise, the actual budget and schedule consumption will also be nonlinear. Once
we understand the nonlinear relation between percentage of completion of any task vis-a-vis
completion of total task for both planned and actual progress, it will be easy to understand the
concept of EVM.

Coming back to our example, we have actual cost (AC) of $50,000 and PV of $55,000
(corresponding to the planned days of work performed up to this point). The project manager has

108 ®m Software Project Management: A Process-Driven Approach

also been tracking the earned value of the project on a weekly basis. On this basis, he has been
plotting the earned value of the project as it progresses. From this figure, he has an EV of $45,000.
Now let us do some mathematics with the figures we have:

SV = 45,000 - 55,000 = -$10,000
CV = 45,000 - 50,000 = -$5,000
CPI = 45,000/50,000 = 0.9
SPI = 45,000/55,000 = 0.82

For both CPI and SPI, the ideal values are 1. In case CPI is 1, it means that the project budget is
consumed as per project plan. Similarly, if SPI is 1, the project schedule is progressing as per project
plan. In our example, we can see that at the point of measurement, the project is lagging behind both
in schedule and in budget consumption (as both are less than 1). The project manager can do well to
find out why the project is lagging behind and how the project can be put back on the right track.

7.2.8 Measure Resource Utilization

Resource utilization is a measure of efficiency with which available resources within an organization
are utilized in projects. Resource utilization is evaluated more frequently at program or line of busi-
ness level [10]. For instance, suppose a software service company has a practice division for applica-
tion development services for financial services. It has a total I'T staff of 80 people. It has five projects
running. In these projects, a total of 76 people are engaged. That means there are four people who
are not assigned to any project. That means this practice division has 95% of resource utilization.

7.2.9 Measure Resource Loading

Resource utilization in projects can be tracked using information as to how many hours of project
work is allocated to the resource and how many hours of actual work the resource has put in. So if
a resource is allocated 20 h of work and he actually puts in 25 h of work, the resource utilization is
125%. From other points of view, resource loading also comes into picture [11]. Suppose a task requires
20 h to be completed. A resource allocated to this task works 8 h a day. So under normal loading
conditions, he will finish this task in 2.5 days. Now suppose as per schedule, this task needs to be com-
pleted in 2 days (16 h). In this situation, the resource can only complete 80% of the work under normal
loading conditions. The project manager then has two choices: he can assign additional resource to
this task to complete it in 16 h or he can increase the workload of the existing resource. To complete
this task within the schedule, the resource should be loaded with 125% of workload. He may need
to work some extra hours every day (overtime of 2 h per day in addition to his 8 h of regular work).

7.2.10 Monitor Skills and Knowledge of Project Team

During project planning and detailed scheduling, resource matching to project tasks is done.
When there is some gap in required and available skills, a training plan is made to bridge this
gap. During execution, this training part is also to be tracked to ensure that the planned training
has been successfully completed and that the resource who has received the training now can do
his task competently. Sometimes it may also happen that during planning, some tasks and the
required skills to do them are not properly planned. During execution, it is realized that training
may be needed. In such cases, arrangement should be quickly made for training. If there is a delay
in starting that task, the project plan should be adjusted accordingly. The additional time may
cither be taken from the schedule buffer or be adjusted against any slack in the project schedule.

Project Monitoring and Control ®m 109

One more possibility may be regarding resource skills. Sometimes, a resource may leave the project
and the project may need to find a replacement. In such a situation, the project manager may need
to do resource skills matching and find a suitable replacement.

7.2.11 Monitor Risks

Everything to be done in a project comes with a risk. If a software design is to be made, there is
a risk that the design is faulty. When doing software testing, there is a risk that the testing is not
good enough. When doing a particular project task, there is a risk that it may not be completed on
time due to resource shortage or underestimation of the effort required for the task.

For each kind of risk that may arise, a contingency plan is needed so that the project does
not get affected. Risk identification has to be done and its impact and probability has to be
assessed at all times during the execution of the project. A detailed study about risks is provided
in Chapter 4.

7.2.12 Monitor Issues

Several kinds of issues keep arising during the execution of the project [12]. These issues need to be
addressed and solutions to be found and applied so that project progress is not affected. There may
be some doubts about the design for which a developer needs a clarification. That clarification is to
be provided on time so that the developer’s time is not wasted. At the peer review meeting, it is felc
to refactor a source code construct, but there are still some team members who want to keep the
existing source code. Then there are team members who want to finish their work faster to take a
break later but the project manager feels that quality may go down.

All kinds of issues keep arising and the project manager needs to resolve them satisfactorily
and in time. Issues are time sensitive and thus require solution within a certain time frame. But all
issues are not same. Some have more impact on the project while others do not have much of an
impact. So if there is more than one issue at hand, then the project manager should first analyze
the impact and accordingly make a list of issues with set priorities and assigning top priority to
resolve the issues that have most severe impact on the project. He can defer attending to the issues
that do not have much impact on the project and can address issues immediately that may have
severe impact. In this respect, issue resolution is similar to mitigating risks.

7.2.13 Status Reports

The customer needs status reports to know whether the project is progressing well or lagging
behind in some respect. The project manager needs to prepare status reports and send them to the
customer. Generally, these status reports are sent after completion of any milestone in the project
[13]. These milestones could be anything and could be set after discussion with the customer. But
most often, these milestones denote completion of one phase of the project (requirements, design,
construction, testing, etc.). The status report should contain information about cost, schedule, and
quality as to how the project execution is faring against the project plan. If the project is lagging
behind in any of these aspects, then a good explanation should be included as to why it happened.
The report should also contain a remedy plan to put the project on track. The report should
also contain information regarding achievements, challenges faced, and issues resolved during the
report period. Depending on the requirements of the customer, the report can be detailed or suc-
cinct. Many project managers make a mistake of not making a good rapport with the customer.

110 ® Software Project Management: A Process-Driven Approach

If no rapport is made with the customer, the customer will never appreciate the effort and hard
work put into assignments by the team. So it is required that the project manager establish a good
rapport with the customer.

7.3 Project Control Techniques

Projects have so many risks and uncertainties that managing and controlling them is a tough task.
The project manager has to keep balancing many trade-offs to keep the project on track.

7.3.1 Resource Leveling

Resource leveling is one technique that is employed to resolve resource conflicts during project
execution. Sometimes, it so happens that a resource is to do more than one task. Now it is found
that one task will get delayed due to the delay in the other task. If there is a slack found in the
schedule, the other task that has not started yet can be taken to some other time frame so that it
will not be affected due to delay in the first task. Or if this is not possible, then adding some more
resources to the task can resolve this issue (Figures 7.8 and 7.9).

A Task 2 slipped due to
slippage in task 1

v

Slipped task 2

Tasks linked
Slipped task 1
Task1l ... pp
L 1]

Y

Figure 7.8 Slippage in a task leads to slippage in the dependent task.

A Additional resources added to
task 2. Duration for task 2
reduced as a result

/

Task 2

Tasks linked

»

Figure 79 Additional resources allotted to a dependent task to complete it faster in less time.

Project Monitoring and Control ®m 111

When using software such as Microsoft Project for making the project schedule, the software
has tasks that conflict with other tasks in the schedule. These conflicts could be due to impractical
start or finish dates for tasks, resource overallocation, or dependency of tasks on each other (so that
if the first task gets delayed, the other will also get delayed). Adjusting those tasks manually or
automatically will resolve the conflict.

7.3.2 Schedule Optimization

Using PERT/CPM methods, we can determine the critical path of the project. But before drawing
the critical path, the project manager should ascertain that there is no unnecessary slack in the proj-
ect plan. If there is any slack anywhere on the critical path, it should be removed to make the project
plan optimized. Similarly, as there could be many critical paths for the same project plan, unneces-
sary slack on all paths should be identified and removed. Now the longest path out of these will be
the critical path for the project (Figures 7.10 and 7.11).

Schedule optimization can also be done during execution. If during execution, any task on
the critical path is found to be done catlier than planned, then the critical path can be shortened.

Design 1 Construction 1

]

Initiation Requirements | ! Design2 | Construction 2 | Integration | Release

Design 3 @ Construction 3
Legend
&\\‘N = Buffer Testing
: =Slack

Figure 7.10 Slack in the critical path of a project plan.

Critical path —

Design 1 Construction 1 m

Initiation Requirements Design 2 Construction 2 | Integration | Release

Critical path Design 3 @ Construction 3
Legend

m = Buffer Testing

Figure 7.11 Optimized project plan after removal of slack on the critical path.

112 m Software Project Management: A Process-Driven Approach

This way schedule for the project can be collapsed or the extra time available can be used for start-
ing dependent tasks earlier than planned schedule.

One more technique of schedule optimization is to find if any tasks can be put in parallel that
are currently in sequence. This way the schedule can be collapsed by a big margin.

Then we can also optimize the schedule by checking if any task can be split and then putting
these split tasks in parallel so that the schedule can be collapsed.

In fact, using concurrent engineering methods, we can successfully optimize a project sched-
ule. In the concurrent engineering technique, activities for downstream processes are planned
ahead during a previous process step. In software projects, we can design the software product in
such a way that the construction and/or testing work can be split easily. So when the project pro-
gresses to these stages, the work can be split and these split assignments can be assigned to many
teams. These teams can work on these assignments in parallel to the work carried out by other
teams. This way the project schedule can be collapsed by a large margin.

7.3.3 Corrective Actions against Deviations

From the project monitoring status reports, if it is observed that the project is deviating from plan,
then corrective actions are to be taken by the project manager. For taking corrective action, the
situation is to be analyzed and root causes are to be identified. Once root causes are found, solu-
tions to fix them can be thought of and then action can be taken accordingly. It is also advisable
to have a good measurement of all process- and productrelated attributes that are relevant to the
project. Good measurements will help in decision-making process.

Some of the reasons for increased project cost include increase in overhead (higher cost of
procuring tools, infrastructure, etc.) or salary. It could also be due to schedule overrun. So cost
increases could either be schedule dependent or schedule independent. If procurement costs are
going higher, management can find alternatives to keep the cost from increasing. If the cost
increase is due to schedule overrun, then immediate action should be taken to correct the schedule
deviation.

Schedule deviation (almost always overrun) can happen due to faulty effort estimate, faulty
scheduling, resource unavailability, loss of critical resources midway in the project, requirement
creep, etc. Requirement creep is the most cited problem attributed to schedule overruns. The best
policy regarding requirement creep is to bargain with the customer whenever any requirement
change request comes. The customer should be made aware of the consequences of the change
request in project schedule. Accept a change request only after the customer understands and agrees
on the consequences in the project schedule. Risks of resource unavailability or loss of resources
pose a serious threat for the project. To deal with such risks, proper resource planning is needed.

The third deviation that can occur in the project is the quality of the work products. Bad qual-
ity cannot be forgiven even if schedule or cost overruns can be accepted. Software engineering
techniques help in ensuring that work product quality can be improved by means of improved
project and product processes. The software development life cycle should be divided into well-
defined phases, and at the end of each phase, there should be a list of defined work products. There
should always be a gate that will allow the project to proceed to the next level only after the work
products are verified to have the expected quality level by measuring them and comparing with
the expected quality levels. If any deficiency is found in any part of the work product, then it
should be rectified and only then should the project be allowed to proceed to the next phase. This
will ensure that quality of the work products is good. This in turn will ensure that quality of the
finished product is good.

Project Monitoring and Control ®m 113

7.3.4 Corrective Actions against Issues

As we have seen in Section 7.2.12, issues should be classified into many categories and top-priority
issues should be tackled first. Issues are also time-sensitive, and if they are not tackled in time, they
will impact the project. How severe the impact will be depends on the kind of the issue itself. When
many issues are in hand at a given time, it is difficult to identify their priority. All of them seem impor-
tant. In such cases, it will be best to list them and put a weight against each of them. Time sensitivity
should also be considered (e.g., in how many days the issue should be sorted out). Now sort out your
list with these two values against each issue. If an issue with more weight has a bigger time window
and if an issue with lower weight has a smaller time window, then if time permits, both should be
tackled in parallel so that both can be resolved within their time windows. However, if the project
manager does not have much time to tackle both simultaneously, then it will be best to tackle the issue
with the higher weight. So if a lower-priority issue cannot be resolved, it will not have much impact
on the project, and at the same time, a bigger impact on the project can be avoided by resolving a
higher-priority issue.

7.3.5 Resource Optimization

in outsourced projects, the project manager from the outsourcing company may have to think
about benefits to his organization from the project. For instance, the service provider will have a
profit motive. When the company bid for a project, it would have taken the profic margin for the
project. During project execution, however, there are many factors that threaten to eat into the
profit margin. The project manager has to keep an eye on the expenses so that profic margin could
be kept intact. In this regard, one known source of threat is an increasing wage of employees. To
handle this issue, the project manager may have to make sure that productivity of the employees
gets increased commensurate with the hike in salaries.

There are many practical ways of optimizing your resources in projects. The best option is
to use project portfolio management to utilize your available resources to the best possible way.
When you have a pool of resources and a list of projects, you can staff the projects in such a way
that your pool of resources are utilized in such a way that no or least resources are sitting idle.
Even within the pool of resources, some are costlier than others. It definitely makes sense that
time of these higher-paid staff should be utilized to the maximum.

7.4 Project Monitoring and Control Artifacts

Project monitoring provides project process and work product data that we can use to make deci-
sion and control the project so that later on it can be kept on track despite derailings in the past.
The cost could have gone up from what was budgeted, the schedule could have overrun, or the
work product quality could have gone down from what was expected. So basically we have three
attributes of a project that should be monitored and controlled: schedule, cost and quality.

The artifacts belonging to the schedule include PERT/CPM charts, network diagrams, resource
charts, EVM, etc. The artifacts belonging to cost include budget analysis, resource optimiza-
tion, EVM, etc. The artifacts for quality include requirement document review, design document
review, source code review, test cycle logs, etc.

The most important artifacts of project monitoring and control are actual project cost, product
quality and schedule data. The overall project cost and schedule data in relation to project size and
quality level determines productivity on the project.

114 m Software Project Management: A Process-Driven Approach

7.5 Project Monitoring and Control in Iterative Model

Software project planning for iterative development projects has been discussed in Chapter 6.
As discussed there, most of the action happens at the iteration level, and thus, most of the
planning is also done at this level. Since duration of each iteration is small (a few weeks to
2-3 months), impact on an individual iteration due to any unforeseen circumstances is not
that severe. Most of the project risks are tackled by dividing the entire project into small itera-
tions. Thus, for iterative projects, the risks are manageable because their sizes are reduced, and
they are distributed throughout the project by means of breaking the project into small itera-
tions. However, sometimes it may happen that the customer demands some drastic change in
his requirements, which may force an iteration to undergo a large change from the planned
activities. In such cases, the project monitoring and control will be out of control, and thus,
the project plan (iteration plan) will become invalid. A new project plan will have to be made
(Figure 7.12).

But in general, a project plan (or iteration plan) can be controlled using typical controlling
techniques. A good technique to control an iteration is using a priority system for requirements
or features. All the high-priority features will be completed in the iteration, and the low-priority
features can be kept as options if time permits in the iteration.

7.5.1 Performance Measurements

Unlike waterfall-based models, performance on agile projects is measured in different parameters.
Some of these measures include the following:

B Feature points delivered per iteration
B Number of defects found per iteration
B Productivity of team in terms of delivering features per person per iteration

High-priority
requirements

Set of requirements
»| tobeimplemented
in the iteration

Complete list of
requirements

Low-priority
requirements

High-priority requirements

Figure 7.12 High- and low-priority requirements and keeping their schedule accordingly.

Project Monitoring and Control ®m 115

7.5.2 Risks

Iterations are generally time boxed. You need to complete a certain number of feature points
(feature points are a number assigned to a feature depending on the size of the feature and its
complexity) in the iteration duration. If you are not able to complete them, it may be due to inac-
curate effort estimation, some issues arising, or some other risk that is responsible for problems in
the project. But these problems arise during the first few iterations. Otherwise agile environments
are pretty stable and devoid of risky propositions. There is no such thing as resource allocation in
these projects. Each person in these projects has his role well defined. He keeps on working on
successive iterations without being told by project manager what he would be doing in subsequent
iterations. From the stories to be worked on in a particular iteration, the developers write unit tests
and then start building the features. Whenever time permits, they also keep refactoring the old
source codes. In fact, refactoring is one of the most risky affairs in agile projects. If refactoring
is not done properly, subsequent iterations can face problems in writing code for new features as
design issues prevent old source code form integrating with the new code.

7.6 Case Study

In the previous chapter, we have seen how project and iteration planning is done at our Saa$ ven-
dor. In this chapter, we will see how project and iteration control and monitoring are done.

Our SaaS$ vendor has major and minor releases of software coinciding with yearly project plan
and iterations within the project plan, respectively. During the execution of iterations, there are
bound to be issues and risks arising due to various internal and external factors. In such cases, risk
and issue mitigation strategies come in handy if they exist.

Luckily, the SaaS vendor project team has such contingency plans. They have weekly iteration
review meetings, led by the project manager and attended by project team members. Most of the
issues and risks encountered in the previous week are known to the team members before the
meeting takes place. In addition, any risk that has not affected the plan so far but is lurking around
the corner is also discussed. These potential risks are not on the meeting agenda and are discussed
after the agenda is discussed and a plan of action is taken for these risks.

Some of the risks encountered in the project include sick leaves, unplanned holidays, technical
problems encountered in implementing a design, a rush call from the marketing department for an
unplanned feature to be added, etc. An action plan generally consists of causal analysis of the prob-
lem, finding root cause of the problem, finding a suitable solution for the problem, implementing
the solution, checking if the solution works, and finally eliminating the risk. The analysis of impact
of the risk is also done. Generally, the resources are fixed and additional resources are not added
in the project for mitigating any risk. So the impact the risk has had on the schedule is considered.
The schedule is readjusted if necessary, and the rescheduled plan is made. If change in the affected
task also impacts other tasks, then those tasks are also rescheduled. If the impact is severe and the
entire iteration plan is going to be affected, then one more possibility is explored. It is the option of
working overtime to cover for the extra time required to finish the tasks.

7.6.1 Tracking Tools Used

The project manager uses Microsoft Project to track project plan, resources, and schedule. The
Gantt chart generated by Microsoft Project is used for project monitoring and control. For defect
tracking, Seapine Software’s TestTrack Pro is used.

116 ® Software Project Management: A Process-Driven Approach

7.6.2 Problems Encountered

The most complex and large component which was being developed in release 6.0 of the software
product was a feature called “Appointment Scheduling Engine.” The logic is complex and imple-
menting it was tough. Even testing this solution was a big challenge. Developing it required first
implementing the logic and then modifying the behavior of the component by using software and
hard constraints. For testing it, an elaborate plan was made.

When actual testing got started, it was found that the engine was failing in most of the
cases. It did not recognize any of the constraints. Initially for testing it, two test engineers were
assigned. But later, it was found that the engineers lacked experience to test such a complex
component. So they were replaced by two experienced business analysts who had also worked
on product management of the product, and they knew about the architecture and requirement
specifications well. They set up an elaborate suite of test cases and decided to do exploratory
testing of the component.

The business analysts found that the requirement and design documents were not up to the
mark. They decided to first make a pseudo logic for the component. They took some time in
assembling some documents and getting information from developers and software designers so
that they could make this logic. Once it was built, it helped them to make the strategy to test the
component. The junior analyst did the testing for load time calculations and the senior analyst did
the appointment scheduling part of the component. When the junior analyst finished his testing
for load calculation, he was assigned to test the user interface part including the calendars, searches
for appointments, shipments, etc.

Opverall, the effort paid off and the appointment scheduling engine started working as per
requirements. It was the biggest success story of the project.

7.7 Chapter Summary

Software projects are indeed difficult to monitor and control. Difficulties arise due to the fact that
many specifications for work products are not clear even after the project begins. So the project
team takes some assumptions about the work products into consideration that are yet not so clear.
As the project progresses, some clarity is achieved. So before this happens, the project team tries to
manage the project work with some vagueness. This aspect is the most difficult problem in software
projects. In such a scenario, project monitoring and control thus become a difficult proposition.
There are many tools and techniques available for the project team to monitor and control
the project. For controlling purposes, the project plan has some schedule and budget buffers. So
when any risk occurs, a certain amount of budget and schedule are adjusted in the project by dip-
ping into the buffer. On the other hand, there are some tools that help in overcoming setbacks in
the project without consuming any buffers. Some of these techniques include resource leveling,
schedule optimization, taking corrective action against deviations, etc. Then of course, we have
the EVM technique, which can be employed to take corrective action. The EVM technique also
provides the facility to have a project dashboard with performance indicators. If any of the indica-
tors goes the wrong way, then the project manager can easily recognize it and take prompt action.

Project Monitoring and Control m 117

Exercises

7.1

7.2

What should be the best course of action if many quality issues arise? How can you deal
with a situation when the work products are found to have more than an expected number
of defects?

A project has three software components developed by two teams. One team turns out to be
faster than the other team. What effects it will have on the project?

Review Questions

7.1
7.2
7.3
7.4

7.5

7.6

What attributes of a software project are considered for monitoring and control?

Explain what you understand by resource leveling.

How can you measure progress of a task?

What measures can be taken if it is found that the project schedule is deviating from the
planned schedule?

What measures can be taken if it is found that the project cost is deviating from the planned
budget?

What measures can be taken if it is found that the product quality is deviating from the
expected quality level?

Recommended Readings

1

|SN)

11.

12.

13.

SRCE N

. H. Kerznerd (2009) Project Management: A Systems Approach to Planning, Scheduling, and Controlling,
Wiley, Hoboken, NJ.

. C. E Gray (2005) Project Management, McGraw-Hill Education (India) Pvt Ltd, New Delhi, India.

. J. D. Frame (2003) Managing Projects in Organizations: How to Make the Best Use of Time, Techniques,
and People, Wiley, New York.

. T. Kendrick (2004) Project Management Tool Kit: 100 Tips and Techniques for Getting the Job Done Right,
American Management Association, New York.

. M. Marchesi (2003) Proceedings of Fourth International Conference on Extreme Programming and Agile
Processes in Software Engineering, XP 2003, Genova, Italy, May 25-29, 2003, Springer, Berlin, Germany.

. R.J. Muller (1997) Productive Objects: An Applied Software Project Management Framework, Morgan
Kaufmann, San Francisco, CA.

. P Jalote (2002) Software Project Management in Practice, Addison-Wesley Professional, Boston, MA.

. E A. Goodman (2006) Process Based Software Project Management, Auerbach, New York.

. T. D. Wells (2002) Dynamic Sofiware Development: Managing Projects in Flux, Auerbach, New York.

R. A. Morris, B. McWhorter Sember (2008) Project Management That Works: Real-World Advice on

Communicating, Problem-Solving, and Everything Else You Need to Know to Get the Job Done, AMACOM,

New York.

J. M. Nicholas, H. Steyn (2008) Project Management for Business, Engineering, and Technology, 3rd edn.,

Butterworth-Heinemann, Oxford, U.K.

D. D. Galorath, M. W. Evans (20006) Sofiware Sizing, Estimation and Risk Management, CRC Press,

Boca Raton, FL.

P. C. Tinnirello (1999) Project Management, Auerbach, New York.

Chapter 8

Project Closure

In the previous chapter, we learned

B What is project monitoring?
B What techniques are there for project control?
B How is project monitoring done in iterative projects?

In this chapter, we will learn

B What is project closure?
B What activities are performed during project closure?
B What are the lessons learned on a project and its importance for future projects?

8.1 Introduction

After successful execution of a project, things come to a close. How satisfying the journey has been
is determined from all the status reports and feedback from the customer. All along, there could
have been moments of anxiety, discovery, joys, and sorrows. There could also have been moments
when everything looked haywire and the project looked like a failure. But you have come to the
stage where the project will be closing soon, and this signifies that ultimately things worked and
things could be achieved even after going through some adverse situations.

A software project could be a software development, software customization, software integra-
tion, software maintenance, or just one phase of the software development life cycle (requirements,
design, construction, or testing a software product). As per the contract, the final deliverables have
to be handed over to the customer before the project deadline. While we can discuss project

119

120 m Software Project Management: A Process-Driven Approach

Software project
deliverables

Software product
. . . Resource
User manuals | User training installation/ release Lessons learned
implementation

Software
product

Figure 8.1 Software project deliverables before project closure.

closure formalities for any/all of these types of projects, it may become a large text. So we will limit
the discussion to project closure formalities and tasks for a typical software development project
(Figure 8.1).

Before the closure of the project, you need to check if all deliverables are going to be achieved
before the set deadline. The deliverables include the tested software product, user/training manu-
als, user training, and installation/implementation of the software product at client site. It may
also include product release information if the project is to develop a software product with many
iterations and is built incrementally.

Do not forget that you need to keep a record of what happened during the execution of the
project. If your company has a software engineering group and data from all projects that need
to be kept in a central repository for statistical process-control purposes, then you also need to
make sure that all relevant project data available before the closure of the project are fed into this
repository.

8.2 Source Code Management

Many versions of the source code get generated as requirements, and designs get changed during
the software development life cycle. During testing, many bugs are discovered and they are fixed.
The final source code thus has seen a lot of change, and which version will be shipped to customer
needs to be identified (Figure 8.2).

Source code Source code
Source code . .
. . version after version after
original version
test cycle 1 test cycle 2
Source code Source code Source code
version after version after version after
test cycle 5 test cycle 4 test cycle 3

Figure 8.2 Many versions of source code.

Project Closure m 121

The configuration management system should be kept up to date with all source code
changes [1]. Sometimes, developers keep a local copy of the source code on their machines and
forget to update the configuration management system with the changes they have made in
the source code. Similarly, the user manuals and documents are sometimes not updated with
the changes in code, which results in shipping wrong documentation to the customer. So it
should be made sure that the correct version of the source code along with the documentation
is shipped to the customer.

8.3 Project Data Management

Software service providers as well as internal teams maintain a large pool of project data for new
projects [2]. So when an existing project comes to an end, it is very important to archive project
data. The archived data help in estimating effort, schedule, costs, and quality level for new projects.
This information is very valuable for new projects. Providing project data as a performance indica-
tor to the customer not only boosts customer confidence about ability of the project team, but it
also helps in increasing productivity, project goal clarity, and reducing schedule and costs when
future projects actually get executed (Figure 8.3).

Statistical process-control quality methods work on the principle that collecting sample data
and comparing it with a trend or norms tell whether the quality is improving or going worse [3].
Similarly, having historical data about similar projects helps in setting goals for and estimating the
new project. Then when the project is executed, the trend data help in correcting any problems in
the project.

Just keeping project execution data in the archive is not of much help. When you need to
compare or use data, it should be clean and relevant. So before sending project execution data
into the repository, it should be made sure that the data are clean. Similarly, irrelevant project
data are not of much use. For any project, relevant data are the execution data from similar
projects. This similarity is in terms of project size, industry for which the software product
was made, programming language used, life-cycle methodology used, etc. So the repository
should be categorized accordingly. Depending on these variations, there will be many differ-
ent types of projects. When a new project is to be initiated, the repository should be searched
for similar projects. Data from these projects can then be used for the new project. This
cleaned and filtered data then will be very much relevant for the new project and thus will be
extremely useful.

Filters

Project data
archived

Raw project data >

Data cleaning
Industry
Project size

Application area
Life-cycle methodology
Programming language

Figure 8.3 Strategy for project data archiving.

122 m Software Project Management: A Process-Driven Approach

8.4 Project Closure in Iterative Model

The iterative development model is very popular in software product development these days. Software
vendors are always keen to launch new versions of their software product in the opportunity time
window lest the opportunity is lost. This results in some problems on the software development front.
Iteration closure is often a messy affair if care and restraint are not exercised. Due to market pres-
sure, top management is under pressure to incorporate all the requested features in the release. But
it is clearly not feasible to do so. It is better to prioritize features based on market demand and effort
required to make them. So release planning should be a part of the iteration planning at the beginning
of the iteration. Features with high demand but requiring lesser effort should ideally be included first in
the iteration. If time permits, then go for adding another feature. Keep doing it until you do not have
any time left for adding any more features. Care should also be taken not to compromise on quality.

8.5 Lessons Learned

In life, people learn from doing things, and when they become older, they become much wiser
as they accumulate all the learning over the years. Now when they apply this learning in their
assignments, they are much more effective. They tend to do things better and are generally more
productive.

Learning is a continuous process, and it should be done whenever someone gets a chance to do
things or see others doing things. Projects are an excellent platform for learning. Each project has
many new things that people may not have done earlier in their lives. Not only the project team
members but also the organization learns from a project. Such learning should be documented so
that it can be referenced for future projects [4] (Figure 8.4).

Some examples of lessons learned on the projects could be

How to do a task in a better way

How to manage the project in a better way

Finding good solutions for issues faced

How to negotiate with the customer

How to mitigate an imminent risk

Which techniques work and which do not in particular situations

Software project

]

Lessons learned

. Better Which
Better Better ways Solutions . Better ways .
.) negotiation . techniques
alternative | to manage for unique . to deal with
to do things projects issues with risks work and
customer which do not

Figure 8.4 Lessons learned on a project.

Project Closure ®m 123

Differences between a good organization and a bad one could boil down to the learning, which is
wasted or used effectively on projects.

In a software project, we have many kinds of documents. We have project management-
related documents such as project plan, communication plan, project schedule, effort estimate,
cost estimate, resource plan, and resource allocation. Then, we have requirement documents,
design documents, user manuals, and maintenance manuals from life-cycle management.
We also have contract documents, statements of work, and legal documents from contract
management.

Due to change requests, we will have many versions of different life-cycle documents. All of
these documents go in the configuration management system. But most documents from contract
management and project management do not go in the configuration management system. At
the most project plan, project schedule, work breakdown structure, and resource plan go in the
configuration management system.

Communication documents are the ones that contain the most unstructured and informal
documentation. Nevertheless, e-mails and instant messages contain very useful pieces of infor-
mation. Once the project is over, all these good pieces of information get lost. There should be
some mechanism to extract this information and store it on the configuration management sys-
tem, or rather knowledge management system, so that it is permanently available to the entire
organization and not just one project. This information should be stored as lessons learned on
a project.

8.6 Resource Release

The moment the project appears to be winding up, the project manager should make a release plan
for resources so that the moment they are no longer needed on the project, they are immediately
absorbed in other projects running at their organization [3]. Similarly, if any hardware or licensed
software is being used specifically for the project, then a plan to release them should also be made.
Many project managers are so absorbed in their project that they do not realize that their project
will be winding up shortly, and the costly resources may not be utilized properly if they are not
released immediately.

8.7 Data Structures

Discussion on any project management topic may not be complete without a discussion on
unstructured data [5]. Let us admit it. Almost all project data come under the unstructured data
category. On the other hand, good examples of structured data are manufacturing process data.
In the manufacturing world, the manufacturing process is structured. That is why most manufac-
turing activity can be successfully automated. The boundaries of each and every manufacturing
activity are well defined, and the limits for process variations are short. In fact, all manufacturing
data can be easily digitized and thus can be easily used in computations. That is why they are
amenable to automation easily. Coming back to projects, do you think any project process step
can be precisely quantified? Well, it is difficult to do so. Even after implementing a strict process
model, there will be variations in process steps from one project to another. So process measure-
ments taken on one project will not be precisely the same compared to some other project. And
this is the crux of the problem. One futuristic solution to this problem is when code reuse will
become close to 100%. In that case, we will not be writing source code at all. In fact, we will have

124 m Software Project Management: A Process-Driven Approach

software components available in the market, which we can buy and use to assemble a software
product, very similar to the case when a manufacturer assembles a car. In such a scenario, project
data will be highly structured, and thus more and more project tasks can be easily automated.

Until this becomes a reality, we have to keep writing source code whenever we have to develop a
new software product. Currently, what we have is some software components available in the market
that can be used, but the rest part of the application is to be developed from scratch by designing the
software system and then writing source code per this design. While we design software product and
write source code, we come across a jungle of unstructured data. And this is where pitfalls lie. But
then if projects become manufacturing, then they are not projects any longer!

For use with statistical methods, past project data must be qualified before it is quantified. As
discussed in previous paragraphs, most project data are unstructured. All these data are subjective as
well [6]. For instance, even though a project is shown to be completed on time without problems, in
reality, there would have been some amount of overtime to complete the project on time. Now, this
overtime data are not shown anywhere in the project data. Thus, the project data as shown formally
on records are not true. If the person evaluating that project does not have any idea about this fact,
then he may assume a wrong impression about the project. The bottom line is that each and every
data must be qualified before it is stored in the repository and be subsequently used. It is the task of
the project manager to ensure that he qualifies the project data at the closure of his project.

8.8 Case Study

In previous chapters, we have seen all of the things associated with the way projects and iterations
are initiated, planned, and executed. In this chapter, we will see how project and iteration closure
takes place with the projects at our Saa$ vendor.

Since product development is a continuous process, resources released from a project are
immediately absorbed in subsequent projects. Of course, resources finish their work on a project,
and then they have nothing to do with that project. But their time is already planned for future
projects by the global program manager. The configuration manager also plays a crucial role in
saving all project documents and source code in a separate branch on the configuration manage-
ment system. This branch serves as the complete new version with back integration with previous
versions of the software product. Now, this branch is ready to be saved as the concrete version of
the software product, and a new branch can be created on the configuration management system
from this branch for the next version of the software product. Once the project is declared as
complete, the branch of the configuration management system containing the source code and
project documents is made read-only, and no changes are allowed in any of the source code or
project documents.

For knowledge management and lessons learned on the project, these same project docu-
ments available on the branch of the configuration management system are used. In release
6.0, the greatest lesson learned was that even when elaborate planning is done for project tasks,
things can turn nasty. The appointment scheduling functionality was really complex, and all
plans to design, construct, and test it failed. It was only after some hard and long brain-storming
sessions and much thinking that the functionality could be designed, constructed, and tested
properly.

Due to the difficulties faced on the project, the original plan was at risk of going out of hand.
Even the 10% schedule buffer was not sufficient. Finally, a compromise was made to do away with
an additional feature that was also planned in the same release. This feature was moved to the

Project Closure ® 125

next release. The resources allocated for designing, constructing, and testing this feature were also
pulled and used for the appointment scheduling feature.

8.9 Chapter Summary

Before project closure, many activities remain on the project. Many loose ends are to be knotted
before closure. In fact, the project team may be involved in many unfinished activities if the proj-
ect execution has not been smooth. However, the main tasks of closure include resource release,
preparing lessons learned on the project, source code management, and project data management.
Once project data and lessons learned are prepared, then they should be archived to be used for
future projects. Source code control is important, because during system testing, much defect fix-
ing would have been done, and thus a lot of changes in the source code would have occurred. At
this time, which version of the software should be deployed at customer site has to be determined.

For project data, care must be taken to make sure that it does not contain any extrancous data.
During archiving, care has to be taken to archive the project data correctly in the right place so
that this data is useful in the future.

Exercises

8.1 In iterative projects, find out how project closure is different compared to project closure in
traditional projects.
8.2 What are typical project tasks in project closure phase?

Review Questions

8.1 Why are project data useful?

8.2 What care should be taken before archiving project data?
8.3 What tasks are done before closing a project?

8.4 What strategies are taken to ensure that lessons are learned?
8.5 Why is resource release important?

Recommended Readings

1. A. Stellman, J. Greene (2005) Applied Software Project Management, O’Reilly Media, Sebastopol, CA.

2. R. E. Faitley (2009) Managing and Leading Software Projects, Wiley-IEEE Computer Society Press,
Hoboken, NJ.

3. I Jalote (2002) Software Project Management in Practice, Addison-Wesley Professional, Boston, MA.

4. G. Ruhe (2001) Learning Software Organizations: Methodology and Applications: 11th International
Conference on Software Engineering and Knowledge Engineering, Seke, Springer, Berlin, Germany.

5. A. Griffith, A. King, Engineering and Physical Sciences Research Council (2003) Best Practice Tendering
for Design and Build Projects, Thomas Telford Ltd, London, U.K.

6. P Jalote (1997) An Integrated Approach to Software Engineering, Springer, New York.

SOFTWARE LIFE-CYCLE III

MANAGEMENT

Chapter 9

Introduction to Software
Life-Cycle Management

In Part II, we will learn

What is software engineering?

What impact does software engineering have on a software project?

What are various life cycle models for software development?

What are various phases in a software development life cycle?

How are quality assurance and quality control done in the software life cycle?

In this chapter, we will learn

What is software engineering?

What are software development life-cycle phases?

What development metrics are measured?

What are the work products in a software life cycle?

How is quality assurance done during software development?

9.1 Introduction

Suppose we are living in a world where software development is done automatically. There are
robots that gather the software requirements and feed it into a software program. This software
program designs the software and generates the code. Since there are virtually no defects in the
requirements (robots do not make any mistakes!), there will not be any defects in design and con-
struction. So, there will not be any need for testing the built software product. The design and

129

130 m Software Project Management: A Process-Driven Approach

construction of the software product will be done in a matter of minutes. Don’t you think this
will be utopia!

Sadly, we are living in a world where it has not become a reality yet. We still have people
who visit customer sites and elicit customer software requirements. The customer happily dictates
requirements. The requirement gatherer documents these requirements in the best possible way
he understands them. Then, he converts these requirements into software features and hands it to
the software design team. The software designers convert these features into designs in the best
possible way they can do it. Then, they hand these designs to the construction team. The construc-
tion team works on these designs tirelessly to convert them into a beautifully constructed software
build. Now, this build is tested to remove the defects introduced during design and construction.
Finally, the product is implemented at the customer site.

Again, sadly, due to low quality of the software product, users start finding defects when they
start using it in their daily work. Due to rapid changes in business and work environments, the
software product they are using becomes unusable and may need changes after some time. Also
due to changes in business environment, some new functionality may need to be added to the
software product to make it more useful. Due to rapid changes in technology, the hardware or
software platform may become obsolete, and thus the software product may need to be ported to
a new platform.

To perform these activities successfully requires highly skilled, trained, and experienced
people. At the same time, all of these activities are resource intensive. So software personnel have
to toil hard and apply their skills creatively to perform these activities. But even then, the desired
software products take a long time to develop, and the customer may need to wait for many
months if not years to see the product in action.

So until we reach utopia sometime in the future, all software professionals need to toil hard
and perform the activities of the software development life cycle (Figure 9.1).

At the same time, some progress has been made in the field of software engineering.
Software engineering is not yet fully evolved and matured, but still, it has come a long way
in the last 50 years or so. Using any current software engineering framework, it is possible to
design and construct industry strength software products that are of reasonably good quality.
Time and effort required to build software products has gone down by a magnitude of more
than 20:1, thanks to rapid advancement in software engineering, increasing code reuse, devel-
opment and adoption of high productivity software design and coding platforms, improve-
ment in development life-cycle management, etc., which help software development projects
tremendously in all the three parameters of time, effort, and quality.

Factors responsible for

productivity gain
Maturing . Automatic
Productivity
Code reuse software tools code
engineering generation

Figure 9.1 Factors which helped in improving productivity on software projects.

Introduction to Software Life-Cycle Management m 131

In this chapter, we introduce software engineering concepts related to development life cycles
on software projects. In later chapters in this part of the book, detailed discussions about each and
every activity involved in different phases in development life cycle are discussed.

9.2 Software Engineering Management

Software engineering is a vast field. It is also fast evolving. At the same time, it is currently more
art than science or engineering. It is because software engineering still does not have theories
that are based on solid applied science. Software engineering currently is based on best practices
derived after observations made on thousands of software projects.

For practical purposes, software engineering can be divided into two parts: software engineer-
ing management and software technical engineering (or software life-cycle management). The
technical aspects related to software engineering include good software design and good software
construction (Figure 9.2). Software engineering management, on the other hand, deals with con-
cerns with four primary areas. The first one is to how to build a software product with minimum
cost, within minimum time and with required quality. The second concerns maintaining a con-
sistent quality across all projects within an organization. But, the most crucial aspect is how to
keep improving productivity and quality on software projects with increasing organization process
maturity. The organization processes should keep maturing with experience gained on executing
projects. The last concern is how to choose an appropriate software engineering process for differ-
ent software projects (Figure 9.3).

Software technical

engineering
Software Software Requirement Software
design construction specifications maintenance

Figure 9.2 Software technical engineering (software life cycle).

Software engineering
management

Processes
across
projects

Process Process Process
selection improvement standards

Figure 9.3 Software engineering management.

132 m Software Project Management: A Process-Driven Approach

All these areas discussed about software engineering have a very important role in software
project management [1]. Without these inputs, it is difficult to manage modern large-scale
software projects.

In this book, we will be discussing software engineering management aspects in Part
IIT and technical aspects in this part. The software engineering management topics include
process improvements, development process selection, developing and implementing mature
life cycles. The technical software engineering concerns different phases of development life
cycles, work products developed in these phases, and activities carried out within different
phases. In this part, we will concentrate on all these aspects related to technical software
engineering (software development life cycle). Process improvements and process selection
are discussed in Parc III.

9.3 Software Life-Cycle Management Processes

Most projects involve requirements, design, testing, and construction activities. Software develop-
ment projects are no exception. Customer requirements are gathered and developed, and then an
appropriate software design is made that fulfills the needs of these requirements by converting
these requirements into a suitable software design. Software design is further converted into a
software product through software construction activities. During the entire development life
cycle, quality control and quality assurance activities are carried out to ensure that quality of the
end products is within agreed upon norms.
Let us discuss various software development life cycles in this section.

9.3.1 Software Life Cycle in Waterfall Model

The waterfall model is still a widely used methodology for software development, though some
other development models are also gaining wide acceptance. Some variations of the waterfall
model include concurrent development, incremental development, and prototyping. Standards
like CMM, CMMLI, ISO, and IEEE introduced comprehensive quality assurance activities in the
software life cycle, and thus the waterfall model has incorporated many of these aspects.

The waterfall model is best suited for large software development projects for government,
military, and other industries. Again, the waterfall model is best suited for projects where well-
developed software requirement specifications (SRSs) exist [2]. The entire software development/
maintenance project is divided into well-defined phases. These phases are requirements manage-
ment, software design, software construction, software testing, software release, and software
maintenance. These phases are tightly divided and are phased out in time sequence, and once one
phase is complete, development moves into the next phase (Figure 9.4).

9.3.2 Software Life Cycle in Iterative Model

As can be seen from many discussions on software development project problems, it is a fact that
software projects are different from other kind of projects. Requirements are best captured in
many iterations and not in one go. In most cases, after end users see a working prototype, only
then they are able to provide inputs regarding their exact requirements. Then, there is the huge risk
a software project faces when the software product gets ready only after a long period of time and
when the product development goes from converting requirements into software design, which,

Introduction to Software Life-Cycle Management ®m 133

Requirements

L Design
L

Construction

L.

Testing

L.

Release

L

Maintenance

Figure 9.4 Software life cycle in waterfall model.

in turn, is converted to construction. What if after this hard toil that goes on for months only to be
found out that what has been developed is not what end users expected. Definitely, it is a huge risk.
One solution to deal with this kind of situation is to adopt an iterative model for software
development [3]. Instead of taking all requirements and begin designing and developing the soft-
ware, we can take a few of the requirements and start designing and then building the software
only for this set of requirements. Once the software is buile, it is delivered to the end users. They
can ask for some changes, and these changes can be done quickly. So the cycle for all these activi-
ties may last a few weeks (1-6 weeks). Once this is over, some more requirements can be taken
and again this cycle is repeated. This cycle is repeated until all requirements are converted into the
software product. In this way, the huge risk of delivering wrong software product at the end of a
long period of development can be avoided. Customers also like this kind of model as they keep
getting deliveries at short intervals, and so their confidence with the development team is high.
To do things this way, some methodologies have been developed over the years. Some well-
known methodologies include Scrum, eXtreme Programming, incremental iteration model, and
spiral development. There is one more iteration-based model, which was developed by Rational
Corporation (part of IBM). It is known as the rational unified process model. This model is dis-
cussed at length in Chapter 16 along with the other major agile models like Scrum and eXtreme
Programming. At the heart of all these methodologies is the concept of using only a few of the
requirements developing the software product, and delivering it after a short cycle of development.
The goal is to iterate until all of the requirements are converted into a software product (Figure 9.5).
There are some negative aspects about this kind of software development as well [4]. Not all
software products can be developed this way. The iterative model is suited only for lightweight or
smaller software products. For large software products, the waterfall model is still the preferred
model, though iterative models are also catching up in this space. In fact, many large software
products need to be developed using concurrent engineering, where many development teams
participate simultaneously on building the same software product. For large software products,
you need to build a large base framework on which the product has to be developed. This base
framework includes creating data model, conceptual model, logical model, and physical model.
This base framework corresponds to the complete software design phase as depicted in the water-
fall model of software development. If the base framework is not done, then the software product
can be unstable. Once the base is ready, then software functions can be developed using any suit-
able software development process model. At the same time, it is difficult to create the complete

134 m Software Project Management: A Process-Driven Approach

|Requirement|| Design ||Construction|| Testing || Release

Waterfall — — — e .
— - - -

Iterative — — — — —

Extreme — — — — —

! |

Figure 9.5 Software life cycle in various software development models.

software design when your requirements themselves are not crystal clear, and in fact many of the
requirements are not even propetly understood either by the end users or the project team. Some
agile models tackle this problem of making elaborate and complete software design by resorting to
a technique known as refactoring. This concept is discussed in detail in Chapter 11.

Iterative software development models are still evolving though. One good framework has
been developed by the open source community of Eclipse (see http://www.eclispse.org). They
have developed a software development framework similar to the rational unified process and
called it unified process framework [5]. Using this framework, even large software products
can be developed. The basic building blocks in this framework are the development of software
components. The architecture is known as “service oriented architecture” (SOA). More about SOA
is discussed in Chapter 11.

9.3.2.1 Moving from Waterfall Model

Sometimes, due to problems faced in the waterfall model, a project needs to move to an iterative
model [6]. In such cases, a complete change may be needed not only with the project organiza-
tion structure but with the top layer, which controls at the organization level as well. The project
management has to be done at three layers, as compared to two levels in waterfall model. In the
waterfall model, there is a project level and a program management level (program management
office [PMO]). In an iterative model, there is an organization level where the complete product
management is taken care of. The lower level structure concerns major releases of the product, and
finally, the lowest level where most of the actual product development is done using iterations.
More details about organization structures can be found in Chapter 19.

9.3.3 Software Life Cycle in Concurrent Engineering Model

Concurrent engineering is a field that espouses the cause of rapid product development using many
teams that work on product development simultaneously [7]. The most labor-intensive phases in the
software development process are software construction and software testing. If tasks involved in
these phases can be broken into smaller parts and if many teams can be employed to do these tasks

Introduction to Software Life-Cycle Management ®m 135

Construction +
integration

Construction
team 1

Requirements | Design > Construction > Testing
team 2

Construction
team 3

Figure 9.6 Many construction teams in a concurrent engineering environment.

Testing

Test team 1

Requirements [—| Design Construction —» Test team 2

y

Test team 3

Figure 9.7 Many testing teams in a concurrent engineering environment.

in parallel, then the software development life cycle can be shrinked substantially. The task of prod-
uct development is divided into smaller tasks in such a way that each of these tasks can be executed
independently of each other. So unrelated teams can work on completing each part of the product
without the need to know what other teams are developing. This mechanism makes it easy for con-
current working of many teams. Once these parts of the product are complete, they are assembled to
make the complete product (Figure 9.6).

In software development, dividing the software product is difficult. Decision about division of
the software product to be developed is taken during the design phase so that many parts of the
software can be constructed or tested parallely. To enable concurrent development, the software
product is divided in such a way that each of the parts has defined interfaces through which they
can be integrated with other parts. To test these parts, dummy parts are used for these interfaces
so that the part can be tested (also known as test oracles). Once these parts are developed by each
independent team, they are integrated to make the complete software product. Similarly, for test-
ing, each test part is assigned to a different team so that they can test their own parts in parallel and
thus the length of the testing cycle can be reduced (Figure 9.7).

9.3.4 Software Life-Cycle Processes

Even though different process models have different process phases or steps defined, neverthe-
less, process steps are best represented by the waterfall model. In the case of the rational unified
process, phases are represented in matrix with workflows. These workflows do not get completed

136 m Software Project Management: A Process-Driven Approach

within one phase but instead they cross more than one phase. This is true in most life-cycle cases
as many processes are completed in cycles, and thus they are nonlinear in nature.
Here, we discuss the life-cycle processes in detail.

9.3.4.1 Software Requirements

After the project initiation is over and statement of work (SOW) is signed, the project team starts
gathering software requirements from the customer. After the requirements are gathered, they
need to be developed to make them suitable for system modeling. Some of the techniques used for
software requirements include elicitation techniques and analysis techniques.

To produce a software product, you need to get good requirements. A problem starts here.
Requirements for software products are never very clear. Most of the time, the requirements are
to replace processes that are currently done manually with those that use software. But this is
not all. Management wants to use software to get a strategic advantage. For instance, manage-
ment believes that by using software, they will be able to reduce substantially inventory from
current levels. Now, this kind of expectation cannot be clearly defined. It could be a fact that
software can provide visibility and tools to better manage inventory, but it cannot be said that
using software will help in reducing inventory by a certain percentage. Similarly, people expect
that their workload will get reduced after the software product is implemented. It is true in most
of instances, but, initially, a lot of master data must be entered in the software system, and this
needs a lot of work in the early stage when the software product is being implemented. In such
cases, false expectations are not met, and users start blaming the project team for not meeting
their expectations.

Requirement gathering and subsequent requirement management is a difficult task. A good
process must be defined so that both these tasks can be done in a good and consistent manner. The
requirement gathering differs from one place to another. At some places, user interviews and many
formal methods are employed to get requirements. At other places, informal methods are used.
Also, the size of the software product also influences as to what methods are to be deployed for
requirement gathering. To reduce variability in processes involved in requirement management, a
good requirement gathering template can help.

Some of the challenges in requirement gathering include unclear requirements, difficulty in
getting requirements, difficulty in understanding requirements, and translating those require-
ments into a suitable software design. Requirements changes take place throughout the proj-
ect. This makes software development difficult. Incorporating changed requirements is a difficule
proposition. Suppose a design has been made and the project is in the build phase, and then
imagine a change request arrives. The software architect feels that a large change will be required
in design. He has no option but to do it as the change request has been accepted. He takes time to
make changes in the design. The build team will have to stop their work as this change in design
will cause many of changes in code. In effect, much rework has to be done by the project team.
This kind of rework can take place many times during the project. This makes design and code
changes vulnerable for failures. So more defects can be expected in such a software product that
has experienced many rework requirements.

This scenario is not an isolated case. But in fact it is a prevalent malady in most software
projects.

Traditionally, a waterfall model has been adopted for software development projects. There
is a strict division of phases in the project. The requirements phase comes first and when it gets

Introduction to Software Life-Cycle Management ®m 137

completed, a sign off is made supposedly to mark the end of requirements phase (though in reality
requirement change requests keep coming). Next comes the software design phase. When it gets
completed, a sign off is made. Then comes the building phase. Here, coding is done. Then, in the
testing phase, the built software is tested. Once testing gets completed, the go live phase (also known
as deployment or release phase) comes, and after completion of this phase, the software is imple-
mented at customer site. Once the go live phase is over, software goes into the production phase.

This approach is good in many respects. It assures good quality in the software being pro-
duced. It is well organized. But there is one great disadvantage with this approach. This approach
cannot incorporate changing business requirements. In today’s turbulent business environment,
things change fast. So even if a software requirement looks very good today, it may not look so
good tomorrow. Without incorporating changes required tomorrow, the software being developed
may prove to be a sitting duck.

So what could be a good approach for countering the malady of requirement changes? Over
the years, many organizations proposed and practiced some new approaches for software proj-
ect management to tackle this perennial issue. Some of them include the iterative model, agile
methods, spiral method, and extreme programming. In all of these approaches, the fundamental
shift to requirement management is that the requirements should be collected and developed
iteratively so that unclear or unknown requirements can be incorporated once they become clear.
Collectively, we can term them as iterative development models.

The iterative model suits software projects, because only a small set of requirements is taken for
starting the software project instead of collecting the entire set of customer requirements. So even
if end users are not clear about their exact requirements, the project can be started with a handful
of known requirements. The software can be designed and built for this set of requirements and
delivered to the end users. All of these activities are performed in a short cycle of a few weeks or a
few months. Then, the next set of requirements can be taken, and the next iteration can be done
based on this set of requirements. Users are happy to see the results so early and thus have more
confidence in the project team. This definitely makes a good business sense.

We will learn about requirement management in Chapter 10 in detail.

9.3.4.2 Software Design

Software design follows the software requirement phase. Based on the requirements, software is
designed in such a way that the features required in the requirements document can be imple-
mented in the software design. Apart from how the features as per functional requirements can
be implemented, design also considers factors such as reliability, robustness, security, ease of use,
internationalization, localization, and compatibility. All of these are collectively termed as non-
functional design requirements.

Large enterprise systems have many kinds of users. They use the system to do their everyday
tasks. To make a good user experience, it is important that the user should be presented only the
information that he needs to do his job and not everything that the software product can do. So
software features should be linked to roles, and these roles should be linked to software features
that are required by these roles. Similarly, the information presented to the user should be in a
manner that is easy for the user to use the information and be able to perform his everyday activi-
ties easily. All of these aspects should be part of the software design.

Some of the challenges in software design include difficulty in modeling due to changes or
unclear requirements, limitations of representation of requirements into system design, etc.

138 m Software Project Management: A Process-Driven Approach

Software design plays an important role in software development. If the design is good, soft-
ware will have fewer defects and may be considered reliable. Due to requirement creep as men-
tioned in a previous section, the design may get unstable, which may lead to a poor quality
product.

Enterprise software products though may have a lot of features; nevertheless, they need to have
open interfaces so that they can be integrated with other software products. This is because even
big ERP products may not have everything an enterprise may need, and so it must be integrated
with other software products that may be providing the other needed features.

There are good processes available that help in designing different kinds of software products.
For instance, software applications to be deployed over the Web need a different kind of design
than an application that will have to be deployed offline.

New discoveries in the software engineering field are also forcing software design to change.
The latest discovery of SOA is forcing project teams to design their products as per requirements
of SOA. SOA indeed is an exciting field that is paving the way for software reuse on a mass scale.
We will discuss SOA and related technologies in Chapter 25.

We will study more on software design in Chapter 11.

9.3.4.3 Software Build

Software coding (also known as building or construction) is the most labor-intensive task in soft-
ware development projects. For good coding management, a well-planned approach needs to be
adopted for configuration and version control, sticking to good coding standards, and using a
good object-oriented approach.

Software building (construction) requires a team effort to build a software application. Some of the
challenges in software construction include lack of team work, rework due to changes in design, lack of
clarity in design, bad allocation of work, and bad component structure.

Whether it is waterfall or agile development, rework in the coding phase should be avoided as
far as possible. Software coding is characterized by a large team of developers for large projects.
How the project is divided and how developers are assigned their task, and how these tasks are
tracked is a major decision in the project. It is very important that proper planning for these tasks
is made well. It is also important that a very good version control management tool is deployed so
that each version of the software being developed can be maintained and development can happen
without any interruption due to version issues, etc.

We will learn more about software construction in Chapter 12.

9.3.4.4 Software Testing

Software testing is very important area, because most critical bugs should be trapped here.
Otherwise, fixing bugs in the maintenance phase becomes very costly. Software testing is under-
taken as a separate project on many software development projects as it provides a lot of addi-
tional value. In such cases, it is known as independent verification and validation (IV&V). IV&V
helps in trapping defects at all phases and in all work products during the entire development
life cycle. These defects are subsequently removed. Making a separate project for testing thus helps
in increasing reliability of the software product.

Some of the challenges for software testing include too many defects in the software applica-
tion that increases load on software testers, lack of test strategy, lack of test planning, etc.

Introduction to Software Life-Cycle Management ®m 139

Software testing has been gaining importance over the years. Customers now expect much
better quality from their software products than was the case a few decades back.

Software testing includes unit testing, integration testing, system testing, user acceptance test-
ing, performance testing, and usability testing. IV&V includes requirement specification review,
design inspection, construction inspection, and integration inspection. So scope of testing has
increased on software projects manifold after the advent of IV&V.

Developed software contains many bugs introduced due to faults in requirements, software
design, and software coding. The purpose of software testing is to find these bugs so that they
can be removed. This kind of software testing is known as functional testing. Functional testing
is of two types: white box testing and black box testing. When developers check their own code
for testing logic of the conditional statements or checking formatting of data, etc., then this kind
of white box testing is known as unit testing. In integration testing, developers test whether data
are passing correctly between functions. So most white box testing revolves around testing at the
function level.

When it comes to testing at the system level, black box testing techniques are used. Black
box testing is also used for user acceptance testing. In black box testing, requirements and design
documents are referred to assess whether the built system adheres to customer requirements.

Apart from the functional aspects, the built system is also to be checked for many other
aspects, for instance, whether the built system can withstand load of transaction requests made
by users on the server on which the application is installed. Then, usability, system integration,
and many other kinds of aspects are to be tested to verify if the system is working as per these
expectations.

The software system may contain a large number of bugs. It will be very difficult to detect all
of the bugs. Even if you employ a large testing team, it may take a considerable amount of time
to detect a fraction of all bugs. This kind of exercise will not be of much use. If we are testing a
software product, then the marketing team cannot wait for long, as they need to put the product
in the market within a specified time frame. If we are testing a software application specifically
built for an organization, then that organization cannot wait for long to get to use the application.
Moreover, the cost of such a large testing effort will be huge. This kind of testing activity is simply
not acceptable.

A better approach is to have an effective testing. There will be a time limit under which all
testing activities have to be performed. There will also be a cut-off quality level that is acceptable
to the customers. So a compromise between quality level and time to test the application has to be
made. For example, we can have a schedule of 15 days to test the application and acceptable quality
level of 100 critical bugs to be fixed after the system goes live.

For all kinds of testing to be effective, a comprehensive framework is needed. As has been
stated previously, user acceptance testing needs a requirement document and a good understand-
ing of what exactly the customer needs in the system. The system testing is based on the system
design document. The integration and unit tests are also based on the design document, but they
are done at much lower levels. System testing is done at the system level whereas unit and integra-
tion testing is done at the function level.

Testing should also be prioritized based on needs of the project. For instance, of all the require-
ments, some are of high priority and some others are not. Definitely high priority requirements
should be tested first so that they are covered even if time does not permit further testing. In such
cases, low priority requirements may not get tested, but the impact on the project in such instances
will be much lower compared to cases when high priority requirements could not be tested due to
time constraints.

140 m Software Project Management: A Process-Driven Approach

Similarly, when it comes to system testing, the testing team should have a very good idea about
the design and architecture of the system. Only then they can do testing effectively.

These things can happen only when the testing team gets involved early in the development
life cycle.

9.3.4.5 Software Release

Some of the challenges in the release phase include too many bugs found in user acceptance test-
ing, incomplete, or superficial testing due to a limited testing phase, poor documentation, and
poor user training due to unplanned release.

When software is made ready for released, then you not only need to make sure that the
software application runs per customer requirements, but also it should be casy to main-
tain after production. Processes involved in the software release phase include preparing user
manuals, user acceptance testing, user training, system configuration, and installation. A
software release can be an alpha, beta, or final release. Depending on the kind of release, the
processes may vary. In an alpha release, the software is released only to internal users and
not to the public or customers. Even if it is released to customers, it is offered for free just
for testing purposes. In case of a beta release, the software is released for free to the public
and customers before the final release so that the product is thoroughly tested by the users
themselves, and all defects found by them are removed. This ensures that there are no defects
in the final release.

9.3.4.6 Software Maintenance

Software maintenance is an area that can be more demanding than software development. It is
because, most of the time, it is done by a team that is different from the team that developed the
software. Even if they did a good documentation job during development, understanding those
documents and the code is a difficult for anybody. That is why it is best if the software develop-
ment team also do maintenance; but in practice, it is difficult if not impossible.

Some of the techniques used for maintenance include reverse engineering and re-engineering.
Some of the challenges in maintenance include inadequate maintenance plan, inadequate strategy,
and inadequate technique.

Software maintenance is often neglected when software is developed. This leads to many prob-
lems when it goes into production and then needs maintenance. So it is of utmost importance that
maintenance is kept in consideration during software development. Some of the issues that arise
in software maintenance include

Software code is not readable
Design and construction documents are either outdated, nonexistent, or insuflicient
Unstructured code

Maintenance personnel having insufficient knowledge of the software application

If any of these problems exist, then the software application is difficult to change during
maintenance.

Introduction to Software Life-Cycle Management ® 141

9.4 Software Life-Cycle Metrics

When it comes to measuring work product and process attributes in the development life cycle, what
comes to mind? Definitely, all the work products and the final product that are produced during
the development life cycle. Then, there are different steps that are involved in producing these work
products [5]. During the requirement development and specification stage, the work product being
worked on is the SRS document. The SRS must have attributes like testability, maintainability, com-
pleteness, and nonambiguousness. The size of the SRS does not make any sense itself because there
is no relationship of SRS size to the size of the software product. Similatly, during design, construc-
tion, and testing, there will be a large number of work products being produced. Measuring quality
of these work products will provide good insight as to how the project team is faring against bench-
marks or any other standard against which the measurements are to be compared. For producing
these work products, there will be a large number of processes undertaken. Measuring productivity
of these processes will provide good insight as to how the project team is faring against benchmarks
or any other standard against which the measurements are to be compared [8].

9.5 Work Products

In manufacturing, intermediate products created during product manufacturing are known as
works in process (WIP). These WIP products result after a processing step done during manufac-
turing. In the software industry, these intermediate unfinished products are known as work prod-
ucts. During the software development project, each software development process produces work
products. It is important to identify these work products, and there should be a mechanism that will
measure quality of the work product. This will ensure that defects are trapped and removed before
development proceeds to the next phase (Figure 9.8).

Requirement . Construction UAT testing
Design phase
phase phase phase
Y Y \ \

Requi t

equiremen Product Untested UAT tested
specification

model product product
document

Release phase

\

User
accepted
product + user
manuals

Figure 9.8 Work products from various software life-cycle phases.

142 m Software Project Management: A Process-Driven Approach

Requirement .
—>—
phase Design phase

Exit criteria _ | Construction
* Processes completed? phase
» Work product delivery?
e Formal review for quality?

Release phase ~+—— Testing phase

Figure 9.9 Quality assurance mechanism for software projects.

9.6 Quality Assurance

There is an inherent drawback in waterfall and other models of software development. Software
testing had been relegated to be done after software construction. There was no mechanism to find
out if requirement specifications were correct. Similarly, no mechanisms were provided to check
whether the software design was correct. What if there were faults in the requirement specifica-
tions or in software design? Obviously, if there were faults in requirement specifications, then the
software design will be faulty. Similar will be the case with software construction, because it will
be based on faulty software design. A faulty work product as an input to a process step will always
result in a faulty work product output. Instead of building subsequent work products based on
faulty input work products, it makes sense to check the input work products to verify if they are
correct and do not contain any defects. The downstream activities in the development life cycle
should start only after verifying that the input work products do not contain any defects.

After each phase of software development gets completed, there should be exit criteria that will
ensure that all work has finished per project plan and that these work products are defect free. Only
then, the project can move on to the next phase. The exit criteria should include completion of all
processes for the phase, completion of work products, and finally acceptable quality of work prod-
ucts. For quality control, formal review processes should be included in each phase (Figure 9.9).

If any of the three exit criteria is not met, rework may be needed, and, thus, instead of the
project moving forward, it will move back [9].

9.7 Case Study

We discussed project management-related aspects with our Saa$ vendor in Part I. In Part II, we will
discover how the development life cycle evolved and was being used by the SaaS vendor. We will dis-
cover how the requirement specification was prepared, how software design was made, how software
code was written, how software testing was done, how user training was conducted, how the product
was deployed, and how maintenance was performed.

Introduction to Software Life-Cycle Management ®m 143

9.8 Chapter Summary

In introduction to software development life cycles, we have learned what constitutes a software
development life cycle. We have also learned some of the techniques employed for rapid development
such as concurrent engineering. We have also learned about software measurements and how a good
set of software metrics helps in achieving a good software product. We have also learned about soft-
ware quality control and what exact measures are required on software projects. We have also learned
about work products that are made during different phases of the software life cycle. This chapter
will prepare us for the next chapters of Part II, where we will learn about various major phases in
the software development life cycle: software requirements, software design, software construction,
software testing, software release, and, finally, software maintenance.

Exercises

9.1 Find out which software development life-cycle model was adopted for any open source
project. What are significant aspects about the adopted model?
9.2 Find out the rationale for selecting the development life cycle on that open source project?

Review Questions

9.1 Whart are the phases in the software development life cycle?

9.2 Wharstatistical process control methods can be employed on software development projects?

9.3 Whar is concurrent engineering? How can concurrent engineering be used in software
development projects?

9.4 What are work products in the software life cycle?

9.5 What metrics are utilized on software projects?

Recommended Readings

1. J. Keyes (2002) Software Engineering Handbook, Auerbach, New York.

2. M. Silver (2004) Exploring Interface Design, Thomson Learning, Australia.

3. D. Leffingwell, D. Widrig (1999) Managing Software Requirements: A Unified Approach, Addison-
Wesley, Boston, MA.

4. J. Lind (2001) Iterative Software Engineering for Multiagent Systems: The Massive Method (Lecture Notes
in Computer Science), Springer, Berlin, Germany.

5. Q. Wang, D. M. Raffo (2008) Making Globally Distributed Software Development a Success Story,
Springer, Berlin, Germany.

6. C. Larman (2003) Agile and Iterative Development: A Manager’s Guide, Addison-Wesley Professional,
Boston, MA.

7. P. Ghodous, R. Dieng-kuntz, G. Loureiro (2006) Leading the Web in Concurrent Engineering: Next
Generation Concurrent Engineering, Volume 143 Frontiers in Artificial Intelligence and Applications,
1OS Press, Amsterdam, the Netherlands.

8. S. Datta (2007) Metrics-Driven Enterprise Soffware Development: Effectively Meeting Evolving Business
Needs,]. Ross Publishing, Fort Lauderdale, FL.

9. J. Parnaby, S. Wearne, A. K. Kochhar (2003) Managing by Projects for Business Success, Wiley, London, U.K.

Chapter 10

Software Requirement
Management

In the previous chapter, we learned

What is software engineering?

What are software development life-cycle phases?

What development metrics are measured?

What are the work products in a software life cycle?

How quality assurance is done during software development?

In this chapter, we will learn

What are customer requirements?

How are customer requirements gathered?

How are customer requirements managed?

What is the role of the configuration management system in requirement management?
How is quality assurance done during software requirements management?

10.1 Introduction

Software requirement development and management is one area where the project team needs to
do a lot of work. Requirements are one of the most important parts of the software project. After
all, the software application or product is to be built based on these requirements.

145

146 m Software Project Management: A Process-Driven Approach

For government projects, requirements come with all the details. It is simply because at gov-
ernment offices, everything should be accounted for, and so they need minute details of every-
thing including information about why and how the software will be developed and exactly
what are the requirements for which the software will be developed. These requirements are
sometimes documented more than required. But they always come with correct and complete
details. Requirements for internal software projects come with fewer details. In the case of
commercial and business software development for external customers, the details of require-
ments can vary. For outsourced software projects, great details are available. But in case of
offshore outsourced projects, complete requirement details are needed and hence are provided
by customers.

10.2 Software Requirements Development

Consider this request from the marketing department of a software vendor: “We need to develop
an online access system for our banking application by next month.” Yes, this is a requirement
with the timeline from the marketing department’s point of view. The project manager may just
get bewildered, but this is what happens to software project managers. If you get requirements
like this, then you need to pay attention to find out actually what is required and then develop the
requirements accordingly.

Developing the requirement is done by software engineering folks. Even if detailed require-
ments come from a customer, analysis of these details must be done [1]. Some of the requirements
may need to be elaborated further. Some of the requirements may not be feasible. In those cases,
some alternative solution has to be suggested to the customer and approval obtained from him.

Once most of the requirements are made clear and approved, then software design processes
can begin.

Requirements can be broadly grouped into two categories: functional requirements and
nonfunctional requirements [2]. Functional requirements pertain to those requirements that state the

Software
requirement types

/\

Functional Nonfunctional
requirements requirements

Figure 10.1 Software requirement types.

Nonfunctional
requirements

Security Performance Usability Compatibility

Figure 10.2 Nonfunctional software requirement sub types.

Software Requirement Management m 147

functionality required in the software system that the customer is looking for (Figures 10.1 and 10.2).
A functional requirement could be, for instance, to have a transaction ability so that the user can pur-
chase certain goods from the Web site using a credit card.

Nonfunctional requirements are those requirements that do not belong to the core functional
requirements. Instead, they state how the software system will behave in certain conditions.
Some of the nonfunctional requirements include security, performance, usability, compatibility,
etc. A customer requirement may be stated that the software system should be secure so that
unauthorized access to the software system is not allowed. In that case, a comprehensive secu-
rity mechanism should be incorporated in the software system so that unless a user has been
provided privileges for access, he cannot access the software system. In the requirements, if it is
stated that the response time for a page loading should be less than 105, then the software sys-
tem and the hardware on which it will run should be made load pages within 10s even during
expected peak loads.

Some of the considerations associated with requirement development include

B Well-defined required functionality (both functional and nonfunctional) to make an appro-
priate software product.

B Defined details of the operational environment in which the software system will operate.

B Maintenance and final retirement plan should be in place.

B All limitation factors should be stated before the development life cycle starts, including
limitation factors for design, construction, maintenance, and testing activities. Otherwise,
during development, unpleasant surprises may crop up.

Limitations and constraints to be considered for developing the software product during the
requirement development stage itself should be considered. They should include

B Cost and cost drivers

B Risks associated with requirements (incomplete/ambiguous/wrong requirements) that can
have impact on the project

B Factors related to customer’s unique business considerations, regulations, and laws to better
relate requirements to software design

B Time constraints and schedule drivers

B Consideration of issues implied but not explicitly stated by the customer or end-user

B Technological limitations

During requirement development, the customer requirements are analyzed, and a detailed
software requirement is developed. If complete information is not available at this stage, then
some assumptions are made. These assumptions are noted down for further discussion with
customer and to get their approval. At this stage, care is also taken to view requirements,
constraints, and limitations of design, construction, maintenance, and testing of the proposed
software product. Due to these considerations, some additional requirements may also need to
be added [3].

All the requirements need to be converted into software features (logical entities) [4]. All
these features need to be categorized under some major heads (top level features). All other
features that are dependent on the main feature should be put under these heads in hierarchical
order. Whenever new requirements are added, they are refined, derived, and allocated to these

148 m Software Project Management: A Process-Driven Approach

Top level
requirements
_ Next level
requirements
Next level
g requirements
_ Bottom level
requirements
Figure 10.3 Software requirement hierarchies.
Sources of
Increased requirements Business
revenue 4/ ~— _ ———— | policies
potential changes
\
Business . Customer | Cost savin Technolo
Users Standards . Maintenance ng 2
environment feedback potential changes

Figure 10.4 Sources of software requirements.

logical entities. These logical entities are then allocated to products, product components, people,
or associated processes (Figure 10.3).

Involvement of relevant stakeholders in both requirement development and analysis gives
them a view into the evolution of requirements. This activity continually assures them that the
requirements are being properly defined.

There are many techniques employed to elicit requirements from customers or from other
sources [5]. Some of them include interface control working groups, interim project reviews,
operational walkthroughs and end-user task analysis, technical control working groups, technol-
ogy demonstrations, prototypes and models, brainstorming, customer satisfaction surveys, qual-
ity function deployment, market surveys, questionnaires, interviews, and operational scenarios
obtained from end users, beta testing, extraction from sources such as documents, standards, or
specifications, observation of existing products, environments, and workflow patterns, use cases,
business case analysis, and reverse engineering (Figure 10.4).

Examples of sources of requirements that might not be identified by the customer include the
following:

B Standards

B Business environmental requirements (e.g., laboratories, testing and other facilities, and
information technology infrastructure)

B Technology

B Business policies

B Legacy products or product components (reuse product components)

Software Requirement Management ®m 149

10.2.1 Develop Requirements

The initial requirements, whether from customers or from other sources, need to be made usable
as input for making software requirements. Any irrelevant information from the gathered infor-
mation must be purged. Any information missing should be sought from responsible sources.
Conflicts between any pieces of information should be resolved. Once the collected information
looks complete, it should be consolidated.

10.2.2 Requirement Development Tasks

Some of the tasks done during requirement development include

B Customer requirements are refined and elaborated to develop product and product compo-
nent requirements.

B Establish and maintain product and product component requirements that are based on
customer requirements.

B Allocate the requirements for each product component.

Identify interface requirements.

The requirements are analyzed and validated, and a definition of required functionality is

developed.

Establish and maintain operational concepts and associated scenarios.

Establish and maintain a definition of required functionality.

Analyze requirements to ensure that they are necessary and sufficient.

Analyze requirements to balance stakeholder needs and constraints.

Validate requirements to ensure that the resulting product will perform as intended in the

user’s environment.

For a large enterprise application development, a large number of requirements may be found
in specific areas. In such cases, a team of business analysts may be required who may gather the
requirements and later develop them. For instance, if an enterprise system requirement is to
have functional areas like finance, supply chain management, customer relationship manage-
ment, and human resources, then we can have at least four business analysts who will gather and
develop requirements specific to their areas. Once these requirements are developed, then they
may need to be consolidated. Once the consolidation is done, then a system model may need
to be developed. In fact, it is possible that functional models for each functional area may be
developed separately and later consolidated. These models need to be developed using a standard
language like UML (unified meta language). For a user interface, some Ul flow model is also to
be developed.

10.3 Software Requirements Management

As has been stressed throughout this book, requirement change requests are the order of the
day. Even when the project team initially feels that all requirements are clear, during design,
or test strategy process, some confusing points may arise relating to any of the requirements.

150 m Software Project Management: A Process-Driven Approach

When that happens, then that particular requirement has to be discussed, and only after clear
understanding between the customer and the project team may that requirement be incorpo-
rated into design.

A very good requirement change management and version control is definitely necessary for
a successful software development project. When analyzed, most failed software projects reveal
that the failure was due to unclear requirements or too many requirement changes. In the case
of unclear requirements, the development team assumes certain things in the absence of concrete
details and that assumption may be wrong. In that case, the developed system may not match
customer expectation and so the project may fail.

10.3.1 Requirement Change Control

Whenever requirements are changed, there must be a system that will notify each person whose
work is affected due to change in requirement. How the change will impact their work also
must be assessed. How much rework will be involved should also be calculated and docu-
mented [6].

Most of the impact on late requirement change is on construction and testing. This is because
they are the two most labor-intensive activities. It is estimated that more than 40% of all effort in
software development life cycle is done in construction phase. In software testing, this comes to
25%-30%.

One more aspect of requirement change is the severe impact it has when the development and
testing are being carried out by distributed teams. With a distributed team scenario, communicat-
ing the change request immediately and effectively so that rework can be avoided is a big chal-
lenge. If some of the distributed teams are located in different countries and are service providers
instead of in-house teams, then many other issues also get involved [7]. Understanding the change
becomes difficult.

One more issue with requirement changes pertain to version control. It is difficult to know
whether all distributed teams are working on the correct version of the requirements or not. There
will be instances when some of the teams may be unaware of the latest requirement changes, and
so, unknowingly, they may be working on the wrong version.

10.3.2 Requirement Problems Diagnosis

When distributed teams are working on a project, the best option is that requirements are kept in
a central repository with access permissions to all project teams. Whenever any changes happen,
then there should be provision for automated e-mails to be sent to all concerned teams. People
with less experience should be identified, and care should be taken that they understand these
changes and do their work accordingly.

The configuration and version control system should be located centrally and should be easily
accessible to all teams. Requirement allocation should be done in such a way that each team and
their individual members are always aware of what requirement they are working against, and
where on the configuration management server the relevant work products are located. In case of
any doubts, there should be a responsible person who can clarify any issues immediately within
an agreeable timeframe.

Software Requirement Management m 151

10.4 Requirement Life-Cycle Management

Software requirements are the first phase of any software life-cycle management [8]. The journey
of any software application starts from here. Refer to figures of software life cycle for different soft-
ware development process models provided in Chapter 9. Here, we will discuss processes involved
in requirement development (Figures 10.5 and 10.6).

10.4.1 Requirement Development and Management in Waterfall Model

The waterfall model is modeled on the fundamental notion that software development is done in
phases, and each phase commences after the previous phase gets completed, and they follow each
other in time sequences. So in one software project, there is just one iteration of each phase, and
once it is completed, there is no option to come back to this phase. In real life, most organizations
use a modified version of the waterfall model. So once requirements are developed, a review pro-
cess is initiated to check whether the requirements are incomplete, ambiguous, or are otherwise
faulty. A check is also done to ensure all requirements meet characteristics like maintainability and

Requirement Requirement Requirement
elicitation > documentation > analysis
\
Requirement
specification
development
Y
Verified and Requirement
System . . .
. validated verification and
modeling . 1
requirements validation
Figure 10.5 Software requirement development life cycle.
Requirement Communication
. . Change request o
specification > of change
\
Impact analysis
Y
Changes in
System &
A Rework design,
validation .
construction

Figure 10.6 Software requirement change management life cycle.

152 m Software Project Management: A Process-Driven Approach

Requirement
development
A
Y
Complete list
of requirements
\/

Requirement Verification and
management h validation of

requirements

\

System design

Figure 10.7 Waterfall model—requirement management and verification life cycle.

testability. If, during review, it is found that either some work is not complete or there are defects
in the work product, then a rework is done to remove that defect. Once the work is approved, then
the project is allowed to enter into next phase.

In the requirement development and management phase, the work product is the requirement
specification document. The complete list of requirements is verified and validated during review meet-
ings. If any requirements do not meet the validation criteria (e.g., testability), then requirements
should be reworked, and only then system design phase can be allowed to start (Figure 10.7).

10.4.2 Iterative Model

In iterative models (including eXtreme Programming, agile methodology, and Scrum), complete
requirements may be gathered but not used for product development in one go. Instead, a subset of
requirements is taken, and development is done for those requirements in any iteration. Once that
iteration gets completed, then a new set of requirements is taken for development (Figure 10.8).
In Scrum, the list of requirements is kept in a repository, which is known as the “backlog.”
Whenever any requirement becomes available, it is stored in this backlog. When a sprint (iteration)

Complete list

of requirements
\/
Subset of
requirements
f Y

Requirement Verification and
management | validation of

requirements

Y

System design

Figure 10.8 Iterative model—requirement management and verification life cycle.

Software Requirement Management ®m 153

is planned, the relevant requirements are pulled from this backlog. Most requirements in the back-
log are not fully developed. So, when some requirements are pulled from the backlog, they are
developed to be complete, and then the iteration or sprint proceeds. When any change request
comes, generally, it is taken in the next iteration.

In agile models like Scrum and eXtreme Programming, the sources of requirements are the
customers, customer feedback after iteration completion, found defects during development, and
many other sources mentioned earlier in this chapter.

Requirement management on agile projects is much better. There are generally no incidents
when a change request has to be incorporated during the course of an iteration. Change requests
are generally taken in the next iteration, and thus there is no rework involved due to change
requests.

10.5 Software Requirements Practical Strategy

Making requirement specifications from diverse and unstructured documents from many sources
is a challenging task [9]. Here is a list of best practices for gathering and managing requirements.

1. Requirements come in many forms (e-mail, chats, customer request, meetings, reviews, etc.).
So initial form varies. Use a standard template to get all requirements so that requirement
format is consistent and that it is easy when they are to be incorporated in design. Capturing
all requirements is also possible this way.

2. Requirements should be verified with the source so that there is no communication gap and
requirements are captured as accurately as possible.

3. Requirements should be complete, and no requirement should be incomplete. Also, delivery
dates should also be captured.

4. Requirements should be prioritized based on urgency, ROI, etc.

5. Communicate requirements as early as possible across all teams especially to distributed
teams.

6. Trace dependency among requirements so that if one requirement is important but is depen-
dent on another requirement that is not a priority, then it has to be made sure that both
requirements are delivered.

7. Track requirement changes.

No matter how much attention is paid in collecting requirements, some omissions or mistakes do
happen. This results in delivering an inadequate software product to the customer.

Nonstandard requirement specifications are the most dangerous aspect of software develop-
ment projects. Consider an instance when the customer has specified that the software application
should be used by sales department to take orders from customers. It does not provide details
about various options while taking orders. The design team from the software project simply
designs the system with the assumption that any person in the sales department takes the orders
over the phone and has a list of products against which he books the orders. When the software is
developed and presented to customers, they expect other options to be available to the sales staff
while booking orders. It turned out that the customer was looking for a solution for configurable
items that it sells. For configurable items, each main product has options for subitems to choose
from. Any configurable item can have options at many levels. For instance, a desktop system
can be bought with options for processor model, memory card, sound card, network card, hard

154 m Software Project Management: A Process-Driven Approach

Quad
processor 22 GHz
Intel | Celeron [N 20GHz
processor N
Desktop i A
Pentium 1.6 GHz
AMD
processor

Figure 10.9 Configuration options for a desktop computer.

disk, CD ROM drive, etc. The customer can choose company name, specific brand, and then
specific model for each of the computer parts while giving the order.

See Figure 10.9 to better understand configuration items. A desktop computer can have
options to choose either Intel or AMD processor. The Intel processor can be a quad processor,
Celeron, or Pentium processor. A Celeron processor can be of 2.2, 2.0, or 1.6 GHz capacity. The
order management system must have the capability to choose the specific options provided by the
customer. If configuration capability is not present in the ordering system, then it will be of no
use to the sales department as they cannot book any customer orders using the software applica-
tion (Figure 10.9).

Understanding the requirement and finding the correct solution for that requirement is the
most important aspect of software development projects.

10.6 Software Requirements Artifacts

Software requirements are among the most unstructured data in a software project. They need to
be converted into a good structure in the form of software features (requirement specifications).
Only then, this data becomes useful to the project team. So the software requirement specifica-
tions document (SRS document) must contain specifications in the most structured form. For
the test team, a verification and validation document for the SRS document is the artifact of this
phase.

10.7 Software Requirements Quality Control

Software requirements can be checked or tested for defects. Found defects can subsequently be
removed, and, thus, quality of the software requirements can be improved. Some kinds of defects
in the requirements may include incoherent specification, wrong specification, wrong assump-
tion, incomplete specification, and wrong relationship between requirements. Through a thorough
check, these defects from requirement specifications can be removed.

The requirement development team itself can do these tests, or a test team can perform
these tests.

Software Requirement Management ® 155

10.8 Case Study

We continue our case study in Part II with the way our SaaS vendor’s development team develops
and manages software requirements in this chapter.

The Saa$S vendor decided to build the appointment scheduling functionality only after exist-
ing customers, and market surveys revealed that there was a market gap for this functionality.
So a business analyst was recruited to visit existing customers and gather the requirements.
Already during interaction and user feedbacks from customers, there was some idea about the
features required by them. Based on this existing knowledge and further interaction with custom-
ers, the business analyst completed the requirement gathering. Later, he built the requirement
specifications.

10.8.1 Major Components of Appointment Scheduling

An appointment of any truck to a dock door of any warehouse even before arrival of the truck at
the said warehouse can be made if some advance knowledge about the truck and what it contains
is available. Here is a list of information needed to create this kind of appointment.

Information about the arriving truck includes truck capacity, truck type, kind of goods loaded/
to be loaded, and expected arrival date (time) at the warehouse.

Information about the origin warehouse includes warehouse site information, warehouse com-
pany information, and distance from target warchouse.

Information about the target warehouse includes warchouse site information, warehouse
company information, and number of dock doors.

Information about the dock doors of the target warehouse includes number of doors, types of
trucks, which can be docked at each door, types of goods, which can be unloaded at each door,
dock door calendars, partners whose goods can unloaded at specific doors, labor availability, qual-
ity assurance personnel availability, already docked trucks, already scheduled trucks, and unavail-
ability of dock door at specific times.

The most important aspect about the appointment scheduling engine is that the user can
first search a shipment (truck) that is not scheduled yet and then run the engine, so that a suit-
able schedule can be made for the shipment at any dock door of the target warchouse. There
are so many factors to be considered for this appointment that humanly it is not possible to
make a suitable schedule. The appointment engine is provided with all possible and practical
constraints, and it honors or ignores those constraints depending on the rules defined for them
in the engine. All these constraints are divided into two groups, soft and hard constraints. The
soft constraints can be overridden if a hard constraint does not permit it to be made applicable.
For instance, if a soft constraint does not allow a shipment to be made at 3:30 pm on October
10, 2010, at dock door 1 of warechouse A for a duration of 2 h, and if a hard constraint does
allow this time window for appointment then the soft constraint will be overridden and an
appointment will be made. Then, inside each of the category of hard and soft constraints, there
is a hierarchy. Suppose a higher ranked constraint is applicable for a shipment, and that a lower
ranked constraint does allow a shipment to be made within a time window. However, due to
this higher ranked constraint, an appointment cannot be made. On the other hand, if no higher
ranked constraint is applicable for a shipment, then a lower ranked constraint will determine if
an appointment can be made for a shipment.

156 m Software Project Management: A Process-Driven Approach

The appointment scheduling engine is used to calculate two things. First, it would determine
the start date and time for an appointment. Then, it would calculate the duration of the appoint-
ment if the appointment duration is variable and depends on many factors.

Here is the requirement specification for the loading/unloading calculation part of the
requirements.

10.8.2 Loading/Unloading Time Calculation

1. For some dock doors, a fixed load/unload time is mentioned. Even if the actual time is
more or less than this fixed time, this fixed time should be recorded and not the actual
load time.

2. There is a maximum and minimum time allowed (reservation time) for each dock door for
specific business partners, in which all load/unload activities should be performed. If any
load/unload time calculation is coming above or below this set, then the reservation time
is the allowed time (maximum or minimum whichever applies), and this time should be
recorded for making reservation at the dock door. If the calculated load time is less than
the reservation time, then the calculated time should be recorded.

3. A default load time should be provided for each dock door group. If no fixed or variable load/
unload time is defined for a dock door in that group, then this default load time should be
recorded for all loading/unloading on that dock door.

4. The variable load/unload time should be calculated by the number of quantities of pieces of
goods to be unloaded/loaded multiplied by loading/unloading time per piece of goods.

There were also requirements developed for calendars for dock doors, dock door groups, ware-
houses, organization, and enterprise. Requirements for search functionality for specific shipments
based on origin, destination, shipping date, expected arrival date, etc., were also developed. Finally,
the requirements for appointment scheduling functionality were also developed. This functional-
ity also included options for manual appointment, cancellation of appointment, and grouping of
appointment.

Overall, there were some 560 requirements for the entire project for release 6.0.

10.8.3 Quality Assurance

Quality assurance is an integral part of all software development activities at our SaaS vendor
projects. The requirement specifications or software features to be developed are thoroughly tested
(reviewed) before software design and architecture activities start. Each requirement specifica-
tion is reviewed for completeness, flaws, maintainability, and testability. For example, there was
a requirement that any shipment can be searched by providing partial information like shipment
number and partial shipping address information. The complete address information consisted of
street, county, state, country, and zip code. The partial address information could be a combina-
tion of any of the pieces of these address parts. To search a shipment with partial address, it is
important that these pieces of information are linked loosely with each other. A zip code of 10994
belongs to New York state. So the search result should not show any shipments with this zip code
belonging to some other state. There could be more than one city with the same name belonging to
different states. In that case, all shipments with that city name (belonging to more than one state)
can be displayed in search results if zip code and state are not mentioned.

Software Requirement Management ® 157

Apart from the functional completeness aspect for a requirement, testability, maintainability,
and other kinds of flaws also need to be checked and reviewed. Performance issues should also be
checked if the requirement specifies that a large number of users will be using that software feature
simultaneously.

10.9 Chapter Summary

In this chapter, we have learned all about software requirement gathering techniques, requirement
management, change management, version control, etc. Change in requirements and unclear
requirements are the two pitfalls that affect most software projects. To deal with this problem,
there are two methods. One method is to take only a few requirements at a time and do the entire
development for these requirements. This will mitigate the risk of change in requirements. The
other technique is to manage the entire development process so that the changes can easily be
incorporated in the entire development process.

To ensure that the requirement specifications built are defect free, we must go through a
review process. All requirement specifications should be checked to see that they are not ambigu-
ous and are indeed properly defined. They should be checked to see that they can be easily tested.
They should be checked for maintainability.

Review Questions

10.1 What methods and means are available for requirement gathering?

10.2 What is the process flow for requirement development?

10.3 What quality control mechanism can be employed during requirement development and
management?

10.4 Why is requirement management important? Why it is needed?

10.5 What is the process flow for requirement management?

Recommended Readings

. A. Jaaksi (1998) Tried and True Object Development, Cambridge University Press, Cambridge, U.K.

. L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos (2000) Non-Functional Requirements in Software
Engineering, Springer, Berlin, Germany.

. P C. Tinnirello (2001) New Directions in Project Management, CRC Press, Boca Raton, FL.

. A. Aurum, C. Wohlin (2005) Engineering and Managing Software Requirements, Springer, Betlin,
Germany.

5. S. E Ochoa, G.-C. Roman (2006) Advanced Software Engineering: Expanding the Frontiers of Software
Technology, Springer, Betlin, Germany.

. S. E. Donaldson, S. G. Siegel (2001) Successful Software Development, Prentice Hall PTR, New York.

. R. Sangwan, N. Mullick, M. Bass, D.]. Paulish (2006) Global Software Development Handbook, CRC
Press, Boca Raton, FL.

. H. Jonasson (2007) Determining Project Requirements, CRC Press, Ann Arbor, MI.

. J. Dyché, E. Levy (2006) Customer Data Integration: Reaching a Single Version of the Truth, Wiley,
Hoboken, NJ.

N —

FE SN

~N

O o

Chapter 11

Software Design Management

In the previous chapter, we learned

What are customer requirements?

How are customer requirements gathered?

How are customer requirements managed?

What is the role of a configuration management system in requirement management?
How is quality assurance done during software requirements management?

In this chapter, we will learn

B What is software design?

B What are the considerations for making a sound software design?
B What techniques are used to design software?

B How is quality assured during software design?

11.1 Introduction

Software design development can be likened to designing a physical product. Suppose a new car
model is to be developed. The car design is broken down into separate components and in the end
assembling them will become a complete design for the car model. Various factors are considered
during the design of the components. Suppose one factor to be considered is that during a car
accident, the car body should take most of the impact and the passengers should get the least
impact, so that injury to car passengers can be minimized during accidents. For this to happen,
the car body should be made of material that can collapse on impact and thus take most of the impact.

159

160 m Software Project Management: A Process-Driven Approach

So during design, when selecting the material of the car with safety in mind, the body is one
of the prime considerations. Similarly, an aerodynamic body helps in keeping the car from
rolling over during accidents, and thus it is a prime safety factor that the car body should be
aerodynamic.

During design, one consideration is also made that though each component is developed sepa-
rately, after assembly, the components should work with each other without any problems. That
means assembling does not create any problems in the product itself.

Similar considerations are also done when software products are designed. In fact, in design-
ing software systems, consideration is given to things like how well the system will be maintained
during operation and how easily the system will be actually developed and be tested [1].

Software design is done using modeling languages like UML and using notation methods like
use cases and activity diagrams.

We will learn all about software design considerations, workflows involved in design, etc.

11.2 Software Design Fundamentals

When a building is constructed, a good foundation is laid out for the building, so that the
building will have a long lifespan and will not collapse. Similarly, it is given a strong and resil-
ient structure, so that even in case of an earthquake, it will not fall down. Similarly, software
design provides the foundation and structure upon which the software system is constructed.
The design should provide a sound, resilient, and scalable structure to support the software
system (Figure 11.1).

In these days, most software systems are built incrementally. In the beginning, a software sys-
tem may consist of only a few features. The feature set is expanded in future releases as and when it
becomes necessary to include them in the system. If proper structure is not provided from the very
beginning, the addition of these new features will make the system unstable. To deal with this
problem, a technique called refactoring is used on these agile projects where incremental software
development is done. Some of the design techniques that help make good software design include
open architecture, modularity, and scalability [2].

The current trend of service-oriented architecture (SOA) has also helped tremendously in
changing the design concepts. SOA is built on Web services and loose coupling of software com-
ponents. The asynchronous messaging method of integration of SOA is a vital aspect for develop-
ing Web-based applications [3].

Characteristics of a good
software design

Open

architecture Modularity | Robustness Security Scalability | Simplicity

Figure 11.1 Characteristics of a good software design.

Software Design Management ® 161

11.2.1 Design Types

Software design on any project may consist of many work products, which together can be termed
the software design for the software product that will be built during the software project. Some
examples include prototypes, structural models, object-oriented design, systems analysis, and
entity relationship models.

11.2.2 Design Standards

If design standards [4] are implemented on a project, then it will help in streamlining activi-
ties that are involved during the software design phase. Some industry standards for software
design include operator interface standards, test scenarios, safety standards, design constraints,
and design tolerances.

11.2.3 Design Activities

Software design activities produce many intermediate documents and work products [5]. These
include product architecture description, allocated requirements, product component descriptions,
product-related life-cycle process descriptions, key product characteristic descriptions, required
physical characteristics and constraints, interface requirements, verification criteria used to ensure
that requirements have been achieved, operating environments, modes and states for operations,
support, training, manufacturing, disposal, and verifications throughout the life of the product.

11.3 Software Design Methods

There are two methods for designing software products or components, the bottom-up and
top-down approach.

11.3.1 Top Down

In the top-down approach [6], the top structure of the product is conceived and designed first.
Once the structure is perfected, components that will make the product are designed. Once the
major components are designed, the features that make the component are designed (Figure 11.2).

Apart from the functional consideration for making the structure, nonfunctional consider-
ations are also considered from the top level for example, how the security, performance, usability,
aspects will be provided in the product.

There are many benefits to the top-down approach. Nonfunctional aspects are taken care of
at the beginning of design, and hence they are an integral part of the product and not an after-
thought. This makes a secure, robust, and usable product. A top-down approach also helps in
creating reusable components and hence increases productivity as well as maintainability. This
approach also promotes integrity, as the whole product is designed inside a single framework. So a
fragmented and dissimilar approach for designing different parts of the product is avoided.

The drawback of the top-down approach is that it is a risky model. The whole design has to
be made in one go instead of making attempts to incrementally building the design, which is rela-
tively a safer option. Generally, the top-down design approach is adopted on waterfall model-based
projects.

162 m Software Project Management: A Process-Driven Approach

Top-level software
design

Middle-level software
components

Y

Middle-level software
components

Bottom-level software
components

Bottom-level software
components

Bottom-level software
components

Figure 11.2 Top-down software design.

11.3.2 Bottom Up

In the bottom-up approach [7], first, the minute functions of the software product are struc-
tured and designed. Then, the middle-level components are designed, and, finally, the top-level
structure is designed. Once some components are designed, they can be shown to the customer,
and a buy in can be made for the project.

There are some benefits to the bottom-up approach. It leads to incremental building of design
that ensures that any missing information can be accommodated later in the design (Figure 11.3).

With increasing use of incremental and iterative development methodologies, the bottom-up
design approach is becoming more popular than the top-down approach. In fact, nowadays, agile
models do not go for elaborate and complete software design from the beginning of the project.
In each iteration, a design is thought of for the requirements that are taken during the iteration.
To compensate for a sturdy and elaborate design upfront, the project team engages in refactoring
(discussed later in the chapter) the design to make sure that it does not become bulgy and unman-
ageable in later iterations.

Top-level software
design

Middle-level software
components

Middle-level software
components

Bottom-level software
components

Bottom-level software
components

Bottom-level software
components

Figure 11.3 Bottom-up software design.

Software Design Management ® 163

11.4 Design Version Control

In product development for a software vendor, many versions of the same product have to be
developed for fulfilling different customers. With changes in requirements whenever they occur,
software design also changes accordingly. These factors call for many versions of design of the
product. When we have many versions of the design, then we need to have a dependable mecha-
nism to control and manage all these versions of the designs of the same product [8].

At the top level of the hierarchy of files on the configuration and version control tool, the direc-
tory name should be the project/product name. This main directory should branch out with one
branch for each version of the product. Inside each branch, all design files should be kept inside
one subdirectory named something like “design documents.” This way, each distinct design ver-
sion should be completely separate from design documents of other versions of the product.

11.4.1 Subversions

During the software development life cycle, the design changes with changes in requirement speci-
fications or when it is felt to change design as it no longer supports additional requirements. In such
cases, the main design is changed to meet new conditions. However, the main design version is also
kept. The new design is saved as a separate file. So we have two design documents now. Whenever
the design has to be changed, a new file should be created from the old one and saved as a new file.
All of these new files become subversions of the old files. This process is known as subversioning.

11.5 Design Characteristics

When we create software designs, we need to make sure that the design not only fulfills require-
ment specification needs but also ensures that the design is robust, versatile, and defect free. So
the design needs to have some characteristics that make it useful. Here, we discuss some design
characteristics [9].

Modular: The design should be modular, so that construction can be done in modules, and thus
construction tasks can be divided and done in parallel to each other. This helps in reducing the
project schedule and makes a better-managed software product even during maintenance. The
biggest advantage of modular design is that complexity can be reduced by means of breaking
software features into smaller software parts. Complexity in any software product is the biggest
enemy, which creates problems like high-defect injection rates, difficult coding, difficult mainte-
nance, and many other related difficulties.

Simple: The design should be simple, so that it will be easier to understand by developers and other
project team members. This will make sure that the construction work can be carried out without
many problems that are associated with difficult or complex designs.

Maintainable: To reduce maintenance costs, the design should be such that when any mainte-
nance is needed, it can be performed without much overhead work. Some of the requirements of
a software design to be maintainable are that the modules are well formed, reference to calls are
well documented, modules are self-contained, and not many calls are made for other modules. If
the software design is well structured, then maintaining it will be much easier.

Verifiable: The software design should be verifiable, so that it can be easily verified as to whether it
suits the needs of the construction work that follows the design.

164 m Software Project Management: A Process-Driven Approach

Portable: The design should have portability built into it, so that the same design can be used for
writing source code for different hardware/software platforms.

Reliable: The software design should be reliable, so that it does not introduce software defects
when source code is written based on the design. Generally, when a software design is complex,
large, or difficult to understand, then probability of defect injection during software construction
is higher. Thus, a reliable software design should not be complex or large or difficult. Larger soft-
ware designs should be modularized.

Secure: The software design should take into consideration the security needs of the users for
whom the software product is being made. This is especially true for software products, which
are meant to be deployed outside of the firewall of any organization (accessible from the Internet).

Scalable: The software design should be scalable, so that when the smaller software product is
scaled up, no design changes should be required. Even if some design changes are required, then
it should not lead to rewriting of parts of the source code. For example, the design should be such
that when additional features are to be added to the existing software product then the external
interfaces of software design parts should not to be changed in order to add those additional fea-
tures and only internal structures may need to be changed. This strategy will make sure that even
if some parts of the software construction need to be rewritten, it will not affect other parts of the
software product.

11.6 Software Design Techniques

Software design is the phase when a short sighted or myopic vision can turn the software product
development into a nightmarish affair for downstream phases. A good software design not only
ensures a smooth transition to the development phase but also ensures that the software product
has a good shelf life during operation. So what are the keys to a good design? A good design should
start from the most possible abstract architecture of the software product often termed as “high level
design” [10]. Subsequent transition of the abstract design should lead to platform-specific design
often termed as “low level design” [11]. The platform-specific design or low level design will be in
terms of a good database model and a good application model (Figure 11.4).

Over the years, many software design techniques have evolved with the evolution of different
programming paradigms. Starting with the early procedural programming paradigms, program-
ming has evolved into present day “service-oriented architecture.” Software design has kept the
pace with these evolving paradigms, and thus it has also been evolving. So, we have early structural
design paradigms to modern day SOA designs. Let us discuss some of these design techniques.

Software design

techniques
. Object Entit
Prototyping Design Structural System orieilted relationZhip
reuse modeling analysis .
modeling models

Figure 11.4 Software design techniques.

Software Design Management ® 165

11.6.1 Prototypes

What better way to establish a good rapport with the end users than to sketch out a prototype
of an application after you have all the customer requirements? Prototyping is cheap and fast.
It also gets a buy in from customer at an early stage of the project. If not a full prototype of the
application, a partial prototype can help you win over your customer. There are many automatic
code generation tools that allow you to drag and drop some components on screens, and the tool
generates the code and makes a working prototype of the application that you can demonstrate
to your customer. An miscommunication or misunderstanding between the customer and the
project team gets cleared once the differences of opinion are sorted out early on during the pro-
totype demonstration sessions. This greatly helps in reducing the risks of not meeting customer
expectations. In any case, customers do not care about internal workings of the application. They
are always concerned about what the application screens look like and how the application behaves
with different kind of inputs and events.

The downside about prototypes is that many customers assume the prototype is the fully func-
tional application and later on wonder why the application is taking so much time in development
when they saw the working demonstration so early in the project. Customer expectations become
difficult to manage in such instances. Prototypes can only show the user interface screens. When
complex logic is involved in developing applications, that logic cannot be depicted in prototypes,
as program logic is mostly not visible and cannot be developed in prototypes.

11.6.2 Structural Models

Most software applications are built using components. At the bottom are the smallest units of
functions and procedures in a software application. These functions are contained within classes
or packages depending on the programming language used. Many classes together build a com-
ponent. Components in turn make modules. Modules in turn make the complete application. For
ease of working, maintenance, and breaking development tasks to allocate to group of developers,
it is essential that an application is broken down into manageable parts. Breaking into parts for an
application can best be done using a structural analysis.

From requirement specifications, a feature set is made to decide what features will be in the appli-
cation. This feature set is analyzed and broken down into smaller sets of features, which will go into
different modules. This is represented in a structural model of the application.

11.6.3 Object-Oriented Design

It has always been difficult to represent business entities and business information flow in a soft-
ware model. With object-oriented design, this problem was solved. Business entities are repre-
sented as objects in the object-oriented software design. Properties of these objects are made in
such a way that they are similar to the properties of the business entities. These objects are instanti-
ated from classes in the form of child classes. These child classes inherit all the properties of their
parent class, and they can have some more properties of their own in addition. So if we have a
group of similar objects with somewhat different properties, then we can implement classes in such
a way that a base parent class has child classes with different properties. This concept aligns very
much to the real-world scenarios.
Object-oriented design takes input from use cases, activity diagrams, user interfaces etc.

166 m Software Project Management: A Process-Driven Approach

11.6.4 Systems Analysis

System analysis is the process of finding solutions in the form of a system designed from the
inputs coming from business needs. The fundamental question addressed in system analysis is
whether a business scenario can be converted into a software application, so that the user can
use the software application to do his routine business tasks. For instance, a person may want to
access his bank account using an Internet connection to the online Web site of the bank. This
scenario calls for many things that are involved in the whole chain of objects and events. The
system analysis will be concerned with user activities, what objects on the Web site act with user
activities, how these objects interact with the underlying software system of the bank, and how
connections are made between the user and the Web site and between the Web site and the bank
system. System analysis will analyze all these things. Based on the analysis, a system model can
be made that will be used in developing the application.

11.6.5 Entity Relationship Models

Entity relationship models are one of the ways to represent business entities and their relationships
to each other through diagrams. These diagrams are used for creating databases and database
tables. How many tables are needed to fulfill the needs of the software product, how these tables
are related to each other, and in what form data are to be kept inside these tables, etc. are decided
through these diagrams.

With object-oriented modeling, it is possible to correlate each object with a corresponding
database object. This kind of representation helps to make a clean database design.

11.6.6 Design Reuse

For large software products, the design can be broken into many design parts representing each
module of the product. Each of these design modules contain a lot of design information that
can be represented as design components. Many details inside these design components can be
repeated inside different components. If we can use a standard method of representing the same
information for these components, then it is possible to use these pieces of information in many
components by reusing them. It will reduce effort in designing the product. This method of design
reuse is known as internal design reuse.

A more potent design reuse is becoming available after the advent of the open source para-
digm and SOA. In the case of open source, the design reuse is in fact a case of copying existing
design and then using it exactly as it is or modifying it to suit your needs. But in the case of
SOA, you are not copying or modifying a software design. You are using the existing design as
it is. You are also not buying the application/component whose design you want. You are simply
buying a service from the owner of the application/component and using that service in building
your application. The owner of that application/component publishes full details as to how to
integrate your application with his application/component. The full interface details are provided
by the owner. Using this information, you design your own application. You assume as if the
application/component provided as a service is available with you, and your application uses this
application/component.

SOA is indeed leading to a reuse model that is going to transform the world of computing and
our lives in years to come.

Software Design Management ® 167

11.7 Software Design for Internet

Given the fact that the majority of software development these days is for the Internet, it is impor-
tant to recognize how Internet applications are different from traditional software products and
what design considerations are involved in developing them. In these days, even if some applica-
tion being developed is meant to be running inside a company firewall, it makes sense to structure
it like an Internet application for future use as well as for maintenance needs (Figure 11.5).
Internet applications are inherently different. Thus, their design is also different from legacy
client/server applications. Some of the characteristics that impact their design include:

B They are used by a large number of people. So they need to have good performance built
into design.

B Many of these users are novice when it comes to using computers and software applications.

So the design should be such that the application does not break down easily even when the

user keeps clicking on wrong places in the application.

They are information providers with lots of content.

They are asynchronous.

The front end is a browser with all the processing is done at the back end.

They are stateless.

Due to these unique features of Internet applications, they need a different kind of design. For
instance, since they are used by a large number of users concurrently, the design should incorpo-
rate provision for light features, which will not fail even during peak loads on the application serv-
ers. Similarly, an asynchronous connection facility can be provided by designing loosely coupled
components. All transactions should be made stateless, so that if any transaction is in progress and
the connection between server and user machine breaks, the transaction is reverted back.

11.8 Software Design Quality

Quality in the design of the software application can be built by adhering to best practices (soft-
ware engineering principles) in processes adopted for the design as well as making sure that
requirements have been converted into good design. After the design is complete, design work
products (design documents) should be reviewed, and the project should only be allowed to pro-
ceed further if the design documents pass the quality criteria. If any defect is found during review,

then it should be rectified.

Characteristics of a good
software design for Internet
applications

High . Content Back end
Robustness Security . .
performance design processing

Stateless | Asynchronous

Figure 11.5 Characteristics of a good software design for Internet applications.

168 m Software Project Management: A Process-Driven Approach

From the qualitative point of view, the software design should adhere to attributes like
reliability, usability, and simplicity. The design should avoid complexity, inconsistency, and inef-
ficiency. Complexity issues should be addressed by thinking about coupling and cohesion issues
related to relation of code units, modules, function, etc. to each other. Inefficiency issues should
be addressed from user perspective as to how much time and effort they may need to take to per-
form a transaction using the application. Inconsistency issues can be addressed by having a solid
architecture on which units and other program units should be based.

From quantitative perspective, good software design can be thought of in terms of how many
procedure calls may be involved in a transaction, how many steps need to be taken to perform a
transaction, etc.

Quality control for software designs can be done by checking the design after it is built for
defects. Removing these defects will ensure better quality of the software design and hence the
software product. Quality assurance for software designs can be done by ensuring that there is a
well thought out process exist for the entire design exercise, so that defect injection in the design
can be prevented.

11.9 Concurrent Engineering in Software Design

Concurrent engineering deals with taking advance information from an earlier stage for a later
stage in project, so that both the stages can be performed simultaneously. Though project activities
are planned ahead in time, most often there are dependencies between a previous task and the next
task in line. So, the latter task cannot start until the previous task finishes. That is why you cannot
start developing an application until its design is complete. Moreover, the development will depend
on the design. Until all details about design are made, you cannot start development. So, the devel-
opment team cannot start their job until they have a software design in their hands.

Still some aspects about latter tasks can be done in advance. For instance, what development
language will be used and how the application can be partitioned for development work can be
decided at the design stage itself. Similarly, how maintenance and support functions will be done
for the application can be determined at the design stage itself. Knowing in advance helps in tak-
ing care of issues that may arise in later stages.

11.10 Design Life-Cycle Management

Software requirements go through design process steps to become a full-fledged software design.
At the high level, system analysis is performed. System analysis includes a study of requirements
and finding feasibility of converting them into software design. Once the feasibility is done, then
the actual software design is made. The software design is in the form of activity diagrams, use
cases, prototypes, etc. Once the design process is complete, these design documents are verified
and validated through design reviews. Once the design is reviewed and approved, then the design
phase is over (Figure 11.6).

11.11 Module Division (Refactoring)

Whenever a software product is designed, it is done with good intentions. Care is taken to ensure
that the design is extensible, so that when customer needs increase over time, the product can be
extended to take care of those increased needs. Unfortunately, even this foresight is not enough,

Software Design Management ® 169

Activity

diagram
Reau s \ Design
equ}ffemgnt . yslterp »| Use case model || verification and
specification analysis / validation

Prototype

Figure 11.6 Software design life cycle.

and it becomes difficult to extend the product functionality further. In such cases, it becomes
necessary to change the internal structure of software code without changing external behavior of
the software product. To do this, one technique is employed, which is known as refactoring. Using
refactoring, the internal design of a piece of software code is improved by decreasing coupling
among classes of objects and increasing cohesion among classes. Refactoring is very similar to the
concept of normalization in relational databases (Figure 11.7).

Some of the indications of code analysis that may suggest that the code needs refactoring
include duplicate code at many places, using long methods, a large class with many concepts,
the need to pass a large number of parameters, too much communication between classes
resulting from a large number of calls for methods in code, and message chaining by calling
one method which in turn calls another method. When software code starts having these
characteristics, then it is better to go for code cleaning or refactoring. Going for refactoring
will be justified by savings in time due to better code reuse and make it easier to maintain code
and scale up the product.

Refactoring can be achieved by dividing cumbersome classes into smaller classes that can be
managed and used in a better way. In the new code, the functions will be the same, but many of
the functions will be moved now into new classes.

On agile projects, the project team builds the software product without making an elaborate
design from start. One product module is built after another in the subsequent project iterations.
This fact makes it necessary to adjust the software design as the product evolves in this fashion.
The adjustment in the software design in such cases is done using refactoring,

Cases requiring
refactoring
Large
. 1
Duplicate Long number Message C asses Large
.. with many)
code methods of call chaining class size
concepts
parameters

Figure 11.7 Characteristics of a software product code that requires refactoring.

170 ®m Software Project Management: A Process-Driven Approach

11.12 Module Coupling

One area similar to refactoring is coupling between modules. As products mature and more and
more lines of code are added to the existing product, coupling between modules tends to increase.
This has a profound impact when any changes in code are required. Changes in code result in
more than normal occurrence of defects as dependency between modules keeps increasing with
increase in the size of the product.

To reduce the chances of product defects, it is necessary to reduce the number of calls among
different modules and classes. SOA architecture provides great help here. SOA architecture essen-
tially promotes loose coupling, and this implies more or less self-contained classes having less
dependency on other classes.

Increasing module coupling with increase in size of software product is always a concern.
Frequent refactoring can help in reducing module coupling among classes.

11.13 Case Study

In the previous chapter, we have seen how requirements for the project were made. Now we will
see how the software design was made for appointment scheduling component. The complete
design consisted of user interface decision flow diagrams, activity diagrams, use cases, and entity
relationship diagrams. We will see the logic implemented in the activity diagram for loading/
unloading calculations for trucks in this chapter.

11.13.1 Software Design for Loading Calculation

The logic for the loading calculation can be represented by a piece of pseudo-logic. It is presented here.

If variable load time then
If calculated load time > Max reservation time then
load time = max reservation time
elseif calculated load time < Min reservation time then
load time = min reservation time
else load time = calculated load time
else load time = fixed load time
end if
elself default receiving load time is true then
if default receiving load time = fixed load time then
load time = fixed default receiving load time
elseif default receiving load time = variable load time then
If calculated load time > Max reservation time then
load time = max reservation time
elseif calculated load time < Min reservation time then
load time = min reservation time
else load time = calculated load time
end if
end if
else load time = default reservation time

endif

Software Design Management ® 171

In this pseudo-logic, some specialized terms are used related to the domain for which the applica-
tion was made. Those terms are explained here.

Variable load time = If the loading/receiving time for a truck varies with some factors like goods
to be loaded/received and truck types, then loading/receiving time will be variable and needs to
be calculated.

Fixed load time = If the loading/receiving time for a truck does vary irrespective of factors like
goods to be loaded/received and truck type, then the load time is fixed, and it is always stated.

Max reservation time = reservation time on a dock door is given as minimum or maximum reset-
vation time. Max reservation time is the upper limit of this timeframe.

Min reservation time = opposite of Max reservation time (lower limit of timeframe).

Default receiving load time = each dock door or a group of dock doors is given an option of what
could be the loading/receiving time. The options are fixed or variable load time.

The activity diagram for the loading/receiving load time calculation is given in Figures 11.8
and 11.9. Please note that the calculation for both loading and receiving is exactly the same.

!

[Load time calculation]

l

Yes

If load
time fixed?

Y
[Load time = Fixed J

No
load time

If calculated load
time > Maximum
reservation time?

\
[Load time = Maximum]

reservation time

If calculated load Yes
time < Maximum

reservation time?

Y

Load time = Minimum]

reservation time

[Load time = Calculated time }

Figure 11.8 Load time calculation logic.

172 m Software Project Management: A Process-Driven Approach

!

[Receiving time calculation]

Yes
If receiving

time fixed?

\

Receiving time =
Fixed receiving time

If calculated Yes
receiving time > Maximum

reservation time?

\l

Receiving time = Maximum
reservation time

If calculated Yes
receiving time < Maximum

reservation time?

Y

Receiving time = Minimum
reservation time

[Receiving time = Calculated time]

Figure 11.9 Receiving time calculation logic.

11.13.2 Quality Assurance

The completed software design is reviewed for flaws, maintainability, implementability, and test-
ability. If a design is not implementable into source code, then it must be modified to make it
implementable.

11.14 Chapter Summary

Software design is carried out in two parts. First, a high level design is made. At this stage, a high
level representation of the software product to be made is carried out. The high level design con-
tains the macrostructure of the product, including division of the product into modules, relation
between these modules for the software internal structure. Moreover, at this stage, decisions about
the data layer, application layer, and presentation layer are made.

Once we have the high level design, then the finer level of details about the software product is
done during low level design. At this stage, decisions about how much abstraction and encapsula-
tion will be made at the class level, and how functionality can be achieved by class instantiation if
object-oriented design is chosen.

Software Design Management ® 173

For quality assurance at the design level, a design review should be conducted to check if the
software design has any defects. The defects could be anything from outright design flaw to miss-

ing

of any requirement specifications in the design or not representing the requirement specifica-

tion in a proper way. A design defect could also be in terms of how the design is not testable or

mai

ntainable. If any defects are found, then they should be rectified.

Review Questions

11.1 What is a software design?

11.2 What constraints are considered while making the software design?
11.3 What techniques can be used for making a software design?

11.4 How can quality of a software design be ensured?

11.5 What is a design life cycle?

11.6 What are the design methods?

Recommended Readings

R N =

10.

11

. H. Zhu (2005) Software Design Methodology, Butterworth-Heinemann, New York.

. R. Mall (2005) Fundamentals of Software Engineering, Prentice Hall Learning India, New Delhi, India.

. M. Rosen, B. Lublinsky, K. T. Smith, M. J. Balcer (2008) Applied SOA: Service-Oriented Architecture
and Design Strategies, Wiley, New York.

. R.T. Futrell, D. E Shafer, L. Shafer (2002) Quality Soffware Project Management, Prentice Hall PTR,
Upper Saddle River, NJ.

. H. Fujita, D. M. Pisanelli (2007) New Trends in Software Methodologies, Tools and Techniques, 10S Press,
Amsterdam, the Netherlands.

. D. M. Buede (2009) 7he Engineering Design of Systems: Models and Methods, Wiley, Hoboken, NJ.

. G. A. Lancaster (2001) Software Design and Development, Pascal Press, New South Wales, Australia.

. V. Grimm, S. E Railsback (2005) Individual-Based Modeling and Ecology, Preinceton University Press,
Princeton, NJ.

. S. L. Pfleeger,]. M. Atlee (20006) Software Engineering: Theory and Practice, Prentice Hall, Upper Saddle

River, NJ.

A. J. Lattanze (2008) Architecting Software Intensive Systems: A Practitioners Guide, CRC Press, Boca

Raton, FL.

. D. Phillips (2004) 7he Software Project Manager’s Handbook: Principles That Work ar Work, Wiley,

New York.

Chapter 12

Software Construction

In the previous chapter, we learned

B What is software design?

B What are the considerations for constructing sound software?
B What techniques are used to design software?

B How is quality assurance done during software design?

In this chapter, we will learn

B What is software construction?

B What are the considerations for sound software construction?
B What techniques are used to construct software?

B How is quality assurance done during software construction?

12.1 Introduction

A layman believes that software construction is the entire software development process. But, in
fact, it is just one of the crucial tasks in software development; software requirement manage-
ment, software design, software testing, and software deployment are all equally crucial casks.
Furthermore, the process of software construction itself consists of many tasks; it not only includes
software coding, but also unit testing, integration testing, reviews, and analysis.

Construction is one of the most labor intensive phases in the software development life cycle.
It comprises 30% or more of the total effort in software development. What a user sees as the
product at the end of the software development life cycle is merely the result of the software code
that was written during software construction.

175

176 ® Software Project Management: A Process-Driven Approach

Due to the labor intensive nature of the software construction phase, the work is divided not
only among developers, but also small teams are formed to work on parts of the software build.
In fact, to shrink the construction time, many distributed teams, either internal or through con-
tractors, are deployed. The advantage to this is that these project teams do the software coding
and other construction work in parallel with each other and thus the construction phase can be
collapsed. This parallel development is known as concurrent engineering, which is discussed in
Chapter 9.

Constructing an industry strength software product of a large size requires stringent cod-
ing standards [1]. The whole process of construction should follow a proven process so that the
produced code is maintainable, testable, and reliable. The process itself should be efficient so that
resource utilization can be optimized and thus cost of construction can be kept at a minimum.

12.2 Coding Standards

Developers are given software design specifications in the form of use cases, flow diagrams, Ul
mock ups, etc., and they are supposed to write a code so that the built software matches these speci-
fications. Converting the specifications into software code is totally dependent on the construction
team. How well they do it depends on their experience, skills, and the process they follow to do
their job. Apart from these facilities, they also need some standards in their coding so that the work
is fast as well as has other benefits like maintainability, readability, and reusability (Figure 12.1).

At any time, a code written by a developer will always be different from that written by any
other developer. This poses a challenge in terms of comprehending the code while reusing the
code, maintaining it, or simply reviewing it. A uniform coding standard across all construction
teams working on the same project will make sure that these issues can be minimized if not
eliminated (Figure 12.2).

Software design
User interface c .
onversion Source code
Entity > production
i i (software
relationship
i i i product)
diagram Using coding
standards,
Use cases techniques,
etc.

Figure 12.1 Source code production (conversion) from software design.

Software construction
characteristics

P N

Modularity| Clarity | Reliability Safety | Simplicity | Maintainability

Figure 12.2 Software construction characteristics.

Software Construction ®m 177

Some of the coding standards include standards for code modularity, clarity, simplicity, reli-
ability, safety, and maintainability.

12.2.1 Modularity

The produced software code should be modular in nature [2]. Each major function should be con-
tained inside a software code module. The module should contain not only structure, but it should
also process data. Each time a particular functionality is needed in the software construction, it
can be implemented using that particular module of software code. This increases software code
reuse and thus enhances productivity of developers and code readability.

12.2.2 Clarity

The produced code should be clear for any person who would read the source code [3]. Standard
naming conventions should be used so that the code has ample clarity. There should be sufficient
documentation inside the code block, so that anybody reading the code could understand what
a piece of code is supposed to do. There should also be ample white spaces in the code blocks, so
that no piece of code should look crammed. White spaces enhance readability of written code.

12.2.3 Simplicity

The source code should have simplicity and no unnecessary complex logic; improvisation should be
involved, if the same functionality can be achieved by a simpler piece of source code [4]. Simplicity
makes the code readable, and will help in removing any defects found in the source code.

Simplicity of written code can be enhanced by adopting best practices for many programming
paradigms. For instance, in the case of object-oriented programming, abstraction and informa-
tion hiding add a great degree of simplicity. Similarly, breaking the product to be developed into
meaningful pieces that mimic real life parts makes the software product simple.

12.2.4 Reliability

Reliability is one of the most important aspects of industry strength software products [5]. If the software
product is not reliable and contains critical defects, then it will not be of much use for end users. Reliabilicy
of source code can be increased by sticking to the standard processes for software construction. During
reviews, if any defects are found, they can be fixed easily if the source code is neat, simple, and clear.

Reliable source code can be achieved by first designing the software product with future enhance-
ment in consideration as well as by having a solid structure on which the software product is to be
buile. When writing pieces of source code based on this structure, there will be little chance of
defects entering into the source code. Generally during enhancements, the existing structure is not
able to take load of additional source code and thus the structure becomes shaky. If the development
team feels that this is the case, then it is far better to restructure the software design and then write a
code based on the new structure than to add a spaghetti code on top of a crumbling structure.

12.2.5 Safety

Safety is important, considering that software products are used by many industries where human
lives are concerned, and that human lives could be in danger because of faulty machine opera-
tion or exposure to a harmful environment [5]. In these industries, the software product must be

178 m Software Project Management: A Process-Driven Approach

ensured to operate correctly and chances of error are less than 0.00001%. Industries like medicine
and healthcare, road safety, hazardous material handling need foolproof software products to
ensure that either human lives are saved (in case of medicine and healthcare) or human lives are
not in danger. Here the software code must have inbuilt safety harnesses.

12.2.6 Maintainability

As has been pointed out after several studies, maintenance costs are more than 70% of all costs
including software development, implementation, and maintenance [6]. To make sure that
maintenance costs are under limit during software construction, it should be made sure that the
source code is maintainable. It will be easy to change the source code for fixing defects during
maintenance.

12.3 Coding Framework

Like most construction work, you need to set up an infrastructure based on which construction
can take place. For software construction, you need to have a coding framework that will ensure a
consistent coding production with standard code that will be easy to debug and test [7]. In object
oriented programming, what base classes are to be made, which will be used throughout construc-
tion, is a subject that is part of the coding framework. In general, coding frameworks allow con-
struction of the common infrastructure of basic functionality which can be extended later by the
developers. This way of working increases productivity and allows for a robust and well structured
software product. It is similar in approach to house building where a structure is built based on a
solid foundation.

12.4 Reviews (Quality Control)

It is estimated that almost 70% of software defects arise from faulty software code. To com-
pound this problem, software construction is the most labor intensive phase in software devel-
opment. Any construction rework means wasting a lot of effort already put in. Moreover, it is
also a fact that it is cheaper to fix any defects found during construction at the phase level itself.
If those defects are allowed to go in software testing (which is the next phase), then fixing those
defects will become costlier [8]. That is why review of the software code and fixing defects is
very important. There are some techniques available like deskchecks [9], walkthroughs [10],
code reviews, inspections, etc. that ensure quality of the written code (Figure 12.3).

Source code ——— Deskchecks —— Walkthroughs

Final

. . Code reviews
inspection

Figure 12.3 Source code review methods and their operation sequence.

Software Construction ® 179

These different kinds of reviews are done at different stages in software code writing. They also
serve different purposes. While inspections provide the final go/no go decision for approval of a
piece of code, other methods are less formal and are meant for removing defects instead of deciding
whether a piece of code is good enough or not.

12.4.1 Deskchecks (Peer Reviews)

Deskchecks are employed when a complete review of the source code is not important. Here, the
developer sends his piece of code to the designated team members. These team members review
the code and send feedback and comments to the developer as suggestions for improvement in the
code. The developer reads those feedbacks and may decide to incorporate or to discard those sug-
gestions. So this form of review is totally voluntary. Still, it is a powerful tool to eliminate defects
or improve software code.

12.4.2 Walkthroughs

Walkthroughs are formal code reviews initiated by the developer. The developer sends an invi-
tation for walkthrough to team members. At the meeting, the developer presents his method
of coding and walks through his piece of code. The team members then make suggestions for
improvement, if any. The developer then can decide to incorporate those suggestions or discard
them.

12.4.3 Code Reviews

Code reviews are one of the most formal methods of reviews. The project manager calls for a meet-
ing for code review of a developer. At the meeting, team members review the code and point out
any code errors, defects, or improper code logic for likely defects. An error log is also generated
and is reviewed by the entire team.

12.4.4 Inspections

Code inspections are final reviews of software code in which it is decided whether to pass a piece
of code for inclusion into the main software build.

12.5 Coding Methods

Converting design into optimal software construction is a very serious topic that has generated
tremendous interest over the years. Many programming and coding methods were devised and
evolved as a result. As is well known in the industry, the early software products were of small
size due to limited hardware capacity. With increasing hardware capacity, the size of software
products has been increasing. Software product size affects the methods that can be used to con-
struct specific sized software products. Advancement in the field of computer science also allows
discovery of better construction methods. To address needs of different sized software products in
tandem with advancement in computer science, different programming techniques evolved. These
include structured programming, object-oriented programming, automatic code generation,
test-driven development, pair programming, etc.

180 m Software Project Management: A Process-Driven Approach

12.5.1 Structured Programming

Structured programming evolved after mainframe computers became popular [11]. Mainframe
computers offered vast availability of computing power compared to primitive computers that
existed before. Using structured programming, large programs could be constructed that could
be used for making large commercial and business applications. Structured programming enabled
programmers to store large pieces of code inside procedures and functions. These pieces of code
could be called by any other procedures or functions. This enabled programmers to structure their
code in an efficient way. Code stored inside procedures could be reused anywhere in the applica-
tion by calling it.

12.5.2 Object-Oriented Programming

In structured programming, data and structured code are separate and accordingly are modeled
separately. This is an unnatural way of converting real life objects into software code because
objects contain both data and structure. Widely used as an example in object-oriented program-
ming books, a car consists of a chassis, an engine, four wheels, body, and transmission. Each of
these objects has some specific properties and has specific functions. When a software system
is modeled to represent real-world objects, both data and structure are taken care of in object-
oriented programming. From outside of a class that is made to represent an object, only the behav-
ior of the object is visible or perceived. Unnecessary details about the object are hidden, and in
fact are not available from outside. This kind of representation of objects makes them robust, and
a system built on using them has relatively few problems [12].

12.5.3 Automatic Code Generation

Constructing and generating software code is very labor intensive work. So there has always been
fascination about automatic generation of software code. Unfortunately, this is still a dream. Some
CASE and modeling tools are available that generate software code. But they are not sophisticated.
They are also not complete. Then there are business analyst platforms developed by many ERP
software vendors that generate code automatically when analysts configure the product. These
analyst platforms are first built using any of the software product development methodologies. The
generated code is specific to the platform and runs on the device (hardware and software environ-
ment) for which the code is generated.

Generally, any code consists of many construction unit types. Some of these code types include
control statements such as loop statements, if statements, etc., and database access, etc. Generating
all of the software code required to build a software application is still difficult. But some compa-
nies like Sun Microsystems are working to develop such a system.

12.5.4 Software Code Reuse

Many techniques have evolved to reduce the labor intensive nature of writing source code. Software
code reuse is one such technique. Making a block of source code to create a functionality or gen-
eral utility library and using it at all places in the source code wherever this kind of functionality
or utility is required is an example of code reuse. Code reuse in procedural programming tech-
niques is achieved by creating special functions and utility libraries and using them in the source
code. In object-oriented programming, code reuse is done at a more advanced level. The classes

Software Construction ® 181

Software code
reuse methods

T N\

I Software as .
Libraries Open source . Inheritance
a service

Figure 12.4 Code reuse methods.

containing functions and data themselves can not only be reused in the same way as functions and
libraries, but the classes can also be modified by way of creating child classes and using them in
the source code (Figure 12.4).

Apart from creating and using libraries and general purpose classes for code reuse, a more
potent code reuse source has evolved recently. It is known as “service oriented architecture” (SOA).

More about SOA can be found in Chapter 25.

12.5.5 Test-Driven Development

This concept is used with iteration-based projects especially with eXtreme Programming tech-
nique. Before developers start writing source code, they create test cases and run the tests to see if
they run propetly and their logic is working. Once it is proved that their logic is perfect, only then
they write the source code. So here, tests drive software development, and hence it is appropriately
named test-driven development.

12.5.6 Pair Programming

Pair programming is a quality driven development technique employed in the eXtreme
Programming development model. Here, each development task is assigned to two developers.
While one developer writes the code, the other developer sits behind him and guides him through
the requirements (functional, nonfunctional). When it is the turn of the other developer to write
the code, the first developer sits behind him and guides him on the requirements. So developers
take turns for the coding and coaching work. This makes sure that each developer understands the
big picture and helps them to write better code with lesser defects.

12.6 Configuration Management

Configuration management plays an important role in the construction phase. Due to changes
in requirements and design, an already developed source code needs to be changed. So it happens
that the development team ends up with many versions of a source code during the project. If the
version control management is not handled properly, then many developers may start working on
a wrong version of source code, and thus a lot of rework may be needed in the end. There is one
more dimension to configuration management for the construction phase. During construction,
many software builds are maintained for different versions of the product being developed. These
builds can break if a bad piece of code is checked into the build by any developer. When the build
is broken, then no other developer can check in his code. Thus, development is halted until the

182 m Software Project Management: A Process-Driven Approach

build is rebuilt with the correct code. Imagine what may happen in the case of distributed teams
located at far-flung locations with different time zones and a central build is being maintained.
It will be difficult to communicate and manage the build process in such a scenario. In such sce-
narios, smoke test application can be deployed, which can run whenever a new code is checked-in
in the build. If the smoke test fails, that means the build has failed and thus the automated system
can e-mail the build information to concerned people. If the build fails, then the developer who
had checked-in in the code gets the message and immediately tries to fix the build. Once the build
is fixed, then other developers can check-in their code.
Thus, configuration management plays an important role in construction phase.

12.7 Unit Testing

Whenever a developer writes a piece of code, he feels confident that he has written a clean code
and that it does not need testing. But most of the time he is wrong. It is because no source code is
perfect, especially the first time. Only after some rounds of review it becomes perfect. At the same
time, it is very difficult to review one’s own code. That is why a quality control measure is taken in
form of unit testing to ensure that developers test their codes themselves and only then can submit
their code if the code passes the unit tests (Figure 12.5).

For unit testing, generally developers are comfortable as long as there are no changes required
(due to change in design or requirements) in their code. But once some change takes place in the
code somewhere, other things change. What would be the impact of that change on other parts of
the software product under development? Similarly what impact will it have on their own code if
changes take place in other modules being written by other people? Generally, it is one of the most
challenging situations in software construction to find the impact of change on other parts of the
product under development. Such situations call for unit testing of the written code, and no piece
of code should go to build without doing this. A formal and rigid adherence to unit tests should
be a must for all source codes being written and no liberty should be allowed.

12.8 Integration Testing

Most software development is done after partitioning the software application under develop-
ment first and then allocating it to distributed teams. Generally, modules of code are developed
first. Later, they need to be integrated with each other to make a complete software application.
Modules are integrated with each other through open interfaces. Whether or not the integration

Unit testing
required in cases

Y

Code change que change
New code by devel in other
Y developer modules

Figure 12.5 Scenarios when unit testing must be done.

Software Construction ® 183

is working fine, it must be tested to ensure integration has been achieved. This kind of testing is
known as integration testing.

Integration testing has been becoming more and more important, as most software being
developed is modular in nature. With the advent of SOA, which is all about loosely coupled soft-
ware components, integration testing has become even more important.

12.9 Software Construction Artifacts

The software construction phase is one of the most labor intensive phases in software development
cycle. This phase generates the complete source code of the application. Apart from source code,
documentation is also made so that when any maintenance is required on the built application, the
source code could be well understood, and changing any source code will be easy. Review reports
are also generated after reviews are conducted.

12.10 Software Construction in Iterative Model

Iteration-based development for any project signifies a lesser extent of risk and perfection in craft.
Iterative development is definitely a good approach, as it provides an opportunity to spread the risk
over many iterations and thus helps in stopping any catastrophe to occur. Since software design
will be based on just a handful of requirements, it helps to avoid complexity in the construction
work. The main bug bear of software construction is complexity. Sans complexity, development
work would be more productive and will have a lower number of defects (Figure 12.6).

Using techniques like pair programming, test-driven development, continuous integration,
formal reviews, etc., ensures that good quality is achieved from the very beginning of construction
and keep the same level of quality throughout the development process.

12.11 Case Study

In the construction management part of our continuing case study, we will see how the software
product source code was being written as well other activities performed.
Here are some key statistics about the project:

Number of developers: 21
Average speed of writing source code (developer productivity): 2000 SLOC per month, per
developer

Construction quality techniques
in iterative models

Pair Test driven Continuous Formal
programming development integration reviews

Figure 12.6 Quality-driven construction in iterative development.

184 m Software Project Management: A Process-Driven Approach

New piece . Unit test Local
> Unit test > > X <
of code passed integration test
L A
Unit test
Rework
failed Rework
\/

Local Local
integration integration
test passed test failed

. Main
Automatic
smoke test [software
build
Smoke test |—— Rework
failed
Y
Smoke test »| Main software
passed build ready for
new piece of code

Figure 12.7 Software continuous build and integration life-cycle management.

Total source code written in one iteration: 126,090 SLOC
Total source code written in the whole project: 475,901 SLOC
Number of defects fixed in one iteration: 121

Number of defects fixed in the project: 434

12.11.1 Continuous Integration

Continuous integration of source code is an important aspect of all software development work
at the SaaS vendor. The central source code build is continuously integrated from the source code
developed by all development teams. Once any developer checks and tests his own code for unit
and integration on his own local build of the software product, he checks in his code on the central
build. This exercise is depicted in Figure 12.7.

Some other highlights of the product development effort for release 6.0 included having quality
assurance and quality control measures built into the development life cycle. The developers used to
do unit and integration testing for their own written source code, while the development team also
used to do code walkthroughs and code inspections.

12.12 Chapter Summary

Software construction is the phase in which the actual software product is built. On all other
development phases of the software project, some work products are built that help in building
the actual product. However, from the user perspective, construction is where their actual prod-
uct gets developed. Software construction is labor intensive and thus it consumes a big chunk
of the project schedule. To reduce the schedule for construction work, concurrent engineering

Software Construction ®m 185

techniques are employed. In applying concurrent engineering, software design is made in such
a way that construction work can be easily divided among several teams, so that they can work
parallel to each other and thus complete the construction work in less time. To make the software
source code maintainable and reliable, a host of techniques are used including a standard coding
framework, standard coding conventions, etc. To ensure code quality, unit testing and integration
testing are done whenever a source code unit is completed or integrated with the main software
build. At the completion of major construction work, code inspections and other methods of
reviews are done to ensure defects are discovered and removed. To increase productivity, several
techniques are used like pair programming, code reuse, etc.

Finally, the source code should be checked for defects. This can be done by using static methods
and dynamic methods. The static methods are code inspections, code analysis, code walkthroughs,
deskchecks, and peer reviews. The dynamic methods are unit and integration testing.

Review Questions

12.1 What are the common activities conducted during construction phase in the software
development life cycle?

12.2 What quality control measures are taken during construction phase?

12.3 What is done to construct a software application at faster speed?

12.4 Define pair programming.

12.5 What coding standards should be followed during source code writing?

12.6 Describe different kinds of reviews performed during software construction.

Recommended Readings

1. B. Hook (2005) Write Portable Code: An Introduction to Developing Software for Multiple Platforms, No
Starch Press, San Francisco, CA.
2. R. Garud, A. Kumaraswamy, R. N. Langlois (2003) Managing in the Modular Age: Architectures,
Networks, and Organizations, Wiley, New York.
3. M. Fomitechev (2006) Enterprise Application Development with Visual C++ 2005, Wiley India Pvt. Led.,
New Delhi, India.
4. D. Pilone, R. Miles (2007) Head First Software Development, O’Reilly, Sebastopol, CA.
5. M. Pecht (2009) Product Reliability, Maintainability, and Supportability Handbook, 2nd edn., CRC
Press, Boca Raton, FL.
6. R. O. Lewis (1992) Independent Verification and Validation: A Life Cycle Engineering Process, Wiley,
New York.
7. S. McConnell (2004) Professional Software Development: Shorter Schedules, Higher Quality Products,
More Successfiul Projects, Enhanced Careers, Addison-Wesley, Reading, MA.
8. C. Jones (2007) Estimating Software Costs: Bringing Realism to Estimating, McGraw-Hill Osborne
Media, New York.
9. J. Tian (20006) Software Quality Engineering: Tésting, Quality Assurance and Quantifiable Measurements,
Wiley India Pvt. Ltd., New Delhi, India.
10. J. McManus (2004) Risk Management in Software Development Projects, Butterworth-Heinemann, Oxford, U.K.
11. E. E. Brent, R. E. Anderson (1990) Computer Applications in the Social Sciences, Temple University
Press, Philadelphia, PA.
12. M. E. Henderson, S. L. Lyons (1999) Object oriented methods for interoperable scientific and engineer-
ing computing, Proceedings in Applied Mathematics, 99, Society for Industrial & Applied Mathematics.

Chapter 13

Software Testing

In the previous chapter, we learned

B What is software construction?

B What are the considerations for making software construction?
B What techniques are used to construct software?

B How is quality assurance done during software construction?

In this chapter, we will learn

B What is software testing?

B What is verification and validation?

B What techniques are used for testing software?

B How does software testing help in increasing quality of a software product?

13.1 Introduction

It is a fact that the exact number of defects in a software product is difficult to find. At best it
can be predicted using some defect estimation tools. It is also impossible to detect all defects in a
software product. Nevertheless, finding and fixing critical bugs up to an acceptable limit as per
expectations is important. If there are more defects in the product after the product enters produc-
tion, then the project team will be in big trouble. The support costs for a bug ridden product will
be too high. So, less than required testing is a certain call for rebuke from stakeholders.

187

188 m Software Project Management: A Process-Driven Approach

Testing more than required will increase project costs unnecessarily [1]. When the project
starts, the customer specifies what level of quality for the product is expected. The project manager
needs to first make sure that the processes to be followed for building the product are at least so
good that the produced product will have a certain level of quality with a certain level of defects.
Then, he should have a test plan such that the product defects are further reduced by finding
defects and fixing them. So the testing phase must be well planned with required budget, sched-
ule, and testing processes that will ensure that a certain number of critical defects are caught and
fixed (Figure 13.1).

13.2 Problems with Traditional Development Model

Traditionally, software testing was done only after software was constructed. This used to limit the
scope of software testing in the development life cycle (see Figure 13.2).

This practice led to a situation that was too little and too late. By the time software was
constructed, already faulty requirement specifications and faulty software design had resulted in
defect ridden software. Removing all the defects originating from different phases of the project

Software testing
scenarios

Y

More than Less than No testi
required testing required testing o testing
Y \ l
Waste of time High cost of Impossible to
and money support support

Figure 13.1 Software testing scenarios.

A

Too late too
little

\ | Deployment ‘

| Software testing |

| Software construction |

Software design |

Requirement specification |

>

Figure 13.2 Traditional software development model (too little, too late testing).

Software Testing ®m 189

in one go is a huge challenge. That is why this approach always used to result in defect ridden
software products. Even if there was an attempt to remove defects so late in the life cycle, it would
be exorbitantly costly to do so in one go and it would also mean devoting a considerable amount
of time in detecting and fixing all those defects. This would likely be infeasible.

Definitely a better approach was needed to make better quality software products.

13.3 Verification and Validation

The problems encountered in the traditional approach to software testing led to the practice of
verification and validation.

In most quality standards documents, software testing is divided into two parts: “validation”
and “verification.” While verification implies that the developed software is working as intended
by checking the requirement specifications, design, source code, etc., in static mode, validation
implies that the software has been validated to be working after running it and checking whether
all functionality meets the requirements [2].

Verification techniques are also known as static testing, since the source code is not run to do
testing. Figure 13.3 shows that each work product including requirement specifications, design,
and source code during software development is tested using static methods. The requirement
specifications are reviewed for completeness, clarity, design ability, testability, etc. The software
design is reviewed for robustness, security, implementability, scalability, complexity, etc. The
source code is reviewed for dead code, unused variables, faulty logic, constructs, etc.

Once the source code is ready to be run as a system, validation testing can be started. Validation
testing is also known as dynamic testing as, in this case, the source code is actually run to deter-
mine that it is running per specifications. During validation, unit, integration, system, and finally
user acceptance testing are performed. Unit testing is done to ensure each unit piece of source code
is free from defects. Once unit testing is done, then this piece of code is integrated with the main
source code build. But before integrating to the main build, it is strongly advisable to do local
integration testing on the developer’s own computer. Only when the source code runs smoothly
and all integration tests pass, the source code should be integrated with the main build. When all

A
L Validation
Verification
/ Deployment | Validation |
Software construction | Source code review and validation |
h|
| / Software design | Design review |
Requirement specification |Requirement specification review|

Figure 13.3 Software verification and validation.

190 m Software Project Management: A Process-Driven Approach

source code is thus integrated, the main build is ready for system testing. All system tests are then
performed and defects are fixed. When the system testing is over, and in fact the software product
is shipped to customers, they do user acceptance testing.

13.4 Test Strategy and Planning

Software testing is a vast field in itself, and so the common practice is to consider it as a separate
project. In those cases, it is known as an independent verification and validation project. As such,
a separate project plan is made for that project and is linked to the parent software development
project.

There are many techniques available to execute software test projects. It depends on the kind of
test project. However, most test projects must have a test plan and a test strategy before the project
can be ready for execution.

Often due to time constraints, testing cycles are cut short by project managers [3]. This leads to
a half-tested product that is pushed out the door. In such cases, a large number of product defects
are left undetected. Ultimately, end users discover these defects. Fixing these defects at this stage is
costly. Moreover, they cannot be fixed one at a time. They are to be taken in batches and are incor-
porated in maintenance project plans. This leads to excessive costs in maintaining the software. It
is lot cheaper to trap those bugs during the testing cycle and fix them. It is appropriately said that
“testing costs money but not testing costs more!”

Test strategies should include things like test prioritization, automation strategy, risk analysis,
etc. Test planning should include a work breakdown structure, requirement review, resource allo-
cation, effort estimation, tools selection, setting up communication channels, etc.

13.4.1 Test Prioritization

Even before the test effort actually starts, it is of utmost importance that the test prioritization
should be made. First of all, all parts of the software product will not be used by end users with
the same intensity. Some parts of the product are used by end users extensively, while other parts
are seldom used. So the extensively used parts of the product should not have any defects at all and
thus they need to be tested thoroughly.

For making such a strategy, you must prioritize your testing. Put a high priority on tests which
are to be done for these critical parts of the software product and put a low priority on uncritical
parts. Then test the high priority areas first. Once testing is thoroughly done for these parts, then
you should start testing low priority areas.

13.4.2 Risk Management

The test manager should also do plan for all known risks that could impact the test project. If
proper risk mitigation planning is not done, and a mishap occurs, then the test project schedule
could be jeopardized, costs could escalate, and/or quality could go down.

Some of the risks that can have severe, adverse impact on a test project include an unre-
alistic schedule, resource unavailability, skill unavailability, frequent requirement changes, etc.
Requirement changes pose a serious threat to testing effort, because for each requirement change,
the whole test plan gets changed. The test team has to revise its schedule for additional work as
well as to assess impact of the change on the test cases they have to recreate. Some enthusiastic

Software Testing ® 191

test engineers estimate much less effort than it actually should be. In that case, the test manager
would be in trouble trying to explain why testing is taking more than the scheduled time schedule.
In such cases, even after loading testing engineers more than 150%, the testing cycle get delayed.
This is a very common situation on most of the test projects. This also happens because the mar-
keting team agrees on unrealistic schedules with the customer, in order to bag the project. Even
the test manager at that time feels that somehow he will manage it, but later on it proves impos-
sible to achieve. Other test engineers unnecessarily pad their estimate, and later on, when the cus-
tomer detects it, the test manager finds himself in a spot. When the software development market,
along with the software testing market, is hot (this is the case most of the time, as businesses need
to implement software systems more and more and so software professionals are in great demand),
software professionals have many job offers in hand. They leave the project at short notice and the
test manager has to find a replacement fast. Sometimes, a project may have some kind of testing
for which skilled test professionals are hard to find. In both situations, the test manager may not
be able to start those tasks in need of adequate resources.

For test professional resources, a good alternative resource planning is required. The test man-
ager should, in consultation with human resource manager, keep a line of test professionals who
may join in case one is needed on his project.

For scheduling problems, the test manager has to ensure in advance that schedules do not get
affected. He has to keep a buffer in the schedule for any eventuality.

To keep a tab on the project budget, the test manager has to ensure that the schedule is
not unrealistic and also has to load his test engineers appropriately. If some test engineers are
not loaded adequately, then project costs may go higher. For this reason, if any test profes-
sionals do not have enough assignments on one project, they should be assigned work from
other projects.

13.4.3 Effort Estimation

For making scheduling, resource planning, and budget for a test project, the test manager should
make a good effort estimate [4]. Effort estimate should include information such as project size,
productivity, and test strategy. While project size and test strategy information comes after con-
sultation with the customer, the productivity figure comes from experience and knowledge of the
team members of the project team.

The wideband Delphi technique uses brainstorming sessions to arrive at effort estimate figures
after discussing the project details with the project team. This is a good technique because the
people who will be assigned the project work will know their own productivity levels and can
figure out the size of their assigned project tasks from their own experience. Initial estimates from
each team member are then discussed with other team members in an open environment. Each
person has his own estimate. These estimates are then unanimously condensed into final estimate
figures for each project task.

In an experience-based technique, instead of group sessions, the test manager meets each team
member and asks him his estimate for the project work he has been assigned. This technique works
best when team members are well aware, particularly, of their prior experience of similar project
tasks.

Effort estimation is one area where no test manager can have a good grasp, at the initial stages
of the project. This is because not many details are clear about the project. As the project unfolds,
after executing some of its related tasks, things become clearer. At that stage, any test manager
can comfortably give an effort estimate for the remaining project tasks. But that is too late.

192 m Software Project Management: A Process-Driven Approach

Test point analysis

Product size Test strategy Productivity
(number of (quality level + (experience +
function points) priority areas) skills)

Figure 13.4 Test point analysis components.

Project stakeholders want to know, at the very beginning of the project, what would be the cost
estimates and when the project would be delivered. These two questions are very important for
project stakeholders and it is on top of their mind. Unfortunately, test managers are not equipped
to provide accurate an schedule and costs for the project at those initial stages, because of unclear
project scope, size, etc. Nevertheless, it is one of their critical tasks that they have to finish and
provide the requested information. The best solution is to find a relatively objective method of
effort estimation and provide the requested information.

13.4.3.1 Test Point Analysis

There are many methods available for effort estimation for test projects. Some of them include test
point analysis [5], the wideband Delphi technique [6], experience-based estimation [7], etc. In the
test point analysis technique, three inputs required are project size, test strategy, and productiv-
ity. Project size is determined by calculating the number of test points in the software application
which is being developed. Test points, in turn, are calculated from function points. The number of
function points is calculated from the number of functions and function complexity. If the number
of function points in the application has been calculated by the development team, then test points
are calculated from the available function point information. Otherwise rough function point
data can be used (Figure 13.4).

A test strategy is derived from two pieces of information from the customer, what will be the
quality level for the application, and which features of the application will be used most frequently.
Productivity is derived from knowledge and experience of the test team members. While produc-
tivity can be calculated objectively without taking reference from any statistical data, it makes
sense to use past productivity data from previously executed projects to make productivity figures
more realistic.

In case of iterative development, testing cycles will be short and iterative in nature. The test man-
ager should make the test effort calculations accordingly.

13.5 Test Automation

Most testing tasks are done manually, as they are still difficult to automate. Wherever automation is
possible, it can be evaluated. Care should also be taken not to do automation blindly [8]. This is because
the initial effort for automation is more than manual testing,

Testing tasks include requirements and design document review, test case scenario cre-
ation, test case creation, test case execution, test case management, and defect tracking. Out

Software Testing ®m 193

of these tasks, test case execution and test case management are the only tasks for which good
automation tools are available.

13.5.1 Test Case Execution Automation

If a test case has to be executed only a few times, then automating that test case will be more
expensive compared to manually running it, the reason being that automation effort for a
test case is more than manually executing the test case. Usually, the efforts break even when
a test case is executed around 13 times [9]. So, only if it has to be executed at least 13 times,
it makes sense to automate it. But first of all, why does a test case have to be executed more
than once at all? Because, in software product development, new versions of the software
keep getting developed to cater to the needs of the market. The newer versions may contain
old features as well as new features. The older version of the software was tested using exist-
ing or newly created test cases, at that time. With addition of new features, it is important
to retest the old features to make sure they still work. So old functional tests now become
regression test cases. The suite of regression test cases keeps increasing with newer releases
of the software [10]. At some point, the regression test suite becomes so large that manually
executing tests becomes a liability. Nobody wants to keep executing those large numbers
of test cases again and again. Keep in mind most software vendors have minor releases of
their product each quarter. So an ever increasing suite of regression test cases has to be run
each quarter. It takes a considerable period of time to execute them. As the software has to
be released fast, the project manager cannot wait just because regression test cases are still
being implemented. Thus, in this case, automating the whole suite of regression test cases
is going to be profitable.

The current trend for automation is to create a keyword framework [11] as follows: For each
major function create a keyword. Write the automation script for that function and then save
the function with same name as the keyword. After all the required functions are created, relate
these functions with the test cases that would have been already created before automation
scripts were written. Now when you run the scripts, it will cover all the test cases and it will be
same as executing the test cases, manually. This way of inducing automation is known as key-
word driven automation framework. The benefit of such a strategy is that it allows for reuse of
script and makes automation creation modular. This also makes maintenance of scripts easier.
If any test case gets changed, the whole script does not have to be changed. Only the script for
which the keyword was affected due to a change in test case has to be changed.

13.5.2 Test Case Management Automation

Test case management is also a good candidate for automation. There are some good tools that
facilitate it. They allow keeping many versions of test cases and a repository of automation scripts,
which allows teams located at many sites to work more effectively.

13.6 Test Project Monitoring and Control

Test projects involve a large variety of activities including test case design, test case management,
test case automation, test execution, defect tracking, verifying, and validating the application
under test, etc. [12] (Figure 13.5).

194 m Software Project Management: A Process-Driven Approach

Test case Test case Test script Test case
design >| writing " | creation > | execution
\/
Test case Defect
closure - tracking

Figure 13.5 Test life cycle.

13.6.1 Test Case Design

A proper test case design plan goes a long way in ensuring that test cases are designed properly. The
test manager has to ensure which kind of tests are to be designed, how many test cases have to be
written for particular modules, and which test areas are priority areas.

13.6.1.1 Test Types

An application may have to be tested for functionality, performance, usability, compactibility, and
many other kinds of things, to make sure it is really useful for end users. For each kind of testing,
a set of test cases has to be written and executed and, finally, the system should be verified and
validated. For applications that have many versions, regression tests also have to be performed.
Managing all these kinds of testing is a big task for the test manager. A good test manager will first
divide the testing tasks on the basis of test types. Then tasks can be further divided by modules.
After that, he can allocate testing tasks to test engineers appropriately.

There is one more way of segregating tests. Depending on the project phase, we need to per-
form system testing, integration testing, or user acceptance testing. Usually when the application
is built after the construction phase, it has to be tested and verified whether it is functioning per
requirements. Integration testing is performed when the application needs to be integrated with
any other external application to ensure that integration is proper. User acceptance testing is done
by end users. If any defect is found during these tests, they are fixed so that the application goes
into production with as few defects as possible.

13.6.2 Test Case Management

There could be existing test cases as well as new test cases that also need to be created. Test case
management involves managing different versions of test cases, keeping track of changes in them,
keeping a separate repository of test cases based on type of tests, as well as creating and managing
automation scripts.

13.6.3 Test Bed Preparation

Test bed preparation involves installing the application on a machine that is accessible to all test
teams [5]. Care is taken to ensure that this machine is free of any interference from unauthorized
access. Test data is populated in the application. Care should also be taken to ensure that the test
bed resembles the production environment as closely as possible, including all software and hard-
ware configurations.

Software Testing ® 195

For all types of testing, it is very important that the “application under test” (UAT) should
be tested under an environment that is as close to the environment under which the proposed
application will be deployed for production. That is why test bed preparation is very important.
The application should be installed on a dedicated server that has the same configuration as the
proposed production environment. This server should not be used for any other purpose except
for testing. It should be installed centrally, so that even distributed teams, contractors, or service
providers can easily access it using remote desktop sharing or any peer to peer networking protocol
over the Internet. If the application can be directly accessed over the Internet, then it is even better.

There should not be any testing done on applications that are deployed on the local test engi-
neer’s machine. To gain familiarity with the application and preliminary testing, it is acceptable to
have a local copy of the application, but never for testing when defects are to be logged and verified
by many people. It is because it is very important to reproduce the defect when the developer or any
concerned person asks for it. In case of disputes, if a defect cannot be reproduced, then it becomes
difficult for the test team to justify why a defect has been logged when others cannot reproduce it.
That is the reason for which the test bed should be prepared very carefully and kept as isolated from
any other environment as much as possible to preserve its integrity.

The test data preparation is also a very tricky affair. The test data should closely resemble what
the end users use in their daily transactions. For this, the test team can get some business data
already used by the end users. The test bed should be populated with a similar kind of data.

13.6.4 Test Case Execution

Test case execution involves executing prepared test cases manually or using automation tools to
execute them. For regression tests, automated test execution is a preferred method. After each test
case is executed, it may pass or fail. If it fails then defects have to be logged.

Exit criteria for test case execution cycle are generally defined in advance. Generally, when a
certain level of quality of the application is reached, then test execution stops.

13.6.5 Defect Tracking

Defect tracking is one of the most important activities in a test project [13]. During defect tracking
it is ensured that defects are logged and get fixed. All defects and their fixing are tracked carefully
(Figure 13.06).

Defect count per hour per day is a common way of measuring performance of a test team. If the
testing is done for an in-house software product, traditionally, it used to not be a performance evalu-
ation measurement. What really counted was the number of defects found in production when the
software product was deployed and used by end users. But it is too late a performance measurement.
What if many of the test team members left before the product was deployed? In fact this is a

Defect Assign Fix def Defect
logging > defect > Fixdefect ™ verification
Y
Defect
closure

Figure 13.6 Defect life cycle.

196 m Software Project Management: A Process-Driven Approach

reality, given the high attrition rate (as much as 20% at many corporations) of software profes-
sionals. Once they are gone, there is no point in measuring the performance. Thus, a better
measurement would allow for more immediate results. This is achieved by measuring the defect
count per hour per day. Then there is the case of outsourced test projects. If the contract is only
for testing up to deployment and not afterward, then measurement does not make sense after
the contract has ended.

A good defect tracking application should be deployed on a central server that is accessible to
all test and development teams. Each defect should be logged in such a way that it could be under-
stood by both development and testing teams. Generally, the defects should be reproducible, but
in many instances, this is difficult. In such instances, a good resolution should be made by the test
and development managers.

13.7 Test Reporting

During the execution of a test project, many initial and final reports are made. But status
reports also need to be made. Test reports include test planning reports, test strategy reports,
requirement document review comments, number of test cases created, automation scripts cre-
ated, test execution cycle reports, defect tracking reports, etc. Some other reports include trace-
ability matrix reports, defect density, test execution rate, test creation rate, test automation
script writing rate, etc.

13.8 Test Artifacts

Software testing involves making a test strategy, test project plan, resource requirements, test
case repository creation, running test cycles, defect tracking, bug verification and validation and,
finally, certifying the developed product. So the test artifacts include test plan document, test
strategy document, test cases, test cycle logs, defect list, verification and validation reports, and
product certification.

13.8.1 Management Artifacts

Customers are concerned not only with project cost and schedule, but they are also concerned
with critical defects, which the test team has either detected or not. So the management artifacts
(metrics) include project cost compliance, project schedule compliance, and quality (number of
critical defects caught versus number of critical defects which went into production).

Some other management artifacts include traceability matrix, defect density rate, resource
loading, etc.

13.9 Practical Considerations

The most important consideration for any test project is whether the testing was effective for the
time and money spent for the whole testing effort. Effectiveness is measured in terms of how many
critical defects have been caught by the test team and how many critical defects have escaped
into the product and caught by end users. All other considerations about the project could only

Software Testing ®m 197

be circumferential. If the test team has done a lot of work but has failed to catch enough critical
defects, then the whole effort is a failure.

That is why the test manager has to show that the test effort was worth spending the money
and time by showing number of critical defects caught.

13.10 Software Testing in Iterative Model

In an iterative model, each iteration is a short cycle. So the amount of testing in each iteration is
also small. Thus, unlike in waterfall model, software testing has a lesser role in the iterative devel-
opment life cycle.

Generally, software defects tend to increase with the size of software products. Since in itera-
tion mode the software product is small, there will be fewer defects in the product. Although in
reality, as the software product grows in size over many iterations, the number of defects per line of
software code is bound to increase. In iterative development, regression testing is also a big issue.
In each iteration, there will be a large number of regression test cases to run. As the product size
increases with iterations, the set of regression test cases also increases. It becomes a liability after a
while. Manually running all those regression tests takes a lot of time, which becomes a hindrance
for the release schedule. In such cases, the best option is to go for automation of these regression
test cases. Automated test cases take much less time (sometimes if the manual running of test cases
was taking 5 days, after automation it took only 5h) to run.

13.11 Case Study

We continue our case study with our Saa$ software vendor. Whenever they started any project
whether a customer specific or new product release, the software testing team was taken onboard
carly on the project. After the test manager received the software requirement specification docu-
ment (SRS), he would go through it. He would make a test strategy and decide which testing team
out of two teams (both outsourced and offshored) would be involved with the project. Then, he
would make a test strategy and do some rough estimates for effort required, managing risks, auto-
mation required, types of tests required, etc. When the software design documents (in the form
of mock-ups and flowcharts) are received, the test team starts writing test cases. It also determines
how many test cases are to be automated, and hence how many test scripts are to be written. Then,
how many existing test scripts are to be changed to make them work with the change in software
design is also determined. A final effort estimate for writing test cases and test scripts is based on
all these factors. An effort estimate is also made for running test cases and then completing the
defect life cycle. Effort estimation for defect life cycle is a bit difficult, as nobody knows just how
many defects will crop up in the defect cycle. But from historical figures using SPC methods, an
estimate is made that is close to reality.

Effort estimation differs depending on whether a new version or a customer version is to be
developed. For a new version release, the release date is fixed in advance. So time duration for the
project is fixed along with the volume of work (number of features to be developed). The effort in
such a case is calculated and accordingly the project team size is determined. However, in case of
our Saa$ software vendor, there is not much effort estimation difference between development for
a customer version and development for a new version of the software product. The reason is that
they sign a contract with customers on fixed price/fixed schedule basis. It is because they study

198 m Software Project Management: A Process-Driven Approach

customer requirements and the contract is signed only after this study. So the customer study is,
in fact, done for free and they charge only for the implementation. Thus, at the onset of the project
itself, there is always a fixed due date. Functional black box testing is the most prevalent kind of
testing done. Then come regression tests, which are all automated. Apart from functional testing,
integration testing, usability testing, security testing, etc., are also done. Some of their application
runs on hand held devices. So mobile testing is also done using emulators. They also have software
parts that integrate with hardware devices like printers (for printing RFID tags, for instance).
Testing of these components is also done.

For automation, a keyword driven framework is used. Thus, when the test cases are written,
care is taken so that the test cases can be used by the scripting for automation. Each time in a test
case, a set of steps is to be executed in sequence, it is captured as a keyword and a specific keyword
is assigned for it. Each test case containing these keywords must be identified to have the specific
keyword. For instance, a keyword named “Login” can have fixed steps of going to the URL of the
website, key in username, password, and then clicking on the OK button. Instead of recording
activities in each test case where it is required, the script will store all the steps for these activities
and assign them to the keyword “Login,” and thus these steps will be recorded only once. This
saves a lot of future maintenance effort. All automation tests follow this convention.

Since the Saa$S software vendor is also supposed to maintain the production instances of the
software product for its customers as well as its own versions, there is a maintenance and support
group which looks after these operations. The center, which keeps all the hardware including serv-
ers, back up servers, routers, etc., and from where all production instances are hosted, is known as
the network operations center. The testing team also plays an important role in support function
by running sanity tests daily on all production instances of the application. If any problems are
encountered, they are reported to the support team and they fix it immediately.

13.12 Chapter Summary

Software testing is one of the most important activities carried out in software projects. It is here
that the software product developed is verified and validated. If the product contains a large
number of defects that could not be fixed before the release due date, then the product cannot be
shipped by the shipping date. A software product containing too many defects is extremely costly
in terms of providing support. It is most important to detect and remove most critical defects
before shipping the product. Software testing helps in achieving these goals.

To make sure that the software product being made is of good quality, the work products from a
very early stage (project initiation) should be tested. In fact, there should be a comprehensive quality
assurance plan so that each and every work product is tested for defects that should be removed at the
point of origin itself. For this, a verification and validation approach should be employed.

Review Questions

13.1 What is independent verification and validation?

13.2 Why is software testing necessary?

13.3 What are testing types?

13.4 What activities are done in a software testing phase/project?
13.5 What are the benefits of test automation?

13.6 Describe the defect life cycle.

Software Testing ® 199

Recommended Readings

1

2.

3.

10.
11.
12.

13

. K. M. Gardner, A. R. Rush (1998) Cognitive Patterns: Problem-Solving Frameworks for Object Technology,

Cambridge University Press, New York.

E. Dustin, J. Rashka, J. Paul (1999) Automated Software Testing: Introduction, Management, and

Performance, Addison-Wesley, Boston, MA.

S. De Cesare, M. Lycett, R. Macredie (2005) Development of Component-Based Information Systems,

M. E. Sharpe, Armonk, NY.

. E. Dustin (2002) Effective Software lesting: 50 Specific Ways to Improve Your Iesting, Addison-Wesley,
Boston, MA.

. A. Ahmed (2009) Soffware Testing as a Service, CRC Press, Boca Raton, FL.

. D. Huizinga, A. Kolawa (2007) Automated Defecr Prevention: Best Practices in Software Management,
Wiley, Hoboken, NJ.

. W. E. Perry (2006) Effective Methods for Software Testing, 3rd edn., Wiley, New York.

. K. Li, M. Wu (2004) Effective Software Test Automation: Developing an Automated Software lesting Tool,
Sybex, Alameda, CA.

. C. Kaner, J. Bach, B. Pettichord (20006) Lessons Learned in Software Iésting, Wiley, New York.

P. Jorgensen (2002) Software Testing: A Crafisman’s Approach, CRC Press, New York.

B. A. Posey (2002) Just Enough Software 1est Automation, Prentice Hall PTR, Upper Saddle River, NJ.

W. E. Lewis, G. Veerapillai (2005) Software 1esting and Continuous Quality Improvement, CRC Press,

Boca Raton, FL.

. R.D. Craig, S. P. Jaskiel (2002) Systematic Software Testing, Artech House, Norwood, MA.

Chapter 14

Product Release
and Maintenance

In the previous chapter, we learned

B What is software testing?

B What is verification and validation?

B What techniques are used for testing software?

B How does software testing help in increasing quality of a software product?

In this chapter, we will learn

B What is software release?

B What is software maintenance?

B What activities are performed in software release?

B What activities are performed in software maintenance?

14.1 Introduction

The software product which you have been building for so long is now complete. You need to take
it to the customer’s site and get it implemented so that the end users can start using it. However, do
not run fast in anticipation of wrapping things as early as possible. After all this is your magnum
opus and you need to be careful. You need to make sure that all your tasks are completed,
for example, product support cost estimate, walk around for known bugs, which version of the

201

202 m Software Project Management: A Process-Driven Approach

software product to be released, if release should be an alpha, beta, or normal release, training
needs fulfilled, and customer support strategy (Figure 14.1).

14.2 Product Release Management

Project teams working for software product vendors struggle to keep pace with release of the
software product. There is pressure from the market to launch new versions by certain dates. New
features are to be added, porting the product to new platforms, old features are to be enhanced,
existing bugs are to be removed, and yet it has to meet the deadline. It is a constant struggle that
calls for good product release strategies. Depending on the situation, the project manager may
need to convince the management to cut short some of the product features to meet the deadline
as well as meet quality standards. A half-baked product will never have any takers; instead the
project manager may be blamed for its poor quality issues. Bargaining also has to be done for other
requirements of bug fixes, feature enhancements, etc. If quality concerns are paramount, then
moving some of the tasks of new features to a future release may be the best solution for meeting
quality standards. If the software vendor is not too sure about product quality, then he may opt
for an alpha or beta release of the product. In that case, the product will be released only among
a few selected groups and not in the market as a whole. The controlled product release is the best
option in these conditions [1] (Figure 14.2).

In fact, product release management is such a dynamic environment that if proper planning is
not done at a minute level and constant vigilance is not applied over project activities, then a huge
mess can be created and there will be no time to clear it. So the project manager must be vigilant
all the time (Figure 14.2).

Product release
management tasks

. Selection of | Decision for . Make
Estimate cost Create walk Provide
. software alpha, beta R customer
of providing . b | around for training to
support version to be Orresuar |y own defects support staff support
PP shipped release strategy
Figure 14.1 Task list for software product release.
Product release
types
Alpha Beta Internal Normal
release release release release

Figure 14.2 Software product release types.

Product Release and Maintenance ® 203

Product
implementation
tasks
Check
Check Check .
Create Create test Create user | infrastructure
software hardware
. . master data data accounts for
interfaces interfaces . .
installation

Figure 14.3 Task list for software product implementation.

Finally, for the product’s scheduled release, how the customer support will be provided should be
chalked out. Walk arounds for known issues, estimated number of critical bugs still remaining in the
product, training for the support staff, etc., should be done. The cost of support, depending on the
number of estimated users, walk arounds, and remaining bugs should be figured out. These measures
will ensure that the product is transitioned into market without facing major difficulties.

14.3 Product Implementation

The product that has been developed and thoroughly tested now needs to be implemented at a
customer site. You need to prepare all master data and test transaction data for testing the imple-
mented product. You need to get all required hardware and software that need to be there for
installing your software product. You need to make sure that you have developed and tested all
the hardware and software interfaces for integrating your product, with existing legacy systems
and infrastructure. You also need to make sure that your product will run smoothly on customer
premises without any interference with their existing applications [2] (Figure 14.3).

Often project teams run into problems during implementation, due to unforeseen circum-
stances or negligence on part of the production team or customer’s team. Therefore, prepare a
list of your own requirements and hand it over to your customer’s support team so that they are
prepared when you arrive for implementation.

14.4 User Training

Make sure that the user manual prepared by your team is up to date and in synch with the ver-
sion of your software product, which you will implement at the customer site. It is not possible to
provide training to all users. So prepare a list of roles that are needed to operate the product. Give
this list to the end users and ask them to select one user per role who will receive the training,.
Apart from the user manual, you also need to prepare a tutorial to include probable scenarios that
may arise during operation of the product. The tutorial will provide a step-by-step guide for using
the product under those scenarios. This will be a very important step in training, because if users
do not learn it during training, then they will contact you later after implementation and ask you
to provide information as to how to use the product in those circumstances [3]. This will lead to a
waste of your support team’s time. It is lot better to train them now, during user training, rather
than face user requests later.

204 m Software Project Management: A Process-Driven Approach

Reasons for
software
maintenance
Y
Software New user Changed user Technology Better
defects requirement requirement obsolescence technology

Figure 14.4 Reasons for software maintenance.

14.5 Maintenance Introduction

Software products do not age or wear out like physical products. Then why is there a need to have
maintenance of software products? Well, there are some factors which make it absolutely necessary.
Here are some of the reasons:

1. Technology obsolescence [4]: The software platform (operating system, medium of user, inter-
face) or the hardware platform on which the software product runs gets obsolete.

2. Software defects: There are major software defects in the product and it is difficult to oper-
ate. For this reason, a software patch may be needed to be applied so that these defects are
removed.

3. Change in user requirements: The business organization that was using the software product
has seen a change in business transactions or business workflows that are not supported by
the software product (Figure 14.4).

It is estimated that more than 70% of all costs associated with software product development,
implementation, and support and maintenance is consumed in the activities of supporting and
maintaining software products [5]. Why is it so? What can be done to change this situation, so
that support and maintenance costs get minimized as compared to development and implementa-
tion costs?

These kinds of queries have always puzzled the business community. This recognition has
resulted in an awareness of the importance of finding ways to build such a software product. This
situation has led to including maintainability characteristics during the entire product develop-
ment cycle. Yet, a lot of work remains to be done during the maintenance phase of any software
product. How to manage these activities so that costs can be minimized is an area of concern yet
to be resolved.

14.6 Maintenance Types

Software maintenance is of four types: corrective, adaptive, preventive, and perfective mainte-
nance [5]. If the software has some defects, then it will take a corrective maintenance to rectify it.
If there are some changes in the operating environment of the software product, then the product
can be made useful by doing adaptive maintenance. If there is an insecurity that although the
product is running fine in future we may have difliculty in using it, then preventive maintenance
is employed. If there are some deficiencies in the product that must be rectified, then perfective
maintenance will fit the bill (Figure 14.5).

Product Release and Maintenance ®m 205

Software
maintenance

types

Corrective Preventative Perfective Adaptive

Figure 14.5 Software maintenance types.

14.6.1 Corrective

Even after thorough reviews and testing, the software product contains many defects when it
goes into production. These defects are uncovered as users start using the application. They are
logged with the support staff and after a sizable number of errors are detected, the software vendor
instructs his maintenance team to create a patch to rectify them. The maintenance team then
makes a plan and fixes those defects. After application of the patch containing the fixes, the
software starts running without these defects [6].

14.6.2 Adaptive

The operating environment in which a software product runs in operation includes the hardware
and software platform as well as the interfaces for human and other machine interactions. If any of
these change over time, it becomes difficult to run the software product. In such cases, it becomes
necessary to do adaptive maintenance so that the software product becomes reusable. This kind of
maintenance may involve changing the interface or porting the application to another hardware/
software platform [7].

14.6.3 Perfective

This kind of maintenance is needed when there is a change in the business environment, and
thereby users need additional/modified functionality in the software product to do their tasks. A
business workflow may have changed, a business transaction may have changed, or an altogether
new business transaction was represented in the software product. For all these kinds of require-
ments, a perfective maintenance may be needed [8].

14.6.4 Preventive

Generally after a lapse of time, there are likely changes in business or operative environment, or
there may be changes in hardware/software environment. These changes are bound to occur and
they affect the way the software product operates. Many of these changes can be perceived in
advance. In such cases, preventive maintenance on the software product can make sure that the
product will be useful even after these environmental changes occur [9].

14.7 Maintenance Cost

A software product is generally very valuable to an organization if it is used for doing a large por-
tion of their daily business. If for some reason the software product has become unusable, then the
organization in fact will be making losses on their revenue. Moreover, large enterprise software

206 m Software Project Management: A Process-Driven Approach

Software
maintenance
financial reasons

Y

Opportunity Productivity

Revenue loss
loss loss

Figure 14.6 Financial reasons for software maintenance.

products are that much crucial! When the organization faces such a case, it is left with no alterna-
tive but to either get an entirely different software product that will replace the existing one or do
maintenance of an existing product to make it usable.

Following are some financial reasons for which a maintenance may be needed:

1. Loss in business revenue: It may happen that business transactions are faulty and thus the
business may lose revenue.

2. Opportunity loss: Sometimes there could be some business opportunity in the marketplace,
but due to some software problems it could not be availed.

3. Productivity loss: If the software product becomes difficult to operate due to many walk arounds
or lengthy processing then productivity will become lower for business personnel (Figure 14.6).

Maintenance of an existing software product has its own share of problems. The maintenance will
incur costs. A profit/loss analysis can be done, to see if it is more profitable to conduct a mainte-
nance program on the software or keep using it as it is. The losses due to problems with the soft-
ware can be compared to probable cost of maintenance and an ROI (return on investment) can be
done. If we get a desirable ROI then it is better to go for maintenance.

14.8 Maintenance Process

For any work, it is always better to have a process model instead of doing things on an ad hoc
basis. When it comes to software maintenance, some process models have been defined. Some of
the popular ones include the quick fix model, Boehm’s model, Osborne’s model, iterative enhance-
ment model, and reuse oriented model (Figure 14.7).

Software
maintenance
process models

Y

Quick fix Boehm’s Osborne’s Iterative Reuse
model model model enhancement oriented
model model

Figure 14.7 Software maintenance models.

Product Release and Maintenance m 207

Quick fix model: This is the simplest of maintenance models; whenever any defects with the soft-
ware products are found they are immediately fixed. There is no planning involved in the whole
process and it is mostly an ad hoc approach.

Boehm’s model: Boehm’s model is based on economic models and often involves calculating ROI,
for any planned maintenance. If ROI turns out to be good, then it is carried out or else it is

dropped.

Osborne’s model: Osborne realized that difficulties in carrying out maintenance work are due to
gaps in communication. He proposed four steps to prevent this situation. He stated that a mainte-
nance plan should include all change requests in the form of maintenance requirements. A quality
assurance plan should accompany the maintenance plan. Metrics should be developed to measure
and assess quality of work carried out during maintenance. Finally, reviews should be held after
maintenance work to assess quality of work done.

Iterative enhancement model: This model is based on the similar concept of iterative software devel-
opment. All software defects and change requests are logged and then a small set from this list is
taken for making fixes. This set is prepared based on the priority of changes required. High prior-
ity fixes are done before low priority fixes.

Reuse oriented model: This type of process is adopted for component-based software products.
For fixing any defects, existing components are analyzed and then the appropriate changes
are made.

14.9 Maintenance Life Cycle

Like the software development, software maintenance also has a life cycle. Requirements for soft-
ware maintenance come from the list of defects that have been logged. Either the list of defects can
be taken as a whole or a subset of defects from this list can be taken for a fixing plan. It makes a
lot of sense to go for an iterative approach. This approach is similar to the concept of iterative soft-
ware development. This way it can be ensured that highly visible, important, and priority defects
are fixed first and other defects which do not make much impact on operations of the product are
tackled later (Figure 14.8).

In the software maintenance life cycle, testing is a crucial phase. This phase also consumes a lot
of time and effort. But the value addition in all this effort and time spent helps in reducing defects,
which in the long run is a much cheaper alternative compared to no testing/cursory testing and
later spending money in providing support.

List of _ | Subset of _ Delfect f1x1;1g
defects - defects > panmng
execution
Y
Maintenance| Test B Patch
complete | application | application

Figure 14.8 Maintenance life cycle.

208 m Software Project Management: A Process-Driven Approach

Software maintenance

engineering
techniques
Y
R . . Forward Reverse
eengineerin,
5 8 engineering engineering

Figure 14.9 Software maintenance engineering techniques.

14.10 Maintenance Techniques

Maintenance of software products sometimes becomes a tough proposition. There is no proper
documentation that can be used for understanding how the product is designed and constructed.
Sometimes there is no documentation at all. Even if documentation is there, it is not up to date.
This out-of-date documentation is not of much use for any maintenance work (Figure 14.9).

Sometimes even if the documentation is up to date, the maintenance work is difficult due to
dirty design or construction work.

All these situations call for some specific techniques for maintenance work depending on the
situation. Some of the common maintenance techniques include reengineering, reverse engineer-
ing, and forward engineering.

14.10.1 Reengineering

Reengineering is also known as reuse engineering. This technique is a standard method for main-
tenance work for component-based software products. Details about all components in the soft-
ware products are well known. When any maintenance work is needed, from the list of defects,
cach defect is specifically analyzed to find out the root cause of the defect. Once this analysis is
successful, then fixing that defect becomes easy.

14.10.2 Reverse Engineering

Reverse engineering technique is most useful when nonexistent or sketchy documentation is avail-
able for the software product. Due to unavailability of documentation, there is no information as
to what the design is and how the product is constructed. In such a situation, it is almost impos-
sible to do any modification in the source code for any maintenance work.

In such cases, the reverse engineering technique is adopted. Using this technique, similar
components or product parts are constructed as compared to existing product components/parts.
This way the software product functionality is changed as the new constructed parts will have the
desired functionality.

14.10.3 Forward Engineering

Forward engineering is just the opposite of reverse engineering. In this sicuation, we have
ample documentation about the existing product. Due to new customer needs, the exist-
ing product needs to be extended so that the new needs can be fulfilled. All new extended

Product Release and Maintenance ® 209

development is based on the existing design and construction methods and will be made for
the same hardware/software platform.

14.11 Case Study

In our series of case studies, here is the piece related to software release and maintenance.

14.11.1 Software Release

Our SaaS$ vendor releases minor versions of its product on a quarterly basis and major versions on
a yearly basis. For each minor release, new features to be added are carefully planned. The product
manager makes sure that the release plan for a minor release will be on time by assigning priority
to each new feature. The high priority features will be definitely added and the low priority fea-
tures for that iteration will be added if any time remains in the iteration.

Our Saa$ vendor does not release alpha or beta releases of its product as they do not serve
mass markets. Their product is an enterprise computing product and is used by large retailers,
government offices, logistics providers, manufacturers, and distributors. They always release new
versions of their product to their existing customers. Since they do not do alpha or beta releases,
they make sure that their new version is tested thoroughly by their testing team, and no major
defects are passed in the production instances. Since there are no immediate customers who will
be available for doing user acceptance testing, the internal testing team does the user acceptance
testing as well.

14.11.2 Software Maintenance

The software vendor keeps all of the production instances of its software product at its data center
(also known as operations center). All previous versions of the software as well as the current work-
ing version of the software product run at this center as production instances of different versions
of their software product. The maintenance team makes sure that all versions of the product are
available for users. They run sanity test scripts daily on all instances. If any problems are found,
they is immediately resolved. These scripts are run at night. If any problems are found then, it is
made sure that they are rectified before office hours start and people start using the application.

In packaged software or custom built software that are not used in an Saa$S environment, this
kind of quick fix is not possible. So in those cases, a maintenance plan is made to fix all or most
defects found by users during a time span of 3 months or more. But with Saa$ environments, this
kind of maintenance is not needed at all. All defects are quickly and easily fixed, without hamper-
ing work of end users.

14.12 Chapter Summary

Software product release is a messy affair for most project teams. Even when a project team is
working with the most pessimistic schedule estimates, things get delayed and create problems
in completing tasks on time. It is human nature that they tend to relax at the beginning of an
assigned task, and thus when the schedule deadline approaches a large part of the task is not
complete. This puts pressure on the individual as well as the project team. This is precisely what

210 m Software Project Management: A Process-Driven Approach

happens around the product release dates most of the time. So apart from what the project team
will be exactly doing at the time of software release (product implementation and user training),
the team ends up doing some backlog work as well. For user training, appropriate users should be
identified out of the pool of probable users. These users who will get the training should be excel-
lent students (and teachers) who will later train other users.

When first implementing a product, the right version of the software should be identified,
as the project team usually has a number of release candidates. The required infrastructure, data
preparation, hardware configuration, etc., should be chalked out and people responsible for this
work should be informed in advance, before the implementation team actually visits the imple-
mentation site. If the software product is distributed via the web, then it should be made sure that
the link to download the software works fine. Mirroring sites should also be made available so that
users will be able to download the software even during peak load hours. Customers of the soft-
ware should be clearly identified and targeted. For instance, depending on whether the software
product is an alpha, beta, or regular release, the customers will be different.

Software development may involve developing a software product spanning from a few months
to a few years. But the product will be used anywhere from 5 years to more than 10 years. Many
software applications are in fact used even after their expected service life has expired. During this
whole time span, the software needs to be supported and maintained. Support and maintenance
involve costs. Due to this large time span, in fact the support and maintenance costs are more than
development costs. Sometimes it can be as high as 1500% of the development costs. To minimize
support and maintenance cost, it has to be ensured during development that the software can be
easily maintained.

Review Questions

14.1 Why is maintenance needed for software products?

14.2 What techniques are employed for software maintenance projects?

14.3 What is the life cycle of a maintenance project?

14.4 Define maintainability. How can a software product be made maintainable?
14.5 List common maintenance processes.

14.6 What activities are involved in software release?

Recommended Readings

1. D.]J. Anderson (2004) Agile Management for Software Engineering: Applying the Theory of Constraints for
Business Results, Prentice Hall PTR, Upper Saddle River, NJ.

2. K. Bittner, 1. Spence (2007) Managing Iterative Software Development Projects, Addison-Wesley, Boston, MA.

3. N. D. Birrell, M. A. Ould (1988) A Practical Handbook for Software Development, Cambridge University
Press, Cambridge, U.K.

. G. Ramesh (2005) Managing Global Software Projects, Tata McGraw-Hill, New Delhi, India.

. C. Jones (2007) Estimating Software Costs, Tata McGraw-Hill, New Delhi, India.

. P. Grubb, A. A. Takang (2003) Software Maintenance: Concepts and Practice, World Scientific Publishing
Company, River Edge, NJ.

. S. Fishman (2007) Legal Guide to Web and Software Development, Nolo, Berkeley, CA.

. C. B. Tayntor (2003) Six Sigma Software Development, Auerbach, New York.

. S. Beydeda, M. Book, V. Gruhn (2005) Model-Driven Software Development, Springer, New York.

~ G\ N

O

SOFTWARE I | | I

ENGINEERING
MANAGEMENT

Chapter 15

Process Standards
Introduction

In Part I, we will learn

B What is software process improvement?

B How can process selection be made for a software project?

B What are the benefits and drawbacks of the waterfall model of software development?
B What are the benefits and drawbacks of the agile model of software development?

In this chapter, we will learn

B What is software engineering management?
B How are statistical process control techniques useful for software projects?
B What are the benefits of the standard process model implemented across the organization?

15.1 Introduction

The quality of any product/service is one of the most important factors for its success in the market.
A shoddy quality product/service is simply not acceptable. Consumers will reject such a product.

Therefore, a good quality product/service is a must. But how do consumers know whether
a product/service is of good quality? By getting its quality certified by some certifying agency.
These certifying agencies use some standards to measure physical, aesthetic, chemical, or any other
aspect of the product/service to know if it meets those exacting standards. If it does, then they
certify it; if not, they do not. Consumers see this certificate and know that the product/service is
of good quality and, only then, they buy it.

213

214 m Software Project Management: A Process-Driven Approach

The manufacturer/service provider uses standard methods to manufacture/devise any product/
service of good quality. Without standard methods a good quality product/service is possible, but
it cannot be repeated. So once in a while the product/service will be of good quality, but most
of the time it will not be good. Nevertheless, if a good standard method is employed, then, most
of the time, quality of the product/service will be good. This is why a good quality method or
process is very important, as it enables to produce good quality product/service consistently and
repeatedly.

When it comes to software development projects, a good quality process becomes even more
important because software products or applications are very complex and difficult to produce.
Even when the product specifications devised during system design are good, there is no guar-
antee that the software produced will be of good quality because the coding may be of shoddy
quality.

15.2 Root Cause of Problems in Software Projects

Software development projects are plagued by many problems. The most important problems
include lack of visibility, variability in quality, cost and schedule escalation, etc. [1]. Lack of
visibility in software projects can be attributed to unclear software requirement specifications
and frequent change in requirement specifications. Due to these two factors, downstream activi-
ties in the software development cycle get affected and thus it becomes difficult to schedule these
activities with good accuracy. Variability in quality, cost, and schedule from one project to another
results from nonstandard methods employed to execute projects (Figure 15.1).

Apart from nonstandard methods, lack of clear specifications of work products also plays a major
role in variability from one project to another [2]. Suppose the requirement says the application
should have a search facility for available flights for a certain city on a given date and time. This
problem can be modeled in many different ways. Again, how this functionality is going to be imple-
mented may not be clear to the software architect initially. So in the initial estimate, he can give a
rough figure. Only when the design is actually to be made, the actual implementation becomes clear
and the software architect can provide an accurate estimate. Similarly, integration of different mod-
ules is a tricky affair. Estimation for effort required for integration is mostly a guess. Many issues arise
when integration is actually done. Effort estimation techniques like function point analysis (FPA),
wideband Delphi technique (WBD), COCOMO, etc., try to provide effort estimation but none of
them have good accuracy. At most, they help in making a rough estimate.

Many details at the beginning of the project are not clear. They become clear only after a few
iterations over specific project tasks. The requirements themselves start changing over the project
execution and they make the baseline project plan totally irrelevant. The project manager has to

Problems on
software projects

. Unclear/
Ch . - Not h
ansing incomplete Lack of visibility ot enoug
requirements - specifications
requirements

Figure 15.1 Problems on software projects.

Process Standards Introduction m 215

incorporate necessary changes in project tasks due to these changes in requirements and adjust his
project plan accordingly [3].

It is not obvious how to design from given requirements even if they are written in the best
way. Even if the design is good, it is not obvious how to construct the application. Due to lack
of clarity, the development team resorts to iterations. Iterations make the project plan vulnerable
and the initial project plan becomes invalid, and the project manager has to make adjustments in
project plan to accommodate these iterations.

15.3 Solutions for Problems in Software Projects

To make software projects more amenable to predictable results and better control, the most
potent tool is to use software engineering methods on the project as much as possible. Consistent
process modeling across varied projects will ensure consistency in quality, cost, and schedule.
A well-defined process model will ensure good visibility in the entire life cycle of product devel-
opment. Quality assurance methods built into the process model will ensure that both process
and work products can be measured at frequent intervals during the entire project execution
cycle. Once you can measure process and work products accurately, you will be able to manage
them better.

When you want to make a product feature, characteristics of the feature should be well known.
Suppose you are making a warchouse application. In reality, physical warehouses are of different
sizes, used for different purposes, are located at different distances from certain places, and have
many other specific characteristics. When a warehouse is represented in a software application, the
size of the software product should be well known from exact requirement specifications given by
the customer. This will freeze the volume of work to be done. This product part can be made in a
certain number of ways. Specific programming language, specific platform, and specific architec-
ture can be employed to make this product. Again this will give an accurate volume of work to be
performed. The people who will be doing this work have a certain level of experience and skills.
So the productivity factor can be determined from this fact. Productivity and size can provide
an accurate estimate for total effort required for the project. In such a scenario, everything in the
project is measurable and so can be managed with ease.

This kind of standardization on projects is possible in the future, and can totally eliminate
uncertainty from the project. This is where software engineering comes in. Software engineering
ensures that software projects and the tasks associated with them can be accurately scheduled.
Thus, a perfect project plan can be accurately made and executed. Currently, however, it is a bit
difficult as standardization of software development processes is still in its infancy. However, defi-
nitely it is evolving fast and in the not so distant future, it will become a reality.

As can be imagined, software projects have three components to be managed: quality,
schedule, and budget. The major components of costs in software development projects are the
human resources. This cost component can be controlled and reduced by efficient utilization
of time of the involved team members. Once project size and project team productivity are
measured and can be treated, almost fixed, once the team is formed, the schedule will be very
well known. Before the project team is formed, it can be tweaked by selecting a balanced team
for the project. Tasks that are critical and impact the project the most should be manned by
experienced and higher paid professionals. Tasks that are not so critical should be manned
by people with lower experience and lower salary. These same factors will also influence budget
for the project.

216 m Software Project Management: A Process-Driven Approach

Solutions for
software projects

Just-in-time Quality Adherence to Standard
methods assurance process processes across
methods standards organization

Figure 15.2 Solutions for problems on software projects.

The third dimension in software projects is quality. Software engineering helps here as well.
When standard processes are strictly followed and all possible causes of errors are eliminated or
reduced, software product quality will improve (Figure 15.2).

One more solution for software projects is to go the lean way. In other industries, lean and
just-in-time concepts helped to overcome many problems including quality, inventory, costs, etc.
On software projects, if we do not try to take the entire requirements and instead try to build the
software product incrementally by taking a few requirements at a time, then the same benefits of
just-in-time methods can be reaped here. More about these concepts are presented in the iterative
and agile model of software development elsewhere in this book.

15.4 Standard Process for Software Projects

Any standard process can be applied to produce similar sized products/services that have similar
characteristics. Let us suppose we have one software development project formed to make a soft-
ware product having 100 KLOC (kilo lines of code), and we have another software development
project formed to make a software product having 10,000 KLOC. Can the same standard process
be applied for both projects?

The answer is yes and no.
The real answer lies in the details.

The waterfall model establishes a process framework of having firm phases in the development
life cycle for software products. The phases include requirements, design, build, test, and release.
This top level of process framework can be applied to all software development projects. What
about other kinds of projects? In a typical maintenance project, the product life cycle could be
reported as bug analysis, bug fixing, testing, bug closure, release, etc.

Similarly, the process for product development is different from that of application devel-
opment. This is because software products are inherently different from software applications.
Software products are characterized by frequent releases of the product at short intervals. Most
software vendors have a minor release of their software every quarter and a major release on a
yearly basis. In such an environment, iterative and incremental development model is far more
suitable than a traditional waterfall model.

Due to these differences in processes, different process models were developed by standards
creation organizations like SEI (Software Engineering Institute) at Carnegie Mellon University,
ISO, IEEE, etc. On the other hand, for iterative and incremental development models like eXtreme
Programming, Scrum, and cleanroom engineering were developed [4].

Process Standards Introduction ®m 217

Process tailoring
needed when

Standard . -
ancarc process Unique product No similar Customer
model does . . o
ot fit to be made previous project requires it

Figure 15.3 Process tailoring for software projects.

Given that project resources are limited, the project manager has to deliver the project within those
limited resources. He has limited time, project team size, and budget. He has to optimize his resources
to produce the best results from his project. Using standard processes may seem to increase his work.
Although he may resist using those standard processes, it nevertheless ensures better quality.

15.4.1 Process Tailoring

Standard SDLC processes need not fit requirements of any specific project [5]. For instance, the
project needs to be delivered over many iterations. These iterations are complete right from soft-
ware requirements to software testing. This process is different from standard process of delivering
the entire project, without any iterations involved and in a sequential manner. So how can a pro-
cess model like CMMI be applied for this project? Clearly in this case, an iterative development
model would be more appropriate. Now suppose we need to develop a software product for a cus-
tomer where we strongly feel that instead of developing the software from scratch, we should take
an existing open source software product and customize it per customer requirements. This kind
of project definitely will not fit any of the standard development models. So how can we choose
a model for this project? (Figure 15.3). By tailoring the process! More information about process
tailoring can be found in Chapter 16.

15.5 Standard Process across Software Projects

For most organizations, each software project is a stand-alone affair. There is no connection
between one project and the other even if the two projects are executed one after another by the
same project team, and that the two projects are almost identical. This was the scenario up to
the 1990s. Many practitioners had observed that each project team was reinventing the wheel in
executing these stand-alone projects. So, even though reusable components were on one hand,
being developed based on these projects to prevent reinventing the wheel in building a software
system, the project management practice on the other hand was never benefiting from the lessons
learned from previously executed projects.

This scenario is still true for many in-house projects, and even on a few outsourced ones. But
some people started seeing the light at the end of the tunnel and realized that if lessons learned
from previously executed projects can be applied to new projects, a large improvement is possible
on these new projects in terms of gains in productivity.

For small projects consisting of a few people and lasting for a few months, informal project
management without a process model, is fine. Since complexity is low and not many people are

218 ® Software Project Management: A Process-Driven Approach

Same quality products

Manufacturing
process 1 Process |—

7, Raw
material 1

Manufacturing

rocess 2
P Process |[—

7 Raw
material 2

Figure 15.4 Manufacturing processes and products with same quality from same process.

Same quality products

involved in such projects, error due to communication gaps is not there. But on large modern day
projects, complexity and size is considerable. Many people will be involved and will work on the
project for several months, if not several years. Management of such projects will also have many
layers. At such engagements, error due to communication gaps is inevitable. If informal methods
for doing work are employed, chances of error are even higher.

Apart from errors there is one more dimension to project management. How does one ensure
that a software product being produced out of these projects has the same consistent quality
project after project? Due to differences in management styles, knowledge and experience of team
members, environment factors, etc., quality of one project is very different from the other [6].

Let us take an example from manufacturing and compare it with software projects.

In manufacturing, when raw material is processed in sequence (e.g., assembly line), we get
products with the same quality. Similarly, from another assembly line, different kinds of products
of the same quality are produced. Coming to software projects, a service provider can set up many
software development models and process software projects. In our example (see Figure 15.4), we
have two process models, CMMI and rational unified process (RUP). All projects that are pro-
cessed using CMMI will produce software products with the same quality. Similarly, all projects
which are processed using RUP will produce software products of similar quality to each other
(Figure 15.5). This is how consistent quality across all projects is achieved.

Some of the benefits of using standard processes across projects are

1. Better quality

2. Opportunity to use metrics data from previously executed projects

3. Same quality across projects

4. Opportunity to use shared resources

5. Less effort as learning from one project can be applied to other projects
6. Making software project management more science than art

Process Standards Introduction ® 219

Same quality products

A

Software process
et [|—

Projects %

Software process

Projects q

Figure 15.5 Software development processes and products of the same quality from the
same process for many projects.

Same quality products

15.6 Program Management

Program management deals with managing a group of projects at a higher level and using
shared resources and common management practices so that all the projects under the same
program management can be managed effectively with fewer resources, and lower costs.
At the same time, program management also helps in meeting some set objectives for an
organization.

How does program management fit into the overall organizational objectives?

One of the problems in a project-based organization is that resource utilization cannot be
achieved 100%. In environments such as manufacturing where the process is continuous, resources
(like machines, man power, etc.) are used 100% without any problems. But projects are not neces-
sarily continuous. A project is started, executed, and finally closed. When a project starts, it needs
resources until it gets finished. The moment it gets finished, all the resources it was using need
to be released. Now resources are of two types. One is consumable and another is fixed. Fixed
resources include machinery and human resources. So when a project completes, human resources
and machinery become idle. They must be utilized on another project or the organization that
owns them or they will lose their capital (in terms of salary for human resources, depreciation for
machinery), since these resources will not be doing any productive work which can bring revenues.
At the same time, on one project, not all resources are employed for the entire duration of the
project. They may be assigned to tasks, and when that task gets completed then they are no longer
needed on that project (see Figure 15.6).

These resources must be assigned to other projects so that they do not sit idle. One of the
topmost objectives of any program management is to strive to achieve resource utilization close
to 100%.

220 m Software Project Management: A Process-Driven Approach

Software project

Task 4 (resource 2,7,8)

Task 3 (resource 5,6,4)

Task 2 (resource 3,4)

Task 1 (resource 1,2)

Time >

Figure 15.6 Tasks and associated resources on a project.

15.7 Portfolio Management

Portfolio management concerns itself with the objective of maximizing returns from the collection
of projects, in a portfolio. They work in the same way as mutual fund portfolios. A mutual fund
invests money into many stocks and bonds in such a way that the return on the invested money
is the maximum possible, and at the same time as it is looking to minimize the risks. Some of the
stocks and bonds have high return potential with higher risks, whereas some other stocks and
bonds have a much lower return potential but have a very low risk as well. Based on research, the
portfolio manager decides how much of the money from the mutual fund should be invested in
high risk—high growth potential stocks and how much in low risk—low return potential stocks. This
balanced approach ensures a good return on money invested with much lower risks (Figure 15.7).

On similar terms, a project portfolio determines how to make an approach so that from a port-
folio of projects, maximum returns can be achieved with the lowest possible risks. A portfolio of
projects may contain some low risk—low return projects, some medium risk-medium return proj-
ects, and some high risk-high return projects. An organization should create a strategy by which
it can decide how many low risk-low return, medium risk-medium return, and high risk-high
return projects should be taken in the portfolio, so that the objective of maximum returns can be
achieved with minimum risks.

Program management

P

Portfolio projects 1 Portfolio projects 2 Portfolio projects 3
Projects Projects Projects Projects Projects Projects
1 2 3 1 2 3

Figure 15.7 Portfolio management.

Process Standards Introduction ®m 221

15.8 Statistical Process Control on Software Projects

Sometime back, in a paper titled “Is Statistical Process Control Applicable to Software
Development Processes?” [7] Bob Raczynski had argued that measuring software develop-
ment processes and using statistical process control (SPC) is not useful. Bob argued that since
software development processes involve intellectual but prone to error inputs, in the form of
coding done by human beings, SPC processes cannot be applied. SPC processes are better
suited for mass manufacturing, where the same process steps can be repeated again and again
with the same inputs. In such cases, if any variation occurs in quality of output, then the root
cause of the quality problem can be immediately traced using SPC.

I beg to differ with Bob. I have accepted that software development is a labor intensive activ-
ity, and any human activity is prone to errors. I have also accepted that in such environments,
it is difficult to implement SPC methods. Still, the fact remains that human activity can be
measured and compared in a controlled environment. That is why we have different hourly pay
rates for different people. Highly skilled people get higher hourly rates and low skilled people
get lower hourly rates. Definitely, higher paid people have better output than lower paid people.
So a person’s quality of output is measurable. Similarly when a task is assigned to a person with
his known ability, the quality of output can be anticipated in advance. This is especially true
in environments where process standards are implemented successfully and people work in a
predictable environment.

As mentioned in Section 15.3, through software engineering techniques it is possible to rea-
sonably quantify project tasks. Project size can be measured and estimated, and productivity can
also be found out. Although some elements of subjectivity may still persist in these estimates,
SPC helps in making better estimates for size and productivity as it further eliminates subjective
elements. Using project data from previously executed projects, estimates can be improved.

SPC data is also useful for quality control. How many defects were found in a similar
sized project and how much effort was required in finding and fixing those bugs, gives a good
idea for the coming project to estimate time and resources required for achieving a certain
quality level.

It is also a fact that software development activities are creative activities. When cre-
ativity is involved, it is difficult to apply a standard process framework. Measured output
is also difficult. On the other hand, providing a totally free-for-all environment results in
unpredictable output. The goal of any project is to provide a measurable output during and
after project execution. Using a standard process can ensure that a measurable and predict-
able output can be achieved and ensures starting, progress, and closure of any activity in a
controlled manner.

Once we start thinking in terms of measurable output on projects, we are getting closer
to comparing project activities to manufacturing activities. And when we are dealing with
thousands of projects going on at a development center of outsourcing companies, we start
treating projects on a mass scale. When that happens, uniqueness of projects starts fading
and a mass projects environment starts taking shape. See what is happening to other services.
Take for example, a call center. Using shared resources and standard processes and methods,
it is possible to provide good call center services to customers at very low prices, and yet with
much better quality. When software development projects are executed at such a mass scale,
we see the possibility of introducing “mass servicing” concepts for these projects. It provides
benefits like shared resources, high level of productivity, provisions to access highly skilled
resources, expert services, etc., at one place.

222 ®m Software Project Management: A Process-Driven Approach

So, we are observing that software projects are no longer viewed as projects in the traditional
sense. They are evolving more like mass services. This trend is helping customers to reduce software
development projects costs, substantially. The more that software development projects become simi-
lar to mass services, the more they will become cheaper. It is exactly what happened when manufac-
turing turned into mass manufacturing, a long time ago.

15.9 Cost of Nonstandard Processes

Many project managers and team members resist in complying with standard processes [8].
They feel it makes them work more and they try to adopt shortcuts. By doing so, are they doing
any good? Suppose a customer requirement change has arrived. Without consulting all people
down the line, the architect makes changes in the design. The project manager makes no further
effort to properly document the changes made by the architect. So now, the architect is work-
ing on a different version of the requirement and the coding team is working on a different one
(because they have a copy of the design that was made for the earlier version). Somehow the cod-
ing team gets to know that they are working on a wrong requirement version. By the time they
realize this, they have already lost a good number of man hours working on the wrong version.

Consider another example. A requirement change comes and the project manager thinks
changing the design may increase the work to be done. He decides a quick fix in coding can do the
job. So he gets this quick fix done by the coding staff. Of course he and his team purposefully for-
get to document this change (documenting may have added a few extra hours). Now, when a new
requirement change request comes, nobody knows exactly what changes were done in the previous
build of the software. After incorporation of this changed requirement, the team inadvertently
will be introducing defects in the software.

Again suppose the project manager decides to take a shortcut by not going through design,
and incorporates new requirement changes directly into the code. The changed features are
not reflected in the design documents but are there in codes. Similarly, due to a time crunch,
the project manager cuts short testing of the application and ships it without proper testing.

As long as there are not many changes in the project plan, noncompliance with standard pro-
cesses is manageable. But the moment there are changes everywhere, the downstream processes
get affected. Without proper documentation and absence of process for change control, chances
of error increase. The larger the project, the greater is the risk of defects entering into the prod-
uct. They are one of the biggest risks any project can face. Given the nature of software projects,
requirements get changed often, especially with iterations. So it is very important that proper
documentation and process are followed.

15.10 Organization Training

The software industry is always in flux; it is always changing. Furthermore, the rate of change is
increasing. What used to be a cutting-edge technology just yesterday is today obsolete. What is
considered today as advanced technology will become stale tomorrow. Fifty years ago, if somebody
learned a trade, it would help him to earn livelihood for life. Today, if a software professional
learns a programming tool, he will have to relearn a new programming tool tomorrow, as the old
one becomes obsolete. This constantly changing technology has necessitated retraining for new
tools and technologies so that all professionals’ skills are current.

Process Standards Introduction m 223

In this scenario, any software development/maintenance organization must keep retraining
its staff so that they have current skills and thus can work on software projects without any
problems [9].

15.11 Software Project Abandonment

Sometimes due to various reasons, a software development project may not be completed and
may have to be abandoned. Reasons for such decisions could be many, but the most important
reasons include cost overrun, schedule overrun, lack of technological expertise, change in need of
the organization, organization closure, etc. Some external factors could be a change in political
circumstances, war, civil unrest, natural calamity, etc.

In some other instances, the project could be completed, but the project may have failed on
many counts. The project could have a schedule overrun, cost overrun, less than expected number
of features, poor quality, etc. In fact it is estimated that more than 70% of all software projects fail
on some account or an other [10].

Nevertheless, the success rate of software projects is improving. The biggest factor contribut-
ing to this fact is the increase in maturity level of software development/maintenance processes.
Increase in maturity level of software engineering and software project management is definitely
a factor which will help in keeping up the increasing success rate of software projects. Mature
software development processes help in reducing risks of schedule, cost overrun, and poor prod-
uct quality.

15.12 Defect Prevention

During software testing many software defects can be detected and subsequently rectified [11].
What is the cost of defect removal in software testing? Is there any alternative way to produce
quality software products with an acceptable number of defects at a lesser cost?

Research has shown that defect prevention during design and coding is cheaper than defect
detection and removal during software testing. Why is it so? How can any software development
organization take advantage of the information stated previously?

Let us study it. Suppose, during design some defects were introduced in the software design
due to faulty blueprint. This faulty design was used and coding was done. Since the design was
faulty, naturally the coding will also have faults. This scenario will be similar to the process
depicted in Figure 15.8 where an already defective part is being further processed to produce a
defective part.

For instance, suppose we have a module for tax calculation that has two components. One
component calculates federal government tax and another component calculates tax for the state.
Depending on the state, the tax rate is different from that of another state. In the design, this fact
was not taken into account, even by mistake. Now coding was done with this faulty design. So
coding also has the defect that a flat state tax is being calculated for all states. Due to faulty cod-
ing, the rounding of decimal places was wrong. The end result is that the application has some
defects. How many defects do we have now?

This information can now be found either during testing or when the application is deployed
and used by end users. But first of all, let us see how many defects were introduced in the applica-
tion. Suppose the state tax calculation is used at 100 places in the application. So we have 100

224 m Software Project Management: A Process-Driven Approach

Defective
part from
process 1 is
being fed

— | Process 2 |—>| Process 3 |—>| Process 4 |—>| Process 5

BRYEYBARYEN

Figure 15.8 Input defective part is being processed to produce a defective part.

\

defects from the faulty design. Now suppose the decimal rounding is used at 200 places in the
application including doing the sum of taxes (federal and state). In total we have 300 defects in
the application.

Now let us analyze the cost impact in different scenarios (Table 15.1).

There are two scenarios when we consider the defect at the design stage. In first case, the
design defect is caught during design review stage and is fixed there so that this defect does not
enter the coding stage. In another scenario, the design defect is not caught and the entire coding
is done based on a faulty design. The defect was caught in testing and so now not only design is
to be changed but the coding is also to be changed. So the coding hours are also lost. In design
review the defect could have been caught within 2h. But instead the design defect entered into
coding and so depending on the language and code reuse, a certain amount of coding hours are
lost. If the tax calculation component was developed using any object oriented language and the
code was reused throughout the application then may be 20 h of coding hours are lost. But if code
reuse was not implemented or any procedural language used, then chances are that all of 200h
of coding are lost (100 defects to be fixed at 2h per defect fixing). Coming to the coding defect,
since the defect is at 200 places and it takes 3 h to fix each defect, it will require 600h to fix all
these coding defects. Compared to these costly scenarios, if the defects were caught at the point

Table 15.1 Defect Cost Analysis

Time

No. of Defect Required for Hourly Cost of
Stage Defects | Multiplication Fixing (h) Billing Rate | Fixing ($)
Design defects 1 2 100 200
Coding defects due 100 100 200 60 12,000
to design defects
Coding defects 1 3 60 180
Coding defects into 200 200 600 60 36,000
testing

Process Standards Introduction ®m 225

of origin of the defects, the fixing could have been achieved at a fraction of these costs. Even if it
would have taken some extra hours in conducting inspections, then those few hours could have
been spent well, in view of saving time and costs at downstream activities.

The moral of the story is that defect prevention is the best policy in software development
projects. The earlier the defect is caught in the development life cycle, the better.

That is why defect prevention is an integral part of software development projects. Defect
prevention is implemented using software engineering techniques.

15.13 Software Project without Process

In software industry parlance, there is a term called “jumping to the code”. On many software
development projects, the project teams start coding the moment they get the requirements. The
management at these places also thinks that making a project and process plan is a waste of time.
Steve McConnell, of Construx Software and the author of such books as Code Complete and
Rapid Development: Taming Wild Software Schedules argues that on many projects, jumping to
the code creates more rework and quality issues than it lets the project team do some productive
work. On many such projects, the actual schedule overruns by as much as 1500% with associated
cost overruns. These kinds of projects are characterized by more firefighting than anything else.

Here is a case study which shows how the lack of a well-defined process standard can severely
affect software projects.

Suppose a company realized that it was losing market share due to its obsolete technology infra-
structure. The root cause was that the order fulfillment cycle was taking more than 2 days compared
to the average of 1 day for the competitors. It was due to the fact that arranging trucks and loading
them from their warehouses was taking more than 10h on average compared to an average of 3h
for the competitors. This was happening because the warehouse application was not integrated with
their transportation management system. A team was formed to study and present recommendations
for improving the situation. After their study, the team suggested that the two applications should be
integrated seamlessly so that information from the transportation system would be available to the
warehousing system whereby the warehouses would have advance information about available trucks
and what kind of content can be loaded on these trucks. Using this information, they can plan for
truck loading and intimate the same to logistics service providers who supply trucks.

A software development team was formed with the task of integrating these applications. They
analyzed the interfaces of the two applications and started work on integration. After 2 months of
the start of their work, the MIS manager asked the project manager to submit a status report on the
project. The project manager submitted a report saying that the project would be completed 1 month
late because of difficulty faced by the team in understanding the interfaces for integration. The MIS
manager, in turn, called for a status review meeting and asked the project team to discuss the issues
on the project. In the meeting, the MIS manager realized that the project will not be completed even
within 1 month of delay as the team still lacked understanding of the tasks involved. Next day after
the meeting, the MIS manager met the CIO of the company and informed him about the situation.
The CIO then decided to scrap the project and decided to hire a specialist service provider that was a
expert on integration work. Later, the service provider team was able to do integration within 3 weeks.

During his study on why the project failed in the first place, the CIO found that his MIS
team failed because they were not following a standard process. Everything done by the team was
on ad hoc basis. The team lacked skills on specialized tasks like integration, and so a plan should
have been made first to train the team for the associated skills. Only then they should have started

226 ®m Software Project Management: A Process-Driven Approach

working on their tasks. He also found out that the project manager had not included a quality
review process in his project plan. Without sticking to quality control at each stage of the project,
it is impossible to achieve worthwhile quality at the end of the project.

The CIO published his findings on the company intranet and later set up a process control
group at the MIS level whose task was to ensure each project would incorporate quality control as
well as adherence to standard processes.

So we see that if any project is executed without a standard process then there are risks of proj-
ect failures in terms of quality, costs, and schedules.

15.14 Process Improvement

One of the goals of CMMI standards is to select and deploy incremental, innovative improve-
ments that measurably improve the organization’s processes and technologies [12]. How an orga-
nization is currently using processes to execute projects and how performance on these projects
can be improved further is a continuous process that needs to be measured, analyzed, and correc-
tive actions taken. This will help in improving productivity and quality further, which in turn will
result in increased customer satisfaction and reduced costs of operations.

Some techniques that can provide substantial gains include peer reviews, code inspections,
automation, and standard templates (Figure 15.9).

Process improvement is the most important aspect of implementing software process models.
The CMM model has a maturity level of 5 when companies reach optimization level. At this level,
companies have a separate software engineering process group (SEPG) that not only oversees
implementation and observation of follow-up of process standards on projects, but also keeps
looking for opportunities to improve processes further. Whenever they find that some process can
be improved, it makes a plan of implementing an improved process on projects. It develops the
new process model and then chooses an appropriate project to pilot it. The project is then executed
with this new process model. Results of that project are analyzed and assessed to determine if the
project benefited from the new improved process model. If it does then this new process model is
applied to all projects that get executed with the same base model.

Problem areas

Review reports Audit results
encountered
Process
improveme