
Information Technology / IT Management

This book presents all aspects of modern project management practices, from project
initiation to requirements gatherings to estimation techniques and software testing all
the way to customer management and supplier management … includes a wealth of
quality templates that practitioners can use to build their own tools. … equally useful to
students and professionals alike. … the perfect blend of theory and practice providing
ample advice to the reader at every stage on such topics as how to select a particular
software methodology over others or how to estimate project costs/efforts etc. … As
a seasoned software product development expert with over 20 years of experience, I
would say this book will find a slot on my desk.

—Maqbool Patel, PhD, SVP/CTO/Partner, Acuitec

To build reliable, industry-applicable software products, large-scale software project groups
must continuously improve software engineering processes to increase product quality,
facilitate cost reductions, and adhere to tight schedules. Emphasizing the critical components
of successful large-scale software projects, Software Project Management: A Process-
Driven Approach discusses human resources, software engineering, and technology to a
level that exceeds most university-level courses on the subject.

•	 Includes testing and quality assurance metrics

•	Supplies in-depth coverage of process models and process improvement techniques

•	Covers related standards from the Software Engineering Institute, IEEE, and ISO

•	Features challenging practice questions with solutions

The book is organized into five parts. Part I defines project management with information on
project and process specifics and choices, the skills and experience needed, the tools available,
and the human resources organization and management that brings it all together. Part II
explores software life-cycle management. Part III tackles software engineering processes and
the range of processing models devised by several domestic and international organizations.

Part IV reveals the human side of project management with chapters on managing the team,
the suppliers, and the customers themselves. Part V wraps up coverage with a look at the
technology, techniques, templates, and checklists that can help your project teams meet
and exceed their goals. A running case study provides authoritative insight and insider
information on the tools and techniques required to ensure product quality, reduce costs,
and meet project deadlines.

ISBN: 978-1-4398-4655-1

9 781439 846551

90000

S
oftw

are P
roject M

anagem
ent

A
hm

ed

www.auerbach-publications.com

www.crcpress.com

K12087

K12087cvr mech.indd 1 11/8/11 12:02 PM

Software
Project

Management
A Process-Driven Approach

Design and Safety Assessment
of Critical Systems
Marco Bozzano and

Adolfo Villafiorita

978-1-4398-0331-8

Implementing and Developing
Cloud Computing Applications
David E. Y. Sarna

978-1-4398-3082-6

Secure Java: For Web Application
Development
Abhay Bhargav and B. V. Kumar

978-1-4398-2351-4

Scrum Project Management
Kim H. Pries and Jon M. Quigley

978-1-4398-2515-0

Engineering Mega-Systems:
The Challenge of Systems
Engineering in the
Information Age
Renee Stevens

978-1-4200-7666-0

Certified Function Point
Specialist Examination Guide
David Garmus, Janet Russac, and

Royce Edwards

978-1-4200-7637-0

Enterprise Systems Engineering:
Advances in the Theory and
Practice
George Rebovich, Jr.

and Brian E. White

978-1-4200-7329-4

Process-Centric Architecture for
Enterprise Software Systems
Parameswaran Seshan

978-1-4398-1628-8

Secure and Resilient Software
Development
Mark S. Merkow and

Lakshmikanth Raghavan

978-1-4398-2696-6

Real Life Applications of
Soft Computing
Anupam Shukla, Ritu Tiwari,
and Rahul Kala
978-1-4398-2287-6

Product Release Planning:
Methods, Tools and Applications
Guenther Ruhe
978-0-84932620-2

Process Improvement and
CMMI® for Systems and Software
Ron S. Kenett and Emanuel Baker
978-14200-6050-8

Applied Software Product
Line Engineering
Kyo C. Kang, Vijayan Sugumaran,
and Sooyong Park
978-1-42006841-2

CAD and GIS Integration
Hassan A. Karimi and Burcu Akinci
978-1-4200-6805-4

Applied Software Product-Line
Engineering
Kyo C. Kang, Vijayan Sugumaran,
and Sooyong Park, eds.
978-1-4200-6841-2

Enterprise-Scale Agile Software
Development
James Schiel
978-1-4398-0321-9

Handbook of Enterprise Integration
Mostafa Hashem Sherif, ed.
978-1-4200-7821-3

Architecture and Principles of
Systems Engineering
Charles Dickerson, Dimitri N. Mavris,
Paul R. Garvey, and Brian E. White
978-1-4200-7253-2

Theory of Science and Technology
Transfer and Applications
Sifeng Liu, Zhigeng Fang,
Hongxing Shi, and Benhai Guo
978-1-4200-8741-3

The SIM Guide to Enterprise
Architecture
Leon Kappelman

978-1-4398-1113-9

Getting Design Right:
A Systems Approach
Peter L. Jackson

978-1-4398-1115-3

Software Testing as a Service
Ashfaque Ahmed

978-1-4200-9956-0

Grey Game Theory and Its
Applications in Economic
Decision-Making
Zhigeng Fang, Sifeng Liu,

Hongxing Shi, and Yi LinYi Lin

978-1-4200-8739-0

Quality Assurance of
Agent-Based and
Self-Managed Systems
Reiner Dumke, Steffen Mencke,

and Cornelius Wille

978-1-4398-1266-2

Modeling Software Behavior:
A Craftsman’s Approach
Paul C. Jorgensen

978-1-4200-8075-9

Design and Implementation of
Data Mining Tools
Bhavani Thuraisingham, Latifur Khan,

Mamoun Awad, and Lei Wang

978-1-4200-4590-1

Model-Oriented Systems
Engineering Science:
A Unifying Framework for
Traditional and Complex Systems
Duane W. Hybertson

978-1-4200-7251-8

Requirements Engineering for
Software and Systems
Phillip A. Laplante

978-1-4200-6467-4

Books on software and systems
development and engineering

from auerBach puBlications and crc press

Software
Project

Management

Ashfaque Ahmed

A Process-Driven Approach

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20111103

International Standard Book Number-13: 978-1-4398-4656-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface... xix
Author...xxiii

PART I PROJECT MANAGEMENT FUNDAMENTALS

 1 Introduction.to.Software.Project.Management...3
1.1	 Introduction	.. 4
1.2	 What	Is	Project	Management?	... 4
1.3	 What	Is	Software	Project	Management?	.. 4
1.4	 Importance	of	Software	Projects	.. 7
1.5	 Problems	in	Project	Management	.. 7
1.6	 Processes	in	Software	Projects.. 9
1.7	 Project	Processes,	People,	and	Technology	..10
1.8	 Successful	Software	Project	Manager	...11
1.9	 Project	Management	Processes	.. 12

1.9.1	 Software	Project	Initiation	.. 12
1.9.1.1	 Software	Application	Development	Project	Initiation 12
1.9.1.2	 Software	Product	Characteristics	...13
1.9.1.3	 Software	Product	Development	Project	Initiation14
1.9.1.4	 Software	Product	Implementation	Project	Initiation15

1.9.2	 Software	Project	Planning	...15
1.9.2.1	 Components	of	Project	Planning	...16

1.9.3	 Software	Project	Monitoring	and	Control	...17
1.9.4	 Software	Project	Closure	...17

1.10	 Configuration	and	Version	Control	Management	..17
1.11	 Management	Metrics	..18
1.12	 Case	Study	... 20

1.12.1	 Project	Introduction	... 20
1.12.2	 Software	Functionality	..21
1.12.3	 New	Functionality	in	Release	6.0	... 22

1.13	 Chapter	Summary	... 22
Exercises	... 23
Review	Questions	... 23
Recommended	Readings	.. 23

vi  ◾  Contents

 2 Project.Initiation.Management...25
2.1	 Introduction	...25
2.2	 Define	Project	Charter	.. 26
2.3	 Define	Project	Scope	... 27
2.4	 Define	Project	Objectives	.. 28
2.5	 Practical	Considerations	.. 28
2.6	 Estimate	Initial	Project	Size	... 29
2.7	 Estimate	Initial	Project	Effort	and	Costs	... 30
2.8	 Estimate	Initial	Project	Schedule	..31
2.9	 Create	Initial	Project	Plan...31
2.10	 Project	Initiation	in	Iterative	Model	...31
2.11	 Stakeholder	Influence	...33
2.12	 Quality	Planning	... 34
2.13	 Feasibility	Study	.. 34
2.14	 Project	Division	... 34
2.15	 Artifacts	of	Project	Initiation	..35
2.16	 Case	Study	..35

2.16.1	 Project	Charter	..35
2.16.2	 Project	Scope	.. 36
2.16.3	 Project	Objectives	... 36

2.17	 Chapter	Summary	... 37
Exercises	... 37
Review	Questions	... 37
Recommended	Readings	.. 38

 3 Software.Project.Effort.and.Cost.Estimation..39
3.1	 Introduction	.. 39
3.2	 Effort	Estimation	Techniques	.. 40

3.2.1	 Choosing	a	Suitable	Effort	Estimate	Technique	...41
3.2.2	 Function	Point	Analysis	...41

3.2.2.1	 Function	Point	Analysis	Usage	... 44
3.2.3	 Wide	Band	Delphi	.. 44
3.2.4	 COCOMO	...45

3.2.4.1	 Basic	COCOMO	..45
3.2.4.2	 Intermediate	COCOMO.. 46
3.2.4.3	 Detailed	COCOMO	.. 46
3.2.4.4	 COCOMO	Model	Conclusion	.. 48

3.2.5	 Effort	Estimation	for	Waterfall	Model–Based	Planning 48
3.2.6	 Effort	Estimation	for	Iterations	Model–Based	Planning 49

3.3	 Cost	Estimation..51
3.3.1	 Cost	Factor	Analysis	..52
3.3.2	 Activity-Based	Cost	Estimation	...53
3.3.3	 Cost	Estimation	for	Iterations-Based	Planning	... 54

3.4	 Schedule	Estimation	.. 54
3.4.1	 Schedule	Estimation	for	Waterfall	Model–Based	Planning 54

3.5	 Resource	Estimation	...55

Contents  ◾  vii

3.6	 Artifacts	of	Effort	and	Cost	Estimates	... 56
3.7	 Practical	Considerations	in	Effort	and	Cost	Estimates... 56
3.8	 Effort	and	Cost	in	Product	Development	...57
3.9	 Case	Study	..57

3.9.1	 History	..57
3.9.2	 Current	Project	... 58
3.9.3	 Effort	and	Cost	... 58

Exercises	... 58
Review	Questions	..59
Recommended	Readings	...59

 4 Risk.Management..61
4.1	 Introduction	...61
4.2	 Causes	of	Risks	.. 63

4.2.1	 Quality	Constraints	.. 63
4.2.2	 Resource	Unavailability	.. 63
4.2.3	 Disinterest	.. 63
4.2.4	 Attrition	... 64
4.2.5	 Scope	Creep	.. 64
4.2.6	 Cost	Constraints... 64
4.2.7	 Bad	Negotiation	... 64
4.2.8	 Unrealistic	Estimate	... 64
4.2.9	 Human	Error	.. 64
4.2.10	 Poor	Management	...65

4.3	 Risk	Categories	...65
4.3.1	 Budget	Risks	...65
4.3.2	 Time	(Schedule)	Risks	...65
4.3.3	 Resource	Risks.. 66
4.3.4	 Quality	Risks	..67
4.3.5	 Technology	Risks	..67

4.4	 Risk	Analysis	... 68
4.5	 Balancing	Act	.. 69
4.6	 Project	Risk	Management	in	Agile	Models	.. 70
4.7	 Artifacts	of	Project	Risk	Management	... 70
4.8	 Practical	Considerations	for	Risk	Management	... 70
4.9	 Case	Study	... 71

4.9.1	 Risks	on	This	Project	.. 71
4.10	 Chapter	Summary	... 73
Exercises	... 73
Review	Questions	... 73
Recommended	Readings	...74

 5 Configuration.Management..75
5.1	 Introduction	.. 75
5.2	 Configuration	Management	...76
5.3	 Configuration	Management	Techniques	... 77

viii  ◾  Contents

5.4	 Artifacts	of	Configuration	Management	.. 79
5.5	 Configuration	Management	Case	Study	.. 80

5.5.1	 Configuration	Management	for	an	Incremental	Iteration	
Development	Environment	... 80

5.6	 Chapter	Summary	..81
Exercises	..81
Review	Questions	... 82
Recommended	Readings	.. 82

 6 Project.Planning..83
6.1	 Introduction	.. 83
6.2	 Project	Planning	Fundamentals	... 84

6.2.1	 Top-Down	Plan	.. 84
6.2.2	 Bottom-Up	Plan	... 86
6.2.3	 Work	Breakdown	Structure	.. 87
6.2.4	 Resource	Allocation	.. 87
6.2.5	 Supplier	Management	Plan	... 88
6.2.6	 Configuration	Management	Plan	... 89
6.2.7	 Communication	Management	.. 89
6.2.8	 Defect	Prevention	Strategy	(Quality	Assurance) 90
6.2.9	 Project	Duration	... 90
6.2.10	 Project	Cost	.. 90
6.2.11	 Tool	Management	...91
6.2.12	 Scope	Management	...91
6.2.13	 Effort	Estimate	..91
6.2.14	 Risk	Management	...91

6.3	 Project	Planning	Techniques	..91
6.3.1	 Critical	Path	Method	...91
6.3.2	 Goldratt’s	Critical	Chain	Method	...91

6.4	 Project	Planning	Artifacts	.. 93
6.5	 Project	Planning	in	Agile	Models	.. 93

6.5.1	 Iteration	Planning	... 96
6.6	 Planning	at	Project	Management	Office	.. 96
6.7	 Case	Study	... 97

6.7.1	 Feature	Selection	.. 97
6.7.2	 Heart	of	Planning	... 98

6.8	 Chapter	Summary	... 99
Exercises	... 100
Review	Questions	... 100
Recommended	Readings	.. 100

 7 Project.Monitoring.and.Control...101
7.1	 Introduction	...101
7.2	 Project	Monitoring	...102

7.2.1	 Monitor	against	Project	Plan	...102
7.2.2	 Measure	Task	Progress	and	Status	Reports	..103
7.2.3	 Identify	Deviations	..104

Contents  ◾  ix

7.2.4	 Performance	Indicators	..105
7.2.5	 Monitor	against	Project	Schedule	..105
7.2.6	 Periodic	Measurement	...105
7.2.7	 Earned	Value	Management	..105
7.2.8	 Measure	Resource	Utilization	..108
7.2.9	 Measure	Resource	Loading	..108
7.2.10	 Monitor	Skills	and	Knowledge	of	Project	Team.......................................108
7.2.11	 Monitor	Risks	..109
7.2.12	 Monitor	Issues	...109
7.2.13	 Status	Reports	...109

7.3	 Project	Control	Techniques	..110
7.3.1	 Resource	Leveling	..110
7.3.2	 Schedule	Optimization	..111
7.3.3	 Corrective	Actions	against	Deviations	...112
7.3.4	 Corrective	Actions	against	Issues	...113
7.3.5	 Resource	Optimization	..113

7.4	 Project	Monitoring	and	Control	Artifacts...113
7.5	 Project	Monitoring	and	Control	in	Iterative	Model	..114

7.5.1	 Performance	Measurements	...114
7.5.2	 Risks	.. 115

7.6	 Case	Study	.. 115
7.6.1	 Tracking	Tools	Used	.. 115
7.6.2	 Problems	Encountered	...116

7.7	 Chapter	Summary	..116
Exercises	..117
Review	Questions	..117
Recommended	Readings	...117

 8 Project.Closure..119
8.1	 Introduction	...119
8.2	 Source	Code	Management... 120
8.3	 Project	Data	Management	..121
8.4	 Project	Closure	in	Iterative	Model	... 122
8.5	 Lessons	Learned	.. 122
8.6	 Resource	Release	... 123
8.7	 Data	Structures	... 123
8.8	 Case	Study	... 124
8.9	 Chapter	Summary	..125
Exercises	..125
Review	Questions	..125
Recommended	Readings	...125

PART II SOFTWARE LIFE-CYCLE MANAGEMENT

 9 Introduction.to.Software.Life-Cycle.Management...129
9.1	 Introduction	...129
9.2	 Software	Engineering	Management	..131

x  ◾  Contents

9.3	 Software	Life-Cycle	Management	Processes	...132
9.3.1	 Software	Life	Cycle	in	Waterfall	Model	...132
9.3.2	 Software	Life	Cycle	in	Iterative	Model	...132

9.3.2.1	 Moving	from	Waterfall	Model	.. 134
9.3.3	 Software	Life	Cycle	in	Concurrent	Engineering	Model 134
9.3.4	 Software	Life-Cycle	Processes	..135

9.3.4.1	 Software	Requirements	... 136
9.3.4.2	 Software	Design	..137
9.3.4.3	 Software	Build	...138
9.3.4.4	 Software	Testing	..138
9.3.4.5	 Software	Release	..140
9.3.4.6	 Software	Maintenance	...140

9.4	 Software	Life-Cycle	Metrics	...141
9.5	 Work	Products	..141
9.6	 Quality	Assurance	..142
9.7	 Case	Study	..142
9.8	 Chapter	Summary	..143
Exercises	..143
Review	Questions	..143
Recommended	Readings	...143

10 Software.Requirement.Management...145
10.1	 Introduction	...145
10.2	 Software	Requirements	Development	...146

10.2.1	 Develop	Requirements	...149
10.2.2	 Requirement	Development	Tasks	..149

10.3	 Software	Requirements	Management	...149
10.3.1	 Requirement	Change	Control	...150
10.3.2	 Requirement	Problems	Diagnosis	..150

10.4	 Requirement	Life-Cycle	Management	.. 151
10.4.1	 Requirement	Development	and	Management	in	Waterfall	Model 151
10.4.2	 Iterative	Model	..152

10.5	 Software	Requirements	Practical	Strategy	..153
10.6	 Software	Requirements	Artifacts	..154
10.7	 Software	Requirements	Quality	Control	..154
10.8	 Case	Study	..155

10.8.1	 Major	Components	of	Appointment	Scheduling155
10.8.2	 Loading/Unloading	Time	Calculation	..156
10.8.3	 Quality	Assurance	...156

10.9	 Chapter	Summary	..157
Review	Questions	..157
Recommended	Readings	...157

11 Software.Design.Management..159
11.1	 Introduction	...159
11.2	 Software	Design	Fundamentals	..160

11.2.1	 Design	Types	...161

Contents  ◾  xi

11.2.2	 Design	Standards	...161
11.2.3	 Design	Activities	..161

11.3	 Software	Design	Methods	..161
11.3.1	 Top	Down	...161
11.3.2	 Bottom	Up	..162

11.4	 Design	Version	Control	..163
11.4.1	 Subversions	..163

11.5	 Design	Characteristics	..163
11.6	 Software	Design	Techniques	..164

11.6.1	 Prototypes	...165
11.6.2	 Structural	Models	..165
11.6.3	 Object-Oriented	Design	..165
11.6.4	 Systems	Analysis	..166
11.6.5	 Entity	Relationship	Models	...166
11.6.6	 Design	Reuse	...166

11.7	 Software	Design	for	Internet	..167
11.8	 Software	Design	Quality	..167
11.9	 Concurrent	Engineering	in	Software	Design	..168
11.10	Design	Life-Cycle	Management	...168
11.11	Module	Division	(Refactoring)	...168
11.12	Module	Coupling	...170
11.13	Case	Study	..170

11.13.1	Software	Design	for	Loading	Calculation	..170
11.13.2	Quality	Assurance	...172

11.14	Chapter	Summary	..172
Review	Questions	..173
Recommended	Readings	...173

12 Software.Construction..175
12.1	 Introduction	...175
12.2	 Coding	Standards	...176

12.2.1	 Modularity	..177
12.2.2	 Clarity	...177
12.2.3	 Simplicity	..177
12.2.4	 Reliability	..177
12.2.5	 Safety	...177
12.2.6	 Maintainability	..178

12.3	 Coding	Framework	..178
12.4	 Reviews	(Quality	Control)..178

12.4.1	 Deskchecks	(Peer	Reviews)	..179
12.4.2	 Walkthroughs	..179
12.4.3	 Code	Reviews	..179
12.4.4	 Inspections	..179

12.5	 Coding	Methods	..179
12.5.1	 Structured	Programming	...180
12.5.2	 Object-Oriented	Programming	..180
12.5.3	 Automatic	Code	Generation	..180

xii  ◾  Contents

12.5.4	 Software	Code	Reuse	...180
12.5.5	 Test-Driven	Development	..181
12.5.6	 Pair	Programming	...181

12.6	 Configuration	Management	...181
12.7	 Unit	Testing	...182
12.8	 Integration	Testing	...182
12.9	 Software	Construction	Artifacts	...183
12.10	Software	Construction	in	Iterative	Model	..183
12.11	Case	Study	..183

12.11.1	Continuous	Integration	...184
12.12	Chapter	Summary	..184
Review	Questions	..185
Recommended	Readings	...185

13 Software.Testing..187
13.1	 Introduction	...187
13.2	 Problems	with	Traditional	Development	Model	...188
13.3	 Verification	and	Validation	...189
13.4	 Test	Strategy	and	Planning	...190

13.4.1	 Test	Prioritization	..190
13.4.2	 Risk	Management	...190
13.4.3	 Effort	Estimation	...191

13.4.3.1	 Test	Point	Analysis	..192
13.5	 Test	Automation	...192

13.5.1	 Test	Case	Execution	Automation	...193
13.5.2	 Test	Case	Management	Automation	..193

13.6	 Test	Project	Monitoring	and	Control	..193
13.6.1	 Test	Case	Design	...194

13.6.1.1	 Test	Types	..194
13.6.2	 Test	Case	Management	..194
13.6.3	 Test	Bed	Preparation	...194
13.6.4	 Test	Case	Execution...195
13.6.5	 Defect	Tracking	...195

13.7	 Test	Reporting	..196
13.8	 Test	Artifacts	..196

13.8.1	 Management	Artifacts	...196
13.9	 Practical	Considerations	...196
13.10	Software	Testing	in	Iterative	Model	..197
13.11	Case	Study	..197
13.12	Chapter	Summary	..198
Review	Questions	..198
Recommended	Readings	...199

14 Product.Release.and Maintenance..201
14.1	 Introduction	...201
14.2	 Product	Release	Management	.. 202
14.3	 Product	Implementation	.. 203

Contents  ◾  xiii

14.4	 User	Training	.. 203
14.5	 Maintenance	Introduction	... 204
14.6	 Maintenance	Types.. 204

14.6.1	 Corrective	... 205
14.6.2	 Adaptive	... 205
14.6.3	 Perfective	.. 205
14.6.4	 Preventive	... 205

14.7	 Maintenance	Cost	... 205
14.8	 Maintenance	Process	... 206
14.9	 Maintenance	Life	Cycle	... 207
14.10	Maintenance	Techniques	... 208

14.10.1	Reengineering	... 208
14.10.2	Reverse	Engineering	... 208
14.10.3	Forward	Engineering	.. 208

14.11	Case	Study	... 209
14.11.1	Software	Release	... 209
14.11.2	Software	Maintenance	.. 209

14.12	Chapter	Summary	... 209
Review	Questions	..210
Recommended	Readings	...210

PART III SOFTWARE ENGINEERING MANAGEMENT

15 Process.Standards.Introduction..213
15.1	 Introduction	...213
15.2	 Root	Cause	of	Problems	in	Software	Projects	...214
15.3	 Solutions	for	Problems	in	Software	Projects	..215
15.4	 Standard	Process	for	Software	Projects	...216

15.4.1	 Process	Tailoring	...217
15.5	 Standard	Process	across	Software	Projects	..217
15.6	 Program	Management	..219
15.7	 Portfolio	Management	... 220
15.8	 Statistical	Process	Control	on	Software	Projects	...221
15.9	 Cost	of	Nonstandard	Processes	.. 222
15.10	Organization	Training	... 222
15.11	Software	Project	Abandonment	... 223
15.12	Defect	Prevention	.. 223
15.13	Software	Project	without	Process	... 225
15.14	Process	Improvement	... 226
15.15	Final	Word	.. 227
Review	Questions	... 227
Recommended	Readings	.. 227

16 Software.Process.Standards.and.Process.Improvement..229
16.1	 Introduction	.. 229
16.2	 CMMI	Standards	.. 230

16.2.1	 CMMI	Standards	in	a	Nutshell	...231

xiv  ◾  Contents

16.3	 ISO	Standards	..233
16.3.1	 ISO	Standards	in	a	Nutshell	..233

16.4	 IEEE	Standards	..233
16.4.1	 IEEE	Standards	in	a	Nutshell	..235

16.5	 Rational	Unified	Process	..235
16.5.1	 RUP	in	a	Nutshell	...235

16.6	 Agile	Methodologies	...235
16.6.1	 Extreme	Programming	in	a	Nutshell	(Table	16.5) 238

16.7	 Test	Process	Improvement	Techniques	... 238
16.7.1	 Deming’s	PDCA	Technique	... 239
16.7.2	 Test	Maturity	Model	.. 239

16.7.2.1	 Level	1:	Initial	Level	... 240
16.7.2.2	 Level	2:	Definition	.. 240
16.7.2.3	 Level	3:	Integration... 240
16.7.2.4	 Level	4:	Management	and	Measurement 240
16.7.2.5	 Level	5:	Optimize	... 240
16.7.2.6	 Further	Developments	in	TMM	... 240

16.7.3	 Test	Process	Improvement	...241
16.7.4	 Critical	Testing	Process	...241
16.7.5	 Systematic	Test	and	Evaluation	Process	.. 242
16.7.6	 Process	Improvement	Life	Cycle	... 243

16.8	 Process	Standard	Certifications	... 244
16.8.1	 Benefits	of	Certification	.. 244
16.8.2	 How	to	Apply	for	a	Certification	...245

16.8.2.1	 Certification	Requirements	..245
16.8.2.2	 Time	and	Cost	of	Certification	..245

16.8.3	 Future	of	Certifications	...245
Review	Questions	..245
Recommended	Readings	.. 246

17 Process.Selection...247
17.1	 Introduction	...247
17.2	 History	of	Plan-Driven	Model	... 248
17.3	 Strengths	of	Plan-Driven	Model	...249
17.4	 Limitations	of	Plan-Driven	Model	..249
17.5	 History	of	Agile	Methods	...250
17.6	 Strengths	of	Agile	Methods	..250
17.7	 Limitations	of	Agile	Methods	...251
17.8	 Once	and	for	All	...252
17.9	 Best	Practices	for	Process	Selection	.. 254
17.10	Converting	Traditional	to	Agile	Model	..256
17.11	Case	Study	..258
Exercise	...259
Review	Questions	..259
Recommended	Readings	...259

Contents  ◾  xv

PART IV PEOPLE MANAGEMENT

18 Introduction.to.People.Management...263
18.1	 Introduction	.. 263
18.2	 People	Management	.. 264
18.3	 Team	Management	.. 264
18.4	 Supplier	Management	...265
18.5	 Customer	Management	... 266
18.6	 Communication	Management	..267
Review	Questions	..267

19 Team.Management..269
19.1	 Introduction	.. 269
19.2	 Organization	Structure	and	Policies	...271

19.2.1	 Project	Organization	.. 272
19.2.2	 Line	of	Business	Organization	.. 273
19.2.3	 Program	Management	Organization	...274
19.2.4	 Internal	IT	Organization	Structure	...275

19.3	 Motivating	the	Team	..275
19.4	 Team	Effectiveness	...276

19.4.1	 Appraisals	..276
19.4.2	 Performance	Measurement	..276
19.4.3	 Job	Allocation	... 277

19.5	 Training	.. 277
19.6	 Nurturing	.. 277
19.7	 Conflict	Management.. 278
19.8	 Knowledge	Management	... 278
19.9	 Communication	Management	... 279
19.10	Case	Study	... 280
Review	Questions	... 280
Recommended	Readings	.. 280

20 Customer.Management...283
20.1	 Introduction	.. 283
20.2	 Customer	Expectation	Management	... 285
20.3	 Negotiation	Management	.. 286
20.4	 Rapport	Building	Management	... 287
20.5	 Reporting	Management	... 287
20.6	 Return	on	Investment	.. 288
20.7	 Bottom	Line	.. 288
20.8	 Case	Study	... 289
Review	Questions	... 290
Recommended	Readings	.. 290

xvi  ◾  Contents

21 Supplier.Management...291
21.1	 Introduction	...291
21.2	 Supplier	Search	Management	.. 292

21.2.1	 RFP	and	RFI	.. 292
21.2.2	 Supplier	Qualifications	..293
21.2.3	 Supplier	Experience	.. 294

21.3	 Supplier	Agreement	Management	.. 294
21.3.1	 Short-Term	Agreements	.. 294
21.3.2	 Long-Term	Agreements	.. 294

21.4	 Supplier	Communication	Management	... 295
21.5	 Organization	Structure	.. 295
21.6	 Account	Management	... 296
21.7	 Project	Offshore	Transition	... 296
21.8	 Case	Study	... 297
Review	Questions	... 298
Recommended	Readings	.. 298

PART V TOOLS AND TECHNIQUES

22 Software.Project.Management.Tools.Introduction...301
22.1	 Introduction	...301
22.2	 Compatibility	with	Environment	.. 302
22.3	 Cost	of	Tool	... 303
22.4	 Data	Integration	among	Tools	... 303
22.5	 Existing	Skills	on	Tools	... 304
22.6	 Tool	Obsolescence	... 304
22.7	 Scale	of	Operation	... 304
Review	Questions	... 304

23 Project.Management.and.Software.Life-Cycle.Tools..305
23.1	 Introduction	.. 305
23.2	 Requirement	Management	Tools	... 306
23.3	 Software	Design	Management	Tools	... 307

23.3.1	 CASE	Tools	.. 308
23.3.2	 Modeling	Tools	.. 308

23.4	 Software	Build	Management	Tools	.. 308
23.4.1	 Integrated	Development	Environment	Tools	.. 309
23.4.2	 Source	Code	Control	Tools	.. 309
23.4.3	 Rapid	Application	Development	..310

23.5	 Software	Testing	Management	Tools	..310
23.5.1	 Test	Management	..310
23.5.2	 Defect	Tracking	...311
23.5.3	 Automation	Tools	..311

23.6	 Project	Management	Tools	...311

Contents  ◾  xvii

23.6.1	 Project	Planning	Tools	...312
23.6.1.1	 Configuration	Management	Tools	...312
23.6.1.2	 Communication	Management	Tools312

Review	Questions	..313
Recommended	Readings	...313

24 Software.Project.Templates...315
24.1	 Introduction	...315
24.2	 Software	Life-Cycle	Template	Guidelines	...316

24.2.1	 Software	Requirement	Template	Guidelines	..316
24.2.2	 Software	Design	Template	Guidelines	...319
24.2.3	 Software	Build	Template	Guidelines	...321
24.2.4	 Software	Testing	Template	Guidelines.. 323

24.3	 Project	Management	Template	Guidelines	...325
24.3.1	 Work	Breakdown	Structure	(WBS)	Template	Guidelines325
24.3.2	 Project	Planning	Guidelines	... 326
24.3.3	 Project	Monitoring	and	Control	Guidelines	... 326

Recommended	Readings	...327

25 Future.Tools.and.Techniques..329
25.1	 Introduction	...329
25.2	 Software	Industry	Trends	.. 330

25.2.1	 Open	Source	... 330
25.2.2	 Application	Service	Provider	..331
25.2.3	 Software	as	a	Service	..331
25.2.4	 Service-Oriented	Architecture	...332
25.2.5	 Intelligent	Web	Sites	..332
25.2.6	 Web	Services..332
25.2.7	 Streaming	Media	...332
25.2.8	 Social	Networks...333
25.2.9	 Influence	of	New	Trends	on	Software	Industry333

25.3	 Software	Requirement	Management	Tools	...333
25.4	 Software	Design	Management	Tools	..333
25.5	 Software	Build	Management	Tools	.. 334

25.5.1	 Automatic	Code	Generator	... 334
25.5.2	 Integrated	Development	Environment	Tools	...335
25.5.3	 Programming	Language	..335

25.6	 Software	Testing	Management	Tools	..335
25.6.1	 Test	Management	..335
25.6.2	 Defect	Tracking	...335
25.6.3	 Automation	Tools	... 336
25.6.4	 Test	Creation	Tools	... 336
25.6.5	 Test	Coverage	Tools	.. 336

25.7	 Software	Project	Management	Tools	... 336
Recommended	Readings	...337

xviii  ◾  Contents

Appendix.A:.CMMI.Process.Standards...339

Appendix.B:.ISO.Standards...347

Appendix.C:.IEEE.Standards...355

Appendix.D:.Agile.Processes.for.Software.Development...373

Appendix.E:.Impact.of.Offshoring.on.Standards...385

Appendix.F:.Review.Question.Answers..391

xix

Preface

When	I	was	searching	for	good	books	on	software	project	management,	I	found	many	interesting	
ones	that	had	been	written	by	experts	in	this	field.	These	books	contained	valuable	information	
on	many	topics	covering	software	project	management	and	related	subjects.	I	was	therefore	sur-
prised	when	a	friend	of	mine	who	is	a	professor	at	a	renowned	Indian	university	told	me	that	his	
students	find	it	difficult	to	get	good	books	on	this	subject.	On	going	through	the	syllabus,	though,	
I	realized	that	none	of	the	books	available	in	the	market	covered	more	than	50%	of	the	syllabus.	
My	friend	agreed	that	this	was	the	case	and	that	is	why	his	students	had	to	refer	to	several	books	
to	cover	their	syllabus.	Based	on	my	friend’s	suggestion,	I	decided	to	write	a	textbook	that	would	
cover	the	entire	syllabus	of	software	project	management.	This	book	is	the	result	of	that	effort.	
Thus,	students	need	not	refer	to	other	books	for	their	courses	any	longer.

When	I	started	writing	this	book,	I	wanted	to	ensure	that	it	covers	most	of	the	syllabi	pre-
scribed	for	software	project	management	at	major	Indian	universities.	In	the	process,	the	book	has	
become	comprehensive	enough	to	cover	most	of	the	syllabi	at	major	universities	around	the	world.	
I	have	ensured	that	major	topics	have	been	covered	in	depth.	I	have	also	provided	a	case	study	that	
runs	through	the	book	covering	most	of	the	topics.

Structure of the Book
Most	of	the	books	available	in	the	market	are	written	with	the	intent	of	covering	siloed	informa-
tion.	Chapters	are	grouped	 in	broad	areas	 such	as	“quality	control,”	“measurements,”	etc.	This	
book	has	been	written	 in	the	same	flow	as	any	software	project.	Part	I	covers	project	manage-
ment	and	Part	II	covers	the	software	life-cycle	management.	Part	III	covers	topics	such	as	process	
improvement,	process	 selection,	etc.	Part	IV	covers	people	management	and	Part	V	deals	with	
technology	management.	

One	 of	 the	 most	 important	 aspects	 of	 large,	 modern	 software	 projects	 to	 build	 industry	
strength	and	reliable	software	products	is	to	continuously	improve	software	engineering	processes	
so	 that	 cost	 can	be	 reduced	 and	 schedules	 realized.	At	 the	 same	 time,	 the	quality	 of	 software	
products	should	continuously	be	improved.	Part	III	elaborates	on	how	these	goals	can	be	achieved.

Any	software	project	management	book	should	cover	the	areas	of	software	engineering	man-
agement,	project	management,	people	management,	and	technology	management.	If	any	of	these	
areas	are	not	covered,	the	book	will	not	be	of	much	use.

xx  ◾  Preface

Scope of the Book
This	book	covers	several	areas,	including	human	resources,	software	engineering,	and	technology.	
All	the	topics	covering	these	areas	are	discussed	up	to	the	level	required	for	software	project	man-
agement.	For	advanced	studies	in	these	areas,	the	reader	should	refer	to	books	written	exclusively	
for	these	subjects.	In	this	book,	we	will	focus	on	areas	that	apply	to	managing	software	projects.

Part	III	focuses	on	software	engineering	processes	and	various	software	engineering	process-
ing	models	devised	by	organizations	 like	 the	Software	Engineering	 Institute,	 the	 International	
Organization	for	Standardization,	and	the	Institute	of	Electrical	and	Electronics	Engineers.	Part	IV	
deals	with	the	human	side	of	project	management	and	contains	chapters	on	team	management,	
supplier	management,	and	customer	management.	Part	V	deals	with	technology,	techniques,	tem-
plates,	and	checklists	that	help	project	teams	in	accomplishing	their	goals.

Work	on	 software	projects	 is	primarily	done	by	people.	They	 take	help	 from	 technological	
tools	and	techniques	to	improve	their	productivity.	Software	engineering	helps	the	project	team	
in	accomplishing	 their	work	 in	a	more	organized,	 consistent,	 and	efficient	way	by	providing	a	
structured	and	well-defined	process	to	do	their	work.	This	book	is	structured	in	such	a	way	that	
Part	I	describes	how	to	do	project	management	with	detailed	information	on	project	and	process	
management	 using	 skills	 and	 experience	 needed	 (described	 in	 Part	 IV)	 with	 the	 help	 of	 tools	
(described	 in	Part	V)	 in	a	 structured	manner	 (described	 in	Part	 III)	 to	develop	work	products	
through	processes	described	in	Part	II.

Case Study
I	have	purposely	chosen	a	case	study	that	pertains	to	a	company	that	is	developing	a	software	
product.	Agile	development	models	are	currently	the	rage,	and	this	is	for	good	reason.	For	prod-
uct	development,	agile	methodology	is	truly	amazing.	Nevertheless,	this	methodology	has	some	
shortcomings,	one	being	difficulty	in	adapting	it	for	geographically	scattered	teams	that	may	be	
working	in	different	time	zones.	In	such	a	situation,	the	most	challenging	aspect	of	project	man-
agement	is	to	be	able	to	communicate	effectively.	Agile	methods	demand	that	all	team	members	
be	co-located	so	that	high-bandwidth	casual	communication	can	take	place	among	them.	This	
makes	offshore	teams	a	complete	no-no.	The	other	shortcoming	of	agile	methods	is	lack	of	docu-
mentation.	Five	years	down	the	line,	when	the	product	has	grown	enormously	and	most	of	the	
original	team	has	moved	elsewhere,	it	will	truly	be	a	daunting	task	for	a	new	member	to	under-
stand	all	that	code	and	make	required	changes.	It	will	be	simply	impossible!	To	understand	what	
I	mean,	look	at	the	codes	of	some	of	the	largest	software	products	like	Linux,	which	was	built	as	
an	open	source	project	using	some	sort	of	agile	methodology.	It	is	indeed	extremely	difficult	to	
change	any	code	inside	the	Linux	kernel.	The	third	shortcoming	of	agile	methods	is	their	inability	
to	adapt	to	parallel	and	concurrent	development.	This	means	that	if	a	large	product	is	needed	to	be	
developed	quickly,	it	will	not	be	possible	to	do	this	with	agile	methods.	So	if	a	product	containing	
one	million	lines	of	code	is	needed	to	be	developed	in	a	short	time	of	1	year	(that	is	right,	1	year	to	
be	exact),	then	the	total	effort	required	for	this	project	will	be	500	months	for	one	person	to	write	
it	if	we	take	productivity	figures	of	2000	lines	of	code	per	month	per	person	(which	is	quite	reason-
able).	This	means	about	42	years.	Now	if	we	want	to	do	this	in	1	year,	we	will	need	42	people	to	
do	it.	Managing	42	people	on	an	agile	project	is	impossible.	At	the	most	any	agile	methodology	
permits	20	people.	Many	projects	are	even	bigger	than	one	million	lines	of	code.	Most	government,	
banking,	and	large	corporate	software	products	consist	of	more	than	10	million	lines	of	code.	

Preface  ◾  xxi

In	these	cases,	agile	methods	will	not	work.	You	need	to	adapt	some	method	that	will	permit	par-
allel	development	where	many	teams	can	work	on	the	project	concurrently	so	that	the	product	can	
be	developed	within	1–2	years	instead	of,	say,	10	years.

The	case	study	presented	in	this	book	is	a	good	example	of	how	to	adapt	to	given	situations	and	
be	successful.	After	all,	offshoring	provides	several	benefits	and	cannot	be	ignored.	Documentation	
too	is	a	very	important	aspect	of	software	product	development	and	should	be	adhered	to.	This	
case	study	provides	a	good	insight	as	to	how	to	address	the	challenges	of	communication	manage-
ment,	documentation,	and	concurrent	development	even	when	the	development	methodology	is	
to	take	the	benefits	of	agile	methods.

Students	reading	the	book	will	have	a	chance	to	look	at	the	inner	workings	of	a	real,	success-
ful	project.	All	aspects	of	a	regular	software	project	are	covered	in	the	book.	To	make	it	more	
beneficial,	the	case	study	has	been	divided	into	several	parts,	and	relevant	parts	are	provided	at	
the	end	of	most	of	chapters.	Therefore,	after	getting	a	good	grasp	of	the	concepts	provided	in	a	
specific	chapter,	students	can	go	through	the	case	study	and	get	a	feel	of	the	practical	aspects	of	
those	concepts.

I	hope	this	book	will	be	useful	for	the	intended	readers.	For	any	suggestions	to	improve	the	
book	in	future	editions,	please	write	to	me	at	ashfaque.a@gmail.com.

xxiii

Author

Ashfaque.Ahmed	has	more	than	22	years	of	experience	in	the	
software	industry.	He	has	a	BSc	in	engineering	and	an	MBA	in	
information	systems.	He	has	worn	many	hats	during	his	career,	
including	that	of	a	project	manager,	test	manager,	system	ana-
lyst,	 and	 business	 analyst.	 He	 has	 managed	 projects	 of	 sizes	
varying	 from	a	 few	 thousand	dollars	worth	 to	projects	worth	
millions	of	dollars.	Some	of	the	larger	projects	ran	for	a	span	of	
more	than	two	years.	He	has	also	worked	on	software	product	
development	 projects	 that	 typically	 run	 for	 decades	 and	 that	
keep	adding	new	features	and	modifying	existing	product	fea-
tures	almost	endlessly.

Ahmed	is	a	popular	author.	He	has	recently	authored	a	book	titled	Software Testing as a Service,	
which	was	published	by	CRC	Press,	Boca	Raton,	FL,	in	September	2009.	He	has	written	more	
than	15	research	papers	for	Technology	Evaluation	Centers	and	Tech	Target.	He	is	also	a	contrib-
uting	author	at	Technology	Evaluation	Centers	(www.technologyevaluation.com)	and	an	expert	at	
Tech	Target	Application	Development	Media	Group	(http://www.techtarget.com/).

IPROJECT
MANAGEMENT
FUNDAMENTALS

3

Chapter 1

Introduction to Software
Project Management

In.Part.I,.we.will.learn

	◾ What	is	software	project	management?
	◾ What	are	various	components	of	a	software	project?
	◾ What	are	various	processes	of	a	software	project?
	◾ How	are	effort	estimate,	project	plan,	risk	plan,	etc.,	made?
	◾ How	are	projects	monitored	and	controlled?
	◾ What	is	the	impact	of	software	development	model	on	software	project	management?

In.this.chapter,.we.will.learn

	◾ What	is	a	project?
	◾ What	is	a	software	project?
	◾ What	processes	are	involved	in	a	software	project?
	◾ How	are	people,	processes,	tools,	and	technology	integrated	in	a	project?
	◾ What	are	the	characteristics	of	a	good	project	manager?
	◾ What	are	the	subprocesses	in	the	area	of	project	management	processes?
	◾ What	management	metrics	are	measured	in	software	projects?

4  ◾  Software Project Management: A Process-Driven Approach

1.1 Introduction
As	per	data	from	Gartner	and	other	research	agencies,	about	25%	of	world	gross	product	is	spent	
on	various	kinds	of	projects.	More	than	$10	trillion	were	spent	on	projects	out	of	world	gross	prod-
uct	output	of	$40.7	trillion	in	2008.	Most	of	the	expenditures	in	information	technology	(IT)	and	
software	are	considered	as	expenses	in	IT	and	software	projects.	More	than	$2.7	trillion	were	spent	
in	2008	on	IT	and	software	projects.	That	means	out	of	all	expenditures	in	all	kinds	of	projects,	
IT	and	software	projects	represent	more	than	25%.

In	major	 economies	of	 the	world,	millions	of	people	 are	 employed	 in	 the	 IT	and	 software	
	sector.	In	2008,	more	than	4	million	people	were	employed	in	this	sector	in	the	United	States.

Indeed	the	IT	and	software	sector	is	one	of	the	biggest	employers	in	major	world	economies.	
Moreover,	more	people	are	expected	to	be	employed	in	this	sector	in	the	future	as	it	is	growing	fast.

1.2 What Is Project Management?
Project	management	can	be	broadly	defined	as	starting	an	activity	to	achieve	some	stated	goals	
using	limited	resources,	budget,	and	time.	During	the	project,	resources	and	budget	are	consumed	
in	a	limited	span	of	time	(Figure	1.1).	After	the	project	is	finished,	the	unconsumed	resources	and	
budget	should	be	released.	Since	each	project	is	started	for	a	customer,	a	fourth	dimension	in	the	
project	 is	 also	 added.	 It	 is	 customer	 satisfaction.	The	customer	must	be	 satisfied	with	 the	goal	
achieved	by	the	project.	This	goal	could	be	the	creation	of	any	product	or	service.

So	we	can	see	that	there	are	inputs	to	the	project	in	terms	of	resources,	budget,	and	allocated	
time	duration,	and	the	output	of	the	project	is	the	achieved	goal.	A	project	must	be	initiated.	To	
execute	the	project	in	a	systematic	manner,	it	is	better	to	have	a	project	plan.	During	project	execu-
tion,	some	risks	may	arise,	which	may	end	up	jeopardizing	the	project	plan	and	in	fact	the	entire	
project.	So	we	should	have	some	controlling	measures,	which	can	be	employed	to	tackle	any	risks	
arising	 in	 the	project	 successfully	 to	avoid	 the	project	getting	 jeopardized.	By	 the	 time	project	
execution	ends,	we	must	have	a	proper	project	closure	so	that	we	can	end	the	project.	In	Figure	1.2,	
you	can	see	these	project	processes.

1.3 What Is Software Project Management?
Before	moving	to	software	projects,	let	us	first	discuss	IT	projects.	But	even	before	discussing	IT	proj-
ects,	let	us	understand	IT	and	software	and	their	differences.	IT	is	a	field	where	an	IT	system	refers	
to	a	complete	system	comprising	many	parts	like	hardware	systems,	software	systems,	and	any	other	
components	from	some	other	fields.	A	complete	IT	system	can	be	used	for	any	purpose	like	running	
a	business,	doing	research,	use	in	robotics,	use	in	automation	systems,	etc.	For	instance,	a	robot	is	

Project
consumes

Resources Budget Time

Figure 1.1 Any project consumes resources, time, and budget.

Introduction to Software Project Management  ◾  5

mostly	a	hardware	device,	but	the	information	or	instructions	given	to	it	to	do	some	things	are	done	
using	a	software	system.	In	other	words,	we	can	say	that	the	brain	of	the	robot	is	a	software	system	and	
other	parts	of	the	robot	like	its	limbs	and	sensing	devices	attached	to	it	are	hardware	parts	(Figure	1.3).

Generally,	when	we	refer	to	IT,	we	mean	the	combination	of	software	system	and	the	computer	
hardware	in	which	the	software	system	will	be	running.	For	example,	a	business	software	applica-
tion	for	doing	transactions	may	be	a	complete	IT	system	when	the	software	system	is	installed	in	
the	computer	hardware	system	and	is	ready	to	be	used	by	end	users.

Since	software	is	being	used	in	many	new	industries	and	we	use	more	and	more	software	systems	
in	our	daily	lives,	it	is	now	becoming	part	of	most	things	we	see	or	interact	with.	Our	vehicles	now	
have	computers.	(Computers	were	not	part	of	automobiles	up	until	the	1970s,	but	after	the	1980s,	
they	slowly	started	appearing	in	many	car	models.)	Our	gadgets	of	daily	use	(music	systems,	air	
conditioners,	washing	machines,	etc.)	now	have	some	sort	of	computer	built	into	them.	In	manufac-
turing	industries,	industrial	robots	have	been	used	since	the	1950s.	Now	these	robots	are	becoming	
sophisticated	with	more	 advanced	 software	 systems	 to	 control	 them.	More	 recently,	 the	ubiqui-
tous	mobile	phone	handsets	have	been	the	major	beneficiaries	of	advancement	in	software	system	
capabilities.	In	fact,	more	than	40%	of	all	spending	on	IT	budgets	now	goes	to	the	telecom	sector	
(mostly	mobile	and	communication	applications),	which	is	a	part	of	the	IT	industry	(Figure	1.4).

So	an	IT	project	could	be	for	setting	up	an	enterprise-wide	software	system	(along	with	the	
hardware	 to	run	 it)	 to	get	business	 intelligence	capability,	manage	store	operations,	or	manage	
warehouses,	 etc.	Tasks	 involved	 in	 such	 a	project	 could	be	building	 (developing)	 the	 software	

Project
initiation

Project planning Project
closure

Project monitoring
and control

Figure 1.2 Project management processes.

Software system Hardware system

IT system
components

Other than
software/hardware

parts

Figure 1.3 IT system components.

6  ◾  Software Project Management: A Process-Driven Approach

system,	buying	the	computer	hardware	to	run	it,	installing	the	software	in	the	computer	hard-
ware,	preparing	the	network	of	computers	(if	it	is	an	enterprise-wide	system),	and	finally	config-
uring	the	software	system	so	that	it	can	run	on	the	network	of	computers.

A	software	development	project	on	the	other	hand	is	making	software	design	based	on	cus-
tomer	requirements	and	implementing	it	into	source	code.	This	source	code	is	then	tested	to	make	
sure	that	it	is	defect	free	so	that	end	users	can	use	the	software	system	without	running	into	many	
problems.	In	software	maintenance	project,	an	already	existing	software	product	is	modified	to	
remove	software	defects,	add	new	functionality,	port	the	software	product	on	some	other	operat-
ing	system,	etc.	Software	development	and	software	maintenance	projects	together	are	referred	to	
as	software	projects	(Figure	1.5).

Software	projects	demand	not	only	general	project	management	skills	but	also	good	soft-
ware	engineering	skills	[1].	A	goal	of	any	software	project	management	is	to	develop/maintain	
a	software	product	by	applying	good	project	management	principles	as	well	as	software	engi-
neering	principles	so	that	the	software	project	is	delivered	at	minimum	cost,	within	minimum	
time,	and	with	good	product	quality.	Good	project	management	principles	will	ensure	good	
productivity.	Good	productivity	in	turn	will	ensure	that	the	project	is	delivered	in	minimum	
time	at	minimum	cost.	Good	software	engineering	principles	will	ensure	good	product	quality.	
Even	though	how	software	engineering	principles	are	formulated	may	not	be	in	the	domain	
of	software	project	management,	adopting	those	principles	in	their	projects	definitely	comes	
under	the	purview	of	the	job	of	a	software	project	manager.	For	instance,	a	project	manager	
responsible	 for	 managing	 a	 civil	 construction	 project	 must	 have	 knowledge	 and	 experience	
in	civil	engineering.	An	electrical	engineer	managing	a	civil	project	will	not	be	a	suitable	fit.	
Similarly,	a	project	manager	responsible	for	managing	a	software	project	must	have	knowledge	
and	experience	in	software	engineering.

Automobiles Robotics Avionics

Software system
applications

Financial
systems

Manufacturing
industry

Retail and
distribution

Figure 1.4 Application of software systems in many industries.

Requirement
management

Design
management

Source code
building

Software project
tasks

Software
testing

Software
deployment

Software
maintenance

Figure 1.5 Tasks in software projects.

Introduction to Software Project Management  ◾  7

Project	management	processes	may	include	project	initiation,	project	planning,	project	moni-
toring	and	control,	and	finally	project	closure.	The	software	engineering	processes	may	include	
requirement	development,	software	design,	software	construction,	software	testing,	and	software	
maintenance.	These	software	engineering	processes	have	to	be	somehow	accommodated	in	project	
management	processes	(see	Figure	1.6).

In	a	nutshell,	software	project	management	can	be	defined	as	applying	project	management	
and	 software	 engineering	methods	 to	develop/maintain	 a	 software	product	 so	 that	 the	goal	of	
developing/maintaining	a	software	product	can	be	achieved	using	minimum	possible	resources	
and	money	and	within	the	minimum	time	possible.

1.4 Importance of Software Projects
Importance	of	software	project	management	can	never	be	emphasized	more	when	we	observe	that	
it	is	the	single	most	influencing	factor	that	is	touching	our	lives	in	many	ways	day	by	day.	The	pace	
of	software	products	used	in	many	walks	of	life	is	increasing	every	day.	This	necessitates	the	devel-
opment	of	software	products	in	new	areas,	which	would	not	have	been	imagined	10 years	back.	
That	is	why	the	number	of	software	projects	and	volume	of	work	performed	in	these	projects	are	
increasing	tremendously.	On	average,	money	spent	on	IT	and	software	projects	has	been	increas-
ing	on	the	order	of	10%	or	more	annually	for	the	last	30	years	worldwide.	This	increasing	pace	of	
spending	on	IT	will	continue	in	the	foreseeable	future.	Clearly,	the	software	and	IT	industry	is	the	
most	significant	change	agent	that	is	shaping	our	lives.	In	this	context,	people	who	are	building	
and	managing	software	and	IT	systems	are	playing	an	increasingly	important	role	in	our	society.

1.5 Problems in Project Management
In	the	previous	section,	we	discussed	the	importance	of	software	projects	and	the	important	role	
played	by	the	people	who	are	managing	these	projects.	But	these	people	are	also	facing	unique	
problems.	Unlike	other	industries	where	engineering	practices	are	well	established	due	to	the	vast	

Project
initiation

Project planning
(requirement
development,

software design,
software

construction,
software testing,

software
deployment,

software
maintenance)

Project
closure

Project monitoring
and control

(requirement
development,

software design,
software

construction,
software testing,

software
deployment,

software
maintenance)

Figure 1.6 Software project management processes with software engineering processes.

8  ◾  Software Project Management: A Process-Driven Approach

amount	of	research	and	development	done	for	hundreds	of	years,	the	software	industry	is	rela-
tively	new.	Software	engineering	has	been	in	existence	only	for	last	60	years	or	so,	starting	from	
the	1950s.	Lack	of	sound	engineering	practices	makes	software	project	management	a	difficult	
proposition.	Requirements	 and	 software	design	 specifications	 in	 the	 software	 industry	 are	 still	
immature.	Tools,	technologies,	and	models	for	software	projects	are	still	evolving.	Education	and	
training	required	to	work	on	software	projects	are	also	still	evolving,	resulting	in	people	working	
on	software	projects	with	less	than	desired	skills.	A	person	responsible	for	managing	a	software	
project	thus	truly	feels	inadequate	due	to	less	than	perfect	circumstances	under	which	he	is	sup-
posed	to	perform	(Figure	1.7).

Project	management	for	any	kind	of	project	is	a	complicated	matter.	When	the	project	size	
is	big	and	the	nature	of	the	project	is	complex,	managing	the	project	becomes	a	daunting	task.	
Project	managers	have	to	comply	with	government	regulations,	meet	deadlines;	deal	with	suppli-
ers,	staff,	and	customers,	report	to	higher	authorities,	and	tackle	issues	and	myriad	tasks	planned	
or	unplanned	on	a	regular	basis.

When	it	comes	to	big	software	development	projects,	some	more	complexities	get	added.	In	
the	software	industry,	finding	and	retaining	skilful	and	experienced	resources	is	a	big	challenge.	
Software	projects	 are	often	outsourced.	Software	projects	often	 involve	 teams	 located	at	many	
sites.	These	sites	may	be	scattered	over	geographically	far	flung	locations.	There	may	be	large	time	
differences	due	to	different	time	zones	of	these	sites.	People	working	on	these	projects	are	from	
different	cultures.	They	may	have	different	work	ethics,	may	have	different	productivity	levels,	and	
may	speak	different	languages.

Another	highly	important	factor	that	makes	software	development/maintenance	projects	ever	
so	different	from	other	kinds	of	projects	is	the	level	of	innovation	and	creativity	required	to	deliver	
[2].	Software	professionals	are	not	only	required	to	deliver	as	per	specifications	given	to	them	but	
they	need	to	use	their	intuition	and	capability	to	think	out	of	the	box	to	deliver	software	design	
or	software	prototype	or	software	code.	So	software	building	is	not	only	a	science	but	also	an	art.

Due	 to	 these	 factors,	communication,	effort	estimation,	work	distribution,	 reporting,	work	
tracking,	team	management,	etc.,	get	affected	(Figure	1.8).

How	 can	 a	 software	 project	 manager	 handle	 his	 project	 successfully,	 given	 the	 difficulties	
mentioned	earlier?	It	may	seem	like	a	superhuman	effort	to	manage	modern	day	large	software	
development	projects.	Yet,	a	 large	number	of	software	development	projects	are	being	executed	
successfully	even	though	these	challenges	always	pose	huge	threats	for	these	projects.

How	do	successful	project	managers	manage	 their	projects?	What	 tools	help	 them	in	 their	
job?	What	kind	of	preparation	do	they	do	for	the	project?	What	kind	of	processes	do	they	adopt?	

High level of
innovation

Immature
software

engineering
Lack of

proper skills

Software project
challenges

Immature
tools

Immature
techniques

Complexity Ambiguous
requirements

Figure 1.7 Typical challenges encountered in software projects.

Introduction to Software Project Management  ◾  9

What	kind	of	experience	is	required	to	be	a	successful	project	manager?	What	makes	them	a	suc-
cessful	software	project	manager?

Any	software	development	project	has	one	goal:	To	develop	a	software	application	or	product.	
A	given	software	application	or	product	could	be	for	internal	use	or	sold	to	customers.	When	software	
is	developed	for	use	by	the	organization	itself,	it	is	known	as	a	software	application.	When	software	is	
developed	for	the	purpose	of	selling	to	customers	and	not	for	use	by	the	organization	itself	then	it	
is	known	as	a	software	product.	The	organizations	who	develop	such	software	products	are	known	
as	software	vendors.	Now	a	business	can	decide	to	outsource	development	of	the	software	product	or	
application	instead	of	developing	it	in-house	for	many	reasons.	The	software	vendor	can	outsource	part	
or	full	software	development	activity	to	some	software	service	provider.	This	way,	the	outsourcing	and	
supplier	management	angle	gets	added	to	project	management.

Whatever	 the	 situation	 is,	 the	development	 team	that	builds	 the	 software	application	or	
product	needs	to	focus	on	developing	the	application	or	product	and	not	on	any	peripheral	activi-
ties.	But	modern	day	software	applications	and	products	are	large	and	complex.	Building	them	
involves	a	lot	of	things,	and	in	the	process,	the	team	may	easily	lose	its	main	purpose,	that	is,	to	
develop	the	software	application	or	product.	One	way	to	avoid	this	kind	of	drifting	away	from	
the	focus	is	to	have	a	defined	project	process	and	use	this	process	map	to	chalk	out	a	project	plan	
as	to	which	tasks	will	be	done	at	what	time,	in	what	sequence,	who	will	be	responsible	for	these	
tasks,	etc.	This	kind	of	planning	based	on	a	process	structure	is	extremely	useful	for	large	and	
complex	projects.

1.6 Processes in Software Projects
What	is	process?	Process	is	a	defined	way	of	doing	things.	Any	task	we	want	to	do	in	our	daily	life	
needs	to	be	done	by	taking	a	series	of	action	steps	that	results	in	completion	of	the	requested	task.	
That	means	a	process	to	do	a	task	can	be	broken	down	into	certain	series	of	steps.	For	instance,	if	
you	want	to	withdraw	money	from	your	bank	account	using	an	automatic	teller	machine	(ATM),	
you	need	to	first	find	a	nearby	ATM	machine,	then	you	need	to	insert	your	debit	card	in	the	slot	
in	the	machine,	enter	your	password,	specify	the	amount	you	want	to	withdraw,	take	the	money,	
and	finally	remove	your	card	from	the	machine.

In	Figure	1.9,	you	can	see	all	the	steps	involved	in	the	process	of	withdrawing	money	from	
an	ATM.

Communication
difficulties

Team
management

Effort
estimate

Impact of
challenges on

software project

Work
distribution

Project
reporting

Work
tracking

Figure 1.8 Impact of challenges on software projects.

10  ◾  Software Project Management: A Process-Driven Approach

Coming	to	software	projects,	there	are	many	processes	going	on	in	any	software	development	
project	[3].	We	can	classify	these	processes	under	the	following	categories	based	on	their	priorities:

	 1.	Evolving processes beyond a project:	As	can	be	seen	from	evolving	software	engineering	prac-
tices,	software	projects	are	no	longer	seen	in	isolation.	Software	engineering	is	striving	to	
make	sure	that	software	projects	should	be	completely	predictive	and	measurable.	Based	on	
project	size	and	productivity,	a	project	manager	should	be	able	to	calculate	project	cost	and	
schedule	 for	a	software	project	easily.	At	the	same	time,	software	engineering	also	allows	
for	continuous	improvement	in	project	and	organizational	processes	to	improve	quality	and	
productivity.	So	a	continuous	improvement	process	also	runs	above	projects	at	the	organiza-
tional	level.	These	processes	are	discussed	in	Part	III.

	 2.	Project management processes (project initiation, planning, control, monitoring, and closure):	
These	 are	 the	processes	 that	 get	 influenced	by	 top-level	 processes	 and	 govern	 lower-level	
processes	related	to	software	development.	Project	management	processes	are	the	ones	that	
help	the	management	to	see	what	is	going	on	in	the	project	and	also	allow	them	to	control	
the	project.	So	these	are	management	processes.	These	processes	also	include	the	processes	
for	project	risk	management,	effort,	cost	estimation,	etc.

	 3.	Software development life-cycle (SDLC) processes (requirements, design, build, testing, main-
tenance, etc.):	 These	 are	 the	 development	 processes	 that	 actually	 build	 the	 application	
(Figure	1.10).	These	processes	are	discussed	in	Part	II.

1.7 Project Processes, People, and Technology
Organization	level	processes	are	the	top-level	processes	that	influence	working	of	a	project	from	
outside	while	subprocesses	in	an	SDLC	process	are	the	lowest-ranked	processes.	The	other	pro-
cesses	 come	 in	 between	 these	 processes.	 The	 way	 these	 processes	 are	 set	 up	 and	 implemented	
impacts	the	way	a	software	development	project	is	handled	[4].

Apart	from	these	processes,	there	is	a	direct	impact	on	the	project	by	the	customer,	whether	
external	or	internal.	That	is	why	customer	expectation	management	is	a	complete	subject	in	itself	as	
the	customer	has	the	most	important	influence	on	any	project.	Style	of	functioning	of	the	project	
manager	also	influences	the	way	the	project	is	executed.	Then	of	course,	it	is	a	matter	as	to	how	to	
deal	with	the	project	team	members.	Software	developers	are	highly	skilled	people	and	they	need	to	
be	provided	with	the	best	environment	to	get	maximum	output	from	them.	Then	comes	the	case	of	

Press OK button Press OK button

Go to ATM Insert debit
card

Enter amount

Take money
from slot

Take back debit
card

Enter password

Figure 1.9 Process of withdrawing money from ATM and the process steps involved.

Introduction to Software Project Management  ◾  11

suppliers	(service	providers)	who	are	increasingly	deployed	to	get	leverage	in	terms	of	getting	skilled	
manpower	and	expertise.	Project	managers	need	to	get	maximum	value	from	every	buck	they	have	
to	spend	on	these	suppliers.	So	supplier	management	is	an	essential	ingredient	in	projects	where	the	
entire	project	or	part	of	it	is	outsourced	to	software	service	providers	(Figure	1.11).

Software	projects	are	also	greatly	influenced	by	technology.	What	technology	best	suits	a	proj-
ect	depends	on	a	large	number	of	factors	including	productivity,	capability,	reliability,	technology	
availability,	 technology	 maturity,	 technology	 skills,	 etc.	 Managing	 the	 technology	 in	 software	
projects	 thus	also	becomes	 important.	Each	 technology	has	 its	own	 limitations	apart	 from	the	
benefits	it	offers.	So	choosing	the	right	technology	for	the	job	in	hand	is	a	very	important	consid-
eration	for	any	project	manager.	Technology	selection	will	be	based	on	considering	the	best	fit	in	
the	perspective	of	job	requirement,	skill	availability	in	the	project	team,	and	productivity.

1.8 Successful Software Project Manager
A	successful	software	project	manager	[5]	should	be	able	to	understand	not	only	how	a	project	
should	 be	 planned	 and	 executed	 but	 also	 the	 processes	 beyond	 the	 project	 itself.	 He	 should	
learn	the	environment	in	which	he	should	be	planning	and	executing	the	projects.	No	doubt,	
software	projects	are	extremely	challenging;	nevertheless	a	good	framework	to	plan	and	execute	

Organization processes

Project processes

Life-cycle processes

Figure 1.10 Processes involved in software development projects and their boundaries.

Supplier
management

Customer
management

Team
management

Factors influencing a
software project

Technology
management

Software
development

model

Figure 1.11 Influencing factors in software projects.

12  ◾  Software Project Management: A Process-Driven Approach

a	project	definitely	helps.	Human	beings	can	think	and	can	be	creative;	but	they	also	make	mis-
takes	unlike	robots	or	machines.	But	unlike	robots	and	machines,	human	beings	can	do	creative	
things.	Software	project	tasks	require	a	lot	of	creativity	and	that	is	why	they	are	very	human-
intensive	activities.	At	the	same	time,	compliance	to	good	framework	ensures	that	these	human	
mistakes	are	avoided	or	at	least	minimized.	Frameworks	also	ensure	that	there	is	a	good	way	of	
working	on	assigned	tasks	and	outputs	are	measurable	(Figure	1.12).

Software	 project	 managers	 should	 understand	 these	 practical	 aspects	 and	 should	 plan	 and	
execute	their	projects	accordingly	to	be	successful.

More	detailed	information	about	the	role	of	a	software	project	manager,	project	management	
skills,	etc.,	are	discussed	further	in	Chapter	18.

1.9 Project Management Processes
Project	management	processes	form	the	basis	on	which	a	project	can	be	initiated,	planned,	moni-
tored,	controlled,	and	closed.	On	the	other	hand,	software	engineering	processes	define	structure,	
steps,	and	procedures	to	do	various	tasks	in	software	development.	But	these	processes	lack	the	
ability	to	schedule,	plan,	and	control	themselves.	It	is	the	project	management	processes	that	do	
the	job	of	scheduling,	planning,	and	controlling	software	engineering	processes.

1.9.1 Software Project Initiation
As	we	have	seen	in	an	earlier	discussion,	there	are	three	kinds	of	processes	running	in	an	orga-
nization	that	develop	software	products	or	applications,	namely,	software	life-cycle	processes,	
project	 management	 processes,	 and	 organization	 level	 processes.	 Next,	 we	 will	 learn	 project	
management	processes.	The	first	among	project	management	processes	is	the	project	initiation	
process.

We	can	further	divide	the	initiation	process	discussion	into	processes	for	application	initiation,	
product	initiation,	and	product	implementation	initiation.

1.9.1.1 Software Application Development Project Initiation

A	software	development	project	not	only	involves	huge	costs	but	also	much	resources	and	time	
even	if	the	software	project	or	a	part	of	it	is	outsourced.	Large	software	projects	have	great	impact	

Understand
project

management

Understand
software

engineering

Understand
technology and

tools

Requirements for a
successful software

project manager

Manage team,
customer and

suppliers

Work under
organization
framework

Figure 1.12 Requirements to be a successful software project manager.

Introduction to Software Project Management  ◾  13

on	the	company	that	will	be	using	the	software	product,	which	is	either	developed	in-house	or	
outsourced.	So	a	large	software	development	project	carries	many	high	risks.	It	becomes	one	of	the	
most	important	points	on	the	agenda	of	the	top	executives.

All	these	things	imply	that	large	enterprise	level	software	application	development	projects	are	
very	important.	They	carry	this	tag	and	everybody	can	see	it	and	feel	it.

This	also	means	that	the	project	must	have	a	give-away	sanction	from	top	management.	If	this	
sanction	is	not	there	and	if	the	top	management	is	not	able	to	back	the	project	fully,	the	project	
cannot	move	ahead.	Even	before	its	start,	the	project	dies.

Now	if	the	top	management	is	excited	and	gives	approval	for	the	project	and	a	project	team	is	
being	formed,	then	the	project	may	start	(Figure	1.13).

During	the	initiation	phase	of	a	software	application	development	project,	the	project	charter,	
project	scope,	project	objectives,	and	initial	risk	planning	and	effort	estimate	are	prepared.

1.9.1.2 Software Product Characteristics

Before	we	move	on	to	project	initiation	for	building	software	products,	we	should	know	that	they	
are	very	different	from	software	applications.	Throughout	this	book,	terms	like	software	applica-
tion,	software	products,	and	software	systems	have	been	used	interchangeably.	If	any	of	these	terms	
are	used	anywhere,	please	note	that	the	subject	matter	discussed	there	applies	to	all	of	these	three	
things	equally.	Software	applications	are	specifically	built	based	on	a	limited	set	of	user	require-
ments.	So	they	have	limited	features	to	fulfill	the	specific	needs	of	end	users.

Software	products	on	the	other	hand	are	built	with	a	large	number	of	features	to	take	care	of	
the	needs	of	different	kinds	of	users.	Mature	software	products	built	over	several	years	contain	
many	varied	features	so	that	end	users	with	varying	needs	can	use	these	features.	Software	vendors	
also	keep	building	new	features,	and	over	the	years,	the	enterprise	resource	planning	(ERP)	and	
big	commercial	off	the	shelf	(COTS)	systems	become	massive	in	size	(ERP	and	COTS	systems	are	
examples	of	large	software	products).

These	COTS	systems	are	also	very	robust.	They	can	be	run	on	all	supported	platforms	without	
any	problem.	Robustness	is	a	special	feature	built	into	software	products.

They	 are	 also	 reliable.	 They	 are	 thoroughly	 tested	 before	 they	 are	 introduced	 on	 the	 mar-
ket.	Software	vendors	test	thoroughly	to	make	sure	that	their	product	does	not	have	many	bugs	
because	if	the	released	product	has	many	bugs,	it	will	fail	on	the	market	and	also	will	create	a	bad	
reputation	for	the	vendor.	So	they	make	sure	that	their	products	are	defect	free.

Most	of	these	COTS	systems	have	open	interfaces	so	that	they	can	be	integrated	easily	with	
other	systems.

Initial
schedule
estimates

Project
charter

Project
scope

Project
objectives

Initial effort
estimates

Initial cost
estimates

Software project
initiation tasks

Figure 1.13 Software project initiation tasks.

14  ◾  Software Project Management: A Process-Driven Approach

1.9.1.3 Software Product Development Project Initiation

With	increasing	popularity	of	COTS	systems	[6],	a	large	number	of	software	vendors	are	devel-
oping	their	software	products.	Some	software	vendors	are	developing	large	enterprise	level	soft-
ware	products	like	ERP,	supply	chain	management	(SCM),	customer	relationship	management	
(CRM),	and	many	other	large	software	products.	Recently,	some	other	kinds	of	software	products	
have	also	become	popular.	These	are	known	as	software	as	a	service	(SaaS).	Most	of	these	applica-
tions	are	smaller	in	size	and	they	are	not	general-purpose	applications.	Instead	they	provide	very	
specific	functionality,	which	can	be	used	by	any	other	software	product	or	application	to	comple-
ment	 some	aspects	of	 their	own	 features.	For	example,	 an	online	flight	 reservation	application	
provided	by	one	service	provider	can	have	links	where	they	can	get	information	about	fares	offered	
by	different	airline	companies.	This	online	reservation	system	will	be	a	hosted	application	with	
a	Web	site	interface.	Users	of	this	application	can	use	the	Internet	to	access	the	Web	site	and	use	
this	application	to	book	their	air	tickets	online.	The	fares	of	these	airline	companies	keep	chang-
ing.	To	provide	end	users	with	currently	offered	airfares,	these	fares	must	be	shown	in	real	time	
to	end	users.	Some	service	providers	get	this	information	from	airline	companies	and	provide	this	
information	to	the	online	airline	reservation	Web	sites	through	the	link	provided	in	the	reserva-
tion	application.	The	real-time	information	provided	by	these	service	providers	is	through	an	SaaS	
application.	This	application	cannot	be	used	directly	by	any	end	user.	But	in	conjunction	with	
some	other	application,	they	provide	a	useful	service.

SaaS	applications	[7]	can	be	used	by	end	users	on	a	subscription	basis.	If	the	application	is	big	
and	involves	creating	and	maintaining	databases,	the	service	provider	creates	these	databases	for	
its	customers.	Examples	of	large	scale	SaaS	applications	include	Salesforce.com	(a	CRM	applica-
tion),	OneNetwork.com	(a	retail	management	application),	etc.	These	are	large	service	providers	
that	provide	their	own	application	to	customers	using	the	SaaS	model.	Some	other	smaller	SaaS	
service	providers	provide	services	like	market	research,	customer	support,	and	many	other	special-
ized	services	(Figure	1.14).

How	are	these	software	products	made?	After	all,	development	of	these	software	products	does	
not	start	with	end-user	requirements.	The	software	vendor	sees	a	market	opportunity	of	develop-
ing	such	a	product.	He	develops	the	software	product	and	sells	it	or	provides	services	using	this	
software	product	 to	 customers.	 So	basically,	 software	product	development	 starts	when	a	 soft-
ware	vendor	sees	a	market	opportunity	and	then	decides	to	develop	this	product.	He	uses	market	
research	data	to	decide	which	features	will	go	into	the	product.	Accordingly,	he	forms	a	project	
team	and	hands	this	information	to	them	so	that	they	can	develop	the	software	product.

So	whereas	a	software	application	is	created	based	on	end-user	requirements,	a	software	product	
is	made	using	market	research	data.

Market
analysis

Product
development
cost estimate

Product
features

Marketing
channels

Product
delivery
method

Product or
service

Software product
initiation tasks

Figure 1.14 Software product development initiation tasks.

Introduction to Software Project Management  ◾  15

During	the	initiation	phase	of	any	software	product	development	project,	the	project	scope,	
risk	planning,	and	effort	estimate	are	made.	But	unlike	a	project	that	develops	custom	software,	
effort	and	time	estimates	are	also	done	beforehand.	In	fact,	time	to	market	for	such	a	product	is	
a	crucial	factor,	and	thus,	instead	of	time	estimate	calculation,	team	size	calculation	for	boxing	
the	project	under	a	tight	time	schedule	is	done.	As	per	product	development	roadmap,	a	product	
release	plan	is	also	developed.

1.9.1.4 Software Product Implementation Project Initiation

Small	COTS	applications	do	not	need	 implementation.	Mostly,	 they	 are	 installed	 from	a	CD	
or	downloaded	from	the	Internet	and	installed.	But	bigger	COTS	applications	like	ERPs,	SCM	
systems,	CRM	systems,	etc.,	require	much	effort	to	implement	either	at	a	customer	site	or	at	a	hosted	
site	[8].	They	are	huge	consisting	of	large	modules.	Their	database	layer	is	totally	detached	from	the	
application	layer.	In	fact,	the	entire	software	product	may	consist	of	many	layers.

Implementation	of	these	huge	packages	is	a	different	ball	game	altogether.	If	the	product	is	
implemented	without	 customization,	 then	 the	project	 involves	 system	 installation,	 configuring	
the	application	as	per	user	requirements,	database	creation,	data	population,	data	migration	from	
legacy	system,	etc.	It	also	involves	integration	between	different	modules	of	the	application.	This	
kind	of	implementation	is	also	known	as	plain	vanilla	implementation	or	bespoke	implementa-
tion.	This	kind	of	implementation	is	done	fast	and	can	be	completed	in	1–3	months	depending	on	
the	size	of	individual	tasks.

But	most	often,	the	application	is	implemented	with	some	customization.	Nowadays,	an	appli-
cation	contains	most	of	the	business	logic,	which	needs	to	be	correctly	configured.	Customization	
takes	place	more	in	reports.	The	application	also	needs	to	be	integrated	with	other	enterprise	sys-
tems.	A	typical	large-scale	ERP	system	implementation	takes	somewhere	around	1–3	years.	But	
this	implementation	time	is	shrinking	due	to	increase	in	productivity	of	project	teams	as	well	as	
advancement	in	technology.

During	the	initiation	phase	of	any	software	product	implementation	project,	the	project	char-
ter,	project	 scope,	project	objectives,	 and	 initial	 risk	planning	and	effort	 estimate	 are	prepared	
(Figure	1.15).

1.9.2 Software Project Planning
Depending	on	the	characteristics	of	a	project,	detailed	project	planning	is	done	either	after	project	
initiation	or	after	completion	of	project	requirements.	Generally,	detailed	project	planning	can	be	
done	only	after	the	project	team	has	complete	requirements	for	the	project	since	the	requirements	
together	with	project	scope	determine	effort,	cost,	and	quality	required.	If	complete	details	about	
these	things	are	not	available,	a	baseline	for	the	project	cannot	be	made.	In	project	planning	the	
main	tasks	that	are	to	be	planned	are	software	life-cycle	processes	(refer	to	Part	II	for	details	about	
these	software	life-cycle	processes),	which	actually	build	the	software	product.

Any	project	 faces	external	and	 internal	 risks.	Software	projects	 face	 risks	 related	 to	people,	
technology,	process,	and	other	areas.	Due	to	these	risks,	the	project	schedule,	cost,	or	quality	may	
get	affected.	Recognizing	these	risks	and	making	proper	plans	to	mitigate	negative	impact	on	the	
project	are	taken	care	of	by	making	a	risk	planning	and	executing	them	when	they	arise.

Depending	on	the	software	life	cycle	chosen,	the	project	plan	may	vary.	In	the	linear	waterfall	
model,	the	software	engineering	processes	are	executed	linearly,	and	thus,	in	a	software	project,	
each	of	the	software	engineering	processes	occurs	just	once.	But	in	the	case	of	an	iterative	life-cycle	

16  ◾  Software Project Management: A Process-Driven Approach

model,	the	individual	software	engineering	processes	can	occur	more	than	once.	In	some	iterative	
models,	the	iteration	occurs	between	construction	and	testing.	So	these	two	processes	can	occur	as	
many	times	within	the	project	as	the	number	of	iterations.	At	the	extreme	end	of	iterative	software	
development	model,	iteration	can	happen	for	all	of	the	software	engineering	processes.	So	all	soft-
ware	engineering	processes	will	occur	as	many	times	within	the	project	as	the	number	of	iterations.	
These	variations	are	depicted	in	Figures	1.16	and	1.17.

1.9.2.1 Components of Project Planning

Software	projects	need	many	inputs	for	making	project	plans.	They	also	produce	numerous	out-
puts	in	the	form	of	separate	plans	for	risks,	communication,	configuration	and	version	control,	
schedules,	resource	requirement	and	allocation,	etc.	All	of	these	project	planning	components	in	
fact	are	complete	plans	themselves.	A	separate	chapter	has	been	devoted	for	each	of	the	planning	
activities	of	risk	management,	effort	and	cost	estimation,	and	configuration	and	version	control	
management	in	this	book.

You	will	learn	about	software	project	planning	in	detail	in	Chapter	6.

Customization
effort

Initial schedule
estimates

Project
charter

Project
scope

Project
objectives

Initial effort
estimates

Initial cost
estimates

Migration from
legacy system

Software product
implementation
initiation tasks

Figure 1.15 Software product implementation initiation tasks.

Requirements

Design

Construction

Testing

Release

Maintenance

ClosureMonitoring and controlPlanningInitiation

Figure 1.16 Project management in waterfall model environment.

Introduction to Software Project Management  ◾  17

1.9.3 Software Project Monitoring and Control
There	have	been	many	methodologies	for	planning,	monitoring,	and	controlling	software	projects	
like	waterfall,	 agile,	 iterative,	 and	many	other	models	 (refer	 to	Part	 III	 for	details	 about	 these	
models).	Software	development	and	maintenance	is	still	an	evolving	discipline,	and	so	the	way	a	
software	project	is	handled	differs	from	one	project	to	another.	Software	technologies	also	keep	
evolving.	So	it	is	difficult	to	plan,	let	alone	monitor	or	control,	a	software	project.

Due	to	the	inherently	risky	nature	of	software	projects,	constant	monitoring	and	control	 is	
required	to	rectify	any	event	that	may	jeopardize	the	project.

To	monitor	and	control	effectively,	the	project	manager	needs	measurement	data.	The	mea-
surement	data	come	from	measuring	processes	and	product.	So	first	project	processes	should	be	
planned	such	that	their	measurement	can	be	taken,	and	secondly,	it	should	be	ensured	that	proper	
measurements	are	taken.	Only	then	effective	project	monitoring	and	control	is	possible.

You	will	learn	about	software	project	monitoring	and	control	in	detail	in	Chapter	7.

1.9.4 Software Project Closure
With	the	increasing	use	of	statistical	process	control,	project	closure	has	become	an	important	
activity	 in	projects.	During	project	 closure,	 all	project	 artifacts	 are	 analyzed	and	completed.	
Data	from	these	artifacts	are	transferred	to	central	project	repository	so	that	these	data	can	be	
used	for	future	projects.	It	has	to	be	ensured	that	all	project	data	are	normalized	so	that	the	data	
are	useful.

You	will	learn	about	software	project	closure	in	detail	in	Chapter	8.

1.10 Configuration and Version Control Management
The	most	prominent	aspect	about	software	projects	is	the	change	in	requirements	during	almost	
the	whole	product	development	life	cycle.	Due	to	changing	requirements,	work	done	in	software	
development	life-cycle	processes	also	needs	to	be	changed	accordingly.	This	leads	to	many	versions	

Requirements

Design

Construction

Testing

Release

Maintenance

ClosureMonitoring and controlPlanning

Iteration plan, monitor and control

Initiation

Figure 1.17 Project management in iterative model environment.

18  ◾  Software Project Management: A Process-Driven Approach

of	work	products	in	all	phases	of	the	development	life	cycle.	Managing	all	these	work	products	is	
done	using	configuration	and	version	control.

A	project	manager	will	be	well	equipped	and	prepared	if	he	acknowledges	the	fact	that	require-
ments	will	keep	changing.	Once	this	need	is	established,	the	action	plan	for	tackling	it	can	be	
established.	The	foremost	need	is	to	manage	changes	 in	requirements	as	and	when	they	arrive.	
Once	this	process	 is	well	established,	the	tasks	affected	due	to	these	changes	can	be	identified.	
Once	these	tasks	are	identified,	then	a	proper	replan	will	have	to	be	made.

The	best	 solution	for	managing	various	requirement	versions	 is	 to	have	a	central	 repository	
where	all	versions	of	requirements	can	be	stored.	All	the	team	members	working	on	the	project	
must	have	access	to	the	requirements,	irrespective	of	their	scattered	geographical	locations.	The	
version	control	rights	can	be	set	as	per	requirements.	People	who	have	rights	to	change	the	require-
ment	documents	can	make	changes	in	documents	and	check	in	the	documents	back	to	the	reposi-
tory.	Other	team	members	may	have	only	viewing	rights.

In	organizations	that	are	developing	products,	there	could	be	many	projects	going	on	at	the	
same	time.	In	those	cases,	it	is	the	best	policy	to	have	many	branches	of	the	main	requirement	
folder.	Each	project	team	will	have	access	to	its	respective	requirement	branch.	Each	team	will	be	
responsible	for	managing	its	own	branch.

You	will	learn	about	software	configuration	management	in	detail	in	Chapter	5.

1.11 Management Metrics
A	business	unit	must	keep	improving	its	business	processes	over	time;	otherwise,	it	will	become	
extinct	by	the	forces	of	fierce	market	competition.	Improvement	in	business	processes	is	impor-
tant	because	only	through	these	 improvements,	a	business	unit	can	improve	productivity	of	
its	processes	and	improve	quality	of	its	products	or	services.	If	it	is	not	done,	the	business	unit	
will	 become	 uncompetitive	 in	 comparison	 to	 its	 competitors	 and	 thus	 will	 face	 the	 danger	
of	 becoming	 extinct.	 Better	 productivity	 provides	 means	 to	 cut	 costs	 and	 time,	 and	 better	
product	 quality	 provides	 a	 chance	 to	 increase	 business	 as	 customer	 appreciation	 is	 the	 best	
marketing	tool.

Process	improvement	can	only	happen	if	you	can	measure	it,	compare	it	with	best	practices,	
and	then	bring	about	changes	 in	your	processes.	 In	the	case	of	 software	development	projects,	
the	management	metrics	are	the	productivity	data	for	the	projects	[9].	The	software	work	product	
quality	data	are	the	technical	metrics	[10].	Throughout	this	book,	both	management	and	technical	
metrics	are	discussed	in	detail	at	each	level	where	it	is	possible	to	collect	and	analyze	them	and	can	
be	used	for	making	management	and	technical	decisions	(Figure	1.18).

Measurement	of	project	processes	during	execution	at	regular	 intervals	makes	sure	that	the	
product	 quality	 is	 always	 under	 control.	 These	 measurements	 also	 enable	 the	 organization	 to	
improve	its	processes	by	assessing	effectiveness	of	processes	and	making	certain	modifications	in	
these	processes.	When	selecting	any	of	the	measurements	for	a	project,	the	essential	point	should	
be	that	they	should	be	relevant	to	the	project.	It	is	also	of	utmost	importance	that	the	selected	
measurements	 should	 have	 certain	 inherent	 characteristics	 so	 that	 they	 are	 meaningful	 to	 the	
project.	Again	these	measurements	should	be	practical,	should	be	calibratable,	and	should	be	done	
at	a	minute	level	and	not	at	a	gross	level.	Gross	level	measurements	fail	to	point	to	the	root	causes	
of	problems.

Over	 the	 years,	 several	 metrics	 have	 been	 defined	 and	 used	 in	 projects.	 Many	 of	 these	
approaches	use	statistical	process	control	(SPC)	methods.

Introduction to Software Project Management  ◾  19

One	SPC	approach	is	popularly	known	as	the	Seven	Tools	of	Quality	[11].	Essentially,	 it	 is	
made	of	 seven	distinct	 techniques	developed	by	different	organizations	 and	 individuals.	These	
quality	tools	are	either	used	in	isolation	to	each	other	or	used	in	conjunction	with	other	tools.	
These	are	as	follows:

 1. Check sheets:	Check	sheets	are	used	to	count	the	number	of	occurrences	of	issues	over	the	
entire	project	or	during	specific	phases	of	the	project.	If	the	same	problem	resurfaces	during	
a	project	or	within	a	phase	of	the	project	many	times,	it	is	an	indication	of	bad	project	man-
agement.	Check	sheets	are	a	good	measure	to	know	whether	project	execution	is	smooth	or	
it	has	many	issues.	Check	sheets	are	also	useful	during	recording	of	lessons	learned	from	the	
project.

 2. Histograms:	Histograms	basically	depict	variance	of	outputs	on	either	side	of	a	central	ten-
dency	 for	 a	process	 output.	Histograms	 are	 great	 tools	 for	knowing	whether	 any	project	
attribute	or	characteristic	is	falling	within	acceptable	norms	or	it	is	deviating	from	standard	
acceptable	norms.

 3. Pareto charts:	Pareto	charts	are	used	to	identify	problematic	areas	in	the	software	develop-
ment	process.	If	analysis	is	done	for	the	occurrence	of	problems	encountered	in	a	project,	
it	will	be	found	that	80%	of	the	problems	are	encountered	in	only	20%	of	the	project	area.	
That	means	80%	of	the	project	area	contains	only	20%	of	problems.	If	we	concentrate	our	
efforts	on	the	problems	in	the	20%	of	the	project	area,	we	will	solve	80%	of	the	problems.	
This	 strategy	 is	 far	 better	 compared	 to	putting	 effort	 on	 the	 entire	 project.	This	 is	what	
Pareto	charts	are	all	about.	Pareto	charts	are	one	of	the	most	popular	metrics	in	the	software	
industry	to	measure	process	as	well	as	product	characteristics	to	find	out	problematic	areas	
and	subsequently	to	fix	them.

 4. Cause and effect diagrams:	These	diagrams	are	also	known	as	fish	bone	diagrams	because	
they	look	like	fish	bones.	They	are	also	known	as	Ishikawa	diagrams	after	the	name	of	the	
inventor	Kaoru	Ishikawa.	These	diagrams	are	used	to	find	the	root	causes	of	a	problem	in	
processes	which	results	in	a	single	identifiable	problem	and	then	list	these	causes	in	the	dia-
gram	against	the	identified	problem.	All	the	root	causes	are	arranged	and	depicted	in	the	
diagram	based	on	the	level	of	their	impact	on	the	problem	area.	This	results	in	a	hierarchy	
of	causes.	From	this	kind	of	diagram,	it	is	easy	to	compare	different	causes	of	problems	and	
finally	find	the	right	solution,	which	will	help	in	tackling	the	root	problems	and	the	cor-
responding	causes	effectively.

Relevant Meaningful

Calibration
ability Activity level

Metric
characteristics

Practical

Figure 1.18 Quality characteristics required of software project metrics.

20  ◾  Software Project Management: A Process-Driven Approach

 5. Scatter diagrams:	These	diagrams	are	used	for	identifying	correlation	and	suggesting	causa-
tion.	Scatter	diagrams	are	as	well	used	for	finding	root	causes	of	problems	in	projects.	Thus,	
they	are	similar	to	cause	and	effect	diagrams.	Each	effect	(end	result	or	problem	caused	by	
a	root	cause)	can	be	plotted	against	the	root	causes,	and	their	relation	over	a	series	of	inter-
related	data	can	be	found	out.	This	will	help	in	eliminating	those	root	causes	of	problems	
from	the	project.

 6. Control charts:	These	charts	are	used	to	identify	processes	that	are	out	of	control	so	that	
they	can	be	fixed.	For	example,	a	temperature	measurement	device	(for	any	temperature-
sensitive	process)	is	attached	to	a	device	that	records	temperature	on	a	control	chart.	If	
the	temperature	goes	either	above	or	below	the	acceptable	limits,	it	can	be	easily	traced	
using	 the	control	 chart.	Similarly,	 a	control	 chart	can	be	used	 to	measure	defect	den-
sity	in	different	phases	of	a	software	project,	and	if	the	defect	density	is	observed	to	be	
going	higher	than	acceptable	limits,	corrective	action	can	be	immediately	taken	so	that	
defect	density	can	be	brought	under	control.	Control	charts	are	very	popular	 in	many	
industries.

 7. Graphs:	 Graphs	 are	 used	 to	 depict	 information	 about	 processes	 in	 a	 suitable	 manner.	
Basically,	graphs	do	not	provide	decision-making	software	metrics.	However,	they	help	in	
conveying	the	bigger	picture	about	the	project.

1.12 Case Study
This	case	study	is	taken	from	the	projects	done	by	a	software	vendor	who	is	building	a	state-of-the	
art	software	product,	which	is	used	as	a	SaaS	by	its	customers.	We	will	cover	the	project	consist-
ing	of	four	iterations	for	the	release	of	its	6.0	version.	Project	management–related	processes	are	
covered	in	Part	I.	These	project	management	processes	include	project	initiation,	project	planning,	
project	 execution,	project	monitoring,	project	 control,	project	 closure,	 risk	management,	 effort	
estimate,	and	cost	estimate.

Elaborate	project	initiation	is	done	only	for	the	project	for	the	release	6.0.	At	the	four	iterations	
contained	 in	 this	project,	project	 initiation	 is	minimally	done	at	 the	 iteration	 level.	The	minor	
releases	of	5.3,	5.5,	and	5.8	coincide	with	iteration	1,	iteration	2,	and	iteration	3.	Iteration	4	and	
major	release	6.0	coincide	with	each	other.	(Minor	releases	of	5.4,	5.6,	5.7,	and	5.9	are	merged	
with	other	releases.)	Project	planning,	project	execution,	project	monitoring,	project	control,	proj-
ect	closure,	 risk	management,	effort	estimate,	and	cost	estimate	are	done	at	 the	 iteration	 level.	
Aggregated	project	cost	and	project	effort	are	done	at	the	project	level.

1.12.1 Project Introduction
The	 SaaS	 software	 vendor	 has	 some	 of	 the	 largest	 grocery	 retailers	 in	 the	 United	 States	 and	
European	countries	as	their	customers,	who	have	used	the	services	of	the	SaaS	software	product	
for	quite	some	time.	A	market	need	was	felt	to	have	a	functionality	that	could	enable	third-party	
logistics	service	providers	(3PL)	to	get	instant	information	about	the	need	to	have	trucks	for	trans-
portation	of	goods	by	its	customers	(manufacturers/distributors).	This	information	should	be	in	
advance	so	that	the	3PL	can	plan	for	sending	the	required	trucks	to	the	desired	locations	at	a	speci-
fied	time.	The	customers	at	the	same	time	can	plan	for	picking	and	packing	of	required	goods	at	
the	requested	warehouse	and	make	the	load	ready	so	that	the	goods	can	be	picked	by	trucks	at	the	

Introduction to Software Project Management  ◾  21

required	time.	The	retailer	(who	will	receive	the	goods)	on	the	other	hand	can	make	preparation	
at	its	desired	warehouse	(from	advance	information	about	the	incoming	truck)	so	that	these	goods	
can	be	received	without	any	delay.

In	 fact,	 to	 enable	 such	 functionality,	 a	 mechanism	 known	 as	 appointment	 scheduling	 is	
employed.	The	complete	details	about	this	functionality	are	given	in	next	section.

1.12.2 Software Functionality
A	retailer	has	many	retail	outlets.	Goods	are	sold	at	these	outlets.	The	retail	outlets	keep	a	small	
stock	on	 the	 shelves	 and	 some	more	 in	 store	 rooms	 located	 in	 the	 same	 retail	outlet	premises.	
When	the	stock	of	a	particular	item	becomes	low	in	quantity,	the	outlet	orders	a	fixed	quantity	of	
the	items	from	its	own	warehouse	for	replenishment.	The	replenishment	order	is	received	at	the	
nearest	warehouse.	The	warehouse	collects	the	required	quantity	of	the	item	from	the	warehouse	
and	waits	for	a	truck	to	arrive	and	dock.	Then	the	warehouse	staff	loads	the	goods	in	the	truck.	The	
truck	then	moves	and	reaches	the	retail	outlet.	The	outlet	staff	unloads	the	goods	from	the	truck	
and	fill	their	shelves	and	store	rooms.	The	movement	of	truck	from	retailer’s	warehouse	to	retail	
outlet	is	known	as	outbound	logistics	(Figure	1.19).

The	retailer’s	warehouse	orders	goods	from	manufacturers/distributors	when	the	stock	of	
particular	goods	in	the	warehouse	becomes	low.	When	a	warehouse	belonging	to	the	manufac-
turer/distributor	receives	order	for	goods,	it	collects	the	goods	from	its	warehouse	and	waits	for	
a	truck	to	arrive	and	dock	at	its	dock	doors.	Once	a	truck	docks,	the	manufacturer/distribu-
tor	staff	loads	the	goods	in	the	truck.	The	truck	moves	and	reaches	the	retailer’s	warehouse.	
The	 warehouse	 staff	 unloads	 the	 goods	 and	 stores	 it	 in	 their	 warehouse.	 The	 movement	 of	
truck	from	manufacturer’s/distributor’s	warehouse	to	retailer’s	warehouse	is	known	as	inbound	
logistics.

For	inbound	logistics,	the	trucks	usually	belong	to	3PLs.	3PLs	charge	the	retailer	or	manufac-
turer	on	the	basis	of	distance	the	truck	travels,	its	capacity,	and	fuel	cost.	Generally,	they	charge	
on	a	full	truck	basis	regardless	of	whether	the	truck	is	fully	loaded	or	not.	For	this	reason,	the	
warehouse	that	loads	the	truck	makes	sure	that	it	has	enough	orders	for	goods	from	the	retailer	
warehouse	to	make	the	truck	full.

In	the	software	product	up	to	release	5,	functionality	was	provided	for	calculating	transporta-
tion	cost,	basic	appointment	functionality	at	warehouse	for	loading	of	truck,	and	appointment	at	
the	other	warehouse	for	unloading	of	truck.	Functionality	for	what	goods	are	loaded	in	the	truck	
is	also	provided.

Warehouse
(manufacturer/

distributor)

Dock doors

Truck 1 Truck 2

Dock doors

1 2 3 4 5

Warehouse
(retailer) Retail outlet

1 2 3 4 5

Figure 1.19 Retail outlet, warehouses, and movement of trucks.

22  ◾  Software Project Management: A Process-Driven Approach

1.12.3 New Functionality in Release 6.0
The	most	important	feature	that	is	added	in	release	6.0	is	a	very	sophisticated	appointment	schedul-
ing	of	trucks	at	both	receiving	and	shipping	warehouses.	In	a	fast-paced	work	environment,	waiting	
for	trucks	for	loading	and	unloading	is	a	waste	of	time.	It	was	felt	that	on	an	average,	the	trucks	were	
waiting	for	5	h	at	each	warehouse.	This	situation	was	a	cost-effective	proposition	for	all	the	parties	
including	 the	manufacturer/distributor,	3PL	 service	provider,	 and	 the	 retailer.	A	mechanism	was	
needed	that	would	ensure	that	this	waiting	time	can	be	reduced	drastically.	It	was	when	a	decision	
was	taken	to	have	a	very	sophisticated	appointment	scheduling	functionality	in	the	software	product.

Appointment	scheduling	is	a	complex	concept.	There	are	many	factors	to	be	considered	to	real-
ize	this	functionality.	When	a	truck	arrives	at	a	warehouse	for	unloading,	a	quality	control	check	
is	performed	for	the	received	goods	at	the	dock	door.	Quality	control	inspectors	must	be	present	at	
the	dock	doors	at	the	time	of	receiving.	To	unload	the	goods,	labor	should	be	available	at	the	dock	
doors.	All	dock	doors	at	a	warehouse	are	not	the	same.	Some	of	them	can	receive	a	particular	type	
of	goods	while	some	other	dock	doors	can	receive	some	other	types	of	goods.	Similarly,	all	dock	
doors	cannot	dock	all	kinds	of	trucks.	Some	dock	doors	can	dock	only	a	particular	type	of	truck	
while	some	other	dock	doors	can	dock	some	other	types	of	trucks.	The	same	considerations	need	
to	be	made	at	the	shipping	warehouse.

When	orders	 are	 received	at	 the	 shipping	warehouse,	 they	need	 to	get	 a	 truck	 from	a	3PL	
service	provider	fast.	They	also	need	to	pack	goods	in	the	warehouse	as	per	the	orders	received.	
When	the	truck	arrives,	the	warehouse	staff	must	inform	it	as	to	which	door	it	has	to	dock	at.	On	
the	other	hand,	if	just	by	processing	orders,	all	these	details	become	available	at	the	warehouse	
automatically,	the	warehouse	staff	just	has	to	execute	as	per	available	details.	They	will	pack	goods	
and	then	place	the	goods	at	the	dock	door	from	where	it	has	to	be	loaded	in	the	truck.	The	3PL	
service	provider	already	has	been	informed	in	advance	by	the	software	system	as	to	when	a	truck	
is	required	at	the	designated	dock	door	at	the	particular	warehouse.	Once	the	goods	are	loaded,	
the	truck	leaves	for	the	retailer	warehouse.	The	retailer	warehouse	already	has	information	as	to	
when	and	where	the	truck	will	arrive.	So	at	the	designated	time,	everything	is	ready	at	the	retailer	
warehouse.	So	theoretically,	we	can	see	that	there	is	no	loss	of	time	anywhere	right	from	truck	
arrangement	for	loading	to	unloading	of	truck.	However,	in	reality,	there	could	be	instances	when	
a	suitable	dock	door	is	not	available	for	loading	or	unloading,	due	to	various	reasons.	These	reasons	
could	be	an	already	busy	dock	door,	a	dock	door	closed	for	out	of	operation	hours,	the	unavailabil-
ity	of	quality	control	inspectors	or	labor,	etc.	But	all	of	these	are	valid	reasons	for	delays.	Overall,	
this	functionality	will	help	in	cutting	unnecessary	delays.

We	will	discuss	details	about	this	project	in	most	of	the	chapters	throughout	this	book.

1.13 Chapter Summary
Work	on	projects	constitutes	a	major	proportion	of	world	GDP	(close	to	25%).	Software	and	IT	
projects	are	in	turn	are	important	activities,	which	constitute	close	to	25%	of	all	project	works.	
Software	project	management	is	all	about	managing	diverse	activities	involved	in	typical	software	
project.	 A	 software	 project	 manager	 needs	 to	 manage	 project	 team,	 suppliers,	 customers,	 and	
project	tasks	on	a	daily	basis.	To	manage	these	activities	in	a	controlled	and	consistent	manner,	
he	needs	to	make	a	good	project	plan	and	then	execute	it	effectively.	He	also	needs	to	work	in	the	
environment	provided	by	the	organization.	All	his	activities	and	the	project	itself	will	be	influ-
enced	to	a	large	extent	by	this	environment.	In	modern	software	project	management	practices,	

Introduction to Software Project Management  ◾  23

role	of	 this	organization-wide	environment	 is	 increasing	day	by	day.	This	 factor	 is	 significantly	
influencing	software	project	management.

Exercises
1.1	 	It	is	said	that	government	spending	on	IT	is	increasing	as	government	departments	take	ini-

tiatives	to	improve	customer	service	or	have	a	wider	reach	of	services.	Find	out	what	factors	
are	responsible	for	the	increase	of	IT	spending	by	government	agencies.	Also	list	and	explain	
the	three	biggest	IT	projects	undertaken	by	the	federal	government	in	recent	times?

1.2	 What	you	think	are	the	major	characteristics	of	a	project?

Review Questions
1.1	 How	do	 you	define	 the	word,	 “project”?	 How	 are	 software	projects	 different	 from	 other	

kinds	of	projects?
1.2	 Why	do	software	development	projects	fail?
1.3	 What	remedial	measures	can	be	taken	so	that	software	development	projects	do	not	fail?
1.4	 What	is	software	project	management?
1.5	 What	are	typical	project	management	processes?
1.6	 What	are	the	essential	qualities	of	a	software	project	manager?
1.7	 What	are	software	project	management	metrics?
1.8	 How	are	project	management	and	software	development	processes	related	to	each	other?

Recommended Readings
	 1.	F.	 F.	 Tsui,	 O.	 Karam	 (2006)	 Essentials of Software Development,	 Jones	 &	 Bartlett	 Publishers,	

Sudbury,	MA.
	 2.	 M.	 Hamilton	 (1999)	 Software Development: Building Reliable Systems,	 Prentice	 Hall	 PTR,	 Upper	

Saddle	River,	NJ.
	 3.	 E.	McGuire	(1999)	Software Process Improvement: Concepts and Practices,	IGI	Global,	Hershey,	PA.
	 4.	 A.	Bahrami	 (2008)	Object Oriented Systems Development,	McGraw-Hill	Education	 (India)	Pvt	Ltd.,	

New	Delhi,	India.
	 5.	 D.	Philips	(2004)	The Software Project Manager’s Handbook: Principles That Work at Work (Practitioners),	

Wiley-IEEE	Computer	Society	Press,	New	York.
	 6.	 R.	 Kazman	 (2008)	 COTS Based Software Systems: Third International Conference, ICCBSS 2004,	

Redondo	Beach,	CA.
	 7.	 K.-J.	Lin	(2007)	Service-Oriented Computing—ICSOC 2007: Fifth International Conference,	Vienna,	

Austria.
	 8.	 C.	B.	Tayntor	(2005)	Successful Packaged Software Implementation,	CRC	Press,	Boca	Raton,	FL.
	 9.	 D.	D.	Galorath,	M.	W.	Evans	(2006)	Software Sizing, Estimation, and Risk Management,	CRC	Press,	

Boca	Raton,	FL.
	 10.	A.	Kossiakoff,	W.	N.	Sweet	 (2002)	Systems Engineering Principles and Practice,	Wiley-Interscience,	

New	York.
	 11.	 S.	 H.	 Kan	 (2002)	 Metrics and Models in Software Quality Engineering,	 2nd	 edn.,	 Addison-Wesley	

Professional,	Boston,	MA.

25

Chapter 2

Project Initiation Management

In.the.previous.chapter,.we.learned

	◾ What	is	a	project?
	◾ What	is	a	software	project?
	◾ What	processes	are	involved	in	a	software	project?
	◾ How	are	people,	processes,	tools	and	technology	integrated	in	a	project?
	◾ What	are	the	characteristics	of	a	good	project	manager?
	◾ What	are	the	subprocesses	in	the	project	management	processes	area?
	◾ What	management	metrics	are	measured	on	software	projects?

In.this.chapter,.we.will.learn

	◾ How	is	a	project	initiated?
	◾ What	is	a	project	charter?
	◾ What	is	project	scope?
	◾ What	are	project	objectives?
	◾ What	project	activities	are	performed	during	project	initiation?

2.1 Introduction
Software	projects	are	notorious	for	initial	hiccups	and	false	starts.	This	usually	has	to	do	with	an	
unclear	project	charter,	an	unclear	project	scope	and	unclear	requirements.	While	many	project	
stakeholders	(mostly	top	management)	realize	that	they	are	in	need	of	a	software	system	badly,	they	
hardly	know	exactly	what	they	are	looking	for.	This	situation	leads	to	chaos.	Even	though	a	project	
team	is	formed	at	this	stage,	nobody	is	clear	as	what	is	to	be	done.	This	has	led	many	projects	to	
fail	even	before	they	started.

26  ◾  Software Project Management: A Process-Driven Approach

However,	if	the	project	manager	is	adept	and	experienced,	then	he	can	handle	such	a	situa-
tion.	He	can	chart	out	some	plan	of	action	and	can	do	some	hard	bargaining	to	get	things	going.	
He	can	identify	who	exactly	the	stakeholders	are	and	their	needs.	For	this	to	happen,	the	project	
manager	must	have	a	good	idea	of	the	business	situation	and	what	causes	are	exactly	plaguing	the	
business.	He	also	should	strive	hard	to	think	about	the	software	solution	that	can	pave	the	way	for	
the	business	to	help	the	management	to	come	out	of	the	morass.	Generally	this	is	not	the	typical	
role	of	a	project	manager,	but	if	this	kind	of	situation	is	encountered,	and	if	the	project	manager	is	
experienced	to	deal	with	it,	then	definitely	it	can	boost	chances	of	the	project	going	forward.	He	
can	then	engage	a	project	team	for	the	task.

This	is	the	scenario	at	most	of	the	in-house	software	projects.	In	the	case	of	outsourced	proj-
ects,	things	are	different.	The	project	manager	from	the	service	provider’s	side	may	have	partici-
pated	in	project	negotiation	along	with	the	marketing	team	to	bag	the	project.	In	such	cases,	the	
project	charter	and	project	scope	are	much	better	defined	as	compared	to	the	previous	situation,	
and	thus,	the	project	has	much	better	chances	of	going	forward.

During	project	initiation,	the	project	manager	has	to	do	a	lot	of	ground	work	where	he	will	pro-
vide	initial	and	rough	effort	estimation,	identify	risks	and	make	risk	mitigation	strategies,	define	
the	project	scope,	prepare	a	project	charter,	etc.,	after	consultation	with	the	project	stakeholders.	
Most	 of	 these	 initial	 artifacts,	which	 are	 just	 sketches	 at	 this	 stage,	 are	 refined	 and	developed	
further	in	later	stages	of	the	project	whenever	more	understanding	about	the	project	is	realized	or	
when	project	objectives	get	changed.

2.2 Define Project Charter
Most	projects	start	on	a	high	note.	Stakeholders	have	high	hopes.	Accordingly,	lofty	project	char-
ters	are	made.	Unfortunately,	as	the	project	progresses,	all	 the	enthusiasm	vanishes	quickly.	So	
what	could	be	done	to	avoid	such	situations?

The	project	stakeholders	need	to	set	their	expectations	with	grounded	realities.	All	their	
hopes	 should	be	aligned	with	practical	 limitations	and	achievable	goals.	 If	 this	 is	not	done	
right	from	the	inception	of	the	project,	the	project	is	going	to	falter	all	the	way.	The	project	
charter	[1]	should	include	things	 like	project	goals,	project	objectives,	major	responsibilities	
allocation,	etc.	But	a	simple	project	charter	may	be	a	simple	statement	from	the	top	manage-
ment	(Table	2.1).

The	project	charter	is	the	place	where	a	big	picture	of	the	effort,	even	beyond	the	project,	is	
captured.	For	instance,	say,	the	project	is	part	of	a	product	development	effort	in	which	the	prod-
uct	is	being	developed	incrementally.	The	product	development	consists	of	many	small	projects	for	
which	a	small	set	of	features	are	being	developed	and	added	into	the	product	each	time	a	project	
gets	 completed.	 The	 project	 charter	 will	 capture	 information	 for	 the	 entire	 effort	 to	 build	 the	
ultimate	product	through	these	small	projects,	and	in	fact,	during	all	of	these	projects,	the	project	
charter	may	remain	the	same	with	not	many	changes.	Similarly,	the	project	charter	should	also	

Table 2.1 Sample Project Charter

The project will provide a cutting edge software solution to our sales team to provide
excellent customer service for our customers so that all customer issues can be solved within
24 hours of lodging of a complaint.

Project Initiation Management  ◾  27

include	the	business	goals	for	which	the	software	project	is	being	initiated,	and	also	state	that	the	
software	project	will	help	in	achieving	those	business	goals.

2.3 Define Project Scope
After	analyses	of	failed	projects,	it	has	been	found	that	most	of	the	projects	fail	because	of	an	
increase	in	the	scope	of	the	project	over	time.	An	increase	in	project	scope	[2]	happens	primarily	
due	to	two	factors.	One	factor	is	that	as	the	project	progresses	and	features	are	being	built	in	
the	application,	the	user	community,	after	seeing	the	partially	made	application,	may	feel	that	
some	additional	functionality	is	also	needed	to	do	their	job	using	the	newly	built	application.	
So	they	keep	making	change	requests	throughout	the	development	cycle.	This	not	only	disrupts	
development	activity,	it	also	makes	the	application	susceptible	to	defects.	But	the	most	impor-
tant	impact	over	the	project	is	the	increase	in	the	volume	of	the	project	work	[3],	which	results	in	
the	escalation	of	costs	and	an	elongation	of	the	schedule.	The	other	factor	that	results	in	change	
in	the	project	scope	is	a	poor	requirements	definition.	A	poor	understanding	of	requirements	
or	a	poor	definition	of	requirements	leads	to	changes	required	later	on	in	the	software	design	
or	software	build	to	rectify	this	problem.	In	any	case,	the	project	scope	increases	due	to	these	
factors.	Table	2.2	shows	a	simple	project	scope.

To	deal	with	scope	creep,	it	has	to	be	ensured	that	the	requirements	are	lucid	and	clear	
from	the	very	start	so	that	project	effort	estimation	and	project	schedule	are	accurate.	If	any	
changes	are	to	be	made	in	requirements,	then	there	should	be	a	proper	change	request	mecha-
nism	that	will	identify	the	impact	of	the	change	on	the	project	and	this	should	be	commu-
nicated	to	the	stakeholders.	All	these	aspects	should	be	clearly	defined	during	the	initiation	
stage	itself.

There	is	one	more	aspect	about	project	scope,	apart	from	the	volume	of	work,	in	terms	of	the	
number	of	features	that	has	been	discussed	in	the	previous	paragraphs.	It	is	the	fact	that	the	soft-
ware	product	to	be	produced	needs	to	have	a	specific	level	of	quality	[4].	This	level	of	quality	needs	
to	be	frozen	during	the	project	initiation	phase.	Suppose	you	need	to	build	a	defense	application	
for	national	surveillance	for	detecting	attacks	by	an	enemy.	This	kind	of	system	requires	confi-
dential	and	limited	access	control,	a	sophisticated	and	bullet-proof	information	system,	fast	and	
accurate	access	to	information,	and	extreme	reliability.	Definitely,	such	a	software	system	needs	to	
be	of	very	high	quality	in	terms	of	reliability,	security,	correctness,	and	efficiency.	A	high	level	of	
quality	for	such	a	software	system	translates	into	high	effort	required	for	building	this	application.	
In	contrast,	a	game	built	for	kids	does	not	need	to	have	such	quality	requirements,	and	thus,	the	
effort	required	to	build	that	game	will	be	much	less.

So,	a	combination	of	a	number	of	features	and	the	quality	level	determines	the	total	volume	of	
work.	It	is	very	important,	early	on	in	the	project,	to	clearly	lay	out	these	aspects	so	that	the	volume	
of	work	can	be	determined.

Table 2.2 Sample Project Scope Definition

The project will be delivered within 15 months from the date of start of the project. The
software product that will be made through this project will have features for customer
complaint logging, issue resolution, and issue closure. The software product should have the
capability of supporting our customer base of 10,000, who will be using the service through
an Internet connection by logging into our web portal.

28  ◾  Software Project Management: A Process-Driven Approach

2.4 Define Project Objectives
The	project	should	have	a	set	of	well-defined	objectives	[5]	that	must	be	met.	If	any	of	these	
objectives	are	not	met	upon	completion	of	the	project,	then	the	project	will	be	considered	to	be	
a	failure.	The	stakeholders	state	and	set	the	project	objectives.	The	objectives	should	be	stated	
in	 clear	 language	 and	 the	 set	 of	 objectives	 should	 be	 kept	 as	 small	 as	 possible.	 Examples	 of	
project	 objectives	 could	 be	 reducing/completely	 eliminating	 paper-based	 transactions	 in	 the	
organization	after	implementation	of	the	proposed	software	application	to	reduce	transaction	
processing	time,	centralization	of	marketing	function	across	the	organization	to	reduce	costs,	
etc.	(Table	2.3)

If	clear	project	objectives	are	set	at	the	project	initiation,	it	would	help	the	project	team	
to	understand	the	importance	of	the	project	and	will	help	the	team	to	do	its	best	to	achieve	
the	goals.

2.5 Practical Considerations
One	size	does	not	fit	all!	You	cannot	have	a	cookie	cutter	to	create	a	project	plan	from	a	simple	tem-
plate.	Different	kinds	of	projects	need	different	approaches.	If	you	have	a	Web	project,	then	you	
have	entirely	different	activities	and	tasks	required	to	be	completed	for	the	project,	compared	to	a	
project	to	make	a	software	application	for	a	mainframe	computer.	Similarly,	the	quality	required	
for	making	a	surveillance	application	for	a	defense	project	will	be	of	higher	quality,	compared	to	
an	application	made	for	viewing	information	on	the	Web.

Some	of	the	factors	that	make	project	management	vary	for	different	projects	are	as	follows:

	◾ Project size:	 Project	 size	 is	 the	 single-most	 important	 factor	 that	 makes	 the	 approach	 to	
	handling	one	project	different	from	another.	Smaller	projects	need	less	formal	project	man-
agement	than	the	larger	ones.

	◾ Product quality:	If	the	software	product	to	be	made	requires	stringent	quality	measures,	then	
an	elaborate	quality	control	mechanism	will	be	required	throughout	the	project	process	to	
ensure	that	defects	are	prevented	in	the	product	at	each	stage	of	development.	On	the	other	
hand,	if	the	software	product	to	be	made	does	not	need	stringent	quality	norms,	then	a	cur-
sory	quality	control	mechanism	will	be	enough.

	◾ Technology:	Technology	plays	an	important	role	in	determining	productivity	on	any	project.	
If	the	platform	is	some	older	technology,	like	a	client	server,	and	the	programming	language	
is,	say	Ada,	then	the	project	effort	will	be	considerably	more	than	if	a	newer	and	more	pro-
ductive	technology,	say	Java,	is	used.

	◾ Code reuse:	Code	reuse	can	considerably	reduce	the	required	project	effort.	So,	the	effort	on	
two	projects	will	be	very	different	if	one	project	code	reuse	has	been	extensively	used,	com-
pared	to	some	other	project	where	code	reuse	has	not	been	used.

Table 2.3 Sample Project Objectives

The organization will be able to increase customer satisfaction to 99.5% from the existing
level of 92%. This will help in reducing customer attrition, increasing repeat business from
existing customers, and enhancing our brand value.

Project Initiation Management  ◾  29

Due	to	these	factors,	each	project	has	different	needs	for	quality	levels	and	has	different	pro-
ductivity	levels.	Understanding	these	factors	and	taking	them	into	account	when	project	initiation	
takes	place	will	give	a	proper	start	for	the	project.

Project	 initiation	is	 the	right	time	when	project	expectations,	project	scope,	project	deliver-
ables,	quality	standards,	cost	estimates,	etc.,	should	be	correctly	set	so	that	a	good	project	plan	can	
be	made,	which	in	turn	can	lead	to	smooth	project	execution.

2.6 Estimate Initial Project Size
At	the	project	initiation	stage,	a	rough	project	size	[6]	should	be	estimated	so	that	a	sketch	of	the	
initial	project	plan	can	be	realized.	From	the	initial	requirements	(as	available	in	a	Request	for	
Information	quote),	a	rough	design	estimate	can	be	made.	The	rough	design	can	include	details	
about	how	the	product	can	be	broken	down	into	parts.	These	parts	can	be	sized	from	estimating,	
either	the	estimated	number	of	lines	of	code	required	to	build	them	or	by	using	an	estimated	num-
ber	of	function	points.	After	the	size	of	each	part	or	module	is	determined	this	way,	the	complete	
size	of	the	software	product	can	be	determined.	Since	at	the	initiation	stage	detailed	information	
about	project	parts	is	not	clear,	the	estimate	of	the	product	size	is	also	rough.	However,	this	can	
be	taken	as	a	starting	point,	and	the	product	size	estimate	can	be	refined	as	the	project	progresses.

Especially	on	outsourced	projects,	a	rough	product	size	estimate	should	be	made	during	the	
initiation	phase	so	that	a	general	idea	about	the	project	can	be	made	and	passed	on	to	the	stake-
holders.	This	information	will	be	helpful	for	them	to	make	crucial	decisions	about	the	project.

In	Figure	2.1,	the	software	product	to	be	made	is	shown	as	consisting	of	six	main	features.	
These	six	features	together	constitute	the	entire	software	product	to	be	made.	To	make	the	soft-
ware	product,	the	software	project	will	involve	tasks	consisting	of	project	and	software	develop-
ment	life-cycle-related	tasks.	Rough	estimates	about	project	and	product	size	can	thus	be	made	on	
the	preliminary	data	available.

A	study	of	data	available	for	previously	executed	projects	can	throw	some	light	while	estimat-
ing	the	size	of	the	software	product	to	be	made.	So,	if	data	is	available	for	a	similar	sized	project,	
use	it	to	show	the	customer	how	big	the	current	project	should	be.

Feature 1 Feature 2 Feature 5

Feature 3 Feature 4 Feature 6

Software product

Software project

Figure 2.1 Initial software product and project size estimate.

30  ◾  Software Project Management: A Process-Driven Approach

2.7 Estimate Initial Project Effort and Costs
Initial	project	cost	estimates	[7]	can	be	determined	from	the	productivity	of	the	members	of	the	proj-
ect	team,	the	effort	estimate,	the	number	of	hours	put	in	by	software	professionals,	and	the	prevailing	
hourly	rate	of	software	professionals	who	will	be	working	on	the	project	as	project	team	members.

The	cost	of	the	project	is	one	of	the	most	important	considerations	of	stakeholders.	If	the	
project	is	going	to	cost	more	than	they	had	anticipated	and	budgeted	for,	then	most	probably,	
the	project	will	be	called	off.	In	some	cases,	the	stakeholders	may	agree	to	a	reduction	in	the	size	
of	the	project	so	as	to	reduce	the	cost	of	the	project.

From	Figures	2.1	through	2.3,	we	have	some	initial	data	available	for	a	project.	The	initial	stage	
data	suggests	that	requirement	specification	development	will	take	2	months	of	time,	and	software	
design,	 software	 construction,	 software	 testing,	 and	 software	deployment	will	 take	2,	6,	2,	 and	
2 months,	respectively.	That	means,	the	total	schedule	for	the	project	is	14	months.	For	requirement	
development,	two	people	are	required,	and	for	software	design,	software	construction,	software	test-
ing,	and	software	deployment	two,	six,	four	and	two	people	are	needed,	respectively.	That	means,	

Feature 1 Feature 2 Feature 5

Feature 3 Feature 4 Feature 6

Software product

Software project

E	ort estimate

Cost estimate
Cost (S) = 56 × 4,000 +

 20% (56 × 4,000)
 = 268,800

Man months = 56

Figure 2.2 Initial software project effort and cost estimate.

Feature 1 Feature 2 Feature 5

Feature 3 Feature 4 Feature 6

Software product

Software project Schedule estimate

Req. spec. = 2 months

Design = 2 months

Construction = 6 months

Testing = 2 months

Deployment = 2 months

Total schedule = 14 months

Figure 2.3 Initial software project schedule estimate.

Project Initiation Management  ◾  31

the	total	effort	required	is	56	man	months.	On	an	average,	the	salary	of	each	project	team	member	
is	$4000	per	month.	Overhead	costs	for	the	project	are	taken	as	15%	of	the	cost	of	salaries	of	the	
project	team	members.	So	tentative	development	costs	will	be	$268,800	for	the	project.

Data	 from	previously	executed	projects	 can	be	used	 for	estimating	 the	cost	 for	 the	current	
project.	Customers	will	love	to	know	just	how	much	their	project	will	cost	them	very	early	in	the	
project,	at	the	initiation	stage	itself.

2.8 Estimate Initial Project Schedule
Like	project	cost,	the	project	schedule	is	one	of	the	most	critical	aspects	of	the	project.	Stakeholders	
may	have	the	objective	of	gaining	a	marketing	edge	over	the	competition	by	implementing	the	
proposed	software	application.	Many	of	such	objectives	are	time	sensitive,	and	the	stakeholders	
may	like	to	see	the	new	system	implemented	before	a	specified	date.

During	project	initiation	discussions,	stakeholders	may	ask	the	project	manager	to	reduce	the	
project	schedule	[8]	that	has	been	presented	to	them,	even	if	project	costs	rise	because	of	this.	In	
such	cases,	the	project	manager	may	have	to	adjust	his	project	schedule	to	suit	the	needs	of	the	
stakeholders.	He	will	have	to	adjust	his	project	plan,	resource	allocation,	etc.,	accordingly.

2.9 Create Initial Project Plan
The	project	manager	needs	to	create	a	tentative	project	plan	[9]	during	the	project	initiation	stage	
to	demonstrate	to	the	customer	what	kind	of	resource	requirements,	effort	required,	and	timelines	
could	be	expected	for	the	project.	This	will	be	one	of	the	selling	points	for	the	project.	The	most	
important	aspect	of	this	tentative	project	plan	is	to	let	the	customer	feel	confident	about	the	proj-
ect.	If	timelines,	costs,	or	effort	figures	are	not	as	per	customer	expectations,	then	discussions	can	
be	held	with	the	customer	to	win	on	some	points	and	negotiate	on	others.

Nowadays,	 the	 time	window	of	opportunity	 for	businesses	 is	 limited,	 and	 the	customers	
look	 to	 utilizing	 this	 time	 window	 to	 the	 utmost.	 So,	 they	 need	 the	 fast	 development	 and	
implementation	of	 the	software	 system	to	utilize	 this	 time	window.	Hence,	even	 if	costs	are	
on	the	high	side,	they	will	 like	to	go	in	for	faster	software	product	development	so	that	it	 is	
implemented	quickly,	and	they	can	start	using	 it	 to	tap	the	business	opportunity	within	the	
time	window.	For	this	reason,	the	project	manager	has	to	make	a	project	plan	that	will	enable	
software	development	at	a	faster	speed	and	thus	realize	customer	expectations.	So,	it	may	often	
happen	that	the	project	manager	may	need	to	revise	his	project	plan	and	present	a	revised	plan	
to	the	customer.

2.10 Project Initiation in Iterative Model
One	of	the	goals	of	the	iterative	model	is	to	reduce	project	size	and	to	make	a	number	of	smaller	
projects	instead	of	going	in	for	a	large	project	and	building	the	entire	software	product	in	one	go.	
Project	 size	 is	 reduced	by	dividing	the	set	of	complete	requirements	 into	many	smaller	 sets	and	
developing	smaller	software	products	out	of	these	smaller	sets	of	requirements,	taking	one	set	of	
requirements	at	a	time.	So	the	big	software	project	becomes	a	set	of	smaller	projects.	These	smaller	
projects	are	known	as	iterations.	The	first	iteration	starts	from	scratch	as	each	building	block	for	this	

32  ◾  Software Project Management: A Process-Driven Approach

iteration	is	developed	from	scratch.	Once	this	iteration	is	over	and	approved	by	the	customer,	the	
next	iteration	begins.	This	time,	the	product	is	built	over	what	was	developed	in	the	first	iteration.

In	the	iterative	model,	planning	the	project	is	done	at	three	levels.	At	the	top	level,	the	proj-
ect	plan	for	the	development	of	the	entire	product	 is	conceived.	The	time	span	for	such	a	plan	
could	run	into	several	years.	At	the	middle	level,	project	planning	is	done	at	major	releases	of	the	
software	product.	The	time	span	for	such	plans	could	be	at	the	year	or	half	year	level.	The	lowest	
project	plan	is	the	plan	for	each	iteration.	A	better	term	for	it	could	be	the	iteration	plan.	At	this	
level,	the	project	plan	could	run	from	a	few	weeks	to	a	few	months.	Many	software	vendors	have	
minor	releases	per	quarter,	and	the	iterations	can	coincide	with	these	minor	releases.

The	product	developed	in	each	of	these	iterations	could	be	a	complete	standalone	product;	dif-
ferent	from	products	made	in	other	iterations.	But	in	general,	products	made	from	these	iterations	
are	partial	products	and	not	fully	functional	products.	However,	the	product	made	from	the	first	
iteration	is	a	fully	functional	product	that	can	be	run	and	whose	features	can	be	seen.	In	subse-
quent	iterations,	more	features	will	be	added	on	top	of	this	product.

So,	we	can	see	that	project	initiation	is	a	very	low-key	affair	at	the	iteration	level.	The	project	
team	decides/picks	the	next	set	of	requirements	to	work	on	after	they	are	through	with	delivering	the	
previous	iteration.	Even	at	project	level,	initiation	is	not	a	big	and	formal	affair.	At	the	most,	it	is	an	
informal	and	low-key	affair.	But	at	the	top	level,	where	the	product	is	conceived	and	development	
is	planned,	project	initiation	definitely	plays	a	big	role.	It	is	indeed	a	big	decision	to	start	building	
a	software	product	whose	market	potential	may	be	excellent;	nevertheless,	it	is	a	big	risk	to	invest	
money	and	time	in	building	a	new	product.	At	that	level,	management	commitment	is	more	than	
just	the	product	itself.	It	has	to	do	more	with	benefiting	from	market	opportunity,	planning	for	the	
successful	launch	of	the	product	in	the	market,	planning	the	market	strategy,	etc.

In	the	example	discussed	in	Figures	2.2	through	2.4,	the	project	in	an	iterative	environment	will	
have	some	differences	compared	to	the	traditional	development	model	employed	on	a	project.	The	
same	project	will	not	be	completed	in	one	linear	progression.	The	requirements	will	be	so	divided	
as	to	be	covered	over	many	iterations.	If	six	requirements	were	decided	upon	(the	same	as	the	num-
ber	of	features	depicted	in	Figure	2.2),	devoting	one	full	iteration	to	each	of	these	main	features,	
we	end	up	having	six	iterations	during	the	project.	Suppose	it	was	decided	that	the	entire	project	
needs	 to	 be	 completed	 in	 18	 months,	 then	 each	 iteration	 will	 run	 for	 approximately	 two	 and	 a	
half	months.	Each	iteration	will	have	requirement	development,	software	design,	software	construc-
tion,	software		testing,	and	software	release	phases.	In	the	agile	world	(all	iteration-based	software	

Tentative project plan Tentative project schedule

Project schedule

Project cost

Communication plan

Resource plan

Quality plan

Tool plan

Risk plan

Figure 2.4 Tentative project plan.

Project Initiation Management  ◾  33

product	development	models),	the	development	phases	are	called	and	operated	in	a	different	manner	
compared	to	the	traditional	waterfall	model.	So,	we	have	phases	such	as	storyboard	development,	
design,	test	driven	development,	module	integration,	testing	and	release.	Before	an	iteration	starts,	
the	requirements	to	be	worked	on	are	chosen	from	the	list	of	requirements.	But	even	before	that,	each	
requirement	is	given	a	priority.	The	highest	priority	requirements	are	reserved	for	the	first	iteration.	
The	other	phases	of	the	iteration	will	be	planned	accordingly.	All	activities	for	the	first	iteration	will	
be	firmed	up	before	the	iteration	starts.	But	for	other	iterations,	no	concrete	plan	will	be	made.	They	
will	be	tentative	at	the	most.	In	fact,	the	requirements	themselves	will	be	tentative	in	nature	and	can	
be	changed	when	more	understanding	and	insight	about	that	particular	requirement	is	gained.

On	other	kinds	of	projects,	there	will	not	be	a	large	list	of	requirements	to	start	with.	Even	
though	there	is	the	intention	of	building	a	large	product,	the	stakeholders	may	first	like	to	test	the	
waters.	In	those	cases,	a	few	initial	iterations	can	be	treated	like	a	feasibility	study.	The	stakehold-
ers	may	first	seek	feedback	from	end	users	on,	for	example,	the	necessity	of	building	the	software	
product,	and	then	try	to	portray	an	overall	picture.	If	the	feasibility	looks	good,	then	the	stake-
holders	signal	a	go-ahead	for	the	project.	If	not,	they	will	decide	to	scrap	the	project.	The	cost	of	
scrapping	the	project	at	this	stage	will	be	small,	and	thus,	the	risk	of	losing	large	sums	of	money	
on	a	failed	project	can	be	avoided.

2.11 Stakeholder Influence
For	a	project	to	be	successful,	it	is	very	important	that	it	has	strong	support	from	the	stakeholders	[10].	
Generally,	stakeholders	are	personally	interested	in	the	project,	and	estimate	the	value	the	project	will	
deliver	to	their	organization	on	completion.	If,	for	some	reason,	the	stakeholders	do	not	have	confidence	
in	the	project,	the	project	is	bound	to	fail.	Stakeholder	interest	is	the	paramount	factor	for	the	life	of	any	
project.	Therefore,	their	involvement	in	the	project	must	be	ensured.	To	make	a	success	of	the	project,	
they	must	take	initiatives	and	influence	its	progress.	Generally,	stakeholders	have	very	high	influence	at	
the	beginning	of	the	project.	As	the	project	progresses	and	stakeholders	see	that	it	is	going	in	the	right	
direction,	they	slowly	start	distancing	themselves	from	the	project.	So	their	influence	on	the	project	
diminishes.	This	is	natural.	Once	they	see	some	good	progress	and	status	reports	on	the	project,	they	
are	assured	of	the	success	of	the	project	and	so	divert	their	attention	to	other	issues	in	their	organization.	
But	if	the	project	falters,	and	stakeholders	see	that	the	project	is	going	in	the	wrong	direction,	they	are	
forced	to	attend	to	the	project	more	closely.	They	start	giving	more	time	to	the	project	and	try	to	influ-
ence	it	more	(Figure	2.5).

Influence

Time

Figure 2.5 Stakeholder influence on the project over project life.

34  ◾  Software Project Management: A Process-Driven Approach

2.12 Quality Planning
From	the	start,	quality	planning	[3]	should	be	made	an	integral	part	of	all	activities	associated	with	the	
project.	This	will	ensure	that	the	product	being	developed	has	the	right	quality.	Large	projects	have	a	
large	number	of	project	activities,	and	many	of	them	are	very	complex.	During	the	execution	of	their	
tasks,	people	may	forget	about	quality,	or	due	to	time	constraints,	may	be	forced	to	ignore	it.

Quality	planning	during	project	initiation	could	include	a	broad	framework	of	how	the	quality	
of	each	and	every	work	product,	developed	during	the	life	cycle	could	be	ensured.	It	may	involve	
defining	the	process	map	and	deciding	on	how	the	quality	of	work	products	will	be	measured	
and	ensured.	Some	of	the	time-tested	process	frameworks	for	ensuring	quality	include,	measuring	
work	product	attributes	often	and	comparing	them	with	the	desired	quality	levels	to	know	if	the	
quality	of	the	work	products	is	good	or	bad.

2.13 Feasibility Study
For	most	projects,	initiation	is	the	stage	when	a	make	or	break	decision	about	the	project	should	be	
made.	If	a	project	is	allowed	to	keep	going	despite	getting	wrong	signals,	then	at	a	point	far	down-
stream,	it	may	prove	to	be	a	very	costly	mistake	when	the	project	is	forced	to	be	abandoned.	It	will	be	
far	better	if	a	feasibility	study	[11]	is	conducted	at	the	beginning	of	the	project	to	know	what	chances	
the	project	has	of	achieving	the	desired	goals.	Once	the	feasibility	study	is	completed	and	a	report	is	
made,	then	a	review	can	be	done	to	ascertain	if	the	project	should	be	continued	or	abandoned.

2.14 Project Division
In	instances	when	it	is	felt	that	the	requirements	are	not	clear	enough	to	proceed	with	the	later	
stages	of	the	project,	it	makes	a	lot	of	sense	to	divide	the	project	into	two	parts	[12].	The	first	part	
will	deal	with	developing	the	requirements	to	the	point	where	they	can	be	taken	for	designing	the	
application,	and	the	second	part	will	deal	with	the	development	of	the	software	application.	This	
is	a	good	way	to	remove	all	uncertainties	from	the	project.	The	requirement	development	part	of	
the	project	may	not	have	a	fixed	deadline	denoting	completion	(as	there	is	no	previous	knowledge	
as	to	how	many	requirements	are	there	in	the	first	place),	but	when	the	requirements	are	crystal	
clear,	the	other	part	of	the	project	to	develop	the	software	application	will	have	a	lot	of	clarity,	and	
thus,	timelines	and	cost	can	be	predicted	with	some	good	accuracy.

One	alternative	 to	project	division	 is	also	available.	 It	can	be	done	this	way.	First,	 the	cus-
tomer	can	ask	for	open	bids	from	service	providers	with	just	the	preliminary	information	which	
is	available	about	the	project.	At	this	stage,	price	or	any	monetary	information	for	the	project	is	
not	included.	Once	a	suitable	service	provider	is	chosen,	he	can	be	asked	to	make	detailed	require-
ment	specifications.	These	specifications	are	then	handed	over	to	a	third	party	expert	who	provides	
project	size	information	based	on	the	requirement	specifications.	He	hands	over	the	project	size	
information	 to	 the	 customer	 and	 the	 service	provider.	The	customer	 in	 turn	 can	 calculate	 the	
required	budget	for	the	project	given	the	prevailing	market	rates	for	software	development	costs.	
The	service	provider	calculates	the	schedule	and	the	number	of	people	required	to	do	the	software	
development	on	the	project	based	on	its	productivity	level.	So	at	this	stage,	project	budget,	project	
duration,	and	the	number	of	people	on	the	project	is	fixed.	Later,	if	the	requirements	are	modified,	
then	the	impact	of	the	change	on	project	schedule,	project	budget,	and	project	team	size	can	be	
calculated,	and	the	project	information	can	be	adjusted	accordingly	(Figure	2.6).

Project Initiation Management  ◾  35

On	paper,	this	arrangement	looks	good.	But	what	are	the	weaknesses	of	this	model?	Well,	one	
point	of	contention	is	how	good	the	bidding	process	will	be.	After	all,	without	detailed	informa-
tion	being	provided	for	the	bid,	how	can	service	providers	make	good	bids?	Then,	how	is	the	cus-
tomer	going	to	know	which	bid	is	good	and	which	one	is	not	in	the	absence	of	vital	information	on	
bid	responses	like	project	cost,	project	schedule	etc.	So	the	bid	selection	will	be	mostly	arbitrary.	
This	is	the	weak	point	in	this	model.

2.15 Artifacts of Project Initiation
Since	project	 initiation	forms	a	very	early	part	of	 the	project,	much	project	 information	is	 still	
not	clear.	Even	customer	requirements	are	not	complete.	So,	it	is	too	early	to	expect	all	details	of	
the	project,	 including	project	plan,	project	 schedule,	 resource	allocation,	 etc.,	 to	be	developed.	
But	we	can	definitely	freeze	the	project	scope,	project	charter,	and	project	objectives	at	this	stage.	
Similarly,	if	a	feasibility	study	has	been	conducted,	then	the	feasibility	report	may	be	one	of	the	
artifacts	for	the	project.

2.16 Case Study
In	Chapter	1,	we	saw	the	introduction	of	the	project	of	our	SaaS	vendor.	We	will	now	continue	
with	our	case	study	and	discuss	how	the	project	initiation	part	of	the	case	study	was	done	for	the	
release	6.0	of	the	product	of	our	SaaS	software	vendor.

2.16.1 Project Charter
In	the	industry	there	are	no	good	solutions	available	for	appointment	scheduling.	By	creating	this	
functionality,	the	SaaS	vendor	wants	to	become	a	leader	in	this	arena.	Existing	as	well	as	potential	
customers	are	also	eagerly	waiting	for	a	good	solution	that	could	substantially	cut	the	waiting	time	

1. Preliminary requirements
2. Invite bids
3. Select service provider
4. Select expert
5. Bear project cost
6. Initiate change request

Customer Expert Service
provider

1. Calculate project size
(revised project size)

1. Reply for bid
2. Calculate productivity
3. Calculate schedule
4. Make project team
5. Build software
6. Adjust project schedule
7. Adjust project team size
8. Hand over software product

Figure 2.6 Alternative model for project division.

36  ◾  Software Project Management: A Process-Driven Approach

during	the	shipping–transporting–receiving	operations	of	goods.	After	building	and	implement-
ing	the	appointment	scheduling	solution,	the	SaaS	vendor	will	be	able	to	effectively	satiate	the	
needs	of	its	customers.

2.16.2 Project Scope
Appointment	scheduling	functionality	is	the	biggest	feature	for	the	6.0	release.	It	could	not	be	
completed	in	one	iteration.	So,	it	was	divided	among	four	iterations.	Calendars	were	created	sepa-
rately	for	dock	doors,	warehouses,	organization,	etc.	in	the	first	iteration	(release	5.3).

The	existing	functionality	of	appointment	scheduling	up	to	the	release	of	5.2	was	limited	only	
as	a	mechanism	to	announce	the	arrival	of	the	truck	for	either	shipping	or	receiving	at	the	ware-
houses.	It	was	not	actually	making	an	appointment,	as	no	constraints	were	considered	for	making	
an	appointment.

For	truck	appointments	at	dock	doors	for	loading/unloading,	there	are	a	lot	of	constraints	to	be	
considered.	Therefore,	it	was	decided	to	create	the	functionality	over	many	phases.	Thus,	in	release	
5.3,	only	constraints	of	truck	type	and	goods	types	were	considered	for	making	appointments.	At	
this	juncture,	calendars	were	also	used	for	dock	doors	(if	for	instance,	a	dock	door	is	open	from	6	
am	to	6	pm	on	Mondays,	then	if	any	truck	arrives	after	6	pm	its	appointment	will	be	considered	only	
for	the	next	day).	In	release	5.5,	the	functionality	was	enlarged	to	consider	constraints	of	labor	avail-
ability,	quality	control	inspector	availability,	expected	arrival	time	of	truck,	time	window	for	mak-
ing	an	appointment,	and	dock	door type.	In	release	5.8,	the	functionality	was	enlarged	to	consider	
constraints	 of	 business	partner	preference,	 truck	 capacity,	 reservation	 frequency	on	 a	dock	door,	
and	reservation	lead	time.	In	the	final	iteration,	the	functionality	was	enlarged	to	consider	the	con-
straint	of	time	gap	between	appointments.	In	this	iteration,	more	time	was	given	for	testing	than	for	
development	as	the	vendor	wanted	to	make	sure	that	all	the	functionalities	work	well,	and	that	the	
software	product	do	not fail.	Instead	of	having	a	large	number	of	poorly	made	features,	it	is	better	to	
have	a	software	product	with	a	limited	number	of	features	that	are	robust	and	will	not	fail.	Reliability	
was	the	top	priority.

After	the	four	iterations	and	the	entire	6.0	release,	the	software	product	should	be	able	to	be	
implemented	with	the	new	functionality	by	all	existing	customers	as	well	as	new	customers	who	
will	sign	contracts	during	this	period.

2.16.3 Project Objectives
The	software	vendor	could	see	that	there	was	a	large	gap	in	the	market	for	supply	chain	manage-
ment	 software	 solutions	 in	 the	grocery	 retail	 segment.	The	 software	 vendor’s	flagship	 software	
product	already	had	functionality	for	transportation	management,	inbound	logistics,	outbound	
logistics,	fleet	management,	transportation	rate	calculation	management	etc.,	up	to	release	5.6	of	
the	software	product.	The	project	charter	for	the	project	to	release	6.0	(through	minor	releases	of	
5.3,	5.5,	and	5.8)	was	to	create	additional	functionality,	such	as	appointment	scheduling	for	ware-
houses	with	incoming	trucks	and	an	audit	trail	for	all	transactions.

Most	 software	planning	 systems	use	 complex	 logic	 to	 implement	 solutions	which	could	be	
used	in	real	world	planning	systems.	Unfortunately,	most	of	the	systems	fail	miserably	in	deliver-
ing	on	promises.	One	reason	is	that	real	world	happenings	are	far	from	ideal.	There	is	always	some	
unplanned	risk	lurking	around	the	corner	that	can	upset	the	rhythm	of	even	the	most	meticu-
lously	planned	activities.	Then	the	planning	logic	is	error	prone.

Project Initiation Management  ◾  37

A	good	algorithm	was	needed	in	the	first	place.	Secondly,	it	had	to	be	implemented	in	such	a	
way	that	it	would	provide	a	real	world	solution.	So,	it	was	decided	to	go	in	for	hard	as	well	as	soft	
constraints	for	making	the	appointment	scheduling	of	an	incoming	truck	for	loading/unloading	
at	a	dock	door.	The	soft	constraints	could	be	overridden	if	some	other	constraint	that	is	higher	in	
hierarchy	is	satisfied	in	the	current	situation.	But	the	hard	constraints	are	such	that	they	will	never	
be	overridden.	All	the	constraints	are	thus	put	in	a	hierarchy,	with	some	of	the	constraints	higher	
up	in	the	hierarchy	and	others	lower.

2.17 Chapter Summary
Project	initiation	most	often	happens	with	a	kick	off	meeting	involving	the	project	manager,	
the	stakeholders,	and	some	key	project	members.	They	define	the	project	charter,	project	scope,	
and	project	objectives.	A	preliminary	effort	and	cost	estimate	 is	chalked	out.	A	preliminary	
sketch	is	also	made	for	the	project	schedule	so	that	a	tentative	duration	for	the	project	can	be	
established.

At	the	initiation	stage,	everything	about	the	project	is	tentative.	But	the	goal	is	to	see	if	the	
project	is	itself	feasible	or	not.	For	this	purpose,	a	feasibility	study	can	also	be	conducted	in	case	
the	confidence	level	for	the	project	is	still	uncertain.	If	the	project	is	found	not	viable	after	the	
feasibility	study,	it	can	be	abandoned.	Abandoning	an	unfeasible	project	at	this	stage	is	less	costly	
than	abandonment	after	investing	large	sums	of	money	and	effort.	In	cases	when	it	is	felt	that	the	
requirements	from	customers	are	not	clear	or	complete,	then	the	project	can	be	split	so	that	the	
requirements	can	be	made	clear	and	complete	in	the	first	phase	of	the	project.	In	the	second	phase	
of	the	project,	the	software	product	can	be	built	on	the	basis	of	complete	customer	requirements.

Exercises
2.1	 	Project	 initiation	 is	 always	 fraught	 with	 the	 possibility	 of	 developing	 misunderstanding	

between	the	project	 stakeholders	and	the	project	 teams.	Provide	a	 list	of	actions	 that	 the	
project	team	can	take	to	avoid	building	such	a	situation.

2.2	 	Go	to	some	open	source	projects	and	find	out	about	their	project	charters.	Find	out	why	they	
have	those	project	charters.

Review Questions
2.1	 What	 is	 a	project	 charter?	How	can	you	ensure	 that	 the	project	 charter	 is	useful	 for	 the	

project?
2.2	 What	things	should	go	on	the	list	containing	project	objectives?
2.3	 How	can	you	ensure	that	the	project	scope	for	a	given	project	is	well	defined	at	the	initiation	

phase	so	that	it	does	not	get	over	stretched	later?
2.4	 What	are	the	difficulties	faced	by	software	projects	during	project	initiation?
2.5	 What	is	the	relation	between	quality	level	and	project	scope?
2.6	 What	other	activities	are	performed	during	project	 initiation	apart	 from	defining	project	

charter,	project	objectives,	and	project	scope?

38  ◾  Software Project Management: A Process-Driven Approach

Recommended Readings
	 1.	 H.	Kerzner	(2009)	Project Management: A Systems Approach to Planning, Scheduling, and Controlling,	

Wiley,	Hoboken,	NJ.
	 2.	 J.	P.	Lewis	(2002)	Fundamentals of Project Management: Developing Core Competencies to Help Outperform

the Competition,	American	Management	Association,	New	York.
	 3.	 É.	Verzuh	(2005)	The Fast Forward MBA in Project Management,	2nd	edn.,	Wiley,	New	York.
	 4.	 A.	Ahmed	(2009)	Software Testing as a Service,	CRC	Press,	Boca	Raton,	FL.
	 5.	 R.	J.	Muller	(1997)	Productive Objects: An Applied Software Project Management Framework,	Morgan	

Kaufmann,	San	Francisco,	CA.
	 6.	 E.	Miranda	(2003)	Running the Successful Hi-Tech Project Office (Artech	House	Technology	Management	

and	Professional	Development	Library),	Artech	House	Publishing,	Boston,	MA.
	 7.	 C.	F.	Gray,	E.	W.	Larson	(2002)	Project Management: The Managerial Process,	McGraw-Hill/Irwin,	Burr	

Ridge,	IL.
	 8.	 Q.	 Wang	 (2008)	 Making Globally Distributed Software Development a Success Story: International

Conference on Software Process, ICSP 2008,	May	10–11,	Leipzig,	Germany.
	 9.	 H.	A.	Levine	(2002)	Practical Project Management: Tips, Tactics and Tools,	Wiley,	New	York.
	 10.	 J.	 McManus	 (2004)	 Managing Stakeholders in Software Development Projects (Computer	 Weekly	

Professional),	Butterworth-Heinemann,	Amsterdam,	the	Netherlands.
	 11.	 J.	Sanchez,	M.	P.	Canton	(2007)	Software Solutions for Engineers and Scientists,	CRC	Press,	Boca	Raton,	FL.
	 12.	 S.	 Donaldson,	 S.	 G.	 Siegel,	 S.	 Siegel	 (2000)	 Successful Software Development,	 Prentice	 Hall,	 Upper	

Saddle	River,	NJ.

39

Chapter 3

Software Project Effort
and Cost Estimation

In.the.previous.chapter,.we.learned

	◾ How	is	a	project	initiated?
	◾ What	is	a	project	charter?
	◾ What	is	project	scope?
	◾ What	are	the	objectives	in	a	project?
	◾ What	project	activities	are	performed	during	project	initiation?

In.this.chapter,.we.will.learn

	◾ How	is	an	effort	estimate	for	a	project	made?
	◾ What	are	the	different	effort	estimation	techniques?
	◾ How	is	a	cost	estimate	for	a	project	made?
	◾ What	are	the	different	cost	estimation	techniques?
	◾ How	is	a	schedule	estimate	for	a	project	made?
	◾ How	is	a	resource	estimate	for	a	project	made?

3.1 Introduction
Effort	estimation	for	any	software	project	is	very	important.	However,	for	outsourced	projects	it	is	
even	more	crucial.	Effort	estimate	along	with	the	schedule	indicate	to	the	customer	what	the	cost	
impact	will	be	and	when	the	software	can	be	realized.	The	management	in	customer	organiza-
tions	typically	expects	a	lot	from	software	projects.	Software	projects	are	seen	as	strategic	tools	to	

40  ◾  Software Project Management: A Process-Driven Approach

compete	in	the	market.	Therefore,	a	successful	software	implementation	is	regarded	as	a	market	
edge	and	can	influence	the	fortunes	of	that	organization.

Software	projects	are	costly	as	software	professionals	are	expensive	to	hire.	The	optimal	usage	
of	 time	of	 these	high-salaried	people	 requires	careful	project	planning	 to	minimize	wastage	of	
time	of	these	high-cost	resources.	At	the	same	time,	the	service	provider	should	be	able	to	bill	its	
customer	for	the	actual	effort	put	forth	in	delivering	the	project	so	that	neither	the	customer	nor	
the	service	provider	is	at	a	loss	for	wrong	billing	in	the	costs	involved.	Therefore,	an	accurate	effort	
and	cost	estimate	is	of	paramount	importance	for	software	projects.

With	regard	to	effort	for	a	software	project,	there	are	two	aspects.	One	is	to	provide	a	good	
effort	estimate	and	present	it	to	the	customer.	The	other	aspect	is	to	use	it	to	form	the	project	team	
based	on	the	skills	required	for	the	project	and	the	kind	of	budget	that	will	be	available	for	the	
project	so	that	the	right	kind	of	people	can	be	staffed	for	the	project	within	the	specified	budget.	
Tight	budgets	and	tight	schedules	are	the	general	norm	for	most	projects	today	and	this	makes	
good	and	reliable	effort,	schedule	and	cost	estimates	for	projects	even	more	important.

3.2 Effort Estimation Techniques
Effort	estimation	is	an	evolutionary	phenomenon.	The	beginning	of	any	project	sees	an	initial	effort	
estimate	which	is	rough	and	mostly	inaccurate	at	best	[1].	The	more	the	information	available	about	
the	project,	the	more	accurate	will	be	the	estimate.	As	more	and	more	information	becomes	available	
for	any	project	as	it	progresses,	it	makes	sense	to	revise	project	estimate	regularly	to	make	the	estimate	
more	accurate	(Figure	3.1).

Statistical	effort	estimate	techniques	are	extremely	useful	for	effort	estimation	[2].	Actual	effort	
data	from	past	projects	provide	good	guidance	as	to	what	the	effort	required	for	the	given	project	
could	be.	Comparing	data	available	for	current	project	with	past	executed	projects	should	provide	
this	valuable	estimated	effort	information.	Thus,	historical	projects	data	come	in	handy	for	effort	
estimation.	But	how	can	one	make	estimates	for	projects	in	cases	when	no	information	or	no	relevant	
information	is	available	for	the	current	project	or	past	projects?	Here	we	have	the	following	scenarios:

	 1.	Much	relevant	project	data	are	available	for	the	current	project	but	not	much	information	
about	previous	projects.

	 2.	Previous	project	data	are	available	for	the	project	but	not	much	information	about	the	cur-
rent	project.

Deviation

–15%
Time

+15%

Figure 3.1 Effort estimate deviation with elapse of time.

Software Project Effort and Cost Estimation  ◾  41

	 3.	Project	data	are	available	for	the	current	project	as	well	as	that	of	previous	projects.
	 4.	Some	project	data	are	available	for	the	current	project.
	 5.	No	project	data	are	available	for	both	current	as	well	as	previous	projects.

3.2.1 Choosing a Suitable Effort Estimate Technique
Different	effort	estimation	techniques	can	be	used	depending	on	the	situation	[3].	If	you	have	good	
information	available	for	the	current	project	but	no	data	available	for	previous	projects,	 the	best	
technique	for	effort	estimation	will	be	the	COCOMO	model,	because	this	model	uses	project	size	
information	from	lines	of	code	(LOC)	as	well	as	project	attributes	available	from	current	project	
information.	COCOMO	also	uses	industry	averages	for	environment	factor	calculations.	Therefore,	
if	no	previously	executed	project	information	is	available	then	the	COCOMO	model	is	the	best.

If	we	have	data	available	for	both	current	as	well	as	previous	projects	then	the	function	point	
analysis	(FPA)	technique	is	a	good	option.	This	is	because	FPA	technique	uses	historical	project	
data	for	deriving	adjustment	factors.	It	also	uses	historical	project	data	to	derive	productivity	for	
projects.	Therefore,	 in	cases	where	we	have	both	project	as	well	as	previously	executed	projects	
data,	FPA	can	be	used.	Otherwise	this	technique	is	difficult	to	use	if	both	these	pieces	of	data	are	
not	available.

If	we	have	some	or	all	data	available	for	the	current	project,	then	the	Wide	Band	Delphi	model	
is	the	best.	Wide	Band	Delphi	technique	essentially	is	an	experience-based	technique.	People	who	
will	be	doing	the	actual	project	tasks	along	with	other	project	team	members	derive	effort	esti-
mates	for	various	project	tasks	after	many	brainstorming	sessions	(Table	3.1).

If	we	have	no	project	data	available	for	the	current	project	then	it	is	simply	impossible	to	esti-
mate	effort.

3.2.2 Function Point Analysis
FPA	[4]	considers	two	things	for	effort	estimates.	First,	it	determines	size	of	the	project	in	terms	
of	the	number	of	function	points	(FPs).	Second,	it	determines	productivity	of	the	project	team.	
Project	size	is	derived	from	customer	specifications.	Based	on	customer	requirements,	an	estimate	
is	made	for	the	number	of	functions	to	be	built.	These	functions	are	contained	in	either	internal	
or	 external	 files.	 Each	 of	 these	 functions	 has	 interfaces	 for	 communication	 with	 internal	 and	
external	files.	These	functions	also	have	interfaces	for	communication	with	devices.	The	number	
of	parameters	for	each	of	these	functions	is	determined.	The	complexity	of	these	functions	is	also	
determined.	Based	on	function	complexity	and	number	of	parameters	inside	each	function,	the	
number	of	FPs	is	determined	for	each	function.	Totaling	all	these	FPs	gives	the	total	number	of	
unadjusted	FPs	for	the	entire	system	to	be	built	and	then	the	adjustment	factor	for	the	system	is	
determined	(Figures	3.2	and	3.3).

Table 3.1 Estimation Technique Selection Based on Project
Information Availability

Project Details Estimation Technique

1 Historical project data + current project data FPA

2 Current project data COCOMO, Wide Band Delphi

3 No data No technique can be used

42  ◾  Software Project Management: A Process-Driven Approach

The	process	for	calculation	is	as	follows:

	 1.	Determine	type	of	function	count
	 2.	Identify	scope	and	boundary	of	count
	 3.	Determine	unadjusted	FP	count
	 4.	Determine	value	adjustment	factor
	 5.	Calculate	adjusted	FP	count

For	 function	 count	 calculations,	 three	 types	of	 function	 count	 are	defined:	development	project	
FP	count,	enhance	project	FP	count,	or	application	FP	count.	Depending	on	the	type	of	project in	
hand (development,	enhancement,	or	application	type	of	project),	the	suitable	function	count	type	
(FP	count	type)	is	chosen.	FP	count	type	is	used	for	determining	how	the	number	of	FPs	will	be	
summed	up.	The	scope	of	count	is	determined	from	the	data,	screens,	and	reports	which	will	be	used	
by	the	application.	The	boundary	 is	determined	by	the	 integration	needs	of	 the	application	with	
other	applications.	If	the	application	is	a	stand-alone	one	and	will	not	be	integrated	with	other	appli-
cations,	then	the	boundary	value	will	be	zero.	But	if	some	integration	is	required	then	using	the	inte-
gration	interface,	function	counts	for	integration	will	be	calculated.	Calculation	is	done	on	the	basis	
of	the	number	of	external	interface	files	and	the	complexity	of	the	functions	contained	in	those	files.

An	unadjusted	FP	count	consists	of	five	function	types.	These	types	are	grouped	into	two,	namely,	
data	 functions	 and	 transaction	 functions.	 Data	 functions	 are	 internal	 logical	 files	 and	 external	
interface	files.	Transaction	functions	are	external	inputs,	external	outputs,	and	external	inquiries.	
These	functions	are	defined	with	descriptions	like	User	Identifiable,	Control	Information,	Elementary	
Process,	Data	Element	Type	(DET),	and	Record	Element	Type	(RET).	For	each	file,	the	complex-
ity	is	determined	using	these	descriptions.	You	make	a	table	and	calculate	the	complexity	values	of	
Low,	Average,	or	High	depending	on	the	values	for	DETs	and	RETs	present	in	the	file	(Table	3.2).

Determine
function count

type

Boundary and
scope of count

Calculate
unadjusted function

point count

Calculate
adjusted function

point count

Apply value
adjustment factor

Figure 3.2 Function point count process steps.

Enhanced project
FP count

Application
project FP count

Function count
types

Development
project FP count

Figure 3.3 Function count types.

Software Project Effort and Cost Estimation  ◾  43

Based	on	the	complexity,	a	value	of	FP	is	assigned	for	the	file.	A	complexity	of	Low	yields	a	value	
of	7,	for	Average	it	is	10,	and	for	High	it	is	15	for	internal	logical	files.	For	external	interface	files,	
the	values	are	5,	7,	and	10,	respectively.	You	also	notice	that	FPs	for	external	files	are	less	than	those	
for	internal	files,	because	internal	files	are	used	more	often	during	system	operation	than	external	
files.	Hence,	more	FPs	are	assigned	to	internal	files.

The	FP	calculation	for	transaction	functions	is	similar	(Table	3.3).
Based	on	the	complexity,	a	value	of	FP	is	assigned	for	the	external	input.	Complexity	of	Low	

yields	a	value	of	3,	for	Average	it	is	4,	and	for	High	it	is	6	(Table	3.4).
Based	on	the	complexity,	a	value	of	FP	assigned	for	the	external	output.	Complexity	of	Low	

yields	a	value	of	4,	for	Average	it	is	5,	and	for	High	it	is	7.	In	case	of	external	inquiries,	it	is	3,	4,	
and	6,	respectively.

Once	we	have	the	number	of	FPs	for	the	entire	system,	we	can	derive	the	effort	estimate	for	the	
project	by	multiplying	this	number	with	productivity.

Table 3.2 Complexity Calculation
for Files (Internal Logical Files and
External Interface Files)

RET

DET

1–19 20–50 51+

1 Low Low Average

2–5 Low Average High

6+ Average High High

Table 3.3 Complexity Calculation
for External Inputs

RET

DET

1–4 5–15 16+

0–1 Low Low Average

2 Low Average High

2+ Average High High

Table 3.4 Complexity Calculation
for External Outputs

RET

DET

1–5 6–19 20+

0–1 Low Low Average

2–3 Low Average High

4+ Average High High

44  ◾  Software Project Management: A Process-Driven Approach

	 Effort (in man months) No. of Function Points Productivi= × tty

The	calculation	for	productivity	is	yet	another	time-consuming	process.	Based	on	the	expe-
rience	 and	 skills	of	project	 team	members,	productivity	 is	 calculated.	There	 is	no	fixed	 for-
mula	for	productivity	calculation.	Mostly	it	is	calculated	using	statistical	process	control	data	
from	previous	projects.	The	industry	norm	for	productivity	calculation	is	arrived	at	in	terms	
of	effective	LOCs	generated	per	month	per	person.	This	figure	 includes	work	done	 in	other	
phases	of	the	development	life	cycle	as	well	(requirement	management,	design,	testing,	etc.).	
So	even	though	in	the	construction	phase,	actual	LOCs	generation	may	be	6000	per	month	
per	person,	the	effective	LOCs	for	the	project	may	come	to	less	than	600	since	effort	for	work	
done	in	other	phases	is	also	included.	The	industry	norm	for	productivity	in	software	develop-
ment	industry	is	300–1000	LOCs	per	month	per	person.	When	SPC	data	are	not	available,	
productivity	has	to	be	calculated	from	scratch	or	an	industry	average	figure	has	to	be	taken	for	
effort	calculations.

There	are	also	some	other	formulae	to	calculate	schedule	and	staff	size	required	to	execute	
the	project.	These	were	derived	by	luminaries	in	software	engineering	like	Barry	Boheim.

Project	duration	=	2.5	×	(effort)1/3

Minimum	duration	=	0.75	×	(effort)1/3

Optimum	staffing	size	=	(effort)1/2

3.2.2.1 Function Point Analysis Usage

The	FPA	technique	can	be	used	at	early	stage	of	the	project	when	only	the	customer	requirements	
are	available.	It	is	a	standard	effort	estimation	method	and	is	recognized	by	many	customers.	
FPA	is,	therefore,	widely	used	in	the	industry.	On	the	flip	side,	it	is	a	difficult	and	time-consuming	
technique	and	only	experts	can	use	it.	Hence,	it	is	not	advisable	to	use	the	FPA	technique	when	the	
project	estimators	do	not	have	the	requisite	experience.

3.2.3 Wide Band Delphi
The	Wide	Band	Delphi	 technique	 [5]	 is	 based	on	 conducting	brainstorming	 sessions	with	 the	
project	team	and	arriving	at	consensus	figures	for	effort	estimates.	When	effort	estimates	are	made	
by	people	who	will	actually	work	on	the	assignments	for	which	they	give	the	estimate,	then	figures	
are	likely	to	be	close	to	the	actual	effort	that	will	be	required.	The	raw	effort	figures	by	the	proj-
ect	team	members	about	their	own	assignments	are	then	normalized	when	other	team	members	
debate	about	these	figures	and	any	inconsistencies	in	the	raw	figures	are	removed.	There	are	two	
to	three	such	brainstorming	sessions.	In	the	first	session	the	raw	estimates	are	discussed	just	to	get	
the	basis	on	which	the	estimate	was	made.	In	the	next	two	sessions,	estimates	are	taken	from	other	
team	members.	Finally,	the	estimate	for	each	task	is	normalized.

One	practical	way	of	coming	to	a	consensus	effort	estimate	using	the	Wide	Band	Delphi	tech-
nique	is	through	the	following	formula.

	 Effort estimate (pessimistic estimate likely estimate= + × 44 optimistic estimate)/6+

Here	pessimistic	estimate	is	the	one	where	a	team	member’s	estimate	is	the	highest	(in	terms	of	
number	of	man	months).	The	likely	estimate	is	the	average	of	the	most	common	estimate	figure.	
In	most	cases,	the	likely	estimate	is	the	estimate	given	by	the	person	who	has	been	assigned	to	the	

Software Project Effort and Cost Estimation  ◾  45

task	for	which	the	effort	estimate	is	being	made.	The	optimistic	estimate	is	the	one	where	a	team	
member’s	estimate	is	the	lowest	(in	terms	of	number	of	man	months).

The	Wide	Band	Delphi	technique	is	commonly	applied	on	small	to	medium-sized	projects	and	
where	the	project	team	is	composed	of	people	who	have	been	around	and	have	worked	with	each	
other	for	some	time.	The	project	manager	also	knows	that	in	such	a	situation	some	team	members	
make	good	estimates	and	some	are	not	able	to	do	it	with	that	much	precision.	So	the	effort	esti-
mate	figure	thus	derived	has	a	good	backing	by	the	team	and	the	project	manager.	At	the	same	
time,	taking	into	consideration	all	effort	estimate	figures	from	all	team	members	makes	the	figure	
rather	objective	and	reliable.

3.2.4 COCOMO
COCOMO	[6]	is	one	of	the	original	effort	estimation	models	developed	by	software	engineer-
ing	experts.	It	is	also	a	very	popular	technique	for	effort	estimation	for	software	projects.	Since	
COCOMO	 does	 not	 use	 SPC	 data,	 it	 can	 be	 used	 in	 cases	 where	 past	 project	 data	 are	 not	
available.	Rather	COCOMO	uses	industry	averages	for	inputs	in	providing	effort	estimation	
calculations.

COCOMO	uses	project	assumptions,	definitions,	and	many	cost	factors	in	assessing	an	esti-
mate	for	any	project.	It	uses	source	LOCs	required	to	build	the	software	as	the	volume	of	work	to	
be	done	for	which	the	effort	estimate	is	made.	Apart	from	source	LOCs,	there	are	cost	drivers	and	
scale	drivers	which	influence	effort.	Cost	drivers	include	software	safety,	developer	skill,	usage	of	
tools,	etc.	All	of	the	cost	drivers	are	categorized	into	personal	factors,	product	factors,	platform	
factors,	 and	 project	 factors.	 Personal	 factors	 include	 analyst	 capability,	 application	 experience,	
programmer	capability,	language	and	tool	experience,	etc.	Product	category	includes	database	size,	
required	software	reliability,	product	complexity,	required	reusability,	documentation	needs,	etc.	
Platform	factors	 include	execution	 time	constraint,	main	 storage	constraint,	virtual	machine	
volatility,	platform	volatility,	platform	difficulty,	etc.	Project	factors	include	use	of	software	tools,	
modern	programming	practices,	required	development	schedule,	multisite	development,	require-
ment	volatility,	etc.	The	scale	drivers	include	precedentedness,	development	flexibility,	architecture/
risk	resolution,	team	cohesion,	and	process	maturity.

3.2.4.1 Basic COCOMO

There	are	many	ways	COCOMO	calculations	can	be	made,	as	variations	of	the	original	COCOMO	
model	have	been	improved	upon	or	adapted	to	suit	many	environments.	For	a	quick	effort	calcula-
tion,	a	variation	of	the	COCOMO	model	is	used	which	is	known	as	basic	COCOMO.

The	basic	COCOMO	calculation	equation	is	as	follows:

	 Effort 2.94 ()= × ×EAF KLOC E

where
EAF	is	the	effort	adjustment	factor	derived	from	cost	drivers
E	is	the	exponent	derived	from	scale	drivers
KLOC	is	the	kilo	lines	of	software	code

Values	for	EAF	range	from	1.0	to	2.0.	Values	for	E	range	from	1.0	to	1.5.

46  ◾  Software Project Management: A Process-Driven Approach

Schedule	duration	is	calculated	as

	 Duration 3.67 (effort)= × SE

where	SE	is	the	schedule	equation	derived	from	scale	drivers.
Staffing	needs	can	be	calculated	by	dividing	effort	with	duration.
In	the	basic	COCOMO	model,	hardware	constraints,	use	of	modern	tools	and	techniques,	

personal	productivity,	etc.	are	not	taken	into	account.
Basic	COCOMO	is	most	suitable	for	making	estimates	at	early	stage	of	any	project.

3.2.4.2 Intermediate COCOMO

In	 intermediate	COCOMO,	we	make	 an	 effort	 estimate	 for	 the	project	with	 the	product	 size	
along	with	the	cost	drivers.	The	cost	driver	set	includes	assessment	of	attributes	for	product,	proj-
ect,	hardware,	 and	 the	project	 team’s	 experience	 and	 skills.	These	 attributes	 are	 categorized	 as	
product	attributes,	which	include	required	reliability,	application	database	size,	and	application	
complexity.

Hardware attributes	include	run-time	performance	constraint,	memory	constraint,	virtual	machine	
environment	volatility,	turnabout	time	requirement.

Project team attributes	include	analyst	capability,	software	engineer	capability,	application	experi-
ence,	virtual	machine	experience,	and	programming	language	experience.

Project attributes	include	software	tool	usage,	software	engineering	methods	usage,	and	develop-
ment	schedule	requirement.

How	each	of	the	cost	drivers	impacts	the	effort	estimate	is	assessed	by	assigning	appropriate	
weights	to	these	attributes.	To	assign	these	weights,	first	a	six-point	scale	is	created	with	scales	of	
very	low,	low,	nominal,	high,	very	high,	and	extra	high.	The	values	for	these	scales	vary	from	a	low	
of	0.70	to	a	high	of	1.60.	For	any	project,	each	of	the	attributes	is	given	relevant	values	based	on	
this	scale.	These	attribute	values	are	industry	standard	but	at	what	scale	value	any	attribute	falls	is	
decided	by	the	estimating	person	(Table	3.5).

The	formula	for	intermediate	COCOMO	is	given	as	E	=	a(KLOC)(E).	EAF,	where	a	and	E	
are	a	coefficients	whose	values	depend	on	the	kind	of	software	project	(organic,	semi-detached,	or	
embedded)	for	which	the	estimation	is	being	made	(Table	3.6).

3.2.4.3 Detailed COCOMO

In	basic	and	intermediate	COCOMO,	the	effort	estimate	is	a	gross	estimate	at	the	project	level.	
But	a	project	is	further	divided	into	many	phases.	Each	phase	may	need	to	have	a	separate	effort	
estimate	calculation.	This	is	done	in	the	detailed	COCOMO	model.

In	the	initial	stages	of	the	project,	when	a	rough	estimate	is	needed	for	each	project	phase,	the	basic	
COCOMO	model	is	used.	In	later	stages	in	the	project	when	all	project	details	are	clear	and	an	effort	
estimate	is	needed	for	each	project	phase,	the	intermediate	COCOMO	is	used	to	calculate	the	effort	
estimate	for	each	phase.	The	same	values	that	are	used	for	calculation	at	the	project	level	can	be	used	for	
calculations	at	the	phase	level.	The	only	difference	will	be	that	at	this	level,	the	effort	estimate	will	take	
values	for	relevant	cost	driver	attributes	and	not	for	the	entire	project.	For	instance,	for	the	design	phase,	
the	effort	estimate	will	take	attribute	values	only	for	cost	drivers	that	will	influence	the	design	phase.

Software Project Effort and Cost Estimation  ◾  47

Table 3.5 Scale and Scale Values for Attributes of Cost Drivers

Cost Drivers

Ratings

Very Low Low Nominal High Very High Extra High

Product attributes

Required software
reliability

0.75 0.88 1.00 1.15 1.40

Size of application
database

0.94 1.00 1.08 1.16

Complexity of the
product

0.70 0.85 1.00 1.15 1.30 1.65

Hardware attributes

Run-time performance
constraints

1.00 1.11 1.30 1.66

Memory constraints 1.00 1.06 1.21 1.56

Volatility of the virtual
machine environment

0.87 1.00 1.15 1.30

Required turnabout time 0.87 1.00 1.07 1.15

Personnel attributes

Analyst capability 1.46 1.19 1.00 0.86 0.71

Applications experience 1.29 1.13 1.00 0.91 0.82

Software engineer
capability

1.42 1.17 1.00 0.86 0.70

Virtual machine
experience

1.21 1.10 1.00 0.90

Programming language
experience

1.14 1.07 1.00 0.95

Project attributes

Use of software tools 1.24 1.10 1.00 0.91 0.82

Application of software
engineering methods

1.24 1.10 1.00 0.91 0.83

Required development
schedule

1.23 1.08 1.00 1.04 1.10

48  ◾  Software Project Management: A Process-Driven Approach

3.2.4.4 COCOMO Model Conclusion

Over	the	years,	the	COCOMO	model	has	been	refined	by	many	experts.	At	the	same	time	due	to	
changes	in	technology	and	growth	in	maturity	of	software	development	teams,	the	formulae	for	
calculation	of	effort,	duration,	and	manpower	requirements	needed	to	be	adjusted	for	many	factors	
so	that	the	formulae	remain	relevant	and	can	be	effectively	used.	One	popular	variant	is	known	as	
COCOMO	II.	Many	organizations	have	developed	their	own	versions	of	the	COCOMO	model	
based	on	the	unique	environments	under	which	they	operate.	While	some	of	them	have	added	or	
deleted	more	dimensions	in	calculation	of	effort	estimate	figures,	some	others	have	modified	the	
values	of	these	dimensions	to	correspond	to	their	environment.

3.2.5 Effort Estimation for Waterfall Model–Based Planning
Software	projects	with	the	waterfall	or	traditional	development	model	have	to	plan	for	everything	
in	advance	including	making	elaborate	effort	estimates	[7].	But	effort	estimation	cannot	be	made	
without	proper	identification	of	project	tasks	that	will	be	involved	in	making	the	estimate	for	the	
project.	The	best	way	is	to	first	break	the	project	into	phases	and	milestones	and	then	estimate	
which	tasks	will	be	involved	in	each	phase.	In	traditional	software	development	projects,	a	water-
fall	model	is	adopted.	So	the	project	will	have	major	phases	and	milestones	of	software	require-
ments	management,	software	design,	software	construction,	software	testing,	and	finally	software	
release.	A	software	maintenance	project	may	have	reverse	engineering,	software	construction,	soft-
ware	testing,	and	release	phases.	Sometimes	a	project	could	be	small,	consisting	of	a	partial	set	
of	activities,	for	instance,	one	needs	to	provide	only	the	design	of	the	software	application,	while	
other	services	are	provided	by	some	other	service	provider.	In	any	case,	once	phases	of	the	project	
are	identified,	then	individual	tasks	of	the	project	can	be	identified.	Once	these	tasks	are	identi-
fied,	 then	the	size	of	 these	tasks	can	be	measured	from	specifications	such	as	quality	 level	and	
phase-specific	information.	For	instance,	suppose	for	the	coding	task	in	the	construction	phase,	a	
component	needs	to	be	developed	using	Java.	The	size	of	the	component	will	depend	on	the	number	
of	functions	that	will	be	built	for	this	component.	The	complexity	of	the	component	will	depend	
on	what	kind	of	functions	these	will	be.	Will	these	functions	have	interfaces	for	other	functions?	
Once	you	have	all	details	about	the	component,	then	you	can	make	a	size	estimate	for	the	com-
ponent	precisely.	Now	you	need	to	know	who	will	code	this	component.	Does	this	person	have	
prior	experience	of	coding	similar	components	and	are	they	good	at	it?	From	here	you	can	estimate	
productivity.	From	size	and	productivity	one	can	figure	out	how	many	days	it	will	take	to	develop	
that	component.	Estimates	for	all	tasks	in	the	project	can	be	made	likewise	(Figures	3.4	and	3.5).

One	 important	consideration	 for	effort	estimation	 for	a	project	with	 the	waterfall	model	 is	
calculating	effort	estimation	for	different	phases	of	the	software	life	cycle	[8].	This	can	be	done	
in	two	ways.	Effort	estimate	for	a	phase	can	be	calculated	by	summing	up	effort	required	for	all	

Table 3.6 Coefficient Values a and E
for Various Project Types

Software Project Type a E

Organic 3.2 1.05

Semi-detached 3.0 1.12

Embedded 2.8 1.20

Software Project Effort and Cost Estimation  ◾  49

tasks	associated	with	that	phase.	An	effort	estimate	for	all	phases	can	also	be	calculated	from	total	
effort	required	for	the	project	by	allocating	percentage	of	effort	for	each	phase.	Thus,	if	total	effort	
required	for	the	project	is	1500	man	hours,	and	if	requirement	management	comprises	15%	of	
total	effort,	then	the	effort	estimate	for	requirement	management	will	be	225	man	hours	(1500	×	
15/100).	Likewise,	an	effort	estimate	for	other	phases	can	be	calculated.

3.2.6 Effort Estimation for Iterations Model–Based Planning
Agile,	iterative,	extreme	programming,	and	many	other	forms	of	alternative	models	for	software	
development	are	 fundamentally	different	 from	the	waterfall	model	 in	 that	 they	have	 iterations	
over	one	phase	or	many	phases	of	the	SDLC	life	cycle.	Effort	and	schedule	estimates	for	these	
projects	differ	significantly	compared	to	the	waterfall	model	[9].	Many	authors	of	books	related	to	
software	engineering	and	software	project	management	have	tried	to	explain	differences	in	effort	
and	schedule	estimation	 for	different	models.	The	agile	model	 is	best	 suited	 for	projects	where	
the	risk	of	software	development	is	very	high.	That	is	why	from	the	beginning,	it	was	adopted	for	
projects	where	the	software	product	to	be	developed	was	small	or	the	software	requirements	were	
not	typical	(no	similar	type	of	software	products	existed	before	due	to	new	technology	or	new	
industry).	These	kinds	of	projects	are	more	 like	research	and	development	projects	with	a	high	
degree	of	innovation	and	creativity	required.	Thus,	instead	of	a	fixed	price/fixed	duration	model,	
a	time-and-material–based	contract	suits	such	projects.	In	this	kind	of	arrangement,	making	an	
effort	and	cost	estimate	for	the	project	is	difficult	(Figure	3.6).

However,	with	the	increasing	maturity	of	iterative	models,	increasingly	varied	kinds	of	projects	
are	being	executed	with	any	of	the	iterative	models.	It	is	not	uncommon	for	even	large	projects	with	
a	size	exceeding	1	million	LOCs	these	days	to	use	an	iterative	model.	In	such	cases,	an	effort	and	
cost	estimate	for	the	project	becomes	necessary.	However,	empirical	methods	for	effort	and	cost	
estimation	for	such	projects	have	not	sufficiently	developed	and	standards	are	not	available	that	can	
be	used.	Therefore,	most	organizations	have	developed	their	own	methods	for	these	calculations.

Team skills Team
experience

Productivity

Programming
language and
technology

Figure 3.5 Factors influencing productivity.

Product size Quality level

Effort size

Complexity

Figure 3.4 Factors influencing effort size.

50  ◾  Software Project Management: A Process-Driven Approach

Essentially,	the	iterations	of	tasks	over	different	phases	in	the	project	make	an	effort	esti-
mate	 difficult.	 For	 instance,	 suppose	 the	 design	 of	 a	 component	 needs	 to	 be	 iterated	 three	
times	(which	is	not	known	at	the	start	of	the	project)	then	effort	for	designing	the	component	
normally	 should	 be	 three	 times	 that	 of	 effort	 required	 for	 designing	 that	 component	 once.	
However,	this	is	not	the	case.	In	each	iteration	the	effort	required	will	be	different,	because	the	
component	details	will	be	different	in	each	iteration,	there	will	be	different	sets	of	tasks	in	dif-
ferent	iterations,	and	the	volume	of	work	in	each	iteration	for	developing/modifying	the	same	
component	will	be	different.	Therefore,	the	effort	estimate	will	be	different	in	each	iteration.	
Moreover,	since	it	is	not	known	how	many	iterations	will	be	there	in	the	first	place	and	how	
much	work	will	actually	be	involved	until	each	iteration	starts,	effort	estimate	simply	becomes	
impossible	to	calculate.

One	more	aspect	in	an	iteration-based	model	is	that	iteration	is	done	either	for	modifying	the	
same	component	or	a	complete	iteration	is	made	over	all	the	phases	of	the	product	development	
life	cycle	for	developing	a	new	functionality	in	the	software.	In	the	latter	case,	each	iteration	is	
completely	different	from	the	other.	Effort	and	cost	estimates	for	each	iteration	will	be	different	
and	have	to	be	computed	separately.

One	positive	aspect	about	computing	effort	and	cost	estimates	for	iteration-based	projects	is	
that	the	duration	of	each	iteration	is	short;	usually	2–8	weeks.	In	the	few	initial	iterations,	effort	
and	cost	estimates	may	be	wrong	to	a	great	degree.	However,	since	the	volume	of	work	does	not	
much	exceed	that	of	any	waterfall	model–based	project	(may	be	1/20	or	even	less),	this	variance	
is	not	significant	in	terms	of	the	amount	of	time	and	cost	even	though	it	may	be	large	in	percent-
age	terms.	In	subsequent	iterations,	since	the	team	has	gained	experience,	estimates	will	be	more	
accurate	and	will	not	be	a	major	risk	factor.

Due	to	 these	reasons,	 for	 iteration-based	projects,	effort	and	cost	estimates	are	not	a	major	
concern	for	customers	and	thus,	not	a	critical	element	of	project	management.

Again,	effort	and	cost	estimation	is	good	only	when	the	project	activities	can	be	well	defined	
and	estimated	measurements	can	be	taken	with	some	precision.	When	a	software	product	is	to	be	
developed	using	a	new	technology,	it	is	extremely	difficult	to	predict	project	activities	and	their	
measurements	in	terms	of	duration	and	costs	involved.	Similarly,	when	a	new	software	product	is	
to	be	developed	using	any	agile	model	and	since	there	is	no	significant	body	of	knowledge	available	
that	can	be	applied	for	effort	estimates,	then	again	effort	and	cost	estimate	is	difficult.	At	the	same	
time,	using	established	models	like	the	waterfall	or	rational	unified	process	is	not	practicable	as	
these	types	of	projects	are	very	risky	(as	outcomes	of	these	projects	are	largely	unknown).	Iteration-
based	product	development	models	are	extremely	useful	in	such	cases	as	they	reduce	exposure	to	
high	risk	by	dividing	it	into	many	smaller	risks	in	terms	of	small	iterations.	If	the	project	outcome	
after	a	few	iterations	is	not	encouraging,	then	the	project	can	be	abandoned	with	lesser	impact	in	
terms	of	revenue	and	effort	loss.

Team skills Team
experience

Estimation for
iterative projects

Number of
iterations

Figure 3.6 Factors influencing effort estimate for agile and iteration-based projects.

Software Project Effort and Cost Estimation  ◾  51

3.3 Cost Estimation
Once	you	have	the	effort	estimate	for	the	project,	calculating	costs	for	the	project	is	required	[10].	
Here	we	are	assuming	that	the	project	is	based	on	a	fixed	cost–fixed	duration	basis.	The	most	pop-
ular	method	involves	first	converting	the	effort	estimate	into	man	months	if	it	is	not	already	done.	
Then	a	standard	man	month	rate	is	applied	for	the	project.	Suppose	for	a	project	the	effort	figure	
is	13	man	months	and	a	man	month	rate	of	$4,000	is	applied.	The	project	cost	comes	to	$52,000.

If	the	project	is	outsourced,	then	the	service	provider	may	top	this	cost	figure	with	some	over-
head	costs	that	are	typically	a	percentage	of	this	cost	figure.	Suppose	the	service	provider	applies	
a	15%	effort	cost	as	overhead	cost.	Then	in	our	case,	the	overhead	cost	will	come	to	$7,800.	Thus,	
the	total	cost	for	the	project	will	be	$59,800.

Software	projects	have	many	kinds	of	associated	costs,	including	expenses	for	hardware,	man-
agement	costs,	 software	 tool	acquisition	costs,	 training	costs,	etc.	But	 the	most	expensive	 item	
on	the	project	budget	is	the	salary	of	software	professionals	who	will	be	working	on	the	project.	
Salaries	of	project	staff	comprise	more	than	70%	of	total	project	costs.

The	biggest	cost	driver	for	any	software	project	is	the	effort	required	to	complete	the	project.	
Increased	effort	drives	up	salary	expenses	for	project	staff.	Therefore,	the	project	manager	always	
has	to	keep	an	eye	on	the	productivity	of	the	staff	so	that	the	money	spent	on	salary	has	a	good	
return	value.

Moreover,	the	salary	of	software	professionals	is	not	directly	linked	to	their	productivity;	two	
software	professionals	with	the	same	years	of	experience	and	same	skill	sets	but	with	different	
productivity	levels	may	get	the	same	salary.	Similarly,	the	salary	for	different	professionals	with	
same productivity	may	be	different.	This	creates	a	problem	in	calculating	project	expenses.

If	 the	 salary	 structure	of	 staff	were	 as	 simple	 as	depicted	 in	Figure	3.7,	 cost	 calculations	
could	have	been	easy.	But	due	to	the	fact	that	the	salary,	for	example,	of	two	junior	developers	
is	different	from	each	other	makes	cost	calculation	difficult.	In	that	case,	compared	to	the	aver-
age	effort	put	in	by	the	two	junior	developers,	the	payment	for	the	same	effort	is	different.	This	
becomes	an	anomaly	if	the	project	manager	calculates	project	costs	based	only	on	designation	
(Figure	3.8).

Similarly,	some	other	factors	are	to	be	considered	when	costs	are	calculated.	We	can	conclude	
from	the	earlier	discussion	that	effort	and	project	costs	can	vary	due	to	variance	in	salaries	and	

120,000

100,000

80,000

60,000

40,000

20,000

0

Ju
ni

or
 te

st
en

gi
ne

er

Ju
ni

or
de

ve
lo

pe
r

Te
st

m
an

ag
er

Ju
ni

or
bu

sin
es

s
an

al
ys

t

Salary

Figure 3.7 Salary of project staff.

52  ◾  Software Project Management: A Process-Driven Approach

thus in	such	cases,	correlating	effort	and	project	cost	will	be	difficult.	This	is	why	you	simply	can-
not	replace	one	resource	with	another	(with	different	pay)	without	properly	accounting	for	change	
in	project	cost.

3.3.1 Cost Factor Analysis
Suppose	 a	 project	 manager	 has	 a	 project	 budget	 of	 $450,000	 (+15%	–	10%).	 The	 estimated	
effort	 for	development	 is	500	hours	 (including	 requirement	gathering,	design,	 and	construc-
tion)	and	300	hours	 for	 testing.	The	assumed	overhead	cost	 is	15%.	So	the	budget	range	for	
the	project	is	from	$517,500	to	$405,000.	Of	this	amount	$77,625–$60,750	is	earmarked	for	
meeting	overhead	expenses.	From	$439,875	to	$344,250	is	available	as	budget	for	spending	on	
staff	salaries.	The	hourly	wage	for	average	development	staff	is	$70	and	for	testing	staff	is	$60.	
The	hourly	wage	for	a	test	manager	is	$80	and	for	a	project	manager	is	$90.	Effort	required	for	
project	planning,	controlling	and	monitoring	is	10%	of	development	effort.	Effort	required	for	
test	project	planning,	controlling,	and	monitoring	is	10%	of	test	effort.	Table	3.7	presents	the	
cost	analysis.

66,000

65,000

64,000

63,000

62,000

61,000

60,000

59,000

58,000

57,000
Junior developer 1 Junior developer 2

Salary

Figure 3.8 Salary of two junior developers.

Table 3.7 Project Cost Analysis for Salaries
of Project Staff

Effort Type Hours Costs/Hour Costs

Development effort 5,000 70 350,000

Test effort 3,000 60 180,000

Project management 500 90 45,000

Test management 300 80 24,000

Total cost 599,000

Software Project Effort and Cost Estimation  ◾  53

But	from	the	project	cost	data	mentioned	earlier,	only	$439,875–$344,250	is	to	be	spent	on	
salaries.	What	could	be	done	in	this	situation?	One	option	is	to	ask	the	stakeholders	(customers)	
for	a	revised	budget.	Or	one	may	have	to	cut	some	features	 from	the	software	to	reduce	effort	
required.	This	situation	must	be	communicated	to	the	stakeholders	as	soon	as	possible.

On	most	projects	costs	play	a	vital	role.	Talent	costs	money	and	companies	have	no	option	but	
to	hire	talented	professionals	to	keep	their	crucial	projects	running	successfully.	How	does	one	bal-
ance	talent	versus	costs?	One	option	is	to	utilize	the	time	of	your	staff	intelligently.	Do	not	waste	
any	money	by	not	properly	loading	your	staff	with	project	assignments.	Use	any	good	software	
which	will	allow	you	to	track	how	your	staff	is	loaded	with	assignments.	Plan	ahead	for	future	
assignments	so	that	staff	has	assignments	all	the	time	and	they	do	not	sit	idle	between	assignments.	
Pay	particular	attention	to	assignment	loading	on	highly	paid	staff,	who	should	be	assigned	work	
that	is	crucial	and	where	the	hourly	rate	for	project	work	is	high.

Use	PMO	(Program	Management	Office)	to	share	staff	hours	diligently.	PMO	should	ensure	
that	no	overloading	or	underloading	of	staff	hours	are	done	on	any	project	or	across	projects.	To	
deal	with	extreme	cases	when	either	project	work	is	less	than	staff	hours	available	or	project	work	
is	more	than	available	staff	hours,	use	flexible	teams.	The	flexible	team	can	include	contracted	staff	
who	can	work	when	needed	and	can	be	removed	when	no	work	is	available.	These	measures	can	
go	a	long	way	in	ensuring	proper	staffing	needs.

There	are	two	types	of	projects:	time	and	material	based	and	fixed	schedule–fixed	costs	based.	
Fixed	cost–fixed	schedule	based	projects	are	the	ones	where	requirements	are	concrete	and	most	of	
the	project	details	are	clear.	Costing	for	such	projects	is	also	clear	in	the	beginning	of	the	project.	
But	not	all	projects	have	enough	clarity	 to	 start	with.	Many	projects	 start	with	 lots	of	doubts,	
ambiguities,	and	uncertainties.	 In	such	cases,	costing	and	scheduling	 is	very	difficult	 to	make.	
Hence,	 these	projects	are	executed	on	a	 time	and	material	 costs	basis.	The	customer	agrees	on	
recurring	payment	of	 time	spent	by	a	project	 team	on	his/her	project.	Generally,	 the	recurring	
payment	is	in	the	form	of	a	monthly	fee.

Many	projects	are	a	mix	of	the	two	forms	of	projects.	For	a	certain	period	in	the	beginning,	a	
project	is	formed	on	the	basis	of	time	and	material.	Once	certain	amount	of	clarity	is	achieved	on	
the	project,	the	project	is	converted	into	a	fixed	cost–fixed	duration	basis.

3.3.2 Activity-Based Cost Estimation
Accurate	costing	in	any	business	scenario	is	a	difficult	task.	Even	when	a	reliable	system	is	employed	
for	costing,	it	is	often	difficult	to	attribute	a	cost	to	a	certain	head.	Accounting	being	a	difficult	
task,	often	it	turns	out	that	after	much	adjustment	here	and	there,	costs	are	attributed	to	certain	
heads	of	expenses	at	a	gross	level.

Activity-based	costing	tries	to	ease	this	situation	[11].	For	each	individual	activity	on	the	proj-
ect,	 all	 costs	 are	 calculated	 from	 starting	 of	 the	 activity	 to	 its	 finish.	 Whenever	 accounts	 are	
prepared,	all	 incurred	costs	are	accounted	for	all	activities	on	the	project.	This	ensures	there	 is	
no	irregularity	in	the	accounts	and	the	account	reports	are	accurate.	This	helps	the	management	
know	how	expenses	are	being	incurred	and	whether	there	are	any	undue	expenses	 incurred	on	
tasks.	Coupled	with	activity-based	costing,	if	baseline	planned	costs	for	activities	can	be	compared	
with	actual	costs	for	tasks,	then	it	will	be	of	immense	help	for	the	management	to	know	which	
project	activities	are	not	proceeding	in	the	right	direction,	and	thus	necessary	steps	can	be	taken	
to	bring	those	activities	on	track	(Table	3.8).

54  ◾  Software Project Management: A Process-Driven Approach

3.3.3 Cost Estimation for Iterations-Based Planning
There	is	not	much	difference	when	it	comes	to	making	cost	estimates	for	iteration-based	projects	
compared	to	waterfall	model–based	projects.	Total	effort	may	determine	the	costs	for	the	project	
regardless	of	schedule	and	number	of	iterations.	Costs	are	determined	for	each	iteration	separately	as	
well	as	for	the	major	release	of	the	software	product	being	developed.	Costing	for	the	entire	product	
can	also	be	made	by	summing	up	costs	of	each	major	release.	So	we	have	three	levels	of	costs	each	at	
the	iteration	level,	major	product	release	level,	and	at	the	entire	product	development	level.

3.4 Schedule Estimation
The	amount	of	effort	and	schedule	put	in	terms	of	time	is	not	equal	[12].	There	may	be	many	paral-
lel	processes	where	project	tasks	are	being	completed.	In	such	a	situation,	effort	will	be	greater	than	
the	schedule.	In	cases	where	there	are	floats	or	slacks	in	the	schedule,	the	schedule	will	be	greater	
than	the	effort.	Therefore,	the	effort	for	the	project	is	calculated	first,	followed	by	the	schedule.

Once	the	schedule	is	made,	the	schedule	duration	will	be	the	difference	between	the	date	when	
the	project	starts	and	date	when	the	project	ends.	From	the	PERT/CPM	view,	the	project	dura-
tion	will	be	the	difference	between	start	date	of	the	earliest	project	task	and	end	date	of	the	latest	
project	task.

3.4.1 Schedule Estimation for Waterfall Model–Based Planning
The	effort	for	the	entire	project	is	based	on	adding	all	efforts	required	for	each	and	every	project	
task.	Of	these	tasks,	one	has	to	determine	which	tasks	will	be	done	in	parallel.	For	instance,	much	
of	the	work	in	the	construction	phase	is	done	in	parallel	as	modules	are	distributed	to	different	

Table 3.8 Cost Analysis Based on Activities

Activity
Start
Date

Schedule
(Months)

Effort
(Months)

Average
Staffing Cost ($)

Planning

Management

Requirements

Prototyping

Configuration management

Functional design

Design review 1

Detail design

Design review 2

Quality assurance

Coding

Reuse acquisition

Software Project Effort and Cost Estimation  ◾  55

teams	 who	 will	 be	 developing	 their	 modules	 in	 parallel	 to	 modules	 being	 developed	 by	 other	
teams.	Similarly,	much	of	the	software	testing	is	done	in	parallel	as	many	testers	test	their	own	
modules	in	parallel	to	modules	being	tested	by	other	team	members.	Also	it	will	have	to	deter-
mined	if	there	will	be	slacks	and	floats	between	tasks.

Using	PERT/CPM	or	network	diagrams	you	can	find	the	critical	path	 for	 the	project,	and	
thereafter,	its	schedule	and	duration	(Figure	3.9).

For	projects	 that	have	no	parallel	 tasks	(classical	waterfall	model),	 the	schedule	 is	 the	same	
as	the	effort	(if	there	are	no	slacks	in	the	schedule).	This	is	because	the	length	of	the	critical	path	
for	the	project	is	the	same	as	the	duration	of	all	project	tasks	(i.e.,	effort).	But	this	is	rare.	In	most	
cases,	some	parallel	tasks	take	place	on	the	project	and	thus	effort	and	schedule	for	the	project	are	
different.	Schedule	and	effort	will	also	not	be	the	same	in	cases	where	there	are	gaps	between	the	
end	of	one	task	and	the	start	of	the	next	task	in	sequence	even	when	they	are	in	sequence.	When	
the	schedule	is	calculated,	the	idle	time	(time	gaps)	between	tasks	is	also	added	but	in	effort	calcu-
lation	these	time	gaps	are	not	added.

3.5 Resource Estimation
After	making	the	schedule,	we	estimate	the	resource	requirements	[13].	In	order	to	do	this,	we	should	
first	get	the	list	of	tasks	on	the	project.	For	each	task,	we	need	to	identify	the	required	skills	and	level	
of	experience.	A	list	of	all	skills	and	minimum	necessary	experience	required	for	each	task	should	
be	marked.	For	each	task	we	need	to	identify	the	resources	available	in	the	organization.	So	we	will	
be	matching	task	skills	and	minimum	experience	requirements	with	skills	and	necessary	experience	

Initiation Requirements

Critical path

Testing

Total project schedule

Total project effort

Design 1

Design 2

Construction 1

Construction 2

Project

Integration Release

Initiation Requirements Design 2 Construction 2Design 1 Construction 1

Integration ReleaseTesting

Figure 3.9 Project effort and project schedule for a project.

56  ◾  Software Project Management: A Process-Driven Approach

possessed	 by	 resources.	 The	 names	 of	 “resources”	 that	 possess	 all	 skills	 and	 necessary	 experience	
required	for	the	task	should	be	listed	against	that	task.

The	next	 step	 is	 to	find	 the	availability	of	 resources	 for	doing	 those	 tasks.	From	the	 list	of	
names	of	resources,	identify	resources	that	will	be	available	between	the	task	start	and	finish	dates.	
The	other	dimension	is	the	amount	of	work	involved	in	each	task.	How	many	resources	will	be	
required	for	that	task	should	be	calculated.	The	productivity	factor	for	the	organization	will	come	
in	handy	here.	The	number	of	resources	required	for	the	task	will	be	the	volume	of	tasks	divided	
by	the	productivity	and	time	duration	under	which	task	is	to	be	completed.	For	example,	if	volume	
of	work	is	equivalent	to	2000	KLOC	and	productivity	for	the	organization	is	1000	KLOC	per	
person	per	month,	and	if	the	task	has	to	be	completed	in	1	month,	then	we	need	two	resources	for	
this	task	(2000)/(1000	×	1).	Sometimes	we	may	need	less	than	one	resource	to	do	the	task.	In	such	
cases,	a	resource	may	be	assigned	to	the	task,	who	will	also	be	doing	some	tasks	on	other	projects.	
Generally	the	loading	factor	for	a	resource	should	be	kept	at	1	(loading	factor	is	the	amount	of	
work	which	a	resource	can	do	in	working	hours	on	a	working	day).	But	sometimes	due	to	unavail-
ability	of	resources,	we	may	need	to	increase	loading	for	a	particular	resource	to	more	than	1.	In	
that	case,	the	resource	is	overloaded	and	will	be	working	overtime.

3.6 Artifacts of Effort and Cost Estimates
Essentially,	an	effort	estimate	provides	project	costs,	project	duration,	and	staffing	needs.	But	it	
does	not	provide	a	detailed	schedule.	A	detailed	schedule	 is	derived	from	the	work	breakdown	
structure.	 The	 actual	 staffing	 needs	 are	 also	derived	 from	 the	work	 breakdown	 structure	 after	
staffing	requirements	are	attached	to	the	schedule.	What	we	get	from	effort	estimates	are	average	
staffing	needs	for	the	project,	which	helps	in	deriving	project	costs.	In	most	cases,	customers	need	
project	cost	and	project	duration	to	sanction	the	project.	The	project	manager	needs	to	provide	
these	details	early	on	in	the	project.	In	cases	where	the	project	is	being	outsourced,	the	bidders	for	
the	project	provide	estimated	costs	and	duration	in	their	bid	details.	The	more	details	about	costs	
and	duration	provided	on	the	estimate	sent	to	the	customer,	the	better	it	will	be.	Details	will	help	
the	customer	to	understand	how	the	project	will	progress	and	how	costs	are	derived.	This	builds	
customer	confidence	in	the	project	team	that	the	team	is	capable	of	delivering	the	project.	This	
goes	a	long	way	toward	making	a	success	of	the	project.

3.7 Practical Considerations in Effort and Cost Estimates
When	the	effort	and	cost	estimates	are	derived	using	formula-based	techniques	like	COCOMO	
or	FPA,	it	gives	a	raw	estimate.	The	risk	factors	are	not	included.	Any	estimate	should	have	a	risk	
factor	as	an	essential	ingredient.	So	the	project	manager	should	include	some	reserve	in	the	project	
for	covering	risks	in	the	project.	For	details	about	risks	please	refer	Chapter	4.

As	has	been	repeatedly	argued	by	Brooks,	Boheim,	and	others,	effort	estimation	for	software	
projects	is	a	tricky	affair.	Only	after	the	software	design	is	well	established	that	effort	estimate	can	
be	calculated	with	some	accuracy.	The	best	approach	for	effort	and	cost	estimation	for	a	project	
should	be	to	do	it	frequently	after	each	major	milestone	is	achieved.	Adjust	these	figures	when	you	
come	to	know	more	about	the	project	as	it	progresses.

Generally	we	measure	size	as	source	lines	of	code	(SLOC).	The	source	code	is	written	when	
the	project	is	in	the	construction	phase.	But	we	also	have	other	phases	when	no	source	code	is	
written	 (requirement	 specification,	 software	 design,	 software	 testing,	 documentation,	 etc.).	

Software Project Effort and Cost Estimation  ◾  57

Working	 in	these	phases	takes	time	and	effort.	So	how	do	we	account	for	this	effort	and	time	
when	we	are	reporting	the	effort	and	time	in	terms	of	SLOC?	One	good	solution	is	to	account	for	
the	effort	and	time	taken	in	these	activities	along	with	the	one	in	the	construction	phase	and	then	
calculate	the	effort	and	time	required	in	terms	of	SLOC.	For	instance,	suppose	it	took	two	business	
analysts	2	months	to	develop	requirement	specifications;	a	system	analyst	developed	the	design	in	
2	months;	and	five	developers	developed	the	application	in	5	months.	Out	of	these	5	months	they	
spent	around	2.5	months	doing	unit	and	integration	testing.	The	two	test	engineers	took	1	month	
for	doing	the	system	testing.	Code	fixing	for	developers	again	took	15	days.	Supposing	the	system	
developed	contained	30,000	SLOC,	then	what	are	the	figures	for	effort?

Time	spent	by	business	analysts	=	4	months	(2	×	2	months)
Time	spent	by	business	analysts	=	2	months
Time	spent	by	developers	on	development	=	12.5	months	(5	×	2.5	months)
Time	spent	by	developers	on	code	fixing	=	2.5	months	(5	×	15	days)
Time	spent	by	developers	on	testing	=	12.5	months	(5	×	2.5	months)
Time	spent	by	testers	=	2	months	(1	×	2	months)
Total	time	spent	by	team	members	on	the	project	=	35.5	months
Total	code	written	on	project	=	30,000	SLOC
SLOC	per	month	on	project	=	30,000/35.5	=	845	SLOC/month

3.8 Effort and Cost in Product Development
In	the	case	of	product	development	for	software	vendors,	the	effort	and	cost	estimate	does	not	
have	much	significance	for	just	one	iteration	or	one	project.	Their	product	development	effort	is	
continuous	in	nature,	as	they	continuously	keep	working	on	new	releases	of	their	product.	When	
one	release	(whether	minor	or	major)	is	over,	they	immediately	start	working	on	the	next	release.	
Sometimes	 they	 employ	more	 than	one	 team	 simultaneously	 to	do	 their	product	development	
faster	 in	 a	 time-boxing	 environment.	Due	 to	 their	 continuous	operation,	 they	 rather	 calculate	
their	development	costs	at	quarterly,	half	yearly,	and	yearly	bases	and	do	not	bother	about	costs	
for	just	one	iteration	or	one	project.	They	have	a	constant-sized	team	and	this	team	does	not	get	
disbanded	after	each	iteration	or	project.	They	may	expand	or	contract	team	size	due	to	long-term	
market	conditions,	and	not	due	to	demands	of	any	iteration	or	project.	The	software	vendors	rather	
concentrate	on	the	effort	and	cost	involved	in	the	entire	product	development	that	spans	many	
years.	They	make	estimate	for	this	entire	cost	and	effort	requirements	when	they	decide	to	go	for	
building	the	software	product.	They	keep	revising	this	estimate	at	their	yearly	or	half-yearly	plans.

3.9 Case Study
In	Chapter	2,	we	saw	how	the	project	of	our	SaaS	vendor	got	initiated.	We	continue	our	story	of	
the	software	product	vendor	(or	rather,	SaaS	service	vendor).

3.9.1 History
When	they	decided	to	build	the	software	product;	they	estimated	that	the	size	of	their	prod-
uct	will	 be	 around	500,000	SLOC	when	 they	 can	 start	marketing	 their	 software	product.	
They	had	also	decided	that	 they	will	go	for	 incremental	 software	development	so	that	 they	
can	sell	their	product	with	a	bare	minimum	of	features	and	can	keep	developing	their	product	

58  ◾  Software Project Management: A Process-Driven Approach

and	keep	adding	new	features,	and	at	the	same	time	they	can	keep	selling	their	product	in	the	
market	with	the	already	developed	features.

They	 had	 estimated	 that	 they	 will	 be	 able	 to	 develop	 the	 initial	 product	 in	 2	 years	 time.	
That	meant	they	needed	to	develop	the	product	at	21,000	SLOC	per	month	(including	the	time	
required	 to	develop	 requirement	 specifications,	 software	design,	 and	 software	 testing.	 In	all	of	
these	activities,	no	source	code	lines	are	added	but	they	take	time.	This	time	is	added	along	with	
the	time	required	to	write	the	source	code.).	They	had	estimated	that	a	good	project	team	consist-
ing	of	around	22	people	could	do	the	job.	On	average,	the	salary	of	each	project	team	member	
would	be	around	$6,000	per	month.	That	meant	the	quarterly	cost	will	be	around	$400,000.	So	
over	a	2-year	period,	$3,200,000	will	be	the	development	cost.	Later,	when	they	were	established	
in	the	market	and	realized	that	they	wanted	a	larger	team	to	develop	the	software	at	a	faster	rate,	
they	thought	about	their	options.	They	wanted	a	team	of	50	people	to	speed	the	development	at	
two	and	half	times	compared	to	the	present	speed	of	product	development.	If	they	had	hired	the	
additional	staff	locally,	it	would	have	cost	them	$1,000,000	per	quarter	for	a	development	team	
of	50	people.	The	option	of	hiring	contractors	would	have	cost	more	than	this	figure	and,	hence,	
it	was	not	an	option.	Moreover,	they	wanted	to	hire	permanent	staff	instead	of	temporary	staff	
as	they	were	looking	for	a	long-term	goal	instead	of	short-term	staffing.	Thereafter	they	thought	
of	offshore	service	providers.	Offshore	development	staff	would	cost	one-third	of	what	it	costs	if	
they	hired	locally.	They	evaluated	a	few	service	providers	and	finally	zeroed-in	on	two	of	them	
and	made	contracts	with	both	of	them.	Now	they	had	a	staff	of	more	than	50	people	and	the	total	
development	cost	of	$730,000	per	quarter.

3.9.2 Current Project
The	 current	 project	 could	 be	 broadly	 categorized	 as	 developing	 the	 appointment	 scheduling	
engine,	developing	search	functionality,	integrating	the	appointment	scheduling	functionality	to	
existing	features,	and	finally	testing	the	whole	application	thoroughly.	Since	a	very	complex	logic	
was	to	be	implemented,	the	logic	first	needed	to	be	thoroughly	tested	and,	subsequently,	integra-
tion	of	the	logic	with	the	rest	of	the	application	was	to	be	tested.	Therefore,	the	testing	part	was	
crucial	for	the	success	of	the	project.	At	the	same	time,	since	this	logic	was	being	implemented	for	
the	first	time,	the	testing	component	for	the	project	was	comparatively	large.

3.9.3 Effort and Cost
Over	 the	 proposed	 four	 iterations	 (minor	 releases)	 and	 the	 complete	 appointment	 scheduling	
functionality	to	be	achieved	by	end	of	the	major	release,	it	was	estimated	that	the	effort	required	
to	 complete	 the	 functionalities	 associated	 with	 appointment	 scheduling	 will	 be	 approximately	
300,000	SLOC.	This	approximation	was	derived	after	using	a	bottom-up	effort	estimate.	First	
the	functionality	was	broken	down	into	lowest-level	components.	Effort	for	these	components	was	
estimated.	Summing	up	of	efforts	for	component	gave	the	overall	effort	for	the	entire	functionality.

Exercises
3.1	 Find	the	relationship	between	effort	and	cost.	What	cost	factors	have	more	impact	on	effort	

and	which	cost	factors	have	lesser	impact?
3.2	 Agile	projects	may	have	less	effort	required	compared	to	traditional	projects.	What	factors	

are	responsible	for	this	phenomenon?

Software Project Effort and Cost Estimation  ◾  59

Review Questions
3.1	 Describe	the	Function	Point	Analysis	technique	for	deriving	effort	and	cost	estimates	for	

software	projects?
3.2	 Describe	 the	 COCOMO	 technique	 for	 deriving	 effort	 and	 cost	 estimates	 for	 software	

projects?
3.3	 Which	estimation	technique	will	you	use	for	a	project	where	data	for	past	projects	are	not	

available	and	why?
3.4	 How	are	cost	and	schedule	for	a	project	related	to	each	other?
3.5	 How	do	project	scope	and	quality	level	affect	the	effort	required	for	a	project?

Recommended Readings
	 1.	 P.	Jalote	(2002)	Software Project Management in Practice,	Addison-Wesley	Professional,	Boston,	MA.
	 2.	 J.	C.	Goodpasture	(2003)	Quantitative Methods in Project Management,	J.	Ross	Publishing,	Boca	Raton,	FL.
	 3.	 D.	Brandon	(2005)	Project Management for Modern Information Systems: The Effects of the Internet and

ERP on Accounting,	IRM	Press,	Hershey,	PA.
	 4.	 F.	P.	Deek,	J.	A.	M.	McHugh,	O.	M.	Eljabiri	(2005)	Strategic Software Engineering,	CRC	Press,	Boca	

Raton,	FL.
	 5.	 D.	D.	Galorath,	M.	W.	Evans	(2006)	Software Sizing, Estimation, and Risk Management,	CRC	Press,	

Boca	Raton,	FL.
	 6.	 M.	Zelkowitz	(2004)	Advances in Computers, Volume 62: Advances in Software Engineering (Advances	in	

Computers),	Academic	Press,	Amsterdam,	the	Netherlands.
	 7.	 G.	Lenz,	T.	Moeller	(2003)	Net—A Complete Development Cycle,	Addison-Wesley	Professional,	Boston,	MA.
	 8.	 J.	Love	(2007)	Process Automation Handbook: A Guide to Theory and Practice,	Springer,	Berlin,	Germany.
	 9.	 D.	J.	Anderson,	D.	Anderson	(2003)	Agile Management for Software Engineering: Applying the Theory of

Constraints for Business Results,	Prentice	Hall,	Upper	Saddle	River,	NJ.
	 10.	 E.	Verzuh	(2005)	The Fast Forward MBA in Project Management,	2nd	edn.,	Wiley,	New	York.
	 11.	 C.	Jones	(2007)	Estimating Software Costs,	McGraw-Hill	Osborne	Media,	New	York.
	 12.	 R.	T.	Futrell,	D.	F.	Shafer,	L.	I.	Shafer	(2002)	Quality Software Project Management,	Prentice	Hall	PTR,	

Upper	Saddle	River,	NJ.
	 13.	 J.	Greene,	A.	Stellman	(2007)	Head First PMP,	O’Reilly,	Sebastopol,	CA.

61

Chapter 4

Risk Management

In.the.previous.chapter,.we.learned

	◾ How	is	an	effort	estimate	for	a	project	made?
	◾ What	are	the	different	effort	estimation	techniques?
	◾ How	is	a	cost	estimate	for	a	project	made?
	◾ What	are	the	different	cost	estimation	techniques?
	◾ How	can	a	schedule	estimate	for	a	project	be	done?
	◾ How	can	a	resource	estimate	for	a	project	be	done?

In.this.chapter,.we.will.learn

	◾ What	is	a	risk	on	a	project?
	◾ What	kinds	of	risks	exist	for	a	project?
	◾ What	kind	of	impact	may	risks	have	on	a	project?
	◾ What	strategy	is	needed	to	deal	with	risks?

4.1 Introduction
Risks	are	unforeseen	or	unplanned	happenings,	which,	when	they	occur,	devastate	or	at	 least	
adversely	affect	our	future	plans.	When	we	analyze	any	software	project,	what	kinds	of	risk	come	
to	our	mind?	Basically,	 a	project	has	 these	 components:	budget,	 time,	 resources,	quality,	 and	
technology.	If	any	risk	occurs	that	might	affect	any	of	these	components,	then	the	project	may	fail.	
What	is	the	best	way	to	reduce	or	mitigate	the	risks?	There	could	be	many	aspects	to	any	project.	
But	a	project	manager	must	develop	a	comprehensive	risk	mitigation	plan	so	that	if	any	risk	arises	

62  ◾  Software Project Management: A Process-Driven Approach

during	execution,	he	will	be	able	to	handle	it	comfortably.	If	he	has	not	made	a	proper	risk	plan,	
then	if	anything	wrong	happens,	he	will	not	be	able	to	handle	it	(Figure	4.1).

Risks	can	be	categorized	as	external	and	internal.	If	a	risk	to	the	project	arises	due	to	an	aspect	
being	dealt	with	by	the	project	team,	then	it	is	an	internal	risk.	All	other	risks	are	external	risks.	
Suppose	a	project	is	to	be	coded	using	a	particular	programming	language,	and	one	developer	on	
the	team	is	not	conversant	with	it.	In	this	case,	he	is	given	training	so	that	he	can	pick	up	this	
language.	However,	if	even	after	training,	this	team	member	is	not	able	to	use	the	programming	
language,	he	will	not	be	able	to	do	the	task	assigned	to	him,	and	his	inability	will	be	considered	an	
internal	risk.	Now,	suppose	that	this	particular	training	is	not	available	from	any	training	service	
provider,	then	in	that	case,	the	risk	becomes	an	external	risk	(Figure	4.2).

Many	environmental	factors	affect	a	project.	If	any	of	these	environmental	factors	impact	a	
project,	then	though	the	impact	on	the	project	is	external	(as	environmental	factors	are	external	to	
the	project),	it	can	still	be	substantial	for	that	project.	Some	of	the	external	risks	can	be	managed	
by	a	proactive	approach.	But	many	external	risks	cannot	be	managed.	One	good	example	is	the	
obsolescence	of	a	technology.	When	the	project	starts,	a	particular	technology	is	chosen	(a	prebuilt	
vendor	component,	for	instance)	little	realizing	that	the	vendor	will	not	support	that	component	
by	the	time	the	project	finishes.	Similarly,	the	customer	may	go	out	of	business	due	to	economic	
recession	and	the	project	may	need	to	be	scrapped.

At	the	project	level,	risks	impact	any	of	these	project	deliverables:	schedule,	quality,	or	budget	(risks	
affecting	resources	or	technology	ultimately	impact	budget,	quality,	or	budget)	[1].	At	the	beginning	
of	the	project,	the	project	manager	is	given	(or	he	makes	them	after	consultation	with	the	customer)	
limits	for	these	three	things,	that	is,	to	deliver	the	project	within	the	stipulated	time	limit,	within	the	
budget,	and	with	the	product	quality	of	a	stipulated	standard.	If	any	of	these	three	are	not	delivered,	
then	the	project	is	considered	to	have	failed.	So,	the	project	manager	has	to	ensure	that	these	limits	are	

Budget

Quality

Resources

Technology

Time

Project

Internal
risks

External
risks

Figure 4.1 Internal and external risks for a project.

Resource
risks

Technology
risks

Major risk types

Budget
risks

Quality
risks

Time
risks

Figure 4.2 Major risk types.

Risk Management  ◾  63

communicated	clearly	to	the	project	team.	The	project	manager	should	make	sure	that	the	project	team	
understands	these	limits	and	delivers	its	part	of	the	project	within	these	limits.	At	the	same	time,	he	
also	needs	to	work	out	his	plan	well,	so	that	he	and	his	team	are	ready	to	face	any	surprises	if	they	arise	
and	handle	those	situations	with	ease.

4.2 Causes of Risks
What	are	the	probable	causes	of	risks	on	a	software	project?	What	can	be	done	to	prevent	or	mini-
mize	the	impact	they	can	have	on	the	project?	How	much	impact	do	they	have	on	the	project?	
What	is	the	probability	that	they	may	occur	and	might	impact	the	project?

For	any	good	project	manager,	it	is	of	utmost	importance	that	he	first	of	all	makes	a	list	of	risks	
which	his	project	faces.	After	that,	he	can	find	solutions	for	tackling	them.	So	here	is	a	discussion	
of	some	of	the	risks	that	may	occur	in	any	software	project	(Figure	4.3).

4.2.1 Quality Constraints
These	days,	quality	is	one	of	the	major	concerns	for	software	products,	as	the	high	cost	of	sup-
porting	these	products	is	well	understood,	and	thus,	avoidance	of	providing	product	support	for	
bad	quality	products	is	a	top	policy	among	software	vendors.	Software	vendors	realize	that	it	is	
much	cheaper	to	make	a	good	quality	software	product	with	low	support	costs	than	to	produce	a	
software	product	of	poor	quality	and	end	up	with	high	support	costs.	So	an	elaborate	set	of	quality	
constraints	are	imposed	from	the	start	of	the	project	to	the	finish	[2].	In	fact,	nowadays,	a	separate	
software	process	group	is	 formed	that	oversees	the	quality	of	projects.	 Indeed,	meeting	quality	
requirements	is	a	big	risk	for	all	projects.

4.2.2 Resource Unavailability
Resource	 unavailability	 is	 one	 of	 the	 major	 risk	 factors,	 as	 software	 professionals	 are	 in	 great	
demand	 the	world	over	 [3].	Finding	and	procuring	 a	good	 software	professional	 is	 a	 complete	
project	in	itself.	Retaining	him	within	the	organization	is	yet	another	challenge.

4.2.3 Disinterest
Lack	of	interest	is	a	concern	that	needs	to	be	mitigated	by	project	managers	as	it	severely	affects	
productivity	[4].	A	good	motivation	program	for	individuals	who	lack	interest	in	the	project	can	
be	organized.

Bad
negotiation

Cost
constraints

Quality
constraints Disinterest Resource

unavailability Attrition Scope
creep

Poor
management

Human
error

Unrealistic
estimateCauses of risks

Figure 4.3 Major causes of risks.

64  ◾  Software Project Management: A Process-Driven Approach

4.2.4 Attrition
Due	to	the	high	demand	for	software	professionals,	most	professionals	have	many	job	offers	in	
hand	at	any	given	time.	When	they	find	a	lucrative	offer,	they	quit	an	organization	to	join	another	
organization,	thus	leaving	a	project	midway.	Attrition	has	become	such	a	big	issue	that	manage-
ments	at	big	corporations	have	specialized	programs	to	tackle	it	[5].

4.2.5 Scope Creep
Scope	creep	is	one	risk	that	affects	most	software	projects,	and	it	always	impacts	the	project	severely.	
Requirements	keep	changing	and	new	requirements	keep	piling	up	even	after	the	project	has	com-
pleted	the	testing	phase	and	is	into	the	implementation	phase.	A	good	change	management	mechanism	
can	tackle	this	menace	effectively.

4.2.6 Cost Constraints
Once	a	project	is	approved	for	commencement,	a	budget	is	allocated	and	procured	for	the	project.	
But	due	to	unavoidable	reasons,	the	budget	can	be	constrained.	In	such	situations,	the	project	cannot	
proceed	as	sources	of	funds	have	dried	up	and	project	expenses	cannot	be	met.	There	is	no	solution	
for	this	problem,	but	if	this	risk	is	known	in	advance	(an	unlikely	occurrence),	then	the	project	could	
be	cut	short	and	scrapping	of	the	project	could	be	avoided.

4.2.7 Bad Negotiation
If	the	project	manager	has	good	negotiation	skills,	then	he	can	procure	an	additional/modified	
budget,	support,	and	resources,	whenever	the	need	arises.	But	sometimes	due	to	bad	negotiation	
skills	or	for	lack	of	foresight	on	the	part	of	the	customer,	this	kind	of	support	is	not	provided	and	
the	project	lands	in	troubled	waters	[6].

4.2.8 Unrealistic Estimate
An	unrealistic	estimate	is	yet	another	risk	that	is	very	common	on	most	projects	[7].	It	is	also	a	
fact	that	effort	estimates	for	software	projects	are	difficult	to	make	because	of	the	uncertainties	
involved.	So,	it	is	always	possible	that	it	is	understated.	It	is	always	better	to	keep	a	buffer	when	an	
estimate	is	made,	to	take	care	of	uncertainties.

4.2.9 Human Error
The	human	brain	has	a	processing	power	that	no	computer	can	match,	but	it	has	a	limitation.	
It	cannot	do	repetitive	work	without	making	errors.	These	human	errors	are	caused	by	the	dis-
tractions	of	the	brain	because	our	brain	keeps	processing	all	signals	sent	by	our	sensory	organs	
continuously,	and	thus,	the	work	we	are	doing	gets	less	attention,	which	results	in	errors	in	the	
work	[8].	Due	to	human	error,	the	requirements	or	design,	or	the	construction	may	get	injected	
with	defects.	To	overcome	this,	we	must	have	review	processes	for	the	work	done	to	remove	
any	defects.

Risk Management  ◾  65

4.2.10 Poor Management
Poor	management	is	yet	another	human	risk	factor.	Not	all	project	managers	are	naturally	talented.	
Many	of	them	learn	managing	things	from	experience.	If	a	project	manager	lacks	experience	in	
managing	a	project,	then	it	is	a	big	liability	for	the	project	and	it	will	show	up	in	project	results	[9].	
Even	if	a	project	manager	has	experience,	personal	traits	dictate	whether	he	can	handle	the	project	
well	or	not.	So	the	project	manager	for	a	project	must	be	chosen	carefully,	taking	into	account	his	
experience	and	personal	traits.

4.3 Risk Categories
All	of	the	risks	mentioned	in	the	previous	section	can	actually	be	broadly	grouped	into	categories	
of	budget	risks,	resource	risks,	quality	risks,	schedule	risks,	and	technology	risks.	How	can	these	
categories	of	risks	be	tackled?	Let	us	discuss	this	point	in	the	following	section.

4.3.1 Budget Risks
Risks	that	impact	the	project	budget	need	the	foremost	consideration,	and	they	need	to	be	con-
trolled	throughout	the	project	[10].	If	for	some	reason	the	budget	goes	above	the	permissible	limit,	
then	the	project	manager	must	do	something	to	control	it.	It	is	common	practice	for	the	project	
steering	committee	 to	decide	 to	 cut	 short	 some	product	 features	 to	 contain	 the	project	within	
the	budget.	But	this	is	not	a	good	practice.	Instead,	remedial	action	must	be	taken	as	soon	as	the	
project	shows	the	risk	of	cost	overrun,	so	as	to	prevent	the	problem	from	actually	happening.	That	
is	why,	at	all	times,	project	expenses	should	be	tracked	and	controlled.

Then	there	are	cases	when	project	cost	control	is	not	in	the	hands	of	the	project	manager.	
For	instance,	due	to	market	forces,	the	salaries	of	team	members	have	to	be	increased,	other-
wise	they	might	leave	the	project	to	get	a	better	salary.	In	such	instances,	the	management	may	
decide	to	increase	salaries	so	that	they	do	not	leave.	In	such	a	case,	the	project	manager	has	no	
choice	but	to	revise	the	project	costs	and	inform	the	customer	about	it.	This	fact	can	adversely	
affect	the	project.

To	reduce	the	impact	of	budget	risks,	the	budget	allowance	should	include	reserve	funds.	
So	when	such	risks	occur,	allowances	can	be	taken	up	from	the	reserves	to	avoid	the	project	
from	failing.

4.3.2 Time (Schedule) Risks
The	opportunity	time	window	for	businesses	is	slowly	shrinking	in	today’s	fast-paced	and	chang-
ing	business	environment.	So,	if	the	project	looks	to	be	slipping	away	from	the	targeted	date	of	
deployment,	then	it	will	be	a	great	business	opportunity	loss	for	the	customer.	For	this	reason,	the	
project	should	never	be	allowed	to	cross	the	targeted	release	dates	[11].	Nevertheless,	due	to	unfore-
seen	circumstances,	the	project	dates	may	get	affected.	Sometimes,	unexpected	rework	to	be	done	
on	software	construction	will	lead	to	the	slippage	of	the	task	schedule.	There	may	also	be	instances	
when	due	to	a	lack	of	proper	communication,	customer	requirements	are	completely	misunder-
stood,	resulting	in	an	inappropriate	product	being	delivered	to	the	customer,	and	thus,	complete	
rework	is	required	to	prepare	the	software.	This	will	again	lead	to	project	schedule	slippage.

66  ◾  Software Project Management: A Process-Driven Approach

To	reduce	 the	 impact	of	 schedule	 slippages,	a	 schedule	allowance	 should	be	 taken	 for	each	
time-related	risk	(Figure	4.4).

4.3.3 Resource Risks
Project	team	members	are	the	most	costly	resources	in	software	projects	[12].	So,	creating	reserved	
resources	 for	 the	project	 is	a	difficult	proposition.	On	one	hand,	 the	project	manager	needs	 to	
keep	project	costs	at	the	bare	minimum,	and	on	the	other,	he	has	to	make	a	provision	for	reserved	
project	resources	as	contingency	for	any	risk	of	losing	any	project	team	member	at	any	time	dur-
ing	the	execution	of	the	project.	 It	 is	a	reality	that	software	professionals	are	 in	great	demand,	
and	most	projects	run	the	real	risk	of	team	members	leaving	the	project	for	more	lucrative	offers.	
In	such	a	situation,	a	project	may	suffer	if	any	team	member	decides	to	leave	the	project	midway.	
Whatever	tasks	the	member	had	finished	on	the	project	is	fine,	but	what	about	the	remaining	tasks	
that	have	not	been	started	yet,	or	have	only	been	half	finished?	Generally,	it	is	not	a	good	idea	to	
keep	a	paid	reserve	on	the	project	as	it	would	add	to	the	cost	of	the	project.	But	keeping	a	pipeline	
open	for	probable	replacements	is	a	good	idea.	When	a	replacement	is	needed,	the	project	manager	
can	tap	this	pipeline	and	get	the	replacement.	But	sometimes	getting	the	right	replacement	takes	
time,	and	thus,	the	project	suffers.	This	risk	can	be	mitigated	by	keeping	a	reserve	in	the	project	
schedule	for	any	delay	in	resource	replacement.	This	reserve	pool	can	consist	of	people	sitting	on	
the	bench	or	list	of	people	who	are	working	on	other	projects	and	the	dates	on	they	will	be	avail-
able	(Figure	4.5).

Project	 team	members	 leaving	 in	 the	middle	of	 the	project	 is	one	of	 the	biggest	 risks	 any	
project	may	face.	Such	team	members	take	the	project	task	(the	task	he	was	working	on)	knowl-
edge	with	them	as	well.	This	results	 in	a	big	 loss	to	the	project.	This	risk	can	be	mitigated	to	
some	extent	by	implementing	a	knowledge	management	system	that	will	store	all	the	knowledge	
acquired	by	team	members	during	the	project.	It	will	also	store	all	the	work	performed	by	the	
project	team.	So,	when	a	team	member	leaves	the	project,	the	knowledge	acquired	and	the	work	

Task 1 Task 2 Task 3

Project

Task 4

= Risk buffer

Figure 4.4 Schedule risk buffer provisions in a project.

Knowledge
management

system
Project team

Pool of talent
(people on

bench + dates
when released
from ongoing

projects)

Figure 4.5 Resource risk strategy.

Risk Management  ◾  67

done	by	him	is	in	the	knowledge	management	system.	Thus,	the	project	team	will	not	lose	all	the	
work	that	has	been	done	and	the	knowledge	acquired	by	the	person	who	is	leaving.

Knowledge	management	is	discussed	in	further	detail	in	Chapter	19.

4.3.4 Quality Risks
Industry	 strength	software	needs	a	 rock	solid	reliability	 so	 that	during	operations,	 the	 support	
costs	 can	be	kept	 at	 a	minimum	 [13].	Otherwise,	 supporting	 a	poor	quality	 software	product	
becomes	 a	 losing	proposition.	So,	 the	quality	of	 the	 software	product	 is	 always	 a	 concern	and	
a	big	risk.	The	quality	of	the	product	may	be	poor	due	to	bad	software	design	or	bad	software	
construction.	Even	if	it	is	good,	there	is	still	a	chance	of	defects	inadvertently	creeping	in	due	to	
complexity,	large	integration	interfaces,	or	due	to	the	large	number	of	changes	in	the	design	when	
the	requirements	are	altered.

To	deal	with	quality	risks,	the	best	policy	is	to	have	a	check	for	quality	integrated	in	the	project	
schedule	itself	(quality	planning).	This	will	ensure	that	the	quality	at	the	work	product	level	is	on	
par	with	the	desired	level,	which	in	turn	will	ensure	overall	product	quality.	Peer	reviews,	code	
reviews,	and	other	formal	quality	review	processes	should	be	strictly	followed	for	all	work	products	
(Figure	4.6).

In	fact,	ensuring	quality	of	the	software	product	being	developed	has	become	so	critical	these	
days	that	quality	planning	must	be	integrated	tightly	in	the	entire	project	plan	to	reduce	quality-
related	risks.

4.3.5 Technology Risks
Technology	obsolescence	is	a	fact	of	life	[14].	With	the	rapid	introduction	of	new	products	into	
the	market,	older	products	quickly	become	obsolete.	So,	many	projects	face	the	prospect	of	having	
an	outdated	technology	on	which	the	software	product	is	being	built.	In	such	cases,	the	software	
product	becomes	unusable	even	before	it	is	implemented.	Similarly,	if	any	hardware	component	
that	may	have	been	integrated	with	the	software	and	the	hardware	becomes	obsolete,	 the	soft-
ware	product	becomes	unusable.	An	appropriate	selection	of	programming	language,	hardware	
platform,	 and	user	 access	methods	will	make	 sure	 that	 the	 software	product	does	not	become	
obsolete	during	the	expected	lifespan	usage	of	the	product.	When	selecting	technology	tools	and	
techniques,	contact	the	vendors	to	make	sure	that	they	will	be	providing	support	in	future	as	well	
for	the	tools	you	are	buying	from	them.

Task 1 Task 2 Task 3

Project

= Quality check

Task 4

Figure 4.6 Quality checks at the end of a project task.

68  ◾  Software Project Management: A Process-Driven Approach

4.4 Risk Analysis
Dealing	with	any	kind	of	risk	requires	some	risk	analysis	[15].	The	analysis	should	consider	the	
kind	of	impact	risk	can	have	on	the	project	as	well	as	the	chance	of	it	happening.	Based	on	the	
analysis,	you	then	need	to	sort	risks	and	put	them	in	order.	Risks	with	high	probability	and	high	
impact	will	be	put	on	top	of	this	list,	while	risks	with	low	impact	and	low	probability	will	be	put	
at	the	bottom.	The	project	manager	will	then	be	better	prepared	to	deal	with	all	kinds	of	risks	in	
a	systematic	manner	(Table	4.1).

Different	risks	occur	at	different	times	in	the	project.	For	instance,	the	product	quality	may	not	
meet	the	expected	standards	during	the	design	stage,	and	the	design	may	need	to	be	reworked.	The	
rework	may	stretch	the	project	schedule	and	the	project	plan	may	need	to	be	redone.	So,	this	is	a	risk	
that	can	occur	at	the	design	stage.	Similarly,	during	testing,	a	lot	of	unexpected	defects	might	be	
found,	and	the	time	taken	to	fix	these	defects	will	overshoot	the	budgeted	time.	Sometimes,	it	may	
so	happen	that	a	team	member	may	fall	sick	and	it	may	take	time	to	replace	him.	This	may	cause	a	
delay	in	finishing	the	assignment	that	was	given	to	the	team	member	(Figure	4.7).

In	a	nutshell,	project	risks	are	dynamic	in	nature.	They	can	occur	at	any	stage	of	the	project.	So	
the	project	risk	matrix	where	the	project	manager	has	listed	risks	and	their	impact	as	well	as	their	
probability	needs	to	be	revised	at	regular	intervals	and	the	risks	that	are	likely	to	happen	at	that	
moment	in	time	need	to	be	assessed	and	remedial	action	should	be	taken.

Table 4.1 Matrix of Risks: Their Impact and Probability

Risk Category Risk Probability Impact

Budget Task budget overrun High High

Budget Wrong budget estimate of a task Medium High

Resource Not available High Medium

Resource Skill training Medium Medium

Schedule Wrong estimate of a task

Project scope Scope creep

Quality Bad quality of product

Quality Product reliability issues

Technology Technology obsolescence

Make prioritized
list of risks

Create list
of risks

Assign priority and
impact to risks

Update list when
priority of a risk

changes

Order list of risks
as per priority and

impact

Figure 4.7 Risk analysis life cycle.

Risk Management  ◾  69

4.5 Balancing Act
No	project	can	be	executed	100%	as	per	the	project	plan.	There	is	bound	to	be	something	differ-
ent	than	planned	due	to	the	occurrence	of	any	kind	of	risk	and	the	subsequent	impact	it	has	on	
the	project.	How	can	the	project	manager	justify	whatever	has	been	delivered?	Can	he	justify	any	
schedule	or	budget	overrun?	What	about	deviation	in	the	quality	level?	What	about	a	less-than-
agreed	on	set	of	features	being	delivered?

There	are	no	easy	answers.	Each	project	is	different.	It	depends	on	the	importance	of	each	
deliverable	on	the	project	compared	to	the	other	deliverables.	This	is	not	an	easy	choice.	At	
the	top	level,	quality	level	considerations	come	from	the	kind	of	application	being	developed,	
and	for	what	purpose.	If	the	application	is	meant	for	a	general	purpose	information	displaying	
system,	and	the	end	users	do	not	mind	occasional	bugs,	then	the	quality	level	for	the	project	
can	be	compromised	in	preference	for	costs	or	schedules.	On	the	other	hand,	if	the	application	
needs	 accurate	 transactions	 without	 any	 compromise,	 then	 quality	 cannot	 be	 undermined.	
In	that	case,	costs	or	schedules	can	be	allowed	to	overrun	to	get	the	desired	level	of	quality	
(Figure	4.8).

These	 are	 all	 subjective	 considerations.	 The	 project	 manager	 must	 decide	 what	 limits	 to	
cross	and	what	limits	to	abide	with.	In	doing	so,	he	also	should	have	consent	from	the	project	
stakeholders.

The	project	manager	may	also	come	across	situations	(which	are	very	common)	where	require-
ments	 as	well	 as	 priorities	 are	 ambiguous.	 In	 those	 cases,	 it	will	 be	 in	 the	best	 interest	 of	 the	
project	manager	to	remove	those	ambiguities	as	much	as	possible.	Clear,	well	defined,	and	feasible	
requirements	lead	to	a	better	control	over	the	project.	At	the	same	time,	priorities	should	also	be	
set	appropriately.	Delivering	low	priority	requirements	at	the	cost	of	high	priority	requirements	
will	lead	to	unsatisfactory	project	performance.

From	a	software	engineering	point	of	view;	clear	requirements	are	the	most	vital	inputs	to	a	
project.	But	every	experienced	project	manager	knows	that	clear	requirements	are	not	enough	to	
do	the	job.	Priorities	are	equally	important.

It	is	this	balancing	act	that	each	project	manager	must	perform	to	succeed	in	the	project	
at	hand.

Product
quality

External
risks

External
risks

External
risks

Internal
risks

Schedule

Budget

Figure 4.8 Internal and external risks, and balance in product quality, project budget, and
project schedule.

70  ◾  Software Project Management: A Process-Driven Approach

4.6 Project Risk Management in Agile Models
Using	a	waterfall	model	to	execute	your	project	is	a	big	risk.	It	is	because	the	outcome	of	the	project	
(the	software	product)	is	ready	only	after	the	whole	project	is	completed	after	a	prolonged	period	of	
time.	Suppose	the	project	duration	is	6	months,	then	the	outcome	of	the	project	is	known	only	after	
investing	time	and	money	for	these	6	months.	The	outcome	could	be	positive	or	negative.	Waiting	
for	such	a	long	time	to	get	the	result	is	a	big	risk	indeed.	To	reduce	this	risk,	iterative	approaches	to	
software	development	have	been	tried.	Instead	of	taking	all	the	requirements	and	doing	the	entire	
product	development	in	one	go,	requirements	are	broken	into	small	sets	of	manageable	requirements.	
Each	small	set	of	requirements	is	then	used	to	develop	a	small	product.	The	duration	for	making	
these	small	products	(software	features)	is	kept	at	4–6	weeks	or	even	less.	After	each	iteration,	there	is	
a	demonstrable	product	that	can	be	tested	to	see	if	it	works	as	intended,	and	as	per	the	requirements.	
This	approach	reduces	the	big	risk	into	a	set	of	small	risks	(Figure	4.9).

All	the	risks	associated	with	the	waterfall	model	are	either	miniaturized	or	totally	eliminated	
in	the	iterative	model.	They	can	be	managed	in	a	better	way	as	well	due	to	the	small	size	of	these	
iterative	projects.

4.7 Artifacts of Project Risk Management
Risk	management	deals	with	defining	probable	risks,	their	impact	on	the	project,	and	the	ways	
of	dealing	with	them	to	minimize	their	impact	on	the	project.	The	outcome	of	risk	management	
planning	is	the	risk	management	document.	It	contains	the	list	of	risks,	their	impact,	probability,	
and	what	measures	are	to	be	taken	to	overcome	them	if	they	occur.	Since	risk	can	occur	at	any	
time	during	the	entire	course	of	the	project,	and	their	chances	of	occurring	vary	from	time	to	time,	
they	are	dynamic	in	nature.	So	the	risk	management	document	should	be	updated	regularly	to	
keep	risk	information	current.

4.8 Practical Considerations for Risk Management
All	of	the	risks	on	a	project	can	be	categorized	as	manageable	and	unmanageable.	The	project	
manager	 must	 make	 mitigation	 strategies	 for	 all	 manageable	 risks.	 The	 unmanageable	 risks	
at	hand	cannot	be	managed,	and	thus	cannot	have	a	mitigation	strategy.	A	good	example	of	

Long
gestation

period

Large upfront
commitment

Risks due to large
number of

requirements

High
management

costs

Requirement
changes

Miscommuni-
cation

Figure 4.9 Major risks in traditional software development.

Risk Management  ◾  71

an	unmanageable	risk	 is	a	natural	calamity,	such	as	an	earthquake.	If	an	earthquake	strikes,	
then	you	cannot	manage	the	earthquake.	What	can	be	managed	to	some	extent,	are	the	conse-
quences.	The	fire	brigade,	police,	and	volunteer	teams	can	try	to	find	people	who	are	stuck	in	
the	debris	and	try	to	save	them.	For	human	and	capital	losses,	insurance	companies	can	shell	
out	insurance	benefits.

So	for	all	unmanageable	risks,	the	project	manager	can	at	best	rely	on	external	help	if	possible.	
But	for	all	manageable	risks	(that	he	can	manage),	he	should	make	mitigation	strategies.	These	
strategies	will	help	him	when	these	risks	occur	and	impact	the	project	in	any	way.

4.9 Case Study
In	Chapter	3,	we	saw	how	effort	and	cost	estimation	were	done	for	the	project	of	our	SaaS	vendor.	
In	this	chapter,	we	will	see	how	risks	on	the	project	were	identified	and	how	risk	mitigation	plans	
were	made	to	tackle	those	potential	risks.

Every	business	is	constantly	trying	to	find	out	what	the	current	market	size	for	the	products	
and	services	it	sells,	and	where	it	stands	in	the	market	vis-à-vis	its	competitors.	What	is	the	total	
market	potential	for	the	software	product	it	wants	to	produce?	Who	are	the	other	players	in	the	
market?	What	are	their	market	shares?	How	does	it	want	to	carve	a	share	in	the	market	for	its	
products	and	services?	What	strategies	are	other	players	making?	What	are	the	future	prospects	
and	where	is	the	future	heading?

Based	on	these	findings,	the	business	makes	its	own	strategy.	It	makes	a	market	plan	and	
prepares	a	detailed	roadmap	to	achieve	the	market	position	it	wants	to	hold.	It	also	assesses	the	
risks	associated	with	its	venture	and	formulates	a	strategy	to	deal	with	these	risks.	The	survival	
of	the	business	entirely	depends	on	how	it	perceives	the	risks	and	how	it	successfully	mitigates	
these	risks.

For	 any	 software	 vendor,	 the	biggest	 risk	 is	whether	 its	 software	product	will	 become	 as	
successful	as	envisaged	by	the	market	potential	for	the	product,	from	its	market	research.	Once	
market	potential	is	assessed,	the	vendor	then	starts	implementing	its	strategy	by	commencing	
building	the	software	product,	which	is	a	costly	affair.	The	development	costs	are	determined	in	
advance,	and	an	appropriate	budget	is	allocated.	A	development	team	is	formed,	and	the	team	
starts	developing	the	software	product.	The	development	of	the	product	itself	may	encounter	
several	risks.

4.9.1 Risks on This Project
Our	SaaS	 vendor	underwent	many	 challenges	 and	 risks	while	developing	 its	 flagship	 software	
product.	The	foremost	risks	envisaged	by	the	development	team	were

	◾ Viability	of	offshore	teams	and	relationship	with	service	providers
	◾ Attrition
	◾ Communication	gaps	(languages,	understanding	of	tasks,	understanding	of	messages,	etc.)
	◾ Development	costs
	◾ Development	schedule
	◾ Software	product	quality

72  ◾  Software Project Management: A Process-Driven Approach

For	the	6.0	release,	the	development	team	formulated	the	following	strategies	to	tackle	these risks:

	◾ First	of	all,	a	thorough	check	was	made	for	competency	and	maturity	of	the	offshore	
service	 providers.	 Subsequently,	 a	 comprehensive	 service	 level	 agreement	 (SLA)	 was	
drafted,	and	then	the	service	providers	were	made	to	sign	the	agreement.	As	per	the	
SLA,	the	service	providers	would	make	a	detailed	weekly	report	for	all	tasks	performed	
by	 its	 employees	and	details	of	 these	 tasks.	These	 reports	would	be	 reviewed	by	 the	
software	vendor.	The	hours	spent	on	tasks	and	progress	status	on	assignments	per	week	
will	be	checked	by	the	vendor.	Only	after	review	would	the	hours	of	work	reported	be	
cleared.

	◾ To	tackle	attrition,	 the	 software	vendor	made	sure	 that	 its	own	employees	were	not	only	
given	the	best	salary	in	the	industry,	but	were	also	provided	with	a	working	environment	
that	 satisfied	 their	personal	 aspirations.	Each	 employee	was	 counseled,	 and	based	on	his	
aspirations	and	his	ability,	was	given	assignments.	During	performance	 review,	 if	perfor-
mance	was	not	up	to	the	mark,	then	suggested	measures	were	taken	in	consultation	with	the	
employee.	Likewise,	the	vendor	had	made	sure	that	the	staff	at	the	service	providers	was	also	
treated	in	a	similar	manner.

	◾ Communication	gap	between	the	onshore	and	offshore	teams	was	a	big	challenge	due	to	
distance,	different	time	zones,	and	culture	differences.	To	mitigate	this	risk,	it	was	decided	
to	have	a	 standard	 template	 for	all	 communication	among	 teams.	Virtual	meetings	were	
decided	for	knowledge	transfers	and	issue	resolutions.	It	was	decided	to	use	Webex	(Cisco	
Systems	Inc.),	Skype,	Yahoo	Instant	Messenger,	Microsoft	Net	meeting,	and	other	media	
for	virtual	meetings.	VOIP	phones	were	also	used.	Due	to	time	zone	differences,	meetings	
could	take	place	either	early	in	the	mornings	or	late	in	the	evenings	(even	if	it	meant	work-
ing	nonoffice	hours).

	◾ To	 make	 sure	 that	 project	 and	 iteration	 schedules	 were	 on	 track,	 the	 development	 team	
decided	to	keep	a	buffer	in	the	schedule	of	10%	of	the	schedule	estimate.	If	the	schedule	
was	going	to	be	affected	due	to	the	occurrence	of	any	risk,	then	the	schedule	buffer	could	be	
used.	This	strategy	worked	fine	throughout	the	project	related	to	release	6.0	of	the	software	
product.	At	the	same	time,	for	each	iteration,	the	project	manager	would	assign	a	priority	
value	to	each	feature,	which	was	to	be	taken	into	the	iteration.	The	most	prioritized	features	
would	 be	 developed	 first.	 If	 the	 iteration	 permitted	 time,	 then	 lesser	 prioritized	 features	
could	be	taken	for	development.	So,	if	due	to	the	occurrence	of	any	risk,	a	feature	took	more	
time	for	development	than	planned,	then	at	least	all	prioritized	features	were	developed	in	
the	iteration	even	if	some	nonprioritized	features	could	not	be	taken	up.

	◾ To	make	sure	that	the	unavailability	of	any	project	team	member	for	short	durations	did	
not	 affect	 the	project	 schedule,	 each	 team	manager	was	 authorized	 to	ask	 for	overtime	
work	from	his	team.	In	the	absence	of	a	team	member	for	short	durations,	the	other	team	
members	performed	those	assignments	to	finish	them	on	time.	Similarly,	if	the	schedule	
was	being	affected	for	any	other	reason,	then	the	project	manager	would	ask	for	overtime	
from	his	team	to	finish	any	pending	assignments	on	time.

	◾ To	ensure	that	the	quality	of	the	software	product	was	always	high,	reviews	and	checks	were	
incorporated	into	the	process	after	each	work	product	was	completed.	When	the	require-
ments	were	completed	(in	the	form	of	requirement	specifications),	they	were	tested	to	make	
sure	that	they	did	not	have	any	deficiencies	or	defects.	Similarly,	the	design	and	source	code	
were	also	reviewed	thoroughly	before	wrapping	up	these	tasks.

Risk Management  ◾  73

4.10 Chapter Summary
Software	projects	are	a	huge	risk	for	stakeholders	as	their	interests	are	at	stake	on	the	success	or	
failure	of	the	project.	Once	they	approve	a	project,	then	the	burden	of	carrying	the	risk	falls	on	
the	shoulders	of	the	appointed	project	manager.	Each	activity	and	project	task	has	its	own	share	of	
risk.	During	project	execution,	risks	that	might	adversely	hamper	the	project	lurk	at	every	corner.	
So,	before	starting	execution,	the	project	manager	must	ensure	that	he	has	a	sound	risk	manage-
ment	plan	to	tackle	any	risk	that	might	crop	up.

Any	of	the	risks	can	impact	schedule,	cost,	or	quality.	So	all	the	risks	should	be	categorized	by	
the	kind	of	impact	it	has	on	any	of	these	project	components.

To	make	a	sound	risk	mitigation	plan,	the	project	manager	should	first	identify	the	risks	that	
can	occur	during	project	execution.	He	should	make	a	list	of	all	these	potential	risks.	Then	he	
should	find	out	the	severity	of	impact	each	of	these	risks	can	have	on	the	project.	He	can	also	
then	make	a	priority	for	each	risk	for	tackling	it.	Based	on	impact	and	priority,	he	can	sort	out	
this	list	to	come	up	with	the	risk	with	the	most	urgent	need	for	tackling,	and	at	the	end	of	the	
list,	the	risks	that	are	the	least	likely	to	have	any	impact	on	the	project	and	those	that	have	the	
least	priority	as	well.	For	each	risk,	the	project	manager	can	find	out	the	cost	and	effort	required	
to	tackle	 them.	Based	on	the	cost	and	effort	required	for	 tackling	probable	risks,	 the	project	
manager	can	make	buffers	in	the	project	plan.	In	this	way,	if	any	risk	appears,	the	project	man-
ager	can	save	the	project	schedule	or	cost	from	going	out	of	hand	by	consuming	the	budget	or	
schedule	from	the	buffer.

To	tackle	risks	that	can	impact	quality,	quality	assurance	measures	must	be	ensured		throughout	
the	project.	All	work	products	during	the	project	must	be	checked	for	quality.	Only	when	quality	
norms	are	met	with,	should	the	project	be	allowed	to	proceed	to	the	next	phase,	so	that	in	the	
next	phase	of	the	project,	the	input	work	product	is	defect	free.	For	this	arrangement,	the	project	
schedule	must	have	tasks	for	work	product	inspections	as	well	as	some	time	allowance	so	that	the	
work	product	can	be	reworked	to	make	it	defect	free.

These	risks	can	happen	anytime	during	the	project	execution,	and	they	may	not	crop	up	at	the	
expected	time.	So	the	project	manager	should	keep	revising	his	list	of	risks,	so	that	they	are	always	
arranged	and	ordered	as	per	their	probability	of	occurrence.

Exercises
4.1	 Find	out	all	the	reasons	why	risk	management	in	the	iterative	development	models	is	differ-

ent	compared	to	the	traditional	waterfall	model.
4.2	 Find	out	all	the	risks	that	cannot	be	managed	on	a	software	project.	List	the	reasons	why	

these	risks	cannot	be	managed.

Review Questions
4.1	 List	all	the	kinds	of	risks	that	can	occur	on	a	project.
4.2	 What	strategy	is	adopted	to	minimize	the	impact	of	any	risk	on	the	project?
4.3	 Describe	in	detail	the	steps	taken	in	preparing	a	risk	management	strategy.
4.4	 Why	is	risk	management	so	important	for	any	project?
4.5	 What	strategy	is	adopted	to	minimize	the	risk	of	changing	requirements?

74  ◾  Software Project Management: A Process-Driven Approach

Recommended Readings
	 1.	 J.	Smith,	P.	McKee	(2001)	Troubled IT Projects: Prevention and Turnaround	(IEE	Professional	Applications	

of	Computing	Series,	3),	Institute	of	Electrical	&	Electronic	Engineers,	Hertfordshire,	U.K.
	 2.	 K.	Heldman	(2007)	PMP: Project Management Professional Exam Study Guide,	Sybex,	Alameda,	CA.
	 3.	 D.	Lock	(2007)	Project Management,	Ashgate	Publishing	Company,	Aldershot,	U.K.
	 4.	 M.	D.	Lewin	(2001)	Better Software Project Management: A Primer for Success,	Wiley,	Hoboken,	NJ.
	 5.	 F.	Tsui	(2004)	Managing Software Projects,	Jones	and	Bartlett	Publishers,	Inc,	Sudbury,	MA.
	 6.	 P.	C.	Tinnirello	(1999)	Project Management,	CRC	Press,	Boca	Raton,	FL.
	 7.	 D.	D.	Galorath,	M.	W.	Evans	(2006)	Software Sizing, Estimation, and Risk Management,	CRC	Press,	

Boca	Raton,	FL.
	 8.	 R.	T.	Futrell,	D.	F.	Shafer,	L.	I.	Shafer	(2002)	Quality Software Project Management,	Prentice	Hall	PTR,	

Upper	Saddle	River,	NJ.
	 9.	 J.	 E.	 Tomayko,	 O.	 Hazzan	 (2004)	 Human Aspects of Software Engineering,	 Laxmi	 Publications,	

New Delhi,	India.
	 10.	 R.	J.	Muller	(1997)	Productive Objects: An Applied Software Project Management Framework,	Morgan	

Kaufmann,	San	Fransisco,	CA.
	 11.	 R.	E.	Fairley	 (2009)	Managing and Leading Software Projects,	Wiley-IEEE	Computer	 Society	Press,	

Hoboken,	NJ.
	 12.	 J.	T.	Marchewka	(2006)	Information Technology Project Management,	Wiley	India	Pvt.	Ltd.,	New	Delhi,	

India.
	 13.	 J.	W.	Horch	(1996)	Practical Guide to Software Quality Management,	Artech	House,	London,	U.K.
	 14.	 K.	Bittner,	 I.	 Spence	 (2006)	Managing Iterative Software Development Projects	 (The	Addison-Wesley	

Object	Technology	Series),	Addison-Wesley	Professional,	Boston,	MA.
	 15.	 P.	Jalote	(2002)	Software Project Management in Practice,	Addison-Wesley	Professional,	Boston,	MA.

75

Chapter 5

Configuration Management

In.the.previous.chapter,.we.learned

	◾ What	is	a	risk	on	a	project?
	◾ What	kinds	of	risks	exist	for	a	project?
	◾ What	kind	of	impact	may	risk	have	on	a	project?
	◾ What	strategy	is	needed	to	deal	with	risks?

In.this.chapter,.we.will.learn

	◾ What	is	a	configuration	management	system?
	◾ What	are	the	parts	of	a	configuration	management	system?
	◾ Why	is	a	configuration	management	system	required	on	a	software	project?
	◾ What	strategies	can	be	made	to	deploy	a	configuration	management	system	success-

fully	for	a	project?

5.1 Introduction
Configuration	management	is	needed	on	software	projects	because	numerous	artifacts	are	pro-
duced	during	 the	entire	product	development	 life	cycle.	There	needs	 to	be	a	place	where	 these	
artifacts	 can	be	kept	 safely	and	 from	where	 they	can	be	accessed	easily	and	securely	whenever	
required.	Configuration	management	is	in	fact	a	supporting	process	that	runs	alongside	the	devel-
opment	process.

During	the	entire	software	development	life	cycle,	requirements	keep	changing.	This	results	
in	many	versions	of	work	products.	Each	team	member	is	supposed	to	work	on	the	right	version	
of	any	work	product.	If	these	versions	are	not	managed	properly,	there	may	be	the	possibility	that	

76  ◾  Software Project Management: A Process-Driven Approach

team	members	start	working	on	wrong	versions	of	work	products.	It	is	therefore	very	important	
that	documents	and	work	products	be	kept	at	the	right	place	and	that	project	teams	be	aware	of	
the	right	locations	of	documents	in	the	configuration	management	(Figure	5.1).

Continuous	 integration	 is	 adopted	 for	many	 software	development	projects.	A	build	of	 the	
software	product	is	kept	at	a	central	location	and	each	new	piece	of	software	being	developed	is	
integrated	with	the	existing	build.	Thus,	in	a	single	day	there	could	be	more	than	50	or	more	revi-
sions	or	more	of	the	same	build	due	to	new	codes	being	added	by	developers	throughout	the	day.	
There	could	also	be	many	versions	of	the	build	at	any	given	time.	The	new	code	must	be	checked	
in	the	right	software	build.	If	a	proper	configuration	and	version	control	system	is	not	provided,	
this	kind	of	software	development	(continuous	integration)	is	not	possible.

5.2 Configuration Management
The	driving	force	behind	configuration	management	is	the	need	to	store,	archive,	identify,	retrieve,	
and	release	work	products	and	information	items	for	the	entire	project	team	[1].	Change	control	
for	different	versions	of	information	items	is	what	makes	configuration	management	a	difficult	
area.	Each	information	item	can	be	identified	using	tags	associated	with	the	information	item.	
Some	common	tags	for	item	identification	include

	◾ Project	name
	◾ Year	and	time	stamp
	◾ Document	name
	◾ Document	number
	◾ Author
	◾ Activity	identifier
	◾ Document	type
	◾ Version	number

A	 configuration	management	 system	 is	used	by	 the	 entire	project	 team,	which	may	 consist	 of	
one’s	own	team	as	well	as	contractors	and	service	providers.	To	manage	who	can	have	access	to	
what	information,	a	secured	access	system	is	required.	To	achieve	this,	we	can	define	roles	and	
permissions	centrally.	Information	items	are	stored	inside	folders.	Each	folder	can	have	multiple	
sub-folders.	Each	of	 these	 sub-folders	can,	 in	 turn,	have	multiple	 sub-folders.	This	hierarchy	 is	
maintained	for	each	major	classification	of	 items.	The	items	are	 then	created	and	stored	at	 the	
appropriate	place	in	the	hierarchy	(Figures	5.2	and	5.3).

Version
control

Auditable Centrally
located Secure Access to all

teams
Accessible to
remote teams

Continuous
integration

Artifact
location

Characteristics of
good configuration

management system

Figure 5.1 Characteristics of a good configuration management system.

Configuration Management  ◾  77

Each	folder	then	has	an	access	permission	for	each	defined	role.	Each	role	may	have	edit/view	
or	view-only	roles.	Roles	with	proper	access	permission	can	only	view	or	edit	any	item	inside	that	
folder,	or	any	sub-folders	inside	that	folder.	An	account	for	each	individual	project	team	member	is	
created	on	the	configuration	management	system.	Each	of	these	accounts	is	then	linked	to	appro-
priate	defined	roles.	Team	members	can	then	create/access	documents	and	files	on	the	system	as	
per	their	access	rights.

5.3 Configuration Management Techniques
As	has	been	mentioned	previously,	keeping	track	of	the	right	versions	of	information	and	work	
product	items	is	very	important	in	any	project.	So	version	control	is	one	of	the	most	important	
aspects	of	any	configuration	management	system.	As	most	 software	projects	are	executed	with	
teams	 at	different	 locations,	which	may	be	under	different	 time	 zones,	 a	 central	 configuration	
system	is	required	that	would	allow	smooth	working	of	all	teams	from	all	locations.	Consider	the	
problems	this	type	of	development	work	can	face	if	a	central	configuration	system	is	not	avail-
able	and	a	decentralized	system	has	to	be	followed.	Each	team	would	have	its	own	configuration	
management	system.	The	setup	would	vary	between	teams,	with	the	same	item	being	named	and	
known	differently	in	each	system	(Figure	5.4).

Project name Time stamp Document
number

Information needed for a
document for a configuration

management system

Author Document
type

Version
number

Figure 5.2 Information required for keeping a document or work product in a configuration
management system.

Project 1

Requirements

Design

Construction

Testing Test ver. 1 Test ver. 2

Construction
ver. 1

Construction
ver. 2

Design ver. 1

Req. ver. 1

Design ver. 2

Req. ver. 2

Figure 5.3 Folder and item hierarchy structure inside a configuration management system.

78  ◾  Software Project Management: A Process-Driven Approach

This	kind	of	arrangement	would	create	chaos.	It	would	be	difficult	to	control	versions	of	docu-
ments	and	would	make	 it	harder	 for	 teams	to	manage	their	work.	If	 integration	were	required	
between	 two	 components	 developed	 by	 two	 different	 teams,	 it	 would	 be	 difficult	 to	 know	 if	
they	were	the	right	versions	for	the	integration.	In	short,	it	would	create	a	great	many	problems.	
Moreover,	 synchronizing	different	 versions	of	documents	over	different	 configuration	manage-
ment	systems	is	a	tedious	and	error-prone	task.	It	also	adds	unnecessary	overhead.

In	light	of	things	we	have	seen	so	far	related	to	different	aspects	of	configuration	management	
systems,	it	makes	sense	to	stick	to	some	best	practices	that	are	relevant	to	these	kinds	of	systems.	
Following	are	some	techniques	and	best	practices	[2]	that	are	extremely	useful:

	 1.	Centralized	configuration	management	system	[3]
	 2.	Secured	access	mechanism	with	role-based	access	control	[4]
	 3.	Continuous	integration	of	software	build	with	smoke	test	facility	[5]
	 4.	Easy	branching	mechanism	to	branch	out	an	entire	software	version	[6]
	 5.	Audit	facility

As	discussed	earlier,	a	centralized	configuration	management	with	a	role-based	access	mechanism	
will	allow	smooth	functioning	of	the	system.

When	it	comes	to	managing	the	central	source	code	build,	some	critical	considerations	need	
to	be	made,	especially	if	we	are	in	continuous	integration	mode.	Generally,	when	the	project	is	in	
construction	phase,	developers	will	write	code	and	will	check	their	code	with	the	existing	software	
build	whenever	 they	 complete	 a	 unit	 of	 a	 component	 on	which	 they	 are	working.	 If,	 for	 some	
reason,	 the	build	gets	broken	due	 to	 faulty	code,	 the	configuration	 system	will	not	allow	other	

Requirements

Configuration
 Management system 1

Design

Construction

Testing Test ver. 1 Test ver. 2

Construction
ver. 1

Construction
ver. 2

Design ver. 1

Req. ver. 1

Design ver. 2

Req. ver. 2

Configuration
Management system 2

Project 1

Configuration
Management system 3

Requirements

Design

Construction

Testing Test ver. 1 Test ver. 2

Construction
ver. 1

Construction
ver. 2

Design ver. 1

Req. ver. 1

Design ver. 2

Req. ver. 2

Figure 5.4 Folder and item hierarchy structure inside a decentralized configuration manage-
ment system.

Configuration Management  ◾  79

developers	to	check	their	piece	of	code	until	the	build	is	rectified	by	the	developer	who	had	checked	
in	 the	 last	piece	of	 code.	 (This	 functionality	 can	be	achieved	by	 installing	an	automatic	 smoke	
testing	tool	such	as	Cruise	Control,	which	will	keep	generating	error	messages	whenever	a	piece	
of	source	code	is	checked	in	to	the	software	build	as	long	as	the	wrong	piece	of	source	code	is	not	
rectified	and	checked	in.)	The	current	developer	then	rewrites	his	piece	of	code	and	checks	his	code	
again.	If	the	build	is	successful,	other	developers	are	allowed	to	check	in	their	piece	of	code.	This	
kind	of	mechanism	is	important	to	maintain	integrity	of	the	software	build.	For	a	better	manage-
ment	of	this	build	management;	an	automated	smoke	test	facility	is	usually	provided.	Whenever	a	
new	piece	of	code	is	checked	in	to	the	build,	this	test	facility	runs	automatically.	It	checks	integrity	
of	the	build.	If	the	build	is	fine,	a	success	message	is	sent	via	e-mail	to	the	current	developer.	If	the	
smoke	test	fails,	a	failed	message	is	sent	to	the	current	developer	and	any	other	person	whose	e-mail	
address	is	defined	in	the	list	of	e-mails.	This	mechanism	is	indeed	very	useful.	Together	with	other	
good	characteristics,	this	facility	forms	a	good	configuration	system	(Figure	5.5).

Generally,	after	a	software	product	version	is	fully	developed	and	tested,	development	work	is	
stopped	on	that	version.	The	project	team	then	starts	working	on	the	next	version	of	the	software	
product.	The	person	 responsible	 for	managing	 the	configuration	management	 system	creates	 a	
new	work	 space	on	 the	configuration	management	 system	 for	 the	new	version	of	 the	product.	
There	are	thousands	of	folders	and	files	on	a	typical	software	development	project.	Creating	all	
of	them	from	scratch	will	take	an	inordinate	amount	of	time.	It	is	far	more	effective	to	create	a	
branch	of	the	existing	folders	and	files	of	the	project	and	copy	them	in	the	new	branch.	So	a	new	
work	space	will	become	ready	quickly.

The	configuration	management	system	should	also	have	a	good	audit	facility.	Whenever	any	
documents	stored	on	the	system	are	needed	for	verification,	they	should	be	easily	available.	If	any	
changes	are	needed	on	any	archived	document,	both	the	new	and	the	old	versions	should	be	avail-
able	on	the	system.	A	time	stamp	should	also	be	available	for	the	changes	made	on	any	document.

5.4 Artifacts of Configuration Management
A	configuration	management	system	holds	software	build	files,	work	products,	and	documents	gener-
ated	at	each	phase	of	the	software	development	life	cycle,	and	reviews,	reports	and	other	information	
documents.	All	of	these	documents	and	files	have	many	versions.	Whenever	there	is	a	change	required	
in	any	document	or	artifact,	a	new	set	of	new	versions	of	files	are	created	and	saved	on	the	system.	Thus,	
for	each	project,	there	will	be	requirement	specification	documents,	design	documents,	software	builds,	
testing	plans,	testing	cycle	documents,	training	manuals,	review	documents,	etc.	on	the	system.

Secure

Continuous
integration

Branching

Centralized

Audit facility

Configuration
management

system with good
facilities

Figure 5.5 Facilities required of a good configuration management system.

80  ◾  Software Project Management: A Process-Driven Approach

5.5 Configuration Management Case Study
In	Chapters	2	through	4,	we	learned	about	project	initiation,	effort	estimation,	and	risk	manage-
ment	for	the	project	undertaken	at	our	SaaS	vendor.	Here	is	a	case	study	on	how	to	set	up	and	
arrange	a	central	configuration	management	system	that	can	be	used	by	internal,	external,	and	
offshore	teams	at	the	same	time.

5.5.1 Configuration Management for an Incremental
Iteration Development Environment

A	U.S.-based	mid-market	software	vendor	built	a	software	system	that	allowed	retailers,	distribu-
tors,	and	manufacturers	to	manage	their	orders,	inventories,	shipment	of	goods,	third-party	logis-
tics	service	providers,	warehouses,	etc.	This	system	is	being	used	by	many	large	customers	in	the	
U.S.,	Europe,	and	other	markets.

For	development	of	this	software	system,	they	adopted	the	incremental	iteration	development	
model.	They	have	their	own	internal	project	team	that	works	on	developing	the	software.	They	
also	have	employed	service	providers	at	offshore	locations	in	India,	Russia,	and	other	locations	to	
reduce	their	development	costs	and	to	shrink	the	development	cycle.	This	arrangement	is	working	
very	well	 for	them.	Thanks	to	the	efficient	and	reliable	configuration	management	system	that	
they	have	deployed	centrally	and	that	is	accessible	to	all	teams	regardless	of	their	locations,	they	
have	been	able	 to	do	all	 their	development	work	without	encountering	 too	many	hurdles.	The	
configuration	management	system	is	available	24	h	a	day,	7	days	a	week,	and	there	is	virtually	no	
downtime.	It	is	also	very	secure,	and	no	hacks	have	occurred	since	it	started	working.

The	access	rights	were	of	two	types.	Administration	rights	(edit,	delete,	add)	were	given	only	to	
team	members	who	were	either	owners	of	documents	or	responsible	for	maintaining	documents.	
Others	were	given	view-only	rights	to	download	and	view	these	documents.	One	super-user	role	
was	also	created—this	could	be	used	to	create	new	branches	and	to	add,	delete,	or	modify	any	
folders	or	documents	in	the	entire	configuration	management	system.

The	main	branch	of	the	version	control	contains	the	main	build	of	the	software	containing	all	
the	major	updates	that	have	taken	place	since	the	product	was	developed.	This	main	branch	also	
contained	all	related	artifacts	for	the	main	build	(Figure	5.6).

Source code
check in

Main software build in
failed state

Main software build in
passed state

Main
software

build

Automatic smoke
test after source
code complied

Smoke test
failed

E-mail
notification

Website
report

Smoke test
passed

Figure 5.6 Workflow for smoke test on the main software build.

Configuration Management  ◾  81

An	automated	smoke	testing	software	was	installed	on	all	branches	where	developed	software	
code	was	being	checked.	Whenever	any	fresh	code	is	checked	in	the	build	by	any	developer,	this	
software	will	run	automatically.	It	will	check	the	compatibility	of	the	new	code	with	the	existing	
build.	If	any	inconsistency	is	found	and	the	build	fails,	it	will	show	a	failure	notice	on	a	status	
page	and	also	send	this	page	to	the	designated	people	on	the	e-mail	list,	including	the	person	who	
checked	in	the	fresh	code.	If	the	status	page	shows	success,	the	developer	can	start	working	toward	
his	next	assignment.	If	the	build	fails,	he	receives	a	failure	notice	and	starts	working	to	fix	the	
problem.	He	can	either	check	back	the	code	with	which	he	checked	in	or	can	check	in	the	cor-
rected	code	again.	This	practice	ensures	that	the	build	is	available	for	all	developers	located	at	any	
geographical	site	most	of	the	time.	If,	for	some	reason,	the	developer	cannot	rectify	the	build	even	
after	checking	back	his	code	or	is	not	aware	of	the	failure,	the	problem	is	escalated.	If	any	build	is	
not	fixed	within	1	h,	the	configuration	tool	will	send	an	e-mail	to	the	global	program	manager.	He	
can	then	take	any	appropriate	action.

Each	developer	also	keeps	a	local	build	and	smoke	test	application	on	his	personal	computer.	
He	keeps	this	local	build	in	synch	with	the	build	located	at	the	central	configuration	tool.	Before	
checking	his	code	in	the	central	configuration	tool,	he	runs	his	code	on	this	local	version.	If	the	
code	is	built	successfully	and	the	smoke	test	application	shows	a	success	status,	he	checks	his	code	
in	the	central	build.	This	ensures	that	the	central	build	does	not	fail	often.

5.6 Chapter Summary
On	 software	projects,	many	 versions	of	 the	work	products	 are	developed	due	 to	defect	fixing,	
pending	changes,	change	requests,	etc.	Configuration	management	on	software	projects	plays	an	
important	role	in	making	sure	that	all	these	versions	of	work	products	are	correctly	maintained	
and	that	project	team	members	have	access	to	all	these	work	products	and	project	documents.

Particularly,	source	code	builds	are	very	sensitive	to	version	control.	Source	code	build	is	the	
repository	where	each	developer	checks	in	his	source	code	after	developing	it.	These	check-ins	can	
be	done	several	times	during	the	day	by	each	developer.	If	the	source	code	checked	in	by	a	devel-
oper	has	defects,	it	will	fail	when	the	build	is	run.	Finding	and	fixing	the	cause	of	failure	becomes	
a	tedious	and	difficult	task.

The	configuration	management	system	should	have	a	good	security	mechanism	in	place	so	
that	it	is	not	hacked	by	unauthorized	persons.	Unauthorized	access	to	the	system	may	result	in	loss	
or	theft	of	vital	project	information.	At	the	same	time,	the	project	team	should	have	easy	access	to	
the	system	so	that	they	can	archive,	retrieve,	edit,	or	remove	project	work	products	and	documents	
without	any	problems.

Apart	from	the	regular	role	of	configuration	and	version	control	management,	these	systems	
also	play	an	important	role	as	keepers	and	providers	of	project	information.

Exercises
5.1	 For	any	open	source	project,	 try	 to	find	the	configuration	management	 system	 log.	Find	

significant	features	of	the	maintained	configuration	system	for	the	project.	(You	can	find	
many	open	source	projects	at	www.sourceforge.net.)

5.2	 From	 requirement	 change	 request	 logs	 for	 any	 accessible	 project,	 find	 out	 the	 complete	
change	log	for	each	work	product.

82  ◾  Software Project Management: A Process-Driven Approach

Review Questions
5.1	 Why	is	a	configuration	management	system	required	on	software	projects?
5.2	 What	are	the	essential	ingredients	of	a	good	configuration	management	system?
5.3	 What	is	a	smoke	test?
5.4	 Which	is	a	better	configuration	management	system:	a	centralized	system	or	a	decentralized	

system?	Explain	the	benefits	and	drawbacks	of	each.
5.5	 What	is	branching	on	a	configuration	management	system?

Recommended Readings
	 1.	 J.	Estublier	(1995)	Software Configuration Management: ICSE SCM-4 and SCM-5 Workshops. Selected

Papers (Lecture	Notes	in	Computer	Science),	Springer,	Berlin,	Germany.
	 2.	 J.	Keyes	(2004)	Software Configuration Management,	CRC	Press,	Boca	Raton,	FL.
	 3.	 A.	 Mette	 Jonassen	 Hass	 (2002)	 Configuration Management Principles and Practice,	 Addison-Wesley	

Professional,	Boston,	MA.
	 4.	 B.	Barkley	(2007)	Project Management in New Product Development,	McGraw-Hill	Education	(India)	

Pvt	Ltd.,	New	Delhi,	India.
	 5.	 S.	P.	Berczuk,	B.	Appleton	 (2002)	Software Configuration Management Patterns: Effective Teamwork,

Practical Integration,	Addison-Wesley	Professional,	Boston,	MA.
	 6.	 M.	E.	Moreira	(2004)	Software Configuration Management Implementation Roadmap,	Wiley,	New	York.

83

Chapter 6

Project Planning

In.the.previous.chapter,.we.learned

	◾ What	is	a	configuration	management	system?
	◾ What	are	the	parts	of	a	configuration	management	system?
	◾ Why	is	a	configuration	management	system	required	for	a	software	project?
	◾ What	strategies	can	be	made	to	deploy	a	configuration	management	system	success-

fully	for	a	project?

In.this.chapter,.we.will.learn

	◾ What	is	software	project	plan?
	◾ What	are	the	parts	of	a	software	project	plan?
	◾ What	are	the	types	of	software	project	plans?
	◾ What	inputs	go	in	making	a	software	project	plan?
	◾ What	techniques	are	used	in	making	a	software	project	plan?

6.1 Introduction
Project	planning	for	any	software	project	involves	making	the	best	trade-off	among	quality,	schedule,	
cost,	and	organization	benefits	which	can	accrue	from	the	project.	In	in-house	projects,	the	benefits	
to	the	organization	from	the	software	are	related	to	management	gains	in	the	form	of	increasing	mar-
ket	share,	reducing	operational	costs,	reducing	risk	exposure,	complying	with	government	regulations,	
etc.	Benefits	 to	 the	 end	users	 include	 ease	of	work,	 reducing	 labor-intensive	work,	 increasing	work	
performance,	etc.	Often	the	project	manager	may	not	be	aware	of	these	benefits;	nevertheless,	if	he	
has	information	about	these	things,	it	will	help	him	to	satisfy	his	customers’	needs	in	a	better	way.	

84  ◾  Software Project Management: A Process-Driven Approach

For	instance,	if	he	knows	that	the	main	objective	of	the	project	is	to	enhance	the	productivity	of	the	
staff,	then	he	will	choose	a	software	design	where	the	user	input	required	in	doing	transactions	is	kept	
to	a	minimum,	thus	increasing	user	productivity.

In	outsourced	projects,	one	important	goal	of	the	service	provider	is	to	make	a	profit	from	the	
project.	They	keep	a	profit	margin	on	top	of	estimated	project	costs.	Accordingly,	while	doing	
resource	planning,	the	project	manager	should	plan	it	in	such	a	way	that	costs	of	resource	for	the	
project	do	not	impact	the	profit	margins	of	the	project.

There	are	so	many	details	that	the	project	manager	has	to	be	aware	of;	only	then,	can	he	make	
a	good	plan	for	the	project.

6.2 Project Planning Fundamentals
During	project	initiation,	high-level	project	planning	is	done.	But	at	that	stage,	not	many	of	the	
project	details	are	available.	So	the	project	planning	is	at	best	a	rough	one.	The	effort	estimate	done	
at	that	stage	is	also	a	rough	one.	Both	these	plans	need	to	be	refined	at	a	later	date	when	all	or	most	
of	the	project	details	become	available	so	that	it	becomes	more	usable	for	the	project.

Depending	on	time	frame	requirement	of	a	project,	it	can	be	either	a	top-down	project	plan-
ning	or	a	bottom-up	project	planning	[1].	Generally,	in	the	case	of	product	development	by	software	
vendors,	the	project	management	is	a	top-down	approach,	and	in	the	case	of	custom	software	devel-
opment,	it	is	a	bottom-up	approach.	The	market	forces	dictate	the	software	vendors	to	release	new	
versions	with	desired	features	within	a	specified	time	period.	In	this	case,	the	release	date	is	fixed,	
and	so	the	software	development	team	is	given	a	specified	time	period	within	which	they	have	to	
incorporate	the	desired	features	in	the	software	and	have	to	make	it	available	on	the	market.	Since	
the	time	and	the	features	are	fixed,	the	development	team	has	no	choice	but	to	develop	the	product	
within	that	specified	time	frame.	This	is	known	as	the	top-down	approach.	In	contrast,	in	custom	
software	development,	the	project	team	is	given	the	software	requirements,	and	from	these	require-
ments,	they	estimate	how	much	time	it	will	take	to	develop	the	product.	Then	the	development	
team	decides	on	the	release	date	of	the	project.	This	approach	is	known	as	the	bottom-up	approach.

For	 large	outsourced	software	development	projects,	which	are	 instituted	to	make	 industry	
strength	large	software	products,	software	engineering	plays	an	instrumental	role	along	with	ser-
vice	level	agreements	(SLAs),	project	scope,	etc.	Using	software	engineering	will	ensure	that	the	
project	 and	product	development	processes	will	 be	well	 defined	 and	will	 ensure	 good	product	
quality	at	competitive	cost	and	acceptable	schedule.	Project	scope	defines	the	volume	of	work	to	
be	done	on	the	project	in	conjunction	with	requirements.	SLAs	define	deliverables,	frequency	of	
status	reports,	legal	and	commercial	liabilities,	etc.	(Figure	6.1).

The	project	plan	itself	consists	of	a	large	number	of	planning	components	[2].	It	includes	risk	
planning,	resource	planning,	 task	planning,	effort	estimation,	cost	estimation,	communication	
planning,	configuration	management	planning,	tool	planning,	supplier	management	planning,	
quality	planning,	and	scope	planning.	We	will	study	all	of	these	planning	components	in	detail	
later	in	the	chapter.

6.2.1 Top-Down Plan
The	product	development	company	(software	product	vendor)	always	has	product	release	dates	
planned	in	advance.	Similarly,	any	company	who	needs	a	software	system	for	meeting	the	market	
demands	needs	the	system	within	some	stipulated	time.	In	fact,	a	large	number	of	companies	are	

Project Planning  ◾  85

operating	under	 acute	market	pressures	 and	 they	need	 software	 systems	within	 a	 certain	 time	
window	 to	 accomplish	 their	business	 goals.	 If	 the	 software	 system	 is	not	provided	within	 this	
time	frame,	then	the	business	may	experience	severe	losses.	Under	these	circumstances,	a	software	
project	should	be	instituted	with	a	top-down	approach.

As	you	can	see	in	Figure	6.2,	there	are	a	large	number	of	inputs	in	the	case	of	planning	
top-down	projects.	Here,	apart	from	project	scope,	SLAs,	and	chosen	software	engineering	model	
and	requirements,	we	have	project	start	date,	project	end	date,	project	duration,	and	project	budget.	
All	of	these	details	are	available	to	the	project	team	before	the	start	of	the	project.

In	 the	 case	of	 top-down	projects,	 the	plan	outputs	 include	 supplier	management,	 configu-
ration	 management,	 communication	 management,	 defect	 prevention	 strategy,	 WBS	 structure,	
resource	allocation,	tool	management,	scope	management,	effort	estimate,	and	risk	management	
(Figure	6.3).

Risk planning

Scope
planning

Quality
planning

Supplier
planning

Configuration
management

planning

Communication
planning

Cost
estimation

Effort
estimation

Schedule
planning

Resource
planning

Tools
planning

Project
planning

components

Figure 6.1 Software project planning components.

Project scope Requirements
Service level
agreements Project budget

Project
duration

Software
engineering

Project
planning

inputs (top-down
planning)

Project start
date

Project end
date

Figure 6.2 Software project planning inputs for top-down approach.

86  ◾  Software Project Management: A Process-Driven Approach

6.2.2 Bottom-Up Plan
Large	 software	projects	 devoid	of	much	 clarity	 at	 the	beginning	of	 the	project	 tend	 to	have	 a	
bottom-up	approach	for	their	project	planning.	At	the	beginning	of	the	project,	effort	is	made	to	
find	out	what	tasks	should	be	involved	in	the	project	and	how	the	project	may	span	out.	Obviously	
there	will	be	no	sufficient	information	available	at	the	beginning	of	the	project,	and	the	project	
team	has	to	strive	to	gather	as	much	information	as	possible	to	make	a	reasonable	plan	for	the	
project.	They	collect	information	about	project	scope,	requirements,	and	SLAs.	Using	any	appro-
priate	software	engineering	model,	they	define	the	development	strategy	(whether	to	use	waterfall,	
agile,	or	any	custom	approach)	and	accordingly	settle	for	the	kind	of	development	tasks	they	will	
employ	in	the	project.	Once	these	inputs	are	in	place,	then	the	project	team	can	chalk	out	the	
project	plan,	including	the	complete	output	(Figure	6.4).

Project scope Requirements Service level
agreements

Software
engineering

Project
planning

inputs
(bottom-up
planning)

Figure 6.4 Software project planning inputs for bottom-up approach.

Supplier
management

Configuration
management

Communication
management

Project
planning

outputs (top-
down

planning)

Risk
management Effort estimate

Project budget

Tools
management

Resource
allocation

WBS
structure

Quality
management

Figure 6.3 Software project planning outputs for top-down approach.

Project Planning  ◾  87

Project	planning	requires	 inputs	based	on	which	outputs	will	be	created	 in	form	of	project	
plan.	Inputs	for	project	planning	for	bottom-up	approach	include	project	scope,	SLAs,	and	chosen	
software	engineering	model,	along	with	the	all	important	software	requirements	(Figure	6.5).

In	 the	bottom-up	project,	 the	project	plan	output	 includes	 supplier	management,	 configu-
ration	management,	communication	management,	defect	prevention	strategy,	project	duration,	
project	cost,	work	breakdown	structure	(WBS),	resource	allocation,	project	start	and	end	dates,	
tool	management,	scope	management,	effort	estimate,	and	risk	management.

6.2.3 Work Breakdown Structure
When	a	project	plan	is	made,	all	project	tasks	are	included	in	the	plan	[3].	Each	of	these	tasks	
has	a	start	date	and	an	end	date.	When	all	the	tasks	are	listed	in	the	plan,	it	will	be	difficult	to	
identify	which	task	is	dependent	on	another	task,	which	task	is	on	the	critical	path,	which	task	
signifies	a	milestone,	etc.	It	is	also	necessary	to	group	the	tasks	that	are	part	of	the	same	phase	in	
the	project	and	put	them	under	a	pseudo	task	with	the	name	of	the	phase.	The	last	tasks	in	each	of	
these	pseudo	tasks	will	be	the	milestone	tasks,	which	are	also	pseudo	tasks.	In	Microsoft	Project	
and	other	project	management	software,	all	tasks	pertaining	to	the	same	group	can	be	expanded	
or	collapsed	at	the	parent	task.	This	makes	reading	the	WBS	easier	and	manageable	(Figure	6.6).

6.2.4 Resource Allocation
Software	projects	 have	 variable	 staff	 requirements	 over	 the	project	 [4].	While	 construction	 and	
software	 testing	phases	need	a	 large	pool	of	 resources,	 the	 requirement	and	design	phases	need	
a	far	smaller	number	of	resources.	One	more	aspect	about	software	projects	is	that	skills	are	not	
usually	transferable.	So	a	software	architect	who	makes	software	design	is	usually	not	associated	

Supplier
management

Configuration
management

Communication
management

Project
planning
outputs

(bottom-up
planning)

Risk
management Effort estimate

Scope
management

Tools
management

Resource
allocation

WBS
structureProject cost

Defect
prevention

Project
duration

Start date

End date

Figure 6.5 Software project planning outputs for bottom-up approach.

88  ◾  Software Project Management: A Process-Driven Approach

with	software	construction.	Once	he	designs	the	software	application,	his	job	with	the	project	is	
complete	and	he	can	be	assigned	to	some	other	projects.	In	general,	about	50%	of	the	resources	are	
required	during	the	construction	phase.	For	software	testing,	it	is	about	30%	(Figure	6.7).

This	uneven	resource	requirement	over	the	project	phases	has	led	to	the	evolution	of	concur-
rent	engineering	models.	Many	teams	are	formed	for	software	construction	and	testing	who	work	
in	parallel,	and	thus,	project	cycles	get	reduced.

6.2.5 Supplier Management Plan
If	the	entire	project	or	project	parts	are	to	be	done	by	outsourced	project	teams,	then	a	supplier	
management	plan	is	needed	for	the	project	[5].	It	will	include	creating	the	SLA,	its	compliance,	
etc.	(Figure	6.8).

It	 is	 important	to	manage	suppliers	so	that	parts	developed	by	them	are	not	inferior	to	the	
parts	made	by	your	team.	Similarly,	if	there	are	two	or	more	suppliers,	then	the	quality	of	work	
products/products	provided	by	them	should	be	of	the	same	level.	One	major	area	of	concern	is	the	
integration	of	software	parts	made	by	suppliers	to	the	main	software	build.	To	mitigate	this	risk,	
the	central	build	should	be	employed	so	that	from	the	start	of	the	build,	the	outsourced	team	can	

Sample project

Initiation

Requirements

Task 1

Requirement milestone

Design

Task 1

Task 1

Task 2

Design milestone

Construction milestone

Testing

Testing milestone

Implementation

Implementation milestone

Project closure Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Start date End date Resource

Construction

Figure 6.6 Project plan with work breakdown structure.

Project Planning  ◾  89

keep	checking	their	code.	This	will	make	sure	that	integration	problems	will	not	arise.	Detailed	
information	about	supplier	management	is	provided	in	Part	III.

6.2.6 Configuration Management Plan
With	many	scattered	teams	working	on	the	same	project	in	many	cases,	it	is	most	important	that	
configuration	management	is	done	carefully.	It	should	be	ensured	that	all	teams	have	the	same	
version	of	source	code	and	document	files;	otherwise	chances	of	rework	will	increase.	It	is	the	best	
policy	to	have	a	centralized	configuration	management	system	used	and	maintained	by	all	 the	
teams.	Security	and	access	control	for	this	system	should	be	of	high	quality	so	that	project	team	
members	can	do	their	work	securely	and	without	any	fear	of	losing	their	work.	Detailed	informa-
tion	about	configuration	management	is	provided	in	Chapter	5.

6.2.7 Communication Management
Communication	 management	 depends	 solely	 on	 project	 organization	 structure,	 customer	
management	 strategy,	 and	 supplier	 management	 needs	 [6].	 For	 effective	 communication	
among	all	of	these	parties,	it	is	essential	that	a	proper	communication	management	strategy	is	
in	place.	The	project	manager	must	define	what	needs	to	be	communicated	to	whom,	in	what	

Number of resources

Requirements
Design

Construction

Testing

Figure 6.7 Resource (staff) requirements for a software project over different phases.

Service level
agreements

Part quality
check

Supplier
management plan

Communication
plan

Central
configuration

management system

Continuous
integration

Figure 6.8 Supplier management plan.

90  ◾  Software Project Management: A Process-Driven Approach

manner,	and	when.	A	good	way	to	promote	a	uniform	communication	channel	across	all	the	
scattered	project	teams	is	to	use	a	good	set	of	project	templates.	A	set	of	standard	templates	
will	go	a	long	way	in	establishing	a	smooth	and	uniform	communication	among	all	the	project	
teams.	Detailed	information	about	communication	management	is	provided	in	Chapters	19	
through	21.

6.2.8 Defect Prevention Strategy (Quality Assurance)
Quality	assurance	and	control	is	the	most	important	aspect	of	any	software	project	[7].	Without	
having	a	defect	prevention	strategy	(quality	assurance),	the	project	will	be	doomed	to	fail.	Defect	
prevention	strategy	should	be	an	integral	part	of	the	project	(Figure	6.9).

After	each	project	phase,	the	work	products	should	be	validated	and	verified,	and	only	if	they	
pass	the	expected	quality	level,	the	project	should	be	allowed	to	proceed	further.	Otherwise	the	
work	products	should	be	reworked	until	a	satisfactory	quality	level	is	achieved.

6.2.9 Project Duration
Project	duration	is	calculated	using	the	critical	path	along	the	project	tasks.	The	longest	path	is	the	
critical	path	of	the	project,	and	its	length	is	the	project	duration.	Detailed	information	about	the	
estimation	of	project	duration	can	be	found	in	Chapter	3.

6.2.10 Project Cost
Estimation	of	 the	project	cost	begins	with	effort	estimation.	Once	we	have	effort	estimate,	
productivity,	and	hourly	salary	rate	information	about	project	team	members,	we	can	calculate	
resource	 costs.	 Adding	 overhead	 expense	 to	 this	 figure	 will	 amount	 to	 project	 costs.	 Detailed	
information	about	the	estimation	of	project	cost	can	be	found	in	Chapter	3.

Requirements Requirements
verification

Maintenance
validation

System testing
Unit and

integration
testing

Construction

Design
verification

Design

Operation and
maintenance

User acceptance
testing

Deployment

Figure 6.9 Defect prevention mechanism (quality assurance) in the project.

Project Planning  ◾  91

6.2.11 Tool Management
Planning	should	be	done	for	making	selections	for	programming	languages,	software	and	hardware	
platform,	productivity	tools,	configuration	management	system,	testing	tools,	project	tracking,	com-
munication	systems,	etc.	Detailed	information	about	tool	management	can	be	found	in	Part	IV.

6.2.12 Scope Management
Requirement	 scope	 management	 is	 one	 of	 the	 most	 crucial	 aspects	 of	 any	 software	 project.	 It	
along	with	a	number	of	requirements	and	quality	level	determines	the	volume	of	work	to	be	done.	
Detailed	information	about	scope	management	can	be	found	in	Chapter	10.

6.2.13 Effort Estimate
Effort	estimation	is	discussed	elaborately	in	Chapter	3.	Please	refer	to	that	chapter	for	more	details.

6.2.14 Risk Management
Risk	management	is	discussed	elaborately	in	Chapter	4.	Please	refer	to	that	chapter	for	more	details.

6.3 Project Planning Techniques
6.3.1 Critical Path Method
The	critical	path	method	(CPM)	or	program	evaluation	review	technique	(PERT)	is	a	project	planning	
technique	devised	at	Remington	Rand	Corporation	by	J.	E.	Kelly	&	E.	I.	Du	Pont	De	Nemours	
&	Company	in	1957	[8].	This	technique	is	also	called	network	analysis.	This	technique	establishes	
the	schedule	of	a	project.	Generally,	if	a	project	has	tasks	that	are	to	be	executed	mostly	in	a	linear	
fashion,	then	project	planning	for	that	project	is	easy.	Problems	start	when	parallel	tasks	have	to	be	
planned.	When	there	are	a	large	number	of	parallel	tasks,	it	is	certainly	very	difficult	to	plan	and	
manage	the	tasks.	The	issues	such	as	which	task	is	dependent	on	which	task,	when	a	task	has	to	start	
and	when	it	has	to	finish,	how	much	slack/float	is	there	between	two	tasks,	etc.,	make	the	planning	
and	managing	of	the	project	a	tough	call.	The	CPM/PERT	method	allows	tackling	these	issues.	
All	the	tasks	are	first	laid	out	on	a	sheet	in	an	order	based	on	their	start	dates.	Then	the	order	in	
which	tasks	must	be	carried	out	is	identified.	Similarly	tasks	dependent	on	other	tasks	are	identi-
fied	and	a	relation	is	made	between	the	tasks.	Tasks	with	no	relation	among	them	are	put	in	parallel.	
When	all	the	tasks	are	thus	laid	out,	a	path	is	made,	which	runs	along	the	longest	path	of	execution.	
This	is	the	critical	path	for	the	project,	and	it	defines	the	duration	of	the	project.	The	start	date	of	
this	path	is	the	start	date	of	the	project	and	end	date	of	this	path	is	the	end	date	of	the	project.	
The	length	of	this	critical	path	is	the	duration	of	the	project	(Figure	6.10).

6.3.2 Goldratt’s Critical Chain Method
Eliyahu	Goldratt	has	recognized	that	the	CPM/PERT	method	proves	to	be	insufficient	for	plan-
ning	and	tracking	projects	[9].	Earned	value	management	is	also	not	worthwhile.	In	the	CPM/
PERT	method,	tasks	are	scheduled	and	a	critical	path	is	defined,	which	denotes	the	duration	of	
the	project.	See	Figure	6.10	to	understand	it	better.	To	take	care	of	uncertainty	and	risks,	tasks	

92  ◾  Software Project Management: A Process-Driven Approach

are	padded	with	some	buffer.	When	people	who	are	assigned	these	tasks,	they	always	tend	to	take	
their	tasks	lightly	until	the	last	minute.	So	even	when	ample	buffer	is	provided	for	their	tasks,	this	
entire	buffer	is	lost	without	any	gain	for	the	project.	They	defer	carrying	out	their	tasks	to	the	last	
moment	of	the	deadline,	which	invariably	results	in	either	poor	quality	or	late	completion	of	tasks.

To	help	project	management	practitioners,	Eliyahu	Goldratt	 introduced	 the	 theory	of	con-
straints.	Due	to	constraints	present	in	the	environment,	projects	are	always	under	threat.	To	pro-
tect	projects	from	failing,	it	is	important	that	these	threats	are	understood	and	proper	planning,	
monitoring,	 and	 controlling	 are	 done	 so	 that	 when	 projects	 diverge	 from	 a	 planned	 course	 of	
action,	immediate	action	can	be	taken	to	put	them	back	on	track	and	make	them	emerge	as	suc-
cessful	products.

Basically,	these	constraints	(risks)	can	impact	a	project	in	terms	of	either	cost	or	schedule	or	
content.	In	any	project,	there	are	some	tasks	that	can	be	considered	fixed	while	some	others	are	
variable.	These	fixed	tasks	are	the	ones	that	are	well	defined,	and	they	can	be	scheduled	with	cer-
tainty.	On	the	other	hand,	variable	tasks	lack	concrete	details,	and	even	though	they	are	scheduled	
with	some	probable	time	frame,	the	time	frame	for	their	completion	is	not	certain.	So	a	buffer	is	
provided	for	these	tasks	to	take	care	of	uncertainty	(Figure	6.11).

Goldratt	 proposed	 that	 buffers	 for	 well-understood	 tasks	 should	 be	 removed	 (as	 effort	
required	for	them	can	be	easily	calculated),	but	a	buffer	should	be	provided	for	uncertain	tasks.	

= Buffer

Initiation Requirements Design 2

Design 1

Construction 2

Design 3 Construction 3

Testing

Critical path

Integration Release

Construction 1

Figure 6.10 Critical path for a software project.

= Buffer

Initiation Requirements Design 2

Design 1

Construction 2

Design 3 Construction 3

Testing

Critical chain

Integration Release

Construction 1

Figure 6.11 Goldratt’s critical chain for a software project.

Project Planning  ◾  93

Buffers	for	uncertain	tasks	should	be	detached	from	those	tasks	and	restored	at	the	end	of	the	
project.	When	monitoring	the	project,	the	project	manager	should	actually	monitor	the	buffer	
and	not	the	task	durations.	He	should	see	 if	the	buffer	is	getting	consumed	or	not	while	the	
project	executes.	Whenever	he	sees	that	the	buffer	is	getting	consumed,	he	takes	action	to	con-
trol	the	project.

The	critical	chain	method	is	extremely	useful	for	managing	projects.	It	helps	in	reducing	the	
uncertainty	in	projects	and	thus	helps	in	delivering	projects	with	much	better	certainty.

6.4 Project Planning Artifacts
Project	planning	is	a	large	subject	and	generally	it	is	claimed	that	it	constitutes	10%	of	total	project	
effort.	It	is	here	that	most	of	the	project	details	are	chalked	out	and	a	detailed	project	plan	is	made.	
Project	planning	is	the	stage	when	most	of	the	project	documents	are	made.	So	we	have	a	large	
number	of	project	artifacts	here.	The	artifacts	include	project	plan,	risk	management,	effort	esti-
mate,	cost	estimate,	resource	allocation,	communication	plan,	configuration	management	plan,	
WBS	structure,	supplier	management	plan,	tool	management	plan,	etc.

6.5 Project Planning in Agile Models
Agile	models	are	best	 suited	when	either	 requirements	are	not	clear	or	 the	customer	wants	
small	deliveries	at	short	intervals.	Risk	associated	with	agile	or	iterative	models	is	negligible	as	small	
deliveries	require	small	efforts,	and	if	delivery	is	not	on	a	par	with	expectation,	only	a	fraction	of	
the	effort	gets	lost	in	rework	as	the	rework	itself	will	be	small.

For	details	about	software	life-cycle	models,	waterfall	method,	agile	methods,	etc.,	please	refer	
to	Part	III.

Iteration	occurs	up	to	a	certain	level	in	the	software	development	life	cycle	with	different	agile	
models.	At	one	extreme	are	the	Scrum	and	eXtreme	Programming	models	where	there	is	a	com-
plete	iteration	from	requirement	to	release.	The	other	extreme	is	where	the	least	amount	of	iteration	
occurs	only	from	just	one	phase	to	another,	or	within	one	phase	there	could	be	some	iterations.	This	
kind	of	behavior	can	be	seen	in	models	like	open	unified	model	or	rational	unified	model.

Project	planning	with	iterative	models	differs	significantly	compared	to	the	waterfall	model	[10]	
(Figure	6.12).

At	the	top	level,	a	roadmap	is	created	for	the	complete	product.	It	 is	known	as	a	product	
plan.	It	is	tentative	in	nature	and	lacks	concrete	details	as	all	of	it	is	planned	in	advance	before	
the	actual	product	development	starts.	It	can	be	made	for	2–3	years	or	more	and	will	have	the	
input	from	the	top	management	as	to	what	customer	requirements	that	product	will	fulfill	when	
it	is	completely	made.

At	the	middle	level,	we	have	a	major	product	release	plan.	This	plan	includes	several	iterative	
plans.	Generally,	most	of	the	software	vendors	have	major	releases	once	in	a	year.	So	this	plan	
spans	1	year.	It	includes	details	as	to	what	new	product	features	will	be	developed	in	that	major	
release.

At	the	bottom	is	the	iteration	plan.	Iteration	plans	correspond	to	the	minor	release	of	a	soft-
ware	product.	Iteration	plans	have	all	the	details	as	to	what	activities	will	be	performed	in	that	
iteration	(Figures	6.13	through	6.15).

94  ◾  Software Project Management: A Process-Driven Approach

Time

Initiation

Requirement

Design

Construction

Construction
Iteration 1

Iteration 2

Testing

Project progress

Testing

Release

Closure

Figure 6.12 Project life cycle in limited iteration model (iteration occurs only for construction
and testing activities).

Time

Initiation

Requirement

Design

Construction

ReleaseIteration 1

Iteration 2

Iteration 3

Testing

Project progressProject progress

Closure

Requirement
Design
Construction
Testing
Release

Requirement
Design
Construction
Testing
Release

Figure 6.13 Project life cycle in Scrum or eXtreme Programming model.

Project Planning  ◾  95

Some	of	the	salient	features	of	extreme	agile	models:

	◾ Customer	feedback	after	each	iteration.
	◾ Adaptive rather than predictive:	This	means	iteration	planning	and	effort	estimate	are	not	

meant	to	be	the	most	important	things	about	the	project.	The	ability	to	handle	change	request	
is	the	most	important	aspect.

	◾ Constant resource requirements:	In	waterfall	models,	each	type	of	work	product	is	worked	on	
by	specialists.	The	moment	they	finish	their	tasks,	they	are	no	longer	needed	in	the	project	
and	they	move	to	some	other	project.	In	the	case	of	agile	projects,	project	team	members	
keep	working	on	the	project	continuously.	This	is	because	each	iteration	is	of	very	short	dura-
tion	(sometimes	as	small	as	1	week).	Once	each	team	member	finishes	with	his	assignment	
on	one	 iteration,	he	 starts	working	on	the	next	assignment	on	the	next	 iteration	without	
much	idle	time	between	these	two	assignments.

Iteration 1

Major release 1

Major release 2

Complete product development plan

Requirement
management

Design
Construction
Testing
Release

Design
Construction
Testing
Release

Design
Construction
Testing
Release

Design
Construction
Testing
Release

Design
Construction
Testing
Release

Iteration 2

Requirement
management

Iteration 3

Requirement
management

Iteration 4

Requirement
management

Iteration 5
Requirement
management

Figure 6.14 Iterations, major releases, and complete product development plan.

Major release 1 Major release 2

Complete software product

Major release 3

Major release 4 Major release 5 Major release 6

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Figure 6.15 Complete software product, major releases, and iterations.

96  ◾  Software Project Management: A Process-Driven Approach

	◾ Easier resource management:	The	project	manager	need	not	pay	much	attention	to	resource	
allocation	as	each	project	team	member	is	kept	busy	by	work	assignments	in	iteration	after	
iteration	without	any	significant	idle	time.

	◾ Refactoring:	Since	there	is	no	elaborate	design	effort	while	developing	software	features	in	
each	iteration,	the	software	design	becomes	ungainly	over	many	iterations.	When	the	design	
becomes	unmanageable	(when	you	start	getting	problems	in	integration	of	new	features	with	
old	features),	it	needs	to	be	refactored.	Planning	for	refactoring	is	an	important	consider-
ation	while	making	plans	for	iterations.

6.5.1 Iteration Planning
Iteration	planning	is	done	based	on	a	concept	called	velocity.	Velocity	is	measured	in	terms	of	building	
a	number	of	feature	points	per	iteration.	Any	software	feature	is	analyzed	for	its	size	and	complexity.	
Accordingly,	it	is	assigned	some	feature	points.	Based	on	team	size	and	skill	and	experience	of	team	
members,	it	is	determined	how	many	feature	points	the	project	team	can	make	in	an	iteration	of,	say,	
1	week.	So	the	number	of	feature	points	developed	per	iteration	becomes	the	velocity	of	the	project	
team.	Based	on	the	velocity,	the	project	manager	(or	sprint	master,	if	you	are	in	a	Scrum	project)	can	
determine	how	many	iterations	will	be	there	in	a	minor	release,	major	release,	or	the	complete	product	
development.	For	example,	suppose	the	complete	product	to	be	developed	has	10	features.

Feature	1	has	3	feature	points.
Feature	2	has	2	feature	points.
Feature	3	has	5	feature	points.
Feature	4	has	6	feature	points.
Feature	5	has	4	feature	points.
Feature	6	has	2	feature	points.
Feature	7	has	7	feature	points.
Feature	8	has	3	feature	points.
Feature	9	has	5	feature	points.
Feature	10	has	4	feature	points.

So	in	total	we	have	41	feature	points	in	the	project.	There	are	nine	people	in	the	project	and	each	
iteration	will	last	1	week.	If	velocity	of	the	project	team	is	determined	to	be	four	feature	points	per	
1	week	iteration,	then	the	gross	number	of	iterations	will	be	11.	Some	risk	factors	can	be	added	
here.	One	risk	is	refactoring	time.	Other	risk	factors	could	be	sick	leaves,	attrition,	wrong	velocity	
calculation,	etc.	To	tackle	wrong	velocity	calculation,	it	is	advisable	not	to	promise	a	commitment	
for	the	entire	project	to	the	customer.	Let	two	to	three	iterations	get	executed.	After	that,	you	will	
have	a	pretty	good	idea	of	the	velocity	of	the	project	team.	This	is	especially	true	if	the	project	con-
sists	of	people	who	have	never	worked	with	each	other	before	and	the	project	manager	is	not	aware	
of	their	pace	of	work.	To	tackle	other	kinds	of	risks,	the	same	kinds	of	strategies	can	be	taken	that	
have	been	mentioned	for	waterfall	projects.

6.6 Planning at Project Management Office
Many	business	organizations	create	an	IT	division	that	takes	care	of	all	software	and	information	
technology	needs.	Other	organizations,	instead	of	creating	a	division,	create	a	central	organization	
that	takes	care	of	their	IT	projects.	This	organization	is	known	as	the	project	management	office	

Project Planning  ◾  97

(PMO)	[11].	The	PMO	takes	care	of	organization	level	management	for	all	projects.	It	helps	in	
providing	 resources	 for	projects,	monitoring	and	controlling	projects,	providing	 infrastructure,	
providing	funds,	etc.

The	PMO	can	take	many	forms.	Organization	structure	of	program	management	can	become	
very	complicated	in	software	service	organizations.	For	some	large	corporations,	 the	PMO	can	
include	many	programs	(clustering	of	projects	related	to	each	other),	project	portfolio	manage-
ment	divisions,	etc.

Planning	 at	 the	 PMO	 level	 includes	 resource	 planning,	 business	 planning,	 infrastructure	
planning,	etc.	At	one	 level,	 these	plans	are	aimed	at	 fulfilling	the	business	needs	of	 the	parent	
organization.	At	 the	project	 level,	 these	plans	help	 the	projects	plan	 for	 adequate	project	 staff,	
infrastructure,	and	budget.

More	information	about	PMO	organization	structures	can	be	found	in	Chapter	19.

6.7 Case Study
So	far	in	previous	chapters,	we	have	seen	how	some	of	the	essential	planning	components	such	
as	risk	planning,	effort	and	cost	estimation,	and	configuration	planning	are	handled	at	our	SaaS	
vendor	projects.	In	this	chapter,	we	will	see	how	planning	for	schedule	and	resources	is	made	at	
the	iteration	and	project	levels.
At	the	project	level	(coinciding	with	major	release	once	per	year),	the	following	planning	is	done:

	◾ Identify	and	prioritize	features.	(Feature	set	should	be	continually	revised	throughout	the	
project.)

	◾ Identify	iterations	and	loosely	allocate	features	to	each	iteration.
	◾ Plan	for	time-boxed	iterations	(if	followed).
	◾ Calculate	cost	and	effort.	Since	the	project	is	very	stable,	there	is	not	much	variation	in	cost	

and	effort	from	year	to	year.

At	the	iteration	level,	the	following	planning	is	done:

	◾ Plan	for	iteration.
	◾ Identify	tasks	to	implement	features.
	◾ Allocate	tasks	to	resources.
	◾ Implement	iteration.

6.7.1 Feature Selection
Which	feature	is	to	be	taken	for	development	in	an	iteration	is	often	a	bone	of	contention	between	
the	marketing	 team	and	 the	development	 team.	The	development	 team	has	 its	own	technical	
reasons	 for	 feature	selection.	The	marketing	team,	on	the	other	hand,	wants	everything	to	be	
developed	based	on	the	requirements	that	they	identify	through	interaction	with	customers	and	
the	market	feedback	they	receive.	Our	SaaS	vendor	has	a	mechanism	for	sorting	out	this	tussle.	
Their	chief	technology	officer	is	the	final	authority	in	feature	selection.	During	the	yearly	project	
plan,	he	makes	a	list	of	probable	features	that	will	be	developed	and	added	to	the	core	software	
product	 in	 the	 coming	year	 after	 consultation	with	marketing	department.	At	 this	 stage,	 the	

98  ◾  Software Project Management: A Process-Driven Approach

features	are	not	marked	with	any	priority.	It	means	that	all	features	have	equal	importance	at	this	
stage.	Before	the	start	of	an	iteration,	the	marketing	team	gives	priority	for	each	feature.	The	top	
priority	features	are	taken	for	the	iteration.	The	project	manager	estimates	the	effort	required	for	
each	feature.	He	then	tries	to	make	a	balance	between	availability	of	resources,	who	will	work	on	
the	project	and	how	much	time	should	be	allocated	to	each	team	member.	Based	on	this	infor-
mation,	he	can	find	out	how	many	features	can	be	taken	for	the	next	iteration	in	the	3	months	
during	which	the	iteration	will	run	(iterations	are	taken	on	a	quarterly	basis).	He	also	takes	into	
account	some	contingency	allowances	in	case	any	risk	or	issue	arises	during	the	iteration.	This	list	
of	features	is	then	locked	for	the	iteration.	In	essence,	in	a	time	box	of	3	months,	these	features	
will	be	developed	and	integrated	into	the	core	software	product.

6.7.2 Heart of Planning
The	waterfall	model	of	software	development	 is	completely	plan	driven.	In	contrast,	pure	agile	
models	are	not	plan	driven.	They	are	rather	implemented	in	an	“As	you	go!”	spirit.	The	features	
demanded	by	customers	are	 implemented,	and	 thus,	nothing	 is	planned	 in	advance	about	any	
project	or	iteration	activity.	Iteration	planning	is	done	only	after	the	customer	spells	out	a	list	of	
features	they	want	in	the	iteration.	Without	a	plan,	the	project	team	is	not	able	to	provide	a	clear	
picture	to	the	customer,	and	at	 the	same	time,	 the	team	is	not	able	to	plan	 its	own	activity	 in	
advance.	This	is	a	drawback.	So	how	can	our	SaaS	software	vendor	cope	with	its	project	and	itera-
tions	when	there	is	virtually	no	planning	done	in	advance?

We	have	discussed	top-down	and	bottom-up	planning	in	previous	sections.	In	our	case,	since	
the	release	date	is	fixed,	we	follow	top-down	planning	for	iterations.	A	complete	list	of	features	for	
the	major	release	of	6.0	is	fixed.	But	at	the	iteration	level,	which	feature	out	of	the	listed	features	
is	to	be	implemented	in	the	next	iteration	is	not	fixed.	That	means	there	could	not	be	any	iteration	
planning	in	advance,	and	the	project	planning	is	hazy	at	best.	So	we	have	some	problems	here.	
First,	iteration	plans	are	not	easily	possible.	Second,	even	though	the	agile	model	is	flexible,	effort,	
schedule,	and	budget	are	not	able	to	be	drawn	in	a	situation	where	nothing	is	fixed.	So	essentially,	
we	have	a	conflict	between	flexibility	and	responsiveness	on	one	hand	and	allocating	resources	and	
budget	for	the	iteration	on	the	other	hand.

The	vendor	 is	able	 to	cope	with	 this	problem	using	a	 time-boxing	concept.	The	release	date	
is	fixed	for	iterations.	Their	marketing	team	comes	up	with	a	list	of	features	that	are	to	be	imple-
mented	in	the	next	iteration.	The	list	can	be	ordered	according	to	priority.	The	top	priority	features	
can	be	 taken	 for	 implementation	 in	 the	 iteration	first.	Once	 they	are	 implemented,	and	 if	 time	
permits,	the	low-priority	features	can	be	taken	for	implementation	in	the	iteration.	Remaining	low-
priority	features,	which	could	not	be	implemented	in	the	iteration,	can	be	taken	in	future	iterations.

In	this	arrangement,	we	have	a	cushion.	If	the	iteration	plan	goes	well,	we	take	up	more	fea-
tures.	If	some	issues	arise	during	the	iteration	and	if	some	high-priority	features	take	more	time	
than	planned,	then	some	of	the	low-priority	features	cannot	be	implemented.	So	the	low-priority	
features	act	as	a	buffer.

This	arrangement	is	good	as	it	provides	both	flexibility	and	responsiveness.	At	the	same	time,	
it	allows	for	making	plans	and	allocating	resource	and	budget	to	the	iterations.

For	planning	components	related	to	effort	and	cost	estimates,	risk	management,	configuration	
management,	communication	management,	and	resource	management;	see	the	relevant	chapters.	
These	topics	are	covered	in	their	respective	chapters	in	detail	(Table	6.1).

Project Planning  ◾  99

6.8 Chapter Summary
Project	planning	is	a	very	important	step	in	the	software	project.	Any	large	software	project	has	a	
large	number	of	important	project	tasks.	Without	proper	project	planning,	it	will	be	impossible	to	
manage	such	a	large	number	of	complex	tasks	when	it	is	time	for	execution.	So	a	detailed	project	
plan	is	mandatory.

In	the	case	of	agile	and	iterative	kinds	of	projects,	project	planning	is	less	important,	and	in	
fact	it	should	not	have	minute	details.	It	is	because	the	entire	process	is	agile	and	these	process	
models	work	on	the	premise	of	responding	to	change	quickly.	Nevertheless,	when	an	iteration	is	
firmed	up	and	requirements	for	that	iteration	are	clear,	a	project	plan	is	needed	to	carry	out	the	
project	with	clear	goals.	The	other	iterations	in	the	future	as	well	as	the	overall	plan	encompassing	
all	the	iterations	should	have	a	project	plan	with	fewer	details.	Generally,	at	these	levels,	it	is	best	
to	have	a	project	plan	without	firm	dates	for	project	tasks.

The	project	plan	has	many	components	to	manage	different	aspects.	For	managing	commu-
nication,	the	project	should	have	a	communication	plan.	For	managing	efficient	resource	utiliza-
tion,	the	project	should	a	resource	plan.	For	managing	quality	aspects	of	the	work	products,	there	
should	be	 a	quality	plan.	For	managing	 suppliers,	 a	 supplier	plan	 is	warranted.	For	managing	
configuration	and	version	control,	the	plan	should	have	a	configuration	management	plan.	For	
managing	tools	and	technology	aspects,	the	plan	should	have	a	tool	and	technology	plan.	Finally,	
the	most	important	aspects	such	as	cost,	schedule,	and	effort	for	the	project	should	have	respective	
plans.

There	are	many	methods	that	help	in	making	project	plans.	For	making	project	schedules,	
Gantt	charts,	network	diagrams,	PERT/CPM	charts,	etc.,	are	very	important.	For	effectively	
tracking	 and	 controlling	 projects,	 earned	 value	 management	 and	 Goldratt’s	 critical	 chain	
methods	are	very	 important.	During	project	planning,	 it	 is	 important	 to	keep	the	require-
ments	of	these	methods	(base	budget,	base	schedule,	etc.)	in	mind	when	the	project	planning	
is	done.

There	 are	many	 good	 tools	 available	 on	 the	market	 that	help	 in	making	project	 plans,	 for	
example,	MS	Project,	Primavera,	etc.	Some	of	the	project	planning	tools	are	online	and	are	avail-
able	on	the	Web	so	that	project	teams	that	are	located	at	many	geographical	sites	can	access	the	
tool	and	work	collaboratively.

Table 6.1 Documents Planned and Generated
during the Project

Use Case Model

Supplementary Specification Nonfunctional Specifications

Risk assessment

Effort estimate

Master test plan

Phase plan Iteration plan with schedule

Software architecture document

100  ◾  Software Project Management: A Process-Driven Approach

Exercises
6.1	 Find	 some	 examples	of	project	planning	 for	 a	 construction	 industry.	Find	how	project	

planning	is	done	for	that	industry	and	what	the	planning	components	are.	Compare	it	to	
that	for	a	software	project.

6.2	 It	 is	 said	 that	 software	project	planning	 consists	 of	 tasks	 that	 are	not	 elastic	 and	 their	
schedule	cannot	be	stretched	or	shrunk.	Find	out	why	it	is	so	and	if	some	remedies	exist.

Review Questions
6.1	 What	do	you	understand	by	a	software	project	plan?
6.2	 Why	is	a	software	project	plan	needed?
6.3	 What	are	the	components	of	a	software	project	plan?
6.4	 What	are	the	inputs	for	a	top-down	project	plan?
6.5	 What	are	the	inputs	for	a	bottom-up	software	project	plan?
6.6	 What	precautions	are	taken	while	creating	a	project	plan	to	tackle	different	risks?
6.7	 What	kinds	of	project	plans	are	devised	for	iterative	models	of	software	development?

Recommended Readings
	 1.	 M.	E.	McGrath	(2004)	Next Generation Product Development: How to Increase Productivity, Cut Costs,

and Reduce Cycle Times,	McGraw-Hill,	New	York.
	 2.	 R.	Wysocki	(2006)	Effective Software Project Management,	Wiley	India	Pvt.	Ltd.,	New	Delhi,	India.
	 3.	 D.	A.	Gustafson	(2002)	Schaum’s Outline of Software Engineering,	McGraw-Hill,	New	York.
	 4.	 J.	Taylor	 (2003)	Managing Information Technology Projects: Applying Project Management Strategies to

Software, Hardware, and Integration Initiatives,	American	Management	Association,	New	York.
	 5.	 C.	 Ebert,	 R.	 Dumke	 (2007)	 Software Measurement: Establish–Extract–Evaluate–Execute,	 Springer,	

Berlin,	Germany.
	 6.	 R.	 Muller	 (1997)	 Productive Objects: An Applied Software Project Management Framework,	 Morgan	

Kaufmann,	San	Francisco,	CA.
	 7.	 J.	W.	Horch	(1996)	Practical Guide to Software Quality Management,	Artech	House,	Boston,	MA.
	 8.	 J.	P.	Lewis	(2004)	Project Planning, Scheduling & Control,	McGraw-Hill	Education	(India)	Pvt.	Ltd.,	

New	Delhi,	India.
	 9.	 H.	A.	Levine	(2002)	Practical Project Management: Tips, Tactics, and Tools,	Wiley,	New	York.
	 10.	 R.	E.	Fairley	 (2009)	Managing and Leading Software Projects,	Wiley-IEEE	Computer	 Society	Press,	

Hoboken,	NJ.
	 11.	 C.	J.	Letavec	(2006)	The Program Management Office: Establishing, Managing and Growing the Value of

a PMO,	J.	Ross	Publishing,	Boca	Raton,	FL.

101

Chapter 7

Project Monitoring
and Control

In.the.previous.chapter,.we.learned

	◾ What	is	a	software	project	plan?
	◾ What	are	the	parts	of	a	software	project	plan?
	◾ What	are	the	types	of	software	project	plans?
	◾ What	inputs	go	into	making	a	software	project	plan?
	◾ What	techniques	are	used	in	making	a	software	project	plan?

In.this.chapter,.we.will.learn

	◾ What	is	project	monitoring?
	◾ What	techniques	are	there	for	project	control?
	◾ How	is	project	monitoring	done	in	iterative	projects?

7.1 Introduction
Projects	are	inherently	dynamic	in	nature.	They	also	have	unpredictability	about	them.	These	two	
factors	call	for	continuous	monitoring	and	control	of	projects	lest	they	go	haywire.	In	manufac-
turing,	pace	of	work	is	fast,	but	all	the	activities	are	more	or	less	predictable.	You	can	plan	the	
order	of	tasks	to	be	carried	out;	and	depending	on	material,	machines,	and	labor	availability,	you	
produce	goods	without	much	consideration	to	worldly	or	not	so	worldly	things.	Routine	machine	
inspection,	work	product	(work	in	process)	samples	for	quality	control,	and	skills	training	are	all	

102  ◾  Software Project Management: A Process-Driven Approach

it	requires	to	produce	goods	with	good	quality.	It	is	not	so	with	projects.	There	are	surprises	and	
there	is	something	new	about	each	project.	More	so	with	software	projects	(Figure	7.1).

To	control	and	manage	this	element	of	unpredictability,	you	need	to	have	tools	and	techniques	
that	can	be	employed	to	make	the	journey	comfortable.	For	software	projects,	first	of	all	you	need	
to	have	a	well-defined	process	model,	the	application	of	which	will	help	in	reducing	uncertainty	
and	in	achieving	consistency.	The	process	model	will	set	steps	to	be	followed	for	completing	all	
project	tasks	and	thus	help	in	planning	the	project.	A	good	process	model	also	allows	measuring	
both	project	processes	and	the	work	products.	Measuring	project	processes	and	comparing	them	
with	those	from	best	practices	will	provide	information	about	productivity,	costs	and	schedule,	
and	where	the	project	is	heading.	Measuring	the	quality	of	product/work	product	and	comparing	
them	against	those	achieved	with	best	practices	will	provide	information	about	the	quality	of	the	
work	products	developed	as	compared	to	what	could	be	achieved	using	best	practices.	When	you	
have	a	good	project	plan	in	hand,	you	can	execute	your	project	with	much	ease.

In	this	chapter,	we	will	discuss	everything	related	to	project	monitoring	and	control	for	soft-
ware	projects.

7.2 Project Monitoring
A	project	plan	consists	of	a	project	schedule	and	project	budget	apart	from	other	plan	components	
like	communication	plan,	quality	plan,	configuration	plan,	resource	plan,	etc.	To	track	the	project	
execution	against	the	plan,	there	are	major	and	minor	milestones	defined	in	the	project	schedule	
[1].	When	the	execution	reaches	any	of	these	milestones,	costs	and	schedule	can	be	compared	to	
know	how	the	execution	is	faring	against	the	project	plan.	Then	there	are	tools	like	status	reports,	
Goldratt’s	critical	chain	method,	Gantt	charts	[2],	earned	value	management	(EVM)	[3],	etc.	that	
help	in	monitoring	and	controlling	the	project.

7.2.1 Monitor against Project Plan
Monitoring	against	the	project	plan	is	the	most	obvious	method	to	get	project	progress	reports.	The	
project	plan	is	treated	as	a	baseline	against	which	the	actual	progress	is	measured.	Major	and	minor	
milestones	are	provided	in	the	project	plan	for	dividing	the	whole	project	plan	for	easy	tracking.	
If	for	some	reason	a	milestone	is	not	achieved	as	per	plan,	then	the	project	manager	has	to	explain	to	

Manufacturing Projects

Predictability

Figure 7.1 Process predictability for projects against manufacturing.

Project Monitoring and Control  ◾  103

the	customer	why	the	milestone	could	not	be	achieved	as	per	plan.	And	if	this	occurs,	what	should	
be	done	to	achieve	the	next	milestones	on	time?	There	are	some	techniques	available	like	resource	
leveling	[4],	resource	optimization	[5],	schedule	optimization	[6],	etc.,	which	can	be	applied	to	put	
the	project	on	track	(Figure	7.2).

7.2.2 Measure Task Progress and Status Reports
How	can	you	measure	the	progress	of	a	project	task?	If	you	have	a	task	and	you	want	to	measure	it,	
then	you	need	to	have	information	about	planned	task	and	actual	start	dates,	planned	volume	of	
work,	actual	volume	of	work,	and	task	duration.	From	the	planned	and	actual	volume	of	work,	one	
can	figure	out	the	remaining	work	to	be	done	to	complete	the	task	(Figures	7.3	and	7.4).

If	 the	volume	of	work	 is	 ignored	and	only	dates	are	taken	into	consideration,	task	progress	
	calculation	will	be	wrong.	Suppose	a	task	starts	on	April	11	and	finishes	on	April	20.	That	means	
the	duration	of	the	task	is	10	days.	If	the	project	manager	is	asked	to	provide	a	status	report	of	
the	task	up	to	April	16,	then	without	measuring	the	volume	of	work	if	he	says	it	is	60%	(since	6	
days	of	work	has	been	done	out	of	10	days)	then	he	is	wrong.	This	figure	is	only	the	planned	work	

Volume of actual work
Volume of planned work

Legend

Figure 7.3 Progress tracking of a task.

April

InitiationInitiation Requirement Design Construction Testing Closure

June

Work volume

Legend
= Planned progress
= Actual progress

August October December February Month

Figure 7.2 Project plan vs. actual progress.

104  ◾  Software Project Management: A Process-Driven Approach

and	not	the	actual	work.	Now	suppose	the	work	involves	writing	source	code	of	size	5	KLOC	
(kilo	lines	of	code).	That	means	his	team	should	be	writing	0.5	KLOC	of	source	code	per	day.	
Now	if	he	measures	and	finds	that	up	to	April	16	his	team	has	written	3.5	KLOC.	That	means	
his	team	has	completed	70%	of	work.	Compared	to	the	planned	completion	of	60%	of	work	
(0.5	×	6/5%	=	60%),	his	team	is	actually	ahead	of	schedule.

This	calculation	is	done	for	projects	where	volume	and	cost	of	work	per	day	during	the	entire	
project	period	are	constant.	But	this	does	not	happen	in	reality.	To	have	meaningful	calculations,	
this	aspect	also	has	to	be	taken	care	of.

7.2.3 Identify Deviations
When	project	monitoring	is	done,	the	focus	of	the	measurements	is	to	find	the	deviations	from	the	
planned	schedule	and	costs	[7].	In	the	example	given	earlier,	the	schedule	performance	achieved	
is	70%	compared	to	planned	60%.	That	means	the	team	is	ahead	of	schedule	by	a	+10%	margin	
(Figure	7.4).

Planned and actual scheduleSchedule deviation

Schedule of work

Schedule of % planned work

Schedule of % actual work
Total schedule of work

Legend

Figure 7.4 Project schedule deviation.

Planned and actual costCost deviation

Cost of work
Cost of planned % work

Cost of actual % work

Total cost of planned work
Legend

Figure 7.5 Project cost deviation.

Project Monitoring and Control  ◾  105

Now	suppose	total	planned	cost	for	the	task	is	$100.	If	you	break	the	cost	on	a	daily	basis	then	
it	comes	to	$10	per	day.	In	our	example,	up	to	April	16,	planned	cost	is	$60.	Now	suppose	the	
actual	cost	comes	to	$65.	So	we	have	a	deviation	of	+5%.

Again	these	calculations	are	based	on	constant	volume	of	work	and	cost	per	day,	which	does	
not	happen	in	reality	(Figure	7.5).	In	the	EVM	explained	in	a	later	section,	we	will	see	why	it	is	so.

7.2.4 Performance Indicators
Performance	indicators	are	used	to	know	the	performance	of	project	in	terms	of	cost,	schedule,	and	
quality	[8].	EVM	is	a	good	tool	for	creating	and	monitoring	performance	indicators.	Performance	
indicators	work	only	if	baseline	information	is	available.	If	for	some	reason,	baseline	information	
about	cost,	schedule,	or	quality	could	not	be	kept	or	is	not	accurate	enough	to	be	reliable,	these	
indicators	do	not	work.	It	is	because	there	is	no	accurate	planned	data	available	against	which	the	
actual	execution	data	can	be	compared.

EVM	is	explained	in	a	subsequent	section.

7.2.5 Monitor against Project Schedule
A	project	plan	is	generally	a	high-level	plan	for	a	project	and	it	does	not	include	details	like	resource	
allocation	to	tasks,	task	details,	etc.	A	project	schedule	includes	these	things,	and	thus,	project	
schedule	tracking	and	monitoring	means	measuring	the	progress	of	tasks	as	well	as	evaluating	the	
performance	of	resources	in	the	tasks	on	a	daily	basis.	So	while	project	plans	are	tracked	at	the	
milestone	level,	project	schedules	are	tracked	at	task	level.	Project	schedule	tracking	and	monitor-
ing	may	include	information	like	resource	utilization	percent,	resource	loading,	task	progress,	etc.

7.2.6 Periodic Measurement
As	has	been	emphasized	throughout	this	book,	projects	are	extremely	dynamic	and	unpredictable	
in	nature.	It	is	very	important	that	project	progress	at	task	level	is	tracked	and	measured	very	fre-
quently	to	know	if	everything	is	progressing	well	or	if	there	are	problems	at	any	time	[9].	Actual	
measurements	should	be	always	compared	with	planned	figures,	and	if	any	deviations	are	found,	
a	plan	should	be	made	to	fix	these	deviations.	In	good	organizations,	each	project	team	member	
logs	his	daily	activity	in	a	centralized	project	monitoring	system.	Reports	from	this	kind	of	system	
can	be	used	to	track	task	progress	in	terms	of	schedule.	For	cost	tracking,	the	project	manager	can	
make	a	simple	sheet	and	keep	it	updated	with	the	number	of	hours	the	resources	have	worked	on	
the	project	tasks.	Multiplying	these	hours	by	their	hourly	pay	rate	will	give	the	expense	of	each	
task.	If	more	than	one	resource	is	working	on	a	task,	adding	expenses	for	all	the	resources	working	
on	that	task	will	give	the	figures	of	expense	of	that	task.	You	can	then	compare	the	actual	expense	
of	the	work	done	so	far	against	the	budgeted	cost	for	that	work.

7.2.7 Earned Value Management
For	any	project,	specific	time	duration	and	specific	budget	are	allocated	while	making	the	project	
plan.	In	ideal	conditions,	execution	of	the	project	will	be	completed	at	exactly	the	same	time	and	
at	the	same	budget.	In	reality,	this	never	happens.	Sometimes,	the	project	may	be	completed	before	
the	stipulated	time	duration	or	at	less	cost.	But	these	cases	are	rare.	Most	often,	the	project	over-
runs	both	the	time	duration	and	cost.	Large	projects	warrant	huge	budgets,	resources,	and	time.	

106  ◾  Software Project Management: A Process-Driven Approach

It	is	very	important	that	they	are	tracked	and	monitored	closely,	and	timely	reports	are	given	to	the	
stakeholders	so	that	they	know	how	the	project	is	progressing.	Their	reputation	and	very	often	jobs	
are	at	stake	based	on	the	success	or	failure	of	the	project.	So	they	must	get	timely	status	reports	
about	progress	of	the	project.	During	reporting,	if	proper	project	monitoring	information	is	not	
communicated	to	the	stakeholders,	they	may	not	know	how	the	project	is	progressing.	They	may	
be	reported	only	about	the	percentage	of	project	completion	against	planned	schedule	or	about	the	
percentage	of	budget	spent	so	far.	But	from	this	information,	it	is	not	clear	if	the	project	is	actually	
progressing	as	per	plan	or	if	it	is	lagging	behind.

This is because there is a third dimension that has not been accounted in these calculations.	This	
dimension	is	the	volume	of	work	performed	over	different	periods	of	time	during	the	project	are	
not	 the	same.	Similar	 is	 the	case	 for	budget.	For	example,	 in	software	projects,	when	software	
design	work	is	in	progress,	the	volume	of	work	per	day	is	low.	But	during	software	construction,	a	
great	volume	of	work	is	accomplished	per	day	as	a	lot	of	developers	work	on	the	project.	Clearly,	a	
volume	of	work	done	per	day	at	different	phases	of	the	project	is	very	different.	Similarly,	budget	
consumed	per	day	over	the	project	will	vary	considerably	due	to	different	pay	rate	for	differently	
skilled	people	and	even	for	the	same	skilled	people	and	the	fact	that	at	different	phases	of	the	proj-
ect,	differently	skilled	people	work	on	the	project.

As	you	can	see	in	Figure	7.6,	it	is	difficult	to	conclude	whether	the	project	is	progressing	well	
or	not	as	the	actual	schedule	and	cost	cannot	be	compared	against	any	value.

However,	if	you	look	at	Figure	7.7,	the	actual	cost	and	schedule	figures	can	actually	be	com-
pared	against	planned	data.	 It	 is	because	 this	 time,	we	are	 tracking	 the	project	progress	using	
earned	value	 (EV).	The	project	duration	and	 the	project	budget	 are	outlined	at	 the	beginning	
of	the	project.	When	the	project	execution	starts,	we	will	be	recording	actual	project	progress	in	
terms	of	budget	and	time	consumed	by	project	tasks.	Based	on	the	budget	consumed	by	a	task,	
task	progress	is	measured	and	we	also	record	how	much	task	progress	should	have	been	done	after	
consuming	that	much	of	budget.	This	is	known	as	EV.	So	we	have	three	values	here:	planned	value	
(PV),	EV,	and	actual	value	(AV).

As	per	definitions	of	EVM,
Schedule	variance	(SV)	=	EV	−	PV
Cost	variance	(CV)	=	EV	−	AC

Budget

$100,000

$60,000

$20,000

Actual cost
Planned value

Time

January February March April May June July

Figure 7.6 Project progress measurement without EVM.

Project Monitoring and Control  ◾  107

Apart	from	variances	in	cost	and	schedule,	there	are	two	more	indicators	available	in	EVM.	
They	are	the	cost	performance	indicator	(CPI)	and	the	schedule	performance	indicator	(SPI).	They	
are	calculated	as	follows:

CPI	=	EV/AC
SPI	=	EV/PV

Let	us	see	an	example	to	observe	how	EVM	works.
Suppose	we	have	a	project	with	the	schedule	of	100	days.	The	budget	for	the	project	is	allocated	

at	$100,000.	After	the	elapse	of	60	days,	project	measurements	are	taken.	It	is	found	that	a	bud-
get	of	$50,000	has	been	consumed	up	to	this	point	in	the	project.	Suppose	at	this	stage,	40	days’	
worth	of	project	is	actually	complete.	But	from	the	planned	schedule,	it	should	have	been	50	days’	
worth	of	project	completed.	So	how	is	the	project	progressing?

In	Section	7.2.3,	we	have	seen	a	simple	scenario	where	project	schedule	and	project	budget	
are	allocated	linearly	(project	budget	and	schedule	are	consumed	linearly	in	proportion	to	total	
budget	and	schedule).	That	means	the	project	progress	should	be	linear.	Alas!	It	does	not	happen	
that	way.	There	is	no	linear	progression	of	the	project	in	reality.	It	is	because	a	project	has	many	
tasks	and	each	of	these	tasks	has	its	own	volume	of	work	to	be	performed	at	different	rates	over	
a	period	of	time.	For	instance,	a	software	design	task	may	be	completed	over	a	period	of,	say,	20	
days.	If	the	work	is	performed	linearly,	then	each	day,	the	percentage	of	work	to	be	completed	is	
5%	so	that	in	20	days,	100%	of	the	work	will	be	completed.	In	reality,	however,	on	some	days	
the	planned	work	may	be	3%,	5%,	or	6%	or	could	be	 just	any	other	value.	It	all	depends	on	
the	availability	of	resources	on	a	particular	day	and	the	dependency	of	a	task	on	another	task.	
Similarly,	the	budget	consumption	is	not	linear.	Some	tasks	cost	less	to	perform	than	other	tasks.	
So	in	a	unit	of	time,	a	volume	of	work	done	for	some	tasks	can	be	higher	than	that	for	other	tasks	
with	the	same	budget.	So	far	we	have	discussed	the	nonlinear	behavior	for	a	planned	budget	and	
schedule.	Likewise,	the	actual	budget	and	schedule	consumption	will	also	be	nonlinear.	Once	
we	 understand	 the	 nonlinear	 relation	 between	 percentage	 of	 completion	 of	 any	 task	 vis-à-vis	
completion	of	total	task	for	both	planned	and	actual	progress,	it	will	be	easy	to	understand	the	
concept	of	EVM.

Coming	back	 to	our	 example,	we	have	actual	 cost	 (AC)	of	$50,000	and	PV	of	$55,000	
(corresponding	to	the	planned	days	of	work	performed	up	to	this	point).	The	project	manager	has	

Budget

$100,000

$60,000

$20,000

Actual cost

Planned
value

Earned value

Time

January February March April May June July

Schedule varianceSchedule variance

Cost varianceCost variance

Figure 7.7 Project progress measurement with EVM.

108  ◾  Software Project Management: A Process-Driven Approach

also	been	tracking	the	earned	value	of	the	project	on	a	weekly	basis.	On	this	basis,	he	has	been	
plotting	the	earned	value	of	the	project	as	it	progresses.	From	this	figure,	he	has	an	EV	of	$45,000.

Now	let	us	do	some	mathematics	with	the	figures	we	have:

SV	=	45,000	−	55,000	=	−$10,000
CV	=	45,000	−	50,000	=	−$5,000
CPI	=	45,000/50,000	=	0.9
SPI	=	45,000/55,000	=	0.82

For	both	CPI	and	SPI,	the	ideal	values	are	1.	In	case	CPI	is	1,	it	means	that	the	project	budget	is	
consumed	as	per	project	plan.	Similarly,	if	SPI	is	1,	the	project	schedule	is	progressing	as	per	project	
plan.	In	our	example,	we	can	see	that	at	the	point	of	measurement,	the	project	is	lagging	behind	both	
in	schedule	and	in	budget	consumption	(as	both	are	less	than	1).	The	project	manager	can	do	well	to	
find	out	why	the	project	is	lagging	behind	and	how	the	project	can	be	put	back	on	the	right	track.

7.2.8 Measure Resource Utilization
Resource	utilization	is	a	measure	of	efficiency	with	which	available	resources	within	an	organization	
are	utilized	in	projects.	Resource	utilization	is	evaluated	more	frequently	at	program	or	line	of	busi-
ness	level	[10].	For	instance,	suppose	a	software	service	company	has	a	practice	division	for	applica-
tion	development	services	for	financial	services.	It	has	a	total	IT	staff	of	80	people.	It	has	five	projects	
running.	In	these	projects,	a	total	of	76	people	are	engaged.	That	means	there	are	four	people	who	
are	not	assigned	to	any	project.	That	means	this	practice	division	has	95%	of	resource	utilization.

7.2.9 Measure Resource Loading
Resource	utilization	in	projects	can	be	tracked	using	information	as	to	how	many	hours	of	project	
work	is	allocated	to	the	resource	and	how	many	hours	of	actual	work	the	resource	has	put	in.	So	if	
a	resource	is	allocated	20	h	of	work	and	he	actually	puts	in	25	h	of	work,	the	resource	utilization	is	
125%.	From	other	points	of	view,	resource	loading	also	comes	into	picture	[11].	Suppose	a	task	requires	
20	h	to	be	completed.	A	resource	allocated	to	this	task	works	8	h	a	day.	So	under	normal	loading	
conditions,	he	will	finish	this	task	in	2.5	days.	Now	suppose	as	per	schedule,	this	task	needs	to	be	com-
pleted	in	2 days	(16	h).	In	this	situation,	the	resource	can	only	complete	80%	of	the	work	under	normal	
loading	conditions.	The	project	manager	then	has	two	choices:	he	can	assign	additional	resource	to	
this	task	to	complete	it	in	16	h	or	he	can	increase	the	workload	of	the	existing	resource.	To	complete	
this	task	within	the	schedule,	the	resource	should	be	loaded	with	125%	of	workload.	He	may	need	
to	work	some	extra	hours	every	day	(overtime	of	2	h	per	day	in	addition	to	his	8	h	of	regular	work).

7.2.10 Monitor Skills and Knowledge of Project Team
During	 project	 planning	 and	 detailed	 scheduling,	 resource	 matching	 to	 project	 tasks	 is	 done.	
When	there	is	some	gap	in	required	and	available	skills,	a	training	plan	is	made	to	bridge	this	
gap.	During	execution,	this	training	part	is	also	to	be	tracked	to	ensure	that	the	planned	training	
has	been	successfully	completed	and	that	the	resource	who	has	received	the	training	now	can	do	
his	task	competently.	Sometimes	it	may	also	happen	that	during	planning,	some	tasks	and	the	
required	skills	to	do	them	are	not	properly	planned.	During	execution,	it	is	realized	that	training	
may	be	needed.	In	such	cases,	arrangement	should	be	quickly	made	for	training.	If	there	is	a	delay	
in	starting	that	task,	the	project	plan	should	be	adjusted	accordingly.	The	additional	time	may	
either	be	taken	from	the	schedule	buffer	or	be	adjusted	against	any	slack	in	the	project	schedule.	

Project Monitoring and Control  ◾  109

One	more	possibility	may	be	regarding	resource	skills.	Sometimes,	a	resource	may	leave	the	project	
and	the	project	may	need	to	find	a	replacement.	In	such	a	situation,	the	project	manager	may	need	
to	do	resource	skills	matching	and	find	a	suitable	replacement.

7.2.11 Monitor Risks
Everything	to	be	done	in	a	project	comes	with	a	risk.	If	a	software	design	is	to	be	made,	there	is	
a	risk	that	the	design	is	faulty.	When	doing	software	testing,	there	is	a	risk	that	the	testing	is	not	
good	enough.	When	doing	a	particular	project	task,	there	is	a	risk	that	it	may	not	be	completed	on	
time	due	to	resource	shortage	or	underestimation	of	the	effort	required	for	the	task.

For	each	kind	of	risk	that	may	arise,	a	contingency	plan	is	needed	so	that	the	project	does	
not	get	affected.	Risk	 identification	has	 to	be	done	and	 its	 impact	and	probability	has	 to	be	
assessed	at	all	times	during	the	execution	of	the	project.	A	detailed	study	about	risks	is	provided	
in	Chapter	4.

7.2.12 Monitor Issues
Several	kinds	of	issues	keep	arising	during	the	execution	of	the	project	[12].	These	issues	need	to	be	
addressed	and	solutions	to	be	found	and	applied	so	that	project	progress	is	not	affected.	There	may	
be	some	doubts	about	the	design	for	which	a	developer	needs	a	clarification.	That	clarification	is	to	
be	provided	on	time	so	that	the	developer’s	time	is	not	wasted.	At	the	peer	review	meeting,	it	is	felt	
to	refactor	a	source	code	construct,	but	there	are	still	some	team	members	who	want	to	keep	the	
existing	source	code.	Then	there	are	team	members	who	want	to	finish	their	work	faster	to	take	a	
break	later	but	the	project	manager	feels	that	quality	may	go	down.

All	kinds	of	issues	keep	arising	and	the	project	manager	needs	to	resolve	them	satisfactorily	
and	in	time.	Issues	are	time	sensitive	and	thus	require	solution	within	a	certain	time	frame.	But	all	
issues	are	not	same.	Some	have	more	impact	on	the	project	while	others	do	not	have	much	of	an	
impact.	So	if	there	is	more	than	one	issue	at	hand,	then	the	project	manager	should	first	analyze	
the	impact	and	accordingly	make	a	list	of	issues	with	set	priorities	and	assigning	top	priority	to	
resolve	the	issues	that	have	most	severe	impact	on	the	project.	He	can	defer	attending	to	the	issues	
that	do	not	have	much	impact	on	the	project	and	can	address	issues	immediately	that	may	have	
severe	impact.	In	this	respect,	issue	resolution	is	similar	to	mitigating	risks.

7.2.13 Status Reports
The	 customer	 needs	 status	 reports	 to	 know	 whether	 the	 project	 is	 progressing	 well	 or	 lagging	
behind	in	some	respect.	The	project	manager	needs	to	prepare	status	reports	and	send	them	to	the	
customer.	Generally,	these	status	reports	are	sent	after	completion	of	any	milestone	in	the	project	
[13].	These	milestones	could	be	anything	and	could	be	set	after	discussion	with	the	customer.	But	
most	often,	these	milestones	denote	completion	of	one	phase	of	the	project	(requirements,	design,	
construction,	testing,	etc.).	The	status	report	should	contain	information	about	cost,	schedule,	and	
quality	as	to	how	the	project	execution	is	faring	against	the	project	plan.	If	the	project	is	lagging	
behind	in	any	of	these	aspects,	then	a	good	explanation	should	be	included	as	to	why	it	happened.	
The	 report	 should	 also	 contain	 a	 remedy	 plan	 to	 put	 the	 project	 on	 track.	 The	 report	 should	
also	contain	information	regarding	achievements,	challenges	faced,	and	issues	resolved	during	the	
report	period.	Depending	on	the	requirements	of	the	customer,	the	report	can	be	detailed	or	suc-
cinct.	Many	project	managers	make	a	mistake	of	not	making	a	good	rapport	with	the	customer.	

110  ◾  Software Project Management: A Process-Driven Approach

If	no	rapport	is	made	with	the	customer,	the	customer	will	never	appreciate	the	effort	and	hard	
work	put	into	assignments	by	the	team.	So	it	is	required	that	the	project	manager	establish	a	good	
rapport	with	the	customer.

7.3 Project Control Techniques
Projects	have	so	many	risks	and	uncertainties	that	managing	and	controlling	them	is	a	tough	task.	
The	project	manager	has	to	keep	balancing	many	trade-offs	to	keep	the	project	on	track.

7.3.1 Resource Leveling
Resource	leveling	is	one	technique	that	is	employed	to	resolve	resource	conflicts	during	project	
execution.	Sometimes,	it	so	happens	that	a	resource	is	to	do	more	than	one	task.	Now	it	is	found	
that	one	task	will	get	delayed	due	to	the	delay	in	the	other	task.	If	there	is	a	slack	found	in	the	
schedule,	the	other	task	that	has	not	started	yet	can	be	taken	to	some	other	time	frame	so	that	it	
will	not	be	affected	due	to	delay	in	the	first	task.	Or	if	this	is	not	possible,	then	adding	some	more	
resources	to	the	task	can	resolve	this	issue	(Figures	7.8	and	7.9).

Tasks linked

Task 1

Task 2

Slipped task 1

Additional resources added to
task 2. Duration for task 2

reduced as a result

Figure 7.9 Additional resources allotted to a dependent task to complete it faster in less time.

Tasks linked

Task 1

Task 2

Slipped task 1

Slipped task 2

Task 2 slipped due to
slippage in task 1

Figure 7.8 Slippage in a task leads to slippage in the dependent task.

Project Monitoring and Control  ◾  111

When	using	software	such	as	Microsoft	Project	for	making	the	project	schedule,	the	software	
has	tasks	that	conflict	with	other	tasks	in	the	schedule.	These	conflicts	could	be	due	to	impractical	
start	or	finish	dates	for	tasks,	resource	overallocation,	or	dependency	of	tasks	on	each	other	(so	that	
if	the	first	task	gets	delayed,	the	other	will	also	get	delayed).	Adjusting	those	tasks	manually	or	
automatically	will	resolve	the	conflict.

7.3.2 Schedule Optimization
Using	PERT/CPM	methods,	we	can	determine	the	critical	path	of	the	project.	But	before	drawing	
the	critical	path,	the	project	manager	should	ascertain	that	there	is	no	unnecessary	slack	in	the	proj-
ect	plan.	If	there	is	any	slack	anywhere	on	the	critical	path,	it	should	be	removed	to	make	the	project	
plan	optimized.	Similarly,	as	there	could	be	many	critical	paths	for	the	same	project	plan,	unneces-
sary	slack	on	all	paths	should	be	identified	and	removed.	Now	the	longest	path	out	of	these	will	be	
the	critical	path	for	the	project	(Figures	7.10	and	7.11).

Schedule	optimization	can	also	be	done	during	execution.	If	during	execution,	any	task	on	
the critical	path	is	found	to	be	done	earlier	than	planned,	then	the	critical	path	can	be	shortened.	

Legend
= Buffer

= Slack

Initiation Requirements Design 2

Design 1

Construction 2

Design 3 Construction 3

Testing

Critical path

Integration Release

Construction 1

Figure 7.10 Slack in the critical path of a project plan.

= Buffer

Legend

Initiation Requirements Design 2

Design 1

Construction 2

Design 3 Construction 3

Testing

Critical path

Integration Release

Construction 1

Figure 7.11 Optimized project plan after removal of slack on the critical path.

112  ◾  Software Project Management: A Process-Driven Approach

This	way	schedule	for	the	project	can	be	collapsed	or	the	extra	time	available	can	be	used	for	start-
ing	dependent	tasks	earlier	than	planned	schedule.

One	more	technique	of	schedule	optimization	is	to	find	if	any	tasks	can	be	put	in	parallel	that	
are	currently	in	sequence.	This	way	the	schedule	can	be	collapsed	by	a	big	margin.

Then	we	can	also	optimize	the	schedule	by	checking	if	any	task	can	be	split	and	then	putting	
these	split	tasks	in	parallel	so	that	the	schedule	can	be	collapsed.

In	fact,	using	concurrent	engineering	methods,	we	can	successfully	optimize	a	project	sched-
ule.	 In	 the	 concurrent	 engineering	 technique,	 activities	 for	 downstream	 processes	 are	 planned	
ahead	during	a	previous	process	step.	In	software	projects,	we	can	design	the	software	product	in	
such	a	way	that	the	construction	and/or	testing	work	can	be	split	easily.	So	when	the	project	pro-
gresses	to	these	stages,	the	work	can	be	split	and	these	split	assignments	can	be	assigned	to	many	
teams.	These	teams	can	work	on	these	assignments	in	parallel	to	the	work	carried	out	by	other	
teams.	This	way	the	project	schedule	can	be	collapsed	by	a	large	margin.

7.3.3 Corrective Actions against Deviations
From	the	project	monitoring	status	reports,	if	it	is	observed	that	the	project	is	deviating	from	plan,	
then	corrective	actions	are	to	be	taken	by	the	project	manager.	For	taking	corrective	action,	the	
situation	is	to	be	analyzed	and	root	causes	are	to	be	identified.	Once	root	causes	are	found,	solu-
tions	to	fix	them	can	be	thought	of	and	then	action	can	be	taken	accordingly.	It	is	also	advisable	
to	have	a	good	measurement	of	all	process-	and	product-related	attributes	that	are	relevant	to	the	
project.	Good	measurements	will	help	in	decision-making	process.

Some	of	 the	 reasons	 for	 increased	project	 cost	 include	 increase	 in	overhead	 (higher	 cost	of	
procuring	tools,	infrastructure,	etc.)	or	salary.	It	could	also	be	due	to	schedule	overrun.	So	cost	
increases	could	either	be	schedule	dependent	or	schedule	independent.	If	procurement	costs	are	
going	 higher,	 management	 can	 find	 alternatives	 to	 keep	 the	 cost	 from	 increasing.	 If	 the	 cost	
increase	is	due	to	schedule	overrun,	then	immediate	action	should	be	taken	to	correct	the	schedule	
deviation.

Schedule	deviation	 (almost	always	overrun)	can	happen	due	 to	 faulty	effort	 estimate,	 faulty	
scheduling,	 resource	unavailability,	 loss	of	critical	 resources	midway	 in	 the	project,	 requirement	
creep,	etc.	Requirement	creep	is	the	most	cited	problem	attributed	to	schedule	overruns.	The	best	
policy	 regarding	 requirement	 creep	 is	 to	 bargain	 with	 the	 customer	 whenever	 any	 requirement	
change	 request	 comes.	The	customer	 should	be	made	 aware	of	 the	 consequences	of	 the	 change	
request	in	project	schedule.	Accept	a	change	request	only	after	the	customer	understands	and	agrees	
on	the	consequences	in	the	project	schedule.	Risks	of	resource	unavailability	or	loss	of	resources	
pose	a	serious	threat	for	the	project.	To	deal	with	such	risks,	proper	resource	planning	is	needed.

The	third	deviation	that	can	occur	in	the	project	is	the	quality	of	the	work	products.	Bad	qual-
ity	cannot	be	forgiven	even	if	schedule	or	cost	overruns	can	be	accepted.	Software	engineering	
techniques	help	in	ensuring	that	work	product	quality	can	be	improved	by	means	of	improved	
project	and	product	processes.	The	software	development	life	cycle	should	be	divided	into	well-
defined	phases,	and	at	the	end	of	each	phase,	there	should	be	a	list	of	defined	work	products.	There	
should	always	be	a	gate	that	will	allow	the	project	to	proceed	to	the	next	level	only	after	the	work	
products	are	verified	to	have	the	expected	quality	level	by	measuring	them	and	comparing	with	
the	expected	quality	 levels.	 If	any	deficiency	 is	 found	 in	any	part	of	 the	work	product,	 then	 it	
should	be	rectified	and	only	then	should	the	project	be	allowed	to	proceed	to	the	next	phase.	This	
will	ensure	that	quality	of	the	work	products	is	good.	This	in	turn	will	ensure	that	quality	of	the	
finished	product	is	good.

Project Monitoring and Control  ◾  113

7.3.4 Corrective Actions against Issues
As	we	have	seen	in	Section	7.2.12,	issues	should	be	classified	into	many	categories	and	top-priority	
issues	should	be	tackled	first.	Issues	are	also	time-sensitive,	and	if	they	are	not	tackled	in	time,	they	
will	impact	the	project.	How	severe	the	impact	will	be	depends	on	the	kind	of	the	issue	itself.	When	
many	issues	are	in	hand	at	a	given	time,	it	is	difficult	to	identify	their	priority.	All	of	them	seem	impor-
tant.	In	such	cases,	it	will	be	best	to	list	them	and	put	a	weight	against	each	of	them.	Time	sensitivity	
should	also	be	considered	(e.g.,	in	how	many	days	the	issue	should	be	sorted	out).	Now	sort	out	your	
list	with	these	two	values	against	each	issue.	If	an	issue	with	more	weight	has	a	bigger	time	window	
and	if	an	issue	with	lower	weight	has	a	smaller	time	window,	then	if	time	permits,	both	should	be	
tackled	in	parallel	so	that	both	can	be	resolved	within	their	time	windows.	However,	if	the	project	
manager	does	not	have	much	time	to	tackle	both	simultaneously,	then	it	will	be	best	to	tackle	the	issue	
with	the	higher	weight.	So	if	a	lower-priority	issue	cannot	be	resolved,	it	will	not	have	much	impact	
on	the	project,	and	at	the	same	time,	a	bigger	impact	on	the	project	can	be	avoided	by	resolving	a	
higher-priority	issue.

7.3.5 Resource Optimization
in	outsourced	projects,	 the	project	manager	 from	the	outsourcing	company	may	have	to	think	
about	benefits	to	his	organization	from	the	project.	For	instance,	the	service	provider	will	have	a	
profit	motive.	When	the	company	bid	for	a	project,	it	would	have	taken	the	profit	margin	for	the	
project.	During	project	execution,	however,	there	are	many	factors	that	threaten	to	eat	into	the	
profit	margin.	The	project	manager	has	to	keep	an	eye	on	the	expenses	so	that	profit	margin	could	
be	kept	intact.	In	this	regard,	one	known	source	of	threat	is	an	increasing	wage	of	employees.	To	
handle	this	issue,	the	project	manager	may	have	to	make	sure	that	productivity	of	the	employees	
gets	increased	commensurate	with	the	hike	in	salaries.

There	are	many	practical	ways	of	optimizing	your	resources	in	projects.	The	best	option	is	
to	use	project	portfolio	management	to	utilize	your	available	resources	to	the	best	possible	way.	
When	you	have	a	pool	of	resources	and	a	list	of	projects,	you	can	staff	the	projects	in	such	a	way	
that	your	pool	of	resources	are	utilized	in	such	a	way	that	no	or	least	resources	are	sitting	idle.	
Even	within	the	pool	of	resources,	some	are	costlier	than	others.	It	definitely	makes	sense	that	
time	of	these	higher-paid	staff	should	be	utilized	to	the	maximum.

7.4 Project Monitoring and Control Artifacts
Project	monitoring	provides	project	process	and	work	product	data	that	we	can	use	to	make	deci-
sion	and	control	the	project	so	that	later	on	it	can	be	kept	on	track	despite	derailings	in	the	past.	
The	cost	could	have	gone	up	from	what	was	budgeted,	the	schedule	could	have	overrun,	or	the	
work	product	quality	could	have	gone	down	from	what	was	expected.	So	basically	we	have	three	
attributes	of	a	project	that	should	be	monitored	and	controlled:	schedule,	cost	and	quality.

The	artifacts	belonging	to	the	schedule	include	PERT/CPM	charts,	network	diagrams,	resource	
charts,	 EVM,	 etc.	 The	 artifacts	 belonging	 to	 cost	 include	 budget	 analysis,	 resource	 optimiza-
tion,	EVM,	etc.	The	artifacts	for	quality	include	requirement	document	review,	design	document	
review,	source	code	review,	test	cycle	logs,	etc.

The	most	important	artifacts	of	project	monitoring	and	control	are	actual	project	cost,	product	
quality	and	schedule	data.	The	overall	project	cost	and	schedule	data	in	relation	to	project	size	and	
quality	level	determines	productivity	on	the	project.

114  ◾  Software Project Management: A Process-Driven Approach

7.5 Project Monitoring and Control in Iterative Model
Software	project	planning	for	iterative	development	projects	has	been	discussed	in	Chapter	6.	
As	discussed	 there,	most	of	 the	action	happens	at	 the	 iteration	 level,	and	thus,	most	of	 the	
planning	is	also	done	at	this	 level.	Since	duration	of	each	iteration	is	small	(a	few	weeks	to	
2–3	months),	 impact	on	an	individual	iteration	due	to	any	unforeseen	circumstances	is	not	
that	severe.	Most	of	the	project	risks	are	tackled	by	dividing	the	entire	project	into	small	itera-
tions.	Thus,	for	iterative	projects,	the	risks	are	manageable	because	their	sizes	are	reduced,	and	
they	are	distributed	throughout	the	project	by	means	of	breaking	the	project	into	small	itera-
tions.	However,	sometimes	it	may	happen	that	the	customer	demands	some	drastic	change	in	
his	requirements,	which	may	force	an	iteration	to	undergo	a	large	change	from	the	planned	
activities.	In	such	cases,	the	project	monitoring	and	control	will	be	out	of	control,	and	thus,	
the	project	plan	(iteration	plan)	will	become	invalid.	A	new	project	plan	will	have	to	be	made	
(Figure	7.12).

But	in	general,	a	project	plan	(or	iteration	plan)	can	be	controlled	using	typical	controlling	
techniques.	A	good	technique	to	control	an	iteration	is	using	a	priority	system	for	requirements	
or	features.	All	the	high-priority	features	will	be	completed	in	the	iteration,	and	the	low-priority	
features	can	be	kept	as	options	if	time	permits	in	the	iteration.

7.5.1 Performance Measurements
Unlike	waterfall-based	models,	performance	on	agile	projects	is	measured	in	different	parameters.	
Some	of	these	measures	include	the	following:

	◾ Feature	points	delivered	per	iteration
	◾ Number	of	defects	found	per	iteration
	◾ Productivity	of	team	in	terms	of	delivering	features	per	person	per	iteration

Complete list of
requirements

Set of requirements
to be implemented

in the iteration

High-priority
requirements

High-priority requirements

Low-priority
requirements

Low-priority requirements

Figure 7.12 High- and low-priority requirements and keeping their schedule accordingly.

Project Monitoring and Control  ◾  115

7.5.2 Risks
Iterations	are	generally	time	boxed.	You	need	to	complete	a	certain	number	of	feature	points	
(feature	points	are	a	number	assigned	to	a	 feature	depending	on	the	size	of	 the	feature	and	its	
complexity)	in	the	iteration	duration.	If	you	are	not	able	to	complete	them,	it	may	be	due	to	inac-
curate	effort	estimation,	some	issues	arising,	or	some	other	risk	that	is	responsible	for	problems	in	
the	project.	But	these	problems	arise	during	the	first	few	iterations.	Otherwise	agile	environments	
are	pretty	stable	and	devoid	of	risky	propositions.	There	is	no	such	thing	as	resource	allocation	in	
these	projects.	Each	person	in	these	projects	has	his	role	well	defined.	He	keeps	on	working	on	
successive	iterations	without	being	told	by	project	manager	what	he	would	be	doing	in	subsequent	
iterations.	From	the	stories	to	be	worked	on	in	a	particular	iteration,	the	developers	write	unit	tests	
and	then	start	building	the	features.	Whenever	time	permits,	they	also	keep	refactoring	the	old	
source	codes.	In	fact,	refactoring	is	one	of	the	most	risky	affairs	in	agile	projects.	If	refactoring	
is	not	done	properly,	subsequent	iterations	can	face	problems	in	writing	code	for	new	features	as	
design	issues	prevent	old	source	code	form	integrating	with	the	new	code.

7.6 Case Study
In	the	previous	chapter,	we	have	seen	how	project	and	iteration	planning	is	done	at	our	SaaS	ven-
dor.	In	this	chapter,	we	will	see	how	project	and	iteration	control	and	monitoring	are	done.

Our	SaaS	vendor	has	major	and	minor	releases	of	software	coinciding	with	yearly	project	plan	
and	iterations	within	the	project	plan,	respectively.	During	the	execution	of	 iterations,	 there	are	
bound	to	be	issues	and	risks	arising	due	to	various	internal	and	external	factors.	In	such	cases,	risk	
and	issue	mitigation	strategies	come	in	handy	if	they	exist.

Luckily,	the	SaaS	vendor	project	team	has	such	contingency	plans.	They	have	weekly	iteration	
review	meetings,	led	by	the	project	manager	and	attended	by	project	team	members.	Most	of	the	
issues	and	risks	encountered	 in	 the	previous	week	are	known	to	 the	 team	members	before	 the	
meeting	takes	place.	In	addition,	any	risk	that	has	not	affected	the	plan	so	far	but	is	lurking	around	
the	corner	is	also	discussed.	These	potential	risks	are	not	on	the	meeting	agenda	and	are	discussed	
after	the	agenda	is	discussed	and	a	plan	of	action	is	taken	for	these	risks.

Some	of	the	risks	encountered	in	the	project	include	sick	leaves,	unplanned	holidays,	technical	
problems	encountered	in	implementing	a	design,	a	rush	call	from	the	marketing	department	for	an	
unplanned	feature	to	be	added,	etc.	An	action	plan	generally	consists	of	causal	analysis	of	the	prob-
lem,	finding	root	cause	of	the	problem,	finding	a	suitable	solution	for	the	problem,	implementing	
the	solution,	checking	if	the	solution	works,	and	finally	eliminating	the	risk.	The	analysis	of	impact	
of	the	risk	is	also	done.	Generally,	the	resources	are	fixed	and	additional	resources	are	not	added	
in	the	project	for	mitigating	any	risk.	So	the	impact	the	risk	has	had	on	the	schedule	is	considered.	
The	schedule	is	readjusted	if	necessary,	and	the	rescheduled	plan	is	made.	If	change	in	the	affected	
task	also	impacts	other	tasks,	then	those	tasks	are	also	rescheduled.	If	the	impact	is	severe	and	the	
entire	iteration	plan	is	going	to	be	affected,	then	one	more	possibility	is	explored.	It	is	the	option	of	
working	overtime	to	cover	for	the	extra	time	required	to	finish	the	tasks.

7.6.1 Tracking Tools Used
The	project	manager	uses	Microsoft	Project	 to	track	project	plan,	resources,	and	schedule.	The	
Gantt	chart	generated	by	Microsoft	Project	is	used	for	project	monitoring	and	control.	For	defect	
tracking,	Seapine	Software’s	TestTrack	Pro	is	used.

116  ◾  Software Project Management: A Process-Driven Approach

7.6.2 Problems Encountered
The	most	complex	and	large	component	which	was	being	developed	in	release	6.0	of	the	software	
product	was	a	feature	called	“Appointment	Scheduling	Engine.”	The	logic	is	complex	and	imple-
menting	it	was	tough.	Even	testing	this	solution	was	a	big	challenge.	Developing	it	required	first	
implementing	the	logic	and	then	modifying	the	behavior	of	the	component	by	using	software	and	
hard	constraints.	For	testing	it,	an	elaborate	plan	was	made.

When	actual	 testing	got	 started,	 it	was	 found	 that	 the	engine	was	 failing	 in	most	of	 the	
cases.	It	did	not	recognize	any	of	the	constraints.	Initially	for	testing	it,	two	test	engineers	were	
assigned.	But	 later,	 it	was	 found	 that	 the	engineers	 lacked	experience	 to	 test	 such	a	complex	
component.	So	they	were	replaced	by	two	experienced	business	analysts	who	had	also	worked	
on	product	management	of	the	product,	and	they	knew	about	the	architecture	and	requirement	
specifications	well.	They	set	up	an	elaborate	suite	of	test	cases	and	decided	to	do	exploratory	
testing	of	the	component.

The	business	analysts	found	that	the	requirement	and	design	documents	were	not	up	to	the	
mark.	They	decided	 to	first	make	 a	pseudo	 logic	 for	 the	 component.	They	 took	 some	 time	 in	
assembling	some	documents	and	getting	information	from	developers	and	software	designers	so	
that	they	could	make	this	logic.	Once	it	was	built,	it	helped	them	to	make	the	strategy	to	test	the	
component.	The	junior	analyst	did	the	testing	for	load	time	calculations	and	the	senior	analyst	did	
the	appointment	scheduling	part	of	the	component.	When	the	junior	analyst	finished	his	testing	
for	load	calculation,	he	was	assigned	to	test	the	user	interface	part	including	the	calendars,	searches	
for	appointments,	shipments,	etc.

Overall,	 the	 effort	paid	off	and	 the	 appointment	 scheduling	 engine	 started	working	 as	per	
requirements.	It	was	the	biggest	success	story	of	the	project.

7.7 Chapter Summary
Software	projects	are	indeed	difficult	to	monitor	and	control.	Difficulties	arise	due	to	the	fact	that	
many	specifications	for	work	products	are	not	clear	even	after	the	project	begins.	So	the	project	
team	takes	some	assumptions	about	the	work	products	into	consideration	that	are	yet	not	so	clear.	
As	the	project	progresses,	some	clarity	is	achieved.	So	before	this	happens,	the	project	team	tries	to	
manage	the	project	work	with	some	vagueness.	This	aspect	is	the	most	difficult	problem	in	software	
projects.	In	such	a	scenario,	project	monitoring	and	control	thus	become	a	difficult	proposition.

There	are	many	tools	and	techniques	available	 for	 the	project	 team	to	monitor	and	control	
the	project.	For	controlling	purposes,	the	project	plan	has	some	schedule	and	budget	buffers.	So	
when	any	risk	occurs,	a	certain	amount	of	budget	and	schedule	are	adjusted	in	the	project	by	dip-
ping	into	the	buffer.	On	the	other	hand,	there	are	some	tools	that	help	in	overcoming	setbacks	in	
the	project	without	consuming	any	buffers.	Some	of	these	techniques	include	resource	leveling,	
schedule	optimization,	taking	corrective	action	against	deviations,	etc.	Then	of	course,	we	have	
the	EVM	technique,	which	can	be	employed	to	take	corrective	action.	The	EVM	technique	also	
provides	the	facility	to	have	a	project	dashboard	with	performance	indicators.	If	any	of	the	indica-
tors	goes	the	wrong	way,	then	the	project	manager	can	easily	recognize	it	and	take	prompt	action.

Project Monitoring and Control  ◾  117

Exercises
7.1	 What	should	be	the	best	course	of	action	if	many	quality	issues	arise?	How	can	you	deal	

with	a	situation	when	the	work	products	are	found	to	have	more	than	an	expected	number	
of	defects?

7.2	 A	project	has	three	software	components	developed	by	two	teams.	One	team	turns	out	to	be	
faster	than	the	other	team.	What	effects	it	will	have	on	the	project?

Review Questions
7.1	 What	attributes	of	a	software	project	are	considered	for	monitoring	and	control?
7.2	 Explain	what	you	understand	by	resource	leveling.
7.3	 How	can	you	measure	progress	of	a	task?
7.4	 What	measures	can	be	taken	if	it	is	found	that	the	project	schedule	is	deviating	from	the	

planned	schedule?
7.5	 What	measures	can	be	taken	if	it	is	found	that	the	project	cost	is	deviating	from	the	planned	

budget?
7.6	 What	measures	can	be	taken	if	 it	 is	found	that	the	product	quality	is	deviating	from	the	

expected	quality	level?

Recommended Readings
	 1.	 H.	Kerznerd	(2009)	Project Management: A Systems Approach to Planning, Scheduling, and Controlling,	

Wiley,	Hoboken,	NJ.
	 2.	 C.	F.	Gray	(2005)	Project Management,	McGraw-Hill	Education	(India)	Pvt	Ltd,	New	Delhi,	India.
	 3.	 J.	D.	Frame	(2003)	Managing Projects in Organizations: How to Make the Best Use of Time, Techniques,

and People,	Wiley,	New	York.
	 4.	 T.	Kendrick	(2004)	Project Management Tool Kit: 100 Tips and Techniques for Getting the Job Done Right,	

American	Management	Association,	New	York.
	 5.	 M.	Marchesi	(2003)	Proceedings of Fourth International Conference on Extreme Programming and Agile

Processes in Software Engineering, XP 2003,	Genova,	Italy,	May	25–29,	2003,	Springer,	Berlin,	Germany.
	 6.	 R.	J.	Muller	(1997)	Productive Objects: An Applied Software Project Management Framework,	Morgan	

Kaufmann,	San	Francisco,	CA.
	 7.	 P.	Jalote	(2002)	Software Project Management in Practice,	Addison-Wesley	Professional,	Boston,	MA.
	 8.	 F.	A.	Goodman	(2006)	Process Based Software Project Management,	Auerbach,	New	York.
	 9.	 T.	D.	Wells	(2002)	Dynamic Software Development: Managing Projects in Flux,	Auerbach,	New	York.
	 10.	 R.	A.	Morris,	B.	McWhorter	Sember	 (2008)	Project Management That Works: Real-World Advice on

Communicating, Problem-Solving, and Everything Else You Need to Know to Get the Job Done,	AMACOM,	
New	York.

	 11.	 J.	M.	Nicholas,	H.	Steyn	(2008)	Project Management for Business, Engineering, and Technology,	3rd	edn.,	
Butterworth-Heinemann,	Oxford,	U.K.

	 12.	 D.	D.	Galorath,	M.	W.	Evans	(2006)	Software Sizing, Estimation and Risk Management,	CRC	Press,	
Boca	Raton,	FL.

	 13.	 P.	C.	Tinnirello	(1999)	Project Management,	Auerbach,	New	York.

119

Chapter 8

Project Closure

In.the.previous.chapter,.we.learned

	◾ What	is	project	monitoring?
	◾ What	techniques	are	there	for	project	control?
	◾ How	is	project	monitoring	done	in	iterative	projects?

In.this.chapter,.we.will.learn

	◾ What	is	project	closure?
	◾ What	activities	are	performed	during	project	closure?
	◾ What	are	the	lessons	learned	on	a	project	and	its	importance	for	future	projects?

8.1 Introduction
After	successful	execution	of	a	project,	things	come	to	a	close.	How	satisfying	the	journey	has	been	
is	determined	from	all	the	status	reports	and	feedback	from	the	customer.	All	along,	there	could	
have	been	moments	of	anxiety,	discovery,	joys,	and	sorrows.	There	could	also	have	been	moments	
when	everything	looked	haywire	and	the	project	looked	like	a	failure.	But	you	have	come	to	the	
stage	where	the	project	will	be	closing	soon,	and	this	signifies	that	ultimately	things	worked	and	
things	could	be	achieved	even	after	going	through	some	adverse	situations.

A	software	project	could	be	a	software	development,	software	customization,	software	integra-
tion,	software	maintenance,	or	just	one	phase	of	the	software	development	life	cycle	(requirements,	
design,	construction,	or	testing	a	software	product).	As	per	the	contract,	the	final	deliverables	have	
to	 be	 handed	 over	 to	 the	 customer	 before	 the	 project	 deadline.	 While	 we	 can	 discuss	 project	

120  ◾  Software Project Management: A Process-Driven Approach

closure	formalities	for	any/all	of	these	types	of	projects,	it	may	become	a	large	text.	So	we	will	limit	
the	discussion	to	project	closure	formalities	and	tasks	for	a	typical	software	development	project	
(Figure	8.1).

Before	the	closure	of	the	project,	you	need	to	check	if	all	deliverables	are	going	to	be	achieved	
before	the	set	deadline.	The	deliverables	include	the	tested	software	product,	user/training	manu-
als,	user	training,	and	installation/implementation	of	the	software	product	at	client	site.	It	may	
also	include	product	release	information	if	the	project	is	to	develop	a	software	product	with	many	
iterations	and	is	built	incrementally.

Do	not	forget	that	you	need	to	keep	a	record	of	what	happened	during	the	execution	of	the	
project.	If	your	company	has	a	software	engineering	group	and	data	from	all	projects	that	need	
to	be	kept	in	a	central	repository	for	statistical	process-control	purposes,	then	you	also	need	to	
make	sure	that	all	relevant	project	data	available	before	the	closure	of	the	project	are	fed	into	this	
repository.

8.2 Source Code Management
Many	versions	of	the	source	code	get	generated	as	requirements,	and	designs	get	changed	during	
the	software	development	life	cycle.	During	testing,	many	bugs	are	discovered	and	they	are	fixed.	
The	final	source	code	thus	has	seen	a	lot	of	change,	and	which	version	will	be	shipped	to	customer	
needs	to	be	identified	(Figure	8.2).

Software
product User manuals User training

Software project
deliverables

Software product
installation/

implementation

Resource
release Lessons learned

Figure 8.1 Software project deliverables before project closure.

Source code
original version

Source code
version after
test cycle 1

Source code
version after
test cycle 2

Source code
version after
test cycle 4

Source code
version after
test cycle 5

Source code
version after
test cycle 3

Figure 8.2 Many versions of source code.

Project Closure  ◾  121

The	 configuration	 management	 system	 should	 be	 kept	 up	 to	 date	 with	 all	 source	 code	
changes	[1].	Sometimes,	developers	keep	a	local	copy	of	the	source	code	on	their	machines	and	
forget	 to	update	 the	 configuration	management	 system	with	 the	 changes	 they	have	made	 in	
the	source	code.	Similarly,	the	user	manuals	and	documents	are	sometimes	not	updated	with	
the	changes	in	code,	which	results	in	shipping	wrong	documentation	to	the	customer.	So	it	
should	be	made	sure	that	the	correct	version	of	the	source	code	along	with	the	documentation	
is	shipped	to	the	customer.

8.3 Project Data Management
Software	service	providers	as	well	as	internal	teams	maintain	a	large	pool	of	project	data	for	new	
projects	[2].	So	when	an	existing	project	comes	to	an	end,	it	is	very	important	to	archive	project	
data.	The	archived	data	help	in	estimating	effort,	schedule,	costs,	and	quality	level	for	new	projects.	
This	information	is	very	valuable	for	new	projects.	Providing	project	data	as	a	performance	indica-
tor	to	the	customer	not	only	boosts	customer	confidence	about	ability	of	the	project	team,	but	it	
also	helps	in	increasing	productivity,	project	goal	clarity,	and	reducing	schedule	and	costs	when	
future	projects	actually	get	executed	(Figure	8.3).

Statistical	process-control	quality	methods	work	on	the	principle	that	collecting	sample	data	
and	comparing	it	with	a	trend	or	norms	tell	whether	the	quality	is	improving	or	going	worse	[3].	
Similarly,	having	historical	data	about	similar	projects	helps	in	setting	goals	for	and	estimating	the	
new	project.	Then	when	the	project	is	executed,	the	trend	data	help	in	correcting	any	problems	in	
the	project.

Just	keeping	project	execution	data	in	the	archive	is	not	of	much	help.	When	you	need	to	
compare	or	use	data,	it	should	be	clean	and	relevant.	So	before	sending	project	execution	data	
into	the	repository,	it	should	be	made	sure	that	the	data	are	clean.	Similarly,	irrelevant	project	
data	are	not	of	much	use.	For	any	project,	relevant	data	are	the	execution	data	from	similar	
projects.	This	similarity	is	in	terms	of	project	size,	industry	for	which	the	software	product	
was	made,	programming	language	used,	life-cycle	methodology	used,	etc.	So	the	repository	
should	be	categorized	accordingly.	Depending	on	these	variations,	there	will	be	many	differ-
ent	types	of	projects.	When	a	new	project	is	to	be	initiated,	the	repository	should	be	searched	
for	 similar	 projects.	 Data	 from	 these	 projects	 can	 then	 be	 used	 for	 the	 new	 project.	 This	
cleaned	and	filtered	data	then	will	be	very	much	relevant	for	the	new	project	and	thus	will	be	
extremely	useful.

Raw project data

Filters

D
at

a c
le

an
in

g

Ap
pl

ic
at

io
n

ar
ea

In
du

st
ry

Pr
oj

ec
t s

iz
e

Li
fe

-c
yc

le
 m

et
ho

do
lo

gy

Pr
og

ra
m

m
in

g
la

ng
ua

ge

Project data
archived

Figure 8.3 Strategy for project data archiving.

122  ◾  Software Project Management: A Process-Driven Approach

8.4 Project Closure in Iterative Model
The	iterative	development	model	is	very	popular	in	software	product	development	these	days.	Software	
vendors	are	always	keen	to	 launch	new	versions	of	 their	software	product	 in	the	opportunity	time	
window	lest	the	opportunity	is	lost.	This	results	in	some	problems	on	the	software	development	front.	
Iteration	closure	is	often	a	messy	affair	if	care	and	restraint	are	not	exercised.	Due	to	market	pres-
sure,	top	management	is	under	pressure	to	incorporate	all	the	requested	features	in	the	release.	But	
it	is	clearly	not	feasible	to	do	so.	It	is	better	to	prioritize	features	based	on	market	demand	and	effort	
required	to	make	them.	So	release	planning	should	be	a	part	of	the	iteration	planning	at	the	beginning	
of	the	iteration.	Features	with	high	demand	but	requiring	lesser	effort	should	ideally	be	included	first	in	
the	iteration.	If	time	permits,	then	go	for	adding	another	feature.	Keep	doing	it	until	you	do	not	have	
any	time	left	for	adding	any	more	features.	Care	should	also	be	taken	not	to	compromise	on	quality.

8.5 Lessons Learned
In	life,	people	learn	from	doing	things,	and	when	they	become	older,	they	become	much	wiser	
as	they	accumulate	all	the	learning	over	the	years.	Now	when	they	apply	this	 learning	in	their	
assignments,	they	are	much	more	effective.	They	tend	to	do	things	better	and	are	generally	more	
productive.

Learning	is	a	continuous	process,	and	it	should	be	done	whenever	someone	gets	a	chance	to	do	
things	or	see	others	doing	things.	Projects	are	an	excellent	platform	for	learning.	Each	project	has	
many	new	things	that	people	may	not	have	done	earlier	in	their	lives.	Not	only	the	project	team	
members	but	also	the	organization	learns	from	a	project.	Such	learning	should be	documented	so	
that	it	can	be	referenced	for	future	projects	[4]	(Figure	8.4).

Some	examples	of	lessons	learned	on	the	projects	could	be

	◾ How	to	do	a	task	in	a	better	way
	◾ How	to	manage	the	project	in	a	better	way
	◾ Finding	good	solutions	for	issues	faced
	◾ How	to	negotiate	with	the	customer
	◾ How	to	mitigate	an	imminent	risk
	◾ Which	techniques	work	and	which	do	not	in	particular	situations

Better
alternative

to do things

Better ways
to manage

projects

Solutions
for unique

issues

Lessons learned

Software project

Better
negotiation

with
customer

Better ways
to deal with

risks

Which
techniques
work and

which do not

Figure 8.4 Lessons learned on a project.

Project Closure  ◾  123

Differences	between	a	good	organization	and	a	bad	one	could	boil	down	to	the	learning,	which	is	
wasted	or	used	effectively	on	projects.

In	a	software	project,	we	have	many	kinds	of	documents.	We	have	project	management-
related	documents	such	as	project	plan,	communication	plan,	project	schedule,	effort	estimate,	
cost	estimate,	resource	plan,	and	resource	allocation.	Then,	we	have	requirement	documents,	
design	 documents,	 user	 manuals,	 and	 maintenance	 manuals	 from	 life-cycle	 management.	
We	 also	have	 contract	 documents,	 statements	 of	work,	 and	 legal	 documents	 from	contract	
management.

Due	to	change	requests,	we	will	have	many	versions	of	different	life-cycle	documents.	All	of	
these	documents	go	in	the	configuration	management	system.	But	most	documents	from	contract	
	management	and	project	management	do	not	go	 in	 the	configuration	management	system.	At	
the	most	project	plan,	project	schedule,	work	breakdown	structure,	and	resource	plan	go	in	the	
configuration	management	system.

Communication	documents	are	the	ones	that	contain	the	most	unstructured	and	informal	
documentation.	Nevertheless,	e-mails	and	instant	messages	contain	very	useful	pieces	of	infor-
mation.	Once	the	project	is	over,	all	these	good	pieces	of	information	get	lost.	There	should	be	
some	mechanism	to	extract	this	information	and	store	it	on	the	configuration	management	sys-
tem,	or	rather	knowledge	management	system,	so	that	it	is	permanently	available	to	the	entire	
organization	and	not	just	one	project.	This	information	should	be	stored	as	lessons	learned	on	
a	project.

8.6 Resource Release
The	moment	the	project	appears	to	be	winding	up,	the	project	manager	should	make	a release	plan	
for	resources	so	that	the	moment	they	are	no	longer	needed	on	the	project,	they	are	immediately	
absorbed	in	other	projects	running	at	their	organization	[3].	Similarly,	if	any	hardware	or	licensed	
software	is	being	used	specifically	for	the	project,	then	a	plan	to	release	them	should	also	be	made.	
Many	project	managers	are	so	absorbed	in	their	project	that	they	do	not	realize	that	their	project	
will	be	winding	up	shortly,	and	the	costly	resources	may	not	be	utilized	properly	if	they	are	not	
released	immediately.

8.7 Data Structures
Discussion	 on	 any	 project	 management	 topic	 may	 not	 be	 complete	 without	 a	 discussion	 on	
unstructured	data	[5].	Let	us	admit	it.	Almost	all	project	data	come	under	the	unstructured	data	
category.	On	the	other	hand,	good	examples	of	structured	data	are	manufacturing	process	data.	
In	the	manufacturing	world,	the	manufacturing	process	is	structured.	That	is	why	most	manufac-
turing	activity	can	be	successfully	automated.	The	boundaries	of	each	and	every	manufacturing	
activity	are	well	defined,	and	the	limits	for	process	variations	are	short.	In	fact,	all	manufacturing	
data	can	be	easily	digitized	and	thus	can	be	easily	used	in	computations.	That	is	why	they	are	
amenable	to	automation	easily.	Coming	back	to	projects,	do	you	think	any	project	process	step	
can	be	precisely	quantified?	Well,	it	is	difficult	to	do	so.	Even	after	implementing	a	strict	process	
model,	there	will	be	variations	in	process	steps	from	one	project	to	another.	So	process	measure-
ments	taken	on	one	project	will	not	be	precisely	the	same	compared	to	some	other	project.	And	
this	is	the	crux	of	the	problem.	One	futuristic	solution	to	this	problem	is	when	code	reuse	will	
become	close	to	100%.	In	that	case,	we	will	not	be	writing	source	code	at	all.	In	fact,	we	will	have	

124  ◾  Software Project Management: A Process-Driven Approach

software	components	available	in	the	market,	which	we	can	buy	and	use	to	assemble	a	software	
product,	very	similar	to	the	case	when	a	manufacturer	assembles	a	car.	In	such	a	scenario,	project	
data	will	be	highly	structured,	and	thus	more	and	more	project	tasks	can	be	easily	automated.

Until	this	becomes	a	reality,	we	have	to	keep	writing	source	code	whenever	we	have	to	develop	a	
new	software	product.	Currently,	what	we	have	is	some	software	components	available	in	the	market	
that	can	be	used,	but	the	rest	part	of	the	application	is	to	be	developed	from	scratch	by	designing	the	
software	system	and	then	writing	source	code	per	this	design.	While	we	design	software	product	and	
write	source	code,	we	come	across	a	jungle	of	unstructured	data.	And	this	is	where	pitfalls	lie.	But	
then	if	projects	become	manufacturing,	then	they	are	not	projects	any	longer!

For	use	with	statistical	methods,	past	project	data	must	be	qualified	before	it	is	quantified.	As	
discussed	in	previous	paragraphs,	most	project	data	are	unstructured.	All	these	data	are	subjective	as	
well	[6].	For	instance,	even	though	a	project	is	shown	to	be	completed	on	time	without	problems,	in	
reality,	there	would	have	been	some	amount	of	overtime	to	complete	the	project	on	time.	Now,	this	
overtime	data	are	not	shown	anywhere	in	the	project	data.	Thus,	the	project	data	as	shown	formally	
on	records	are	not	true.	If	the	person	evaluating	that	project	does	not	have	any	idea	about	this	fact,	
then	he	may	assume	a	wrong	impression	about	the	project.	The	bottom	line	is	that	each	and	every	
data	must	be	qualified	before	it	is	stored	in	the	repository	and	be	subsequently	used.	It	is	the	task	of	
the	project	manager	to	ensure	that	he	qualifies	the	project	data	at	the	closure	of	his	project.

8.8 Case Study
In	previous	chapters,	we	have	seen	all	of	the	things	associated	with	the	way	projects	and	iterations	
are	initiated,	planned,	and	executed.	In	this	chapter,	we	will	see	how	project	and	iteration	closure	
takes	place	with	the	projects	at	our	SaaS	vendor.

Since	 product	 development	 is	 a	 continuous	 process,	 resources	 released	 from	 a	 project	 are	
immediately	absorbed	in	subsequent	projects.	Of	course,	resources	finish	their	work	on	a	project,	
and	then	they	have	nothing	to	do	with	that	project.	But	their	time	is	already	planned	for	future	
projects	by	the	global	program	manager.	The	configuration	manager	also	plays	a	crucial	role	in	
saving	all	project	documents	and	source	code	in	a	separate	branch	on	the	configuration	manage-
ment	system.	This	branch	serves	as	the	complete	new	version	with	back	integration	with	previous	
versions	of	the	software	product.	Now,	this	branch	is	ready	to	be	saved	as	the	concrete	version	of	
the	software	product,	and	a	new	branch	can	be	created	on	the	configuration	management	system	
from	this	branch	 for	 the	next	version	of	 the	 software	product.	Once	 the	project	 is	declared	as	
complete,	the	branch	of	the	configuration	management	system	containing	the	source	code	and	
project	documents	is	made	read-only,	and	no	changes	are	allowed	in	any	of	the	source	code	or	
project	documents.

For	knowledge	management	and	lessons	 learned	on	the	project,	 these	same	project	docu-
ments	 available	 on	 the	branch	of	 the	 configuration	management	 system	 are	used.	 In	 release	
6.0,	the	greatest	lesson	learned	was	that	even	when	elaborate	planning	is	done	for	project	tasks,	
things	can	turn	nasty.	The	appointment	scheduling	functionality	was	really	complex,	and	all	
plans	to	design,	construct,	and	test	it	failed.	It	was	only	after	some	hard	and	long	brain-storming	
sessions	and	much	thinking	that	the	functionality	could	be	designed,	constructed,	and	tested	
properly.

Due	to	the	difficulties	faced	on	the	project,	the	original	plan	was	at	risk	of	going	out	of	hand.	
Even	the	10%	schedule	buffer	was	not	sufficient.	Finally,	a	compromise	was	made	to	do	away	with	
an	additional	feature	that	was	also	planned	in	the	same	release.	This	feature	was	moved	to	the	

Project Closure  ◾  125

next	release.	The	resources	allocated	for	designing,	constructing,	and	testing	this	feature	were	also	
pulled	and	used	for	the	appointment	scheduling	feature.

8.9 Chapter Summary
Before	project	closure,	many	activities	remain	on	the	project.	Many	loose	ends	are	to	be	knotted	
before	closure.	In	fact,	the	project	team	may	be	involved	in	many	unfinished	activities	if	the	proj-
ect	execution	has	not	been	smooth.	However,	the	main	tasks	of	closure	include	resource	release,	
preparing	lessons	learned	on	the	project,	source	code	management,	and	project	data	management.	
Once	project	data	and	lessons	learned	are	prepared,	then	they	should	be	archived	to	be	used	for	
future	projects.	Source	code	control	is	important,	because	during	system	testing,	much	defect	fix-
ing	would	have	been	done,	and	thus	a	lot	of	changes	in	the	source	code	would	have	occurred.	At	
this	time,	which	version	of	the	software	should	be	deployed	at	customer	site	has	to	be	determined.

For	project	data,	care	must	be	taken	to	make	sure	that	it	does	not	contain	any	extraneous	data.	
During	archiving,	care	has	to	be	taken	to	archive	the	project	data	correctly	in	the	right	place	so	
that	this	data	is	useful	in	the	future.

Exercises
8.1	 In	iterative	projects,	find	out	how	project	closure	is	different	compared	to	project	closure	in	

traditional	projects.
8.2	 What	are	typical	project	tasks	in	project	closure	phase?

Review Questions
8.1	 Why	are	project	data	useful?
8.2	 What	care	should	be	taken	before	archiving	project	data?
8.3	 What	tasks	are	done	before	closing	a	project?
8.4	 What	strategies	are	taken	to	ensure	that	lessons	are	learned?
8.5	 Why	is	resource	release	important?

Recommended Readings
	 1.	 A.	Stellman,	J.	Greene	(2005)	Applied Software Project Management,	O’Reilly	Media,	Sebastopol,	CA.
	 2.	 R.	E.	Fairley	 (2009)	Managing and Leading Software Projects,	Wiley-IEEE	Computer	 Society	Press,	

Hoboken,	NJ.
	 3.	 P.	Jalote	(2002)	Software Project Management in Practice,	Addison-Wesley	Professional,	Boston,	MA.
	 4.	 G.	 Ruhe	 (2001)	 Learning Software Organizations: Methodology and Applications: 11th International

Conference on Software Engineering and Knowledge Engineering, Seke,	Springer,	Berlin,	Germany.
	 5.	 A.	Griffith,	A.	King,	Engineering	and	Physical	Sciences	Research	Council	(2003)	Best Practice Tendering

for Design and Build Projects,	Thomas	Telford	Ltd,	London,	U.K.
	 6.	 P.	Jalote	(1997)	An Integrated Approach to Software Engineering,	Springer,	New	York.

IISOFTWARE LIFE-CYCLE
MANAGEMENT

129

Chapter 9

Introduction to Software
Life-Cycle Management

In.Part.II,.we.will.learn

	◾ What	is	software	engineering?
	◾ What	impact	does	software	engineering	have	on	a	software	project?
	◾ What	are	various	life	cycle	models	for	software	development?
	◾ What	are	various	phases	in	a	software	development	life	cycle?
	◾ How	are	quality	assurance	and	quality	control	done	in	the	software	life	cycle?

In.this.chapter,.we.will.learn

	◾ What	is	software	engineering?
	◾ What	are	software	development	life-cycle	phases?
	◾ What	development	metrics	are	measured?
	◾ What	are	the	work	products	in	a	software	life	cycle?
	◾ How	is	quality	assurance	done	during	software	development?

9.1 Introduction
Suppose	we	are	 living	 in	a	world	where	 software	development	 is	done	automatically.	There	are	
robots	that	gather	the	software	requirements	and	feed	it	into	a	software	program.	This	software	
program	designs	the	software	and	generates	the	code.	Since	there	are	virtually	no	defects	in	the	
requirements	(robots	do	not	make	any	mistakes!),	there	will	not	be	any	defects	in	design	and	con-
struction.	So,	there	will	not	be	any	need	for	testing	the	built	software	product.	The	design	and	

130  ◾  Software Project Management: A Process-Driven Approach

construction	of	the	software	product	will	be	done	in	a	matter	of	minutes.	Don’t	you	think	this	
will	be	utopia!

Sadly,	we	are	 living	 in	a	world	where	 it	has	not	become	a	 reality	 yet.	We	 still	have	people	
who	visit	customer	sites	and	elicit	customer	software	requirements.	The	customer	happily	dictates	
requirements.	The	requirement	gatherer	documents	these	requirements	in	the	best	possible	way	
he	understands	them.	Then,	he	converts	these	requirements	into	software	features	and	hands	it	to	
the	software	design	team.	The	software	designers	convert	these	features	into	designs	in	the	best	
possible	way	they	can	do	it.	Then,	they	hand	these	designs	to	the	construction	team.	The	construc-
tion	team	works	on	these	designs	tirelessly	to	convert	them	into	a	beautifully	constructed	software	
build.	Now,	this	build	is	tested	to	remove	the	defects	introduced	during	design	and	construction.	
Finally,	the	product	is	implemented	at	the	customer	site.

Again,	sadly,	due	to	low	quality	of	the	software	product,	users	start	finding	defects	when	they	
start	using	it	in	their	daily	work.	Due	to	rapid	changes	in	business	and	work	environments,	the	
software	product	they	are	using	becomes	unusable	and	may	need	changes	after	some	time.	Also	
due	to	changes	 in	business	environment,	some	new	functionality	may	need	to	be	added	to	the	
software	product	to	make	it	more	useful.	Due	to	rapid	changes	in	technology,	the	hardware	or	
software	platform	may	become	obsolete,	and	thus	the	software	product	may	need	to	be	ported	to	
a	new	platform.

To	 perform	 these	 activities	 successfully	 requires	 highly	 skilled,	 trained,	 and	 experienced	
people.	At	the	same	time,	all	of	these	activities	are	resource	intensive.	So	software	personnel	have	
to	toil	hard	and	apply	their	skills	creatively	to	perform	these	activities.	But	even	then,	the	desired	
software	 products	 take	 a	 long	 time	 to	 develop,	 and	 the	 customer	 may	 need	 to	 wait	 for	 many	
months	if	not	years	to	see	the	product	in	action.

So	until	we	reach	utopia	sometime	in	the	future,	all	software	professionals	need	to	toil hard	
and	perform	the	activities	of	the	software	development	life	cycle	(Figure	9.1).

At	 the	 same	 time,	 some	 progress	 has	 been	 made	 in	 the	 field	 of	 software	 engineering.	
Software	engineering	is	not	yet	fully	evolved	and	matured,	but	still,	it	has	come	a	long	way	
in	the	last	50	years	or	so.	Using	any	current	software	engineering	framework,	it	is	possible	to	
design	and	construct	industry	strength	software	products	that	are	of	reasonably	good	quality.	
Time	and	effort	required	to	build	software	products	has	gone	down	by	a	magnitude	of	more	
than	20:1,	thanks	to	rapid	advancement	in	software	engineering,	increasing	code	reuse,	devel-
opment	and	adoption	of	high	productivity	software	design	and	coding	platforms,	improve-
ment	in	development	life-cycle	management,	etc.,	which	help	software	development	projects	
tremendously	in	all	the	three	parameters	of	time,	effort,	and	quality.

Code reuse
Maturing
software

engineering

Factors responsible for
productivity gain

Productivity
tools

Automatic
code

generation

Figure 9.1 Factors which helped in improving productivity on software projects.

Introduction to Software Life-Cycle Management  ◾  131

In	this	chapter,	we	introduce	software	engineering	concepts	related	to	development	life	cycles	
on	software	projects.	In	later	chapters	in	this	part	of	the	book,	detailed	discussions	about	each	and	
every	activity	involved	in	different	phases	in	development	life	cycle	are	discussed.

9.2 Software Engineering Management
Software	engineering	is	a	vast	field.	It	is	also	fast	evolving.	At	the	same	time,	it	is	currently	more	
art	than	science	or	engineering.	It	is	because	software	engineering	still	does	not	have	theories	
that	are	based	on	solid	applied	science.	Software	engineering	currently	is	based	on	best	practices	
derived	after	observations	made	on	thousands	of	software	projects.

For	practical	purposes,	software	engineering	can	be	divided	into	two	parts:	software	engineer-
ing	management	 and	 software	 technical	 engineering	 (or	 software	 life-cycle	 management).	The	
technical	aspects	related	to	software	engineering	include	good	software	design	and	good	software	
construction	(Figure	9.2).	Software	engineering	management,	on	the	other	hand,	deals	with	con-
cerns	with	four	primary	areas.	The	first	one	is	to	how	to	build	a	software	product	with	minimum	
cost,	within	minimum	time	and	with	required	quality.	The	second	concerns	maintaining	a	con-
sistent	quality	across	all	projects	within	an	organization.	But,	the	most	crucial	aspect	is	how	to	
keep	improving	productivity	and	quality	on	software	projects	with	increasing	organization	process	
maturity.	The	organization	processes	should	keep	maturing	with	experience	gained	on	executing	
projects.	The	last	concern	is	how	to	choose	an	appropriate	software	engineering	process	for	differ-
ent	software	projects	(Figure	9.3).

Software
design

Software
construction

Software technical
engineering

Requirement
specifications

Software
maintenance

Figure 9.2 Software technical engineering (software life cycle).

Process
selection

Process
improvement

Software engineering
management

Process
standards

Processes
across

projects

Figure 9.3 Software engineering management.

132  ◾  Software Project Management: A Process-Driven Approach

All	these	areas	discussed	about	software	engineering	have	a	very	important	role	in	software	
project	management	 [1].	Without	 these	 inputs,	 it	 is	difficult	 to	manage	modern	 large-scale	
software	projects.

In	 this	 book,	 we	 will	 be	 discussing	 software	 engineering	 management	 aspects	 in	 Part	
III	and	technical	aspects	in	this	part.	The	software	engineering	management	topics	include	
process	improvements,	development	process	selection,	developing	and	implementing	mature	
life	cycles.	The	technical	software	engineering	concerns	different	phases	of	development	life	
cycles,	work	products	developed	 in	 these	phases,	and	activities	carried	out	within	different	
phases.	 In	 this	 part,	 we	 will	 concentrate	 on	 all	 these	 aspects	 related	 to	 technical	 software	
engineering	 (software	 development	 life	 cycle).	 Process	 improvements	 and	 process	 selection	
are	discussed	in	Part	III.

9.3 Software Life-Cycle Management Processes
Most	projects	involve	requirements,	design,	testing,	and	construction	activities.	Software	develop-
ment	projects	are	no	exception.	Customer	requirements	are	gathered	and	developed,	and	then	an	
appropriate	software	design	 is	made	that	 fulfills	 the	needs	of	 these	requirements	by	converting	
these	 requirements	 into	a	 suitable	 software	design.	Software	design	 is	 further	 converted	 into	a	
software	 product	 through	 software	 construction	 activities.	 During	 the	 entire	 development	 life	
cycle,	quality	control	and	quality	assurance	activities	are	carried	out	to	ensure	that	quality	of	the	
end	products	is	within	agreed	upon	norms.

Let	us	discuss	various	software	development	life	cycles	in	this	section.

9.3.1 Software Life Cycle in Waterfall Model
The	waterfall	model	is	still	a	widely	used	methodology	for	software	development,	though	some	
other	 development	 models	 are	 also	 gaining	 wide	 acceptance.	 Some	 variations	 of	 the	 waterfall	
model	 include	 concurrent	development,	 incremental	 development,	 and	prototyping.	 Standards	
like	CMM,	CMMI,	ISO,	and	IEEE	introduced	comprehensive	quality	assurance	activities	in	the	
software	life cycle,	and	thus	the	waterfall	model	has	incorporated	many	of	these	aspects.

The	waterfall	model	 is	best	 suited	 for	 large	 software	development	projects	 for	 government,	
military,	and	other	industries.	Again,	the	waterfall	model	is	best	suited	for	projects	where	well-
developed	software	requirement	specifications	(SRSs)	exist	[2].	The	entire	software	development/
maintenance	project	is	divided	into	well-defined	phases.	These	phases	are	requirements	manage-
ment,	 software	 design,	 software	 construction,	 software	 testing,	 software	 release,	 and	 software	
maintenance.	These	phases	are	tightly	divided	and	are	phased	out	in	time	sequence,	and	once	one	
phase	is	complete,	development	moves	into	the	next	phase	(Figure	9.4).

9.3.2 Software Life Cycle in Iterative Model
As	can	be	seen	from	many	discussions	on	software	development	project	problems,	it	is	a	fact	that	
software	projects	 are	 different	 from	other	 kind	of	 projects.	Requirements	 are	 best	 captured	 in	
many	iterations	and	not	in	one	go.	In	most	cases,	after	end	users	see	a	working	prototype,	only	
then	they	are	able	to	provide	inputs	regarding	their	exact	requirements.	Then,	there	is	the	huge	risk	
a	software	project	faces	when	the	software	product	gets	ready	only	after	a	long	period	of	time	and	
when	the	product	development	goes	from	converting	requirements	into	software	design,	which,	

Introduction to Software Life-Cycle Management  ◾  133

in	turn,	is	converted	to	construction.	What	if	after	this	hard	toil	that	goes	on	for	months	only	to	be	
found	out	that	what	has	been	developed	is	not	what	end	users	expected.	Definitely,	it	is	a	huge	risk.

One	solution	to	deal	with	this	kind	of	situation	 is	 to	adopt	an	 iterative	model	 for	software	
development	[3].	Instead	of	taking	all	requirements	and	begin	designing	and	developing	the	soft-
ware,	we	can	take	a	few	of	the	requirements	and	start	designing	and	then	building	the	software	
only	for	this	set	of	requirements.	Once	the	software	is	built,	it	is	delivered	to	the	end	users.	They	
can	ask	for	some	changes,	and	these	changes	can	be	done	quickly.	So	the	cycle	for	all	these	activi-
ties	may	last	a	few	weeks	(1–6	weeks).	Once	this	is	over,	some	more	requirements	can	be	taken	
and	again	this	cycle	is	repeated.	This	cycle	is	repeated	until	all	requirements	are	converted	into	the	
software	product.	In	this	way,	the	huge	risk	of	delivering	wrong	software	product	at	the	end	of	a	
long	period	of	development	can	be	avoided.	Customers	also	like	this	kind	of	model	as	they	keep	
getting	deliveries	at	short	intervals,	and	so	their	confidence	with	the	development	team	is	high.

To	do	things	this	way,	some	methodologies	have	been	developed	over	the	years.	Some	well-
known	methodologies	include	Scrum,	eXtreme	Programming,	incremental	iteration	model,	and	
spiral	development.	There	is	one	more	iteration-based	model,	which	was	developed	by	Rational	
Corporation	(part	of	IBM).	It	is	known	as	the	rational	unified	process	model.	This	model	is	dis-
cussed	at	length	in	Chapter	16	along	with	the	other	major	agile	models	like	Scrum	and	eXtreme	
Programming.	At	the	heart	of	all	these	methodologies	is	the	concept	of	using	only	a	few	of	the	
requirements	developing	the	software	product,	and	delivering	it	after	a	short	cycle	of	development.	
The	goal	is	to	iterate	until	all	of	the	requirements	are	converted	into	a	software	product	(Figure	9.5).

There	are	some	negative	aspects	about	this	kind	of	software	development	as	well	[4].	Not	all	
software	products	can	be	developed	this	way.	The	iterative	model	is	suited	only	for	lightweight	or	
smaller	software	products.	For	large	software	products,	the	waterfall	model	is	still	the	preferred	
model,	 though	 iterative	 models	 are	 also	 catching	 up	 in	 this	 space.	 In	 fact,	 many	 large	 software	
products	 need	 to	 be	 developed	 using	 concurrent	 engineering,	 where	 many	 development	 teams	
participate	simultaneously	on	building	the	same	software	product.	For	large	software	products,	
you	need	to	build	a	large	base	framework	on	which	the	product	has	to	be	developed.	This	base	
framework	includes	creating	data	model,	conceptual	model,	logical	model,	and	physical	model.	
This	base	framework	corresponds	to	the	complete	software	design	phase	as	depicted	in	the	water-
fall	model	of	software	development.	If	the	base	framework	is	not	done,	then	the	software	product	
can	be	unstable.	Once	the	base	is	ready,	then	software	functions	can	be	developed	using	any	suit-
able	software	development	process	model.	At	the	same	time,	it	is	difficult	to	create	the	complete	

Requirements

Design

Construction

Testing

Release

Maintenance

Figure 9.4 Software life cycle in waterfall model.

134  ◾  Software Project Management: A Process-Driven Approach

software	design	when	your	requirements	themselves	are	not	crystal	clear,	and	in	fact	many	of	the	
requirements	are	not	even	properly	understood	either	by	the	end	users	or	the	project	team.	Some	
agile	models	tackle	this	problem	of	making	elaborate	and	complete	software	design	by	resorting	to	
a	technique	known	as	refactoring.	This	concept	is	discussed	in	detail	in	Chapter	11.

Iterative	 software	development	models	 are	 still	 evolving	 though.	One	good	 framework	has	
been	 developed	 by	 the	 open	 source	 community	 of	 Eclipse	 (see	 http://www.eclispse.org).	 They	
have	developed	 a	 software	development	 framework	 similar	 to	 the	 rational	 unified	process	 and	
called	 it	 unified	 process	 framework	 [5].	 Using	 this	 framework,	 even	 large	 software	 products	
can	be		developed.	The	basic	building	blocks	in	this	framework	are	the	development	of	software	
	components.	The	architecture	is	known	as	“service	oriented	architecture”	(SOA).	More	about	SOA	
is	discussed	in	Chapter	11.

9.3.2.1 Moving from Waterfall Model

Sometimes,	due	to	problems	faced	in	the	waterfall	model,	a	project	needs	to	move	to	an	iterative	
model	[6].	In	such	cases,	a	complete	change	may	be	needed	not	only	with	the	project	organiza-
tion	structure	but	with	the	top	layer,	which	controls	at	the	organization	level	as	well.	The	project	
management	has	to	be	done	at	three	layers,	as	compared	to	two	levels	in	waterfall	model.	In	the	
waterfall	model,	there	is	a	project	level	and	a	program	management	level	(program	management	
office	[PMO]).	In an	iterative	model,	there	is	an	organization	level	where	the	complete	product	
management	is	taken	care	of.	The	lower	level	structure	concerns	major	releases	of	the	product,	and	
finally,	the	 lowest	 level	where	most	of	the	actual	product	development	is	done	using	iterations.	
More	details	about	organization	structures	can	be	found	in	Chapter	19.

9.3.3 Software Life Cycle in Concurrent Engineering Model
Concurrent	engineering	is	a	field	that	espouses	the	cause	of	rapid	product	development	using	many	
teams	that	work	on	product	development	simultaneously	[7].	The	most	labor-intensive	phases	in	the	
software	development	process	are	software	construction	and	software	testing.	If	tasks	involved	in	
these	phases	can	be	broken	into	smaller	parts	and	if	many	teams	can	be	employed	to	do	these	tasks	

Waterfall

Requirement Design Construction Testing Release

Check

Check

Incremental

Iterative

Extreme

Figure 9.5 Software life cycle in various software development models.

Introduction to Software Life-Cycle Management  ◾  135

in	parallel,	then	the	software	development	life	cycle	can	be	shrinked	substantially.	The	task	of	prod-
uct	development	is	divided	into	smaller	tasks	in	such	a	way	that	each	of	these	tasks	can	be	executed	
independently	of	each	other.	So	unrelated	teams	can	work	on	completing	each	part	of	the	product	
without	the	need	to	know	what	other	teams	are	developing.	This	mechanism	makes	it	easy	for	con-
current	working	of	many	teams.	Once	these	parts	of	the	product	are	complete,	they	are	assembled	to	
make	the	complete	product	(Figure	9.6).

In	software	development,	dividing	the	software	product	is	difficult.	Decision	about	division	of	
the	software	product	to	be	developed	is	taken	during	the	design	phase	so	that	many	parts	of	the	
software	can	be	constructed	or	tested	parallely.	To	enable	concurrent	development,	the	software	
product	is	divided	in	such	a	way	that	each	of	the	parts	has	defined	interfaces	through	which	they	
can	be	integrated	with	other	parts.	To	test	these	parts,	dummy	parts	are	used	for	these	interfaces	
so	that	the	part	can	be	tested	(also	known	as	test	oracles).	Once	these	parts	are	developed	by	each	
independent	team,	they	are	integrated	to	make	the	complete	software	product.	Similarly,	for	test-
ing,	each	test	part	is	assigned	to	a	different	team	so	that	they	can	test	their	own	parts	in	parallel	and	
thus	the	length	of	the	testing	cycle	can	be	reduced	(Figure	9.7).

9.3.4 Software Life-Cycle Processes
Even	 though	different	process	models	have	different	process	phases	or	 steps	defined,	neverthe-
less,	process	steps	are	best	represented	by	the	waterfall	model.	In	the	case	of	the	rational	unified	
process,	phases	are	represented	in	matrix	with	workflows.	These	workflows	do	not	get	completed	

Requirements Design Testing

Construction +
integration

Construction
team 1

Construction
team 2

Construction
team 3

Figure 9.6 Many construction teams in a concurrent engineering environment.

Requirements Design

Testing

Test team 1

Test team 2

Test team 3

Construction

Figure 9.7 Many testing teams in a concurrent engineering environment.

136  ◾  Software Project Management: A Process-Driven Approach

within	one	phase	but	instead	they	cross	more	than	one	phase.	This	is	true	in	most	life-cycle	cases	
as	many	processes	are	completed	in	cycles,	and	thus	they	are	nonlinear	in	nature.

Here,	we	discuss	the	life-cycle	processes	in	detail.

9.3.4.1 Software Requirements

After	the	project	initiation	is	over	and	statement	of	work	(SOW)	is	signed,	the	project	team	starts	
gathering	 software	 requirements	 from	 the	 customer.	After	 the	 requirements	 are	gathered,	 they	
need	to	be	developed	to	make	them	suitable	for	system	modeling.	Some	of	the	techniques	used	for	
software	requirements	include	elicitation	techniques	and	analysis	techniques.

To	produce	a	software	product,	you	need	to	get	good	requirements.	A	problem	starts	here.	
Requirements	for	software	products	are	never	very	clear.	Most	of	the	time,	the	requirements	are	
to	replace	processes	that	are	currently	done	manually	with	those	that	use	software.	But	this	 is	
not	all.	Management	wants	to	use	software	to	get	a	strategic	advantage.	For	instance,	manage-
ment	believes	 that	by	using	 software,	 they	will	be	able	 to	 reduce	 substantially	 inventory	 from	
current	 levels.	Now,	this	kind	of	expectation	cannot	be	clearly	defined.	It	could	be	a	fact	that	
software	can	provide	visibility	and	tools	to	better	manage	inventory,	but	it	cannot	be	said	that	
using	software	will	help	in	reducing	inventory	by	a	certain	percentage.	Similarly,	people	expect	
that	their	workload	will	get	reduced	after	the	software	product	is	implemented.	It	is	true	in	most	
of	instances,	but,	initially,	a	lot	of	master	data	must	be	entered	in	the	software	system,	and	this	
needs	a	lot	of	work	in	the	early	stage	when	the	software	product	is	being	implemented.	In	such	
cases,	false	expectations	are	not	met,	and	users	start	blaming	the	project	team	for	not	meeting	
their	expectations.

Requirement	gathering	and	subsequent	requirement	management	is	a	difficult	task.	A	good	
process	must	be	defined	so	that	both	these	tasks	can	be	done	in	a	good	and	consistent	manner.	The	
requirement	gathering	differs	from	one	place	to	another.	At	some	places,	user	interviews	and	many	
formal	methods	are	employed	to	get	requirements.	At	other	places,	informal	methods	are	used.	
Also,	the	size	of	the	software	product	also	influences	as	to	what	methods	are	to	be	deployed	for	
requirement	gathering.	To	reduce	variability	in	processes	involved	in	requirement	management,	a	
good	requirement	gathering	template	can	help.

Some	of	the	challenges	in	requirement	gathering	include	unclear	requirements,	difficulty	in	
getting	 requirements,	 difficulty	 in	 understanding	 requirements,	 and	 translating	 those	 require-
ments	 into	 a	 suitable	 software	 design.	 Requirements	 changes	 take	 place	 throughout	 the	 proj-
ect.	This	makes	software	development	difficult.	Incorporating	changed	requirements	is	a	difficult	
proposition.	 Suppose	 a	 design	 has	 been	 made	 and	 the	 project	 is	 in	 the	 build	 phase,	 and	 then	
imagine	a	change	request	arrives.	The	software	architect	feels	that	a	large	change	will	be	required	
in	design.	He	has	no	option	but	to	do	it	as	the	change	request	has	been	accepted.	He	takes	time	to	
make	changes	in	the	design.	The	build	team	will	have	to	stop	their	work	as	this	change	in	design	
will	cause	many	of	changes	in	code.	In	effect,	much	rework	has	to	be	done	by	the	project	team.	
This	kind	of	rework	can	take	place	many	times	during	the	project.	This	makes	design	and	code	
changes	vulnerable	for	failures.	So	more	defects	can	be	expected	in	such	a	software	product	that	
has	experienced	many	rework	requirements.

This	 scenario	 is	not	 an	 isolated	 case.	But	 in	 fact	 it	 is	 a	prevalent	malady	 in	most	 software	
projects.

Traditionally,	 a	 waterfall	 model	 has	 been	 adopted	 for	 software	 development	 projects.	 There	
is	a	 strict	division	of	phases	 in	the	project.	The	requirements	phase	comes	first	and	when	it	gets	

Introduction to Software Life-Cycle Management  ◾  137

completed,	a	sign	off	is	made	supposedly	to	mark	the	end	of	requirements	phase	(though	in	reality	
requirement	change	requests	keep	coming).	Next	comes	the	software	design	phase.	When	it	gets	
completed,	a	sign	off	is	made.	Then	comes	the	building	phase.	Here,	coding	is	done.	Then,	in	the	
testing	phase,	the	built	software	is	tested.	Once	testing	gets	completed,	the	go	live	phase	(also	known	
as	deployment	or	release	phase)	comes,	and	after	completion	of	this	phase,	the	software	is	imple-
mented	at	customer	site.	Once	the	go	live	phase	is	over,	software	goes	into	the	production	phase.

This	approach	 is	good	in	many	respects.	 It	assures	good	quality	 in	the	software	being	pro-
duced.	It	is	well	organized.	But	there	is	one	great	disadvantage	with	this	approach.	This	approach	
cannot	incorporate	changing	business	requirements.	In	today’s	turbulent	business	environment,	
things	change	fast.	So	even	if	a	software	requirement	looks	very	good	today,	it	may	not	look	so	
good	tomorrow.	Without	incorporating	changes	required	tomorrow,	the	software	being	developed	
may	prove	to	be	a	sitting	duck.

So	what	could	be	a	good	approach	for	countering	the	malady	of	requirement	changes?	Over	
the	years,	many	organizations	proposed	and	practiced	 some	new	approaches	 for	 software	proj-
ect	management	to	tackle	this	perennial	 issue.	Some	of	them	include	the	iterative	model,	agile	
methods,	spiral	method,	and	extreme	programming.	In	all	of	these	approaches,	the	fundamental	
shift	 to	 requirement	 management	 is	 that	 the	 requirements	 should	 be	 collected	 and	 developed	
iteratively	so	that	unclear	or	unknown	requirements	can	be	incorporated	once	they	become	clear.	
Collectively,	we	can	term	them	as	iterative	development	models.

The	iterative	model	suits	software	projects,	because	only	a	small	set	of	requirements	is	taken	for	
starting	the	software	project	instead	of	collecting	the	entire	set	of	customer	requirements.	So	even	
if	end	users	are	not	clear	about	their	exact	requirements,	the	project	can	be	started	with	a	handful	
of	known	requirements.	The	software	can	be	designed	and	built	for	this	set	of	requirements	and	
delivered	to	the	end	users.	All	of	these	activities	are	performed	in	a	short	cycle	of	a	few	weeks	or	a	
few	months.	Then,	the	next	set	of	requirements	can	be	taken,	and	the	next	iteration	can	be	done	
based	on	this	set	of	requirements.	Users	are	happy	to	see	the	results	so	early	and	thus	have	more	
confidence	in	the	project	team.	This	definitely	makes	a	good	business	sense.

We	will	learn	about	requirement	management	in	Chapter	10	in	detail.

9.3.4.2 Software Design

Software	design	follows	the	software	requirement	phase.	Based	on	the	requirements,	software	is	
designed	in	such	a	way	that	the	features	required	in	the	requirements	document	can	be	imple-
mented	in	the	software	design.	Apart	from	how	the	features	as	per	functional	requirements	can	
be	implemented,	design	also	considers	factors	such	as	reliability,	robustness,	security,	ease	of	use,	
internationalization,	localization,	and	compatibility.	All	of	these	are	collectively	termed	as	non-
functional	design	requirements.

Large	enterprise	systems	have	many	kinds	of	users.	They	use	the	system	to	do	their	everyday	
tasks.	To	make	a	good	user	experience,	it	is	important	that	the	user	should	be	presented	only	the	
information	that	he	needs	to	do	his	job	and	not	everything	that	the	software	product	can	do.	So	
software	features	should	be	linked	to	roles,	and	these	roles	should	be	linked	to	software	features	
that	are	required	by	these	roles.	Similarly,	the	information	presented	to	the	user	should	be	in	a	
manner	that	is	easy	for	the	user	to	use	the	information	and	be	able	to	perform	his	everyday	activi-
ties	easily.	All	of	these	aspects	should	be	part	of	the	software	design.

Some	of	the	challenges	in	software	design	include	difficulty	in	modeling	due	to	changes	or	
unclear	requirements,	limitations	of	representation	of	requirements	into	system	design,	etc.

138  ◾  Software Project Management: A Process-Driven Approach

Software	design	plays	an	important	role	in	software	development.	If	the	design	is	good,	soft-
ware	will	have	fewer	defects	and	may	be	considered	reliable.	Due	to	requirement	creep	as	men-
tioned	 in	 a	 previous	 section,	 the	 design	 may	 get	 unstable,	 which	 may	 lead	 to	 a	 poor	 quality	
product.

Enterprise	software	products	though	may	have	a	lot	of	features;	nevertheless,	they	need	to	have	
open	interfaces	so	that	they	can	be	integrated	with	other	software	products.	This	is	because	even	
big	ERP	products	may	not	have	everything	an	enterprise	may	need,	and	so	it	must	be	integrated	
with	other	software	products	that	may	be	providing	the	other	needed	features.

There	are	good	processes	available	that	help	in	designing	different	kinds	of	software	products.	
For	instance,	software	applications	to	be	deployed	over	the	Web	need	a	different	kind	of	design	
than	an	application	that	will	have	to	be	deployed	offline.

New	discoveries	in	the	software	engineering	field	are	also	forcing	software	design	to	change.	
The	latest	discovery	of	SOA	is	forcing	project	teams	to	design	their	products	as	per	requirements	
of	SOA.	SOA	indeed	is	an	exciting	field	that	is	paving	the	way	for	software	reuse	on	a	mass	scale.	
We	will	discuss	SOA	and	related	technologies	in	Chapter	25.

We	will	study	more	on	software	design	in	Chapter	11.

9.3.4.3 Software Build

Software	coding	(also	known	as	building	or	construction)	is	the	most	labor-intensive	task	in	soft-
ware	development	projects.	For	good	coding	management,	a	well-planned	approach	needs	to	be	
adopted	 for	configuration	and	version	control,	 sticking	 to	good	coding	 standards,	and	using	a	
good	object-oriented	approach.

Software	building	(construction)	requires	a	team	effort	to	build	a	software	application.	Some	of	the	
challenges	in	software	construction	include	lack	of	team	work,	rework	due	to	changes	in	design,	lack	of	
clarity	in	design,	bad	allocation	of	work,	and	bad	component	structure.

Whether	it	is	waterfall	or	agile	development,	rework	in	the	coding	phase	should	be	avoided	as	
far	as	possible.	Software	coding	is	characterized	by	a	large	team	of	developers	for	large	projects.	
How	the	project	is	divided	and	how	developers	are	assigned	their	task,	and	how	these	tasks	are	
tracked	is	a	major	decision	in	the	project.	It	is	very	important	that	proper	planning	for	these	tasks	
is	made	well.	It	is	also	important	that	a	very	good	version	control	management	tool	is	deployed	so	
that	each	version	of	the	software	being	developed	can	be	maintained	and	development	can	happen	
without	any	interruption	due	to	version	issues,	etc.

We	will	learn	more	about	software	construction	in	Chapter	12.

9.3.4.4 Software Testing

Software	 testing	 is	 very	 important	 area,	 because	 most	 critical	 bugs	 should	 be	 trapped	 here.	
Otherwise,	fixing	bugs	in	the	maintenance	phase	becomes	very	costly.	Software	testing	is	under-
taken	as	a	separate	project	on	many	software	development	projects	as	 it	provides	a	 lot	of	addi-
tional	value.	In	such	cases,	it	is	known	as	independent	verification	and	validation	(IV&V).	IV&V	
helps	 in	 trapping	defects	at	all	phases	and	 in	all	work	products	during	 the	entire	development	
	life cycle.	These	defects	are	subsequently	removed.	Making	a	separate	project	for	testing	thus	helps	
in	increasing	reliability	of	the	software	product.

Some	of	the	challenges	for	software	testing	include	too	many	defects	in	the	software	applica-
tion	that	increases	load	on	software	testers,	lack	of	test	strategy,	lack	of	test	planning,	etc.

Introduction to Software Life-Cycle Management  ◾  139

Software	testing	has	been	gaining	 importance	over	the	years.	Customers	now	expect	much	
better	quality	from	their	software	products	than	was	the	case	a	few	decades	back.

Software	testing	includes	unit	testing,	integration	testing,	system	testing,	user	acceptance	test-
ing,	performance	testing,	and	usability	testing.	IV&V	includes	requirement	specification	review,	
design	 inspection,	 construction	 inspection,	 and	 integration	 inspection.	So	 scope	of	 testing	has	
increased	on	software	projects	manifold	after	the	advent	of	IV&V.

Developed	software	contains	many	bugs	introduced	due	to	faults	in	requirements,	software	
design,	and	software	coding.	The	purpose	of	software	testing	is	to	find	these	bugs	so	that	they	
can	be	removed.	This	kind	of	software	testing	is	known	as	functional	testing.	Functional	testing	
is	of	two	types:	white	box	testing	and	black	box	testing.	When	developers	check	their	own	code	
for	testing	logic	of	the	conditional	statements	or	checking	formatting	of	data,	etc.,	then	this	kind	
of	white	box	testing	is	known	as	unit	testing.	In	integration	testing,	developers	test	whether	data	
are	passing	correctly	between	functions.	So	most	white	box testing	revolves	around	testing	at	the	
function	level.

When	 it	 comes	 to	 testing	at	 the	 system	 level,	black	box	 testing	 techniques	 are	used.	Black	
box	testing	is	also	used	for	user	acceptance	testing.	In	black	box	testing,	requirements	and	design	
documents	are	referred	to	assess	whether	the	built	system	adheres	to	customer	requirements.

Apart	 from	 the	 functional	 aspects,	 the	 built	 system	 is	 also	 to	 be	 checked	 for	 many	 other	
aspects,	for	instance,	whether	the	built	system	can	withstand	load	of	transaction	requests	made	
by	users	on	the	server	on	which	the	application	is	installed.	Then,	usability,	system	integration,	
and	many	other	kinds	of	aspects	are	to	be	tested	to	verify	if	the	system	is	working	as	per	these	
expectations.

The	software	system	may	contain	a	large	number	of	bugs.	It	will	be	very	difficult	to	detect	all	
of	the	bugs.	Even	if	you	employ	a	large	testing	team,	it	may	take	a	considerable	amount	of	time	
to	detect	a	fraction	of	all	bugs.	This	kind	of	exercise	will	not	be	of	much	use.	If	we	are	testing	a	
software	product,	then	the	marketing	team	cannot	wait	for	long,	as	they	need	to	put	the	product	
in	the	market	within	a	specified	time	frame.	If	we	are	testing	a	software	application	specifically	
built	for	an	organization,	then	that	organization	cannot	wait	for	long	to	get	to	use	the	application.	
Moreover,	the	cost	of	such	a	large	testing	effort	will	be	huge.	This	kind	of	testing	activity	is	simply	
not	acceptable.

A	better	approach	is	to	have	an	effective	testing.	There	will	be	a	time	limit	under	which	all	
testing	activities	have	to	be	performed.	There	will	also	be	a	cut-off	quality	level	that	is	acceptable	
to	the	customers.	So	a	compromise	between	quality	level	and	time	to	test	the	application	has	to	be	
made.	For	example,	we	can	have	a	schedule	of	15	days	to	test	the	application	and	acceptable	quality	
level	of	100	critical	bugs	to	be	fixed	after	the	system	goes	live.

For	all	kinds	of	 testing	 to	be	effective,	a	comprehensive	 framework	 is	needed.	As	has	been	
stated	previously,	user	acceptance	testing	needs	a	requirement	document	and	a	good	understand-
ing	of	what	exactly	the	customer	needs	in	the	system.	The	system	testing	is	based	on	the	system	
design	document.	The	integration	and	unit	tests	are	also	based	on	the	design	document,	but	they	
are	done	at	much	lower	levels.	System	testing	is	done	at	the	system	level	whereas	unit	and	integra-
tion	testing	is	done	at	the	function	level.

Testing	should	also	be	prioritized	based	on	needs	of	the	project.	For	instance,	of	all	the	require-
ments,	some	are	of	high	priority	and	some	others	are	not.	Definitely	high	priority	requirements	
should	be	tested	first	so	that	they	are	covered	even	if	time	does	not	permit	further	testing.	In	such	
cases,	low	priority	requirements	may	not	get	tested,	but	the	impact	on	the	project	in	such	instances	
will	be	much	lower	compared	to	cases	when	high	priority	requirements	could	not	be	tested	due	to	
time	constraints.

140  ◾  Software Project Management: A Process-Driven Approach

Similarly,	when	it	comes	to	system	testing,	the	testing	team	should	have	a	very	good	idea	about	
the	design	and	architecture	of	the	system.	Only	then	they	can	do	testing	effectively.

These	things	can	happen	only	when	the	testing	team	gets	involved	early	in	the	development	
life cycle.

9.3.4.5 Software Release

Some	of	the	challenges	in	the	release	phase	include	too	many	bugs	found	in	user	acceptance	test-
ing,	 incomplete,	or	superficial	 testing	due	to	a	 limited	testing	phase,	poor	documentation,	and	
poor	user	training	due	to	unplanned	release.

When	software	is	made	ready	for	released,	then	you	not	only	need	to	make	sure	that	the	
software	 application	 runs	 per	 customer	 requirements,	 but	 also	 it	 should	 be	 easy	 to	 main-
tain	after	production.	Processes	involved	in	the	software	release	phase	include	preparing	user	
manuals,	 user	 acceptance	 testing,	 user	 training,	 system	 configuration,	 and	 installation.	 A	
software	release	can	be	an	alpha,	beta,	or	final	release.	Depending	on	the	kind	of	release,	the	
processes	may	vary.	 In	an	alpha	 release,	 the	 software	 is	 released	only	 to	 internal	users	 and	
not	to	the	public	or	customers.	Even	if	 it	 is	 released	to	customers,	 it	 is	offered	for	 free	 just	
for	testing	purposes.	In	case	of	a	beta	release,	the	software	is	released	for	free	to	the	public	
and	customers	before	the	final	release	so	that	the	product	is	thoroughly	tested	by	the	users	
themselves,	and	all	defects	found	by	them	are	removed.	This	ensures	that	there	are	no	defects	
in	the	final	release.

9.3.4.6 Software Maintenance

Software	maintenance	is	an	area	that	can	be	more	demanding	than	software	development.	It	is	
because,	most	of	the	time,	it	is	done	by	a	team	that	is	different	from	the	team	that	developed	the	
software.	Even	if	they	did	a	good	documentation	job	during	development,	understanding	those	
documents	and	the	code	is	a	difficult	for	anybody.	That	is	why	it	is	best	if	the	software	develop-
ment	team	also	do	maintenance;	but	in	practice,	it	is	difficult	if	not	impossible.

Some	of	the	techniques	used	for	maintenance	include	reverse	engineering	and	re-engineering.	
Some	of	the	challenges	in	maintenance	include	inadequate	maintenance	plan,	inadequate	strategy,	
and	inadequate	technique.

Software	maintenance	is	often	neglected	when	software	is	developed.	This	leads	to	many	prob-
lems	when	it	goes	into	production	and	then	needs	maintenance.	So	it	is	of	utmost	importance	that	
maintenance	is	kept	in	consideration	during	software	development.	Some	of	the	issues	that	arise	
in	software	maintenance	include

	◾ Software	code	is	not	readable
	◾ Design	and	construction	documents	are	either	outdated,	nonexistent,	or	insufficient
	◾ Unstructured	code
	◾ Maintenance	personnel	having	insufficient	knowledge	of	the	software	application

If	 any	 of	 these	 problems	 exist,	 then	 the	 software	 application	 is	 difficult	 to	 change	 during	
maintenance.

Introduction to Software Life-Cycle Management  ◾  141

9.4 Software Life-Cycle Metrics
When	it	comes	to	measuring	work	product	and	process	attributes	in	the	development	life	cycle,	what	
comes	to	mind?	Definitely,	all	the	work	products	and	the	final	product	that	are	produced	during	
the	development	life	cycle.	Then,	there	are	different	steps	that	are	involved	in	producing	these	work	
products	[5].	During	the	requirement	development	and	specification	stage,	the	work	product	being	
worked	on	is	the	SRS	document.	The	SRS	must	have	attributes	like	testability,	maintainability,	com-
pleteness,	and	nonambiguousness.	The	size	of	the	SRS	does	not	make	any	sense	itself	because	there	
is	no	relationship	of	SRS	size	to	the	size	of	the	software	product.	Similarly,	during	design,	construc-
tion,	and	testing,	there	will	be	a	large	number	of	work	products	being	produced.	Measuring	quality	
of	these	work	products	will	provide	good	insight	as	to	how	the	project	team	is	faring	against	bench-
marks	or	any	other	standard	against	which	the	measurements	are	to	be	compared.	For	producing	
these	work	products,	there	will	be	a	large	number	of	processes	undertaken.	Measuring	productivity	
of	these	processes	will	provide	good	insight	as	to	how	the	project	team	is	faring	against	benchmarks	
or	any	other	standard	against	which	the	measurements	are	to	be	compared	[8].

9.5 Work Products
In	 manufacturing,	 intermediate	 products	 created	 during	 product	 manufacturing	 are	 known	 as	
works	in	process	(WIP).	These	WIP	products	result	after	a	processing	step	done	during	manufac-
turing.	In	the	software	industry,	these	intermediate	unfinished	products	are	known	as	work	prod-
ucts.	During	the	software	development	project,	each	software	development	process	produces	work	
products.	It	is	important	to	identify	these	work	products,	and	there	should	be	a	mechanism	that	will	
measure	quality	of	the	work	product.	This	will	ensure	that	defects	are	trapped	and	removed	before	
development	proceeds	to	the	next	phase	(Figure	9.8).

Requirement
phase Design phase

Release phase

User
accepted

product + user
manuals

Construction
phase

UAT testing
phase

Requirement
specification

document

Product
model

Untested
product

UAT tested
product

Figure 9.8 Work products from various software life-cycle phases.

142  ◾  Software Project Management: A Process-Driven Approach

9.6 Quality Assurance
There	is	an	inherent	drawback	in	waterfall	and	other	models	of	software	development.	Software	
testing	had	been	relegated	to	be	done	after	software	construction.	There	was	no	mechanism	to	find	
out	if	requirement	specifications	were	correct.	Similarly,	no	mechanisms	were	provided	to	check	
whether	the	software	design	was	correct.	What	if	there	were	faults	in	the	requirement	specifica-
tions	or	in	software	design?	Obviously,	if	there	were	faults	in	requirement	specifications,	then	the	
software	design	will	be	faulty.	Similar	will	be	the	case	with	software	construction,	because	it	will	
be	based	on	faulty	software	design.	A	faulty	work	product	as	an	input	to	a	process	step	will	always	
result	in	a	faulty	work	product	output.	Instead	of	building	subsequent	work	products	based	on	
faulty	input	work	products,	it	makes	sense	to	check	the	input	work	products	to	verify	if	they	are	
correct	and	do	not	contain	any	defects.	The	downstream	activities	in	the	development	life	cycle	
should	start	only	after	verifying	that	the	input	work	products	do	not	contain	any	defects.

After	each	phase	of	software	development	gets	completed,	there	should	be	exit	criteria	that	will	
ensure	that	all	work	has	finished	per	project	plan	and	that	these	work	products	are	defect	free.	Only	
then,	the	project	can	move	on	to	the	next	phase.	The	exit	criteria	should	include	completion	of	all	
processes	for	the	phase,	completion	of	work	products,	and	finally	acceptable	quality	of	work	prod-
ucts.	For	quality	control,	formal	review	processes	should	be	included	in	each	phase	(Figure	9.9).

If	any	of	the	three	exit	criteria	is	not	met,	rework	may	be	needed,	and,	thus,	instead	of	the	
project	moving	forward,	it	will	move	back	[9].

9.7 Case Study
We	discussed	project	management-related	aspects	with	our	SaaS	vendor	in	Part	I.	In	Part	II,	we	will	
discover	how	the	development	life	cycle	evolved	and	was	being	used	by	the	SaaS	vendor.	We	will	dis-
cover	how	the	requirement	specification	was	prepared,	how	software	design	was	made,	how	software	
code	was	written,	how	software	testing	was	done,	how	user	training	was	conducted,	how	the	product	
was	deployed,	and	how	maintenance	was	performed.

Requirement
phase

Exit
criteria

Exit
criteria

Exit
criteria

Exit
criteria

 Processes completed?

Design phase

Construction
phase

Testing phaseRelease phase

Exit criteria

 Work product delivery?
 Formal review for quality?

Figure 9.9 Quality assurance mechanism for software projects.

Introduction to Software Life-Cycle Management  ◾  143

9.8 Chapter Summary
In	 introduction	 to	 software	development	 life	cycles,	we	have	 learned	what	constitutes	a	 software	
development	life	cycle.	We	have	also	learned	some	of	the	techniques	employed	for	rapid	development	
such	as	concurrent	engineering.	We	have	also	learned	about	software	measurements	and	how	a	good	
set	of	software	metrics	helps	in	achieving	a	good	software	product.	We	have	also	learned	about	soft-
ware	quality	control	and	what	exact	measures	are	required	on	software	projects.	We	have	also	learned	
about	work	products	that	are	made	during	different	phases	of	the	software	life	cycle.	This	chapter	
will	prepare	us	for	the	next	chapters	of	Part	II,	where	we	will	learn	about	various	major	phases	in	
the	software	development	life	cycle:	software	requirements,	software	design,	software	construction,	
software	testing,	software	release,	and,	finally,	software	maintenance.

Exercises
9.1	 Find	out	which	 software	development	 life-cycle	model	was	 adopted	 for	 any	open	 source	

project.	What	are	significant	aspects	about	the	adopted	model?
9.2	 Find	out	the	rationale	for	selecting	the	development	life	cycle	on	that	open	source	project?

Review Questions
9.1	 What	are	the	phases	in	the	software	development	life	cycle?
9.2	 What	statistical	process	control	methods	can	be	employed	on	software	development	projects?
9.3	 What	 is	 concurrent	 engineering?	 How	 can	 concurrent	 engineering	 be	 used	 in	 software	

development	projects?
9.4	 What	are	work	products	in	the	software	life	cycle?
9.5	 What	metrics	are	utilized	on	software	projects?

Recommended Readings
	 1.	 J.	Keyes	(2002)	Software Engineering Handbook,	Auerbach,	New	York.
	 2.	 M.	Silver	(2004)	Exploring Interface Design,	Thomson	Learning,	Australia.
	 3.	 D.	 Leffingwell,	 D.	 Widrig	 (1999)	 Managing Software Requirements: A Unified Approach,	 Addison-

Wesley,	Boston,	MA.
	 4.	 J.	Lind	(2001)	Iterative Software Engineering for Multiagent Systems: The Massive Method (Lecture	Notes	

in	Computer	Science),	Springer,	Berlin,	Germany.
	 5.	 Q.	 Wang,	 D.	 M.	 Raffo	 (2008)	 Making Globally Distributed Software Development a Success Story,	

Springer,	Berlin,	Germany.
	 6.	 C.	Larman	(2003)	Agile and Iterative Development: A Manager’s Guide,	Addison-Wesley	Professional,	

Boston,	MA.
	 7.	 P.	 Ghodous,	 R.	 Dieng-kuntz,	 G.	 Loureiro	 (2006)	 Leading the Web in Concurrent Engineering: Next

Generation Concurrent Engineering, Volume	143	Frontiers	 in	Artificial	Intelligence	and	Applications,	
IOS	Press,	Amsterdam,	the	Netherlands.

	 8.	 S.	Datta	(2007)	Metrics-Driven Enterprise Software Development: Effectively Meeting Evolving Business
Needs,	J.	Ross	Publishing,	Fort	Lauderdale,	FL.

	 9.	 J.	Parnaby,	S.	Wearne,	A.	K.	Kochhar	(2003)	Managing by Projects for Business Success,	Wiley,	London,	U.K.

145

Chapter 10

Software Requirement
Management

In.the.previous.chapter,.we.learned

	◾ What	is	software	engineering?
	◾ What	are	software	development	life-cycle	phases?
	◾ What	development	metrics	are	measured?
	◾ What	are	the	work	products	in	a	software	life	cycle?
	◾ How	quality	assurance	is	done	during	software	development?

In.this.chapter,.we.will.learn

	◾ What	are	customer	requirements?
	◾ How	are	customer	requirements	gathered?
	◾ How	are	customer	requirements	managed?
	◾ What	is	the	role	of	the	configuration	management	system	in	requirement	management?
	◾ How	is	quality	assurance	done	during	software	requirements	management?

10.1 Introduction
Software	requirement	development	and	management	is	one	area	where	the	project	team	needs	to	
do	a	lot	of	work.	Requirements	are	one	of	the	most	important	parts	of	the	software	project.	After	
all,	the	software	application	or	product	is	to	be	built	based	on	these	requirements.

146  ◾  Software Project Management: A Process-Driven Approach

For	government	projects,	requirements	come	with	all	the	details.	It	is	simply	because	at	gov-
ernment	offices,	everything	should	be	accounted	for,	and	so	they	need	minute	details	of	every-
thing	 including	 information	about	why	and	how	the	 software	will	be	developed	and	exactly	
what	are	 the	 requirements	 for	which	 the	 software	will	be	developed.	These	 requirements	are	
sometimes	documented	more	than	required.	But	they	always	come	with	correct	and	complete	
details.	 Requirements	 for	 internal	 software	 projects	 come	 with	 fewer	 details.	 In	 the	 case	 of	
commercial	and	business	software	development	for	external	customers,	the	details	of	require-
ments	 can	 vary.	 For	 outsourced	 software	 projects,	 great	 details	 are	 available.	 But	 in	 case	 of	
offshore	outsourced	projects,	complete	requirement	details	are	needed	and	hence	are	provided	
by	customers.

10.2 Software Requirements Development
Consider	this	request	from	the	marketing	department	of	a	software	vendor:	“We	need	to	develop	
an	online	access	system	for	our	banking	application	by	next	month.”	Yes,	this	is	a	requirement	
with	the	timeline	from	the	marketing	department’s	point	of	view.	The	project	manager	may	just	
get	bewildered,	but	this	is	what	happens	to	software	project	managers.	If	you	get	requirements	
like	this,	then	you	need	to	pay	attention	to	find	out	actually	what	is	required	and	then	develop	the	
requirements	accordingly.

Developing	the	requirement	is	done	by	software	engineering	folks.	Even	if	detailed	require-
ments	come	from	a	customer,	analysis	of	these	details	must	be	done	[1].	Some	of	the	requirements	
may	need	to	be	elaborated	further.	Some	of	the	requirements	may	not	be	feasible.	In	those	cases,	
some	alternative	solution	has	to	be	suggested	to	the	customer	and	approval	obtained	from	him.

Once	most	of	the	requirements	are	made	clear	and	approved,	then	software	design	processes	
can	begin.

Requirements	 can	 be	 broadly	 grouped	 into	 two	 categories:	 functional	 requirements	 and	
	nonfunctional	requirements	[2].	Functional	requirements	pertain	to	those	requirements	that	state	the	

Security Performance

Nonfunctional
requirements

Usability Compatibility

Figure 10.2 Nonfunctional software requirement sub types.

Functional
requirements

Nonfunctional
requirements

Software
requirement types

Figure 10.1 Software requirement types.

Software Requirement Management  ◾  147

functionality	required	in	the	software	system	that	the	customer	is	looking	for	(Figures	10.1	and	10.2).	
A functional	requirement	could	be,	for	instance,	to	have	a	transaction	ability	so	that	the	user	can	pur-
chase	certain	goods	from	the	Web	site	using	a	credit	card.

Nonfunctional	requirements	are	those	requirements	that	do	not	belong	to	the	core	functional	
requirements.	 Instead,	 they	 state	 how	 the	 software	 system	 will	 behave	 in	 certain	 conditions.	
Some	of	the	nonfunctional	requirements	include	security,	performance,	usability,	compatibility,	
etc.	A customer	requirement	may	be	stated	that	the	software	system	should	be	secure	so	that	
unauthorized	access	to	the	software	system	is	not	allowed.	In	that	case,	a	comprehensive	secu-
rity	mechanism	should	be	 incorporated	in	the	software	system	so	that	unless	a	user	has	been	
provided	privileges	for	access,	he	cannot	access	the	software	system.	In	the	requirements,	if	it	is	
stated	that	the	response	time	for	a	page	loading	should	be	less	than	10	s,	then	the	software	sys-
tem	and	the	hardware	on	which	it	will	run	should	be	made	load	pages	within	10	s	even	during	
expected	peak	loads.

Some	of	the	considerations	associated	with	requirement	development	include

	◾ Well-defined	required	functionality	(both	functional	and	nonfunctional)	to	make	an	appro-
priate	software	product.

	◾ Defined	details	of	the	operational	environment	in	which	the	software	system	will	operate.
	◾ Maintenance	and	final	retirement	plan	should	be	in	place.
	◾ All	 limitation	 factors	 should	be	 stated	before	 the	development	 life	 cycle	 starts,	 including	

limitation	factors	for	design,	construction,	maintenance,	and	testing	activities.	Otherwise,	
during	development,	unpleasant	surprises	may	crop	up.

Limitations	 and	 constraints	 to	 be	 considered	 for	 developing	 the	 software	 product	 during	 the	
requirement	development	stage	itself	should	be	considered.	They	should	include

	◾ Cost	and	cost	drivers
	◾ Risks	associated	with	requirements	(incomplete/ambiguous/wrong	requirements)	that	can	

have	impact	on	the	project
	◾ Factors	related	to	customer’s	unique	business	considerations,	regulations,	and	laws	to	better	

relate	requirements	to	software	design
	◾ Time	constraints	and	schedule	drivers
	◾ Consideration	of	issues	implied	but	not	explicitly	stated	by	the	customer	or	end-user
	◾ Technological	limitations

During	 requirement	 development,	 the	 customer	 requirements	 are	 analyzed,	 and	 a	 detailed	
software	requirement	is	developed.	If	complete	information	is	not	available	at	this	stage,	then	
some	assumptions	are	made.	These	assumptions	are	noted	down	 for	 further	discussion	with	
customer	 and	 to	 get	 their	 approval.	 At	 this	 stage,	 care	 is	 also	 taken	 to	 view	 requirements,	
constraints,	and	limitations	of	design,	construction,	maintenance,	and	testing	of	the	proposed	
software	product.	Due	to	these	considerations,	some	additional	requirements	may	also	need	to	
be	added	[3].

All	the	requirements	need	to	be	converted	into	software	features	(logical	entities)	[4].	All	
these	 features	 need	 to	 be	 categorized	 under	 some	 major	 heads	 (top	 level	 features).	 All	 other	
features	that	are	dependent	on	the	main	feature	should	be	put	under	these	heads	in	hierarchical	
order.	Whenever	new	requirements	are	added,	they	are	refined,	derived,	and	allocated	to	these	

148  ◾  Software Project Management: A Process-Driven Approach

logical	entities.	These	logical	entities	are	then	allocated	to	products,	product	components,	people,	
or	associated	processes	(Figure	10.3).

Involvement	 of	 relevant	 stakeholders	 in	 both	 requirement	 development	 and	 analysis	 gives	
them	a	view	into	the	evolution	of	requirements.	This	activity	continually	assures	them	that	the	
requirements	are	being	properly	defined.

There	 are	 many	 techniques	 employed	 to	 elicit	 requirements	 from	 customers	 or	 from	 other	
sources	 [5].	 Some	 of	 them	 include	 interface	 control	 working	 groups,	 interim	 project	 reviews,	
operational	walkthroughs	and	end-user	task	analysis,	technical	control	working	groups,	technol-
ogy	demonstrations,	prototypes	and	models,	brainstorming,	customer	satisfaction	surveys,	qual-
ity	 function	deployment,	market	 surveys,	questionnaires,	 interviews,	 and	operational	 scenarios	
obtained	from	end	users,	beta	testing,	extraction	from	sources	such	as	documents,	standards,	or	
specifications,	observation	of	existing	products,	environments,	and	workflow	patterns,	use	cases,	
business	case	analysis,	and	reverse	engineering	(Figure	10.4).

Examples	of	sources	of	requirements	that	might	not	be	identified	by	the	customer	include	the	
following:

	◾ Standards
	◾ Business	 environmental	 requirements	 (e.g.,	 laboratories,	 testing	 and	 other	 facilities,	 and	

information	technology	infrastructure)
	◾ Technology
	◾ Business	policies
	◾ Legacy	products	or	product	components	(reuse	product	components)

Top level
requirements

Next level
requirements

Next level
requirements

Bottom level
requirements

Figure 10.3 Software requirement hierarchies.

Increased
revenue
potential

Users Standards Business
environment Maintenance Customer

feedback
Cost saving

potential
Technology

changes

Business
policies
changes

Sources of
requirements

Figure 10.4 Sources of software requirements.

Software Requirement Management  ◾  149

10.2.1 Develop Requirements
The	initial	requirements,	whether	from	customers	or	from	other	sources,	need	to	be	made	usable	
as	input	for	making	software	requirements.	Any	irrelevant	information	from	the	gathered	infor-
mation	must	 be	 purged.	Any	 information	 missing	 should	be	 sought	 from	 responsible	 sources.	
Conflicts	between	any	pieces	of	information	should	be	resolved.	Once	the	collected	information	
looks	complete,	it	should	be	consolidated.

10.2.2 Requirement Development Tasks
Some	of	the	tasks	done	during	requirement	development	include

	◾ Customer	requirements	are	refined	and	elaborated	to	develop	product	and	product	compo-
nent	requirements.

	◾ Establish	 and	maintain	product	 and	product	 component	 requirements	 that	 are	based	on	
customer	requirements.

	◾ Allocate	the	requirements	for	each	product	component.
	◾ Identify	interface	requirements.
	◾ The	requirements	are	analyzed	and	validated,	and	a	definition	of	required	functionality	is	

developed.
	◾ Establish	and	maintain	operational	concepts	and	associated	scenarios.
	◾ Establish	and	maintain	a	definition	of	required	functionality.
	◾ Analyze	requirements	to	ensure	that	they	are	necessary	and	sufficient.
	◾ Analyze	requirements	to	balance	stakeholder	needs	and	constraints.
	◾ Validate	requirements	to	ensure	that	the	resulting	product	will	perform	as	intended	in	the	

user’s	environment.

For	a	 large	enterprise	application	development,	a	 large	number	of	requirements	may	be	found	
in	specific	areas.	In	such	cases,	a	team	of	business	analysts	may	be	required	who	may	gather	the	
requirements	 and	 later	 develop	 them.	 For	 instance,	 if	 an	 enterprise	 system	 requirement	 is	 to	
have	 functional	 areas	 like	finance,	 supply	 chain	management,	 customer	 relationship	manage-
ment,	and	human	resources,	then	we	can	have	at	least	four	business	analysts	who	will	gather	and	
develop	requirements	specific	to	their	areas.	Once	these	requirements	are	developed,	then	they	
may	need	to	be	consolidated.	Once	the	consolidation	is	done,	then	a	system	model	may	need	
to	be	developed.	In	fact,	 it	 is	possible	that	functional	models	for	each	functional	area	may	be	
developed	separately	and	later	consolidated.	These	models	need	to	be	developed	using	a	standard	
language	like	UML	(unified	meta	language).	For	a	user	interface,	some	UI	flow	model	is	also	to	
be	developed.

10.3 Software Requirements Management
As	has	been	stressed	throughout	this	book,	requirement	change	requests	are	the	order	of	the	
day.	Even	when	the	project	team	initially	feels	that	all	requirements	are	clear,	during	design,	
or	test	strategy	process,	some	confusing	points	may	arise	relating	to	any	of	the	requirements.	

150  ◾  Software Project Management: A Process-Driven Approach

When	that	happens,	then	that	particular	requirement	has	to	be	discussed,	and	only	after	clear	
understanding	between	the	customer	and	the	project	team	may	that	requirement	be	incorpo-
rated	into	design.

A	very	good	requirement	change	management	and	version	control	is	definitely	necessary	for	
a	successful	software	development	project.	When	analyzed,	most	failed	software	projects	reveal	
that	the	failure	was	due	to	unclear	requirements	or	too	many	requirement	changes.	In	the	case	
of	unclear	requirements,	the	development	team	assumes	certain	things	in	the	absence	of	concrete	
details	and	that	assumption	may	be	wrong.	In	that	case,	 the	developed	system	may	not	match	
customer	expectation	and	so	the	project	may	fail.

10.3.1 Requirement Change Control
Whenever	requirements	are	changed,	there	must	be	a	system	that	will	notify	each	person	whose	
work	 is	affected	due	to	change	 in	requirement.	How	the	change	will	 impact	their	work	also	
must	 be	 assessed.	 How	 much	 rework	 will	 be	 involved	 should	 also	 be	 calculated	 and	 docu-
mented	[6].

Most	of	the	impact	on	late	requirement	change	is	on	construction	and	testing.	This	is	because	
they	are	the	two	most	labor-intensive	activities.	It	is	estimated	that	more	than	40%	of	all	effort	in	
software	development	life	cycle	is	done	in	construction	phase.	In	software	testing,	this	comes	to	
25%–30%.

One	more	aspect	of	requirement	change	is	the	severe	impact	it	has	when	the	development	and	
testing	are	being	carried	out	by	distributed	teams.	With	a	distributed	team	scenario,	communicat-
ing	the	change	request	immediately	and	effectively	so	that	rework	can	be	avoided	is	a	big	chal-
lenge.	If	some	of	the	distributed	teams	are	located	in	different	countries	and	are	service	providers	
instead	of	in-house	teams,	then	many	other	issues	also	get	involved	[7].	Understanding	the	change	
becomes	difficult.

One	more	issue	with	requirement	changes	pertain	to	version	control.	It	is	difficult	to	know	
whether	all	distributed	teams	are	working	on	the	correct	version	of	the	requirements	or	not.	There	
will	be	instances	when	some	of	the	teams	may	be	unaware	of	the	latest	requirement	changes,	and	
so,	unknowingly,	they	may	be	working	on	the	wrong	version.

10.3.2 Requirement Problems Diagnosis
When	distributed	teams	are	working	on	a	project,	the	best	option	is	that	requirements	are	kept	in	
a	central	repository	with	access	permissions	to	all	project	teams.	Whenever	any	changes	happen,	
then	there	should	be	provision	for	automated	e-mails	to	be	sent	to	all	concerned	teams.	People	
with	 less	experience	should	be	 identified,	and	care	should	be	taken	that	 they	understand	these	
changes	and	do	their	work	accordingly.

The	configuration	and	version	control	system	should	be	located	centrally	and	should	be	easily	
accessible	to	all	teams.	Requirement	allocation	should	be	done	in	such	a	way	that	each	team	and	
their	 individual	members	are	always	aware	of	what	 requirement	 they	are	working	against,	and	
where	on	the	configuration	management	server	the	relevant	work	products	are	located.	In	case	of	
any	doubts,	there	should	be	a	responsible	person	who	can	clarify	any	issues	immediately	within	
an	agreeable	timeframe.

Software Requirement Management  ◾  151

10.4 Requirement Life-Cycle Management
Software	requirements	are	the	first	phase	of	any	software	life-cycle	management	[8].	The	journey	
of	any	software	application	starts	from	here.	Refer	to	figures	of	software	life	cycle	for	different	soft-
ware	development	process	models	provided	in	Chapter	9.	Here,	we	will	discuss	processes	involved	
in	requirement	development	(Figures	10.5	and	10.6).

10.4.1 Requirement Development and Management in Waterfall Model
The	waterfall	model	is	modeled	on	the	fundamental	notion	that	software	development	is	done	in	
phases,	and	each	phase	commences	after	the	previous	phase	gets	completed,	and	they	follow	each	
other	in	time	sequences.	So	in	one	software	project,	there	is	just	one	iteration	of	each	phase,	and	
once	it	is	completed,	there	is	no	option	to	come	back	to	this	phase.	In	real	life,	most	organizations	
use	a	modified	version	of	the	waterfall	model.	So	once	requirements	are	developed,	a	review	pro-
cess	is	initiated	to	check	whether	the	requirements	are	incomplete,	ambiguous,	or	are	otherwise	
faulty.	A	check	is	also	done	to	ensure	all	requirements	meet	characteristics	like	maintainability	and	

Rework

Requirement
speci�cation Change request Communication

of change

Impact analysis

Changes in
design,

construction

System
validation

Figure 10.6 Software requirement change management life cycle.

Requirement
elicitation

Requirement
documentation

Requirement
analysis

Requirement
specification
development

Requirement
verification and

validation

Verified and
validated

requirements

System
modeling

Figure 10.5 Software requirement development life cycle.

152  ◾  Software Project Management: A Process-Driven Approach

testability.	If,	during	review,	it	is	found	that	either	some	work	is	not	complete	or	there	are	defects	
in	the	work	product,	then	a	rework	is	done	to	remove	that	defect.	Once	the	work	is	approved,	then	
the	project	is	allowed	to	enter	into	next	phase.

In	the	requirement	development	and	management	phase,	the	work	product	is	the	requirement	
specification	document.	The	complete	list	of	requirements	is	verified	and	validated	during	review	meet-
ings.	If	any	requirements	do	not	meet	the	validation	criteria	(e.g.,	testability),	then	requirements	
should	be	reworked,	and	only	then	system	design	phase	can	be	allowed	to	start	(Figure	10.7).

10.4.2 Iterative Model
In	iterative	models	(including	eXtreme	Programming,	agile	methodology,	and	Scrum),	complete	
requirements	may	be	gathered	but	not	used	for	product	development	in	one	go.	Instead,	a	subset	of	
requirements	is	taken,	and	development	is	done	for	those	requirements	in	any	iteration.	Once	that	
iteration	gets	completed,	then	a	new	set	of	requirements	is	taken	for	development	(Figure	10.8).

In	Scrum,	the	list	of	requirements	is	kept	in	a	repository,	which	is	known	as	the	“backlog.”	
Whenever	any	requirement	becomes	available,	it	is	stored	in	this	backlog.	When	a	sprint	(iteration)	

Requirement
development

Requirement
management

Complete list
of requirements

Verification and
validation of
requirements

System design

Figure 10.7 Waterfall model—requirement management and verification life cycle.

Complete list
of requirements

Requirement
management

Subset of
requirements

Verification and
validation of
requirements

System design

Figure 10.8 Iterative model—requirement management and verification life cycle.

Software Requirement Management  ◾  153

is	planned,	the	relevant	requirements	are	pulled	from	this	backlog.	Most	requirements	in	the	back-
log	are	not	fully	developed.	So,	when	some	requirements	are	pulled	from	the	backlog,	they	are	
developed	to	be	complete,	and	then	the	iteration	or	sprint	proceeds.	When	any	change	request	
comes,	generally,	it	is	taken	in	the	next	iteration.

In	agile	models	like	Scrum	and	eXtreme	Programming,	the	sources	of	requirements	are	the	
customers,	customer	feedback	after	iteration	completion,	found	defects	during	development,	and	
many	other	sources	mentioned	earlier	in	this	chapter.

Requirement	management	on	agile	projects	is	much	better.	There	are	generally	no	incidents	
when	a	change	request	has	to	be	incorporated	during	the	course	of	an	iteration.	Change	requests	
are	 generally	 taken	 in	 the	 next	 iteration,	 and	 thus	 there	 is	 no	 rework	 involved	 due	 to	 change	
requests.

10.5 Software Requirements Practical Strategy
Making	requirement	specifications	from	diverse	and	unstructured	documents	from	many	sources	
is	a	challenging	task	[9].	Here	is	a	list	of	best	practices	for	gathering	and	managing	requirements.

	 1.	Requirements	come	in	many	forms	(e-mail,	chats,	customer	request,	meetings,	reviews,	etc.).	
So	initial	form	varies.	Use	a	standard	template	to	get	all	requirements	so	that	requirement	
format	is	consistent	and	that	it	is	easy	when	they	are	to	be	incorporated	in	design.	Capturing	
all	requirements	is	also	possible	this	way.

	 2.	Requirements	should	be	verified	with	the	source	so	that	there	is	no	communication	gap	and	
requirements	are	captured	as	accurately	as	possible.

	 3.	Requirements	should	be	complete,	and	no	requirement	should	be	incomplete.	Also,	delivery	
dates	should	also	be	captured.

	 4.	Requirements	should	be	prioritized	based	on	urgency,	ROI,	etc.
	 5.	Communicate	 requirements	 as	 early	 as	 possible	 across	 all	 teams	 especially	 to	distributed	

teams.
	 6.	Trace	dependency	among	requirements	so	that	if	one	requirement	is	important	but	is	depen-

dent	on	another	requirement	that	is	not	a	priority,	then	it	has	to	be	made	sure	that	both	
requirements	are	delivered.

	 7.	Track	requirement	changes.

No	matter	how	much	attention	is	paid	in	collecting	requirements,	some	omissions	or	mistakes	do	
happen.	This	results	in	delivering	an	inadequate	software	product	to	the	customer.

Nonstandard	requirement	specifications	are	the	most	dangerous	aspect	of	software	develop-
ment	projects.	Consider	an	instance	when	the	customer	has	specified	that	the	software	application	
should	be	used	by	 sales	department	 to	 take	orders	 from	customers.	 It	does	not	provide	details	
about	 various	 options	 while	 taking	 orders.	 The	 design	 team	 from	 the	 software	 project	 simply	
designs	the	system	with	the	assumption	that	any	person	in	the	sales	department	takes	the	orders	
over	the	phone	and	has	a	list	of	products	against	which	he	books	the	orders.	When	the	software	is	
developed	and	presented	to	customers,	they	expect	other	options	to	be	available	to	the	sales	staff	
while	booking	orders.	It	turned	out	that	the	customer	was	looking	for	a	solution	for	configurable	
items	that	it	sells.	For	configurable	items,	each	main	product	has	options	for	subitems	to	choose	
from.	Any	configurable	item	can	have	options	at	many	levels.	For	instance,	a	desktop	system	
can	be	bought	with	options	for	processor	model,	memory	card,	sound	card,	network	card,	hard	

154  ◾  Software Project Management: A Process-Driven Approach

disk,	CD	ROM	drive,	etc.	The	customer	can	choose	company	name,	 specific	brand,	and	 then	
specific	model	for	each	of	the	computer	parts	while	giving	the	order.

See	 Figure	 10.9	 to	 better	 understand	 configuration	 items.	 A	 desktop	 computer	 can	 have	
options	to	choose	either	Intel	or	AMD	processor.	The	Intel	processor	can	be	a	quad	processor,	
Celeron,	or	Pentium	processor.	A	Celeron	processor	can	be	of	2.2,	2.0,	or	1.6	GHz	capacity.	The	
order	management	system	must	have	the	capability	to	choose	the	specific	options	provided	by	the	
customer.	If	configuration	capability	is	not	present	in	the	ordering	system,	then	it	will	be	of	no	
use	to	the	sales	department	as	they	cannot	book	any	customer	orders	using	the	software	applica-
tion	(Figure	10.9).

Understanding	the	requirement	and	finding	the	correct	solution	for	that	requirement	is	the	
most	important	aspect	of	software	development	projects.

10.6 Software Requirements Artifacts
Software	requirements	are	among	the	most	unstructured	data	in	a	software	project.	They	need	to	
be	converted	into	a	good	structure	in	the	form	of	software	features	(requirement	specifications).	
Only	then,	this	data	becomes	useful	to	the	project	team.	So	the	software	requirement	specifica-
tions	document	 (SRS	document)	must	contain	 specifications	 in	 the	most	 structured	 form.	For	
the	test	team,	a	verification	and	validation	document	for	the	SRS	document	is	the	artifact	of	this	
phase.

10.7 Software Requirements Quality Control
Software	requirements	can	be	checked	or	tested	for	defects.	Found	defects	can	subsequently	be	
removed,	and,	thus,	quality	of	the	software	requirements	can	be	improved.	Some	kinds	of	defects	
in	 the	 requirements	may	 include	 incoherent	 specification,	wrong	 specification,	wrong	 assump-
tion,	incomplete	specification,	and	wrong	relationship	between	requirements.	Through	a	thorough	
check,	these	defects	from	requirement	specifications	can	be	removed.

The	requirement	development	team	itself	can	do	these	tests,	or	a	test	team	can	perform	
these	tests.

Desktop

Intel
processor

Quad
processor

Celeron

Pentium 1.6 GHz

2.0 GHz

2.2 GHz

AMD
processor

Figure 10.9 Configuration options for a desktop computer.

Software Requirement Management  ◾  155

10.8 Case Study
We	continue	our	case	study	in	Part	II	with	the	way	our	SaaS	vendor’s	development	team	develops	
and	manages	software	requirements	in	this	chapter.

The	SaaS	vendor	decided	to	build	the	appointment	scheduling	functionality	only	after	exist-
ing	customers,	and	market	surveys	revealed	that	there	was	a	market	gap	for	this	functionality.	
So	 a	 business	 analyst	 was	 recruited	 to	 visit	 existing	 customers	 and	 gather	 the	 requirements.	
Already	during	 interaction	and	user	 feedbacks	 from	customers,	 there	was	 some	 idea	about	 the	
features	required	by	them.	Based	on	this	existing	knowledge	and	further	interaction	with	custom-
ers,	 the	business	 analyst	 completed	 the	 requirement	gathering.	Later,	he	built	 the	 requirement	
specifications.

10.8.1 Major Components of Appointment Scheduling
An	appointment	of	any	truck	to	a	dock	door	of	any	warehouse	even	before	arrival	of	the	truck	at	
the	said	warehouse	can	be	made	if	some	advance	knowledge	about	the	truck	and	what	it	contains	
is	available.	Here	is	a	list	of	information	needed	to	create	this	kind	of	appointment.

Information	about	the	arriving	truck	includes	truck	capacity,	truck	type,	kind	of	goods	loaded/
to	be	loaded,	and	expected	arrival	date	(time)	at	the	warehouse.

Information	about	the	origin	warehouse	includes	warehouse	site	information,	warehouse	com-
pany	information,	and	distance	from	target	warehouse.

Information	 about	 the	 target	 warehouse	 includes	 warehouse	 site	 information,	 warehouse	
company	information,	and	number	of	dock	doors.

Information	about	the	dock	doors	of	the	target	warehouse	includes	number	of	doors,	types	of	
trucks,	which	can	be	docked	at	each	door,	types	of	goods,	which	can	be	unloaded	at	each	door,	
dock	door	calendars,	partners	whose	goods	can	unloaded	at	specific	doors,	labor	availability,	qual-
ity	assurance	personnel	availability,	already	docked	trucks,	already	scheduled	trucks,	and	unavail-
ability	of	dock	door	at	specific	times.

The	most	important	aspect	about	the	appointment	scheduling	engine	is	that	the	user	can	
first	search	a	shipment	(truck)	that	is	not	scheduled	yet	and	then	run	the	engine,	so	that	a	suit-
able	schedule	can	be	made	for	the	shipment	at	any	dock	door	of	the	target	warehouse.	There	
are	 so	many	 factors	 to	be	considered	 for	 this	appointment	 that	humanly	 it	 is	not	possible	 to	
make	a	suitable	schedule.	The	appointment	engine	is	provided	with	all	possible	and	practical	
constraints,	and	it	honors	or	ignores	those	constraints	depending	on	the	rules	defined	for	them	
in	the	engine.	All	these	constraints	are	divided	into	two	groups,	soft	and	hard	constraints.	The	
soft	constraints	can	be	overridden	if	a	hard	constraint	does	not	permit	it	to	be	made	applicable.	
For	instance,	if	a	soft	constraint	does	not	allow	a	shipment	to	be	made	at	3:30	pm	on	October	
10,	2010,	at	dock	door	1	of	warehouse	A	for	a	duration	of	2	h,	and	if	a	hard	constraint	does	
allow	 this	 time	window	 for	 appointment	 then	 the	 soft	 constraint	will	 be	overridden	 and	 an	
appointment	will	be	made.	Then,	inside	each	of	the	category	of	hard	and	soft	constraints,	there	
is	a	hierarchy.	Suppose	a	higher	ranked	constraint	is	applicable	for	a	shipment,	and	that	a	lower	
ranked	constraint	does	allow	a	shipment	to	be	made	within	a	time	window.	However,	due	to	
this	higher	ranked	constraint,	an	appointment	cannot	be	made.	On	the	other	hand,	if	no	higher	
ranked	constraint	is	applicable	for	a	shipment,	then	a	lower	ranked	constraint	will	determine	if	
an	appointment	can	be	made	for	a	shipment.

156  ◾  Software Project Management: A Process-Driven Approach

The	appointment	scheduling	engine	is	used	to	calculate	two	things.	First,	it	would	determine	
the	start	date	and	time	for	an	appointment.	Then,	it	would	calculate	the	duration	of	the	appoint-
ment	if	the	appointment	duration	is	variable	and	depends	on	many	factors.

Here	 is	 the	 requirement	 specification	 for	 the	 loading/unloading	 calculation	 part	 of	 the	
requirements.

10.8.2 Loading/Unloading Time Calculation
	 1.	For	some	dock	doors,	a	fixed	load/unload	time	is	mentioned.	Even	if	the	actual	time	is	

more	or	less	than	this	fixed	time,	this	fixed	time	should	be	recorded	and	not	the	actual	
load	time.

	 2.	There	is	a	maximum	and	minimum	time	allowed	(reservation	time)	for	each	dock	door	for	
specific	business	partners,	in	which	all	load/unload	activities	should	be	performed.	If	any	
load/unload	time	calculation	is	coming	above	or	below	this	set,	then	the	reservation	time	
is	 the	allowed	time	(maximum	or	minimum	whichever	applies),	and	this	 time	should	be	
recorded	for	making	reservation	at	the	dock	door.	If	the	calculated	load	time	is	less	than	
the	reservation	time,	then	the	calculated	time	should	be	recorded.

	 3.	A	default	load	time	should	be	provided	for	each	dock	door	group.	If	no	fixed	or	variable	load/
unload	time	is	defined	for	a	dock	door	in	that	group,	then	this	default	load	time	should	be	
recorded	for	all	loading/unloading	on	that	dock	door.

	 4.	The	variable	load/unload	time	should	be	calculated	by	the	number	of	quantities	of	pieces	of	
goods	to	be	unloaded/loaded	multiplied	by	loading/unloading	time	per	piece	of	goods.

There	were	also	requirements	developed	for	calendars	 for	dock	doors,	dock	door	groups,	ware-
houses,	organization,	and	enterprise.	Requirements	for	search	functionality	for	specific	shipments	
based	on	origin,	destination,	shipping	date,	expected	arrival	date,	etc.,	were	also	developed.	Finally,	
the	requirements	for	appointment	scheduling	functionality	were	also	developed.	This	functional-
ity	also	included	options	for	manual	appointment,	cancellation	of	appointment,	and	grouping	of	
appointment.

Overall,	there	were	some	560	requirements	for	the	entire	project	for	release	6.0.

10.8.3 Quality Assurance
Quality	assurance	 is	an	 integral	part	of	all	 software	development	activities	at	our	SaaS	vendor	
projects.	The	requirement	specifications	or	software	features	to	be	developed	are	thoroughly	tested	
(reviewed)	 before	 software	 design	 and	 architecture	 activities	 start.	Each	 requirement	 specifica-
tion	is	reviewed	for	completeness,	flaws,	maintainability,	and	testability.	For	example,	there	was	
a	requirement	that	any	shipment	can	be	searched	by	providing	partial	information	like	shipment	
number	and	partial	shipping	address	information.	The	complete	address	information	consisted	of	
street,	county,	state,	country,	and	zip	code.	The	partial	address	information	could	be	a	combina-
tion	of	any	of	the	pieces	of	these	address	parts.	To	search	a	shipment	with	partial	address,	it	is	
important	that	these	pieces	of	information	are	linked	loosely	with	each	other.	A	zip	code	of	10994	
belongs	to	New	York	state.	So	the	search	result	should	not	show	any	shipments	with	this	zip	code	
belonging	to	some	other	state.	There	could	be	more	than	one	city	with	the	same	name	belonging	to	
different	states.	In	that	case,	all	shipments	with	that	city	name	(belonging	to	more	than	one	state)	
can	be	displayed	in	search	results	if	zip	code	and	state	are	not	mentioned.

Software Requirement Management  ◾  157

Apart	from	the	functional	completeness	aspect	for	a	requirement,	testability,	maintainability,	
and	other	kinds	of	flaws	also	need	to	be	checked	and	reviewed.	Performance	issues	should	also	be	
checked	if	the	requirement	specifies	that	a	large	number	of	users	will	be	using	that	software	feature	
simultaneously.

10.9 Chapter Summary
In	this	chapter,	we	have	learned	all	about	software	requirement	gathering	techniques,	requirement	
management,	 change	 management,	 version	 control,	 etc.	 Change	 in	 requirements	 and	 unclear	
requirements	are	the	two	pitfalls	that	affect	most	software	projects.	To	deal	with	this	problem,	
there	are	two	methods.	One	method	is	to	take	only	a	few	requirements	at	a	time	and	do	the	entire	
development	for	these	requirements.	This	will	mitigate	the	risk	of	change	in	requirements.	The	
other	technique	 is	 to	manage	the	entire	development	process	 so	that	 the	changes	can	easily	be	
incorporated	in	the	entire	development	process.

To	 ensure	 that	 the	 requirement	 specifications	 built	 are	 defect	 free,	 we	 must	 go	 through	 a	
review	process.	All	requirement	specifications	should	be	checked	to	see	that	they	are	not	ambigu-
ous	and	are	indeed	properly	defined.	They	should	be	checked	to	see	that	they	can	be	easily	tested.	
They	should	be	checked	for	maintainability.

Review Questions
10.1	 What	methods	and	means	are	available	for	requirement	gathering?
10.2	 What	is	the	process	flow	for	requirement	development?
10.3	 	What	quality	control	mechanism	can	be	employed	during	requirement	development	and	

management?
10.4	 Why	is	requirement	management	important?	Why	it	is	needed?
10.5	 What	is	the	process	flow	for	requirement	management?

Recommended Readings
	 1.	 A.	Jaaksi	(1998)	Tried and True Object Development,	Cambridge	University	Press,	Cambridge,	U.K.
	 2.	 L.	 Chung,	 B.	 A.	 Nixon,	 E.	 Yu,	 J.	 Mylopoulos	 (2000)	 Non-Functional Requirements in Software

Engineering,	Springer,	Berlin,	Germany.
	 3.	 P.	C.	Tinnirello	(2001)	New Directions in Project Management,	CRC	Press,	Boca	Raton,	FL.
	 4.	 A.	 Aurum,	 C.	 Wohlin	 (2005)	 Engineering and Managing Software Requirements,	 Springer,	 Berlin,	

Germany.
	 5.	 S.	F.	Ochoa,	G.-C.	Roman	(2006)	Advanced Software Engineering: Expanding the Frontiers of Software

Technology,	Springer,	Berlin,	Germany.
	 6.	 S.	E.	Donaldson,	S.	G.	Siegel	(2001)	Successful Software Development,	Prentice	Hall	PTR,	New	York.
	 7.	 R.	Sangwan,	N.	Mullick,	M.	Bass,	D.	J.	Paulish	(2006)	Global Software Development Handbook,	CRC	

Press,	Boca	Raton,	FL.
	 8.	 H.	Jonasson	(2007)	Determining Project Requirements,	CRC	Press,	Ann	Arbor,	MI.
	 9.	 J.	 Dyché,	 E.	 Levy	 (2006)	 Customer Data Integration: Reaching a Single Version of the Truth,	 Wiley,	

Hoboken,	NJ.

159

Chapter 11

Software Design Management

In.the.previous.chapter,.we.learned

	◾ What	are	customer	requirements?
	◾ How	are	customer	requirements	gathered?
	◾ How	are	customer	requirements	managed?
	◾ What	is	the	role	of	a	configuration	management	system	in	requirement	management?
	◾ How	is	quality	assurance	done	during	software	requirements	management?

In.this.chapter,.we.will.learn

	◾ What	is	software	design?
	◾ What	are	the	considerations	for	making	a	sound	software	design?
	◾ What	techniques	are	used	to	design	software?
	◾ How	is	quality	assured	during	software	design?

11.1 Introduction
Software	design	development	can	be	likened	to	designing	a	physical	product.	Suppose	a	new	car	
model	is	to	be	developed.	The	car	design	is	broken	down	into	separate	components	and	in	the	end	
assembling	them	will	become	a	complete	design	for	the	car	model.	Various	factors	are	considered	
during	the	design	of	the	components.	Suppose	one	factor	to	be	considered	is	that	during	a	car	
accident,	the	car	body	should	take	most	of	the	impact	and	the	passengers	should	get	the	least	
impact,	so	that	injury	to	car	passengers	can	be	minimized	during	accidents.	For	this	to	happen,	
the	car	body	should	be	made	of	material	that	can	collapse	on	impact	and	thus	take	most	of	the	impact.	

160  ◾  Software Project Management: A Process-Driven Approach

So	during	design,	when	selecting	the	material	of	the	car	with	safety	in	mind,	the	body	is	one	
of	 the	prime	 considerations.	 Similarly,	 an	 aerodynamic	body	helps	 in	keeping	 the	car	 from	
rolling	over	during	accidents,	and	thus	 it	 is	a	prime	safety	 factor	 that	 the	car	body	should	be	
aerodynamic.

During	design,	one	consideration	is	also	made	that	though	each	component	is	developed	sepa-
rately,	after	assembly,	the	components	should	work	with	each	other	without	any	problems.	That	
means	assembling	does	not	create	any	problems	in	the	product	itself.

Similar	considerations	are	also	done	when	software	products	are	designed.	In	fact,	in	design-
ing	software	systems,	consideration	is	given	to	things	like	how	well	the	system	will	be	maintained	
during	operation	and	how	easily	the	system	will	be	actually	developed	and	be	tested	[1].

Software	design	is	done	using	modeling	languages	like	UML	and	using	notation	methods	like	
use	cases	and	activity	diagrams.

We	will	learn	all	about	software	design	considerations,	workflows	involved	in	design,	etc.

11.2 Software Design Fundamentals
When	a	building	is	constructed,	a	good	foundation	is	laid	out	for	the	building,	so	that	the	
building	will	have	a	long	lifespan	and	will	not	collapse.	Similarly,	it	is	given	a	strong	and	resil-
ient	structure,	so	that	even	in	case	of	an	earthquake,	it	will	not	fall	down.	Similarly,	software	
design	provides	the	foundation	and	structure	upon	which	the	software	system	is	constructed.	
The	design	should	provide	a	 sound,	 resilient,	and	scalable	 structure	 to	 support	 the	 software	
system	(Figure	11.1).

In	these	days,	most	software	systems	are	built	incrementally.	In	the	beginning,	a	software	sys-
tem	may	consist	of	only	a	few	features.	The	feature	set	is	expanded	in	future	releases	as	and	when	it	
becomes	necessary	to	include	them	in	the	system.	If	proper	structure	is	not	provided	from	the	very	
beginning,	the	addition	of	these	new	features	will	make	the	system	unstable.	To	deal	with	this	
problem,	a	technique	called	refactoring	is	used	on	these	agile	projects	where	incremental	software	
development	is	done.	Some	of	the	design	techniques	that	help	make	good	software	design	include	
open	architecture,	modularity,	and	scalability	[2].

The	 current	 trend	 of	 service-oriented	 architecture	 (SOA)	 has	 also	 helped	 tremendously	 in	
changing	the	design	concepts.	SOA	is	built	on	Web	services	and	loose	coupling	of	software	com-
ponents.	The	asynchronous	messaging	method	of	integration	of	SOA	is	a	vital	aspect	for	develop-
ing	Web-based	applications	[3].

Open
architecture Modularity Robustness

Characteristics of a good
software design

Security Scalability Simplicity

Figure 11.1 Characteristics of a good software design.

Software Design Management  ◾  161

11.2.1 Design Types
Software	design	on	any	project	may	consist	of	many	work	products,	which	together	can	be	termed	
the	software	design	for	the	software	product	that	will	be	built	during	the	software	project.	Some	
examples	 include	 prototypes,	 structural	 models,	 object-oriented	 design,	 systems	 analysis,	 and	
entity	relationship	models.

11.2.2 Design Standards
If	 design	 standards	 [4]	 are	 implemented	on	 a	project,	 then	 it	will	 help	 in	 streamlining	 activi-
ties	 that	 are	 involved	during	 the	 software	design	phase.	 Some	 industry	 standards	 for	 software	
design	 include	operator	 interface	standards,	 test	 scenarios,	 safety	standards,	design	constraints,	
and	design	tolerances.

11.2.3 Design Activities
Software	design	activities	produce	many	intermediate	documents	and	work	products	[5].	These	
include	product	architecture	description,	allocated	requirements,	product	component	descriptions,	
product-related	 life-cycle	process	descriptions,	 key	product	 characteristic	descriptions,	 required	
physical	characteristics	and	constraints,	interface	requirements,	verification	criteria	used	to	ensure	
that	requirements	have	been	achieved,	operating	environments,	modes	and	states	for	operations,	
support,	training,	manufacturing,	disposal,	and	verifications	throughout	the	life	of	the	product.

11.3 Software Design Methods
There	 are	 two	 methods	 for	 designing	 software	 products	 or	 components,	 the	 bottom-up	 and	
top-down	approach.

11.3.1 Top Down
In	the	top-down	approach	[6],	the	top	structure	of	the	product	is	conceived	and	designed	first.	
Once	the	structure	is	perfected,	components	that	will	make	the	product	are	designed.	Once	the	
major	components	are	designed,	the	features	that	make	the	component	are	designed	(Figure	11.2).

Apart	 from	the	 functional	consideration	 for	making	 the	 structure,	nonfunctional	consider-
ations	are	also	considered	from	the	top	level	for	example,	how	the	security,	performance,	usability,		
aspects	will	be	provided	in	the	product.

There	are	many	benefits	to	the	top-down	approach.	Nonfunctional	aspects	are	taken	care	of	
at	the	beginning	of	design,	and	hence	they	are	an	integral	part	of	the	product	and	not	an	after-
thought.	This	makes	a	 secure,	 robust,	 and	usable	product.	A	 top-down	approach	also	helps	 in	
creating	 reusable	components	and	hence	 increases	productivity	as	well	 as	maintainability.	This	
approach	also	promotes	integrity,	as	the	whole	product	is	designed	inside	a	single	framework.	So	a	
fragmented	and	dissimilar	approach	for	designing	different	parts	of	the	product	is	avoided.

The	drawback	of	the	top-down	approach	is	that	it	is	a	risky	model.	The	whole	design	has	to	
be	made	in	one	go	instead	of	making	attempts	to	incrementally	building	the	design,	which	is	rela-
tively	a	safer	option.	Generally,	the	top-down	design	approach	is	adopted	on	waterfall	model-based	
projects.

162  ◾  Software Project Management: A Process-Driven Approach

11.3.2 Bottom Up
In	the	bottom-up	approach	[7],	first,	the	minute	functions	of	the	software	product	are	struc-
tured	and	designed.	Then,	the	middle-level	components	are	designed,	and,	finally,	the	top-level	
structure	is	designed.	Once	some	components	are	designed,	they	can	be	shown	to	the	customer,	
and	a	buy	in	can	be	made	for	the	project.

There	are	some	benefits	to	the	bottom-up	approach.	It	leads	to	incremental	building	of	design	
that	ensures	that	any	missing	information	can	be	accommodated	later	in	the	design	(Figure	11.3).

With	 increasing	use	of	 incremental	 and	 iterative	development	methodologies,	 the	bottom-up	
design	approach	is	becoming	more	popular	than	the	top-down	approach.	In	fact,	nowadays,	agile	
models	do	not	go	for	elaborate	and	complete	software	design	from	the	beginning	of	the	project.	
In	each	iteration,	a	design	is	thought	of	for	the	requirements	that	are	taken	during	the	iteration.	
To	compensate	for	a	sturdy	and	elaborate	design	upfront,	the	project	team	engages	in	refactoring	
(discussed	later	in	the	chapter)	the	design	to	make	sure	that	it	does	not	become	bulgy	and	unman-
ageable	in	later	iterations.

Top-level software
design

Middle-level software
components

Middle-level software
components

Bottom-level software
components

Bottom-level software
components

Bottom-level software
components

Figure 11.2 Top-down software design.

Top-level software
design

Middle-level software
components

Middle-level software
components

Bottom-level software
components

Bottom-level software
components

Bottom-level software
components

Figure 11.3 Bottom-up software design.

Software Design Management  ◾  163

11.4 Design Version Control
In	product	development	 for	 a	 software	 vendor,	many	versions	of	 the	 same	product	have	 to	be	
developed	for	fulfilling	different	customers.	With	changes	in	requirements	whenever	they	occur,	
software	design	also	changes	accordingly.	These	 factors	call	 for	many	versions	of	design	of	 the	
product.	When	we	have	many	versions	of	the	design,	then	we	need	to	have	a	dependable	mecha-
nism	to	control	and	manage	all	these	versions	of	the	designs	of	the	same	product	[8].

At	the	top	level	of	the	hierarchy	of	files	on	the	configuration	and	version	control	tool,	the	direc-
tory	name	should	be	the	project/product	name.	This	main	directory	should	branch	out	with	one	
branch	for	each	version	of	the	product.	Inside	each	branch,	all	design	files	should	be	kept	inside	
one	subdirectory	named	something	like	“design	documents.”	This	way,	each	distinct	design	ver-
sion	should	be	completely	separate	from	design	documents	of	other	versions	of	the	product.

11.4.1 Subversions
During	the	software	development	life	cycle,	the	design	changes	with	changes	in	requirement	speci-
fications	or	when	it	is	felt	to	change	design	as	it	no	longer	supports	additional	requirements.	In	such	
cases,	the	main	design	is	changed	to	meet	new	conditions.	However,	the	main	design	version	is	also	
kept.	The	new	design	is	saved	as	a	separate	file.	So	we	have	two	design	documents	now.	Whenever	
the	design	has	to	be	changed,	a	new	file	should	be	created	from	the	old	one	and	saved	as	a	new	file.	
All	of	these	new	files	become	subversions	of	the	old	files.	This	process	is	known	as	subversioning.

11.5 Design Characteristics
When	we	create	software	designs,	we	need	to	make	sure	that	the	design	not	only	fulfills	require-
ment	specification	needs	but	also	ensures	that	the	design	is	robust,	versatile,	and	defect	free.	So	
the	design	needs	to	have	some	characteristics	that	make	it	useful.	Here,	we	discuss	some	design	
characteristics	[9].

Modular:	The	design	should	be	modular,	so	that	construction	can	be	done	in	modules,	and	thus	
construction	tasks	can	be	divided	and	done	in	parallel	to	each	other.	This	helps	in	reducing	the	
project	 schedule	and	makes	a	better-managed	 software	product	even	during	maintenance.	The	
biggest	 advantage	of	modular	design	 is	 that	 complexity	 can	be	 reduced	by	means	of	breaking	
software	features	into	smaller	software	parts.	Complexity	in	any	software	product	is	the	biggest	
enemy,	which	creates	problems	like	high-defect	injection	rates,	difficult	coding,	difficult	mainte-
nance,	and	many	other	related	difficulties.

Simple:	The	design	should	be	simple,	so	that	it	will	be	easier	to	understand	by	developers	and	other	
project	team	members.	This	will	make	sure	that	the	construction	work	can	be	carried	out	without	
many	problems	that	are	associated	with	difficult	or	complex	designs.

Maintainable:	To	reduce	maintenance	costs,	 the	design	should	be	such	that	when	any	mainte-
nance	is	needed,	it	can	be	performed	without	much	overhead	work.	Some	of	the	requirements	of	
a	software	design	to	be	maintainable	are	that	the	modules	are	well	formed,	reference	to	calls	are	
well	documented,	modules	are	self-contained,	and	not	many	calls	are	made	for	other	modules.	If	
the	software	design	is	well	structured,	then	maintaining	it	will	be	much	easier.

Verifiable:	The	software	design	should	be	verifiable,	so	that	it	can	be	easily	verified	as	to	whether	it	
suits	the	needs	of	the	construction	work	that	follows	the	design.

164  ◾  Software Project Management: A Process-Driven Approach

Portable:	The	design	should	have	portability	built	into	it,	so	that	the	same	design	can	be	used	for	
writing	source	code	for	different	hardware/software	platforms.

Reliable:	The	 software	design	 should	be	 reliable,	 so	 that	 it	does	not	 introduce	 software	defects	
when	source	code	is	written	based	on	the	design.	Generally,	when	a	software	design	is	complex,	
large,	or	difficult	to	understand,	then	probability	of	defect	injection	during	software	construction	
is	higher.	Thus,	a	reliable	software	design	should	not	be	complex	or	large	or	difficult.	Larger	soft-
ware	designs	should	be	modularized.

Secure:	 The	 software	 design	 should	 take	 into	 consideration	 the	 security	 needs	 of	 the	 users	 for	
whom	the	software	product	is	being	made.	This	is	especially	true	for	software	products,	which	
are	meant	to	be	deployed	outside	of	the	firewall	of	any	organization	(accessible	from	the	Internet).

Scalable:	The	 software	design	 should	be	 scalable,	 so	 that	when	 the	 smaller	 software	product	 is	
scaled	up,	no	design	changes	should	be	required.	Even	if	some	design	changes	are	required,	then	
it	should	not	lead	to	rewriting	of	parts	of	the	source	code.	For	example,	the	design	should	be	such	
that	when	additional	features	are	to	be	added	to	the	existing	software	product	then	the	external	
interfaces	of	software	design	parts	should	not	to	be	changed	in	order	to	add	those	additional	fea-
tures	and	only	internal	structures	may	need	to	be	changed.	This	strategy	will	make	sure	that	even	
if	some	parts	of	the	software	construction	need	to	be	rewritten,	it	will	not	affect	other	parts	of	the	
software	product.

11.6 Software Design Techniques
Software	design	is	the	phase	when	a	short	sighted	or	myopic	vision	can	turn	the	software	product	
development	 into	 a	nightmarish	 affair	 for	downstream	phases.	A	good	 software	design	not	only	
ensures	a	smooth	transition	to	the	development	phase	but	also	ensures	that	the	software	product	
has	a	good	shelf	life	during	operation.	So	what	are	the	keys	to	a	good	design?	A	good	design	should	
start	from	the	most	possible	abstract	architecture	of	the	software	product	often	termed	as	“high	level	
design”	 [10].	Subsequent	 transition	of	 the	abstract	design	 should	 lead	 to	platform-specific	design	
often	termed	as	“low	level	design”	[11].	The	platform-specific	design	or	low	level	design	will	be	in	
terms	of	a	good	database	model	and	a	good	application	model	(Figure	11.4).

Over	the	years,	many	software	design	techniques	have	evolved	with	the	evolution	of	different	
programming	paradigms.	Starting	with	the	early	procedural	programming	paradigms,	program-
ming	has	evolved	into	present	day	“service-oriented	architecture.”	Software	design	has	kept	the	
pace	with	these	evolving	paradigms,	and	thus	it	has	also	been	evolving.	So,	we	have	early	structural	
design	paradigms	to	modern	day	SOA	designs.	Let	us	discuss	some	of	these	design	techniques.

Prototyping Design
reuse

Structural
modeling

Software design
techniques

System
analysis

Object
oriented
modeling

Entity
relationship

models

Figure 11.4 Software design techniques.

Software Design Management  ◾  165

11.6.1 Prototypes
What	better	way	to	establish	a	good	rapport	with	the	end	users	than	to	sketch	out	a	prototype	
of	 an	application	after	you	have	all	 the	customer	 requirements?	Prototyping	 is	 cheap	and	 fast.	
It	also	gets	a	buy	in	from	customer	at	an	early	stage	of	the	project.	If	not	a	full	prototype	of	the	
application,	a	partial	prototype	can	help	you	win	over	your	customer.	There	are	many	automatic	
code	generation	tools	that	allow	you	to	drag	and	drop	some	components	on	screens,	and	the	tool	
generates	the	code	and	makes	a	working	prototype	of	the	application	that	you	can	demonstrate	
to	 your	 customer.	An	miscommunication	or	misunderstanding	between	 the	 customer	 and	 the	
project	team	gets	cleared	once	the	differences	of	opinion	are	sorted	out	early	on	during	the	pro-
totype	demonstration	sessions.	This	greatly	helps	in	reducing	the	risks	of	not	meeting	customer	
expectations.	In	any	case,	customers	do	not	care	about	internal	workings	of	the	application.	They	
are	always	concerned	about	what	the	application	screens	look	like	and	how	the	application	behaves	
with	different	kind	of	inputs	and	events.

The	downside	about	prototypes	is	that	many	customers	assume	the	prototype	is	the	fully	func-
tional	application	and	later	on	wonder	why	the	application	is	taking	so	much	time	in	development	
when	they	saw	the	working	demonstration	so	early	in	the	project.	Customer	expectations	become	
difficult	to	manage	in	such	instances.	Prototypes	can	only	show	the	user	interface	screens.	When	
complex	logic	is	involved	in	developing	applications,	that	logic	cannot	be	depicted	in	prototypes,	
as	program	logic	is	mostly	not	visible	and	cannot	be	developed	in	prototypes.

11.6.2 Structural Models
Most	software	applications	are	built	using	components.	At	the	bottom	are	the	smallest	units	of	
functions	and	procedures	in	a	software	application.	These	functions	are	contained	within	classes	
or	packages	depending	on	the	programming	language	used.	Many	classes	together	build	a	com-
ponent.	Components	in	turn	make	modules.	Modules	in	turn	make	the	complete	application.	For	
ease	of	working,	maintenance,	and	breaking	development	tasks	to	allocate	to	group	of	developers,	
it	is	essential	that	an	application	is	broken	down	into	manageable	parts.	Breaking	into	parts	for	an	
application	can	best	be	done	using	a	structural	analysis.

From	requirement	specifications,	a	feature	set	is	made	to	decide	what	features	will	be	in	the	appli-
cation.	This	feature	set	is	analyzed	and	broken	down	into	smaller	sets	of	features,	which	will	go	into	
different	modules.	This	is	represented	in	a	structural	model	of	the	application.

11.6.3 Object-Oriented Design
It	has	always	been	difficult	to	represent	business	entities	and	business	information	flow	in	a	soft-
ware	model.	With	object-oriented	design,	 this	problem	was	 solved.	Business	 entities	 are	 repre-
sented	as	objects	in	the	object-oriented	software	design.	Properties	of	these	objects	are	made	in	
such	a	way	that	they	are	similar	to	the	properties	of	the	business	entities.	These	objects	are	instanti-
ated	from	classes	in	the	form	of	child	classes.	These	child	classes	inherit	all	the	properties	of	their	
parent	class,	and	they	can	have	some	more	properties	of	their	own	in	addition.	So	if	we	have	a	
group	of	similar	objects	with	somewhat	different	properties,	then	we	can	implement	classes	in	such	
a	way	that	a	base	parent	class	has	child	classes	with	different	properties.	This	concept	aligns	very	
much	to	the	real-world	scenarios.

Object-oriented	design	takes	input	from	use	cases,	activity	diagrams,	user	interfaces	etc.

166  ◾  Software Project Management: A Process-Driven Approach

11.6.4 Systems Analysis
System	analysis	 is	 the	process	of	finding	 solutions	 in	 the	 form	of	a	 system	designed	 from	the	
inputs	coming	from	business	needs.	The	fundamental	question	addressed	in	system	analysis	is	
whether	a	business	scenario	can	be	converted	into	a	software	application,	so	that	the	user	can	
use	the	software	application	to	do	his	routine	business	tasks.	For	instance,	a	person	may	want	to	
access	his	bank	account	using	an	Internet	connection	to	the	online	Web	site	of	the	bank.	This	
scenario	calls	for	many	things	that	are	involved	in	the	whole	chain	of	objects	and	events.	The	
system	analysis	will	be	concerned	with	user	activities,	what	objects	on	the	Web	site	act	with	user	
activities,	how	these	objects	interact	with	the	underlying	software	system	of	the	bank,	and	how	
connections	are	made	between	the	user	and	the	Web	site	and	between	the	Web	site	and	the	bank	
system.	System	analysis	will	analyze	all	these	things.	Based	on	the	analysis,	a	system	model	can	
be	made	that	will	be	used	in	developing	the	application.

11.6.5 Entity Relationship Models
Entity	relationship	models	are	one	of	the	ways	to	represent	business	entities	and	their	relationships	
to	 each	other	 through	diagrams.	These	diagrams	 are	used	 for	 creating	databases	 and	database	
tables.	How	many	tables	are	needed	to	fulfill	the	needs	of	the	software	product,	how	these	tables	
are	related	to	each	other,	and	in	what	form	data	are	to	be	kept	inside	these	tables,	etc.	are	decided	
through	these	diagrams.

With	object-oriented	modeling,	 it	 is	possible	 to	 correlate	 each	object	with	 a	 corresponding	
database	object.	This	kind	of	representation	helps	to	make	a	clean	database	design.

11.6.6 Design Reuse
For	large	software	products,	the	design	can	be	broken	into	many	design	parts	representing	each	
module	of	 the	product.	Each	of	 these	design	modules	contain	a	 lot	of	design	 information	that	
can	be	represented	as	design	components.	Many	details	inside	these	design	components	can	be	
repeated	inside	different	components.	If	we	can	use	a	standard	method	of	representing	the	same	
information	for	these	components,	then	it	is	possible	to	use	these	pieces	of	information	in	many	
components	by	reusing	them.	It	will	reduce	effort	in	designing	the	product.	This	method	of	design	
reuse	is	known	as	internal	design	reuse.

A	more	potent	design	reuse	is	becoming	available	after	the	advent	of	the	open	source	para-
digm	and	SOA.	In	the	case	of	open	source,	the	design	reuse	is	in	fact	a	case	of	copying	existing	
design	and	then	using	it	exactly	as	 it	 is	or	modifying	it	 to	suit	your	needs.	But	 in	the	case	of	
SOA,	you	are	not	copying	or	modifying	a	software	design.	You	are	using	the	existing	design	as	
it	is.	You	are	also	not	buying	the	application/component	whose	design	you	want.	You	are	simply	
buying	a	service	from	the	owner	of	the	application/component	and	using	that	service	in	building	
your	application.	The	owner	of	that	application/component	publishes	full	details	as	to	how	to	
integrate	your	application	with	his	application/component.	The	full	interface	details	are	provided	
by	the	owner.	Using	this	 information,	you	design	your	own	application.	You	assume	as	 if	 the	
application/component	provided	as	a	service	is	available	with	you,	and	your	application	uses	this	
application/component.

SOA	is	indeed	leading	to	a	reuse	model	that	is	going	to	transform	the	world	of	computing	and	
our	lives	in	years	to	come.

Software Design Management  ◾  167

11.7 Software Design for Internet
Given	the	fact	that	the	majority	of	software	development	these	days	is	for	the	Internet,	it	is	impor-
tant	to	recognize	how	Internet	applications	are	different	from	traditional	software	products	and	
what	design	considerations	are	involved	in	developing	them.	In	these	days,	even	if	some	applica-
tion	being	developed	is	meant	to	be	running	inside	a	company	firewall,	it	makes	sense	to	structure	
it	like	an	Internet	application	for	future	use	as	well	as	for	maintenance	needs	(Figure	11.5).

Internet	applications	are	inherently	different.	Thus,	their	design	is	also	different	from	legacy	
client/server	applications.	Some	of	the	characteristics	that	impact	their	design	include:

	◾ They	are	used	by	a	large	number	of	people.	So	they	need	to	have	good	performance	built	
into	design.

	◾ Many	of	these	users	are	novice	when	it	comes	to	using	computers	and	software	applications.	
So	the	design	should	be	such	that	the	application	does	not	break	down	easily	even	when	the	
user	keeps	clicking	on	wrong	places	in	the	application.

	◾ They	are	information	providers	with	lots	of	content.
	◾ They	are	asynchronous.
	◾ The	front	end	is	a	browser	with	all	the	processing	is	done	at	the	back	end.
	◾ They	are	stateless.

Due	to	these	unique	features	of	Internet	applications,	they	need	a	different	kind	of	design.	For	
instance,	since	they	are	used	by	a	large	number	of	users	concurrently,	the	design	should	incorpo-
rate	provision	for	light	features,	which	will	not	fail	even	during	peak	loads	on	the	application	serv-
ers.	Similarly,	an	asynchronous	connection	facility	can	be	provided	by	designing	loosely	coupled	
components.	All	transactions	should	be	made	stateless,	so	that	if	any	transaction	is	in	progress	and	
the	connection	between	server	and	user	machine	breaks,	the	transaction	is	reverted	back.

11.8 Software Design Quality
Quality	in	the	design	of	the	software	application	can	be	built	by	adhering	to	best	practices	(soft-
ware	 engineering	 principles)	 in	 processes	 adopted	 for	 the	 design	 as	 well	 as	 making	 sure	 that	
requirements	have	been	converted	 into	good	design.	After	 the	design	 is	complete,	design	work	
products	(design	documents)	should	be	reviewed,	and	the	project	should	only	be	allowed	to	pro-
ceed	further	if	the	design	documents	pass	the	quality	criteria.	If	any	defect	is	found	during	review,	
then	it	should	be	rectified.

Stateless Asynchronous High
performance Robustness Security Content

design
Back end

processing

Characteristics of a good
software design for Internet

applications

Figure 11.5 Characteristics of a good software design for Internet applications.

168  ◾  Software Project Management: A Process-Driven Approach

From	 the	 qualitative	 point	 of	 view,	 the	 software	 design	 should	 adhere	 to	 attributes	 like	
reliability,	usability,	and	simplicity.	The	design	should	avoid	complexity,	inconsistency,	and	inef-
ficiency.	Complexity	issues	should	be	addressed	by	thinking	about	coupling	and	cohesion	issues	
related	to	relation	of	code	units,	modules,	function,	etc.	to	each	other.	Inefficiency	issues	should	
be	addressed	from	user	perspective	as	to	how	much	time	and	effort	they	may	need	to	take	to	per-
form	a	transaction	using	the	application.	Inconsistency	issues	can	be	addressed	by	having	a	solid	
architecture	on	which	units	and	other	program	units	should	be	based.

From	quantitative	perspective,	good	software	design	can	be	thought	of	in	terms	of	how	many	
procedure	calls	may	be	involved	in	a	transaction,	how	many	steps	need	to	be	taken	to	perform	a	
transaction,	etc.

Quality	control	for	software	designs	can	be	done	by	checking	the	design	after	it	is	built	for	
defects.	Removing	these	defects	will	ensure	better	quality	of	the	software	design	and	hence	the	
software	product.	Quality	assurance	for	software	designs	can	be	done	by	ensuring	that	there	is	a	
well	thought	out	process	exist	for	the	entire	design	exercise,	so	that	defect	injection	in	the	design	
can	be	prevented.

11.9 Concurrent Engineering in Software Design
Concurrent	engineering	deals	with	 taking	advance	 information	 from	an	earlier	 stage	 for	a	 later	
stage	in	project,	so	that	both	the	stages	can	be	performed	simultaneously.	Though	project	activities	
are	planned	ahead	in	time,	most	often	there	are	dependencies	between	a	previous	task	and	the	next	
task	in	line.	So,	the	latter	task	cannot	start	until	the	previous	task	finishes.	That	is	why	you	cannot	
start	developing	an	application	until	its	design	is	complete.	Moreover,	the	development	will	depend	
on	the	design.	Until	all	details	about	design	are	made,	you	cannot	start	development.	So,	the	devel-
opment	team	cannot	start	their	job	until	they	have	a	software	design	in	their	hands.

Still	some	aspects	about	latter	tasks	can	be	done	in	advance.	For	instance,	what	development	
language	will	be	used	and	how	the	application	can	be	partitioned	for	development	work	can	be	
decided	at	the	design	stage	itself.	Similarly,	how	maintenance	and	support	functions	will	be	done	
for	the	application	can	be	determined	at	the	design	stage	itself.	Knowing	in	advance	helps	in	tak-
ing	care	of	issues	that	may	arise	in	later	stages.

11.10 Design Life-Cycle Management
Software	requirements	go	through	design	process	steps	to	become	a	full-fledged	software	design.	
At	the	high	level,	system	analysis	is	performed.	System	analysis	includes	a	study	of	requirements	
and	finding	feasibility	of	converting	them	into	software	design.	Once	the	feasibility	is	done,	then	
the	actual	software	design	is	made.	The	software	design	is	in	the	form	of	activity	diagrams,	use	
cases,	prototypes,	etc.	Once	the	design	process	is	complete,	these	design	documents	are	verified	
and	validated	through	design	reviews.	Once	the	design	is	reviewed	and	approved,	then	the	design	
phase	is	over	(Figure	11.6).

11.11 Module Division (Refactoring)
Whenever	a	software	product	is	designed,	it	is	done	with	good	intentions.	Care	is	taken	to	ensure	
that	the	design	is	extensible,	so	that	when	customer	needs	increase	over	time,	the	product	can	be	
extended	to	take	care	of	those	increased	needs.	Unfortunately,	even	this	foresight	is	not	enough,	

Software Design Management  ◾  169

and	 it	becomes	difficult	 to	extend	 the	product	 functionality	 further.	 In	 such	cases,	 it	becomes	
necessary	to	change	the	internal	structure	of	software	code	without	changing	external	behavior	of	
the	software	product.	To	do	this,	one	technique	is	employed,	which	is	known	as	refactoring.	Using	
refactoring,	 the	 internal	design	of	a	piece	of	software	code	 is	 improved	by	decreasing	coupling	
among	classes	of	objects	and	increasing	cohesion	among	classes.	Refactoring	is	very	similar	to	the	
concept	of	normalization	in	relational	databases	(Figure	11.7).

Some	of	the	indications	of	code	analysis	that	may	suggest	that	the	code	needs	refactoring	
include	duplicate	code	at	many	places,	using	long	methods,	a	large	class	with	many	concepts,	
the	 need	 to	 pass	 a	 large	 number	 of	 parameters,	 too	 much	 communication	 between	 classes	
resulting	from	a	large	number	of	calls	for	methods	in	code,	and	message	chaining	by	calling	
one	 method	 which	 in	 turn	 calls	 another	 method.	 When	 software	 code	 starts	 having	 these	
characteristics,	then	it	is	better	to	go	for	code	cleaning	or	refactoring.	Going	for	refactoring	
will	be	justified	by	savings	in	time	due	to	better	code	reuse	and	make	it	easier	to	maintain	code	
and	scale	up	the	product.

Refactoring	can	be	achieved	by	dividing	cumbersome	classes	into	smaller	classes	that	can	be	
managed	and	used	in	a	better	way.	In	the	new	code,	the	functions	will	be	the	same,	but	many	of	
the	functions	will	be	moved	now	into	new	classes.

On	agile	projects,	the	project	team	builds	the	software	product	without	making	an	elaborate	
design	from	start.	One	product	module	is	built	after	another	in	the	subsequent	project	iterations.	
This	fact	makes	it	necessary	to	adjust	the	software	design	as	the	product	evolves	in	this	fashion.	
The	adjustment	in	the	software	design	in	such	cases	is	done	using	refactoring.

Requirement
specification

System
analysis

Activity
diagram

Use case model

Prototype

Design
verification and

validation

Figure 11.6 Software design life cycle.

Duplicate
code

Long
methods

Large
number
of call

parameters

Cases requiring
refactoring

Message
chaining

Classes
with many
concepts

Large
class size

Figure 11.7 Characteristics of a software product code that requires refactoring.

170  ◾  Software Project Management: A Process-Driven Approach

11.12 Module Coupling
One	area	similar	to	refactoring	is	coupling	between	modules.	As	products	mature	and	more	and	
more	lines	of	code	are	added	to	the	existing	product,	coupling	between	modules	tends	to	increase.	
This	has	a	profound	impact	when	any	changes	in	code	are	required.	Changes	in	code	result	in	
more	than	normal	occurrence	of	defects	as	dependency	between	modules	keeps	increasing	with	
increase	in	the	size	of	the	product.

To	reduce	the	chances	of	product	defects,	it	is	necessary	to	reduce	the	number	of	calls	among	
different	modules	and	classes.	SOA	architecture	provides	great	help	here.	SOA	architecture	essen-
tially	 promotes	 loose	 coupling,	 and	 this	 implies	more	 or	 less	 self-contained	 classes	 having	 less	
dependency	on	other	classes.

Increasing	 module	 coupling	 with	 increase	 in	 size	 of	 software	 product	 is	 always	 a	 concern.	
Frequent	refactoring	can	help	in	reducing	module	coupling	among	classes.

11.13 Case Study
In	the	previous	chapter,	we	have	seen	how	requirements	for	the	project	were	made.	Now	we	will	
see	 how	 the	 software	 design	 was	 made	 for	 appointment	 scheduling	 component.	 The	 complete	
design	consisted	of	user	interface	decision	flow	diagrams,	activity	diagrams,	use	cases,	and	entity	
relationship	diagrams.	We	will	 see	 the	 logic	 implemented	 in	 the	 activity	diagram	 for	 loading/
unloading	calculations	for	trucks	in	this	chapter.

11.13.1 Software Design for Loading Calculation
The	logic	for	the	loading	calculation	can	be	represented	by	a	piece	of	pseudo-logic.	It	is	presented	here.

If	variable	load	time	then
	 	 	 	 If	calculated	load	time	>	Max	reservation	time	then
	 	 	 	 	 	 	 	 	load	time	=	max	reservation	time
	 	 	 	 elseif	calculated	load	time	<	Min	reservation	time	then
	 	 	 	 	 	 	 	 	load	time	=	min	reservation	time
	 	 	 	 else	load	time	=	calculated	load	time
	 else	load	time	=	fixed	load	time
end	if
elseIf	default	receiving	load	time	is	true	then
	 if	default	receiving	load	time	=	fixed	load	time	then
	 	 	 	 load	time	=	fixed	default	receiving	load	time
	 elseif	default	receiving	load	time	=	variable	load	time	then
	 	 	 	 If	calculated	load	time	>	Max	reservation	time	then
	 	 	 	 	 	 				 		load	time	=	max	reservation	time
	 	 	 	 elseif	calculated	load	time	<	Min	reservation	time	then
	 	 	 	 	 	 				 		load	time	=	min	reservation	time
	 	 	 	 else	load	time	=	calculated	load	time
	 	 	 	 end	if
	 end	if
else	load	time	=	default	reservation	time
endif

Software Design Management  ◾  171

In	this	pseudo-logic,	some	specialized	terms	are	used	related	to	the	domain	for	which	the	applica-
tion	was	made.	Those	terms	are	explained	here.

Variable	load	time	=	If	the	loading/receiving	time	for	a	truck	varies	with	some	factors	like	goods	
to	be	loaded/received	and	truck	types,	then	loading/receiving	time	will	be	variable	and	needs	to	
be	calculated.

Fixed	load	time	=	If	the	loading/receiving	time	for	a	truck	does	vary	irrespective	of	factors	like	
goods	to	be	loaded/received	and	truck	type,	then	the	load	time	is	fixed,	and	it	is	always	stated.

Max	reservation	time	=	reservation	time	on	a	dock	door	is	given	as	minimum	or	maximum	reser-
vation	time.	Max	reservation	time	is	the	upper	limit	of	this	timeframe.

Min	reservation	time	=	opposite	of	Max	reservation	time	(lower	limit	of	timeframe).

Default	receiving	load	time	=	each	dock	door	or	a	group	of	dock	doors	is	given	an	option	of	what	
could	be	the	loading/receiving	time.	The	options	are	fixed	or	variable	load	time.

The	activity	diagram	for	the	loading/receiving	load	time	calculation	is	given	in	Figures	11.8	
and	11.9.	Please	note	that	the	calculation	for	both	loading	and	receiving	is	exactly	the	same.

Load time calculation

Load time = Fixed
load time

If load
time xed?

If calculated load
time > Maximum
reservation time?

Load time = Maximum
reservation time

Load time = Minimum
reservation time

If calculated load
time < Maximum
reservation time?

Load time = Calculated time

Yes

Yes

Yes

No

No

No

Figure 11.8 Load time calculation logic.

172  ◾  Software Project Management: A Process-Driven Approach

11.13.2 Quality Assurance
The	completed	software	design	is	reviewed	for	flaws,	maintainability,	implementability,	and	test-
ability.	If	a	design	is	not	 implementable	 into	source	code,	then	it	must	be	modified	to	make	it	
implementable.

11.14 Chapter Summary
Software	design	is	carried	out	in	two	parts.	First,	a	high	level	design	is	made.	At	this	stage,	a	high	
level	representation	of	the	software	product	to	be	made	is	carried	out.	The	high	level	design	con-
tains	the	macrostructure	of	the	product,	including	division	of	the	product	into	modules,	relation	
between	these	modules	for	the	software	internal	structure.	Moreover,	at	this	stage,	decisions	about	
the	data	layer,	application	layer,	and	presentation	layer	are	made.

Once	we	have	the	high	level	design,	then	the	finer	level	of	details	about	the	software	product	is	
done	during	low	level	design.	At	this	stage,	decisions	about	how	much	abstraction	and	encapsula-
tion	will	be	made	at	the	class	level,	and	how	functionality	can	be	achieved	by	class	instantiation	if	
object-oriented	design	is	chosen.

Receiving time calculation

Receiving time =
Fixed receiving time

If receiving
time
xed?

If calculated
receiving time > Maximum

reservation time?

Receiving time = Maximum
reservation time

Receiving time = Minimum
reservation time

If calculated
receiving time < Maximum

reservation time?

Receiving time = Calculated time

Yes

Yes

Yes

No

No

No

Figure 11.9 Receiving time calculation logic.

Software Design Management  ◾  173

For	quality	assurance	at	the	design	level,	a	design	review	should	be	conducted	to	check	if	the	
software	design	has	any	defects.	The	defects	could	be	anything	from	outright	design	flaw	to	miss-
ing	of	any	requirement	specifications	in	the	design	or	not	representing	the	requirement	specifica-
tion	in	a	proper	way.	A	design	defect	could	also	be	in	terms	of	how	the	design	is	not	testable	or	
maintainable.	If	any	defects	are	found,	then	they	should	be	rectified.

Review Questions
11.1	 What	is	a	software	design?
11.2	 What	constraints	are	considered	while	making	the	software	design?
11.3	 What	techniques	can	be	used	for	making	a	software	design?
11.4	 How	can	quality	of	a	software	design	be	ensured?
11.5	 What	is	a	design	life	cycle?
11.6	 What	are	the	design	methods?

Recommended Readings
	 1.	 H.	Zhu	(2005)	Software Design Methodology,	Butterworth-Heinemann,	New	York.
	 2.	 R.	Mall	(2005)	Fundamentals of Software Engineering,	Prentice	Hall	Learning	India,	New	Delhi,	India.
	 3.	 M.	Rosen,	B.	Lublinsky,	K.	T.	Smith,	M.	J.	Balcer	(2008)	Applied SOA: Service-Oriented Architecture

and Design Strategies,	Wiley,	New	York.
	 4.	 R.	T.	Futrell,	D.	F.	Shafer,	L.	Shafer	(2002)	Quality Software Project Management,	Prentice	Hall	PTR,	

Upper	Saddle	River,	NJ.
	 5.	 H.	Fujita,	D.	M.	Pisanelli	(2007)	New Trends in Software Methodologies, Tools and Techniques,	IOS	Press,	

Amsterdam,	the	Netherlands.
	 6.	 D.	M.	Buede	(2009)	The Engineering Design of Systems: Models and Methods,	Wiley,	Hoboken,	NJ.
	 7.	 G.	A.	Lancaster	(2001)	Software Design and Development,	Pascal	Press,	New	South	Wales,	Australia.
	 8.	 V.	Grimm,	S.	F.	Railsback	(2005)	Individual-Based Modeling and Ecology,	Preinceton	University	Press,	

Princeton,	NJ.
	 9.	 S.	L.	Pfleeger,	J.	M.	Atlee	(2006)	Software Engineering: Theory and Practice,	Prentice	Hall,	Upper	Saddle	

River,	NJ.
	 10.	 A.	J.	Lattanze	(2008)	Architecting Software Intensive Systems: A Practitioners Guide,	CRC	Press,	Boca	

Raton,	FL.
	 11.	D.	Phillips	 (2004)	The Software Project Manager’s Handbook: Principles That Work at Work,	Wiley,	

New	York.

175

Chapter 12

Software Construction

In.the.previous.chapter,.we.learned

	◾ What	is	software	design?
	◾ What	are	the	considerations	for	constructing	sound	software?
	◾ What	techniques	are	used	to	design	software?
	◾ How	is	quality	assurance	done	during	software	design?

In.this.chapter,.we.will.learn

	◾ What	is	software	construction?
	◾ What	are	the	considerations	for	sound	software	construction?
	◾ What	techniques	are	used	to	construct	software?
	◾ How	is	quality	assurance	done	during	software	construction?

12.1 Introduction
A	layman	believes	that	software	construction	is	the	entire	software	development	process.	But,	in	
fact,	 it	 is	 just	one	of	 the	crucial	 tasks	 in	 software	development;	 software	 requirement	manage-
ment,	 software	design,	 software	 testing,	 and	 software	deployment	are	all	 equally	crucial	 tasks.	
Furthermore,	the	process	of	software	construction	itself	consists	of	many	tasks;	it	not	only	includes	
software	coding,	but	also	unit	testing,	integration	testing,	reviews,	and	analysis.

Construction	is	one	of	the	most	labor	intensive	phases	in	the	software	development	life	cycle.	
It	comprises	30%	or	more	of	the	total	effort	 in	software	development.	What	a	user	sees	as	the	
product	at	the	end	of	the	software	development	life	cycle	is	merely	the	result	of	the	software	code	
that	was	written	during	software	construction.

176  ◾  Software Project Management: A Process-Driven Approach

Due	to	the	labor	intensive	nature	of	the	software	construction	phase,	the	work	is	divided	not	
only	among	developers,	but	also	small	teams	are	formed	to	work	on	parts	of	the	software	build.	
In	fact,	to	shrink	the	construction	time,	many	distributed	teams,	either	internal	or	through	con-
tractors,	are	deployed.	The	advantage	to	this	is	that	these	project	teams	do	the	software	coding	
and	other	construction	work	in	parallel	with	each	other	and	thus	the	construction	phase	can	be	
collapsed.	This	parallel	development	is	known	as	concurrent	engineering,	which	is	discussed	in	
Chapter	9.

Constructing	 an	 industry	 strength	 software	 product	 of	 a	 large	 size	 requires	 stringent	 cod-
ing	standards	[1].	The	whole	process	of	construction	should	follow	a	proven	process	so	that	the	
produced	code	is	maintainable,	testable,	and	reliable.	The	process	itself	should	be	efficient	so	that	
resource	utilization	can	be	optimized	and	thus	cost	of	construction	can	be	kept	at	a	minimum.

12.2 Coding Standards
Developers	are	given	software	design	specifications	 in	 the	 form	of	use	cases,	flow	diagrams,	UI	
mock	ups,	etc.,	and	they	are	supposed	to	write	a	code	so	that	the	built	software	matches	these	speci-
fications.	Converting	the	specifications	into	software	code	is	totally	dependent	on	the	construction	
team.	How	well	they	do	it	depends	on	their	experience,	skills,	and	the	process	they	follow	to	do	
their	job.	Apart	from	these	facilities,	they	also	need	some	standards	in	their	coding	so	that	the	work	
is	fast	as	well	as	has	other	benefits	like	maintainability,	readability,	and	reusability	(Figure	12.1).

At	any	time,	a	code	written	by	a	developer	will	always	be	different	from	that	written	by	any	
other	developer.	This	poses	a	challenge	 in	 terms	of	comprehending	 the	code	while	 reusing	 the	
code,	maintaining	it,	or	simply	reviewing	it.	A	uniform	coding	standard	across	all	construction	
teams	working	on	the	same	project	will	make	sure	that	these	 issues	can	be	minimized	if	not	
eliminated	(Figure	12.2).

Software design

User interface Conversion

Using coding
standards,

techniques,
etc.

Source code
production
(software
product)

Entity
relationship

diagram

Use cases

Figure 12.1 Source code production (conversion) from software design.

Modularity Clarity Reliability

Software construction
characteristics

Safety Simplicity Maintainability

Figure 12.2 Software construction characteristics.

Software Construction  ◾  177

Some	of	the	coding	standards	include	standards	for	code	modularity,	clarity,	simplicity,	reli-
ability,	safety,	and	maintainability.

12.2.1 Modularity
The	produced	software	code	should	be	modular	in	nature	[2].	Each	major	function	should	be	con-
tained	inside	a	software	code	module.	The	module	should	contain	not	only	structure,	but	it	should	
also	process	data.	Each	time	a	particular	functionality	is	needed	in	the	software	construction,	it	
can	be	implemented	using	that	particular	module	of	software	code.	This	increases	software	code	
reuse	and	thus	enhances	productivity	of	developers	and	code	readability.

12.2.2 Clarity
The	produced	code	should	be	clear	for	any	person	who	would	read	the	source	code	[3].	Standard	
naming	conventions	should	be	used	so	that	the	code	has	ample	clarity.	There	should	be	sufficient	
documentation	inside	the	code	block,	so	that	anybody	reading	the	code	could	understand	what	
a	piece	of	code	is	supposed	to	do.	There	should	also	be	ample	white	spaces	in	the	code	blocks,	so	
that	no	piece	of	code	should	look	crammed.	White	spaces	enhance	readability	of	written	code.

12.2.3 Simplicity
The	source	code	should	have	simplicity	and	no	unnecessary	complex	logic;	improvisation	should	be	
involved,	if	the	same	functionality	can	be	achieved	by	a	simpler	piece	of	source	code	[4].	Simplicity	
makes	the	code	readable,	and	will	help	in	removing	any	defects	found	in	the	source	code.

Simplicity	of	written	code	can	be	enhanced	by	adopting	best	practices	for	many	programming	
paradigms.	For	instance,	in	the	case	of	object-oriented	programming,	abstraction	and	informa-
tion	hiding	add	a	great	degree	of	simplicity.	Similarly,	breaking	the	product	to	be	developed	into	
meaningful	pieces	that	mimic	real	life	parts	makes	the	software	product	simple.

12.2.4 Reliability
Reliability	is	one	of	the	most	important	aspects	of	industry	strength	software	products	[5].	If	the	software	
product	is	not	reliable	and	contains	critical	defects,	then	it	will	not	be	of	much	use	for	end	users.	Reliability	
of	source	code	can	be	increased	by	sticking	to	the	standard	processes	for	software	construction.	During	
reviews,	if	any	defects	are	found,	they	can	be	fixed	easily	if	the	source	code	is	neat,	simple,	and	clear.

Reliable	source	code	can	be	achieved	by	first	designing	the	software	product	with	future	enhance-
ment	in	consideration	as	well	as	by	having	a	solid	structure	on	which	the	software	product	is	to	be	
built.	When	writing	pieces	of	 source	 code	based	on	 this	 structure,	 there	will	 be	 little	 chance	of	
defects	entering	into	the	source	code.	Generally	during	enhancements,	the	existing	structure	is	not	
able	to	take	load	of	additional	source	code	and	thus	the	structure	becomes	shaky.	If	the	development	
team	feels	that	this	is	the	case,	then	it	is	far	better	to	restructure	the	software	design	and	then	write	a	
code	based	on	the	new	structure	than	to	add	a	spaghetti	code	on	top	of	a	crumbling	structure.

12.2.5 Safety
Safety	is	important,	considering	that	software	products	are	used	by	many	industries	where	human	
lives	are	concerned,	and	that	human	lives	could	be	in	danger	because	of	faulty	machine	opera-
tion	or	exposure	to	a	harmful	environment	[5].	In	these	industries,	the	software	product	must	be	

178  ◾  Software Project Management: A Process-Driven Approach

ensured	to	operate	correctly	and	chances	of	error	are	less	than	0.00001%.	Industries	like	medicine	
and	 healthcare,	 road	 safety,	 hazardous	 material	 handling	 need	 foolproof	 software	 products	 to	
ensure	that	either	human	lives	are	saved	(in	case	of	medicine	and	healthcare)	or	human	lives	are	
not	in	danger.	Here	the	software	code	must	have	inbuilt	safety	harnesses.

12.2.6 Maintainability
As	has	been	pointed	out	after	several	studies,	maintenance	costs	are	more	than	70%	of	all	costs	
including	 software	 development,	 implementation,	 and	 maintenance	 [6].	 To	 make	 sure	 that	
maintenance	costs	are	under	limit	during	software	construction,	it	should	be	made	sure	that	the	
source	code	is	maintainable.	It	will	be	easy	to	change	the	source	code	for	fixing	defects	during	
maintenance.

12.3 Coding Framework
Like	most	construction	work,	you	need	to	set	up	an	infrastructure	based	on	which	construction	
can	take	place.	For	software	construction,	you	need	to	have	a	coding	framework	that	will	ensure	a	
consistent	coding	production	with	standard	code	that	will	be	easy	to	debug	and	test	[7].	In	object	
oriented	programming,	what	base	classes	are	to	be	made,	which	will	be	used	throughout	construc-
tion,	is	a	subject	that	is	part	of	the	coding	framework.	In	general,	coding	frameworks	allow	con-
struction	of	the	common	infrastructure	of	basic	functionality	which	can	be	extended	later	by	the	
developers.	This	way	of	working	increases	productivity	and	allows	for	a	robust	and	well	structured	
software	product.	It	is	similar	in	approach	to	house	building	where	a	structure	is	built	based	on	a	
solid	foundation.

12.4 Reviews (Quality Control)
It	is	estimated	that	almost	70%	of	software	defects	arise	from	faulty	software	code.	To	com-
pound	this	problem,	software	construction	is	the	most	labor	intensive	phase	in	software	devel-
opment.	Any	construction	rework	means	wasting	a	lot	of	effort	already	put	in.	Moreover,	it	is	
also	a	fact	that	it	is	cheaper	to	fix	any	defects	found	during	construction	at	the	phase	level	itself.	
If	those	defects	are	allowed	to	go	in	software	testing	(which	is	the	next	phase),	then	fixing	those	
defects	will	become	costlier	[8].	That	is	why	review	of	the	software	code	and	fixing	defects	is	
very	 important.	 There	 are	 some	 techniques	 available	 like	 deskchecks	 [9],	 walkthroughs	 [10],	
code	reviews,	inspections,	etc.	that	ensure	quality	of	the	written	code	(Figure	12.3).

Source code Deskchecks

Final
inspection Code reviews

Walkthroughs

Figure 12.3 Source code review methods and their operation sequence.

Software Construction  ◾  179

These	different	kinds	of	reviews	are	done	at	different	stages	in	software	code	writing.	They	also	
serve	different	purposes.	While	inspections	provide	the	final	go/no	go	decision	for	approval	of	a	
piece	of	code,	other	methods	are	less	formal	and	are	meant	for	removing	defects	instead	of	deciding	
whether	a	piece	of	code	is	good	enough	or	not.

12.4.1 Deskchecks (Peer Reviews)
Deskchecks	are	employed	when	a	complete	review	of	the	source	code	is	not	important.	Here,	the	
developer	sends	his	piece	of	code	to	the	designated	team	members.	These	team	members	review	
the	code	and	send	feedback	and	comments	to	the	developer	as	suggestions	for	improvement	in	the	
code.	The	developer	reads	those	feedbacks	and	may	decide	to	incorporate	or	to	discard	those	sug-
gestions.	So	this	form	of	review	is	totally	voluntary.	Still,	it	is	a	powerful	tool	to	eliminate	defects	
or	improve	software	code.

12.4.2 Walkthroughs
Walkthroughs	are	formal	code	reviews	initiated	by	the	developer.	The	developer	sends	an	invi-
tation	for	walkthrough	to	team	members.	At	the	meeting,	the	developer	presents	his	method	
of	coding	and	walks	through	his	piece	of	code.	The	team	members	then	make	suggestions	for	
improvement,	if	any.	The	developer	then	can	decide	to	incorporate	those	suggestions	or	discard	
them.

12.4.3 Code Reviews
Code	reviews	are	one	of	the	most	formal	methods	of	reviews.	The	project	manager	calls	for	a	meet-
ing	for	code	review	of	a	developer.	At	the	meeting,	team	members	review	the	code	and	point	out	
any	code	errors,	defects,	or	improper	code	logic	for	likely	defects.	An	error	log	is	also	generated	
and	is	reviewed	by	the	entire	team.

12.4.4 Inspections
Code	inspections	are	final	reviews	of	software	code	in	which	it	is	decided	whether	to	pass	a	piece	
of	code	for	inclusion	into	the	main	software	build.

12.5 Coding Methods
Converting	design	into	optimal	software	construction	is	a	very	serious	topic	that	has	generated	
tremendous	interest	over	the	years.	Many	programming	and	coding	methods	were	devised	and	
evolved	as	a	result.	As	is	well	known	in	the	industry,	the	early	software	products	were	of	small	
size	due	 to	 limited	hardware	 capacity.	With	 increasing	hardware	 capacity,	 the	 size	of	 software	
products	has	been	increasing.	Software	product	size	affects	the	methods	that	can	be	used	to	con-
struct	specific	sized	software	products.	Advancement	in	the	field	of	computer	science	also	allows	
discovery	of	better	construction	methods.	To	address	needs	of	different	sized	software	products	in	
tandem	with	advancement	in	computer	science,	different	programming	techniques	evolved.	These	
include	 structured	programming,	object-oriented	programming,	 automatic	 code	generation,	
test-driven	development,	pair	programming,	etc.

180  ◾  Software Project Management: A Process-Driven Approach

12.5.1 Structured Programming
Structured	programming	evolved	after	mainframe	computers	became	popular	 [11].	Mainframe	
computers	 offered	 vast	 availability	 of	 computing	power	 compared	 to	primitive	 computers	 that	
existed	before.	Using	structured	programming,	large	programs	could	be	constructed	that	could	
be	used	for	making	large	commercial	and	business	applications.	Structured	programming	enabled	
programmers	to	store	large	pieces	of	code	inside	procedures	and	functions.	These	pieces	of	code	
could	be	called	by	any	other	procedures	or	functions.	This	enabled	programmers	to	structure	their	
code	in	an	efficient	way.	Code	stored	inside	procedures	could	be	reused	anywhere	in	the	applica-
tion	by	calling	it.

12.5.2 Object-Oriented Programming
In	structured	programming,	data	and	structured	code	are	separate	and	accordingly	are	modeled	
separately.	This	 is	 an	unnatural	way	of	 converting	 real	 life	 objects	 into	 software	 code	because	
objects	contain	both	data	and	structure.	Widely	used	as	an	example	in	object-oriented	program-
ming	books,	a	car	consists	of	a	chassis,	an	engine,	four	wheels,	body,	and	transmission.	Each	of	
these	 objects	 has	 some	 specific	properties	 and	has	 specific	 functions.	When	 a	 software	 system	
is	modeled	to	represent	real-world	objects,	both	data	and	structure	are	taken	care	of	 in	object-
oriented	programming.	From	outside	of	a	class	that	is	made	to	represent	an	object,	only	the	behav-
ior	of	the	object	is	visible	or	perceived.	Unnecessary	details	about	the	object	are	hidden,	and	in	
fact	are	not	available	from	outside.	This	kind	of	representation	of	objects	makes	them	robust,	and	
a	system	built	on	using	them	has	relatively	few	problems	[12].

12.5.3 Automatic Code Generation
Constructing	and	generating	software	code	is	very	labor	intensive	work.	So	there	has	always	been	
fascination	about	automatic	generation	of	software	code.	Unfortunately,	this	is	still	a	dream.	Some	
CASE	and	modeling	tools	are	available	that	generate	software	code.	But	they	are	not	sophisticated.	
They	are	also	not	complete.	Then	there	are	business	analyst	platforms	developed	by	many	ERP	
software	 vendors	 that	 generate	 code	 automatically	when	analysts	 configure	 the	product.	These	
analyst	platforms	are	first	built	using	any	of	the	software	product	development	methodologies.	The	
generated	code	is	specific	to	the	platform	and	runs	on	the	device	(hardware	and	software	environ-
ment)	for	which	the	code	is	generated.

Generally,	any	code	consists	of	many	construction	unit	types.	Some	of	these	code	types	include	
control	statements	such	as	loop	statements,	if	statements,	etc.,	and	database	access,	etc.	Generating	
all	of	the	software	code	required	to	build	a	software	application	is	still	difficult.	But	some	compa-
nies	like	Sun	Microsystems	are	working	to	develop	such	a	system.

12.5.4 Software Code Reuse
Many	techniques	have	evolved	to	reduce	the	labor	intensive	nature	of	writing	source	code.	Software	
code	reuse	is	one	such	technique.	Making	a	block	of	source	code	to	create	a	functionality	or	gen-
eral	utility	library	and	using	it	at	all	places	in	the	source	code	wherever	this	kind	of	functionality	
or	utility	is	required	is	an	example	of	code	reuse.	Code	reuse	in	procedural	programming	tech-
niques	is	achieved	by	creating	special	functions	and	utility	libraries	and	using	them	in	the	source	
code.	In	object-oriented	programming,	code	reuse	is	done	at	a	more	advanced	level.	The	classes	

Software Construction  ◾  181

containing	functions	and	data	themselves	can	not	only	be	reused	in	the	same	way	as	functions	and	
libraries,	but	the	classes	can	also	be	modified	by	way	of	creating	child	classes	and	using	them	in	
the	source	code	(Figure	12.4).

Apart	 from	creating	and	using	 libraries	 and	general	purpose	classes	 for	 code	 reuse,	 a	more	
potent	code	reuse	source	has	evolved	recently.	It	is	known	as	“service	oriented	architecture”	(SOA).	
More	about	SOA	can	be	found	in	Chapter	25.

12.5.5 Test-Driven Development
This	concept	 is	used	with	 iteration-based	projects	 especially	with	 eXtreme	Programming	 tech-
nique.	Before	developers	start	writing	source	code,	they	create	test	cases	and	run	the	tests	to	see	if	
they	run	properly	and	their	logic	is	working.	Once	it	is	proved	that	their	logic	is	perfect,	only	then	
they	write	the	source	code.	So	here,	tests	drive	software	development,	and	hence	it	is	appropriately	
named	test-driven	development.

12.5.6 Pair Programming
Pair	 programming	 is	 a	 quality	 driven	 development	 technique	 employed	 in	 the	 eXtreme	
Programming	development	model.	Here,	each	development	 task	 is	assigned	to	 two	developers.	
While	one	developer	writes	the	code,	the	other	developer	sits	behind	him	and	guides	him	through	
the	requirements	(functional,	nonfunctional).	When	it	is	the	turn	of	the	other	developer	to	write	
the	code,	the	first	developer	sits	behind	him	and	guides	him	on	the	requirements.	So	developers	
take	turns	for	the	coding	and	coaching	work.	This	makes	sure	that	each	developer	understands	the	
big	picture	and	helps	them	to	write	better	code	with	lesser	defects.

12.6 Configuration Management
Configuration	management	plays	an	important	role	in	the	construction	phase.	Due	to	changes	
in	requirements	and	design,	an	already	developed	source	code	needs	to	be	changed.	So	it	happens	
that	the	development	team	ends	up	with	many	versions	of	a	source	code	during	the	project.	If	the	
version	control	management	is	not	handled	properly,	then	many	developers	may	start	working	on	
a	wrong	version	of	source	code,	and	thus	a	lot	of	rework	may	be	needed	in	the	end.	There	is	one	
more	dimension	to	configuration	management	for	the	construction	phase.	During	construction,	
many	software	builds	are	maintained	for	different	versions	of	the	product	being	developed.	These	
builds	can	break	if	a	bad	piece	of	code	is	checked	into	the	build	by	any	developer.	When	the	build	
is	broken,	then	no	other	developer	can	check	in	his	code.	Thus,	development	is	halted	until	the	

Libraries Open source

Software code
reuse methods

Software as
a service Inheritance

Figure 12.4 Code reuse methods.

182  ◾  Software Project Management: A Process-Driven Approach

build	is	rebuilt	with	the	correct	code.	Imagine	what	may	happen	in	the	case	of	distributed	teams	
located	at	far-flung	locations	with	different	time	zones	and	a	central	build	is	being	maintained.	
It	will	be	difficult	to	communicate	and	manage	the	build	process	in	such	a	scenario.	In	such	sce-
narios,	smoke	test	application	can	be	deployed,	which	can	run	whenever	a	new	code	is	checked-in	
in	the	build.	If	the	smoke	test	fails,	that	means	the	build	has	failed	and	thus	the	automated	system	
can	e-mail	the	build	information	to	concerned	people.	If	the	build	fails,	then	the	developer	who	
had	checked-in	in	the	code	gets	the	message	and	immediately	tries	to	fix	the	build.	Once	the	build	
is	fixed,	then	other	developers	can	check-in	their	code.

Thus,	configuration	management	plays	an	important	role	in	construction	phase.

12.7 Unit Testing
Whenever	a	developer	writes	a	piece	of	code,	he	feels	confident	that	he	has	written	a	clean	code	
and	that	it	does	not	need	testing.	But	most	of	the	time	he	is	wrong.	It	is	because	no	source	code	is	
perfect,	especially	the	first	time.	Only	after	some	rounds	of	review	it	becomes	perfect.	At	the	same	
time,	it	is	very	difficult	to	review	one’s	own	code.	That	is	why	a	quality	control	measure	is	taken	in	
form	of	unit	testing	to	ensure	that	developers	test	their	codes	themselves	and	only	then	can	submit	
their	code	if	the	code	passes	the	unit	tests	(Figure	12.5).

For	unit	testing,	generally	developers	are	comfortable	as	long	as	there	are	no	changes	required	
(due	to	change	in	design	or	requirements)	in	their	code.	But	once	some	change	takes	place	in	the	
code	somewhere,	other	things	change.	What	would	be	the	impact	of	that	change	on	other	parts	of	
the	software	product	under	development?	Similarly	what	impact	will	it	have	on	their	own	code	if	
changes	take	place	in	other	modules	being	written	by	other	people?	Generally,	it	is	one	of	the	most	
challenging	situations	in	software	construction	to	find	the	impact	of	change	on	other	parts	of	the	
product	under	development.	Such	situations	call	for	unit	testing	of	the	written	code,	and	no	piece	
of	code	should	go	to	build	without	doing	this.	A	formal	and	rigid	adherence	to	unit	tests	should	
be	a	must	for	all	source	codes	being	written	and	no	liberty	should	be	allowed.

12.8 Integration Testing
Most	 software	development	 is	 done	 after	partitioning	 the	 software	 application	under	develop-
ment	first	and	then	allocating	it	to	distributed	teams.	Generally,	modules	of	code	are	developed	
first.	Later,	they	need	to	be	integrated	with	each	other	to	make	a	complete	software	application.	
Modules	are	integrated	with	each	other	through	open	interfaces.	Whether	or	not	the	integration	

New code

Unit testing
required in cases

Code change
by developer

Code change
in other
modules

Figure 12.5 Scenarios when unit testing must be done.

Software Construction  ◾  183

is	working	fine,	it	must	be	tested	to	ensure	integration	has	been	achieved.	This	kind	of	testing	is	
known	as	integration	testing.

Integration	 testing	 has	 been	 becoming	 more	 and	 more	 important,	 as	 most	 software	 being	
developed	is	modular	in	nature.	With	the	advent	of	SOA,	which	is	all	about	loosely	coupled	soft-
ware	components,	integration	testing	has	become	even	more	important.

12.9 Software Construction Artifacts
The	software	construction	phase	is	one	of	the	most	labor	intensive	phases	in	software	development	
cycle.	This	phase	generates	the	complete	source	code	of	the	application.	Apart	from	source	code,	
documentation	is	also	made	so	that	when	any	maintenance	is	required	on	the	built	application,	the	
source	code	could	be	well	understood,	and	changing	any	source	code	will	be	easy.	Review	reports	
are	also	generated	after	reviews	are	conducted.

12.10 Software Construction in Iterative Model
Iteration-based	development	for	any	project	signifies	a	lesser	extent	of	risk	and	perfection	in	craft.	
Iterative	development	is	definitely	a	good	approach,	as	it	provides	an	opportunity	to	spread	the	risk	
over	many	iterations	and	thus	helps	in	stopping	any	catastrophe	to	occur.	Since	software	design	
will	be	based	on	just	a	handful	of	requirements,	it	helps	to	avoid	complexity	in	the	construction	
work.	The	main	bug	bear	of	software	construction	is	complexity.	Sans	complexity,	development	
work	would	be	more	productive	and	will	have	a	lower	number	of	defects	(Figure	12.6).

Using	 techniques	 like	 pair	 programming,	 test-driven	 development,	 continuous	 integration,	
formal	reviews,	etc.,	ensures	that	good	quality	is	achieved	from	the	very	beginning	of	construction	
and	keep	the	same	level	of	quality	throughout	the	development	process.

12.11 Case Study
In	the	construction	management	part	of	our	continuing	case	study,	we	will	see	how	the	software	
product	source	code	was	being	written	as	well	other	activities	performed.

Here	are	some	key	statistics	about	the	project:

Number	of	developers:	21
Average	 speed	 of	 writing	 source	 code	 (developer	 productivity):	 2000	 SLOC	 per	 month,	 per	
developer

Pair
programming

Test driven
development

Continuous
integration

Construction quality techniques
in iterative models

Formal
reviews

Figure 12.6 Quality-driven construction in iterative development.

184  ◾  Software Project Management: A Process-Driven Approach

Total	source	code	written	in	one	iteration:	126,090	SLOC
Total	source	code	written	in	the	whole	project:	475,901	SLOC
Number	of	defects	fixed	in	one	iteration:	121
Number	of	defects	fixed	in	the	project:	434

12.11.1 Continuous Integration
Continuous	integration	of	source	code	is	an	important	aspect	of	all	software	development	work	
at	the	SaaS	vendor.	The	central	source	code	build	is	continuously	integrated	from	the	source	code	
developed	by	all	development	teams.	Once	any	developer	checks	and	tests	his	own	code	for	unit	
and	integration	on	his	own	local	build	of	the	software	product,	he	checks	in	his	code	on	the	central	
build.	This	exercise	is	depicted	in	Figure	12.7.

Some	other	highlights	of	the	product	development	effort	for	release	6.0	included	having	quality	
assurance	and	quality	control	measures	built	into	the	development	life	cycle.	The	developers	used	to	
do	unit	and	integration	testing	for	their	own	written	source	code,	while	the	development	team	also	
used	to	do	code	walkthroughs	and	code	inspections.

12.12 Chapter Summary
Software	construction	 is	 the	phase	 in	which	 the	actual	 software	product	 is	built.	On	all	other	
development	phases	of	the	software	project,	some	work	products	are	built	that	help	in	building	
the	actual	product.	However,	from	the	user	perspective,	construction	is	where	their	actual	prod-
uct	gets	developed.	Software	construction	 is	 labor	 intensive	and	thus	 it	consumes	a	big	chunk	
of	 the	project	 schedule.	To	 reduce	 the	 schedule	 for	 construction	work,	 concurrent	 engineering	

New piece
of code Unit test Unit test

passed
Local

integration test

Local
integration
test passed

Local
integration
test failed

Rework
Unit test

failedRework

Rework

Main software
build ready for

new piece of code

Automatic
smoke test

Smoke test
passed

Smoke test
failed

Main
software

build

Figure 12.7 Software continuous build and integration life-cycle management.

Software Construction  ◾  185

techniques	are	employed.	In	applying	concurrent	engineering,	software	design	is	made	in	such	
a	way	that	construction	work	can	be	easily	divided	among	several	teams,	so	that	they	can	work	
parallel	to	each	other	and	thus	complete	the	construction	work	in	less	time.	To	make	the	software	
source	code	maintainable	and	reliable,	a	host	of	techniques	are	used	including	a	standard	coding	
framework,	standard	coding	conventions,	etc.	To	ensure	code	quality,	unit	testing	and	integration	
testing	are	done	whenever	a	source	code	unit	is	completed	or	integrated	with	the	main	software	
build.	 At	 the	 completion	 of	 major	 construction	 work,	 code	 inspections	 and	 other	 methods	 of	
reviews	are	done	to	ensure	defects	are	discovered	and	removed.	To	increase	productivity,	several	
techniques	are	used	like	pair	programming,	code	reuse,	etc.

Finally,	the	source	code	should	be	checked	for	defects.	This	can	be	done	by	using	static	methods	
and	dynamic	methods.	The	static	methods	are	code	inspections,	code	analysis,	code	walkthroughs,	
deskchecks,	and	peer	reviews.	The	dynamic	methods	are	unit	and	integration	testing.

Review Questions
12.1	 	What	 are	 the	 common	 activities	 conducted	 during	 construction	 phase	 in	 the	 software	

development	life	cycle?
12.2	 What	quality	control	measures	are	taken	during	construction	phase?
12.3	 What	is	done	to	construct	a	software	application	at	faster	speed?
12.4	 Define	pair	programming.
12.5	 What	coding	standards	should	be	followed	during	source	code	writing?
12.6	 Describe	different	kinds	of	reviews	performed	during	software	construction.

Recommended Readings
	 1.	 B.	Hook	(2005)	Write Portable Code: An Introduction to Developing Software for Multiple Platforms,	No	

Starch	Press,	San	Francisco,	CA.
	 2.	 R.	 Garud,	 A.	 Kumaraswamy,	 R.	 N.	 Langlois	 (2003)	 Managing in the Modular Age: Architectures,

Networks, and Organizations,	Wiley,	New	York.
	 3.	 M.	Fomitechev	(2006)	Enterprise Application Development with Visual C++ 2005,	Wiley	India	Pvt.	Ltd.,	

New	Delhi,	India.
	 4.	 D.	Pilone,	R.	Miles	(2007)	Head First Software Development,	O’Reilly,	Sebastopol,	CA.
	 5.	 M.	 Pecht	 (2009)	 Product Reliability, Maintainability, and Supportability Handbook,	 2nd	 edn.,	 CRC	

Press,	Boca	Raton,	FL.
	 6.	R.	O.	Lewis	(1992)	Independent Verification and Validation: A Life Cycle Engineering Process,	Wiley,	

New	York.
	 7.	 S.	 McConnell	 (2004)	 Professional Software Development: Shorter Schedules, Higher Quality Products,

More Successful Projects, Enhanced Careers,	Addison-Wesley,	Reading,	MA.
	 8.	 C.	 Jones	 (2007)	 Estimating Software Costs: Bringing Realism to Estimating,	 McGraw-Hill	 Osborne	

Media,	New	York.
	 9.	 J.	Tian	(2006)	Software Quality Engineering: Testing, Quality Assurance and Quantifiable Measurements,	

Wiley	India	Pvt.	Ltd.,	New	Delhi,	India.
	 10.	 J.	McManus	(2004)	Risk Management in Software Development Projects,	Butterworth-Heinemann,	Oxford,	U.K.
	 11.	 E.	E.	Brent,	R.	E.	Anderson	 (1990)	Computer Applications in the Social Sciences,	Temple	University	

Press,	Philadelphia,	PA.
	 12.	 M.	E.	Henderson,	S.	L.	Lyons	(1999)	Object	oriented	methods	for	interoperable	scientific	and	engineer-

ing	computing,	Proceedings in Applied Mathematics, 99,	Society	for	Industrial	&	Applied	Mathematics.

187

Chapter 13

Software Testing

In.the.previous.chapter,.we.learned

	◾ What	is	software	construction?
	◾ What	are	the	considerations	for	making	software	construction?
	◾ What	techniques	are	used	to	construct	software?
	◾ How	is	quality	assurance	done	during	software	construction?

In.this.chapter,.we.will.learn

	◾ What	is	software	testing?
	◾ What	is	verification	and	validation?
	◾ What	techniques	are	used	for	testing	software?
	◾ How	does	software	testing	help	in	increasing	quality	of	a	software	product?

13.1 Introduction
It	is	a	fact	that	the	exact	number	of	defects	in	a	software	product	is	difficult	to	find.	At	best	it	
can	be	predicted	using	some	defect	estimation	tools.	It	is	also	impossible	to	detect	all	defects	in	a	
software	product.	Nevertheless,	finding	and	fixing	critical	bugs	up	to	an	acceptable	limit	as	per	
expectations	is	important.	If	there	are	more	defects	in	the	product	after	the	product	enters	produc-
tion,	then	the	project	team	will	be	in	big	trouble.	The	support	costs	for	a	bug	ridden	product	will	
be	too	high.	So,	less	than	required	testing	is	a	certain	call	for	rebuke	from	stakeholders.

188  ◾  Software Project Management: A Process-Driven Approach

Testing	 more	 than	 required	 will	 increase	 project	 costs	 unnecessarily	 [1].	 When	 the	project	
starts,	the	customer	specifies	what	level	of	quality	for	the	product	is	expected.	The	project	manager	
needs	to	first	make	sure	that	the	processes	to	be	followed	for	building	the	product	are	at	least	so	
good	that	the	produced	product	will	have	a	certain	level	of	quality	with	a	certain	level	of	defects.	
Then,	he	 should	have	a	 test	plan	 such	 that	 the	product	defects	 are	 further	 reduced	by	finding	
defects	and	fixing	them.	So	the	testing	phase	must	be	well	planned	with	required	budget,	sched-
ule,	and	testing	processes	that	will	ensure	that	a	certain	number	of	critical	defects	are	caught	and	
fixed	(Figure	13.1).

13.2 Problems with Traditional Development Model
Traditionally,	software	testing	was	done	only	after	software	was	constructed.	This	used	to	limit	the	
scope	of	software	testing	in	the	development	life	cycle	(see	Figure	13.2).

This	 practice	 led	 to	 a	 situation	 that	 was	 too	 little	 and	 too	 late.	 By	 the	 time	 software	 was	
constructed,	already	faulty	requirement	specifications	and	faulty	software	design	had	resulted	in	
defect	ridden	software.	Removing	all	the	defects	originating	from	different	phases	of	the	project	

More than
required testing

Waste of time
and money

High cost of
support

Impossible to
support

Software testing
scenarios

Less than
required testing No testing

Figure 13.1 Software testing scenarios.

Requirement specification

Software design

Software construction

Software testing

Deployment

Too late too
little

Figure 13.2 Traditional software development model (too little, too late testing).

Software Testing  ◾  189

in	one	go	is	a	huge	challenge.	That	is	why	this	approach	always	used	to	result	in	defect	ridden	
software	products.	Even	if	there	was	an	attempt	to	remove	defects	so	late	in	the	life	cycle,	it	would	
be	exorbitantly	costly	to	do	so	in	one	go	and	it	would	also	mean	devoting	a	considerable	amount	
of	time	in	detecting	and	fixing	all	those	defects.	This	would	likely	be	infeasible.

Definitely	a	better	approach	was	needed	to	make	better	quality	software	products.

13.3 Verification and Validation
The	problems	encountered	in	the	traditional	approach	to	software	testing	led	to	the	practice	of	
verification	and	validation.

In	most	quality	standards	documents,	software	testing	is	divided	into	two	parts:	“validation”	
and	“verification.”	While	verification	implies	that	the	developed	software	is	working	as	intended	
by	checking	the	requirement	specifications,	design,	source	code,	etc.,	in	static	mode,	validation	
implies	that	the	software	has	been	validated	to	be	working	after	running	it	and	checking	whether	
all	functionality	meets	the	requirements	[2].

Verification	techniques	are	also	known	as	static	testing,	since	the	source	code	is	not	run	to	do	
testing.	Figure	13.3	shows	that	each	work	product	including	requirement	specifications,	design,	
and	 source	 code	during	 software	development	 is	 tested	using	 static	methods.	The	 requirement	
specifications	are	reviewed	for	completeness,	clarity,	design	ability,	testability,	etc.	The	software	
design	 is	 reviewed	 for	 robustness,	 security,	 implementability,	 scalability,	 complexity,	 etc.	 The	
source	code	is	reviewed	for	dead	code,	unused	variables,	faulty	logic,	constructs,	etc.

Once	the	source	code	is	ready	to	be	run	as	a	system,	validation	testing	can	be	started.	Validation	
testing	is	also	known	as	dynamic	testing	as,	in	this	case,	the	source	code	is	actually	run	to	deter-
mine	that	it	is	running	per	specifications.	During	validation,	unit,	integration,	system,	and	finally	
user	acceptance	testing	are	performed.	Unit	testing	is	done	to	ensure	each	unit	piece	of	source	code	
is	free	from	defects.	Once	unit	testing	is	done,	then	this	piece	of	code	is	integrated	with	the	main	
source	code	build.	But	before	integrating	to	the	main	build,	 it	 is	strongly	advisable	to	do	local	
integration	testing	on	the	developer’s	own	computer.	Only	when	the	source	code	runs	smoothly	
and	all	integration	tests	pass,	the	source	code	should	be	integrated	with	the	main	build.	When	all	

Requirement specification Requirement specification review

Software design Design review

Software construction Source code review and validation

Validation

Deployment Validation

Verification

Figure 13.3 Software verification and validation.

190  ◾  Software Project Management: A Process-Driven Approach

source	code	is	thus	integrated,	the	main	build	is	ready	for	system	testing.	All	system	tests	are	then	
performed	and	defects	are	fixed.	When	the	system	testing	is	over,	and	in	fact	the	software	product	
is	shipped	to	customers,	they	do	user	acceptance	testing.

13.4 Test Strategy and Planning
Software	testing	is	a	vast	field	in	itself,	and	so	the	common	practice	is	to	consider	it	as	a	separate	
project.	In	those	cases,	it	is	known	as	an	independent	verification	and	validation	project.	As	such,	
a	separate	project	plan	is	made	for	that	project	and	is	linked	to	the	parent	software	development	
project.

There	are	many	techniques	available	to	execute	software	test	projects.	It	depends	on	the	kind	of	
test	project.	However,	most	test	projects	must	have	a	test	plan	and	a	test	strategy	before	the	project	
can	be	ready	for	execution.

Often	due	to	time	constraints,	testing	cycles	are	cut	short	by	project	managers	[3].	This	leads	to	
a	half-tested	product	that	is	pushed	out	the	door.	In	such	cases,	a	large	number	of	product	defects	
are	left	undetected.	Ultimately,	end	users	discover	these	defects.	Fixing	these	defects	at	this	stage	is	
costly.	Moreover,	they	cannot	be	fixed	one	at	a	time.	They	are	to	be	taken	in	batches	and	are	incor-
porated	in	maintenance	project	plans.	This	leads	to	excessive	costs	in	maintaining	the	software.	It	
is	lot	cheaper	to	trap	those	bugs	during	the	testing	cycle	and	fix	them.	It	is	appropriately	said	that	
“testing	costs	money	but	not	testing	costs	more!”

Test	strategies	should	include	things	like	test	prioritization,	automation	strategy,	risk	analysis,	
etc.	Test	planning	should	include	a	work	breakdown	structure,	requirement	review,	resource	allo-
cation,	effort	estimation,	tools	selection,	setting	up	communication	channels,	etc.

13.4.1 Test Prioritization
Even	before	the	test	effort	actually	starts,	 it	 is	of	utmost	importance	that	the	test	prioritization	
should	be	made.	First	of	all,	all	parts	of	the	software	product	will	not	be	used	by	end	users	with		
the	same	intensity.	Some	parts	of	the	product	are	used	by	end	users	extensively,	while	other	parts	
are	seldom	used.	So	the	extensively	used	parts	of	the	product	should	not	have	any	defects	at	all	and	
thus	they	need	to	be	tested	thoroughly.

For	making	such	a	strategy,	you	must	prioritize	your	testing.	Put	a	high	priority	on	tests	which	
are	to	be	done	for	these	critical	parts	of	the	software	product	and	put	a	low	priority	on	uncritical	
parts.	Then	test	the	high	priority	areas	first.	Once	testing	is	thoroughly	done	for	these	parts,	then	
you	should	start	testing	low	priority	areas.

13.4.2 Risk Management
The	test	manager	should	also	do	plan	for	all	known	risks	that	could	impact	the	test	project.	If	
proper	risk	mitigation	planning	is	not	done,	and	a	mishap	occurs,	then	the	test	project	schedule	
could	be	jeopardized,	costs	could	escalate,	and/or	quality	could	go	down.

Some	 of	 the	 risks	 that	 can	 have	 severe,	 adverse	 impact	 on	 a	 test	 project	 include	 an	 unre-
alistic	 schedule,	 resource	unavailability,	 skill	 unavailability,	 frequent	 requirement	 changes,	 etc.	
Requirement	changes	pose	a	serious	threat	to	testing	effort,	because	for	each	requirement	change,	
the	whole	test	plan	gets	changed.	The	test	team	has	to	revise	its	schedule	for	additional	work	as	
well	as	to	assess	impact	of	the	change	on	the	test	cases	they	have	to	recreate.	Some	enthusiastic	

Software Testing  ◾  191

test	engineers	estimate	much	less	effort	than	it	actually	should	be.	In	that	case,	the	test	manager	
would	be	in	trouble	trying	to	explain	why	testing	is	taking	more	than	the	scheduled	time	schedule.	
In	such	cases,	even	after	loading	testing	engineers	more	than	150%,	the	testing	cycle	get	delayed.	
This	is	a	very	common	situation	on	most	of	the	test	projects.	This	also	happens	because	the	mar-
keting	team	agrees	on	unrealistic	schedules	with	the	customer,	in	order	to	bag	the	project.	Even	
the	test	manager	at	that	time	feels	that	somehow	he	will	manage	it,	but	later	on	it	proves	impos-
sible	to	achieve.	Other	test	engineers	unnecessarily	pad	their	estimate,	and	later	on,	when	the	cus-
tomer	detects	it,	the	test	manager	finds	himself	in	a	spot.	When	the	software	development	market,	
along	with	the	software	testing	market,	is	hot	(this	is	the	case	most	of	the	time,	as	businesses	need	
to	implement	software	systems	more	and	more	and	so	software	professionals	are	in	great	demand),	
software	professionals	have	many	job	offers	in	hand.	They	leave	the	project	at	short	notice	and	the	
test	manager	has	to	find	a	replacement	fast.	Sometimes,	a	project	may	have	some	kind	of	testing	
for	which	skilled	test	professionals	are	hard	to	find.	In	both	situations,	the	test	manager	may	not	
be	able	to	start	those	tasks	in	need	of	adequate	resources.

For	test	professional	resources,	a	good	alternative	resource	planning	is	required.	The	test	man-
ager	should,	in	consultation	with	human	resource	manager,	keep	a	line	of	test	professionals	who	
may	join	in	case	one	is	needed	on	his	project.

For	scheduling	problems,	the	test	manager	has	to	ensure	in	advance	that	schedules	do	not	get	
affected.	He	has	to	keep	a	buffer	in	the	schedule	for	any	eventuality.

To	keep	a	tab	on	the	project	budget,	the	test	manager	has	to	ensure	that	the	schedule	is	
not	unrealistic	and	also	has	to	load	his	test	engineers	appropriately.	If	some	test	engineers	are	
not	 loaded	adequately,	 then	project	costs	may	go	higher.	For	this	reason,	 if	any	test	profes-
sionals	do	not	have	enough	assignments	on	one	project,	they	should	be	assigned	work	from	
other	projects.

13.4.3 Effort Estimation
For	making	scheduling,	resource	planning,	and	budget	for	a	test	project,	the	test	manager	should	
make	a	good	effort	estimate	[4].	Effort	estimate	should	include	information	such	as	project	size,	
productivity,	and	test	strategy.	While	project	size	and	test	strategy	information	comes	after	con-
sultation	with	the	customer,	the	productivity	figure	comes	from	experience	and	knowledge	of	the	
team	members	of	the	project	team.

The	wideband	Delphi	technique	uses	brainstorming	sessions	to	arrive	at	effort	estimate	figures	
after	discussing	the	project	details	with	the	project	team.	This	is	a	good	technique	because	the	
people	who	will	be	assigned	the	project	work	will	know	their	own	productivity	 levels	and	can	
figure	out	the	size	of	their	assigned	project	tasks	from	their	own	experience.	Initial	estimates	from	
each	team	member	are	then	discussed	with	other	team	members	in	an	open	environment.	Each	
person	has	his	own	estimate.	These	estimates	are	then	unanimously	condensed	into	final	estimate	
figures	for	each	project	task.

In	an	experience-based	technique,	instead	of	group	sessions,	the	test	manager	meets	each	team	
member	and	asks	him	his	estimate	for	the	project	work	he	has	been	assigned.	This	technique	works	
best	when	team	members	are	well	aware,	particularly,	of	their	prior	experience	of	similar	project	
tasks.

Effort	estimation	is	one	area	where	no	test	manager	can	have	a	good	grasp,	at	the	initial	stages	
of	the	project.	This	is	because	not	many	details	are	clear	about	the	project.	As	the	project	unfolds,	
after	executing	some	of	its	related	tasks,	things	become	clearer.	At	that	stage,	any	test	manager	
can	 comfortably	 give	 an	 effort	 estimate	 for	 the	 remaining	 project	 tasks.	 But	 that	 is	 too	 late.	

192  ◾  Software Project Management: A Process-Driven Approach

Project	stakeholders	want	to	know,	at	the	very	beginning	of	the	project,	what	would	be	the	cost	
estimates	and	when	the	project	would	be	delivered.	These	two	questions	are	very	important	for	
project	stakeholders	and	it	is	on	top	of	their	mind.	Unfortunately,	test	managers	are	not	equipped	
to	provide	accurate	an	schedule	and	costs	for	the	project	at	those	initial	stages,	because	of	unclear	
project	scope,	size,	etc.	Nevertheless,	it	is	one	of	their	critical	tasks	that	they	have	to	finish	and	
provide	the	requested	information.	The	best	solution	is	to	find	a	relatively	objective	method	of	
effort	estimation	and	provide	the	requested	information.

13.4.3.1 Test Point Analysis

There	are	many	methods	available	for	effort	estimation	for	test	projects.	Some	of	them	include	test	
point	analysis	[5],	the	wideband	Delphi	technique	[6],	experience-based	estimation	[7],	etc.	In	the	
test	point	analysis	technique,	three	inputs	required	are	project	size,	test	strategy,	and	productiv-
ity.	Project	size	is	determined	by	calculating	the	number	of	test	points	in	the	software	application	
which	is	being	developed.	Test	points,	in	turn,	are	calculated	from	function	points.	The	number	of	
function	points	is	calculated	from	the	number	of	functions	and	function	complexity.	If	the	number	
of	function	points	in	the	application	has	been	calculated	by	the	development	team,	then	test	points	
are	 calculated	 from	 the	 available	 function	point	 information.	Otherwise	 rough	 function	point	
data	can	be	used	(Figure	13.4).

A	test	strategy	is	derived	from	two	pieces	of	information	from	the	customer,	what	will	be	the	
quality	level	for	the	application,	and	which	features	of	the	application	will	be	used	most	frequently.	
Productivity	is	derived	from	knowledge	and	experience	of	the	test	team	members.	While	produc-
tivity	can	be	calculated	objectively	without	taking	reference	from	any	statistical	data,	 it	makes	
sense	to	use	past	productivity	data	from	previously	executed	projects	to	make	productivity	figures	
more	realistic.

In	case	of	iterative	development,	testing	cycles	will	be	short	and	iterative	in	nature.	The	test	man-
ager	should	make	the	test	effort	calculations	accordingly.

13.5 Test Automation
Most	testing	tasks	are	done	manually,	as	they	are	still	difficult	to	automate.	Wherever	automation	is	
possible,	it	can	be	evaluated.	Care	should	also	be	taken	not	to	do	automation	blindly	[8].	This	is	because		
the	initial	effort	for	automation	is	more	than	manual	testing.

Testing	 tasks	 include	 requirements	 and	 design	 document	 review,	 test	 case	 scenario	 cre-
ation,	test	case	creation,	test	case	execution,	test	case	management,	and	defect	tracking.	Out	

Product size
(number of

function points)

Test point analysis

Test strategy
(quality level +
priority areas)

Productivity
(experience +

skills)

Figure 13.4 Test point analysis components.

Software Testing  ◾  193

of	these	tasks,	test	case	execution	and	test	case	management	are	the	only	tasks	for	which	good	
automation	tools	are	available.

13.5.1 Test Case Execution Automation
If	a	test	case	has	to	be	executed	only	a	few	times,	then	automating	that	test	case	will	be	more	
expensive	compared	to	manually	running	it,	the	reason	being	that	automation	effort	for	a	
test	case	is	more	than	manually	executing	the	test	case.	Usually,	the	efforts	break	even	when	
a	test	case	is	executed	around	13	times	[9].	So,	only	if	it	has	to	be	executed	at	least	13	times,	
it	makes	sense	to	automate	it.	But	first	of	all,	why	does	a	test	case	have	to	be	executed	more	
than	once	at	all?	Because,	 in	software	product	development,	new	versions	of	the	software	
keep	getting	developed	to	cater	to	the	needs	of	the	market.	The	newer	versions	may	contain	
old	features	as	well	as	new	features.	The	older	version	of	the	software	was	tested	using	exist-
ing	or	newly	created	test	cases,	at	that	time.	With	addition	of	new	features,	it	is	important	
to	retest	the	old	features	to	make	sure	they	still	work.	So	old	functional	tests	now	become	
regression	test	cases.	The	suite	of	regression	test	cases	keeps	increasing	with	newer	releases	
of	the	software	[10].	At	some	point,	the	regression	test	suite	becomes	so	large	that	manually	
executing	 tests	becomes	a	 liability.	Nobody	wants	 to	keep	executing	 those	 large	numbers	
of	test	cases	again	and	again.	Keep	in	mind	most	software	vendors	have	minor	releases	of	
their	product	each	quarter.	So	an	ever	increasing	suite	of	regression	test	cases	has	to	be	run	
each	quarter.	It	takes	a	considerable	period	of	time	to	execute	them.	As	the	software	has	to	
be	released	fast,	the	project	manager	cannot	wait	just	because	regression	test	cases	are	still	
being	implemented.	Thus,	in	this	case,	automating	the	whole	suite	of	regression	test	cases	
is	going	to	be	profitable.

The	current	trend	for	automation	is	to	create	a	keyword	framework	[11]	as	follows:	For	each	
major	function	create	a	keyword.	Write	the	automation	script	for	that	function	and	then	save	
the	function	with	same	name	as	the	keyword.	After	all	the	required	functions	are	created,	relate	
these	 functions	 with	 the	 test	 cases	 that	 would	 have	 been	 already	 created	 before	 automation	
scripts	were	written.	Now	when	you	run	the	scripts,	it	will	cover	all	the	test	cases	and	it	will	be	
same	as	executing	the	test	cases,	manually.	This	way	of	inducing	automation	is	known	as	key-
word	driven	automation	framework.	The	benefit	of	such	a	strategy	is	that	it	allows	for	reuse	of	
script	and	makes	automation	creation	modular.	This	also	makes	maintenance	of	scripts	easier.	
If	any	test	case	gets	changed,	the	whole	script	does	not	have	to	be	changed.	Only	the	script	for	
which	the	keyword	was	affected	due	to	a	change	in	test	case	has	to	be	changed.

13.5.2 Test Case Management Automation
Test	case	management	is	also	a	good	candidate	for	automation.	There	are	some	good	tools	that	
facilitate	it.	They	allow	keeping	many	versions	of	test	cases	and	a	repository	of	automation	scripts,	
which	allows	teams	located	at	many	sites	to	work	more	effectively.

13.6 Test Project Monitoring and Control
Test	projects	involve	a	large	variety	of	activities	including	test	case	design,	test	case	management,	
test	 case	 automation,	 test	 execution,	 defect	 tracking,	 verifying,	 and	 validating	 the	 application	
under	test,	etc.	[12]	(Figure	13.5).

194  ◾  Software Project Management: A Process-Driven Approach

13.6.1 Test Case Design
A	proper	test	case	design	plan	goes	a	long	way	in	ensuring	that	test	cases	are	designed	properly.	The	
test	manager	has	to	ensure	which	kind	of	tests	are	to	be	designed,	how	many	test	cases	have	to	be	
written	for	particular	modules,	and	which	test	areas	are	priority	areas.

13.6.1.1 Test Types

An	application	may	have	to	be	tested	for	functionality,	performance,	usability,	compatibility,	and	
many	other	kinds	of	things,	to	make	sure	it	is	really	useful	for	end	users.	For	each	kind	of	testing,	
a	set	of	test	cases	has	to	be	written	and	executed	and,	finally,	the	system	should	be	verified	and	
validated.	For	applications	that	have	many	versions,	regression	tests	also	have	to	be	performed.	
Managing	all	these	kinds	of	testing	is	a	big	task	for	the	test	manager.	A	good	test	manager	will	first	
divide	the	testing	tasks	on	the	basis	of	test	types.	Then	tasks	can	be	further	divided	by	modules.	
After	that,	he	can	allocate	testing	tasks	to	test	engineers	appropriately.

There	is	one	more	way	of	segregating	tests.	Depending	on	the	project	phase,	we	need	to	per-
form	system	testing,	integration	testing,	or	user	acceptance	testing.	Usually	when	the	application	
is	built	after	the	construction	phase,	it	has	to	be	tested	and	verified	whether	it	is	functioning	per	
requirements.	Integration	testing	is	performed	when	the	application	needs	to	be	integrated	with	
any	other	external	application	to	ensure	that	integration	is	proper.	User	acceptance	testing	is	done	
by	end	users.	If	any	defect	is	found	during	these	tests,	they	are	fixed	so	that	the	application	goes	
into	production	with	as	few	defects	as	possible.

13.6.2 Test Case Management
There	could	be	existing	test	cases	as	well	as	new	test	cases	that	also	need	to	be	created.	Test	case	
management	involves	managing	different	versions	of	test	cases,	keeping	track	of	changes	in	them,	
keeping	a	separate	repository	of	test	cases	based	on	type	of	tests,	as	well	as	creating	and	managing	
automation	scripts.

13.6.3 Test Bed Preparation
Test	bed	preparation	involves	installing	the	application	on	a	machine	that	is	accessible	to	all	test	
teams	[5].	Care	is	taken	to	ensure	that	this	machine	is	free	of	any	interference	from	unauthorized	
access.	Test	data	is	populated	in	the	application.	Care	should	also	be	taken	to	ensure	that	the	test	
bed	resembles	the	production	environment	as	closely	as	possible,	including	all	software	and	hard-
ware	configurations.

Test case
design

Test case
writing

Test script
creation

Test case
execution

Test case
closure

Defect
tracking

Figure 13.5 Test life cycle.

Software Testing  ◾  195

For	all	types	of	testing,	it	is	very	important	that	the	“application	under	test”	(UAT)	should	
be	tested	under	an	environment	that	 is	as	close	to	the	environment	under	which	the	proposed	
application	will	be	deployed	for	production.	That	is	why	test	bed	preparation	is	very	important.	
The	application	should	be	installed	on	a	dedicated	server	that	has	the	same	configuration	as	the	
proposed	production	environment.	This	server	should	not	be	used	for	any	other	purpose	except	
for	testing.	It	should	be	installed	centrally,	so	that	even	distributed	teams,	contractors,	or	service	
providers	can	easily	access	it	using	remote	desktop	sharing	or	any	peer	to	peer	networking	protocol	
over	the	Internet.	If	the	application	can	be	directly	accessed	over	the	Internet,	then	it	is	even	better.

There	should	not	be	any	testing	done	on	applications	that	are	deployed	on	the	local	test	engi-
neer’s	machine.	To	gain	familiarity	with	the	application	and	preliminary	testing,	it	is	acceptable	to	
have	a	local	copy	of	the	application,	but	never	for	testing	when	defects	are	to	be	logged	and	verified	
by	many	people.	It	is	because	it	is	very	important	to	reproduce	the	defect	when	the	developer	or	any	
concerned	person	asks	for	it.	In	case	of	disputes,	if	a	defect	cannot	be	reproduced,	then	it	becomes	
difficult	for	the	test	team	to	justify	why	a	defect	has	been	logged	when	others	cannot	reproduce	it.	
That	is	the	reason	for	which	the	test	bed	should	be	prepared	very	carefully	and	kept	as	isolated	from	
any	other	environment	as	much	as	possible	to	preserve	its	integrity.

The	test	data	preparation	is	also	a	very	tricky	affair.	The	test	data	should	closely	resemble	what	
the	end	users	use	in	their	daily	transactions.	For	this,	the	test	team	can	get	some	business	data	
already	used	by	the	end	users.	The	test	bed	should	be	populated	with	a	similar	kind	of	data.

13.6.4 Test Case Execution
Test	case	execution	involves	executing	prepared	test	cases	manually	or	using	automation	tools	to	
execute	them.	For	regression	tests,	automated	test	execution	is	a	preferred	method.	After	each	test	
case	is	executed,	it	may	pass	or	fail.	If	it	fails	then	defects	have	to	be	logged.

Exit	criteria	for	test	case	execution	cycle	are	generally	defined	in	advance.	Generally,	when	a	
certain	level	of	quality	of	the	application	is	reached,	then	test	execution	stops.

13.6.5 Defect Tracking
Defect	tracking	is	one	of	the	most	important	activities	in	a	test	project	[13].	During	defect	tracking	
it	is	ensured	that	defects	are	logged	and	get	fixed.	All	defects	and	their	fixing	are	tracked	carefully	
(Figure	13.6).

Defect	count	per	hour	per	day	is	a	common	way	of	measuring	performance	of	a	test	team.	If	the	
testing	is	done	for	an	in-house	software	product,	traditionally,	it	used	to	not	be	a	performance	evalu-
ation	measurement.	What	really	counted	was	the	number	of	defects	found	in	production	when	the	
software	product	was	deployed	and	used	by	end	users.	But	it	is	too	late	a	performance	measurement.	
What	if	many	of	the	test	team	members	left	before	the	product	was	deployed?	In	fact	this	is	a	

Defect
logging

Assign
defect Fix defect Defect

verification

Defect
closure

Figure 13.6 Defect life cycle.

196  ◾  Software Project Management: A Process-Driven Approach

reality,	given	the	high	attrition	rate	(as	much	as	20%	at	many	corporations)	of	software	profes-
sionals.	Once	 they	are	gone,	 there	 is	no	point	 in	measuring	 the	performance.	Thus,	 a	better	
measurement	would	allow	for	more	immediate	results.	This	is	achieved	by	measuring	the	defect	
count	per	hour	per	day.	Then	there	is	the	case	of	outsourced	test	projects.	If	the	contract	is	only	
for	testing	up	to	deployment	and	not	afterward,	then	measurement	does	not	make	sense	after	
the	contract	has	ended.

A	good	defect	tracking	application	should	be	deployed	on	a	central	server	that	is	accessible	to	
all	test	and	development	teams.	Each	defect	should	be	logged	in	such	a	way	that	it	could	be	under-
stood	by	both	development	and	testing	teams.	Generally,	the	defects	should	be	reproducible,	but	
in	many	instances,	this	is	difficult.	In	such	instances,	a	good	resolution	should	be	made	by	the	test	
and	development	managers.

13.7 Test Reporting
During	 the	 execution	 of	 a	 test	 project,	 many	 initial	 and	 final	 reports	 are	 made.	 But	 status	
reports	also	need	to	be	made.	Test	reports	include	test	planning	reports,	test	strategy	reports,	
requirement	document	review	comments,	number	of	test	cases	created,	automation	scripts	cre-
ated,	test	execution	cycle	reports,	defect	tracking	reports,	etc.	Some	other	reports	include	trace-
ability	 matrix	 reports,	 defect	 density,	 test	 execution	 rate,	 test	 creation	 rate,	 test	 automation	
script	writing	rate,	etc.

13.8 Test Artifacts
Software	 testing	 involves	 making	 a	 test	 strategy,	 test	 project	 plan,	 resource	 requirements,	 test	
case	repository	creation,	running	test	cycles,	defect	tracking,	bug	verification	and	validation	and,	
finally,	 certifying	 the	developed	product.	So	 the	 test	 artifacts	 include	 test	plan	document,	 test	
strategy	document,	test	cases,	test	cycle	logs,	defect	list,	verification	and	validation	reports,	and	
product	certification.

13.8.1 Management Artifacts
Customers	are	concerned	not	only	with	project	cost	and	schedule,	but	they	are	also	concerned	
with	critical	defects,	which	the	test	team	has	either	detected	or	not.	So	the	management	artifacts	
(metrics)	include	project	cost	compliance,	project	schedule	compliance,	and	quality	(number	of	
critical	defects	caught	versus	number	of	critical	defects	which	went	into	production).

Some	 other	 management	 artifacts	 include	 traceability	 matrix,	 defect	 density	 rate,	 resource	
loading,	etc.

13.9 Practical Considerations
The	most	important	consideration	for	any	test	project	is	whether	the	testing	was	effective	for	the	
time	and	money	spent	for	the	whole	testing	effort.	Effectiveness	is	measured	in	terms	of	how	many	
critical	defects	have	been	caught	by	 the	 test	 team	and	how	many	critical	defects	have	escaped	
into	the	product	and	caught	by	end	users.	All	other	considerations	about	the	project	could	only	

Software Testing  ◾  197

be	circumferential.	If	the	test	team	has	done	a	lot	of	work	but	has	failed	to	catch	enough	critical	
defects,	then	the	whole	effort	is	a	failure.

That	is	why	the	test	manager	has	to	show	that	the	test	effort	was	worth	spending	the	money	
and	time	by	showing	number	of	critical	defects	caught.

13.10 Software Testing in Iterative Model
In	an	iterative	model,	each	iteration	is	a	short	cycle.	So	the	amount	of	testing	in	each	iteration	is	
also	small.	Thus,	unlike	in	waterfall	model,	software	testing	has	a	lesser	role	in	the	iterative	devel-
opment	life	cycle.

Generally,	software	defects	tend	to	increase	with	the	size	of	software	products.	Since	in	itera-
tion	mode	the	software	product	is	small,	there	will	be	fewer	defects	in	the	product.	Although	in	
reality,	as	the	software	product	grows	in	size	over	many	iterations,	the	number	of	defects	per	line	of	
software	code	is	bound	to	increase.	In	iterative	development,	regression	testing	is	also	a	big	issue.	
In	each	iteration,	there	will	be	a	large	number	of	regression	test	cases	to	run.	As	the	product	size	
increases	with	iterations,	the	set	of	regression	test	cases	also	increases.	It	becomes	a	liability	after	a	
while.	Manually	running	all	those	regression	tests	takes	a	lot	of	time,	which	becomes	a	hindrance	
for	the	release	schedule.	In	such	cases,	the	best	option	is	to	go	for	automation	of	these	regression	
test	cases.	Automated	test	cases	take	much	less	time	(sometimes	if	the	manual	running	of	test	cases	
was	taking	5	days,	after	automation	it	took	only	5	h)	to	run.

13.11 Case Study
We	continue	our	case	study	with	our	SaaS	software	vendor.	Whenever	they	started	any	project	
whether	a	customer	specific	or	new	product	release,	the	software	testing	team	was	taken	onboard	
early	on	the	project.	After	the	test	manager	received	the	software	requirement	specification	docu-
ment	(SRS),	he	would	go	through	it.	He	would	make	a	test	strategy	and	decide	which	testing	team	
out	of	two	teams	(both	outsourced	and	offshored)	would	be	involved	with	the	project.	Then,	he	
would	make	a	test	strategy	and	do	some	rough	estimates	for	effort	required,	managing	risks,	auto-
mation	required,	types	of	tests	required,	etc.	When	the	software	design	documents	(in	the	form	
of	mock-ups	and	flowcharts)	are	received,	the	test	team	starts	writing	test	cases.	It	also	determines	
how	many	test	cases	are	to	be	automated,	and	hence	how	many	test	scripts	are	to	be	written.	Then,	
how	many	existing	test	scripts	are	to	be	changed	to	make	them	work	with	the	change	in	software	
design	is	also	determined.	A	final	effort	estimate	for	writing	test	cases	and	test	scripts	is	based	on	
all	these	factors.	An	effort	estimate	is	also	made	for	running	test	cases	and	then	completing	the	
defect	life	cycle.	Effort	estimation	for	defect	life	cycle	is	a	bit	difficult,	as	nobody	knows	just	how	
many	defects	will	crop	up	in	the	defect	cycle.	But	from	historical	figures	using	SPC	methods,	an	
estimate	is	made	that	is	close	to	reality.

Effort	estimation	differs	depending	on	whether	a	new	version	or	a	customer	version	is	to	be	
developed.	For	a	new	version	release,	the	release	date	is	fixed	in	advance.	So	time	duration	for	the	
project	is	fixed	along	with	the	volume	of	work	(number	of	features	to	be	developed).	The	effort	in	
such	a	case	is	calculated	and	accordingly	the	project	team	size	is	determined.	However,	in	case	of	
our	SaaS	software	vendor,	there	is	not	much	effort	estimation	difference	between	development	for	
a	customer	version	and	development	for	a	new	version	of	the	software	product.	The	reason	is	that	
they	sign	a	contract	with	customers	on	fixed	price/fixed	schedule	basis.	It	is	because	they	study	

198  ◾  Software Project Management: A Process-Driven Approach

customer	requirements	and	the	contract	is	signed	only	after	this	study.	So	the	customer	study	is,	
in	fact,	done	for	free	and	they	charge	only	for	the	implementation.	Thus,	at	the	onset	of	the	project	
itself,	there	is	always	a	fixed	due	date.	Functional	black	box	testing	is	the	most	prevalent	kind	of	
testing	done.	Then	come	regression	tests,	which	are	all	automated.	Apart	from	functional	testing,	
integration	testing,	usability	testing,	security	testing,	etc.,	are	also	done.	Some	of	their	application	
runs	on	hand	held	devices.	So	mobile	testing	is	also	done	using	emulators.	They	also	have	software	
parts	 that	 integrate	with	hardware	devices	 like	printers	 (for	printing	RFID	 tags,	 for	 instance).	
Testing	of	these	components	is	also	done.

For	automation,	a	keyword	driven	framework	is	used.	Thus,	when	the	test	cases	are	written,	
care	is	taken	so	that	the	test	cases	can	be	used	by	the	scripting	for	automation.	Each	time	in	a	test	
case,	a	set	of	steps	is	to	be	executed	in	sequence,	it	is	captured	as	a	keyword	and	a	specific	keyword	
is	assigned	for	it.	Each	test	case	containing	these	keywords	must	be	identified	to	have	the	specific	
keyword.	For	instance,	a	keyword	named	“Login”	can	have	fixed	steps	of	going	to	the	URL	of	the	
website,	key	in	username,	password,	and	then	clicking	on	the	OK	button.	Instead	of	recording	
activities	in	each	test	case	where	it	is	required,	the	script	will	store	all	the	steps	for	these	activities	
and	assign	them	to	the	keyword	“Login,”	and	thus	these	steps	will	be	recorded	only	once.	This	
saves	a	lot	of	future	maintenance	effort.	All	automation	tests	follow	this	convention.

Since	the	SaaS	software	vendor	is	also	supposed	to	maintain	the	production	instances	of	the	
software	product	for	its	customers	as	well	as	its	own	versions,	there	is	a	maintenance	and	support	
group	which	looks	after	these	operations.	The	center,	which	keeps	all	the	hardware	including	serv-
ers,	back	up	servers,	routers,	etc.,	and	from	where	all	production	instances	are	hosted,	is	known	as	
the	network	operations	center.	The	testing	team	also	plays	an	important	role	in	support	function	
by	running	sanity	tests	daily	on	all	production	instances	of	the	application.	If	any	problems	are	
encountered,	they	are	reported	to	the	support	team	and	they	fix	it	immediately.

13.12 Chapter Summary
Software	testing	is	one	of	the	most	important	activities	carried	out	in	software	projects.	It	is	here	
that	 the	 software	 product	 developed	 is	 verified	 and	 validated.	 If	 the	 product	 contains	 a	 large	
number	of	defects	that	could	not	be	fixed	before	the	release	due	date,	then	the	product	cannot	be	
shipped	by	the	shipping	date.	A	software	product	containing	too	many	defects	is	extremely	costly	
in	 terms	of	providing	 support.	 It	 is	most	 important	 to	detect	and	remove	most	critical	defects	
before	shipping	the	product.	Software	testing	helps	in	achieving	these	goals.

To	make	sure	that	the	software	product	being	made	is	of	good	quality,	the	work	products	from	a	
very	early	stage	(project	initiation)	should	be	tested.	In	fact,	there	should	be	a	comprehensive	quality	
assurance	plan	so	that	each	and	every	work	product	is	tested	for	defects	that	should	be	removed	at	the	
point	of	origin	itself.	For	this,	a	verification	and	validation	approach	should	be	employed.

Review Questions
13.1	 What	is	independent	verification	and	validation?
13.2	 Why	is	software	testing	necessary?
13.3	 What	are	testing	types?
13.4	 What	activities	are	done	in	a	software	testing	phase/project?
13.5	 What	are	the	benefits	of	test	automation?
13.6	 Describe	the	defect	life	cycle.

Software Testing  ◾  199

Recommended Readings
	 1.	 K.	M.	Gardner,	A.	R.	Rush	(1998)	Cognitive Patterns: Problem-Solving Frameworks for Object Technology,	

Cambridge	University	Press,	New	York.
	 2.	 E.	 Dustin,	 J.	 Rashka,	 J.	 Paul	 (1999)	 Automated Software Testing: Introduction, Management, and

Performance,	Addison-Wesley,	Boston,	MA.
	 3.	 S.	De	Cesare,	M.	Lycett,	R.	Macredie	 (2005)	Development of Component-Based Information Systems,	

M. E.	Sharpe,	Armonk,	NY.
	 4.	 E.	Dustin	(2002)	Effective Software Testing: 50 Specific Ways to Improve Your Testing,	Addison-Wesley,	

Boston,	MA.
	 5.	 A.	Ahmed	(2009)	Software Testing as a Service,	CRC	Press,	Boca	Raton,	FL.
	 6.	 D.	Huizinga,	A.	Kolawa	(2007)	Automated Defect Prevention: Best Practices in Software Management,	

Wiley,	Hoboken,	NJ.
	 7.	 W.	E.	Perry	(2006)	Effective Methods for Software Testing,	3rd	edn.,	Wiley,	New	York.
	 8.	 K.	Li,	M.	Wu	(2004)	Effective Software Test Automation: Developing an Automated Software Testing Tool,	

Sybex,	Alameda,	CA.
	 9.	 C.	Kaner,	J.	Bach,	B.	Pettichord	(2006)	Lessons Learned in Software Testing,	Wiley,	New	York.
	 10.	 P.	Jorgensen	(2002)	Software Testing: A Craftsman’s Approach,	CRC	Press,	New	York.
	 11.	 B.	A.	Posey	(2002)	Just Enough Software Test Automation,	Prentice	Hall	PTR,	Upper	Saddle	River,	NJ.
	 12.	 W.	E.	Lewis,	G.	Veerapillai	(2005)	Software Testing and Continuous Quality Improvement,	CRC	Press,	

Boca	Raton,	FL.
	 13.	 R.	D.	Craig,	S.	P.	Jaskiel	(2002)	Systematic Software Testing,	Artech	House,	Norwood,	MA.

201

Chapter 14

Product Release
and Maintenance

In.the.previous.chapter,.we.learned

	◾ What	is	software	testing?
	◾ What	is	verification	and	validation?
	◾ What	techniques	are	used	for	testing	software?
	◾ How	does	software	testing	help	in	increasing	quality	of	a	software	product?

In.this.chapter,.we.will.learn

	◾ What	is	software	release?
	◾ What	is	software	maintenance?
	◾ What	activities	are	performed	in	software	release?
	◾ What	activities	are	performed	in	software	maintenance?

14.1 Introduction
The	software	product	which	you	have	been	building	for	so	long	is	now	complete.	You	need	to	take	
it	to	the	customer’s	site	and	get	it	implemented	so	that	the	end	users	can	start	using	it.	However,	do	
not	run	fast	in	anticipation	of	wrapping	things	as	early	as	possible.	After	all	this	is	your	magnum	
opus	and	you	need	to	be	careful.	You	need	to	make	sure	that	all	your	tasks	are	completed,	
for	example,	product	support	cost	estimate,	walk	around	for	known	bugs,	which	version	of	the	

202  ◾  Software Project Management: A Process-Driven Approach

software	product	to	be	released,	if	release	should	be	an	alpha,	beta,	or	normal	release,	training	
needs	fulfilled,	and	customer	support	strategy	(Figure	14.1).

14.2 Product Release Management
Project	 teams	 working	 for	 software	 product	 vendors	 struggle	 to	 keep	 pace	 with	 release	 of	 the	
software	product.	There	is	pressure	from	the	market	to	launch	new	versions	by	certain	dates.	New	
features	are	to	be	added,	porting	the	product	to	new	platforms,	old	features	are	to	be	enhanced,	
existing	bugs	are	to	be	removed,	and	yet	it	has	to	meet	the	deadline.	It	is	a	constant	struggle	that	
calls	 for	good	product	release	strategies.	Depending	on	the	situation,	 the	project	manager	may	
need	to	convince	the	management	to	cut	short	some	of	the	product	features	to	meet	the	deadline	
as	well	as	meet	quality	standards.	A	half-baked	product	will	never	have	any	takers;	 instead	the	
project	manager	may	be	blamed	for	its	poor	quality	issues.	Bargaining	also	has	to	be	done	for	other	
requirements	of	bug	fixes,	 feature	 enhancements,	 etc.	 If	quality	 concerns	are	paramount,	 then	
moving	some	of	the	tasks	of	new	features	to	a	future	release	may	be	the	best	solution	for	meeting	
quality	standards.	If	the	software	vendor	is	not	too	sure	about	product	quality,	then	he	may	opt	
for	an	alpha	or	beta	release	of	the	product.	In	that	case,	the	product	will	be	released	only	among	
a	few	selected	groups	and	not	in	the	market	as	a	whole.	The	controlled	product	release	is	the	best	
option	in	these	conditions	[1]	(Figure	14.2).

In	fact,	product	release	management	is	such	a	dynamic	environment	that	if	proper	planning	is	
not	done	at	a	minute	level	and	constant	vigilance	is	not	applied	over	project	activities,	then	a	huge	
mess	can	be	created	and	there	will	be	no	time	to	clear	it.	So	the	project	manager	must	be	vigilant	
all	the	time	(Figure	14.2).

Estimate cost
of providing

support

Product release
management tasks

Selection of
software

version to be
shipped

Decision for
alpha, beta
or regular

release

Create walk
around for

known defects

Provide
training to

support staff

Make
customer
support
strategy

Figure 14.1 Task list for software product release.

Alpha
release

Beta
release

Product release
types

Internal
release

Normal
release

Figure 14.2 Software product release types.

Product Release and Maintenance  ◾  203

Finally,	for	the	product’s	scheduled	release,	how	the	customer	support	will	be	provided	should	be	
chalked	out.	Walk	arounds	for	known	issues,	estimated	number	of	critical	bugs	still	remaining	in	the	
product,	training	for	the	support	staff,	etc.,	should	be	done.	The	cost	of	support,	depending	on	the	
number	of	estimated	users,	walk	arounds,	and	remaining	bugs	should	be	figured	out.	These	measures	
will	ensure	that	the	product	is	transitioned	into	market	without	facing	major	difficulties.

14.3 Product Implementation
The	product	that	has	been	developed	and	thoroughly	tested	now	needs	to	be	implemented	at	a	
customer	site.	You	need	to	prepare	all	master	data	and	test	transaction	data	for	testing	the	imple-
mented	product.	You	need	to	get	all	 required	hardware	and	software	that	need	to	be	there	 for	
installing	your	software	product.	You	need	to	make	sure	that	you	have	developed	and	tested	all	
the	hardware	and	software	interfaces	for	integrating	your	product,	with	existing	legacy	systems	
and	infrastructure.	You	also	need	to	make	sure	that	your	product	will	run	smoothly	on	customer	
premises	without	any	interference	with	their	existing	applications	[2]	(Figure	14.3).

Often	project	 teams	 run	 into	problems	during	 implementation,	due	 to	unforeseen	 circum-
stances	or	negligence	on	part	of	 the	production	 team	or	customer’s	 team.	Therefore,	prepare	a	
list	of	your	own	requirements	and	hand	it	over	to	your	customer’s	support	team	so	that	they	are	
prepared	when	you	arrive	for	implementation.

14.4 User Training
Make	sure	that	the	user	manual	prepared	by	your	team	is	up	to	date	and	in	synch	with	the	ver-
sion	of	your	software	product,	which	you	will	implement	at	the	customer	site.	It	is	not	possible	to	
provide	training	to	all	users.	So	prepare	a	list	of	roles	that	are	needed	to	operate	the	product.	Give	
this	list	to	the	end	users	and	ask	them	to	select	one	user	per	role	who	will	receive	the	training.	
Apart	from	the	user	manual,	you	also	need	to	prepare	a	tutorial	to	include	probable	scenarios	that	
may	arise	during	operation	of	the	product.	The	tutorial	will	provide	a	step-by-step	guide	for	using	
the	product	under	those	scenarios.	This	will	be	a	very	important	step	in	training,	because	if	users	
do	not	learn	it	during	training,	then	they	will	contact	you	later	after	implementation	and	ask	you	
to	provide	information	as	to	how	to	use	the	product	in	those	circumstances	[3].	This	will	lead	to	a	
waste	of	your	support	team’s	time.	It	is	lot	better	to	train	them	now,	during	user	training,	rather	
than	face	user	requests	later.

Check
software

interfaces

Product
implementation

tasks

Check
hardware
interfaces

Create
master data

Create test
data

Create user
accounts

Check
infrastructure

for
installation

Figure 14.3 Task list for software product implementation.

204  ◾  Software Project Management: A Process-Driven Approach

14.5 Maintenance Introduction
Software	products	do	not	age	or	wear	out	like	physical	products.	Then	why	is	there	a	need	to	have	
maintenance	of	software	products?	Well,	there	are	some	factors	which	make	it	absolutely	necessary.	
Here	are	some	of	the	reasons:

	 1.	Technology obsolescence	[4]:	The	software	platform	(operating	system,	medium	of	user,	inter-
face)	or	the	hardware	platform	on	which	the	software	product	runs	gets	obsolete.

	 2.	Software defects:	There	are	major	software	defects	in	the	product	and	it	is	difficult	to	oper-
ate.	For	this	reason,	a	software	patch	may	be	needed	to	be	applied	so	that	these	defects	are	
removed.

	 3.	Change in user requirements:	The	business	organization	that	was	using	the	software	product	
has	seen	a	change	in	business	transactions	or	business	workflows	that	are	not	supported	by	
the	software	product	(Figure	14.4).

It	 is	estimated	that	more	than	70%	of	all	costs	associated	with	software	product	development,	
implementation,	and	support	and	maintenance	is	consumed	in	the	activities	of	supporting	and	
maintaining	software	products	[5].	Why	is	it	so?	What	can	be	done	to	change	this	situation,	so	
that	support	and	maintenance	costs	get	minimized	as	compared	to	development	and	implementa-
tion	costs?

These	 kinds	 of	 queries	 have	 always	 puzzled	 the	 business	 community.	 This	 recognition	 has	
resulted	in	an	awareness	of	the	importance	of	finding	ways	to	build	such	a	software	product.	This	
situation	has	led	to	including	maintainability	characteristics	during	the	entire	product	develop-
ment	cycle.	Yet,	a	lot	of	work	remains	to	be	done	during	the	maintenance	phase	of	any	software	
product.	How	to	manage	these	activities	so	that	costs	can	be	minimized	is	an	area	of	concern	yet	
to	be	resolved.

14.6 Maintenance Types
Software	maintenance	 is	of	 four	 types:	 corrective,	 adaptive,	preventive,	 and	perfective	mainte-
nance	[5].	If	the	software	has	some	defects,	then	it	will	take	a	corrective	maintenance	to	rectify	it.	
If	there	are	some	changes	in	the	operating	environment	of	the	software	product,	then	the	product	
can	be	made	useful	by	doing	adaptive	maintenance.	If	there	 is	an	insecurity	that	although	the	
product	is	running	fine	in	future	we	may	have	difficulty	in	using	it,	then	preventive	maintenance	
is	employed.	If	there	are	some	deficiencies	in	the	product	that	must	be	rectified,	then	perfective	
maintenance	will	fit	the	bill	(Figure	14.5).

Software
defects

New user
requirement

Changed user
requirement

Technology
obsolescence

Better
technology

Reasons for
software

maintenance

Figure 14.4 Reasons for software maintenance.

Product Release and Maintenance  ◾  205

14.6.1 Corrective
Even	 after	 thorough	 reviews	 and	 testing,	 the	 software	product	 contains	many	defects	when	 it	
goes	into	production.	These	defects	are	uncovered	as	users	start	using	the	application.	They	are	
logged	with	the	support	staff	and	after	a	sizable	number	of	errors	are	detected,	the	software	vendor	
instructs	his	maintenance	 team	to	create	a	patch	 to	 rectify	 them.	The	maintenance	 team	then	
makes	 a	plan	 and	fixes	 those	defects.	After	 application	of	 the	patch	 containing	 the	fixes,	 the	
software	starts	running	without	these	defects	[6].

14.6.2 Adaptive
The	operating	environment	in	which	a	software	product	runs	in	operation	includes	the	hardware	
and	software	platform	as	well	as	the	interfaces	for	human	and	other	machine	interactions.	If	any	of	
these	change	over	time,	it	becomes	difficult	to	run	the	software	product.	In	such	cases,	it	becomes	
necessary	to	do	adaptive	maintenance	so	that	the	software	product	becomes	reusable.	This	kind	of	
maintenance	may	involve	changing	the	interface	or	porting	the	application	to	another	hardware/
software	platform	[7].

14.6.3 Perfective
This	kind	of	maintenance	 is	needed	when	 there	 is	 a	 change	 in	 the	business	 environment,	 and	
thereby	users	need	additional/modified	functionality	in	the	software	product	to	do	their	tasks.	A	
business	workflow	may	have	changed,	a	business	transaction	may	have	changed,	or	an	altogether	
new	business	transaction	was	represented	in	the	software	product.	For	all	these	kinds	of	require-
ments,	a	perfective	maintenance	may	be	needed	[8].

14.6.4 Preventive
Generally	after	a	lapse	of	time,	there	are	likely	changes	in	business	or	operative	environment,	or	
there	may	be	changes	in	hardware/software	environment.	These	changes	are	bound	to	occur	and	
they	affect	 the	way	 the	 software	product	operates.	Many	of	 these	changes	can	be	perceived	 in	
advance.	In	such	cases,	preventive	maintenance	on	the	software	product	can	make	sure	that	the	
product	will	be	useful	even	after	these	environmental	changes	occur	[9].

14.7 Maintenance Cost
A	software	product	is	generally	very	valuable	to	an	organization	if	it	is	used	for	doing	a	large	por-
tion	of	their	daily	business.	If	for	some	reason	the	software	product	has	become	unusable,	then	the	
organization	in	fact	will	be	making	losses	on	their	revenue.	Moreover,	large	enterprise	software	

Corrective Preventative

Software
maintenance

types

Perfective Adaptive

Figure 14.5 Software maintenance types.

206  ◾  Software Project Management: A Process-Driven Approach

products	are	that	much	crucial!	When	the	organization	faces	such	a	case,	it	is	left	with	no	alterna-
tive	but	to	either	get	an	entirely	different	software	product	that	will	replace	the	existing	one	or	do	
maintenance	of	an	existing	product	to	make	it	usable.

Following	are	some	financial	reasons	for	which	a	maintenance	may	be	needed:

	 1.	Loss in business revenue:	 It	may	happen	that	business	 transactions	are	 faulty	and	thus	the	
business	may	lose	revenue.

	 2.	Opportunity loss:	Sometimes	there	could	be	some	business	opportunity	in	the	marketplace,	
but	due	to	some	software	problems	it	could	not	be	availed.

	 3.	Productivity loss:	If	the	software	product	becomes	difficult	to	operate	due	to	many	walk	arounds	
or	lengthy	processing	then	productivity	will	become	lower	for	business	personnel	(Figure	14.6).

Maintenance	of	an	existing	software	product	has	its	own	share	of	problems.	The	maintenance	will	
incur	costs.	A	profit/loss	analysis	can	be	done,	to	see	if	it	is	more	profitable	to	conduct	a	mainte-
nance	program	on	the	software	or	keep	using	it	as	it	is.	The	losses	due	to	problems	with	the	soft-
ware	can	be	compared	to	probable	cost	of	maintenance	and	an	ROI	(return	on	investment)	can	be	
done.	If	we	get	a	desirable	ROI	then	it	is	better	to	go	for	maintenance.

14.8 Maintenance Process
For	any	work,	it	is	always	better	to	have	a	process	model	instead	of	doing	things	on	an	ad	hoc	
basis.	When	it	comes	to	software	maintenance,	some	process	models	have	been	defined.	Some	of	
the	popular	ones	include	the	quick	fix	model,	Boehm’s	model,	Osborne’s	model,	iterative	enhance-
ment	model,	and	reuse	oriented	model	(Figure	14.7).

Revenue loss Opportunity
loss

Productivity
loss

Software
maintenance

financial reasons

Figure 14.6 Financial reasons for software maintenance.

Quick fix
model

Boehm’s
model

Osborne’s
model

Iterative
enhancement

model

Reuse
oriented
model

Software
maintenance

process models

Figure 14.7 Software maintenance models.

Product Release and Maintenance  ◾  207

Quick fix model:	This	is	the	simplest	of	maintenance	models;	whenever	any	defects	with	the	soft-
ware	products	are	found	they	are	immediately	fixed.	There	is	no	planning	involved	in	the	whole	
process	and	it	is	mostly	an	ad	hoc	approach.

Boehm’s model:	Boehm’s	model	is	based	on	economic	models	and	often	involves	calculating	ROI,	
for	any	planned	maintenance.	 If	ROI	turns	out	 to	be	good,	 then	 it	 is	carried	out	or	else	 it	 is	
dropped.

Osborne’s model:	Osborne	realized	that	difficulties	in	carrying	out	maintenance	work	are	due	to	
gaps	in	communication.	He	proposed	four	steps	to	prevent	this	situation.	He	stated	that	a	mainte-
nance	plan	should	include	all	change	requests	in	the	form	of	maintenance	requirements.	A	quality	
assurance	plan	should	accompany	the	maintenance	plan.	Metrics	should	be	developed	to	measure	
and	assess	quality	of	work	carried	out	during	maintenance.	Finally,	reviews	should	be	held	after	
maintenance	work	to	assess	quality	of	work	done.

Iterative enhancement model:	This	model	is	based	on	the	similar	concept	of	iterative	software	devel-
opment.	All	software	defects	and	change	requests	are	logged	and	then	a	small	set	from	this	list	is	
taken	for	making	fixes.	This	set	is	prepared	based	on	the	priority	of	changes	required.	High	prior-
ity	fixes	are	done	before	low	priority	fixes.

Reuse oriented model:	This	type	of	process	is	adopted	for	component-based	software	products.	
For	fixing	any	defects,	existing	components	are	analyzed	and	then	the	appropriate	changes	
are	made.

14.9 Maintenance Life Cycle
Like	the	software	development,	software	maintenance	also	has	a	life	cycle.	Requirements	for	soft-
ware	maintenance	come	from	the	list	of	defects	that	have	been	logged.	Either	the	list	of	defects	can	
be	taken	as	a	whole	or	a	subset	of	defects	from	this	list	can	be	taken	for	a	fixing	plan.	It	makes	a	
lot	of	sense	to	go	for	an	iterative	approach.	This	approach	is	similar	to	the	concept	of	iterative	soft-
ware	development.	This	way	it	can	be	ensured	that	highly	visible,	important,	and	priority	defects	
are	fixed	first	and	other	defects	which	do	not	make	much	impact	on	operations	of	the	product	are	
tackled	later	(Figure	14.8).

In	the	software	maintenance	life	cycle,	testing	is	a	crucial	phase.	This	phase	also	consumes	a	lot	
of	time	and	effort.	But	the	value	addition	in	all	this	effort	and	time	spent	helps	in	reducing	defects,	
which	in	the	long	run	is	a	much	cheaper	alternative	compared	to	no	testing/cursory	testing	and	
later	spending	money	in	providing	support.

List of
defects

Subset of
defects

Defect fixing
planning/
execution

Maintenance
complete

Test
application

Patch
application

Figure 14.8 Maintenance life cycle.

208  ◾  Software Project Management: A Process-Driven Approach

14.10 Maintenance Techniques
Maintenance	of	software	products	sometimes	becomes	a	tough	proposition.	There	is	no	proper	
documentation	that	can	be	used	for	understanding	how	the	product	is	designed	and	constructed.	
Sometimes	there	is	no	documentation	at	all.	Even	if	documentation	is	there,	it	is	not	up	to	date.	
This	out-of-date	documentation	is	not	of	much	use	for	any	maintenance	work	(Figure	14.9).

Sometimes	even	if	the	documentation	is	up	to	date,	the	maintenance	work	is	difficult	due	to	
dirty	design	or	construction	work.

All	these	situations	call	for	some	specific	techniques	for	maintenance	work	depending	on	the	
situation.	Some	of	the	common	maintenance	techniques	include	reengineering,	reverse	engineer-
ing,	and	forward	engineering.

14.10.1 Reengineering
Reengineering	is	also	known	as	reuse	engineering.	This	technique	is	a	standard	method	for	main-
tenance	work	for	component-based	software	products.	Details	about	all	components	in	the	soft-
ware	products	are	well	known.	When	any	maintenance	work	is	needed,	from	the	list	of	defects,	
each	defect	is	specifically	analyzed	to	find	out	the	root	cause	of	the	defect.	Once	this	analysis	is	
successful,	then	fixing	that	defect	becomes	easy.

14.10.2 Reverse Engineering
Reverse	engineering	technique	is	most	useful	when	nonexistent	or	sketchy	documentation	is	avail-
able	for	the	software	product.	Due	to	unavailability	of	documentation,	there	is	no	information	as	
to	what	the	design	is	and	how	the	product	is	constructed.	In	such	a	situation,	it	is	almost	impos-
sible	to	do	any	modification	in	the	source	code	for	any	maintenance	work.

In	 such	 cases,	 the	 reverse	 engineering	 technique	 is	 adopted.	 Using	 this	 technique,	 similar	
components	or	product	parts	are	constructed	as	compared	to	existing	product	components/parts.	
This	way	the	software	product	functionality	is	changed	as	the	new	constructed	parts	will	have	the	
desired	functionality.

14.10.3 Forward Engineering
Forward	 engineering	 is	 just	 the	 opposite	 of	 reverse	 engineering.	 In	 this	 situation,	 we	 have	
ample	 documentation	 about	 the	 existing	 product.	 Due	 to	 new	 customer	 needs,	 the	 exist-
ing	product	needs	to	be	extended	so	that	the	new	needs	can	be	fulfilled.	All	new	extended	

Reengineering Forward
engineering

Reverse
engineering

Software maintenance
engineering
techniques

Figure 14.9 Software maintenance engineering techniques.

Product Release and Maintenance  ◾  209

development	is	based	on	the	existing	design	and	construction	methods	and	will	be	made	for	
the	same	hardware/software	platform.

14.11 Case Study
In	our	series	of	case	studies,	here	is	the	piece	related	to	software	release	and	maintenance.

14.11.1 Software Release
Our	SaaS	vendor	releases	minor	versions	of	its	product	on	a	quarterly	basis	and	major	versions	on	
a	yearly	basis.	For	each	minor	release,	new	features	to	be	added	are	carefully	planned.	The	product	
manager	makes	sure	that	the	release	plan	for	a	minor	release	will	be	on	time	by	assigning	priority	
to	each	new	feature.	The	high	priority	features	will	be	definitely	added	and	the	low	priority	fea-
tures	for	that	iteration	will	be	added	if	any	time	remains	in	the	iteration.

Our	SaaS	vendor	does	not	release	alpha	or	beta	releases	of	 its	product	as	 they	do	not	serve	
mass	markets.	Their	product	 is	an	enterprise	computing	product	and	 is	used	by	 large	retailers,	
government	offices,	logistics	providers,	manufacturers,	and	distributors.	They	always	release	new	
versions	of	their	product	to	their	existing	customers.	Since	they	do	not	do	alpha	or	beta	releases,	
they	make	sure	that	their	new	version	is	tested	thoroughly	by	their	testing	team,	and	no	major	
defects	are	passed	in	the	production	instances.	Since	there	are	no	immediate	customers	who	will	
be	available	for	doing	user	acceptance	testing,	the	internal	testing	team	does	the	user	acceptance	
testing	as	well.

14.11.2 Software Maintenance
The	software	vendor	keeps	all	of	the	production	instances	of	its	software	product	at	its	data	center	
(also	known	as	operations	center).	All	previous	versions	of	the	software	as	well	as	the	current	work-
ing	version	of	the	software	product	run	at	this	center	as	production	instances	of	different	versions	
of	their	software	product.	The	maintenance	team	makes	sure	that	all	versions	of	the	product	are	
available	for	users.	They	run	sanity	test	scripts	daily	on	all	instances.	If	any	problems	are	found,	
they	is	immediately	resolved.	These	scripts	are	run	at	night.	If	any	problems	are	found	then,	it	is	
made	sure	that	they	are	rectified	before	office	hours	start	and	people	start	using	the	application.

In	packaged	software	or	custom	built	software	that	are	not	used	in	an	SaaS	environment,	this	
kind	of	quick	fix	is	not	possible.	So	in	those	cases,	a	maintenance	plan	is	made	to	fix	all	or	most	
defects	found	by	users	during	a	time	span	of	3	months	or	more.	But	with	SaaS	environments,	this	
kind	of	maintenance	is	not	needed	at	all.	All	defects	are	quickly	and	easily	fixed,	without	hamper-
ing	work	of	end	users.

14.12 Chapter Summary
Software	product	release	 is	a	messy	affair	 for	most	project	 teams.	Even	when	a	project	 team	is	
working	with	 the	most	pessimistic	 schedule	 estimates,	 things	 get	delayed	 and	 create	problems	
in	completing	tasks	on	time.	It	is	human	nature	that	they	tend	to	relax	at	the	beginning	of	an	
assigned	 task,	 and	 thus	when	 the	 schedule	deadline	 approaches	 a	 large	part	 of	 the	 task	 is	 not	
complete.	This	puts	pressure	on	the	individual	as	well	as	the	project	team.	This	is	precisely	what	

210  ◾  Software Project Management: A Process-Driven Approach

happens	around	the	product	release	dates	most	of	the	time.	So	apart	from	what	the	project	team	
will	be	exactly	doing	at	the	time	of	software	release	(product	implementation	and	user	training),	
the	team	ends	up	doing	some	backlog	work	as	well.	For	user	training,	appropriate	users	should	be	
identified	out	of	the	pool	of	probable	users.	These	users	who	will	get	the	training	should	be	excel-
lent	students	(and	teachers)	who	will	later	train	other	users.

When	first	 implementing	a	product,	 the	 right	version	of	 the	 software	 should	be	 identified,	
as	the	project	team	usually	has	a	number	of	release	candidates.	The	required	infrastructure,	data	
preparation,	hardware	configuration,	etc.,	should	be	chalked	out	and	people	responsible	for	this	
work	should	be	informed	in	advance,	before	the	implementation	team	actually	visits	the	imple-
mentation	site.	If	the	software	product	is	distributed	via	the	web,	then	it	should	be	made	sure	that	
the	link	to	download	the	software	works	fine.	Mirroring	sites	should	also	be	made	available	so	that	
users	will	be	able	to	download	the	software	even	during	peak	load	hours.	Customers	of	the	soft-
ware	should	be	clearly	identified	and	targeted.	For	instance,	depending	on	whether	the	software	
product	is	an	alpha,	beta,	or	regular	release,	the	customers	will	be	different.

Software	development	may	involve	developing	a	software	product	spanning	from	a	few	months	
to	a	few	years.	But	the	product	will	be	used	anywhere	from	5	years	to	more	than	10	years.	Many	
software	applications	are	in	fact	used	even	after	their	expected	service	life	has	expired.	During	this	
whole	time	span,	the	software	needs	to	be	supported	and	maintained.	Support	and	maintenance	
involve	costs.	Due	to	this	large	time	span,	in	fact	the	support	and	maintenance	costs	are	more	than	
development	costs.	Sometimes	it	can	be	as	high	as	1500%	of	the	development	costs.	To	minimize	
support	and	maintenance	cost,	it	has	to	be	ensured	during	development	that	the	software	can	be	
easily	maintained.

Review Questions
14.1	 Why	is	maintenance	needed	for	software	products?
14.2	 What	techniques	are	employed	for	software	maintenance	projects?
14.3	 What	is	the	life	cycle	of	a	maintenance	project?
14.4	 	Define	maintainability.	How	can	a	software	product	be	made	maintainable?
14.5	 List	common	maintenance	processes.
14.6	 What	activities	are	involved	in	software	release?

Recommended Readings
	 1.	 D.	J.	Anderson	(2004)	Agile Management for Software Engineering: Applying the Theory of Constraints for

Business Results,	Prentice	Hall	PTR,	Upper	Saddle	River,	NJ.
	 2.	 K.	Bittner,	I.	Spence	(2007)	Managing Iterative Software Development Projects,	Addison-Wesley,	Boston,	MA.
	 3.	 N.	D.	Birrell,	M.	A.	Ould	(1988)	A Practical Handbook for Software Development,	Cambridge	University	

Press,	Cambridge,	U.K.
	 4.	 G.	Ramesh	(2005)	Managing Global Software Projects,	Tata	McGraw-Hill,	New	Delhi,	India.
	 5.	 C.	Jones	(2007)	Estimating Software Costs,	Tata	McGraw-Hill,	New	Delhi,	India.
	 6.	 P.	Grubb,	A.	A.	Takang	(2003)	Software Maintenance: Concepts and Practice,	World	Scientific	Publishing	

Company,	River	Edge,	NJ.
	 7.	 S.	Fishman	(2007)	Legal Guide to Web and Software Development,	Nolo,	Berkeley,	CA.
	 8.	 C.	B.	Tayntor	(2003)	Six Sigma Software Development,	Auerbach,	New	York.
	 9.	 S.	Beydeda,	M.	Book,	V.	Gruhn	(2005)	Model-Driven Software Development,	Springer,	New	York.

SOFTWARE
ENGINEERING
MANAGEMENT

III

213

Chapter 15

Process Standards
Introduction

In.Part.III,.we.will.learn

	◾ What	is	software	process	improvement?
	◾ How	can	process	selection	be	made	for	a	software	project?
	◾ What	are	the	benefits	and	drawbacks	of	the	waterfall	model	of	software	development?
	◾ What	are	the	benefits	and	drawbacks	of	the	agile	model	of	software	development?

In.this.chapter,.we.will.learn

	◾ What	is	software	engineering	management?
	◾ How	are	statistical	process	control	techniques	useful	for	software	projects?
	◾ What	are	the	benefits	of	the	standard	process	model	implemented	across	the	organization?

15.1 Introduction
The	quality	of	any	product/service	is	one	of	the	most	important	factors	for	its	success	in	the	market.	
A shoddy	quality	product/service	is	simply	not	acceptable.	Consumers	will	reject	such	a	product.

Therefore,	 a	good	quality	product/service	 is	 a	must.	But	how	do	consumers	know	whether	
a	product/service	 is	of	good	quality?	By	getting	 its	quality	certified	by	some	certifying	agency.	
These	certifying	agencies	use	some	standards	to	measure	physical,	aesthetic,	chemical,	or	any	other	
aspect	of	the	product/service	to	know	if	it	meets	those	exacting	standards.	If	it	does,	then	they	
certify	it;	if	not,	they	do	not.	Consumers	see	this	certificate	and	know	that	the	product/service	is	
of	good	quality	and,	only	then,	they	buy	it.

214  ◾  Software Project Management: A Process-Driven Approach

The	manufacturer/service	provider	uses	standard	methods	to	manufacture/devise	any	product/
service	of	good	quality.	Without	standard	methods	a	good	quality	product/service	is	possible,	but	
it	cannot	be	repeated.	So	once	in	a	while	the	product/service	will	be	of	good	quality,	but	most	
of	the	time	it	will	not	be	good.	Nevertheless,	if	a	good	standard	method	is	employed,	then,	most	
of	the	time,	quality	of	the	product/service	will	be	good.	This	is	why	a	good	quality	method	or	
process	is	very	important,	as	it	enables	to	produce	good	quality	product/service	consistently	and	
repeatedly.

When	it	comes	to	software	development	projects,	a	good	quality	process	becomes	even	more	
important	because	software	products	or	applications	are	very	complex	and	difficult	to	produce.	
Even	when	the	product	specifications	devised	during	system	design	are	good,	there	is	no	guar-
antee	that	the	software	produced	will	be	of	good	quality	because	the	coding	may	be	of	shoddy	
quality.

15.2 Root Cause of Problems in Software Projects
Software	 development	 projects	 are	 plagued	 by	 many	 problems.	 The	 most	 important	 problems	
include	 lack	of	visibility,	variability	 in	quality,	 cost	and	 schedule	escalation,	etc.	 [1].	Lack	of	
visibility	in	software	projects	can	be	attributed	to	unclear	software	requirement	specifications	
and	frequent	change	in	requirement	specifications.	Due	to	these	two	factors,	downstream	activi-
ties	in	the	software	development	cycle	get	affected	and	thus	it	becomes	difficult	to	schedule	these	
activities	with	good	accuracy.	Variability	in	quality,	cost,	and	schedule	from	one	project	to	another	
results	from	nonstandard	methods	employed	to	execute	projects	(Figure	15.1).

Apart	from	nonstandard	methods,	lack	of	clear	specifications	of	work	products	also	plays	a	major	
role	 in	 variability	 from	one	project	 to	 another	 [2].	 Suppose	 the	 requirement	 says	 the	 application	
should	have	a	search	facility	for	available	flights	for	a	certain	city	on	a	given	date	and	time.	This	
problem	can	be	modeled	in	many	different	ways.	Again,	how	this	functionality	is	going	to	be	imple-
mented	may	not	be	clear	to	the	software	architect	initially.	So	in	the	initial	estimate,	he	can	give	a	
rough	figure.	Only	when	the	design	is	actually	to	be	made,	the	actual	implementation	becomes	clear	
and	the	software	architect	can	provide	an	accurate	estimate.	Similarly,	integration	of	different	mod-
ules	is	a	tricky	affair.	Estimation	for	effort	required	for	integration	is	mostly	a	guess.	Many	issues	arise	
when	integration	is	actually	done.	Effort	estimation	techniques	like	function	point	analysis	(FPA),	
wideband	Delphi	technique	(WBD),	COCOMO,	etc.,	try	to	provide	effort	estimation	but	none	of	
them	have	good	accuracy.	At	most,	they	help	in	making	a	rough	estimate.

Many	details	at	the	beginning	of	the	project	are	not	clear.	They	become	clear	only	after	a	few	
iterations	over	specific	project	tasks.	The	requirements	themselves	start	changing	over	the	project	
execution	and	they	make	the	baseline	project	plan	totally	irrelevant.	The	project	manager	has	to	

Changing
requirements

Unclear/
incomplete

requirements

Problems on
software projects

Lack of visibility Not enough
specifications

Figure 15.1 Problems on software projects.

Process Standards Introduction  ◾  215

incorporate	necessary	changes	in	project	tasks	due	to	these	changes	in	requirements	and	adjust	his	
project	plan	accordingly	[3].

It	is	not	obvious	how	to	design	from	given	requirements	even	if	they	are	written	in	the	best	
way.	Even	if	the	design	is	good,	it	is	not	obvious	how	to	construct	the	application.	Due	to	lack	
of	clarity,	the	development	team	resorts	to	iterations.	Iterations	make	the	project	plan	vulnerable	
and	the	initial	project	plan	becomes	invalid,	and	the	project	manager	has	to	make	adjustments	in	
project	plan	to	accommodate	these	iterations.

15.3 Solutions for Problems in Software Projects
To	make	 software	projects	more	 amenable	 to	predictable	 results	 and	better	 control,	 the	most	
potent	tool	is	to	use	software	engineering	methods	on	the	project	as	much	as	possible.	Consistent	
process	modeling	across	varied	projects	will	 ensure	consistency	 in	quality,	 cost,	 and	 schedule.	
A well-defined	process	model	will	ensure	good	visibility	in	the	entire	life	cycle	of	product	devel-
opment.	Quality	assurance	methods	built	into	the	process	model	will	ensure	that	both	process	
and	 work	 products	 can	 be	 measured	 at	 frequent	 intervals	 during	 the	 entire	 project	 execution	
cycle.	Once	you	can	measure	process	and	work	products	accurately,	you	will	be	able	to	manage	
them	better.

When	you	want	to	make	a	product	feature,	characteristics	of	the	feature	should	be	well	known.	
Suppose	you	are	making	a	warehouse	application.	In	reality,	physical	warehouses	are	of	different	
sizes,	used	for	different	purposes,	are	located	at	different	distances	from	certain	places,	and	have	
many	other	specific	characteristics.	When	a	warehouse	is	represented	in	a	software	application,	the	
size	of	the	software	product	should	be	well	known	from	exact	requirement	specifications	given	by	
the	customer.	This	will	freeze	the	volume	of	work	to	be	done.	This	product	part	can	be	made	in	a	
certain	number	of	ways.	Specific	programming	language,	specific	platform,	and	specific	architec-
ture	can	be	employed	to	make	this	product.	Again	this	will	give	an	accurate	volume	of	work	to	be	
performed.	The	people	who	will	be	doing	this	work	have	a	certain	level	of	experience	and	skills.	
So	the	productivity	 factor	can	be	determined	from	this	 fact.	Productivity	and	size	can	provide	
an	accurate	estimate	for	total	effort	required	for	the	project.	In	such	a	scenario,	everything	in	the	
project	is	measurable	and	so	can	be	managed	with	ease.

This	kind	of	standardization	on	projects	 is	possible	 in	the	future,	and	can	totally	eliminate	
uncertainty	from	the	project.	This	is	where	software	engineering	comes	in.	Software	engineering	
ensures	 that	software	projects	and	the	tasks	associated	with	them	can	be	accurately	scheduled.	
Thus,	a	perfect	project	plan	can	be	accurately	made	and	executed.	Currently,	however,	it	is	a	bit	
difficult	as	standardization	of	software	development	processes	is	still	in	its	infancy.	However,	defi-
nitely	it	is	evolving	fast	and	in	the	not	so	distant	future,	it	will	become	a	reality.

As	 can	 be	 imagined,	 software	 projects	 have	 three	 components	 to	 be	 managed:	 quality,	
schedule,	and	budget.	The	major	components	of	costs	in	software	development	projects	are	the	
human	resources.	This	cost	component	can	be	controlled	and	reduced	by	efficient	utilization	
of	time	of	the	 involved	team	members.	Once	project	size	and	project	team	productivity	are	
measured	and	can	be	treated,	almost	fixed,	once	the	team	is	formed,	the	schedule	will	be	very	
well	known.	Before	the	project	team	is	formed,	it	can	be	tweaked	by	selecting	a	balanced	team	
for	the	project.	Tasks	that	are	critical	and	impact	the	project	the	most	should	be	manned	by	
experienced	and	higher	paid	professionals.	Tasks	that	are	not	so	critical	should	be	manned	
by	people	with	lower	experience	and	lower	salary.	These	same	factors	will	also	influence	budget	
for	the	project.

216  ◾  Software Project Management: A Process-Driven Approach

The	third	dimension	in	software	projects	is	quality.	Software	engineering	helps	here	as	well.	
When	standard	processes	are	strictly	followed	and	all	possible	causes	of	errors	are	eliminated	or	
reduced,	software	product	quality	will	improve	(Figure	15.2).

One	more	solution	for	software	projects	is	to	go	the	lean	way.	In	other	industries,	lean	and	
just-in-time	concepts	helped	to	overcome	many	problems	including	quality,	inventory,	costs,	etc.	
On	software	projects,	if	we	do	not	try	to	take	the	entire	requirements	and	instead	try	to	build	the	
software	product	incrementally	by	taking	a	few	requirements	at	a	time,	then	the	same	benefits	of	
just-in-time	methods	can	be	reaped	here.	More	about	these	concepts	are	presented	in	the	iterative	
and	agile	model	of	software	development	elsewhere	in	this	book.

15.4 Standard Process for Software Projects
Any	standard	process	can	be	applied	to	produce	similar	sized	products/services	that	have	similar	
characteristics.	Let	us	suppose	we	have	one	software	development	project	formed	to	make	a	soft-
ware	product	having	100	KLOC	(kilo	lines	of	code),	and	we	have	another	software	development	
project	formed	to	make	a	software	product	having	10,000	KLOC.	Can	the	same	standard	process	
be	applied	for	both	projects?

The	answer	is	yes	and	no.
The	real	answer	lies	in	the	details.

The	waterfall	model	establishes	a	process	framework	of	having	firm	phases	in	the	development	
life	cycle	for	software	products.	The	phases	include	requirements,	design,	build,	test,	and	release.	
This	top	level	of	process	framework	can	be	applied	to	all	software	development	projects.	What	
about	other	kinds	of	projects?	In	a	typical	maintenance	project,	the	product	life	cycle	could	be	
reported	as	bug	analysis,	bug	fixing,	testing,	bug	closure,	release,	etc.

Similarly,	 the	 process	 for	 product	 development	 is	 different	 from	 that	 of	 application	 devel-
opment.	This	 is	 because	 software	products	 are	 inherently	different	 from	 software	 applications.	
Software	products	are	characterized	by	frequent	releases	of	the	product	at	short	intervals.	Most	
software	vendors	have	a	minor	release	of	 their	 software	every	quarter	and	a	major	 release	on	a	
yearly	basis.	In	such	an	environment,	 iterative	and	incremental	development	model	 is	 far	more	
suitable	than	a	traditional	waterfall	model.

Due	to	these	differences	in	processes,	different	process	models	were	developed	by	standards	
creation	organizations	like	SEI	(Software	Engineering	Institute)	at	Carnegie	Mellon	University,	
ISO,	IEEE,	etc.	On	the	other	hand,	for	iterative	and	incremental	development	models	like	eXtreme	
Programming,	Scrum,	and	cleanroom	engineering	were	developed	[4].

Just-in-time
methods

Quality
assurance
methods

Solutions for
software projects

Adherence to
process

standards

Standard
processes across

organization

Figure 15.2 Solutions for problems on software projects.

Process Standards Introduction  ◾  217

Given	that	project	resources	are	limited,	the	project	manager	has	to	deliver	the	project	within	those	
limited	resources.	He	has	limited	time,	project	team	size,	and	budget.	He	has	to	optimize	his	resources	
to	produce	the	best	results	from	his	project.	Using	standard	processes	may	seem	to	increase	his	work.	
Although	he	may	resist	using	those	standard	processes,	it	nevertheless	ensures	better	quality.

15.4.1 Process Tailoring
Standard	SDLC	processes	need	not	fit	requirements	of	any	specific	project	[5].	For	instance,	the	
project	needs	to	be	delivered	over	many	iterations.	These	iterations	are	complete	right	from	soft-
ware	requirements	to	software	testing.	This	process	is	different	from	standard	process	of	delivering	
the	entire	project,	without	any	iterations	involved	and	in	a	sequential	manner.	So	how	can	a	pro-
cess	model	like	CMMI	be	applied	for	this	project?	Clearly	in	this	case,	an	iterative	development	
model	would	be	more	appropriate.	Now	suppose	we	need	to	develop	a	software	product	for	a	cus-
tomer	where	we	strongly	feel	that	instead	of	developing	the	software	from	scratch,	we	should	take	
an	existing	open	source	software	product	and	customize	it	per	customer	requirements.	This	kind	
of	project	definitely	will	not	fit	any	of	the	standard	development	models.	So	how	can	we	choose	
a	model	for	this	project?	(Figure	15.3).	By	tailoring	the	process!	More	information	about	process	
tailoring	can	be	found	in	Chapter	16.

15.5 Standard Process across Software Projects
For	 most	 organizations,	 each	 software	 project	 is	 a	 stand-alone	 affair.	 There	 is	 no	 connection	
between	one	project	and	the	other	even	if	the	two	projects	are	executed	one	after	another	by	the	
same	project	 team,	and	that	 the	two	projects	are	almost	 identical.	This	was	 the	scenario	up	to	
the	1990s.	Many	practitioners	had	observed	that	each	project	team	was	reinventing	the	wheel	in	
executing	 these	 stand-alone	projects.	So,	even	 though	reusable	components	were	on	one	hand,	
being	developed	based	on	these	projects	to	prevent	reinventing	the	wheel	in	building	a	software	
system,	the	project	management	practice	on	the	other	hand	was	never	benefiting	from	the	lessons	
learned	from	previously	executed	projects.

This	scenario	is	still	true	for	many	in-house	projects,	and	even	on	a	few	outsourced	ones.	But	
some	people	started	seeing	the	light	at	the	end	of	the	tunnel	and	realized	that	if	lessons	learned	
from	previously	executed	projects	can	be	applied	to	new	projects,	a	large	improvement	is	possible	
on	these	new	projects	in	terms	of	gains	in	productivity.

For	small	projects	consisting	of	a	few	people	and	lasting	for	a	few	months,	informal	project	
management	without	a	process	model,	is	fine.	Since	complexity	is	low	and	not	many	people	are	

Standard process
model does

not fit

Unique product
to be made

Process tailoring
needed when

No similar
previous project

Customer
requires it

Figure 15.3 Process tailoring for software projects.

218  ◾  Software Project Management: A Process-Driven Approach

involved	in	such	projects,	error	due	to	communication	gaps	is	not	there.	But	on	large	modern	day	
projects,	complexity	and	size	is	considerable.	Many	people	will	be	involved	and	will	work	on	the	
project	for	several	months,	if	not	several	years.	Management	of	such	projects	will	also	have	many	
layers.	At	such	engagements,	error	due	to	communication	gaps	is	inevitable.	If	informal	methods	
for	doing	work	are	employed,	chances	of	error	are	even	higher.

Apart	from	errors	there	is	one	more	dimension	to	project	management.	How	does	one	ensure	
that	 a	 software	 product	 being	 produced	 out	 of	 these	 projects	 has	 the	 same	 consistent	 quality	
project	after	project?	Due	to	differences	in	management	styles,	knowledge	and	experience	of	team	
members,	environment	factors,	etc.,	quality	of	one	project	is	very	different	from	the	other	[6].

Let	us	take	an	example	from	manufacturing	and	compare	it	with	software	projects.
In	manufacturing,	when	raw	material	 is	processed	 in	sequence	(e.g.,	assembly	 line),	we	get	

products	with	the	same	quality.	Similarly,	from	another	assembly	line,	different	kinds	of	products	
of	the	same	quality	are	produced.	Coming	to	software	projects,	a	service	provider	can	set	up	many	
software	development	models	and	process	software	projects.	In	our	example	(see	Figure	15.4),	we	
have	two	process	models,	CMMI	and	rational	unified	process	(RUP).	All	projects	that	are	pro-
cessed	using	CMMI	will	produce	software	products	with	the	same	quality.	Similarly,	all	projects	
which	are	processed	using	RUP	will	produce	software	products	of	similar	quality	to	each	other	
(Figure	15.5).	This	is	how	consistent	quality	across	all	projects	is	achieved.

Some	of	the	benefits	of	using	standard	processes	across	projects	are

	 1.	Better	quality
	 2.	Opportunity	to	use	metrics	data	from	previously	executed	projects
	 3.	Same	quality	across	projects
	 4.	Opportunity	to	use	shared	resources
	 5.	Less	effort	as	learning	from	one	project	can	be	applied	to	other	projects
	 6.	Making	software	project	management	more	science	than	art

Manufacturing
process 2 Process

Process
Manufacturing

process 1

Same quality products

Same quality products

Product
B

Product
A

Product
A

Product
A

Product
A

Product
B

Product
B

Product
B

Raw
material 2

Raw
material 2

Raw
material 1

Raw
material 1

Figure 15.4 Manufacturing processes and products with same quality from same process.

Process Standards Introduction  ◾  219

15.6 Program Management
Program	management	deals	with	managing	a	group	of	projects	at	a	higher	level	and	using	
shared	resources	and	common	management	practices	so	that	all	the	projects	under	the	same	
program	management	 can	be	managed	 effectively	with	 fewer	 resources,	 and	 lower	 costs.	
At	 the	same	time,	program	management	also	helps	 in	meeting	some	set	objectives	 for	an	
organization.

How	does	program	management	fit	into	the	overall	organizational	objectives?
One	of	 the	problems	 in	 a	 project-based	organization	 is	 that	 resource	utilization	 cannot	be	

achieved	100%.	In	environments	such	as	manufacturing	where	the	process	is	continuous,	resources	
(like	machines,	man	power,	etc.)	are	used	100%	without	any	problems.	But	projects	are	not	neces-
sarily	continuous.	A	project	is	started,	executed,	and	finally	closed.	When	a	project	starts,	it	needs	
resources	until	it	gets	finished.	The	moment	it	gets	finished,	all	the	resources	it	was	using	need	
to	be	released.	Now	resources	are	of	two	types.	One	is	consumable	and	another	is	fixed.	Fixed	
resources	include	machinery	and	human	resources.	So	when	a	project	completes,	human	resources	
and	machinery	become	idle.	They	must	be	utilized	on	another	project	or	the	organization	that	
owns	them	or	they	will	lose	their	capital	(in	terms	of	salary	for	human	resources,	depreciation	for	
machinery),	since	these	resources	will	not	be	doing	any	productive	work	which	can	bring	revenues.	
At	the	same	time,	on	one	project,	not	all	resources	are	employed	for	the	entire	duration	of	the	
project.	They	may	be	assigned	to	tasks,	and	when	that	task	gets	completed	then	they	are	no	longer	
needed	on	that	project	(see	Figure	15.6).

These	 resources	must	be	assigned	 to	other	projects	 so	 that	 they	do	not	 sit	 idle.	One	of	 the	
topmost	objectives	of	any	program	management	is	to	strive	to	achieve	resource	utilization	close	
to	100%.

Software process
(RUP) Process

Process

ProjectsProjects

ProjectsProjects

Software process
(CMMI)

Same quality products

Same quality products

Product
B

Product
A

Product
A

Product
A

Product
A

Product
B

Product
B

Product
B

Figure 15.5 Software development processes and products of the same quality from the
same process for many projects.

220  ◾  Software Project Management: A Process-Driven Approach

15.7 Portfolio Management
Portfolio	management	concerns	itself	with	the	objective	of	maximizing	returns	from	the	collection	
of	projects,	in	a	portfolio.	They	work	in	the	same	way	as	mutual	fund	portfolios.	A	mutual	fund	
invests	money	into	many	stocks	and	bonds	in	such	a	way	that	the	return	on	the	invested	money	
is	the	maximum	possible,	and	at	the	same	time	as	it	is	looking	to	minimize	the	risks.	Some	of	the	
stocks	 and	bonds	have	high	 return	potential	with	higher	 risks,	whereas	 some	other	 stocks	 and	
bonds	have	a	much	lower	return	potential	but	have	a	very	low	risk	as	well.	Based	on	research,	the	
portfolio	manager	decides	how	much	of	the	money	from	the	mutual	fund	should	be	invested	in	
high	risk–high	growth	potential	stocks	and	how	much	in	low	risk–low	return	potential	stocks.	This	
balanced	approach	ensures	a	good	return	on	money	invested	with	much	lower	risks	(Figure	15.7).

On	similar	terms,	a	project	portfolio	determines	how	to	make	an	approach	so	that	from	a	port-
folio	of	projects,	maximum	returns	can	be	achieved	with	the	lowest	possible	risks.	A	portfolio	of	
projects	may	contain	some	low	risk–low	return	projects,	some	medium	risk–medium	return	proj-
ects,	and	some	high	risk–high	return	projects.	An	organization	should	create	a	strategy	by	which	
it	can	decide	how	many	low	risk–low	return,	medium	risk–medium	return,	and	high	risk–high	
return	projects	should	be	taken	in	the	portfolio,	so	that	the	objective	of	maximum	returns	can	be	
achieved	with	minimum	risks.

Program management

Portfolio projects 1

Projects
1

Projects
2

Projects
3

Projects
1

Projects
2

Projects
3

Portfolio projects 2 Portfolio projects 3

Figure 15.7 Portfolio management.

Task 1 (resource 1,2)

Task 4 (resource 2,7,8)

Software project

Task 3 (resource 5,6,4)

Task 2 (resource 3,4)

TimeTime

Figure 15.6 Tasks and associated resources on a project.

Process Standards Introduction  ◾  221

15.8 Statistical Process Control on Software Projects
Sometime	 back,	 in	 a	 paper	 titled	 “Is	 Statistical	 Process	 Control	 Applicable	 to	 Software	
Development	 Processes?”	 [7]	 Bob	 Raczynski	 had	 argued	 that	 measuring	 software	 develop-
ment	processes	and	using	statistical	process	control	(SPC)	is	not	useful.	Bob	argued	that	since	
software	development	processes	involve	intellectual	but	prone	to	error	inputs,	in	the	form	of	
coding	done	by	human	beings,	SPC	processes	 cannot	be	 applied.	SPC	processes	 are	better	
suited	for	mass	manufacturing,	where	the	same	process	steps	can	be	repeated	again	and	again	
with	the	same	inputs.	In	such	cases,	if	any	variation	occurs	in	quality	of	output,	then	the	root	
cause	of	the	quality	problem	can	be	immediately	traced	using	SPC.

I	beg	to	differ	with	Bob.	I	have	accepted	that	software	development	is	a	labor	intensive	activ-
ity,	and	any	human	activity	is	prone	to	errors.	I	have	also	accepted	that	in	such	environments,	
it	 is	difficult	 to	 implement	SPC	methods.	 Still,	 the	 fact	 remains	 that	human	activity	 can	be	
measured	and	compared	in	a	controlled	environment.	That	is	why	we	have	different	hourly	pay	
rates	for	different	people.	Highly	skilled	people	get	higher	hourly	rates	and	low	skilled	people	
get	lower	hourly	rates.	Definitely,	higher	paid	people	have	better	output	than	lower	paid	people.	
So	a	person’s	quality	of	output	is	measurable.	Similarly	when	a	task	is	assigned	to	a	person	with	
his	known	ability,	the	quality	of	output	can	be	anticipated	in	advance.	This	is	especially	true	
in	environments	where	process	 standards	are	 implemented	 successfully	 and	people	work	 in	a	
predictable	environment.

As	mentioned	in	Section	15.3,	through	software	engineering	techniques	it	is	possible	to	rea-
sonably	quantify	project	tasks.	Project	size	can	be	measured	and	estimated,	and	productivity	can	
also	be	found	out.	Although	some	elements	of	subjectivity	may	still	persist	in	these	estimates,	
SPC	helps	in	making	better	estimates	for	size	and	productivity	as	it	further	eliminates	subjective	
elements.	Using	project	data	from	previously	executed	projects,	estimates	can	be	improved.

SPC	data	 is	 also	useful	 for	quality	control.	How	many	defects	were	 found	 in	a	 similar	
sized	project	and	how	much	effort	was	required	in	finding	and	fixing	those	bugs,	gives	a	good	
idea	for	the	coming	project	to	estimate	time	and	resources	required	for	achieving	a	certain	
quality	level.

It	 is	 also	 a	 fact	 that	 software	 development	 activities	 are	 creative	 activities.	 When	 cre-
ativity	 is	 involved,	 it	 is	difficult	 to	 apply	 a	 standard	process	 framework.	Measured	output	
is	 also	difficult.	On	 the	other	hand,	providing	a	 totally	 free-for-all	 environment	 results	 in	
unpredictable	output.	The	goal	of	any	project	is	to	provide	a	measurable	output	during	and	
after	project	execution.	Using	a	standard	process	can	ensure	that	a	measurable	and	predict-
able	output	can	be	achieved	and	ensures	starting,	progress,	and	closure	of	any	activity	in	a	
controlled	manner.

Once	we	start	thinking	in	terms	of	measurable	output	on	projects,	we	are	getting	closer	
to	comparing	project	activities	 to	manufacturing	activities.	And	when	we	are	dealing	with	
thousands	of	projects	going	on	at	a	development	center	of	outsourcing	companies,	we	start	
treating	projects	on	a	mass	 scale.	When	 that	happens,	uniqueness	of	projects	 starts	 fading	
and	a	mass	projects	environment	starts	taking	shape.	See	what	is	happening	to	other	services.	
Take	for	example,	a	call	center.	Using	shared	resources	and	standard	processes	and	methods,	
it	is	possible	to	provide	good	call	center	services	to	customers	at	very	low	prices,	and	yet	with			
much	better	quality.	When	software	development	projects	are	executed	at	such	a	mass	scale,	
we	see	the	possibility	of	introducing	“mass	servicing”	concepts	for	these	projects.	It	provides	
benefits	 like	shared	resources,	high	 level	of	productivity,	provisions	to	access	highly	skilled	
resources,	expert	services,	etc.,	at	one	place.

222  ◾  Software Project Management: A Process-Driven Approach

So,	we	are	observing	that	software	projects	are	no	longer	viewed	as	projects	in	the	traditional	
sense.	They	are	evolving	more	like	mass	services.	This	trend	is	helping	customers	to	reduce	software	
development	projects	costs,	substantially.	The	more	that	software	development	projects	become	simi-
lar	to	mass	services,	the	more	they	will	become	cheaper.	It	is	exactly	what	happened	when	manufac-
turing	turned	into	mass	manufacturing,	a	long	time	ago.

15.9 Cost of Nonstandard Processes
Many	 project	 managers	 and	 team	 members	 resist	 in	 complying	 with	 standard	 processes	 [8].	
They	feel	it	makes	them	work	more	and	they	try	to	adopt	shortcuts.	By	doing	so,	are	they	doing	
any	good?	Suppose	a	customer	requirement	change	has	arrived.	Without	consulting	all	people	
down	the	line,	the	architect	makes	changes	in	the	design.	The	project	manager	makes	no	further	
effort	to	properly	document	the	changes	made	by	the	architect.	So	now,	the	architect	is	work-
ing	on	a	different	version	of	the	requirement	and	the	coding	team	is	working	on	a	different	one	
(because	they	have	a	copy	of	the	design	that	was	made	for	the	earlier	version).	Somehow	the	cod-
ing	team	gets	to	know	that	they	are	working	on	a	wrong	requirement	version.	By	the	time	they	
realize	this,	they	have	already	lost	a	good	number	of	man	hours	working	on	the	wrong	version.

Consider	 another	 example.	 A	 requirement	 change	 comes	 and	 the	 project	 manager	 thinks	
changing	the	design	may	increase	the	work	to	be	done.	He	decides	a	quick	fix	in	coding	can	do	the	
job.	So	he	gets	this	quick	fix	done	by	the	coding	staff.	Of	course	he	and	his	team	purposefully	for-
get	to	document	this	change	(documenting	may	have	added	a	few	extra	hours).	Now,	when	a	new	
requirement	change	request	comes,	nobody	knows	exactly	what	changes	were	done	in	the	previous	
build	of	the	software.	After	 incorporation	of	this	changed	requirement,	the	team	inadvertently	
will	be	introducing	defects	in	the	software.

Again	suppose	the	project	manager	decides	to	take	a	shortcut	by	not	going	through	design,	
and	incorporates	new	requirement	changes	directly	into	the	code.	The	changed	features	are	
not	reflected	in	the	design	documents	but	are	there	in	codes.	Similarly,	due	to	a	time	crunch,	
the	project	manager	cuts	short	testing	of	the	application	and	ships	it	without	proper	testing.

As	long	as	there	are	not	many	changes	in	the	project	plan,	noncompliance	with	standard	pro-
cesses	is	manageable.	But	the	moment	there	are	changes	everywhere,	the	downstream	processes	
get	affected.	Without	proper	documentation	and	absence	of	process	for	change	control,	chances	
of	error	increase.	The	larger	the	project,	the	greater	is	the	risk	of	defects	entering	into	the	prod-
uct.	They	are	one	of	the	biggest	risks	any	project	can	face.	Given	the	nature	of	software	projects,	
requirements	 get	 changed	often,	 especially	with	 iterations.	 So	 it	 is	 very	 important	 that	proper	
documentation	and	process	are	followed.

15.10 Organization Training
The	software	industry	is	always	in	flux;	it	is	always	changing.	Furthermore,	the	rate	of	change	is	
increasing.	What	used	to	be	a	cutting-edge	technology	just	yesterday	is	today	obsolete.	What	is	
considered	today	as	advanced	technology	will	become	stale	tomorrow.	Fifty	years	ago,	if	somebody	
learned	a	 trade,	 it	would	help	him	to	earn	 livelihood	 for	 life.	Today,	 if	 a	 software	professional	
learns	a	programming	tool,	he	will	have	to	relearn	a	new	programming	tool	tomorrow,	as	the	old	
one	becomes	obsolete.	This	constantly	changing	technology	has	necessitated	retraining	for	new	
tools	and	technologies	so	that	all	professionals’	skills	are	current.

Process Standards Introduction  ◾  223

In	this	scenario,	any	software	development/maintenance	organization	must	keep	retraining	
its	staff	so	that	they	have	current	skills	and	thus	can	work	on	software	projects	without	any	
problems	[9].

15.11 Software Project Abandonment
Sometimes	due	 to	 various	 reasons,	 a	 software	development	project	may	not	be	 completed	 and	
may	have	to	be	abandoned.	Reasons	for	such	decisions	could	be	many,	but	the	most	important	
reasons	include	cost	overrun,	schedule	overrun,	lack	of	technological	expertise,	change	in	need	of	
the	organization,	organization	closure,	etc.	Some	external	factors	could	be	a	change	in	political	
circumstances,	war,	civil	unrest,	natural	calamity,	etc.

In	some	other	instances,	the	project	could	be	completed,	but	the	project	may	have	failed	on	
many	counts.	The	project	could	have	a	schedule	overrun,	cost	overrun,	less	than	expected	number	
of	features,	poor	quality,	etc.	In	fact	it	is	estimated	that	more	than	70%	of	all	software	projects	fail	
on	some	account	or	an	other	[10].

Nevertheless,	the	success	rate	of	software	projects	is	improving.	The	biggest	factor	contribut-
ing	to	this	fact	is	the	increase	in	maturity	level	of	software	development/maintenance	processes.	
Increase	in	maturity	level	of	software	engineering	and	software	project	management	is	definitely	
a	factor	which	will	help	in	keeping	up	the	increasing	success	rate	of	software	projects.	Mature	
software	development	processes	help	in	reducing	risks	of	schedule,	cost	overrun,	and	poor	prod-
uct	quality.

15.12 Defect Prevention
During	software	testing	many	software	defects	can	be	detected	and	subsequently	rectified	[11].	
What	is	the	cost	of	defect	removal	 in	software	testing?	Is	there	any	alternative	way	to	produce	
quality	software	products	with	an	acceptable	number	of	defects	at	a	lesser	cost?

Research	has	shown	that	defect	prevention	during	design	and	coding	is	cheaper	than	defect	
detection	and	removal	during	software	testing.	Why	is	it	so?	How	can	any	software	development	
organization	take	advantage	of	the	information	stated	previously?

Let	us	study	it.	Suppose,	during	design	some	defects	were	introduced	in	the	software	design	
due	to	faulty	blueprint.	This	faulty	design	was	used	and	coding	was	done.	Since	the	design	was	
faulty,	 naturally	 the	 coding	 will	 also	 have	 faults.	 This	 scenario	 will	 be	 similar	 to	 the	 process	
depicted	in	Figure	15.8	where	an	already	defective	part	is	being	further	processed	to	produce	a	
defective	part.

For	 instance,	suppose	we	have	a	module	for	tax	calculation	that	has	two	components.	One	
component	calculates	federal	government	tax	and	another	component	calculates	tax	for	the	state.	
Depending	on	the	state,	the	tax	rate	is	different	from	that	of	another	state.	In	the	design,	this	fact	
was	not	taken	into	account,	even	by	mistake.	Now	coding	was	done	with	this	faulty	design.	So	
coding	also	has	the	defect	that	a	flat	state	tax	is	being	calculated	for	all	states.	Due	to	faulty	cod-
ing,	the	rounding	of	decimal	places	was	wrong.	The	end	result	is	that	the	application	has	some	
defects.	How	many	defects	do	we	have	now?

This	information	can	now	be	found	either	during	testing	or	when	the	application	is	deployed	
and	used	by	end	users.	But	first	of	all,	let	us	see	how	many	defects	were	introduced	in	the	applica-
tion.	Suppose	the	state	tax	calculation	is	used	at	100	places	in	the	application.	So	we	have	100	

224  ◾  Software Project Management: A Process-Driven Approach

defects	from	the	faulty	design.	Now	suppose	the	decimal	rounding	is	used	at	200	places	in	the	
application	including	doing	the	sum	of	taxes	(federal	and	state).	In	total	we	have	300	defects	in	
the	application.

Now	let	us	analyze	the	cost	impact	in	different	scenarios	(Table	15.1).
There	 are	 two	 scenarios	when	we	 consider	 the	defect	 at	 the	design	 stage.	 In	first	 case,	 the	

design	defect	is	caught	during	design	review	stage	and	is	fixed	there	so	that	this	defect	does	not	
enter	the	coding	stage.	In	another	scenario,	the	design	defect	is	not	caught	and	the	entire	coding	
is	done	based	on	a	faulty	design.	The	defect	was	caught	in	testing	and	so	now	not	only	design	is	
to	be	changed	but	the	coding	is	also	to	be	changed.	So	the	coding	hours	are	also	lost.	In	design	
review	the	defect	could	have	been	caught	within	2	h.	But	instead	the	design	defect	entered	into	
coding	and	so	depending	on	the	language	and	code	reuse,	a	certain	amount	of	coding	hours	are	
lost.	If	the	tax	calculation	component	was	developed	using	any	object	oriented	language	and	the	
code	was	reused	throughout	the	application	then	may	be	20	h	of	coding	hours	are	lost.	But	if	code	
reuse	was	not	implemented	or	any	procedural	language	used,	then	chances	are	that	all	of	200	h	
of	coding	are	lost	(100	defects	to	be	fixed	at	2	h	per	defect	fixing).	Coming	to	the	coding	defect,	
since	the	defect	is	at	200	places	and	it	takes	3	h	to	fix	each	defect,	it	will	require	600	h	to	fix	all	
these	coding	defects.	Compared	to	these	costly	scenarios,	if	the	defects	were	caught	at	the	point	

Table 15.1 Defect Cost Analysis

Stage
No. of

Defects
Defect

Multiplication

Time
Required for

Fixing (h)
Hourly

Billing Rate
Cost of

Fixing ($)

Design defects 1 2 100 200

Coding defects due
to design defects

100 100 200 60 12,000

Coding defects 1 3 60 180

Coding defects into
testing

200 200 600 60 36,000

Defective
part from

process 1 is
being fed

Wrong
product

Process 2 Process 3 Process 4 Process 5

Wrong
product

Wrong
product

Wrong
product

Figure 15.8 Input defective part is being processed to produce a defective part.

Process Standards Introduction  ◾  225

of	origin	of	the	defects,	the	fixing	could	have	been	achieved	at	a	fraction	of	these	costs.	Even	if	it	
would	have	taken	some	extra	hours	in	conducting	inspections,	then	those	few	hours	could	have	
been	spent	well,	in	view	of	saving	time	and	costs	at	downstream	activities.

The	moral	of	 the	 story	 is	 that	defect	prevention	 is	 the	best	policy	 in	 software	development	
projects.	The	earlier	the	defect	is	caught	in	the	development	life	cycle,	the	better.

That	 is	why	defect	 prevention	 is	 an	 integral	 part	 of	 software	development	projects.	Defect	
prevention	is	implemented	using	software	engineering	techniques.

15.13 Software Project without Process
In	software	industry	parlance,	there	is	a	term	called	“jumping	to	the	code”.	On	many	software	
development	projects,	the	project	teams	start	coding	the	moment	they	get	the	requirements.	The	
management	at	these	places	also	thinks	that	making	a	project	and	process	plan	is	a	waste	of	time.	
Steve	McConnell,	of	Construx	Software	and	the	author	of	such	books	as	Code Complete	and	
Rapid Development: Taming Wild Software Schedules	argues	 that	on	many	projects,	 jumping	to	
the	code	creates	more	rework	and	quality	issues	than	it	lets	the	project	team	do	some	productive	
work.	On	many	such	projects,	the	actual	schedule	overruns	by	as	much	as	1500%	with	associated	
cost	overruns.	These	kinds	of	projects	are	characterized	by	more	firefighting	than	anything	else.

Here	is	a	case	study	which	shows	how	the	lack	of	a	well-defined	process	standard	can	severely	
affect	software	projects.

Suppose	a	company	realized	that	it	was	losing	market	share	due	to	its	obsolete	technology	infra-
structure.	The	root	cause	was	that	the	order	fulfillment	cycle	was	taking	more	than	2	days	compared	
to	the	average	of	1	day	for	the	competitors.	It	was	due	to	the	fact	that	arranging	trucks	and	loading	
them	from	their	warehouses	was	taking	more	than	10	h	on	average	compared	to	an	average	of	3	h	
for	the	competitors.	This	was	happening	because	the	warehouse	application	was	not	integrated	with	
their	transportation	management	system.	A	team	was	formed	to	study	and	present	recommendations	
for	improving	the	situation.	After	their	study,	the	team	suggested	that	the	two	applications	should	be	
integrated	seamlessly	so	that	information	from	the	transportation	system	would	be	available	to	the	
warehousing	system	whereby	the	warehouses	would	have	advance	information	about	available	trucks	
and	what	kind	of	content	can	be	loaded	on	these	trucks.	Using	this	information,	they	can	plan	for	
truck	loading	and	intimate	the	same	to	logistics	service	providers	who	supply	trucks.

A	software	development	team	was	formed	with	the	task	of	integrating	these	applications.	They	
analyzed	the	interfaces	of	the	two	applications	and	started	work	on	integration.	After	2	months	of	
the	start	of	their	work,	the	MIS	manager	asked	the	project	manager	to	submit	a	status	report	on	the	
project.	The	project	manager	submitted	a	report	saying	that	the	project	would	be	completed	1	month	
late	because	of	difficulty	faced	by	the	team	in	understanding	the	interfaces	for	integration.	The	MIS	
manager,	in	turn,	called	for	a	status	review	meeting	and	asked	the	project	team	to	discuss	the	issues	
on	the	project.	In	the	meeting,	the	MIS	manager	realized	that	the	project	will	not	be	completed	even	
within	1	month	of	delay	as	the	team	still	lacked	understanding	of	the	tasks	involved.	Next	day	after	
the	meeting,	the	MIS	manager	met	the	CIO	of	the	company	and	informed	him	about	the	situation.	
The	CIO	then	decided	to	scrap	the	project	and	decided	to	hire	a	specialist	service	provider	that	was	a	
expert	on	integration	work.	Later,	the	service	provider	team	was	able	to	do	integration	within	3	weeks.

During	his	 study	on	why	the	project	 failed	 in	 the	first	place,	 the	CIO	found	that	his	MIS	
team	failed	because	they	were	not	following	a	standard	process.	Everything	done	by	the	team	was	
on	ad	hoc	basis.	The	team	lacked	skills	on	specialized	tasks	like	integration,	and	so	a	plan	should	
have	been	made	first	to	train	the	team	for	the	associated	skills.	Only	then	they	should	have	started	

226  ◾  Software Project Management: A Process-Driven Approach

working	on	their	tasks.	He	also	found	out	that	the	project	manager	had	not	included	a	quality	
review	process	in	his	project	plan.	Without	sticking	to	quality	control	at	each	stage	of	the	project,	
it	is	impossible	to	achieve	worthwhile	quality	at	the	end	of	the	project.

The	CIO	published	his	findings	on	the	company	intranet	and	later	set	up	a	process	control	
group	at	the	MIS	level	whose	task	was	to	ensure	each	project	would	incorporate	quality	control	as	
well	as	adherence	to	standard	processes.

So	we	see	that	if	any	project	is	executed	without	a	standard	process	then	there	are	risks	of	proj-
ect	failures	in	terms	of	quality,	costs,	and	schedules.

15.14 Process Improvement
One	of	the	goals	of	CMMI	standards	 is	 to	select	and	deploy	 incremental,	 innovative	 improve-
ments	that	measurably	improve	the	organization’s	processes	and	technologies	[12].	How	an	orga-
nization	is	currently	using	processes	to	execute	projects	and	how	performance	on	these	projects	
can	be	improved	further	is	a	continuous	process	that	needs	to	be	measured,	analyzed,	and	correc-
tive	actions	taken.	This	will	help	in	improving	productivity	and	quality	further,	which	in	turn	will	
result	in	increased	customer	satisfaction	and	reduced	costs	of	operations.

Some	techniques	 that	can	provide	 substantial	gains	 include	peer	 reviews,	code	 inspections,	
automation,	and	standard	templates	(Figure	15.9).

Process	improvement	is	the	most	important	aspect	of	implementing	software	process	models.	
The	CMM	model	has	a	maturity	level	of	5	when	companies	reach	optimization	level.	At	this	level,	
companies	 have	 a	 separate	 software	 engineering	 process	 group	 (SEPG)	 that	 not	 only	 oversees	
implementation	 and	 observation	 of	 follow-up	 of	 process	 standards	 on	 projects,	 but	 also	 keeps	
looking	for	opportunities	to	improve	processes	further.	Whenever	they	find	that	some	process	can	
be	improved,	it	makes	a	plan	of	implementing	an	improved	process	on	projects.	It	develops	the	
new	process	model	and	then	chooses	an	appropriate	project	to	pilot	it.	The	project	is	then	executed	
with	this	new	process	model.	Results	of	that	project	are	analyzed	and	assessed	to	determine	if	the	
project	benefited	from	the	new	improved	process	model.	If	it	does	then	this	new	process	model	is	
applied	to	all	projects	that	get	executed	with	the	same	base	model.

Problem areas
encountered Review reports

Customer
suggestions

Customer
complaints

Process
improvement
opportunity

Audit results

Figure 15.9 Process improvement opportunities.

Process Standards Introduction  ◾  227

15.15 Final Word
Any	person	or	organization	can	learn	a	new	thing	in	two	ways.	It	can	either	do	trial	and	error	
or	use	past	experience	(both	success	and	failure)	to	learn.	If	the	person	or	organization	is	always	
resorting	to	trial	and	error,	then	it	can	be	said	that	it	is	not	learning	from	past	experience.	Most	
people	learn	through	experience.	As	they	age,	they	have	ample	experience	to	cope	with	even	dif-
ficult	situations	in	life.	This	is	because	they	apply	the	learning	they	have	gained	in	the	past	to	deal	
with	the	current	situation.	Sadly	in	context	of	organizations,	past	experience	is	often	not	applied	
to	deal	with	new	challenges.	In	software	services	companies,	they	may	have	executed	hundreds	
of	projects	in	the	past	but	when	a	new	project	arrives,	they	reinvent	the	wheel	in	planning	and	
executing	this	project	(not	using	the	experience	of	past	projects).	They	simply	do	not	apply	the	past	
learning.	In	effect,	they	resort	to	trial	and	error	for	dealing	with	a	new	situation.

If	these	companies	want	to	improve,	then	repeatable	process	techniques	(in	form	of	software	
development	process	standards)	is	extremely	useful.	For	using	statistical	methods,	data	from	past	
projects	is	saved	in	a	repository.	When	a	new	project	arrives,	past	data	can	be	retrieved	and	put	to	
use.	For	instance,	effort	and	cost	estimates	for	a	new	project	can	be	calculated	using	the	data	from	
similar	past	projects.

This	is	true	for	most	activities	that	are	similar	to	past	projects.	If	some	task	that	is	totally	differ-
ent	from	past	projects	arrives,	in	those	cases,	statistical	methods	will	not	work.	In	such	cases,	the	
project	is	to	be	treated	like	a	research	and	development	project	and	should	be	executed	accordingly.

Review Questions
15.1	 Discuss	if	quality	processes	alone	can	produce	a	quality	product.
15.2	 What	is	the	difference	between	process	quality	and	product	quality?
15.3	 Name	some	of	the	standards	for	software	development	projects.
15.4	 What	are	the	costs	of	nonstandard	processes	in	software	development	projects?
15.5	 What	kinds	of	processes	are	involved	in	any	software	development	project?
15.6	 What	factors	contribute	to	software	development/maintenance	project	abandonment?
15.7	 What	can	be	done	to	avoid	project	abandonment?

Recommended Readings
	 1.	 K.	Ewusi-Mensah	(2003)	Software Development Failures: Anatomy of Abandoned Projects,	MIT	Press,	

Cambridge,	MA.
	 2.	 H.	Fujita,	M.	Mejri	(2005)	New Trends in Software Methodologies,	IOS,	Amsterdam,	The	Netherlands.
	 3.	 M.	Wiener	(2006)	Critical Success Factors of Offshore Software Development Projects,	Springer,	London,	

U.K.
	 4.	 T.	Li	(2008)	An Approach to Modelling Software Evolution Processes,	Springer,	Berlin,	Germany.
	 5.	 R.	Conradi	(2006)	Software Process Improvement: Results and Experience from the Field,	Springer,	Berlin,	

Germany.
	 6.	 J.	T.	Marchewka	(2006)	Information Technology Project Management,	Wiley,	New	York.
	 7.	 S.	H.	Kan	(2003)	Metrics and Models in Software Quality Engineering,	Addison-Wesley,	Boston,	MA.
	 8.	 B.	Meyer,	M.	Joseph	(2007)	Software Engineering Approaches for Offshore and Outsourced Development

Projects,	Springer,	Berlin,	Germany.

228  ◾  Software Project Management: A Process-Driven Approach

	 9.	 S.	Datta	(2007)	Metric-Driven Enterprise Software Development: Effectively Meeting Evolving Needs,	
J.	Ross	Publishing,	Fort	Lauderdale,	FL.

	 10.	 J.	 McManus	 (2004)	 Risk Management in Software Development Projects,	 Butterworth-Heinemann,	
Oxford,	U.K.

	 11.	 D.	Huizinga,	A.	Kolawa	(2007)	Automated Defect Prevention: Best Practices in Software Management,	
Wiley,	Hoboken,	NJ.

	 12.	 E.	McGuire	(1999)	Software Process Improvement: Concepts and Practices,	Idea	Group	Inc,	Hershey,	PA.

229

Chapter 16

Software Process Standards
and Process Improvement

In.the.previous.chapter,.we.learned

	◾ What	is	software	engineering	management?
	◾ How	are	statistical	process	control	techniques	useful	for	software	projects?
	◾ What	 are	 the	 benefits	 of	 the	 standard	 process	 model	 implemented	 across	 the	

organization?

In.this.chapter,.we.will.learn

	◾ What	are	the	major	process	standard	models	for	software	development?
	◾ What	are	the	major	process	improvement	models?
	◾ What	is	a	process	improvement	life	cycle?
	◾ How	does	process	improvement	help	on	software	projects?

16.1 Introduction
Software	product	development	for	large	software	products,	especially	belonging	to	governments	or	
global	corporations,	needs	highly	structured	project	management	methodologies.	The	size	of	these	
projects	is	in	excess	of	1	million	lines	of	code.	They	require	software	development	teams	in	excess	
of	50	or	more	professionals.	Sometimes	the	team	size	could	be	in	excess	of	500	professionals.	In	
fact,	to	manage	such	large	numbers,	the	product	itself	is	broken	down	into	many	product	compo-
nents	and	the	project	team	is	divided	into	many	smaller	project	teams;	each	team	is	responsible	for	
the	development	of	one	product	component.

230  ◾  Software Project Management: A Process-Driven Approach

An	informal	and	unstructured	approach	to	manage	such	large	teams	is	impossible.	To	manage	
such	large	sized	teams,	a	structured	and	well-defined	process	and	project	management	is	a	must	[1].	
The	entire	process	should	also	be	very	formal.	A	formal,	rigid,	and	structured	approach	prevents	
chances	of	miscommunication	and	errors.

To	 facilitate	 such	structures,	organizations	 like	 the	 ISO,	IEEE,	and	Software	Engineering	
Institute	at	Carnegie	Mellon	University	developed	many	process	standards.	These	process	stan-
dards	define	what	process	steps	must	be	followed	during	planning	and	execution	of	projects.	They	
also	define	how	to	keep	improving	the	process	so	that	better	product	quality	and	process	produc-
tivity	can	be	achieved	continuously.

On	the	other	hand,	on	many	projects,	agility	 is	 required	to	take	care	of	changing	business	
requirements	so	that	the	software	product	being	built	takes	these	changes	into	its	design	instantly,	
and	fulfills	the	purpose	for	which	it	is	being	built.	This	concept	is	in	direct	contrast	to	the	formal	
and	rigid	approach	of	plan	driven	methodology.

Any	 software	project	has	 to	 adjust	 itself	 between	 these	 two	 extremes.	Depending	on	 the	
requirements,	it	can	be	a	purely	plan	driven	project,	a	rather	agile	one,	or	something	in	between.

16.2 CMMI Standards
The	Software	Engineering	Institute	(SEI)	at	Carnegie	Mellon	University	has	been	engaged	in	doing	
pioneering	work	related	to	software	engineering	for	more	than	two	decades.	It	has	been	develop-
ing	standards	for	software	engineering.	These	standards	have	been	helping	software	services	and	
products	companies	to	develop,	maintain,	and	operate	software	systems	in	an	economical	man-
ner.	But	their	more	important	objective	is	to	help	companies	in	producing	software	products	and	
applications	with	extremely	high	quality.

Over	the	years,	they	have	developed	many	standards.	Some	of	their	popular	standards	include	
the	CMM	(Capability	Maturity	Model),	PCMM	(People	Capability	Maturity	Model),	SECM	
(Systems	 Engineering	 Capability	 Model),	 etc.	 With	 the	 passage	 of	 time,	 these	 standards	 were	
modified	or	discontinued	as	market	conditions	changed	as	well	as	due	to	increasing	maturity	of	
developing	and	maintaining	software	products	and	systems;	processes	of	doing	these	activities	also	
changed.

Creation	of	separate	process	models	for	different	aspects	of	product	development	or	mainte-
nance	resulted	in	some	problems	for	companies	adopting	these	standards.	For	instance,	when	a	
software	product	was	being	developed,	a	CMM	was	used.	When	the	product	was	released	and	
went	into	production,	SECM	was	followed.	So	the	software	vendor	had	to	keep	developing	and	
maintaining	two	separate	models	for	its	processes.

Adopting,	refining,	and	maturing	any	single	process	model	is	a	Herculean	task.	It	not	only	
involves	hiring	experts	and	outside	consultants	for	benchmarking	and	then	certifying	processes,	
but	it	also	involves	management	commitment	and	demands	a	deep	involvement	of	all	employees	of	
the	organization.	It	requires	everybody	to	change	the	way	they	do	their	jobs.	Change	management	
is	one	of	the	most	difficult	tasks	in	any	organization.

One	more	consideration	that	goes	against	having	more	than	one	process	is	that	of	keeping	
two	teams	for	doing	similar	work.	When	any	bug	fixes	are	required	in	the	maintenance	of	a	
software	product,	a	 separate	development	 team	will	do	 the	fixing.	Keeping	 two	teams	doing	
almost	the	same	job	is	costly.	On	the	other	hand,	if	only	one	team	is	doing	both	development	

Software Process Standards and Process Improvement  ◾  231

and	maintenance,	then	the	team	will	have	to	follow	two	processes,	which	is	very	difficult.	It	may	
lead	to	quality	and	productivity	issues.

To	overcome	these	things,	a	single	process	definition	was	conceptualized	which	can	be	applied	
across	all	processes	of	software	development,	maintenance,	and	integration.	SEI	released	CMMI	
(Capability	Maturity	Model	Integration)	to	provide	a	single	platform	of	processes	for	all	kinds	of	
activities	related	to	software	development,	integration,	and	maintenance	[2].

In	this	book	we	will	follow	conventions	as	stipulated	in	CMMI	standards.

16.2.1 CMMI Standards in a Nutshell
The	CMMI	process	model	is	divided	into	two	parts:	CMMI-DEV	and	CMMI-ACQ.	CMMI-
DEV	is	for	organizations	that	either	develop	and	maintain	their	own	software	products	or	applica-
tions	or	outsource	it	to	service	providers.	CMMI-ACQ	is	for	service	providers.	Both	parts	have	the	
same	high-level	process	model	so	that	they	are	compatible	with	each	other.	SEI	is	also	developing	
a	version	of	CMMI	for	services	(CMMI-Services).

Each	of	these	parts	is	divided	into	the	main	process	area	categories	of	process	management,	
project	management,	support,	and	acquisition.	The	process-management	process	provides	details	
as	to	how	any	organization	can	refine	and	improve	its	processes	within	the	organization	that	will	
be	doing	the	outsourced	project.	This	aspect	of	CMMI	standards	differs	from	standards	developed	
by	other	agencies	like	ISO	or	IEEE.	These	agencies	develop	standards	that	are	more	at	project	level	
and	not	at	organization	level.

Process	areas	inside	the	project	management	category	include	project	planning	(PP),	project	
monitoring	and	control	(PPC),	integrated	project	management	(IPM),	requirements	management	
(REQM),	and	risk	management	(RSKM).

Process	areas	inside	the	acquisition	category	include	solicitation	and	supplier	agreement	devel-
opment	(SSAD),	agreement	management	(AM),	acquisition	requirements	development	(ARD),	
acquisition	technical	management	(ATM),	acquisition	verification	(AVER),	and	acquisition	vali-
dation	(AVAL).

Process	areas	inside	the	support	category	include	configuration	management	(CM),	decision	analy-
sis	and	resolution	(DAR),	measurement	and	analysis	(MA),	and	process	and	product	quality	assurance	
(PPQA).

These	categories	of	processes	in	CMMI	are	divided	horizontally.	CMMI	is	also	divided	verti-
cally	in	the	form	of	maturity	or	capability	 levels.	Any	company	looking	to	certify	its	processes	
needs	to	certify	certain	processes	in	a	phased	manner,	over	time.	In	staged	implementation,	certi-
fication	is	done	for	a	single	maturity	level	instead	of	multiple	maturity	levels.	They	should	get	to	
level	1	from	level	0	by	certifying	processes	so	that	many	of	its	processes	can	be	performed	using	
some	ad	hoc	measures.	If	any	company	wants	to	improve	its	processes	from	level	1	to	level	2	then	it	
should	be	able	to	demonstrate	that	its	processes	can	be	managed.	At	level	3,	it	should	have	its	pro-
cesses	well-defined.	At	level	4,	its	processes	should	be	improved	using	statistical	processes’	meth-
ods.	At	level	4,	its	processes	should	also	be	repeatable.	At	level	5,	its	processes	should	be	optimized.

At	level	2,	“requirement	management,”	“project	planning,”	“project	monitoring	and	control,”	
“supplier	agreement	management,”	“measurement	analysis,”	“process	and	product	quality	assur-
ance,”	and	“configuration	management”	processes	should	be	certified.	At	level	3,	“requirements	
development,”	“technical	solution,”	“product	integration,”	“verification,”	“validation,”	“organiza-
tion	process	focus,”	“organization	process	definition	+	IPPD,”	“organization	training,”	“integrated	

232  ◾  Software Project Management: A Process-Driven Approach

Table 16.1 CMMI Standards in a Nutshell

Process Area SDLC Phase
Management

Area Features

Organizational innovation
and deployment

All Organization
management

Project process change

Organizational process
definition + IPPD

All Organization
management

Project process definitions

Organizational process
focus

All Organization
management

Identify key process areas at
project level to modify

Organization process
performance

All Organization
management

Evaluate changed project
process areas for performance

Organization training All Organization
management

Identify key process areas for
training staff

Project monitoring and
control

All Project
management

Monitor and control project
to keep project on track

Project planning All Project
management

Make sound project plan

Process and product
quality assurance

All Project
management

Use SPC methods and process
compliance for both process
and product quality

Quantitative project
management

All Project
management

Use SPC methods to monitor
and control project

Risk management All Project
management

Define and mitigate risks on
projects

Supplier agreement
management

Any Project
management

Manage suppliers effectively

Causal analysis and
resolution

Any Project
management

Risk and issue mitigation and
project control

Integrated project
management + IPPD

All Project
management

Collaboration of all disciplines

Measurement analysis Any Project
management

Taking process and product
measurements

Configuration
management

All Project
management

Change management

Decision analysis and
resolution

Any Project
management

Project control

Requirements
development

Software
requirements

Product
life-cycle
management

Use standard defined
processes for requirement
development

Software Process Standards and Process Improvement  ◾  233

project	management	+	IPPD,”	“risk	management,”	and	“decision	analysis	and	resolution”	areas	
need	 to	 be	 certified.	 At	 level	 4,	 “organization	 process	 performance,”	 and	 “quantitative	 project	
management”	areas	need	to	be	certified.	At	level	5,	“organization	innovation	and	deployment,”	
and	“causal	analysis	and	resolution”	areas	need	to	be	certified.

In	Table	16.1	we	can	see	that	out	of	21	process	areas,	5	areas	are	defined	for	a	software	devel-
opment	 life	cycle,	11	areas	 for	project	management,	and	5	areas	 for	organization	processes.	So	
clearly	there	is	a	strong	process	focus	on	improving	organizational	processes	that	help	in	delivering	
consistent	product	quality	across	projects.

16.3 ISO Standards
ISO	(International	Organization	for	Standards)	develops	standards	for	certifying	business	pro-
cesses	 [3].	This	 approach	 is	 a	 fundamental	 shift	 from	 the	 traditional	 approach	of	 certifying	
only	end	products	or	services	for	quality.	In	fact,	ISO	standards	do	not	make	any	standards	for	
certifying	end	products	or	services	at	all.	They	believe	if	any	product	or	service	is	produced/
delivered	using	a	standard	process,	then	quality	of	that	product/service	will	be	high.	On	the	
contrary,	if	no	process	or	bad	process	is	applied	to	produce/deliver	any	product/service,	then	
quality	of	the	produced/delivered	product/service	will	be	most	likely	bad.

ISO	standards	are	very	abstract	because	the	top-level	standards	are	meant	to	be	applied	to	just	
any	kind	of	organization	engaged	in	manufacturing	or	providing	services	or	any	kind	of	business.	
At	a	very	detailed	level,	these	standards	are	branched	out.	So	specific	detailed	standards	apply	to	
organizations	operating	in	specific	industries.	For	each	standard	there	are	specific	requirements.	
When	any	organization	applies	for	certifications,	they	are	audited	first	for	top-level	requirements	
and	then	for	specific	detail	level	requirements.

For	organizations	involved	in	providing	software	related	services,	the	detail	level	requirements	
relate	to	the	way	software	services	are	performed.

16.3.1 ISO Standards in a Nutshell
If	you	study	ISO	standards,	you	will	see	that	most	emphasis	is	given	on	project	management.	
The	other	emphasis	is	given	on	process	quality.	It	is	believed	that	by	achieving	process	quality	we	
can	automatically	achieve	product	quality.	Though	this	is	debatable,	it	is	quite	clear	that	without	
process	quality,	product	quality	cannot	be	achieved	(Table	16.2).

16.4 IEEE Standards
IEEE	is	a	global	organization	developing,	maintaining,	and	publishing	standards	for	many	areas	
related	to	software	development,	maintenance,	and	operation.	They	also	have	the	goal	to	make	
computer	science	and	computer	engineering	recognized	disciplines,	similar	to	the	status	enjoyed	
by	other	science	and	engineering	disciplines,	like	electrical	engineering,	mechanical	engineering,	
physics,	etc.	They	believe	computer	science	and	computer	engineering	currently	are	in	a	prescience	
and	preengineering	stage,	and	will	evolve	to	become	fully	legitimate	disciplines	in	the	near	future.	
They	have	also	advocated	that	computer	science	and	computer	engineering	are	two	separate	disci-
plines	and	should	be	separate	from	each	other	to	help	them	evolve.

234  ◾  Software Project Management: A Process-Driven Approach

To	make	 these	disciplines	 fully	 legitimate	disciplines	 and	professions	 the	 IEEE	Computer	
Society	has	formed	joint	committees	with	organizations	such	as	ACM	and	the	Open	Group.	They	
have	taken	following	initiatives	to	achieve	their	goal:

	 1.	Help,	advocate,	and	initiate	start	of	professional	education	system.
	 2.	Help	in	accreditation	of	professional	education	programs.
	 3.	Help	in	skills	development	mechanisms	for	professionals	entering	the	practice.
	 4.	Help	in	creation	of	certification	for	professionals	administered	by	the	profession.
	 5.	Advocate	licensing	of	professionals	administered	by	government	authorities.

Table 16.2 ISO Standards in a Nutshell

Section Process Area SDLC/Project Area Features

Section 1 Introduction Project management General usage
guidelines

Section 2 Implementation
approach

Project management Approach for
implementation

Section 3 Definitions Project management Definitions of terms
used in the guide

Section 4 Systemic and resource
requirements

Project management Resource requirements
planning for software
and hardware resources

Section 5 Quality planning and
control

Project management Quality planning and
control

Section 6 Resource
requirements for
quality control

Project management Resource requirements
planning for quality
control

Section 7 Software life-cycle
processes

Section 7.1 Product realization Product planning Product planning

Section 7.2 Customer priorities Software requirements Software requirements

Section 7.3 Software design,
construction testing

Software design,
construction and testing

Section 7.4 Supplier management Supplier management

Section 7.5 Software build and
release

Software build and
release

Section 7.6 Project monitoring Project monitoring

Section 8 Remedial measures Project control Project control

Software Process Standards and Process Improvement  ◾  235

	 6.	Help	in	creation	of	professional	development	programs	to	maintain	currency	of	knowledge	
and	skills.

	 7.	Help	in	creation	of	code	of	ethics.
	 8.	Help	in	creation	of	professional	societies.

The	IEEE	Computer	Society	is	also	developing	a	body	of	knowledge	for	the	computer	engineer-
ing	profession.	It	is	known	as	SWEBOK	(Software	Engineering	Body	of	Knowledge).

16.4.1 IEEE Standards in a Nutshell
IEEE	standards	are	focused	toward	using	standard	processes	and	tools	to	achieve	project	excel-
lence	and	make	software	projects	successful.	Apart	from	guidelines	for	process	compliance,	IEEE	
also	addresses	key	issues	and	practical	considerations	which	arise	on	software	projects.	Apart	from	
process	definitions	for	SLDC	phases,	it	also	provides	guidelines	for	supporting	processes	like	con-
figuration	 management;	 software	 engineering	 (project	 planning/control);	 process	 and	 product	
quality;	methods	and	tools;	and	related	disciplines	like	mathematics,	computer	science,	etc.,	which	
are	needed	to	execute	software	projects	(Table	16.3).

16.5 Rational Unified Process
When	things	do	not	work	at	extremes,	then	a	middle	ground	is	sought.	This	is	how	you	can	describe	
Rational	Unified	Process	(RUP).	RUP	has	a	linear	structure	like	waterfall	models	as	well	as	iterative	
steps	like	those	in	agile	methods.	When	Grady	Booch,	James	Rumbaugh,	and	Ivar	Jacobson	worked	
together	and	merged	their	own	theories	to	form	a	unified	process	model	at	Rational	Corporation	
(later	IBM	Corporation),	they	had	one	thing	in	mind:	remove	the	bottlenecks	from	the	waterfall	
model	and	make	a	framework	that	will	allow	smooth	software	development,	even	if	uncertainties	
exist	in	the	development	process.	The	model	allowed	linear	progression	for	straightforward	tasks	that	
are	crystal	clear.	For	not	so	clear	tasks,	the	model	advocated	iterations	so	that	clarity	can	be	achieved	
and	tasks	can	be	completed	over	many	iterations.	The	model	is	a	matrix,	where	project	phases	of	
inception,	elaboration,	construction,	and	deployment	are	pitted	against	the	disciplines	of	business	
modeling,	requirements,	analysis	and	design,	implementation,	and	test	and	deployment.	There	are	
three	supporting	engineering	disciplines	of	configuration	management,	project	management,	and	
environment	management.	Later	the	RUP	model	was	modified	to	include	production	maintenance.

16.5.1 RUP in a Nutshell
Table	16.4	depicts	the	important	aspects	of	RUP.

16.6 Agile Methodologies
You	can	easily	discern	the	difference	between	manufacturing	and	engineering	if	you	can	visu-
alize	a	car	assembly	line	and	a	sea	bridge.	Agile	methodologies	in	manufacturing	and	in	soft-
ware	development	are	entirely	different	concepts.	Whereas	in	manufacturing,	agile	methods	were	
introduced	to	reduce	inventory	costs	and	to	improve	product	quality.	In	the	software	industry,	

236  ◾  Software Project Management: A Process-Driven Approach

Table 16.3 IEEE Standards in a Nutshell

Process Area SDLC Phase Management Area Features

Software
requirements

Software
requirements

Project management Requirement
elicitation,
development,
validation,
management

Software design Software
design

Project management Key issues, structure
and architecture

Software construction Software
construction

Project management Managing activities,
practical
considerations

Software testing Software
testing

Project management Test levels, test
strategy, verification,
validation, practical
considerations

Software maintenance Software
maintenance

Project management Maintenance
method, cost
economics, practical
considerations

Software configuration
management

Project management

Software engineering
management

Project management/
organizational
management

Project planning and
control, review and
evaluation

Software engineering
process

Project management/
organization
management

Process change
management,
process assessment,
measurement

Software engineering
tools and methods

Project management Tools for
requirements, design,
construction, testing,
maintenance,
methods for all SDLC
processes

Software quality Project management/
organization
management

Quality management,
practical
considerations

Knowledge areas of
the related

Project management

Software Process Standards and Process Improvement  ◾  237

agile	methods	were	introduced	to	deal	with	uncertainties	and	subsequent	change	requests	in	soft-
ware	requirements.	One	point	is	common	in	the	agile	concept	at	both	places.	While	agile	methods	
in	manufacturing	ensure	smooth	operations	by	controlling	inventory	intake,	agile	methods	in	soft-
ware	development	ensure	smooth	project	progress	by	controlling	requirement	intake.	That	is	the	
crux	of	the	existence	of	agile	models	for	software	development.

Extreme	programming	 is	 the	perfect	 example	 of	 extreme	 agility.	 It	 only	 takes	 a	handful	 of	
requirements	at	a	time	and	delivers	a	fully	functional	product	by	developing	the	product	only	for	
these	requirements.	When	an	iteration	is	complete,	another	batch	of	requirements	is	taken	in	the	
next	iteration.	Extreme	programming	introduced	some	noticeable	concepts	in	software	develop-
ment	like	test-driven	development,	pair	programming,	story	boards,	etc.	The	Scrum	model	is	simi-
lar	to	extreme	programming	in	that	only	a	handful	of	requirements	are	taken	to	develop	a	fully	
functional	product	to	meet	these	requirements.	Scrum	introduced	concepts	like	requirement	log,	
scrum	master,	product	owner,	etc.

Table 16.4 RUP in a Nutshell

Process Area
(Workflow)

SDLC Phase
(RUP Phase) Management Area Features (Artifacts, etc.)

Business modeling Inception Project management

Requirements Inception Project management Requirement specification
document

Analysis and design Elaboration Project management Use cases, activity diagrams

Implementation Construction Project management Source code, source code
documentation

Test Transition and
all other phases

Project management Test strategy, defect log

Deployment Transition and
all other phases

Project management User and system manuals,
user training

Operations and
support

Production and
all other phases

Program
management

Maintenance plans, bug
list

Configuration and
change control

All phases Project management Artifact versions, software
code versions

Management
environment

All phases Program
management

Process improvement
documents, project
support tools and methods

Project
management

All phases Project management Project plans, status
reports

Infrastructure
management

All phases Program
management

Process improvement
documents for operations,
project support tools and
methods for operations

238  ◾  Software Project Management: A Process-Driven Approach

16.6.1 Extreme Programming in a Nutshell (Table 16.5)

16.7 Test Process Improvement Techniques
All	the	major	software	process	standards	are	meant	to	help	software	projects	in	all	aspects	of	the	
project.	They	provide	a	process	model	so	that	a	specific	software	development	 life	cycle	can	be	
established.	They	provide	a	mechanism	so	that	software	development	process	can	be	improved	(for	
increasing	productivity	and	quality).

There	 are	 also	 some	 process	 improvement	 models	 which	 have	 been	 devised	 exclusively	 to	
improve	the	testing	part	of	the	software	projects.	Some	of	the	techniques	that	have	been	devised	
over	the	years	include	Test	Maturity	Model	(TMM),	Critical	Test	Process	(CTP),	Test	Process	
Improvement	(TPI),	and	Systematic	Test	and	Evaluation	Process	(STEP).

There	have	also	been	efforts	made	by	people	and	organizations	to	devise	mechanisms	for	pro-
cess	 improvement	 that	are	not	specific	to	 the	software	 industry,	but	 in	 fact	 they	are	generic	 in	
approach	and	thus	can	be	applied	to	any	industry.	One	of	the	most	famous	of	these	techniques	is	
Deming’s	PDCA	approach.

Table 16.5 Extreme Programming in a Nutshell

Process Area SDLC Phase Management Area
Features

(Artifacts, etc.)

Pair programming Construction Project management

Planning game All Project management Release planning,
iteration planning

Test driven development Construction,
test

Project management Unit tests, source
code

Whole team concept All Project management Customer is a team
member

Continuous integration
refactoring

Construction Project management Central and single
code repository

Design Project management Improving design

Small releases All Project management Lower risk

Coding standards Construction Project management Maintainable code

Collective code ownership Construction Project management Anybody can change
code

Simple design Design Project management Maintainable design

System metaphor Requirements Project management One requirement at a
time

Sustainable pace All Project management Avoid overloading
resources

Software Process Standards and Process Improvement  ◾  239

16.7.1 Deming’s PDCA Technique
The	earliest	process	improvement	concept	can	be	traced	back	to	Deming’s	Plan,	Do,	Check	and	
Act	 (PDCA)	model,	which	was	a	general	purpose	method.	 It	 can	be	applied	by	anybody	who	
wants	to	improve	his	or	the	organization’s	processes.	It	 is	cyclical	 in	nature,	and	so	its	scope	is	
continuous.

The	quality	of	a	software	product	can	be	achieved	either	by	doing	quality	control	of	the	prod-
uct	(by	means	of	thorough	testing	the	product	for	quality),	or	by	observing	development	processes	
rigorously	as	well	as	improving	them	so	that	quality	of	the	software	product	is	improved.	In	other	
words,	instead	of	keeping	focus	on	the	quality	of	the	product,	improving	the	process	that	creates	
the	software	product	will	improve	quality	of	the	software	product.	The	ISO	standard	model	for	
software	development	is	based	solely	on	this	assumption.	Other	process	models	also	stress	this	fact	
(Figure	16.1).

16.7.2 Test Maturity Model
SEI-CMU	has	a	CMM	process	model	for	software	development.	Test	Maturity	Model	(TMM)	
was	developed	to	complement	CMM	as	it	lacked	a	maturity	model	for	software	testing.	TMM	
has	a	five	level	process	for	improving	testing	processes	that	correspond	to	the	five	levels	of	CMM	
(Figure	16.2).

Do

Check

Act

Plan

Figure 16.1 Deming’s PDCA process improvement cycle.

TMM level 1

TMM level 2

TMM level 3

TMM level 4

Ad hoc testing

Test policy and goals

Integration with development

Metrics and measurements

TMM level 5 Continuous test improvement

Figure 16.2 TMM levels and process definition.

240  ◾  Software Project Management: A Process-Driven Approach

16.7.2.1 Level 1: Initial Level

An	organization	can	be	placed	at	level	1	if	its	testing	functions	are	immature.	Testing	function	is	
considered	to	be	secondary	to	software	development	and	testing	is	carried	out	after	the	software	
is	developed.	There	is	no	planning	for	testing	and	all	testing	on	the	project	is	done	on	an	ad	hoc	
basis.

16.7.2.2 Level 2: Definition

An	organization	can	reach	level	2	in	the	TMM	when	the	testing	function	can	be	organized	by	
means	of	setting	of	a	testing	policy	and	a	goal.	The	company	is	also	able	to	make	a	testing	plan	and	
can	employ	basic	testing	techniques	and	methods.

16.7.2.3 Level 3: Integration

An	organization	reaches	level	3	when	it	can	create	a	distinct	testing	function	on	a	software	devel-
opment	project.	At	this	level,	an	organization	is	able	to	integrate	this	distinct	testing	function	with	
the	development	function.	The	testing	life	cycle	will	include	a	testing	function	complete	with	its	
own	methods,	processes,	and	standards.

16.7.2.4 Level 4: Management and Measurement

At	level	4,	an	organization	can	effectively	measure	all	testing	processes	and	methods.	Managing	
anything	requires	that	it	should	be	measured	first.	If	measurement	is	not	possible,	then	it	cannot	
be	managed.	Thus,	when	any	organization	reaches	level	4	in	TMM,	its	testing	processes	can	be	
effectively	measured	and	thus	managed.

16.7.2.5 Level 5: Optimize

At	level	5,	an	organization	will	be	able	to	improve	its	processes	to	cut	costs	and	improve	quality	
by	evolving	its	processes	beyond	the	current	status.	At	this	stage,	an	organization	will	be	able	to	
reduce	defects	in	the	software	product	by	implementing	a	comprehensive	quality	assurance	policy	
during	the	entire	software	development	life	cycle.

16.7.2.6 Further Developments in TMM

In	the	TMM,	goals	and	subgoals	are	defined	for	each	level	of	maturity.	An	organization	must	be	
able	to	achieve	these	goals	to	reach	to	that	level.	The	goals	are	allocated	to	roles	of	manager,	devel-
oper/tester,	and	customer/user.	People	assigned	to	these	roles	must	achieve	their	own	set	of	goals	
as	defined	in	the	TMM	level	for	a	particular	level.

After	the	advent	of	CMMI	(Capability	Maturity	Model	Integration)	by	SEI-CMU,	the	TMMi	
(Test	Maturity	Model	integration)	model	was	developed,	which	replaced	the	TMM.	The	TMM	
was	meant	only	 for	 software	development	projects	 and	not	 for	 software	maintenance	projects.	
TMMi	 is	 aimed	 to	 work	 both	 for	 software	 development	 as	 well	 as	 for	 software	 maintenance	
projects.

Software Process Standards and Process Improvement  ◾  241

16.7.3 Test Process Improvement
TMM	is	essentially	a	staged	model.	The	maturity	of	an	organization	is	improved	through	stages	
that	correspond	to	levels	of	the	model.	The	TPI	(Test	Process	Improvement)	model	is,	in	contrast,	
a	continuous	model	where	the	test	function	is	improved	not	through	stages	or	levels	but	rather	
through	a	continuous	approach	(Figure	16.3).

TPI	has	a	set	of	four	key	areas,	and	a	successful	implementation	of	this	model	is	achieved	when	
the	corresponding	cornerstones	are	achieved.	These	key	areas	and	their	associated	cornerstones	
include	 life	 cycle,	 organization,	 infrastructure	 and	 tools,	 and	 techniques.	 When	 an	 evaluation	
of	an	organization	is	done	for	implementing	the	TPI	process	model,	each	of	these	key	areas	are	
assessed	on	a	scale	of	A–D,	A	being	the	lowest	rank.	If	any	key	area	is	not	mature	enough	to	be	
given	even	a	low	value	of	A,	then	that	key	area	is	not	given	any	marks	at	all.	Again,	not	all	areas	
can	be	given	the	full	rating	of	D	or	even	a	C.	They	may	be	restricted	to	be	given	marks	only	up	to	
B.	Some	such	areas	include	estimating	and	planning	(under	techniques	key	area).

When	scoring	is	done	for	each	key	area	and	its	subareas,	the	scores	should	also	be	linked	to	
each	other.	So	if	one	area	is	related	to	another,	a	high	score	in	the	former	and	a	low	score	in	the	lat-
ter	cannot	be	done.	It	is	because	performance	in	one	area	will	be	directly	or	indirectly	influenced	
or	related	to	the	performance	in	the	other	area.

In	a	nutshell,	TPI	is	a	process	reference	model.	Once	a	process	model	is	assessed	then	it	can	be	
classified	on	a	scale	of	controlled,	efficient,	or	optimizing	rating.	The	optimizing	rating	means	the	
most	mature	process	model,	and	controlled	rating	means	the	process	model	that	can	be	managed	
and	process	measurements	can	be	taken.	An	efficient	rating	lies	between	these	two	ratings.

16.7.4 Critical Testing Process
Critical	Testing	Process	(CTP)	assumes	that	only	some,	not	all,	activities	on	a	test	function	are	
critical.	If	these	critical	activities	can	be	measured,	controlled,	and	managed,	then	the	entire	test-
ing	function	can	be	managed	well.	This	concept	is	very	different	from	other	process	models	in	
that	other	process	models	stress	managing	the	entire	test	function.	This	process	model	works	on	
the	same	concept	as	defined	by	the	Pareto	method,	which	says	20%	of	the	software	product	parts	
contain	80%	of	defects	and	doing	exhaustive	testing	of	this	20%	area	will	improve	software	qual-
ity	tremendously.

Life cycle

Organization

Infrastructure and tools

Techniques

Test cycles, defect cycles

Initiatives, policies

Knowledge, skills, tools

Planning, estimating

Figure 16.3 TPI process definition—key areas, subareas, and associated cornerstones.

242  ◾  Software Project Management: A Process-Driven Approach

The	CTP	model	 is	 a	 content	 reference	model.	A	 context	 specific	 tailoring	of	 the	process	
model	is	needed	to	make	any	improvement	in	the	existing	model.	The	tailoring	consists	of	iden-
tification	of	any	challenges,	recognition	of	attributes	of	any	good	processes,	and	selection	of	the	
order	and	importance	of	implementation	of	process	improvements.	During	process	assessment,	
strong	and	weak	process	areas	are	identified.	Based	on	the	assessment,	a	list	of	process	areas	to	
be	improved	is	prepared	and	prioritized.	The	priority	areas	are	marked	per	organization	needs.	
During	the	CTP	assessment,	some	typical	quantitative	areas	examined	include	defect	detection	
percent,	 return	 on	 investment	 on	 testing	 function,	 requirement	 coverage,	 risk	 coverage,	 test	
release	overhead,	and	defect	report	rejection	rate.	Some	qualitative	areas	include	test	team	role	
and	effectiveness,	test	plan	utility,	test	team	skills	(in	testing,	domain	knowledge,	technology),	
defect	report	utility,	test	result	report	utility,	change	management	utility,	and	balance	(Figure	
16.4).

A	plan	is	prepared	to	improve	all	the	weak	areas	identified	in	the	assessment.	The	CTP	itself	
makes	generic	suggestions	for	improvements	in	those	areas.	But	to	make	the	implementation	effec-
tive,	the	implementation	team	should	better	tailor	the	suggested	recommendation	to	suit	the	needs	
of	the	organization.

16.7.5 Systematic Test and Evaluation Process
STEP	(Systematic	Test	and	Evaluation	Process)	is	similar	in	its	approach	to	that	of	CTP;	STEP	
is	a	content	reference	model	and	not	a	process	 reference	model.	The	implementation	team	can	
implement	the	process	improvement	project	in	any	order	or	priority	of	process	areas.	This	concept	
is	different	from	the	TMM	model	where	the	organization	seeking	TMM	implementation	must	
implement	it	in	process	areas	in	the	order	specified	by	the	TMM	model.

This	model	 recommends	that	a	 testing	process	 should	have	certain	specific	characteristics.	
These	 characteristics	 include	 a	 requirement	based	 testing	 strategy.	Testing	 should	 start	 at	 the	
beginning	of	the	software	development	life	cycle.	Test	cases	are	used	as	requirements	and	usage	
models.	Testware	design	is	the	basis	for	software	design.	Defects	are	detected	at	their	origin	and	
should	be	removed	at	that	point.	Defects	are	systematically	analyzed,	testers	and	developers	work	
together	on	defects.

Defect
detection (%)

Risk
coverage

Release
overhead

Defect
rejection (%)

Quantitative
improvement areas

CTP model

Return on
investment

Requirement
coverage

Roles
e�ectivenes

Defect report
utility

Change
management

utility

Team
balance

Qualitative
improvement areas

Test plan
utility

Team
skills

Figure 16.4 CTP process model.

Software Process Standards and Process Improvement  ◾  243

The	STEP	model	is	a	complementary	process	that	works	with	agile	methodologies	of	software	
development	like	Scrum	and	eXtreme	Programming.	The	software	development	life	cycle	starts	by	
making	test	cases	that	form	the	basis	for	requirements.	The	source	code	development	starts	with	writ-
ing	code	to	validate	these	test	cases.	This	approach	is	known	as	test-driven	development	(Figure	16.5).

In	the	STEP	model,	three	areas	of	testing	are	focused	for	improvement:	planning,	acquisition,	
and	measurement.	An	interview	across	the	organization	is	arranged	to	assess	qualitative	improve-
ment,	 and	 quantitative	 improvement	 is	 sought	 from	 measured	 metrics.	 The	 quantitative	 metrics	
include	test	status	over	time,	test	requirements,	defect	trends	including	detection,	severity	and	clus-
tering,	defect	density,	defect	removal	effectiveness,	defect	detection	percentage,	defect	life	cycle,	and	
cost	of	testing.	Qualitative	metrics	include	defined	test	process	utilization,	and	customer	satisfaction.

16.7.6 Process Improvement Life Cycle
When	we	strive	for	process	improvement,	we	need	to	start	with	a	launching	pad.	Process	standard	
models	provide	this	launching	pad.	Process	improvements	cannot	be	done	in	a	big	bang	approach.	
Every	new	approach	should	be	first	tested	on	a	pilot	basis,	and	when	the	results	are	found	satisfac-
tory,	then	the	new	approach	can	be	applied	across	the	board	on	all	projects.

Any	process	improvement	strategy	can	be	implemented	using	some	basic	steps	(Figure	16.6).

Test status

Defect
density

Defect
removal e�.

Defect
detection (%)

Test process
utilization

Customer
satisfaction

Qualitative
improvement areas

Quantitative
improvement areas

STEP model
(acquisition, plan, measurement)

Test
requirement

Defect
trends

Figure 16.5 STEP process model.

Initiate and find
gaps

Evolve

Validate Implement Define and
redefine

Measure and
compare

Prioritize and
plan

Figure 16.6 Steps for implementing process improvement.

244  ◾  Software Project Management: A Process-Driven Approach

The	entire	exercise	is	taken	as	a	project.	At	the	beginning	of	the	project,	the	initiative	is	taken	
to	start	the	process	improvement	project.	The	stakeholders	make	their	commitment	for	the	project	
and	a	team	is	formed	of	outside	consultants	and	process	champions	sourced	from	the	organiza-
tion.	First,	they	compare	the	existing	process	model	with	the	standard	model	and	find	and	record	
all	deviations	(and	gaps)	that	exist.	The	project	team	then	starts	making	stocks	and	measurements	
of	 attributes	of	 existing	processes.	Once	measurements	 are	 taken,	 they	 are	 compared	with	 the	
standard	values	for	attributes	of	processes	as	defined	in	the	standard	process	model	that	is	being	
implemented.	At	the	end	of	this	exercise,	the	project	team	is	able	to	make	a	list	of	process	areas	that	
need	improvement	and	new	process	areas	that	are	to	be	introduced.	The	project	team	then	finds	
which	of	the	areas	(that	need	improvement)	has	more	importance	compared	to	others	and	assigns	
higher	priority	to	these	high	importance	areas.	Then	it	can	make	a	project	plan	to	implement	the	
changes	in	the	process	model	based	on	these	priorities.	It	will	define	process	design	for	the	new	
process	areas	to	be	introduced	and	redefine	design	for	process	areas	that	need	to	be	improved.	This	
exercise	will	create	a	roadmap	for	implementing	the	improved	process	model.	Once	this	roadmap	
of	implementation	is	ready,	it	can	be	implemented	on	a	pilot	basis.	Results	from	this	pilot	study	
can	be	validated.	If	the	results	are	good,	then	the	process	model	can	be	implemented	organization	
wide.

This	exercise	of	process	improvement	is	 in	general	a	continuous	approach.	Once	a	new	and	
improved	process	model	is	working	fine,	this	model	can	be	further	improved	by	evolving	it.	The	
same	cycle	of	process	 improvement	done	previously	can	be	 repeated	 to	get	more	benefits	 from	
further	process	improvements.

16.8 Process Standard Certifications
If	 an	 organization	 certifies	 its	 processes	 with	 any	 of	 the	 major	 certification	 organizations	 like	
IEEE,	ISO,	SEI-CMU,	etc.,	then	they	get	various	kinds	of	benefits,	some	of	them	obvious	and	
some	of	them	not	so	obvious.	Let	us	see	some	of	the	benefits	here.

16.8.1 Benefits of Certification
All	 of	 the	 major	 certifications	 provide	 a	 framework	 and	 a	 systematic	 approach	 to	 managing	
business	processes	to	produce	a	product/service	that	conforms	to	customer	expectations	[4].	If	a	
supplier	(software	services	provider)	has	certified	its	processes	to	any	of	these	standards,	then	its	
customers	can	be	assured	that	the	products	or	services	shipped	by	them	will	have	a	certain	level	
of	quality.	This	creates	a	comfort	level	for	customers	in	doing	business	with	its	supplier.

There	are	many	benefits	to	these	certifications:

	◾ These	 certifications	 help	 in	 improving	 business	 processes	 and	 thus	 savings	 in	 operation	
costs.

	◾ These	certifications	help	in	improving	business	processes	waste/scrap	reducing,	and	improv-
ing	product	quality.

	◾ These	certifications	are	used	by	many	corporations	as	a	marketing	tool,	as	they	help	to	bag	
projects	from	customers.	Many	customers	make	it	mandatory	for	its	suppliers	to	have	this	
certification.

	◾ Many	countries	impose	certification	on	exporters	so	that	their	product/services	have	a	cer-
tain	level	of	quality.

Software Process Standards and Process Improvement  ◾  245

16.8.2 How to Apply for a Certification
To	become	certified,	a	business	must	develop	a	quality	system	that	meets	the	requirements	
specified	by	the	standard	for	which	it	has	approached,	for	certification	in	the	area	and	product	
for	which	the	kind	of	products	or	services	the	organization	produces/delivers	[5].	Once	the	
organization	quality	system	has	been	documented	and	implemented,	the	organization	must	
invite	an	accredited	external	auditor	to	evaluate	the	effectiveness	of	their	system.	If	the	audi-
tor	determines	that	the	quality	system	meets	all	certification	requirements,	they	will	certify	
the	system.

16.8.2.1 Certification Requirements

	 1.	A	supported	language	for	documenting	quality	practices
	 2.	A	 system	 to	 track	 and	 manage	 evidence	 that	 these	 practices	 are	 being	 followed	 in	 the	

organization
	 3.	An	independent	audit	to	assess	and	certify	compliance

16.8.2.2 Time and Cost of Certification

There	are	many	advantages	to	these	certifications,	but	certification	process	is	time	consuming	and	
costly.	It	can	take	anywhere	from	6	to	18	months	to	document	business	operations.	Then	it	may	
take	another	1–3	months	to	verify	actual	operations.	So	in	total,	it	can	take	from	7	to	21	months	
for	the	certification	process,	depending	on	the	size	of	the	organization	and	complexity	of	the	busi-
ness	processes.

The	certification	process	may	cost	anywhere	from	$10,000	to	$20,000	in	the	form	of	consul-
tant	fees	and	fees	for	certification	registration.	Apart	from	fees,	additional	costs	include	the	time	
that	has	to	be	spent	by	the	employees	in	the	whole	process.

16.8.3 Future of Certifications
Most	certification	agencies	work	with	governments	to	help	them	adopt	standards	so	that	products/
services	produced/delivered	by	government	bodies	have	good	quality.	These	agencies	keep	devel-
oping	new	standards	for	software	development,	software	services,	software	products.	Most	of	the	
time	they	are	developing	hardware/software	interface	standards	for	many	new	devices	as	well	as	
their	delivery.

Review Questions
16.1	 Do	CMMI	standards	support	iterative	software	development?
16.2	 How	are	SDLC	processes	supported	in	CMMI?
16.3	 How	are	ISO	standards	different	compared	to	other	standards	like	CMM	or	IEEE?
16.4	 Do	IEEE	standards	support	iterative	software	development?
16.5	 Describe	the	STEP	process.	What	are	the	main	components	of	this	process?
16.6	 What	are	the	major	areas	of	Deming’s	PDCA	process?
16.7	 Describe	the	TMM	process.

246  ◾  Software Project Management: A Process-Driven Approach

Recommended Readings
	 1.	 P.	Rook	(1990)	Software Reliability Handbook,	Springer,	New	York.
	 2.	 M.	B.	Chrissis,	M.	Konrad,	S.	Shrum	(2003)	CMMI: Guidelines for Process Integration and Product

Improvement,	Addison-Wesley,	Reading,	MA.
	 3.	 R.	 W.	 Miller	 (2004)	 Managing Software for Growth: Without Fear, Control, and the Manufacturing

Mindset,	Addison-Wesley,	Reading,	MA.
	 4.	 D.	F.	Rico	(2004)	ROI of Software Process Improvement: Metrics for Project Managers,	J.	Ross	Publishing,	

Boca	Raton,	FL
	 5.	 L.	Batten	(2008)	CMMI 100 Success Secrets,	Emereo	Pty.	Ltd.,	Singapore.

247

Chapter 17

Process Selection

In.the.previous.chapter,.we.learned

	◾ What	are	the	major	process	standard	models	for	software	development?
	◾ What	are	the	major	process	improvement	models?
	◾ What	is	a	process	improvement	life	cycle?

In.this.chapter,.we.will.learn

	◾ What	are	the	differences	between	plan	driven	and	agile	software	development?
	◾ What	are	the	strengths	and	weaknesses	of	plan-driven	software	development?
	◾ What	are	the	strengths	and	weaknesses	of	agile	software	development?
	◾ What	are	the	best	practices	for	a	software	life	cycle?
	◾ How	is	the	best	model	for	software	development	chosen?

17.1 Introduction
The	traditional	waterfall	model	(also	known	as	plan	driven),	as	a	software	development	life	cycle,	
has	been	criticized	 for	 issues	 like	high	 risk,	 long	 time	 in	delivery,	heavy	upfront	commitment,	
and	inflexiblity	[1].	Although	the	waterfall	model	has	positive	attributes	and	is	extremely	useful	
for	 large	 projects,	 organizations	 and	 individuals	 have	 been	 in	 search	 of	 alternative	 approaches	
for	software	development	that	can	help	in	mitigating	the	negative	aspects.	Rational	Corporation	
introduced	 such	 an	 alternative	with	 its	Unified	Process	Model	 for	 software	development	proj-
ects.	Similarly,	other	popular	approaches	like	Scrum	[2],	eXtreme	Programming	[3],	Cleanroom	

248  ◾  Software Project Management: A Process-Driven Approach

Software	Engineering	 [4],	Microsoft	 Solutions	Framework,	 Oracle	Unified	Method,	 etc.,	 have	
offered	different	life-cycle	models	to	overcome	the	shortcomings	of	the	waterfall	model.

Today	agile	and	waterfall	model	camps	both	claim	they	are	better	than	the	other.	Who	is	right	
and	who	is	wrong?

17.2 History of Plan-Driven Model
Any	work	undertaken	as	a	project	must	have	some	purpose,	stated	or	otherwise.	The	work	must	
have	a	start	date	and	an	end	date.	If	not	a	firm	end	date	then	a	probable	one	may	do.	How	much	it	
will	cost	(probable	cost)	should	also	be	known	at	the	beginning.	What	exactly	will	be	the	result	of	
this	work	should	also	be	stated.	The	stakeholders,	ensure	these	things	are	known	in	advance.	They	
also	should	know	status	of	goings	on	during	execution	of	the	software	project	at	regular	intervals	
so	that	they	know	that	things	are	going	smoothly	or	not	(Figure	17.1).

When	the	size	of	a	software	project	is	large	and	may	consume	a	considerable	amount	of	time	
and	money,	 the	 stakeholders	will	 have	 to	pay	 considerable	 attention	 to	most	details	 about	 the	
project.	If	this	project	is	failing	in	any	of	the	parameters	mentioned	so	far	(start	date,	end	date,	
project	cost,	project	reports,	project	results,	etc.)	then	the	stakeholders	will	be	in	trouble	as	they	
have	large	stakes	in	the	success	of	the	project.	For	this	reason,	the	stakeholders	evaluate	the	project	
carefully	before	sanctioning	it	to	make	sure	that	the	risk	to	start	the	project	is	worthwhile.	In	the	
early	days	of	computers	and	software,	hardware	used	to	cost	many	times	more	than	the	software.	
So	stakeholders	paid	more	attention	to	hardware	purchases	and	 little	attention	to	software.	So	
software	projects	were	easily	sanctioned,	even	when	the	software	project	team’s	credentials	were	
not	convincing	enough.	So	in	those	days,	software	projects	used	to	get	delayed,	or	cost	more	than	
planned,	etc.,	due	to	little	attention	from	stakeholders.	Slowly,	due	to	advancement	in	technology,	
the	computer	hardware	started	becoming	cheaper	while	software	costs	remained	the	same.	Thus,	
while	the	cost	of	hardware	to	software	in	early	days	was	in	the	ratio	of	100:1,	now	it	has	completely	
reversed,	it	is	now	1:100.	So	stakeholders	today	pay	a	lot	of	attention	to	software	costs	and	do	not	
think	twice	about	hardware	costs.

Now,	the	software	project	teams	have	to	continuously	provide	justification	for	every	dollar	
spent	to	the	stakeholders	showing	their	worth.	Moreover,	they	have	no	option	but	to	increase	
their	productivity	and	quality	of	work,	consistently,	to	keep	their	jobs.	Stakeholders	also	started	
demanding	visibility	in	the	project	so	that	they	can	know	what	is	going	on	at	any	given	time,	
so	that	they	may	monitor	progress.	They	started	demanding	a	complete	picture	of	the	project	
including	a	firm	end	date,	cost,	and	product	quality	before	sanctioning	the	project.	The soft-
ware	industry	responded	by	implementing	process	standards,	which	could	help	in	answering	

Started on
time

Ended on
time

Success factors
for a project

Within
budget

Right
quality

Figure 17.1 Success factors for a project.

Process Selection  ◾  249

the	questions	of	the	stakeholders.	The	earliest	models	were	the	pure	waterfall	models.	The	water-
fall	model	had	some	shortcomings	and	so	some	refined	waterfall	models	were	developed	in	later	
years.

When	the	 stakeholders	 started	having	business	models	 that	were	changing	 frequently,	 they	
started	asking	the	software	industry	to	shrink	the	project	duration,	even	if	it	meant	higher	costs.	
The	software	industry	in	response	came	up	with	concurrent	and	parallel	engineering	methods	of	
software	development	so	that	the	schedules	could	be	collapsed	and	development	cycles	could	be	
reduced.

After	analysis	of	hundreds	of	projects,	many	standards	development	organizations	came	up	
with	process	standards.	Some	of	them	include	CMM,	CMMI,	ISO,	IEEE-SWEBOK,	etc.	These	
standards	come	with	a	promise	that	if	they	are	implemented,	the	software	development	processes	
will	be	repeatable,	predictable,	matured,	and	will	have	the	ability	to	improve	processes	continu-
ously,	so	that	product	quality	and	process	productivity	can	be	improved.

17.3 Strengths of Plan-Driven Model
Plan-driven	 or	 waterfall	 models	 have	 many	 strengths	 [5].	 The	 entire	 software	 project	 can	 be	
planned	before	work	is	even	started	on	the	project.	Each	phase	of	the	project	is	well-defined	and	
all	processes	involved	have	firm	start	date	and	end	dates.	Each	process	also	has	well-defined	rela-
tionship	with	other	processes	(Figure	17.2).

This	 allows	 for	 a	 preview	 of	 the	 entire	 project.	 The	 effort	 and	 cost	 estimate	 is	 provided	 at	
the	beginning	of	the	project	so	that	the	stakeholders	can	decide	if	they	want	to	proceed	or	not,	
depending	on	the	kind	of	expected	project	budget.

17.4 Limitations of Plan-Driven Model
In	the	plan-driven	model,	a	working	software	product	is	available	only	after	the	complete	devel-
opment	life	cycle	is	executed.	That	means	if	a	project	for	building	a	software	product	is	of	1	year	
duration,	the	software	product	is	available	only	after	one	year.	For	the	entire	year,	the	stakeholders	
have	no	idea	if	the	software	product	is	being	built	correctly	or	not.	Suppose	the	project	took	a	year	
for	completion.	After	one	year,	the	stakeholders	see	the	software	product	and	find	that	it	is	not	
suitable	for	them,	then	the	entire	effort	wasted	along	with	the	money	spent	on	the	project.	This	is	
the	single	major	risk	in	waterfall	models	(Figure	17.3).

Project
visibility Predictability

Waterfall model
strengths

Fine grained
project details Accountability

Figure 17.2 Strengths of waterfall model.

250  ◾  Software Project Management: A Process-Driven Approach

The	second	weakness	of	the	waterfall	model	is	that	once	the	project	plan	is	fixed,	no	changes	
are	allowed.	This	means	that	the	software	requirements	cannot	be	changed.	But,	 in	practice,	
due	 to	 various	 reasons,	 software	 requirements	 need	 to	 be	 changed	 many	 times	 during	 proj-
ect	 execution.	 If	 the	 software	 requirements	 are	 permitted	 to	 be	 changed,	 then	 the	 issue	 of	
rework	arises.	Many	parts	of	the	already	made	software	design	and	construction	may	need	to	
be	changed	and	thus	a	 lot	of	rework	emerges.	Rework	causes	project	schedule	and	budget	to	
increase	from	planned	figures.	The	escalated	project	schedule	and	budget	then	becomes	a	night-
mare	for	stakeholders.

17.5 History of Agile Methods
During	the	1990s,	Grady	Booch,	James	Rumbaugh,	and	Ivar	Jacobson	had	separately	developed	
some	models	for	managing	different	parts	of	software	life	cycle	[6].	Rational	Corporation	(IBM)	
invited	them	to	work	on	a	project	to	make	a	complete	model	for	managing	the	entire	software	
life	cycle.	This	life	cycle	tried	to	eliminate	all	the	problems	associated	with	waterfall	models.	It	
contained	provisions	for	iterations,	for	tasks	which	are	not	very	clear	and	need	revision	more	than	
once.	This	is	the	first	time	that	concept	of	iterations	for	project	tasks	was	conceived.	Later,	many	
agile	models	were	put	forth	by	people	and	organizations	who	tried	to	solve	some	problems	related	
to	software	development	models	and	came	with	good	solutions	in	the	end.	Some	of	these	models	
include	Scrum,	eXtreme	Programming,	Oracle	AIM,	etc.

The	crux	of	all	these	agile	models	is	the	concept	that	software	development	is	a	complex	under-
taking	and	it	can	be	best	achieved	using	iterations.	In	the	initial	iteration,	only	the	tasks	which	are	
well-defined	and	well	understood	are	taken	in	the	project,	and	undefined	or	not	so	well	defined	
tasks	are	left	for	subsequent	iterations.	Over	time,	when	these	tasks	are	well	understood,	they	are	
taken	in	an	iteration	and	worked	on.

17.6 Strengths of Agile Methods
For	most	of	the	software	development	industry	in	the	early	days,	projects	never	had	any	formal	
methods	to	develop	software	products	[7].	Everything	was	done	on	an	ad	hoc	basis.	This	resulted	
in	schedule	and	cost	creep	and	bad	product	quality.	Then	after	the	famous	software	crisis	of	the	
1970s,	the	waterfall	software	development	model	was	evolved.	This	model	was	further	refined	and	
some	variants	were	developed.	Unfortunately,	these	rigid	formal	models	also	did	not	have	much	
success.	Then	came	agile	methods.	Agile	methods	introduced	some	formal	methods	that	ensured	
the	software	projects	could	be	handled	and	managed	so	that	these	problems	could	be	resolved.	

Upfront
investment High risk

Waterfall model
weaknesses

Rigid Long gestation
period

Figure 17.3 Weaknesses of waterfall model.

Process Selection  ◾  251

A basic	cause	of	problems	associated	with	software	projects	is	unclear	or	changed	requirements	
or	unclear	software	design.	In	such	situations,	a	very	formal	and	rigid	method	is	not	successful	
for	 project	 management.	 Agile	 methods	 tackle	 this	 problem,	 by	 allowing	 the	 project	 to	 begin	
with	only	a	small	set	of	requirements.	Whenever	changes	in	requirements	are	needed,	the	project	
allows	incorporating	those	changes.	Thus,	the	fundamental	flaw	in	software	project	management	
is	removed	with	agile	methods	(Figure	17.4).

Agile	methods	are	really	great	for	one	more	very	important	aspect	about	software	products.	
They	allow	for	incrementally	building	software	products.	Instead	of	going	for	a	big	bang	approach,	
software	 vendors	 can	 develop	 their	 products	 incrementally.	 In	 fact,	 since	 2000	 onward,	 most	
software	vendors	have	taken	this	approach,	as	it	provides	flexibility	and	risk	mitigation.	They	keep	
doing	market	surveys	to	know	which	kinds	of	features	customers	are	looking	for.	Based	on	the	
results	of	these	surveys,	they	decide	to	develop	and	then	add	the	features	that	are	in	demand.	This	
approach	saves	them	a	lot	of	money	by	not	investing	it	in	developing	and	adding	product	features	
which	are	not	in	demand.

17.7 Limitations of Agile Methods
Agile	methods	are	great	for	time-	and	material-based	projects	as	well	as	for	incrementally		developed	
products	[8].	However,	here	is	a	list	of	their	shortcomings	(Figure	17.5).

Size:	It	is	difficult	to	increase	team	size	beyond	20	people	or	so,	if	the	situation	warrants.	It	is	
because	agile	methodology	demands	that	the	communication	among	team	members	should	
be	a	face	to	face	affair	rather	than	through	the	written	word.	This	obviously	constrains	the	
team	size.

Flexible Low risk

Agile model
strengths

Incremental
development

Low initial
investment

Figure 17.4 Strengths of agile model.

Small team size
(low development

speed)
Negligible

documentation

Agile model
weaknesses

 No third party
involvement

No knowledge
management

Figure 17.5 Limitations of agile model.

252  ◾  Software Project Management: A Process-Driven Approach

Offshoring:	Mode	of	communication	again	constrains	options	of	availing	benefits	of	offshoring.	
Offshoring	requires	an	elaborate	framework	of	communication	so	that	onshore	and	offshore	teams	
can	communicate	effectively.	But	agile	methods	do	not	permit	such	a	mode	of	communication.

Documentation:	 Projects	 based	 on	 agile	 methods	 produce	 bare	 minimum	 documentation.	 For	
scenarios	where	contracts	need	to	have	transactions	documented,	lack	of	documentation	creates	a	
problem.	In	any	case,	good	documentation	provides	a	means	to	audit	a	project.	If	documentation	
is	missing	then	it	is	difficult	to	audit	a	project.	This	means	that	if	failure	occurs,	it	is	difficult	to	
trace	the	root	cause	of	the	problem.	Similarly,	if	any	project	is	a	success,	it	is	difficult	to	find	the	
success	factors	in	the	absence	of	documentation.

Third party involvement:	A	third	party	can	never	get	involved	on	a	project	if	there	is	not	enough	
documentation.	Third	parties	can	get	involved	on	projects	for	many	reasons.	The	most	obvious	
reason	is	that	a	project	is	done	not	by	just	one	project	team.	In	most	cases,	a	bigger	project	is	
split	into	many	smaller	projects	and	each	of	these	is	done	by	a	different	project	team.	In	many	
industries,	this	is	how	projects	are	done.	Then	why	should	it	be	different	for	software	projects?

Close ended:	Everything	on	a	project	is	done	by	a	small	cohesive	and	tightly	integrated	team	in	
agile	projects.	This	makes	it	impossible	to	contract	a	part	of	the	project	work	to	a	third	party	ser-
vice	provider.

Knowledge management:	All	the	lessons	learned	and	knowledge	gained	on	a	project	is	left	only	in	
the	brains	of	the	team	members.	There	is	no	way	this	information	can	be	shared	outside	the	project	
team.	When	a	person	leaves	the	organization,	there	is	no	way	the	knowledge	gained	by	him	can	
be	retailed	in	the	organization.

17.8 Once and for All
From	all	the	discussion,	one	thing	is	final:	One	size	does	not	fit	all!	While	some	process	methods	
may	suit	a	particular	kind	of	project,	some	other	process	method	may	suit	other	kinds	of	projects.	
Even	the	so-called	no	process	methodology	may	suit	some	kind	of	project,	as	evidenced	by	small	
projects,	where	trying	to	force	a	formal	process	method	is	no	doubt	a	suicide	attempt.	If	there	are	
only	one	or	two	brains	working,	then	there	is	simply	no	point	in	having	an	arrangement	for	well-
defined	documentation,	quality	process,	etc.

For	projects	where	4–20	people	are	needed	to	be	working	on	the	project,	agile	methods	fit	the	
bill.	Here	some	documentation	and	formal	methods	are	adopted	but	they	are	not	excessive.	They	
work	 for	 projects	where	 the	 amount	 of	 effort	 required	 is	 to	produce	 a	million	 lines	 of	 code	per	
year,	or	less.	They	can	employ	anywhere	from	5	to	20	people	on	the	project.	With	some	amount	of	
process	customization	it	is	possible	to	scale	them	up.	Even	though	they	suit	colocated	project	team	
environment,	with	process	customization,	they	have	also	been	successfully	offshored.	Agile	(or	itera-
tive)	methods	suit	well	for	projects	where	the	software	product	does	not	need	to	be	developed	at	an	
extremely	fast	pace	(e.g.,	employing	more	than	50	people	to	complete	it	faster	than	say	employing	
only	20	people).	Using	any	of	 the	agile	methods,	 the	maximum	size	of	 the	product	 that	 can	be	
developed	over	a	period	of	1	year	is	500,000	SLOC	(source	lines	of	code).	For	larger	products,	the	
development	effort	can	span	several	years	(Table	17.1).

For	even	larger	projects	where	20–100	people	need	to	work	on	a	project,	Rational	Unified	Process	
model,	Unified	Process	model,	Oracle	Process	model,	or	some	other	well	known	process	model	can	

Process Selection  ◾  253

be	used.	These	projects	can	run	from	a	few	months	to	few	years.	They	typically	produce	software	
products	ranging	from	500,000	to	2,000,000	SLOC	per	year.	In	an	open	source	or	SOA	environ-
ment,	the	product	size	could	be	even	bigger	and	the	project	can	run	longer.	Sometimes	these	projects	
run	for	more	than	10	years.

Apart	from	size	and	speed	of	development	considerations,	one	more	factor	is	vital	in	appropri-
ate	process	selection.	It	deals	with	the	fact	that	not	all	of	the	project	information	is	available	at	the	
beginning	of	the	project.	For	instance,	if	in	a	project	the	features	of	the	product	to	be	made	are	
largely	unknown,	then	it	is	extremely	difficult	to	gauge	the	size	of	the	project.	In	such	a	situation,	
the	project	team	will	be	in	a	fix	to	find	out	the	appropriate	process,	team	size,	and	project	duration	
and	cost.	In	such	a	situation,	it	will	be	best	to	take	a	slow	and	cautionary	approach	instead	of	a	big	
bang	approach.	Agile	methods	are	the	best	when	it	comes	to	taking	a	cautionary	approach.	The	
waterfall	model	and	its	variants	fit	right	at	the	other	end,	where	a	big	bang	approach	is	needed.	
In	 the	 middle	 of	 the	 road	 are	 the	 processes	 that	 provide	 take	 best	 of	 both	 worlds.	 They	 have	
iterations,	but	they	can	also	take	all	of	the	requirements	at	one	go	and	make	a	complete	product	
instead	of	making	small	pieces	of	 the	product	 in	 successive	 iterations.	The	 iterations	used	here	
are	for	refinement,	and	they	are	different	from	those	found	in	extreme	agile	methods.	In	extreme	
agile	methods,	the	iterations	are	complete.	Each	iteration	runs	from	requirements	to	release	cycle.	
In	contrast,	in	the	middle	of	the	road	approach,	iterations	run	only	to	remove	defects	that	were	
injected	in	the	previous	iteration.	So	we	can	have	two	iterations	for	the	requirements	phase,	three	
iterations	for	the	design	phase,	and	so	on.

When	we	speak	of	software	engineering	at	the	process	level	(and	not	at	the	project	level),	we	are	
usually	concerned	with	things	like	process	improvement,	increasing	productivity,	and	increasing	
quality.	At	the	same	time	we	also	imply	decreasing	variability,	increasing	visibility,	and	collapsing	
project	schedules.	When	we	analyze	the	way	we	do	things	under	an	agile	methodology,	we	real-
ize	that	there	are	not	many	of	these	aims	built	in	the	agile	methodology.	In	contrast,	plan-driven	

Table 17.1 Software Development Process Selection Decision Chart

Requirements Appropriate Methodology

Large project size Waterfall

Unclear requirements Iterative/agile

Rapid development projects Waterfall with concurrent engineering

Outsourced projects Waterfall/modified agile

COTS implementation projects Waterfall/agile (depending on size and speed)

SaaS implementation projects Waterfall/agile (depending on size and speed)

Open source projects Waterfall/agile (depending on size and speed)

Mid sized projects Rational unified process

Knowledge management requirements Waterfall model

Process improvement requirements Waterfall/modified angle

Same process across organization Waterfall/modified angle

Statistical process control requirement Waterfall/modified angle

254  ◾  Software Project Management: A Process-Driven Approach

methodologies	always	strive	to	have	these	goals.	So	from	this	perspective,	plan-driven	methodolo-
gies	outscore	agile	methodologies.

The	bottom	line	is	that	the	best	approach,	when	it	comes	to	process	selection	for	any	project,	
depends	on	many	factors.	Of	course	there	is	one	more	dimension	to	process	selection	for	software	
projects.	All	these	goals	of	process	improvement,	productivity	improvement,	quality	improvement,	
etc.,	work	only	in	environments	where	we	have	a	pool	of	many	projects.	And	these	pools	are	avail-
able	mostly	with	large	service	providers.	Internal	IT	departments	and	small	service	providers	mostly	
execute	a	small	number	of	projects	at	any	given	time.	In	these	environments,	it	is	difficult	to	imple-
ment	these	strategies	due	to	their	small	size	operations.	Thus,	agile	methods	suit	them	better.

An	incremental	software	development	model	suits	software	vendors	that	make	software	prod-
ucts	in	anticipation	of	market	demand.	The	market	demand	dictates	which	software	features	they	
should	develop	so	 that	 they	will	be	able	 to	add	them	in	 their	core	 software	product.	Here	 the	
agile	methodology	comes	to	the	rescue,	as	it	allows	the	software	vendor	to	build	and	then	add	the	
required	software	features	instead	of	wasting	time	and	resources	on	developing	something	that	is	
not	wanted	by	the	markets.

17.9 Best Practices for Process Selection
Most	people	in	the	software	industry	know	that	contracts	for	software	development	projects	are	of	
two	types:	fixed	cost/fixed	schedule	and	time	and	material	based	[9].	If	both	the	customer	and	the	
software	developer	know	exactly	what	software	is	to	be	developed	with	a	clear	project	scope	(i.e.,	
complete	knowledge	of	requirements)	at	the	beginning	of	the	project,	then	a	fixed	cost/fixed	sched-
ule	contract	can	be	made.	But	if	many	project	details	are	not	clear	at	the	outset,	then	time-	and	
material-based	contracts	are	most	suitable.	Thus	a	plan-driven	project	methodology	is	best	suited	
for	fixed	cost/fixed	schedule	contracts	and	agile	methodology	is	best	suited	for	time-	and	material-
based	contracts.	From	this	perspective,	selection	of	a	process	model	based	on	size	of	the	product	
does	not	arise.	A	decision	is	best	made	from	the	perspective	of	clarity	of	scope	of	the	project.

Agile	methods	are	good	when	project	clarity	can	be	at	best	described	as	subdued	and	not	crystal	
clear.	Due	to	their	nature	of	working,	these	agile	methods	are	not	suitable	for	product	development	
where	the	product	is	supposed	to	be	large	and	where	a	large	team	needs	to	be	deployed	to	it	so	it	can	
be	developed	fast.	Parallel	and	concurrent	development	is	needed	in	such	cases.	On	the	other	hand,	

Communication
management

Configuration
management

Best practices for
software projects

Supplier
management

Documentation

Visibility and
control

Quality
assurance

Concurrent
engineering

Continuous
process

improvement

Figure 17.6 Best practices for software projects.

Process Selection  ◾  255

projects	adopting	methodologies	like	CMMI,	ISO,	or	IEEE	tend	to	be	highly	so	structured	that	
sometimes	the	heavy	structure	stifles	product	development	(Figure	17.6).

There	could	be	a	middle	road	somewhere	that	can	permit	a	plan-driven	approach	with	the	
flexibility	of	agile	methods,	and	where	the	best	of	both	worlds	can	be	taken	and	 limitations	
from	either	approach	(plan	driven	vs.	agile)	can	be	avoided.	Such	approaches	are	now	possible.	
Many	software	vendors	now	customize	agile	methods	and	insert	planning	components	in	their	
customized	models	to	make	a	hybrid	model.	On	the	other	extreme,	a	waterfall	model	is	cus-
tomized	to	put	iterations	over	tasks	which	need	elaboration	over	many	iterations	due	to	lack	of	
clarity.

It	cannot	be	overemphasized	if	we	say	that	there	are	some	considerations	to	be	thought	of	when	
selecting	a	process.	We	need	to	find	out	some	of	the	best	ways	of	doing	things	so	that	we	come	up	
with	the	best	process	for	our	needs.	Regardless	of	the	software	development	model	chosen,	here	
are	some	best	practices	available	for	many	components	of	the	project:

Communication:	Communication	 is	 the	most	vital	 component	of	any	 large	 software	project.	 If	
there	are	many	teams	located	at	many	sites,	then	a	good	and	effective	medium	of	communica-
tion	is	a	must	so	that	each	team	can	communicate	with	other	team	effectively	and	effortlessly.	As	
Internet	use	has	become	widespread	and	offices	are	equipped	with	high	bandwidth	connections,	
using	 Internet-based	 communication	 media	 makes	 available	 to	 the	 project	 teams	 easy,	 afford-
able,	and	effective	communication.	Some	of	the	communication	media	available	currently	include	
modern	instant	messengers	and	e-mails	along	with	video	conferencing,	desktop	sharing,	virtual	
whiteboards,	and	some	other	media.	All	of	these	media	can	be	easily	used	if	teams	are	located	at	
many	different	geographies.

Configuration management:	 A	 Web-based	 central	 configuration	 management	 system	 is	 the	 best	
option	for	distributed	teams.	It	can	enable	storing	and	accessing	of	all	documents,	artifacts,	code	
builds,	and	project	documents	to	all	distributed	teams.	Modern	configuration	management	systems	
are	highly	secure	and	reliable.	Having	a	centralized	configuration	management	system	for	all	teams	
makes	sure	that	there	is	just	one	current	version	of	each	document,	code	build,	and	other	project	
artifacts	to	deal	with.	In	short,	there	should	be	only	one	version	of	the	truth	for	the	entire	project.

Third party involvement:	From	cost	and	time	to	market	and	quality	aspects,	it	is	important	that	
if	any	opportunity	exists	for	availing	services	of	third	party	service	providers,	the	opportunity	
should	be	tapped	instantly,	even	if	it	means	hiring	a	service	provider	who	is	located	at	a	different	
geographical	location.	A	central	configuration	management	along	with	modern	communication	
channels	will	ensure	that	services	of	third	parties	can	be	obtained	without	many	problems.

Documentation:	 A	 good	 approach	 to	 documentation	 must	 be	 provided	 so	 that	 different	 teams	
working	on	the	same	project	will	not	have	any	difficulty	 in	communicating	and	working	with	
each	other.	Furthermore,	it	will	also	ensure	that	maintenance	work	after	implementation	of	the	
software	product	can	be	done	without	much	difficulty.

Predictability and visibility:	A	project	plan	will	be	made	with	most	of	known	project	details	and	some	
assumptions,	wherever	project	details	are	not	known.	The	project	plan	will	be	updated	whenever	
project	details	for	which	assumptions	were	made	become	known.	The	assumptions	will	be	replaced	
by	the	known	details.	This	practice	will	ensure	good	predictability	and	visibility	into	the	project.

Quality control:	Quality	control	checks,	in	the	form	of	reviews	and	inspections,	should	be	inserted	in	
each	phase	of	the	project	to	ensure	only	checked	work	products	pass	through	to	the	next	phase	in	the	

256  ◾  Software Project Management: A Process-Driven Approach

project.	For	each	project	phase,	there	should	always	be	entry	and	exit	criteria	to	ensure	good	quality	
of	the	work	products.

Concurrent engineering:	For	large	sized	projects,	 if	a	short	timeframe	is	desired	(which	is	often	the	
case),	then	concurrent	engineering	principles	can	be	applied	for	project	work	so	that	many	large	teams	
can	be	deployed	to	do	the	project	work,	so	that	they	can	work	simultaneously	to	collapse	the	project	
schedule.

Process improvement:	Process	improvement	is	vital	from	a	business	point	of	view.	If	at	any	organi-
zation,	there	is	no	process	improvement	program	in	place,	after	some	time	they	will	not	be	able	
to	compete	in	the	market	as	their	costs	will	be	high	and	quality	will	be	low	compared	to	their	
competition.	For	process	improvement,	a	separate	Software	Quality	Assurance	(SQA)	department	
should	be	in	place	to	keep	an	eye	to	see	if	any	existing	project	processes	can	be	improved.

17.10 Converting Traditional to Agile Model
Suppose	you	are	given	a	software	development	project	and	asked	to	use	an	agile	model	for develop-
ment,	instead	of	a	traditional	model.	How	can	you	do	it?

Suppose	 you	 have	 broken	 down	 the	 application	 functionality	 into	 a	 set	 of	 three	 features.	
The corresponding	work	products	in	this	case	will	be	as	follows:

Feature	1:	requirement	specification	1	→	design	specification	1	→	construction	model	1
Feature	2:	requirement	specification	2	→	design	specification	2	→	construction	model	2
Feature	3:	requirement	specification	3	→	design	specification	3	→	construction	model	3

In	 the	 traditional	 waterfall	 model,	 the	 development	 phases	 may	 resemble	 those	 depicted	 in	
Figure	17.7:

TimeTime

Requirement specification 1D
ev

el
op

m
en

t s
ta

ge
D

ev
el

op
m

en
t s

ta
ge

Requirement specification 2

Requirement specification 3

Design 1

Design 2

Design 3

Construction 1

Construction 2

Construction 3

Figure 17.7 Development life cycle in waterfall model.

Process Selection  ◾  257

In	this	waterfall	model,	all	features	are	taken	at	once	and	development	means	writing	require-
ment	specifications	for	all	three	features	at	the	same	time.	Then	design	is	also	made	for	all	three	
requirement	 specifications.	 Similarly,	 construction	 also	 begins	 simultaneously	 for	 all	 three	
features.

To	 convert	 the	 development	 to	 an	 agile	 model,	 however,	 we	 should	 take	 one	 feature	 at	 a	
time	for	development.	In	one	full	iteration,	we	will	make	requirement	specification,	design,	and	

Requirement
specification 1

Iteration 1

Design 1

Construction 1

TimeTime

D
ev

el
op

m
en

t s
ta

ge
D

ev
el

op
m

en
t s

ta
ge

Figure 17.8 Development life cycle in agile model for iteration 1.

Iteration 2

TimeTime

D
ev

el
op

m
en

t s
ta

ge
D

ev
el

op
m

en
t s

ta
ge

Requirement
specification 2

Design 2

Construction 2

Figure 17.9 Development life cycle in agile model for iteration 2.

258  ◾  Software Project Management: A Process-Driven Approach

construction	for	that	feature.	Once	we	finish	the	iteration,	we	can	move	onto	the	next	iteration	
by	taking	the	next	feature.	Finally,	when	all	the	features	are	developed,	the	project	is	complete	
(Figures	17.8	through	17.11).

Of	course,	only	the	development	activities	on	the	project	are	shown.	There	will	be	regular	veri-
fication	and	validation	activities	during	the	development	life	cycle	for	quality	assurance	purposes.

17.11 Case Study
Here	is	a	case	study	taken	from	a	real	example	to	show	how	an	appropriate	process	selection	can	
be	made	based	on	the	business	requirements.

When	our	SaaS	software	developer/service	vendor	decided	to	find	the	best	process	to	develop	
its	product,	way	back	in	2003,	there	were	many	factors	to	be	considered.	Some	of	the	major	factors	
for	consideration	included

	◾ Tap	benefits	of	offshoring	(talent	and	lower	costs	of	development)
	◾ Go	for	product	development	in	such	a	way	that	it	can	win	some	customers	even	when	the	

product	is	still	being	developed

Iteration 3

TimeTime

D
ev

el
op

m
en

t s
ta

ge
D

ev
el

op
m

en
t s

ta
ge

Requirement
specification 3

Design 3
Construction 3

Figure 17.10 Development life cycle in agile model for iteration 3.

Iteration 2

Iteration 1

Iteration 3

TimeTime

D
ev

el
op

m
en

t s
ta

ge
D

ev
el

op
m

en
t s

ta
ge

Figure 17.11 Development life cycle in agile model for complete product development.

Process Selection  ◾  259

	◾ Fully	functional	product	at	early	stage	even	with	fewer	features
	◾ Flexible	product	development	road	map	so	that	product	features	can	be	preponed/postponed	

as	per	market	conditions
	◾ Software	development	at	a	speed	of	1,000,000	SLOC	per	annum

These	were	 some	of	 the	requirements,	which	the	vendor	wanted	to	consider	 for	an	appropriate	
software	development	process	selection.	Agile	methods	(including	Scrum,	eXtreme	Programming,	
etc.)	are	great	 for	product	development.	But	 they	could	not	be	selected	because	of	 the	need	to	
engage	offshore	teams	and	speed	of	development	(at	best	with	an	agile	method,	a	speed	of	50,000	
SLOC	could	be	achieved	per	annum).	From	a	documentation	point	of	view,	agile	methods	were	
again	not	suitable	as	the	vendor	wanted	to	have	good	documentation	for	its	products.	Any	vari-
ant	of	the	waterfall	model	was	out	of	question,	because	the	vendor	wanted	to	develop	the	product	
incrementally.	They	were	using	the	Eclipse	platform	for	software	development.	Luckily	they	had	a	
solution	available	with	the	Eclipse	platform	itself.	Eclipse	has	introduced	a	software	development	
process	model	called	Unified	Process	Model	which	is	refined	from	the	Rational	Unified	Process.	
This	process	model	meets	most	of	the	requirements	of	the	vendor.	So	they	chose	this	as	their	soft-
ware	development	process	model.

Exercise
17.1	 Discuss	the	rationale	for	selecting	the	development	life	cycle	on	any	software	project.

Review Questions
17.1	 For	a	small	project	of	size	2000	SLOC,	which	process	model	may	suit	the	best	and	why?
17.2	 What	factors	determine	selection	of	a	process	model?
17.3	 What	are	the	benefits	of	a	plan-driven	(waterfall)	model?
17.4	 What	are	the	benefits	of	an	agile	model?
17.5	 What	are	the	drawbacks	of	a	plan-driven	(waterfall)	model?
17.6	 What	are	the	drawbacks	of	an	agile	model?

Recommended Readings
	 1.	 D.	B.	Yoffie	(1997)	Competing in the Age of Digital Convergence,	Harward	Business	Press,	Boston,	MA.
	 2.	 G.	Lenz,	T.	Moeller	(2003)	NET: A Complete Development Cycle,	Addison-Wesley,	Boston,	MA.
	 3.	 K.	Beck	(2000)	Extreme Programming Explained: Embrace Change,	Addison-Wesley,	Reading,	MA.
	 4.	 J.	F.	Peters,	W.	Pedrycz	(2003)	Software Engineering: An Engineering Approach,	Wiley,	New	York.
	 5.	 A.	 Jaaksi	 (1999)	 Tried & True Object Development: Practical Approaches with UML,	 Cambridge	

University	Press,	Cambridge,	U.K.
	 6.	 J.	Hunt	(2006)	Agile Software Construction,	Springer,	London,	U.K.
	 7.	 M.	Cohn	(2004)	User Stories Applied: For Agile Software Development,	Addison-Wesley,	Boston,	MA.
	 8.	 D.	J.	Anderson	(2004)	Agile Management for Software Engineering: Applying the Theory of Constraints,	

Prentice	Hall	PTR,	Upper	Saddle	River,	NJ.
	 9.	 R.	T.	Futrell,	D.	F.	Shafer,	L.	Shafer	(2002)	Quality Software Project Management,	Prentice	Hall	PTR,	

Upper	Saddle	River,	NJ.

PEOPLE MANAGEMENT IV

263

Chapter 18

Introduction to People
Management

In.Part.IV,.we.will.learn

	◾ What	is	people	management	on	software	projects?
	◾ How	can	team	performance	be	improved	on	software	projects?
	◾ How	should	supplier	management	be	done	on	software	projects?
	◾ How	can	customer	expectation	be	effectively	managed	on	software	projects?

In.this.chapter,.we.will.learn

	◾ What	is	people	management	on	software	projects?
	◾ What	characteristics	are	required	for	successful	software	project	management?
	◾ How	can	software	project	managers	effectively	manage	teams,	suppliers,	and	customers?

18.1 Introduction
Projects,	after	all,	are	all	about	people.	This	is	especially	true	in	the	case	of	software	projects.	More	
than	90%	of	software	costs	can	be	attributed	to	labor	costs.	Hardware	and	infrastructure	costs	
pale	in	comparison	to	costs	associated	with	salaries	of	software	professionals.

Software	development	is	a	creative	activity.	Without	creative	inputs	from	project	team	mem-
bers,	no	software	system	can	be	developed.	Software	skills	are	not	easy	to	learn	and	practice.

At	the	same	time,	managing	a	software	project	is	not	easy.	A	typical	software	project	manager	
needs	many	qualities	that	will	enable	him	to	manage	the	project.	In	this	chapter,	we	discuss	vari-
ous	qualities	needed	to	become	a	successful	project	manager.

264  ◾  Software Project Management: A Process-Driven Approach

18.2 People Management
The	internal	project	teams	need	to	be	constantly	in	touch	with	the	business	end	users	and	understand	
their	needs.	They	need	to	find	ways	so	that	the	existing	software	systems	used	by	them	can	be	made	
more	user	friendly	and	thus	increase	productivity	of	end	users	with	these	systems.	Whenever	new	
projects	come,	they	will	be	able	to	deliver	it	since	they	know	the	needs	of	the	business	end	users.	They	
also	have	to	be	constantly	in	touch	with	suppliers	so	that	the	suppliers	understand	the	exact	needs	
of	end	users	and	thus	provide	the	right	functionality	in	the	software	systems	they	are	building.	In	
a	nutshell,	the	internal	project	team	needs	to	have	both	technical	expertise	and	good	knowledge	of	
business	so	that	the	software	systems	they	build	satisfy	the	needs	of	businesspeople.

On	software	projects,	 there	are	customers,	suppliers,	and	project	teams.	People	 involved	on	
software	projects	from	each	of	these	groups	have	to	play	different	roles.

Suppliers	(software	service	providers)	are	given	service	level	agreements	(SLAs).	They	need	to	stick	
closely	to	these	SLAs.	Successful	suppliers	not	only	deliver	services	based	on	these	SLAs	but	in	fact	
provide	more	value	to	their	customers	through	the	experience	they	have	accumulated	from	executing	
past	projects	and	delivering	unmatched	quality	services.	They	continuously	refine	their	processes	and	
thus	are	able	to	cut	delivery	costs	and	schedules.	They	also	certify	their	processes	with	CMMI,	ISO,	
or	IEEE	certifications	so	that	new	customers	have	confidence	in	their	delivery	competence.

Customers	need	to	specify	exactly	what	they	want	from	the	software	system.	They	need	to	
arrange	for	the	budget,	steer	the	project	in	the	right	direction,	and	allocate	people	who	will	be	end	
users	of	the	proposed	system	to	provide	inputs	for	the	requirements	on	which	the	software	system	
will	be	built	(Figure	18.1).

18.3 Team Management
How	can	you	make	sure	that	your	team	is	performing	well?	Are	you	getting	the	right	performance	
from	your	team?	What	should	you	do	to	better	the	performance	of	your	team?	These	are	questions	
that	any	project	manager	is	always	concerned	with.	After	all	it	is	his	team	that	has	to	deliver	the	
goods.	They	are	the	most	important	resources	that	he	has	at	his	disposal.

Customers Internal team

People
management for
software projects

Suppliers

Expectation
management

Mentoring,
motivating,
rewarding

Service level
agreements

Figure 18.1 People management on software projects.

Introduction to People Management  ◾  265

Good	project	managers	recognize	these	aspects	well.	They	constantly	strive	to	improve	team	
performance.	They	use	modern	management	techniques,	best	practices	that	are	available	with	pro-
cess	standards	like	ISO,	CMMI,	IEEE,	etc.,	and	the	knowledge	gained	by	their	organization	in	
executing	past	projects	for	constantly	improving	team	performance.	Some	specific	techniques	for	
doing	this	include	skills	training,	performance-linked	rewards,	and	team	mentoring	(Figure	18.3).

Some	of	the	biggest	challenges	faced	by	project	managers	are	attrition,	unavailability	of	IT	
professionals	with	the	right	skill	set,	and	lack	of	training	(Figure	18.2).

Team	management	is	discussed	in	detail	in	Chapter	19.

18.4 Supplier Management
Software	service	suppliers	have	grown	to	become	truly	global	players.	Their	success	stems	from	the	
increasing	need	of	software	services	by	customers	the	world	over.	These	software	service	suppliers	
have	accurately	recognized	the	needs	of	their	customers	and	have	come	up	with	fitting	solutions	
to	fulfill	these	needs	with	innovative	delivery	models	and	by	making	constant	efforts	to	improve	
their	services	(Figure	18.4).

Customers,	on	the	other	hand,	have	developed	good	mechanisms	to	effectively	deal	with	their	
suppliers	to	get	more	and	more	value	for	the	money	spent.	In	Chapter	21,	we	will	discuss	organiza-
tion	structures,	contract	agreement	methods,	supplier	communication	management,	and	account	
management.

Attrition High cost of
retention Office politics

Unavailability
of skilled

professionals

Lack of
specific
training

Team
management

challenges

Figure 18.2 Team management challenges.

Skills training
Performance

linked
rewards

Mentoring Motivating
Good

appraisal
system

Team
management

solutions

Figure 18.3 Solutions for team management challenges.

266  ◾  Software Project Management: A Process-Driven Approach

18.5 Customer Management
How	does	one	deal	effectively	with	an	internal	or	external	customer?	Different	organizations	have	
different	software	product	needs.	IT	organizations	must	fulfill	these	needs;	otherwise,	their	exis-
tence	is	at	stake.	They	need	to	effectively	meet	customer	expectations.	If	these	expectations	are	
based	on	some	wrong	notions,	the	project	manager	must	convince	the	customer	about	the	infeasi-
bility	of	such	a	solution	(Figure	18.5).

If	the	project	manager	comes	to	a	point	where	he	needs	to	bargain	about	something	on	the	proj-
ect	with	the	customer,	he	must	present	his	case	convincingly.	He	also	needs	to	present	good	status	
reports	to	the	customer	so	that	the	customer	sees	good	value	in	the	project.	If	some	issues	arise	on	
the	project,	the	project	manager	must	resolve	them	amicably	with	the	customer	(Figure	18.6).

Wrong
expectations

Lack of
negotiation

skills
Gold plating

Wrong effort
and cost
estimates

Quality
concerns

Customer
management

challenges

Figure 18.5 Customer management challenges.

Set
expectations

right

Negotiate
well

Deliver what
is promised

Accurate cost
and effort
estimate

Implement
good quality

assurance

Customer
management

solutions

Figure 18.6 Solutions for customer management challenges.

Process
standards

compliance

Continuous
process

improvement

Aggressive
marketing

Low cost
locations

Skills training
and

enhancement

Supplier
success factors

Figure 18.4 Success factors for software services suppliers.

Introduction to People Management  ◾  267

18.6 Communication Management
Communication	management	is	one	of	the	most	important	facets	of	any	project.	If	communica-
tion	is	not	effective,	the	customer	or	the	supplier	or	the	team	members	may	misunderstand	that	
piece	of	information	and	the	project	will	be	botched.	What	communication	methods	should	be	
deployed	on	the	project?	It	is	important	to	take	into	consideration	the	effectiveness	of	communica-
tion	methods	as	well	as	the	ease	of	understanding.	The	project	manager	must	ensure	smooth	and	
effective	communication	across	customers,	suppliers,	and	internal	team	members.

Review Questions
18.1	 What	are	the	typical	challenges	on	software	projects	related	to	managing	people?
18.2	 What	are	the	typical	challenges	on	software	projects	related	to	managing	the	project	team?
18.3	 What	are	the	typical	challenges	on	software	projects	related	to	managing	the	customer?
18.4	 What	are	the	typical	challenges	on	software	projects	related	to	managing	suppliers?

269

Chapter 19

Team Management

In.the.previous.chapter,.we.learned

	◾ What	is	people	management	in	software	projects?
	◾ What	characteristics	are	required	for	a	successful	software	project	management?
	◾ How	 can	 software	 project	 managers	 effectively	 manage	 teams,	 suppliers,	 and	

customers?

In.this.chapter,.we.will.learn

	◾ What	is	team	management	in	software	projects?
	◾ How	does	one	motivate	the	team?
	◾ What	are	various	organization	structures	for	software	projects?
	◾ How	does	one	foster	good	communication	within	the	project?
	◾ How	might	one	plan	for	good	knowledge	management?

19.1 Introduction
In	any	project	team,	there	are	many	kinds	of	people	with	different	personalities,	attitudes,		learning	
abilities,	 skills,	 and	experiences.	Efficiently	managing	 the	 resources	 is	vital	 for	 the	 success	of	 a	
project.

There	are	people	who	vouch	that	other	things	do	not	matter	on	the	project.	What	really	mat-
ters	is	people.	But	not	all	people	are	the	same.	Some	are	good	performers	while		others may	have	dif-
ficulty	with	their	assignments.	People	with	difficulty	with	their	assignments	cause	the	productivity	

270  ◾  Software Project Management: A Process-Driven Approach

of	the	team	to	go	down.	The	project	manager	must	identify	the	performers	and	nonperformers	
and	deal	with	each	of	 them	accordingly	 [1].	But	how	do	you	 rate	people?	After	all,	 you	need	
your	team	members	to	perform	in	the	project.	The	people	who	are	real	performers	in	the	project	
should	be	acknowledged	for	their	contributions.	Other	not-so-good	performers	should	be	period-
ically	interviewed	and	apprised	about	the	expectations	the	management	has	from	them.	So	there	
should	be	good	tools	to	assess	the	performance	of	each	project	team	member.	If	performance	is	
good,	they	should	be	rewarded,	and	if	not,	measures	should	be	taken	to	see	if	performance	can	
be	improved.

Sometimes	team	members	have	attitude	problems.	They	think	they	are	the	best	and	they	are	
above	the	system.	This	kind	of	situation	is	aggravated	when	the	project	manager	also	feels	the	same	
way.	So	these	people	who	consider	themselves	as	some	sort	of	a	tsar	are	left	to	do	things	in	their	
own	way.	If	these	kinds	of	things	happen,	then	it	destroys	the	team’s	discipline.	It	also	demoral-
izes	other	team	members.	This	in	turn	severely	affects	the	performance	of	the	entire	project	team.	
So	the	project	manager	should	never	allow	this	kind	of	thing	to	happen.	Everybody	must	work	
according	to	the	conventions	of	the	system.	If	somebody	is	good	at	some	work,	he	can	do	that	
work	better	than	others.	But	it	does	not	mean	that	he	is	entitled	to	violate	the	system’s	protocol	[2].

Project	managers	should	be	adept	at	handling	different	kinds	of	people.	It	is	the	best	policy	
to	stick	to	a	defined	process	to	carry	out	any	kind	of	work.	No	shortcuts	should	be	ever	allowed.	
Shortcuts	are	always	detrimental	 in	the	long	run	and	especially	in	large	complex	projects,	they	
make	the	job	even	more	difficult.	A	project	manager	must	be	aware	of	what	is	going	on.	If	he	finds	
any	noncompliance	in	the	process,	he	should	immediately	cut	it	short	[3].

The	best-managed	projects	are	the	one	where	a	project	manager	does	not	stick	his	nose	into	every	
activity	of	the	project.	Rather,	he	should	keep	an	eye	as	to	what	is	going	in	the	right	direction	and	
what	is	going	in	the	wrong	direction.	For	things	going	wrong,	he	should	take	immediate	action	to	
rectify	the	errors.	He	should	also	be	a	good	mentor,	coach,	and	leader	for	the	entire	project	team [4].	
For	junior	members	of	the	team,	he	should	have	a	good	policy	in	place	so	that	they	are	mentored	
properly	and	are	able	to	deliver	their	assignments	as	quickly	as	possible.	If	a	team	member	needs	
training,	the	project	manager	should	ensure	that	proper	training	is	arranged.

Also,	motivation	and	lack	of	it	affects	productivity.	In	a	highly	structured	and	process-oriented	
environment,	chances	of	putting	individual	creativity	to	solve	work-related	problems	are	limited.	
Most	work	becomes	monotonous	and	people	working	in	such	environments	develop	a	feeling	that	
they	are	human	machines.	They	start	losing	motivation	to	continue	working	in	such	environments.	
This	 results	 in	high	attrition	rates.	On	the	other	hand,	 less	 structured	and	 less	process-oriented	
work	environments	encourage	people	to	apply	their	creativity	in	their	work.	Here	people	are	indeed	
happy	to	continue	doing	their	work	and	have	a	high	motivation	level.	The	attrition	rate	is	thus	far	
less	 compared	 to	 the	other	workplace	where	work	 is	monotonous.	This	discussion	 is	 important	
because	software	service	organizations	deal	with	these	issues	and	find	it	difficult	to	handle	many	
issues	related	to	this	subject.	On	one	hand,	process-oriented	environments	are	more	productive	and	
outcome	of	the	work	done	by	people	here	is	very	much	predictable.	Customers	like	to	place	their	
work	with	such	companies.	But	service	providers	find	it	difficult	to	deal	with	their	attrition	rates,	
which	are	very	high.	On	the	other	hand,	in	less-structured	environments,	creativity	is	high	but	pro-
ductivity	is	low	and	outcome	of	the	work	done	by	people	working	is	less	predictable.	This	kind	of	
environment	exists	in	captive	units	of	software	vendors	or	large	global	companies	who	develop	their	
own	software	products	for	their	own	use.	In	the	current	business	scenario,	they	cope	with	lower	
productivity	and	thus	face	a	dent	in	their	business	margins,	but	days	are	not	far	when	this	situation	
will	change.	They	will	have	to	succumb	to	the	pressure	from	software	service	companies	that	enjoy	
higher	productivity	levels	[5].

Team Management  ◾  271

To	deal	with	the	problem	of	attrition,	service	companies	employ	some	management	techniques	
(Figure	19.1).	They	provide	very	good	work	environments	for	their	employees	and	encourage	them	
to	further	their	studies	or	adopt	hobbies	or	causes	so	that	employees	find	something	worthwhile	
to	keep	working	with	them	[6].

Project	managers	should	recognize	these	deep	and	far-reaching	issues	and	find	ways	to	keep	
work	assignments	of	 their	 team	members	 interesting.	Further,	 they	not	only	have	 to	 fulfill	 the	
objectives	of	the	project	but	also	have	to	realize	the	objectives	of	the	organization	and	find	ways	
to	fulfill	both.

19.2 Organization Structure and Policies
People	who	work	in	organizations	follow	the	policies	laid	down	by	the	organization	[7].	Within	
this	framework	they	try	to	do	their	assigned	work.	There	is	a	always	mixed	population	of	efficient	
and	not-so-efficient	employees	in	any	organization.	Generally	the	collective	outcome	of	their	work	
is	what	can	be	seen	at	the	organization	level.	As	a	rule	of	thumb,	80%	of	people	do	their	work	sat-
isfactorily.	That	means	if	a	project	is	executed	in	normal	conditions,	more	or	less	the	performance	
results	should	not	be	far	away	from	the	expectations	of	the	customer.

Let	us	look	at	a	case	study	in	an	organization	with	regard	to	its	performance.	An	organization	
is	facing	problems	continuously	about	its	performance	in	its	projects.	They	tried	many	times	to	find	
out	a	solution	for	this	perennial	problem	but	nothing	seemed	to	work.	Initially	they	blamed	some	
of	their	staff	for	poor	performance	and	fired	some	of	them.	But	the	problem	still	persisted.	Finally	
after	 all	 attempts	 to	 rectify	 things	 failed,	 they	called	 in	a	 renowned	consultant.	The	consultant	
studied	how	the	people	were	doing	things.	After	deep	study	he	prepared	a	report	and	called	for	a	
meeting	of	top	executives	of	the	company	to	present	his	findings	(Figure	19.2).	

After	going	through	the	findings;	the	management	was	in	for	a	shock.	The	report	said	that	
the	organization	did	not	have	a	defined	process	model.	Each	project	was	being	managed	with	ad	
hoc	measures.	So	even	when	the	staff	on	these	projects	was	working	overtime	and	putting	in	more	
hours	of	work,	the	performance	on	projects	was	poor.	The	consultant	suggested	that	the	company	
must	adopt	a	standardized	process	model.	Adopting	the	model	means	changing	the	organization	
structure	as	well.	The	model	will	help	in	setting	a	structured	approach	to	everything	done	in	the	

Career growth
opportunities

Performance
linked

rewards

Dealing with attrition

Flexible
working

times

Work from
home options

Free advice
for personal

problems

Interesting
assignments

Figure 19.1 Strategies to deal with attrition.

272  ◾  Software Project Management: A Process-Driven Approach

organization,	including	project	management.	The	model	will	help	in	streamlining	each	organiza-
tion	process.	This	will	result	in	reduced	rework.	This	means	better	resource	utilization	and	saving	
of	costs.	The	model	will	help	in	keeping	the	quality	of	work	consistent	throughout	the	organiza-
tion	and	project	after	project.	A	central	process	improvement	unit	also	needed	to	be	set	up	so	that	
further	improvement	in	the	process	model	would	also	be	possible	over	time	by	refining	and	fine	
tuning	the	process	model	(Figure	19.3).	

This	case	 study	 shows	 the	 importance	of	having	good	organization	policies.	Even	a	good	
project	team	may	fail	to	deliver	if	the	organization	for	which	it	is	working	has	bad	policies.	So	
organization	policies	play	the	most	important	role	in	the	success	of	any	project.

19.2.1 Project Organization
There	could	be	many	forms	of	project	organization	structures	depending	on	the	type	of	project	and	
the	methodology	chosen	to	execute	it	[8].	In	the	case	of	making	a	custom	software	application,	a	
type	of	waterfall	methodology	is	chosen	with	a	linear	project	structure.	Different	kinds	of	work	in	

Ad hoc
management

No process at
organization

level

Organizational
problems

Poor
performance

Bad
organizational

structure

Late delivery
of projects

High costs of
projects
delivery

Figure 19.2 Organization problems.

Standard
process model
across projects

Sticking to
process model

Solutions for
organizational

problems

Streamlining
of organization

structure

Good
accounting
practices

Quality
assurance

Continuous
process

improvement

Figure 19.3 Solutions for organizational problems.

Team Management  ◾  273

the	project	will	be	done	by	people	with	the	right	skills.	Once	their	assignment	is	over,	they	are	no	
longer	in	the	project	team	and	will	move	to	some	other	project.	For	instance,	a	design	engineer	will	
do	the	software	design,	and	once	the	design	is	completed,	he	is	taken	off	of	the	project.

In	the	case	of	software	product	development,	the	best	way	is	to	do	it	in	iterations.	Align	each	
iteration	with	a	minor	release	of	the	product.	For	every	two	to	four	minor	releases,	there	will	be	a	
major	release	of	the	product.	Align	the	major	release	with	one	cycle	of	the	project.	The	iterations	
can	be	time	boxed.	In	such	an	arrangement,	there	will	be	more	than	one	iteration	executed	at	any	
given	time.	There	will	also	be	more	than	one	team	working.	Each	team	will be	working	with	its	
own	iteration.	Figure	19.4	depicts	three	teams	that	are	working with three	iterations.	The	project	
manager	should	always	make	project	plans	ahead	of	execution	of	these	iterations.	At	the	top	of	
the	hierarchy	is	the	complete	project	development	roadmap,	which	may	contain	more	than	one	
project.

In	such	environments,	the	phases	of	the	project	are	very	much	blurred.	So	we	have	software	
design,	software	requirement,	software	construction,	and	software	testing	going	almost	together.	
So	people	with	different	roles	(software	designing,	software	construction,	and	software	testing)	
keep	working	on	the	project	all	the	time.	Each	iteration	is	of	short	duration	and	by	the	time	the	
tasks	on	the	present	iteration	finishes,	it	is	time	to	start	working	on	the	next	iteration.	So	all	project	
team	members	with	different	roles	keep	working	on	the	same	project	(consisting	of	these	itera-
tions)	all	the	time	and	thus	do	not	need	to	move	on	to	another	project.

19.2.2 Line of Business Organization
Software	projects	that	require	a	large	number	of	functional	inputs	may	contain	functional	experts	
who	are	from	different	departments	and	have	been	sourced	to	work	on	the	project.	The	project	
manager	may	not	be	able	to	evaluate	the	work	done	by	these	functional	experts.	In	such	cases,	
these	 experts	may	 report	both	 to	 the	project	manager	 and	 to	 their	 line	managers.	The	project	
manager	may	assign	tasks	to	them	but	the	completed	tasks	will	be	evaluated	by	the	line	manag-
ers	who	understand	and	can	rate	the	work	done	by	these	functional	experts.	So	we	end	up	with	a	
matrix	structure	for	the	project	where	team	members	may	be	reporting	to	more	than	one	manager	
[9]	(Figure	19.5).

Iteration 3—
team 3

Iteration 3—
team 3

Iteration 2—
team 2

Iteration 2—
team 2

Iteration 1—
team 1

Iteration 1—
team 1

Project 1

Product development—many project teams

Project 2

Figure 19.4 Time-boxed product development and software team deployment.

274  ◾  Software Project Management: A Process-Driven Approach

19.2.3 Program Management Organization
In-house	IT	organizations	have	a	single	program	management	office.	This	office	takes	care	of	all	
software	projects	running	or	in	the	pipeline.	So	in	general,	the	program	management	office	and	
the	IT	organization	are	the	same	thing.	Software	service	companies,	on	the	other	hand,	have	a	
very	complex	organization	structure	into	which	the	program	management	fits	(Figure	19.6).	More	
details	about	organization	structures	at	service	companies	are	discussed	in	Chapter	21	[10].

A	large	business	organization	needs	a	large	number	of	software	systems.	Some	are	needed	at	
the	department	level	while	others	are	needed	at	the	business	unit	level.	Then	some	software	sys-
tems	belong	to	the	enterprise	class	while	others	are	used	for	personal	productivity	enhancement	

Project
manager

Program
manager

IT department
head

Accounting
department head

Manufacturing
operations head

Business
analyst 1

Business
analyst 2

Figure 19.5 Example of a matrix organization.

Project
manager 1

Project
manager 2

Project
manager 3

Program
manager

IT department
head

Program management
organization structure

Software
developer 1

Software
developer 2

Business
analyst 1

Business
analyst 2

Figure 19.6 Program management organization.

Team Management  ◾  275

reasons.	 So	 different	 kinds	 of	 software	 are	 either	 acquired	 (purchased)	 by	 the	 organization	 or	
developed	in-house.	The	IT	organization	not	only	needs	to	deal	with	new	software	but	also	needs	
to	provide	support	for	existing	software	that	is	in	operation.

So	an	in-house	IT	organization	has	a	myriad	of	projects	to	look	after	and	should	utilize	its	
resources	thoughtfully	to	fulfill	the	needs	of	its	internal	customer.

19.2.4 Internal IT Organization Structure
The	IT	department	of	a	business	unit	has	its	own	internal	team	that	develops	software	products	to	
fulfill	the	needs	of	the	business.	It	also	procures	IT	systems	from	suppliers	whenever	it	is	not	viable	
for	an	internal	team	to	develop	the	product	in-house.	Sometimes	the	IT	systems	from	suppliers	
are	prebuilt	and	they	only	have	to	be	implemented	at	the	business	site.	At	other	times,	the	soft-
ware	needs	to	be	developed	by	the	supplier.	So	essentially	the	suppliers	are	of	two	types:	software	
product	vendors	and	software	service	companies	who	build	software	products	on	requests	from	its	
customers	(Figure	19.7).

19.3 Motivating the Team
Salary	is	the	most	important	motivating	factor	for	any	employee.	But	it	is	not	the	only	motivating	
factor.	The	monetary	benefits,	that	is,	salary	and	other	incentives	fulfill	the	needs	his	or	her	of	
food,	shelter,	medicine,	entertainment,	and	retirement	security.	These	are	basic	needs	of	a	human	
being.	But	meeting	these	needs	alone	cannot	satisfy	a	human	being.	He	looks	for	something	more.	
Once	the	basic	needs	are	fulfilled,	he	is	driven	by	a	higher	level	of	need.	And	this	need	has	to	do	
with	recognition	in	society.	In	the	software	 industry,	salaries	of	professionals	are	very	high.	So	
they	can	easily	fulfill	their	basic	needs	from	the	high	salary	they	get	from	their	organizations.	It	is	
observed	that	attrition	rates	at	software service	companies	are	much	higher	than	that	at	product	
development	companies.	At	software	service	companies,	professionals	are	forced	to	do	monoto-
nous	tasks	compared	to	the	tasks	at	product	development	companies	where	any	professional’s	job	

Internal customer IT department

Product delivery

Supplier 1

Project 1 Project 2 Project 1 Project 2 Project 1 Project 2

Supplier 2 Internal team

RequirementsRequirements

ProductsProducts

Figure 19.7 Organization structure for internal IT department with outsourced part of project
while another part of the project is done by internal team.

276  ◾  Software Project Management: A Process-Driven Approach

content	 requires	more	 creativity.	Professionals	 at	 these	organizations	 feel	 a	 sense	of	 fulfillment	
because	they	are	allowed	to	use	their	creativity.	In	turn,	the	organization	recognizes	this	fact	and	
appreciates	their	efforts.	In	comparing	salaries	at	these	two	places,	there	is	no	difference.	So	it	is	
not	the	salary	that	determines	attrition	rates.

Project	managers	must	understand	the	needs	of	 the	professionals	working	on	their	proj-
ect	 teams	and	find	ways	 to	 fulfill	 them.	Only	then	they	will	be	able	 to	motivate	 their	 team	
	members	[11].

19.4 Team Effectiveness
When	 people	 work	 in	 a	 team	 environment,	 it	 becomes	 difficult	 to	 assess	 who	 has	 done	 good	
work	and	who	has	not.	After	all,	based	on	the	performance	of	individual	team	members,	their	
career	growth	can	be	determined.	They	also	need	to	be	rewarded	for	their	work	based	on	their	
performance.	If	the	performance	of	a	team	member	is	not	satisfactory,	he	needs	to	be	counseled	
to	determine	what	has	caused	his	poor	performance	and	how	the	performance	can	be	improved	
in	future	projects.

Project	 managers	 use	 tools	 and	 techniques	 for	 determining	 the	 performance	 of	 their	 team	
members.	Analyzing	performance	data	also	helps	to	create	strategies	to	improve	team	effectiveness	
and	thus	increase	productivity	and	customer	satisfaction	[12].

19.4.1 Appraisals
Conducting	appraisals	 is	an	 integral	procedure	used	 to	evaluate	 the	performance	of	 individual	
team	members.	Appraisals	can	be	done	through	self-assessment,	management	assessment,	or	both.	
In	self-assessment,	a	blank	appraisal	form	is	given	to	each	team	member	and	he	is	asked	to	com-
plete	and	return	it	to	the	manager.	The	form	contains	many	objective	and	subjective	questions	and	
the	team	member	uses	his	own	conscience	to	answer	these	questions.	Some	of	these	questions	are	
about	the	work	he	has	done	for	the	assessment	period	(usually	yearly	or	half	yearly).	He	is	sup-
posed	to	write	about	his	achievements	and	failures.	In	other	part	of	the	form,	there	are	questions	
regarding	his	views	about	the	team	members,	the	manager,	and	the	organization	environment	that	
affect	his	productivity.	There	may	be	some	other	sections	in	the	appraisal	form	as	well.	Once	the	
manager	receives	the	completed	form,	he	assesses	it	and	later	calls	each	member	to	discuss	what	
he	has	written.	He	also	compares	his	own	assessment	about	the	team	member.	Finally,	he	rates	the	
performance	of	the	team	members	based	on	these	assessments.	This	form	of	performance	assess-
ment	is	a	good	technique	as	the	team	members	feel	that	they	are	involved	in	the	whole	process	and	
it	is	fair	to	them.

The	management	appraisal	assessment	process	is	more	autocratic	in	nature	as	the	team	mem-
ber	does	not	have	any	say	in	the	whole	process.	This	appraisal	assessment	process	is	slowly	falling	
out	of	favor	and	is	being	replaced	with	the	self-assessment	method.

19.4.2 Performance Measurement
For	measuring	performance,	a	good	time-tested	mechanism	should	used	to	easily	 identify	 top,	
average,	and	poor	performers.	The	poor	performers	should	be	interviewed	to	identify	what	has	
caused	their	poor	performance.	After	this	interview,	they	should	be	given	a	trial	period	to	improve	
their	performance.	After	the	trial	period,	they should	be	again	evaluated.	If	they	perform	well,	

Team Management  ◾  277

they	can	continue	as	a	valuable	resource	for	the	organization.	If	they	do	not	improve	their	perfor-
mance,	they	should	be	placed	in	the	list	of	people	who	should	undergo	a	check	as	to	whether	they	
should	continue	with	the	organization	or	given	a	pink	slip.

Generally,	immediately	firing	employees	from	their	job	is	not	the	right	solution.	They	should	
be	given	an	opportunity	to	improve	their	performance.	For	some	personal	or	organizational	issues,	
they	might	not	have	performed	well	in	the	first	instance.	So	in	the	second	instance,	they	should	
be	provided	with	an	environment	devoid	of	factors	that	might	have	caused	the	poor	performance.	
The	employee	himself	should	be	given	an	opportunity	to	list	these	factors.

19.4.3 Job Allocation
In	manufacturing,	production	targets	are	set	months	in	advance	[14,15].	Production	schedules	are	
chalked	out	monthly	or	weekly.	Each	processing	center	is	allotted	a	target	production.	Employees	
work	toward	achieving	these	targets.	Some	incentives	in	the	form	of	bonuses	are	given	on		achieving	
these	targets.	Employees	also	receive	their	salaries	and	other	benefits.	Most	of	the	people	working	
in	these	manufacturing	environments	are	not	ambitious.	They	are	content	with	their	jobs	and	lives.	
Most	of	them	work	with	the	same	employer	for	their	entire	career.	In	such	environments,	most	of	
the	things	are	pretty	stable.	The	only	thing	that	is	dynamic	is	a	continuous	improvement	in	pro-
ductivity	and	product	quality.	Improvement	in	productivity	is	achieved	by	introducing	automation,	
reduction	in	production	cycle	times,	etc.

However,	the	software	industry	boldly	contrasts	with	the	scenario	found	in	the	manufacturing	
industry.	Here,	people	are	highly	skilled	and	are	in	high	demand	in	the	market	for	their	skills.	If	
they	are	not	satisfied	with	their	assignments,	they	do	not	think	twice	to	quit	their	job	and	accept	
an	offer	from	another	company.	So	software	project	managers	are	always	under	pressure	to	appease	
their	staff	with	their	demands	whether	reasonable	or	not.

To	diffuse	this	kind	of	situation,	project	managers	try	to	find	ways	to	keep	the	software	pro-
fessionals	in	their	teams	satisfied.	One	of	the	good	measures	to	do	that	is	to	provide	them	with	
some	challenging	assignments.	Similarly	job	rotation	also	helps	especially	when	it	comes	to	onsite	
assignments.

So	while	doing	job	allocation,	the	project	manager	should	keep	these	things	in	mind.

19.5 Training
The	software	 industry	 is	 characterized	by	a	 constantly	 changing	 technology.	Change	 in	 tech-
nology	calls	 for	new	 technical	 skills.	Software	professionals	need	 to	keep	 learning	new	 skills.	
Otherwise	they	will	be	in	danger	of	possessing	obsolete	skills,	which	may	no	longer	be	useful	
for	any	projects.	Whenever	a	need	or	an	opportunity	arises	 for	 training,	 the	project	manager	
should	tap	it	and	send	his	team	members	for	the	training.	He	also	needs	to	assessment	which	
team	member	needs	training	based	on	their	assignments.	He	should	make	a	training	schedule	
accordingly	[15].

19.6 Nurturing
Any	project	team	consists	of	experienced	as	well	as	inexperienced	team	members	[16].	Inexperienced	
team	members	need	to	be	nurtured	so	that	they	become	productive	and	do	their	assignments.	The	
project	manager	plays	a	vital	role	in	nurturing	the	potential	talent	in	his	staff.	He	should	involve	

278  ◾  Software Project Management: A Process-Driven Approach

senior	team	members	in	this	effort.	The	project	manager	should	assign	small	project	tasks	to	these	
inexperienced	team	members	and	ask	 senior	 team	members	 to	help	 them	complete	 the	assign-
ments.	With	the	help	of	experienced	team	members,	the	juniors	learn	how	to	do	these	assignments	
in	the	right	way.

In	offshore	projects,	junior	team	members	need	to	learn	to	work	with	people	from	different	
cultures.	They	need	to	learn	how	to	communicate	effectively	with	these	people.	For	this,	the	proj-
ect	manager	should	give	them	training	for	learning	effective	communication	methods.

19.7 Conflict Management
Sometimes,	some	team	members	indulge	in	office	politics	or	try	to	offload	their	assignment	on	
others	or	find	ways	to	avoid	or	delay	their	assignments.	Sometimes	due	to	some	personal	reasons,	
two	or	more	team	members	may	develop	some	conflict	with	each	other.	All	these	scenarios	affect	
the	project	badly,	and	in	the	best	interest	of	the	project,	the	project	manager	should	recognize	the	
early	signs	of	trouble	and	take	some	proactive	action.	If	that	action	does	not	help	and	the	conflict	
does	not	get	resolved,	the	project	will	be	in	deep	trouble.	The	project	manager	must	have	good	
conflict	resolution	skills.	He	should	consult	the	parties	involved	in	the	conflict	and	try	to	find	out	
the	cause	of	it.	Once	the	cause	is	identified	correctly,	then	a	proper	solution	should	be	found	that	
will	be	acceptable	to	both	parties	[17].

19.8 Knowledge Management
I	have	worked	with	a	textile	company	that	developed	its	own	in-house	ERP	system.	The	com-
pany	had	 its	 own	 IT	department	 and	 a	development	 team.	The	 in-house-built	ERP	 system	
was	being	used	by	all	departments,	marketing,	sales,	production,	finance,	and	accounting.	It	
was	working	fine	for	them	over	the	years.	The	development	team	was	maintaining	the	opera-
tions	of	the	deployed	ERP	system	as	well.	They	also	kept	modifying	this	system	and	adding	
new	functionality	as	per	end-user	requests.	But	slowly	team	members	from	the	development	
team	started	leaving	the	organization.	All	of	them	were	finding	lucrative	job	offers	from	fast-
expanding	 software	 service	 companies.	 The	 textile	 company	 paid	 very	 low	 salaries	 to	 their	
IT	staff	and	the	management	was	not	willing	to	increase	their	salary	on	a	par	with	software	
service	companies.	They	feared	that	this	would	cause	an	imbalance	in	salary	between	IT	staff	
and	people	in	other	departments.	The	result	was	that	most	of	the	original	members	of	devel-
opment	 team	who	had	built	 the	 system	 left	 the	organization.	This	 created	a	big	vacuum	 in	
the	IT	department.	The	IT	department	was	no	longer	able	to	support	the	ERP	system	as	the	
creators	of	the	system	had	left	and	with	them	the	knowledge	about	the	system	was	also	gone.	
Ultimately	the	company	decided	to	scrap	this	legacy	system	and	implement	a	standard	ERP	
system	from	a	software	vendor.

As	the	aforementioned	case	shows,	knowledge	acquired	over	the	years	is	very	important	for	
any	organization.	But	when	people	leave	the	organization,	all	the	acquired	knowledge	goes	out	of	
the	organization	with	them.	How	can	such	incidents	be	prevented?	One	good	solution	is	to	keep	
a	knowledge	repository	where	all	lessons	learned	in	the	projects,	documents	about	products	being	
used,	processes	being	followed,	issues	resolved,	project	specific	information,	etc.,	should	be	kept.	
But	the	most	important	consideration	here	is	that	old	and	not	updated	information	is	of	no	use.	

Team Management  ◾  279

All	information	in	the	repository	must	be	updated.	Whenever	a	product	is	updated	with	a	new	
version	or	patch,	documents	about	that	product	should	also	be	updated.	Process	changes	must	be	
documented	immediately	in	the	repository.	It	is	the	best	policy	to	keep	all	information	updated	
with	clear	history	of	changes	reflected.

With	a	good	and	well-maintained	knowledge	repository	in	place,	the	company	no	longer	needs	
to	worry	if	any	key	staff	decide	to	leave	the	organization.	The	knowledge	gained	during	their	ten-
ure	with	the	company	is	safely	kept	in	the	knowledge	repository.	Now	the	company	is	no	longer	
dependent	on	star	performers	of	the	company,	or	at	least	for	the	knowledge	they	have	acquired	
while	working	for	the	company.	However,	it	should	be	kept	in	mind	that	all	knowledge	is	not	only	
in	written	form.	A	large	percentage	of	knowledge	still	resides	in	the	minds	of	the	people,	but	at	
least	keeping	a	knowledge	repository	ensures	that	all	is	not	lost	when	somebody	leaves.

A	 knowledge	 repository	 also	 helps	 when	 statistical	 process	 control	 techniques	 or	 historical	
data–based	decisions	are	used.	For	instance,	effort	estimation	for	a	project	is	a	very	difficult	task.	
But	if	you	have	information	about	past	projects	in	the	repository,	then	effort	estimates	for	new	
projects	become	easy	using	the	information	from	old	projects.

In	a	nutshell,	we	can	say	that	knowledge	comes	from	people	working	in	the	organization,	and	
storing	and	keeping	this	valuable	information	in	a	repository	in	turn	becomes	extremely	impor-
tant	 for	 the	organization	 [18].	Any	organization	 should	develop	 its	knowledge	management	 in	
such	a	way	to	ensure	that	it	is	not	dependent	on	people	so	that	when	anybody	leaves	the	organiza-
tion,	it	does	not	affect	the	organization	much.

19.9 Communication Management
Proper	communication	in	software	projects	is	one	of	the	most	important	factors	that	cannot	be	
ignored	[19].	If	the	communication	is	unstructured	and	on	an	ad	hoc	basis,	it	will	lead	to	chaos.	
What	are	the	customer	requirements?	Where	are	they	kept?	What	is	meant	by	a	specific	require-
ment?	The	same	requirement	stated	in	one	document	may	mean	different	things	to	different	project	
team	members.	Specifications	mentioned	in	the	same	design	document	may	mean	different	things	
to	different	developers.	The	scale	of	chaos	will	be	exacerbated	further	if	many	distributed	teams	
located	at	geographically	distant	places	work	on	the	project.	Due	to	the	differences	in	culture	and	
language,	they	will	assume	different	meanings	for	things	mentioned	in	project	documents.	In	fact,	
it	may	become	a	free	for	all	environments	where	no	productive	work	may	be	possible.

So	it	is	very	important	that	all	project	team	members	speak	the	same	project	language,	which	
means	 that	 all	 project-related	 communication	 is	 done	 in	 a	 language	 that	 is	 understood	 by	 all	
the	 team	members	 of	 the	project.	The	 responsibility	 for	 setting	 the	 common	project	 language	
rests	with	the	project	manager.	All	specification	documents,	including	requirement	specifications,	
design	specifications,	coding	standard	specifications,	test	case	creation	specifications,	etc.,	should	
be	written	in	such	a	way	that	they	follow	a	specific	language	pattern	including	a	common	naming	
convention,	standard	document	templates,	etc.

Experienced	software	professionals	get	used	to	most	of	the	naming	conventions	and	mean-
ing	of	specifications	after	working	on	software	projects.	But	inexperienced	team	members	may	
find	it	a	bit	difficult.	It	is	the	responsibility	of	the	project	manager	to	quickly	educate	new	staff	
in	 project	 language	 skills.	 These	 fresh	 team	 members	 should	 be	 constantly	 helped	 by	 senior	
staff.	After	working	on	two	to	three	projects,	the	inexperienced	professionals	will	get	used	to	
the	project	language	used.

280  ◾  Software Project Management: A Process-Driven Approach

19.10 Case Study
In	our	continuing	case	study,	in	this	chapter,	we	will	see	how	people	management	is	exercised	at	
our	SaaS	vendor.	The	 in-house	 team	of	 the	 software	vendor	does	product	management,	 require-
ment	gathering,	requirement	analysis,	software	design,	software	development,	software	testing,	and	
software	maintenance.	There	are	three	database	administrators	(DBAs)	who	look	after	development,	
testing,	and	production	databases.	One	of	the	DBAs	is	an	 in-house	team	member	and	the	other	
two	are	from	the	partner	teams.	There	is	a	product	manager	who	is	responsible	for	all	the	product	
development/maintenance	activities	and	who	reports	to	the	chief	technology	officer	of	the	company.	
Then	there	is	a	global	project	manager	who	is	responsible	for	all	the	development	projects	whether	
customer	specific	or	new	product	version	development.	The	global	project	manager	is	also	responsible	
for	coordination	work	between	the	in-house	team	and	the	outsourced	teams.	Each	project	manager	
reports	to	the	global	project	manager.	There	is	a	technical	support	manager	who	looks	after	both	
software	testing	and	technical	support.	Under	his	control,	there	is	a	technical	support	lead	and	a	test	
lead.	The	test	lead	does	not	have	any	in-house	test	teams,	but	he	manages	test	teams	located	at	two	
offshore	locations.	The	technical	support	lead	has	three	members	on	his	in-house	team	and	rest	of	the	
team	is	located	at	the	two	offshore	locations.	There	are	five	business	analysts	who	travel	to	customer	
sites	to	gather	their	requirements.	These	requirements	are	then	developed	into	software	specifications	
and	put	in	a	software	requirement	specification	document	(SRS).	These	business	analysts	also	work	
with	the	marketing	team	and	help	in	demonstrating	the	software	product	to	potential	customers.	
Whenever	a	project	team	is	formed,	the	project	manager	decides	which	business	analyst	will	work	
on	the	project	after	a	consultation	with	the	global	project	manager.	The	project	manager	also	selects	
software	architects	for	the	project.	The	test	manager	assigns	testing	jobs	to	software	testers	after	a	
consultation	with	the	project	manager.	Once	a	product	version	is	implemented	and	goes	into	produc-
tion,	end	users	start	using	it.	If	any	defects	are	found	by	the	end	users,	it	will	be	fixed.	The	testing	
team	also	runs	sanity	test	scripts	daily	on	all	production	instances	of	the	application.	The	problems	
found	are	reported	to	the	support	team.	The	support	team	immediately	fixes	them.

As	things	stand,	all	four	teams	(two	in-house	teams	located	at	two	sites	and	two	outsourced	
teams	 located	 at	 offshore	 locations)	 are	 working	 seamlessly.	 They	 heavily	 use	 Internet-based	
	communication	tools	like	instant	messengers,	e-mail,	virtual	whiteboards,	desktop	sharing,	voice	
over	 IP	 (VOIP),	etc.,	 for	 fast	communication.	Team	members	also	 travel	 from	one	 location	 to	
another	once	in	a	while.	This	makes	for	a	good	camaraderie	among	different	teams.

Review Questions
19.1	 Define	software	project	team	management	in	your	own	words.
19.2	 What	motivation	techniques	are	available	to	motivate	the	project	team?
19.3	 Explain	in	brief	what	you	understand	by	knowledge	management.
19.4	 Explain	in	brief	what	you	understand	by	communication	management.
19.5	 Briefly	describe	a	software	project	organization	structure.
19.6	 How	can	you	evaluate	performance	of	project	team	members	effectively?

Recommended Readings
	 1.	 M.	Sliger,	S.	Broderick	(2008)	The Software Project Manager’s Bridge to Agility,	Addison-Wesley,	Upper	

Saddle	River,	NJ.
	 2.	 I.	Evans	(2004)	Achieving Software Quality through Teamwork,	Artech	House,	Norwood,	MA.

Team Management  ◾  281

	 3.	 C.	 Ravindranath	 Pandian	 (2004)	 Applied Software Risk Management: A Guide for Software Project
Managers,	CRC	Press,	Boca	Raton,	FL.

	 4.	 M.	D.	Lewin	(2004)	Better Software Project Management: A Primer for Success,	Wiley,	New	York.
	 5.	 R.	Fincham	(1994)	Expertise and Innovation: Information Technology Strategies in the Financial Software

Sector,	Oxford	University	Press,	Oxford,	U.K.
	 6.	 S.	Sahay,	B.	Nicholson,	S.	Krishna	(2003)	Global IT Outsourcing: Software Development across Borders,	

Cambridge	University	Press,	Cambridge,	U.K.
	 7.	 C.	G.	O’Regan	(2002)	A Practical Approach to Software Quality,	Springer,	Berlin,	Germany.
	 8.	 P.	 Morris,	 J.	 K.	 Pinto	 (2007)	 The Wiley Guide to Project Organization and Project Management

Competencies,	Wiley,	New	York.
	 9.	 M.	van	Genuchten	(1992)	Towards a Software Factory,	Springer,	Berlin,	Germany.
	 10.	 E.	Verzuh	(2003)	The Portable MBA in Project Management,	Wiley,	New	York.
	 11.	 R.	E.	Fairley	(2009)	Managing and Leading Software Projects,	Wiley,	New	York.
	 12.	 S.	L.	Mcshane	(2008)	Organizational Behavior,	McGraw-Hill	Education	(India)	Pvt	Ltd.,	New	Delhi,	

India.
	 13.	 K.	Heldman,	C.	M.	Baca,	P.	M.	Jansen	(2007)	PMP Project Management Professional Exam Study Guide,	

Wiley,	Hoboken,	NJ.
	 14.	 J.	E.	Tomayko,	O.	Hazzan	(2004)	Human Aspects of Software Engineering,	Firewall	Media,	New	Delhi,	

India.
	 15.	 M.	V.	Zelkowitz	(1995)	Advances in Computers,	Academic	Press,	New	York.
	 16.	 L.	Bass,	P.	Clements,	R.	Kazman	(2003)	Software Architecture in Practice,	Addison-Wesley,	Boston,	MA.
	 17.	 E.	G.	Carayannis,	Y.-H.	Kwak,	F.	T.	Anbari	(2005)	The Story of Managing Projects: An Interdisciplinary

Approach,	Praeger	Publishers,	Westport,	CT.
	 18.	 S.	Debowski	(2007)	Knowledge Management,	Wiley,	New	York.
	 19.	 J.	 Phillips	 (2003)	 PMP Project Management Professional Study Guide,	 McGraw-Hill	 Professional,	

New York.

283

Chapter 20

Customer Management

In.the.previous.chapter,.we.learned

	◾ What	is	team	management	on	software	projects?
	◾ How	does	one	motivate	the	team?
	◾ What	are	the	various	organization	structures	for	software	projects?
	◾ How	does	one	foster	good	communication	planning	within	the	project?
	◾ How	might	one	plan	for	good	knowledge	management?

In.this.chapter,.we.will.learn

	◾ What	is	customer	management	on	software	projects?
	◾ What	are	typical	customer	expectations	from	software	projects?
	◾ How	can	a	good	rapport	be	established	with	customers?
	◾ Why	should	one	avoid	temptations	for	gold	plating	on	software	projects?
	◾ How	can	one	negotiate	well	with	customers	on	software	projects?

20.1 Introduction
Unlike	 in	 other	 industries,	 close	 contact	 with	 the	 customer	 in	 the	 software	 industry	 is	 very	
important.	 In	other	 industries,	 the	 specifications	 for	 the	project	 supplied	by	 the	customer	are	
more	often	than	not	very	specific	and	do	not	need	much	clarification	or	elaboration.	It	 is	not	
so	with	software	projects.	Software	requirement	specifications	are	never	specific	or	elaborate	[1]	
(Figures	20.1	and	20.2).

That	 is	why	the	project	 team	needs	to	work	closely	with	the	customer,	whether	external	or	
internal,	to	get	their	software	requirements	right.	Getting	the	requirements	right	is	very	crucial	

284  ◾  Software Project Management: A Process-Driven Approach

to	building	the	software,	which	will	serve	the	customer	and	fulfill	their	needs.	One	of	the	biggest	
causes	of	most	of	 the	 failed	projects	 is	not	understanding	customer	 requirements	properly.	On	
the	extreme	end,	even	after	spending	a	lot	of	time	with	the	customer,	the	customer	is	not	able	to	
communicate	their	true	requirements	to	the	project	team.	The	basic	reason	lies	with	the	miscom-
munication	between	the	two	parties.	End	users	understand	the	business	aspect	while	the	software	
development	project	team	understands	technology.	So	there	is	no	common	ground	between	the	
two	sides.	To	overcome	this	situation,	project	teams	should	hire	good	functional	consultants	who	
understand	the	business	aspects	and	how	software	can	meet	those	business	requirements.	These	
functional	consultants	are	people	who	have	worked	in	the	same	industry	as	a	 line	manager	for	
which	 the	 software	 is	 to	 be	developed.	They	 should	 also	have	undergone	 training	on	 software	
systems	that	are	used	to	solve	business	needs	of	that	particular	industry	to	understand	both	sides	
of	the	coin.

Still	customer	management	is	an	area	that	needs	a	lot	of	effort	from	the	project	team	to	ensure	
that	they	are	able	to	satisfy	the	customer.	One	major	area	where	the	project	team	needs	to	do	a	lot	
of	rework	is	the	requirement	change	request	that	the	customer	places	with	the	project	team.	The	
project	team	needs	to	incorporate	these	changes	in	their	software	design	so	that	the	software	meets	
customer	 expectations.	There	 are	 also	 issues	 related	 to	wrong	or	misplaced	expectations	of	 the	
customer	regarding	what	the	software	can	do	or	cannot	do.	Similarly,	customers	sometimes	falsely	

Customer

I want 20 buildings to be made at
my site in 2 years. Each building

should be 30 stories high, and
each should have office space of

2,000,000 ft2.

Figure 20.1 Customer requirements in a construction industry.

Customer

I may want x number of
features that will be used by

y number of people. �is
system should be made by z

month of ab year.

Figure 20.2 Customer requirements in a software industry.

Customer Management  ◾  285

expect	to	get	the	software	quicker	than	agreed	by	the	project	team.	They	wonder	why	developing	
that	particular	software	is	taking	so	much	time.

The	bottom	line	is	that	the	customers	(stakeholders)	are	spending	money	and	time	for	the	
project.	This	 investment	must	be	 justified;	otherwise	 there	 is	no	point	 in	continuing	with	the	
project	[2].

20.2 Customer Expectation Management
Software	development	is	a	costly	and	time-consuming	task	[3].	It	uses	costly	resources	(software	
professionals	are	highly	paid	because	of	the	high	demand	of	software	skills	in	the	market)	and	is	
often	a	laborious	task.	Software	development	is	not	just	software	coding	(as	is	imagined	by	many	
novice	customers).	 It	 involves	developing	and	managing	 requirements,	making	 sound	 software	
design,	analyzing	the	design,	writing	source	code,	testing,	and	making	user	manuals	and	other	
documents.	On	top	of	these	activities,	the	work	products	are	to	be	verified	and	validated	at	each	
step	to	ensure	that	the	software	product	does	not	contain	many	defects.	If	it	takes	one	full	workday	
to	write	software	code,	it	takes	four	more	days	to	do	all	these	other	activities.	If	these	activities	are	
not	performed	well	while	developing	the	software	product,	the	software	product	may	not	be	of	
much	use	(due	to	bad	quality).	It	will	not	possess	reliability,	security,	usability,	maintainability	and	
other	characteristics	which	are	so	essential	for	the	software	product	to	be	used	effectively.

If	 the	 software	 product	 does	 not	 possess	 these	 qualities,	 we	 will	 end	 with	 a	 software	
product	that

	◾ Will	be	very	difficult	to	use	as	it	may	crash,	or	a	defect	may	surface	most	of	the	time,	pre-
venting	the	end	user	from	using	it	in	his	day-to-day	business	work

	◾ Will	be	prone	to	hacks	and	loss/theft	of	critical	business	data
	◾ Will	be	 very	 time	 consuming,	 as	doing	 even	 a	 small	 task	may	 require	 a	 long	navigation	

through	the	software	product
	◾ Will	be	very	difficult	to	work	with	when	a	new	business	need	arises	and	is	to	be	incorporated	

in	the	product
	◾ May	need	a	high	level	of	costly	support	from	the	support	team	for	operating	it

For	all	of	these	reasons,	it	makes	sense	to	make	a	sound	software	product	instead	of	dishing	
out	a	half-baked	one.

One	more	aspect	about	customer	expectations	is	about	delivering	goods	with	something	extra	
for	free.	Many	project	managers	believe	in	the	saying	“commit	less	and	deliver	more!”	Is	this	saying	
true?	Let	us	discuss	this.	If	you	have	delivered	extras	apart	from	what	you	had	committed	to	the	
customer,	the	following	things	may	happen:

	◾ The	customer	may	believe	that	what	he	expected	could	have	been	delivered	for	less	money.
	◾ The	customer	may	believe	that	what	he	expected	could	have	been	delivered	in	less	time.
	◾ The	customer	may	believe	that	the	number	of	errors	in	the	software	product	could	have	been	

less	if	the	time	spent	on	creating	those	extra	features	could	have	been	utilized	in	testing	instead.
	◾ You	believe	the	extras	are	good	for	the	customer,	but	the	customer	may	think	otherwise.
	◾ The	next	time	you	send	an	estimate	for	the	next	project,	the	customer	may	think	it	is	over-

estimated	because	the	estimate	may	include	time	you	will	spend	on	working	on	those	extras	
(Figure	20.3).

286  ◾  Software Project Management: A Process-Driven Approach

If	you	complete	the	project	before	the	due	date	and	deliver	it	to	the	customer	(whether	due	to	
overestimate	or	overtime	or	for	some	other	reason),	then

	◾ You	 may	 antagonize	 other	 project	 managers	 working	 on	 other	 projects	 because	 they	 are	
strapped	of	cash,	whereas	you	are	wasting	cash	and	may	have	to	return	unused	budget	to	
the	customer.

	◾ Next	time	you	send	an	estimate	for	the	next	project,	the	customer	may	think	it	is	overesti-
mated	even	if	that	is	not	the	case.

So	it	makes	sense	to	deliver	only	what	has	been	committed	and	to	stick	to	the	due	date.

20.3 Negotiation Management
During	project	execution,	many	situations	arise	when	the	project	manager	has	to	choose	among	
many	 less-than-desired	choices.	Sometimes,	due	 to	a	 lot	of	 rework,	 the	project	 schedule	gets	
delayed	and	the	project	manager	is	forced	to	discuss	options	with	the	customer.	At	some	other	
times,	some	technology	issue	arises,	which	forces	the	project	manager	to	make	some	alterna-
tive	choices.	In	all	of	those	situations,	the	project	manager	needs	to	explain	convincingly	to	the	
customer	what	the	choices	are	and	the	benefits	and	drawbacks	of	opting	for	those	choices.	If	the	
project	manager	is	convinced	about	a	particular	choice,	he	should	try	to	make	the	best	bargain	
with	the	customer	[4].

Sometimes,	the	customer	may	have	a	false	notion	about	a	particular	feature	and	be	bent	on	
getting	it	implemented.	But	the	project	manager	knows	that	it	is	not	appropriate	for	the	software	
and	that	it	is	not	feasible	in	the	given	budget	and	time	frame.	In	such	a	case,	he	should	be	able	to	
convince	the	customer	why	such	an	idea	is	not	feasible.	Similarly,	when	forced	to	cut	some	features	
short	because	of	schedule	constraints,	the	project	manager	should	be	able	to	convince	the	customer.

Sometimes,	during	the	course	of	the	project,	the	project	manager	may	see	the	requirement	of	
incorporating	a	feature	that	was	originally	not	planned.	In	such	a	situation,	the	project	manager	
can	do	some	hard	bargaining	with	the	customer	to	get	that	feature	incorporated	in	the	project	
plan	(Figure	20.4).

In	product	development	for	a	software	vendor,	the	project	team	often	works	with	a	top-down	
project	plan.	They	have	 a	deadline	 ahead	of	 the	project	 and	 they	need	 to	develop	new	 features.	
In	such	cases,	the	project	manager	needs	to	do	a	lot	of	hard	talking	in	order	to	convince	the	top	
management	to	drop	features	from	the	project	plan	that	are	not	feasible	in	the	given	time	frame.	

Overblown
budget

More than
required

time

Drawbacks of
gold plating

Less than
desired
quality

Bad precedent
for future
projects

Useless for
customer

Figure 20.3 Drawbacks of gold plating.

Customer Management  ◾  287

He	needs	 to	 convince	 the	 top	management	 about	quality	 issues	 if	 the	project	 team	 is	not	 given	
adequate	testing	time	on	the	project.

In	short,	the	project	manager	has	to	do	much	negotiation	during	the	project	with	the	customer	
and	so	needs	good	negotiation	skills	to	be	successful.

20.4 Rapport Building Management
No	matter	how	hard	the	project	team	has	worked,	customers	may	not	be	impressed	if	this	fact	is	
not	communicated	to	them	in	a	proper	manner	[5].	If	the	project	manager	is	of	the	type	who	does	
not	indulge	in	rapport	building,	the	project	team	may	lose	an	important	leveraging	handle—that	
of	building	a	good	rapport	with	the	customer!	Every	human	being	expects	some	appreciation	for	
his	honest	and	hard	work.	Appreciation	also	happens	to	be	one	of	the	best	motivating	factors.	If	
the	appreciation	comes	from	the	customer,	there	is	no	match	for	it.	It	is	one	of	the	best	rewards	
any	project	team	can	get.

From	the	onset,	 the	project	manager	must	 start	gelling	with	 the	members	of	 the	customer	
team.	He	should	share	light	moments	with	them.	He	should	share	his	honest	concerns	about	the	
project	and	some	of	the	hardships	his	team	may	face	given	the	budget,	costs,	quality	expectation,	
and	the	technical	and	functional	difficulties	that	may	arise	on	the	project.	Good	rapport	will	also	
help	 the	project	 team	get	more	 information	 from	the	customer	about	 the	project	 than	what	 is	
mentioned	in	the	contract	and	the	project	documents.	This	will	help	them	in	delivering	the	goods	
with	more	customer	satisfaction	than	what	could	be	possible	with	just	those	documents.

20.5 Reporting Management
Customers	are	always	looking	for	timely	status	reports.	In	these	reports,	they	look	for	performance	
indicators	and	see	if	all	things	are	going	in	the	right	direction	[6].	If	something	in	the	report	looks	
to	be	going	in	the	wrong	direction,	a	customer	will	look	for	further	details	as	to	what	is	the	root	
cause	for	this	problem.	The	project	manager	should	also	attach	explanation	for	any	deviations	and	
should	indicate	the	course	of	action	to	rectify	the	deviation.	The	customer	will	be	more	than	happy	
to	see	this	proactive	approach.

Project	managers	use	project	reporting	tools	to	create	good	project	status	reports.	Some	of	the	
reporting	techniques	include	Gantt	charts,	earned	value	management,	etc.	They	also	incorporate	
proper	milestones	 in	 their	project	planning	 so	 that	 status	 reports	 can	be	 sent	whenever	 these	
milestones	are	achieved.

Quality
issues

Support
costs

Negotiation
points

Unstable
product

Unplanned
feature

addition

Not meeting
deadline

Figure 20.4 Negotiating factors in top-down software product development projects.

288  ◾  Software Project Management: A Process-Driven Approach

20.6 Return on Investment
When	any	project	is	proposed,	the	stakeholders	try	to	find	out	how	it	will	benefit	their	orga-
nization	and	what	will	be	the	costs	incurred	[7].	From	these	figures,	they	try	to	find	out	what	
will	be	the	return	they	will	get	on	the	investment	they	will	make	in	terms	of	expenses	they	
will	incur	on	the	project.	For	instance,	a	large	law	firm	may	decide	to	have	a	software	product	
that	 will	 manage	 their	 customer	 appointments	 and	 billing.	 Currently,	 these	 functions	 are	
done	manually.	Suppose	due	to	manual	appointments,	the	law	firm	has	estimated	that	they	
are	 losing	approximately	500	h	of	 time	of	 their	 lawyers	 in	the	 form	of	waiting	for	appoint-
ments,	unutilized	time,	or	due	to	wrong	appointments	per	month.	If,	on	average,	each	lawyer	
bills	$200	per	hour,	the	law	firm	stands	to	lose	$100,000	per	month.	The	law	firm	may	thus	
decide	to	reduce	this	wastage	of	waiting	time	and	to	find	a	software	solution.	They	invited	
some	software	vendors	and	software	services	vendors	to	find	out	an	appropriate	solution	for	
their	problem.	Quotations	of	appointment	and	billing	software	systems	from	software	ven-
dors	were	 estimated	 to	be	 in	 the	 range	 of	 $200,000	–	$300,000.	The	 implementation	 time	
(including	customization	and	development	of	new	interfaces)	was	quoted	in	the	range	of	1–3	
months.	The	law	firm	would	thus	hire	a	consultant	to	compare,	evaluate,	and	finally	suggest	
the	best	solution	among	those	presented	(Figure	20.5).

The	consultant	would	study	all	the	solutions	and	make	a	report.	He	would	then	present	the	
report	to	the	law	firm	pointing	out	the	costs,	time,	feature	benefits,	and	other	considerations	to	the	
management.	After	much	deliberation,	the	law	firm	may	decide	to	choose	a	solution	that	would	cost	
them	$350,000	(including	software	licenses,	implementation,	and	customization)	and	that	would	
be	implemented	in	3	months	time.	The	most	important	consideration	for	the	management	would	
be	to	see	how	much	time	could	be	saved	from	being	wasted.	They	find	that	this	solution	would	
reduce	wastage	of	time	to	the	tune	of	50	h	per	month	from	the	current	500	h.	So,	per	calculations	
the	ROI	came	at	good	300%	per	annum	(per	month	saving	of	$100,000	–	$200	×	50	=	$90,000.	
Per	 annum	 saving	of	12	×	90,000	=	$1,080,000.	Expenses	=	$350,000.	ROI	=	$1,090,000	×	
100/$350,000	=	308%).

20.7 Bottom Line
Value	proposition	for	the	project	is	the	bottom	line	on	which	any	customer	sanctions	the	project.	
If	the	customer	does	not	see	a	good	value	proposition,	he	will	not	sanction	the	project	in	the	first	
place.	If	the	project	is	sanctioned	and	work	is	started	on	the	project	but	priorities	change	midway,	

Licensing
cost

Support
cost

Comparison and
selection factors

Customization
cost

Suitability of
features

Implementation
time frame

Figure 20.5 Software solution comparison and selection factors.

Customer Management  ◾  289

the	project	may	be	 abandoned.	The	project	 can	also	be	 abandoned	 if	 the	project	 team	 fails	 to	
deliver	the	values	that	the	customer	is	looking	for.	If	the	project	costs	rise	more	than	anticipated	
by	the	customer,	the	project	will	be	in	danger	of	getting	scrapped.	Similar	is	the	case	with	project	
delays.	The	project	manager	must	stand	on	his	toes	to	do	everything	to	save	the	project	if	these	
things	occur.	No	matter	what	kinds	of	maladies	are	being	faced	by	the	project	manager	on	the	
project,	the	top	priority	for	him	should	always	be	to	make	the	customer	happy.

20.8 Case Study
We	continue	our	case	study	about	the	mid-market	software	vendor	here.	The	vendor	has	some	of	
the	largest	retailers,	manufacturers,	and	distributors	in	the	United	States,	the	United	Kingdom,	
Western	Europe,	and	Russia	as	 its	customers.	They	also	have	some	large	customers	 in	the	gov-
ernment	 sector.	They	partner	with	 logistics	 service	providers	 to	 create	hubs	 and	 infrastructure	
through	which	they	service	their	customers.	This	strategy	pays	off	well	for	them.	While	logistics	
service	providers	provide	physical	infrastructure	to	move	goods	for	the	customers,	the	vendor	pro-
vides	its	cutting-edge	software	solution	to	help	provide	visibility	into	movement	of	goods	from	one	
warehouse	to	another.	This	visibility	is	very	crucial	for	customers	as	they	plan	to	replenish	their	
warehouses	and	stores	using	this	information.	All	the	partners	in	the	supply	chain	(manufacturers,	
distributors,	logistics	service	providers,	and	retailers)	will	get	to	know	in	advance	when	a	replenish-
ment	will	be	fulfilled,	when	a	truck	will	be	needed	at	a	warehouse	for	loading/unloading,	what	
merchandize	will	be	sought	by	customers,	the	status	of	a	truck	in	transit,	the	freight	charges	for	
goods	movements,	etc.	Indeed	without	all	this	information,	the	customers	will	find	it	difficult	to	
do	their	everyday	business.

When	a	new	customer	signs	for	implementation	of	the	system,	a	project	team	is	formed.	
The	business	analyst	visits	 the	customer	site	and	gathers	customer	requirements.	He	makes	
the	customer	requirement	specifications	and	puts	them	in	the	SRS	document.	Generally,	the	
implementation	cycle	is	2–4	months	long.	Most	of	the	features	sought	by	the	customer	are	
already	present	in	the	software	product.	Some	minor	customization	may	be	needed	in	these	
features	per	requirements.	Sometimes,	the	customer	requirement	may	also	turn	out	to	be	a	
new	feature	that	is	not	present	in	the	existing	product.	In	such	cases,	this	feature	is	to	be	made	
for	the	customer.	Once	all	these	issues	have	been	chalked	out,	the	software	architect	designs	
the	software.	The	development	team	then	makes	the	required	new	features	or	customizes	the	
existing	features.	All	along,	the	testing	team	reviews	the	design,	SRS,	and	construction	for	
defects.	Any	defects	 found	are	fixed.	Finally,	 the	 system	 is	 implemented.	Once	 the	 system	
goes	 up,	 the	 end	 users	 start	 using	 the	 application.	 Any	 defects	 found	 are	 fixed	 easily	 and	
quickly	or	 a	walk	 around	 is	provided	 to	users	 for	 those	defects	 in	 cases	when	fixing	 those	
defects	is	not	possible.

The	vendor	finds	one	 area	of	 concern	 from	customers.	 It	deals	with	 concern	of	 security	of	
business	transaction	data.	Since	the	application	is	a	SaaS	application,	the	vendor	hosts	the	applica-
tion	for	the	customer.	Thus,	the	vendor	has	access	to	business	transaction	data	of	its	customers.	
Customers	thus	fear	that	their	data	can	be	stolen	or	misused	by	the	software	vendor	or	its	employ-
ees.	To	mitigate	this	concern,	the	vendor	signs	a	confidentiality	agreement	with	its	customers.	The	
terms	of	the	contract	are	such	that	if	any	loss	or	theft	of	data	happens,	the	vendor	is	fully	respon-
sible	for	it	and	the	customer	can	sue	the	vendor	for	breach	of	trust.	This	is	the	single-most	concern	
almost	all	new	customers	face.

290  ◾  Software Project Management: A Process-Driven Approach

Review Questions
20.1	 How	can	you	ensure	that	customer	expectations	are	met	by	your	project	team?
20.2	 Why	should	the	project	manager	have	good	negotiation	skills?
20.3	 What	should	a	project	manager	do	in	case	there	are	deviations	in	project	execution?
20.4	 Why	is	rapport	building	with	the	customer	important?

Recommended Readings
	 1.	 D.	 Leffingwell,	 D.	 Widrig	 (2003)	 Managing Software Requirements: A Use Case Approach,	 Addison	

Wesley,	Boston,	MA.
	 2.	K.	F.	Cross,	J.	J.	Feather,	R.	L.	Lynch	(1994)	Corporate Renaissance: The Art of Reengineering,	Wiley,	

New	York.
	 3.	 B.	 Barkley,	 J.	 H.	 Saylor	 (2001)	 Customer-Driven Project Management: Building Quality into Project

Process,	McGraw-Hill	Professional,	New	York.
	 4.	G.	Pitagorsky	(2007)	The Zen Approach to Project Management,	International	Institute	of	Learning,	

New	York.
	 5.	 R.	Lethbridge	(2004)	Object-Oriented Software Engineering,	Tata	McGraw-Hill,	New	Delhi,	India.
	 6.	 R.	K.	Wysocki	(2006)	Effective Software Project Management,	Wiley,	New	York.
	 7.	 K.	El	Emam	(2005)	The ROI from Software Quality,	CRC	Press,	Boca	Raton,	FL.

291

Chapter 21

Supplier Management

In.the.previous.chapter,.we.learned

	◾ What	is	customer	management	on	software	projects?
	◾ What	are	typical	customer	expectations	from	software	projects?
	◾ How	can	a	good	rapport	be	established	with	customers?
	◾ Why	should	one	avoid	temptations	for	gold	plating	on	software	projects?
	◾ How	can	one	negotiate	well	with	customers	on	software	projects?

In.this.chapter,.we.will.learn

	◾ What	is	supplier	management	on	software	projects?
	◾ What	are	the	typical	outsourcing	arrangements	made	for	software	projects?
	◾ How	should	one	manage	suppliers	on	software	projects?
	◾ What	are	some	of	the	organization	structures	of	large	software	service	suppliers?
	◾ How	can	suppliers	effectively	manage	contracts?

21.1 Introduction
Software	 projects	 are	 characterized	 by	 labor-intensive	 processes	 like	 software	 construction,	
	software	maintenance,	and	software	testing.	They	are	also	characterized	by	high	levels	of	software	
skills.	Due	to	the	high	level	of	skills	required,	software	professionals	are	costly.	For	any	organiza-
tion,	keeping	these	highly	costly	resources	idle	after	completion	of	a	project	is	not	a	viable	option.	
This	has	 led	 to	 the	proliferation	of	 contracting	 companies	 that	 keep	 software	professionals	 on	
their	payroll	and	contract	them	to	customers	whenever	they	have	any	software	project	coming	up.	
Thus,	a	large	number	of	software	professionals	have	become	contractors	who	work	with	different	

292  ◾  Software Project Management: A Process-Driven Approach

customers	on	different	projects	depending	on	the	availability	of	work.	This	arrangement	worked	
fine	until	 some	smart	entrepreneurs	discovered	the	benefits	of	outsourcing	software	projects	 to	
low-cost	countries	like	India.	Thus,	a	new	form	of	outsourcing	emerged,	which	is	known	as	off-
shore	outsourcing.	Some	of	the	large	software	service	companies	bagged	projects	from	customers	
and	began	to	execute	them	using	their	development	centers	in	low-cost	countries,	thus	reducing	
the	development	costs.	This	phenomenon	also	came	in	handy	because	customers	could	hire	large	
teams	and	execute	the	projects	faster,	thus	collapsing	the	project	schedule.	This	helped	them	to	
go	to	market	fast	and	tap	the	market	opportunity	quickly,	providing	them	with	a	distinct	market	
edge	[1]	(Figure	21.1).

This	 kind	 of	 new	 arrangement	 necessitated	 good	 strategy	 to	 control	 these	 offshore	 service	
providers.	Over	a	period	of	time,	supplier	management	techniques	matured	and	customers	started	
using	them	effectively.

There	are	indeed	various	challenges	when	software	services	of	offshore	suppliers	are	obtained.	
Nevertheless,	the	benefits	far	exceed	these	challenges	and	hence	this	model	has	become	a	huge	
success.	To	avail	the	benefits,	however,	one	must	understand	the	process	of	evaluating,	selecting,	
and	working	with	suppliers.

21.2 Supplier Search Management
Software	service	suppliers	come	in	many	shapes	and	sizes	[2].	There	are	some	large	service	provid-
ers	who	operate	successfully	in	many	verticals.	On	the	other	hand,	there	are	many	small	service	
providers	who	work	in	niche	market	segments.	As	a	customer,	you	should	be	able	to	know	if	a	par-
ticular	service	provider	will	be	able	to	do	your	work.	You	should	know	about	the	services	offered	
and	about	the	provider’s	track	record.	Thorough	research	will	help	you	find	a	list	of	reliable	and	
potential	service	providers	who	can	do	your	work.

21.2.1 RFP and RFI
A	request	for	proposal	(RFP)	and	a	request	for	information	(RFI)	are	great	tools	to	evaluate	and	
compare	suppliers	[3].	An	RFI	is	usually	a	pre-RFP	stage	where	the	customer	asks	potential	suppliers	
to	send	information	about	what	they	do,	how	they	do	it,	and	if	given	a	chance	to	work	on	a	specific	
project,	how	they	will	go	about	it.	An	RFI	is	not	a	formal	invitation	by	a	customer	to	the	supplier	to	
bid	on	a	project.	RFPs,	on	the	other	hand,	are	part	of	a	bidding	process	for	a	project.	Thus,	RFIs	play	
a	role	in	evaluating	a	supplier,	whereas	RFPs	are	used	for	selecting	suppliers	(Figure	21.2).

In-house IT
team

Independent
IT contractors

Same location
service

providers

Offshore
location service

providers

Figure 21.1 Evolution of IT service providers.

Supplier Management  ◾  293

An	RFI	can	contain	a	lot	of	information,	but	a	basic	minimal	RFI	contains	information	about	
the	supplier’s	legal	status,	supplier’s	service	office	locations,	past	experience	on	projects,	customer	
references,	supplier’s	qualifications	and	certifications,	etc.	Project-specific	details	are	also	included	
but	are	not	required	or	not	expected	to	be	provided	in	detail	(Figure	21.3).

An	RFP,	on	the	other	hand,	must	contain	details	about	the	supplier	as	well	as	all	details	about	
the	proposed	project.	Project-specific	details	may	 include	pricing,	 tentative	 schedule,	 and	proj-
ect	methodologies	adopted.	The	customer	sends	the	RFP	questionnaire	to	all	potential	suppliers.	
Once	the	customer	receives	these	filled-in	RFP	responses,	each	response	is	evaluated.	The	ones	
which	do	not	meet	the	customer	selection	criteria	are	rejected.	The	selected	responses	are	com-
pared	to	each	other	and	finally	the	best	RFP	response	is	selected.

21.2.2 Supplier Qualifications
Supplier	qualifications	should	be	evaluated	thoroughly	[4].	It	is	necessary	to	ascertain	(a)	whether	
the	supplier	has	any	quality	standards	certifications	like	CMMI,	ISO,	etc.;	(b)	whether	the	sup-
plier	 has	 industry	 certifications,	 like	 the	 ones	 provided	 by	 Microsoft,	 Sun	 Microsystems,	 and	
Oracle,	etc.	for	the	company;	(c)	whether	the	supplier’s	employees	have	these	industry	certifica-
tions;	and	(d)	whether	the	supplier	workforce	is	equipped	with	basic	undergraduate-	or	graduate-
level	qualifications,	including	technical	degrees.

Supplier
legal status

RFI contents with
project details

Office
locations

Past
experience

Customer
references Certifications Qualifications

Figure 21.2 Contents of an RFI.

Supplier
legal status

RFP contents with
project details

Office
locations

Past
experience

Customer
references Certifications

Pricing Tentative
schedule

Development
model

Effort
estimate

Qualifications

Figure 21.3 Contents of an RFP.

294  ◾  Software Project Management: A Process-Driven Approach

21.2.3 Supplier Experience
Even	if	a	supplier	has	all	the	requisite	qualifications,	one	may	not	be	sure	if	they	can	deliver	what	
one	is	looking	for	[5].	The	supplier’s	past	experience	and	customer	references	are	good	measures	to	
know	if	they	can	deliver	the	goods	or	not.	For	instance,	suppose	you	want	to	build	a	supply-chain	
planning	solution	for	your	distribution	network	of	a	food	retail	chain	with	over	10,000	stores	in	
the	network.	What	you	should	look	for	in	such	an	instance	is	whether	the	service	provider	has	
built	a	software	solution	for	a	similar	industry	to	take	care	of	the	needs	of	a	similar-sized	business.	
If	the	supplier	insists	on	having	done	it	before	and	you	have	doubts	about	his	customer	references	
then	you	should	plan	on	a	site	visit	of	those	customers	and	cross-check	the	supplier’s	claims.	If	
the	claims	are	true	then	you	can	go	ahead	in	the	negotiation	for	the	contract	with	the	supplier.	
Otherwise,	it	is	better	to	look	further	and	find	another	supplier.

21.3 Supplier Agreement Management
If	the	supplier	has	never	worked	with	the	customer	in	the	past,	then	the	customer	is	not	aware	
of	how	good	the	supplier	is.	Even	though	the	supplier’s	qualifications,	certifications,	and	experi-
ence	help,	still	the	customer	should	not	take	any	chances.	An	elaborate	agreement	must	be	made	
with	the	supplier	that	will	be	legally	binding	and	commercially	viable	for	both	parties	[6].	The	
agreement	should	take	into	account	service-level	agreements,	penalties	for	poor	performance,	
rewards	for	excellent	performance,	and	need	for	revising	the	contract	in	future	depending	on	
changed	needs.

21.3.1 Short-Term Agreements
Short-term	agreements	are	made	for	small	jobs	that	are	mostly	one-time	affairs	[7].	In	such	cases,	
the	customer	is	not	looking	for	a	long-term	relationship	with	the	supplier.	The	customer’s	intentions	
will	be	to	find	a	supplier	who	can	do	the	job	cheaply.	To	protect	customer	interest,	a	clause	may	be	
included	to	receive	support	from	the	supplier	in	future	if	any	problems	are	faced	with	the	product.

Generally,	there	are	freelancers	in	the	market	who	undertake	these	short-term	contracts.	They	
take	the	contract,	do	it	quickly,	and	move	on	to	their	next	assignment.

21.3.2 Long-Term Agreements
Large	software	services	engagements	are	characterized	by	long-term	agreements	[8].	This	is	where	
most	of	the	software	services	providers	operate.	Some	of	the	large	engagements	are	multi-year	and	
multibillion	dollar	agreements.	No	customer	can	sign	a	deal	of	 such	magnitude	without	being	
fully	 satisfied	 with	 the	 supplier’s	 ability	 and	 past	 experience.	 These	 agreements	 have	 elaborate	
details	as	to	how	the	work	will	be	performed,	how	many	people	will	be	engaged,	detailed	scope	
definition	of	 the	 assignment,	 and	 legal	 clauses	 for	 any	 lapses	 from	 either	 party	when	 contract	
agreements	are	not	fulfilled.	Generally,	the	customer	opts	for	a	review	at	the	end	of	each	year	and	
revision	of	the	contract,	based	on	any	changes	in	his	needs.

These	contracts	are	written	or	reviewed	by	lawyers	and	are	signed	by	legal	counsel	from	each	
party	as	there	is	a	big	risk	involved.	The	supplier	prepares	detailed	project	plan	and	shares	it	with	
the	customer.	Top	managers	from	suppliers	are	involved	in	such	contracts	apart	from	the	project	
manager	who	will	oversee	the	project	for	the	contract.

Supplier Management  ◾  295

If	elaborate	details	about	the	project	are	not	clear	then	a	time-and-material-based	contract	is	
signed.	The	project	team	from	the	supplier	bills	the	customer	for	the	amount	of	time	spent	by	the	
team	on	the	project,	generally	on	a	monthly	basis.	Once	all	details	about	the	project	are	clear,	the	
project	can	be	converted	into	a	fixed-cost/fixed-budget	project.

21.4 Supplier Communication Management
Communication	with	the	supplier	is	very	important	[9].	Right	from	contract	terms	to	actual	work	
on	the	project,	communication	needs	to	be	precise	and	unambiguous.	The	customer	must	ensure	
that	the	supplier	team	understands	what	is	to	be	done.	The	supplier	needs	to	provide	all	deliverables	
with	proper	documentation	so	that	 their	work	 is	understood	well	by	the	customer.	This	two-way	
communication	with	complete	details	about	work	to	be	done	and	work	that	has	been	done	increases	
the	amount	of	documentation.	The	positive	side	of	higher	amount	of	documentation	is	that	there	is	
complete	reference	of	all	work	done.	Any	third	party	will	be	able	to	understand	what	was	required	to	
be	done	and	what	actually	has	been	delivered.	This	helps	when	any	dispute	arises	between	the	cus-
tomer	and	the	supplier.	The	documentation	also	serves	as	a		reference	material for	the	product	made.	
So	when	the	software	product	has	to	be	supported, the reference	manuals	become	extremely	useful.

When	 the	 supplier	 team	 is	 from	 a	 different	 culture	 another	 country	 then	 communication	
needs	are	increased	manifold.	All	instruction	for	the	work	to	be	done	should	be	in	fair	detail	so	
that	it	is	understood	by	the	supplier	team.	Description	about	what	is	to	be	made	and	how	to	make	
it	is	provided	with	all	the	details.	The	supplier	team	reads	these	instructions	and	works	accord-
ingly.	Chances	of	error	thus	get	eliminated.

The	downside	of	the	need	to	provide	too	much	detail	 is	 that	the	project	schedule	gets	pro-
longed.	After	all,	preparing	these	details	requires	much	of	time.	But	doing	it	reduces	risk	of	mis-
communication	 and	 chances	 of	 making	 errors.	 In	 real	 life,	 a	 balance	 needs	 to	 be	 established	
between	providing	too	much	detail	or	not	providing	any	details	at	all.	If	the	customer	and	sup-
plier	 teams	have	been	working	 for	 sometime	 then	a	 rapport	 is	built	between	 these	 two	 teams.	
Consequently,	even	a	small	amount	of	detail	is	sufficient	for	doing	any	contract	work.	Although	
in	the	beginning,	the	amount	of	detail	required	may	be	high,	it	gets	reduced	once	a	good	rapport	
is	built	between	the	two	teams.

21.5 Organization Structure
Software	services	providers	have	grown	to	become	large	global	companies.	Most	software	profes-
sionals	from	countries	like	India	are	employed	in	these	organizations.	Therefore,	it	is	important	to	
understand	the	organizational	structures	of	these	companies.

With	increase	in	size,	companies	found	it	difficult	to	manage	their	businesses.	Though	at	the	
top	functional	level,	organization	structure	remained	the	same—vice	presidents	for	marketing	and	
sales,	finance,	human	resources,	etc.—things	started	changing	at	the	middle	level.	Under	market-
ing	and	sales	they	now	have	heads	that	look	after	services	for	different	verticals.	These	verticals	
are	divided	into	banking,	finance,	securities	and	insurance	services	(BFSI),	supply	chain	manage-
ment services,	and	other	miscellaneous	services.	Each	vertical	is	further	divided	into	business	con-
sulting	services,	software	development	services,	and	miscellaneous	services.	Each	of	these	service	
groups	is	again	divided	into	account	management	where	each	account	represents	a	customer	with	
all	ongoing	projects	for	that	customer.	At	the	bottom	of	the	hierarchy	are	the	projects.

296  ◾  Software Project Management: A Process-Driven Approach

This	kind	of	arrangement	evolved	as	these	service	providers	 increasingly	refined	their	offer-
ings	with	concomitant	increase	in	their	organization	size,	to	offer	better	services	to	customers	[10]	
(Figure	21.4).

21.6 Account Management
Each	customer	is	very	important	for	software	services	companies.	To	keep	customer	satisfaction	at	
maximum,	these	companies	do	everything.	They	appoint	an	account	manager	who	looks	after	all	
ongoing	projects	[11].	These	account	managers	may	have	one	or	more	customers	assigned	to	them.	
They	not	only	ensure	smooth	functioning	of	the	projects,	they	also	ensure	that	the	relationship	
with	the	customer	is	a	long-lasting	one.	They	regularly	visit	customer	sites	and	try	to	ensure	that	all	
issues	with	the	customers	are	resolved	satisfactorily.	They	keep	satisfying	all	needs	of	the	customer	
so	that	the	customer	is	willing	to	give	more	business.

21.7 Project Offshore Transition
When	an	in-house	project	is	outsourced,	some	changes	are	needed	on	the	project	so	that	it	can	be	
carried	out	by	an	external	team	[12].	The	foremost	change	is	establishing	a	service-level	agreement	
with	the	contractor	or	service	provider	so	that	they	will	deliver	their	services,	based	on	the	require-
ments	of	the	customer	who	has	outsourced	the	project	to	them.	This	is	followed	by	knowledge	

Software services
provider

Software services

Supply chain
management services

Miscellaneous
services

Miscellaneous
services

Banking, finance,
securities and insurance

services

Business consulting
services

Software development
services

Account management

Project management

Figure 21.4 Organization structure for a software services provider.

Supplier Management  ◾  297

transfer	about	what	the	requirements	are,	what	the	customer	wants	from	the	project,	and	what	
work	has	already	been	done	by	the	internal	team.	Only	then	does	the	external	team	take	over	the	
project.

When	dealing	with	offshoring	a	project	then	some	new	issues	arise.	The	external	team	now	
belongs	to	a	country	having	altogether	a	different	culture	and	work	ethic.	The	team	members	may	
not	have	good	English-language	writing	and	speaking	skills.	They	will	be	working	in	a	time	zone	
which	may	make	virtual	meetings	impossible.	Productivity	of	these	team	members	will	be	differ-
ent.	Government	regulations	about	labor	laws,	taxes,	etc.	will	be	different.	So	unlike	in	same-shore	
outsourcing	(where	the	outsourcer	is	located	in	the	same	country)	offshore	outsourcing	is	a	different	
ball	game	altogether.

Thus	when	a	project	goes	offshore,	many	things	need	to	be	checked.	The	most	important	check	
is	about	the	people	who	will	execute	the	project.

For	project	 transitioning,	a	well-defined	approach	 is	needed.	It	will	help	 if	 the	outsourcing	
company	has	any	recognized	process	standards	certification.	A	pilot	project	to	start	with	will	be	
the	best	approach.	A	few	people	from	the	offshore	team	should	be	sent	to	the	customer	site	to	get	
first-hand	 information	about	the	project.	This	team	should	be	briefed	about	the	project	by	the	
internal	team	that	has	been	downsized.	Once	this	part	of	the	external	team	receives	knowledge	
transfer	 from	the	onshore	 team,	 they	will	come	back	to	 their	offshore	 location.	They	will	now	
transfer	the	knowledge	acquired	about	the	project	to	the	rest	of	the	team.	Now	the	full	team	will	
start	working	on	the	project.	Whenever	any	major	or	minor	milestones	are	met,	a	report	is	sent	to	
the	customer.	Whenever	any	issues	arise,	they	are	resolved	and	work	continues.	When	the	pilot	
project	completes	satisfactorily,	the	customer	can	decide	to	opt	for	full-fledged	offshoring	of	its	
projects.

21.8 Case Study
We	continue	our	 case	 study	 about	 the	mid-market	 software	 vendor	here.	The	vendor	has	 out-
sourced	a	 large	part	of	 its	 software	development	 to	 two	outsourcing	 service	providers	who	are	
located	at	offshore	locations.

The	vendor	has	done	this	outsourcing	deal	to	take	advantage	of	cost	reduction	and	tap	global	
talent	 for	 its	product	development.	They	have	outsourced	many	parts	of	 software	 testing,	 soft-
ware	development,	and	some	software	design.	They	have	also	outsourced	some	part	of	software	
maintenance.	The	cost	arbitrage	through	outsourcing	has	come	to	3:1.	That	means	the	outsourced	
staff	costs	just	one-third	of	the	cost	of	onshore	staff.	Productivity	of	the	outsourced	staff	is	the	
same	as	that	of	their	own	staff.	If	the	entire	staff	would	have	been	onshore	then	their	total	annual	
development	cost	would	have	been	$50,000,000.	But	thanks	to	outsourcing,	the	total	costs	are	
$30,000,000	(onshore	costs	$20,000,000	and	offshore	costs	$10,000,000.	A	staff	of	20	people	is	
working	at	the	onsite	location	and	a	total	of	30	people	are	working	at	two	offshore	locations).	In	
effect	they	are	saving	$20	million	per	annum	on	their	software	development	costs.

The	customer	ensured	that	the	productivity	level	of	people	at	the	offshore	location	would	be	the	
same	as	its	own	staff.	So	even	though	it	had	no	influence	in	the	selection	of	people	by	its	outsourcing	
partner,	it	had	made	sure	that	the	final	selection	of	each	team	member	working	at	its	partner	site	
would	be	made	by	the	customer.	The	customer	would	provide	the	partner	with	a	list	of	positions	to	
be	filled	on	the	project.	The	partner	would	then	shortlist	a	number	of 	candidates	and	would	provide	
this	list	to	the	customer.	The	customer	would	then	interview	these		candidates and select	the	right	
candidates	for	the	job.	One	of	the	most	important	objectives	during	candidate	selection	is	to	make	

298  ◾  Software Project Management: A Process-Driven Approach

sure	that	the	candidate	has	prior	experience	and	exposure	to	tools,	technologies,	methodologies,	and	
working	on	similar	outsourced	projects.	This	will	make	sure	that	the	candidate	will	be	productive	
sooner	after	a	short	training	period.

Review Questions
21.1	 Define	supplier	management	in	your	own	words.
21.2	 What	are	the	key	components	of	a	supplier	agreement?
21.3	 What	are	the	tools	used	for	supplier	evaluation	and	selection?
21.4	 What	do	customers	consider	for	supplier	selection?
21.5	 How	can	you	transition	a	project	to	an	offshore	location?

Recommended Readings
	 1.	 M.	F.	Corbett	(2004)	The Outsourcing Revolution: Why It Makes Sense and How to Do It Right,	Kaplan	

Publishing,	New	York.
	 2.	 J.	L.	Bossert	(2004)	The Supplier Management Handbook,	ASQ	Quality	Press,	Milwaukee,	WI.
	 3.	 M.	Wiener	(2006)	Critical Success Factors of Offshore Software Development Projects,	DUV,	Wiesbaden,	

Germany.
	 4.	 Q.	 Wang,	 D.	 M.	 Raffo	 (2008)	 Making Globally Distributed Software Development: A Success Story,	

Springer,	New	York.
	 5.	T.	 Kendrick	 (2003)	 Identifying and Managing Project Risk,	 American	 Management	 Association,	

New	York.
	 6.	 F.	Alan	Goodman	(2005)	Defining and Deploying Software Processes,	CRC	Press,	Boca	Raton,	FL.
	 7.	 J.	T.	Marchewka	(2006)	Information Technology Project Management,	Wiley,	New	York.
	 8.	 G.	Walker	(2003)	Modern Competitive Strategy,	McGraw-Hill/Irwin,	New	York.
	 9.	 J.	 McManus	 (2004)	 Risk Management in Software Development Projects,	 Butterworth-Heinemann,	

Oxford,	U.K.
	 10.	 R.	Sangwan,	N.	Mullick,	M.	Bass,	D.	J.	Paulish	(2006)	Global Software Development Handbook,	CRC	

Press,	Boca	Raton,	FL.
	 11.	 T.	 Davis,	 R.	 Pharro	 (2003)	 The Relationship Manager: The Next Generation of Project Management,	

Gower	Publishing	Ltd.,	Hampshire,	U.K.
	 12.	 K.	Berkling,	M.	Joseph,	B.	Meyer,	M.	Nordio	(2009)	Software Engineering Approaches for Offshore and

Outsourced Development,	Springer,	Berlin,	Germany.

TOOLS AND
TECHNIQUES

V

301

Chapter 22

Software Project Management
Tools Introduction

In.Part.V,.we.will.learn

	◾ What	is	technology	management	on	software	projects?
	◾ How	can	team	performance	be	improved	on	software	projects	by	use	of	tools?
	◾ What	are	some	of	the	common	tools	and	techniques	that	are	used	on	software	projects?
	◾ What	tools	and	techniques	will	be	available	in	the	future	for	software	projects?

In.this.chapter,.we.will.learn

	◾ What	is	tools	and	techniques	management	for	software	projects?
	◾ What	characteristics	of	tools	are	required	for	a	software	project?
	◾ How	is	tool	selection	done?

22.1 Introduction
Every	business	move	is	all	about	either	increasing	market	share	or	improving	productivity.	Increase	
in	market	share	brings	more	revenue,	and	increase	 in	productivity	reduces	costs.	Both	of	these	
factors	are	eternal	business	considerations	no	matter	what	 is	the	status	of	economy	or	 industry	
or	the	business	unit	itself.	If	it	has	to	survive,	it	has	to	battle	on	both	of	these	fronts	all	the	time.	
Depending	on	 the	 situation,	 the	degree	of	 emphasis	 on	 either	of	 the	 two	may	vary;	neverthe-
less,	their	presence	will	never	go	away.	Top	level	growth	of	any	organization	is	determined	by	its	

302  ◾  Software Project Management: A Process-Driven Approach

ability	to	innovate	its	products	and	services	and	enhance	quality.	Bottom	level	cost	improvement	
is	achieved	by	continuously	increasing	productivity.	There	are	many	ways	in	which	this	bottom	
line	productivity	can	be	improved.

Tools,	in	any	form,	are	used	by	human	beings	to	increase	their	productivity.	For	instance,	a	
software	developer	can	write	his	code	on	a	plain	text	editor.	When	he	has	to	compile	or	debug	his	
code,	he	will	have	to	run	the	code	against	the	compiler.	His	productivity	can	be	increased	if	the	
text	editor	integrates	with	the	compiler	as	he	will	now	have	a	single	interface	to	work	with	instead	
of	two	interfaces	on	two	separate	applications.	If	he	is	provided	with	a	smart	debugging	facility	
that	can	provide	detailed	information	about	why	and	where	his	code	is	failing,	he	can	quickly	fix	
his	code.	This	will	save	a	lot	of	time	in	debugging	and	thus	increase	his	productivity	(Figure	22.2).

Modern	software	projects	use	a	lot	of	tools	in	all	areas	of	the	project,	including	project	man-
agement,	product	 life-cycle	management,	 etc.	 In	 software	projects,	 tools	 are	not	only	used	 for	
increasing	productivity	but	they	are	also	used	for	improving	product	quality	(Figure	22.1).

However,	when	choosing	tools	for	software	development	projects,	one	should	not	only	consider	
how	much	productivity	each	tool	will	provide	but	also	how	the	tool	will	fit	into	the	overall	environ-
ment	of	the	project	and	the	project	team	(Figure	22.2).	Let	us	consider	many	of	these	aspects	in	
this	chapter.

22.2 Compatibility with Environment
A	project	manager	always	keeps	looking	for	the	best	tools	that	will	help	improve	the	produc-
tivity	of	his	team.	Therefore,	most	project	managers	and	their	teams	keep	evaluating	the	latest	
tools	in	the	market	that	promise	to	increase	productivity.	Nevertheless,	if	a	tool,	however	good	
it	may	be,	does	not	fit	properly	in	the	environment	in	which	it	has	to	be	used,	it	is	of	no	use	
to	the	project	team.	They	will	not	be	able	to	use	it	effectively.	For	instance,	a	remarkably	good	

Environment
compatibility

Cost of
ownership

Integration
with other

tools

Existing
skills on the

tool

Tool
obsolescence

Scale of
operation

Tools selection
criteria

Figure 22.2 Tool selection considerations.

Increase
productivity

Increase
quality

Benefits of tools

Fast delivery Doing manually
impossible tasks

Figure 22.1 Benefits of tools.

Software Project Management Tools Introduction  ◾  303

database	access	management	tool	may	not	serve	much	purpose	if	the	team	has	only	limited	work	
to	do	with	databases.	Instead,	the	team	should	invest	in	tools	that	will	be	used	extensively	on	
the	project.

22.3 Cost of Tool
Some	tools	may	be	too	expensive	to	afford.	But	if	its	cost	of	use	per	seat	is	good	compared	to	some	
other	tools,	it	can	be	a	viable	option.	For	instance,	there	are	two	tools	in	the	market	that	seem	to	
be	equally	good.	The	price	of	one	tool	is	$400	(server	license)	plus	$15	per	seat.	The	price	of	the	
other	tool	is	$1000	(server	license)	plus	$10	per	seat.	Suppose	you	have	team	of	100	people	and	all	
of	them	will	be	using	this	tool.	In	this	situation,	your	price	for	the	first	tool	will	be	$1900	and	that	
for	the	second	tool	$2000	(Figure	22.3).

The	price	difference,	thus,	is	just	$100	even	though	the	second	tool	seemed	to	be	more	expen-
sive	than	the	first	one.	If	you	feel	that	the	second	tool	is	more	compatible	to	your	needs,	buying	it	
would	be	a	better	decision	than	buying	the	first	one.

22.4 Data Integration among Tools
Suppose	a	project	team	uses	10	tools	and	none	of	these	tools	can	be	integrated	with	each	other.	In	
this	scenario,	data	generated	from	each	tool	will	have	its	own	version	of	truth.	For	example,	the	
static	analyzer	tool	may	report	that	the	total	number	of	software	defects	is	25	but	the	configura-
tion	management	system	may	report	the	static	defects	in	the	source	code	as	36.	Which	version	is	
true?	Similarly,	the	test	management	system	may	report	the	total	number	of	defects	in	the	system	
testing	as	140	but	the	configuration	management	system	may	report	the	system	defects	as	360.	
Again	which	version	is	true?	(Figure	22.4).

Server
license fee

Implementation
cost

Per seat
license fee Training cost

Time
required in

learning tool

Tool cost
components

Figure 22.3 Tool cost components.

Assured
accuracy

Increase in
productivity

Tools integration
importance

Instant status
information

Instant
decision

enablement

Figure 22.4 Importance of tool integration to each other/project environment.

304  ◾  Software Project Management: A Process-Driven Approach

When	you	decide	to	buy	a	tool,	remember	your	existing	configuration	and	find	out	if	the	new	
tool	can	be	integrated	with	your	existing	tools.	If	the	new	tool	cannot	be	integrated,	or	it	is	too	
difficult	to	integrate	it	with	the	existing	tools,	it	is	simply	not	worth	it.	Seamless	integration	of	new	
tools	with	existing	tools	is	a	must.

22.5 Existing Skills on Tools
Providing	training	to	the	project	team	on	a	new	tool	is	expensive.	It	is	not	only	the	price	of	training	
but	also	the	time	invested	on	the	training	instead	of	getting	any	productive	work	done.	No	doubt	
training	is	important	and	essential;	nevertheless,	if	it	is	not	required	or	if	it	can	be	avoided	then	it	
is	better.	If	many	team	members	already	have	good	skills	on	a	particular	tool,	that	tool	should	be	
used	on	the	project	even	if	the	tool	is	costlier	than	other	tools.	In	this	way,	the	cost	of	training	on	
learning	new	tools	can	be	saved.

22.6 Tool Obsolescence
Like	many	commodities,	tools	also	have	a	shelf	life.	They	start	their	journey	with	their	birth,	they	
mature,	and	finally	they	die	when	they	become	irrelevant	in	the	market.	If	you	are	going	to	buy	a	
tool,	make	sure	that	it	is	mature	and	it	is	not	at	a	stage	in	its	life	when	it	may	see	its	demise	soon.	
Check	with	 the	 tool	 vendors	how	 they	provide	 support	 for	 their	discontinued	products.	 Some	
vendors	provide	support	for	their	obsolete	products	for	a	long	time.	Some	others	do	not.	If	that	is	
the	case,	what	options	does	the	vendor	provide	to	its	customers	when	it	decides	to	discontinue	its	
support	for	the	tool?	Do	they	provide	free	training	and	licenses	for	their	newer	tools?	If	not,	what	
kind	of	discount	do	they	provide	to	their	existing	customers?

22.7 Scale of Operation
Some	projects	are	long	term	in	nature.	Sometimes	they	also	grow	in	size	over	time.	So	it	can	hap-
pen	that	a	project	has	10	people	at	the	start	of	the	project	grows	to	more	than	hundred	3	years	
down	the	line.	It	is	very	much	possible	that	if	a	tool	had	been	bought	for	a	project	that	was	sup-
porting	10	people,	it	could	no	longer	be	used	as	it	does	not	support	more	people	to	work	with	that	
tool.	When	you	invest	in	a	tool,	ensure	that	it	can	support	your	team	even	if	the	team	size	grows.

Review Questions
22.1	 	Why	should	a	new	tool	be	integrated	with	existing	tools?	Explain	the	benefits	of	integration	

of	tools.
22.2	 	What	steps	can	you	take	if	a	tool	becomes	obsolete?	What	steps	should	you	take	to	make	

sure	that	you	are	not	buying	a	tool	that	is	already	obsolete	or	will	become	obsolete	soon?
22.3	 What	cost	factors	are	considered	when	a	new	tool	is	evaluated?
22.4	 Why	is	it	required	that	the	tool	can	be	used	even	when	the	scale	of	your	project	goes	up?

305

Chapter 23

Project Management and
Software Life-Cycle Tools

In.the.previous.chapter,.we.learned

	◾ What	is	tools	and	techniques	management	on	software	projects?
	◾ What	characteristics	of	tools	are	required	for	a	software	project?
	◾ How	is	tool	selection	done?

In.this.chapter,.we.will.learn

	◾ What	are	the	common	tools	and	techniques	available	on	software	projects?
	◾ What	are	the	tools	available	for	software	life-cycle	management?
	◾ What	are	the	tools	available	for	software	project	management?

23.1 Introduction
It	is	very	true	that	software	development	projects	are	all	about	people.	But	imagine	you	have	a	
fabulous	team	and	you	start	on	your	project	without	any	tools	at	your	disposal.	No	integrated	
development	environment	(IDE)	tools,	no	modeling	tools,	no	testing	tools,	etc.	Can	you	imagine	
your	life	and	that	of	your	team?	We	take	it	for	granted	that	we	have	these	tools	at	our	disposal.	
We	do	not	realize	how	useful	these	tools	are	for	our	work	and	that	without	them	our	work	would	
be	crippled	[1].

In	this	chapter,	we	will	study	tools	that	are	used	in	different	software	development	project	
life-cycle	phases.

306  ◾  Software Project Management: A Process-Driven Approach

23.2 Requirement Management Tools
During	requirement	development	and	management,	we	use	many	tools	[2],	listed	as	follows:

	◾ Requirement elicitation tools:	User	questionnaires,	database	reports	from	a	customer	manage-
ment	system	to	get	customer	suggestions/complaints,	voice	recorder,	taking	minutes	of	the	
meeting

	◾ Requirement development tools:	Data	normalization	and	structuring	tools	(Figure	23.1)

During	requirement	elicitation,	requirements	are	gathered	using	questionnaires,	meetings,	etc.	
Indirect	requirements	are	gathered	from	customer	feedbacks/complaints,	etc.	The	project	team	
can	give	a	demo	of	the	product	and	during	question	hour,	customers	can	ask	questions	about	
certain	features	of	the	software	product.	These	can	form	a	basis	for	developing	requirements.	
The	project	team	can	also	visit	work	locations	of	customer	sites	and	interact	with	people	who	
can	provide	inputs,	which	again	can	be	the	basis	for	requirements	(Figures	23.2	through	23.4).

Once	we	have	gathered	all	the	requirements,	we	need	to	develop	them.	First	of	all	we	need	to	
normalize	all	the	data	from	different	sources.	We	also	need	to	structure	these	requirement	data	so	
that	all	data	are	in	one	form	and	can	be	taken	on	one	document	or	database.	We	also	need	to	find	
dependency	between	these	requirements.	For	all	of	these	activities,	we	need	tools.	If	not	advanced	
tools,	then	basic	tools	like	word	processors,	Excel	sheets,	etc.,	can	be	used.

Requirement
elicitation

tools

Requirement
change

management tools

Requirement
management tools

Requirement
development

tools

Figure 23.1 Requirement management tools.

User
interviews

Questionnaire Customer
feedbacks

Requirement
elicitation tools

Maintenance
back logs

Customer
complaints

Figure 23.2 Requirement elicitation tools.

Project Management and Software Life-Cycle Tools  ◾  307

23.3 Software Design Management Tools
During	 software	design,	many	models	 are	made,	 including	entity	 relationship	diagrams,	use	
case	models,	data	flow	diagrams,	and	UI	navigation	charts	[3].	Based	on	these	design	specifica-
tions,	software	construction	is	done	by	writing	source	code	manually.	For	some	time,	efforts	
have	been	made	so	that	source	code	can	be	generated	automatically	when	the	software	design	
is	made.	Though	automatic	generation	of	complete	source	code	has	still	not	become	a	reality,	
many	tools	generate	skeletons	of	source	code	and	some	amount	of	rudimentary	code	along	with	
some	documentation.	This	is	useful	as	a	basic	structure	is	made	on	which	source	code	writing	
can	be	based	(Figure	23.5).

Requirement
hierarchy Feature lists Clear unclear

requirement

Requirement
development tools

Aggregate
from many

sources

Complete/
incomplete

requirements

Figure 23.3 Requirement development tools.

Requirement
priority lists

Requirement
change

management

Requirement
version

management

Requirement
management tools

Requirement
selection

management

Optional
requirements

Figure 23.4 Requirement management tools.

CASE tools

Design
management tools

Modeling
tools

Figure 23.5 Design management tools.

308  ◾  Software Project Management: A Process-Driven Approach

23.3.1 CASE Tools
Computer-aided	 software	 engineering	 (CASE)	 tools	 try	 to	 integrate	 software	design	with	 soft-
ware	construction	in	one	phase	[4].	When	software	is	designed,	the	source	code	is	automatically	
generated.	Users	can	also	select	the	programming	language	in	which	the	source	code	needs	to	be	
generated.	CASE	tools	include	tools	for	creating	entity	relationship	diagrams,	data	flow	diagrams,	
use	cases,	activity	diagrams,	etc.	Examples	of	some	of	the	CASE	tools	include	ERWIN,	Rational	
Unified	Processing	Model,	etc.	(Figure	23.6).

23.3.2 Modeling Tools
Software	design	mostly	involves	modeling	different	parts	of	the	software	using	standard	notations	
[5].	Both	physical	and	logical	models	are	available.	The	most	commonly	accepted	notation	lan-
guage	is	Unified	Modeling	Language	(UML).	The	system	is	designed	using	tools	like	Microsoft	
Word,	Visio,	rational	tools,	etc.	(Figure	23.7).

23.4 Software Build Management Tools
When	we	have	software	design	ready,	we	start	writing	the	source	code.	Much	source	code	must	
be	written	before	a	software	system	actually	takes	shape.	Due	to	the	 large	volume	and	labor-
intensive	nature	of	the	work,	it	takes	a	lot	of	time	to	write	source	code.	Various	tools	and	techniques	

Requirement
management

tools

Design
management

tools

CASE tools

Code
generation

tools

Figure 23.6 CASE tools.

Entity
relationship

diagrams
Use cases Activity

diagrams

Modeling tools

Data flow
diagrams

User interface
flow diagrams

Figure 23.7 Modeling tools.

Project Management and Software Life-Cycle Tools  ◾  309

have	been	developed	over	the	years	to	enable	developers	to	write	source	code	faster.	Some	other	
tools	also	help	developers	to	write	better	source	code	so	that	it	may	be	free	of	defects	(Figure	23.8).

23.4.1 Integrated Development Environment Tools
IDEs	are	the	most	popular	programming	tools	used	by	almost	all	developers	[6].	An	IDE	is	an	
integrated	set	of	tools	that	has	text	editors,	compilers,	debuggers,	and	many	other	tools	built	
in.	Some	IDEs	are	so	advanced	that	developers	do	not	need	any	external	 tool	when	they	are	
writing,	debugging,	integrating,	or	doing	any	work	related	to	software	construction.	Microsoft	
has	Visual	Studio	 IDE,	which	has	 a	 text	 editor,	 compiler,	debugger,	 etc.	Connection	 to	ver-
sion	control	 tool,	database,	etc.,	 is	easy.	 It	 supports	writing	source	code	 in	Visual	Basic,	C#,	
and	some	other	Microsoft	programming	languages.	Similarly,	many	other	vendors	have	created	
good	IDEs	for	Java	(Figure	23.9).

23.4.2 Source Code Control Tools
When	many	developers	concurrently	work	on	building	a	software	product,	they	write	their	code	
in	their	IDEs	on	their	local	machines	[7].	They	test	the	code	on	their	local	machine.	Finally,	they	
check	in	their	source	code	at	the	central	server.	This	server	maintains	a	clean	build	of	the	software	
product	being	developed.	If	for	any	reason	this	build	breaks,	no	developer	will	be	able	to	check	
in	their	source	code	on	this	server.	This	hampers	the	work	of	other	developers.	It	 is,	 therefore,	
very	 important	that	the	build	on	the	central	server	should	always	be	clean	and	it	should	never	
be	allowed	to	break.	A	software	product	under	development	breaks	when	you	try	to	run	it,	and	
it throws	 an	 exception	 and	 the	 run	 interrupts.	 This	 happens	 to	 programming	 errors.	 When	 a	

Integrated
development
environments

Source code
control RAD tools

Construction
management tools

Debugging
tools

Database
management

Figure 23.8 Software construction management tools.

Test editors Debugging
tools

Database
connection

tools

IDE tool features

Compiling
tools

Executable
code

generators

Figure 23.9 Integrated development environment tool features.

310  ◾  Software Project Management: A Process-Driven Approach

software	build	is	broken,	if	somebody	checks	in	his	code	on	top	of	the	broken	build,	nobody	will	
know	if	this	fresh	code	is	clean	or	if	it	would	break	the	build.	Most	version	control	tools,	there-
fore,	have	a	mechanism	that	does	not	allow	check-in	of	a	new	code	if	the	build	is	already	broken.	
Chapter	5	provides	a	more	detailed	discussion	on	version	control	tools.

23.4.3 Rapid Application Development
Rapid	application	development	(RAD)	tools	have	been	used	in	the	software	 industry	since	the	
1990s	to	increase	productivity	of	software	construction	activity,	that	is,	in	writing	source	code	[8].	
RAD	tools	are	similar	to	IDEs	with	additional	features	to	enhance	productivity.	They	have	many	
features	in	their	environment	that	make	the	developer’s	work	easier	and	more	productive.

The	original	RAD	tools	were	used	for	prototyping.	Subsequently,	they	became	part	of	regular	
source	code	writing	tasks.

23.5 Software Testing Management Tools
Software	testing	is	also	a	resource-intensive	phase	in	the	software	development	life	cycle	like	soft-
ware	construction.	Software	testing	involves	tasks	like	test	case	creation,	test	case	execution,	test	
case	automation,	defect	reporting,	defect	tracking,	test	case	management,	etc.	For	most	of	these	
tasks,	some	sort	of	tools	are	available,	and	these	are	being	used	by	project	teams	(Figure	23.10).

23.5.1 Test Management
When	test	cases	are	created,	the	local	copy	of	the	test	case	is	with	the	test	engineers.	One	copy	of	
the	test	case	should	also	be	kept	at	a	central	repository.	When	new	versions	of	the	software	need	
to	be	tested,	the	old	test	cases	become	handy	for	regression	testing.	If	domain	experts	are	working	
on	the	test	team	and	if	automation	of	test	cases	is	also	to	be	done,	a	central	repository	becomes	
very	useful.	Both	test	cases	and	test	scripts	can	be	stored	in	the	repository.	Thus,	manual	testers,	
domain	experts,	and	automation	engineers	can	all	work	simultaneously.	A	good	test	management	
software	tool	should	be	used	that	will	integrate	with	automation	tools	so	that	automation	scripts	
stored	on	the	test	management	tool	can	be	run	from	within	the	tool.	Similarly,	defect-tracking	
tools	can	also	be	integrated	with	the	test	management	tool.	In	this	way,	all	the	testing	activities	
can	be	centralized,	which	will	provide	an	excellent	platform	for	clear	visibility	and	task	tracking	
and	will	definitely	increase	productivity	[9].

Test
management

Defect
tracking

Test
execution

automation

Test management
tools

Test
creation

automation

Test bed
preparation

Figure 23.10 Test management tools.

Project Management and Software Life-Cycle Tools  ◾  311

23.5.2 Defect Tracking
When	test	cases	are	run	against	 the	software	Application	under	Test	 (AUT),	 the	result	can	be	
either	pass	or	fail.	When	a	test	case	passes,	this	means	that	the	application	is	working	fine	and	vice	
versa.	When	a	test	case	fails,	this	means	that	the	application	has	a	defect.	This	defect	is	logged	
using	a	defect-tracking	tool.	The	defect	information	passes	on	to	the	developer.	The	developer	fixes	
the	defect	on	the	AUT.	The	tester	tests	to	know	if	the	defect	has	been	fixed	properly.	If	it	is	fixed	
properly,	he	will	close	the	defect.	If	not,	he	will	reopen	the	defect.	This	continues	until	the	defect	
is	fixed.

There	 are	good	defect-tracking	 tools	 from	both	open	 source	 as	well	 as	 traditional	 software	
vendors	in	the	market.	Some	of	them	include	BugZilla	from	Mozilla,	Test	Track	Pro	from	Seapine	
Software,	etc.

23.5.3 Automation Tools
Regression,	performance,	 sanity,	and	other	kinds	of	 test	cases	are	automated	using	automation	
tools.	For	test	case	automation,	some	tools	only	involve	record	and	play	kind	of	automation.	Some	
tools	support	more	features	like	manually	enhancing	the	test	script,	allowing	integration	with	the	
AUT	(vendor	dependent),	etc.	To	reduce	maintenance	efforts,	some	automation	framework	is	also	
used	along	with	automation	(Figure	23.11).

23.6 Project Management Tools
Software	project	management	 involves	 preparing	 and	maintaining	 several	 documents.	These	
documents	contain	a	lot	of	project	data.	These	data	are	measured	and	recorded	and	then	analyzed	
in	comparison	to	results	achieved	with	best	practices.

For	carrying	out	these	measurements,	the	project	manager	and	the	project	team	need	good	
tools	and	techniques,	which	should	be	selected	based	on	the	specific	needs	of	the	project.	It	will	
be	 a	 waste	 of	 time	 and	 resources	 if	 inappropriate	 and	 irrelevant	 measurements	 are	 taken	 and	
maintained.

In	this	chapter,	let	us	look	at	some	of	the	tools	and	techniques	that	are	used	for	project	plan-
ning,	monitoring,	and	control.

The	project	plan	consists	of	documents	like	WBS,	resource	allocation,	risk	planning,	commu-
nication	planning,	and	configuration	management.

Regression
testing

Sanity
testing

Smoke
testing

Use of automated
execution tools

Integration
testing

Performance
testing

Figure 23.11 Use of test execution automation tools.

312  ◾  Software Project Management: A Process-Driven Approach

23.6.1 Project Planning Tools
Project	planning	tools	will	provide	WBS	structure,	resource	planning,	schedule,	and	cost,	and	will	
provide	the	platform	to	monitor	and	control	the	project.	Some	of	the	tools	available	for	project	
management	include	MS	Project	and	Primavera.	Many	other	tools	that	can	be	used	for	this	pur-
pose	are	also	available	in	the	market	(Figure	23.12).

23.6.1.1 Configuration Management Tools

Configuration	management	tools	not	only	provide	configuration	and	version	control	for	source	
code	and	project	documents	but	also	provide	facilities	for	controlling	software	evolution,	main-
taining	product	integrity,	changing	control	and	version	control,	and	other	tasks.	Popular	configu-
ration	management	tools	include	Visual	Source	Safe	and	Perforce	(Figure	23.13).

23.6.1.2 Communication Management Tools

On	software	projects,	much	communication	goes	on	among	team	members,	customers,	and	sup-
pliers.	Communication	 includes	 sharing	project	documents,	 task	 status	 information,	meetings,	
reviews,	issues,	status	reports,	etc.	These	documents	and	tasks	are	done	using	methods	like	meet-
ings,	virtual	meetings,	instant	messengers,	Web	demonstration	tools,	e-mails,	whiteboards,	remote	
desktop	connections,	etc.	(Figures	23.14	and	23.15).

WBS
creation

Resource
planning

Detailed
schedule

Project
management tools

usage

Cost
planning

Network
diagrams

Figure 23.12 Project management tools usage.

Configuration
management

Version
control

Software
evolution
control

Configuration
management tools

usage

Product
integrity

Project
document

management

Figure 23.13 Configuration management tools usage.

Project Management and Software Life-Cycle Tools  ◾  313

Review Questions
23.1	 Why	are	integrated	development	environments	used?
23.2	 What	does	a	defect-tracking	tool	do?
23.3	 Explain	what	is	meant	by	CASE	tools.
24.4	 What	kinds	of	tools	are	used	in	requirement	management?

Recommended Readings
	 1.	 V.	Sikka	(2004)	Maximizing ROI on Software Development,	CRC	Press,	Boca	Raton,	FL.
	 2.	 C.	 T.	 Leondes	 (2001)	 Computer-Aided Design, Engineering, and Manufacturing,	 CRC	 Press,	 Boca	

Raton,	FL.
	 3.	 N.	F.	Kock	(2006)	Systems Analysis and Design Fundamentals,	Sage,	London,	U.K.
	 4.	 A.	 W.	 Brown,	 D.	 J.	 Carney	 (1994)	 Principles of CASE Tool Integration,	 Oxford	 University	 Press,	

Oxford,	U.K.
	 5.	 L.	C.	Briand,	C.	Williams	(2005)	Model Driven Engineering Languages and Systems,	Springer,	Berlin,	

Germany.
	 6.	 J.	McGovern,	S.	W.	Ambler	 (2003)	A Practical Guide to Enterprise Architecture,	Prentice	Hall	PTR,	

Upper	Saddle	River,	NJ.
	 7.	 R.	J.	Muller	(1998)	Productive Objects: An Applied Software Project Management Framework,	Morgan	

Kaufmann,	San	Francisco,	CA.
	 8.	 J.	 W.	 Rittinghouse	 (2003)	 Managing Software Deliverables: A Software Development Management

Methodology,	Digital	Press,	Clifton,	NJ.
	 9.	 D.	 Graham,	 E.	Van	Veenendaal,	 I.	 Evans,	 R.	 Black	 (2008)	 Foundations of Software Testing: ISTQB

Certification,	Cengage	Learning,	Independence,	KY.

Meetings Reviews Issue
management

Communication
management tools

usage

Project
reporting

Project
status

Figure 23.14 Communication management tools usage.

Virtual
meetings

Instant
messaging E-mail

Communication
management tools

Virtual white
boards

Remote
desktop
sharing

Figure 23.15 Communication management tools.

315

Chapter 24

Software Project Templates

In.the.previous.chapter,.we.learned

	◾ What	common	tools	and	techniques	are	available	in	software	projects?
	◾ What	tools	are	available	for	software	life-cycle	management?
	◾ What	tools	are	available	for	software	project	management?

In.this.chapter,.we.will.learn

	◾ What	common	templates	are	available	in	software	projects?
	◾ Why	should	templates	used	in	software	projects?
	◾ What	common	attributes	are	there	for	various	kinds	of	templates	which	are	used	in	

software	projects?

24.1 Introduction
Templates	and	common	shared	libraries	provide	two	things.	They	ensure	that	a	common	platform	is	
used	for	documentation	and	project	communications.	So	we	have	uniformity	in	project	communica-
tions	for	all	parts	of	the	project.	This	makes	it	easier	for	all	project	stakeholders	and	team	members	
to	understand	all	the	communication,	and	the	chances	of	miscommunication	get	reduced.	It	also	
ensures	that	the	productivity	of	communication	gets	increased.	After	reading	any	communication,	
understanding	the	message	does	not	take	much	time	contrary	to	a	situation	where	disparate	kinds	of	
documents	with	no	uniformity	across	each	other	are	communicated	and	thus	understanding	them	
becomes	difficult	[1].

The	other	benefit	of	using	standard	templates	is	that	people	will	not	miss	any	project	work	due	
to	forgetfulness.	Suppose	task	A	is	a	part	of	the	project	and	it	consists	of	six	steps	of	work	to	finish.	

316  ◾  Software Project Management: A Process-Driven Approach

Suppose	a	person	working	on	it	finishes	five	steps	and	forgets	to	finish	the	sixth	step	and	checks	in	
his	work.	Other	people	are	not	aware	of	it	and	in	fact	the	project	is	proclaimed	to	be	complete	after	
all	others	are	finished.	The	unfinished	product	is	now	being	used	by	users.	When	using	it,	users	
report	some	defects	in	the	product.	The	support	analyst	analyzes	the	defect	and	then	the	defect	is	
passed	on	to	the	support	team	to	fix.	When	a	postmortem	of	the	project	is	done,	it	is	discovered	
that	the	defect	originates	from	the	missing	step	in	Task	A.	When	people	use	standard	templates,	
the	person	who	owns	a	particular	project	template	never	fails	to	document	any	task	or	task	step	or	
requirements	to	check	before	finishing	a	task.	In	essence,	these	filled	templates	become	checklists	
for	the	team	members.

But	the	most	important	benefit	of	using	templates	is	that	project	and	development	data	can	
later	be	sent	to	databases	and	thus	this	information	can	be	stored	permanently.	At	the	basic	level,	
templates	provide	a	mechanism	to	put	data	into	good	structures.	When	data	are	stored	this	way,	
they	can	be	extracted	easily	and	can	be	stored	in	database	repositories.	In	contrast,	unstructured	data	
(e.g.,	in	form	of	e-mails,	chat	sessions	on	instant	messengers,	and	data	in	unformatted	documents)	
is	difficult	to	get	extracted.	These	unstructured	data	are,	thus,	not	of	much	use.	Knowledge	man-
agement	systems	are	in	fact	built	from	data	extracted	from	structured	project	templates	[2].

In	this	chapter,	we	will	study	what	essential	ingredients	go	in	different	types	of	project	tem-
plates	used	in	software	projects.

24.2 Software Life-Cycle Template Guidelines
Software	life-cycle	templates	are	used	during	the	entire	period	when	software	work	products	are	
being	made.	In	the	requirement	management	phase,	requirements	are	gathered,	developed,	and	
managed.	A	good	template	with	required	steps	will	ensure	that	these	activities	are	performed	cor-
rectly,	and	no	vital	steps	go	missing.	Similar	templates	are	used	for	other	development	phases	in	
the	project.

24.2.1 Software Requirement Template Guidelines
The	requirement	management	template	contains	information	about	functional	and	nonfunctional	
requirements	that	need	to	be	gathered,	analyzed,	and	developed	[3].	Nonfunctional	requirements	
include	requirements	for	performance,	security,	quality	level,	usage	intensity,	and	safety.	The	pro-
posed	solution	should	be	able	to	meet	 levels	and	criteria	prescribed	by	the	customer,	and	these	
pieces	of	information	should	be	recorded	in	the	template.	Functional	requirements	should	contain	
information	about	system	features,	external	interfaces,	user	interfaces,	hardware	interfaces,	soft-
ware	interfaces,	communication	interfaces,	etc.

Here	is	the	list	of	parts	of	requirements:
Functional requirements

	◾ System	features
	◾ External	interface	requirements
	◾ User	interfaces
	◾ Hardware	interfaces
	◾ Software	interfaces
	◾ Communication	interfaces

Software Project Templates  ◾  317

Nonfunctional requirements

	◾ Performance	requirements
	◾ Safety	requirements
	◾ Security	requirements
	◾ Software	quality	level	requirements
	◾ Usage	intensity

Inputs	for	the	requirement	management	process:

	◾ High-level	requirements
	◾ System	operation	concepts
	◾ Customer	needs

Outputs	from	the	requirement	management	process:

	◾ Baselined,	validated	requirements
	◾ Interface	documents
	◾ Reuse	plans
	◾ Traceability	matrices
	◾ Operational	scenarios
	◾ Historical	records

Major tasks in requirement management	(Table	24.1)

Table 24.1 Major Requirement Management Task List

Analyze high-level requirements

a. Examine, discuss, and understand the high-level requirements and operation concepts

b. Identify the scope of the requirements and the purpose of the software, and analyze any
constraints affecting the software requirements from the perspective of cost, schedule,
technology, or quality

c. Limit requirements scope within technology constraints

d. Develop operational scenarios

e. Perform make/buy/reuse (Reuse/COTS) study and document the results

f. Document major assumptions made in conducting the analysis

Define detailed requirements and specifications

a. Refine operation concepts and operational scenarios to ensure that all functionality is
documented

b. Expand the high-level requirements to detailed requirements

c. Define external interface requirements

d. Allocate the detailed requirements and specifications to subsystems or major
components

(continued)

318  ◾  Software Project Management: A Process-Driven Approach

Requirement review checklist	(Table	24.2)

Table 24.2 Requirement Review Check List

a. Compliance with standards—Does the requirement specification comply with standard
software process model or tailored branch/project-level standards and naming conventions?

b. Completeness of specifications—Does the requirement specification document address
all known requirements? Have “TBD” requirements been kept to a minimum or
eliminated entirely?

c. Clarity—Are the requirements clear enough to be turned over to an independent group for
implementation?

d. Consistency—Are the specifications consistent in notation, terminology, and level of
functionality? Are any required algorithms mutually compatible?

e. External interfaces—Have external interfaces been adequately defined?

f. Testability—Are the requirements testable? Will the testers be able to determine whether
each requirement has been satisfied?

g. Design-neutrality—Does the requirement specification state what actions are to be
performed, rather than how the sections will be performed?

h. Readability—Does the requirement specification use the language of the intended testers
and users of the system, not software jargon?

Table 24.1 (continued) Major Requirement Management Task List

e. Analyze detailed requirements to make sure that they are within technology constraints

f. Trace detailed requirements to high-level requirements and subsystems, find verification
methods for each of the detailed requirements, and prepare a matrix that contains all the
relationships among verification methods and detailed requirements

g. Document the detailed requirements and specifications developed

Verify requirements and specifications

a. Conduct requirement peer reviews to ensure agreement regarding the intent and
purpose of each requirement and the reason for limits, tolerance, and margin in each
specification

b. Clarify ambiguous requirements

c. Determine the technical feasibility of each requirement and any risks inherent in
candidate approaches

d. Verify consistency, necessity, and completeness both internal to the requirements and
against driving documents

e. Model performance or prototype as needed

Validate requirements and specifications

a. Determine and document the method of validation to be used for each requirement

Software Project Templates  ◾  319

24.2.2 Software Design Template Guidelines
A	software	design	template	enables	the	project	team	to	capture	and	record	modeling	tools	to	be	
used,	architecture	details,	model	details	 (activity	diagrams/use	cases/work	flow	diagrams,	etc.),	
module	details,	component	details,	etc.	[4].		It	should	also	contain	information	on	what	design	
metrics	will	be	used	in	the	project.

Inputs	required	for	software	design	process:

	◾ Preliminary	software	design	(if	available)
	◾ Validated	and	project-approved	requirements
	◾ Operation	scenarios
	◾ Interface	documents
	◾ Reuse	plans
	◾ Test	plan
	◾ Requirement	traceability	matrix
	◾ Requirement	inspection	documents	from	reviews

Outputs	from	software	design	process:

	◾ Design	documentation
	◾ Requirement	change	requests
	◾ Software	design	document	presentation	materials
	◾ Updated	requirement	traceability	matrix
	◾ Lessons	learned
	◾ Suggested	refined	estimates	of	system	size,	effort,	and	schedule
	◾ Requirement	 inspection	documents	 from	reviews	 collected	and	placed	under	 appropriate	

configuration	control	for	tracking	to	closure

Major tasks in software design process	(Table	24.3)

Table 24.2 (continued) Requirement Review Check List

i. Level of detail—Are the requirements at a fairly consistent level of detail? Should any
particular requirement be specified in more detail? In less detail?

j. Requirements singularity—Does each requirement address a single concept, topic,
element, or value?

k. Definition of inputs and outputs—Have the internal interfaces, that is, the required inputs
to and outputs from the software system, been fully defined? Have the required data
transformations been adequately specified?

l. Scope—Does the requirement specification adequately define boundaries for the scope
of the target software system? Are any essential requirements missing?

m. Design constraints—Are all stated design and performance constraints realistic and
justifiable?

n. Traceability—Has a bidirectional traceability matrix been provided?

320  ◾  Software Project Management: A Process-Driven Approach

Table 24.3 Major Design Management Task List

Expand and refine architecture

a. Define functions—In conjunction with the operating system requirements for the
structure of application programs and communication between application programs.
Decompose the designated processing into lower-level component processing

b. Identify lower-level reusable software from prior efforts—Identify any reusable components
that can be incorporated into the design according to the reuse strategy specified in the
project plan

c. Identify software units—Identify the software unit names. Follow the naming conventions
defined for the project

d. Identify software unit interactions/interfaces—Define the software unit interface
requirements for all software units in the system

e. Select IT security components if applicable—Identify components of the system that
could be vulnerable to a breach of system security. Develop a security assurance strategy
to ensure that the design for the identified software components minimizes or eliminates
the potential for breaches of system security

f. Establish failure detection and correction—Identify the components of the system that could
fail. Develop a correction/recovery strategy to ensure that the design for the identified
software minimizes or eliminates the potential for failures of the system

Design software units

a. Establish I/O for each unit—Generate and coordinate data and control definitions for the
software unit inputs and outputs

b. Select algorithms—For each software unit (or operation on each class), select algorithms
to accomplish the required function. Develop this internal logic in accordance with the
standards specified in the project plan

c. Select data structures—For each software unit (or operation on each class), select
appropriate data structures to accomplish the required function

d. Define unit-level data requirements/communication protocols—Define unit-level data
requirements and communication protocols and formats between each software unit in the
functional group

e. Determine reusability requirements for each unit—When future reuse is an objective of the
software being developed, determine applicable design requirements to facilitate reuse

f. Develop software unit design for each unit

g. Finalize user interface(s)

h. Estimate utilization and size of each component of the system or unit as appropriate—
Estimate resource utilization for the component of software being designed. Include CPU
throughput, memory utilization, and I/O channel usage

i. Conduct one or more design walkthrough/inspections so that each unit is inspected

Prepare material

a. Critical design review presentation materials

b. Traceability matrix updates

c. Planning refinements/updates

d. Lessons learned

Software Project Templates  ◾  321

Design review task checklist	(Table	24.4)

24.2.3 Software Build Template Guidelines
Software	build	management	 is	concerned	with	what	programming	 language	can	be	used,	how	
integration	with	various	internal	and	external	interfaces	can	be	achieved,	which	team	will	develop	
what,	how	unit	and	integration	testing	will	be	performed,	etc.	[5].	These	pieces	of	information	are	
to	be	covered	in	the	build	template.	It	should	also	contain	information	as	to	which	build	metrics	
will	be	used.

Inputs	required	for	software	construction	process:

	◾ Software	design
	◾ Validated	and	project-approved	requirements
	◾ Operation	scenarios
	◾ Interface	documents
	◾ Reuse	plans
	◾ Test	plan
	◾ Requirement	traceability	matrix
	◾ Requirement	inspection	documents	from	reviews

Table 24.4 Design Review Check List

1. Completeness

a. Review requirement traceability matrix to ensure the coverage of all requirements

b. Ensure the coverage of real-time requirements, performance issues (memory and
timing), spare capacity (CPU and memory), maintainability, understandability, database
requirements, loading and initialization, error handling and recovery, user interface
issues, software upgrades, software reuse and modifications, and all inputs and
outputs

c. Clearly and correctly identify interfaces

d. All functions clearly and accurately described in sufficient detail

e. All interfaces clearly and (appropriately) precisely defined

f. Adequate data structures defined

g. All error codes documented

2. Suitability

a. Deviations from the requirements are documented and approved

b. Assumptions are documented

c. Major design decisions are documented

d. The design is expressed in precise unambiguous terms

e. Dependencies on other functions, operating system, hardware, etc., are documented

f. The design follows notational conventions

322  ◾  Software Project Management: A Process-Driven Approach

Outputs	from	software	construction	process:

	◾ Software	source	code
	◾ User	manual
	◾ Software	coding	documentation
	◾ Updated	requirement	traceability	matrix
	◾ Lessons	learned
	◾ Requirement	 inspection	documents	 from	reviews	 collected	and	placed	under	 appropriate	

configuration	control	for	tracking	to	closure

Major tasks in software construction process	(Table	24.5)

Table 24.5 Major Construction Management Task List

Build preparation

a. Decompose function—In conjunction with the operating system requirements for
structure of application programs and communication between application programs.
Decompose the designated processing into lower-level component processing

b. Identify lower-level reusable software from prior efforts—Identify any reusable
components that can be incorporated into the construction according to the reuse
strategy specified in the project plan

c. Identify software units—Identify the software unit names. Follow the naming conventions
defined for the project

d. Identify software unit interactions/interfaces—Define the software unit interface
requirements for all software units in the systems

e. Select IT security components (if applicable)—Identify components of the system that
could be vulnerable to a breach of system security. Develop a security assurance strategy
to ensure that the design for the identified software components minimizes or eliminates
the potential for breaches of system security

f. Establish failure detection and correction—Identify components of the system that could
fail. Develop a correction/recovery strategy to ensure that the construction for the
identified software minimizes or eliminates the potential for failures of the system

Construct software units

a. Establish I/O for each unit—Generate and coordinate data and control definitions for the
software unit inputs and outputs

b. Select algorithms—For each software unit (or operation on each class), select algorithms
to accomplish the require function. Develop this internal logic in accordance with the
standards specified in the project plan

c. Select data structures—For each software unit (or operation on each class), select
appropriate data structures to accomplish the required function

d. Define unit-level data requirements/communication protocol—Define unit-level data
requirements and communication protocol and formats between each software unit in the
functional group

Software Project Templates  ◾  323

Construction review task checklist	(Table	24.6)

24.2.4 Software Testing Template Guidelines
A	set	of	software	testing	templates	include	templates	for	test	strategy	document,	test	plan	document,	
test	metrics	document,	resource	plan	document,	etc.	[6].

Table 24.6 Major Construction Review Check List

1. Completeness

a. Review requirement traceability matrix to ensure the coverage of all requirements

b. Ensure the coverage of real-time requirements, performance issues (memory and
timing), spare capacity (CPU and memory), maintainability, understandability, database
requirements, loading and initialization, error handling and recovery, user interface
issues, software upgrades, software reuse and modifications, and all inputs and outputs

c. Clearly and correctly identify interfaces

d. All functions clearly and accurately described in sufficient detail

e. All interfaces clearly and (appropriately) precisely defined

f. Adequate data structures defined

g. All error codes documented

2. Suitability

a. Deviations from the requirements are documented and approved

b. Assumptions are documented

c. Major construction decisions are documented

d. Dependencies on other functions, operating system, hardware, etc., are documented

3. Correctness

a. The logic is correct

Table 24.5 (continued) Major Construction Management Task List

e. Determine reusability requirements each unit—When future reuse is an objective of the
software being developed, determine applicable design requirements to facilitate reuse

f. Develop software unit construction for each unit

g. Build user interface(s)

h. Estimate utilization and size of each component of the system or unit as appropriate

i. Conduct one or more construction walkthrough/inspections so that each unit is inspected

Prepare material

a. Critical construction review presentation materials

b. Traceability matrix updates

c. Planning refinements/updates

324  ◾  Software Project Management: A Process-Driven Approach

Software testing task checklist	(Table	24.7)

Test effort success criteria
The	criteria	for	deeming	a	test	effort	successful	are	as	follows	(Table	24.8):

Table 24.8 Test Effort Success Criteria List

Adequate test plans are completed and approved for the system under test

Adequate identification and coordination of required test resources are completed

Previous component, subsystem, and system test result form a satisfactory basis for
proceeding into planned tests

Risk level is identified and accepted by program/competency leadership as required

Plans to capture any lessons learned from the test program are documented

The objectives of the testing have been clearly defined and documented; and the review of
all the test plans, as well as the procedures, environment, and configuration of the test item,
provides a reasonable expectation that the objectives will be met

The test cases have been reviewed and analyzed for expected results, and consistent with the
test plans and objectives

Test personnel have received appropriate training in test operation and safety procedures

Table 24.7 Major Testing Task List

The objectives of the testing have been clearly defined and documented, and all of the test
plans/procedures, environment, and configuration of the test item(s) support those
objectives

Configuration of the system under test has been defined/agreed to

All interfaces have been placed under configuration management or have been defined in
accordance with an agreed-upon plan. A version description document has been made
available to test team prior to the review

All applicable functional, unit-level, subsystem system, and qualification testing has been
conducted successfully

All test-specific materials, such as test plans/test cases/procedures, have been made available
to all team members prior to conducting the review

All known system discrepancies have been identified and disposed in accordance with an
agreed-upon plan

All required test resource people, facilities, test articles, test instrumentation, and other
test-enabling products have been identified and are available to support required tests

Roles/responsibilities of all test participants are defined and agreed to

Test contingency planning has been accomplished, and all personnel have been trained

Software Project Templates  ◾  325

24.3 Project Management Template Guidelines
24.3.1 Work Breakdown Structure (WBS) Template Guidelines
Guidelines	for	creating	and	maintaining	WBS	structure	for	the	project	plan	(Table	24.9)	[7]:

Table 24.9 Work Breakdown Task List

1. A project WBS may be tailored and constructed to reflect unique characteristics of the
product effort as appropriate

2. The WBS is a tree-structured, activity-oriented list of all work needed to meet the
requirements of the project

a. The WBS is organized by product or service such that activities for a product (or
subproduct or service) are normally grouped within a section of the WBS

b. The WBS provides a mechanism for the collection of cost and schedule data on a
product-by-product (or service) basis, as well as for the project overall

c. It provides a framework for identifying material, services, schedules, staffing, and cost
associated with each work element of the project

d. It addresses all work required, including organizing, planning, monitoring, controlling, and
reporting the status of all work elements across the project

e. The WBS is used as the set of activities to be scheduled for the project. Estimation of
resources required is also frequently based on the work defined in the WBS. If there is
work you must do that is not reflected in your WBS, it is likely to have no schedule or
resources. It will probably result in a schedule and/or cost variance

f. The checklist provides a list of most high-level activities that a project may have to
perform. It includes a WBS dictionary to assist in selecting the appropriate items. Use
the example of a project WBS in Figure 6.6 (Chapter 6) as a guide in creating,
formatting, and documenting your WBS. Your WBS will have many different WBS items
but will need many of the same items as in the example.

3. Although the WBS is product or service based, remember to include management and
process activities (e.g., reporting, integration, training, requirements management) that must
be accomplished to meet the project requirements. These must be included as WBS
elements or they will not be scheduled and they will have no resources allocated to them.
Some of the management processes that must be covered are planning, monitoring and
control, measurement and analysis, requirements management, acquisition management,
and risk management

4. Organize the specific work elements that must be accomplished into successively smaller
work elements such that

a. The subdivisions (or decomposition) of work elements are referenced in terms of levels

b. The highest levels usually reflect the major deliverable work areas or milestones

326  ◾  Software Project Management: A Process-Driven Approach

24.3.2 Project Planning Guidelines
Inputs	to	project	planning	process	are	as	follows	[8]:

	◾ Requirement	document(s)	or	statement	of	customer	needs	or	replanning	criteria	(change	in	
requirements	or	constraints,	or	significant	variance	from	the	original	plan)

The	outputs	of	project	planning	process	are	as	follows:

	◾ The	baselined	project	plan	and	its	subsidiary	plans
	◾ The	plan	for	tracking	the	progress	and	cost	of	work	elements

Major tasks	(Table	24.10)

24.3.3 Project Monitoring and Control Guidelines
Inputs	for	project	monitoring	and	control	[9]:

	◾ Baselined	software	project plan	and	subsidiary	plans
	◾ Established	development	environment
	◾ Initial	progress	tracking	worksheet
	◾ Project	status	information
	◾ Technical	review	materials

Review	packages
Change	requests
Requests	for	action	(RFAs)
Review	item	dispositions	(RIDs)
Impact	analysis	(for	requirements	changes),	etc.

Table 24.10 Project Planning Task List

a. Identify (or update) software deliverables and external dependencies

b. Identify (or update) the development and/or acquisition strategy

c. Define (or update) the management and technical approaches to completing the work

d. Develop (or update) the work breakdown structure

e. Develop (or update) the schedule

f. Estimate (or update) product size and project effort and cost

g. Define (or update) the organization and resources needed

h. Develop and document (or update) strategies for data management, risk
management, stakeholder management, and measurement and analysis

i. Write and baseline the project plan

j. Maintain the project plan as needed

Software Project Templates  ◾  327

Outputs	from	project	monitoring	and	control:

	◾ Project	status	reports
	◾ Issues
	◾ Lessons	learned
	◾ Risk	information
	◾ RFAs
	◾ RIDs

Major tasks	(Table	24.11)

Recommended Readings
	 1.	 K.	Elleithy	(2007)	Advances and Innovations in Systems, Computing Sciences and Software Engineering,	

Springer,	Berlin,	Germany.
	 2.	 E.	McGuire	(1999)	Software Process Improvement: Concepts and Practices,	Idea	Group	Inc.,	Hershey,	PA.
	 3.	 R.	 F.	 Goldsmith	 (2004)	 Discovering Real Business Requirements for Software Project Success,	 Artech	

House,	Boston,	MA.
	 4.	 J.	Highsmith,	J.	A.	Highsmith	(2002)	Agile Software Development Ecosystems,	Addison	Wesley,	Boston,	MA.
	 5.	 B.	W.	Boehm,	V.	R.	Basili,	H.	D.	Rombach,	M.	V.	Zelkowitz	(2005)	Foundations of Empirical Software

Engineering: The Legacy of Victor R. Basili,	Springer,	New	York.
	 6.	 G.	D.	Everett,	R.	McLeod	(2007)	Software Testing: Testing across the Entire Software Development Life

Cycle,	Wiley,	Hoboken,	NJ.
	 7.	 D.	Milošević	(2003)	Project Management Toolbox,	Wiley,	Hoboken,	NJ.
	 8.	 R.	E.	Fairley	(2009)	Managing and Leading Software Projects,	Wiley,	Hoboken,	NJ.
	 9.	 J.	P.	Lewis	(2004)	Project Planning, Scheduling, and Control,	Tata	McGraw-Hill,	New	Delhi,	India.

Table 24.11 Project Monitoring
and Control Task List

1. Monitor project activities and resources

2. Monitor work products and project data

3. Monitor software acquisition

4. Monitor commitments

5. Manage corrective actions

6. Generate reports and review progress

7. Conduct milestone reviews

8. Document lessons learned

329

Chapter 25

Future Tools and Techniques

In.the.previous.chapter,.we.learned

	◾ What	common	templates	are	available	in	software	projects?
	◾ Why	should	templates	be	used	in	software	projects?
	◾ What	 common	 attributes	 are	 there	 for	 various	 kinds	 of	 templates	 that	 are	 used	 in	

software	projects?

In.this.chapter,.we.will.learn

	◾ What	future	tools	and	techniques	will	be	available	in	software	projects?
	◾ What	tools	will	be	available	for	software	life-cycle	management?
	◾ What	tools	will	be	available	for	software	project	management?

25.1 Introduction
In	a	very	good	article	about	the	future	of	programming,	it	was	said	that	limitations	in	advance-
ment	of	any	technology	is	not	the	limitation	of	the	technology	but	of	the	human	brain.	We	created	
robots	but	then	suppose	androids	came.	Is	it	possible	that	these	androids	would	become	smarter	
than	human	beings	anytime	in	the	future?	As	far	as	physical	capacities	are	concerned,	there	doesn’t	
seem	to	be	any	constraints.	Androids	can	have	massive	memory	and	storage	power,	which	may	
make	 them	 superior	 than	 human	 beings	 in	 the	 future.	 They	 could	 also	 have	 lightning	 speed	
processing	 power	 in	 the	 future.	 Would	 these	 factors	 make	 androids	 have	 superior	 intelligence	
compared	to	human	beings?	It	is	most	unlikely,	because	whatever	intelligence	is	being	provided	

330  ◾  Software Project Management: A Process-Driven Approach

to	androids	is	being	supplied	by	human	beings.	The	way	human	beings	think	and	the	way	human	
beings	memorize	 is	what	will	go	 into	 these	androids.	 It	 is	 simply	 impossible	 that	what	human	
beings	do	not	know	can	go	to	androids.	After	all	human	beings	can	teach	only	up	to	what	they	
know	and	not	more.	So	limitations	of	intelligence	of	the	ultimate	androids	will	be	same	as	that	
of	human	beings.	With	conscious	effort,	human	beings	would	always	create	robots	and	androids	
who	will	obey	 the	commands	of	human	beings,	and	under	no	circumstances,	would	 they	will	
disobey	any	command	given	by	a	human.	So	after	all,	human	beings	would	be	safe	from	androids	
and	robots.

This	discussion	 is	 interesting.	But	now	 let	us	 come	 to	our	main	 topic.	What	holds	 for	 the	
future	of	programming,	programming	tools,	techniques,	and	software	development	in	general?

There	is	one	caveat	here	though.	We	all	hear	about	computer	science,	computer	engineering,	
and	software	engineering,	but	has	any	of	us	heard	about	software	science?	Computer	engineering	
goes	with	computer	science,	but	what	goes	with	software	engineering?	Why	is	there	no	such	thing	
as	software	science?	Probably	because	computer	science	has	usurped	all	areas	that	could	have	gone	
under	software	science	if	it	ever	existed!

25.2 Software Industry Trends
There	is	no	denying	that	there	has	been	tremendous	progress	in	all	areas	covering	computer		science,	
software	engineering,	hardware	engineering,	artificial	intelligence,	and	many	areas	related	to	or	
dealing	with	computers	and	software	after	the	advent	of	computers	and	their	software	[1].	Indeed	
the	efforts	of	millions	of	people	over	these	years	have	really	paid	off.	The	software	industry	is	one	
of	the	fastest	growing	and	changing	fields	in	the	history	of	human	kind	(Figures	25.1	and	25.2).

Here	let	us	find	out	what	the	latest	trends	are	in	the	software	industry	today.

25.2.1 Open Source
Today,	open	source	has	become	an	established	force	in	the	software	industry	[2].	The	open	source	
community	voluntarily	develops	software	products	or	components	and	makes	then	available	to	the	
entire	world	with	the	source	code	for	free	or	for	a	small	fee.	Since	the	source	code	is	available,	other	
developers	can	see	it,	evaluate	it,	and	can	make	changes	in	the	source	code.	They	in	turn	can	pub-
lish	it	to	the	wide	and	vast	community	of	open	source	people.	This	is	a	very	strong	business	model.	

Service
oriented

architecture
Open source Intelligent

Web site
Web

services
Streaming

media
Talking

Web sites
Social

networks

Future software
industry trends

Figure 25.1 Future software industry trends.

Future Tools and Techniques  ◾  331

In	stark	contrast,	for	any	proprietary	software	product,	development	is	constrained	by	the	amount	
of	time	and	money	a	software	vendor	can	afford.	So	there	is	a	limit	up	to	how	much	the	product	
can	be	tested	or	further	developed.	This	constraint	does	not	apply	to	the	open	source community.	
Each developer	 involved	 in	open	 source	development	works	on	his	own	and	can	contribute	as	
much	as	he	wants.	And	since	it	is	open	to	anybody	in	the	world,	a	large	number	of	developers	can	
	contribute	to	the	same	product.

Currently	open	source	is	a	big	success	story.	It	is	suitable	for	developing	small	neatly	built	soft-
ware	products	to	some	of	the	large	products	like	Linux,	MySQL,	etc.	It	is	going	to	expand	further	
in	the	future	and	will	remain	a	strong	force	in	the	software	development	community.

25.2.2 Application Service Provider
The	application	service	provider	(ASP)	model	is	based	on	the	idea	of	providing	access	to	software	
product	via	subscription	instead	of	the	traditional	model	where	you	must	purchase	the	license	of	
a	product	to	install	and	use	it	[3].	Users	pay	subscription	fees	at	regular	time	intervals	much	like	
cable	TV.	If	any	user	fails	to	pay,	his	access	to	the	application	is	denied.	It	is	a	very	good	model	
because	users	do	not	need	to	pay	the	hefty	price	usually	associated	with	a	software	product.	Here	
they	pay	only	a	small	subscription	fee.	ASP	is	still	around	but	has	not	gained	much	ground	due	to	
low	awareness,	data	theft	worries,	partial	but	not	full	control	of	the	application,	etc.

The	term,	“ASP,”	originated	in	the	1990s.	Now	it	is	known	as	software	as	a	service	(SaaS)	[4].

25.2.3 Software as a Service
SaaS	 can	 be	 a	 complete	 application	 per	 se,	 but	 it	 can	 also	 be	 a	 service	 that	 can	 provide	
valuable	 information	or	 service	 in	conjunction	with	another	application.	Some	of	 the	SaaS	
applications	that	work	with	other	applications	include	live	feeds	(news,	broadcasts,	etc.,	ser-
vices),	live	services	(airline	fares,	online	tickets,	etc.),	Internet	searches	(for	goods	or	services),	
software	applications,	 etc.	When	SaaS	 is	 a	 complete	application,	 it	 can	provide	 its	 services	
on	its	own	and	may	not	need	services	from	any	other	SaaS	service	(www.salesforce.com	and	
www.onenetwork.com).

SaaS	has	a	great	future.	With	evolution	of	the	Internet	and	usage	of	the	Internet	becoming	
even	more	widespread,	SaaS	will	have	expanded	market	and	will	grow	more.

Automatic
formatting

Automatic
pull from
sources

Automatic
hierarchy

Future software requirements
tool capabilities

Automatic
aggregation

Text
converters

Figure 25.2 Future capabilities of management tools for software requirements.

332  ◾  Software Project Management: A Process-Driven Approach

25.2.4 Service-Oriented Architecture
Service-oriented	architecture	(SOA)	was	invented	for	SaaS	products	[5].	Traditional	software	products	
were	not	made	for	mass	markets.	Rather	they	were	made	for	use	by	limited	groups	(offices,	organi-
zations,	etc.).	SaaS	has	changed	all	that.	Now	software	products	are	made	for	mass	markets.	It	has	
fundamentally	changed	the	architecture	of	software	products	to	suit	the	needs	of	providing	access	to	
mass	markets.	As	software	products	are	now	being	marketed	more	as	a	service,	these	products	should	
have	facilities	that	can	effectively	make	it	work	as	service	rather	than	as	a	product.	All	of	these	are	
taken	care	of	by	adopting	SOA	architecture.	As	SaaS	grows,	so	will	SOA.

The	most	important	aspect	of	SOA	applications	is	their	ability	to	integrate	with	other	applica-
tions.	But	before	integration,	they	also	should	have	some	properties	that	will	make	them	search-
able	 so	 that	people	 looking	 for	 an	appropriate	SaaS	 service	 can	easily	find	 them.	For	 this,	 the	
service	providers	register	themselves	in	searchable	directories	at	appropriate	places	so	that	their	ser-
vice	can	be	easily	found.	Once	somebody	finds	a	suitable	service,	they	can	register	themselves	for	
this	service.	Here	comes	the	role	of	integration.	The	integration	is	done	using	Web	Services (WSs).	
WSs integrate	with	other	applications	using	what	is	known	as	loose	coupling.	When	two	or	more	
SaaS	 applications	 get	 integrated,	 there	 is	 never	 a	 permanent	 integration	 among	 these	 applica-
tions.	They	integrate	only	for	the	time	they	need	to	integrate.	For	instance,	a	user’s	computer	may	
integrate	with	one	SaaS	application	if	he	has	registered	for	it.	Later,	the	user	finds	a	better	SaaS	
application	for	his	needs	and	decides	to	register	for	it.	The	moment	he	registers	for	it,	there	is	a	new	
integration	between	the	user	computer	and	the	new	SaaS	application.	The	old	integration	between	
the	user	computer	and	the	old	SaaS	application	vanishes	without	a	trace.

25.2.5 Intelligent Web Sites
What	can	you	expect	in	the	future	from	the	current	trend	of	sophisticated	Web	sites?	In	fact,	what	
we	are	seeing	today	can	still	be	considered	as	a	nascent	stage	in	the	development	of	the	Internet.	
In	the	future,	we	can	have	Web	sites	that	can	store	a	profile	of	a	user’s	habits	and	preferences	and	
will	present	content	based	on	the	specific	user’s	requirements.	This	kind	of	Web	site	will	be	intel-
ligent	in	a	true	sense.

25.2.6 Web Services
With	SOA,	we	have	a	great	technology	that	defines	new	trends	in	software	industry.	But	without	
WSs,	this	technology	will	not	be	able	to	tap	the	promise	it	invokes.	WSs	allow	asynchronous	and	
on-demand	integration	between	two	SOA-based	applications.	It	is	this	capability	that	will	trans-
form	the	way	any	software	application	will	be	used.	Without	WSs,	SOA	architecture	is	like	a	great	
innovation	sitting	on	a	shelf	which	is	just	a	showpiece.

25.2.7 Streaming Media
We	 already	 have	 some	 great	 Web	 sites	 with	 streaming	 media	 (e.g.,	 YouTube).	 We	 are	 actually	
experiencing	just	the	beginning	of	a	revolution.	All	kinds	of	media	will	become	available	on	the	
Internet	in	the	future.	Currently,	bandwidth	is	a	constraint	in	the	choice	of	richness	of	streaming	
media	to	be	deployed.	With	increase	in	bandwidth	in	the	future,	a	great	number	of	rich	media	can	
be	deployed.	So	the	true	functionality	of	television,	radio,	and	other	media	will	be	fully	available	
on	the	Internet.

Future Tools and Techniques  ◾  333

25.2.8 Social Networks
Google	is	a	phenomenon	that	has	changed	the	Internet	forever.	In	fact,	it	has	made	an	impact	on	
other	kinds	of	businesses	as	well.	The	advertising	network	of	Web	sites	has	changed	the	way	the	
advertising	is	done.	Now	even	costly	products	and	services	can	be	offered	for	free	by	generating	
revenue	not	from	sale	of	products	and	services	but	from	advertising.

Social	networks	are	an	offshoot	of	this	phenomenon.	In	social	networks,	the	user	of	a	Web	site	
is	not	open	to	anyone	who	is	surfing	the	Internet	but	only	to	those	whom	the	user	has	given	access.	
Orkut,	Twitter,	Facebook	are	some	of	the	most	popular	social	network.

25.2.9 Influence of New Trends on Software Industry
Innovation	in	technology	opens	new	ways	of	doing	business	and	new	ways	for	fulfilling	personal	
goals.	At	the	same	time,	new	trends	and	innovations	in	our	business	and	personal	life	result	in	
the	creation	of	new	technology	to	fulfill	those	needs.	So	this	works	both	ways.	The	new	trends	in	
technology	that	we	are	observing	have	not	started	on	its	own.	Some	of	them	have	started	to	fulfill	
the	existing	needs,	and	the	remaining	part	has	been	conceived	by	brilliant	people	and	organizations	
who	created	these	innovations	that	are	driving	creation	of	new	needs.

25.3 Software Requirement Management Tools
There	are	not	many	specialty	tools	that	are	currently	used	for	requirement	management	[6].	Most	
people	do	their	gathering	of	requirements	and	management	jobs	with	word	processors	and	simple	
databases.	Some	tools,	however,	let	users	analyze	the	requirements	that	they	have	gathered	and	
allow	them	to	be	stored	in	specific	ways	so	that	users	can	manage	their	requirements	better.	The	
malady	with	requirements	is	that	they	come	from	many	sources	in	many	formats	(like	e-mails,	
questionnaire	responses,	 interviews,	old	archived	requirements,	etc.).	Formatting	these	require-
ments	and	then	putting	them	in	the	right	perspective	is	still	a	daunting	task.

In	the	near	future,	however,	there	will	be	specialty	tools	to	help	people	do	the	tasks	associated	
with	requirement	management.	There	will	be	data	retrieving	and	data	cleansing	programs	to	get	
requirements	from	customer	complaints/suggestions	and	other	sources.	The	voice	into	text	con-
verters	will	become	usable	so	that	programs	can	convert	spoken	voice	during	user	interviews	into	
text	and	store	them.	There	will	be	efficient	tools	that	will	convert	unformatted	requirements	from	
many	sources	into	uniform	requirements.

25.4 Software Design Management Tools
Computer-aided	software	engineering	(CASE)	tools	ably	handle	such	tasks	as	configuration	man-
agement,	data	modeling,	model	transformation,	source	code	generation,	and	the	creation	of	many	
kinds	of	diagrams.	Most	of	these	tasks	are	related	to	software	design.	Currently	there	are	CASE	
tools	on	the	market	that	produce	the	skeletal	framework	of	source	code	when	the	software	design	
is	to	be	made	by	software	architects	manually.	There	are	many	kinds	of	documents	needed	as	part	
of	software	design	to	construct	the	software	product	(Figure	25.3).

Some	common	types	of	documents	made	include	entity	relationship	diagrams,	use	cases,	activity	
diagrams,	workflow	diagrams,	etc.	All	of	these	different	types	of	documents	are	made	manually.	

334  ◾  Software Project Management: A Process-Driven Approach

It	will	become	possible	in	the	future	to	create	one	type	of	design	document	manually	and	other	types	
automatically.	When	the	original	manual	document	is	changed,	automatically	created	documents	
will	also	change	without	the	need	to	change	them	manually.	The	software	source	code	generated	by	
these	tools	will	also	become	more	usable.

25.5 Software Build Management Tools
Software	 construction	 is	 the	most	 labor-intensive	phase	 in	 software	development	 life	 cycle.	So	
although	software	design	is	ready,	it	takes	a	lot	of	time	before	the	software	product	actually	gets	
into	shape	and	users	can	see	it.	Naturally	increasing	productivity	for	software	construction	activi-
ties	will	shrink	the	time	required	to	build	any	product.	Much	work	has	been	done	by	many	ven-
dors	to	bring	tools	for	this	purpose	(Figure	25.4).

Right	from	automatic	code	generators	to	IDEs	to	CASE	tools,	much	work	has	been	done	to	
increase	source	code	generation	speed.	Some	tools	are	successful	while	others	could	not	do	much.	
Let	us	see	some	of	these	efforts.

25.5.1 Automatic Code Generator
Automatic	code	generators	have	not	succeeded	so	far,	but	they	will	become	a	reality	in	the	future	[7].	
To build	functionality	to	provide	automatic	building	capability	of	all	kinds	of	widgets	with	all	
possible	properties	is	a	gargantuan	task.	It	is	like	building	an	industrial	robot	that	can	build	a	
complete	car	from	scratch.	It	is	possible	to	build	such	a	generator	in	the	future	but	it	may	take	
some time.

Design
conversion

Automatic
deisgn

Source code
generation

Future software design
tool capabilities

Automatic
design

updation

Source code
updation

Figure 25.3 Future capabilities of software design tools.

Powerful
IDEs

True code
reuse

Automatic
code

generator

Future software construction
tool capabilities

Powerful
programming

languages

Easier code
maintainability

Figure 25.4 Future capabilities of software construction tools.

Future Tools and Techniques  ◾  335

25.5.2 Integrated Development Environment Tools
Currently	some	IDEs	are	on	the	market	that	allow	developers	to	carry	out	all	kinds	of	program-
ming	tasks	visually,	but	functionality	is	still	not	complete	[8].	They	can	have	a	database.

25.5.3 Programming Language
Currently	Java	is	the	most	popular	programming	language	because	of	its	rich	library	and	func-
tionality	[9].	Ruby	is	becoming	popular	these	days	because	of	its	easy	language	structure.	In	the	
future,	some	newly	introduced	programming	languages	may	become	popular.	But	their	success	
will	depend	on	how	easy	they	are	to	use,	how	good	their	libraries	are,	how	productive	they	will	be,	
and	how	much	support	they	will	provide	to	different	platforms.

25.6 Software Testing Management Tools
Software	testing	will	become,	moreover,	a	verification	and	validation	service	for	the	complete	prod-
uct	development	life	cycle.	This	is	in	line	with	the	software	engineering	approach	to	reduce	defects	in	
the	work	products	instead	of	finding	defects	and	then	fixing	them	after	the	software	is	constructed.	
So	the	role	of	software	testing	will	increase	along	with	that	of	software	engineering	(Figure	25.5).

25.6.1 Test Management
Test	management	will	be	completely	involved	with	all	work	product	reviews	starting	from	require-
ment	reviews	to	design	reviews	to	build	review	to	final	inspection	of	the	software	product	[10].	The	
tools	used	for	managing	test	projects	will	incorporate	these	changes	in	the	future	so	that	they	will	
be	able	to	support	the	changing	role	of	software	testing.

25.6.2 Defect Tracking
Defect	tracking	tools	will	no	longer	be	stand-alone	tools.	They	will	be	part	of	an	integrated	test	
management	suite.	This	will	not	only	help	to	keep	track	of	all	defects	in	the	software	product,	but	
these	defects	will	be	visible	and	can	be	tracked	easily.	Defect	tracking	will	also	become	an	integral	
part	of	evaluating	the	performance	of	the	test	team.

Complete
integrated

tools

Central
testing

management

Integration
with

development

Future software testing
tool capabilities

Automatic
reporting

More
automation

Figure 25.5 Future capabilities of software testing tools.

336  ◾  Software Project Management: A Process-Driven Approach

25.6.3 Automation Tools
Automation	tools	play	an	important	role	in	increasing	the	productivity	of	a	test	effort.	These	tools	
are	used	in	recoding	test	scripts	based	on	test	cases,	and	when	we	want	to	test	the	application,	
we	 run	 these	 scripts.	Currently,	 they	are	used	 for	automating	performance	and	 functional	 test	
cases.	In	the	future,	these	tools	will	be	able	to	support	more	environments,	recognize	new	kinds	of	
user	interface	components,	and	support	many	types	of	testing.

25.6.4 Test Creation Tools
Some	tools	on	the	market	unsuccessfully	try	to	automate	test	creation.	Test	creation	is	still	not	
within	the	reach	of	software	tools.	It	requires	smarter	tools	that	can	think	like	human	beings.	It	
will	take	quite	a	long	time	to	have	a	good	test	creation	tool.

25.6.5 Test Coverage Tools
There	are	two	types	of	test	coverage	tools.	One	kind	inserts	software	test	code	in	the	source	code	
of	the	application	for	finding	test	coverage.	The	other	type	of	tool	generates	test	codes	inside	the	
tool	itself	and	runs	this	code	against	the	application	to	find	out	test	coverage.

25.7 Software Project Management Tools
Software	project	management	uses	tools	and	techniques	similar	to	those	used	in	project	manage-
ment	 in	other	 industries	 apart	 from	software	project	 specific	 tools	 [11].	Most	of	 them	are	well	
established	and	time	tested.	For	project	planning,	we	have	tools	for	making	project	and	schedule	
plans,	 resource	plans,	 earned	value	management,	 risk	plans,	 effort	 estimation,	 cost	 estimation,	
quality	plans,	communication	plans,	configuration	plans,	etc.

Traditional	 planning	 techniques	 like	 Gantt	 charts,	 EVM,	 PERT/CPM	 charts,	 etc.,	 are	 still	
good	and	being	used.	Software	tools	like	Project,	Primavera,	and	others	are	good	for	making	and	
tracking	these	plans.	They	are	also	used	for	making	resource	plans,	project	tracking,	etc.	These	and	
similar	other	tools	are	going	to	be	used	widely	in	future.	Software	vendors	will	mostly	keep	enhanc-
ing	the	existing	features	though	some	more	features	may	be	added	from	time	to	time.	Already	there	
are	many	good	project	management	tools	on	the	market	 that	do	their	work	online.	Using	such	
tools,	project	teams	update	their	reports	on	these	tools	so	that	project	managers	and	other	managers	
responsible	for	evaluating	their	work	can	get	the	reports	online.	The	online	tools	are	really	useful	as	
there	is	no	discrepancy	due	to	inundated	data	or	report	not	sent	in	time	or	similar	excuses.	Online	
tools	also	enable	managers	to	get	reports	even	when	they	are	traveling	(Figure	25.6).

The	most	popular	effort	estimation	techniques	used	currently	are	function	point	analysis,	wide	
band	Delphi,	COCOMO,	and	some	others.	For	effort	estimation,	the	currently	used	techniques	
will	also	be	used	in	future.

With	the	advent	of	distributed	teams	working	on	the	same	project,	the	need	for	good	com-
munication	tools,	such	as	virtual	meetings,	instant	messaging,	virtual	white	boards,	and	voice	over	
IP,	arises;	teams	located	at	geographically	far	distances	could	communicate	effectively	and	in	real	
time	without	the	need	to	travel.	It	is	one	area	that	has	seen	tremendous	progress	in	the	past	decade.	
Without	these	tools,	it	is	almost	impossible	for	distributed	teams	to	work	on	projects.	In	the	future	
more	and	more	new	kinds	of	tools	will	be	developed.	Existing	tools	will	definitely	be	enhanced.

Future Tools and Techniques  ◾  337

Configuration	and	version	control	tools	also	have	witnessed	a	lot	of	progress	to	be	in	synch	
with	trends	in	software	development	methodologies.	For	distributed	teams,	centralized	configura-
tion	management	tools	like	Perforce,	Visual	Source	Safe,	etc.	provide	a	lot	of	features.	These	sys-
tems	provide	totally	secure	access,	accurate	version	control,	ability	to	integrate	with	other	systems	
easily,	and	ability	to	configure	them	as	per	user	requirements.	In	future,	existing	features	will	be	
enhanced	and	some	more	new	features	will	be	added.

Recommended Readings
	 1.	 H.	Fujita,	I.	Zualkernan	(2008)	New Trends in Software Methodologies, Tools and Techniques,	IOS	Press,	

Amsterdam,	the	Netherlands.
	 2.	 J.	Feller	(2005)	Perspectives on Free and Open Source Software,	MIT	Press,	Cambridge,	MA.
	 3.	 S.	M.	Levy	(2002)	Project Management in Construction,	McGraw-Hill	Professional,	New	York.
	 4.	 G.	Blokdijk	(2008)	SaaS 100 Success Secrets—How Companies Successfully Buy, Manage, Host and Deliver

Software as a Service (SaaS),	Emereo	Pty	Ltd.,	Queensland,	Australia.
	 5.	 D.	 Krafzig,	 K.	 Banke,	 D.	 Slama	 (2005)	 Enterprise SOA: Service-Oriented Architecture Best Practices,	

Prentice	Hall	PTR,	Upper	Saddle	River,	NJ.
	 6.	 M.	Khosrow-Pour	(2006)	Emerging Trends and Challenges in Information Technology Management,	Idea	

Group	Inc.,	Hershey,	PA.
	 7.	 J.	Carne	(2007)	Challenging the Boundaries of Symbolic Computation,	Imperial	College	Press,	London,	

U.K.
	 8.	 J.	A.	Jacko	(2009)	Human–Computer Interaction. New Trends,	Springer,	Berlin,	Germany.
	 9.	 H.	Fujita,	D.	M.	Pisanelli	(2007)	New Trends in Software Methodologies, Tools and Techniques,	IOS	Press,	

Amsterdam,	the	Netherlands.
	 10.	 H.-J.	Bullinger	(2009)	Technology Guide: Principles, Applications, Trends,	Springer,	Berlin,	Germany.
	 11.	 M.	Rao	(2007)	Knowledge Management Tools and Techniques,	Butterworth-Heinemann,	Oxford,	U.K.

Web
based

Remote team
accessibility

Automatic
progress
updates

Future project management
tool capabilities

Integrated
functionality

Automatic
estimates

Figure 25.6 Future capabilities of software project management tools.

339

Appendix A: CMMI
Process Standards

CMMI	 process	 standards	 are	 the	 most	 recent	 set	 of	 standards	 for	 software	 projects	 and	 their	
organizations,	devised	by	Software	Engineering	Institute	at	Carnegie	Mellon	University.	They	are	
divided	into	organization	level,	project	level,	and	development	life-cycle	level	process	standards.

A.1 Organizational Level Process Standards
CMMI	has	one	of	the	most	elaborate	definitions	for	organization	level	processes.	Any	organiza-
tion	following	CMMI	standards	for	its	software	development	processes	will	benefit	immensely	in	
terms	of	consistent	project	delivery	with	a	certain	level	of	quality.	Costs	will	also	get	reduced	as	
productivity	will	increase.	Using	a	set	of	five	process	areas	at	the	organization	level,	CMMI	puts	
emphasis	 on	 creating	 and	 implementing	 process	 improvements	 across	 the	 entire	 organization,	
which	results	in	better	productivity	and	quality.	Better	productivity,	in	turn,	translates	to	lesser	
costs	and	time	in	executing	and	delivering	projects.	Better	quality,	in	turn,	translates	to	customer	
satisfaction,	which	in	turn	translates	into	more	business.

A.1.1 Organization Innovation and Deployment
The	purpose	 of	 organizational	 innovation	 and	deployment	 is	 to	 select	 and	deploy	 incremental	
and	innovative	improvements	that	measurably	improve	the	organization’s	processes	and	technolo-
gies.	The	improvements	support	the	organization’s	quality	and	process	performance	objectives	as	
derived	from	the	organization’s	business	objectives.

The	biggest	challenge	in	any	organization	is	change.	Changing	any	process	that	may	affect	
any	person’s	work	always	faces	resistance.	But	improvement	is	not	possible	without	change.	Using	
an	elaborate	framework	for	change	will	allow	dissipating	the	resistance	as	this	framework	will	be	
pervasive	throughout	the	organization	and	there	will	be	management	control	in	implementing	it.	
So	its	success	rate	will	be	high.

340  ◾  Appendix A: CMMI Process Standards

A.1.2 Organization Process Definition + IPPD
The	purpose	of	organizational	process	definition	(OPD)	is	to	establish	and	maintain	a	usable	set	
of	organizational	process	assets	and	work	environment	standards.	Integrated	product	and	process	
definition	(IPPD)	helps	in	defining	an	integrated	approach	for	product	development	with	the	goal	
of	 improving	product	attribute	quality	along	with	the	process	quality	 improvements	using	col-
laboration	among	various	disciplines.

OPD	helps	 in	creating	and	maintaining	a	 set	of	organizational	processes	 that	are	common	
across	all	divisions	of	the	organization.	When	integrated	teams	are	involved	(such	as	development	
and	maintenance	teams),	a	process	definition	that	covers	such	teams	will	govern	the	processes.	
Whenever	a	new	project	is	to	be	started,	it	will	tailor	(modify)	these	processes	according	to	the	
requirements	of	the	project.

IPPD	includes	application	of	defined	processes	on	the	projects.

A.1.3 Organization Process Focus
The	purpose	of	organizational	process	focus	is	to	plan,	implement,	and	deploy	organizational	pro-
cess	improvements	based	on	a	thorough	understanding	of	the	current	strengths	and	weaknesses	of	
the	organization’s	processes	and	process	assets.

This	process	area	involves	assessing	current	practices	and	processes	and	comparing	them	with	
best	practices	and	benchmarks.	Thus,	this	process	area	involves	gathering	process	data	from	all	
areas	of	the	organization.	These	data	are	then	properly	formatted	and	refined.

A.1.4 Organization Process Performance
The	purpose	of	organizational	process	performance	(OPP)	is	to	establish	and	maintain	a	quantita-
tive	understanding	of	the	performance	of	the	organization’s	set	of	standard	processes	in	support	
of	quality	and	process-performance	objectives,	and	to	provide	the	process	performance	data,	base-
lines,	and	models	to	quantitatively	manage	the	organization’s	projects.

Organization	process	performance	 is	gauged	by	measuring	data	from	processes	and	com-
paring	them	with	a	set	of	desired	performance	indicators.	Tailoring	of	processes	for	different	
projects	 results	 in	different	kinds	of	data	 from	each	project.	Therefore,	 organizations	 should	
not	allow	too	much	of	tailoring	of	processes	for	projects.	If	significant	tailoring	happens	across	
projects,	project	data	should	be	grouped	separately	for	similar	projects.	Some	of	the	data	that	
is	collected	include	schedule	and	cost,	reliability,	defect	identification	and	removal	data,	defect	
removal	effectiveness,	latent	defect	estimation,	response	time,	project	progress,	and	a	combina-
tion	of	these	areas.

A.1.5 Organization Training
The	purpose	of	organizational	training	is	to	develop	the	skills	and	knowledge	of	people	so	they	can	
perform	their	roles	effectively	and	efficiently.

Training	can	be	imparted	for	any	area	that	is	common	to	organizations.	Specific	training	can	
be	imparted	when	required	by	a	project	team.	The	objectives	of	any	training	should	be	to	increase	
effectiveness	of	business	processes	and	meet	business	objectives.

Appendix A: CMMI Process Standards  ◾  341

A.2 Project Management Processes
CMMI	has	ten	process	areas	that	support	software	project	management	processes.	CMMI	sup-
ports	 all	 kinds	 of	 project	 management	 methodologies	 and	 using	 CMMI	 ensures	 that	 project	
management	 is	 done	 in	 an	 effective	 way.	 All	 project	 management	 processes	 are	 tailored	 from	
organization	level	standards	so	that	consistent	quality,	schedule,	and	cost	are	maintained	across	all	
projects	for	any	organization.

A.2.1 Causal Analysis and Resolution
The	purpose	of	causal	analysis	and	resolution	is	to	identify	causes	of	defects	and	other	problems	
and	take	action	to	prevent	them	from	occurring	 in	the	future.	It	makes	more	sense	to	prevent	
defects	entering	into	software	products	than	to	detect	defects	and	remove	them.	This	is	more	cost	
effective.	That	is	why	finding	out	what	is	going	wrong	in	the	development	process	and	eliminating	
the	cause	of	the	problem	helps	in	reducing	defects	entering	into	the	product.	Using	statistical	pro-
cess	control	techniques,	data	from	previous	projects	about	common	causes	of	defects	are	analyzed,	
and	then	this	knowledge	is	applied	to	the	current	project.	Apart	from	causes	of	defects,	other	fac-
tors	such	as	productivity,	quality,	cycle	time,	etc.,	are	also	analyzed	from	previous	project	data	and	
are	applied	to	the	current	project	to	improve	the	project.

A.2.2 Configuration Management
The	purpose	of	configuration	management	(CM)	is	to	establish	and	maintain	the	integrity	of	work	
products	using	configuration	identification,	configuration	control,	configuration	status	account-
ing,	and	configuration	audits.

Indeed,	there	are	many	versions	of	software	parts,	documents,	and	project	artifacts	in	the	same	
project.	If	a	proper	version	of	these	parts	is	not	maintained,	team	members	may	be	working	on	
wrong	versions	of	documents	and	software	parts.

A.2.3 Decision Analysis and Resolution
The	purpose	of	decision	analysis	and	resolution	(DAR)	 is	 to	analyze	possible	decisions	using	a	
formal	evaluation	process	that	evaluates	identified	alternatives	against	established	criteria.

Issues	arise	due	to	many	reasons.	All	issues	are	not	of	the	same	importance.	Some	issues	are	
critical	while	others	are	not	so	critical.	Resolving	critical	issues	immediately	is	a	prime	concern	
for	any	project	manager	so	that	its	adverse	effect	on	the	project	can	be	minimized.	Identifying,	
prioritizing,	establishing	a	proper	channel	for	resolution,	and	determining	the	required	action	are	
some	of	the	areas	that	are	decided	using	DAR.

A.2.4 Integrated Project Management + IPPD
The	purpose	of	integrated	project	management	(IPM)	is	to	establish	and	manage	the	project	and	
the	involvement	of	the	relevant	stakeholders	according	to	an	integrated	and	defined	process	that	
is	tailored	from	the	organization’s	set	of	standard	processes.	When	integrated	teams	are	involved	
on	a	project,	IPPD	also	applies.

342  ◾  Appendix A: CMMI Process Standards

This	is	also	known	as	 tailoring	of	processes	 to	suit	 the	needs	of	a	 specific	project.	When	
there	is	no	set	of	established	processes	at	any	organization,	each	project	will	have	its	own	set	
of	processes	decided	by	 the	project	manager.	This	 leads	 to	 substantial	differences	 in	quality,	
productivity,	and	schedule	among	projects.	A	better	way	to	reduce	variability	among	projects	is	
to	take	established	processes	at	the	organization	and	tailor	(modify)	them	to	suit	specific	needs	
of	the	project.	This	is	what	is	achieved	using	IPM	processes.	Basically	four	groups	of	processes	
are	tailored	here:	development	activities,	service	activities,	acquisition	activities,	and	support	
activities.

A.2.5 Measurement and Analysis
The	purpose	of	measurement	and	analysis	(MA)	is	to	develop	and	sustain	a	measurement	capabil-
ity	that	is	used	to	support	management	information	needs.

It	is	a	fact	that	you	cannot	manage	anything	if	you	cannot	measure	it.	All	processes	involved	
in	planning,	executing,	and	controlling	any	project	should	be	measurable;	only	then	can	a	project	
manager	manage	it.	So	measuring	project	processes	and	then	analyzing	them	against	best	prac-
tices	or	benchmarks	empowers	a	project	manager	to	take	appropriate	actions.

A.2.6 Project Monitoring and Control
The	purpose	of	project	monitoring	and	control	(PMC)	is	to	provide	an	understanding	of	the	proj-
ect’s	progress	so	that	appropriate	corrective	actions	can	be	taken	when	the	project’s	performance	
deviates	significantly	from	the	plan.

This	is	one	of	the	most	important	process	areas	related	to	projects.	Work	breakdown	structure,	
project	baseline	information,	CM,	and	many	support	areas	are	linked	to	this	process.	Using	this	
process,	a	project	manager	can	keep	his	project	on	track	using	various	control	measures.

A.2.7 Project Planning
The	purpose	of	project	planning	(PP)	is	to	establish	and	maintain	plans	that	define	project	activ-
ities.	PP	is	done	by	tailoring	organizational	processes	to	suit	the	specific	needs	of	the	project.	
Whenever	there	is	a	change	in	plan,	it	is	to	be	updated	accordingly.	PP	is	related	to	the	technical	
solution,	risk	management,	and	requirement	management	process	areas.	It	needs	an	estimation	
for	effort	and	a	workable	schedule	taking	into	account	the	productivity	and	risks	involved.

A.2.8 Quantitative Project Management
The	purpose	of	quantitative	project	management	is	to	quantitatively	manage	the	project’s	defined	
process	to	achieve	the	established	quality	and	process-performance	objectives.

Using	statistical	process	control	methods	ensures	that	all	processes	are	repeatable	and	devia-
tions	are	minimized.	This	ensures	consistent	quality	of	a	process,	which	results	 in	consistent	
quality	of	products	being	developed.	All	processes	related	to	PMC,	MA,	OPP,	IPM,	etc.,	are	
followed	per	organizational	objectives.	Project	attributes	that	are	monitored	here	include	defect	
density,	 cycle	 time,	 and	 test	 coverage.	 Some	 of	 the	 subprocesses	 measured	 for	 improvement	
include	 requirement	 volatility;	 project	 size,	 schedule,	 and	 cost	 planned	 versus	 actual	 values;	
peer	review	coverage;	test	coverage;	training	effectiveness;	reliability;	number	of	defects	found	
in	each	project	phase;	etc.

Appendix A: CMMI Process Standards  ◾  343

A.2.9 Risk Management
The	purpose	of	risk	management	is	to	identify	potential	problems	before	they	occur	so	that	risk-
handling	activities	can	be	planned	and	invoked	as	needed	across	the	life	of	the	product	or	project	
to	mitigate	adverse	impacts	on	achieving	objectives.

To	determine	risks	for	a	project,	sources	of	risk	are	identified.	A	risk	management	strategy	is	
then	defined	based	on	analysis	of	risk	and	its	projected	impact.	The	strategy	is	then	implemented	
to	 mitigate	 those	 risks.	 Work	 products	 for	 risk	 management	 include	 risk	 source	 lists	 and	 risk	
category	lists.	Some	of	the	causes	of	risk	include	uncertain	requirements;	estimates	not	available	
as	similar	projects	were	not	executed	previously;	infeasible	design;	unavailable	technology;	unre-
alistic	 schedule;	 inadequate	 staffing;	 incapable	 subcontractor;	 inadequate	 communication;	 and	
disruption	to	operations	due	to	natural,	political,	business,	or	any	other	cause.

A.2.10 Supplier Agreement Management
The	purpose	of	supplier	agreement	management	is	to	manage	the	acquisition	of	products	from	
suppliers.

This	process	area	includes	supplier	selection,	supplier	relationship	management,	contract	and	
agreement	creation	and	execution,	product	and	services	acquisition,	etc.

A.3 Software Development Life-Cycle Processes
CMMI	has	elaborate	supporting	processes	for	all	phases	of	the	software	development	life	cycle.	
In	fact,	right	from	requirements,	it	supports	maintenance	and	retirement	of	software	products.

A.3.1 Requirements Management
In	any	business,	demand	from	consumers	is	fulfilled	by	appropriate	supply.	In	the	case	of	software	
development,	demand	from	customers	comes	through	software	requirements.	The	software	devel-
opment	organization,	whether	internal	or	external,	fulfills	this	demand	by	developing	the	required	
software	and	delivering	it	to	the	customer.

In	most	industries,	the	demand	is	precise,	concrete,	and	measurable.	But	in	the	software	devel-
opment	industry,	the	demand	is	not	clear	even	after	the	software	is	delivered.	That	is	why	most	
software	development	projects	fail	on	some	account	or	another.	Due	to	lack	of	clear	requirements	
at	the	very	beginning	of	the	project,	requests	for	change	in	requirements	keep	coming	in	through-
out	 the	entire	 software	development	 life	cycle.	As	discussed	 throughout	 this	book,	 this	creates	
many	kinds	of	problems	in	software	development.

It	is	a	fact	of	life	that	requirements	keep	changing	or	that	additional	requirements	keep	com-
ing.	A	software	development	project	manager,	therefore,	has	to	devise	a	way	so	that	his	project	can	
accommodate	this	aberration.	One	good	way	to	handle	this	is	to	choose	and	use	a	standard	process	
for	requirements	management	that	suits	your	needs.

Even	if	you	have	an	umbrella	process	model	that	covers	every	aspect	of	work	getting	done	in	
your	organization,	for	example,	the	CMMI	model,	the	model	itself	has	many	alternative	compo-
nents	for	doing	individual	tasks.	So	there	could	be	many	alternative	standard	ways	for	managing	
requirements.	Some	of	the	standard	methods	for	managing	requirements	include	using	a	standard	
template	for	gathering	requirements,	using	version	control	to	manage	requirement	changes,	using	
an	iterative	model	for	managing	requirements,	etc.

344  ◾  Appendix A: CMMI Process Standards

A.3.1.1 Requirements Development

This	process	area	describes	three	types	of	requirements:	customer	requirements,	product	require-
ments,	 and	 product	 component	 requirements.	 Taken	 together,	 these	 requirements	 address	 the	
needs	of	relevant	stakeholders,	including	those	pertinent	to	various	product	life-cycle	phases	(e.g.,	
acceptance	 testing	criteria)	 and	product	attributes	 (e.g.,	 safety,	 reliability,	 and	maintainability).	
Requirements	also	address	constraints	caused	by	the	selection	of	design	solutions	(e.g.,	integration	
of	commercial	off-the-shelf	products).

Requirement	development	is	very	important	because	the	whole	software	project	depends	on	it.	
If	requirements	are	not	defined	properly	or	are	ambiguous,	the	software	design	and	construction	
will	be	faulty.	Requirements	should	be	gathered	and	developed	with	utmost	care.

A.3.1.2 Requirement Management

Requirements	are	managed	and	inconsistencies	with	project	plans	and	work	products	are	identi-
fied.	Whenever	any	doubts	about	any	requirement	arise,	a	clarification	is	sought	from	the	con-
cerned	stakeholder	and	the	changes	made	are	 then	 incorporated.	 It	 is	also	part	of	 requirement	
management	to	obtain	commitment	to	the	requirements	from	the	project	participants.	Changes	
to	the	requirements	are	also	managed	as	they	evolve	during	the	project.	Bidirectional	traceability	
among	the	requirements	and	work	products	is	also	maintained.	Inconsistencies	between	the	proj-
ect	plans	and	work	products	and	the	requirements	are	also	identified.	Configuration	and	version	
control	for	all	changed	requirements	are	also	part	of	requirement	management.

A.3.2 Design and Construction (Technical Solution)
The	technical	solution	process	area	is	applicable	at	any	level	of	the	product	architecture	and	to	
every	product,	product	component,	and	product-related	life-cycle	process.	Throughout	the	pro-
cess	areas,	where	we	use	the	terms	product	and	product	component,	their	intended	meanings	also	
encompass	services	and	their	components.

The	 design	 process	 should	 ensure	 that	 all	 the	 requirements	 and	 changed	 requirements	 are	
incorporated	in	the	correct	version	of	the	software	design.	It	should	also	be	ensured	that	due	to	
any	changes	in	requirements,	defects	should	not	be	introduced	into	the	design.

The	construction	process	produces	all	the	software	code	in	large	volume.	Each	developer	is	
assigned	a	piece	of	the	software	design.	So	after	developing	the	pieces,	these	source	code	pieces	
need	to	be	integrated	so	that	the	application	built	from	those	pieces	works	as	intended	and	envis-
aged	in	requirement	documents.	That	is	why	unit	and	integration	testing	should	be	carefully	done	
at	each	iteration	of	development.

A.3.3 Validation
The	 purpose	 of	 validation	 is	 to	 demonstrate	 that	 a	 product	 or	 product	 component	 fulfills	 its	
intended	use	when	placed	in	its	intended	environment.

Validation	 ensures	 that	 the	 produced	 product	 works	 as	 intended.	 Typical	 work	 products	
include	validation	deficiency	reports,	validation	criteria,	validation	procedures,	etc.

Validation	is	done	for	requirements	and	design,	product	and	product	components,	user	inter-
faces,	user	manuals,	training	materials,	and	process	documentation.

Appendix A: CMMI Process Standards  ◾  345

A.3.4 Verification
The	 purpose	 of	 verification	 is	 to	 ensure	 that	 selected	 work	 products	 meet	 their	 specified	
requirements.

For	verification,	a	proper	software	testing	plan	and	execution	is	needed.	A	separate	test	plan	is	
recommended.	The	test	plan	should	incorporate	all	functional	and	nonfunctional	requirements.

A.3.5 Product Integration
The	purpose	of	product	integration	(PI)	is	to	assemble	the	product	from	the	product	components,	
ensure	that	the	product,	as	integrated,	functions	properly,	and	deliver	the	product.

There	should	be	defined	processes	for	PI	so	that	incremental	or	one-stage	integration	between	
software	products	or	software	components	can	be	achieved.	Most	of	the	technical	solution	process	
areas	are	covered	when	PI	is	done.

A.3.6 Process and Product Quality Assurance
The	purpose	of	process	and	product	quality	assurance	is	to	provide	staff	and	management	with	
objective	insight	into	processes	and	associated	work	products.

The	objective	at	the	organization	level	should	be	to	align	and	refine	processes	so	that	the	high	
quality	of	project	processes	is	maintained.	Whenever	noncompliance	is	found,	it	is	to	be	rectified.	
Evaluation	of	the	processes	followed	is	done	periodically	and	it	is	assessed	for	any	noncompliance.

347

Appendix B: ISO Standards

The	International	Standards	Organization	(ISO)	is	an	independent	body	that	devises	different	sets	
of	standards	for	products,	services,	and	processes.	These	standards	are	used	by	private	and	govern-
ment	organizations	to	trade	with	each	other.	For	instance,	a	manufacturer	makes	power	generation	
equipment	in	Germany	and	wants	to	sell	it	to	some	customers	in	South	Africa.	If	the	manufacturer’s	
power	generation	equipments	are	certified	by	ISO	standards,	the	South	African	customer	will	know	
that	the	equipments	will	be	of	a	specific	quality	and	thus	will	not	have	to	worry	about	the	quality	
aspect.	If	the	price	is	right,	he	may	like	to	buy	this	merchandise.	Similarly,	when	a	service	provider’s	
processes	are	certified	by	ISO,	the	buyer	will	know	that	he	can	rely	on	the	services,	which	will	con-
vince	him	buy	those	services.

ISO	has	developed	an	elaborate	set	of	standards	for	processes	involved	in	developing	software	
products.	Software	service	providers	can	get	their	processes	certified	by	an	assessor	for	ISO	stan-
dards	so	that	their	potential	customers	can	be	confident	about	their	quality	of	work.

B.1 Requirements
ISO	itself	does	not	audit	and	certify	any	organization	for	ISO	standards.	It	only	does	research,	
develops	ISO	standards,	and	publishes	those	standards.	Business	process	verification	and	certifica-
tion	for	ISO	standards	is	done	by	consulting	companies	authorized	by	ISO.	There	are	many	con-
sulting	companies	authorized	by	ISO	that	audit	and	certify	the	business	processes	of	organizations	
to	assess	if	these	organizations	can	be	certified	with	ISO	standards.

Before	they	audit	and	assess	business	processes,	they	first	observe	if	the	organization	that	has	
applied	for	ISO	certification	meets	the	requirements	for	certification.

	 1.	An	applicant	organization	is	required	to	develop	a	set	of	procedures	that	covers	all	key	pro-
cesses	in	the	business

	 2.	An	applicant	organization	is	required	to	monitor	processes	to	ensure	they	are	effective
	 3.	An	applicant	organization	is	required	to	keep	adequate	records
	 4.	An	applicant	organization	is	required	to	check	output	for	defects,	with	appropriate	and	cor-

rective	action	where	necessary
	 5.	An	applicant	organization	is	required	to	review	individual	processes	regularly	and	the	qual-

ity	system	itself	for	effectiveness,	facilitating	continual	improvement

348  ◾  Appendix B: ISO Standards

B.2 ISO Family of Standards
Over	the	years,	ISO	has	been	developing	many	standards	for	the	certification	needs	of	many	kinds	
of	organizations.	Over	time,	some	standards	have	become	obsolete	due	to	the	dynamic	nature	of	
markets	and	changes	in	business	processes	due	to	these	changes	in	market	conditions.	In	those	cases,	
ISO	discontinues	obsolete	standards	and	develops	new	ones.	These	new	standards	then	replace	old	
ones.	Some	of	the	standards	that	were	developed	for	software-related	services	are	described	next.

The	ISO	9000	family	of	standards	includes	the	following	standards:

	 1.	ISO 9000:2000 Quality management systems—Fundamentals and vocabulary:	 This	 set	 of	
standards	covers	the	basics	of	what	a	quality	management	system	is	and	contains	the	core	
language	of	the	ISO	9000	series	of	standards.	These	documents	are	used	only	for	guidance	
purposes	and	not	for	certification	purposes.	However,	these	documents	provide	important	
reference	material	to	understand	terms	and	vocabulary	related	to	quality	management	sys-
tems.	ISO	revised	this	standard	to	ISO	9000:2005	in	2005.

	 2.	ISO 9001:2000 Quality management systems—Requirements:	 This	 set	 of	 standards	 is	
intended	for	use	in	any	organization	that	designs,	develops,	manufactures,	installs,	and/or	
services	any	product	or	provides	any	form	of	service.	It	provides	a	number	of	requirements	
that	an	organization	needs	to	fulfill	if	it	is	to	achieve	customer	satisfaction	through	consis-
tent	products	and	services	that	meet	customer	expectations.	It	 includes	a	requirement	for	
the	continual	(i.e.,	planned)	improvement	of	the	quality	management	system	for	which	ISO	
9004:2000	provides	many	hints.

	 	 	 This	is	the	only	implementation	for	which	third-party	auditors	may	grant	certification.	It	
should	be	noted	that	certification	is	not	described	as	any	of	the	“needs”	of	an	organization	
as	a	driver	for	using	ISO	9001,	but	does	recognize	that	it	may	be	used	for	such	a	purpose.

	 3.	ISO 9004:2000 Quality management systems—Guidelines for performance improvements:	
This	set	of	standards	covers	continual	improvement.	It	gives	you	advice	on	what	you	could	
do	to	enhance	a	mature	system.	This	standard	very	specifically	states	that	it	is	not	intended	
as	a	guide	to	implementation.

	 	 	 There	are	many	more	standards	in	the	ISO	9001	family,	many	of	them	not	even	carry-
ing	“ISO	900x”	numbers.	For	example,	some	standards	in	the	10,000	range	are	considered	
part	of	the	9000	family:	ISO 10007:1995	discusses	configuration	management,	which	for	
most	organizations	is	just	one	element	of	a	complete	management	system.	ISO	notes:	“The	
emphasis	on	certification	tends	to	overshadow	the	fact	that	there	is	an	entire	family	of	ISO	
9000	standards…	Organizations	stand	to	obtain	the	greatest	value	when	the	standards	in	
the	new	core	series	are	used	in	an	integrated	manner,	both	with	each	other	and	with	the	
other	standards	making	up	the	ISO	9000	family	as	a	whole.”

	 	 	 Note	that	the	previous	members	of	the	ISO	9000	family,	9001,	9002,	and	9003,	have	all	
been	integrated	into	9001.	In	most	cases,	an	organization	claiming	to	be	“ISO	9000	regis-
tered”	refers	to	ISO	9001.

B.3 Salient Features of ISO 9001 (ISO IEC 90003)
ISO	has	merged	discontinued	series	of	standards	9001,	9002,	and	9003	into	a	single	standard	which	
is	referred	to	as	ISO	9001.	The	latest	version	is	ISO	IEC	90003	for	software-related	services.	ISO	
IEC	90003	is	a	quality	management	standard	for	computer	software	and	related	services.	It	replaces	

Appendix B: ISO Standards  ◾  349

the	old	ISO	9000-3	1997	software	standard.	ISO	IEC	90003	explains	how	ISO	9001	2000	can	be	
applied	to	software	and	related	services.

ISO	standards	are	divided	 into	 sections	at	 the	 top	 level.	 ISO	presents	quality	management	
requirements	and	guidelines	in	sections	4–8	of	ISO	90003.	Sections	1–3	cover	technical	topics	that	
are	introductory	in	nature.	Section	1	is	the	description	for	the	set	of	standards	as	well	as	require-
ments	to	implement	this	certification.	Section	2	provides	information	for	the	approach	to	be	taken	
to	implement	this	certification.	Section	3	contains	a	description	of	all	the	definitions	used	in	this	
certification.	Sections	4–8	provide	guidelines	that	actually	describe	what	this	version	of	ISO	stan-
dard	is	all	about.

Here	are	the	salient	features	of	this	set	of	standards	(sections	4–8).

Section 4: Systemic Requirements and Guidelines

Section 4.1: Establish a Quality Management System for Software Products

Here	major	process	areas	include	developing	a	quality	system	for	software	products	and	software	
services.	To	achieve	these	goals,	suitable	processes	are	identified	for	building	the	quality	system,	
including	software	development,	software	development	planning,	software	quality	planning,	soft-
ware	operation,	and	software	maintenance.	The	sequencing	of	the	process	steps	and	their	interac-
tion	with	 each	other	 are	described.	The	 implementation	of	quality	management	 systems,	 their	
effectiveness,	 and	 the	 support	 for	 these	 processes	 are	 documented.	 How	 improvement	 will	 be	
done	in	the	quality	management	system	using	effectiveness	monitoring,	measuring	effectiveness,	
improving	effectiveness	is	determined.

Section 4.2: Document Your Software-Oriented Quality System

Section 4.2.1: Developing Quality Management System Documents

This	section	deals	with	taking	care	of	documentation	for	quality	system,	software	processes,	and	
life-cycle	models.

Section 4.2.2: Preparing a Quality Management System Manual

This	section	deals	with	preparing	user	manuals	for	processes,	process	interactions,	process	scope,	
and	procedure	to	increase	or	decrease	scope.

Section 4.2.3: Control Quality Management System Documents

This	section	deals	with	version	control	of	documents	and	handling	issues	like	obsolescence	and	
usability	of	documents.

Section 4.2.4: Maintain Quality Management System Records

This	section	deals	with	issues	regarding	record	retention,	record	keeping	management	system,	and	
how	records	are	used.

350  ◾  Appendix B: ISO Standards

Section 5: Management Requirements and Guidelines

Section 5.1: Support Quality

This	section	deals	with	the	role	of	management	in	influencing	the	organization	toward	adhering	
to	quality	processes	in	fulfilling	customer	and	product	requirements.	It	also	involves	creating	a	
management	system	that	helps	in	setting	and	achieving	quality	norms.	It	specifies	the	need	to	have	
adequate	resources	that	will	help	in	implementing	the	quality	management	system.	Once	imple-
mented,	measures	are	to	be	taken	so	that	the	system	is	used	by	people.	After-implementation	effort	
also	involves	improving	the	quality	management	system	by	doing	periodic	reviews	and	assigning	
resources	for	quality	system	improvement	efforts.

Section 5.2: Focus on Your Customers

This	 section	 deals	 with	 identifying	 customer	 requirements	 accurately	 and	 then	 meeting	 them	
through	 the	 fulfillment	 cycle.	 Customer	 satisfaction	 should	 be	 the	 hallmark	 of	 service.	 Effort	
should	be	made	to	enhance	customer	experience.

Section 5.3: Establish a Quality Policy

If	you	want	to	be	a	quality-conscious	organization,	you	need	to	define	your	quality	policy,	which	
will	 serve	 your	 organization’s	 purpose,	 meet	 your	 requirements,	 and	 ensure	 that	 your	 quality	
objectives	 are	met	 through	policy	 adherence.	To	 ensure	 that	 everybody	 adheres	 to	 the	quality	
policy,	 the	policy	needs	 to	be	 communicated	properly	 so	 that	 it	 reaches	 everybody.	Review	of	
policy	implementation	should	be	done	at	regular	intervals	so	that	changes	required	in	the	policy	
can	be	done	per	the	current	business	environment.

Section 5.4: Perform Quality Planning

Once	you	have	defined	your	quality	objectives	 for	 functional	 areas	 at	 all	organizational	 levels,	
you	can	start	planning	on	how	to	implement	them.	They	should	include	quality	management	for	
software	products	and	a	mechanism	for	quality	improvement	of	the	process.

Section 5.5: Control Your Quality System

You	need	to	find	a	mechanism	to	control	and	manage	your	quality	system.	For	this,	assign	people	
with	proper	authority	and	responsibility	and	communicate	this	change	within	the	entire	organiza-
tion.	A	person	from	top	management	should	be	appointed	to	oversee	work.	Assess	the	effective-
ness	of	the	quality	system	and	get	status	reports	at	regular	intervals.	Whenever	required,	include	
a	provision	so	that	the	quality	system	maintenance	can	be	done	for	effecting	required	changes	in	
the	system.	Communication	on	all	things	regarding	the	system	should	be	done	in	such	a	way	that	
it	reaches	all	employees	in	the	organization.

Section 5.6: Perform Management Reviews

A	procedure	for	management	reviews	of	status	reports	should	be	made.	This	should	include	mecha-
nisms	for	doing	regular	reviews,	effectiveness	evaluation	of	the	quality	program,	and	maintenance	of	
status	reports.	Proper	examination	of	the	audit	(review)	results	should	be	done	so	that	opportunities	

Appendix B: ISO Standards  ◾  351

for	improvements	can	be	identified,	customer	feedback	can	be	examined	and	incorporated	in	the	
quality	system,	produced	software	product	quality	data	can	be	examined	and	process	performance	
information,	 effectiveness	 of	 corrective	 and	 preventive	 actions,	 and	 finally	 overall	 management	
review	reports	can	be	provided.	The	review	reports	should	be	used	to	make	improvements	in	the	
quality	system	to	make	it	more	effective,	improve	software	product	quality,	and	also	address	current	
and	future	manpower	needs	of	the	organization.

Section 6: Resource Requirements and Guidelines

Section 6.1: Provide Quality Resources

This	area	covers	the	needs	to	address	resource	requirements	for	meeting	customer	requirements,	regu-
latory	requirements,	and	the	supporting	quality	system.	Resources	needed	for	the	quality	system	can	
be	 categorized	 as	 resources	 for	 support,	 resources	 for	 implementation,	 resources	 for	 quality	 system	
improvement,	 resources	 for	 meeting	 customer	 requirements,	 and	 resources	 for	 meeting	 regulatory	
requirements.

Section 6.2: Provide Quality Personnel

The	employees	 selected	 for	 the	quality	department	 should	have	 appropriate	 experience,	 educa-
tion,	training,	and	skills	to	do	their	job	effectively.	Proper	training	programs	should	be	arranged	
for	software	development	staff	and	software	project	management	staff,	and	regular	status	checks	
should	be	done	to	know	if	these	programs	are	effective.

Section 6.3: Provide Quality Infrastructure

For	implementing	a	quality	system	you	need	to	set	up	an	infrastructure	on	which	the	system	can	
be	 built.	 The	 infrastructure	 needs	 should	 be	 identified	 first	 based	 on	 hardware,	 software,	 and	
physical	facilities	needed	for	software	development.	Tools	that	will	facilitate	software	development	
and	that	will	 support,	protect,	and	control	 these	activities	 should	be	 identified.	Tools	will	also	
be	needed	to	manage	these	activities.	Proper	guidelines	should	be	drawn	to	maintain	this	entire	
infrastructure	so	that	these	activities	do	not	get	hampered	in	need	of	maintenance.

Section 6.4: Provide Quality Environment

The	work	environment	for	the	people	in	the	organization	should	help	in	facilitating	productivity.	
A	suitable	work	environment	should	be	identified,	and	this	should	be	implemented	and	managed.

Section 7: Realization Requirements and Guidelines

Section 7.1: Control Software Product Realization Planning

Here,	processes	that	help	in	setting	quality	objectives	for	software	products	as	well	as	risk	mitiga-
tion	strategies	are	 identified.	Once	a	 realization	process	 is	 identified,	 these	processes	 should	be	
developed.	The	software	production	life-cycle	model	should	be	identified	and	all	project	activi-
ties	associated	with	that	model	should	be	chosen.	All	 software	projects	 should	be	planned	and	
executed	according	to	the	chosen	model.	Correlation	between	the	 life-cycle	model	and	quality	
management	system	should	also	be	made.

352  ◾  Appendix B: ISO Standards

Section 7.2: Control Customer Processes

Software	requirements	from	customers	should	be	identified	clearly.	Parameters	that	affect	the	use	
of	the	software	product	should	be	identified.	Compliance	to	regulations	imposed	by	the	govern-
ment	and	other	agencies	in	operation	of	the	software	product	should	also	be	ensured.	To	get	cus-
tomer	requirements,	tools	and	methods	appropriate	for	the	occasion	should	be	employed.	Once	
requirements	are	gathered,	they	should	be	analyzed.	Analysis	should	be	done	in	view	of	contract,	
software	engineering,	software	maintenance,	and	software	quality	requirements.	If	there	are	any	
concerns	regarding	supporting	information	from	the	customer,	concerns	from	design	and	develop-
ment	points	of	view,	etc.,	should	be	clarified.	Before	making	a	commitment,	evaluate	your	own	
capabilities,	weaknesses,	profitability,	etc.	Also	evaluate	the	capability	of	your	suppliers.	Appoint	a	
senior	level	executive	as	account	manager	for	fulfilling	customer	requirements	and	communicat-
ing	with	customers.	Create	a	communication	channel	for	consistent	and	regular	communication	
with	your	customer.	Also	ensure	that	regular	reviews	and	assessments	are	conducted	for	the	project	
work	being	done.	Establish	problem	resolution	mechanisms	so	that	whenever	any	issues	arise,	they	
are	resolved	satisfactorily.

Section 7.3: Control Software Design and Development

Once	the	requirements	are	analyzed	and	the	project	team	is	ready	to	go	ahead,	they	will	start	doing	
software	design	and	development.	To	facilitate	 this	process,	 they	should	first	have	 information	
about	the	stages	involved	in	these	activities.	They	should	also	have	controlling	procedures	for	these	
activities	lest	something	goes	wrong.	The	project	team	should	have	a	clear	organizational	struc-
ture	and	every	member’s	responsibilities	should	be	clearly	defined.	Clear	communication	chan-
nels	need	to	be	established	for	interaction	among	the	design	and	development	teams.	Whenever	
changes	occur,	all	team	members	should	be	informed.	The	project	plan	should	be	updated	accord-
ingly	as	well.	Each	and	every	activity	should	be	clearly	defined	in	the	project	plan	so	that	people	
know	the	activities	that	are	to	be	performed	and	the	activities	are	in	the	pipeline.	Outputs	from	
each	activity	should	be	documented.	Management	activities	should	also	be	clearly	defined.	The	
support	that	will	be	needed	for	these	activities	should	be	stated.	The	training	requirements	should	
also	be	specified.	Verification	and	validation	needs	should	be	identified	as	should	the	rules,	tools,	
techniques,	and	conventions	that	will	be	needed	for	the	design	and	development.	Elaborate	plan	
for	verification	and	validation	activities	should	be	specified	for	development,	maintenance,	and	
operation.	Service	level	agreements	should	be	the	guiding	principles	for	all	these	activities.

What	input,	input	definitions,	and	their	evaluation	for	fitness	will	be	needed	for	design	and	
development?	Use	 inputs	only	after	 reviewing	 them.	These	 inputs	must	come	from	functional,	
performance,	quality,	security,	and	any	other	requirements	from	the	customer.	The	possible	out-
puts	from	software	product	design	and	development	should	be	determined.	Based	on	the	output,	
control	 activities	 related	 to	design	 and	development.	Keep	a	 record	of	what	outputs	were	pro-
duced.	Once	design	and	development	are	ready,	review	them	before	moving	forward	in	the	proj-
ect.	During	reviews,	establish	procedures	for	problem	resolutions.	Keep	a	record	of	how	a	problem	
was	fixed	for	 future	reference.	Also	keep	records	of	nonconformities,	errors,	and	defects	 in	the	
product	encountered	during	reviews.

After	reviews,	perform	verification	of	design	and	development	of	the	software	product.	Keep	a	
record	of	activities	and	outputs	performed	during	verification.	After	verification,	perform	valida-
tion	of	design	and	development	to	know	if	the	product	conforms	to	the	specifications	outlined	in	
the	requirements.	Conduct	software	testing	activities	and	fix	errors.

Appendix B: ISO Standards  ◾  353

Once	 testing	 is	 complete,	 incorporate	 any	 change	 request	 in	 the	 design	 and	 development.	
Repeat	verification,	validation,	and	testing	after	making	changes.	After	finding	that	the	software	
product	meets	the	specifications	of	the	customer,	hand	over	the	product	to	the	customer.

Section 7.4: Control Your Purchasing Function

Here,	you	manage	your	suppliers,	contractors,	and	subcontractors.	Establish	procedures	to	ensure	
that	products	and	services	supplied	by	your	suppliers	meet	your	requirements.	Establish	procedures	
to	control	your	purchases	of	services,	products,	and	outsourced	activities.	Also	ensure	procedures	
for	purchases	of	parts	and	components	including	software	components.

Establish	mechanisms	to	ensure	that	parts,	components,	products,	and	services	are	delivered	
with	 proper	 documentation.	 Establish	 procedures	 for	 inspection	 and	 verification	 of	 purchased	
goods	and	services.

Section 7.5: Manage Production and Service Provision

After	the	software	product	has	been	installed	and	used	by	the	customer,	it	needs	to	be	maintained,	
and	timely	updates	 for	defects	 found	by	end	users	need	 to	be	made.	All	 the	activities	here	are	
related	to	making	the	software	product	usable.	Thus,	apart	from	user	training	and	guidance,	a	
good	service	mechanism	also	needs	to	be	established	so	that	end	users’	problems	can	be	logged	and	
a	satisfactory	solution	can	be	provided	so	that	work	does	not	get	hampered.

During	the	software	project,	many	artifacts	and	their	different	versions	are	developed.	It	 is	
very	important	that	all	of	them	are	maintained	and	tracked	during	the	life	cycle	of	the	project.	
Establish	a	mechanism	that	will	ensure	that	all	artifacts	can	be	safely	and	accurately	archived	and	
easily	retrieved	whenever	required.	The	software	built	during	development	also	needs	to	be	kept	in	
such	a	way	that	incremental	development	can	be	done.

Section 7.6: Control Monitoring Devices

A	 large	number	of	devices	 are	used	 for	project	 control	 and	monitoring.	This	 section	 identifies	
monitoring	and	measuring	devices	depending	on	the	needs	of	the	project.	First,	needs	for	monitor-
ing	and	measuring	are	identified	and	then	suitable	devices	are	described.	Here,	calibration	needs	
of	these	devices	are	also	identified	and	measures	for	calibration	are	adopted.	Monitoring	and	mea-
suring	devices	also	need	proper	protection	against	unauthorized	use,	damage,	deterioration,	and	
obsolescence.	From	time	to	time,	these	devices	also	need	to	be	validated	so	that	their	measuring	
ability	is	intact	and	that	they	measure	correctly.	It	is	also	important	that	the	users	of	these	devices	
be	 trained	 in	 the	 correct	use	of	 the	devices.	Therefore,	proper	documentation,	 guidelines,	 and	
training	should	be	provided	to	those	doing	the	measurement	using	these	devices.

Section 8: Remedial Requirements and Guidelines

Section 8.1: Carry Out Remedial Processes

Whenever	deviations	in	execution	of	a	project	are	found,	they	have	to	be	corrected.	To	find	these	
deviations,	you	need	to	plan	for	remedial	processes.	But	first	you	need	to	monitor,	measure,	and	
analyze	project	processes	to	know	whether	they	conform	to	the	project	plan.	Embedded	in	the	
project	plan	is	the	quality	plan.	By	monitoring,	measuring,	and	analyzing	project	processes	you	

354  ◾  Appendix B: ISO Standards

continuously	evaluate	your	project	processes.	You	can	in	fact	plan	your	quality	plan	so	that	it	will	
help	in	improving	effectiveness	of	the	quality	management	system	itself.

Section 8.2: Monitor and Measure Quality

Once	your	quality	management	system	is	set	up	and	used	in	projects,	you	are	ready	to	monitor	
and	measure	your	quality	metrics.	You	can	use	many	methods	to	do	this,	as	described	in	your	
quality	management	system.	Some	of	the	metrics	include	customer	satisfaction	through	data	from	
helpdesk	calls,	direct	and	indirect	customer	feedback,	internal	and	external	audits,	etc.

Section 8.3: Control Your Nonconforming Software Products

This	area	discusses	software	products	you	have	made	that	do	not	conform	to	the	quality	norms	as	
set	in	the	requirements	document.	You	need	to	identify	which	of	your	software	products	are	not	
conforming	by	measuring	their	quality	attributes	and	comparing	them	with	the	quality	norms.	
Once	 identified,	 take	 appropriate	measures	 to	 control	 software	products	 so	 that	 they	 conform	
to	the	norms.	This	can	be	done	by	planning	for	devising	work-arounds	or	applying	patches	that	
will	remove	the	defects	in	the	production	instance.	Sometimes	due	to	faulty	documentation	or	
improper	training,	users	may	be	using	the	products	wrongly.	These	instances	should	also	be	identi-
fied	and	corrected.	Once	these	nonconformities	are	removed,	the	product	should	be	demonstrated	
to	the	customer	and	these	issues	should	be	closed.

Section 8.4: Analyze Quality Information

The	quality	management	system	should	have	all	 the	relevant	metrics—monitoring,	measuring,	
and	analyzing	capability—otherwise	it	will	not	be	effective.	The	first	thing	in	this	regard	should	
be	to	identify	what	kind	of	metrics	information	is	needed	for	your	project.	Once	these	metrics	are	
identified,	information	required	for	these	metrics	needs	to	be	gathered	from	your	project	data.	The	
data	can	be	collected	from	your	internal	systems,	customers,	suppliers,	products,	processes,	etc.	
Once	you	have	metrics	data,	you	can	easily	analyze	it.

Section 8.5: Take Required Remedial Actions

Once	you	have	vital	project	metrics	data,	you	can	take	remedial	action	to	rectify	the	nonconforming	
process	areas	as	well	as	improve	effectiveness	of	your	quality	management	system.	The	data	avail-
able	from	the	audits	done	with	your	process	will	help	in	improving	the	effectiveness	of	the	quality	
management	 system.	 Management	 reviews	 will	 also	 help	 to	 increase	 effectiveness	 of	 the	 quality	
management	system.	Any	nonconformity	whenever	found	should	be	strictly	dealt	with;	otherwise,	
it	will	promote	wrong	practices	with	project	teams.	If	any	data	show	that	nonconformity	may	likely	
occur	in	future,	process	areas	where	these	observations	are	found	need	to	be	reviewed	and	necessary	
actions	should	be	taken	to	prevent	future	nonconformities.

355

Appendix C: IEEE Standards

C.1 IEEE Standards Organization
The	IEEE	standard	has	defined	major	phases	of	software	product	life	cycle	as	Software	Requirements,	
Software	Design,	Software	Construction,	Software	Testing,	and	Software	Maintenance.	These	are	
known	as	Knowledge	Areas	(KAs).	They	are	further	divided	into	subareas.	Then,	there	are	sup-
port	 processes	 like	 Software	 Configuration	 Management,	 Software	 Engineering	 Management,	
Software	Engineering	Tools	and	Methods,	Software	Quality,	and	Knowledge	Areas	of	the	Related	
Disciplines.	They	are	further	divided	into	subareas.

IEEE	 standards	 are	 presented	 in	 a	 manner	 that	 is	 very	 close	 to	 how	 a	 software	 project	 is	
planned	and	executed	in	the	real	world.	Unlike	other	standards,	IEEE	standards	do	not	appear	to	
be	imposed	from	outside	on	any	typical	software	projects.	They	look	more	like	a	model	on	which	
any	software	project	can	be	modeled,	instead	of	just	as	a	guide.	Implementing	these	standards	on	
any	large-sized	software	projects	is	easy.

C.2 IEEE Standards Knowledge Areas
IEEE	standards	are	first	divided	into	primary	and	supporting	knowledge	areas.	These	knowledge	
areas	are	then	divided	into	subknowledge	areas.	Each	of	these	subareas	then	has	major	tasks.	These	
tasks	then	may	contain	subtasks.

Software.Requirements:	Software	requirements	knowledge	area	is	divided	into	many	subareas	
as	follows.
Software requirements fundamentals:	Provides	definition	of	software	requirements	and	how	they	
are	distinct	from	system	requirements.
Requirements process:	 Defines	 the	 process	 involved	 in	 gathering	 and	 managing	 software	
requirements.
Requirements elicitations:	Provides	methods	of	gathering	software	requirements	including	interviews,	
meetings,	and	questionnaire.
Requirements analysis:	Provides	methods	as	to	how	to	analyze	software	requirements.

356  ◾  Appendix C: IEEE Standards

Requirements specifications:	Provides	information	as	to	how	to	make	specifications,	so	that	software	
requirements	are	understood	by	any	project	stakeholders	or	project	team	members	without	requir-
ing	further	reference.
Requirements validations:	Provides	 information	as	 to	how	to	validate	any	 software	 requirement	
whether	the	requirement	is	not	ambiguous	or	incomplete.
Practical considerations:	When	software	requirements	are	being	elicited	they	are	 in	crude	 form.	
Only	after	many	iterations,	these	requirements	become	clear.	Then,	requirement	changes	are	order	
of	the	day.	Over	the	project	duration,	many	versions	of	requirements	are	formed.	Managing	these	
versions	and	relating	them	with	the	correct	version	of	software	being	developed	is	a	complex	and	
difficult	task.	These	practical	considerations	are	discussed	in	this	standard.

Software.Design:	The	subareas	of	Software	Design	are	as	follows.
Software design fundamentals:	This	area	provides	information	for	different	aspects	of	activities	that	
are	performed	in	software	design.
Key issues in software design:	This	area	discusses	issues	that	arise	due	to	either	difficulty	in	convert-
ing	requirement	into	a	software	equivalent	or	sometimes	difficulty	in	meeting	any	requirements	
due	to	any	reason	except	technical	issues.
Software structure and architecture:	What	will	be	the	architecture	of	the	product	and	how	will	it	
be	structured?
Software design, quality analysis and evaluation:	How	will	software	be	designed?	How	will	quality	
be	taken	care	of	in	design?
Software design notations:	This	area	provides	information	about	how	to	present	the	architecture	and	
structure	in	an	acceptable	form,	so	that	it	may	be	understood	by	project	team	members	easily.
Software design strategies and methods:	What	 strategy	will	 be	 taken	 for	 software	 design?	 What	
method	will	be	adopted	for	the	design?

Software.Construction:	The	subareas	of	Software	Construction	are	as	follows.
Software construction fundamentals:	General	description	of	construction	methodology.
Managing construction:	How	will	the	construction	process	be	managed?
Practical considerations:	What	practical	limits,	constraints,	and	trade	offs	will	be	adopted	for	con-
structing	the	product?

Software.Testing:	The	subareas	of	Software	Testing	are	as	follows.
Software testing fundamentals:	General	description	of	testing	methodology.
Test levels:	Will	unit	testing,	integration	testing,	and	system	testing	be	done?
Test techniques:	 What	 test	 techniques	 (code	 based/simulation	 based/UI	 based,	 etc.)	 will	 be	
employed	during	testing	phase?
Test-related measures:	What	metrics	will	be	used	for	measuring	effectiveness	of	testing?
Test process:	What	processes	(performance,	functional,	usability,	automation,	etc.)	will	be	employed	
for	testing?

Software.Maintenance:	The	subareas	of	Software	Maintenance	are	as	follows.
Software maintenance fundamentals:	General	description	of	 software	maintenance	process	areas	
that	will	be	followed.

Appendix C: IEEE Standards  ◾  357

Key issues in software maintenance:	Documentation	of	issues	faced	during	maintenance.
Software maintenance process:	Description	of	processes	adopted	for	software	maintenance.
Techniques for software maintenance:	Techniques	adopted	for	software	maintenance	(reengineer-
ing/reverse	engineering,	etc.).

C.3 IEEE Supporting Knowledge Areas
Software.Configuration.Management:	The	subareas	of	Software	Configuration	Management	
are	as	follows.

Management	of	the	SCM	process
Software	configuration	identification
Software	configuration	control
Software	configuration	status	accounting
Software	configuration	auditing
Software	release	management	and	delivery

Software.Engineering.Management:	The	subareas	of	Software	Engineering	Management	are	as	
follows.

Initiation	and	scope	definition
Software	project	planning
Software	project	enactment
Review	and	evaluation
Closure
Software	engineering	measurement

Software.Engineering.Process:	The	subareas	of	Software	Engineering	Process	are	as	follows.
Process	implementation	and	change
Process	definition
Process	assessment
Process	and	product	measurement

Software.Engineering.Tools:	The	subareas	of	Software	Engineering	Tools	are	as	follows.
Software	tools
Software	requirements	tools
Software	design	tools
Software	construction	tools
Software	testing	tools
Software	maintenance	tools
Software	configuration	management	tools
Software	engineering	management	tools
Software	engineering	process	tools
Software	quality	tools
Miscellaneous	tool	issues

Software.Engineering.Methods:	The	subareas	of	Software	Engineering	Methods	are	as	follows.
Numeric	methods
Formal	methods
Prototyping	methods

358  ◾  Appendix C: IEEE Standards

Software.Quality:	The	subareas	of	Software	Quality	are	as	follows.
Software	quality	fundamentals
Software	quality	management	processes
Practical	considerations

Knowledge. Areas. of. Related. Disciplines:	 The	 subareas	 of	 Knowledge	 Areas	 of	 Related	
Disciplines	are	as	follows.

Computer	engineering
Computer	science
Management
Mathematics
Project	management
Quality	management
Software	ergonomics
Systems	engineering

C.4 Software Requirements
Software	 requirements	 are	 governed	by	 the	 IEEE	 12207	 standard.	 IEEE	 has	 a	 comprehensive	
process	definition	for	the	software	requirements	area.

C.4.1 Software Requirements Fundamentals
The	software	requirements	fundamental	subarea	is	divided	into	the	following	subareas:

C.4.1.1 Definition of a Software Requirement

Product and process software requirement:	Software	requirement	must	provide	information	for	both	
product	and	the	process	to	build	that	software	product.	For	example,	a	Web-based	information	
system	may	have	a	login	page.	The	product	information	may	include	the	form	and	fields	as	well	
as	how	the	login	functionality	is	structured.	The	process	information	to	make	this	functionality	
may	include	information	about	which	programming	language	and	which	front	end	will	be	used	
to	make	it.
Functional and nonfunctional requirements:	Functional	 requirements	 include	 information	about	
the	product	features	and	how	they	work.	Nonfunctional	information	includes	information	like	
security,	performance,	and	usability.

C.4.1.2 Emergent Properties

Quantifiable requirements:	The	requirement	 specification	should	provide	 information	about	 the	
total	number	of	requirements	as	well	as	size	and	scope	of	requirements.
System requirements and software requirements:	In	IEEE	standards,	a	system	requirement	is	defined	
as	a	complete	set	of	inputs	and	outputs	for	a	transaction	between	all	actors	including	the	human	
operator,	 the	software	application,	and	any	physical	 instrument	or	device	that	will	be	 involved	
in	completing	that	transaction.	A	software	requirement	on	the	other	hand	discusses	inputs	and	
outputs	from	the	software	application	alone.

Appendix C: IEEE Standards  ◾  359

C.4.2 Requirements Process
The	Requirements	Process	subarea	is	divided	into	the	following	subareas:
Process models:	This	area	describes	information	as	to	what	process	model	is	used	for	requirement	
elicitation	and	requirement	management.
Process actors:	This	area	describes	information	about	who	will	be	actors	for	any	transaction	in	the	
software	application	and	what	their	role	in	that	software	application	transaction	is.
Process support and management:	What	supporting	mechanism	is	available	for	managing	require-
ments	(version	control,	quality	control,	etc.).
Process quality and improvement.

C.4.3 Requirements Elicitation
The	Requirements	Elicitation	subarea	is	divided	into	the	following	subareas:
Requirement sources:	From	where	have	the	software	requirements	been	sourced	and	can	the	require-
ments	be	validated?
Elicitation techniques:	What	elicitation	techniques	will	be	used	(questionnaire,	interviews,	meetings,	
document	exchange,	and	existing	documentation)?

C.4.4 Requirements Analysis
The	Requirements	Analysis	subarea	is	divided	into	the	following	subareas:
Requirement classifications:	Can	requirements	be	classified	into	many	classes?	What	could	those	
classes	be?
Conceptual modeling:	Could	requirements	be	modeled	into	a	conceptual	system?
Architecture design and requirement allocation:	 Could	 requirements	 be	 allocated	 into	 different	
design	parts?	What	kind	of	architecture	will	be	employed	for	designing	the	application?
Requirements negotiations:	Is	any	negotiation	required	with	customer	for	trade-offs	in	designing	
the	application?

C.4.5 Requirements Specification
Software	requirements	specification	subarea	is	divided	into	the	following	subareas:

System	definition	document
System	requirement	specification
Software	requirement	specification

C.4.6 Requirements Validation
The	Requirements	Validation	subarea	is	divided	into	the	following	subareas:

C.4.6.1 Requirement Reviews

Prototyping:	What	kind	of	prototype	will	be	designed	based	on	requirements?
Model validation:	If	the	design	model	will	be	validated,	what	method	will	be	used	to	validate	the	
design?
Acceptance tests:	Will	acceptance	tests	be	made	based	on	requirements?

360  ◾  Appendix C: IEEE Standards

C.4.7 Practical Considerations
The	Practical	Considerations	subarea	is	divided	into	the	following	subareas:
Iterative nature of requirements process:	Will	 iterative	methodology	be	 employed	 in	 case	 all/any	
requirements	are	not	clear	or	there	are	changes	in	requirements?
Change management:	How	will	requirement	changes	be	managed?
Requirements attributes:	Will	attributes	of	requirements	be	defined	and	measured?
Requirements tracing:	Will	any	technique	be	used	for	tracing	requirements	vis-à-vis	software	design?
Measuring requirements:	Will	requirements	be	measured	using	any	metrics	for	design/construction/
testing?

C.5 Software Design
Software	design	is	defined	in	the	IEEE	610	6-12	standard.	The	Software	Design	subarea	includes	
software	design	fundamentals,	key	issues	in	software	design,	software	structure	and	architecture,	
software	design,	quality	analysis	and	evaluation,	software	design	notations,	and	software	design	
strategies	and	methods.

Subareas	of	these	subknowledge	areas	are	given	below.

C.5.1 Software Design Fundamentals
The	Software	Design	Fundamentals	subarea	is	divided	into	the	following	subareas:
General design concepts:	What	design	methodology	will	be	used	for	designing	the	application?
Context of software design:	What	context	(previous	design	experience,	customer	preference,	etc.)	
will	be	used	for	designing	the	application?
Software design process:	 What	 methodology	 and	 processes	 will	 be	 adopted	 for	 designing	 the	
application?
Enabling techniques:	What	techniques	will	be	used	for	making	the	design	(CASE	tools,	modeling	
tools,	etc.)?

C.5.2 Key Issues in Software Design
The	Key	Issues	in	Software	Design	subarea	is	divided	into	the	following	subareas:
Concurrency:	Will	the	design	permit	concurrent	running	of	business	processes	in	the	application?
Control and handling of events:	How	will	the	control	flow	of	events	be	handled	during	transactions	
in	the	application?	How	will	events	be	handled	in	design?
Distribution of components:	How	will	the	application	be	broken	into	components?
Error and exception handling and fault tolerance:	How	will	fault	tolerance	be	implemented	in	the	
application	design?	How	will	exceptions	be	handled	in	the	application?
Interaction and presentation:	How	will	users	of	the	application	be	interacting	with	the	application	
(input/output	devices)?	How	and	where	will	information	be	presented	from	the	application	(com-
puter	screen/printer/any	other	output	devices)?
Data persistence:	How	will	data	persistence	be	achieved?	Will	any	client	part	of	the	application	be	
used	for	data	persistence?

Appendix C: IEEE Standards  ◾  361

C.5.3 Software Structure and Architecture
The	Software	Structure	and	Architecture	subarea	is	divided	into	the	following	subareas:
Architectural structure and viewpoints:	How	will	the	logical,	physical	model	of	the	application	be	
designed?
Architectural styles:	Which	architectural	design	will	be	adopted	to	model	the	application?
Design patterns:	What	pattern	will	be	used	to	model	the	application?
Families of programs:	 If	 application	 can	be	divided	 into	parts,	which	will	 form	 the	 complete	
application	after	integration	of	all	parts?

C.5.4 Software Design Quality Analysis and Evaluation
The	Software	Design	Quality	Analysis	and	Evaluation	subarea	is	divided	into	the	following	subareas:
Quality attributes:	What	quality	attributes	will	be	used	for	modeling	the	application?
Quality analysis and evaluation techniques:	How	will	the	quality	of	the	design	be	analyzed	and	evaluated?
Measures:	What	metrics	will	be	used	to	assess	quality	of	the	prepared	design?

C.5.5 Software Design Notations
The	Software	Design	Notations	subarea	is	divided	into	the	following	subareas:
Structural descriptions:	 How	 will	 the	 design	 structure	 be	 represented	 (UML/any	 other	 design	
language)?
Behavioral descriptions:	How	will	the	behavior	of	the	application	be	represented	(use	cases)?

C.5.6 Software Design Strategies and Methods
The	Software	Design	Strategies	and	Methods	subarea	is	divided	into	the	following	subareas:
General strategies:	What	strategies	will	be	used	in	designing	the	application?
Function oriented design:	Will	the	design	be	function	oriented?
Object oriented design:	Will	the	design	be	object	oriented?
Data structure oriented design:	Will	the	design	be	data	structure	oriented?
Component based design:	Will	the	design	be	component	based?
Other methods.

C.6 Software Construction
The	 Software	 Construction	 subknowledge	 area	 includes	 software	 construction	 fundamentals,	
managing	construction,	and	practical	considerations.

C.6.1 Software Construction Fundamentals
The	Software	Construction	Fundamentals	subarea	is	divided	into	the	following	subareas:
Minimizing complexity:	How	will	the	complexity	of	the	application	be	minimized	(application	parti-
tioning,	encapsulation)?

362  ◾  Appendix C: IEEE Standards

Anticipating change:	How	will	changes	in	design	be	handled	(normalization,	general	purpose	com-
ponent	implementation)?
Construction for verification:	 How	 will	 construction	 be	 verified	 for	 defects	 (if	 verification	 is	 in	
built)?
Standards in construction:	What	coding	standards	were	used	in	construction?

C.6.2 Managing Construction
The	Managing	Construction	subarea	is	divided	into	the	following	subareas:
Construction models:	What	methodology	will	be	used	for	software	construction	(agile/waterfall)?
Construction planning:	 How	 will	 construction	 be	 planned	 (resource	 allocation	 and	 iterative	
development)?
Construction measurement:	What	metrics	will	be	used	for	construction	for	assessing	quality,	sched-
ule	performance,	and	budget	performance?

C.6.3 Practical Considerations
The	Practical	Considerations	subarea	is	divided	into	the	following	subareas:
Construction design:	What	trade	offs	were	taken	in	construction	design	(combining	two	or	more	
requirements	 into	one,	 splitting	one	 requirement	 into	 two	or	more,	 functionality	 achievement	
through	work	around,	omitting	a	functionality,	etc.)?
Construction language:	Does	construction	language	have	any	limitation	in	achieving	the	required	
functionality?
Coding:	Could	standard	coding	practices	at	some	places	not	be	followed?
Construction testing:	Could	unit/integration	testing	not	be	performed	for	some	reason?
Reuse:	Could	reuse	of	components	not	be	done	for	some	reason?
Construction quality:	How	will	quality	of	construction	be	ensured?
Integration:	How	will	components	be	integrated	to	each	other?

C.7 Software Testing
Most	areas	under	software	testing	are	covered	in	IEEE	610	and	IEEE	982.	The	Software	Testing	
subknowledge	area	includes	software	testing	fundamentals,	test	levels,	test	techniques,	test-related	
measures,	and	test	process.

C.7.1 Software Testing Fundamentals
The	Software	Testing	Fundamentals	subarea	is	divided	into	the	following	subareas:
Software testing terminology:	What	testing	terminology	will	be	used	for	the	project?
Key issues:	What	key	issues	can	be	expected	and	how	they	can	be	tackled?
Relationship of testing to other activities:	 How	 will	 testing	 activities	 be	 related	 to	 requirements,	
design,	and	construction	activities?

Appendix C: IEEE Standards  ◾  363

C.7.2 Software Testing Levels
The	Software	Testing	Levels	subarea	is	divided	into	the	following	subareas:
Test target:	What	level	of	testing	will	be	desired?
Testing objectives:	 Unit	 testing,	 integration	 testing,	 performance	 testing,	 system	 testing,	 user-
acceptance	testing,	alpha	testing,	beta	testing,	regression	testing,	and	usability	testing.

C.7.3 Software Testing Techniques
The	Software	Testing	Techniques	subarea	is	divided	into	the	following	subareas:
Tester intuition and experience:	Has	software	tester	experience	level	been	documented?
Specification-based testing:	 Will	 testing	 be	 based	 on	 specifications	 or	 will	 exploratory	 testing	
be done?
Code-based testing:	Will	only	software	code	will	be	tested	(white	box	testing)	or	will	black	box	
testing	also	be	done?
Fault-based testing:	Will	negative	testing	be	done	or	just	positive	testing?
Usage-based testing:	Will	testing	be	done	based	on	how	the	application	will	be	used	by	end	users?
Nature of application-based testing:	 What	 kind	 of	 testing	 will	 be	 performed	 (functional/
nonfunctional)?
Selecting and combining testing techniques:	Will	a	single	testing	technique	be	used	or	a	combination	
of	testing	techniques?

C.7.4 Software Testing-Related Measures
The	Software	Testing-Related	Measures	subarea	is	divided	into	the	following	subareas:
Evaluation of program under test:	How	will	the	application	be	evaluated	for	testing	effectiveness	
(number	of	bugs	found/not	found	during	testing)?
Evaluations of test performed:	How	will	the	testing	activity	be	evaluated	(number	of	bugs	found	
per	hour)?

C.7.5 Software Testing Process
The	Software	Testing	Process	subarea	is	divided	into	the	following	subareas:
Practical considerations:	Test	process	management	 IEEE	12207,	 test	documentation	 IEEE	829,	
independent	verification	&	validation,	test	reuse,	effort	estimation	IEEE	982
Test activities:	Test	planning	IEEE	1008,	test	bed	preparation,	test	execution,	defect	tracking

C.8 Software Maintenance
Some	of	the	standards	used	for	software	maintenance	include	IEEE1219	and	IEEE12207.	Subareas	
under	Software	Maintenance	include	software	maintenance	fundamentals,	key	issues	in	software	
maintenance,	maintenance	process,	and	techniques	for	maintenance.

364  ◾  Appendix C: IEEE Standards

C.8.1 Software Maintenance Fundamentals
The	Software	Maintenance	Fundamentals	subarea	is	divided	into	the	following	subareas:

C.8.1.1 Definitions and Terminology

Nature of maintenance:	Preventive/breakdown/remedial/enhancement
Need for maintenance:	Reasons	for	maintenance	(bug	fixing	and	enhancement)
Majority of maintenance costs:	Cost	breakdown	of	maintenance
Evolution of software:	 Software	 evaluation	 for	 doing	 maintenance	 (maintenance	 required/not	
required)
Categories of maintenance:	Migration	from	old	platform/Web	enablement

C.8.2 Key Issues in Software Maintenance
The	Key	Issues	in	Software	Maintenance	subarea	is	divided	into	the	following	subareas:
Technical issues:	What	are	the	key	issues	during	maintenance?
Management issues:	What	are	the	management	issues	during	maintenance?
Maintenance cost estimation:	What	are	the	estimates	of	costs	for	maintenance?
Software maintenance measurement:	What	metrics	are	used	for	maintenance	work	for	its	effective-
ness	(if	goals	of	taking	maintenance	work	met?).

C.8.3 Software Maintenance Process
The	Software	Maintenance	Process	subarea	is	divided	into	the	following	subareas:
Maintenance processes:	What	processes	were	followed	for	maintenance	work?
Maintenance activities:	What	activities	were	performed	for	maintenance	work?

C.8.4 Software Maintenance Techniques
The	Software	Maintenance	Techniques	subarea	is	divided	into	the	following	subareas:
Program comprehension:	If	a	detailed	planning	was	led	out	for	maintenance	work?
Re-engineering:	Were	the	same	methodology	and	technology	employed	for	maintenance	work	as	
were	used	for	software	construction?
Reverse engineering:	Was	the	source	code	changed	for	maintenance	or	was	maintenance	done	using	
only	the	exposed	interfaces	of	the	application?

C.9 Software Configuration Management
Software	 Configuration	 Management	 (SCM)	 is	 a	 supporting	 software	 life-cycle	 process	
(IEEE12207.0-96)	 that	benefits	project	management,	development	 and	maintenance	 activities,	
assurance	activities,	and	the	customers	and	users	of	the	end	product.	Subareas	in	SCM	include	
management	of	SCM	process,	software	configuration	identification,	software	configuration	con-
trol,	 software	 configuration	 status	 accounting,	 software	 configuration	 auditing,	 and	 software	
release	management	and	delivery.

Appendix C: IEEE Standards  ◾  365

C.9.1 Management of SCM Process
The	Management	of	SCM	Process	subarea	is	divided	into	the	following	subareas:
Organization context for SCM:	In	what	context	will	SCM	be	used	on	the	project	(maintaining	ver-
sions	of	software,	building	software,	keeping	versions	of	project	documents,	etc.)?
Constraints and guidance for SCM process:	What	constraints	will	be	imposed	on	the	SCM	process	
(user	access,	privileges	for	read/write)?

Planning	for	SCM
SCM organization and responsibilities:	How	will	SCM	organization	be	set	up?	Who	will	be	

responsible	for	what	activities	for	maintaining	SCM	system?
SCM resources and schedules:	 What	 schedules	 will	 be	 followed	 for	 maintaining	 SCM	

system?
Tool	selection	and	implementation
Vendor/subcontractor	control
Interface	control

SCM	plan
Surveillance	of	SCM

SCM measures and measurement:	What	metrics	will	be	employed	 to	manage	 the	SCM	
process?

In-process audit of SCM:	Can	SCM	system	be	audited	online/offline?

C.9.2 Software Configuration Identification
The	Software	Configuration	Identification	subarea	is	divided	into	the	following	subareas:

Identification	of	items	for	SCM	control
Software	configuration
Software	configuration	items
Software	configuration	item	relationship
Software	versions
Baseline
Acquiring	software	configuration	items

Software	library

C.9.3 Software Configuration Control
The	Software	Configuration	Control	subarea	is	divided	into	the	following	subareas:

Requesting,	evaluating,	and	approving	software	changes
Software	configuration	control	board
Software	change	request	process

Implementing	software	changes
Deviations	and	waivers

366  ◾  Appendix C: IEEE Standards

C.9.4 Software Configuration Status Accounting
The	Software	Configuration	Status	accounting	subarea	is	divided	into	the	following	subareas:

Software	configuration	status	information
Software	configuration	status	reporting

C.9.5 Software Configuration Auditing
The	Software	Configuration	Auditing	subarea	is	divided	into	the	following	subareas:

Software	functional	configuration	audit
Software	physical	configuration	audit
In	process	audit	of	the	software	baseline

C.9.6 Software Release Management and Delivery
The	Software	Release	Management	and	Delivery	subarea	is	divided	into	the	following	subareas:

Software	building
Software	release	management

C.10 Software Engineering Management
Software	Engineering	Management	can	be	defined	as	the	application	of	management	activities—plan-
ning,	 coordinating,	 measuring,	 monitoring,	 controlling,	 and	 reporting—to	 ensure	 that	 the	 devel-
opment	 and	 maintenance	 of	 software	 is	 systematic,	 disciplined,	 and	 quantified	 (IEEE610.12-90).	
Commonly,	this	is	what	is	known	as	software	project	management	(SPM),	but,	in	IEEE	terminology,	
it	is	known	as	software	engineering	management.

Major	subareas	of	software	engineering	management	include	initiation	and	scope	definition,	
software	project	planning,	software	project	enactment,	review	and	analysis,	closure	and	software	
engineering	measurement.

C.10.1 Initiation and Scope Definition
The	Initiation	and	Scope	Definition	subarea	is	divided	into	the	following	subareas:

Determination	and	negotiation	for	requirements
Feasibility	analysis
Process	for	review	and	revision	of	requirements

C.10.2 Software Project Planning
The	Software	Project	Planning	subarea	is	divided	into	the	following	subareas:

Process	planning
Determine	deliverables
Effort,	schedule,	and	cost	estimation
Resource	allocation
Risk	management
Quality	management
Plan	management

Appendix C: IEEE Standards  ◾  367

C.10.3 Software Project Enactment
The	Software	Project	Enactment	subarea	is	divided	into	the	following	subareas:

Implementation	of	project	plans
Supplier	contract	management
Implementation	of	measurement	process
Monitor	process
Control	process
Reporting

C.10.4 Software Project Review and Analysis
The	Software	Project	Review	and	Analysis	subarea	is	divided	into	the	following	subareas:

Satisfaction	of	requirement	determination
Review	and	analysis	of	performance

C.10.5 Software Project Closure
The	Software	Project	Closure	subarea	is	divided	into	the	following	subareas:

Closure	determination
Closure	activities

C.10.6 Software Engineering Measurement
The	Software	Engineering	Measurement	subarea	is	divided	into	the	following	subareas:

Establish	and	sustain	measurement	commitment
Plan	for	measurement	process
Perform	the	measurement	process
Evaluate	measurement

C.11 Software Engineering Process
The	Software	Engineering	Process	knowledge	area	can	be	examined	on	two	levels.	The	first	level	
encompasses	the	technical	and	managerial	activities	within	the	software	life-cycle	processes	that	
are	performed	during	software	acquisition,	development,	maintenance,	and	retirement.	The	sec-
ond	is	the	meta-level,	which	is	concerned	with	the	definition,	implementation,	assessment,	mea-
surement,	management,	change,	and	improvement	of	the	software	life-cycle	processes	themselves.	
Most	of	knowledge	areas	for	this	subarea	are	covered	in	IEEE1220	and	IE12207.

Major	 subareas	 of	 the	 Software	 Engineering	 Process	 include	 process	 implementation	 and	
change,	process	definition,	process	assessment,	and	process	and	product	measurement.

C.11.1 Process Implementation and Change
The	Process	Implementation	and	Change	subarea	are	divided	into	the	following	subareas:

Process	infrastructure
Software	process	management	cycle
Models	for	process	implementation	and	change
Practical	considerations

368  ◾  Appendix C: IEEE Standards

C.11.2 Process Definition
The	Process	Definition	subarea	is	divided	into	the	following	subareas:

Software	life-cycle	models
Software	life-cycle	processes
Notation	for	process	definitions
Process	adaptation
Automation

C.11.3 Process Assessment
The	Process	Assessment	subarea	is	divided	into	the	following	subareas:

Process	assessment	models
Process	assessment	methods

C.11.4 Process and Product Measurement
The	Process	and	Product	Measurement	subarea	is	divided	into	the	following	subareas:

Process	measurement
Software	products	measurement
Quality	of	measurement	results
Software	information	models
Process	measurement	techniques

C.12 Software Engineering Tools and Methods
Software	development	tools	are	the	computer-based	tools	that	are	intended	to	assist	the	software	
life-cycle	processes.	Tools	allow	repetitive,	well-defined	actions	to	be	automated,	reducing	the	cog-
nitive	load	on	the	software	engineer	who	is	then	free	to	concentrate	on	the	creative	aspects	of	the	
process.	Tools	are	often	designed	to	support	particular	software	engineering	methods,	reducing	
any	administrative	load	associated	with	applying	the	method	manually.	Like	software	engineering	
methods,	they	are	intended	to	make	software	engineering	more	systematic,	and	they	vary	in	scope	
from	supporting	individual	tasks	to	encompassing	the	complete	life	cycle.

Software	 engineering	 methods	 impose	 structure	 on	 the	 software	 engineering	 activity	 with	
the	goal	of	making	the	activity	systematic	and	ultimately	more	likely	to	be	successful.	They	also	
enable	process	activities	to	be	measurable.	Methods	usually	provide	a	notation	and	vocabulary,	
procedures	for	performing	identifiable	tasks,	and	guidelines	for	checking	both	the	process	and	the	
product.	They	vary	widely	in	scope,	from	a	single	life-cycle	phase	to	the	complete	life	cycle.	The	
emphasis	in	this	KA	is	on	software	engineering	methods	encompassing	multiple	life-cycle	phases,	
since	phase-specific	methods	are	covered	by	other	KAs.

C.12.1 Software Engineering Tools
While	there	are	detailed	manuals	on	specific	tools	and	numerous	research	papers	on	innovative	
tools,	generic	technical	writings	on	software	engineering	tools	are	relatively	scarce.	One	difficulty	
is	the	high	rate	of	change	in	software	tools	in	general.	Specific	details	alter	regularly,	making	it	
difficult	to	provide	concrete,	up-to-date	examples.

Appendix C: IEEE Standards  ◾  369

The	Software	Engineering	Tools	subarea	is	divided	into	the	following	subareas:

Software	requirement	tools
Requirement	modeling
Requirement	tracing

Software	design	tools	(e.g.,	UML	and	CASE	tools)
Software	construction	tools

Program	editors	(e.g.,	Integrated	Development	Environments	like	Visual	Studio	and	Eclipse)
Compilers	and	code	generators
Interpreters
Debuggers

Software	testing	tools
Test	generators
Test	execution	framework
Test	evaluators
Test	management	(e.g.,	HP	Test	Director)
Performance	analysis

Software	maintenance	tools
Comprehension	tools
Reengineering	tools

Software	configuration	management	tools
Defect,	enhancement,	issue,	and	problem	tracking
Version	management	(e.g.,	Visual	Source	Safe	and	Perforce)
Release	and	build	(e.g.,	ant	and	cruise	control)

Software	engineering	management	tools
Project	planning	and	tracking	(e.g.,	Microsoft	Project)
Risk	management
Measurement

Software	engineering	process	tools
Process	modeling
Process	management
Integrated	CASE	management	tools
Process	centered	software

Software	quality	tools
Review	and	audit
Static	analysis

Miscellaneous	tool	issues
Tool	integration	techniques
Meta	tools
Tool	evaluation

C.12.2 Software Engineering Methods
The	Software	Engineering	Methods	subarea	is	divided	into	the	following	subareas:

Heuristic	methods
Structured	methods

370  ◾  Appendix C: IEEE Standards

Data	oriented	methods
Object	oriented	methods

Formal	methods
Specifications	and	language	notations
Refinement
Verification

Prototyping	methods
Styles
Prototyping	targets
Evaluation	techniques

C.13 Software Quality
Software	quality	is	now	the	most	important	concern	on	software	projects.	Even	up	to	the	1990s,	
quality	was	 considered	 a	 secondary	 concern	on	 software	projects.	The	 top	 concern	used	 to	be	
whether	software	project	deliverables	can	be	met	even	if	they	are	of	secondary	quality.	After	mas-
tering	 many	 processes	 in	 software	 development	 projects,	 organizations	 have	 realized	 software	
quality	plays	an	important	role	and	it	must	be	improved.	Lower	quality	software	products	have	
many	critical	defects.	Providing	customer	support	for	such	software	products	becomes	very	costly.	
First	of	all,	preventing	measures	for	defects	entering	into	any	stage	of	software	development	should	
be	employed.	Then,	in	the	testing	phase,	an	attempt	should	be	made	to	trap	and	remove	defects	
that	 entered	 into	 the	 software	product.	Subareas	 in	Software	Quality	 include	 software	quality	
fundamentals,	software	quality	management	processes,	and	practical	considerations.

C.13.1 Software Quality Fundamentals
The	Software	Quality	Fundamentals	subarea	is	divided	into	the	following	subareas:

Software	engineering	cultures	and	ethics
Value	and	costs	of	quality
Models	and	quality	characteristics
Quality	improvements

C.13.2 Software Quality Management Processes
The	Software	Quality	Management	Processes	subarea	is	divided	into	the	following	subareas:

Software	quality	assurance
Verification	and	validation
Reviews	and	audits	(code	walkthroughs,	management	reviews,	inspections,	etc.)

C.13.3 Software Quality Practical Considerations
The	Software	Quality	Practical	Considerations	subarea	is	divided	into	the	following	subareas:

Software	application	quality	requirements
Defect	characteristic
Software	quality	management	techniques
Software	quality	measurement

Appendix C: IEEE Standards  ◾  371

C.14 Related Disciplines of Software Engineering
Software	engineering	cannot	operate	in	isolation	if	it	has	to	be	practiced.	Definitely	any	discipline	
for	that	matter	depends	on	many	other	disciplines.

These	disciplines	include	computer	science,	mathematics,	computer	engineering,	management,	
project	 management,	 quality	 management,	 software	 ergonomics,	 and	 systems	 	engineering.	
Software	engineering	needs	mathematics	for	making	algorithms,	doing	calculations,	etc.	Software	
	engineering	needs	quality	management	fundamentals	for	solving	quality-related	matters.	Computer	
science	needs	software	engineering	to	build	software	applications.	Software	engineering	needs	com-
puter	engineering	for	building	interfaces	between	hardware	and	software	applications.	Similarly,	
other	disciplines	either	depend	on	software	engineering	or	software	engineering	depends	on	them.

373

Appendix D: Agile Processes
for Software Development

The	traditional	waterfall	model	poses	issues	like	high	risk,	long	time	in	delivery,	heavy	upfront	
commitment,	and	 inflexible	process.	Though	the	waterfall	model	certainly	has	advantages	and	
is	extremely	useful	for	large	projects,	organizations	and	individuals	have	been	in	search	of	alter-
native	 approaches	 for	 software	 development	 that	 can	 help	 in	 mitigating	 these	 issues.	 Rational	
Corporation	 came	 up	 with	 its	 Unified	 Process	 Model	 for	 software	 development	 projects	 in	
search	of	 a	better	 alternative	 to	 the	waterfall	model.	Similarly,	 some	other	popular	 approaches	
include	 Scrum,	 eXtreme	 Programming,	 Cleanroom	 software	 engineering,	 Microsoft	 Solutions	
Framework,	Oracle	unified	method,	etc.

D.1 Rational Unified Process Overview
Rational	Corporation	introduced	an	alternative	life	cycle	called	the	Rational	Unified	Process	(RUP).	
This	includes	a	matrix	of	processes	and	workflows	that	comprise	a	new	way	of	developing	software.	
The	traditional	processes	of	software	development	are	now	known	as	workflows,	which	span	over	what	
Rational	called	processes.	In	this	model,	there	are	four	process	areas	and	nine	workflows	(Figure	D.1).

The	traditional	software	development	process	model	lacked	proper	integration	between	project	
management	processes	and	software	development	processes.	With	RUP,	this	lacuna	was	removed.	
It	proposed	the	phases	of	inception,	elaboration,	construction,	and	transition.	The	six	main	work-
flows	of	business	modeling,	requirements,	analysis	and	design,	construction,	test,	and	deployment	
along	with	the	three	supporting	workflows	of	configuration	and	change	management,	project	man-
agement,	and	environment	pass	through	these	phases	during	project	execution.	These	workflows	
are	not	restricted	to	any	single	phase	but	span	across	many	phases.

Parallel	to	the	phases	are	the	iterations.	The	iterations	during	any	phase	are	determined	by	the	
need	for	clarity	during	the	phase.	There	will	be	more	iterations	during	any	phase	where	more	clar-
ity	is	needed	(Figure	D.2).

The	 initial	unified	process	had	 some	drawbacks.	One	of	 them	was	not	having	 any	process	
definition	for	production	phase	of	the	software	life	cycle.	Rational	Corporation	thus	introduced	a	
new	process	model	and	called	it	enhanced	unified	process.	Now	the	production	phase	was	added	
to	the	existing	four	phases.	At	the	same	time,	two	workflows	were	also	added	to	the	existing	nine	

374  ◾  Appendix D: Agile Processes for Software Development

Business modeling

Workflows

Inception Elaboration Construction Transition Production

Phases

Requirements

Analysis and design
Implementation

Test
Deployment

Operations and support

Supporting workflows

Configuration management
Project management

Environment

Infrastructure management
1 2 3 1 12 2

Iterations

Figure D.2 Enhanced Rational Unified Process.

Inception Elaboration Construction Transition

Workflows

Business modeling

Requirements

Analysis and design

Implementation

Test

Deployment

Supporting workflows

Configuration management

Project management

Phases

Environment
1 2 3 1 2 1 2

Iterations

Figure D.1 Rational Unified Process.

Appendix D: Agile Processes for Software Development  ◾  375

workflows	(Figure	D.2).	One	was	the	operations	and	support	workflow,	which	accounts	for	the	
work	needed	for	deploying	and	running	the	application	in	the	production	environment.	This	was	
needed	as	when	the	software	is	in	development	process,	user	manuals,	support	plans,	and	training	
manuals	are	to	be	prepared.	The	supporting	process	of	infrastructure	management	was	also	added.	
This	process	allows	the	operations	support	team	to	plan	and	arrange	for	the	infrastructure,	includ-
ing	software,	hardware,	computer	operators,	etc.,	needed	to	run	the	installed	software	system.	But	
more	than	that,	the	most	important	aspect	of	infrastructure	management	is	to	provide	resources	
beyond	a	single	project.	Aspects	like	reuse,	resource	pooling,	consolidation,	and	process	improve-
ment	processes	are	integrated	at	organization	level.	The	project	phases	of	inception,	elaboration,	
construction,	transition,	and	production	are	described	here.

D.1.1 Inception Phase
The	inception	phase	 is	where	 the	project	 scope	 is	defined	 in	the	context	of	project	budget	and	
schedule.	A	project	charter	consisting	of	success	 factors,	business	case,	and	financial	 forecast	 is	
established.	The	business	case	is	elaborated	by	creating	use	cases,	basic	project	plan,	risk	assess-
ment,	 and	 project	 description.	 To	 reach	 the	 milestone	 before	 completing	 the	 inception	 phase,	
stakeholder	feedback	on	project	scope,	schedule,	and	budget	is	made.	Primary	use	cases	validate	
the	requirements.	Design	and	prototype	are	also	validated.	A	baseline	is	created	to	track	project	
budget	and	schedule.	All	of	these	artifacts	are	validated	at	milestones	to	ensure	if	the	project	can	
go	ahead.	If	not,	then	the	project	must	be	scrapped.

D.1.2 Elaboration Phase
In	the	elaboration	phase,	the	design	and	architecture	of	the	product	takes	shape.	The	milestone	
after	the	elaboration	phase	is	known	as	the	life-cycle	architecture	milestone.	The	checklist	for	the	
milestone	includes	the	following:

	 1.	When	at	least	80%	of	the	use	cases	and	activity	diagrams	along	with	actors	have	been	identified.
	 2.	The	software	architecture	has	been	created.
	 3.	The	architecture	has	been	validated	against	most	of	the	use	cases.
	 4.	A	detailed	and	concrete	plan	for	the	entire	project	has	been	made.
	 5.	Risk	mitigation	strategy	has	been	defined.

If	the	project	does	not	pass	through	this	checklist,	the	project	must	be	scrapped	or	redesigned.

D.1.3 Construction Phase
The	construction	phase	 is	where	 the	 software	design	 is	 converted	 into	 software	 code.	 It	 is	 the	
most	labor-intensive	phase	in	the	entire	software	project.	To	take	care	of	the	large	code-building	
requirement,	concurrent	engineering	and	other	techniques	for	rapid	application	development	can	
be	used.	If	there	is	a	need	to	get	customer	feedback	on	the	partial	build,	iterations	can	be	used.

D.1.4 Transition Phase
Once	the	product	is	made,	it	has	to	be	made	available	for	deployment	so	that	end	users	can	use	
it.	However,	before	that,	the	application	has	to	be	beta	tested	to	ensure	that	there	are	no	critical	
bugs	in	the	application.	The	application	is	assessed	to	validate	whether	the	quality	level	meets	the	
agreement	made	during	the	inception	phase.	User	training	also	needs	to	be	arranged.

376  ◾  Appendix D: Agile Processes for Software Development

D.1.5 Production Phase
The	production	phase	was	introduced	in	the	enhanced	model	to	take	care	of	software	processes	
model	after	the	application	is	installed	and	used	by	end	users.	Production	phase	activities	involve	
support	and	operation	activities	as	well	as	training	for	end	users	so	that	they	can	use	the	applica-
tion	effectively.	It	also	involves	rectifying	the	application	when	bugs	are	reported.	Enhancement	
to	the	application	is	also	made	in	this	phase.

D.2 Engineering Workflows
D.2.1 Business Modeling Workflow
Business	modeling	is	the	workflow	used	by	the	business	engineering	team	and	the	software	engi-
neering	team	get	to	know	the	real	business	requirements	of	the	customer	and	how	the	proposed	
software	product	will	help	in	achieving	those	business	objectives.

Most	of	the	business	modeling	workflow	is	done	in	the	inception	phase.

D.2.2 Requirements Workflow
Using	this	workflow,	the	project	team	elicits	requirements	from	the	customers	and	end	users	for	
the	proposed	software	product.	They	use	techniques	like	interviews,	personal	meetings,	electronic	
communications,	study	existing	documents,	etc.,	to	get	all	requirements	from	end	users.

Most	of	the	requirement	workflow	is	done	in	the	inception	phase.

D.2.3 Analysis and Design Workflow
This	workflow	determines	how	the	proposed	software	product	will	be	implemented.	Use	cases,	
activity	diagrams,	and	other	tools	are	used	to	model	the	software	product.	Using	these	tools,	
the	project	team	covers	all	requirements	in	the	product	model.	The	analysis	model	describes	
how	the	proposed	product	will	work	against	end	user	 requirements.	The	design	model	con-
tains	 all	 details	 related	 to	 the	 structure	 and	 logic	 of	 the	proposed	product.	 It	 also	 includes	
information	as	to	how	the	product	will	be	designed	using	software	components	and	how	these	
components	will	be	integrated	with	each	other.	The	design	model	acts	like	a	blueprint	for	con-
structing	the	product.

Most	of	the	design	and	analysis	workflow	is	done	in	the	elaboration	phase.

D.2.4 Implementation Workflow
Using	this	workflow,	the	software	design	is	converted	into	software	code.	But	before	writing	the	
code,	organization	of	the	classes,	packages,	and	components	is	done	according	to	the	design	docu-
ment.	The	components	are	tested	as	a	unit	to	ensure	that	they	are	perfectly	implemented.	Once	
these	components	have	been	integrated,	an	integration	testing	is	done	to	ensure	that	integration	
between	the	components	is	working	fine.

Most	of	the	implementation	workflow	is	done	in	the	construction	phase.

Appendix D: Agile Processes for Software Development  ◾  377

D.2.5 Test Workflow
Once	the	software	system	is	implemented,	it	is	handed	over	to	the	test	team.	Using	test	workflows,	
they	perform	system	testing,	performance	testing,	compatibility	testing,	and	other	tests	necessary	
to	verify	if	the	software	product	is	working	as	per	requirements.	If	defects	are	found,	they	are	fixed.	
Finally,	the	product	is	validated	against	the	requirements	using	tools	like	traceability	matrix.	In	
this	workflow	system	and	beta	testing	is	done.

Test	activities	span	many	phases,	but	most	of	the	work	is	done	during	the	transition	phase.

D.2.6 Deployment Workflow
Once	the	product	is	developed	and	system	tested,	user	acceptance	testing	is	done	by	end	users.	
User	 and	 system	manuals	 are	 created	 and	 end	users	 are	provided	 training	 to	use	 the	product.	
Finally,	the	product	is	installed	and	is	ready	to	be	used.

In	the	enhanced	unified	model,	a	deployment	plan	has	been	added	in	the	inception	phase	itself	
since	all	work	done	on	the	product	through	the	phases	should	include	supportability	and	main-
tainability	of	the	product	after	the	product	goes	in	production.

Deployment	activities	span	many	phases	but	most	of	the	work	is	done	during	the	elaboration,	
construction,	and	transition	phases.

D.2.7 Operations and Support Workflow
This	workflow	was	added	 in	 the	enhanced	model	after	 it	was	decided	 that	 the	unified	process	
should	also	support	processes	when	the	product	goes	into	production.	During	the	software	con-
struction	phase,	you	need	to	include	a	provision	in	the	software	build	itself	for	good	maintenance	
and	operations	support.	Some	of	the	work	belonging	to	this	workflow	is	done	in	the	construction	
phase.	The	remaining	work	is	done	in	the	production	phase.

Operations	and	support	workflow	span	many	phases,	but	most	of	the	work	is	done	during	the	
construction,	transition,	and	production	phases.

D.3 Supporting Workflows
D.3.1 Configuration and Change Control Workflow
Artifacts	 generated	 during	 workflow	 execution	 during	 the	 entire	 project	 need	 to	 be	 managed	
throughout	the	project.	There	are	iterations	and	changes	in	the	version	of	these	artifacts.	All	ver-
sions	of	each	artifact	need	to	be	managed	so	that	the	project	team	as	well	as	the	stakeholders	have	
a	complete	view	of	the	project	and	can	review	these	artifacts	at	any	time.

The	software	code	building	is	done	in	such	a	way	that	the	new	code	created	by	any	developer	
does	not	break	the	current	build	of	 the	product.	The	software	build	has	to	be	maintained	at	a	
central	location	so	that	developers	can	check	in	their	new	developed	code	and	merge	it	with	the	
existing	build.	There	are	generally	many	versions	of	the	same	product.	All	of	these	versions	as	well	
as	the	current	version	that	is	being	developed	need	to	be	kept	neatly	so	that	they	are	available	to	
the	entire	project	team.

Configuration	and	change	control	workflow	run	through	all	phases	of	the	project.

378  ◾  Appendix D: Agile Processes for Software Development

D.3.2 Project Management Workflow
Project	management	workflow	is	where	we	define	the	project	as	well	as	the	iteration	plans.	As	can	
be	seen	from	the	diagrams,	there	are	two	levels	at	which	project	plans	are	made.	One	is	at	the	
project	level	where	we	have	five	phases	in	the	project	in	the	enhanced	process	model.	Inside	each	
of	these	phases	there	is	provision	for	iterations.

The	phase	plan	consists	of	measurement	plan,	risk	management	plan,	problem	resolution	plan,	
and	product	acceptance	plan.	The	iteration	plan	consists	of	fine-grained	planning	within	a	phase	
and	consists	of	time-sequenced	activities	and	tasks	pertaining	to	the	phase	within	which	the	itera-
tion	exists.	At	any	given	point	of	time,	there	are	two	parallel	iterations	going	on.	One	is	the	current	
iteration	plan	and	the	second	is	the	next	iteration	plan.	This	is	so	because	the	project	manager	has	
not	only	to	take	care	of	the	current	activities	but	has	also	to	keep	working	on	the	next	iteration	
so	that	there	is	no	time	lost	between	the	two	iterations.	During	iteration	planning,	use	cases	or	
scenarios	are	created.	Some	other	tasks	include	problem	resolution,	risk	mitigation,	change	request	
incorporation	in	the	software	product,	work	on	object	classes,	etc.

The	work	products	(artifacts)	of	a	project	plan	include	iteration	assessment,	project	measure-
ment,	periodic	status	assessment,	work	order,	and	issue	list.

Project	management	workflow	spans	the	entire	project	and	covers	all	phases	and	iterations.

D.3.3 Environment Workflow
Environment	workflow	controls	and	directs	all	activities	that	are	to	be	done	for	a	project.	It	pro-
vides	all	the	tools	and	methods	that	help	the	project	team	work	on	the	project.	Apart	from	the	sup-
porting	tools	and	methods	for	the	project,	this	workflow	also	defines	the	ways	to	refine	the	unified	
process	itself.	This	ensures	that	over	time	the	process	of	executing	projects	matures,	resulting	in	
better	quality,	better	resource	utilization,	and	project	schedule	shrinkage.

D.3.4 Infrastructure Management Workflow
This	workflow	was	included	in	the	enhanced	model	when	the	production	phase	was	added	in	the	
existing	unified	process	model.	This	workflow	spans	all	phases	of	the	development	life	cycle.	This	
workflow	ensures	that	the	proper	tools	and	methods	are	provided	during	operations	and	mainte-
nance	of	the	product	in	production.

D.4 Rational Unified Process in a Nutshell
The	 traditional	 waterfall	 model	 had	 many	 shortcomings.	 The	 unified	 process	 model	 has	 tried	
to	eliminate	those	shortcomings.	Apart	from	these	shortcomings,	representation	of	the	waterfall	
model	also	lacked	flow	of	activities	that	go	through	different	phases	of	the	project.	The	unified	
process	model	has	addressed	this	issue	by	introducing	workflows	in	the	process	model.

D.5 Cleanroom Software Engineering
In	the	electronics	industry,	cleanrooms	are	used	to	prevent	defects	entering	into	the	product	
when	semiconductor	circuits	are	fabricated.	The	same	name	was	used	when	a	process	model	
was	developed	 to	make	 software	products	where	defects	 are	prevented	 rather	 than	 removed	
during	 the	 software	 development	 process.	 This	 results	 in	 certifiable	 software	 products	 with	
reliability.

Appendix D: Agile Processes for Software Development  ◾  379

There	are	four	major	process	areas	in	cleanroom	software	engineering:	incremental	develop-
ment,	software	design	specification,	code	verification,	and	statistically	sound	testing.

D.5.1 Incremental Development
Each	increment	of	a	software	product	is	developed	separately	in	a	project	and	is	then	tested	in	a	
simulated	production	environment.	If	testing	of	the	new	increment	of	the	software	proves	that	it	is	
working	satisfactorily,	only	then	does	the	next	increment	of	development	take	place.	This	testing	
is	done	against	a	pre-established	quality	standard.	Each	increment	is	developed	using	complete	
iteration	over	all	phases	of	the	software	development.

D.5.2 Formal Method for Design and Specification
Software	design	and	specification	is	based	on	the	box	structure	method.	The	software	application	
is	expressed	as	a	mathematical	function.	The	software	design	is	compared	against	the	specification	
to	check	whether	the	design	is	correctly	using	the	functional	specification.	The	rules	for	functions	
of	the	system	are	defined	by	the	box	structure	method	at	three	levels	of	abstractions:	behavioral	
view,	finite	state	machine	view,	and	procedural	view.	In	other	words,	they	are	defined	as	black,	
state,	and	clear	boxes.	At	the	black	box	level,	the	interaction	of	the	system	with	the	application	
environment	is	defined.	The	state	box	defines	the	movement	of	data	across	the	application.	The	
clear	box	defines	the	procedures	present	in	the	application.

D.5.3 Correctness Verification of Developed Code
A	team	review	is	conducted	to	assess	correctness	of	the	developed	code.	Mathematical	verification	
methods	are	used	for	the	verification	process.	This	ensures	that	code	errors	are	detected	quickly	
and	rectified.

D.5.4 Statistically Sound Testing
Even	though	a	defect-preventive	approach	is	applied	right	from	system	analysis	and	design,	some	
defects	are	introduced	in	the	application.	An	independent	testing	is	performed	to	remove	these	
introduced	defects.

D.6 Scrum
Scrum	is	an	iterative	incremental	model	and	was	introduced	for	software	development	projects.	
Sometimes,	it	is	also	used	for	maintenance	or	program	management.	Scrum	is	characterized	by	
one	cross-functional	team	that	does	the	entire	software	development.	The	process	phases	overlap	
and	thus	are	not	distinct.	Development	is	done	in	iterations	that	are	known	as	“sprints”	and	cover	
the	complete	development	life	cycle.	The	project	manager	is	known	as	a	“scrum	master.”	The	
stakeholder	is	known	as	a	“product	owner”	and	the	development	team	is	simply	known	as	
the	“team.”	A	sprint	typically	lasts	between	2	and	4	weeks	and	the	duration	is	entirely	determined	
by	the	team.	During	each	sprint,	an	executable	code	is	developed.	The	features	that	go	into	the	
development	of	each	sprint	are	determined	by	the	product	owner.	These	features	are	taken	from	a	
feature	repository	called	the	“product	backlog.”	At	the	start	of	an	iteration,	a	planning	meeting	is	

380  ◾  Appendix D: Agile Processes for Software Development

held,	where	it	is	decided	which	features	will	go	in	the	next	iteration.	The	team	then	determines	if	it	
is	feasible	to	commit	to	all	or	a	partial	list	of	features.	Depending	on	the	feasibility,	they	commit	to	
develop	a	list	of	features	in	the	next	sprint.	Once	the	sprint	starts,	the	features	are	never	changed.	
Once	the	sprint	completes,	the	team	demonstrates	the	product	to	the	product	owner.

Scrum	is	a	methodology	that	does	not	require	a	structured	approach	to	software	development.	
No	documentation	is	needed.	Everything	is	done	very	informally.	Communication	between	the	
customer	and	team	members	is	done	verbally.	There	is	little	risk	as	the	product	is	delivered	to	the	
customer	after	each	iteration	of	less	than	4	weeks.

D.7 Extreme Programming
EXtreme	Programming	(XP)	is	very	similar	in	approach	to	Scrum	for	developing	software.	XP	is	
defined	by	activities	like	coding,	testing,	listening,	and	designing.	The	project	team	is	generally	
small,	consisting	of	up	to	12–15	members.	XP	is	characterized	by	12	practices.	These	practices	
include	pair	programming,	planning	game,	test-driven	development,	whole	team	concept,	contin-
uous	integration,	refactoring,	small	releases,	coding	standards,	collective	code	ownership,	simple	
design,	 system	metaphor,	and	sustainable	pace.	These	practices	can	be	compared	to	traditional	
software	development	terminology.

D.7.1 Extreme Programming in a Nutshell
XP	suits	smaller	software	development	projects.	During	system	metaphor	practice,	a	story	is	told	
that	actually	forms	the	requirement.	Based	on	the	system	metaphor,	a	planning	game	is	arranged	
where	the	project	(iteration)	plan	is	discussed.	Based	on	the	planning	game,	test-driven	develop-
ment	 starts.	The	development	 is	based	on	small	 release	concept.	The	 iteration	 lasts	 from	a	 few	
weeks	to	a	maximum	of	5–6	weeks.	At	the	end	of	the	iteration,	a	fully	functional	and	executable	
release	is	demonstrated	to	the	customer.	If	the	products	meet	customer	expectation,	the	team	may	
move	to	the	next	 iteration.	If	not,	 suggested	changes	are	made	and	again	sent	to	the	customer	
for	approval.	Some	of	the	techniques	used	during	system	design	include	refactoring	and	simple	
design.	During	coding,	techniques	like	coding	standards,	pair	programming,	and	collective	code	
ownership	are	used.

D.8 Oracle Unified Method
Oracle	Unified	Method	(OUM)	is	a	modified	version	of	the	Rational	Unified	Process.	It	has	
phases	of	inception,	elaboration,	construction,	transition,	and	production,	the	same	as	in	the	
enhanced	 unified	 process.	 The	 workflows	 are	 known	 as	 project	 processes.	 These	 processes	
include	 project	 management,	 business	 requirements,	 requirement	 analysis,	 analysis,	 design,	
implementation,	 testing,	 performance	 management,	 technical	 architecture,	 data	 acquisition	
and	 conversion,	 documentation,	 organization	 change	 management,	 training,	 transition,	 and	
operations	and	support.	There	are	iterations	inside	each	of	the	phases.	At	the	top	of	the	phases	
are	milestones	to	denote	the	successful	conclusion	of	each	phase.

Project	phases	in	the	OUM	model	are	similar	in	scope	to	the	ones	present	in	the	enhanced	
unified	process	model.	These	phases	are	described	in	detail	in	Section	D.1	earlier	in	this	Appendix.	
Let	us	discuss	now	the	process	of	the	OUM	model.

Appendix D: Agile Processes for Software Development  ◾  381

The	business	requirement	process	deals	with	the	tasks	of	requirement	elicitation	using	standard	
elicitation	techniques.	Here	the	work	products	include	business	objectives,	goals,	and	detailed	and	
documented	requirements.	In	the	requirement	analysis	process	area,	the	documented	requirements	
are	converted	into	use	cases.	Work	products	include	use	case	model,	user	interface	prototypes,	and	
a	high	level	description	of	the	proposed	system	architecture.	In	the	analysis	process	area,	require-
ments	are	 further	 refined	 to	 form	the	analysis	model.	The	 language	used	 to	make	 the	analysis	
model	should	be	closer	to	the	development	language	rather	than	any	business	user	language.	The	
work	product	from	this	process	area	is	the	reviewed	analysis	model,	which	also	includes	class	dia-
grams.	In	the	design	process	area,	the	system	architecture	is	represented	as	a	set	of	classes,	objects,	
and	components	that	will	be	constructed	during	the	implementation	process.	The	work	product	of	
the	design	process	area	is	the	reviewed	design	model	that	forms	the	basis	for	actual	construction.	
Using	iterations,	the	project	team	develops	the	software	code	using	the	reviewed	design	model.	
Each	component	developed	should	be	unit	tested	to	ensure	it	meets	design	specifications	before	it	
is	taken	for	integration	with	other	components.	After	integrating	the	components,	testing	is	done	
to	ensure	that	the	components	are	working	properly	with	each	other	as	per	requirements.	In	the	
testing	process	area,	 the	system	is	 tested	to	verify	that	 it	meets	requirements.	 It	 involves	doing	
system,	integration,	and	many	kinds	of	nonfunctional	testing.	The	performance	management	pro-
cess	area	is	closely	related	to	the	technical	architecture	process	area.	Both	these	areas	ensure	that	
the	overall	performance	of	the	developed	application	meets	end	user	performance	requirements.	
The	 technical	 architecture	process	 area	 ensures	 that	 the	 software	product	being	developed	has	
the	required	capability	for	running	in	production	environment	without	any	problems.	The	data	
acquisition	and	conversion	process	area	ensures	that	appropriate	tools	and	methods	are	used	for	
data	to	be	extracted	from	legacy	systems,	and	these	data	are	appropriately	formatted,	converted,	
and	sent	to	the	suitable	storage	devices.	These	data	then	become	suitable	to	be	used	with	the	new	
product	being	developed.	Often	due	to	lack	of	proper	documents,	a	good	application	is	not	prop-
erly	used	by	end	users.	Then	again	in	case	of	any	maintenance	needs,	the	application	could	not	be	
enhanced	or	defects	removed	as	there	was	poor	documentation	about	the	design	and	implementa-
tion	of	the	application.	The	documentation	process	area	ensures	that	these	things	do	not	happen	
and	good	quality	documentation	is	available	for	operations	and	maintenance	of	the	application.	It	
is	very	important	that	processes	required	to	execute	projects	should	be	refined	and	should	mature	
over	time.	This	requires	change	across	the	organization.	Any	change	thrust	upon	the	employees	is	
resisted.	A	proper	mechanism	is	required	so	that	these	changes	are	accepted	by	the	people	and	thus	
the	adoption	rate	is	high,	which	in	turn	will	make	it	easier	for	the	people	to	go	about	their	tasks	as	
per	the	new	process	norms.	This	aspect	is	taken	care	of	in	the	organization	change	management	
process.	From	time	to	time,	retraining	of	staff	is	required	so	that	they	have	the	required	skills	to	
execute	projects.	The	training	process	area	addresses	all	issues	related	to	training	aspects.

OUM	works	in	conjunction	with	Oracle	Project	Management	Method	(PJM).	PJM	consists	
of	three	phases:	project	start-up	phase,	project	execution	and	control	phase,	and	project	closure	
phase.	Combining	PJM	with	OUM	results	in	a	complete	mechanism	that	can	execute	any	soft-
ware	development,	maintenance,	or	implementation	project.	The	combined	process	model	starts	
with	the	project	start-up	phase.	The	phases	of	OUM	(inception,	elaboration,	construction,	transi-
tion,	and	production)	go	inside	the	project	execution	and	control	phase.	Finally,	the	project	closure	
phase	is	executed	(Figure	D.3).

PJM	has	13	process	areas	that	run	on	top	of	all	processes	of	OUM.	These	are	bid	transition,	
scope	management,	financial	management,	work	management,	risk	management,	issue	and	prob-
lem	management,	staff	management,	communication	management,	quality	management,	config-
uration	management,	infrastructure	management,	procurement	management,	and	organization	

382  ◾  Appendix D: Agile Processes for Software Development

change	 management.	 These	 processes	 either	 define	 boundaries	 under	 which	 OUM	 processes	
should	operate	or	they	facilitate	execution	of	OUM	processes	by	providing	a	platform.

D.9 Microsoft Solutions Framework
Microsoft	Solutions	Framework	(MSF)	consists	of	five	process	areas,	namely,	envisioning,	plan-
ning,	developing,	stabilizing,	and	deploying.	To	check	that	these	process	areas	are	complete,	there	
are	 milestones	 (gates),	 namely,	 vision/scope	 approved,	 project	 plans	 approved,	 scope	 complete,	
release	readiness	approved,	and	deployment	complete.

MSF	incorporates	the	best	elements	from	both	the	waterfall	model	and	the	spiral	model.	The	
milestones	concept	has	been	taken	from	the	waterfall	model	while	the	incremental	iteration	con-
cept	has	been	taken	from	the	spiral	model.

MSF	 has	 three	 disciplines,	 namely,	 project	 management,	 risk	 management,	 and	 readiness	
management.	These	disciplines	control	and	govern	MSF	process	areas.	The	project	management	
discipline	has	been	conceived	from	and	aligned	with	major	project	management	disciplines	like	
Prince2,	or	prescribed	by	institutions	like	the	International	Project	Management	Association	and	
the	Project	Management	Institute.

D.10 Process Tailoring
Each	and	every	project	 is	unique	in	its	scope,	objective,	and	mission.	Projects	differ	from	each	
other	in	many	respects.	However,	there	are	standard	process	methodologies	that	can	be	used	to	
plan,	monitor,	and	control	projects.	Project	managers	try	to	fit	project	objectives	and	requirements	
into	any	of	these	process	models.	It	is	not	always	possible,	however,	to	fit	the	project	into	any	stan-
dard	process	model.	In	such	cases,	the	process	has	to	be	modified	so	that	it	fits	the	needs	of	the	
particular	project.	This	process	is	known	as	process	tailoring.

The	advantage	of	process	tailoring	is	that	it	allows	fitting	nonstandard	elements	of	a	project	
into	a	process	model.	The	disadvantage	is	that	once	the	project	is	over,	the	data	from	the	project	
becomes	nonstandard	and	so	is	not	of	much	use.	Statistical	quality	control	methods	need	previous	
project	data	to	be	used	for	future	projects.	It	has	to	be	kept	in	mind	that	statistical	process	control	
techniques	have	become	extremely	useful	tools	for	software	projects,	and	so	usefulness	of	previous	
project	data	has	become	very	important.	Here	it	is	also	important	that	project	data	of	only	similar	
projects	be	used	for	future	projects.	So	if	you	have	data	from	a	project	that	was	executed	using	
very	different	kinds	of	process	standards,	then	these	data	will	not	be	of	much	use.	This	is	because	

Project
startup

Project
closure

Project execution and control

Oracle unied model (OUM) processes
(inception, elaboration, construction,

transition, production)

Project management (PJM) processes

Figure D.3 Combined OUM and PJM processes.

Appendix D: Agile Processes for Software Development  ◾  383

these	data	cannot	be	compared	with	data	from	projects	that	followed	other	process	standards.	For	
instance,	suppose	a	project	required	that	the	effort	estimate	be	made	using	a	method	supplied	by	
the	customer,	but	this	method	is	not	used	anywhere	except	by	this	customer.	The	effort	estimate	
data	for	the	project	thus	cannot	be	used	for	any	future	project	even	though	the	future	project	may	
have	similar	scope	and	project	objectives.

Process	tailoring,	therefore,	has	this	major	limitation.	However,	there	is	a	solution	to	overcome	
this	problem.	Instead	of	tailoring	any	process	to	any	extent,	we	can	tailor	a	process	within	a	defined	
limit.	There	is	another	option	for	tailoring.	Many	popular	process	standards	have	some	predefined	
tailored	processes	or	variations	of	the	parent	process	standard.	For	instance,	the	Rational	Unified	
Process	 standard	has	variations	 such	as	open	unified	process	 (used	by	open	source	developers),	
essential	unified	process	(simplified	model),	unified	process	for	education,	enterprise	unified	pro-
cess	(for	larger-scale	projects),	etc.	Using	a	predefined	tailored	process	ensures	that	even	though	a	
project	has	been	executed	using	a	tailored	process,	its	project	data	will	still	be	relevant	for	future	
projects	when	those	projects	are	going	to	be	using	the	same	predefined	tailored	process	model.

385

Appendix E: Impact of
Offshoring on Standards

Offshoring	 is,	no	doubt,	 influencing	 the	way	software	development	projects	are	being	planned	
and	executed.	Project	teams	can	no	longer	depend	solely	on	verbal	communication.	Proper	and	
elaborate	documentation	 is	 the	norm	now.	While	 this	 improves	 the	quality	of	communication	
and,	in	turn,	improves	process	quality,	it	also	increases	turnaround	time.	For	any	change	to	be	
successful,	the	first	requirement	is	to	communicate	the	change	clearly	to	all	concerned.	Once	the	
change	request	is	approved,	changes	can	be	made	to	the	documentation	in	such	a	way	that	it	is	
understandable	to	everybody.	Even	the	first	draft	of	any	work	plan	needs	to	be	written	in	a	lan-
guage	that	is	easy	to	understand	by	teams	located	at	different	sites.

Apart	from	communication	and	turnaround	time,	the	other	problem	is	concerns	about	quality.	
Customers	do	not	feel	comfortable	about	quality	when	their	partners	are	located	far	away.	On-time	
delivery	is	another	concern,	which	is	only	heightened	due	to	the	increase	in	documentation.

Can	process-driven	project	management	help	in	mitigating	these	concerns?

E.1 Communication Concerns and Solutions
For	the	discussion	here,	it	is	assumed	that	only	electronic	and	voice	communication	are	allowed	
for	all	projects.	Paper-based	communication	has	not	been	considered	here	at	all.

No	 doubt	 distance,	 different	 time	 zones,	 different	 cultures,	 and	 many	 other	 factors	 wreak	
havoc	on	communication	among	teams	situated	at	remote	locations.	These	concerns	can	be	miti-
gated	by	adopting	a	common	language	and	way	of	communication.	For	team	members	who	have	
no	prior	 experience	working	 on	offshore	 projects,	 training	 in	 communication	 may	be	needed.	
There	is	some	good	news	here.	Most	professionals	in	locations	like	India	have	good	experience	in	
working	on	offshore	projects.	They	have	learned	how	to	communicate	on	these	projects.	So	for	
them,	communication	is	not	a	problem.	Any	team	may	comprise	one	or	two	professionals	who	are	
new	to	such	projects.	They	may	need	some	training.	Overall,	project	teams	have	experience	and	
so	the	inexperienced	professionals	can	quickly	learn	from	their	team	members.	Experienced	team	
members	can	also	help	them	in	handling	their	communication.

Experience	has	shown	that	there	is	a	steep	curve	involved	when	a	majority	of	team	members	
have	no	prior	experience.	But,	if	only	a	few	have	no	experience	and	the	majority	is	conversant,	the	
project	does	not	face	any	challenges	as	far	as	communication	is	concerned.

386  ◾  Appendix E: Impact of Offshoring on Standards

Of	course,	when	the	customer	 is	 from	a	country	 like	China,	Japan,	or	any	European	country	
where	English	is	not	the	language	of	communication,	then	language	is	definitely	the	biggest	challenge	
for	any	project.	On	those	projects,	learning	the	language	of	communication	is	the	topmost	priority.

The	 other	 issue	 of	 communication	 is	 turnaround	 time.	 How	 to	 deal	 with	 this	 challenge?	
E-mails	are	not	foolproof.	They	take	time	to	be	delivered	and	sometimes	cannot	be	delivered.	It	
may	even	take	1–2	days	before	it	is	known	that	the	e-mail	was	not	delivered.	E-mails	are	also	not	
synchronous.	Nevertheless,	they	are	very	important	as	they	are	more	formal	than	other	communi-
cation	channels.	They	are	more	reliable	than	any	other	alternative	mode	of	communication.	But,	
for	instant	and	real-time	communication,	instant	messengers	have	no	competition.	They	are	cheap	
(most	of	the	time,	free).	Team	members	keep	themselves	online	on	these	messengers	so	that,	if	any	
team	member	wants	to	communicate	instantly,	they	can	do	that	easily.	Desktop	sharing,	too,	is	a	
good	tool	for	accessing	resources	located	on	a	remote	computer.	Web	demonstrations	are	a	good	
tool	for	conducting	knowledge	transfer	sessions.

Then	there	are	online	applications	like	forums	and	wikis	to	share	knowledge.	Central	configu-
ration	management	systems	can	also	be	used	for	sharing	documents.

So,	how	does	a	standard	process	come	into	the	picture	for	project-related	communications?	
Well,	standard	processes	help	in	making	these	communications	meaningful	to	every	team	mem-
ber	on	the	project.	The	same	terminology	and	documents	are	used	by	everybody.	The	same	pro-
cesses	are	 followed	by	everybody.	Things	are	done	 the	 same	way	on	all	 locations.	This	 reduces	
chances	 of	 communication	 errors.	 Standards	 play	 an	 important	 role	 in	 communication	 when	
projects	are	outsourced	to	offshore	locations.

E.2 Quality Concerns and Solutions
Quality	is	the	top	concern	on	software	projects.	When	the	project	is	moved	offshore	customers	
have	concerns	about	quality	because	they	have	doubts	about	the	capability	of	the	offshore	project	
team.	They	are	also	concerned	about	the	turnaround	time	required	to	fix	any	quality	issues.

By	certifying	all	business	processes	with	a	standard	like	CMMI	or	ISO	or	IEEE,	service	pro-
viders	demonstrate	to	the	customer	that	they	have	standard	business	processes	and	that	they	will	
apply	them	so	that	the	customer’s	project	will	also	have	those	process	standards.	Software	products	
developed	using	such	high	quality	standards	will	definitely	have	good	product	quality.	Once	cus-
tomers	are	assured	about	the	quality	of	processes,	they	can	trust	the	service	provider.	Thus,	process	
standard	quality	plays	an	important	role	in	mitigating	the	quality	concerns	of	customers.

E.3 On-Time Delivery Concerns and Solutions
Distance,	different	cultures,	different	productivity	levels,	and	some	other	factors	make	customers	
insecure	about	on-time	delivery	of	projects.	How	to	convince	customers	that	their	projects	will	
be	delivered	as	per	the	schedule	that	was	agreed	upon?	Again	standard	processes	come	in	handy.	
Since	 the	project	plan	was	made	with	certainty	because	most	of	 the	project	details	were	made	
clear	at	the	beginning	of	the	project,	the	regular	deliveries	and	reports	will	be	done	on	time.	This	
is	because	 the	offshore	project	 team	will	be	working	with	detailed	processes	with	well-defined	
schedules.	Only	when	some	parts	of	customer	requirements	are	not	clear	can	the	project	schedule	
deviate;	otherwise,	known	deliveries	will	be	made	with	certainty.	Well-defined	processes	make	
accurate	schedules,	as	project	size	and	productivity	factors	have	been	calculated	well	in	advance.	
Making	deliveries	on	time	becomes	a	lot	easier.

Appendix E: Impact of Offshoring on Standards  ◾  387

E.4 Tips for Offshore Projects
With	the	added	stresses	of	differing	cultures,	languages,	and	time	zones,	managing	a	global	team	
requires	specific	considerations.	Here	are	six	tips	for	making	your	global	software	development	
efforts	work.

More	companies	are	looking	toward	globally	dispersed	software	development	teams	to	solve	
project	staffing	problems	and	make	critical	time-to-market	deadlines.	This	trend	is	a	fundamental	
change	in	how	software	projects	are	organized	and	implemented.	Using	the	idea	of	“concurrent	
engineering”	 to	deliver	projects	 faster,	 you	break	up	a	project	 into	 smaller,	 less	 complex	pieces	
and	hire	staff	scattered	throughout	the	globe	who	work	asynchronously	around	the	clock.	This	is	
not	the	same	as	adding	more	people	to	a	project	at	a	later	stage	to	finish	the	project	faster.	What	
it	means	is	that,	if	you	are	able	to	break	the	development	(construction)	work	in	such	a	way	that	
it	allows	many	teams	to	work	simultaneously	without	hindering	the	work	of	other	teams,	then	
development	work	will	be	very	fast.	This	is	one	fascinating	factor	that	contributes	to	the	success	
of	offshoring	of	projects.

Culture	affects	global	teams	in	many	ways,	from	what	is	acceptable	to	project	team	members,	
to	how	overtime	and	vacations	are	used.	For	example,	it	is	a	typically	American	attitude	that	if	
the	project	is	running	a	week	late,	project	members	will	forgo	or	reschedule	their	vacations.	This	
is	not	common	in	European	countries	where	vacations	are	more	important	than	meeting	project	
deadlines.

Communication	can	be	tricky—especially	if	not	everyone	on	the	team	speaks	the	same	lan-
guage.	But	even	if	the	language	is	the	same,	what	we	say	may	not	express	exactly	what	we	mean.	
When	everyone	is	located	in	the	same	place,	we	have	many	opportunities	for	informal	communi-
cations	to	clarify	what	we	said	in	person	or	e-mail.	Body	language	also	helps	co-located	teams	to	
remove	barriers	while	communicating.	In	global	projects,	developers	have	few—if	any—face-to-
face	communication	opportunities	to	clarify	what	is	said.

Communicating	across	 time	zones	 is	 another	challenge.	Although	working	asynchronously	
can	help	a	team	progress	faster,	not	everyone	is	available	at	the	same	time.	This	may	slow	down	
communication	and	decision	making.	It	is	difficult	to	find	common	meeting	times,	whether	for	
project	meetings	or	formal	technical	reviews.	A	project	manager	or	team	lead	working	on	such	a	
project	must	balance	organizational	skills,	communication,	and	tools	to	make	the	project	work.	
In	my	experience	leading	globally	dispersed	teams,	six	rules	of	thumb	have	made	my	teams	more	
productive	and	effective.

	 1.	Define complementary processes and agree on the meaning of important terms:	Global	projects	
are	generally	composed	of	teams	that	do	things	differently.	Some	differences	are	cultural,	
while	others	stem	from	management	styles	and	strategies.	What	is	certain	is	that	each	team’s	
reaction	to	the	other	teams’	processes	and	terminology	will	not	be	the	same.

	 	 	 Product	development	processes	do	not	have	to	be	the	same,	but	they	do	need	to	be	com-
plementary.	By	complementary,	I	mean	the	outputs	of	each	group’s	processes	should	match	
the	expectations	of	the	other	groups.

	 2.	Use configuration management systems and defect tracking systems:	When	using	these	systems,	
it	is	important	to	make	sure	everyone	uses	them	in	the	same	way.	Everyone	on	the	project	
needs	to	know	where	the	source	files	are	stored,	what	their	state	is,	and	what	can	be	done	
with	them.

	 3.	Formally inspect requirement documents with all development teams:	Getting	the	requirements	
right	is	key	to	project	success,	no	matter	what	kind	of	project	you	are	leading.	In	a	global	project,	

388  ◾  Appendix E: Impact of Offshoring on Standards

it	is	even	more	critical.	Because	it	may	not	be	easy	to	talk	to	the	person	who	has	the	necessary	
information,	it	is	critical	to	write	down,	review,	and	track	requirements.	It	is	especially	useful	
to	keep	requirements	in	a	repository	so	people	can	go	to	one	place	to	continually	verify	what	is	
going	on	with	the	requirements.

	 	 	 Requirement	 reviews	must	 also	be	more	 formal.	You	cannot	 simply	do	a	 casual	walk-
through	with	whoever	 is	 available	 or	 do	 an	 informal	 review	over	 coffee.	Formal	 reviews	
should	 include	 one	 representative	 from	 each	 team.	 These	 participants	 sign	 off	 that	 the	
requirements	are	correct	and	ready	for	their	team	to	implement.

	 	 	 Electronic	whiteboards	can	be	particularly	useful	if	you	need	to	discuss	design	or	archi-
tecture	 issues	and	draw	pictures.	Normal	video	communications	may	be	most	useful	 for	
standard	project	meetings,	rather	than	meetings	focused	on	carefully	reviewing	a	technical	
document	for	defects.

	 4.	Provide all team members with project plans:	Project	leaders	sometimes	forget	that	not	every-
one	has	access	to—or	knows—all	the	intricate	pieces	of	the	project	schedule.	In	a	global	
project,	this	can	lead	to	project	failure.	Once	the	project	plan	is	developed,	everyone	needs	
access	to	it.	Joint	development	of	the	project	schedule	will	ensure	all	the	hand-offs	and	mile-
stones	are	well	understood	and	articulated	by	everyone.	At	the	very	least,	I	recommend	the	
major	milestones	and	their	commitment	dates	be	pulled	out	of	the	schedule	and	dissemi-
nated	to	the	entire	global	team	by	e-mail.	It	is	even	better	to	have	the	whole	schedule	and	
project	plan	available	online	in	a	workgroup	tool.

	 5.	Organize project teams by product feature:	 I	have	 seen	global	 teams	organized	by	product	
development	function	and	by	product	feature.	Although	it	is	possible	to	have	developers	in	
one	place,	writers	in	another,	and	testers	in	a	third,	they	may	find	it	harder	to	do	the	actual	
work	of	product	development.	On	the	other	hand,	if	teams	are	organized	by	product	fea-
tures,	then	all	developers,	testers,	designers,	etc.,	working	on	the	same	product	feature	are	
located	on	the	same	site,	or,	at	least,	are	part	of	the	same	subproject.	In	such	a	case,	commu-
nication	inside	the	team	will	be	effective	and	chances	of	miscommunications	will	be	remote	
as	team	members	are	well	versed	with	the	same	features	and	know	what	other	team	members	
are	talking	about.

	 6.	Use collaborative tools to bring the project together:	Especially	in	a	global	project,	collaborative	
workgroup	and	workflow	tools	let	people	see	all	of	the	documents	in	one	place.	Workgroup	
and	workflow	tools	such	as	Lotus	Notes	help	bridge	communications	gaps	of	time	and	lan-
guage	and	lessen	the	effects	of	cultural	differences	on	processes.

E.5 Future Trends for Project Offshoring
Changing	needs	create	opportunities	for	new	products/services.	Changing	business	scenarios	cre-
ate	opportunities	for	new	ways	of	doing	business.

Normally,	political	boundaries	determine	limitation	for	growth	of	any	business.	In	free	econo-
mies,	 there	 is	 virtually	no	 limitation	 for	 any	business’	 growth.	On	 the	other	hand,	no	private	
business	is	allowed	in	a	truly	socialist	economy.	In	some	other	economies	that	come	in	between	
these	two	extremes	(most	of	the	countries	in	the	world	have	political	environments	that	are	a	mix	
between	these	two	extremes),	some	barriers	are	enacted	which	limit	growth	prospects	for	any	pri-
vate	enterprise.	In	recent	times,	many	countries	have	started	opening	their	gates	to	foreign	inves-
tors.	This	has	led	to	the	rise	of	many	global	enterprises.	The	trend	of	global	business	houses	has	
created	concepts	like	global	markets,	local	markets,	global	sourcing,	global	suppliers,	etc.

Appendix E: Impact of Offshoring on Standards  ◾  389

The	software	industry	has	also	witnessed	this	trend.	Software	projects	have	started	getting	off-
shored	because	of	cost	factors.	Some	countries	that	benefited	from	this	trend	have	started	investing	
heavily	in	upgrading	technology,	government	deregulation,	tax	reduction,	upgrading	education	
system,	etc.,	as	this	is	a	high-growth	and	high-potential	market.	Thus,	they	not	only	offer	lower	
costs	for	these	projects	but	have	also	become	more	competitive	and	quality-conscious,	providing,	
as	a	result,	better	quality	processes	and	products.

This	trend	is	going	to	continue	in	the	future	because	it	makes	good	business	sense	to	get	things	
done	less	expensively	and	with	better	quality.	Governments	will	also	keep	wooing	foreign	com-
panies	by	providing	facilities	and	changing	policies	to	make	their	country	better	positioned	for	
getting	these	projects.

391

Appendix F: Review
Question Answers

Part I
Chapter.1

1.1	 A	project	is	an	activity	undertaken	to	accomplish	a	stated	goal,	using	limited	budget	and	
resources,	to	be	completed	within	a	specified	time	span.	A	project	has	a	starting	date	and	a	
finishing	date.	The	stated	goal	could	be	to	create	or	modify	a	product	or	service,	it	could	also	
be	to	do	some	research	and	provide	a	report	as	the	outcome	of	the	project.	Software	projects	
are	different	from	other	kinds	of	projects	in	many	ways.	Software	projects	largely	involve	
manual	 effort	 to	 create	 software	 products.	 The	 manual	 effort	 required	 on	 these	 projects	
requires	specialized	skills	on	the	part	of	the	people	involved	on	the	project	team.	Software	
projects	also	require	a	great	deal	of	creativity	on	the	part	of	the	people	working	on	them.	To	
create	databases,	units	of	source	code,	software	architecture,	etc.,	definitely	requires	a	great	
deal	of	creativity	when	hard	specifications	are	not	provided	(and	are	not	possible,	as	well)	
to	do	these	tasks.	Due	to	lack	of	hard	specifications,	the	person	responsible	for	doing	these	
tasks	requires	his	own	creativity	to	accomplish	them.	Due	to	involvement	of	a	great	deal	of	
creativity,	it	is	difficult	to	make	a	good	estimate	of	effort	required	to	do	these	tasks.	This	fac-
tor	makes	it	a	tough	task	to	create	accurate	project	schedules	as	it	is	not	known	in	advance	
as	to	how	much	time	it	will	take	to	finish	a	task.

1.2	 Software	development	projects	are	difficult	to	handle	because	of	some	unique	characteristics	
of	such	projects.	The	foremost	challenges	faced	on	software	projects	are	unclear	requirements,	
soft	specifications,	and	changing	requirements.	Unclear	requirements	and	soft	specifications	
lead	to	problems	of	uncertain	task	durations;	changing	requirements	lead	to	adjusting	proj-
ect	plans.	These	factors	make	it	extremely	difficult	to	create	a	plan	for	a	software	project.	
And,	when	a	software	plan	is	made	after	much	thought,	it	will	fail	during	execution	due	to	
the	factors	mentioned	earlier.

1.3	 Due	to	unclear	requirements,	changing	requirements,	and	soft	specifications,	software	proj-
ects	 often	 fail	 to	meet	 the	 expectations	of	 stakeholders.	To	mitigate	 these	problems	 some	
strategies	can	be	 implemented.	Instead	of	taking	all	 requirements	 in	one	go,	we	may	take	
only	 a	 few	of	 the	 requirements	 and	 completely	make	 the	 software	product	only	 for	 these	
requirements.	Then	take	a	few	more	requirements	and	make	a	software	product	on	top	of	the	

392  ◾  Appendix F: Review Question Answers

first	product.	Incrementally,	we	can	build	the	complete	software	product	this	way.	This	will	
eliminate	the	risks	associated	with	unclear	and	changing	requirements.	To	eliminate	the	risks	
emanating	from	soft	specifications,	we	can	deploy	functional	consultants	who	have	extensive	
experience	in	the	industry	for	which	the	software	product	is	being	made.	These	functional	
consultants	can	help	in	the	functional	design	with	hard	specifications,	so	that	no	ambiguity	
is	left	in	the	software	functional	design.	The	software	design	consultants	then	can	create	hard	
specifications	for	implementing	this	design	into	software	construction.

1.4	 Software	projects	 are	used	 to	make	or	modify	 software	products.	When	 a	new	 software	
product	 is	 needed	 then	 a	 software	 product	 is	 built	 from	 scratch.	 This	 kind	 of	 project	 is	
known	as	a	software	development	project.	On	the	other	hand,	an	existing	software	product	
sometimes	needs	to	be	modified	due	to	changes	in	business	environment,	technology	obso-
lescence,	etc.;	this	kind	of	project	is	known	as	software	maintenance	project.

1.5	 Projects	need	to	be	initiated,	planned,	controlled,	executed,	and,	finally,	closed.	Accordingly,	
we	have	project	processes	like	project	initiation,	project	planning,	project	monitoring	and	
control,	and	project	closure.

1.6	 A	software	project	involves	three	basic	types	of	process,	viz.,	project	management,	software	
development,	and	organization	level	processes.	The	project	management	processes	include	
project	initiation,	project	planning,	project	monitoring	and	control,	and	project	closure.	The	
software	development	processes	 include	 software	 requirements,	 software	design,	 software	
construction,	software	testing,	software	deployment,	and	software	maintenance.	The	orga-
nization	level	processes	include	program	management,	process	improvement	initiatives,	and	
process	standards.	To	become	a	successful	software	project	manager,	it	is	essential	that	the	
person	must	have	knowledge	and	experience	in	managing	all	these	processes.

Apart	 from	 managing	 processes,	 the	 software	 project	 manager	 also	 needs	 to	 handle	
expectations	of	customer/stakeholders	effectively.	He	should	also	be	able	to	manage	his	team	
as	well	as	the	suppliers.

1.7	 Measurement	and	control	of	costs,	productivity,	and	schedule	for	the	project	is	required	at	
frequent	intervals	to	keep	these	major	project	metrics	under	control.	To	do	it,	some	tech-
niques	and	measurement	methods	have	been	devised	by	organizations	and	project	manage-
ment	experts	over	the	years.	We	have	graphs,	Pareto	charts,	cause	and	effect	diagrams,	scatter	
diagrams,	check	sheets,	histograms,	control	charts,	etc.,	measurement	methods	available	
to	measure	and	control	project	processes.	Some	of	these	methods,	like	Pareto	charts,	scatter	
diagrams,	and	cause	and	effect	diagrams,	help	in	identifying	root	causes	of	problems,	so	that	
appropriate	control	measures	can	be	taken.	Check	sheets,	control	charts,	and	histograms	
are	used	to	find	deviations	in	the	processes,	so	that	they	can	be	corrected.

1.8	 Project	initiation	is	the	place	where	project	feasibility,	project	scope,	etc.,	are	determined.	
To	do	these	things,	you	need	to	make	a	rough	estimate	for	costs,	effort,	and	schedule	dura-
tion.	This	is	possible	only	if	you	have	some	rough	idea	about	software	development	tasks	to	
be	done	on	the	project.	During	project	planning,	requirement	specifications,	project	scope,	
and,	optionally,	start	and	finish	dates	need	to	be	gathered	as	project	inputs.	Based	on	these	
inputs,	 complete	 project	 schedule,	 project	 costs,	 and	 other	 project	 planning	 components	
like	communication	plan,	configuration	plan,	resource	plan,	and	supplier	plan	are	prepared.	
Again,	 at	 this	 stage,	 complete	 ideas	 about	 software	 development	 processes	 like	 software	
design,	software	construction,	software	testing,	and	software	release,	which	need	to	be	used	
across	 the	project,	 are	 required.	These	processes	 are	 the	project	 tasks	 to	be	 completed	 to	
make	the	software	product.	When	the	project	execution	starts,	these	project	tasks	(software	
development	processes)	need	to	be	monitored	and	controlled,	so	that	the	project	can	be	kept	

Appendix F: Review Question Answers  ◾  393

within	 control	 in	 terms	of	project	 costs,	product	quality,	 and	project	 schedule.	All	 these	
project	tasks	need	to	be	completed	before	project	closure.

We	can	clearly	 see	 that	 software	development	processes	 fall	within	 the	boundaries	of	
project	management	processes.

Chapter.2

2.1	 The	project	charter	is	the	high-level	document	describing	what	the	project	stakeholders	are	
looking	for	out	of	 the	project	 in	hand.	Generally,	 the	project	charter	does	not	delve	 into	
project	details,	rather,	it	is	a	statement	that	contains	the	stakeholders’	vision	for	the	project.	
For	instance,	a	project	charter	for	a	software	project	could	be	to	achieve	100%	accuracy	in	
order	management	for	a	business	house	as	well	as	to	cut	order	management	costs	by	25%	
from	existing	costs	involved	in	order	management	activities.

2.2	 Project	objectives	are	the	list	of	tasks	describing	how	the	project	charter	can	be	achieved.	In	
the	example	given	for	project	charter	in	answer	1,	a	list	of	tasks	which	will	help	in	achieving	
100%	accuracy	and	25%	reduction	in	order	management	costs	can	be	prepared.	These	tasks	
can	include	cutting	offline	work	from	order	management	and	making	the	order	manage-
ment	process	a	complete	online	activity,	and	introducing	checks	into	the	order	management	
process,	so	that	no	errors	will	occur	in	taking	and	processing	the	customer	orders.

2.3	 Project	scope	defines	what	is	required	to	be	done	on	the	project	to	accomplish	project	objec-
tives.	The	outcome	of	project	scope	preparation	is	a	detailed	document	which	is	also	known	
as	project	deliverables.	Project	scope	is	often	a	bone	of	contention	between	the	customer	and	
the	software	vendor/project	team.	That	is	why	project	deliverables	should	be	well	defined,	
so	that	there	should	not	be	any	area	of	dispute	or	ambiguity	when	the	project	deliverables	
are	actually	made	and	delivered.	If	any	project	deliverables	have	any	ambiguities	or	disputed	
areas,	they	should	be	sorted	out	during	project	initiation.	The	project	scope	should	not	only	
describe	the	deliverables	in	detail,	but	expected	quality	level	should	also	be	well-defined,	as	
it	influences	project	scope	considerably.

2.4	 Software	 projects	 are	 inherently	 difficult.	 Problems	 stemming	 from	 soft	 specifications	 and	
unclear	requirements	mean	visibility	into	the	project	is	very	poor.	During	project	initiation,	
this	 lack	of	visibility	can	hamper	efforts	 to	define	 rough	project	effort,	 cost,	 and	 schedule.	
Misunderstanding	between	the	project	team	and	project	stakeholders	thus	becomes	a	common	
occurrence.	Lack	of	confidence	in	the	project	from	the	stakeholders	is	also	not	uncommon.	The	
project	team	itself	can	find	it	difficult	to	convince	the	stakeholders	about	their	competence.

In	fact,	all	these	problems	during	project	initiation	can	lead	to	a	turbulent	project	execu-
tion	later,	which	ultimately	leads	to	project	failure.

2.5	 Project	scope	is	essentially	a	list	of	deliverables,	which	are	agreed	by	the	two	parties,	viz.,	the	
project	stakeholders	and	the	project	team.	But	even	if	the	project	team	delivers	the	promised	
functionalities	in	the	software	product,	stakeholders	may	not	be	happy	with	the	quality	of	
the	software	product.	The	software	product	can	contain	critical	defects	 that	may	prevent	
the	end	users	from	using	it	effectively.	These	defects	can	even	cause	monetary	losses	to	the	
customer.	So,	software	product	quality	is	a	must.

But	achieving	stringent	quality	norms	is	a	hard	and	laborious	task.	It	will	also	be	costly	
and	may	consume	enormous	amount	of	time.	Obviously,	achieving	very	high	software	prod-
uct	quality	may	not	be	necessary	or	required	for	all	software	products.	So,	the	project	scope	
document	must	specify	what	level	of	software	product	quality	is	required,	so	that	amount	of	
project	work	can	be	determined.

394  ◾  Appendix F: Review Question Answers

2.6	 At	project	 initiation	 level,	making	an	elaborate	project	plan	 is	 impossible	because	a	 large	
number	 of	 project-related	 information	 is	 not	 available.	 However,	 rough	 estimates	 about	
project	costs,	effort,	number	of	resources	required,	and	project	schedule	are	desirable.	The	
project	team	should	make	initial	and	rough	estimates	about	these	project-specific	details.	
During	initiation,	the	project	team	can	present	these	rough	estimates	to	project	stakehold-
ers.	If	the	project	stakeholders	have	some	specific	demands	after	seeing	this	rough	estimate,	then	
these	demands	can	be	incorporated,	and	the	project	initiation	phase	can	be	signed	off.

Chapter.3

3.1	 Function	point	 analysis	 (FPA)	 technique	 tries	 to	find	out	 effort	 and	 cost	 estimates	 for	 a	
software	project	by	finding	out	how	many	functions	will	be	needed	to	create	the	required	
functionality	in	the	software	product	to	be	made.	Depending	on	the	number	of	functions,	
complexity,	and	number	of	interfaces,	the	unadjusted	function	point	is	calculated.	A	value	
adjustment	factor	is	applied	to	get	the	final	FPA	estimate.

In	the	initial	stage	of	a	software	project,	there	will	be	many	assumptions	about	various	aspects	
of	the	project.	So,	at	that	point,	FPA	calculations	will	be	crude	and	far	from	accurate	due	to	these	
assumptions.	Once	the	project	is	on	its	way	and	these	assumptions	have	mostly	been	converted	
into	solid	project	details,	then	the	FPA	effort	estimate	will	be	close	enough	to	being	accurate	
enough.

3.2	 The	COCOMO	(Constructive	Cost	Model)	for	estimating	effort	and	cost	for	software	proj-
ects	 was	 proposed	 by	 Barry	 Boehm.	 He	 studied	 execution	 data	 from	 a	 large	 number	 of	
previously-executed	software	projects	and	found	that	there	are	environmental	and	internal	
influencing	factors	(known	as	attributes)	that	affect	effort	required	on	a	software	project.	He	
incorporated	these	attributes	into	his	famous	COCOMO	effort	estimate	model.

One	advantage	of	the	COCOMO	model	is	that	it	can	be	applied	at	any	stage	of	the	project.	
For	this,	there	are	three	versions	of	the	COCOMO	model.	In	the	initial	stages	of	a	software	
project,	when	project	specific	information	is	mostly	not	available,	industry	average	values	for	all	
the	attributes	are	applied.	This	version	of	the	COCOMO	model	is	known	as	Basic	COCOMO.	
During	the	middle	stages	of	a	project,	when	almost	all	of	the	project	specific	information	is	avail-
able,	then	these	attributes	are	applied	to	calculate	effort	estimate.	This	version	of	COCOMO	is	
known	as	Intermediate	COCOMO.	The	third	version	of	COCOMO,	which	is	used	to	calcu-
late	effort	estimates	for	various	phases	of	the	project,	is	known	as	Detailed	COCOMO.

3.3	 When	data	for	past	projects	are	not	available,	then	both	Wide	Band	Delphi	and	COCOMO	
models	can	be	used.	Neither	of	these	models	use	past	projects	data	in	deriving	effort	esti-
mates.	COCOMO	modeling	uses	current	project	attributes	as	well	as	industry	trends	attri-
butes	 in	effort	calculations.	 In	Wide	Band	Delphi,	 team	members	derive	effort	estimates	
after	going	through	some	brainstorming	sessions.	For	 these	sessions,	only	current	project	
attributes	are	used	for	estimation	work.

3.4	 Generally,	project	schedule	for	software	projects	is	considered	to	be	a	constant.	This	because	
it	 is	believed	 that,	 even	 if	 you	 add	more	 resources	 to	 a	project	 to	make	project	 schedule	
shorter,	it	does	not	result	in	shorter	schedules.	This	assumption	is	not	true.	Using	concur-
rent	engineering	techniques,	tasks	can	be	split	into	many	smaller	tasks,	which	can	be	done	
in	parallel	to	each	other,	while	at	the	same	time	as	they	are	independent	from	each	other.	
Many	independent	teams	can	be	deployed	to	complete	these	parallel	tasks.	This	technique	
will	 result	 in	making	 the	project	 schedule	 shorter.	Since	many	 teams	will	be	 involved	 in	
such	an	arrangement,	a	larger	pool	of	resources	will	be	needed	to	do	these	tasks.	At	the	same	

Appendix F: Review Question Answers  ◾  395

time	there	is	a	larger	overhead	due	to	the	introduction	of	many	layers	of	management,	which	
stems	from	the	large	number	of	people	included	by	using	many	teams.	This	means	the	proj-
ect’s	budget	will	be	higher,	in	comparison,	than	it	would	be	in	a	situation	where	parallel	task	
processing	was	neither	sought	nor	employed,	thus	keeping	the	management	for	the	project	
on	just	one	layer.

3.5	 Project	scope	is	a	list	of	deliverables	that	are	to	be	made	during	and	after	project	completion.	
There	should	also	be	a	rider	on	these	deliverables;	the	quality	aspect.	This	rider	should	clearly	
state	what	level	of	quality	is	acceptable	for	the	software	product	being	made.	A	high	level	of	
quality	requires	more	effort.	Indeed,	if	stringent	quality	is	required,	as	in	the	case	of	life-
critical	applications,	then	effort	could	be	several	times	higher	compared	to	the	effort	required	to	
develop	a	general	purpose	application.	It	is	commonly	accepted	that	a	project	undertaken	by	a	
group	of	students	as	a	class	assignment	to	develop	a	software	product	could	have	a	development	
speed	of	5000	lines	of	source	code	per	person	per	month.	When	an	industry	strength	software	
product	is	developed	by	a	professional	project	team	then	the	development	speed	sharply	drops	
to	the	tune	of	1000	lines	of	source	code	per	person	per	month.	This	drop	in	development	speed	
is	due	to	extra	effort	in	building	high	quality,	defect-free	software	products.	This	extra	effort	
goes	in	reviews,	inspections,	and	testing	to	ensure	that	quality	of	all	work	products	throughout	
the	development	cycle	remains	within	agreeable	limits.

Chapter.4

4.1	 The	most	critical	risks	on	a	software	project	include	resource	unavailability,	skill	shortage,	
technology	 obsolescence,	 incorrect	 effort	 estimate,	 quality,	 escalating	 costs,	 requirement	
changes,	misunderstanding,	and	miscommunication.	Each	of	these	risks	have	potential	to	
jeopardize	a	software	project.

4.2	 The	best	strategy	for	tackling	risks	on	software	projects	is	to	keep	some	buffer	so	that,	when	
any	risk	occurs,	the	buffer	is	consumed	and	the	project	schedule	remains	intact.	This	is	true	
for	all	risks	which	can	impact	project	costs,	quality,	or	project	schedule.	So,	we	can	have	
a	buffer	in	the	project	schedule	for	schedule	related	risks.	We	can	have	a	budget	buffer	to	
tackle	budget-related	risks.

For	technology-related	risks,	we	can	research	and	make	sure	that	any	aspect	of	the	soft-
ware	product	will	not	become	obsolete	for	its	projected	lifespan.

For	 quality-related	 risks,	 we	 can	 have	 a	 comprehensive	 quality	 assurance	 plan.	 Each	
work	product	should	be	reviewed	and	tested	to	make	sure	that	quality	level	throughout	the	
development	life	cycle	has	excellent	quality,	and,	thus,	the	final	product	will	also	have	above	
expected	quality	level.

4.3	 Risks	are	unpredictable	by	nature.	They	can	suddenly	occur	at	time	during	the	project.	
But,	at	the	same	time,	some	risks	are	more	likely	to	occur	at	a	specific	time	than	other	risks.	
It	is	important	to	not	only	make	a	prioritized	list	of	risks,	but	to	keep	this	list	updated	so	that	
the	most	likely	risks	at	any	point	in	time	are	kept	on	top	of	the	list,	that	way,	if	they	occur,	
the	project	manager	is	ready	to	take	appropriate	action	to	mitigate	it.

To	make	a	risk	management	plan,	first	of	all,	you	need	to	identify	and	list	all	risks	that	can	
impact	the	project.	Each	risk	can	have	an	impact	that	can	be	mild	to	severe	on	the	project.	
Note	the	severity	level	of	each	risk;	high	severity	risks	have	more	severe	impact	on	the	project.	
Therefore,	these	risks	should	also	have	higher	priority	compared	to	lower-severity	risks.

The	prioritized	list	of	risks	should	be	reviewed	frequently	and	order	of	risks	should	be	
sorted	so	that	the	most	likely	risks	in	immediate	future	are	kept	on	the	radar.

396  ◾  Appendix F: Review Question Answers

4.4	 Projects	need	to	deliver	the	agreed-upon	deliverables	within	the	agreed-upon	budget,	sched-
ule,	and	quality	level.	If	any	of	these	limits	are	violated,	then	the	project	will	fail.	There	may	
be	many	risks	associated	with	occurrences	impacting	any	of	these	limits.	A	project	manager	
must	 be	 able	 to	 tackle	 these	 risks	 successfully	 or	 else	 the	project	 will	 be	 in	 trouble.	 If	 a	
project	is	going	to	be	safeguarded	from	these	risks,	a	good	risk-mitigation	strategy	should	
be	in	place.	For	instance,	highly	skilled	resources	are	highly	in	demand.	To	retain	them,	a	
comprehensive	retention	plan	is	adopted	by	all	employers	in	the	IT	field.

4.5	 To	mitigate	the	risks	posed	by	changing	requirements,	either	an	iterative	product	develop-
ment	strategy	or	a	comprehensive	change	request	policy	is	adopted	for	software	projects.	In	
iterative	models,	only	a	few	requirements	are	taken	at	a	time	for	development	and	complete	
development	is	performed	for	those	requirements.	When	the	cycle	of	developing	a	software	
product	 for	 those	 requirements	 is	 complete,	 then	 the	next	 batch	of	 requirements	 can	be	
taken	for	development.	Since	these	iterative	cycles	are	short	(a	week	to	5–6	weeks),	it	is	pos-
sible	to	incorporate	all	requirements	even	with	some	changes.

The	other	strategy	is	to	enforce	a	stringent	change	management	policy	so	that,	whenever	
changes	are	requested	in	requirements,	an	impact	analysis	is	performed	first.	This	analysis	
will	show	how	much	reworking	will	be	needed	in	already-made	software	design	and	writ-
ten	source	code.	If	the	customer	agrees	to	go	ahead	with	the	additional	amount	of	time	and	
cost	involved	in	doing	those	changes,	only	then	those	change	requests	will	be	incorporated.

Chapter.5

5.1	 Configuration	management	 systems	 are	 vital	 parts	 of	 any	 software	project.	They	 are	 the	
central	 repository	 for	all	project	documents,	 requirement	specifications,	 software	designs,	
source	code,	testing	artifacts,	etc.	As	a	project	progresses,	a	large	number	of	versions	of	these	
artifacts	get	generated	to	take	care	of	change	requests,	defect	fixes,	etc.	So,	they	also	contain	
all	versions	of	these	documents	and	artifacts.

A	large	number	of	software	projects	involve	many	teams	working	on	the	project	from	many	
locations.	A	centralized	management	system	helps	them	work	together	by	keeping	all	project	
artifacts	at	a	central	location	and	providing	secured	access	to	all	project	teams.

5.2	 A	good	configuration	management	system	should	have	a	secured	access	mechanism,	so	that	
only	authorized	people	can	access	it.	The	system	should	be	able	to	be	audited	frequently	to	
make	sure	that	all	the	artifacts	it	stores	are	safe	and	are	not	tampered	with.	It	should	also	
have	a	foolproof	reliability,	so	that	all	the	stored	artifacts	do	not	get	corrupted.	It	should	have	
a	role-based	security,	so	that	only	authors	of	project	artifacts	have	the	rights	to	edit	or	delete	
any	 stored	artifact.	All	other	users	 should	have	access	 to	view	or	download	 the	artifacts.	
Continuous	integration	of	software	builds	should	be	provided,	so	that	developers	can	check	
in	their	source	code	whenever	they	finish	their	already-tested	units	of	source	code.

5.3	 When	a	new	piece	of	source	code	is	integrated	with	a	software	build,	it	can	lead	to	many	prob-
lems	if	the	source	code	to	be	integrated	is	not	clean	(has	defects,	compiling	issues,	etc.).	If	the	
software	build	is	not	tested	frequently	for	defects	and	compiling	errors,	it	will	be	very	difficult	
to	debug	and	find	defects	when	the	build	becomes	large.	Good	practice	is	that,	whenever	a	new	
piece	of	source	code	is	added	to	the	main	build,	the	build	should	be	tested	for	compiling	issues	
and	defects.	This	way	it	can	be	made	sure	that	the	build	is	always	clean.	This	kind	of	testing	
performed	each	time	a	new	piece	of	code	is	added	is	known	as	smoke	test.

5.4	 For	most	purposes,	a	centralized	configuration	management	system	is	a	better	option	than	
a	decentralized	one.	A	centralized	system	works	on	the	principles	of	“one	version	of	truth.”	

Appendix F: Review Question Answers  ◾  397

This	kind	of	environment	promotes	accuracy	of	 information,	 immediacy	(information	 in	
real	time),	faster	information	delivery,	etc.	On	the	flip	side,	there	can	be	security	issues	with	
this	system.	If	many	teams	are	working	from	many	locations	and	if	access	is	provided	to	
them	through	internet,	then	security	issues	can	definitely	arise.	A	totally	secure	connection	
and	access	permission	is	needed	in	such	scenarios.

A	 decentralized	 system,	 on	 the	 other	 hand,	 is	 comparatively	 secure.	 But	 if	 many	
teams	are	working	from	many	locations	with	their	own	configuration	management	sys-
tem,	then	all	those	disparate	systems	will	need	to	be	synchronized	frequently	using	some	
sort	of	connection	among	them.	This	will	pose	security	issues.	Since	each	system	has	its	
own	repository	of	project	artifacts,	then	one	version	of	truth	may	not	be	always	possible.	
Moreover,	each	system	may	be	different	from	each	other	(different	vendors,	different	ver-
sions,	etc.).	Integration	and	synchronization	among	them	will	be	very	difficult	in	such	a	
scenario.

5.5	 When	a	software	vendor	makes	a	software	product,	he	keeps	adding	new	functionality	in	
the	product	over	 a	period	of	 time.	Each	 time	a	major	 version	of	 the	 software	product	 is	
released,	all	artifacts	related	to	that	version	of	the	product	need	to	be	kept	at	a	secured	place	
for	reference	in	the	future.	If	any	patches	are	to	be	developed	in	future	for	the	defects	found	
in	that	version,	then	the	reference	documents	belonging	to	that	version	can	be	retrieved	and	
defect	fixing	can	be	done.	Similarly,	if	reverse	engineering	is	required	at	any	time	in	future,	
these	reference	materials	can	come	in	handy.

Most	of	the	configuration	and	version	control	management	systems	come	with	a	facil-
ity	to	make	branches	in	file	system.	Each	branch	can	be	configured	to	contain	all	artifacts	
belonging	to	a	particular	version.	When	a	new	version	of	the	software	product	is	initiated,	it	
is	a	good	idea	to	create	a	new	branch,	so	that	all	existing	artifacts	are	copied	from	previous	
version.	If	this	is	not	done,	then	all	required	copies	of	artifacts	will	need	to	be	copied	manu-
ally,	which	may	take	considerable	amount	of	time.

Chapter.6

6.1	 Project	plans	typically	consist	of	a	project	schedule,	communication	plan,	risk	plan,	supplier	
plan,	 quality	 plan,	 effort	 and	 cost	 estimates,	 etc.	 Software	projects	 also	 configuration	
management	plans	as	part	of	the	project	plan.	The	schedule	plan	itself	can	be	divided	into	
tasks	 related	 to	 the	 chosen	 software	 development	 life	 cycle.	 Depending	 on	 the	 software	
development	life	cycle,	the	project	plan	itself	varies	considerably	and,	when	this	happens,	
then	other	plans	get	affected	considerably.

When	a	traditional	waterfall	model	is	adopted	for	the	project,	then	all	of	the	planning	
components	will	be	outlined	in	all	details	and	much	in	advance.	But,	for	iterative	projects,	
concrete	planning	is	done	only	for	the	next	iteration	while	rest	of	the	plans	for	future	itera-
tions	are	done	tentatively.

6.2	 Software	projects	are,	after	all,	an	undertaking	to	produce	or	modify	a	software	product	
within	 a	 given	 time	 span	 starting	 from	a	fixed	date,	with	 limited	budget	 and	 resources.	
To	be	successful,	the	project	must	be	completed	within	specified	limits.	If	no	planning	is	
done	for	the	project,	then	it	will	not	be	known	in	advance	if	the	project	will	be	completed	
within	these	 limits.	Only	when	projects	are	done	in	an	orderly	manner	will	 the	outcome	
be	controlled.	If	no	project	plan	was	made,	then	the	amount	of	budget	and	resources	to	be	
consumed	on	the	project	will	not	be	clear,	nor	will	the	time	in	which	the	project	will	be	
completed.	Due	to	these	factors,	a	detailed	project	plan	is	a	must.

398  ◾  Appendix F: Review Question Answers

6.3	 Software	project	planning	is	done	with	many	details	included.	There	are	a	number	of	project	
components	for	which	planning	is	done.	These	planning	components	include	communica-
tion,	configuration,	 resources,	project	 schedules,	effort	estimation,	cost	estimation,	and	
quality	planning.	If	there	are	suppliers	involved	on	the	project,	then	supplier	planning	needs	
to	be	done.

Planning	for	all	these	components	also	has	an	effect	on	the	software	development	life-
cycle	method	adopted	on	the	project.

6.4	 Top-down	project	planning	is	employed	when	the	software	product	to	be	developed	has	a	
definite	release	date.	In	such	cases,	beginning	from	the	start	date,	there	is	a	fixed	amount	of	
time	in	which	the	software	product	needs	to	be	developed.	Since	the	time	duration	is	fixed,	
only	a	limited	amount	of	software	features	can	be	developed.

Some	of	the	inputs	in	such	cases	include	start	date,	end	date,	project	duration,	software	
requirements,	software	development	life-cycle	method,	and	service	level	agreements.

6.5	 Bottom-up	project	planning	inputs	include	software	development	life-cycle	method,	project	
scope,	software	requirements,	and	service	level	agreements.

6.6	 To	tackle	risks,	project	plans	include	buffers.	For	risks	impacting	schedule,	a	schedule	buf-
fer	is	provided.	For	risks	impacting	budget,	a	budget	buffer	is	provided.	For	quality	risks,	a	
quality	plan	is	provided.

6.7	 In	iterative	models	of	software	development,	planning	is	done	at	three	levels.	The	topmost	
level	is	where	a	complete	product	development	roadmap	is	conceived.	It	is	more	like	a	charter	
for	long	range	planning.	It	is	made	after	a	thorough	study	of	the	market,	where	there	is	need	
for	a	product	to	fulfill	a	gap,	etc.,	and	a	full	executive	management	buy-in	is	sought	(in	the	
case	of	software	product	vendors).	In	the	middle	level	is	the	plan	for	major	version	releases	
of	the	software	product.	This	is	done	on	or	around	a	yearly	basis.	This	planning	is	done	after	
getting	the	market	 feedback	for	tapping	 immediate	market	opportunities.	At	the	bottom	
is	the	iteration	level	planning.	This	corresponds	to	minor	releases	of	the	software	product.	
Generally,	they	are	done	on	a	quarterly	basis.

Iterative	planning	 is	 also	done	 for	other	kinds	of	projects.	 In	 those	cases,	 the	project	
planning	can	be	done	at	only	two	levels;	even	though	the	complete	roadmap	may	be	present,	
no	planning	is	required	to	be	done	at	that	level.	The	product	manager	may	be	involved	only	
in	the	middle	and	iterative	levels	of	planning.

Chapter.7

7.1	 On	software	projects,	not	only	are	 schedule	and	cost	 to	be	monitored	but	quality	of	 the	
products	is	also	extremely	important.

7.2	 Sometimes,	a	project	task	may	be	slipping;	this	could	be	for	many	reasons	like	lateness	of	a	
precedent	task,	an	item	being	reworked,	or	the	unexpectedly	increased	amount	effort	required.	
This	situation	can	be	controlled	by	adding	some	more	resources	to	the	slipping	task,	so	that	
it	can	be	done	in	a	shorter	span	of	time.	Similarly,	a	job	may	be	completed	earlier	than	the	
planned	date.	In	that	case,	some	resources	from	that	task	can	be	moved	to	another	task.

Movement	of	resources	on	a	project	in	anticipation	deviations	on	the	project	schedule	is	
known	as	resource	leveling.

7.3	 Any	project	task	will	have	a	planned	schedule	and	budget	associated	with	it.	When	the	proj-
ect	gets	started,	we	can	put	in	the	baseline	dates	and	budget	for	this	task	(same	as	planned).	
When	the	task	begins,	we	can	measure	the	consumption	of	budget	and	elapsed	time	against	
actual	work	being	done.	Suppose	we	need	to	write	5000	lines	of	source	code	in	30	days.	

Appendix F: Review Question Answers  ◾  399

There	are	 two	developers	 involved	 in	writing	 the	 source	 code.	Salary	of	one	developer	 is	
$4000	per	month	and	that	of	another	$5000	per	month.	After	15	days	time,	a	work	progress	
measurement	was	taken.	It	was	found	that	2000	lines	of	source	code	was	done.	The	ideal	
situation	would	have	been	2500	lines	of	code	by	this	time.	In	percentage	terms,	we	can	say	
that	the	schedule	is	lagging	behind	by	(2500	–	2000)/2500%	=	20%.	For	writing	2000	lines	
of	code,	the	developers	together	should	have	taken	2000/5000	×	30	=	12	days.	So,	budget	is	
being	consumed	more	than	planned	by	(15–12)/30%	=	10%.

Project	 schedule	 is	 tracked	 from	 the	 planned	 schedule	 to	 the	 actual	 progress	 on	 the	
project	against	time.	To	make	the	tracking	easier,	there	should	be	some	well-defined	marks	
on	the	schedule	so	that,	when	they	are	achieved,	a	definite	report	about	the	project	can	be	
made.	These	marks	on	the	schedule	can	be	done	using	major	and	minor	milestones.	Major	
milestones	should	denote	completion	of	major	phases	on	the	project,	for	example,	software	
design	phase	completion	and	software	testing	completion.

7.4	 Deviations	in	project	schedule	can	be	remedied	using	many	techniques.	Some	of	the	popular	
techniques	include	overloading	of	resources,	partitioning	of	tasks,	and	performing	tasks	in	
parallel,	but	not	all	kinds	of	tasks	are	amenable	to	these	techniques.	For	instance,	a	software	
design	cannot	be	divided	meaningfully	among	many	software	designers	if	the	design	is	sup-
posed	to	be	monolithic	in	nature	and	not	a	modular	one.	Similarly,	if	the	software	design	is	
large,	and	it	is	being	designed	in	a	modular	architecture,	then	the	tasks	cannot	be	divided	
below	the	module	level.	So,	there	is	a	limit	to	the	extent	of	the	divisibility	of	tasks.	Whenever	
it	is	possible	to	further	divide	a	task,	the	divided	tasks	can	be	processed	in	parallel	by	adding	
extra	resources	on	the	project	and	thus	correcting	any	deviation	in	the	project	schedule.

In	case	of	overloading	of	resources,	they	can	be	asked	to	work	overtime	to	complete	their	
assignment	in	time.

If	none	of	these	measures	are	feasible,	then	we	can	consume	time	from	the	project	sched-
ule	buffer.	Project	schedule	buffers	are	safety	valves	in	the	project	schedule,	so	that	when	any	
deviation	occurs,	the	project	buffer	can	be	consumed.

7.5	 There	could	be	many	reasons	why	a	project	budget	deviation	occurs.	One	could	be	simply	
because	the	tasks	could	not	be	completed	on	schedule	and	extra	time	is	needed	to	complete	
them;	this	will	involve	extra	budget	for	the	project.	In	some	other	instances,	project	budget	
could	be	affected	due	to	rise	in	salaries	of	project	personnel.	Then,	cost	of	tools	or	services	
can	rise	unexpectedly	and	project	budget	can	be	affected.	These	personnel-related	deviations	
in	project	budget	are	irrespective	of	project	schedule.

To	tackle	these	deviations,	we	can	keep	a	buffer	in	the	project	budget.	When	these	devia-
tions	occur,	we	can	consume	from	the	project	budget	buffer.

7.6	 During	project	planning,	we	make	a	quality	plan	regarding	the	overall	quality	of	software	
products	and	work	products.	In	the	quality	plan,	there	are	tasks	(reviews/testing)	that	mea-
sure	 the	quality	 and,	 if	 any	defects	 are	 found,	 revision	 is	 to	be	done	on	 those	products.	
Sometimes,	number	of	defects	found	during	such	tasks	can	cause	the	project	schedule	to	
deviate	if	the	allotted	revision	time	is	not	enough	and	more	time	is	needed.	In	such	cases,	
the	project	schedule	buffer	can	be	used.

Chapter.8

8.1	 Project	data	are	extremely	useful	for	future	projects.	This	is	due	to	the	fact	that	effort	estima-
tion	on	a	project	in	the	early	stages	is	very	difficult.	Agreement	between	the	customer	and	the	
development	team	can	become	difficult	because	of	these	problems.	No	side	is	sure	about	what	

400  ◾  Appendix F: Review Question Answers

the	effort	and	costs	required	for	the	project	could	be.	Similarly,	it	becomes	difficult	to	make	
a	good	plan	for	the	project.	Using	previously	executed	project	data,	it	is	possible	to	do	process	
selection,	project	sizing,	determine	required	quality	level	and	number	of	resources	required,	
determine	project	schedule,	etc.	In	fact,	the	entire	project	can	be	planned	with	little	effort.

8.2	 Before	we	think	about	archiving	project	data,	it	is	of	utmost	importance	that	we	care	about	
where	the	project	data	is	coming	from,	the	accuracy	of	the	data,	the	formats	the	data	have	
been	recorded	in	the	project	attributes	(industry,	project	size,	use	of	application,	etc.),	and	
such	details.	The	first	task	should	be	to	cleanse	the	data	to	make	sure	that	it	is	pure.	The	next	
thing	to	do	is	to	find	the	formats	of	all	data	and	then	convert	them	into	a	uniform	format.	
Finally,	the	attributes	should	be	studied,	so	that	the	project	data	could	be	placed	in	an	appro-
priate	project	data	category.

8.3	 Project	closure	is	the	stage	where	all	development	activities	will	come	to	an	end.	Activities	
like	project	data	archiving,	lessons	learned,	resource	release,	and	source	code	management	
are	performed	during	project	closure.

8.4	 Data	for	lessons	learned	reside	in	many	places	like	in	memory	of	team	members,	emails,	proj-
ect	management	systems,	and	configuration	management	systems.	Extracting	and	cleaning	
this	data	is	a	tough	job.	Once	it	is	done,	the	data	should	be	formatted	and	then	aggregated	
in	a	uniform	manner.	Only	then	it	is	useful.

There	is	a	large	difference	between	data	and	meaningful	information.	Jumbled,	without	for-
mat,	and	without	context,	data	is	simply	useless.	On	the	extreme	side,	arranged,	well-formatted,	
relevant,	and	context-sensitive	data,	which	can	be	termed	as	information,	is	extremely	useful	
even	if	it	does	not	contain	much	data.	This	concept	should	be	kept	in	mind	when	a	lessons	
learned	list	is	made.

8.5	 Any	 project	 needs	 resources,	 budget,	 and	 time	 for	 their	 execution.	 In	 software	 projects,	
resources	 in	 the	 form	of	 software	professionals	 are,	 in	 fact,	 the	most	costly.	They	 should	
be	used	very	efficiently,	so	that	the	project	costs	can	be	kept	in	check.	When	any	resources	
are	no	longer	needed	on	a	project,	they	should	be	released	immediately	so	that	they	can	be	
assigned	on	other	projects.

Part II
Chapter.9

9.1	 Software	projects	have	typical	phases	like	software	requirement	development,	software	design,	
software	construction,	software	testing,	software	release,	and	software	maintenance.	Depending	
on	the	kind	of	process	model	selected,	these	phases	may	overlap	or	might	be	rigidly	separated	
from	each	other.	Similarly,	the	phases	may	be	completed	sequentially,	in	loops	or	spirally.

9.2	 Software	development	is	mostly	a	human	activity	with	negligible	amounts	of	automation.	So	
many	people	think	that	statistical	process	control	(SPC)	cannot	be	used	on	software	projects	
successfully.	After	all,	SPC	methods	work	with	processes	where	precise	process	data	are	avail-
able.	This	data	then	can	be	compared	with	a	standard	set	of	data,	and	results	can	be	analyzed	
to	find	process	areas	for	improvement	so	that	the	existing	problems	due	to	faulty	process	areas	
will	not	happen.	SPC	techniques	work	well	to	measure	data	when	data	comes	from	machines.	
It	is	because	process	steps	with	machines	are	repeatable,	and	thus	all	process	data	coming	from	
machines	have	a	definite	pattern.	Finding	a	set	of	data	that	deviates	from	this	pattern	is	easy	
and,	thus,	finding	the	cause	of	the	error	is	also	easy.	The	same	cannot	be	said	about	activities	
performed	by	human	beings.	Humans	cannot	do	things	the	same	way	again	and	again.

Appendix F: Review Question Answers  ◾  401

Since	software	projects	are	a	mostly	human	activity,	measuring	process	data,	finding	
a	problem	area,	and	then	fixing	it	 is	difficult.	Nevertheless,	with	maturity	of	software	
engineering	techniques,	software	processes	have	become	more	repeatable.	Now,	it	is	pos-
sible	to	predict	quality,	effort,	schedule,	and	budget	for	a	software	project	with	accuracy.	
So,	SPC	processes	can	be	applied	on	software	projects.	In	the	development	process,	checks	
can	be	applied	at	many	places	so	that	work	products	can	be	checked	for	defects,	and	all	
found	defects	 should	be	 immediately	removed.	Similarly,	process	checks	can	be	applied	
so	that	process	deviations,	in	terms	of	schedule	or	budget,	can	be	checked	and	controlled	
immediately.	In	all	these	areas,	SPC	methods	are	extremely	useful.

. 9.3	 	Concurrent	engineering	deals	with	dividing	work	into	parts,	which	can	be	processed	or	
executed	in	parallel	so	that	project	schedule	can	be	significantly	reduced,	and	thus	project	
duration	can	be	made	shorter.	To	do	this,	we	need	to	make	provision	for	dividing	a	task	
inside	a	process	by	designing	the	previous	process	in	such	a	way	that	the	next	process	can	
be	easily	divided.	For	example,	if	we	need	to	divide	the	construction	process	in	a	software	
project,	then	we	need	to	make	the	software	design	modular,	so	that	the	software	construc-
tion	can	be	easily	divided	into	separate	modules	and	thus	work	on	these	modules	can	be	
done	concurrently.

. 9.4	 	Different	phases	of	software	development	produce	different	work	products.	The	require-
ment	phase	produces	requirement	specifications,	the	design	phase	produces	design	docu-
ments,	and	the	construction	phase	produces	source	code.

. 9.5	 	The	 software	development	cycle	produces	many	products.	The	metrics	deployed	on	 the	
project	need	 to	measure	quality	of	 these	work	products	 to	 ensure	 that	 it	 is	maintained	
throughout	the	development	process.	Reviews	are	conducted	to	ensure	the	quality	of	the	
work	products.	Requirement	specifications,	software	design,	and	software	construction	are	
reviewed	and	tested,	to	ensure	that	there	are	no	defects.

Chapter.10

10.1	 	Requirement	gathering	can	be	done	using	many	means	and	methods.	Requirements	
from	 end	 users	 can	 be	 elicited	 using	 techniques	 like	 interviews	 and	 questionnaires.	
Indirect	 requirements	 can	 be	 gathered	 from	 customer	 feedback,	 complaints,	 polls,	 etc.	
Requirements	can	also	be	gathered	from	customer	support,	end-user	tests,	etc.

10.2	 	Requirement	development	process	flow	entails	gathering	requirements,	formatting	require-
ment	data,	aggregating	requirements,	maintaining	hierarchy	and	relationship	of	requirements	
to	each	other,	and,	finally,	prioritizing	requirements.

10.3	 	During	requirement	development,	a	lot	of	quality	aspects	need	to	be	checked.	The	relation-
ship	 between	 requirements,	 dependency	 of	 requirements,	 hierarchy	 of	 requirements,	 etc.,	
need	to	be	checked.	Formatting	of	requirements	also	need	to	be	checked.	Apart	from	correct-
ness,	other	aspects	like	maintainability,	testability,	and	reliability	also	need	to	be	checked.

During	requirement	management,	the	most	critical	aspect	to	be	checked	is	to	assess	
the	impact	of	change	on	the	entire	development	cycle.	At	the	same	time,	the	right	version	
of	the	requirement	also	needs	to	be	checked	to	ensure	that	no	processes	downstream	use	
wrong	version	of	the	requirement	specifications.

10.4	 	Software	development	is	initiated	only	to	fulfill	the	demands	put	by	the	customer	require-
ments.	In	fact,	if	the	development	team	is	engaged	in	doing	anything	else,	then	this	will	be	
a	waste	of	time.	Now,	requirements	cannot	be	converted	into	a	finished	software	product	
in	one	go.	First,	an	appropriate	software	design	is	made	based	on	which	the	source	code	

402  ◾  Appendix F: Review Question Answers

will	be	written.	If	the	requirement	specifications	are	not	made	properly	or	some	informa-
tion	is	missing,	then	software	design	cannot	be	made	properly.	Subsequently,	the	software	
source	code	would	also	be	not	made	properly.

For	all	these	reasons,	properly	formatted	and	correct	requirements	are	needed.
10.5	 	Requirement	management	is	all	about	managing	change.	Whenever	any	changes	are	made	

in	any	requirements,	the	entire	project	gets	affected.	Many	already-completed	work	prod-
ucts	may	need	to	be	reworked;	many	planned	work	products	need	to	be	revised.	This	leads	
to	a	thorough	change	in	project	plan.

The	requirement	management	process	flow	involves	receiving	the	change	request,	
doing	impact	analysis	on	the	project,	making	a	proposed	revised	project	plan,	send-
ing	it	to	stakeholders,	getting	approval	from	stakeholders,	and	implementing	the	new	
project	plan.

Chapter.11

11.1	 	Software	design	involves	making	a	software	architecture	and	a	software	design	that	will	
convert	the	requirement	specifications	into	an	appropriate	design	for	the	proposed	software	
product.	The	software	design	can	include	use	cases,	activity	diagrams,	and	entity	relation-
ship	diagrams.	From	design	documents,	the	software	construction	can	be	made	properly	
only	if	the	software	design	is	good	and	implementable.

11.2	 	The	 most	 obvious	 constraints	 while	 making	 software	 design	 include	 implementability,	
reliability,	modularity,	economic	construction	ability,	and	reusability.	Construction	test-
ing	activities	are	very	labor-intensive,	and	thus	costly,	activities.	If	software	design	is	not	
modular,	then	the	software	construction	activities	cannot	be	divided	and	done	in	parallel.	
If	software	design	does	not	lead	to	an	economic	software	construction,	then	the	total	cost	
of	software	development	will	become	exorbitant.

11.3	 	There	are	many	techniques	available	to	make	good	software	designs.	Some	of	them	include	
software	 reuse,	 structural	 models,	 modular	 models,	 system	 design,	 and	 object-oriented	
designs.	In	the	early	days	of	software	development,	structural	software	designs	were	preva-
lent	with	programming	languages	including	COBOL,	PASCAL,	and	FORTRAN	being	
used.	With	 the	 advent	of	 the	object-oriented	paradigm,	object-oriented	designs	became	
popular	and	the	programming	languages	used	included	Java,	C++,	and	many	other	object-
oriented	programming	languages.

11.4	 	Software	 designs	 can	 be	 reviewed	 to	 make	 sure	 that	 their	 quality	 is	 acceptable.	 The	
review	can	take	into	account	whether	or	not	the	design	is	testable,	reliable,	modular,	and	
implements	 all	 requirement	 specifications,	 or	 whether	 design	 consists	 of	 nonrequired	
features.	If	the	review	process	finds	any	defects,	then	they	should	be	fixed	in	the	review	
process	itself.

11.5	 	The	design	life	cycle	involves	finding	the	best	design	for	the	given	requirement	specifica-
tions,	creating	the	designs,	reviewing	the	designs,	and	finally	fixing	any	defects	found.

11.6	 	There	are	basically	two	methods	of	software	design,	viz.,	top-down	and	bottom-up.	The	
top-down	design	is	used	when	a	centrally-controlled	configuration	of	the	software	system	
is	desired.	In	top-down	design,	the	software	architecture	is	always	balanced,	and	there	is	
no	chance	of	 imbalances	 in	design.	In	the	top-down	approach,	 the	top	structure	of	 the	
software	is	designed	first,	and	then	the	internal	parts	of	the	software	are	designed	later.	
Some	of	the	benefits	of	top-down	design	is	that	the	main	considerations	of	software	design	
like	performance,	reuse,	and	scalability	are	always	part	of	the	central	theme	of	the	software	

Appendix F: Review Question Answers  ◾  403

design,	and	thus	the	design	is	very	stable	even	when	the	design	is	later	changed	for	any	
reason.	The	limitation	of	this	design	is	that	it	suits	only	for	traditional	way	of	doing	things	
like	being	used	only	with	waterfall	model	for	software	development.	This	is	a	risky	model	
for	building	software.

The	bottom-up	method	of	software	design	is	used	when	the	smallest	units	of	software	
components	are	built	first,	and	the	software	design	and,	in	fact,	the	entire	software	devel-
opment	are	built	incrementally.	This	is	new	way	of	building	software,	and	all	agile	models	
of	software	development	are	built	this	way.

Chapter.12

12.1	 	Common	activities	performed	during	software	construction	include:	analyzing	software	
design	specifications,	converting	the	design	into	source	code,	unit	testing	pieces	of	source	
code,	integrating	pieces	of	source	code,	and,	finally,	doing	integration	testing	of	the	main	
build	each	time	a	new	piece	of	code	is	added	to	it.

12.2	 	Both	static	and	dynamic	testing	of	the	source	code	are	performed	during	software	con-
struction	activities	as	quality	control	measures.	Dynamic	tests	include	unit	and	integration	
testing.	Static	tests	include	finding	dead	code,	unused	variables,	datatype	mismatches,	and	
source	code	standards	deviations.

12.3	 	There	are	some	methods	for	rapid	application	development,	for	example,	concurrent	engi-
neering	techniques,	rapid	application	development	tools,	code	reuse,	and	service-oriented	
architecture.

12.4	 	Pair	 programming	 is	 a	 technique	 which	 is	 used	 with	 extreme	 programming.	 For	 each	
development	assignment,	instead	of	one	developer,	two	developers	are	assigned	the	same	
task.	While	one	developer	writes	 the	 source	 code,	 the	other	developer	 looks	 after	 the	
functional	aspects	of	the	assignment.	They	rotate	their	roles	at	defined	intervals.	This	prac-
tice	makes	sure	that	the	developers	not	only	write	source	code,	but	they	also	understand	
the	 larger	picture	of	 their	 task	by	understanding	the	 functional	aspects	of	 the	pieces	of	
source	code	they	write.

12.5	 	It	is	very	important	that	the	written	source	code	should	be	legible,	easy	to	understand,	sim-
ple,	modular,	and	should	be	strictly	under	a	framework.	The	modular	design	enables	con-
struction	teams	to	work	independently	from	each	other	and	in	parallel,	so	that	the	entire	
source	code	writing	exercise	can	be	completed	in	a	shorter	duration	by	employing	more	
people	on	the	divided	work.	The	reliability	aspects	of	the	source	code	ensure	that	there	are	
no	major	defects	in	the	software	product.	The	simple	aspect	ensures	that	the	source	code	is	
not	complex	and	thus	is	free	from	tendency	of	developing	defects.	Simplicity	and	legibility	
also	ensure	that	the	source	code	is	easy	to	maintain.	The	developers	who	are	assigned	to	
the	maintenance	of	the	source	code	will	be	able	to	understand	the	source	code	written	by	
some	other	developers	and	will	be	able	to	make	appropriate	changes	in	the	source	code.	The	
source	code	should	also	contain	ample	comments,	so	that	the	source	code	will	be	easier	to	
understand.

12.6	 	Some	of	the	popular	review	methods	used	in	software	construction	include	desk	checks,	
peer	review,	code	inspections,	and	walkthroughs.	Desk	checks	are	the	most	informal	and	
preliminary	way	of	checking	code.	A	developer	 informally	asks	any	of	his	colleagues	to	
check	his	code	for	defects.	Peer	reviews	can	be	done	formally	or	informally	by	one	or	more	
colleagues	to	check	source	code.	Walkthroughs	are	done	formally	by	calling	a	meeting	
and	reviewing	the	source	code.	If	defects	are	 found,	then	they	are	marked	for	removal.	

404  ◾  Appendix F: Review Question Answers

Code	inspections	are	the	final	and	most	formal	method	of	code	review.	Its	main	purpose	
is	to	certify	quality	of	the	source	code.	The	certification	is	when	a	decision	can	be	made	on	
whether	or	not	a	piece	of	source	code	can	be	integrated	with	the	main	build	or	whether	the	
code	can	be	frozen	for	further	development	and	to	be	handed	over	to	the	testing	team	for	
testing	the	application.

Chapter.13

13.1	 	Software	testing	is	an	activity	that	should	be	kept	apart	from	software	development	to	keep	
it	unbiased	and	uninfluenced.	When	testing	is	done	in	close	proximity	to	software	devel-
opment,	then	the	development	team	tries	to	influence	the	testing	team	and	thus	testing	
activity	becomes	biased	and	thus	its	effectiveness	diminishes.	This	results	in	the	develop-
ment	of	a	poor-quality	software	product.

A	good	solution	for	this	kind	of	problem	is	to	make	the	testing	function	independent	
from	development.	In	fact,	the	testing	should	be	done	by	some	independent	agency.	This	
kind	of	arrangement	is	known	as	independent	verification	and	validation.

13.2	 	It	is	said	that	software	testing	costs	money	but	not	testing	costs	even	more!	How	absolutely	
true	is	this	observation!	Software	development	lasts	for	a	few	months	to	a	few	years,	but	
software	maintenance	lasts	for	the	entire	life	of	the	software	product	in	use.	This	life	could	
be	from	5	to	6	years	to	even	20	years	or	more.	So	even	if	software	maintenance	costs	are	
10%	of	the	cost	of	software	development	per	annum,	total	cost	of	maintenance	often	sur-
passes	the	cost	of	software	development.	This	exorbitant	cost	of	software	maintenance	is	a	
nagging	problem	for	software	developers.	Ultimately,	it	is	the	developers	who	have	to	bear	
the	maintenance	costs.	Customers	also	become	wary	of	buying	 software	products	 from	
those	software	developers	who	have	poor	quality	software	products.

Keeping	cost	of	software	maintenance	low	is	possible	only	when	software	defects	can	
be	minimized	in	the	software	product	during	development.	So,	effective	and	rigorous	soft-
ware	testing	becomes	the	only	option	to	get	out	of	this	situation.

13.3	 	Software	testing	can	broadly	be	classified	as	dynamic	and	static	types.	The	static	type	can	
further	be	divided	into	requirement	review,	design	review,	code	review,	etc.	Dynamic	test-
ing	can	be	further	divided	into	four	levels:	unit,	integration,	system,	and	user-acceptance	
testing	levels.	System	and	user-acceptance	testing	can	be	further	divided	into	functional	
and	nonfunctional	testing.	Nonfunctional	testing	can	again	be	divided	into	performance,	
security,	usability,	portability,	etc.,	kinds	of	testing.

13.4	 	The	first	thing	that	should	be	done	for	any	testing	phase	or	testing	project	is	to	study	the	
testing	requirements	 for	 the	project.	 It	will	 involve	analyzing	the	requirement	specifica-
tions,	design	documents,	testing	requirement	documents,	etc.	Then,	based	on	the	require-
ments,	 a	 test	plan	needs	 to	be	made.	The	 test	plan	may	 include	analyzing	 specification	
documents,	designing	test	cases,	writing	test	cases,	writing	test	scripts,	executing	test	cases,	
preparing	test	reports,	analyzing	test	reports,	logging	defects,	evaluating	defect	fixes,	and	
closing	defects.

13.5	 	Automation	 brings	 many	 benefits.	 Cost	 of	 operation	 gets	 reduced,	 operation	 execution	
gets	faster,	repeated,	and	boring	work	is	not	done	by	humans	and	is	taken	care	of	by	auto-
mation	tools;	costly	human	resources	can	be	taken	away	from	mundane	tasks	and	can	be	
deployed	on	critical	tasks,	human	errors	can	be	avoided,	reporting	can	be	made	better	and	
automated,	etc.	Software	testing	tasks	have	same	benefits	mentioned	earlier	when	they	get	
automated.

Appendix F: Review Question Answers  ◾  405

13.6	 	The	defect	life	cycle	deals	with	all	aspects	related	to	defects.	When	the	test	team	executes	
test	cases,	some	of	the	test	cases	fail.	These	failures	are	due	to	any	kind	of	defect.	A	defect	
report	is	logged	in	a	defect	tracking	system	by	the	testing	team.	The	defect	tracking	admin-
istrator	verifies	the	defect	and	then	assigns	it	to	a	developer.	The	developer	fixes	the	defect	
and	changes	the	status	of	the	defect	to	fixed.	The	fixed	defect	is	then	verified	by	the	test	
engineer.	If	he	finds	that	the	defect	is	fixed,	then	he	closes	the	defect.	If	he	finds	that	the	
defect	is	not	fixed	properly,	then	he	reopens	the	defect.

Chapter.14

14.1	 	During	software	development,	all	efforts	are	put	toward	ensuring	that	most	of	software	
defects	are	removed	before	the	software	product	goes	to	production.	But	still,	many	defects	
escape	into	production	and	are	found	by	the	end	users.

Software	 products	 are	 used	 to	 perform	 business	 and	 other	 functions	 for	 which	 the	
software	product	was	made;	when	these	intended	functions	change,	the	software	product	
no	longer	supports	the	new	or	changed	functions.	Sometimes,	the	software	product	or	the	
hardware	or	software	components	with	which	the	software	product	is	used	become	obso-
lete.	Again,	in	these	circumstances,	the	software	product	becomes	unusable.

Due	to	all	these	reasons,	the	software	product	needs	to	be	changed	to	make	it	usable	
again.	That	is	the	reason	software	maintenance	is	needed.

14.2	 	Reverse	engineering,	forward	engineering,	and	reengineering	are	the	three	techniques	for	
software	maintenance.	In	reverse	engineering,	the	existing	code	base	of	a	software	product	
is	studied	and	all	aspects	of	the	programming	and	design	are	analyzed	and	grasped.	Based	
on	 this	 knowledge,	 new	 extensions	 in	 the	 software	 product	 are	 developed.	 In	 forward	
engineering,	instead	of	studying	and	analyzing	existing	source	code,	the	new	parts	of	the	
software	product	are	developed	solely	by	the	knowledge	of	documentation	or	by	the	devel-
opment	team	that	built	the	software	product.	This	technique	is	used	when	the	develop-
ment	team	who	developed	the	software	also	does	the	maintenance.	Reengineering	is	used	
to	develop	similar	components	from	existing	components.	That	is	why	this	technique	is	
also	known	as	reuse	engineering.

14.3	 	The	maintenance	life	cycle	starts	with	getting	the	list	of	defects	to	be	fixed	and	required	
changes	to	be	done	in	the	software	product.	This	can	be	termed	the	requirement	list.	Out	
of	this	list,	it	is	not	possible	to	make	all	requirements	in	one	maintenance	cycle.	So,	a	selec-
tion	will	be	made	from	this	list	for	which	maintenance	will	be	done.	A	detailed	project	
planning	will	be	done	based	on	 this	 selected	 list	of	 requirements.	Once	 the	 software	 is	
developed	and	thoroughly	tested,	it	needs	to	be	patched	to	the	production	instance.	After	
applying	 the	patch,	 the	production	 instance	will	 be	 tested	by	 the	 end	users.	Once	 it	 is	
found	satisfactory,	then	the	software	maintenance	project	is	closed.

14.4	 	When	a	software	product	is	developed,	it	 is	 implemented	in	a	production	environment.	
The	end	users	start	using	it;	as	long	as	there	are	no	defects	or	no	changes	are	required	in	the	
existing	software	product,	everything	is	fine.	But,	when	maintenance	is	needed	either	to	fix	
defects,	or	change	a	functionality,	or	both,	then	the	software	design	and	source	code	will	
need	to	be	changed.	Due	to	complex	or	badly	designed	source	code,	changing	code	may	be	
difficult	or	may	be	too	laborious	a	task.

To	ensure	 that	 this	kind	of	difficulty	does	not	arise	during	maintenance,	 some	pre-
cautions	can	be	taken	during	the	software	development	stage.	This	kind	of	precaution	is	
known	as	putting	maintainability	in	the	software	design	and	source	code.

406  ◾  Appendix F: Review Question Answers

14.5	 	Some	common	maintenance	process	models	include	the	quick-fix	model,	Boehm’s	model,	
Osborne’s	model,	 iterative	enhancement	model,	and	reuse-oriented	model.	As	the	name	
suggests,	the	quick-fix	model	works	on	the	principle	of	immediately	fixing	defects	when-
ever	they	are	traced.	In	this	model,	the	maintenance	team	does	not	wait	to	gather	a	long	
list	of	defects	and	then	planning	to	fix	them	in	one	batch.	Boehm’s	model	works	on	the	
ROI	principle	in	that	the	only	changes	considered	for	implementation	are	those	justified	
by	their	ROI.	Other	changes	are	not	implemented	and	may	be	discarded.	Osborne’s	model	
stresses	 that	 the	 maintenance	 plan	 should	 be	 followed	 strictly	 as	 demonstrated	 in	 the	
model.	The	four	steps	in	the	model	include	first	gathering	the	maintenance	requirements,	
then	a	maintenance	project	plan	alongside	a	quality	assurance	plan	should	be	drawn	up,	
then,	during	project	execution,	measurement	of	work	products	should	be	carried	out,	and,	
finally,	corrections	in	the	work	products	should	be	done	to	correct	deviations.	The	itera-
tive	enhancement	model	works	in	the	same	way	as	any	iterative	model	works	for	software	
development.	Maintenance	work	should	be	done	by	taking	a	bunch	of	requirements,	doing	
the	entire	development	process,	and	then	taking	on	some	more	requirements.	This	process	
continues	until	all	requirements	are	implemented.	The	reuse	maintenance	model	works	on	
the	principle	that,	before	any	maintenance	project	plan	is	drawn	up,	care	should	be	taken	
to	make	reusable	components	instead	of	just	developing	components,	so	that	components	
can	be	reused	through	out	the	project	and	thus	project	cost	and	duration	can	be	reduced.

14.6	 	Releasing	software	involves	making	decisions	about	what	kind	of	release	to	be	made,	what	
markets	 to	 release	 to,	user	 training,	product	 implementation,	 and	which	version	of	 the	
software	to	be	released.

Part III
Chapter.15

15.1	 	Suppose	a	software	development	team	makes	a	good	plan	and	starts	building	the	software	
product	thinking	that	they	will	build	the	product	first	and	will	then	test	and	fix	defects	
to	make	it	a	good-quality	product.	When	they	finally	developed	the	software	and	gave	it	
to	the	testing	team	to	test,	the	testing	team	came	up	with	a	large	number	of	defects.	The	
development	 team	started	fixing	 those	defects,	but	 the	number	of	defects	were	 so	 large	
that	the	defect	fixing	continued	for	a	long	time.	Finally,	the	project	manager	discussed	this	
with	the	project	stakeholders.	The	stakeholders	decided	to	scrap	the	project	and	start	the	
project	all	over	again	by	giving	the	project	to	a	software	service	provider	instead	of	doing	
it	in-house.	Later,	the	service	provider’s	team	was	able	to	finish	the	project	in	time	and	
in-budget	with	immaculate	software	product	quality.	They	were	able	to	do	it	because	they	
had	vast	experience	and	they	had	a	good	process	plan	with	the	built-in	quality	assurance	
that	helped	them	to	develop	software	product	with	required	quality.

This	is	true	for	any	project	case.	Without	having	a	good	quality	assurance	plan	built	in	
to	the	software	project,	it	is	difficult	to	produce	a	good-quality	software	product.

15.2	 	Product	quality	is	assessed	after	it	is	produced	by	taking	measurements	of	its	attributes	like	
physical	 dimensions,	 internal	 chemical	 composition,	 and	 aesthetics	 (smell,	 appearance,	
etc.),	 and	 if	 all	 these	attributes	are	 found	to	be	 satisfactory,	 then	 the	product	quality	 is	
considered	good.	Otherwise,	the	product	quality	is	considered	bad	and	points	to	the	fact	
that	the	product	contains	defects.

Appendix F: Review Question Answers  ◾  407

Process	quality,	on	the	other	hand,	ensures	of	project	activities	comply	with	the	process	
model	that	was	adopted	for	the	project.	This	compliance	ensures	that	whatever	the	process	
model	has	envisaged	to	be	can	be	achieved	by	doing	things	 the	way	 it	 is	defined	there;	
those	objectives	can	be	achieved.	Generally,	the	objective	is	delivery	of	the	project	within	
the	agreed-upon	budget	and	time.	It	also	ensures	that	the	quality	of	the	software	product	
will	be	good,	as	these	process	models	also	include	quality	assurance.

15.3	 	There	are	many	standards	for	software	development	projects	developed	by	different	organi-
zations	and	individuals.	The	foremost	of	them	include	Capability	Maturity	Model	(CMM)	
and	Capability	Maturity	Model	Integration	(CMMI)	by	the	Software	Engineering	Institute	
of	Carnegie	Mellon	University;	ISO	9003	by	International	Standards	Organization,	IEEE-
SWEBOK	by	the	Institute	of	Electrical	&	Electronics	Engineers;	Rational	Unified	Process	
by	 Rational	 Corporation	 (IBM).	 Oracle	 Corporation	 and	 Microsoft	 Corporation	 have	
their	own	versions	of	software	development	models;	Eclipse	has	their	own	version	named	
Unified	Process	Model.

15.4	 	When	a	software	project	is	undertaken	without	sticking	to	a	standard	process	model	or	
best	practices,	 there	are	bound	to	be	some	surprises	 to	 the	stakeholders	and	the	project	
team	down	the	line.	If	the	project	team	consists	of	experienced	people,	then	they	will	be	
able	to	do	their	assignments	 in	their	own	ways.	But,	 in	the	absence	of	a	proper	process	
model,	everybody	will	do	their	work	in	their	own	ways	and	in	their	own	schedules.	Even	if	
they	are	given	task	deadlines,	there	will	be	issues	like	incompatibility	among	components	
being	developed	and	some	tasks	getting	delayed.	The	most	difficult	aspect	will	be	invisibility	
across	the	project.	Nobody	will	know	what	is	going	on	with	the	different	project	tasks.	In	
such	a	scenario,	tracking	and	controlling	will	simply	be	impossible.	Definitely,	such	proj-
ects	are	bound	to	falter	at	delivering	within	budget	and	schedule.

One	more	aspect	about	such	projects	is	that	they	cannot	be	planned	well.	There	will	be	
no	upfront	information	regarding	project	cost	and	time	estimates.	This	situation	is	simply	
not	acceptable	in	a	competitive	business	environment.

15.5	 	There	are	essentially	three	layers	of	processes	that	go	into	a	project.	The	bottom-most	layer	
is	the	development	life-cycle	processes,	like	software	design	and	software	construction.	On	
top	of	this	layer	is	the	project	processes,	like	project	initiation,	project	planning,	and	proj-
ect	monitoring.	The	topmost	layer	is	the	process	improvement	and	program	management	
layer.

15.6	 	Software	projects	must	be	planned	and	controlled	to	achieve	the	desired	target	of	creating	
a	quality	software	product	within	limited	budget	and	time.	If	any	of	these	targets	could	
not	be	achieved,	then	the	software	project	could	be	in	trouble.	Sometimes,	due	to	either	
internal	or	external	problems,	the	software	project	may	be	abandoned.	Sometimes,	it	may	
be	due	to	some	external	factors	over	which	the	stakeholders	do	not	have	control	(bad	economy,	
changing	market	trends,	natural	disaster,	etc.)	that	the	project	is	abandoned.	Sometimes,	
due	to	organization’s	own	problems,	the	project	may	be	abandoned.

But,	in	many	cases,	the	project	is	forced	to	be	abandoned	due	to	internal	problems	
on	the	project.	Bad	project	management,	poorly-skilled	project	team,	unclear	require-
ments,	 or	 too-frequently	 changing	 requirements	 can	 make	 a	 project	 so	 problematic	
that	 the	project	needs	 to	be	 abandoned.	These	kinds	of	 situations	 can	be	managed.	
Bringing	well-trained	and	experienced	people	on	project,	finding	and	establishing	best	
practices	for	projects,	controlling	changes	in	requirements,	reducing	risk	by	using	an	
agile	model	for	software	development,	etc.,	are	some	of	the	techniques	that	can	prevent	
such	disasters.

408  ◾  Appendix F: Review Question Answers

Chapter.16

16.1	 	CMMI	framework	is	not	a	specification;	rather,	it	is	more	like	a	guideline.	It	does	not	specify	
exactly	how	SDLC	processes	should	be	executed;	it	describes	what	things	are	important	in	
each	SDLC	phase	but	does	not	specify	in	what	sequence	these	things	should	be	done.

So,	the	CMMI	standard	is	applicable	to	any	SDLC	model	be	they	waterfall,	extreme	
programming,	or	 any	other	model	of	 software	development.	This	 is	why	we	 also	have	
a	 concept	 like	 process	 tailoring,	wherein	 any	defined	process	model	with	well-defined	
process	areas	 is	changed	 to	 suit	 specific	project	 requirements.	CMMI	supports	process	
tailoring.

Moreover,	the	main	thrust	of	the	CMMI	model	is	on	process	improvement	rather	than	
on	specifying	SDLC	process	steps.	That	is	why	the	organization	level	process	improvement	
areas	are	stressed	more	than	the	low	level	SDLC	process	areas.

16.2	 	CMMI	 has	 five	 process	 areas	 for	 SDLC	 processes.	 These	 areas	 are	 requirement	 devel-
opment,	 requirement	 management,	 technical	 solution,	 verification,	 and	 validation.	
Requirement	 development	 deals	 with	 gathering,	 refining,	 formatting,	 and	 relating	
requirements	to	each	other.	Requirement	management	deals	with	allocating,	prioritizing,	
and	selecting	 requirements.	 It	also	deals	with	handling	change	 requests.	The	technical	
solution	area	deals	with	software	design	and	software	construction.	The	verification	area	
concerns	doing	static	tests	for	software	design	and	software	construction.	The	validation	
area	concerns	doing	dynamic	tests	at	various	 levels	 (unit,	 integration,	system,	and	user	
acceptance)	and	doing	different	kinds	of	tests	(performance,	functional,	security,	usabil-
ity,	reliability,	portability,	etc.).

16.3	 	ISO	standards	focus	entirely	on	improving	quality	of	process	areas	to	improve	quality	of	
work	products.	In	fact,	they	do	not	have	any	process	area	that	deals	with	improving	quality	
of	work	products	through	some	work	to	be	done	directly	on	the	work	products.	In	CMMI,	
there	are	two	process	areas	known	as	verification	and	validation	which	deal	with	improv-
ing	product	quality	through	testing	work	products	and	final	products,	finding	defects,	and	
then	removing	those	defects.	ISO	does	not	have	any	similar	process	area.

16.4	 	IEEE	process	standards	have	concepts	similar	to	CMMI	when	it	comes	to	SDLC	process	
areas;	they	are	more	guidelines	than	specifications	and	they	do	not	enforce	how	the	SDLC	
process	areas	should	be	carried	out.	They	just	define	what	activities	are	performed	in	each	
major	areas.

IEEE	 standards	 are	well-suited	 to	many	SDLC	process	models	 like	 agile,	water-
fall,	and	others.	The	SDLC	process	area	can	be	easily	tailored	for	the	needs	of	specific	
projects.

16.5	 	Systematic	Testing	and	Evaluation	Process	(STEP)	is	a	content	reference	model	rather	than	
a	process	reference	model.	So,	STEP	can	be	implemented	in	any	way	suitable	to	the	orga-
nization	and	not	in	a	strict	phase	implementation.	The	STEP	model	is	the	accompanying	
testing	process	model,	which	goes	with	any	agile	model	for	software	development.	All	the	
process	improvement	areas	in	STEP	can	be	categorized	as	either	quantitative	or	qualitative	
areas.	The	qualitative	areas	include	test	process	utilization	and	customer	satisfaction.	The	
quantitative	areas	include	test	status,	test	requirement,	defect	trends,	defect	density,	defect	
removal	efficiency,	and	defect	detection	percentage.

16.6	 	Deming	has	proposed	a	process	improvement	technique,	which	is	applicable	to	any	indus-
try.	He	proposed	that	the	technique	should	have	four	steps,	viz.,	Plan,	Do,	Check,	and	
Apply	 (PDCA).	 First	 of	 all,	 the	 organization	 should	 plan	 for	 process	 improvement.	

Appendix F: Review Question Answers  ◾  409

Then,	 this	plan	 should	be	 implemented	 (Do)	on	 a	pilot	basis.	Once	 implementation	 is	
complete,	results	should	be	checked	(analyzed).	If	the	pilot	project	results	are	encouraging,	
then	the	process	improvement	plan	should	be	applied	organization	wide.

16.7	 	Test	maturity	model	(TMM)	was	conceived	to	complement	the	CMM	as	CMM	lacked	
process	 improvement	 areas	 for	 software	 testing.	 Similar	 to	 the	 structure	 of	 CMM,	 the	
TMM	model	has	five	levels	of	maturity	processes,	and	each	level	has	many	process	areas.	
Level	1	is	identified	by	ad	hoc	measures	for	testing	process.	By	level	2,	there	should	be	test	
policies	and	goals	defined.	By	level	3,	the	testing	processes	should	be	clearly	linked	with	
the	development	processes.	By	level	4,	the	organization	should	be	using	measurements	and	
metrics	to	control	test	processes.	By	level	5,	the	organization	should	be	able	to	take	initia-
tives	to	improve	test	processes.

Chapter.17

17.1	 	If	the	project	size	itself	is	small,	then	it	does	not	make	sense	to	break	it	further.	That	means	
an	iterative	model	is	not	needed	for	small	projects.	All	the	requirements	can	be	taken	for	
development	in	one	go.

However,	if	some	of	the	requirements	are	not	clear	or	the	development	team	does	not	
know	how	to	convert	them,	initially,	then	an	iterative	model	can	be	used.

17.2	 	Selecting	the	right	process	model	for	a	software	project	is	always	challenging.	However,	
it	is	of	utmost	importance	that	the	right	process	model	should	be	selected.	Project	factors	
that	determine	process	selection	include	project	size,	complexity,	area	of	maturity,	team	
location,	documentation	level	required,	and	organization	maturity.

One	aspect	of	process	model	selection	is	the	ability	of	the	model	itself	to	support	dif-
ferent	 kinds	 of	 project	 and	 development	 processes.	 While	 iterative	 models	 support	 risk	
reduction,	incremental	development,	less	management	overhead,	and	better	communica-
tion,	 they	 also	have	drawbacks	 like	 slower	development	 and	 location	constraint.	 In	 the	
case	of	the	waterfall	model,	the	benefits	include	high	speed	of	development	and	no	loca-
tion	constraint.	One	more	benefit	of	the	waterfall	model	is	the	utilization	of	gains	in	
software	engineering	like	process	improvement	and	knowledge	management.	But,	at	the	
same	 time,	 the	drawbacks	 of	 the	 waterfall	 model	 include	 high	 management	 overhead,	
excessive	documentation,	and	high	risk.

Based	on	 the	 benefits	 and	drawbacks	 for	 a	 project,	 the	 project	 team	 can	 decide	 on	
process	model.

17.3	 	Plan-driven	software	development	models	have	 the	biggest	benefit	 in	 that	everything	 is	
well-planned	on	the	project.	Then,	these	models	allow	for	process	 improvement,	which,	
in	turn,	result	in	higher	productivity	and	quality.	When	software	is	to	be	developed	at	a	
higher	speed,	these	models	support	concurrent	engineering,	and,	thus,	many	teams	can	be	
formed	and	assigned	development	tasks,	which	can	be	done	in	parallel	to	each	other.	These	
models	also	allow	teams	to	work	from	any	location.	Thus,	benefits	of	offshoring	such	as	
lower	costs	and	skilled	manpower	can	be	realized.

17.4	 	Agile,	or	iterative,	models	are	a	new	phenomenon.	Once	organizations	started	to	realize	the	
limitations	of	the	traditional	waterfall	model,	they	started	looking	for	alternative	options.	
The	typical	problems	they	faced	on	their	projects	were	unclear	requirements,	requirement	
changes,	large	upfront	risk,	etc.	Agile	models	eliminate	all	these	problems.	By	doing	incre-
mental	 development,	 requirement	 changes	 can	be	 incorporated	 in	 the	next	 iteration	 in	
the	development.	Similarly,	unclear	 requirements	do	not	need	 to	be	 touched	until	 they	

410  ◾  Appendix F: Review Question Answers

become	clear.	Since	the	development	team	keeps	demonstrating	the	product	in	a	working	
condition	after	each	iteration,	the	stakeholders	feel	more	confident	about	the	project	and	
can	play	with	the	developed	parts	of	the	software	product	to	see	if	this	is	what	they	were	
looking	for.	Meanwhile,	the	development	team	is	busy	developing	software	for	next	set	of	
requirements.

17.5	 	Waterfall-model-based	projects	are	notorious	for	budget	and	schedule	overruns.	The	prob-
lems	 on	 these	 projects	 are	 large	 risk	 exposure,	 upfront	 investment,	 invisibility	 into	 the	
project	from	outside	(what	is	going	on	the	project,	how	much	work	has	been	completed,	if	
the	software	design	and	construction	are	going	smoothly,	etc.),	etc.	In	fact,	waterfall	model	
projects	can	be	considered	to	be	a	monolith	operation	from	outside.	The	software	product	
for	which	the	project	team	was	instituted	can	be	visible	only	after	the	project	runs	for	its	
entire	duration	(sometimes	as	much	as	3–4	years).	Only	after	this	long	span	of	time	can	
the	project’s	stakeholders	see	the	software	in	action.	This	is,	indeed,	a	big	risk,	making	all	
that	investment	commitment	in	time	and	money	some	four	years	back	and	then	finding	
that	the	delivered	product	does	not	function	as	expected.

These	are	the	biggest	drawbacks	of	waterfall-model-based	projects.
17.6	 	Agile	models	are	maturing	 fast,	and	project	 teams	are	using	them	more	and	more.	The	

current	drawback	of	agile	models	is	their	comparative	immaturity.	They	have	around	only	
for	a	short	while.	So,	 if	 somebody	wants	 to	adopt	best	practices	and	is	 looking	for	best	
practices	related	to	agile	models,	he	will	be	disappointed	since	there	are	no	empirical	data	
available	which	can	demonstrate	what	is	a	best	practice	for	any	process	related	to	the	agile	
models.	However,	data	may	become	available	in	future.

Currently,	agile	models	dictate	that	the	project	team	should	be	located	at	the	same	site	
as	that	of	the	customer;	the	project	team	cannot	be	located	at	some	other	site;	the	com-
munication	among	team	members	should	be	only	verbal	and	face	to	face.	Due	to	these	
requirements,	the	project	team	cannot	be	enlarged	if	high	speed	development	is	required.	
Similarly,	concurrent	engineering	cannot	be	employed.	Benefits	of	offshore	development	
can	also	not	be	taken.

Part IV
Chapter.18

18.1	 	Software	projects	are	different	from	other	kinds	of	projects	in	that,	for	software	projects,	the	
specifications	for	work	products	are	not	rigid.	This	necessitates	constant	interaction	among	
customers,	project	teams,	and	suppliers.	Without	proper	and	constant	communication,	peo-
ple	will	never	understand	what	is	required	of	them.	Only	after	good	communication	can	the	
communication	gaps	be	eliminated,	and	people	will	be	on	the	same	page.

18.2	 	Software	project	teams	consist	of	highly	trained	and	skilled	software	professionals,	but	
it	does	not	mean	that	they	are	responsible	and	disciplined.	In	fact,	office	politics,	moti-
vation	 issues,	 long	working	hours,	etc.,	are	 the	kinds	of	 issues	 that	keep	coming,	and	
the	project	manager	needs	to	handle	these	issues	tactfully.	Software	professionals	have	
large	salaries	and	they	have	high	demand	in	the	market.	Every	project	faces	the	risk	that	
a	team	members	will	leave	the	project	in	the	middle	and	join	some	other	organization	
because	of	higher	pay.	Office	politics	and	motivation	issues	can	be	attributed	to	manual	
and	unchallenging	work.

Appendix F: Review Question Answers  ◾  411

18.3	 	Software	project	teams	need	to	be	constantly	in	touch	with	the	customers	and	end	users	
because	 the	 requirements	 given	 by	 the	 customer	 are	 not	 specific.	 From	 these	 software	
requirements,	business	analysts	make	requirement	specifications.	These	specifications	may	
or	may	not	be	the	exact	requirements	end	users	are	looking	for,	as	business	analysts	may	
not	be	able	to	capture	exactly	how	the	end	users	may	be	thinking	about	their	requirements.	
Moreover,	despite	so	much	advancement	in	the	software	development	industry,	the	soft-
ware	specifications	(requirements,	design,	and	construction)	are	not	exact.	So,	every	new	
feature	added	to	the	software	must	be	shown	to	the	customer	to	know	if	this	is	what	they	
were	looking	for.

There	is	one	more	challenge	to	software	projects	related	to	customers.	Customers	do	
not	know	what	actually	goes	on	in	the	project	and	may	have	or	develop	some	incorrect	
expectations.	Getting	these	expectations	right	is	a	big	challenge.

18.4	 	Project	teams	from	software	services	suppliers	may	be	located	at	offshore	locations.	They	
may	have	cultural,	language,	productivity,	and	other	differences	from	the	in-house	project	
team.	They	may	also	have	higher	organizational	maturity	 level.	The	bottom	line	 is	 that	
they	need	to	deliver	the	same	of	quality	component	that	is	expected	by	the	customer.	Their	
operations	may	be	cheaper,	but	on-time	delivery	cannot	be	compromised.

Again,	due	to	lack	of	rigid	specifications,	communication	between	the	in-house	project	
team	and	the	supplier’s	team	is	of	paramount	importance.	The	supplier’s	team	must	under-
stand	what	is	required	to	be	delivered.

Chapter.19

19.1	 	Software	projects	are	executed	in	environments	that	demand	tight	deadlines,	high	levels	of	
skill,	and	understanding	specifications,	and,	working	accordingly,	communicating	clarifica-
tions	and	guidance,	etc.,	are	some	of	the	typical	tasks.	Project	assignments	are	also	demand-
ing,	and,	often,	team	members	need	to	work	overtime	to	finish	their	assignment	on	time.	At	
the	same	time,	the	project	manager	needs	to	do	a	lot	of	work	to	ensure	many	things.

Often,	training	may	be	needed	for	some	team	members.	Arranging	training	on	time	is	
important.	Similarly,	there	are	junior	team	members	who	need	mentoring.	Some	assign-
ments	may	be	too	complex	or	labor	intensive,	and	project	team	members	may	need	to	get	
help	in	completing	those	assignments.

19.2	 	The	obvious	means	of	motivation	is	the	monetary	benefit	that	each	team	members	gets	
but	this	is	not	the	only	factor	that	can	motivate.	Apart	from	salary	and	other	monetary	
benefits,	 the	 project	 team	 members	 should	 be	 given	 incentives	 like	 free	 training,	 skill	
development	opportunities,	challenging	assignments,	promotion	opportunities,	and	good	
workplace	ambience,	can	motivate	team	members.	Good	relationship	building,	cheerful	
disposition	of	managers,	 recognizing	 team	members	whenever	 they	 achieve	 something	
important,	etc.,	are	some	other	measures	that	can	motivate	the	project	team.

19.3	 	When	people	work	on	projects,	 they	 learn	a	 lot	of	 things.	When	they	 leave	 the	project	
or	the	organization,	all	this	learning	is	lost.	The	new	person	who	replaces	him	will	have	
to	spend	some	time	on	the	job	to	learn	all	these	little	things,	which	add	up	to	a	substan-
tial	learning	curve	for	anybody.	For	example,	a	customer	who	likes	to	get	an	immediate	
response	in	a	certain	manner	is	known	only	to	people	who	have	worked	with	that	customer	
for	some	time.	The	new	person	will	not	know	this	little	secret	to	pleasing	the	customer.	
Similarly,	if	a	particular	tool	on	the	project	needs	to	be	set	up	before	it	can	be	appropri-
ately	used,	the	information	is	known	only	to	people	who	have	worked	on	the	project	for	

412  ◾  Appendix F: Review Question Answers

sometime.	Similarly,	making	a	good	design	for	a	software	product	is	known	to	the	person	
who	worked	on	that	project.

How	can	these	little	secrets	be	saved	even	when	a	person	leaves?	A	knowledge	manage-
ment	system	can	capture	some	of	these	little	facts.	When	a	person	leaves,	these	important	
pieces	of	information	are	not	lost	as	they	now	reside	in	the	knowledge	management	system.

19.4	 	Communication	management	deals	with	exchanging	information	between	project	teams,	
suppliers,	 and	 customers	 using	 communication	 media.	 When	 communication	 is	 done	
among	many	teams,	it	is	important	that	the	communication	should	be	in	a	structured	way.	
The	best	way	is	to	use	standard	templates,	this	will	ensure	that	there	are	no	communica-
tion	gaps	or	miscommunication.	The	more	layers	of	management,	the	more	structured	and	
formal	the	communication	should	be.

19.5	 	Software	project	organization	structure	will	depend	a	lot	on	the	kind	of	project,	project	
size,	development	speed,	development	model,	and	way	of	execution	(outsourced/contracted	
out/offshored,	 etc.).	 If	 the	 development	 model	 is	 incremental	 integration	 with	 iterative	
model	and	speed	of	development	is	a	concern,	then	a	timeboxing	structure	will	be	needed.	
Here,	more	than	one	project	team	may	be	involved.	If	the	project	is	offshored,	then	there	
will	be	project	teams	located	at	far-flung	sites	with	a	need	for	comprehensive	infrastructure	
for	 communication.	 On	 projects	 where	 cross-functional	 expertise	 is	 required,	 a	 matrix	
organization	 is	more	 appropriate.	Larger	project	 size	 invariably	 involves	bringing	many	
layers	of	management.

19.6	 	On	large	projects	where	communication	is	more	formal	and	impersonal,	it	is	difficult	to	
know	which	team	member	has	done	his	job	well	and	which	did	not.	To	evaluate	the	per-
formance	of	team	members	effectively,	it	is	important	to	have	good	performance	measure-
ment	metrics	available,	and	ensure	that	they	are	used	effectively.

Some	 popular	 techniques	 for	 performance	 evaluations	 include	 self-appraisal,	 peer	
reviews,	and	managerial	appraisals.	In	the	appraisal,	the	most	important	things	to	capture	
are	whether	an	individual	has	performed	well	on	the	job	or	not,	has	worked	well	in	the	
team	or	not,	has	supervised	his	junior	members	well	or	not,	has	mentored	anyone	or	not,	
and	what	his	worth	was	on	the	project.	Based	on	his	worth,	he	should	be	given	appropriate	
pay	raises,	bonuses,	promotions,	etc.

Chapter.20

20.1	 	Sometimes,	 customers	have	 the	 right	 expectations	 from	 the	 software	project,	but,	most	
often,	there	is	a	mismatch	between	customer	expectations	and	reality.	In	these	cases,	the	
project	 manager	must	 set	 the	 right	 tone	 from	 the	 very	 beginning	 of	 the	 project.	 If	 his	
expectation	about	project	 schedule	 is	wrong	then	the	project	manager	must	present	 the	
project	schedule	to	the	customer	with	good	explanations	of	how	much	time	is	realistic	for	
each	kind	of	activity	on	the	project	and	why	the	project	should	take	so	much	time.	If	the	
customer	has	incorrect	expectations	about	the	project	budget,	then	the	project	manager	
must	explain	about	the	cost	involved	in	each	activity	convincingly.	If	customer	has	incor-
rect	 expectations	 about	 quality,	 then	 the	 project	 manager	 must	 convince	 the	 customer	
about	why	a	 certain	 level	of	quality	 is	 achievable	with	 the	given	 technology,	 time,	 and	
process	constraints.

20.2	 	Projects	are	never	set	 in	a	fixed	mold.	There	is	always	scope	for	degrees	of	change	from	
the	agreed-upon	contract.	Besides,	the	customers	always	come	up	with	requests,	and	the	
project	manager	may	find	it	difficult	to	fulfill	those	requests.

Appendix F: Review Question Answers  ◾  413

In	such	situations,	the	project	manager	must	evaluate	the	impact	these	changes	and	
requests	may	have	on	the	project.	Based	on	the	assessment,	he	can	return	to	the	customer	
with	feasibility	of	acceptance.	At	this	juncture,	he	can	negotiate	with	the	customer,	justly	
the	project	goals,	customer	requests,	and	his	own	interests.

Sometimes,	when	there	are	many	problems	faced	on	the	project,	the	project	manager	
may	not	be	able	to	finish	the	project	as	originally	planned.	In	such	situations,	the	project	
manager	must	make	a	realistic	assessment	and	negotiate	with	the	customer	to	cut	down	
some	features	so	that	other	product	features	can	be	finished	on	the	project.

20.3	 	Project	 deviations	 are	 the	most	 obvious	 cause	 of	worry	 to	project	 stakeholders	 and	 the	
project	team.	Despite	good	intentions	and	honest	efforts,	deviations	in	budget,	schedule,	
or	quality	may	arise.	In	such	situations,	the	project	manager	must	have	a	recorded	evidence	
to	show	for	himself	as	well	as	to	explain	the	causes,	which	derailed	the	project	schedule	or	
budget	to	the	customer.

To	tackle	project	deviations,	the	project	manager	must	keep	some	buffers	in	the	project	
plan	so	that,	when	any	deviations	happen,	then	he	can	use	time	from	that	buffer.	This	way,	
the	project	schedule	or	project	budget	will	not	deviate	in	the	overall	project	plan.

20.4	 	To	be	completely	objective	is	a	desirable	state.	Unfortunately,	no	project	or	people	on	the	
project	can	be	100%	objective.	So	assessment	of	work	performed,	quality	of	work,	per-
formance	of	people,	etc.,	are	never	assessed	at	face	value.	There	is	always	some	amount	of	
subjectivity,	and,	thus,	objective	assessment	is	never	possible.

So,	when	it	comes	to	giving	a	report	to,	or	negotiating	with	the	customer,	the	customer	
may	have	their	own	reservations,	judgments,	etc.	If	the	project	manager	and	the	project	
team	have	developed	a	good	rapport	with	the	customer,	then	these	adverse	assessments	can	
be	mitigated	to	some	extent.

Chapter.21

21.1	 	The	software	industry	has	come	a	long	way	since	its	beginning.	Nowadays,	there	are	good	
software	service	providers	(suppliers)	who	not	only	help	on	software	projects	but	possess	some	
specialized	expertise	as	well	as	offering	their	services	for	fees	which	are	lower	than	what	it	
would	cost	to	do	it	in-house.	So,	most	modern-day	large	software	projects	involve	suppliers.

Managing	these	suppliers	requires	in	fields	like	a	wide	range	of	expertise	law,	contract-
ing,	managing,	evaluating,	etc.

21.2	 	The	supplier	agreement	should	have	legal	clauses,	penalty	clauses,	service	level	agreements,	
severance	of	service	conditions,	confidentiality	agreements,	etc.	On	many	software	projects,	
the	supplier	may	get	access	to	confidential	and	critical	information,	and,	thus,	it	should	be	
ensured	that	this	information	is	not	abused	or	leaked.	Some	software	projects	themselves	
are	of	high	strategic	importance,	and,	thus,	disclosing	any	information	about	the	project	
may	harm	interests	of	the	customer.	There	should	be	elaborate	service	level	agreements,	so	
that	the	service	offered	by	the	supplier	can	be	managed	properly.	There	should	be	penalty	
clauses,	so	that	if	the	supplier	fails	in	any	service	level	agreements	and	the	customer	suffers	
any	losses,	the	supplier	could	be	penalized.

21.3	 	When	a	customer	seeks	services	from	service	providers,	he	can	try	to	find	out	if	any	suitable	
suppliers	are	available	who	can	do	the	 job.	For	 this	purpose,	customers	can	use	Request	
For	 Proposal	 (RFP),	 Request	 For	 Quotation	 (RFQ),	 or	 Request	 For	 Information	 (RFI)	
techniques	to	get	information	about	suppliers,	their	competencies,	and	how	they	can	do	the	
required	job.	RFIs	are	the	most	preliminary	forms	that	are	used	to	learn	about	suppliers.	

414  ◾  Appendix F: Review Question Answers

RFQs	are	forms	that	are	used	to	get	quotation	from	suppliers	for	any	suitable	job.	RFPs	are	
forms	that	are	used	to	get	complete	proposal	with	project	planning,	and	all	other	details	
about	the	way	things	will	be	carried	out	during	the	project.

21.4	 	When	 a	 customer	 evaluates	 bids	 from	 many	 suppliers,	 he	 will	 try	 to	 see	 competencies	
for	the	given	 job.	There	past	record,	customer	references,	project	 team	profile,	cost	(bid	
amount),	long-term	stability	of	the	supplier,	etc.,	for	each	of	the	bids.	He	will	then	compare	
the	bids	based	on	his	evaluation	of	each	bid.	Based	on	this	comparison,	he	can	then	select	
the	best	bid.

21.5	 	When	a	project	is	to	be	offshored,	there	will	be	many	considerations	before	doing	so.	The	
considerations	include	cultural	differences,	productivity,	language,	time	zones,	and	infra-
structure.	Before	the	project	is	offshored,	it	must	be	ensured	that	the	project	should	not	
suffer	due	to	these	differences	and	that	appropriate	measures	are	taken.	Before	the	offshore	
team	takes	over,	they	should	be	given	training	and	existing	knowledge	about	the	project	
should	be	transferred	to	them.

Part V
Chapter.22

22.1	 	The	project	team	uses	tools	to	do	their	work	and,	when	they	are	finished	with	their	work,	
they	need	to	report	it.	If	the	tool	is	a	standalone	tool,	then	the	person	will	need	to	get	data	
from	the	tool,	paste	it	into	his	report,	and	send	it	to	the	project	manager	and	other	team	
members	as	required.	This	way	of	doing	things	is	not	desirable.	First	of	all,	authenticity	of	
the	report	becomes	questionable.	Then,	the	productivity	of	the	person	goes	down.	Then,	if	
the	person	does	not	report	at	that	time,	it	is	difficult	to	know	status	of	his	work.	Report	of	
his	work	in	this	case	is	almost	offline.

The	benefits	 of	working	online	 are	 obvious!	 It	 provides	 instant	 access	 to	 information	
in	 real	 time,	 improves	productivity,	 improves	 transparency,	allows	automatic	 reporting	of	
results,	provides	access	to	information	to	many	people,	etc.	So,	if	the	tools	used	by	project	
teams	are	integrated	to	the	main	project	tools	(configuration	management,	test	management,	
etc.),	then	information	and	status	about	all	project	tasks	will	be	visible	to	project	managers	
and	other	people	who	need	to	know	the	information.	For	these	reasons,	if	a	new	tool	is	being	
used	on	a	project,	then	it	must	be	able	to	be	integrated	with	existing	project	tools.

22.2	 	Tool	support	is	very	important	as,	whenever	there	is	some	problem	with	the	tool,	the	tool	
support	staff	can	provide	assistance.	If	a	project	tool	becomes	obsolete	then,	first	of	all,	you	
need	to	get	in	touch	with	the	tool	vendor	to	get	support	for	the	tool	in	future.	If	this	is	not	
possible,	then	discuss	alternatives	with	the	vendor.	If	the	vendor	has	closed	down,	then	some	
service	providers	can	still	provide	support	for	the	tool.	If	this	avenue	is	also	not	possible,	then	
tool	documentation	can	be	useful.	If	there	are	a	lot	of	problems	with	the	tool	and	there	simply	
are	no	avenues	to	get	help,	then	it	will	be	better	to	get	some	alternative	tool.

Before	buying	any	tool	for	the	project,	the	project	manager	must	ensure	that	the	tool	
should	be	supported	by	the	vendor.	Even	when	the	tool’s	life	ends,	the	vendor	should	con-
tinue	to	provide	support	for	the	tool.

22.3	 	There	are	many	costs	involved	in	purchasing,	maintenance,	and	training	for	a	tool.	The	purchase	
cost	itself	has	many	components.	If	the	tool	is	an	enterprise	tool,	then	it	may	have	a	server	cost	
component	and	a	number	of	seat	cost	components.	Total	purchase	cost	will	be	the	sum	of	these	

Appendix F: Review Question Answers  ◾  415

two	costs.	Then,	there	will	be	support	cost	for	the	tool.	Generally,	support	cost	is	a	percentage	of	
the	server	cost	and	is	incurred	annually.	Apart	from	that,	there	may	be	some	incidental	support	
costs.	Finally,	a	cost	is	involved	in	providing	training	for	the	tool.	This	cost	may	include	cost	for	
training	and	the	time	spent	by	the	project	team	members	for	attending	the	training.

22.4	 	Most	 of	 the	 software	 projects	 start	 on	 a	 smaller	 scale.	 When	 the	 early	 versions	 of	 the	
software	being	developed	grow	to	some	stature	and	get	some	good	market	response,	the	
stakeholders	get	more	confident.	They	expand	the	project	team	to	develop	more	features	at	
a	greater	speed.	So,	scale	of	the	project	team	goes	up.

If	the	project	team	is	using	some	tools	that	cannot	scale	well	to	meet	the	needs	of	proj-
ect	team,	then	the	project	team	may	be	in	trouble.	The	expanded	project	team	may	not	be	
able	to	use	the	tool	appropriately.	So,	the	tools	must	have	the	ability	to	scale,	so	that	they	
can	support	bigger	teams.

Chapter.23

23.1	 	When	software	developers	write	their	code,	they	need	to	do	many	things	like	compiling	their	
code,	running	a	debugger	to	check	and	fix	their	code,	using	a	text	editor	to	write	their	code,	
using	a	version	control	tool	to	manage	different	versions	of	their	source	code,	and	accessing	a	
database.	If,	for	each	of	these	activities,	they	are	using	separate	tools	that	are	standalone,	then	
their	productivity	will	go	down	substantially.	For	each	activity,	they	may	need	to	start	the	
program,	do	the	appropriate	work	in	the	program,	close	it,	then	start	the	other	program	and	
do	their	work	there,	etc.	If	they	are	provided	with	an	integrated	tool	that	can	take	care	of	most	
of	their	needs	without	resorting	to	many	separate	tools,	then	it	will	be	a	lot	easier	for	them	to	
do	their	work.	Such	tools	are	known	as	integrated	development	environments	(IDEs).

23.2	 	On	software	projects,	a	lot	of	defects	are	detected	during	testing	cycles.	These	defects	are	then	
fixed	by	the	developers.	Once	a	fixed	defect	is	verified	to	be	fixed	by	a	testing	engineer,	then	the	
defect	is	closed.	Otherwise,	the	defect	is	reopened,	so	there	is	a	complete	life	cycle	of	defects.

A	defect	tracking	tool	helps	in	managing	the	defect	life	cycle.	From	defect	logging	to	
defect	fixing,	defect	fix	verification,	defect	closing,	and	defect	reopening,	the	tool	helps	in	
managing	the	entire	defect	life	cycle.	The	online	tools	are	capable	of	supporting	distributed	
teams	who	may	be	working	from	many	sites.

23.3	 	Computer-Aided	Software	Engineering	(CASE)	tools	help	in	performing	many	activities	
during	development	life	cycle.	Some	CASE	tools	help	in	requirement	development.	Some	
other	 tools	help	 in	design	development.	Some	designs	are	made	 in	a	CASE	 tool;	many	
CASE	tools	are	capable	of	generating	skeleton	source	code,	which	helps	in	software	con-
struction	as	this	generated	code	helps	in	enforcing	programming	standards.	Some	CASE	
tools	also	help	in	converting	one	design	into	another.	For	example,	if	a	use	case	diagram	is	
made	in	a	CASE	tool	then,	without	any	effort,	the	use	case	diagram	can	be	converted	into	
an	entity	relationship	diagram.

CASE	tools	are	very	productive	as	many	activities	during	development	life	cycles	can	
be	automated	using	CASE	tools.

23.4	 	Requirement	 management	 deals	 with	 providing	 a	 hierarchy	 of	 requirements,	 clubbing	
requirements,	 establishing	 relationship	 among	 requirements,	 prioritizing	 requirements,	
requirement	selection,	etc.	Various	requirement	management	tools	help	in	doing	these	activi-
ties	even	though	not	all	activities	are	supported	in	one	tool.	So,	sometimes,	a	combination	of	
tools	is	used.	Still,	the	requirement	management	tools	are	not	mature	enough,	and	thus	many	
project	teams	do	not	have	many	options	and	thus	end	up	doing	many	of	these	tasks	manually.

Information Technology / IT Management

This book presents all aspects of modern project management practices, from project
initiation to requirements gatherings to estimation techniques and software testing all
the way to customer management and supplier management … includes a wealth of
quality templates that practitioners can use to build their own tools. … equally useful to
students and professionals alike. … the perfect blend of theory and practice providing
ample advice to the reader at every stage on such topics as how to select a particular
software methodology over others or how to estimate project costs/efforts etc. … As
a seasoned software product development expert with over 20 years of experience, I
would say this book will find a slot on my desk.

—Maqbool Patel, PhD, SVP/CTO/Partner, Acuitec

To build reliable, industry-applicable software products, large-scale software project groups
must continuously improve software engineering processes to increase product quality,
facilitate cost reductions, and adhere to tight schedules. Emphasizing the critical components
of successful large-scale software projects, Software Project Management: A Process-
Driven Approach discusses human resources, software engineering, and technology to a
level that exceeds most university-level courses on the subject.

•	 Includes testing and quality assurance metrics

•	Supplies in-depth coverage of process models and process improvement techniques

•	Covers related standards from the Software Engineering Institute, IEEE, and ISO

•	Features challenging practice questions with solutions

The book is organized into five parts. Part I defines project management with information on
project and process specifics and choices, the skills and experience needed, the tools available,
and the human resources organization and management that brings it all together. Part II
explores software life-cycle management. Part III tackles software engineering processes and
the range of processing models devised by several domestic and international organizations.

Part IV reveals the human side of project management with chapters on managing the team,
the suppliers, and the customers themselves. Part V wraps up coverage with a look at the
technology, techniques, templates, and checklists that can help your project teams meet
and exceed their goals. A running case study provides authoritative insight and insider
information on the tools and techniques required to ensure product quality, reduce costs,
and meet project deadlines.

ISBN: 978-1-4398-4655-1

9 781439 846551

90000

S
oftw

are P
roject M

anagem
ent

A
hm

ed

www.auerbach-publications.com

www.crcpress.com

K12087

K12087cvr mech.indd 1 11/8/11 12:02 PM

	Title Page
	Contents
	Preface
	Author
	Chapter 1: Introduction to Software Project Management
	Chapter 2: Project Initiation Management
	Chapter 3: Software Project Effort and Cost Estimation
	Chapter 4: Risk Management
	Chapter 5: Configuration Management
	Chapter 6: Project Planning
	Chapter 7: Project Monitoring and Control
	Chapter 8: Project Closure
	Chapter 9: Introduction to Software Life-Cycle Management
	Chapter 10: Software Requirement Management
	Chapter 11: Software Design Management
	Chapter 12: Software Construction
	Chapter 13: Software Testing
	Chapter 14: Product Release and Maintenance
	Chapter 15: Process Standards Introduction
	Chapter 16: Software Process Standards and Process Improvement
	Chapter 17: Process Selection
	Chapter 18: Introduction to People Management
	Chapter 19: Team Management
	Chapter 20: Customer Management
	Chapter 21: Supplier Management
	Chapter 22: Software Project Management Tools Introduction
	Chapter 23: Project Management and Software Life-Cycle Tools
	Chapter 24: Software Project Templates
	Chapter 25: Future Tools and Techniques
	Appendix A: CMMI Process Standards
	Appendix B: ISO Standards
	Appendix C: IEEE Standards
	Appendix D: Agile Processes for Software Development
	Appendix E: Impact of Offshoring on Standards
	Appendix F: Review Question Answers
	Back Cover

