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Preface 

This book concerns the practical solution of Partial Differential Equations. We assume the reader 
knows what a PDE is - that he or she has derived some, and solved them with the limited but 
powerful arsenal of analytic techniques. We also assume that (s)he has gained some intuitive 
knowledge of their solution properties, either in the context of specific applications, or in the more 
abstract context of applied mathematics. We assume the reader now wants to solve PDE's for 
real, in the context of practical problems with all of their warts - awkward geometry, driven by 
real data, variable coefficients, nonlinearities - as they arise in real situations. The applications we 
envision span classical mathematical physics and the "engineering sciences" : fluid mechanics, solid 
mechanics, electricity and magnetism, heat and mass transfer, wave propagation. Of course, these 
all share a joyous interdisciplinary unity in PDE's. 

The material arises from lectures at Dartmouth College for first-year graduate students in 
science and engineering. That audience has shared the above motivations, and a mathematical 
background including: ordinary and partial differential equations; a first course in numerical anal- 
ysis; linear algebra; complex numbers at least at the level of Fourier analysis; and an ability to 
program modern computers. Some working exposure to applications of PDE's in their research or 
practice has also been a common denominator. This classical undergraduate preparation sets the 
stage for our "First Practical Course". 

Naturally, the "practical" aspect of the course involves computation. The bottom-line answer 
sought needs to be computed and that means an approximation to the PDE solution is inevitable. 
Accordingly we try to systematically expose the processes of discretization from continuum to 
algebra, and describe useful algorithms for assembling and solving the algebraic equations on finite 
machines. There is a standard triad of concerns: accuracy of the discrete solution; its stability 
relative to data and computational noise; and the economy of algorithms for computing it. 

We have inherited a wonderful archive of knowledge about PDE's from the persons whose names 
are attached to them, all largely a pre-20th~ creation. In the first half of the 2othC we have the 
addition of detailed developments in the Engineering Sciences mentioned above, where significant 
theoretical advances have resulted from the posing of specific natural phenomena in terms of PDE's. 
The significant recent development is the unprecedented growth in computing machinery - both 
in terms of availability and power. This is a capability which our predecessors could hardly begin 
to imagine; the modern frontier of their work is the generation of practical solutions to practical 
problems, and the understanding of the goodness of those solutions. That is the subject of our 
work together in this book. 

So the practical aspect of this book is the infused focus on computation. We present two major 
discretization methods - Finite Difference and Finite Element. The blend of theory, analysis, 
and implementation practicality supports solving and understanding complicated problems at the 
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journeyman scientific level typical of early graduate students. Reading that material alone is boring 
and unrewarding without the culminating experience of computing with these methods. So these 
lectures need to be supplemented with computational exercises. At Dartmouth we have used a 
blend of Fortran (the Latin of the business) and Matlab; course software is normally constructed by 
students, with internet access to important libraries. Problems are drawn from students' particular 
disciplines; practical experience with in-depth examples is essential. The text material here is 
neutral with respect to computer language and operating system. 

We interpret the Environmental target audience in the large. It is not Environmental technology 
which we address; that is a regulatory category. Rather we concentrate on natural Environmen- 
tal Phenomena, occurring in the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere, and 
ionosphere. Partial Differential Equations and the underlying Field Theory remain the descriptive 
language for phenomena occurring in these media. Mathematically, PDE's unite these; computa- 
tional approaches should, also. Accordingly, this text reflects that fundamentally interdisciplinary 
approach to these problems. 

There are three parts. Part I is a brief overview of Finite Difference ideas. I find that almost 
every student has learned much of this already, although not systematically, as FD methods are 
intuitive and now permeate undergraduate courses. So the material in this part is background, 
review, systemization. There are very good treatises on this subject, notably Smith [102], Morton 
and Mayers [87], and Ames [2]. 

The Part I material is introductory to the Finite Element Method, which involves more ab- 
straction to get started. Here we provide in Part I1 a FEM tutorial. Many conventional expositions 
pose the FEM using the variational calculus; that is beyond the reach of many entry-level grad- 
uate students who want to solve PDE's. And, it often puts the method into a discipline-specific 
context, while our goal is fundamentally interdisciplinary. Accordingly, we pose the FEM as a so- 
lution method for general PDE's and utilize the Method of Weighted Residuals as a discretization 
principle. That is quite general, intuitive, and provides a simple link to Finite Differences. The 
final chapter of Part I1 summarizes some Numerical Analysis ideas focused on difference equations 
emanating from the FEM. With small adaptations, this chapter is applicable to FD discretizations 
also. 

There are numerous works on the FEM, as there are for FDM. Segerlind [lol l  is a useful 
exposition which I have used. The works of Davies [29] and Johnson [49] provide interdisciplinary 
coverage, although they are largely variational in approach. The landmark volumes are from 
Zienkiewicz and colleagues, e.g. [120], [122]. An unusual synthesis of FD and FE methods is 
available in Lapidus and Pinder [52] which is recommended as a reference supplementing this 
exposition. 

It is increasingly evident that practical problems are improperly posed, in the sense that one 
never really has completely unambiguous specifications of the necessary data. This is especially true 
in Environmental media. So Part I11 is an introduction to formal approaches for dealing with that. 
Students who know Linear Regression will recognize that approach as our baseline in the canonical 
problem of "fitting model to data" - the Inverse Problem. In this Part we rely on the notion of 
"model" as a FD or FE algebraic statement which is trustworthy if its data were known - the 
"Forward Problem" is solved, practically speaking. There is a tiny amount of probability/statistics 
involved here; but for our purposes it is not necessary to go beyond what a mature student should 
be comfortable with (e.g. moments of distributions). The solution of Inverse Problems is clearly 
at the forefront in a great many applications today and represents a major intellectual frontier. 
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Because of their centrality in the use of PDE's for research and design; because they pose massive 
increases in computer resources over the "forward" problems which they embed; and because of 
the massive computational power which is emerging - the time for Inverse Problems has come. 

The full text as recorded here, accompanied by weekly in-depth computational exercises, could 
occupy a student for about 1.5 course-equivalents. Cutting the FD material based on students' 
prior exposure makes a l-course offering possible for the balance of the text. An obvious addition 
might be a systematic coverage of modern linear algebra - we have used the excellent text by Golub 
and VanLoan [35] for this purpose along with LAPACK [3] exercises. Also useful in this area is 
Trefethen and Bau [105]. As always, the reader is recommended to have the Numerical Recipes 
[99] at hand; and to have recently acquired a good foundation in Numerical Analysis as in Burden 
and Faires [20]. 

Over the years I have benefited greatly from the help of colleagues and students, whose insights 
perfuse this work. Notable are F. Werner, J. Sullivan, K. Paulsen, and K. ONeill, who helped me 
start the Numerical Methods Laboratory at Dartmouth. Additional important colleagues in this 
work have included M. Foreman, D. Greenberg, D. McGillicuddy, C. Hannah, C. Naimie, J. Ip, W. 
Brown, A. Bilgili, K. Smith, J. Manning, S. Geimer, J. Waugh, M. George, K. Lunn, and N. Soni. 
The National Science Foundation generously supported all of the applications described. 

Daniel R. Lynch 
Hanover, NH August 2004. 



Synopsis 

Part I: The Finite Difference Method 

1) Introduction 

In this chapter we inspire the consideration of discrete approximants to PDE's as natural "engi- 
neering" approaches to describing common systems. The classical expositions in engineering science 
proceed from these to the continuum PDE's; we seek instead discrete representations of these sys- 
tems which are arbitrarily close to the limiting continuum; and ways to demonstrate and quantify 
that. A classification of boundary conditions is given for the standard trio of initial and boundary 
conditions: Dirichlet, Neumann, Mixed. The chapter then introduces the "big three" canonical 
PDE's: Laplace, Diffusion, and Wave equations; and their classification in terms of characteristics. 
The discussion ends with the important practical question of necessary and sufficient boundary 
conditions and initial conditions for these equations. 

2) Finite Difference Calculus 

In this chapter we present and review standard finite difference approximations - how to generate 
them via Taylor Series and also by fitting and differentiating polynomials; and how to estimate their 
accuracy. General, nonuniform mesh expressions are obtained by example; the standard expressions 
and their error terms are derived for uniform meshes; higher order expressions are also derived. 

3) Elliptic Equations 

In this chapter we demonstrate the construction of discrete systems for elliptic PDE's. There 
is an emphasis on second-order, compact schemes and their Boundary Conditions. First a 1-D 
example is studied - a 2-point boundary value problem. Its matrix representation is displayed 
with various BC's. The standard BC's are exercised - Dirichlet, Neumann, Mixed. Then 2-D 
approximants are discussed. There is attention paid to banded (tridiagonal in the 1D case) matrix 
solution methods here, and the use of LU decomposition as a direct solution strategy. Conventional 
iterative solvers are briefly introduced and reviewed, with emphasis on review of the Jacobi, Gauss- 
Seidel, and SOR methods. Storage and run-time demands for direct and iterative approaches are 
compared. 

The chapter concludes with a 1-D discussion of the steady-state advective-diffusion equation, 
with focus on the Peclet number as the determinant of quality. Exact solution of the difference 
equations for upstream, downstream, and centered approximations are studied. 

4) Iterative Methods for Elliptic Equations 

In this chapter we give an overview of iterative processes for solving linear systems of equations. 
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The concepts of spectral radius and iterative convergence rate are introduced. The familiar point 
and block iterative methods are reviewed in this context and the available relations among mesh size 
and spectral radius are summarized. The (Elliptic) Helmholtz problem is introduced as the useful 
Fourier Transform,of the Hyperbolic wave equation. Its loss of diagonal dominance is demonstrated. 

The chapter concludes with a discussion of gradient descent iterative methods, particularly in 
the context of 3-D systems wherein direct strategies lose their appeal. The familiar Jacobi and 
Gauss-Seidel methods are described in these terms. The Conjugate Gradient family is introduced; 
the reader is referred to more specific treatises for details. 

5) Parabolic Equations 

The l-D diffusion equation (x,t) is used as the canonical equation here. A nomenclature is 
introduced which is used throughout the book: 

Distributed (Continuous) System: the PDE; 
a Lumped System: the elliptic dimensions (x,y,z) discretized, the time dimension left continu- 

ous. This is a finite system of coupled ODE'S, with a lot of structure; 
a Discrete System: the time-discretization of the Lumped System. 

The diffusion equation is Lumped by the finite difference method and its dispersion relation derived. 
Enforcement of boundary conditions is described, as a straightforward extension of the Elliptic ma- 
terial above. Three discrete systems are shown: Euler, Leapfrog, Backward Euler, and 2-level 
implicit. The standard trio of concerns - stability, consistency, convergence - is introduced. The 
stability and accuracy of these discrete systems are developed using Fourier (von Neumann) anal- 
ysis. A Propagation Factor is introduced in the framework of this analysis; it is the recommended 
vehicle for examining accuracy - essentially, the accuracy implied by the fidelity of continuous and 
discrete dispersion relations. An example involving 3-time-level "leapfrog" Parabolic systems is 
studied, and the attendant parasitic solutions are discussed in detail. Conservation laws in the con- 
tinuum and in the discrete system are developed; the analysis leads to prescriptions for estimating 
derivatives (Neumann data) at a Dirichlet boundary. A discussion of 2D (x,y,t) parabolic problems 
is given, as a dynamic version of the 2D elliptic problem. 

6) Hyperbolic Equations 

The l-D wave equation (x,t) is used as the canonical equation here. Its equivalence to a coupled 
system of two first-order PDE's in two field variables is discussed. These distinctly different forms 
lead to two different Lumped Systems using conventional FD; and in turn to two families of Discrete 
Systems as one adds time-stepping methods to complete the discretization. There are a few Discrete 
Systems in 1D which have no counterpart in 2D and higher; these are studied insofar as they are 
useful in practice. But those that generalize at least to 2D (x,y,t) are given preference. 

The harmonic or Helmholtz approach is introduced by Fourier-transforming the time-domain. 
This reduces the Lumped Systems to Elliptic Discrete Systems, which were studied above. A 
distinguishing feature is the loss of diagonal dominance in the Helmholtz case. 

For conventional time-domain simulation, the two Lumped Systems generate two families of 
discrete systems. Each has a characteristic blend of stability, economy, and accuracy properties. 
In some cases, there are parasitic modes which are poorly conditioned and potentially solution- 
dominating; this is a fundamental liability in Hyperbolic problems and is given a fair amount of 
attention. All of these system properties are studied via Fourier dispersion analysis. 

The chapter concludes with a discussion of 2D (x,y,t) systems. In 2D the staggered-grid ap- 
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proach presents new options and ambiguities over the 1D cases. In particular the Arakawa classi- 
fication of staggered grids is presented. 

Part 11: The Finite Element Method 

7) General Principles 

We introduce the Method of Weighted Residuals here. This is the general approach to dis- 
cretization used throughout the FEM discussion. We proceed through the concept of Weak-Form 
PDE as an integral equation; and then by introducing finite bases, to the Discrete System (in the 
sense introduced in Part 1). Various MWRs are discussed - Subdomain, Least Squares, Galerkin, 
etc. Boundary Condition enforcement is discussed, with a major distinction for Dirichlet and Neu- 
mann or "natural" boundaries. Variational Principles are discussed with two aims: first, to provide 
a conceptual linkage to the large FEM literature which begins with these; and second, to illustrate 
the identity of Galerkin and Variational approaches for a common class of problems. Finally, some 
global conservation properties of Weak-Form PDE's are introduced. 

8) A 1D Tutorial 

Polynomial bases are introduced in the context of Lagrangian interpolation. Local and Global 
interpolation is introduced; the element is introduced as the support unit for local interpolation. 
The degree of inter-element continuity is discussed and illustrated by the Hermite family of elements. 
Boundary condition enforcement is illustrated in the context of an example. 

Standard FEM concepts are introduced: the Element Matrix; the Incidence List and the System 
Assembly process. The importance of prior knowledge of matrix structure is emphasized; banded 
and sparse storage methods are described. There are short discussions of treating variable coeffi- 
cients and of numerical integration (a review). The assembly process is illustrated as commonly 
practiced, with Gauss (or other) Quadrature. 

9) Multi-Dimensional Elements 

Linear triangles are introduced as the simplest 2D elements. Interpolation, differentiation, and 
integration are described on these elements. The Helmholtz formulation is given in detail for these 
elements. Higher order triangular elements are described. Here we introduce a Local Coordinate 
System (area coordinates for triangles) and the transformation from local to global for interpo- 
lation, differentiation, and integration. Curved-sided triangular elements and the isoparametric 
coordinate transformation are introduced. Finally, quadrilateral elements are discussed in various 
forms (Lagrangian, Serendipity) along with the common local coordinates and the isoparametric 
transformation. 

10) Time-Dependent Problems 

For hyperbolic and parabolic problems, the general approach is: use FEM to produce the 
Lumped System i.e. to discretize the elliptic or spatial part of the PDE; then use any conventional 
time-stepping or time-integration method to discretize the temporal part. This is the general 
strategy in common use. Examples are given for the Diffusion, Advection-Diffusion, Wave, and 
Telegraph equations. 

11) Vector Problems 
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In this chapter we turn to PDE7s whose solutions are Vector Fields; the discussion up to now has 
been in terms of Scalar Fields. We first discuss the seemingly simple problem of determining the 
gradient of a scalar for which a FEM solution is already available (as form the methods described 
above). We discuss the Galerkin form of the problem; rotation to and from the natural local 
coordinate system; and the handling of Dirichlet and Neumann boundary conditions. 

We then turn to several example applications in common use: Elasticity, E&M, Fluid Mechanics, 
Oceanic Tides. Each has some peculiarities and presents some important choices about bases, 
weights, time-domain versus Harmonic representation, and selection of potential versus primitive 
field variables. These examples are displayed with attention to these details, and with references 
to the literatures involved. 

12) Numerical Analysis 

The purpose of this chapter is to gain insight into the errors separating exact solutions and 
discrete FEM solutions which approximate them; and how that relates to the FEM discretization 
parameters. First we solve several 1D FEM systems in discrete form, exactly and compare to 
analytic solutions. Then we introduce Fourier (von Neumann) analysis as a tool and apply it to 
some common FEM approximants. There are useful tables summarizing this, in 1D and in 2D. The 
analysis is used to look at the 2D Laplace and Helmholtz equations. 

We then turn to time-dependent problems and introduce the Propagation Factor analysis which 
was used also in the FD section, as a quantitative guide to stability and accuracy evaluations. 
The diffusion equation in 1D (x,t) is studied for stability; monotonicity; accuracy in both 2-level 
and 3-level -in-time contexts. In the latter, parasitic modes are introduced by the theoretically 
unnecessary third time level. The implications of this are carefully considered. We then make a 
comparable analysis of the FEM Wave Equation, in both explicit and implicit-in-time forms. The 
final case studied is the advection-diffusion equation including its limit of zero diffusion. Throughout 
the emphasis is on selection of algorithms which produce discrete systems with stable, accurate 
solutions; and on the possible presence of parasitic modes and their control. 

Part 111: Inverse Problems 

13) Inverse Noise, Singular Value Decomposition, and Linear Least Squares 

The Inverse Problem is introduced in the context of the precision of Matrix Inversion processes. 
Basic definitions are established: mean, covariance, variance. Noise models are introduced to 
describe variability of inputs normally thought to be known with precision. Eigenvalue theory 
is briefly reviewed, followed by the Singular Value Decomposition. The SVD is used to describe 
mean and variance of solutions to poorly posed algebraic problems - either the matrix is poorly 
conditioned, or the RHS is imperfectly known, or both. Linear Least Squares is then introduced 
and the normal equations developed. Ordinary and Weighted forms are described in a "General 
Least Squares" context, with enough detail to expose the practical equations and to enlighten later 
discussions of noise, regularization, etc. 

14) Fitting Models to Data 

Basic definitions are introduced for Model-Data misfit, noise, error, etc. "Fitting" is defined as 
a field estimation problem with imperfect model, imperfect estimates of IC's and BC's, and sparse, 
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noisy data. The first-order conditions for a Least Squares fit are re-described for the general 
(regularized) system. Direct solutions are immediately available by application of the Normal 
Equations. Retaining the Lagrange multipliers offers more algorithmic possibilities. The first-order 
conditions are rearranged to expose the "forward" and "adjoint" systems for iterative solution. 
Gradient descent methods are described - both steepest descent (the simple way) and conjugate 
gradient descent. The optimal step size is developed. Variance estimation by Monte Carlo methods 
is suggested in concert with this approach. Throughout the well-conditioned nature of the "forward 
problem" (i.e. the FEM model) is assumed. 

Direct methods based on the method of Representers are described. This is effective for data- 
sparse situations. The related approach on the forward side, the unit response method, is then 
treated. 

The same Generalized Least Squares approach is developed for the Parameter Estimation prob- 
lem. This is fundamentally nonlinear; iterative methods for its solution are suggested. The problem 
of evaluating the Jacobi matrix for FEM forward models is considered, in concert with an iterative 
Adjoint method. A summary of terminology is given. 

Chapters 14 and 15 are bridges to the works by Wunsch [I151 and Bennett [9]; the latter 
describes PDE7s in the continuum; the former, algebraic representations of same. The current work 
nests these topics in the context of interdisciplinary PDE discretization methods. 

15) Dynamic Inversion 

In this chapter we illustrate the ideas of Chapter 10, extended to time-dependent "forward 
models" where a single matrix representation of all equations is not normally practical. We look at 
the first-order conditions as two dynamic systems running "forward" and in "reverse", the latter 
being commonly called the "adjoint model" whose dependent variables are the Lagrange Multipliers. 
An advective-diffusive system is first studied. The Adjoint is developed, and a gradient descent 
algorithm given. This system admits a higher-order condensation to an Elliptic Problem in time; 
that is presented. The same general treatment is given to a FEM description of the Wave or 
Telegraph Equation. Regularization methods in these contexts are described: methods of reduction 
of degrees of freedom; the weight matrix; and its heuristic construction using FEM. 

16) Time Conventions for Real-Time Assimilation 

This chapter begins with a general discussion of the relativity of data, model output, and 
simulated and real time. The context is that of the forecaster. The conceptual framework supports 
useful "time" diagrams depicting model and data use in hindcast, nowcast, and forecast, assuming 
a data-assimilative operation. Various types of communication delays are discussed along with a 
real example. Important time conventions are described in an Appendix for geophysical dynamics, 
including those applicable to harmonic descriptions of oceanic tides. 

17) Skill Assessment for Data-Assimilative Models 

This chapter is a discussion of nomenclature applicable to Data Assimilation. (The field is 
characterized by wide diversity here; that hampers progress.) The discussion covers Forward and 
Inverse Models; Truth, Estimate, Prediction, and Skill; and Accuracy, Bias, Precision, and Noise. 
An example Observational System Simulation Experiment is given from the author's experience. 

18) Statistical Interpolation 

This chapter is a bridge to the wide (and largely self-referencing) literature on the mapping 
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of geostatistical fields. It is variously referred to as Objective Analysis, Optimal Interpolation, 
Gauss-Markov Estimation, and Kriging. It is the proper end point of this book. Much of the 
inversion literature reproduces the findings in these fields - but it proceeds along the lines of 
"stochastically-forced differential equations" (SDE) which are described here in discrete (FD or 
FEM) form. We describe the basic problem of field estimation from this viewpoint; develop a 
simple demonstration of the Gauss-Markov theorem; discuss sampling and estimating finite fields, 
specifically FEM fields; and the use of analytic covariance functions as prior estimates. The use of 
SDE to obtain the field covariance is illustrated in two simple examples. Finally, the equivalence 
of OA or 01 as developed here, with Kriging and with Least Squares approaches, is discussed and 
in a limited way demonstrated. 

Chapter 18 is a gateway to the Geostatistics and Kriging fields, represented by Cressie [27], 
Goovaerts [36] and Kitanidis [51], and the comprehensive work on Data Analysis, e.g. Daley [28]. 
We have tried to maintain interdisciplinarity in the presentation here. 



Part I 

The Finite Difference Method 



Chapter 1 

Introduction 

1.1 From Algebra to Calculus and Back 

Partial Differential Equations (PDE's) describe relations among mathematical fields - smooth func- 
tions of more than one variable - and their derivatives. Where field smoothness is interrupted, 
Boundary Conditions (BC's) are required which supplement the PDE with data or constraints. 
The classic Environmental media (hydrosphere, lithosphere, atmosphere, ionosphere, cryosphere, 
biosphere) are generally described by fields and PDE's. Practical PDE solution today is one of the 
major frontiers of applied mathematics and computation, and therefore of Environmental science 
and engineering. 

Ordinary Differential Equations (ODE's) are generally the single-variable limit of the PDE. 
These are normally studied first - their genesis, analysis, and of course their solution, whether 
analytical or numerical. There are many similarities in approach between PDE's and ODE's. We 
are following convention in assuming that the reader is familiar with ODE's in general and has 
solved some in particular. 

Historically, algebra precedes calculus. Scientific descriptions which involved dynamics were 
first approximated in terms of algebraic differences. These lead to calculus as the limiting case 
of refinement, among other things relieving the tedium of calculating approximations by hand or 
on small machines. In modern computation, we have big machines; but they are still discrete and 
finite. So we reverse this mathematical process - we go from PDE's described in the calculus, to 
algebraic approximations which can be implemented on these machines.' 

While all good discretizations converge to the same limit in calculus, each has different detailed 
properties in its finite form. So we are intrinsically interested in the correspondence between these 
discrete forms and the limiting PDE. Ideally, we would like discretization methods with which to go 
backwards from calculus to algebra, confidently. In this text we will look at two common classes of 
discretization methods, Finite Difference and Finite Element. Understanding the calculus-algebra 
correspondence is one of the classical objectives of Numerical Analysis. 

'Of course the algebra actually implemented will be remarkably precise, but still approximate. 
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1.2 Distributed, Lumped, Discrete Systems 

These are engineering terms for common representations of dynamical systems.2 As used here, the 
Distributed System (or equivalently, the Continuous System) is PDE-based (the PDE plus its BC's 
and data); it is our starting point. Discretization of one or more of its dimensions, to an algebraic 
approximation, represents a lumping of that continuum into a finite algebraic representation. Clas- 
sical phenomena typically distinguish between space and time coordinates in the calculus. As used 
here, a Lumped System has the space dimensions converted to algebra; but the time dimension left 
continuous. The process is a partial discretization of PDE7s into approximating ODE'S. Because 
these are assumed familiar to the reader, this is a useful intermediate point. Discretization of the 
time domain into algebra leads us to the fully Discrete System, with all dimensions reduced to 
algebra. 

Figure 1.1: Lumped System 

Many Lumped Systems originate naturally, where the spatial phenomena are simply discrete as 
originally conceived. For example, consider the problem of analyzing vibrations in a 1-D mechanical 
system of masses and springs depicted in Figure 1.1. Elementary application of Newton's second 
law gives the balance between acceleration and net force: 

(F, accounts for the force applied at the right end; otherwise F is null.) There are N coupled 2nd 
order ODE'S, one for each displacement Si. Assembling these, and accounting for their termination, 
we get: 

d2 S 
[MI{%} = [K116} + { F )  

Solution of this canonical system of ODE'S is well understood analytically and numerically. Gen- 
eral numerical integration over time would employ well-accepted methods - Runge-Kutta, Adams, 
etc. This would typically be achieved by first reducing the system to 2N coupled 1st order ODE'S 
by introducing the velocities ui as additional variables, a standard manipulation: 

Alternatively, we can solve in the frequency domain with the Fourier transform $ + -w2 

[K + u2 M]{S) = -{F) (1.5) 
2 ~ h e  systems language can be ambiguous. In applied work, system often refers to nature; while we will generally 

use its mathematical sense, a system of equations that (hopefully) constitutes an abstraction of nature. 
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and this solution approach is efficient for periodic motion. Both of these Lumped System approaches 
are well-developed. 

Figure 1.2: Distributed System 

As an example of a Distributed System, consider an elastic rod (Figure 1.2) with elastic modulus 
E ,  density p, cross-section A. A typical ODE-oriented formulation strategy might be to create an 
approximate Lumped System 

where Mi is the lumped mass and the effective spring constant K = g.  Effectively, we have an 
approximate algebraic approach which is mathematically identical to the Lumped System above. 
If one can handle only ODE's, this is the end of the story. But the classical PDE derivation 
proceeds further, reaching the continuum by taking the limit of vanishingly small Ax: 

This is the Wave Equation, in the continuous variable S(x). It is one of the canonical PDE's of 
concern to us. 

This approach to PDE derivation is used widely: get an approximate Lumped System and take 
it to its limiting refinement. One can afford to be a little casual with the lumped approximation, 
because the subsequent limiting process can be forgiving. 

One route to practical PDE solution is to go backward, reversing the limiting process just taken, 
and deal with the approximate Lumped System. The outcome can be nonunique, but intuitive, as 
many lumped approximations lead to the same limit. So the tendency to eliminate the PDE limiting 
and unlimiting processes can be dangerous, leaving us without guidance from mathematics. But 
the practical and common idea is to replace the spatial derivatives with algebraic approximations 
which can be used with machines. Thus the Distributed System reverts ultimately to a Lumped one, 
ideally with an accompanying mathematical framework - the Finite Difference "method" provides 
the simplest of these. It leads from calculus to recognizable, intuitive lumped systems, a bonus. 

Relative to the time-domain, the ideas retained from ODE's and/or Lumped System analysis 
generally have their utility here in the PDE world. For example, we can introduce the velocity field 
u as above into equation 1.7 and get an equivalent system with lower-order time derivatives: 
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And, the Fourier transform of the Wave Equation 1.7 gives us the Helmholtz Equation 

which has its special appeal for periodic phenomena. 

There is a general rule of thumb relative to Lumped and Distributed (Continuous) Systems 
arising in classical mathematical physics:3 

Time domain considerations are basically similar. The same ideas generally produce analogous 
outcomes, those normally mastered in the study of ODE'S. 
In the Space dimensions, Lumped Systems employ algebraic relations; while Distributed Sys- 
tems involve relations using differential calculus. The correspondence between Lumped and 
the Distributed Systems is one of the basic subjects of study in Numerical Analysis of PDE's. 

Generally we will find the Lumped System to be a useful gathering point here, one which is familiar 
from prior study. 

1.3 PDE Solutions 

The common analytic solution strategies which we study include transform methods (Laplace, 
Fourier); separation of variables; characteristic methods; and similarity transformations (e.g. XI&). 
Notice that each of these well-developed approaches shares the approach of eliminating a dimension, 
simplifying the PDE ultimately to (tractable) ODE'S. 

These are powerful methods, and indispensable to science and engineering. But we generally 
reach limits related to irregular boundaries, variable coefficients, and nonlinearities; the few existing 
solutions are very restrictive. Even in the absence of these complications, arbitrary forcing, while 
tractable, can rapidly inject cumbersome convolution or Greens Function manipulations which are 
likely to require numerical evaluation. 

These are serious limitations from a practical viewpoint. However it is critical to emphasize 
the value of analytic solutions. They can be differentiated, integrated, analyzed; they facilitate 
sensitivity analysis; they provide clues to necessary and sufficient BC7s; and, they inform intuition 
about generic behavior. Among these important features, none are easily obtained with numerical 
solutions, and several are impossible. Thus it is essential to understand and respect the body of 
analytic solutions. One should not embark on a numerical strategy without first mastering the best 
that analysis can offer. 

Some general observations about Numerical solutions are useful. As a rule, these follow a 
classical route through the generation of ODE'S (or equivalently, Lumped Systems). But the result 
is an algorithm for generating a solution. Each solution itself will be very specific - and just a set 
of numbers, probably with dimensions. Further, the numbers are subject to many approximations 
which are not apparent at the point of solution presentation. 

Accordingly, it is the algorithm which we are interested in here. We will look at several generic 
aspects of these, looking for quantitative guidance on algorithm design and selection. We will be 
exposing some basic dimensions: 

3~aturally,  this space-time conceptual separation may not apply to PDE's originating in non-classical phenomena. 
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accuracy: what is the size of the error (the unknowable discrepancy which will exist between 
exact and numerical solutions) and on what parameters does it depend? 
stability: is that error amplified by an algorithm? 
convergence: does the error vanish as the solution is refined, and at what rate? 
conservation: what are the discrete forms of energy, mass, etc, and how well can they be 
conserved even though any solution is necessarily approximate? 

Existing analytic solutions can provide an important standard of truth, within the limitations of 
their range. But for real problems, the true answer is unknown a priori, so the meaning and 
evaluation of error is less straightforward. We need a systematic, mathematical approach to these 
issues and our field of inquiry is "Numerical Analysis". 

1.4 IC's, BC's, Classification by Characteristics 

Consider the ODE 3 = f .  Apart from specifying the forcing f (x), we need two conditions, U 
and/or $$ to satisfy the undetermined constants of integration. There are two general types of 
problems: 

the Initial Value Problem (IVP): U, $$ are specified at the same "initial" point xo; 
the Boundary Value Problem (BVP): one condition is given at each of two different points 
21, x2. 

There is a rough equivalence between an IVP and its associated BVP for ODE'S, and this is 
exploited by the "shooting" method. But already in 1-D, that method is subject to ill-conditioning. 
In the PDE world, there is nothing analogous to this. We must distinguish carefully between these 
conditions. We will need to distinguish the type of derivative specified; and the location where it 
is to be specified. 

A uniqueness proof: Poisson Equation 

We will begin by example. Consider the PDE 

with U = a(s) on rl, = b(s)  on r2. The two boundaries rl, F2 enclose the domain D, simply. 
Imagine two solutions Ul and U2 which satisfy these conditions: 

BVP 



CHAPTER 1. INTRODUCTION 

Let U3 = U2 - Ul be the difference between the two solutions. Then subtracting the PDE and BC's 
we get their homogeneous forms: 

We have the divergence theorem and the chain rule (see Appendix). From the chain rule, 

The divergence theorem gives us 

The left side must vanish due to the BC's. The second term on the right must vanish due to the 
PDE. So we have 

o = JJJvu3.vu3 dv (1.14) 

Since VU3 . VU3 is non-negative everywhere, we conclude that VU3 must vanish everywhere, and 
thus U3 = constant on D. Finally, U3 = 0 if rl not null. Thus with this one proviso, we have a 
unique solution to the problem with the stated BC's. And if rl null, then U3 is everywhere an 
undetermined constant. 

Classification of BC's 

Conditions on the boundary surface of a PDE domain need to be characterized as involving either 
the unknown function's value there, or its derivative. In the latter case we need to know a) the level 
of derivative and b) its direction. Intuitively, for a PDE involving second derivatives, we are talking 
about first derivatives at most. And the local normal direction on a boundary is special; knowledge 
of a function's value on a boundary surface implies knowledge of its tangential derivatives, but not 
of its normal ones. So intuitively, we expect derivative information to be posed in terms of the 
normal directional derivative, & . 

Accordingly, we will use this classification for BC7s: 

Type 1 U given Dirichlet 
Type 2 given Neumann 
Type 3 aU + bg given Mixed, Robbins, Cauchy, Radiation 

Generalizing the previous result, we have that for the Poisson Equation, we need 1 and only 1 BC 
from this selection on all points of a closed boundary. 

These BC types will need to be supplemented for higher-order PDE7s; and for vector problems. 
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Classification of Equations 

In accord with the previous BC discussion of second-order equations: consider the second order 
PDE: 

au @ We restrict ourselves to the Quasilinear case: a, b, c, and f depend only on U, x, a3,, x, y. 
Note this is nonlinear, but there are no products among the highest derivatives. The theory of 
characteristics supports the following classification [43]: 

d2u d2u b2 - 4ac > 0 Hyperbolic e.g. Wave equation - = 0 
au a u = O  b2 - 4ac = 0 Parabolic e.g. Diffusion equation - - - Pt ag2 a u  a u - O  b2 - 4ac < 0 Elliptic e.g. Laplace equation + - 

These different PDE classes have their own special requirements for necessary and sufficient condi- 
tions at their domain limits. 

Elliptic equations typically describe equilibrium problems with no time dependence. All 
independent variables are spatial directions and are roughly equivalent in the form of the second 
derivatives. For these problems we need BC's on a closed surface. 

Elliptic 

One BC (Type 1,2, or 3) everywhere 
on a closed surface 

Parabolic equations typically describe propagation problems; time appears usually with first 
derivatives only, and the solution progresses forward in t ,  not backward. The spatial portion of the 
PDE is typically elliptic and this describes the steady-state solution. Spatial BC's are the same 
as in elliptic problems. The temporal domain requires a single, Type I initial condition which will 
propagate forward into unbounded time. 

Hyperbolic equations are similar to parabolic ones, in that propagation in time from initial 
conditions is implied. But in these problems, we have a second time derivative; so the IC/BC blend 
is similar to the Parabolic case, but two IC's, Type I and Type 11, are required at the same point 
in time. These propagate forward into unbounded time. Shocks may be supported in hyperbolic 
solutions. 

Notice that we have recovered the distinctive sense of initial and boundary conditions here. 
This reflects physical intuition about the words: boundary connoting spatial constraints, initial 
connoting a temporal initialization. The classical PDE's of mathematical physics support this 



CHAPTER 1. INTRODUCTION 

Parabolic 

i----i 

One IC, Type 1 

One BC 
Type 1,2, or 3 

Hyperbolic 

One BC 
Type 1,2, or 3 

Two IC's, Type 1 and Type 2 

intuitive distinction, with the domains easily separated into orthogonal steady-state (elliptic) and 
transient (hyperbolic/parabolic) subdomains. Naturally, this is convenient but not a mathematical 
necessity. 

Fuller analysis leading to these classifications appears in many standard works, e.g. Hildebrand 

[43I 
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Finite Difference Calculus 

In this chapter we review the calculus of finite differences. The topic is classic and covered in 
many places. The Taylor series is fundamental to most analysis. A good reference for beginners is 
Hornbeck [45]. 

2.1 1-D Differences on a Uniform Mesh 

Our objective is to develop differentiation formulas which deal only with functions U which are 
sampled at discrete grid points Xi: U(Xi) - Ui. The sampling grid is assumed to lay out in the 
natural way, ordered with X, left to right as below. 

Assuming equal mesh spacing h - Xi+l - Xi for all i, we have the Taylor series: 

where the leading error is "of order h (which can be made arbitrarily small with mesh refinement.)" 
For e, we write another Taylor series 

Adding these such that 9 cancels gives: 
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Generally, approximations to higher derivatives are obtained by adding one or more points; each 
additional point permits an O(h) expression to the next derivative. The notation for the result is 

with AnUi indicating a difference expression among Ui +- Ui+,. These are called the Forward 
Diferences and are tabulated in tTable 2.1 below. They have the recursive property 

The core operator A indicates the "first forward difference7'. 

Backward Digerences are defined in the analogous way: 

onui = o(on-lui) 
These are tabulated in Table 2.2. 

Both of these approximations are first-order in the mesh spacing h. Higher order approximations 
are generated by involving more points. 

Combining equations 2.10 and 2.11 with weights 1 and A, we get 

We want the first derivative in terms of Ui, Ui+1, and Ui+2. If we choose A such that (1 + 4A) = 0, 
the second derivative term will vanish and the third derivative term will be the leading error term. 

The leading error is O(h2). This is the second-order correct, forward difference approximation to 
the first derivative. Higher derivatives at this accuracy can be obtained by adding extra points, 
as in the O(h) formulas. Tables 2.3 and 2.4 below record these and their backward difference 
counterparts. 
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The obvious supplement to these one-sided differences are the Central Difference approxima- 
tions. Assuming a uniform mesh, these combine the forward and backward formulas such that the 
leading errors cancel. The result is an extra order of accuracy for the same number of points. For 
example: 

Combining these, 

o U i  + AUi = - Ui-l = sUi (2.19) 

The symbol 6 in this context indicates the central difference operator; and the centered approxi- 
mation to the first derivative is 

8ui sUi -- - - + 0(h2)  
ax 2h  

This is accurate to second order in h. Higher derivatives can be obtained by adding more points, 
symmetrically. The O(h2) centered differences are summarized in Tables 2.5 and 2.6 below. 

Summary - Uniform Mesh 

The Taylor Series provides difference formulas and error estimates for derivatives of arbitrary order 
and precision. The procedure is systematic and, as is shown in the next sections, easily generalized 
to nonuniform meshes and to multiple dimensions. The 1-D results on a uniform mesh may be 
summarized as: 

Forward difference 

Backward difference 

Centered difference 

All of these have N+l  points with nonzero weights. The centered formulas provide an extra order 
of accuracy for the same number of points. 

To attain higher-order accuracy, more points need to be added. In the uncentered cases, we 
have 

nth derivative + O ( h 2 )  n + 2 pts. 
nth derivative + O ( h 3 )  +- n + 3 pts. 
nth derivative + O ( h 4 )  +- n + 4 pts. 
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Table 2.1: Forward difference representations, O(h). [45]. 

Table 2 .2: Backward difference representations, O(h) 

Table 2.3: Forward difference representations, O(h2). [45]. 

Table 2.4: Backward difference representations, O(h2).  [45]. 

Table 2.5: Central difference representations, O(h2).  1451. 



2.2. USE OF THE ERROR TERM 

Table 2.6: Central difference re~resentations. O(h4'1. 1451 

and so on; whereas for the centered cases, we have extra accuracy for the same number of points: 

nthderivative + O(h4)  +- n + 3 p t s .  
nth derivative + O(h6)  n + 5 pts. 
nth derivative. + O(h8)  =+ n + 7 pts. 

For the same number of points, the centered formulas always stay one order ahead of the uncentered 
formulas. Points are added alternately at the center of the formula, or in symmetric pairs. 

These rules apply equally well to 1-D differences on nonuniform meshes (see below), with the 
exception that the special accuracy of Centered Differences is lost. 

2.2 Use of the Error Term 

The leading error terms are important; since they may interact, they should be kept in detail in 
all derivations. For example, we may construct a higher-order approximation from two lower-order 
approximations as follows: 

aUi AUi h d2ui -- - - - -- 
a x  h 2 ax2 + 0 ( h 2 )  

Substitute a difference formula for the leading error term $ 

This will push the error term to O(h)  . O(h):  

aui - - - 
AUi h A2ui -- 

ax h ,[T + O(h) l+ O(h2)  

- - AUi 1 a 2 u i  - - -- 
h 2 h  

+ 0 ( h 2 )  

( u i + l - u i )  l (u i+2-2Ui+l+ui )  
= [  h - - 

2 h 1 + 0 ( h 2 >  
(2.23) 

aui - - - [-3Ui + 4Ui+l - Ui+2] 
2h 

+ 0 ( h 2 )  (2.24) 
a x  

This is the same as in the forward difference Tables derived directly from Taylor series. This 
procedure has obvious generality; it will produce a difference expression whose order is the product 
of its two parts. 
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2.3 1-D Differences on Nonuniform Meshes 

The Taylor Series procedure outlined above is not restricted to uniform meshes. Consider the 
following 5-point grid: 

Suppose we wish to find difference formulas for derivatives at node i. We proceed to express all 
the other nodal values in Taylor series about i: 

Now form a weighted sum of the four equations; let the weights be (l,A,B,C) (the first one is 
arbitrary since we can always multiply the result by a constant). The result: 

Now we have at our disposal the three parameters (A,B,C). Suppose we want a difference formula 
for 2 which only involves ui-1, ui, ui+l. Clearly then, B and C must be zero; and if we select A 
such that the coefficient of 9 vanishes, then we will create an O(h2) approximation for %: 

and thus 
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Substituting for A we get 

It is readily checked that when a = 1 we obtain the familiar central difference formula. 

If we wish to achieve higher accuracy, we must involve another point. Retaining B # 0, for 
example, we may set the coefficients of the second and third derivatives equal to zero in 2.27: 

The resulting difference formula will have a leading error term 

The above procedure may be expressed in more generality as follows. Suppose we want expres- 
sions for derivatives at some grid point. Without loss of generality we take this (temporarily) to 
be the origin of the coordinate system. Then denoting by pi the difference of Ui - Uo, the Taylor 
series is 

If we invent weights Wi, then 

where the index i runs over all grid points, and wn is the nth moment of the weights about the 
origin: 

A first order derivative difference expression for 9 can thus be obtained by setting the first N - 1 
moments of W equal to zero, which can be achieved with exactly N nonzero weights. Recalling 
that pi = Ui - Uo, this yields N + 1 node points in the expression for the N~~ derivative. Higher 
order expressions can be obtained by making w ~ + l  and progressively higher moments equal to zero. 

2.4 Alternative to Taylor Series: Polynomial Fit 

A different procedure is to fit a polynomial or other interpolant to discrete samples; and differentiate 
the result. For example, consider the 3-point mesh shown below. 
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We will fit a second-order polynomial 6 ( x )  to samples of U at the three mesh points: 

The fit is obtained by solving for the three coefficients 

Inverting this gives 
(a[&-1 - Ui] + [Ui+l - Ui]) 

(a2 + a) h2 1 

and the polynomial is differentiated to provide the difference formulas at any point x: 

These results are identical to those obtained from Taylor Series estimates at the three grid points. 
(Student should verify this.) This procedure has the advantage of estimating derivatives everywhere, 
not just at the mesh points; but it lacks the truncation error estimate. 

2.5 Difference Formulas with Cross-Derivatives 

Generally, the l-D formulas can be used in higher dimensions (although there are other options). 
The special case is the mixed derivative with respect to 2 or more dimensions. There are two 
approaches. First, we can operate with the 2-D Taylor series: 

a a 
U(x + Ax, y + Ay) = UIX,, + (Ax- + A Y - ) ~ ~ X , Y  

dx ay 

where 

and so on. From here, the procedure is generally the same as in l-D case: write Taylor series for 
all points in terms of U, dU, . . . at point where dU is wanted; mix together to get desired accuracy. 
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The alternative approach is to operate with the 1-D formula already in hand. For example: on 
an (i, j) mesh with uniform mesh spacing (h, k): 

[Uj+~~~uj - l ]  - [Uj t l -Uj- l  a2u a a u  
-- - -(-) E 

i+l 21; li-1 

axay a x  ay 2h 

This should be intuitively correct to second order, since centered differences are being invoked. But 
so far we lack the leading error term. We can get this from the 1-D formula, 

Differentiating this, 

By the same formula: 
dU Uj+l - Uj-l - 1 .  - - -- k2 a3u 
ay - 2k 6 ay3 1j + . . . 

There is an apparent asymmetry in the error terms. Also, the would in general be a fatal 
problem, reducing the accuracy to first-order. But 

So the leadiner error terms are 

Now we have symmetry, as expected from the form of the difference expression. And the accuracy 
is second-order in h and k, independently. 



Chapter 3 

Elliptic Equations 

3.1 Introduction 

Elliptic equations describe pure boundary-value problems. They require boundary conditions on 
a surface completely surrounding a closed domain. In classical mathematical physics, Elliptic 
equations generally describe equilibrium problems, for which the closed domain is intuitive and 
natural. In many cases, these problems are the steady-state limit of a more dynamical (transient) 
problem, the evolution of which can be represented by adding a time dimension to the problem 
- specifically, appending terms in & and/or & to an otherwise Elliptic operator. In that case, 
the boundary condition requirements do not change; but additional initial conditions are added to 
constrain the time-domain evolution. 

A characteristic algebraic structure emerges from FD treatment of Elliptic equations and their 
BC7s. We explore that below, by example, and then look at some considerations about algebraic 
solution. The discretized Elliptic system generally presents a structured set of simultaneous alge- 
braic equations. Understanding the solution of this algebra is prerequisite to solving the dynamic 
(Hyperbolic or Parabolic) system; the Elliptic algorithms which work can be invoked in each time 
step of the dynamic problems. 

3.2 A 1-D Example 

Consider the 1-D equation 

with K(x) and r(x) known. Assuming that K is differentiable, we have the equivalent form 

We pose this problem with Dirichlet boundary conditions 

and closure 
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We seek a numerical solution on a simple uniform mesh: 

with h = Ax = L/(N + 1). A second-order FD representation of equation 3.2, centered at node i, 

This is valid to O(h2) for all i = [l : N]. Grouping terms, we have 

The FD expressions at nodes 1 and N spill over onto the boundaries, where the values Uo and UN+l 
are known because of the BC's. These 2 relations are re-expressed with all known information on 
the right-hand side: 

u1 [ & I +  U2[Cll = rl - [AlIUo (3.8) 

UN-1 [AN] + UN[BN] = ri - [ C N ] ~ L  (3.9) 

The result is the tridiagonal system illustrated in Figure 3.1 

PDE Unknowns ~ o r c i n ~  ' BC's 

Figure 3.1: Tridiagonal structure of the 1-D Elliptic exam- 
ple. 

This system expresses the canonical algebraic form of the PDE approximation. The differential 
operator, modified to suit the BC form, is realized in FD form in the LHS matrix. The vector of 
unknowns are the function U approximated at the nodes. The RHS vector contains two contribu- 
tions, one from the inhomogeneous PDE forcing term, the other from the BC data. Each line of 
the matrix equation is a FD approximation; line i is centered at node i. 

There are other approximations to this ODE. So far we have worked with equation 3.2, which 
resulted in 
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Alternatively, we may proceed directly from equation 3.1, using the second-order approximation 

This leads to the same matrix form, with 

These two alternatives can be seen to be Taylor Series approximations of each other, and identical 
for linear variation in K(x). This form does not require explicit differentiation of K ;  that is achieved 
numerically, in the differencing. 

Either of these two systems is readily solved by the Thomas Algorithm, a realization of direct 
LU decomposition for tridiagonal systems. While general inversion requires O(N3) floating point 
operations and O(N2) storage, tridiagonal LU requires only O(N) operations; and the original ma- 
trix storage requirement 3N is sufficient to contain the LU factorization. So the Thomas approach 
is regularly used in many tridiagonal contexts. 

Neumann BC 

Next consider the substitution of the Neumann condition at x = L: 

We will look at four options. The first, 

is first-order correct. It is simply implemented in row N as: 

The single first-order error created dominates the convergence rate of this system; the reader is 
invited to confirm this by solving this or a comparable problem and comparing with its analytical 
solution. 

To reinstate O(h2) convergence, we can utilize a second-order backward difference approxima- 
tion: 
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Row N now becomes 

An alternate approach to O ( h 2 )  is to relocate the nodes to the right, such that nodes N and 
N + 1 are equidistant from the Neumann boundary. The FD mesh is stretched by one half-cell to 
the right to accomplish this and still keep a uniform mesh: 

Now the boundary algebra is identical to the first-order expression above: 

The system is formally the same as the first-order option; but the coefficients are adjusted to the 
new value of h ,  and the nodes at which the answers are obtained are shifted in location. As a result 
we have O ( h 2 )  everywhere. Node N + 1 in this case is referred to as a shadow node since it lies 
outside the formal problem domain. 

Finally, a further shift of the mesh such that node N lies at X = L leaves nodes N + 1 and 
N - 1 equidistant from the boundary. In this case, 

and the boundary condition is approximated to second order as 

Row N becomes 
U N - I [ A N  + C N ]  + U N [ B N ]  = rN - 2ha[CN] 

Mixed BC 

Suppose we have a Type 3 condition at z = L: 

dU 
- (L )  = a + bU(L)  
d z  

(3.28) 

Working with the final case from above, we have to second order: 

Row N becomes 
UN-1 [AN + C N ]  + U N [ B N  + 2 h b C ~ ]  = r~ - 2ha[CN] 

Analogous modifications may be achieved following the other approaches to the Neumann BC. 

The reader is encouraged to implement these various approximations and confirm their conver- 
gence rates relative to an analytic solution, before proceeding to higher dimensions. As a rule, the 
overall convergence rate is limited by the weakest equation in the system. 
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3.3 2-D Example: Poisson Equation on a Regular Grid 

The 2-D extension of the previous example is straightforward. We consider the Poisson Equation 
with boundary conditions as shown. We will discretize this on the grid shown in Figure 3.2. Note 

g=o 
X X X X  

Figure 3.2: The 2-D Elliptic example. x indicates a Shadow 
Node. 

especially the locations of the nodes (e) relative to the boundaries, and the placement of shadow 
nodes ( x ) across the Type I1 boundaries. 

Molecules 

Interior. The PDE is discretized on the interior as the sum of two 1-D centered FD approxima- 
tions as in Figure 3.3, with h = Ax and k = Ay. 

Figure 3.3: 2D Molecule as sum of 1-D molecules. 

For convenience we define the mesh ratio P = h2/k2 ,  and this leads to the Computational Molecule 
which is valid at all interior nodes (Figure 3.4.) 

Boundaries. Now we have to address all the boundaries. Along the left boundary, we have a 
homogeneous Neumann Condition. Its FD approximation is 
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and therefore the coefficient of the shadow node is "reflected" into the computational domain: 

Along the bottom boundary, the analogous procedure holds. Boundary molecules appear in Figure 
3.5 with these FD BC's incorporated. 

Along the right boundary we have an inhomogeneous Type I1 condition. The coefficient of the 
shadow node is reflected, and also there is an addition to the RHS: 

Along the top boundary, we have the Dirichlet condition at the known nodes 13-16, immediately 
above the active nodes. The Dirichlet data is migrated to the right-hand (known) side of the 
molecules for nodes 9 through 12; the Dirichlet nodes have been removed from the algebra, in favor 
of their data. 

Finally, there are the four Corners. Each has 2 modifications, one for each side. For example, node 
4 is the combination of the bottom and right boundary molecules. 

All of these boundary molecules are summarized in Figure 3.5. Throughout this discretization, 
we have followed two basic rules: 

Type I boundaries: the PDE approximation is not needed. The BC is perfect, so we have 
used it directly. The molecules are arranged to reach out to the boundary. 
Type 11, I11 boundaries: the PDE spills over the boundary, creating shadow nodes. Merging 
that with the discrete BC closes the system on these boundaries. 

We will come back to the Type I boundaries later, where the neglected PDE approximation will 
become quite useful. 

Figure 3.4: Interior Molecule 
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Figure 3.5: Boundary molecules for the 2-D example, plus 
the composite molecule at Corner node 4. 
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Matrix Assembly and Direct Solution 

Assembling this algebra, we have the matrix structure shown in Figure 3.6. 

Figure 3.6: Matrix structure of the 2-D example. 

The matrix is sparse, with at most 5 nonzero entries per row, regardless of the number of nodes. 
Further, with the natural node numbering system used, it is banded and pentadiagonal. The 
storage here has been made as compact as possible, with all data lying within the Bandwidth B. 
Here B = 9 and more generally, B is twice the number of nodes in the x-direction, plus 1. There are 
systematic alterations due to the boundary conditions. The central tridiagonal structure reflects 
the approximation to 3. The outer diagonals are needed for 9. The reader is encouraged to 
confirm this structure. 

Solution strategies for such a system fall into two distinct categories, Direct and Iterative. 
Direct algorithms achieve the exact algebraic solution in a finite number of operations. They can 
involve relatively complex coding, and are non-repetitive in their simplest forms. These strategies 
are capable of exploiting sparse and banded structures; and particularly those which operate on 
banded matrices are very sensitive (in terms of speed) to the node numbering scheme. For example, 
the popular LU decomposition methods have the property that all intermediate matrices may be 
stored within the bandwidth of the original matrix; hence there is a significant economy with LU 
decomposition for 2-D FD systems; and the node numbering should be adjusted to minimize the 
bandwidth. These algorithms also have a Zstep structure, wherein the matrix is first factored (LU 
decomposed) and then the system solved. Since the factorization step is the most time-consuming, 
it is efficient to do that only once when multiple right-hand sides are involved. The popular Thomas 
Algorithm is an example of banded LU decomposition for tridiagonal systems. 

To illustrate the LU idea, we have 

with [K] - [L][U] constituting the FD molecules and {x) the nodal unknowns. Introducing the 
intermediate vector {y) = [U]{x), we have 
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The solution for {y) is straightforward, since the first row of this equation has only 1 nonzero 
coefficient, the second row, two, etc. Knowing {y), the solution for {x) is similarly simple: 

The work involved in the LU factorization is O(B2. N),  with B the bandwidth; and in the solution 
for {y) and {x), O(B N). As mentioned above, the memory requirements for [K] and its factors 
are limited to B . N. 

Iterative Solution 

Iterative methods are opposite in many ways. They achieve the exact algebraic solution only 
after an infinite number of operations; are monotonously repetitive; and can involve simple coding. 
Several classic iterative methods are listed below which can be implemented directly from the FD 
molecules. Sparseness is important to economy; but bandedness is irrelevant, so there are few 
constraints on node numbering. Several algorithms are sensitive to node numbering insofar as it 
affects the order of computations and that can affect convergence. There are both "point" iterative 
methods, in which individual nodes are updated separately; and "block" or "line" methods, in 
which groups of nodes are updated together by solving a subset of the full matrix system. 

A standard trio of point iterative methods is illustrated for this example, with P = 1 (i.e. h = k). 
The interior molecule is the familiar 5-point formula illustrated in Figure 3.7. 

Figure 3.7: The 2-D Poisson molecule with P = 1. 

Using the natural (i, j) node numbering system, we have the interior equation 

Ui+l,j + Ui-l,j + Ui,j+l + Ui,j-1 - 4Uij = G (3.39) 

Jacobi: In this method we "solve7' for Uij in terms of its neighbors: 

with superscript indicating iteration level. Boundary molecules would be modified appropriately. 
This iteration would be started from an initial guess (e.g. the mean of the Type I BC's) and 
continued until a suitable stopping rule is satisfied, typically in terms of the size of the update. 
Notice that we are effectively averaging the neighbors from the previous iteration. Programming 
of this method is easy, and may proceed directly from the FD molecules with proper decision- 
making at boundaries. Two arrays are needed, U' and u'+'. The iteration is independent of node 
numbering since all the u'+' are computed before any are used in the iteration. 
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Gauss-Seidel: This is a perturbation of the Jacobi method. The idea is to always use the latest 
information, so we have a mixture of U1 and U1+l on the right-side of the equation: 

Like Jacobi, this method is simple to program directly from the FD molecules. There is no need, 
however, to distinguish between U1 and U1+l computationally; the algorithm can be realized by 
overwriting Uij as soon as it is computed. Because of this feature, the way in which the nodes are 
ordered makes a difference to the process convergence. Also, since U1+l is used as soon as it is 
available, we expect this process to converge (or diverge!) faster than Jacobi. 

SOR (Successive Over-Relaxation): The idea here is to accelerateldampen the Gauss-Seidel 
- 1+1 process. If we identify U, as the Gauss-Seidel estimate for u;', then SOR is a blend of this and 

the previous SOR iterate u!~: 

w = 1 reproduces Gauss-Seidel. w < 1 can be seen to introduce damping relative to GS; and w > 1 
accelerates the GS process. Generally, we expect 0 < w < 2 for stability. 

3.4 Operation Counts 

It is useful here to summarize the generalities we have for Elliptic matrix solution methods. We 
will assume a regular FD domain (unit cube) with Dirichlet boundaries. With 

N the number of unknowns 
B the matrix bandwidth 
M the number of iterations required to converge 
s the number of nonzero coefficients per equation 
n the number of unknowns in each physical dimension 

and a compact molecule, we have the relations summarized in Table 3.1. (The iterative count 
assumes each iteration requires only a handful of efficient sparse matrix multiplications.) 

Inversion LU Iterative 

Operations B2N sNM 

Table 3.1: Scaling for generic matrix solution strategies. In- 
version is the Gold Standard for well-conditioned Elliptic 
problems. 

Fundamentally it is the 1-D node count n = l l h  which tells us about resolution, so we need to 
render Table 3.1 in terms of n, as in Table 3.2. 
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Table 3.2: Scaling in terms of n = l l h .  

N 
B 
S 

Memory 
Operations 

One can see in Table 3.2 the progression from 1 to 3 physical dimensions. There has been a 
stable reliance on LU methods in 1- and 2-D for a long time, reflecting contemporary machinery. 
But for large problems these are already fading in terms of practical memory requirements, a trend 
evident in 2-D and overwhelming in 3-D. So the operation counts are critical. Generally, iterations 
can be expected to slow down as N (or n) increases, so a key property of iterative methods will be 
M, the number of iterations required for convergence. 

For example, we know (see Table 4.1) that for Jacobi and Gauss-Seidel, we have M w n2 in 
2-D; and that SOR can achieve M N n for optimal relaxation. So even in 2-D, the simple iterative 
methods are competitive. 

Many important applications today are fundamentally 3-D, and memory requirements alone 
are making iterative methods necessary. There is a big window of opportunity in the 3-0  iteration 
count, from n7 (the operation count for 3-D LU) to ~ n ~ .  Finding practical iterative methods which 
have M N n4 is a major frontier in 3-D. Recall that N = n3 for 3-D; so a practical 3-D target is 
achieving M ~ ~ 1 ~ .  

3-D 
n3 
n2 
7 

Inv LU Iter 
n6 n5 7n3 
n9 n7 7n3M 

1-D 
n 
3 
3 

Inv LU Iter 
n2 3n 3n 
n3 9n 3nM 

3.5 Advective-Diffusive Equation 

2-D 
n2 
n 
5 

Inv LU Iter 
n4 n3 5n2 
n6 n4 5n2M 

One of the most common PDE's is the Advective-Diffusive equation, which in steady-state is 
Elliptic. In typical occurrence, it results from a conservation statement governing the flux q of a 
physical quantity 

V . q = O  (3.44) 

plus a constitutive relationship between q and a scalar U: 

The result is the familiar Advective-Diffusive equation 

The 1-D form is 

We will assume D and V are constant and > 0. It is useful to introduce the dimensionless form in 
terms of the coordinate x = x / L  
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wherein the dimensionless Peclet number Pe = arises naturally as the ratio of advective to 
diffusive effects. We will examine the FD form with centered second-order differencing for the 
second derivative, and three different first derivative approximations: 

Here h is normalized: h = AX = AXIL. The three approximating molecules are illustrated in 
Figure 3.8. 

Figure 3.8: Centered, U stream, and Downstream difference 
approximations to the ldvective-~iffusive equation. 

Centered Differencing 

The centered molecule represents the difference equation 

This is the baseline case; it is O(h2) in the Taylor series sense. We have weak diagonal dominance 
when 

P,h < 2 (3.51) 

Peh = is commonly referred to as the cell Peclet number. It is the measure of resolution here. 
Diagonal dominance is lost when this resolution is coarse. 

The difference equations can be solved exactly as follows. We seek a solution of the form 

ui = pi (3.52) 

Substituting into the difference equation, we have 

Ui = pUiWl 2 ui+l = P ui-1 

and thus the quadratic equation 



3.5. ADVECTIVE-DIFFUSIVE EQUATION 

Solving this for p gives us 

The solution is thus a linear combination of these two modes 

with A and B free to fit the two boundary conditions. 

The exact solution to the continuous PDE may be similarly obtained, as 

U = A + B exp (Pex) (3.58) 

and it is apparent that a measure of accuracy is the correspondence between exp (P,x) and pa. As 
h + 0 , p converges with O ( P , ~ ) ~ ,  as can be verified from a Taylor series expansion: 

~2 +- exp (Peh) as Peh +- 0 (3.59) 

For large h, however, p becomes negative and correspondence with the analytic solution is lost. The 
numerical solution in that case exhibits spurious node-to-node oscillations. Note that the onset of 
this oscillatory behaviour accompanies the loss of diagonal dominance. 

v n x  
p2<O fo r  Peh=- D 

> 2 

As an example, consider the BC's x = 0, U = 1, x = 1, U = 0. The analytic solution is sketched 
in Figure 3.9, with increasing steepness near the "downstream" boundary with increasing Peclet 
number. The well-resolved case, < 2, exhibits the same qualitative behaviour with increasing 
fidelity as h +- 0. The poor resolution case is sketched in Figure 3.10, with the oscillatory mode 
having no analytic counterpart. The spurious oscillations in this case are a symptom of poor 
resolution. 

Upstream Weighting 

As an alternative, consider the first-order backward (in the sense of advection) differencing of the 
term 2 as shown in Figure 3.8. 
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Figure 3.9: Analytic solution to the Advective-Diffusive 
equation, with Pe as a parameter. 

Figure 3.10: Numerical solution to the Advective-Diffusive 
equation, with poor resolution Peh. The spurious oscillatory 
mode is the manifestation of p < 0. 

Notice that this approximation, although only first-order correct, retains diagonal dominance for 
any positive value of Pee Using the same procedure as above, the difference equations are 

Again, there are two solutions: pl (a constant); and pz which is never  negative. Thus we arrive 
at the conclusion that the upstream differencing leads to monotone solutions for this simple case, 
with no spurious oscillations. 

Accuracy depends, as above, on the correspondence between p2 and exp (Peh). Taylor series 
confirm that p2 is an O(h2) approximation (per step), i.e. less accurate than its centered counter- 
part, but monotone over the full range of resolution. 
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Downstream Weighting 

Finally, consider the forward differencing of $, 

as shown in Figure 3.8. The analogous analysis leads us quickly to 

This again is an O(h2) approximation to exp(Peh) as in the upstream case. But now we have 
re-acquired oscillatory solutions when Peh > 1. 

Summarizing, we have the following conditions for monotone solutions: 

Upstream : P,h < oo 

Centered : Peh < 2 

Downstream : P,h < 1 

The Taylor series per-step truncation errors in p are O(h2) for the uncentered approximations, and 
O(h3) for centered. The accumulation of truncation error over many steps is one order lower, in 
each case. We have recovered the Taylor series conclusions about these molecules: second-order for 
centered, first-order otherwise. And we expect to see those rates of convergence for small h. The 
centered approximations are best at high resolution, but risk qualitative infidelity at low resolution. 

The strong dependence on the cell Peclet number Peh = 9, which is effectively the dimen- 
sionless mesh size for this operator, is generally retained in approximations to more complicated 
(multidimensional, transient, nonlinear) forms of this equation. 



Chapter 4 

Iterative Methods for Elliptic 
Equations 

Direct methods for linear algebra become cumbersome for large systems, even when they are sparse 
or banded. This is especially true in 3-D applications where the bandwidth is necessarily broad 
and sparse, and matrix factorization can dominate computer resources. The alternative iterative 
approach avoids matrix factorization, and emphasizes simple matrix multiplies and adds. These can 
be very fast for sparse matrices, and in addition are intuitively related directly to the FD molecules. 
Iterative methods require an infinite number of repetitions, so a stopping rule is necessary; direct 
methods terminate at a finite number of operations. 

There is a vast literature concerning iterative methods for solving large algebraic systems. The 
material given here is introductory, preparatory to fuller treatments; see for example Ames[2], 
Golub and van Loan[35], or Weiss [110]. 

4.1 Bare Essentials of Iterative Methods 

Let us express the collection of FD equations as 

[ A l W  = {v) 

We wish to solve this by an iterative method 

{u)' = [G]{u)'-' + {r) (4.2) 

where [GI is the iteration matrix and the superscript 1 indicates sequential iteration number. This 
is a stationary iteration, i.e. neither [GI nor {r) depend on the iteration count 1. Since we require 
that {u) = [G]{u) + {r), and substituting {u) = [A-'1 {v), we obtain the requirement that 

{r) = [I - GI [A-~]{v) (4.3) 

This constrains our iterative method: given [GI, {r) must be consistent. 

Errors 

We define the error vector at the end of the iteration 1 to be 

{E)' = {u)' - {u) = {u)' - [A-l]{v) 
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Since 
{u}' = [G]{U)'-I + {r}  

and 

{ u )  = [Gl{u) + { r )  

we obtain by subtraction the recursion relation for the errors: 

Equivalently, 
{E} '  = [G]" ' {E)~  

(Here we have a notation conflict; by [GIA' we mean "[GI taken to the power I , ' . )  This relationship 
is utilized in proofs of convergence, etc. But in computational practice it cannot be used since by 
hypothesis the array { u )  (the exact algebraic solution of the FD equations) is unknown. Note that 
{E)' as defined here is not the difference between the exact analytic (calculus) solution to a PDE 
and any finite solution. It is the distance between algebraic truth and its iterative approximation. 

Increments 

The increment to the solution vector which occurs during the lth iteration is 

Writing equation (4.2) for {u)' and also for {u)'-' and subtracting yields the recursion relation for 
the increments: 

(6)' = [G]{6}'-' (4.10) 

While the errors { E )  cannot be measured, the increments (6)  can and thus (6)  provides useful 
computational information on the progress of an iterative method. 

Residuals 

Another measurable vector is the residual of the algebraic system after the lth iteration, which must 
vanish as I + oo: 

{R)' = { v )  - [A]{u)' (4.11) 

or, taking advantage of equation (4.4), 

{R)' = [A] ([A-']{v) - {u) ' )  = - [A]{E)' (4.12) 

Use of the recursions for {e)' (equations 4.7 and 4.8) yields 

and 
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Convergence 

The iteration (4.2) converges if and only if the spectral radius p of the iteration matrix [G'l is less 
than unity. By definition, p is the largest (in absolute value) eigenvalue of [GI. Noting that the 
eigenvalues of [A][G][A-'1 are the same as those of [GI, we have in the limit of large 1: 

{ € } I  N p{€}'-l 

(6)' 21 P{6}'-1 

{R}' p{~} ' - '  

The second and third of these are useful in estimating p. For example, 

where the 1\61 1 notation indicates the Euclidean norm (length) of a vector of length M: 

Other norms of the form 

are also useful, the most common being N=l and the limiting case N=oo: 

4.2 Point Iterative Methods 

Consider the second-order, quasilinear elliptic equation 

with a, c, d, e, f and g known functions of x, y, U and the first derivatives of U .  Note the coefficient 
of the mixed derivative & has been set to zero. We assume the following properties: 

a > 0 (this is an arbitrary choice) 
c > 0 (necessary for an elliptic operator if a > 0) 
f 5 0 (stability of the underlying physical process) 

We will use the following difference approximation for the second derivatives: 
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Figure 4.1: Molecule for the elliptic operator (4.22) 

and centered differences for the first derivative terms. The resulting molecule is O(h2) on a uniform 
mesh and is illustrated in Figure 4.1. 

In matrix form, we have 

[AI{U) = { V )  

where V = h2g plus contributions from the inhomogeneous BC's. The following properties of [A] 
are defined: 

a Diagonal Dominance: Aii 2 Cjfi lAijl, with strict inequality for some i. For small h, this 
will be guaranteed in the weak sense; and a single Dirichlet boundary condition will provide 
the strict inequality necessary. We will lose diagonal dominance when $ exceeds a, or when 
$ exceeds c. This is the Peclet number problem identified earlier in the 1-D analysis. 

a Symmetry: (Aij = Aji) this property is guaranteed for the self-adjoint case d = e = 0, even 
when we have variable coefficients a,  c. This is the consequence of the specific treatment of 
the second derivatives used here. 

a Irreducibility: this property amounts to the requirement that all 6 impact all Ui. This is 
guaranteed for an elliptic problem on a simply connected domain. 

We partition [A] into its entries below, on, and above the main diagonal: 

[A] = [C] (below) + [Dl (Diagonal) + [El (above) (4.25) 

Recalling its definition (equation 4.2), we can construct the iteration matrix [GI for the standard 
trio of point iterative methods: 
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Jacobi:' 

[c]{u)' + [D]{u)'+' + [E]{u}' = { V )  

{u)"' = -[D-'][c + E]{u)' + [ D - ~ ] { v )  

[GJ]  = -[D-'] [C + E ]  

Gauss-Seidel: 

[C + D]{u)'+~ = - [E]{u)' + { V )  

[GG] = -[C + D ] - ~ [ E ]  

SOR: 

[c] {u)'" + [D] { a )  = - [El {U)' + { V )  (4.31) 

{U)'+l = w { a )  + (1  - w){u)' (4.32) 

[WC + D ] { U } ~ + ~  = [ ( I  - W ) D  - WE]{U)' + W { V )  (4.33) 

[G,] = [wC + D]-'[(I - w)D - W E ]  (4.34) 

We know that these iterations will converge if and only if p(G) < 1. (p(G) is the spectral radius 
of G). The following are known: 

[A] Diagonally Dominant: Jacobi and G-S will converge. 
[A] Symmetric, Positive Definite: Jacobi, G-S, and SOR will converge, the latter requiring 
o < w < 2 .  
Generally if Jacobi converges, G-S will converge faster and SOR will be optimal for some 
value of w. 

As an example, there is a simple demonstration of convergence for Jacobi and Gauss-Seidel 
when [A] is diagonally dominant. First, define Oi as a measure of diagonal dominance for row i of 

[A1 : . . 

and recall that the error satisfies the homogeneous form of the iteration: 

{€}'+l = [GI{€)' 

Writing the Jacobi iteration, we have: 

' [ G J ]  is the Jacobi iteration matrix, etc. 



CHAPTER 4. ELLIPTIC ITERATIONS 

lel+ll I oillclll 

where I IcI I is the infinity norm of (€1, 

In the worst case, 
llclll+l I omax1 161 1 1 

and thus Omax < 1 is sufficient for convergence. For the elliptic equation used here, with no Dirichlet 
BC's, Omax = 1 and thus Jacobi will not diverge. 

A similar demonstration for Gauss-Seidel can be made. Here we will assume Oi < 1 for all i. 

and so on. Thus, diagonal dominance is sufficient for Gauss-Seidel convergence. 

There is a general set of findings for if matrix [A] (equation 4.24) is Symmetric, Consistently 
Ordered, and has "Property A" [102]. First, 

and thus G-S will converge or diverge faster than Jacobi. Second, there is an optimal value of w 
which minimizes pw for SOR: 

Thus it is possible to operate an SOR iteration with w = 1 initially, in order to estimate p ~ s ,  and 
to switch to wept once that estimate is reliable. 

Finally, we summarize some results for V ~ U  = 0 on a square, length .rr, with Dirichlet BC's: 

The approximations are the limiting ones for small h. Ideally, p remains as far as possible from 
1, such that each iteration is effective. In each case, however, p + 1 as h + 0. This is a serious 
tendency, indicating that these iterations slow down as resolution increases. There is a double 
effect: each iteration requires more computation, and we need more iterations overall. It is clear 
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that the O(h) convergence of SOR with optimal w is an asset here; the retuning of w as h decreases 
counteracts some of the loss of iterative effectiveness experienced by Jacobi and G-S. 

In the limit of large I, we have 

I I ~ I I 1 + M  = P ~ I I ~ I I ~  
Thus for error reduction by the factor r;, we need pm = K i.e. the required number of iterations is 

Combining the above, again for small h, we have 

and therefore for fixed r;, we have the relative iteration counts as follows: 

The relative speedup in SOR as h becomes small is apparent. (Remember that these are 2-D re- 
sults.) The impact of M on overall iteration efficiency in multi-dimensional applications is discussed 
herein at Table 3.2 and its attendant text. 

Ames [2] provides more complete detail and an excellent link to the older literature. Westlake 
[I121 (Appendix B therein) contains a useful collection of theorems on Eigenvalue Bounds. 

4.3 Block Iterative Methods 

In the previous methods, each new value u::' is updated alone - hence their characterization as 
point iterative methods. A generalization of these methods is possible, wherein a block or group 
of unknowns is updated simultaneously. These go by various designations: block, line, group, or 
implicit iterative methods. Each iteration necessarily involves solving a matrix equation for the 
block of simultaneous updates. Of course this matrix needs to be much simpler than the original 
matrix being solved; otherwise the iteration is a bad idea. A good reference is Ames [2]. 

Figure 4.2 illustrates the Jacobi and Gauss-Seidel block methods in molecular form. Both 
molecules require a stationary tridiagonal matrix solution for each iteration, representing the im- 
plicit x-derivative portion of the molecule. As above, the iteration counts scale as -ln(r;) /-ln(p) , 
where /c, is the error reduction factor and p is the spectral radius of the iteration. For the Laplace 
Equation on a square, the Line and Point versions are compared in Table 4.1. For Jacobi and 
G-S, the payoff for the tridiagonal matrix solution is a decrease by a factor of two in the num- 
ber of iterations required. For SOR, the reduction is by the factor a. These modest iteration 
count improvements need to be balanced against the compute time per iteration added by the line 
methods. 
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Jacobi G-S, SOR 

Figure 4.2: Jacobi and Gauss-Seidel/SOR (right) Line Iter- 
ative molecules. Black circles indicate the current unknown 
line; white, la ged in the iteration; hatched, current itera- 
tion but alrea d y computed in the previous line. 

Point Line 
Jacobi 2/h2 l/h2 

G-S l/h2 1/2h2 
SOR(optima1) 1/2h 114 - 2h 

Table 4.1: -l/ln(p) for point and line iterations, 2-D 
Laplace on a square. The number of iterations M required 
for a given error reduction is proportional to this. 

Alternating Direction Methods 

Each of the above methods is implicit in the x-directed part of the Laplacian, but explicit in the 
y part. This generates an obvious prejudice in the molecule. A straightforward "fix" involves 
alternating the direction of the implicitness: first x-implicit, then y-implicit, then x, and so forth. 
This preserves the tridiagonal structure in each iteration. For example, consider the elliptic equation 

and its FD form: 
aiuij + $Uij + fh2Uij = gh2 

Step 1 is implicit in x: 

Note that an iteration parameter w has been inserted into the calculation, to regulate convergence 
through the term w(u$' - Uh). The term f U has been split between the two iteration levels. 

Step 2 is implicit in y: 

(3; + fh2/2)UC2 - W U $ ~  = -(a: + fh2/2)U$' - wUZ1 + gh2 (4.61) 

It is emphasized that this is a two-step procedure; the intermediate result (e.g. the odd-numbered 
iterations) is unreliable, containing unwanted information which is removed as the second step is 
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completed. The overall algorithm can be realized with only stationary, tridiagonal matrix solution 
technology. 

The molecule for Step 1 is shown in Figure 4.3. The Step 2  molecule simply interchanges the 
role of x- and y- differences. 

Figure 4.3: Iterative AD1 molecule for Step 1, the "x-sweep" . 
The y-derivative operates on known information from the 
previous iteration. 

The iteration matrix for this process is obtained as follows. First, introduce the matrix form of 
the FD molecule: 

([XI + [Yl+ [ F l ) { U )  = { R )  (4.62) 

where [XI { U )  is the matrix form of the x-derivative, etc. The right-side vector {R) contains gh2 
plus contributions from inhomogeneous boundary conditions. In these terms, we have: 

Step 1: 
1 1 

[ X  + -F  - W I ] { U ) ~ + ~  = [-Y - -F - w ~ { u ) '  + { R )  
2  2  

(4.63) 

Step 2: 
1 

[Y + AF - WI]{U) '+~  = [-X - -F - WI]{U)"~  + { R )  
2  2  

Eliminating the intermediate result, we have the iteration matrix 

Analysis of the spectrum of [GADI] and/or Fourier Analysis of the difference equations provides 
the following results: 

a convergence for w > 0; divergence for w < 0 
a neutral ( p  = 1) for w = 0; the iteration stalls or accumulates roundoff error monotonically 
a convergence is slowest for the smoothest solution modes; faster for highly variable modes 
a p  +- 1 as h +- 0, as in all the other iterative methods studied 
a f < 0 speeds convergence 
a There is an optimal w for the Laplace Equation on a square, Type 1  BC7s: 
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where N is the maximum number of nodes in either the x- or y- direction. (Smith [102]) 
Thus for large N, 

as h + 0: AD1 convergence N SOR convergence (both with optimal w). 

One typically disregards the intermediate (1+1) solution as unreliable. It is possible to define a 
sequence of wz values, which can dramatically improve AD1 convergence, such that - ln(p) N hllM 
for a sequence of length M. A more detailed review of these ideas is given in [2]. 

4.4 Helmholtz Equation 

As an example, consider the Wave Equation 

We assume positive, real f on physical grounds. This is a Hyperbolic equation; its Fourier transform 
leads to the very useful (Elliptic) Helmholtz equation 

where w is the Fourier frequency, assumed real. Analytic solutions exist of the form ejax, with 
j = f l  and the dispersion relation 

2 2 
0 = W  - f  (4.70) 

For w2 - f > 0 there will be spatially-periodic solutions with constant amplitude. Otherwise, for 
large f ,  solutions will be spatially "trapped" i. e. pure exponentials decaying in either the positive 
or negative x-direction. 

A conventional FD rendering is 

with W = wh, F = f h2, and h the mesh spacing. We instantly have a problem with diagonal 
dominance. There are 2 possibilities for achieving diagonal dominance: 

case A: 2 - w2 + F > 2, or W2 - F < 0. This corresponds to the trapped, spatially decaying 
analytic solutions, exactly reproducing the analytic threshold independent of h. 
case B: -2 + W2 - F > 2, or w2 - F > 4. This corresponds to very poorly resolved periodic 
solutions with large h; their diagonal dominance is produced by poor resolution. 

Well-resolved periodic solutions will have 0 < w2 - F < 4. This represents a broad class of 
important problems; they will not be diagonally dominant, and we can expect problems with 
simple iterative methods. 

This loss of diagonal dominance will not translate necessarily into a poor FD solution, obtained 
e.g. by noniterative methods. If we assume a solution to equation 4.71 in the form Ui = Xi, we 
obtain the characteristic quadratic 
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for which the solution is 

or equivalently, 

X = [ 2  - w2 2 + F] j/m 
(remember j is the imaginary unit). The first form (4.73) is natural for the trapped case w2 - F < 0. 
In that case X is purely real, representing geometric growth and/or decay with x, qualitatively the 
same as the analytic solution. (The positive option will exceed unity; the negative option will fall 
between 0 and 1.) The fidelity of these will depend on the resolution h. 

The second form (4.74) is useful for the periodic case w2 - F > 0. In this case X is complex 
and 

1xI2 = 1 (4.75) 

Solutions will be periodic in x, with uniform amplitude, qualitatively like their analytic counter- 
parts. Again, resolution will determine quantitative skill. But the loss of diagonal dominance 
for these quality elliptic solutions is important to note here; and the likely failure of simple point 
iterative methods which work for other Elliptic problems. 

4.5 Gradient Descent Methods 

Returning to the basic assembly of FD relations, we have for the linear elliptic equation 

with [A] and {V) known. The residual of this equation was defined before, 

The goal of an iterative method is the practical vanishing of {R). A sequence of approximations 
{u)' is implied, and a sequence of {~)"lso. W e  restrict ourselves here to symmetric, positive 
definite [A]. 

Related is the metric 
a = { u ) ~  [A] {u) - { u ) ~  {v) (4.78) 

(The superscript T indicates transposition.) This defines a surface in the N-dimensional space of 
possible {U). It is unbounded, with a unique minimum. Its gradient is 

{VQ) = - {R) (4.79) 

The negative gradient defines the local direction of steepest descent. The point where {Om) = 0 is 
the extremum of a. That is the point where [A] {U) = {V); a successful iteration finds that point. 

A gradient descent method thus seeks to go downhill on the surface, toward the extremum, 
by updating its position in U-space. Locally, the way down is given by the negative gradient - 
conveniently, the residual here. The linear form of this descent is 
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Clearly this iteration will stop if and when the gradient (residual) is zero i.e. when the governing 
equations are satisfied. The answer { U }  is then in hand.2 

In addition to a stopping rule, there are two questions in each iteration: 
what is the direction of descent? 
how far to go in that direction? 

The first question essentially asks about the unit vector parallel to [HI {R)'; the second question 
asks for its scalar size. The steepest descent method always selects the direction of the negative 
gradient: 

1+1 - u 1 
{U> - { 1 f 4 ~ ) "  (4.81) 

Essentially, [HI = a [ I ]  and there is only one free scalar parameter, the step size a. 

For example, the Jacobi iteration is conveniently rearranged using the matrix partitioning of 
equation 4.25, [A] = [C + D + El: 

[Dl {u}"+' = - [C + El { u } ~  + { V }  (4.82) 
= [Dl {u}' - [C + D + El {u)" {V}  (4.83) 

= [Dl {u}' + R1 (4.84) 

So we have for Jacobi, 
[HI = [D]-' 

If the diagonals Di are all the same (true for Laplace on a square with Dirichlet BC's), then we 
have in Jacobi a steepest descent method with fixed step size l/Di. Pre-scaling all the FD equations 
by their own diagonals (always a good idea) adjusts the Jacobi method to be exactly this; [Dl 
becomes [I] in the scaled equations. 

With the direction of steepest descent selected, one can seek the best step size. This constitutes 
a 1-D optimization - minimize @ along a given line - and it admits a closed form solution for the 
optimal step size: 

Use of this constitutes the Method of Steepest Descent with Optimal Step Size. Since the direction 
is the same, this optimum cannot be inferior to the diagonally-scaled Jacobi. 

Putting the Gauss-Seidel method in this context gives us 

The known speedup over Jacobi is coincident here with not using steepest descent; there is natural 
geometric sense in this when contours are awkward. 

So we imagine a more general descent process with a sequence of directions {d}' which may not 
be parallel to the negative gradient. An iteration based on these ideas is: 

'Elementary substitution reveals that [HI here is related to the iteration matrix [GI defined above (equation 4.2): 
[GI = [I - HA] 
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Once the direction of descent {d)'  is selected somehow, the optimal step size can be found analo- 
gously: 

The Conjugate Gradient Method is a classic rendering of these ideas. It selects the directions 
to be linearly independent of their predecessors, and specifically to be A-conjugate to them: 

{d)lT [A] { d l r n  = 0 (4.92) 

The directions turn out to be cognizant of the current gradient, as expected; but they are neither 
parallel to it nor orthogonal to it. Such a direction sequence, coupled with the optimal step size, 
has some remarkable properties, including the surprise that it converges to the exact solution in N 
steps - it is a direct method! The direction sequence is easily and efficiently computed. And, early 
progress toward the solution is rapid. But, because round-off error is amplified with this method, 
it is looked upon as an iterative method which should be terminated early, certainly before N 
iterations are reached. 

The early form of this method appeared in 1952 [42]. It and its variants ("Conjugate Direction 
Methods") now constitute an important class of iterative methods which deserve a fuller exposition. 
The reader is referred to Golub and van Loan [35] and Weiss [110]. 
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Parabolic Equations 

5.1 Introduction 

Next we turn to time-dynamic problems. To start with, we will consider the class of Parabolic 
PDE's. The canonical form is 

dU 
a t  
- = L(U) 

with L(U) an Elliptic operator. The standard example is the diffusion equation 

au 
a t  
- = 0 - (DVU) 

with t corresponding physically to time and V operating in 1- to 3-dimensional physical space. 
Intuitively, these are problems where the time domain is open and directed forward. IC's determine 
the future, not the past; BC's bound the temporal evolution within a closed spatial domain; their 
influence propagates forward in time but not backward. The graphical description of the necessary 
and sufficient conditions adopted in Section 1.4 is redrawn here for the 2-D (x, t)  Parabolic PDE. 

Figure 5.1: Necessary and sufficient conditions for the 
Parabolic equation. 

Essentially, we need one IC as a function of x, U(x) at t = 0; and two BC's throughout all time. 
The form of the BC's are unchanged from the Elliptic discussion - either Type 1, Type 2, or Type 
3 is needed everywhere on a closed (spatial) boundary surrounding the elliptic dimensions. The 
distinction here is that this boundary information is needed as a function of time, for all t 1 0. 
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Everything we have learned about discretizing elliptic operators will remain the same here. 
Accordingly, it will be useful to think about discretization in two stages. Starting from the PDE, we 
will first discretize the elliptic part, leaving time continuous. Formally, this converts the continuous 
or "Distributed" System of the PDE into a Lumped System of ODE'S: 

with Li(Ui) the FD operator or "molecule" for the elliptic part of the PDE. Implied in this lumping 
is the discretization of U(x, t)  into the finite, N-dimensional vector of nodal functions Ui(t), the 
application of BC's, and the enforcement of the PDE approximation only at the discrete centers 
of the molecules i. This is no surprise, and generally the identical maneuver used in discretizing 
elliptic equations per se. The Lumped System adds dynamics, in this case parabolic dynamics. 
The Lumped System description is useful for the discussion of BC's, conservation properties, and 
some general observations about dynamics which are independent of the temporal discretization. 
Notice that we are doing something classical: practicing space-time separation of variables, and of 
the PDE operator itself. 

Temporal discretization can be approached in two different ways: 

using standard FD formulae for $ in 5.3, for example, 

with defined at some intermediate time t + 8At; and At the timestep from 1 to 1 + 1; 

integrating 5.3 over an interval At. Example: 

with the overline indicating a temporal average. 

Both of these approaches lead to the same result: a system of difference equations in a set of 
unknowns u:, with superscript I indicating a point in time. The function U gets replaced with a 
discrete set of values on a space-time lattice; and we have a comparable set of space-time molecules 
defining the difference equations. We refer to this system as the Discrete System; it is the last 
algebraic maneuver, and the form which will be implemented computationally. 

On this lattice, we imagine the solution propagating forward from IC's, constrained by BC's at 
the edge of the lattice. We will look at two different methods of propagation: "point" or explicit- 
in-time methods, which propagate one value at a time, independently of its soon-to-be-discovered 
neighbors; and "line" ("block") or implicit-in-time methods, which propagate a complete new set 
of values at the same time. This distinction is analogous to that made in the discussion of iterative 
methods for elliptic operators. In fact, there is a mathematical equivalence between certain iterative 
methods for elliptic equations and certain discrete systems representing Parabolic (and Hyperbolic) 
equations; and the equivalence can be exploited in the design of algorithms. It is worth noting 
that for Parabolic equations, the Continuous system propagates as a line; that is, BC's are felt 
instantaneously and simultaneously throughout the domain, for all time at and subsequent to the 
time of their imposition. 
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5.2 Examples: Discrete Systems 

Each of the Discrete Systems examined here share the same lineage: 

au - a2 U 
= D- 

a t  
(Distributed System) 

ax2 

(Lumped System) 

with 6: the second centered difference operator and h the mesh spacing. We will examine different 
Discrete versions, reflecting different time-domain details. 

Euler 

The Discrete System for the Euler method is 

Here we encounter the first basic dimensionless number, the Richardson number r: 

r is the dimensionless time step. h 2 / ~  sets the time scale for internal adjustments within the 
discrete solution space. The discrete system is restated as 

and the FD "molecule" for this discrete system is shown in Figure 5.2. The lumped system is 
centered-in-space. The discrete system is 

an explicit-in-time or Euler integration of the lumped system; or equivalently, 
a forward-difference-in-time approximation to the lumped system 

As such its order of approximation is O(h2 + At). It represents pointwise propagation from IC7s, 
as illustrated in Figure 5.3. Stemming from this, we can imagine that the numerical space-time 
lattice of values U: is a "house of cards", and anticipate that there is a maximum value of timestep r 
beyond which the calculation will fall apart. Essentially, expect conditional stability for this scheme. 
In fact, essentially all pointwise propagation schemes have this conditional stability requirement. 
The solution must not get too far ahead of itself before the elliptic part of the molecule is exercised. 

This discrete system has the peculiarity of a zone in which the solution is uniquely dependent 
on IC's, i.e. totally aloof from the BC's. This is illustrated in Figure 5.3. In other words, BC 
information propagates diagonally on the space-time lattice, with delay accumulating with distance 
from the boundary. This property is not shared with either the distributed system or the lumped 
system; it is solely an artifact of the time discretization. (Notice that such a zone is appropriate, 
at least qualitatively, for a Hyperbolic system wherein wavelike behaviour and finite delay time is 
intrinsic.) 
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Figure 5.2: Euler discrete system for the diffusion equation. 
This is conditionally stable. 

Numerical Solution 
Independent of BC's 

IC 

Figure 5.3: Zone of unique IC influence for Euler and 
Leapfrog systems. 

Leapfrog 

An alternative explicit system is obtained by invoking three adjacent time levels in each molecule. 
The discrete system is 

qfl- = 2 T p ~ , 1  (5.11) 

(Figure 5.4.) In time, we have either the midpoint integration rule, or centered differencing, over 
the interval of length 2At. Both lead to second-order truncation errors in t; hence this system is 
second-order correct overall, O(h2 + At2). Notice that this system is not self-starting - we need IC's 
at two levels in time in order to generate anything new. This suggests a basic flaw in conception 
of this discrete system, whereby we are effectively asking for dU/dt at the start. If that can be 
generated, then we are in business; but the opportunity to generate something unrelated to the 
PDE, out of roundoff or other imprecision, is clearly inserted at the outset. 

This method is unconditionally unstable, in part due to this fact. We will have more to say 
about this elsewhere, but for now we note the fact. Because this molecule is a close facsimile of 
that which is so successful for elliptic problems, we take home the lesson that algorithms which 
work well for one type of problem are not easily transported to other types of PDE's. Further, 
the fact that this system is O(At2) does not confer any grace; it cannot be used for any practical 
calculation despite its apparent accuracy. Here is a perfect example of intuition gone astray. 

Like the Euler system, the Leapfrog system represents pointwise propagation from IC's, Figure 
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Figure 5.4: Leapfro molecule for the diffusion equation. k This is unconditiona ly unstable. 

5.3. However in the Leapfrog case, all values of r are unstable so this is largely an academic 
observation. 

Backward Euler 

A third discrete system is the reverse of the Euler system above. This is gotten by either backward 
Euler integration in time, or backward differencing of the time derivative. The discrete system is 

and its molecule is given in Figure 5.5. Like the forward or explicit Euler system above, this system 
is O(h2 + a t )  in truncation error. But the reversed treatment of the time derivative reverses the 
instability, such that going forward in time, it is unconditionally stable! No value of r, no matter 
how bad the accuracy, is large enough to cause instability. Intuitively, the elliptic operator is always 
applied at the latest time level, as it is being computed. There is no hiding place for an instability 
to set in even when r is huge; in that case we are effectively solving for the steady-state, which we 
know is well-conditioned from elliptic studies of the Laplace equation. 

2-Level Implicit 

A blend of the two Euler systems is obvious: 

This reproduces both previous schemes for 8 = 0 and 1, respectively. The special value 8 = 112 
corresponds to central differencing in t, or the trapezoidal rule integration in t .  Either way, we 
obtain enhanced temporal accuracy, with truncation error 0 ( h 2  + a t 2 ) .  This is universally referred 
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Figure 5.5: Backward Euler molecule. This is uncondition- 
ally stable. 

to as the Crank-Nicolson system. It has the following stability properties: 

0 2 0.5 Unconditional Stability 

0 < 0.5 Conditional Stability 

and the stability condition is dependent on r and 0: 

This condition will be derived below. This molecule appears in Figure 5.6; the system generalizes 
the previous two Euler systems. 

Figure 5.6: 2-Level Implicit molecule. 0 = 0.5 is the Crank- 
Nicolson system. 
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5.3 Boundary Conditions 

Boundary conditions are exerted on these systems as in the elliptic problems studied above. For 
example, suppose we have a Type I1 BC at the leftmost boundary, i = 0: 

In the Lumped system, irrespective of temporal discretization, we have the FD approximation at 
node 0: 

Now the Lumped system at node 0 will invoke the fictitious value of U-1, which is beyond the 
boundary: 

and the Lumped BC may be invoked to eliminate this "shadow" variable. Combining these and 
eliminating U-l we get: 

or equivalently, 

(We will have more use for the second form later.) From here we can proceed to any of the discrete 
systems. For example, the Euler molecule at node 0 would become as illustrated in Figure 5.7, 
wherein the scaled flux Qo has been introduced: 

Notice that the boundary flux go is evaluated at level I here (it is lagged), consistent with the sense 
of forward Euler integration of the Lumped System in time. 

Figure 5.7: Euler system incorporating Type I1 BC. 

It is easy to extend this example to the Type I11 BC: 
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wherein Ul is an equilibrium value (given as data), a is an inverse time scale of adjustment, and 
q0 " aU$. Either way, this BC has two independent pieces of data: (a, U$) or (a,  qo). The 
Lumped BC is 

and combining this as before with the Lumped PDE at the boundary, we get 

or equivalently, 
hdUo - D ( ~ l - ~ o ) + q o - a U o  -- - 
2 dt h 

Proceeding as above, the molecule for the Euler discrete system with Type I11 BC would be as given 
in Figure 5.8. Here we have defined the dimensionless rate constant A, with scaling analogous to 
Qo above: 

The Type I11 BC has introduced the intrinsic time constant a / h  into the system. We have set 
the Type I11 term involving AU explicitly, at time level I ,  consistent with the Euler idea. This 
may be expected to introduce internal dynamics on that time scale, and thus we may anticipate 
instabilities when A is large. There are obvious alternatives; we offer this as an example oniy. 

Figure 5.8: Euler system incorporating Type I11 BC. 

Other combinations of BC's and Discrete Systems could be handled similarly. 

5.4 Stability, Consistency, Convergence 

In the PDE literature there are three classic terms pertaining to the quality of a numerical solution. 
These are: 

a Convergence refers to the agreement between the PDE solution (unknown) U(x,t) and the 
numerical array u:, which is only available numerically. Essentially, the convergence question 
is, "does U: + U(xi, tz)  as h, At + 0 independently?" 
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Consistency addresses the correspondence between the PDE operator and the discrete operator 
or molecule. "Does Li +- L as h, At +- 0 independently?" Essentially, does the FD molecule 
+- PDE? This is a weaker question than convergence; it is easier to demonstrate. The Taylor 
series truncation errors examined earlier, expressed for the complete FD molecule, are one 
gateway to this question. 

Stability concerns the boundedness of the numerical solution u!, assuming bounded BC's, 
IC's, and forcing. For linear problems, the homogeneous response to IC's may be studied, as 
t +- large. 

A basic rule of thumb which emerges is: stability + consistency + convergence. Since convergence 
is the hard one, effort in the other two categories is more abundant. Below we illustrate these ideas 
in the context of the diffusion equation in one space variable. The interested reader is invited to 
look at more complete texts e.g. Ames [2]. 

Convergence - Lumped System 

We are interested in the solutions to the PDE and its lumped representation: 

and we ask about the difference E between the solutions, 

given that equations 5.28 and 5.29 govern. The exact solution p satisfies the Lumped system with 
the truncation error appended: 

and therefore the error satisfies 

subject to the IC Ci = 0. The complete solution for e is therefore the convolution of the forcing by 
the truncation error, which exists uniquely but is unknown: 

Here g(t - T) is the impulse response of (6 - $8;). If the discrete system is stable, then lgl < G, 
ie, g is bounded and thus 

d4pi 
~~i(t)l< / -(T)I~T (5.34) .=o ' 8x4 

and at any point in time t, we have second-order convergence: 
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Alternatively: if p is bounded and continuous, then the truncation error is bounded 

a4 pi la- . . . I  < M 

and we get 

Further, if $=o lg(t - 7) 1dr < N for arbitrarily large t ,  (essentially, the impulse response is finite 
and decays to 0 over long time): 

The error ei does not threaten to grow unbounded as t + oo, in addition to vanishing as h2 + 0. 
This is a demonstration of convergence. Many additional features could be introduced. 

Convergence - Discrete System 

Consider the analogous development for the Euler discrete system: 

and 
pf+l = rpH-l + (1 - 2r )p f+  rpf+, + 0(h2  + k)k (5.40) 

(Here k E At.) Subtracting the two, with discrete error ef = U: - pf, we get 

1 ef+l = ref-, + (1 - 2r)ei + + 0(h2  + k)k (5.41) 

IC's are E! = 0 . Notice that for r < 112, (1 - 2r) > 0 and 11 - 27-1 = 1 - 2r. So taking the absolute 
value we get 

lef+ll 5 Irllei-11' + 11 - 2rllelf + ~rllelt+~ + 10(h2 + k)kl (5.42) 

Now define the largest error at any time, 

1 llelll - max leil (5.43) 
2 

and the upper limit on the truncation error A, and we obtain 

llelll+l I 11e11' + ~ ( h ~  + k)k (5.44) 

From the IC's, llel1° = 0. So IIeII1 < A(h2 + k)k, 11e1I2 I A(h2 + k)2k, and so on: 

llelll 5 ~ ( h ~  + k)lk (5.45) 

and at any given point in time, the error bound is linear in t = llc and proportional to (h2 + k) and 
to the truncation error magnitude, which generally scales with the solution size: 

As expected intuitively, the convergence is 0(h2 + k), the same as that obtained from the FD 
molecule truncation terms. Additionally, we find that the solution has potential for linear buildup 
in error over time - not an instability per se, but still a liability. this proof requires r = < 112, 
so we may anticipate problems with r > 112 i.e. large At. Finally, we need to be careful that 5.46 
is an upper bound only. It is not an equality; and there are certainly more precise (lower) upper 
bounds for this error. 



5.4. STABILITY, CONSISTENCY, CONVERGENCE 

Consistency 

There is a classic example of inconsistency: the DuFort-Frankel Scheme. This is a modification of 
the Leapfrog method; recall that Leapfrog is unconditionally unstable for the diffusion equation. 
In an effort to save it, we might rewrite it as 

where the approximation (u;+' + u;-') has been substituted for 2 ~ :  which normally appears in 
the Laplacian in this system. Ostensibly this is a benign change, a temporal average, of order At2. 
By beefing up the diagonal of the system at the unknown level, perhaps it will add stability. In 
fact, it does - unconditional stability! But there is a price paid - it is inconsistent. 

To see this, rewrite the temporal average as 

Then, the DuFort-Frankel scheme is 

But the last term is a problem: 

So if k/h = P = a constant, we have 

This is consistent with the hyperbolic telegraph equation! But if k + 0 faster than h: ,B + 0 and 
this is a parabolic system. So we have different end points dependent on the path or process of 
resolution. But the requirement of consistency is that the discrete system operator approach the 
PDE independently of the path, i.e. independent of ,G' in this case. So we find that this system is 
not consistent with the diffusion equation. 

Stability 

Stability as defined here pertains to the discrete solution. That is the solution which will be 
implemented on machines. If the discrete solution is bounded, i.e. it will not become infinitely 
large, then it is stable. A strict sense of this is that the system decays to zero at long time in the 
absence of forcing. In other words, its homogeneous response to IC's decays to zero at long time. 
The marginal case, where the homogeneous response neither decays nor grows, represents "neutral 
stability". Now all practical implementations of discrete systems are subject to continuous inputs 
of noise through their imperfect algebra. So we can think of the homogeneous response as the 
temporal convolution of every conceivable mode of noise, in addition to the response to the IC's 
per se. An unstable system accumulates and amplifies noise; a stable one causes it to decay away. 
Notice here that stability is unrelated to any metric of accuracy. It is a practical consideration, a 
necessary precondition for simply getting a reproducible solution. 
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Our approach is heuristic: imagine a spatial mode of the solution, study the homogeneous 
response to it. For a linear system, all modes must be stable since they will certainly occur 
randomly through roundoff on any finite machine. So a single unstable mode is sufficient to qualify 
a system as unstable. 

We will concentrate here on the worst-resolved spatial mode: {+I, - 1, +I, - 1, +I, -1, +1, . . .). 
This is the so-called "washboard" or "2Ax" mode. In terms of Fourier transforms, it exists at 
the lowest resolvable point in the discrete spatial spectrum, the Nyquist point. This mode has the 
greatest Taylor Series truncation error (- $$ for the second derivative). Although not apparent 
until the next section, it is the most prone to instability for the systems introduced here, and 
therefore controls the stability. For this washboard mode, we have the approximate Laplacian 

Assuming an infinitely long spatial domain, there are no boundaries and all molecules are identical. 

The Euler discrete system is 
u:+' - ~1 = -dru,l 

for all i. Solving this, we get 
u:+' = (1 - 4r)U: 

Immediately we have a 3-way result for the series u:+': 

for small r: the solution decays monotonically. This occurs when 0 < 1 - 4r < 1. Since r > 0, 
we have 

Since the analytic solution generally behaves this way, this range of r provides at least qual- 
itative fidelity. 

for intermediate r: the solution decays in an alternating series. This occurs when -1 < 
1 - 4r < 0: 

1 1 
- < r < -  
4 2 

(5.56) 

In this range, the solution is stable but exhibits solutions which alternate in sign, which is 
not qualitatively faithful to the PDE. 

for large r:  the solution grows without bound, in an alternating series. This occurs when 
1 - 4 r <  -1,or 

For this range of r, the system is simply unstable. 

Now r is the dimensionless timestep. As r grows, so does the temporal truncation error. At r = a 
we lose all resemblance to the exact solution, and this gets progressively worse until at r = and 
beyond the lack of fidelity becomes fatal. The Euler stability condition is therefore 
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with the equality characterizing neutral stability. Recall that these are necessary conditions; this 
characterizes only one mode. (In this case, this washboard mode turns out to be the critical, 
controlling mode.) 

In the same light we can examine the Leapfrog system for this mode: 

This equation has solutions of the form 

and on substitution we get the quadratic equation 

y2 + 8ry - 1 = 0 

and its solution is 
r)2 + 4 7 = -8rf r = - 4 r *  2 J- 

The negative option clearly exceeds unity in absolute value. Therefore we have 

lU;+'l = ~yllU:l > lU:l (5.63) 

and the Leapfrog system i s  unstable for all values of r. 

While we are here, look at the (inconsistent) DuFort-Frankel system. Earlier we asserted that 
this scheme was unconditionally stable. The present analysis for the washboard mode gives 

This has roots 

The negative option has magnitude unity irrespective of r; the positive option always has magnitude 
< 1. For this mode, the system is neutrally stable for all r. 

Finally, let's look at the general 2-level system 5.13: 

For the washboard mode we have 

And rearrangement gives us 
UZ+l 1 - 4r(l  - 6 )  2- - 
Ui 1 + 4rB 

From this we see that we will have monotone solutions in time, as long as we have 
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uffl 
For larger r, +- becomes negative. This oscillatory behaviour will nevertheless remain stable u; 
when 

For larger r, we have instability. Immediately we see that increasing 8 improves the stability; and 
that this system is unconditionally stable when 8 2 112 (i.e. no value of r produces instability). 

Summarizing the various limits: 

Euler, 8 = 0: 

monotone when r < $ 
stable when r < 

Crank-Nicolson, 8 = 112: 

monotone when r < 
stable unconditionally 

Backward Euler, 8 = 1: 

monotone unconditionally 

stable unconditionally 

Here we have looked only at one mode of the system, the most poorly-resolved one. The next 
section generalizes the analysis to include all possible modes. The stability results here will survive 
as rules of thumb governing the most critical modes. 

5.5 Accuracy: Fourier (von Neumann) Analysis 

Now we will generalize the stability analysis of the previous section, in a way which allows us to 
consider all possible modes of the system. To do this we will decompose the solution into its spatial 
Fourier spectrum; and look at the evolution of that. In doing so, we will be able to make a metric 
of fidelity to the PDE solution, in terms of properties of its Fourier transform. 

The reader is assumed to be familiar with the Discrete Fourier Transform; Press et  al. [99] 
contains a useful exposition. 

Continuous System 

First, review the classic use of the Fourier transform vis a vis the PDE 

Assume a space-time separation of the solution of the particular form 
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j = &i is the imaginary unit; a is a (real) spatial wavenumber; a is the corresponding growth 
rate in time; A is the amplitude for this spatial (Fourier) mode at t = 0. In general, we will need a 
complete, continuous spectrum of 0 5 a 5 co to be able to represent an arbitrary set of IC's. But 
for now assume a single value of a. Each wavenumber a has a spatial wavelength A, and Xa = 27r. 
Inserting 5.73 into the PDE, we obtain the Dispersion Relation 

which characterizes the PDE response at wavenumber a. The superposition of all spatial waveforms 
(all a )  present gives the full response. The following characteristics are well-known and can be 
inferred here: 

The solution is stable: all a decay monotonically since all a < 0) 
The longest waves decay slowest ( a  + 0 as X + co) 
The solution gets smoother over time, as the sharper features are represented by the bigger 
a (smaller A) 

Lumped System 

The lumped system $$ = f$S2ui can be approached in the same manner. Here we have to be a 
little careful to respect the limits of the Fourier spectrum. For a uniform, infinitely long mesh, the 
complete spectrum is continuous but there is a Nyquist cutoff point at X = 2h. Use of wavenumbers 
representing shorter wavelengths is redundant, as each such mode has an indistinguishable coun- 
terpart at X > 2h. So for the infinite (unbounded) lumped system, the complete Fourier spectrum 
is given in terms of either a or equivalently, A: 

As above, we need to deal with the discrete difference operator S2 as it affects a given Fourier mode. 
Direct expansion, and some trigonometric identities, give 

2 

= - 4 ~ ~  (sin:) 

A little further processing reduces this to 

Notice that we have created a new dimensionless number, S = a h  = y. This is a measure of 
resolution; small S means small h relative to the wavelength at hand. Large S is coarse resolution 
of a given wavelength. So one further step gives the useful shorthand 
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S2 Ui -- 2 2 

h2 
- -a C Ui (5.79) 

sin (S/2) 
C(S) = 

s12 
(5.80) 

S = a h  (5.81) 

This is a remarkably simple result. It compares directly with the analytic form of Fourier differenti- 
ation, with the added factor C2 containing all of the discretization effects. Notice that C approaches 
unity at small S; that is, for very long wavelenghts relative to the mesh, the FD difference formula 
becomes increasingly perfect. From 5.75 the limits of S and L are 

(L = X/h is a convenient measure of the wavelength resolution. LS = 27r.) The right-side of these 
limits is the Nyquist point. If we now make the substitutions into the lumped system, we get 

and the lumped system dispersion relation is 

The discretization factor C carries all of the discrepancy from the exact solution. If it were unity 
(which it is at perfect resolution, S = 0), then the discrete system would have a perfect dispersion 
relation. 

We can go further by inserting a Taylor series for C(S), and get- 

Notice these facts: 
a a is correct to O(h2) for any a 
a a is undefined for X < 2h 
a accuracy depends on a h  = i.e. the mesh spacing h is meaningful only relative to X 
a the lumped system is stable: a < 0 for all a 

A plot of & vs X/h is sketched in Figure 5.9. The analytic solution has + = 1. The plot for 
the lumped system reveals that 

a the lumped is underdamped relative to the analytic (distributed) system; 
a the error is greater for small Xlh; and 
a the error is monotone, between the limits 0 at S = 0, and 1 - 4/7r2 % 0.6 at the Nyquist point 

S = 7r. 
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(Nyquist) 

a - 
Do2 

4 - 
5r2 

Figure 5.9: Dispersion relation for lumped system represen- 
tation of 1-D diffusion equation. L = Xlh. 

- - - - - - - - - - - Lumped System 
I 
I 
I 

Discrete System 

To handle the discrete system, we need to return to a device introduced earlier in the discussion of 
stability: 

u;+1 
y--  (5.87) u; 

This is the ratio of solutions separated by one timestep. In the discrete system, y plays the role of 
the separable time-solution eat: 

U: = y l e j u ~ i  (5.88) 

and y is related to a :  
y = e  a At 

The ratio of the solution after 1 timesteps, to that now, is yl; and the elapsed time is T = 1At. So 
we have 

1 - alAt - a7 y - e  - e  (5.90) 

We may speak of a or of y; they convey the same information. But strictly speaking, only y is 
defined in the mathematics of the discrete system. Notice here that this represents a subtle but 
appropriate shift of emphasis from a, the solution growth rate, to y, the solution itself after finite 
time At. 

(Aside: For the lumped system, y may be gotten from a via 5.86: 

The first term is the analytic (continuous) version. So the lumped system has 

and one more Taylor Series for the exponential finishes this comparison: 
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The temporal accuracy is linear in At. The integration over time causes defects in a to accumulate, 
linearly with the temporal interval, for perfect time-integration. ) 

Euler System 

Now, back to the Discrete System. We start with the explicit Euler system: 

We have for the Fourier expansion, 

and for the temporal expansion 
u;fl = yu: (5.96) 

Substitution gives us 
2 s y = 1 -4rsin - 

2 
(5.97) 

Now y, the ratio of new to old solution, should represent a pure decay, i.e. it should lie between 0 
and 1. But we see that we will lose that property when r is too big, 4r sin2 $ > 1. So the criterion 
for a monotone mode is 

1 

Stability requires lyl < 1. We lose that when r is even bigger, 4r sin2 $ > 2. So the stability 
requirement is 

1 

Now S lies between 0 and x. So in both cases, the worst mode is S = x, i.e. the poorly-resolved 
mode at the Nyquist point. So the criterion for purely monotone solutions is 

Operating with r above this limit will provoke non-monotone behaviour. The short waves are 
the first to go; then with increasing r ,  more and more of the short end of the spectrum becomes 
nonmonotone. Ultimately, as r goes beyond the threshold 4, the stability of the worst-case Nyquist 
modes is lost. Operation beyond this point is impossible; it will lead to unstable growth of either 
roundoff error or noisy IC's. So the stability limit is 

These findings corroborate what we did in the previous section relative to stability and monotonic- 
ity; there we examined only the Nyquist mode. (That is the limiting mode in these cases.) 

Assuming we have a stable discrete system, we can analyze its fidelity relative to the continuous 
system. For the continuous system (the PDE), we have 
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where again we have used a Taylor Series expansion. For the Euler discrete system, we have y~ 
and its Taylor Series expansion 

The leading error is the S4 term. The discrepancy is 

and this vanishes for r = 116. So we get an extra boost in accuracy for this special value!' 

In Figure 5.10 we sketch the dependence of y~ on spatial wavelength. The zones of monotone, 
oscillatory, and unstable temporal evolution are set forth, as a function of dimensionless timestep 
r. This provides a measure of qualitative fidelity to the analytic solution, which exhibits monotone 

- 
I Unstable 

Figure 5.10: Illustration of Euler discrete system behaviour 
for a single timestep: y versus L; L = X/h. 

decay (0 5 y 5 1) for all a. 

2-Level Implicit System 

Next, lets look at the general 2-level discrete system as displayed in Figure 5.6 

'Recall from above that the Lumped system (r = 0) was underdamped across the whole Fourier spectrum. It can 
be verified that the Euler system is overdamped when r = 114, which is the onset of nonmonotone behaviour for the 
Nyquist mode. Evidently there is a crossover point in between, where extra accuracy is obtained - the leading At 
error just cancels the leading Ax error! The expression here suggests that this is at  r = 116. The student is invited 
to confirm this by plotting these relations; and by examining the Taylor series truncation analysis of the original FD 
molecule for this discrete system. 
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Proceeding as above, we obtain 

ye - 1 = -4r sin 

Of course this reproduces the Euler system when 0 = 0. Like that case, ye 5 1 for all (r, 0); but 
there is the potential for nonmonotone modes when r is too big. That occurs when ye 5 0; so the 
requirement for monotonicity is 

1 
r l 

4(1 - 0) sin2 $ 
As usual, the shortest-wavelength modes lose monotonicity first; it controls the monotonicity re- 
quirement 

1 

Continued growth in r expands the nonmonotone part of the spectrum. Stability is lost when 
ye 5 -1. Assuming 0 < $, we have the stability requirement 

and again, the limiting mode is at the Nyquist point. The practical stability criterion is then 
governed by this mode: 

1 

When 0 2 4, we have unconditional stability (i.e. stability independent of r).  But this does not 
guarantee monotonicity - that requirement remains as stated above. 

As we found in the Euler system, there is a special increment of accuracy when 

where the leading spatial and temporal truncation errors cancel. 

Figure 5.11 is a sketch of y versus Xlh for the Crank-Nicolson system, 0 = 112. It is qualita- 
tively similar to Euler, except for the unconditional stability and the expanded range of monotone 
performance. The student is encouraged to develop and plot these relationships to fix ideas. 

Propagation Factor 

All of this analysis of y addresses qualitative fidelity to the continuous system - in terms of stability 
and monotonicity. As a measure of quantitative accuracy, y alone falls short, on 2 counts. First, 
we need to normalize y by its analytic (continuous) counterpart since the latter system decays in 
a specific a-dependent fashion. This is readily accomplished. Second, y + 1 as r + 0 for any 
consistent approximation, as does the analytic (continuous) system. So the gap between these 
vanishes at small r, leaving little information. 
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1 .o, r = O  

'Ye 

Figure 5.11: As in Figure 5.10. Illustration of Crank- 
Nicolson (8 = 112) system behaviour for a single timestep: 
y versus Xlh. 

To accommodate these issues, we normalize y and introduce a characteristic time T = N A t  for 
the comparison: 

T is the Propagation Factor. It quantifies the ratio of the Discrete solution to the Continuous one, 
in the future, after elapsed time T, starting from the same IC7s. T is held fixed, so N increases 
as At decreases. We take as the characteristic time the e-folding or relaxation timescale for the 
analytic solution, 

Notice that T depends on a. With this, the Propagation Factor for the Discrete Diffusion Equation 
is 

Now we have in T a valid measure of accuracy. The student is encouraged to prepare plots or 
T versus X/h for the discrete systems developed here (i.e. various combinations of r, O), before 
proceeding further. An example plot appears in Figure 5.12. T = 1 is perfect accuracy. T > 1 
indicates that the discrete solution exceeds the continuous one (underdamped case) - not that the 
system is necessarily unstable. T < 1 indicates overdamping, and necessarily, stability. One finds 
in general, T + 1 as a + co for all combinations of (r, 8), or else we do not have convergence. In 
the nonmonotonic region, T is undefined. 

Example: Implicit Leapfrog System 

Here we revisit the idea of a 3-level-in-time system. Before we saw this in the form of the (explicit) 
leapfrog system, which was unconditionally unstable for diffusion problems; and the Dufort-Frankel 
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T '  Different combinations 

l,o -..-----... ..................................... 

Figure 5.12: Sketch of Propagation Factor plot, T versus 
L = Xlh. T = 1 represents perfect accuracy. T is undefined 
for non-monotone modes. 

system, which was stable but inconsistent. Both of these were centered-in-time, hence second-order 
accurate. Here we try to stabilize the system by adding implicitness, avoiding the inconsistency. 

The system we will examine is 

This is illustrated in molecular form in Figure 5.13. 

Figure 5.13: Implicit leapfrog system. 

This system is centered in space and time, and hence second-order correct. For 8 = 0 it reverts to 
the Leapfrog system, which is unstable and useless. 8 = 1 reproduces the Crank-Nicolson system 
with the caveat that there are two independent solutions, an "odd" one and an "even7' one, which 
are completely uncoupled. This is illustrated in Figure 5.14. Both odd and even solutions would 
have the same, favorable C-N dynamics on a time interval of 2At. So we can think of this system as 
a blend of the two: one which is unconditionally stable, the other which is unconditionally unstable. 
For mildly nonlinear diffusion, it can be an attractive way to time-center the nonlinearity without 
requiring iteration in each timestep, and still retain second-order temporal accuracy for the linear 
dynamics. Because of the three levels in time, the system is not self-starting; it needs additional 
information in terms of IC's at t = 0 as well as t = -At. In this lies the seeds of its potential 
failure. 
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e' 1 Figure 5.14: The odd-even decoupling of the implicit 
leapfrog system. 

The Fourier transform of this system gives us 

If we temporarily identify R(S) = 4r sin2 S , (0 I R I 4r), then this quadratic equation is 
( 2 )  

The roots are 

- R ( l - B ) f  J ~ 2 ( 1 - 6 ) 2 -  [ l+Re][ -1+ Re] 
Y = [I + Re] 

(5.122) 

There are 2 roots - at any value of ah, there are two different temporal dynamics, y+ and y-. 
Both must be stable if a solution is to be possible. The requirement lyJ 5 1 for this system leads 
to2 

So the overall assessment of this 3-level system depends unequivocally on 8: 

a 8 > 0.5 gives unconditional stability 
a 0 5 0.5 gives unconditional instability 

("Unconditional" here indicates that there is no dependence on timestep r.) If we conceive of the 
system as a blend of explicit Leapfrog and implicit Crank-Nicolson systems, then the instability in 
the former is quenched at the halfway point. 

Case A: 8 = 1 (Crank-Nicolson) 

From 5.123 above, we have 

y = f  
4C-z  

l + R  (1 + R ) ( l +  R) l + R  
 he student is encouraged to verify this. 
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We know that odd and even systems are uncoupled; so y2 represents the progress of the solution 
over two time steps: 

This is identical to the original Crank-Nicolson (2-level with 0 = 112) expression, equation 5.109, 
with the adjustment for the effective timestep 2At. So we have recovered what we knew by in- 
spection: that this system must perform identically to the C-N system operating at twice the 
timestep. 

But we can learn more here. For R > 1, y2 is negative (and stable). So y is imaginary. This 
characterizes the shortest wavelength modes when r > 114; increasing r increases the portion of 
the spectrum so affected. This corresponds to temporal oscillations of period 4At; they are positive 
at t = 0, imaginary at t = At, negative at t = 2At, imaginary at t = 3At, positive at t = 4At, and 
so on; with overall size decreasing as t progresses. If we ignore the odd-numbered timesteps, the 
behaviour is identical to C-N behaviour when r is too big - stable but non-monotone dynamics. 
This characterizes both roots, y+ and y-. Neither has any merit vis-a-vis the continuous system. 

Figure 5.15: Parasitic modes of period 4At arising at the 
short-wave (poorly resolved) end of the spectrum, when 
y2 < 0. Dot and Dash lines represent time histories of two 
adjacent nodes. 

For R 5 1, y2 is positive (and stable). But now we need to distinguish between the two values 
of y. One will be positive and will converge to the continuous version - the "physical" mode. The 
other will be negative, a mode which changes sign every timestep. This mode has no counterpart 
in the continuous system; it is "nonphysical7' or "parasitic". As such, it breeds on trash in the 
system. If IC's and BC's are physical, i.e. are compatible with the continuous system, then the 
parasitic modes should not be introduced. But, imperfect algebra (roundoff error, imprecise data, 
etc.) will inject these modes into the system. And perfectly physical data will not perfectly match 
the imperfect discrete system, either. The parasitic modes will therefore be present in any practical 
simulation of this 3-level system. It is significant that the well-resolved Fourier modes have R + 0, 
and therefore are prone to this type of parasite. 

Figure 5.16: Parasitic mode of period 2At arising at the 
long-wave (well-resolved) end of the spectrum, when y2 > 0. 
Neighboring nodes have the same time history. 
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Even perfectly benign-sounding conditions can initiate the parasites. Imagine starting this 
system "at rest", U ( x )  = 0 at t = 0 and at t = -At; and imposing a step input in the left-hand 
BC for all t > 0. The computed sequences at At, 3At, 5At, . . . would be the same as that at 
2At, 4At, 6At, . . .. The result would be timeseries with this shape shown in figure 5.18. The 
superposition of the two modes represents a smooth "physical" trend with an oscillation of period 
2At superimposed. 

Figure 5.17: Implicit Leapfrog molecule with 6 = 1. This 
molecule is the summation of two Crank-Nicolson molecules. 
Odd and even solutions are uncoupled. 

Figure 5.18: Nodal time series in which odd and even solu- 
tions are perfectly decoupled and identical. 

Case B: 6 = 112 (Trapezoidal Rule) 

This case is at the boundary of unconditional instability. From 5.123 above, we have 

The positive option is the "physical" one; in fact it is identical to C-N in every way. This molecule 
is easily visualized as the sum of two sequential C-N molecules (Figure 5.19); so the C-N solution 
satisfies this compound molecule. 

But that is not the whole story. The negative option in 5.129 is 

This is a pure parasite. It affects every spatial mode, independent of resolution. It oscillates 
undamped with a period of 2At. It is most easily inserted into the system via IC's. Suppose that 
the IC7s at t = 0 and t = -At exactly satisfied a C-N molecule. Then the very first 3-level step 
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Figure 5.19: Implicit Leapfrog molecule with 6 = 112. 

would have to satisfy the C-N molecule from time t to At. And so on this would go, each step 
generating the C-N solution over the last half of its 3-level molecule. However, suppose the IC's 
did not have this property. Then the first time step would negate the initial C-N inequality by 
producing its negative in the interval t to At. And this pattern would repeat indefinitely. The key 
to parasite avoidance would seem to be in the IC's. But any level of machine imprecision would 
certainly upset the pattern, thus continuously injecting parasitic modes even if they were not there 
initially. Here it is worth it to remember that the extra IC demanded by this system, at t = -At, 
is beyond that necessary/sufficient for the continuous system. So we have a liability here. 

How to get rid of parasitic solutions for this system? Here are some approaches: 
Carefully manage the necessary extra IC's, and the precision. 
Generate the extra IC's by taking a C-N or other 2-level step first. 
Every so often: take another two level step, e.g. backward Euler, which amounts to injecting 
smoothing or filtering the solution. 
Avoid 3-level systems for parabolic problems where possible. 

In closing this section, recall the attraction of the 3-level system to begin with: for mildly 
nonlinear problem we might linearize over 2At without causing an uncentered temporal truncation 
error. This would appear to be the only justification for this system, given its propensity for 
parasites. 

5.6 Conservation Laws 

Most of the PDE's of classical origin amount to conservation statements of some kind. Where 
there is a physical (or empirical) principal of conservation, its expression on an infinitesimal control 
volume leads to a PDE which expresses the principle at a point in a continuum. That statement 
alone is only half the process. To it we commonly add a constitutive relation which relates the 
vector (tensor) flux of the conserved quantity, to a suitable scalar (vector) potential and/or its 
gradient. This process toward the Poisson equation, for example, is illustrated here: 

Conservation Law + Constitutive Relation + PDE 

V . q = a  q  = -KVU V . K V U  = -a 
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Table 5.1: Conservation Analogies 

q 
Heat Flux 

Diffusion Flux 
Mass Flux(Porous Medium) 

Electrostatic Field 
Gravity Field 

Stress 

q is the vector flux of the conserved quantity; a is its source; and U is the scalar surrogate for the 
flux. This conceptual process leads to most of the interesting PDE's (or at least to their elliptical 
part). We list some of them in Table 5.1. 

In terms of units, [q] = (conserved quantity)/cm2/sec ; [a] = (conserved quantity)/cm3/sec in 
the cgs system. The source term a as used here need not be a constant; nor need it be exogenous. 
For example, radioactive decay: a = - k c .  And for transient problems, a represents change in 
local storage: a = -3. SO for example in a chemical transport problem, 

Conserved 
Thermal Energy 

Molecules of Species 
Fluid Mass 

"Force" 
LLFor~e'7 

Momentum 

we would have 
dC 

- a = - + k C  
at 

(5.133) 

So if we stick with the lumped system, all these terms may be treated under the rubric "source" 
terms - in particular the storage term which is a key feature of parabolic systems. 

U 
T 
C 
P 

9 
9 

6 (displacement) 

Now the PDE is a local conservation statement, valid anywhere on its domain. It supports a 
global conservation statement on any subdomain by simply integrating it, 

a 
Heating Rate 

Chem. Reaction Rate 
Evaporation Rate 
Electric Charge 

Mass 
Force 

The Divergence theorem is critical here: 

and the familiar result states that the Rate of Escape equals the sum of Internal Sources: 

f q . f i d s = J  J J a d v  

or equivalently, in terms of U: 

Numerically, for the lumped system we cannot hope for perfection for any finite h. However, 
if we define our control volumes carefully, we can recover a statement of numerical conservation 
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Figure 5.20: Pictorial representation of Lumped system given 
in equation 5.139 

embedded in the lumped system. At the core we will replace the volume and surface integrals 
applicable to the continuous system with their numerical approximants e.g. J J J (  )dv -+ C( )iAvi. 

Consider the continuous system and its lumped version 

This reasonable approximant is O(h) if h is variable; otherwise it is O(h2). It is most easily imagined 
as the integral of the PDE from xi-1~2 to xi+112, depicted in Figure 5.20. Notice here that we are not 
differentiating the coefficient K ( x )  analytically; we are letting the numerical differentiation handle 
it. The practical advantage of this is enormous in real simulations where a smooth, differentiable 
function K(x )  is not available. There are three important things to notice about this lumped 
system: 

The "molecule" corresponds to a conservation statement over the two half-boxes from xi-l/2 
K i - l / 2  

to 9 + 1 / 2 ,  with influx qi-1/2 = - r (Ui  ~ - 1 / 2  - Ui-1) and efflux qif112 = -P(U~+~ 2+1/2 - Ui) 

The lumped source term ai represents the average of all sources in the two half-boxes : 

This is especially important when a is to be represented as Dirac delta function; or when the 
mesh lengths h are variable. In the context of parabolic systems, ai represents the average 
accumulation rate over the two half-boxes. 

Ki+112 embodies all K ( x )  variation between xi and xi+l. Instinctively, this is some kind of 
average. But the average we want is the harmonic mean of K.  To generate this, consider 
steady flow rate with a = 0. In this case, -q = ~2 is spatially constant. Its integration 
produces 

So the proper lumped-system constitutive relation is based on the parameter Ki+112 
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With these features in mind, the lumped system amounts to a set of finite conservation statements, 
on subdomains or "boxes" defined by the system equations themselves. Summing them causes the 
interior fluxes qi+1/2 to cancel, giving us a global conservation statement 

This is obviously a conservation statement. The influx and efflux from the system of equations are 
balanced against a trapezoidal-rule integration of the interior sources as illustrated in Figure 5.21. 

Figure 5.21: Summing the lumped system relations 5.139 
ives the global conservation statement for the Dirichlet prob- 

Lm. 

If Uo, UN+l are known (Dirichlet data) then there is nothing more to the system - we have 
used all the relations for the conventional Dirichlet problem. But notice that the boundaries of the 
conservation statement are awkwardly arranged relative to the BC location. And there seems to 
be no role for sources near the boundaries, a o ,  a ~ + l .  Even in the simple case of type I BC's, we 
would still like to compute qo, q ~ + l  from an approximation to g. But that is not represented 
here, and in many applications it is crucial to compute the flux occurring on a boundary. So we 
would like to do better. Specifically, we would like to expand the conservation boundaries over the 
two half-boxes on the ends, and involve the natural quantities qo and q ~ + l  which are presently 
ignored. Since we have to do this anyway in the case of Neumann (Type 11) or Type I11 BC's, we 
will consider that next. 

Boundary Conditions 

For the general Type I1 BC's our approach is 

Write the PDE approximation at the boundary. The molecule will spill over into a "shadow" 
or image region; 
Write the BC approximation at the boundary. It too will spill over into the shadow region. 
Use it to eliminate the image node; 
Merge the two to eliminate the image nodes. The result is the FD molecule or lumped system 
representation at the boundary, representing both PDE and BC. 

Consider the left-hand boundary at x = 0, node 0. We will invent a shadow region to the left, 
node -1, as shown in Figure 5.22. The shadow region will be symmetric relative to the mesh: 
h-112 = hlI2. Furthermore, we will let K(x) be symmetric about the boundary, so K-112 = KlI2. 
With these provisos, the PDE approximation 5.139 reduces to 
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Figure 5.22: Left boundary of the conservation example. 
Node -1 is a shadow node; Node 0 is on the boundary. 

Now the BC is in terms of the known Neumann data go: 

and its l u m ~ e d  remesentation is 

and since we have symmetry, KO is the same as KlI2: 

Now, we put the two relations together. Solving 5.146 for U-l we get 

and its elimination from 5.144 gives us the result 

(Ul - Uo) - - aoh1/2 
l 2  hl12 2 90 

or equivalently, 

This is the missing link in the conservation relation; it is a conservation statement in the half-box on 
the left side of the system. It is illustrated in Figure 5.23. The Neumann flux go is indistinguishable 
from the sources in the half-box adjacent to the boundary, in accord with intuition. 

Figure 5.23: Conservation statement at Neumann Boundary. 

The analogous procedure at the right side of the system gives 

Adding these two boundary relations to the interior sum gives the whole-system conservation state- 
ment: 
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This is the final conservation statement for the Neumann system. It is exact, even though the 
lumped system is not. It requires special care in defining the BC7s, the spatial variations in the 
parameters, and the source terms; the sense of all these is implicit in the lumped-system statement 
or FD molecule. The FD molecule also defines the sense of spatial integration (trapezoidal rule in 
this case). 

For the type I11 BC we have 

The boundary balance 5.149 becomes 

and a similar result holds for the right-hand side boundary. This BC defines an additional endoge- 
nous source in the overall balance, aoUo; bo plays the role of qo in the Neumann case. 

Now back to the Type I boundary. With Uo given, there is no need for the boundary molecule 
5.149, unless we want to obtain the flux qo. In that case, 5.149 is the equation for the boundary 
flux. Its rearrangement gives us 

Now this is a remarkable result. It looks like a conventional, one-sided approximation to the 
constitutive relation q = -K%, with an extra term in a added on. The added term is first-order 
in the mesh spacing h, so one is tempted to ignore it. However we know that a) this molecule 
was arrived at by blending second-order approximations for the PDE and for the BC; and b) 
that it conserves exactly. So the correct interpretation is, the first-order correction for a near 
the boundary restores this otherwise one-sided, first order approximation for q to be second-order 
correct. A similar interpretation applies to the placement of K(x) in this molecule. Use of this 
approach gives us the identical set of lumped-system relations among Ui, i = [0, N + 11 and the 
boundary fluxes (qo, q j ~ + ~ ) ,  irrespective of the type of BC implemented. 

The same general approach can guarantee an exact conservation statement in higher dimensions. 
For example, in 2-D, for the Poisson equation 

V . (KVU) = -a (5.156) 

we have the lumped system on a uniform grid: 

with lc = Ay. Multiplying by hlc gives us 
x Y 

k[-qi+l12 + q;-l/2] + h[-q;+iI2 + 9j-1/2] = -hkoij (5.158) 

and we have a local, exact balance among influx, efflux, and sources as depicted in Figure 5.24. 
The issues pertaining to the definition of averages for K and a, the cancellation of interior fluxes, 
and the imposition of BC's are unchanged from those just exposed in the 1-D case. 
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Figure 5.24: Conservation box for 2-D Poisson equation. 

5.7 Two-Dimensional Problems 

Most approaches to parabolic problems in 2 elliptic dimensions (x, y) or more are generalizations 
or the l-D approaches described above. The generalization of the Crank-Nicolson system in multi- 
D remains the gold standard for parabolic equations. As an example, consider the 2-D Diffusion 
equation 

For a regular, square grid, the general 2-level-in-time discrete system has the molecule 

with the FD version of the Laplacian 
a2 = g + 6; 

This system is pentadiagonal in structure, like the comparable system of elliptic equations ( g  = 0). 
Grouping the known quantities at time level 1 we get 

with dimensionless timestep r = as usual. The problem amounts to an elliptic solution in each 
time step, with a new right-hand side built from the latest known solution. In the linear case as 
shown, the system is stationary. Expanding the Laplacian at the unknown time level 1 + 1, we have 

This algebraic system is diagonally dominan t .  Hence we know that a) standard direct methods, 
e.g. LU decomposition, should be successful and indeed contemporary practice confirms this. Ad- 
ditionally, simple iterative methods for the comparable elliptic equation can be applied here with 
success. Jacobi and Gauss-Seidel methods will work for all r and 8; and there will be an optimal 
parameterization of SOR. So immediately we have a feasible, quality solution with Crank-Nicolson 
dynamics. For example, the Jacobi scheme in a single timestep can be written, 

where we have dropped the superscript indicating time; and added an iteration counter k. The 
right-hand side gij is fixed during the iteration; it depends on the existing solution Uij at time level 
1. 
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A particularly important (historically) class of iterative methods are the so-called Alternating 
Direction Implicit (ADI) methods. Both methods capitalize on the efficiency of tridiagonal direct 
solution, by making only part of the Laplacian implicit at any point. Hence these are "line", 
"block", or "implicit" iterative methods. AD1 methods are conceived in either of 2 ways: 

as an iterative solution to elliptic problems, and hence as an iterative solution to parabolic 
problems in a single timestep 
as a time-stepping algorithm for parabolic problems. 

In the former, AD1 iteration is employed to convergence in each timestep. In the latter, we employ 
only one AD1 iteration per timestep, and move on. Effectively we bury the iterative residual in the 
temporal error. 

Iterative AD1 

To expose this in context of an elliptic solver, we rewrite 5.162 in the form 

The time superscripts I will be dropped but are still implied. The idea is to proceed in 2 steps, 
first implicit in the 6, terms, explicit in the SY terms; then do the opposite: 

Step 1: 
1 1 Si j -wugl + (d2 - -)u!.+' = - (g  - -)uk - - - wu& " 2r8 '3 

(5.166) 
27-8 23 re 

Both steps are tridiagonal. Notice two things in addition to the alternate splitting of the Laplacian. 
First, the diagonal term &uij has been shared equally at old and new iteration level; and second, 
an acceleration term has been added to both sides, wUij. This iteration is unconditionally stable 
for w > 0. This is iterative stability, i.e. it pertains to taking a single step, iteratively. The stability 
over time is dictated by the stability of the basic discrete system, which depends on r and 8. The 
rules of thumb developed earlier in one elliptic dimension generally pertain here, typically modified 
by a factor of 2 in 2-D. 

A single AD1 iteration requires execution of both steps. Otherwise the iteration is unstable. 

AD1 as Time-Stepping 

Here we divide the dynamics into two parts, first implicit in x and then in y. But we do not iterate 
within a timestep. Like the iterative solution, a single timestep requires both steps. 

Step 1: 
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a Step 2: 

Rewriting to resemble the iterative method we have 

a Step 1: 
1 1 (62 Z - -)u1+l = (-62 - 3~1. 
r '3 Y 23 

a Step 2: 
1 1 (62 - -)u/+2 = (-62 - -)u/+l 

Y r 23 x r 23 
(5.171) 

Here plays the role of w above. The time-stepping algorithm looks like AD1 iteration for d2U = 0, 
with w = :. Hence this system is unconditionally stable! 

Fourier analysis of AD1 time-stepping reveals it to be a close cousin of the basic Crank-Nicolson 
system; its dynamics are an O ( A t 2 )  approximation of the C-N dynamics. This result is based on 
comparing a full AD1 timestep of length 2At .  The intermediate point, following only one-half of 
the timestep, is always unreliable. 

Ames [2] offers the following demonstration of AD1 consistency. It is based on the consistency 
of the Crank-Nicolson scheme. Begin by operating on the AD1 system thus: 

1 1 1 
(6: - -)[(6: + -)U1++' = (-6; + -)u'+~] (5.173) 

r r r 
Now subtracting 5.173 from 5.172 we get 

Multiplying by r 2 ,  

r(6: + 6;) (u' + u"~)  = (u"' - U 1 )  + ~ ~ 6 ~ 6 ~  a: Y (u'+~ - ul> (5.175) 

and dividing by 2At :  

Ignoring the truncation error terms, these difference equations are exactly the C-N difference equa- 
tions for a timestep of 2At .  Operating on the truncation terms, we obtain the final result: 

So for a full 2-part timestep, AD1 is a consistent, second-order approximant to Crank-Nicolson. 
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5.8 Nonlinear Problems 

Here we will sketch a few ideas about the nonlinear diffusion equation, 

A standard two-level scheme is 

To get O(At2), iteration is necessary in each timestep. A typical (simple) approach is to iterate 
as if D were not dependent on U, and form a diffusion equation along conventional lines. This is 
illustrated in Figure 5.25. Following solution for U, D(u'+') would be recomputed using the most 
recent iterate, and the same t imestep reformed and recalculated. 

k k k+l - Iteration 

1+ 1 1+ 1 1+1 - Time 

Figure 5.25: Simple iteration on nonlinear D(U) within a 
timestep. Time is fixed while the iteration advances. Each 
computation of U is a discrete Elliptic PDE solution. 

This is easy to program and debug; values of D are lagged and each try at the time step is just 
like a linear step. The iteration is nonstationary - the matrices for a timestep need to be recomputed 
in each iteration. So speed of iterative convergence is important. The solution algorithm will be 
tridiagonal for l-D (pentadiagonal for 2-D, etc.) and if we are lucky, this will work. If it does, the 
D(x) sensitivity is probably small. 

For large we may need to do something more sophisticated. In this category we have the 
Newton-Raphson approach to nonlinear solution. It is less common, and more work, since the 
system to be solved in each iteration does not resemble a simple diffusion system. This method 
converges fast - with each subsequent convergence error the square of its predecessor - provided 
we have a good initial guess. In a time-stepping context, a good guess is always available - the 
value at the end of the last step. 

Here is the Newton-Raphson method for coupled nonlinear equations. Denote the finite differ- 
ence "molecule" centered at node i as fi: 

A Taylor series expansion gives 

and keeping only the first-order terms we get 
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This is for a single equation i; assembling all the equations gives 

The coefficient matrix is the Jacobian [J]; AU,~" = ~ , k + '  - U! is the update in iteration 16. In 
compact form, 

[J]~{AU)"~ = {-f)k (5.184) 

This iteration will generally be nonstationery, as above. And for a tridiagonal system it will be 
tightly banded, (possibly tridiagonal), etc. But it is harder to program and debug, since the 
Jacobian of all the FD molecules needs to be obtained. That is the penalty for faster convergence. 

For example: let fi be the FD molecule 5.179: 

with gi known and constant through the iteration. Then we have 

Alternatively, we could extrapolate over At from the start of the time step (one iteration of 
the strategy mentioned first; an O(At) approach); or use a centered, 3-level scheme to achieve 
second-order accuracy. The latter can be very attractive for stronger nonlinearities, provided the 
parasitic mode can be dealt with (not obvious). 

Alternatively we can get an O(At2) explicit scheme by pursuing a second-order explicit time 
stepping algorithm. For the diffusion equation 

we have the second derivative 
d2U a2(&) d 4 u  - dt - - - - 
at2 ax2 ax4 

and the Taylor Series extrapolation gives 

Hence, a time-stepping system can be built on the extrapolation 
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The first two terms on the right are the usual Euler system. The higher derivatives have spread 
the FD footprint beyond its usual range for the Laplacian. Probably the most important prac- 
tical implication is at the boundaries, where comparable sophistication is needed for any of the 
conventional BC's. Otherwise, one loses the O(At2) advantage of this idea. 



Chapter 6 

Hyperbolic Equations 

6.1 Introduction 

Here we concern ourselves with the general hyperbolic form 

We have isolated the highest derivatives on the left-side, and separated the dimension t from the 
rest of the system, which alone is elliptic. The canonical example is the Telegraph equation 

which we will study in detail. The sign separating the elliptical operator and is crucial. As 
stated, the t-dimension is completely different from the others. Reverse this sign and we have 
a wholly elliptic problem, with t no different from the other coordinates. In practice hyperbolic 
equations commonly represent the time-evolution of systems which are elliptic in steady-state but 
which support wave-like transients. So it is natural to use t for this dimension here. The first 
derivative term 7% normally represents a loss or damping effect; as stated, T > 0 corresponds to 
physically stable processes. 

The necessary and sufficient conditions for a unique solution are sketched in Figure 6.1. The 
elliptic dimensions require the customary choice of Type I, 11, or I11 BC, everywhere. The time 
domain requires two IC's. Intuitively we expect to require two pieces of information to nail down 
the $$ term; but the idea of setting them at different points in time, like in an elliptic dimension, 
is not allowed. Notice that there is a domain of independence from the BC's, where IC's alone 
determine the solution. This is a basic feature of Hyperbolic problems - there is a finite time delay 
required for information to reach any interior point. 

We can always decompose a hyperbolic PDE into a pair of coupled first-order (in time) PDE's. 
For example, for the Telegraph equation, we introduce the additional dependent variable V(x, t)  as 
follows: 
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This pair of equations is equivalent to 6.2 provided that 

We refer to this pair of equations as the Primitive Pair. Differentiating 6.3 by t, and 6.4 by 
x, allows elimination of V and we recover the telegraph equation, as promised. The analogous 
operation allows elimination of U and we obtain the same telegraph equation in V also: 

Necessary and sufficient conditions in terms of U and V are readily obtained from those on U in 
Figure 6.1; they are shown in Figure 6.2. A Type I BC on U is' equivalent to a Type I1 BC on V, 
and vice-versa. And if we know IC's U and then we also know V and $$. 

UNKNOWN 

U and 

Figure 6.1: Initial and Boundary Conditions required for 
Hyperbolic problems. In the hatched area, the solution is 
independent of the BC's. 

UNKNOWN 

U and V 

Figure 6.2: Initial and Boundary Conditions required for 
Hyperbolic problems - in terms of the primitive pair (U, V). 

Examples follow. In each case, the primitive pair is obtained from basic principles; the higher-order 
telegraph equation is obtained thereafter. 

1. Acoustic Waves. Let a fluid medium have density p, velocity V, and pressure P. The 
classical formulation involves conservation of mass and momentum, plus a constitutive relation 
among pressure and density. 
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Mass conservation: 

Momentum conservation: 
dpV d P  - + - = o  
dt dx 

Constitutive relation: 
d P  

P = P(p) +- - = p(p) 
a~ 

The primitive pair is in terms of p and pV: 

and combination yields the classical wave equation in p: 

governing, for example, sound propagation in air. This formulation is lossless. 

2. Shallow Water Waves. Let a free-surface waterbody be characterized by constant density 
p -- PO, depth H,  free surface elevation <, and horizontal velocity V. As in the acoustics 
example, we have conservation of mass and momentum plus a constitutive relation expressing 
the hydrostatic assumption. 

Mass conservation: 
d< + dHV - - = 0 (6.13) 
dt dx 

Momentum conservation: 
BHV H 8P 

+ - - + r H V = O  
a t  Po a x  

Hydrostatic pressure: 

The primitive pair is in terms of < and HV: 

and the telegraph equation in < results: 

The loss term r here represents friction at the bottom of the water column. 

3. Elastic Waves. For an elastic medium of constant density p E po, undergoing deformation 
with displacement field U, velocity V, strain e, and stress F: we have kinematic relationships 
among the motion variables, plus conservation of mass and momentum (force balance); plus 
a constitutive relation between stress and strain. 

Kinematics: 
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Volume conservation: 

Momentum conservation 

Constitutive equations: 

F = -KC 

The primitive pair is in terms of E ,  V: 

av dK€ 
- o a€ av Po- - - - a t  ax = 0 

a t  ax 

and the wave equations in V and in U are 

4. Electric Transmission Line. This is the origin of the term "telegraph equation". We have 
electric charge per unit length Q, current I, electric potential e, and three properties of the 
line, per unit length: Inductance I, capacitance C, and resistance R. Physical principles in- 
clude conservation of electric charge, a force balance on charged particles, and the constitutive 
relation governing capacitance: 

Charge conservation 

Force balance 

Constitutive relation 

Ce = Q 

These give us the primitive pair in the variables e, I: 

and the telegraph equation: 
a2e R a e  1 a2e -+ 0 
at2 L a t  LC ax2 

These applications obviously share a unified underlying structure. In multiple (elliptic) dimensions, 
the primitive pair often involves a scalar and a vector, or in some applications, two vectors. 
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6.2 Lumped Systems 

We have two alternate descriptions of the same phenomena: the telegraph equation and the primi- 
tive pair. With proper IC's and BC's, these descriptions are equivalent. But their Lumped System 
representations are different in apparently small ways. So we need to be careful to distinguish them. 

For the telegraph equation, consider a conventional second-order centered approximation to the 
elliptic operator on a uniform mesh. This is Lumped System # 1: 

The same discrete system could be expressed for V. The two sets of variables Ui and V, would be 
completely independent, coupled only in the specification of their boundary and initial conditions. 
This system is very robust as we shall see. 

Now the primitive pair, with second-order centered differencing of the first derivatives, Lumped 
System # 2: 

These two equation sets are completely interwoven and must be solved simultaneously. 

Lumped System # 2 (6.31, 6.32) reduces to something close to Lumped System # 1 (6.30). 
But it is not identical, unlike the perfect correspondence of the two continuous systems. To expose 
this, we will eliminate the variables V, from 6.31 as follows. First, take the time derivative of 6.31: 

From 6.32 we have 

and so by substitution, we achieve the desired elimination: 

Now in spirit this is the same as 6.30; but the Laplacian term is spread over a 4h footprint, instead 
of its more compact form S2 which spans only 2h. For well-resolved spatial modes, these will be 
close to each other. But for poorly-resolved modes, there is a significant difference. Since the latter 
tend to dominate the stability of systems, and are responsible for parasitic modes when they are 
present, we can expect consideration of this difference to become important. Also, as we shall see, 
the 4h footprint significantly complicates the enforcement of BC's. 

For completeness, a similar manipulation removes the Ui from 6.32, starting with its time 
differentiation: 
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The result is identical: 

dt 

6.3 Harmonic Approach 

Before developing the discrete systems there is an alternate, and very powerful, way forward. Since 
many hyperbolic problems involve finding periodic solutions, then we assume from the start that 
the solutions are time-harmonic: 

j  = f l  is the imaginary unit. Ui is the complex amplitude of the solution Ui at node i; it includes 
amplitude and phase. w is the radian frequency of the motion, assumed known from the forcing. 
Insertion of this expression into Lumped System 1 produces 

Dividing by w2 we encounter the Courant Number K: 

and the Harmonic form of Lumped System 1 is: 

7 
(-1 + j - )  - KS; (6.43) 

Effectively we have reduced the system to elliptic form, by transforming away the time dimension. 

Figure 6.3: FD molecule for Harmonic System # 1, equation 
6.43 

Figure 6.3 illustrates this Harmonic System. The system is Tridiagonal, with complex coeffi- 
cients. Generally the solutions U will be complex also. When << 1 we have the lossless case 
and the matrix is real. In that case, the real and imaginary parts of Ui are independent of each 
other, and can be solved for independently. Boundary conditions are conventional elliptic types, 
and pose no special problems. Implementation of this system is straightforward in a computer 
language which supports complex data types; and it works well in terms of solution skill. Note 
however, that it is not diagonally dominant; so elliptic solvers which require this property are not 
effective here. 
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The same Harmonic System # 1 pertains to V, the Fourier transform of V, with the dual 
boundary conditions. 

Now let's introduce the system boundaries and the BC7s. In Figure 6.4 we have a uniform 1-D 
mesh, with both U and V defined at the nodes. Suppose the BC7s are Type I relative to U .  Then 
HS1 comprises N equations 6.43 for i = [I : N], plus the BC's Uo and UN+i from the Dirichlet 
data. The solution for U is complete, in conventional elliptic form. This works. 

Figure 6.4: One-dimensional mesh with boundaries at nodes 
0 and N + 1 .  

Now for the V solution. The same HS1 pertains on the interior, i = [l : N]. But the BC's are 
the dual of those for U .  From equation 6.3, the Dirichlet data are transformed into Neumann data: 

Now the path is clear; it is the path of the elliptic Neumann problem. Write the PDE approximation 
at the boundary, invoking a shadow node i = -1: 

and the FD version of the BC: 

and combine them to eliminate V-1: 

(Kl = Cl/wh.) This is the boundary molecule. It is O(h2). The analogous procedure embeds the 
Dirichlet data UN+l in the right-side boundary relation. There are now N + 2 equations in the 
N + 2 unknown Vi. 

The above procedure can be worked in reverse; suppose we have a Dirichlet problem in V. Solve 
the system of interior molecules subject to the Dirichlet data. Then, with Vi, i = [0, N + 11 known, 
use 6.47 to determine the proper value of Uo and the analogous relation at the right-side for Uo. 
Now solve the Dirichlet problem for U .  

The bottom line: HS1 works for both Dirichlet and Neumann problems. Except on the bound- 
aries, U and V are completely uncoupled. At a boundary, U and V are coupled in the two dual 
implementations of the single piece of data required there. It is therefore possible to avoid calcu- 
lation of one of these, say V, if the only interest is in U .  

Now let's look at Lumped System # 2 and its Harmonic representation. Introduction of U 
and V into LS2, equations 6.31, 6.32, we have 
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Introducing the dimensionless numbers1 Kl = Cl/wh and K2 = C2/wh we get 

These systems are completely coupled and must be solved simultaneously for U and V. Figure 6.5 
illustrates the situation. 

97799999 ........l i 

/ ] Boundary 

Dirichlet Data '=O 

Figure 6.5: One-dimensional mesh showing relation of 
Lumped (Harmonic) System 1 to boundary on left. There 
is a Dirichlet BC on U. 

There are two potentially separate systems of equations: a) those with involving odd-numbered 
Ui and even-numbered Vi; and b) even Ui, odd Vi. With Dirichlet data for 240, system b) is 
constrained. But system a) lacks a condition on Vo. 

The proper condition is a Neumann BC for Vo, equation 6.44. But the usual approach - first 
derivative centered on node 0 - leaves Vo unconstrained. And the use of equation 6.49 does not 
help, since it does not involve Vo or VP1. One way out is to use a second-order forward difference 
for g ,  involving Vo, Vl and V2, to enforce the Neumann Condition. That is illustrated in Figure 
6.6. In fact, we need not think of this explicitly as the enforcement of a Neumann BC at all - it 

] Neumann Condition 

Dirichlet Data i=O 

Figure 6.6: Use of second-order forward difference for g at 
node 0. 

amounts to using a one-sided replacement for 6.48 at the boundary of the Harmonic System. This 
is perhaps the most natural approach. 

 h he product Kl Kz = K , the Courant number. 
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An alternative is to use the telegraph-type boundary condition as above. We introduce the 
molecule from Harmonic System 1 at node 0, equation 6.45. This links the three variables V-1, Vo, 
and Vl together. Then the Neumann condition 6.46 involving V-l, Vl and the Dirichlet data for 
Uo is invoked. The result is depicted in Figure 6.7, and the merger of the boundary equations is 
given in equation 6.47, eliminating V-1. 

Telegraph Equation 

/ j Boundary 

Dirichlet Data i=O 

Figure 6.7: Use of telegraph equation for Vo, combined with 
central differencing for at node 0. 

6.4 More Lumped Systems 

Now these BC arrangements with HS2 are awkward. And the near-independence of odd and even 
solutions, with their potential to become uncoupled, is a threat. The complications are not a 
consequence of the Harmonic treatment of the time domain; they are embedded in the spatial 
discretization. Therefore none of these concerns get any better if we go back to the time domain 
- their presence can only be masked by further complexity in notation, etc. So it is natural to 
introduce a third Lumped System which does not have these complications. It is obtained by 
simply removing one of the solutions as in Figure 6.8. This is Harmonic System # 3; its time 
domain counterpart is Lumped System # 3. Its relations are the same as HS2/LS2, with the 
proviso that only odd-numbered Vi and even-numbered Ui exist. Instantly we gain a factor of 2 
in the number of degrees of freedom, and get the same dynamics; or, we can cut the mesh length 
in half, and get better resolution for the same investment of computer resources. And, we remove 
the threat of odd-even uncoupling. Imposition of BC's is easy in this system; one arranges a przori 
to have the mesh terminate on either a "U" node or a "V" node, whichever variable is known at 
that boundary. There is no need to invent a BC which is not part of the Primitive statement - 
either U or V is necessary and sufficient. This general arrangement is typically called a "Staggered 
Mesh". As we shall see there are many varieties of staggering in multiple (elliptic) dimensions. For 
completeness we record here the relations for Lumped System # 3: 

Harmonic System # 3 is the Fourier transform of LS3; replace with jw. To the extent that LS2 
is awkward, LS3 is refreshingly straightforward. It is very popular and effective. 
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Dirichlet Data '=O 

Figure 6.8: Staggered mesh. Implementation of the Primi- 
tive Pair on this mesh constitutes Lumped System # 3; its 
Fourier Transform is Harmonic System # 3. 

Earlier we pointed out that LS2 had an effective footprint of 4h (equation 6.35). Now the 
eflectiue mesh spacing in LS3 is the distance between adjacent Ui (or Vi): = 2h. This is illustrated 
in Figure 6.9. 

Figure 6.9: Lumped System 3. The mesh is the same as for 
LS1 and LS2, except that the variables are defined only at 
alternating nodes, with effective mesh length k = 2h. 

Defining k = 2h, and retracing our steps leading to equation 6.35, we obtain 

The LS3 is identical to LS1, if the effective mesh lenghts of the two systems (distance between 
adjacent Ui) are made equal. Eliminating every other solution variable, and staggering the mesh, 
has greatly simplified our lives! There are fewer variables, no oddleven conundrum and its invitation 
to parasitic modes, and good correspondence with the continuous system properties. Provided 
complications are not introduced at the boundaries, LS1 and LS3 are achieving the same thing. 

There is another kind of staggered grid, illustrated in Figure 6.10. Here we go back to defining 
both U and V at the same points. But instead of enforcing the PDE approximations at the nodes, 
we enforce them midway between the nodes. This system is used with the Primitive Pair; it is 
Lumped System # 4: 

Here hi+ll2 is the distance between node i and i + 1. This is an O(h2) system even when h is 
variable. 
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Figure 6.10: Lumped System # 4. Both U and V are defined 
at every node; the primitive pair of PDE's are both enforced 
midway between the nodes. 

6.5 Dispersion Relationship 

In this section we develop the dispersion relation for the continuous (analytic) and lumped systems 
considered so far. We are looking for correspondence between the two. Quantitative correspondence 
is a measure of accuracy; qualitative non-correspondence is usually an indication of the presence of 
parasitic modes of the lumped system which have no counterpart in the continuum. 

The method of analysis - Fourier analysis of the PDE and its approximants - was introduced 
in Chapter 5 and the reader is advised to master that material first. 

Continuous System 

The governing Telegraph equation is 

We will seek solutions of the form 
U = A ~ " ~ & ~ ~  

with j = Q. a is the spatial wavenumber for a given Fourier mode of wavelength A: aX = 2n. 
We will assume a is given; we want the dispersion relationship a, for a given a. We will assume a 
is real; a will generally be complex. 

Inserting 6.59 into the telegraph equation we get: 

The solution to this quadratic equation is 

and reassembling the solution, 
U = Ae-$tej~[~*d-t] 

The first part, e-iit, is real and represents pure decay. It is unity in the lossless case r = 0. The 

second part e j " [ ~ ' M t l  represents, for small r ,  a propagating wave with constant amplitude 
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and speed f C2 - (&)2. The lossless speed is f C; increasing T slows the propagation down. For 7 
large T, the system is completely damped and waves do not propagate at all. This occurs when 
712 > C o  = Fc, in which case a is real. This condition also happens at moderate T, when the 
the spatial wavelength X is very long. Otherwise, with 712 < C o  = F C ,  a wave propagates and 
damps, and its magnitude after an elapsed time NAt is given by 

We may also seek the dispersion relationship for the Primitive Pair: 

In matrix form, this is 

Assuming vector solutions of the form 

we obtain the matrix equation 

For nontrivial solutions, we must have the determinant vanish. That condition is 

and since C2 = C1C2, we have 
a2 +7a+c202 = o 

This quadratic equation in a is the same as that obtained from the telegraph equation. These two 
descriptions have identical dispersion relations. 

Lumped System # 1 

Lumped System #1 is the discretized telegraph equation: 

As before we will assume solutions of the form 
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and as before, for a given Fourier mode a we have 

and the difference operator S2 produces 

With these substitutions, 6.71 gives us 

and the solution to this quadratic equation gives the dispersion relation: 

There is a familiar discretization factor here, [*I2, which ranges from roughly 0.4 at the 

Nyquist point, to unity at high resolution. As 9 + 0, a becomes perfect. For finite ah, we incur 
a discretization error but still retain qualitative fidelity. The threshold for critical damping (no 
propagation) is shifted from its analytic counterpart: 

T sin ah12 
- 2 > [ oh12 ] 

Higher T results in pure decay; lower T results in wave propagation. Critical damping will set in at 
lower values of T if the discretization is coarse. For propagating modes, we have perfect amplitude 
decay for this system; the discretization error occurs in the phase of the solution relative to the 
analytic. In the worst case of the Nyquist modes, a h  = .rr, we have both propagation and damping 
by Lumped System # 1. Significant errors will occur in the phasing of these modes; but they will 
propagate with finite speed; there is no opportunity for the least-resolved modes to become trapped 
at their source, unless due to critical damping, in which case their pure decay is qualitatively right. 

Lumped System # 2 

This System is based directly on the Primitive Pair: 

As above, we seek solutions of the form 

The first difference operator becomes 
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and the lumped Primitive Pair becomes 

sin a h  

sin a h  
a 

For nontrivial solutions, we need the determinant to vanish: 

sinah 
a 2 + i a + ~ 2 [ " ]  = O  

and the roots are 

2 
This is remarkably similar to 6.77 for LS1; the only difference is the discretization factor, [y] 

smoh 2 here for LS3, [dl for LS1. Both of these factors approximate unity, and are perfect for high 
resolution. But the discrepancy grows as we approach the Nyquist point, a h  +- 7r. While LS1 

2 
maintained at least qualitative fidelity there, LS2 loses it; [V] +- 0 and we have two real roots 

Both Nyquist solutions fail to propagate. One decays at the rate T; the other does not decay at 
all! What is happening is, these solutions are indistinguishable numerically from ones with infinite 
wavelength, the exact opposite of the truth! The centered first derivative detects no slope in this 
solution. If we go back to the matrix equation 6.82, we can see this clearly for the Nyquist mode: 

The S operator produces nothing! And the two solutions are uncoupled: 
One solution is ( a  + r)Ui = 0. U decays with a = -7, independent of V 
The other is aVi = 0. V persists forever with a = 0, independent of U .  

This is a serious qualitative flaw in LS2 which has no resemblance at all to the continuum. It 
arises in the first centered difference being used twice, and the related 4h footprint of this system. 
LS1 uses the second centered difference, with footprint 2h, and avoids this complication. This 
qualitative flaw in LS2 affects the complete spectrum between 2h 5 X 5 4h (7r 2 a h  2 7r/2). 

For well-resolved spatial modes, LS2 has good fidelity to the continuum both qualitatively and 
quantitatively. For solutions which propagate, ( j a ~ j G Z G E ) ,  the numerical damping is perfect, 
while the wave speed suffers some discretization error - as in LS1 but different in detail. 

Lumped System # 3 

This qualitative infidelity in LS2 is absent in LS3. Recall that LS3 is the same as LS2 except that 
half of the equations and unknowns are removed; and the surviving variables are staggered with 
effective mesh spacing k = 2h (Figure 6.9). Along with the elimination of odd (even) variables, 
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we eliminate the portion of the Fourier spectrum X < 4h, which was the problem area above. 
Equivalently, we have 2k < X < oo for this system. 

Since the equations are unchanged, we have the same dispersion relation as for LS2, equation 
6.84. Re-expressing that in terms of the effective mesh spacing Ic, we have for LS3: 

T sin ak/2 2 
a=--*ja\ic2[ 2 a1c/2 1'-(&) 

This is the identical dispersion relation as for LS1 (telegraph equation), if we use the appropriate 
mesh spacing - the distance between solution points - in each case. (Compare with equation 6.77). 
So the Primitive Pair discretized on a staggered grid (LS3) has identical dispersion properties as 
the Telegraph Equation (LS 1) at equivalent resolution. Both are free of parasitic, poorly-resolved 
modes which infect LS2. 

Lumped System # 4 

This is the LS where we center the molecules between the nodes of an unstaggered mesh as shown 
in Figure 6.10. On a mesh of N interior nodes, there are 2(N + 2) nodal variables, 2(N + 1) PDE's 
and 2 BC's. Proceeding as above we have 

Setting the determinant of this to zero, and some trigonometric manipulation, gives us 

The solution is 

Here we have introduced anoth'er discretization factor, [ I .  This approaches unity at high 
resolution, such that the Lumped System dispersion relation approaches perfection at that limit. As 
we approach the Nyquist point, tan.rr/2 +- oo and the wavespeed increases without bound, while 
still maintaining the finite decay rate 712. Poorly-resolved spatial modes propagate essentially 
instantaneously throughout the system once introduced. 

Figure 6.11 (top) is a plot of the dispersion relation for the four Lumped Systems considered 
here, for the lossless case (T = 0). The quantities plotted are the dimensionless forms: A = @ 

ac versus S = ah. The full range of S is shown, 0 5 S 5 .rr i.e. oo 2 X 2 2h. For large S the spatial 
discretization is coarse; LS1 and LS3 do well qualitatively but their quantitative fidelity falls off. 
LS2 is "folded" back to zero at the Nyquist point S = .rr; waves at that limit neither propagate nor 
decay. LS4 is singular at S = .rr, indicating an unbounded propagation speed and an ambiguous 
fate for these waves, critically dependent on the boundary conditions. 

All these Lumped Systems show good fidelity for well-resolved modes. A reasonable threshold 
for resolution is about 10 nodes per wavelength; = 10 corresponds to S = .27r and Figure 6.11 
(bottom) shows good quantitative and qualitative fidelity for all systems for S 5 .27r. 
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Dispersion Relation 
L S ~ '  

Figure 6.11: Dimensionless dispersion relation for contin- 
uous (analytic) and lumped systems. A E *; S E ah. 

3 C 
Left: The full range of S is shown, from perfect resolution 
( S  = 0, X = oo) to the Nyquist point ( S  = T, X = 2h). Right: 
The well-resolved range of small S is highlighted. S 5 .27r 
corresponds to 10 or more nodes per wavelength. 

6.6 Time-Domain Simulation: Discrete Systems 

Introduction 

Finally we will discuss some common time-stepping simulation approaches. We will concentrate 
on Lumped System # 1 (telegraph equation) and #3 (primitive pair on a staggered mesh) in one 
Elliptic (spatial) dimension. LS2 is basically disqualified due to its support of parasitic modes. We 
will also look at LS4 - although it has no obvious counterpart beyond 1-D, it is useful in 1-D wave 
propagation studies. 

We need to introduce the solution notation 

with superscript I indicating time levels separated by uniform increments At, and subscript i 
indicating position on a uniform x-grid with spacing h. 

For analysis purposes, we extend that introduced for the dispersion studies above, in discrete 
form: 

U: = y l e j c ~  (6.92) 

The Fourier wavenumber a is as defined above; y is a discrete-time analog of a: 

We treated this decomposition before, in connection with Parabolic Systems. The analysis is the 
same here. For stability, we require 

171 < 1 (6.94) 
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for all feasible values of a. Here however we will find that y is, or at least should be, complex, so 
we will have to be a little more careful. For accuracy purposes, we define the Propagation Factor 

where the subscripts refer to discrete and continuous systems. Essentially, we want yd to be as 
close as possible to its continuous-system counterpart ye, so a value T = 1 is perfection. However 
there is a complication - y converges to unity anyway as At gets small. So we need to make the 
comparison at a fixed time in the future, based on a natural timescale to of the continuous system: 
NAt = to. So N needs to grow as At shrinks. 

From the continuous system, 

It is convenient to define to as the time it takes for the continuous system to propagate one wave- 
length: 

Substituting NAt = to, and a little rearrangement, leads to 

and we have three dimensionless numbers K, S ,  and 7 ,  in addition to N: 

K is the Courant Number, the most important dimensionless number in hyperbolic systems. 

Under these conditions the continuous system gives 

This is a real number; the analytic solution has decayed and propagated exactly one wavelength. 
The Propagation Factor is 

This is a complex number since the discrete system will have imperfect wave speed. IT1 gives the 
magnitude of the wave in the discrete system relative to that in the continuous system. IT1 = 1 is 
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perfection. The argument of T (its angle in the complex plane), is the same as the argument of y: 
(Figure 6.12). Perfection for this metric is 27r. It is useful to observe that 

We summarize the central points: 

y is the ratio of Ui after one time step, to its starting value 
y 5 1 is necessary for stability 
T is the ratio of discrete to continuous solution, starting from the same IC's, at a point in 
the future when a wave in the continuous system has propagated one wavelength. 
IT1 is the measure of amplitude fidelity. IT1 = 1 is perfect. 
arg(T) is the measure of phase fidelity. arg(T) = 27r is perfect. 

Below we will develop expressions for yd for some common discrete systems. 

Figure 6.12: yd in the complex plane. 45 = argyd. Perfect 
phase occurs when N$ = 27r. 

Discrete System 1 (Telegraph Equation) 

This is the most natural approach to the Telegraph Equation: building on LS1 which used the 
centered, second-order approximation 62 for the second derivative, do the same in the time domain. 
The Lumped System is 

and the Discrete System is 

The molecule is shown in Figure 6.13. Recall that K: = C? is the Courant Number. 

This system has several interesting properties 
it is centered in x and t ,  therefore second-order correct; 
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Figure 6.13: Discrete System # 1, explicit version. 

it is explicit-in-time, therefore no matrix factorization is needed; 
it is stable if iC2 < 1, as a result of its explicitness; 
there are no parasites: LS1 was immune, and this adds none. 

Particularly interesting here is the stability condition. This molecule "looks like" the standard 
Laplacian in 2-D, the workhorse of Elliptic systems. We found above that the equivalent molecule 
for Parabolic Systems was unconditionally unstable! In the Hyperbolic Case, we have conditional 
stability; essentially the grid (h, At) must be such that the numerical solution does not build from 
IC's faster that the continuum would have (see Figure 6.1). That is one interpretation of the 
Courant Number. 

We will explore some of these properties below. But first there is an interesting implicit gener- 
alization of this system: 

Here we have simply moved a fraction of the Laplacian (62) term to the new level, balanced with an 
equal fraction at the old level. The implicitness is controlled by the new parameter 8; the system is 
centered-in time regardless of the value of 8. The molecule is illustrated in Figure 6.14. It reduces 
to the explicit version just described when 8 = 0. 

This implicit system has the following properties: 
it is centered in x and t, therefore second-order correct; 
8 = 0 reduces to the explicit system presented above; 
13 > 0 is implicit; a matrix factorization involving the unknowns at time 1 + 1 is required to 
get ahead 
no parasites are supported; 
stability is unconditional if 8 > 112, i.e. no value of At can destabilize the calculations. 
Relative to the explicit version, the 62 operator at level I + 1 is responsible for the stability. 

1 for 8 < 112, we have conditional stability when iC2 < m. 
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Figure 6.14: Discrete System # 1, implicit version. 

We can derive some of these properties by looking at the Fourier analysis. For the general implicit 
scheme, we have the substitutions 

6:~: = -4 [sin (;)I U: 

with 0 5 S 5 .rr. Direct application to equation 6.109 gives us the quadratic equation in y: 

(y2 - 2y + 1) + T (y2 - 1) + 4x2 [ sin (;)I2 [5(y2 + 1) + (1 - 8). = 0 1 (6.112) 

Now elsewhere (see Appendix) we show that the roots of the quadratic equation 

are stable (1x1 5 1 for each root) provided 
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(These rules require a,  b, c real and a > 0.) Applying these, we find that this scheme is stable when 

This is always true for 8 > 112; so that guarantees unconditional stability. For 0 < 112, the worst 
case is at the Nyquist point, S = n. In that case, we have Courant Number-dependent stability: 

For accuracy studies, the propagation factor is based on y, which is obtained by solution of 6.113. 
We leave that to the student as an exercise. For the explicit case, 8 = 0, we have: 

with Q defined for convenience: 
2 

Q = 4x2 [sin (;)I 
Propagating waves are characterized as having the quantity under the radical positive; otherwise, 
we have critical damping. It is easy to confirm that, for propagating waves and 8 = 0, 

independently of spatial resolution. The wavenumber independence is a property of the continuous 
system. This is a second-order correct approximation to the continuum version e2"At. For the 
lossless case, Iyl = 1 is perfect. All error is vested in the phasing in that case. 

More generally, for 13 # 0, we have 

[I - T + 4x2 [sin ($)I j] 
IyI2 = (6.122) 

[I + T + 4x2 [sin ($)I g ]  
There are many more interesting properties of y and T to be explored here, including the phase 
errors and the onset of critical damping. We leave these to the reader as exercises. 

Discrete Systems 3: Coupled lst Order Equations 

This System is based on the primitive pair, a staggered spatial mesh: 

dUi SV, 
dt 
- +7ui -C1- = 0 

2h 

We invoke some new dimensionless number definitions: 

c1 At x1 = - 
h 

C2 At x2 = - 
h 
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in addition to the previous ones 

and the Fourier substitutions 
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In all these staggered-mesh systems, the Nyquist point is at S = ~ / 2 ,  since the effective mesh 
spacing is 2h. 

a) Euler Explicit System. Simple Euler time-stepping gives us 

The molecules for this system are illustrated in Figure 6.15. It is understood that the mesh spacing 
2h separates adjacent U solutions, etc. Assuming Fourier spatial modes, we have the matrix 
equation 

Setting the determinant to zero we obtain the quadratic equation 

The stability requirements ( 1  y 1  5 1) are 

and 

7 5 1  

These are severe. In the lossless case, we have unconditional instability. For many practical settings, 
this is a useless system. If we make the loss term TU implicit - i.e. move it forward to time level 
( 1  + 1) - the stability constraint 7 5 1 is removed, leaving only 9 5 7. This does not change the 
basic assessment here. The reader is encouraged to confirm this. 

Figure 6.16 illustrates the system of assembled molecules for DS3a, emphasizing the grid staggering 
and its relation to the molecule assembly. 
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Figure 6.15: Two separate molecules for Euler discretization 
of the primitive pair on a staggered id. This is Discrete 
System 3a. The x-axis is horizontal; t 8: e t-axis is vertical. 

Figure 6.16: DS3a: Explicit time-stepping for LS3 as in 
Figure 6.15. This system is unconditionally unstable for the 
lossless case. Here and in the following Figures the bold- 
face lines indicate the molecules for dV/dt; and the t-axis is 
vertical. 

b) Explicit/Implicit Euler System. In this System, we solve explicitly for U as above. 
But with ul+l in hand, we solve for the new V implicitly, by backward differencing of the time 
derivative: 

This is illustrated in Figures 6.17 and 6.18. Despite the implicit molecule, the two parts are solved 
sequentially; no matrices need factorization in this algorithm. 

Figure 6.17: Two separate molecules for Euler Ex- 
plicit/Implicit System on a staggered grid. The molecule for 
dU/dt is unchanged from DS3a. The dV/dt term is Back- 
ward "Euler". This is Discrete System 3b. Sequential solu- 
tion requires no matrix factorization. 

The matrix representation for Fourier modes is 

A t  - j " s i n " { ~ }  = 0 
- j?K2 sin S 7 - 1 
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v- u- w u - v -  u-v- u  
I v- I u- I v- I I I I I 

U T 7 -  U V - u  
Figure 6.18: DS3b: Explicit-Implicit time-stepping for LS3 
as in Fi re 6.17. These molecules are explicit in U, implicit 
in V. !?-' equential solution for U first, then V, enables a 
complete timestep with no matrix factorization . 

Only a single term has changed in this matrix - the insertion of y in the lower left entry, reflecting 
its shift forward in time. The quadratic equation expressing Det[ ] = 0 is: 

and this will be stable provided that 
IC2 1 4(1- 7) 

Now this is a workable system; for the lossless case, the Courant number limitation resembles a 
purely explicit system, which this in effect is. 

Without compromising the explicitness of this system, we can move the loss term rUi forward in 
time. If this term is advanced to time level (1 + I),  the stability is improved a little: IC2 5 4(1+ 7 ) .  
If we "center" the loss term: 

and leave the dV/dt equation unchanged, the matrix becomes 

The quadratic equation for this determinant's vanishing is 

Now this is a remarkable result. Refer to equation 6.113, the comparable quadratic governing 
the explicit form of Discrete System 1 (Telegraph Equation with 8 = 0). The present result for 
DS3b is identical - if one adjusts for the fact that in DS3b we have the effective mesh spacing 2h. 
Evidently the propagation properties of both systems are the same! Since DS1 is second-order in 
time, so must be DS3b. But DS3b used Euler time-derivatives; so evidently the forwardlbackward 
differencing causes the O(At) truncation errors to cancel. In addition to this accuracy boost, we 
also get a workable stability condition requiring Courant Number of order unity. 

c) Split-Time System 

This system descends from DS3b. By staggering U and V in time as well as space, we obtain 
the arrangement as shown in Figure 6.19. We define one set of variables, say V, at the half-levels 
1 - $,I  + $, 1 + g,  . . . , then we have the equations 
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It is evident that this is just a shift in nomenclature from DS3b. Adopting the Fourier convention 

v ~ + +  = Yvl--2 (6.150) 

we have the matrix representation 

' ~ - l + F ( ~ + l )  -jiClsinS 
- jyX2 sin s Y - 1 ] { ) = o  

This is identical to DSSb, with a simple notational shift. The split-step system is clearly centered- 
in-time, with all first derivatives explicit - that illumines the quandary above about second-order 
correctness for Euler timestepping. By reference the propagation behaviour of DS3c is identical 
to the explicit form of DS1 (telegraph equation), also. This system can alternately be viewed as 
a centered, explicit treatment of both parts of the primitive pair, on a time- and space- staggered 
grid. 

Figure 6.19: DS3c: Time-splitting discretization of LS3. U 
and V are defined at alternate levels in time. This system 
is obtained a) from the Explicit/Implicit system by shifting 
the dV/dt molecules and the V solution by At/2; or b) as a 
centered system of first derivatives, starting with the time- 
staggered mesh. The separation between U solutions is At. 
The system is completely centered and explicit. 

There is one difficulty with either of these views of DS3b - they are not self-starting. The time- 
split grid requires U and V at separate points in time, separated by %; the proper IC's are U and 
V at the same point in time. This is an invitation for a parasite to arise in the IC implementation. 
(There is a O(At) initialization of an O(At2) system.) The dilemma does not arise when the system 
is viewed as DS3b. 

d) Leapfrog 

In the same lipe of thought, we can define a centered "leapfrog" time-stepping for the primitive 
pair without staggering in the time-domain. The discrete system is 

This is totally centered in time and space. The molecules are illustrated in Figure 6.20. Notice 
that the dU/dt molecules "leap over" the U variables defined at their centers; and likewise for the 
dV/dt molecules. Time-splitting simply eliminates these unused variables. 
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Figure 6.20: Leapfrog molecules. The mesh is staggered- 
in-space with effective spacing 2h; but not in time. The 
molecules ignore the variables at their centers. As a result 
there is a parasitic mode representing odd-even uncoupling. 

The Fourier matrix is 

y2 - 1 + rAt(y2 + 1) -2jyK1 s i n s  
-2jyl~2 sin s y2 - 1 ] { } = 0  

and the characteristic equation is 

If we concentrate on y2, then we find that this is the identical quadratic equation characterizing the 
split-step system, allowing for the change in effective timestep 2At here. Even-numbered solutions 
will have the same dynamics as DS3c, and by extension to DS3b and DS1 (explicit). We keep 
getting this result. 

However, here we have an additional problem: even-odd uncoupling. There are 2 sets of solutions 
which are completely unrelated. While the root y2 is at least qualitatively faithful to the continuum, 
the roots y = f y2 are problematic - one is faithful, the other is a parasite describing the oddleven 
relationship. The related solution mode is initiated in the IC's (this molecule requires 2 time 
levels of both U and V); and fed by imprecision along the way. DS3c dealt with this problem 
by elimination: the time-splitting eliminated either the odd or the even solutions. Given that this 
system doubles the number of unknowns, does not resolve the need for extra IC's, and adds nothing 
in terms of accuracy or qualitative fidelity, there is little to recommend it relative to DS3c. 

It is interesting to consider moving the loss term TU around in time. In particular, centering it 
entirely leads to unconditional instability! (The reader is encouraged to develop this result.) 

From Lumped System 3, we arrive at two useful time-stepping algorithms which are second- 
order correct: DS3b and DS3c. Although they initially look different, they are in fact the same. 
They both involve staggering the mesh in space and time. Their relation to the leapfrog system is 
illustrated in Figure 6.21. 

The space-staggering eliminates problematic modes by effectively making the Nyquist cutoff at 
X = 4h. The time-splitting eliminates parasitic odd-even decoupling. (These are manifestations 
of the same feature in x and t.) DS3c clarifies the second-order accuracy, but invites IC problems 
which do not arise with DS3b. Stability is conditional, with a reasonable explicit limit on K. 
Extensions to 2 and 3 elliptic dimensions are reasonable and generally preserve these qualities. 
Accuracy for DS3b/c is the same as the explicit form of DS1. 
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Figure 6.21: B removing the degrees of freedom at the 
centers of the i eapfrog molecules, we obtain a time-split 
system, identical to DS3c. 

Discrete System 4: Implicit Four-Point Primitive 

Lumped System 4 is based on a non-staggered spatial mesh, with the PDE approximants centered 
between the nodes: 

This admits a very compact, implicit time discretization involving 2 time levels and centered some- 
where between them: 

Figure 6.22: DS4. A compact implicit 4-point molecule with 
no timesplitting and no spatial staggering. The centered 
(0 = .5) version is shown. 

The molecule for this system is illustrated in Figure 6.22. When 0 = .5, it is second-order correct. 
The reader is encouraged to develop the analysis of this molecule. Interestingly, this value walks 
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the line with respect to stability: unconditional stability when 8 > 112; otherwise, unconditional 
instability. As an instance of LS4, it also does a reasonable qualitative job with poorly resolved 
spatial modes as described in the previous section. Because of its compact nature, there is no 
problem with parasitic temporal modes. 

6.7 Lumped Systems in Higher Dimensions 

The extension of the hyperbolic systems to two or more elliptic dimensions invites considerable 
complexity, originating in the various physical applications themselves. In particular, some of the 
dependent variables become vectors or tensors, while some remain scalars. This complexity is 
masked in 1-D where the unifying structure is most obvious, and where many of the essential ideas 
about numerical implementation are exposed. 

We will look here at the 2-D system comprising the scalar U and the vector V = (V,, V,): 

or equivalently, in more compact form, 

This is the primitive pair. The 2-D telegraph equations for U and for V are obtained by the usual 
operations. For the case where Cl and C2 are constants, we have 

The Hyperbolic System as posed here favors the Fluid Mechanics instance, by associating the 
vector V with fluid velocity and the scalar U with pressure. There is a dual statement of the 
problem in Electricity and Magnetism. For the plane case, we have the scalar Hz representing 
the normal (z-directed) magnetic field, and the vector E representing the in-plane electric field 
(Ex, E,). The primitive Maxwell System is 
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So if we associate Hz with U, and (-Ey, Ex) with (Vz, Vg) the 2-D Maxwell system is identical to 
6.160-6.166 above. We will use equations 6.160-6.166 in the present exposition. 

(In 3-D the Maxwell System requires vector fields for both H and E; the primitive pair is 

and there is a general vector telegraph equation for both fields. The vector identity V x (V x A) = 
V (V . A) - V2A is useful in processing these equations.) 

Lumped System # 1 

This system is based on straightforward implementation of the telegraph equation in 2-D: 

This relies on the conventional strength of the 5-point numerical Laplacian, illustrated in Figure 
6.23. It collapses to the l-D Lumped System studied above, for l-D situations. There are no special 
considerations in 2-D which are not exposed in l-D. This system works well, either in Harmonic form 
(not diagonally dominant), or in time-stepping form, in which case there are stability considerations 
(discussed below). 

O yt 
Figure 6.23: Lumped System # 1 in 2-D. 

Lumped System # 2 

This system is based on the primitive pair, with centered first differences replacing the first deriva- 
tives in x and u: 

This is the 1-D Lumped System # 2 with straightforward extension to include y-dependence. Its 
implementation on a non-staggered grid is illustrated in Figure 6.24. This system suffers from the 
short-wave problems identified in l-D; they are present in both spatial dimensions here. 
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Figure 6.24: Lumped System # 2. The three separate 
molecules are centered-in-space; all three variables are de- 
fined at all points. The central entry in each molecule oc- 
cupies the identical position in the grid, as indicated by the 
dotted lines. 

Lumped System # 3C 

Simply by shifting the molecules of LS2 in Figure 6.24, we can obtain LS3. The equations are 
identical, with the understanding that the variables are only defined at alternating points as in 1- 
D. This is depicted in Figure 6.25. This molecule is parasite-free and always favoved over LS2, for 
reasons which were already exposed in the l-D analysis. It was (re)invented indendently Platzman 
[97], Arakawa [4, 51 and Leendertse [53] in Geophysical Fluid Dynamics (Arakawa's "C" grid), and 
by Yee [I161 in Electromagnetism. It remains in popular use in both fields. 

Lumped System # 4 

This System was useful in l-D; however there is no direct analogy in 2-D. Its generalizations produce 
an unequal number of equations and unknowns, making it unworkable. 

Arakawa Systems 

Starting from LS2, there are many ways to introduce grid staggering in 2-D. These were studied 
and classified by Arakawa [4, 51 and are illustrated in Figure 6.26. The Arakawa "A" scheme is 
non-staggered, and equivalent to LS2 herein. The "C" scheme was introduced above as LS3; the 
"B" and "E" schemes are also presented in Figure 6.26; they have the property that both vector 
components (V,, Vy) are defined at the same points, but staggered relative to the scalar U. There 
are applications where this becomes important in meteorology and oceanography. 
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Figure 6.25: Lumped System # 3C. Staggered-grid version 
of Lumped System # 2. The three separate molecules are 
centered-in-space in an overlapping pattern as indicated by 
the dashed lines. Only one variable is defined at an one 
point of the grid. This is the Arakawa "C" pattern in dgure 
6.26. 

U U U U U U 
Arakawa B Arakawa C 

vx,vy u vx, & 
Arakawa E 

Figure 6.26: Lumped System # 3: various staggered-mesh 
arrangements in 2-D. The classification is from Arakawa 14, 
51. ~ g e  "C" system is identical to LS3 presented in ~ i ~ i r e  
6.25. 



Part I1 

The Finite Element Method 



Chapter 7 

General Principles 

Fundamental to the FEM is the notion of determining an approximate solution ii which comes close 
to the unknown true solution u for a given problem. From the outset we require that the function 
ii will be defined everywhere in terms of a finite set of mathematical basis functions $j(x) whose 
properties are a priori well-known: 

The coefficients u j  are the primary unknowns of any problem once the basis has been selected. 
Examples of sets of basis functions $j(x) abound in mathematical physics and numerical analysis: 
Fourier, Chebyshev, Bessel, and the other special functions; and various polynomial bases including 
Taylor and Lagrange polynomials, splines, etc. In any practical problem, the basis in use will 
necessarily be finite and incomplete - i. e. incapable except in lucky cases of representing the exact 
solution perfectly. Any numerical solution may be viewed, then, as a 2-step process. First, select a 
basis which is likely to fit the unknown solution (i .e.  contain its major features) for the particular 
problem. And second, determine the coefficients u j  in a reliable way. 

We will discuss the latter aspect first, in the context of well-known bases. Then we look at the 
bases commonly used in the FEM. 

7.1 The Method of Weighted Residuals 

Use of a finite or incomplete basis guarantees that in general a given differential equation cannot 
be satisfied everywhere, leaving an imbalance or residual everywhere. For example, consider the 
Helmholtz equation 

v2u+ f u = g  (7.2) 

with f and g known. By definition, the unknown function u satisfies this equation everywhere. 
However approximating u in a finite basis as ii, we define the residual R 

which will generally be nonzero. Clearly, R depends on the selection of both the basis 41~ and the 
coefficients uj. Enlightened, problem-dependent basis selection is the first step towards a small 
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residual. Then, given a finite basis, one must concentrate on making R small in some average way 
by choosing the coefficients uj. 

One way to formalize this idea of determining u j  is the Method of Weighted Residuals (MWR) 
- in which R is required to vanish in a weighted integral sense. In Cartesian space we have 

for a set of distinct weighting functions Wi(x), i = 1, N, and the integration performed over the 
full domain in which the differential equation governs. Throughout we will use the inner product 
notation < , > to indicate domain (volume) integration: 

and the MWR is stated compactly 

(R, wi) = o i = 1, N (7.6) 

Equivalently, "R is orthogonal to Wi." With N basis functions 4i selected a priori, a choice of N 
independent weighting functions Wi will determine the N unknown uj. This is the essence of the 
Method of Weighted Residuals. 

Note that for the exact solution, R = 0 everywhere and (7.6) is satisfied for any and all finite 
weighting functions Wi. Satisfaction of (7.6) is therefore a necessary but not sufficient condition 
for finding the true solution. If the set of weighting functions is complete - in the sense that it 
contains all possible residuals of the differential equation - then the condition (7.6) that R be 
orthogonal to a complete set of weighting functions leaves only one possibility: R = 0 everywhere 
i.e. we obtain the exact solution C = u. Of course, in practice the weighting functions Wi will be 
finite and incomplete, just as the basis 4i will not be complete. If we conceive of Wi as the first N 
members of a complete set, and likewise for 4j, we may conceptualize the process of convergence 
as one in which the sets of weighting and basis functions are made progressively more complete. In 
the process, the possibilities for nonzero residual are diminished and R is ultimately annihilated, 
with C converging to u. 

Several common methods may be categorized as MWR's: 

Galerkin Method: in which the weighting functions are identical to the basis functions: 

This is used extensively with finite elements and with spectral methods, the latter using 
orthogonal basis functions. 

Least-Squares Method: in which the objective is to minimize < R~ > with respect to each 
of the ui independently. The result is the MWR requirement 

and we recognize the weighting function 



7.2. M W R  EXAMPLES 

In the case of the Helmholtz equation (7.2), this becomes 

Subdomain Method: in which the weighting functions are uniform over a finite subdomain, 
and vanish elsewhere: 

Wi = Si (7.11) 

(see Figure 7.1). Use of compact, local subdomains (e.9. contiguous square boxes filling the 
plane) leads to recognizable finite difference approximations (see example below at section 
7.2). 

Figure 7.1: Subdomain method in 1-D: example of two 
weighting functions. 

Collocation Method: in which the residual is set to zero at discrete, predefined points xi. 
This may be cast as a MWR with Dirac delta functions as the weighting functions: 

Careful selection of the collocation points xi can provide powerful advantages; with certain 
bases, collocation and Galerkin methods can be shown to be identical. 

7.2 MWR Examples 

It is useful to examine some familiar 1-D examples in MWR form. For example, consider the simple 
approximation problem 

~ = g ( x )  01x11 (7.13) 

where g(x) is to be given with g(0) = g(1) = 0, and a Fourier sine series is desired: 

We may consider this a "zero-order" differential equation in u; note that C exactly satisfies the 
boundary conditions because of the properties of the basis. The residual is 
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and the MWR statement is 

or, interchanging the order of summation and integration, 

In matrix form we have: 

[Al{u) = {b) 

with the coefficients given in terms of integrals of basis and weighting functions: 

bi = (9, Wi) 

The choice of Wi will now determine the ui. The classic choice 

i ~ x  
Wi = sin (-) 

I 

exploits the orthogonality of the Fourier basis, ((sin (y), sin (T)) = 0 for i # j ) ,  rendering the 
[A] matrix diagonal. It may be arrived at via Least Squares or Galerkin method in this case. The 
inversion of (7.18) is now trivial: 

which is the classical result for the Fourier sine series. 

As a second example, consider the 1-D version of the Helmholtz equation 

with g(x) known, f constant, and boundary conditions as above: 

We will use the Fourier sine basis (7.14) which fits the BC's as above. For the second derivative, 
we have 

and the residual follows: 

j7rx 
R(X) = uj [f - (7) ] sin ( )  - g(x) 

j 

The weighted residual statement then takes the matrix form similar to (7.18): 

[A'l{u) = {b) 
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as above. The matrix [A'] will again be diagonalized if we exploit the orthogonality of the Fourier 
basis functions by choosing either Galerkin: 

Z T X  
Wi = sin (-) 

I 

or Least-Squares: 

In either case we arrive at the same classical result by inversion of [A'] : 

(g, sin ( 9 ) )  
Ui = 

[f - ( 9  )2] (sin' ( 9  )) 

i.e. the Fourier sine transform of the forcing function g divided by the transform of the Helmholtz 
operator. 

The diagonalization of [A'] in (7.27) and the resultant simplicity of (7.32) is a direct consequence 
of the selection of basis and weighting functions which are a) orthogonal and b) eigenfunctions of the 
differential operator. The result (7.32) is readily generalized across the broad set of Sturm-Liouville 
problems [44]. For simple geometry, the orthogonal eigenfunctions of several model differential op- 
erators have been extensively studied and constitute the Special Functions of mathematical physics. 
Their use in such simple problems is natural and elegant. For complex geometry, however, the prob- 
lem of determining the natural basis in terms of orthogonal eigenfunctions can be computationally 
overwhelming. In such realistic cases, then, one seeks a more humble (nonorthogonal) basis and 
should anticipate the need to solve a non-diagonal version of (7.27). 

Figure 7.2: Subdomain approach on a regular grid. 

As a third MWR example, consider the subdomain approach to the 1-D Helmholtz equation 
(7.23). We take as subdomains the contiguous finite difference cells as illustrated in Figure 7.2. 



CHAPTER 7. GENERAL PRINCIPLES 

The MWR using Wi as shown gives 

dii 4 
R dxz-1  , +hfiLi-hgi=O 

dx - z  

where the overbar indicates the average value on subdomain i. If for a basis we choose quadratic 
variation among the 3 nodes 

then it is readily verified that (7.33) reduces to 

The first term is the conventional 2nd-order finite difference approximation to e; the second term 
is a local average reflecting this choice of basis and weighting functions. 

Alternatively, we could choose a linear variation in ii(x) between nodes; from (7.33) this would 
produce 

Ui+l  - 2ui + Ui-1 I + ,  [ u i + l + 6 ~ + u i - l  - I = Si (7.36) 

2 
i.e. the same expression for $$ but a different average term Gi. 

Finally, collocation at node i with the quadratic basis would produce the conventional finite 
difference form 

7.3 Weak Forms 

Above it was noted that the exact solution will satisfy any set of weighted residual requirements. 
Clearly, the orthogonality condition < R, Wi >= 0 is weaker than the original, exact condition 
R = 0 everywhere, except for the limiting case where Wi is a complete set. Expanding R term-by- 
term gives the weak form of the governing diflerential equation. For the Helmholtz equation (7.2) 
we have the weak form 

(v2u,  wi) + (f  u, Wi) = (9, Wi) (7.38) 

Other weak forms are possible and desirable. For example, we may integrate the first term in (7.38) 
by parts, using Green's theorem: 

wherein the boundary integral encloses the domain and n is the unit vector normal to the boundary, 
directed outward. Use of (7.39) converts (7.38) to the alternate weak form of the Helmholtz 
equation: 

- (VU, OWi) + (f U, Wi) = (g, Wi) - 4 n . WiVu ds (7.40) 
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The exact solution satisfies both weak forms (7.38) and (7.40). Additionally, for linear problems, 
the solution error E = u - G will satisfy the homogeneous version of the weak-form used to generate 
G. For example, if (7.38) is used to generate G, we have 

Subtracting (7.41) from (7.38), we have 

7.4 Discrete Form 

Finally, we state the weak forms (7.38) and (7.40) in discrete, matrix form by expressing G in the 
basis (7.1). As in (7.18) and (7.27), we have 

with Aij and bi comprising integrals of 4, W, and their derivatives. In the case of (7.38) we have 

bi = (g, Wi) 

Similarly from (7.40) we have 

It is the discrete form which is solved numerically. There are two basic computational steps: the 
evaluation of the domain and boundary integrals in [A] and {b) (the assembly step), and the solution 
of the matrix equation itself. 

7.5 Boundary Conditions 

For the Helmholtz equation used in the previous examples, we distinguish three types of boundary 
conditions: 

Type 1 (Dirichlet): u is specified; 
Type 2 (Neumann): Vu . n is specified; 
Type 3 (Mixed): a blend of u and Vu . n is specified: Vu . n + au = P. 

At all points on the closed boundary I', exactly one of these conditions must be specified. We refer 
to the boundary segment as the Type I portion of r, and similarly for r2 and r3. In WR terms, 
the Type 1 conditions are referred to as essential conditions, while the Type 2 and 3 conditions 
are natural conditions. This classification holds for the general 2nd-order elliptic partial differential 
equation. 
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In general it is necessary that the approximate solution G satisfy the essential boundary condi- 
tions. We may thus separate the numerical solution into homogeneous and particular parts: 

with respect to the essential boundary conditions. The particular part Cp satisfies the essential 
conditions and is known a priori; the basis for the unknown, homogeneous part of the solution is 
therefore required to vanish on rl. 

Natural conditions, on the other hand, are satisfied only approximately or "weakly" in most 
WR methods. The boundary integral is typically the vehicle for their enforcement. For example, 
in equation (7.40), in terms of G we have 

- (VG, VWi) + (f 2, Wi) = (g, w,) - / win . ~ u d s  (7.49) 

On the right side, the boundary integral is expressed not in terms of G but in terms of u; the natural 
boundary conditions enter the calculations here. This is a "weak" constraint since the slope of G is 
not being directly constrained; rather, the weak form is driven by the boundary data. 

An obvious operational requirement for this procedure is that the integrand Win. Vu vanish on 
rl; otherwise the required information is not available. Therefore, we require that the weighting 
functions Wi vanish on rl. There is obvious symmetry with the requirement for q5i. 

For the general Type I11 condition, the substitution Vu . n = - a G  + P leads to the weak form 

- (VG, VWi) + (f G, Wi) - / WiaG ds = (g, W,) - / WiP ds 

and the a G  term is internalized in the system. 

These are operational rules. The burden of proof is to show that a particular WR method 
converges as the basis and weighting functions approach complete sets. The reader is referred to 
more fundamental texts (e.9. Strang and Fix, [103]) for this theory. 

7.6 Variational Principles 

In some cases a variational principle accompanies a differential equation and satisfaction of either 
is equivalent. For example, consider the functional Q, defined as 

and representing the sum of potential and kinetic "energy" plus "work" done on the volume and 
boundary, respectively. In physical systems where this functional is meaningful, Q is minimized by 
the function u which also satisfies the Helmholtz equation 

at every point in the domain. This differential equation is obtained by minimizing Q over all 
admissible functions via the Calculus of Variations. 
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The functional Q, already in domain integral form, provides an alternate starting point for 
generating a weak form differential equation. With a finite basis for G: 

the first-order conditions for a minimum are easy to obtain as 

and we may operate within the integrals term-by-term with 

The result is the weak form 

Admissible variations must satisfy the essential boundary conditions; therefore 4i vanishes on Fl; 
and K% is available as boundary condition data on the rest of the boundary. It is evident that 
(7.56) matches term-by-term with the Galerkin MWR version of the Helmholtz equation, weak 
form (7.40). 

This correspondence between Variational and Galerkin approaches is quite general, for linear 
problems, and is characterized by the dual pathways to the same weak and discrete forms illustrated 
in Figure 7.3. 
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First Principles 
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Figure 7.3: Illustratin the two pathways for obtaining iden- 
tical MWR Discrete orms for linear problems with a vari- 
ational principle. 
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7.7 Weak Forms and Conservation Properties 

A great many of the classical PDE's share an underlying formulation unity in Conservation Laws. 
These generally can be satisfied only approximately by finite fields. However the FEM has some 
intrinsic integral conservation properties, which originate in the choice of Weak Form. We display 
some of the generalities here. Much more remains to be developed in specific application contexts. 

This section may be omitted on a first reading. 

Divergence Forms 

The simplest and very common PDE form involves a flux divergence formulation to achieve conser- 
vation of a physical quantity. This was discussed in connection with FD discretization (equation 
5.131): 

Conservation Law + Constitutive Relation + PDE 

V . q = a  q = -KVU V - K V U = - a  (7.57) 

Here q is the vector flux of the conserved quantity; a  is its source; and U is the scalar surrogate for 
the flux. Table 5.1 displays some of the specific instances of this common form. The PDE as listed 
is an Elliptic operator; all temporal dynamics are bundled here in the source term a. If a  contains 
at most g ,  we have a Parabolic equation overall; G,  Hyperbolic. 

The integral form of this conservation law is 

where the Divergence Theorem (see Appendix) has been invoked, along with the usual FEM short- 
hand <> for volume integration. If we insert the constitutive relation (7.57), we have the equivalent 
statement: 

In either case, we have a priori the integrated balance between all the source in the domain of 
integration, and its efflux across the boundary. Included in a  is the internal accumulation rate for 
dynamic problems. 

The Weak Form is 
- < q . V W i > +  q- f iWids=<aWi> f 

This is a discretized, local approximation to the conservative point balance expressed in the PDE. 
It is a statement that the weighted residual of this balance must vanish. The residual function itself 
will generally be nonzero, so the discretized conservation statement is weak its residual will vanish 
everywhere only when the elements are infinitesimal. For finite elements, the local norm of this 
residual is a useful metric of numerical fidelity. 

Despite this "weakness7' for finite meshes, there is an exact global conservation statement. This 
can be arrived at by summing the WR equations. In so doing we require and exploit this important 
property of FEM weights 

N 
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everywhere, irrespective of N; and therefore 

Therefore by summing the equations (7.60), the internal fluxes < q . OWi > cancel out; we get 

The sum of the full WR system provides perfect conservation, despite the weakness of its parts. 
Numerically, the efflux perfectly balances the internal sources. This perfect balance is not dependent 
on refined resolution or on the details of the basis 4. Nor is it dependent on the manner in which 
the constitutive relation is represented, assuming reasonably consistent implementation. Instead, 
it is a constraint implied in the WR method at the outset, assuming that W has the property 
(7.61). In the Galerkin method with W = 4, this is equivalent to requiring that the basis be able 
to interpolate a constant. For non-Galerkin, the constraint (7.61) is reasonable - the residual to 
be sampled everywhere, democratically - but not necessary. It is reasonable to require property 
(7.61) of any WR method, unless there is a contraindication. 

This development applies immediately to Type I1 and I11 problems. But there is a problem at 
Dirichlet boundaries. Above, we required that "W vanish on PI". The equivalent common wisdom 
is, "ignore the Weak Form near Dirichlet boundaries", where the solution is already known. So, 
the requirement (7.61) would seem to be violated. 

The way forward is to view the Dirichlet problem as equivalent to a Neumann problem; and 
to use the Weak Formulation to derive the equivalent Neumann data along Type I boundaries. In 
practice, part of W is "removed" from the weight space W to solve the Dirichlet problem; that 
complementary part of W is then restored in order to derive the equivalent Neumann data. Property 
(7.61) is thereby preserved and conservation guaranteed; dual Neumann and Dirichlet boundary 
data become known; and either supports the same interior solution because the identical set of 
MWR equations g0verns.l The importance of this is discussed in several different physical contexts 
(groundwater, oceans, heat transfer, phase change, fluid mechanics) [22, 39, 64, 65, 69, 80, 81, 841. 
This approach has various names attached; in [39] it is referred to as the consistent flux method. It 
produces superior solutions in addition to preserving the conservation properties described here. 

Circulation Forms 

A second generic form which is commonly used in vorticity and electromagnetism involves the curl 
operator at the heart of an elliptic PDE: 

with A an unknown vector field of interest and S a forcing vector. It is common to express A in 
terms of various vector and/or scalar potentials, e.g. 

A = V x F + V < P  (7.65) 

'~emember  that numerically, q is only weakly related to aU/an, so simple differentiation of the numerical Dirichlet 
solution will not produce exact conservation. 
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with the surrogate potential vector F and scalar becoming the unknowns. Irrespective of the 
details of this closure, we have the analytical property from the circulation theorem 

which expresses the balance between surface circulation and the sources enclosed. 

The WR discretization utilizes a related circulation theorem (Appendix): 

This relation is the weak form, and the same comments apply to it as above for the divergence-based 
operators. Summation of the WR equations, and again assuming property (7.61), we have 

As above, we recover an exact replica of a global analytic property, independent of discretization or 
basis, and with implications for dealing with boundary conditions. An elaboration of developments 
of this in computational Electromagnetism is available in [78]. 

Summary 

Given the reasonable constraint C Wi = 1, the MWR Divergence and Curl operators both 
share the property that intramural transports cancel. As a result, the global Divergence and 
Circulation theorems are reproduced exactly, for the finite fields generated. This is a simple 
consequence of using Weak Forms with these operators "integrated by parts". 

There are important implications for boundary condition implementation. The Weak Form 
exposes the natural BC in the boundary integrals. It must be used in a dual way for either 
Dirichlet or Neumann problems. Effectively there is a dual pair of BC's, one and only one of 
which must be specified, the other being derivable. 

Local conservation balances are always enforced in the "weak" sense - they approach perfec- 
tion as the function spaces (W, 4) approach completeness, i.e. as the element size becomes 
infinitesimal. For finite elements, suitable local norms of the residual function are good guides 
for mesh refinement and/or basis enrichment [I, 61. 

Extensions of these ideas to interior flux estimation and conservation statements on subdo- 
mains are natural [21]. 

If integrals are integrated numerically, for example by popular Gauss Quadrature, this finding 
remains sound; the requirement C W = 1 is restricted to the Gauss Points [64]. 

Important criteria for basic MWR formulation are implied for more complex problems. This is 
illustrated in the example below. 
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Example: Advective-Diffusive-Reactive Equation 

Consider for example the PDE 

and its integral statement 
a 

< ( - + r ) C > +  q . f i d s = O  
a t  f (7.70) 

Either of these expresses the integrated balance between Domain Accumulation and Decay, and 
Boundary Efflux. 

There are many possible Weak statements of this. Exploiting Integration by Parts from the 
outset, we have 

On summation we recover a perfect replica of equation 7.70 above. So this particular WR dis- 
cretization shares an exact conservation property with the PDE. 

The typical closure is in terms of advective and nonadvective fluxes 

with advective field v and diffusivity D. This closure may be inserted into the Weak-Form state- 
ments above where needed; assuming reasonable consistency, the perfect conservation balance is 
preserved. The internal fluxes cancel without further constraining how they are discretized or how 
the integrations are approximated. The only constraint is that C Wi = 1 everywhere. 

In a second Weak Form, it is common to separate advective and nonadvective flux components, 
and to differentiate the advective part before discretization: 

and to invoke the relation between v and its sources a: 

(The case a = 0 is common.) Putting these two together, we obtain the PDE 

A common Weak Form of this is: 

where the diffusive part of q has been integrated by parts, but not the advective part. Summing 
these, we get 

a c  
< ( - + r C + a C ) > + < v - V C > -  

a t  
(7.77) 
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and the balance among the two terms a C  and v . V C  needs further attention. Typically, v is itself 
a discrete field, and must be represented approximately in a finite basis. We then need a Weak 
Form of equation (7.74). Assuming integration by parts, we have: 

(Note there are other options here.) Multiplying each of these by the nodal value Ci and summing, 
we acquire in the integrands C CiWi. If Wi = 4i7 i.e. the continuity weights are equal to the basis 
for C, then C CiWi is the numerical field C, everywhere; and therefore we have 

This saves the conservative balance by restoring the advective flux across the boundary, and getting 
rid of the internal terms: 

Invoking the constitutive relation simplifies the boundary integrals: 

In addition to the required property C Wi = 1, this formulation requires a Galerkin relation between 
the continuity equations and the C basis; and the use of integration by parts of both divergence 
terms. These features together guarantee exact global conservation. 

Notice that we are, essentially, adding nothing to the basic formulation here. All we are doing is 
adding the MWR equations actually used, and cancelling the internal identities. But very specific 
constraints are implied on choice of Weak Form, basis, and representation of boundary fluxes, if 
this is to work. 

Extra care is needed in these developments to distinguish the numerical field C and its deriva- 
tives. In particular, the numerical q contains a diffusive (gradient) contribution which is normally 
only weakly related to C Ci4i. Failure to recognize this can lead to formulation error. The reader 
is referred to [64] for more detailed discussion of this, and also of the implications of approximate 
numerical integration. 

There are some general observations illustrated here. As a rule, preserving exact conservative 
properties is critically dependent on the path: the order of approximation, integration, and dif- 
ferentiation, and of course the PDE itself. Obtaining the proper weak form before the numerical 
basis is introduced allows operating with the PDE in the continuum, where integration and differ- 
entiation are perfect. Weak formulations that preserve the natural conservation statements in the 
PDE, i.e. the Divergence and/or Curl operators in original form, are likely to produce recognizable 
discrete balances involving natural boundary conditions. 

We cannot count on perfect numerical integration. Integration by parts of the divergence or 
curl operators, before introducing closure or bases, injects the natural BC7s into the integrated 
conservation statements, using the properties of the continuum. 



Chapter 8 

A 1-D Tutorial 

8.1 Polynomial Bases - the Lagrange Family 

The overwhelming majority of FE methods use polynomials as the basis functions. Polynomials 
have been extensively studied as approximants to functions with various degrees of smoothness, 
and their manipulation both analytically and computationally is straightforward. In particular, all 
quantities needed by Weighted Residual Methods are integrals of the bases and their derivatives; 
these are especially simple for polynomials. 

Consider a one-dimensional domain x with pre-defined points or "nodes" xj. For our purposes, 
the simplest polynomial form is the Lagrange family: 

For N + 1 nodes, 4i(x) provides a continuous polynomial of order N with the property +i(x) = Sij 
i. e.  4i is unity at its "home" node, and vanishes at all other nodes; and it is the unique N~~ order 
polynomial with this property. The most general N~~ order polynomial variation on this domain 
is obtained with an arbitrary combination of &, 42,..., 4N+1: 

and it is immediately clear that the coefficients ui are the values of the polynomial evaluated at 
node i: 

ui = G(xi) (8.3) 

and that C(x) is the unique N~~ order interpolant among the given ui. Thus, the Lagrange fam- 
ily readily facilitates polynomial interpolation among data or functions sampled at nonuniform 
intervals. 

For example, the three members of the quadratic Lagrange family are illustrated in Figure 8.1, 
wherein 

(x - x2)(x - 23) 
41(x) = (xl - 52) (xl - 13) (8-4) 

and similarly for 4 2 ,  43. 

In passing, we note that the Lagrange family of any order N has the property xi 4i(x) = 1 for any 
x; this property is necessary if the basis is to exactly represent a constant. 
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Figure 8.1: Quadratic Lagrange element in l-D. 

8.2 Global and Local Interpolation 

Consider the data of Table 8.1 

Table 8.1: Inter~olation data. 

and its 5th order interpolating polynomial. Suppose we are interested in interpolating the value 
G(x = 4.5). Straightforward evaluation yields G(x = 4.5) = 12.11 for this "global" interpolation! 
Alternately, we may use the most "local" interpolation, i.e. linear variation between x4 and xs, 
which yields G(x = 4.5) = 8.5. Results for intermediate values of N are shown in Table 8.2. It 
is clear that the more global the interpolant, the more likely is the occurrence of extreme points 
lying between the nodes (reflecting the possibility of N zeros of an N~~ order polynomial). The 5th 
order Lagrange polynomials have "global support" in this example, i. e. they are generally nonzero 
everywhere on the domain, and all nodal data, no matter how far removed, affects the interpolation 
everywhere. 

Table 8.2: Interpolated result at x = 4.5 
N 1 1 1 2 1  3 1 5  

G(x = 4.5) 1 8.5 1 9.6 1 10.75 1 12.11 

As a second example, consider the function u = sampled as shown in Table 8.3. Clearly, is 
not a polynomial, but we hope for a good approximation in the polynomial basis. Interpolation of 
G(x = 4.5) and extrapolation of G(x = 5.5), with various degrees of polynomial, is shown below in 
Table 8.4. In this case, it is clear that N = 1 or 2 is superior in both interpolation and extrapolation, 
and that increasing sophistication in the polynomial basis is counterproductive. These examples 
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illustrate some of the hazards associated with global interpolation; in general, globally-supported 
bases are not employed in FE analysis at least partly because of these undesirable features. 

Table 8.4: Interpolation and extrapolation results. 
I N IExactI  1 1  2 1 3  1 4  1 

Table 8.3: Sampled values of u = i. 

The alternative, local interpolation, is a universal and fundamental principle of the FEM. The 
domain of interest is divided into contiguous pieces or elements as shown in Figure 8.2. Each element 
then supports its own, self-contained interpolating basis 4: (x) and interpolant iie (x) . As suggested 
in Figure 8.2, neighboring elements may use different order interpolation if desired. This eliminates 
some of the pitfalls associated with global interpolation, and also provides the opportunity to have 
higher-order local interpolation only on selected elements where it is necessary. 

u; 

iil (5) ii2 (x) ii3 (x) 
A 

f -C -r \ 

Element # 1 Element #2 Element #3 
(Quadratic) (Cubic) (Linear) 

x i 1 2  
1 

Figure 8.2: Discretization of x domain into three elements. 

Elements, then, are the basic building blocks of the FEM, from two perspectives: 

.5 

the basis itself, i.e. the local interpolation; and 
the integration of the WRM. 

3 
.333 

4 
.250 

5 
.200 
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The second point will be detailed later, but observe here that all WRM quantities involve inte- 
grals which may be evaluated on an element-by-element basis and summed, provided there are no 
singularities lurking at the junctions between elements. 

Figure 8.3: Lagrange Bases in 1 dimension. 

8.3 Local Interpolation on Elements 

An individual element may be viewed in isolation, as a self-contained interpolating unit. All 
elements of a given type are mathematically identical from this local perspective. For example, 
equations 8.1 and 8.2 suffice for the whole Lagrange family; all that is needed is to specify the (xi, 
ui) pairs for a particular element. Figure 8.3 shows generic Lagrangian elements of different orders. 
A few local conventions (left-to-right node ordering in 1-D) make the element-level description even 
more universal. 
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Figure 8.4: Global variation of selected bases on the mesh 
of Figure 8.2 

Here it is useful to introduce the element-based notation 4;: 

= 0 otherwise. (8.6) 

In these terms, the global variation of, say 43(x) in Figure 8.2 would be expressed as the sum of 
all element variations: 

43b) = 4;(4 + 434 (8.7) 

as illustrated in Figure 8.4. Figure 8.4 also illustrates the global variation of selected other bases 
on this mesh. 

8.4 Basis Function Continuity - Hermite Polynomials 

It is apparent that polynomial bases will be smooth with smooth derivatives within any element; 
but that their continuity will be interrupted at element boundaries. The Lagrange family described 
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above is constructed so that the bases are continuous at element boundaries, but their first and 
higher derivatives will be discontinuous there (see Figure 8.4 ). It follows that all functions expressed 
in these bases will have the same continuity properties. We refer to these as C0 elements, i.e. they 
support functions whose global continuity is limited to the zeroth derivative. 

-0.4' I 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Figure 8.5: Hermitian cubic bases. 

Figure 8.6: Global variation of Hermitian cubic bases asso- 
ciated with node i. 

Higher-order continuity can be built into the basis. Consider as a starting point the simplest 
C0 linear element, wherein local variation of the form 4 = cx + d is defined by nodal values at the 
two endpoints of the element. We may increase the order of interpolation to quadratic by adding a 
third constraint sufficient to determine the extra constant in 4 = bx2 + cx + d. In the Lagrangian 
family, this is achieved by adding a third node on the interior of the element, leaving the continuity 
at element boundaries unchanged. An alternative is to constrain the slope of the function at one of 
the existing nodes, thereby enabling continuity of the first derivative at that node. Cubic variation 
is obtained by treating both nodes in this way - i. e. the value and slope of the function are specified 
at both nodes. 
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The result is the standard Hermite cubic element, which provides C1 interpolation on 2-node 
elements. The bases are illustrated in Figure 8.5. We need to distinguish two types of bases on this 
element: (401, 402)  associated with the value of the function (its "zeroth derivative"), and ($11, 

41~2)  associated with its first derivative. A function expressed in the Hermite basis requires nodal 
values of u and its derivative, uoi and uli: 

fi(x) = C (~0i40i  + ~ l i d l i )  (8.8) 
i 

Constraints on the four bases are listed in Table 8.5. There are four constraints for each of the 

Table 8.5: Nodal values of Hermite cubic bases. 

cubic functions: 2 constraints on the function value, and 2 on its slope. The cubics are readily 
obtained: 

4ol = 2j3 - 3j2 + 1 (8.9) 

4 0 ~  = -2j3 + 3t2 (8.10) 

dl1 = ( 1 2  - xi) (e3 - 2t2 + t) (8.11) 

where j is the natural local coordinate: 

Figure 8.6 depicts the global view of 4oi and ~ $ 1 ~  for a single node i. As in the Lagrangian case, 
this basis is locally supported i. e. it is nonzero only in elements containing node i. The continuity 
of 2 is apparent. (Not as apparent is the necessary discontinuity of the higher derivatives.) 

An alternate local coordinate can be defined as 

which is zero at the center of the element and ranges from -1 at the left node to +1 at the right. 
In this coordinate, the basis functions are 
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This will be a more natural coordinate system for numerical integration on an element (see later 
section). 

Higher-order continuity can be obtained by extending this procedure - for example, 5th order 
polynomials on a 2-node element can provide C2 continuity, etc. 

8.5 Example 

Figure 8.7: Mesh of two linear elements for the example in 
section 8.5. 

Let's work a 1-D example before going further. Consider the Helmholtz equation introduced above 
(equation 7.2): 

with boundary conditions at x = (0, L). As in section 7.3, we have the weak form 

We will use the Galerkin method (Wi = r#~i) with the simplest linear bases on the two-element mesh 
shown in Figure 8.7. Following the development in section 7.4, we have 

Recall that each row of the matrix equation is the residual weighted with 4i, which we will denote 
here as W&. We will consider each row of the matrix equation by itself. 

Row 1 is WR1, the residual weighted with 41. It is easy to see that J ( )  dx in this row need 
only be evaluated over the first element, because is supported only on element I. Similarly, we 
will have nonzero values for All and A12, but A13 will be zero, because 43 is not supported on 
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Table 8.6: Inte rals of 4 and 

ment s. 
f its derivatives or linear ele- 
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element I. Table 8.6 gives exact integrals of the various quantities needed, over a single element. 
Direct evaluation of our case gives 

and the right-hand side is 

(The boundary contribution at x = L has vanished because dl = 0 there; and is unity at x = 0, 
its home node.) We may now assemble the first row of the matrix equation, WR1: 

Row 2 is J r, $2 dx. Since 4 2  is supported in both elements, we need to integrate over both. In 
element I we have contributions to and A22: 

f 4241 dx = Axz 

(The superscript indicates a contribution to the integration from one element.) The right-hand 
side contribution to this element is similarly obtained: 

Note that both boundary contributions in WR2 vanish because $2 = 0 at both boundaries. 

WR2 is also supported on element 11; by similar reasoning, we have contributions to A22, A23, 
and bz : 

Accumulating all terms in WR2 gives us 
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Row 3 is analogous to row 1; its assembly as above gives us 

The matrix equation (8.21) for this 2-element system may now be expressed in detail as 

Before going further, it is useful to note that this discrete system contains recognizable (and 
therefore credible) finite difference expressions. Consider the interior equation, WR2. If we intro- 
duce the average local element size, Axi = (AxI + AxII)/2, upon rearrangement we find 

When the mesh is uniform, AxI = AxII = Ax, the form is instantly recognized as a finite difference 
expression with averaging for the undifferentiated terms: 

which is reminiscent of the comparable subdomain method example earlier in Chapter 7. In the 
case of constant f ,  the averaging of the term f u reduces to Simpsons Rule: 
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Under these same restrictions, WR1 becomes 

We recognize here a one-sided difference approximation to the Neumann boundary condition at 
x = 0, with additional terms proportional to Ax. In fact, these terms convert an otherwise  AX) 
approximation to one which is O(Ax2). By the standard Taylor series expansion, we have 

For the governing Helmholtz equation, we have $ = g - fu ,  and the Ax terms in (8.40) are 
clearly approximate this to first-order at x = 0. Hence (8.40) is an O(Ax2) approximation as 
stated. Analogous structure is evident in WR3 for the boundary at x = L. 

It is evident that the general form (8.36) produces diaerence equations on irregular meshes 
with variable coefficients, systematically structured by the Method of Weighted Residuals. 

8.6 Boundary Conditions 

The discrete form (8.36) contains 3 equations in 5 unknowns ul, u2, us, and the two boundary 
du slopes zl and g3. Necessary and sufficient conditions for a unique solution require one condition 

at each of the boundaries, thereby closing the system. We classify these as follows: 
Type 1 (Dirichlet): u is specified; 
Type 2 (Neumann): 2 is specified: 2 = ,B; 
Type 3 (Mixed): a blend of u and 2 is specified: 2 + cuu = ,B. 

Implementation of the Neumann condition is straightforward - the data ,B is inserted directly 
and naturally into the right-side vector of equation 8.36. The term "natural" boundary condition 
suits this situation perfectly. 

For the Type 1 boundary condition, say at x = 0, we have the situation where ul is known a 
priori, but 2 is not. The practical approach is to solve WR2 and WR3 first, with ul given: 
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where we have assumed a Type 2 boundary condition at x = L. After this is solved, all values of 
ui are known, and WR1 can be invoked to recover 2 at x = 0: 

For a Type 3 boundary, say at x = L, we proceed initially as with a Type 2 condition by 
inserting the expression 2 = 8 - au3 in the right-hand side of WR3: 

The term au3 is unknown and must be moved to the left side of the equation: 

The resulting matrix equation, for a Type 1 boundary at x = 0 and Type 3 at x = L, is: 

The case a = 0 is the Type 2 case. 

The general structure emerges in this simple system: 

The coefficient matrix A comprises domain integrals of basis functions and weighting func- 
tions, the particulars of which involve the particulars of the WR method, the discretization 
of the domain into elements, and the governing equation. This matrix is modified in cases of 
Type 1 or Type 3 boundaries. 
The vector of unknowns contains the unknown nodal values of the FEM system. 
A right-hand side vector containing inhomogeneous terms in the governing equation. 
An additional right-hand side vector containing boundary condition information. 

Finally, consider a larger system with N nodes and N - 1 elements. The structure of WR1 and 
WR3 are unchanged, and on the interior we need only replicate the structure of WR2. The result 
is easily generalized from (8.34) : 
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and the matrix will have a general tridiagonal structure: 

Implementation of boundary conditions for this larger system is unchanged from the 3 node case. 

8.7 Element-Level Representation: the Element Matrix 

It is clear that the above procedure for assembling the discrete system (8.36) can become arduous 
rapidly, and that a structured approach is necessary to succeed. But it is also clear that there is 
a natural structure in the matrix [A] - one that we have sought to preserve in the notation. For 
example, the quantities & and F occur repeatedly in exactly 2 different combinations and these 
are the only quantities needed to build [A] in this case. We take advantage of this by introducing 
the notion of an element-level matrix whose contributions to the global system are easily assembled. 

Imagine for the moment that the FE mesh included only the first element. Then the discrete 
system would be limited to only nodes 1 and 2, and to those integrals evaluated on element I: 

As before, the two rows of the equation are parts of WR1 and WR2, respectively. WR1 is complete 
and identical to that described above; WR2 here is only that part contributed from integration on 
element I. 
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Similarly, if only element I1 were present, then the discrete system would be limited to those 
contributions from 11: 

[-&+y] [&+Y] 
'+y] [-l+%] Ax 

Either of these is the valid discrete system for its element in isolation. When both elements are 
present, the discrete system is obtained by adding the individual element representations. (Recall 
that each is an integral of the weighted residual; the addition is simply extending the domain of 
integration.) The addition of these two matrix equations gives (8.36) above, with the sole exception 
of the right-hand side vector involving the natural boundary conditions. Here we obtain the vector 

Assuming continuity of the natural boundary condition 2 at the boundary between I and 11, 
the term - % I  vanishes, and we have recovered the original 2-element discrete system by 
superposition of the two element-level WR representations. This superposition is valid for the 
general case of N elements. 

Clearly, we are superposing identical representations of a single, generic element. If we introduce 
the local node numbering system i = 1, 2 with node 1 on the left of the element as in Figure 8.3, 
we can generalize the element contributions to the system in terms of an element matrix: 

an element list of variables 

E 

and a right-hand side contribution from E: 

The discrete system for a single isolated element is 



154 CHAPTER 8. A 1-D TUTORIAL 

This element-level representation would be the complete discrete system if there were only one 
element. It embodies the differential equation, the particular weighted residual method, and the 
choice of weighting and basis functions. The complete discrete system is just the summation of the 
element systems: 

d2u In our example case, + f u = g using Galerkin, the general form is exactly equation (8.21), 
evaluated on a single element: 

(The subscripts r, 1 indicate the right and left endpoints of an element). Recall the sense of the 
matrix equation: the indices i ,  j range over those 4 which are supported on a given element; and 
each row is W&, integrated over the element. 

Figure 8.8: Modification of 2-element mesh (Figure 8.7 for 
quadratic variation in element I. Node 4 is at the element 
center. 

Suppose we were to enhance the 2-element discretization of the previous example by enriching 
the basis in element I from linear to quadratic, as shown in Figure 8.8. The element matrix is 
formally the same as (8.57) above; but with three bases supported in element I, the system will be 
3 x 3. Table 8.7 gives all necessary integrals for direct evaluation; the result is: 
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where the subscripting indicates local node numbers as in Table 8.7. 

Element I1 is unchanged by this mesh upgrade, and therefore its contribution to the discrete 
system is unchanged from (8.50). All that is left is to add the two discrete systems together. 

Now the insertion of the information from element I requires a little care. The local-to-global 
node correspondence is 

{I, 2, 311 e {I, 4, 21 (8.59) 

Therefore we expect all rows and columns of [AI1 and {bI1 to map accordingly into the 4 x 4 global 
versions. The contributions of element I alone to the complete system are therefore 

where all node indices are global. Addition of element 11's contributions is achieved with the same 
local-to-global conversion as in the earlier example: 

and the complete discrete system for the two elements is 
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Table 8.7: Integrals of 4 
and its derivatives for 1- 
D quadratic elements (mid- 
element node centered). h = 

is the spacing between 
nodes; Ax is the element 
length; (1) = 2h. 



8.8. ASSEMBLY AND THE INCIDENCE LIST 

and as before, continuity of % will cause the a priori cancellation of those terms. 

8.8 Assembly of Element Systems: the FE Incidence List 

The above procedure for adding together the Discrete Subsystems from each element can be formal- 
ized. The essential idea is a generalization of the local-to-global mapping used above at equations 
(8.59) and (8.61). We define the finite element Incidence List, I N ,  as the map linking local and 
global node numbers: 

i e I N ( E ,  i) (8.63) 

where 
E is the element number, 
i is the local node number in element E, and 
I N  is the corresponding global node number. 

Note that the natural view here is from the local or element perspective, looking outward towards 
the full system representation. 

Using this notation, we may readily construct the global contributions to, say, matrix [A] in the 
form 

Here the symbol =+ indicates "contributes to" additively. x +- y indicates "x contributes to y". 

Table 8.8: Incidence List for the 1-D mesh in Figure 8.9. 

As an example, consider the 1-D quadratic mesh shown in Figure 8.9, where the elements and 
nodes are purposefully given in unnatural order. Using the local node numbering convention given 
in Table 8.7, we have the Incidence List shown in Table 8.8. Each element will contribute a 3 x 3 
subsystem of the form (8.58). The contribution of element 1 to the global discrete system will be 
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element # I11 I I1 

- - - - - - - - - - - - - - t x 
node # 1 3 4 7 2 5 6 

Figure 8.9: Three-element mesh of quadratics. 

as follows: 

and this structure will be valid for any differential equation. From a computational or procedural 
perspective, if we start with empty arrays, then we may simply visit each element in turn, evaluate 
the local subsystem of equations, and add it via the incidence list to the global system as above. 
The above would be the result after evaluating element I; adding element I1 to the list, we would 
have 

(8.67) 
and so on. This generic process is referred to as the Assembly process. It achieves the assembly 
of the complete discrete system by systematically evaluating and linking (summing) its individual 
subsystems for each element. 

8.9 Matrix Structure 

The assembly process highlights a basic structure of any FE matrix system: it is sparse, i.e. the 
matrix comprises mostly zeros, with only a handful of nonzero entries in any row or column. 
Clearly, nonzero coefficients occur only when created in at least one element matrix; and therefore 
a coefficient Aij will remain zero unless nodes i and j co-occur in at least one element. We define 
a "neighboring node" relationship: j and i are neighbors if nodes j and i co-occur in at least one 
element. 
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Sparsity results directly for the use of locally-supported bases. Since Aij involves the product of 
two locally-supported bases (and/or their derivatives), then it vanishes for most i, j combinations. 
We define a "neighbor" relationship among the bases: j and i are neighbors if 4j and 4i are co- 
supported on at least one element. For C0 elements, this is equivalent to the statement about 
neighboring nodes. 

The sparse structure is predictable a priori from the incidence list. We need only examine this 
list element-by-element, noting all i ,  j combinations which occur any each element - these will 
be the locations of nonzero coefficients, for any diferential equation. For example, consider the 
3-element mesh of Table 8.8. Element I provides us with all combinations of 4, 7, and 2. For 
element 11, combinations of 2, 5, and 6; and element 111, 1, 3,and 4. The union of all these nonzero 
locations is the logical structure: 

with 1 indicating a nonzero coefficient. This structure is clearly emergent in the assembly example 
above, equation (8.67). 

Let's define some sparse matrix measures: 

N is the number of nodes 
N, is the average number of nonzero entries per row 
s = N/Ns is the matrix sparsity 
d = Ns/N is the matrix density 

The number of nonzero coefficients is NsN = d~~ = N ~ / s .  

Clearly, N, is a consequence of the average number of neighbors in the mesh. This number will be 
generally unaffected by the algebraic size of the overall system. Therefore, increasing the number 
of elements (either by enlarging the domain or refining its discretization) increases the sparsity 
(decreases the density). So, if we are clever, we can achieve FE algorithms whose operations counts 
are reduced from general, full matrix requirements ( N ~  or N ~ )  by factors of l/s or l /s2 (d or d2). 
Equivalently, N~ or N~ becomes Ns or N:N. With Ns constant, such an algorithm would scale 
linearly with N. 

For example, consider a mesh of 1-D quadratic elements, The mid-element bases +i have support 
in only 1 element, and therefore have only 2 neighbors. Including the diagonal, then, there will be 
exactly 3 nonzero entries in row i. Row i for these functions will have exactly 3 nonzero entries. 
An endpoint basis 4i is supported in 2 elements, with a total of 4 neighbors. There will be exactly 
5 nonzero entries in row i. (This may be truncated to 3 nonzero entries if node i is a boundary 
node.) This structure is independent of the number of elements; and so we have for this mesh, 
N, = 4. 

In Figure 8.10 we introduce another sparse matrix measure, the bandwidth. We define the 
half-bandwidth Nh as the maximum "distance" between the diagonal and the last nonzero entry in 
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any row of A. The bandwidth Nb = 2Nh + 1 is the maximum width of the nonzero entries. (These 
measures include the intervening zero entries). There exist very effective direct (noniterative) 
solution techniques for the matrix equation Ax = b when A is banded. These methods are based 
on LU decomposition, wherein all intermediate calculations fit within (and fill) the bandwidth of 
the matrix. So while direct inversion of a full matrix requires O(N3) operations, the banded solvers 
can achieve this in O(NtN) operations; and the storage required reduces from O ( N ~ )  entries to 
0 (NbN). 

Figure 8.10: Half-bandwidth, bandwidth, and general stor- 
age modes. The row index is preserved; the column index is 
shifted. 

Main 
Diagonal 

/ 

Figure 8.11 : Symmetric banded storage mode. 

The half-bandwidth is easily computed from the incidence list - it is the greatest difference in 
node numbers occurring in any element. For the mesh of Figure 8.9, Nh = 5. Nh is clearly sensitive 
to the detailed node numbering. A simple rearrangement of the node numbers to the natural order 
(increasing monotonically from the left) reduces Nh to 3. This simple rearrangement would result 
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in significant savings in both memory and run time if direct matrix solution via LU decomposition 
were used. Two practical features are noteworthy: 

The use of LU decomposition for 2-D FE problems is widespread and powerfully efficient. 
Simple mesh editing - for example insertion of a new node into an established mesh - can 
have a disastrous impact on bandwidth, as the latest added node ( N  + 1) becomes a neighbor, 
potentially, to node 1. 

As a result, bandwidth reduction algorithms are of immense practical importance in practical 2-D 
FE work. These renumber the nodes of an existing mesh with bandwidth minimization as the 
objective. 

These observations about bandwidth and LU decomposition fade in importance for 3-D FE 
work, because the minimum possible bandwidth on realistic meshes becomes unacceptably large 
for direct solution methods. For example, a uniform discretization of a cube with M nodes on a 
side has a minimum half-bandwidth of approximately M2. So the banded storage required would 
be M5 and the runtime would be of order M ~ .  For reasonable discretization levels - say, M = 50 - 
the storage requirement alone is prohibitive (505 % 3 x 1 0 ~ w o r d s ) ~  in many practical environments. 
The comparable effect in 2-D is however quite practical: Nh = M, storage M3, runtime M4. 

8.10 Variable Coefficients 

In the above example we have simplified things by assuming the coefficients for the Helmholtz 
equation f ,  g were adequately represented by constants on each element. In that case, integrals of 
the form $ f 4jdi dx are especially simple at the element level: 

Effectively, the variation of the coefficients is portrayed as piecewise constant function with discon- 
tinuities at element boundaries, as in Figure 8.12. 

More generally, we may expand the coefficients in terms of any known basis: 

The most common case is to use the same basis for the coefficients as is used for the solution itself 
i.e. + = 4. In many FE descriptions, this is tacitly assumed unless stated otherwise. In Figure 
8.12 we display this case. Data support for this case consists of nodal values of the coefficient, 
as opposed to element values as above. Once the basis for the coefficients is established, the WR 
method provides an unambiguous statement of how this coefficient variation is embedded in the 
discrete system - e.g. the integral (8.69) above. 

These two types of coefficient variation both have intrinsic strengths and weaknesses. In cases 
where an essential discontinuity in a coefficient occurs, then a discontinuous, element-based repre- 
sentation is natural, and the mesh needs to be designed with node placement at the discontinuity. 
In cases where smooth coefficient variation is desirable, then the C0 or higher continuity is appro- 
priate, supported by nodal data. Hybrid strategies for specifying coefficient variation are of course 
possible. 

'2.4 Gigabytes for 64-bit words 
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b = = =  
b\ 4 X 

J 
element boundaries 

A 

Figure 8.12: Smooth function f (x) represented as (top) a 
piecewise constant function, supported by element values; 
and (bottom) represented as a C0 function F(x), supported 
by nodal values on linear elements. 

8.11 Numerical Integration 

In the above examples we have integrated the various terms exactly in order to expose the structure 
of the difference equations which result. This procedure becomes tedious rapidly as complexity is 
added to either the basis or the governing differential equation, and it is therefore rarely used 
in practice. The more general and easily automated approach is to perform the integrations nu- 
merically - i.e. to sample the integrand at discrete points and construct a weighted sum which 
approximates the integral: 

n 

(8.71) 
k = l  

The xk are called quadrature points, the Wk weights. If the (xk, Wk) pairs are carefully selected, 
the approximation can be exact for certain types of integrands. 

For example, n quadrature points can always exactly integrate a polynomial of order n - 1, 
provided the weights are chosen to match the points. It is easy to verify that, for an arbitrary 
selection of xk, the weights Wk are given by 

We can do better if the xk are also carefully chosen to fit the integrand. The Gauss family of 
quadrature formulas provides the highest level of precision available for polynomial integrands: n 
quadrature points can exactly integrate a polynomial of order (2n - 1). This is achieved by locating 
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Table 8.9: Gauss-Le endre B quadrature. The order o poly- 
nomial interpolation is 2n - 1. 

h is the normalized indepen- 
ent variable on the interval 

[-I, 11. 
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the xk at the zeros of the nth member of a family of orthogonal functions. Table 8.9 displays the 
(xk, Wk) pairs for the Legendre polynomials, which provides integration on the interval (-1, 1) 
with all quadrature points on the interior of the interval. In computational practice, these can be 
generated to any desired level of significant Figures using standard algorithms. 

This family is widely used in FEM analysis, and is commonly referred to as "Gauss-Legendre 
Quadrature." To make it work in our context, we need one additional adjustment - the conver- 
sion from the global integration over dx to the generic integration over d< requires the mapping 
transformation J r dx/dJ to relate the x and < domains: 

dx n 1 f (x) dx = f (x)-@X C Wkf ( ~ k )  (I*) 
e k=l 

In the simple cases discussed above, the constant J = (Ax), /2 maps x onto the interval (-1, 1) 
as required by the Gauss-Legendre formulas. For more complex elements, we will find that J will 
be a function of <. (This will be discussed in a later chapter.) 

Note the general weakness in the quadrature approach: the integrand is assumed to be a 
polynomial; and for smooth integrands, increasing the order of numerical integration (increasing 
the number of quadrature points) will generally improve the accuracy of the integration. However, 
all bets are off if the integrand has a discontinuity or a singularity; these integrals will require 
specialized care. 

The literature on numerical integration is vast and its findings are well-articulated in most 
introductory numerical analysis texts (e.g. [20]). The general family of Gauss-type formulas extends 
beyond polynomial integration, generalizing to all sets of orthogonal bases. The Discrete Fourier 
Transform is a common example of a quadrature approximation which is exact for Fourier bases 
up to a limiting wavenumber. 

8.12 Assembly with Numerical Quadrature 

Systematic use of numerical quadrature adds an additional layer of generic structure and simplicity 
to the assembly process. Above in Section 8.8 we noted that for the general discrete system 
[A]{u) = {B), with A and B comprising integrals: 

then the integrals can be assembled as a sum of element contributions: 

We now find an additional level of structure: [AIE is itself a sum of contributions from quadrature 
points within that element: 

[A] = C [AIE = [A]k = W* Jk (8.78) 
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We identify [a], the "Gauss Point Matrix", and its right-hand side equivalent {b), as the essential 
contributors to the discrete system, originating at the lowest (most local) level: the individual 
quadrature point. 

The basic FEM requirement is to numerically evaluate integrands generated by the WR method 
at a single quadrature point, in a generic element with simple local basis functions. The balance of 
the work in obtaining the discrete system is generic, structured assembly. 

The "view from the inside" begins at the Gauss point k and follows its contribution to the 
global system, as in (8.65): 

a(i, j)kJkWk * AE(i,j) * A (IN(E,  i), I N ( E ,  j ))  (8.80) 

b(i)kJkWk * bE(i) + B (IN(E,  i)) (8.81) 

The intermediate concept of the Element matrix is not actually needed numerically, and we may 
write the assembly in its most direct form: 

a(i, j)kJkwk * A (IN(E,  i), I N ( E ,  j ) )  
b(i)k JkWk +- B (IN(E, i)) 

where all indices are at the local (element) level, and as above, =+ indicates "contributes to" 
additively. Note that a and b are integrands, not integrals, as generated by the WR method. The 
assembly indicated takes care of everything from that point on. 
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Mult i-Dimensional Elements 

9.1 Linear Triangular Elements 

Linear triangles are the simplest 2-D elements, providing entry-level linear interpolation of the form 

f (x) = a + bx + cy (9.1) 

They are a universal point of departure for 2-D applications. 

Local Interpolation 

In Figure 9.1 we show the basic triangular element in the (x, y) plane. Its vertices are numbered 
locally, 1 = (1, 2, 3) in counterclockwise order by convention and have global coordinates (xi, yi). 
We assume no restrictions on the shape of the triangle. 

Figure 9.1: Linear triangular element with counterclockwise 
node numbering convention. 

The triangle area is the basic measure of its size: 
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1 
= -- [ ~ 1 ( ~ 2  - 23) + y2(~3  - ~ 1 )  + y 3 ( ~ 1  - x2)] 2 

It is natural to define the element Cartesian lengths 

and the area is more simply expressed as 

The relevant "grid size" measures here are not aligned with the Cartesian grid, but with the triangle 
itself. The internodal spacing 

As1 = (9.7) 

provide one measure of local discretization; each has an orthogonal length equal to the altitude Hl 
defined in Figure 9.2 

Other measures of grid size are useful: for example m. 

Figure 9.2: Normalized altitude coordinates Li = 9. 
On the triangle we define three basis functions 41 which are linear in (x, y): 

etc. Each basis function is constrained to have unit value at node 1 and to vanish at the other 
nodes. These three constraints determine the constants al, Pl, 71. For & ,  we have 

Inversion of 9.10 gives 
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Cyclic permutation gives the other two bases 

[(x192 - ~291)  + xAy3 - yAx31 
43 = 2A 

(9.13) 

These functions provide a unique linear interpolation for any function f in terms of its 3 nodal 
values fi: 

3 

f (x, Y) = x fdl (x, Y) (9.14) 
1 

From the global perspective, i = IN(E ,  1) is identical to local node number 1 on element E, and 
therefore the local function 41 is a part of a global function q5i. will be defined analogously on 
all elements which share node i. Otherwise, 4i = 0 by definition. 4i is therefore a global function 
(i.e. defined over the entire domain) but with very limited, local support in the immediate 2-D 
neighborhood of node i. The definitions guarantee that 4i will be continuous across adjacent element 
boundaries, and therefore any function interpolated "globally" (i. e. beyond a single element) as 

will be continuous and piecewise linear in (x, y). 

Differentiation 

Derivatives of these basis functions with respect to (x, y) are readily obtained from (9.11): 

It is apparent that derivatives will be constants over each element, and therefore will be discon- 
tinuous at element boundaries. The same properties will pertain to derivatives of any function 
expanded in the basis - for example with f defined as in (9.14) above, we have for any single 
element 

The global representations are 

-- 

Therefore we have a 2-D, C0 linear element. 
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Integration 

As introduced above, all FEM quantities are integrals; and the fundamental integration task is 
limited to performing integrals of the basis functions and the data over a single triangular element. 

The linear triangles are unusual in that many applications can be created with exact, closed- 
form integration. The Table 9.1 gives the results for several common integrations. 

In general, element integrals are evaluated numerically using approximate quadrature rules 
defined on triangular domains. These are given in the next section in connection with higher-order 
triangular bases. 

9.2 Example: Helmholtz Equation on Linear Triangles 

As an example, consider the Galerkin treatment of the Helmholtz equation v 2 u  + fu = g. In 
section 7.3 we introduced the weak form at equation(7.40); in Galerkin form, it is 

Its discrete form [A] {u )  = { B )  is, from equation(7.47) using Galerkin, 

Implementation on linear triangles requires that we evaluate the element-level version of the 
discrete system. Table 9.1 provides all the information we require for exact integration. The 
resulting 3 x 3 element system is 

for the case in which the coefficients f and g are constant on an element. Assembly of this element 
matrix would follow the generic procedure outlined above, with the Incidence List as the key: 
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Table 9.1: Integration formu- 
las for Linear Triangles. The 
local indices (i, j, k) are num- 
bered in counterclockwise or- 
der. 
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The boundary integrals in the right-hand side vector fe()ds are evaluated around the perimeter 
of an individual element and represent the natural (Type 2 or Neumann) conditions. On assembly, 
two integrations would be indicated over L'interior" line segments shared by two elements. Because 
the normal direction is exactly opposite, and the exact solution has continuity of Vu,  these con- 
tributions would exactly cancel and are eliminated from consideration a priori. The surviving line 
segments comprise the global boundary of the domain, and are the vehicle for insertion of boundary 
condition data. This consideration allows us to ignore, at the element level, the boundary inte- 
grals over interior line segments, and consider only segments where there is a suitable boundary 
condition on the global boundary. Thus we may interpret the notation fe()ds as integration along 
non-internal element sides. 

Suppose the coefficients f and g were represented instead as linear functions with nodal values 
fi, gi. The Laplacian contributions to the matrix [A] would be unchanged; but the f contributions 
would become: 

[ ' 6 f l + 2 r f 3 ) A ]  [ (2f1+21i+f3)A]  [ (2 f i+ f i :2 f3 )A]  1 

I [ ( 2 f l + f g : 2 f 3 ) ~ ]  [ ( f i  +2 f2+2 60 f 3 ) ~  2f1+2fi+6 f3 )A  ] [ (  60 

and the right-hand side would be 

The local coefficient variation produces specific local coefficient averages in the discrete system. 

9.3 Higher Order Triangular Elements 

Local Coordinate System 

In Figure 9.2 we introduced a natural local coordinate system, based on the normalized altitudes: 

These coordinates are sometimes referred to as area coordinates because they have the alternate 
interpretation as the ratio of the subarea Al, to the full area A of the triangle. (See Figure 9.3.) 
From this interpretation it is clear that ~7 L1 = 1. 

Clearly, these local coordinates are linear in (x, y). By inspection, Ll is unity at node 1 and 
vanishes at the other nodes; it therefore satisfies all requirements for a linear 41 and we have the 
alternate representation of the linear basis 
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Ai(z, ZI) . Figure 9.3: Local area coordinates for the triangle: Li = A 

Any two of the L1 constitute a valid local coordinate system. The mapping from local to global 
(x, y) coordinates: 

is exact, given the linearity of the L and 4. In this way, any point in a triangle defined by local 
coordinates can be located uniquely in the global coordinate system. 

We use the local system to define higher-order polynomial basis functions; and to define numer- 
ical quadrature points on a triangle. 

Higher-Order Local Interpolation on Triangles 

Figure 9.4: Quadratic (left) and Cubic triangular elements. 

Higher-order bases are conveniently defined in the local coordinates - for example, the function. 
Figure 9.4 shows a quadratic element with three corner nodes and three midside nodes. Note the 
node numbering convention. Polynomial interpolation of the form 

f (x) = a + bx + cy + dx2 + exy + f y2 (9.31) 

can be constructed by constraining matching nodal values at the six points. In particular, we can 
define six quadratic bases, one associated with each node, such that each is unity at its home node 
and vanishes at all other nodes. Since the local and global coordinate systems are linearly related, 
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either can be used, and the local system is far more convenient. Table 9.2 lists the six unique 
quadratics meeting these specifications, and is easily verified by inspection. 

Cubic variation can be achieved in the form 

f ( x )  = a + bx + cy + dx2 + exy + f y2 + gx3 + hx2y + pxy2 + qy3 (9.32) 

with an element with ten nodes as in Figure 9.4. Note that symmetry requires the same number of 
equidistant nodes on each side; otherwise neighboring elements will not conform. So cubic variation 
requires an additional node on the interior of the element. In Figure 9.4 we locate this node at the 
element center. Table 9.3 gives the cubic triangular bases, using the local numbering convention of 
Figure 9.4. As above, these are easily verified by inspection. 

Both of these elements provide only C0 continuity. Analogous to the 1-D case, we can define a 
triangular element with continuous first derivatives which will have cubic variation, and therefore 
10 degrees of freedom as above. Each node on the element boundary will have 3 degrees of freedom 
- 4, 2, and 9. This element will therefore have a single midelement node with one degree of 
freedom in addition to the three corner nodes. Details of this and other higher-order elements may 
be found in standard references (e.g. [120], [52] ). 

Table 9.2: C0 Quadratic Triangular Bases and their Derivatives. 

Corner nodes 
d l  

4 2  

4 3  

Midside nodes 
4 4  

4 5  

4 6  

4 

L1 (2L1 - 1) 

L2(2L2 - 1) 

L3(2L3 - 1) 

4L1L2 

4L2L3 

4L3L1 

L!& 
aL1 

4L1 - 1 

0 

-4L3 $. 1 

4L2 

-4L2 

4L3 -4L1 

25L 
aL2 

0 

4L2 - 1 

-4L3 f 1 

4L1 

4L3 - 4L2 

-4L1 
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Table 9.3: C0 Cubic Triangular Bases and their Derivatives. 

Differentiation 

Corners 
41 

4 2  

4 3  

Sides 
4 4  

4 5  

4 6  

47 

4 8  

4 9  

Center 
$10 

Differentiation of these bases requires some care. Basically we are interested in V4 in the (x, y) 
system; but the bases can only be directly differentiated in the local system. We need to include 
the local-to-global coordinate transformation in a structured way. 

Only two of the three local coordinates are independent, so we lose no generality by arbitrarily 
using only L1 and L2. Derivatives in this coordinate system are given by the chain rule: 

4 

1 2 (3L1 - 1)(3L1 - 2)Ll 

1 (3L2 - 1) (3L2 - 2)L2 

g ( 3 ~ 3  - 1)(3L3 - 2)L3 

: L ~ L ~ ( ~ L I  - 1) 

5 L1 L2 (3L2 - 1) 

~ L Z L ~  ( 3 ~ 2  - 1) 

;L2L3(3L3 - 1) 

g ~ 3  L I ( ~ L ~  - 1) 

8 L3 L1 (3L1 - 1) 

27L1 L2L3 

and likewise for g. These relationships are stated in matrix form as 

' ~ o t e  that & means "holding Lz constant", while & means "holding y constant", etc. The local differentiation 
also implies that Lg = 1 - L1 - Lg.  

&?i 
aL 1 

g [9L1(3L1 - 2) + 21 

0 

-$  [9L3(3L3 - 2) + 21 

g(6L1L2 - L2) 

gL2(3L2 - 1) 

- 5 ~ ~ ( 3 ~ 2  - 1) 

-g[L2(6L3 - I ) ]  

;[L3 ( 3 ~ 3  - 1) - L1 (6L3 - I ) ]  

5 [ ~ 3 ( 6 ~ 1  - 1) - Ll(3L1 - I ) ]  

27(L2L3 - L1L2) 

* 
~ L z  

0 

[9L2(3L2 - 2) + 21 

-$  [9L3(3L3 - 2) + 21 

! L ~ ( ~ L I  - 1) 

g(6L2L1 - L i )  

- ! [ L ~ ( ~ L Z  - 1) + L3 (6L2 - I ) ]  

9 2 [L3 (3L3 - 1) - L2 (6L3 - I ) ]  

- g ~ l ( 6 ~ 3  - 1) 

-;Ll(3Ll - I)] 

27(LlL3 - L1L2) 
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and the inverse relation 
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where the Jacobi matrix J is the generalization of its 1-D counterpart $ introduced in section 
8.11: 

The Jacobi Matrix can be evaluated anywhere on a given element. The linear local-to-global 
mapping introduced above (Equation 9.29) 

is easily differentiated: 

and so forth, giving a constant Jacobi matrix for a given element: 

Numerical evaluation of J and its inverse is a simple matter on any triangle. 

The bases are readily differentiated in the local coordinate system. For example, consider 44 
on a quadratic element: 

&& 2 = 4L2 aL: = 4L1 (9.40) 

and we have 

For 4 5  we have: 

giving 

(The reader is encouraged to verify the differentiation of 4 5 ,  keeping in mind that L1 and L2 are 
independent variables; and that L3 = 1 - L1 - L2.) 
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Tables 9.2 and 9.3 contain the required local derivatives of the bases for quadratic and cubic 
triangles. At any given point (L1, L2), their numerical evaluation is straightforward and their 
premultiplication by [J]-' completes the differentiation in the (x, y) system. 

Below (section 9.4) we will introduce variation in [J] within an element, which will be shown 
to greatly expand the capabilities of these elements with trivial computational expense. 

Numerical Integration 

The local coordinate system is also used to define numerical integration procedures in terms of 
quadrature points and weights. As introduced in the l-D case, we approximate integration over 
the triangular element by a weighted sum of integrands evaluated at special points (L1, L2)q in 
the domain. In Table 9.4 we show quadratures with various degrees of polynomial precision, 
adapted from Cowper [25]. In each case the quadrature points are symmetrically arranged, so for . - 

example the 3-point formula of precision 2 involves all 3 permutations of the single point given as 
(L1, L2, L3) = (213, 116, 116). In Table 9.4 this is indicated as the multiplicity of a point. Also 
note that 

1 / L ~ L ~ ~ L I  = - 2 

and therefore the sum of the weights in every case is normalized here to 

In our WR applications, we require integrals in the global (x, y) space: 

and in the local L1, L2 system we have 

and therefore our integrals must be evaluated as 

where Wk is the weight associated with the point (L1, L2)q; (f I J l)q is the integrand evaluated at 
that point; and Nq is the number of such points in an element. With the linearly-mapped triangle 
(equation 9.29) it is easy to confirm that 

and that therefore the element integral of 

confirming the normalization of these formulas. 

Details of quadrature rules and their relative accuracy are recorded in several standard references 
on finite element methods, e.g. [l2O]; [52]; [loll. Integration over rectangular domains is common. 
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Table 9.4: Quadrature points and weights for triangles. The 
order of exact polynomial interpolation is indicated as N. 
Multiplicity M > 1 indicates multiple symmetric points. 
Adapted from [25]. 

I I I 
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Figure 9.5: Four-point integration from Table 9.4, exact for 
order 3 polynomials in (L1, L2, L3). 

Triangular domains are treated by Cowper [25] (Table 9.4 herein), Lyness [83], and Berntsen and 
Espelid [ll, 13, 12, 101. 

Several quadrature formulas have been presented that can offer significant computational sav- 
ings e.g. [37]. In particular, for linear triangles, exactly three quadrature points in each triangle, 
coinciding with the triangle vertices, has been extensively used [67]. The weights in this case are 
all equal: 

A A A  w - -  - - 
4 -  3 '  3 '  3 

We refer to this as nodal quadrature. It exactly integrates a linear function over the element. Note 
that in Table 9.4, quadratic precision is possible for three quadrature points; so there must be 
a compelling reason to favor this particular quadrature. (In the uses cited, the reason is matrix 
structure.) 

This completes the element-level picture for any WR formulation involving C0 triangular bases 
and their first derivatives. Everything (interpolation, differentiation, integration) is done in local 
coordinates involving simple polynomials. Operationally, one visits each quadrature point in suc- 
cession, evaluating every WR integrand, multiplying it by I JI Wq and adding it to the global system. 
Nesting this procedure inside a generic loop over all elements makes the assembly complete for an 
arbitrarily structured mesh of triangles. 

9.4 Curved Triangular Elements and The Isoparametric Transfor- 
mation 

As a final refinement of the triangular element, we relax the constraint that elements have straight 
sides. The general situation is depicted in Figure 9.6, for an element with six points defining the 
curved sides. The key to this element is mapping it onto the generic triangle as shown, which in 
local terms is identical to the quadratic triangle defined above. 

Figure 9.6: Isoparametric triangle. 

Like other operations on these elements, the local coordinate system is the best starting point, 
and it is simplest to work from it, backwards to the global coordinate system. We define a suitable 
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local basis + for the mapping: 
x(L1, L2) = C x 1 + ( ~ 1 ,  L2)l 

1 

y(L1, L2) = C Y ~ L I ,  L2)1 (9.52) 
1 

where the basis + is interpolating the global coordinates of the mapping points for a given element. 
In this form, we have the usual constraints that +l = 1 at node 1 and zero at all other mapping 
nodes. Obviously, the quadratic bases defined above are the correct interpolants here. In addition, 
their continuity (CO) guarantees that the shared, curved side of two adjacent elements will be 
congruent in the global (x, y) system. (See Figure 9.7.) So we see that the standard FE bases are 
capable of interpolating not only the dependent variables and coefficients of a problem, but the 
dependent variables as well! 

Figure 9.7: Congruence of 2 isoparametric triangles along a 
shared side. 

The Jacobi transformation introduced earlier in section 9.3 needs to be upgraded to account for 
this enhancement. By definition, we have 

With x and y interpolated as in (9.52) above, we have 

and similarly for %, &. The required derivatives are all expressed in the local system and 
therefore their numerical evaluation at any (L1, L2) point is straightforward. Numerical evaluation 
of [ J ]  and its inverse, which now varies locally on the element, is readily obtained at any quadrature 
point. There is no further adjustment to the general development above. 

The general form of integration introduced at (9.47) also remains unchanged: 
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The only complication is the extra local variation contributed to the integrand by I J ( ,  which may 
require a higher-precision quadrature formula (i. e. more quadrature points). 

The limited version of the Jacobi transformation used above, equation (9.30), can be seen to be 
the special case where $ are the linear triangular bases. In general, we identify three cases: 

the mapping bases $ are the same as the basis for the dependent variable 4. This is the 
Isoparametric case and is commonly used. 
$ are of lower order than 4. This is the Subparametric case and it was used in the previ- 
ous sections to develop the higher-order triangular bases. Like the Isoparametric case, this 
approach is common, especially the use of linear mapping for otherwise higher-order triangles. 
$ are of higher order than 4. This is the Superparametric case. 

9.5 Quadrilateral Elements 

The most rudimentary bilinear element embodies the product of linear variation in x with linear 
variation in y: 

4i(x, Y) = ( a  + bx) ( c  + dy)  (9.57) 

on a square or rectangle aligned with the (x, y) axes.2 Suitable bases are easily arranged as the 
product of separate 1-D Lagrange polynomials in x and y. If our goal were limited to this, we could 
stop here. However we wish to generalize this idea to allow simple representation of quadrilaterals 
which 

are not aligned with the global coordinate system; 
which are not rectangular; 
which have higher-order local interpolation; and 
which have curved sides. 

We will introduce in a systematic way the standard four issues for the quadrilateral element family: 
the description of bases in local coordinates 
the mapping from local to global coordinates 
the procedure for differentiation in local coordinates 
the procedure for integration in local coordinates 

We will concentrate on Lagrangian bases as in the 1-D elements. All the basic ideas were introduced 
in the previous discussion of triangular elements. 

The Bilinear Element 

In Figure 9.8 we introduce the simplest quadrilateral element in the local coordinate system (t, q). 
Both local coordinates are centered in the element and range from -1 to 1. The bilinear bases are 
the product of two 1-D Lagrange polynomials in and 7: 

and their local derivatives are 
-- ah - 5 (1 + qlq) 
at 4 

2 ~ o t e  that the product term in xy creates quadratic variation on the diagonal of such an element; this complication 
was not built into the triangular elements. 
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Figure 9.8: Local coordinate system for the bilinear quadri- 
lateral element. 

The mapping from local to global coordinates is conveniently stated as a bilinear transformation, 
which for this element is an Isoparametric mapping: 

Figure 9.9: Lines of constant 6 and q as mapped into the 
(x, y) system. 

Figure 9.9 illustrates the mapping of lines of constant < and q onto the global element. Along 
any line of constant 5, we have 

all bases are linear in q; therefore 
x and y  are linear in q; therefore 
4~ and are constants; therefore 
d 7  d7) 2 is a constant 

So we find that lines of constant 5 are straight lines in (x, y ) .  The same is true for lines of constant 
q. Since the corners map exactly, we find that the bilinear mapping produces a straight-sided 
quadrilateral. 

The Jacobi transformation is generic: 
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with J entries of the form 

and so forth. Note that J in this simplest quadrilateral case varies over the element. 

Derivatives of the bases are thus readily evaluated at any point ( t ,  q)  by first evaluating @ 
and %; then evaluating I JI and inverting it; then numerically evaluating the product (9.62). 

Figure 9.10: Illustrating 2-D Gauss-Legendre quadrature in 
local coordinates on the quadrilateral. 2 x 2 and 3 x 3 quadra- 
ture is shown. 

Integration is achieved in the local coordinate system as the product of two 1-D integrations. 
Gauss-Legendre quadrature is commonly used, and the formulas in Table 8.9 are directly applicable. 
For example, 2 x 2 and 3 x 3 quadrature are illustrated in Figure 9.10, with Gauss points given in 
Tables 9.5 and 9.6. Tables and/or procedures for general n x n quadrature are readily generated 
from the 1-D rules. Remember that the 2-D weights are products of a pair of 1-D weights. 

Higher-Order Quadrilateral Elements 

The generalization of the above for higher-order polynomial variation is straightforward. In general, 
we may construct bi-quadratic, bi-cubic, and higher forms of elements by the same procedure of 
multiplying 1-D Lagrangian bases in < and q. The quadratic quadrilateral will have 3 x 3 = 9 
nodes, with one located at the element center as illustrated in Figure 9.11. The bases and their 
local derivatives are given in Table 9.8. The cubic version will have 16 nodes, including 4 interior 
nodes, as in Figure 9.11. Tables 9.9 and 9.10 provide the necessary local description of these bases. 
The generalization to higher-order elements is straightforward and details can be found in standard 
sources. 

Isoparamet ric Quadrilaterals 

All of these higher-order quadrilaterals can be used with the simple bilinear mapping described 
above. This would be "subparametric" mapping, with straight-sided quadrilaterals in the global 

31n the analogous linear triangle case I JI was a constant; the variation here is created by the bilinear term Eq in 
the bases. 
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Figure 9.11: Lagrange bi-quadratic and bi-cubic quadrilat- 
eral elements. 

system mapped to a square. 

The isoparametric option provides curved sided "quadrilaterals" in the (x, y ) system - objects 
with four piecewise continuous curves joining at 4 vertices. Figure 9.12 illustrates a contiguous 
pair of quadratic isoparametric quadrilaterals. The specific shape of any side is embedded mathe- 
matically in the standard local interpolation of x and y. For example, along the "bottom" side at 
q = -1, we have 

2 = C X I B ~ ( F ,  -1) 
1 

Since only bases 1,2, and 5 are nonzero along that side, we have a simple quadratic in < interpolating 
among the positions 21, xz, and x5. The other 3 sides of the element are analogous. The C0 property 
of the bases guarantees that the curved sides of adjacent elements will be congruent, as in Figure 
9.12 

Figure 9.12: Isoparametric bi uadratic elements, illustrating 
the conformance of the share 1 side. 

On the element interior, the centerline q = 0 connects the midside and center nodes with a 
quadratic of the form 

Only nodes 8, 9, and 6 will participate in this interpolation. Any line of constant q will be a 
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quadratic interpolation among this centerline and the top and bottom edges. Lines of constant ( 
will map in an analogous manner. 

The description of the bases for isoparametric elements is unchanged in the local coordinate 
system; and the general description of differentiation and integration involving the Jacobi transfor- 
mation and 2-D Gaussian quadrature is also unchanged. The formulas described above are directly 
applicable and need not be repeated. 

Table 9.5: 2 x 2 Gauss- 
Legendre quadrature, suffi- 
cient to integrate an integrand 
of order ( 3 ~ 3 .  

Table 9.6: 3 x 3 Gauss- 
Legendre quadrature, suffi- 
cient to integrate an integrand 
of order t5q5. 
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Table 9.7: C0 Bilinear Quadrilateral Bases and their Derivatives. 

Table 9.8: C0 Quadratic Quadrilateral Bases and their Derivatives. 

Corners 
< l = f l ; q l = f l  

Table 9.9: 

1 + 5 )  1 + 1 4 

orners 
5 = :I; 9 = f 1  

Sides 
6 = 0; vl = f 1 

6 = * 1 ; v 1 = 0  

Center 
C = O ; v l = O  

Corners 
tl = f 1; q1 = *1 

Sides 
El = *:; 71 = f l  

< l = f l ; v l = f l  3 

lnterior 
J1 = f +; r)z= f +  

4 (1 + 717) 

4 

aEEl(l + bC)qa ( l+  s v )  

;(I - J2)vv1(1 + v1v) 

$(I-v2)ES(1+C5) 

(1 - E2)(l - v2) 

y o  Cubic Quadrilateral Bases. 

4 

2 (1 + C5) 

I 
:&(I+ 2&C)vql(l+ vrs) 

;(-2E)vvl(l+ v1v) 

- v2)C(1 + 2515) 

(-2E)P - q2) 

3 817 

aES( l+  60a(1 + 2viv) 

- E2)v1 (1 + 2717) 

~ ( -2v )EE~( l+  515) 

(1 - E2)(-2v) 
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Table 9.10: C0 Cubic Quadrilateral Derivatives. 

Corners 
1 = 1 1 = * 

Sides 
6 = ki; 771 = f 1 

&(27t2& + 185 - &)(9'V2 - 1)(7)1q + 1) 

Interior 
6 = *$; 771 = f$ 

&(9t2 - l)(&t + 1)(27q2q1 + 187 - ~ 1 )  

&(9v2 - 1)(W + 1)(-2752tl - 2( + 9&) &(27q2q1 + 187 - ~1)(1 - t2)(1 + 9&t) 

&(-27t2& - 25 + 951)(1- q2)(1 + 973111) &(I- J2)(1 + 95~5)(-27v2m - 277 + 9%) 
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Time-Dependent Problems 

10.1 General Approach 

The time domain enters physical problems in a fundamentally different way than the other spatial 
dimensions. As a result, it is treated differently in most FE studies. It would appear natural 
to simply add an extra dimension to the types of elements already defined, and to describe a 
time-dependent problem in terms of 

where the g5i constitute interpolants on "space-time elements", and t is added to the independent 
variable list in a routine manner. However there are few immediate advantages, as the time-domain 
presents itself in the form of initial-value problems rather than boundary-value problems associated 
with the other dimensions, and only in advanced problems is anything other than a perfectly regular 
temporal mesh, orthogonal to (x, y, z), called for. So, it is nearly universal practice to separate 
space and time variation 

4x7 Y, 2, t)  = C ~i (t)g5i(x, Y, 2) (10.2) 
2 

The g5i here are regular, time-invariant FE bases interpolating nodal histories ui(t); and the ui(t) 
are the state variables of a dynamical system.' 

10.2 Lumped and Discrete Systems 

We will distinguish between two forms of FE system: 

the lumped system, where elliptic dimensions have been discretized by the WR methods 
described earlier, but the time domain is left continuous. This will be a system of coupled 
Ordinary Differential Equations in time. 
the discrete system, wherein the time domain is also discretized. The mathematical form will 
be difference equations describing time- and space-discrete processes. 

' ~ x c e  tions to this general rule of time-invariant bases are called for in free- and movin boundary roblems 
front-tra$ing problems, etc. In those problems, time-varying bases are uniquely capable oBLijusting t f e  spatid 
discretization in response to steep gradients or moving boundaries. 
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Implied is the need to appeal to an additional discretization principle for the time domain. In 
general we will utilize the standard set of techniques for integrating coupled ODE'S as initial-value 
problems. 

10.3 Example: Diffusion Equation 

Consider the diffusion equation - 

and its Galerkin weak form 

Here we have used the identity (see Appendix) 

( (V  . V) 4i) + (V . V4i)  = v . ii4i ds f 
Expanding u in the basis as in (10.2) above, we have spatial differentiation as before 

and temporal differentiation gives us 
au dui -=CZh at 

Substituting these quantities into the weak form provides 

or in matrix form, 

(10.9) 

with 

This is the lumped system approximation to the diffusion equation. The assembly of the matrices 
[MI (the "mass matrix") and [ K ]  (the "stiffness matrix"), and the right-hand side vector (including 
natural boundary condition information plus the forcing term r ) ,  are exactly as discussed in steady- 
state problems. We concentrate on the discretization of the time domain. 

The simplest integration of the lumped system would involve two time-levels, tk and tk+'. 
Integrating from tk to tk+' we have 

[MI {uk+') = [MI { u k )  + Jk+' (- [ K ]  {u )  + {R)) dt 
k 
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The temporal integral may be approximated in terms of its value at tk and tk+l: 

Lk+l 
gdt = At (Ogk+' + (1 - O)gk) 

13 = 0, 1, and 112 are the standard forward Euler, backward Euler, and Trapezoidal Rule integra- 
tions. Pursuing this gives the final discrete system representation: 

k+l 
[ [MI  + @ A ~ [ K ] ]  {uk+') = [ [MI  - (1 - o ) A ~ [ K ] ]  { u k )  + 1 k {R)  dt 

Assuming the availability of initial values for uk , we may distill the discrete system to a repetitive 
application of 

{ 1 
[A] {uk+l)  = [B]  { u k )  + { c ~ + ' / ~ }  (10.16) 

with time-invariant matrices 

and time-integrated forcing comprising the source term r plus natural boundary conditions: 

= Lk+l (f DVU . ds + ( r c )  (10.19) 

Assembly of [A], [B]  and { c ~ + " / ~ )  involves standard application of the FE methodology devel- 
oped for time-independent problems. For example, implementation on a linear triangular mesh, 
with D constant on an element and exact integration as in Table 9.1 leads to the following element- 
level mat rice^:^ 

Ae ( A x ~ A x ~  + +yiAyj) Ai,j = - (1 + S i j )  + ODAt 
12 4Ae 
Ae ( A x i A x j  + AyiAyj) 

Bi,j = - (1  + S i j )  - (1 - 0 )  DAt  
12 4Ae 

Because [A] and [B] are time-invariant, they may be assembled, factored, etc once at the beginning 
of a simulation. Each time step is then a simple assembly of the time-variable forcing vector, plus 
manipulation of known matrices. On the linear triangles, this would be, for constant r at the 
element level, 

4+' = Lk+' (% + D V u  . ii+i ds dt ) 
or for linear r at the element level, 

The repetitive solution of (10.16) formally requires the computation, storage and multiplication 
of [A]-'. If approached directly, this would require full matrix storage ( O ( N ~ )  words for a mesh of 

2Sij is the Kronecker delta: hij = 1 if i = j, 0 otherwise; and A, is the element area. 
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N nodes) and excessive runtime ( O ( N ~ )  operations for full matrix multiplication). It is therefore 
essential for practical problems to take advantage of sparse matrix storage and solution techniques. 

For 2-D applications, the use of direct LR decomposition has proven to be especially useful. In 
this method, the matrix [A] is factored into left and right triangular factors 

Now solution of a triangular system, say 

is a straightforward matter because the first equation has only one unknown, and solution can 
progress downward in a sequential manner. The same is true for equations involving R, except the 
solution begins with the last equation and progresses backward. In either case, the inverse solution 

is achieved without direct calculation of the inverse. Use of these ideas for the matrix equation 
[A]{u) = { z )  is achieved in three steps: 

1) compute [L] and [R] from [A] 
2) solve [L]{y) = { z )  for the intermediate vector { y )  
3) solve [R]{u) = { y )  for {u)  

Step 1 can be done once at the beginning of a simulation and stored; steps 2 and 3 need to be 
repeated for each right-side vector. 

Now the factorization of a banded matrix with bandwidth Nb requires O ( N N ~ )  operations, as 
opposed to O(N3) operations for inversion; and steps 2 and 3 above require O(NNb) operations, as 
opposed to O ( N ~ )  for multiplication by a full inverse matrix. For 2-D applications this makes LR 
decomposition extremely effective. Further, [L] and [R] are also banded, with the same bandwidth 
as [A]. So, [L] and [R] can be stored with only N * Nb entries. For a symmetric matrix, [L] = [ R ] ~ .  

The product [B] { u k )  on the right-hand side of (10.16) is readily implemented in any sparse 
matrix storage scheme (i.e. one in which only the nonzero coefficients are stored). 

In 3-D the storage requirement of LR decomposition becomes uneconomical for large problems 
- the minimum achievable bandwidth is impractically large. (See the discussion at Section 8.9.) 
In these and very large 2-D applications, it is desirable to use iterative sparse matrix solution 
methods. These are fundamentally arranged so that only sparse matrix multiplication is needed 
for each iteration. There is a large front of activity in this general area. 

10.4 Example: Advection-Diffusion Equation 

As an extension to the previous example, add an advective term to equation (10.3): 

The Galerkin weak form has the additional term (v . Vu6i): 
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Expanding u  in the basis gives us 

du . 2 (o ja i )  x u j  ( (v  V4j)  4i) + x uj  ( D V 4 j  - V4i) = f DVU . i ids  + ( r&)  (10.29) 
j j j 

and the lumped system is now 

[MI { Z )  + [KI { u )  = IR) 

with 

The only change from the diffusion equation is the additional entry in [ K ]  for the advective term. 

Following the same temporal discretization, the discrete system would again be 

[A] {uk+l}  = [B] {uk}  + (10.34) 

with 

The time-integrated forcing c is unchanged from the diffusion example. Matrices [A] and [B] for a 
linear triangular element would be modified to include the advective term: 

A, B i ,  = - ( 1  + 6ij) - (1  - 8 )  At (vx A Y ~  - vy A x j )  - (1  - 8)  D A t  ( A x i A x j  + AyiAyj )  
12 6 

(10.39) 
4Ae 

As in the diffusion example, we have assumed constant coefficients over an element. 

10.5 Example: Wave Equation 

Consider the wave equation 

and its Galerkin weak form 
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The progression to the lumped system is exactly analogous to that for the diffusion equation, except 
for the order of temporal differentiation. The resulting lumped system is: 

or in matrix form, 

with 

The mass and stiffness matrices [MI and [K] are identical to those already described for the diffusion 
equation; the temporal discretization requires a different approach. 

The second derivative in time demands at least three time levels in discrete form. Here we will 
use a conventional finite difference approach with equally-spaced time levels k + 1, k, and k - 1: 

for the time derivative, and for the term [K] {u), we will use a generalized average centered at time 
k: 

8 8 
u e -u!+l+ ( 1  - 8)u" -uf-' 

2 2 (10.48) 
Use of these approximations gives 

[MI {uk+l} - 2 [MI {uk} + [MI {uk-l} 

8 
+ ~ t ~ ~  [ K ]  {uk+'} + At2(1  - 8 )  [ K ]  {uk} + At2: [K] {uk-') = At2 {R) (10.49) 

Rearrangement gives the final discrete system: 

8 
[ [ M I  + 5 A t 2 [ ~ ] ]  {uk+'} = [ 2 [ ~ ]  - ( 1  - 0 ) A t 2 [ ~ ] ]  {uk) 

8 
- [[MI + 5 ~ t 2 [ ~ ] ]  {uk-'} + at2 {R) (10.50) 

The discrete system entails repetitive solution of 

[A] {uk+'} = [B] {uk} + [C] {uk-') + At2 { R ~ )  (10.51) 

with time-invariant matrices 
8 

A .  23 = ( d j 4 i  + ,at2 c2v4j * ~4~ ) (10.52) 

Bij = (24j4i  - ( 1  - @)At2 c2V4j * ~ 4 ~ )  (10.53) 

and so forth. Note that here we require initial values for u and ukvl . I" { 1 
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10.6 Example: Telegraph Equation 

Adding a loss term to the wave equation gives us the telegraph equation: 

The loss term will cause systematic adjustments in the Galerkin weak form and the lumped and 
discrete systems. The weak form is: 

and the lumped system is: 

or in matrix form, 

with [MI and [ K ]  and {R)  as in the wave equation example, and 

The loss term requires a temporal discretization; for example 

Adding this to the wave equation development gives us 

0 
+At2? [ K ]  {uk+') + At2(1 - 0 )  [ K ]  { u k )  + At2: [ K ]  {uk-') = At2 { R )  (10.61) 

Rearrangement gives the final discrete system: 

At 0 
= [2[M] - (1  - 0)A t2[K]]  {uk}  + [-[MI + ,[TI - -A t2[K]]  {uk-') + At2 { R )  (10.62) 

2  
As in the wave equation, this discrete system entails repetitive solution of 

[A] {uk+') = [B] { u k )  + [C] {uk-') + At2 { R ~ }  (10.63) 

with time-invariant matrices 
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Vector Problems 

11.1 Introduction 

In previous sections, we have concentrated solely on scalar problems i.e. problems in which the 
unknown field is described in terms of a single scalar variable. Many classical problems of mathe- 
matical physics are posed in terms of vector fields, where the unknown field comprises more than 
one scalar variable, for example a displacement vector in solid mechanics, a force field in classical 
electromagnetics, or a velocity field in fluid mechanics. These will be treated by example herein, in 
order to introduce some added features of common approaches. This field is broad, complex, and 
highly discipline-specific. The material here is strictly introductory. We will stick to 2-D problems. 

In general there are two approaches to Finite Element discretization. In the first, we simply 
utilize the customary scalar bases dj(x, y) as in scalar problems; and approximate a vector field V 
in terms of unknown vectors Vj: 

Alternatively, we may invent vector bases @j(x, y) and express a vector field as 

In the case of scalar bases, we allow the most general vector field expansion within the limits of 
common local polynomial interpolation. The vector bases are typically constrained to have certain 
desirable vector properties a priori, for example zero divergence, integral properties or geometric 
constraints. These would be selected to represent specific physical features of a given problem and 
can be highly discipline-specific. 

11.2 Gradient of a Scalar 

Fundamental to many of the formulations leading to scalar PDE's is a gradient-flux relationship of 
the form 

q = -0q (11.3) 

where $ is a scalar potential. Coupled with a divergence criterion, 

V . q = - a  (1 1.4) 
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we obtain the familiar Poisson equation 

Generalizations and extensions of this idea abound in classical mathematical physics. We have 
already studied methods for computing the scalar potential $; here we look at computation of the 
flux vector q, once $ is known. This is the simplest vector problem. 

Why is this a problem at all? Since ?(I is already expressed as a unique continuous and dif- 
ferentiable function $(x, y) = C $j$j (x, y) then its derivative is also available and computable 
everywhere, using the same general apparatus used to assemble the computation of $. In fact the 
simple solution 

q(x, Y) = - C $ j ~ 4 j ( x ,  Y) (11.6) 
j 

is a workable one, easy to compute and relatively care-free. Of course, this is an inherently weak 
estimate for q, on three grounds. First, the estimate will be a lower order polynomial than $(x, y). 
For example, on C0 elements, q will not be unique along element sides; it will change abruptly in 
magnitude and/or direction as one moves from element to element. On common linear triangles, this 
approximation produces a q field which is piecewise constant - one constant vector per element, 
with no interpolating polynomial. Second, we lack any direct method for enforcing Neumann 
boundary conditions beyond their already weak enforcement on the $ field. And third, simple 
differentiation of a numerical field is susceptible to precision loss when $ is highly resolved. This 
is an old problem in numerical analysis - essentially, as resolution increases, derivative estimates 
lose precision before the field does. So, we seek a remedy to these problems - we want to control 
the basis for q; look for an enforcement mechanism for Neumann boundary data; and integrate 
q = -V$ to avoid amplifying roundoff error. 

The example below uses the Galerkin approach to achieve these goals. 

Galerkin Form 

The weak form will be a MWR statement of 11.4 with respect to a set of scalar weights 4i: 

Expanding q in the scalar basis 4, 

we obtain the Galerkin approximation 

which has scalar components 
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These may be solved for nodal values of qzj and qyj. By inspection we can see that this procedure 
will smooth out the discontinuities in V$ by integrating the element-level derivatives over several 
elements. The mass matrix ( $ j ,  $i) on the left-hand side provides an additional smoothing influence. 

It is convenient to reexpress these Galerkin approximations as a 2-D vector equation 

with 

This is the ith Galerkin gradient flux relation in the (x, y) system. 

Natural Local Coordinate Systems and Neumann Boundaries 

Boundary conditions on q naturally occur in terms of the Neumann boundary condition, n-q  = qn, 
where n is the coordinate normal to the boundary and qn C. -2 is the Neumann data. Suppose 
there are nodal values qr specified along a Neumann boundary. Then we need a constraint of the 
form 

n . qi = qn (11.16) 

or in terms of q$ and q!, 

(n . x)qr + (n . y)q; = qy (11.17) 

Adding a constraint requires sacrificing one of the Galerkin equations. Intuitively, we expect that 
V$ is the weakest (in terms of discretization error) in the direction normal to a boundary; and 
therefore the normal component of 11.9 could be replaced by 11.16. Essentially, we are using 
Neumann data as a strong condition on the gradient. 

This procedure can be automated easily. First, any vector V expressed in (x, y) can be projected 
into any local (n, s) coordinate system by the rotation: 

c o  0 sin" { ~t } { K } = [ s i n  C O S ~  

where 0 is the angle between the x-axis and the n-axis.' The inverse relationship is 

Equivalently, 
VnS = [A]VZy (11.20) 

' ~ 0 t h  coordinate systems are presumed to be right-handed; and 0 is positive in the same sense, i .e .  CCW. 
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Figure 11.1: Coordinate rotation conventions. 

The rotation matrices have, a priori, the orthogonality property [ A ] ~  = [A]-'. ( [ A ] ~  indicates the 
transpose of [A].) Figure 11.1 illustrates the geometry convention. 

We presume the existence of distinct local normal directions ni, (equivalently, Bi), associated 
with boundary nodes.2 There will thus be a 2 x 2 rotation matrix [Ai] associated with each boundary 
node. For generality, let [Ai] = [I] for interior nodes. 

To convert the Galerkin equations 11.12 to the (n, s) system, premultiply by [Ai]: 

This expresses the ith Galerkin gradient flux relations in the (n, s) system. But we still have the 
unknown vectors q y  in the x, y system. These can be eliminated in favor of qys by substituting 

* ns q? = [Aj] qj as in equation 11.21: 

Dropping the superscripts in favor of a font change, we have the gradient flux equation weighted 
by 4i, and expressed in completely local coordinates: 

Assembling these gives the matrix equation 

[K] & = -72 

with [K] comprising 2 x 2 submatrices [Kij]: 

2 ~ o r  a discussion of the discretization of ni, see [107]. 
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and 

[IC] is an orthogonal transformation of [K]. It preserves several useful properties of [K], including 
positive-definiteness and symmetry if they apply to [K]. 

Effectively we have interleaved the n- and s- components of the gradient relationship WRY, 
WRS, WRn, W q ,  etc. Likewise, the n- and s - components of q are interleaved qy, qf , q?, q;, 
etc.; and the same for R. Row 2i - 1 is the normal Galerkin approximation weighted by di; row 2i is 
the tangential Galerkin approximation weighted by 4i. Similarly, columns 2i - 1 and 2i correspond 
respectively to the normal and tangential unknowns at node j. 

Note that [Xii] = [Kii] (the special case i = j), i.e. the rotation [Ai] [Kii] [ A ~ ] ~  has no effect 
due to the orthogonality of [Ai] and the fact that [Kii] is a diagonal matrix of the form (4i, 4i) [I]. 

We are now set up to enforce strong (Dirichlet) constraints on qn, preserving only the tangential 
component of the gradient flux relationship along a Neumann boundary. Following the solution for 
&, it is a simple matter to recover q in the (x, y) system in a node-by-node fashion: 

Dirichlet Boundaries 

On boundaries where + is known, there is no prior information about qn. As it stands, the above 
procedure will produce weak approximations for qn because it is inherently biased toward the inside 
of the boundary where V$ is defined. We can improve on this. 

Assume a Poisson equation governs (equation 11.5) in Galerkin form 

The familiar practice in obtaining $ is to "discard the Galerkin equation weighted with when 
node i lies on a Dirichlet boundary - in favor of strong specification of +i. This conveniently 
removed the unknown flux d4ldn from consideration along that boundary. But that is exactly the 
information we would like to have now. So, collect all the "unused" Galerkin equations and "solve" 
for qn = -841th: 

Having already solved for +, everything on the RHS here is known. The LHS presents the boundary 
function qn which may be expressed in the basis 

and we acquire the boundary flux relations 
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for each node i on the Dirichlet boundary, with 

This equation is stronger than the normal Galerkin gradient-flux equation. Scrapping the latter 
in favor of 11.33 amounts to a sort of Neumann or weak constraint on qn along boundaries where 
Dirichlet data is enforced on $. 

11.3 Elasticity 

Consider the classical case of linear elasticity, in which we seek to know the stress distribution in a 
plane continuum in terms of the stress tensor [a(x, y)], in response to a known body force P(X, y): 

V [a] = /? (1 1.35) 

Here [a(x, y)] is a tensor (matrix) (a vector of vectors); its scalar entries aij represent the force per 
unit area in direction i, exerted on a surface normal to direction j. Its divergence is a vector with 
x and y components indicating unbalanced stress in the x- and y- directions. Hence equation 11.35 
represents Newton's second law for a solid without acceleration. In 2-D, we may reduce [a] to its 
two diagonal components a,,, ayy, which represent normal stress in the x and y directions, and 
the two off-diagonal components T , ~  and T ~ ~ ,  which represent tangential or shear stresses. The two 
shears are required to be equal; so we have exactly three components of stress: a,,, ayy, and T. In 
terms of these, we may write the two scalar parts of 11.35. For the x component (the force balance 
in the x direction), we have 

and for the y component, 
37 ~ O Y Y  - -+- - PY (11.37) ax ay 

Weak Form 

The weak form of 11.35, with scalar weighting functions 4i (x, y) , is 

(v .  [a], 4i) = (P7 4i) 

and if we integrate the divergence term by parts, we have 

The scalar components of this are: in the x direction, 

and in the y direction, 

(axx7 2) + (T, g )  = 2. Ri 
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where Ri is the right hand side vector which includes forces exerted on the boundary surface ([o] a n )  

and forces exerted on the interior of the domain (P): 

The quantity x Ri is the applied force in the x direction: 

and similarly for y . Ri. 

Constitutive Relations 

Next we introduce the displacement field vector D with scalar components U, V in the x and y 
directions, respectively. It is asserted through a blend of observation and theory that the stress 
tensor components are completely described by the derivatives of D,  i.e. the strain tensor. Two 
standard cases are common, plane stress and plane strain. The constitutive relations for these cases 
are listed below. In each case there are two parameters E (Young's Modulus) and v (Poisson ratio) 
which are considered known properties of the elastic medium. 

Plane Stress: 

Plane Strain: 

Equivalently, collecting U and V terms together: 

(1 + v)(l - 2v) 

0 - dU 
- 1  & - ax 

- 1 0 
l-V 

1-2v 
- 0  0 q i q -  ay+z 

Insertion of either of these into equations (11.40, 11.41) produces the weak forms of the elasticity 
equations in terms of displacement. For Plane Stress, we have respectively the x- and y-direction 
force balances: 

(11.46) 

dU 
(11.47) 
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Galerkin Approximation 

Finally, we will expand U and V in the basis 4 to get to the Galerkin approximations: 

This will lead to a matrix formulation of the system in terms of the unknown displacement D 
in response to the known forcing R, with a system matrix [K] comprising integrals of the basis 
functions, their derivatives, and the material properties: 

Now we need to declare some organization in this. First, arrange the WR equations in the fol- 
lowing order: WRlX7 WRly, WR2x, WR2y, etc. That is, interleave the x and y force balances on 
alternating rows of the matrix equation. Similarly, interleave the x and y components of D and 
the right-hand side R in the same way. From equations 11.48 and 11.49 above, we get 

with [Kji] a 2 x 2 matrix of coefficients 

and the two-dimensional vectors associated with nodal displacement D and forcing R: 

Natural Local Coordinate Systems 

Proceeding as in the case of the Gradient calculation above, we introduce nodal coordinate rotations 
[Ai], and use these to transform Galerkin equations 11.53 into local (n, s) coordinate systems: 

with 
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and 

{R)i = [Ail {R)i 

This entire set of equations is now represented in completely local coordinates: 

This system is now ready for the application of boundary conditions in natural local coordinates. 
Essentially we need two pieces of information (Normal, Tangential) at all boundary nodes. The 
natural classification is Type I: displacement specified (Dirichlet); and Type 11: stress specified 
(Neumann). Various mixtures of these in the normal and tangential directions are natural. For ex- 
ample, a boundary with no normal displacement and no tangential stress is a common idealization: 
a rigid, lubricated wall. 

The Type I1 boundary is the "natural" one; the boundary integral in R is the vehicle for the 
stress data. On the Type I boundary, the procedure is familiar - strong enforcement of the Dirichlet 
displacement BC's instead of the associated Galerkin equations. The latter are then the vehicle for 
computing the unknown boundary stress via the boundary integral in R. 

Once the displacements are known, interior stress can be computed by differentiation of the 
constitutive relations (e.9. equations 11.44 or 11.45). The general Galerkin approach outlined 
above (in the section about the computation of gradients) is applicable. The Neumann data on 
the displacement problem (either specified originally, or derived as above) may be used as Dirichlet 
boundary data for the stress calculation. 

References - Solid Mechanics 

The literature on solid mechanics applications of FEM is vast. This is one of the earliest and most 
successful FEM applications. Today, engineers worldwide are able to solve 3-D vector problems 
on realistic, complex geometry, routinely. Standard references are to Zienkiewicz and co-workers 
1120, 121, 122, 1231. Segerlind [loll provides a valuable expository treatment. These works are 
assembled here for convenience. 

Segerlind, L. J. Applied Finite Element Analysis. Wiley, 1984. 
Zienkiewicz, O.C. The Finite Element Method in Engineering Science. McGraw-Hill, third 
edition, 1986. 
Zienkiewicz, 0 .C. and R.L. Taylor.The Finite Element Method. McGraw-Hill, fourth edition, 
1987. 
Zienkiewicz, O.C. and R.L. Taylor. The Finite Element Method: Volume 1, The Basis. 
Butterworth-Heinemann, 2000. 
Zienkiewicz, O.C. and R.L. Taylor. The Finite Element Method: Volume 2, Solid Mechanics. 
Butterworth-Heinemann, 2000. 

11.4 Electromagnetics 

Here we look at the classic Maxwell equations describing vector fields E and H describing force 
fields experienced by electrically-charged particles at rest (E) and moving (H). Because these 
equations are posed in the frequency domain, all field quantities are complex quantities with both 
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amplitude and phase, at frequency w. The quantity L is introduced as m. The formulation here 
is in terms of general complex fields and coefficients. Implementation in a language which supports 
complex data declarations and elementary complex operations is assumed. 

Of the many formulations for Maxwell's equations, we concentrate on the use of C0 elements, 
in 2-D. The basic formulation is in terms of continuous vector and scalar potentials, with a Lorentz 
gauge, following that given in Paulsen et al. [91]. The alternative vector bases are explored in 
e.g. Barton and Cendes [8]. 

Governing Equations 

The classic Maxwell equations in primitive form are 

V x E =  L W ~ H  

V . e E = p  

V x H = J - LWEE 

V . p H = O  

Boundary conditions are: 
n x E = M ,  o n r l  (11.66) 

n x H =  -J, o n r 2  (11.67) 

For compatibility we require continuity among the source terms (J,  p): 

V - J = L W ~  (11.68) 

We may eliminate H between equations 11.62 and 11.64 and obtain the Helmholtz equation in E: 

Physical conditions dictate discontinuities in E and H at interfaces where material properties change 
abruptly. Since this is a common occurrence in problems of practical concern, it presents important 
issues in selection of proper bases for these fields. 

Potentials and Gauge 

As in Boyse et  al. [14] we introduce the scalar and vector potentials: 

E = L w A - V @  

A "Gauge condition" specifying the divergence of A is needed to make the the potentials unique. 
We use a Lorentz Gauge (#2 in [14]): 

This selection of Gauge results in continuity of both potentials A and @ for heterogeneous media, 
notably where material properties change abruptly. As a result, these fields may be approximated 
in common C0 scalar bases. 
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Helmholtz Equations in the Potentials 

Substituting the potentials for E in 11.69, and utilizing the fact that V x Vf = 0 for any function 
ives us f, g' 

1 
V x -V x LWA + LWE (LWA - V@) = J 

(LWP > (11.73) 
The last term on the LHS is further processed by substituting the Gauge condition as follows: 

From here we find the final form of the Helmholtz equation i n  A: 

Similarly, substituting the potentials for E into equation 11.63 gives us 

V . (LWEA - ED@) = p 

Using the chain rule on the first term gives 

V ( L W E ) . A + L W E V . A - V . ( e V @ ) = p  

Finally, insertion of the Gauge condition for V A gives us the Helmholtz equation i n  @: 

V . EV@ + w2e2~@ - LWA . VE = -p (11.79) 

The two Helmholtz equations in A and @ will be solved on simple C0 elements with real, scalar 
bases. 

The boundary conditions for these Helmholtz operators are as established in [14, 481: 

n x (LWA - V@) = M, 

@ = arbitrary 

V . A = LWE@ 

a@ 
- = arbitrary 
a n  

1 
n E(LWA - V@) = - (n - J - V, . J,) 

LW 
(11.85) 

Together these guarantee that the solution of the (A, @) Helmholtz system also satisfies the original 
primitive system. The arbitrary variation of @ or reflects an arbitrary (but necessary) allocation 
of the boundary data for n x E or n . E among the potentials when the boundary and the data are 
both smooth. Without this arbitrary allocation, the solution is indeterminate with a multiplicity 
of (A, @) solutions equivalent to the same E. 
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Weak Form 

We use the weak version of equations (11.76, 1 1 . 7 9 ) : ~  

< V4i . > - < w2fZp@$i  > - < r w r V .  (4iA) >= (p,  &)  - ii . e ( ~ w A  - V @ ) 4 i  ds (11.88) 

where 4i is a scalar basis associated with common C0 finite elements. Expansion of A and @ in 
the basis 4i as in Paulsen et al. (1992) leads to the symmetric algebraic system C j  K i j F j  = R,. 
In 2-D we have 

1 a4j a4i ; a4j a4i )) (iv4j V 4 i )  - ( W 2 E 4 i 4 j )  (;(- ay ay ax 
a+' a)) ( -Lw~(4 i& + 4 j  ax 

a4. % 
( (  + & )) ( i ~ 4 j  . V 4 i )  - ( W 2 E 4 i 4 j )  ( - L W E ( ~ ~ %  + dj%))  " 4.%)) ( L W  + 4 ) )  ( eV4j  . V4.i) - ~ ~ ~ ~ ~ 4 ~ 4 ~ )  - ( ~ ~ 4 4 j  a,," + z ax I 

(11.89) 

F  j = {A?, A:, @I*, and R, is the corresponding set of boundary and domain integrals of the forcing, 
weighted with 4i: 

Notice that the $ terms contain all natural quantities: n x H, the Gauge, and n . EE.  

This system is rotated into local (n, s )  coordinates after assembly, as described above. The 
relevant rotation matrix [Ai] here is 

cos Oi sin& 0  
[Ai] = - sin Oi cos Oi 0  [ .  0 1  1 

A remarkable feature of this is the fact that all off-diagonal terms in [ K ]  vanish identically for i, j 
on the interior - i.e. for equations completely removed from any boundary. This leaves a simple 
Galerkin-Helmholtz equation in all three variables separately. At the boundaries, the off-diagonal 
terms are nonzero; there, they taylor the Helmholtz relations to the natural boundary integrals. 
This permits an enormous efficiency in assembly time as well as storage. As stated above, [ K ]  is 
also symmetric. 

3 ~ h e  first two terms on the LHS of 11.87 have been integrated by parts (see Appendix). The last term on the 
LHS is: 

which completes the Gauge condition in the $ term. Similar treatment of 11.79 produces the two parts of n - E in 
the RHS $ term in 11.88. 
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Boundary Conditions 

Boundary conditions are implemented on straight or smoothly-curved boundaries as in [91] 

a Type I Boundary: On rl, (1 1.80) is satisfied by setting = 0 (arbitrarily) and n x A  = %. 
Accordingly, (11.88) and the tangential components of (11.87) are not enforced. The normal 
component of (11.87) is enforced with boundary integrals naturally zero. 

a Type I1 Boundary: On r2, n . A  is dictated by (11.85) with the arbitrary assumption 
that 2 = 0. Accordingly, the normal component of (11.87) is not enforced. The rest of the 
Galerkin equations are forced with natural boundary data, as in (11.83, 11.85). 

Sharp corners (either physical corners, or poorly-resolved curvature) present special problems (see 

[I51 ). 

Reconstructing E and H 

Once A  and are known, we may compute the primitive fields E  and H by differentiation: 

E = L w A - V a  (11.92) 

The simplest strategy is direct differentiation. For example, point values of E  at element centroids 
or Gauss points provides a workable result; it will be discontinuous at all element boundaries for 
C0 elements. A refined set of fields can be obtained by projecting these discontinuous functions 
onto the continuous basis 4 by a Galerkin method: 

In doing this one needs to be careful to enforce the physical discontinuity in E  at the junction of 
distinct materials. The reader is referred to the literature cited for details. 

References - E&M 
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Cendes [8], Jiang [48], Lynch [78, 79, 76, 71, 771, Paulsen [91, 95, 92, 94, 931, and Yuan [118, 1171. 
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11.5 Fluid Mechanics with Mixed Interpolation 

Here we describe an approach (one of many) to discretizing two-dimensional fluid flows. The set 
of time-dependent, viscous Navier-Stokes equations at low Reynolds number is used. The solution 
scheme is the Galerkin finite element method, incorporating "mixed interpolation" with scalar C0 
bases. 

Governing equations 

The governing equations comprise the scalar continuity equation and the two scalar components of 
the momentum equation: 

Continuity Equation: 

X-Momentum Equation: 

Y-Momentum Equation: 

where p is the pressure, u and v are the x and y-components of the velocity V,  and b is the bulk 
modulus (a compressibility factor). The Reynolds number is defined as Re = I,v,/v, where I ,  and 
v, are the characteristic length and fluid speed of the system, and v is the kinematic viscosity of 
the fluid. Nonlinear advective terms are ignored here. 
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Bases and Weights 

The three time-dependent scalar fields (p, u, v) are discretized with finite elements in space, but 
left continuous in time for present purposes: 

We will illustrate mixed interpolation (Taylor and Hughes [104], pp. 98-102). In this formulation, 
the spatial basis for pressure is of lower polynomial degree (linear) than that for velocity (quadratic). 
Both bases are scalar C0 functions. The pressure basis is used as the weighting set for the Continuity 
equation. Similarly, the velocity basis forms the weighting set for the momentum equation. So this 
is a Galerkin method - "mixed Galerkin". 

Mixed Elements 

A nine-node Lagrangian quadrilateral element is selected for both scalar components of the velocity 
field. The pressure field is expressed on the same geometric elements, but with only bilinear 
interpolation among the four corner nodes. A schematic of this curved quadrilateral element and 
its transformation from the global coordinates (x, y )  to the standard local element coordinates (I, q) 
is presented in Figure 11.2. The mapping is isoparametric in the quadratic basis. Note the local 
node numbering convention - local nodes 1 through 4 are the corners. The Table which follows 
details the local variable numbering and the degrees of freedom at each node. 

Figure 11.2: Isoparametric transformation of a nine-node quadrilateral element 

Local node number Variables present Degrees of freedom 
1,2,3,4 P, u, v 3 

5,677,879 u, v 2 

Total degrees of freedom = 22 

The pressure, p, is expanded in 2D bilinear bases +(I, q). The two scalar components of velocity, 
(u, v), are expressed in terms of 2D biquadratic bases, p(<, 7): 
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The bilinear ($) and biquadratic (9) interpolation functions are as given in earlier chapters. The 
standard isoparametric mapping is in terms of p: 

Weak Form 

The weak form of the continuity equation is obtained with integration by parts of the divergence 
term: 

This exposes the natural boundary integral of the flow normal to the boundary. The weak forms 
of the momentum equations are obtained with integration by parts of the Laplacian, which moves 
a viscous stress term into the boundary integral: 

Note: an alternate strategy here would be to integrate the pressure gradient terms by parts, too. 
That would add a boundary integral of the pressure force normal to the boundary, supplementing 
the tangential viscous stress term already there. 

Galerkin Equations 

Expanding p in its basis $, and V in p, we obtain the Galerkin system: 

au. a$ j 1 1 au C ($(Pj, W) + Pj(%, Pi) + ~ j ( ~ V q j ,  Vvi) = -- 
j ) f R e a n " d s  

If we collect the nodal variables and equations, we have 
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with 

It needs to be understood that Mij and Kij lack their first row (column) when i ( j )  is not a corner 
node. Similar adjustments are implied for Uj and Ri. The optional rows are associated with the 
continuity equation; the optional columns are associated with the pressure variable. 

Numbering Convent ion 

The way the equations and the field variables are ordered governs the way the rows and column 
entries of each element matrix are filled, and the way the global matrix is assembled. A workable 
convention is: 

@variable order: (p) , u, v 

.equation order: (continuity), x-momentum, y-momentum 

The following pointer arrays are useful in implementing this scheme: 

INC(L,I) = Incidence list of each element L. I is the local node number, I N C  is the global node 
number. This is the customary element incidence list. 

NDOF ( I )  = Number of degrees of freedom at each node 

NLOC(1) = Location of the first degree of freedom at each node in the global field variable vector. 
For an arbitrary nine-node quadrilateral element, at a corner node I which has three 
degrees of freedom, NLOC(1) is the location of pi in the global solution vector; and 
at a midside or midelement node J ,  which has two degrees of freedom, NLOC(J) is 
the location of u j  in the global solution vector. NLOC also applies to row and column 
numbering in all Galerkin matrices. 

These arrays define the mapping of matrix entries from local elemental addresses to global addresses. 
For example, in element 199, local node 2 (a corner): the u2 location is column NLOC(IN(199,2))+1; 
and row NLOC(IN(199,2))+2 is the y-momentum equation, weighted with local basis 2. 
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Coordinate Rotation 

It is desirable to rotate this system into local (n, s) coordinates after assembly, as described above. 
Similar to the rotation in the electromagnetic case, the relevant rotation matrix [Ai] here is 

0 0 
A = [ cos ei sin ei 1 

0 - sinei cos Oi 

for cases where i is a corner node. As in the other vector problems, the intent of the rotation is to 
render the unknowns, the momentum equations, and the natural boundary conditions in natural 
local coordinates. 

References: Fluid Mechanics 

Taylor and Hughes [I041 is an early classic in this important field. For the most comprehensive 
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11.6 Oceanic Tides 

The shallow water equations describe tidal motions in the ocean. These motions are essentially 
2-D and exist at discrete frequencies determined by gravity and inertial forces on a planetary scale. 
The resultant motions are modulated by the geometry of ocean basins and by frictional losses at 
the basin edges (over the continental shelves). The linearized equations of motion are 

with 

5 the ocean surface height above mean sea level 
V the horizontal fluid velocity with scalar components u, v 
w the frequency of the motion 
f = f z the Coriolis parameter 
g gravity 
r a friction parameter 
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h the ocean depth 
L=.\/---r  

There are three unknown scalar fields, <(x, y), u(x, y), and v(x, y). These are complex amplitudes 
of the motion at the given frequency w. Each will be expressed in the same real scalar basis 4(x, y) 
with complex nodal amplitudes <i, etc. Implementation of the FEM algebra in a language which 
supports complex arrays and their manipulation is assumed. 

The velocity may be eliminated among these to produce a Helmholtz equation in C. First, 
express the momentum equation in scalar form 

Inverting this we obtain 

or, in vector form, 
(LW + r)ghVC - f x ghVC 

h V = -  
(LW + T ) ~  + f2 

Eliminating V from equation 11.111 we get 

Weak Form and Galerkin Helmholtz Equation 

The weak form of 11.11 1 is 

or, from 11.118 after substitution for hV: 

In both of these forms we have integrated the divergence term by parts, exposing the boundary 
integral of the fluid flow normal to the boundary. This is the vehicle for enforcing Neumann 
boundary conditions with this natural boundary data. Expressing < in the FE basis 4, 
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we obtain the Galerkin Helmholtz equation for tides: 

with stiffness matrix [K]: 

and R is the natural boundary integral containing the water transport across the boundary: 

From the triple product identities we have 

(f x V4j) . V4i = f . (V4j x V6i) 

and an equivalent expression for [K] is 

This Galerkin-Helmholtz equation can be solved for [ alone, subject to Dirichlet ([ known) or 
Neumann (V n known) BC's. The "unused" Galerkin equations associated with Dirichlet bases 
may be used to derive the equivalent Neumann data along Dirichlet boundaries. 

Velocity Solution 

The velocity V may be obtained from the momentum equation 11.115 once [ is known. This involves 
differentiation of [. Point differentiation is possible and workable, if one accepts a discontinuous 
velocity solution. The Galerkin form of 11.115 is 

or, in matrix form, 

with 

This system may now be rotated into the local (n, s) coordinate systems as in the previous section 
("Gradient of a Scalar"). Strong enforcement of boundary conditions on V .  n is appropriate, using 
the same Neumann data which went into the $ terms in equation 11.120. BC's on V . n may also 
be derived along Dirichlet ([ known) boundaries, as suggested above. This entire procedure is a 
generalization of that described above for computing the simple gradient of a scalar. 
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Chapter 12 

Numerical Analysis 

All finite element methods lead to discrete algebraic representations - difference equations - which 
approximate the continuum problem. In this chapter we explore some of the properties of these 
discrete approximations. Fundamentally, we are interested in two aspects: accuracy and stability. 
Our general approach will be to assume an unbounded, uniform domain of simple elements, such 
that a generic interior WR equation can be considered and solved. This will restrict our attention 
to simple linear problems with constant coefficients, where closed-form solutions are available. 

12.1 Elliptic Equations: Galerkin on 1-D Linear Elements 

Laplace Equation on 1-D Linear Elements 

We consider the simple equation 

We will discretize this using Galerkin on an infinite array of linear elements of length h, with nodes 
numbered naturally in increasing order i, i + 1, etc. The results of previous sections for any interior 
node are readily adapted: 

Ui+l - 2ui + ui-1 
h2 

= 0 

This is obviously identical to the standard second-order finite difference representation. 

The analytic solution permits solutions of the form u = a + bx. It is clear that the discrete 
system also has the same solution; and therefore we find perfect correspondence with the continuum 
in this simplest case. Fundamentally, the exact solution is contained in the linear basis. 

Advective-Diffusive Equation on 1-D Linear Elements 

Here we have the steady-state version of this equation: 

which supports solutions of the form u = eTx with two roots: r = 0 and r = g. The case r = 0 is 
just the solution u =constant. 
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The Galerkin version is: 

Again, this is indistinguishable from a standard centered finite difference equation. The equivalent 
remesent at ion 

highlights the essential role of the Peclet number Pe = 9 which is the dimensionless measure of 
the mesh size for this problem. The difference equations support solutions of the form u = eT", but 
the roots r will not be identical to the analytic ones. It is convenient to define the factor y as the 
ratio of adjacent solutions 

Ui+l = e ~ h  y = -  
ui 

and we will compare the Galerkin version yg with its analytic counterpart 7,. 

Substitution of (12.6) into (12.5) gives us the quadratic equation for the Galerkin version yg: 

There are two roots: 

Clearly, one root is unity and a perfect replica of the continuum. The other root, 

is an approximation to the continuum. Approximating it as a Taylor series we have 

% = ( 1 . 2 )  (1 .  ( f )  + ( f ) ' +  ( f )  " . . . )  

1  1  
= 1 + P e + - ~ e 2 + q ~ e 3 + . . .  2  

v h 
The Taylor series for the analytic value ya = e y  = ePe is 

and we see that yg is correct to order pe3. 

One needs to be careful that this "third order" accuracy is an intrinsic or per step measure, 
describing the variation accumulated over one mesh spacing. As h decreases, it gives an artificial 
picture of convergence. A more meaningful measure is the variation accumulated over a fixed 
distance L = nh wherein n increases as h decreases. For both analytic and numerical, this is 

L 
yn = yX and an appropriate measure of precision is the ratio of numerical to analytic solution at 
a fixed distance from a given node: 
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Figure 12.1: y (left) and I? (right) us. Pe. In the left panel, 
the solid line is the analytical result; the dash line is the 
Galerkin approximation. 

L 

A natural definition of L is the e-folding length g, so we have yz  = el and 

Figure 12.1 shows the behaviour of I' versus P,. At Pe = 1 the error is approximately 10%. 

An additional feature of this numerical solution is the loss of monotonicity for large Peclet 
numbers. From equation (12.6) it is easy to see that y will become negative for Pe > 2. Under 
these conditions, this mode of the Galerkin solution oscillates in sign from one node to the next. 
This behaviour is completely spurious, i.e. it has no equivalent in the continuum solution. The 
situation is depicted in Figure 12.2, which shows both analytic and Galerkin solutions to a simple 
two-point boundary value. The failure to properly resolve the natural length scale is combined 
here with a difference operator which supports this oscillatory mode of solution. Both Figures 
12.1 and 12.2 support the conclusion that a small Peclet number is a critical ingredient for accurate 
simulation with this discretization. (At vanishingly small Pe, we revert to the previous case (V = 0); 
in Figure 12.2 we would have the perfect representation of a straight line connecting the boundary 
values.) 

Helmholtz Equation on l-D Linear Elements 

Next we consider the Helmholtz Equation: 

with lc2 > 0. Its homogeneous response is of the form e*jkx ( j  = a.) These two solutions are 
forward- and backward-propagating waves of length L = 27r/k, each with constant amplitude. Two 
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Figure 12.2: Two-point boundary value problem for P, = 0.5 
(left), 1.5 (center), and 3.5 (right). The solid line is the exact 
solution; the dash line is the Galerkin solution with nodal 
points highlighted by *. 

boundary conditions determine their amplitudes, provided that the system length is not a multiple 
of L. 

The Galerkin equations are: 

with K~ =- k2h2. AS in the previous section, we seek a solution of the form 

which leads us to the quadratic equation 

The solution is 

(the subscript g is introduced here to distinguish the Galerlcin y from its analytic counterpart.) For 
small K2 (specifically, K2 < 12), we have lyl = 1 and recreate the analytic structure of forward- 
and backward-propagating waves with constant amplitude. 

To compare numerical and analytic solutions, we compute 
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with nh = L = y,  the analytic wavelength. Thus we have 

This is a measure of the buildup of numerical error over a characteristic length of the domain. By 
definition, the analytic solution completes one wavelength over this length, so yz = 1. Also, since 
lygl = 1, we have IF1 = 1 and the error will lie in the phase of the numerical solution, not its 
amplitude. The argument (phase) of I? is then the measure of fidelity. Combining these facts, we 
have 

r = (yg)$ (12.21) 

which will have perfect amplitude = 1 and argument 

A perfect solution would have arg (I') = 0 (or 2n). Figure 12.3 shows arg (F)/2.rr versus K2. K2 = 1 
produces phase error of order 0 . 0 8 ~ ~  i.e. roughly 4% error. 

An alternate measure of the same error is the ratio of numerical wavelength to its analytic 
counterpart. Numerically, m mesh spacings are equal to one wavelength: 

m arg (yg) = 2n (12.23) 

while analytically, n spacings are needed. Thus, the wavelength ratio is 

This ratio is plotted in Figure 12.3. The plot is the inverse of the relative phase plot (compare 
equations 12.24 and 12.22). The numerical wavelength is always larger than the analytic, consistent 
with the negative phase error. 

Poisson Equation on 1-D Linear Elements 

Next we consider the inhomogeneous equation 

It is natural to study this equation in terms of the Fourier decomposition of the forcing function f :  

f (x) = ~,,ej"~ 

where j is the imaginary unit and a is a real-valued wavenumber corresponding to a wave 
of length 27r/a. Since everything is linear, we may consider each Fourier mode separately. The 
solution for a single mode is readily expressed as 

and direct substitution gives us - 
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Figure 12.3: Homogeneous Helmholtz solution. On the left, 
the phase error is plotted, normalized by 27r. On the right, 
the ratio of numerical to analytic wavelength is plotted. 

The complete solution is the synthesis of the modes 

This is a classic result; the Galerkin system has an analogous structure. 

The Galerkin version of the Poisson equation on uniform 1-D linear elements of length h is 

As in the analytic solution, we will consider the Fourier decomposition of f (x), sampled at the 
nodes. Its spectrum is therefore terminated at the Nyquist point: 

Again, the difference equations are linear so we consider only a single mode a, and we have the 
discrete representation 

f .  - ~ ~ ~ j u ~ i  
2 - (12.32) 

The solution u(x) will be of the same form 

Nodal values of u may be conveniently expressed in terms of the shift factor ejah: 
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and therefore the difference operator [ui+l - 2ui + u ~ - ~ ]  can be condensed to 

ui+l - 2ui + ui-1 = ui (eJuh - 2 + e-juh) = ui (2 cos (ah) - 2) (12.35) 

and with a little rearrangement we arrive at the result 

Ui+l - 2ui + ui-1 s 2 sin (p) 
h2 = ( j a i 2 ~ i  

where we have introduced the dimensionless mesh length S 

where X is the wavelength. The factor C(S) - + contains all of the discretization effect. 
[sin:s) I 

Clearly, as S +- 0, i.e. as the mesh becomes fine relative to the wavelength of the forcing, C + 1 
and the Galerkin second derivative is perfect. For finite S, we have an error in the derivative which 
is quantified by I C2 - 1 I. 

The same procedure leads to the compact expression for the spatial average of f :  

where A(S) = [v] is an averaging operator. Like C, A t 1 as S -+ 0. Use of these 
discretization factors in the Galerkin system above gives us the compact representation 

( ~ o ) ~ c ~ u ,  = AF, (12.39) 

and the solution is analogous to the continuum: 

F, [A] u -- 
- (ja)2 C2 

The discrepancy between Galerkin and analytic solutions is clearly the discretization factor -z , 
for which the value unity represents perfection. In Figure 12.4 we plot it as a function of S. 

[C" I 
The expected behaviour is apparent: high fidelity for low values of S (i.e. well-resolved Fourier 

modes) which degrades as the discretization becomes coarse. Example values of the error [$I - 1 
are given in Table 12.1 and confirm second-order convergence in S. The conventional rule of thumb 
- 10 nodes per wavelength - produces entry-level accuracy of order 3%. 

For problems forced by several modes, the synthesis 

F, , = c - [A] $mi 
, (30)~  C2 

will introduce a distortion unless f is properly resolved by the mesh (i.e. S is sufficiently small for 
all constituents a in the forcing function f ) .  

On a finite-length mesh, this solution would be supplemented by a homogeneous solution (de- 
rived above) which would be fit to boundary conditions at the two endpoints. 
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Figure 12.4: Discretization factors for the Galerkin Poisson 
equation, as a function of ahlr. The solid line is C2/A; the 
dash line is C2. 

Table 12.1: Discretization error 9 - 1 versus dimensionless 
wavenumber S = ah for the Galerkin Poisson equation on 
1-D linear elements. Xlh is the number of nodes per wave- 
length. 

Inhomogeneous Helmholtz Equation on 1-D Linear Elements 

Next consider the inhomogeneous Helmholtz equation 

Proceeding as above, we examine Fourier modes of the form u(x) = ~,ej"" and analogously for 
f (x) .  The result is similar to Poisson equation: 

The addition of the k2 term introduces resonance in the response at 

a*2 = k2 

and the response for a2 close to k2 will be enhanced relative to the limiting Poisson case (a2 >> k2). 
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Again, the Galerkin system has an analogous structure. On uniform 1-D linear elements of 
length h we have 

Following the same procedure as in the Poisson case, for a single Fourier mode ui = we 
obtain 

[ ( ~ o ) ~ c ~  + k 2 ~ ]  Uu = AFu (12.47) 

The Galerkin resonance has shifted by the familiar factor C2/A: 

and this is illustrated in Figure 12.5, where both analytic and Galerkin responses are plotted versus 
S. It is obvious that "large" values of K = k h  will seriously compromise the solution; and the 
practical rule emerges that the resonance wavenumber must be well resolved in the same sense as 
S, roughly 0 . 4 ~  or less to provide entry-level accuracy. In Figure 12.6 we re-examine the plot of 
analytic and Galerkin responses in the well-resolved range of both S and K.  

Sln Sln 

Figure 12.5: Normalized Helmholtz response u,/$ vs S/T 
for Analytic (solid line) and Galerkin solutions. In the left 
panel K = . 2 ~ ;  in the right, K = .5n. 

In Figure 12.7 we plot the resonance wavenumber S versus K for analytic and Galerkin systems. 
It is evident that the Galerkin solution systematically underestimates the resonance, and that the 
gap grows with increasing K ,  reaching approximately AS* = .02n at K = .47r. This creates a gap 
in the spectrum where the solution is simply unrealistic - the analytic response has passed through 
resonance and changed phase, while the Galerkin solution is still slightly below resonance and in 
phase. Measures of error are meaningless in this gap. 



228 CHAPTER 12. NUMERICAL ANALYSIS 

Sln Sln Sln 

Figure 12.6: Same as Figure 12.5 but the well-resolved range 
of S is plotted, for KIT = .05, .20 and .50. 

In Figure 12.8, we plot the difference between the Galerkin and analytic responses, omitting the 
gap in the spectrum described above. It is clear that the error near resonance is the dominant error 
and can be significant - e.g. .10 or more over a significant part of the well-resolved spectrum - in 
the two larger values of K shown. Since these plots are dimensionless, normalized by the response 
at S = 0, this is equivalent to a 10% error. 

On a finite-length mesh, this solution would be supplemented by a homogeneous solution (de- 
rived above) which would be fit to boundary conditions at the two endpoints. 
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Kfn 

Figure 12.7: Resonance S* us. K for analytic and Galerkin 
solutions (left); and their difference (right). Note both S and 
K axes are scaled by T .  

Sln 

Figure 12.8: Error in the normalized response curves u,/$ 
depicted in Figure 12.6. KIT = .05, .20 and .50 from left to 
right. Note that the y-axis in the leftmost plot is scaled by 
an additional factor of 10. 

Sln 
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12.2 Fourier Transforms for Difference Expressions 

In the previous two sections we utilized Fourier Analysis to compare solutions to discretized PDE's 
with their analytic counterparts. We assumed a solution of the form u(x) = uUejffx, with j = f l  
and real wavenumber a; and sought relations among the PDE coefficients, a, and the mesh spacing 
h E Ax. Required for this analysis is constant PDE coefficients and a uniform, unbounded mesh 
- i.e. boundaries at infinity. The essential idea is that differential operators have analytic Fourier 
transforms - e.g. 

and their discrete counterparts have similar transforms 

with the discretization effects concentrated in the discretization factor C. This idea provides 
powerful insight; our purpose here is to organize and package the essential relations for general 
use. We stick to the simplest finite elements - Galerkin on uniform, linear elements. For generality 
and comparative value, we provide also the common finite difference discretizations (second-order, 
centered) on the same mesh of equidistant grid points. Both 1- and 2-D transforms are provided. 

1-D Transforms 

Table 12.3 provides standard difference operators for the FE and FD approximations mentioned. 
For the FD cases, we use conventional second-order centered differences. For the FE cases, we 
use Galerkin on 1-D, linear elements, weighted with basis function i. Equal node spacing h = Ax 
is assumed. In the FE cases, the difference expressions have been normalized by the factor h. 
The node numbering system is natural, ordered monotonically with increasing x. The FD and FE 
expressions are essentially the same, with the exception of the averaging which is introduced in one 
term. 

For a solution of the form 
u(x) = ~,e j""  

the solutions at adjacent nodes are shifted by the exponential factor 

Ui+l = uiejS (12.54) 

with S = ah. Use of this shift factor allows us to condense the difference equations in Table 12.3. 
For example, the second derivative expression reduces to 

szn S 2 Defining the discretization factor C(S) 1 [+I, we have the Fourier transform 
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It is useful to note that C depends only on the dimensionless mesh spacing S = ah. Since a L  = 27r, 
with L the wavelength of the Fourier mode being considered, we have 

i.e. S is proportional to the resolution of wavelength L. In the limit of high resolution, S + 0 
and all factors A, B and C approach unity. The limit of low resolution is at the Nyquist point 
LN = 2h, or SN = 7r. Wavelengths smaller than LN do not exist on a discrete grid; they are 
indistinguishable from their higher-wavelength aliases with L > LN. (The reader is referred to any 
text on the Discrete Fourier Transform.) 

Similar discretization factors may be developed for the other terms in Table 12.3. For the 
centered first derivative, we have 

1 1 sin (S) 
- (ui+l - ui-1) = - (ejS - e-jS) 
2h 2h 

ui = ja 

sin S Thus with B(S) r [+I, we have 

Finally, the averaging operator A(S) = [w] may be obtained in similar fashion: 

The discretization factors A(S), B(S) and C(S) are listed in Table 12.4. They support the simple 
Fourier Transforms listed in table 12.5. 

Recall that S r a h  = 27rh/X, with X the wavelength of the Fourier mode. Limits on S 
are 0 5 S 5 7r, with the upper limit representing the Nyquist cutoff i.e. the shortest possible 
wavelength resolvable on a discrete grid, AN = 2h. Table 12.2 shows some practical values of S; 
SIT = .2 represents entry-level resolution at 10 elements per wavelength. 

Figure 12.9 is a plot of the discretization factors A, B, and C2 versus S. Note that at the 
Nyquist point, the first derivative fails, B + 0 as S + 7r. This reflects the practical fact that 
the first derivative expression is a centered first difference, i.e. a leapfrog expression which cannot 
distinguish a Fourier mode of length 2h from a constant. Also note that the ratio B/A is very nearly 
unity for well-resolved modes; indicating that the averaging operator effectively compensates for 
the discretization error in the first derivative in this range. 

2-D Transforms 

The two-dimensional extension is straightforward. Table 12.6 shows the discrete operators. The 
averaging effect of the FE method is more pronounced than in 1-D. The solution is expressed in 
terms of x- and y-dimension wavenumbers a, y: 
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Table 12.2: Dimensionless wavenumber S = ah for 1-D 
Fourier analysis, and corresponding value of the number of 
elements per wavelength Xlh. 

FD FE 

di+1-2di+di-l di+1-2di+di-l 
h2 h2 

31. di+l-di-l  di+l-4i-1 
ax 2h 2h 

4li 4i 
di+l+4di+di-1 

6 

Table 12.3: 1-D Difference Operators for FD and FE Approximations. 

Table 12..4: Definition of discretization factors for solutions of the form 
$ = 4i e ~ ( ~ ~ ) .  Ax = h is the mesh spacing; S = ah. 

FD FE 

1 -C2~2g5i -C2024ij 

I jBa4i jBo4i 

41i 4i A4i 

Table 12.5: Difference operators as in Table 12.3 for 4 = 4i ej(""). The 
discretization factors A(S) ,  B ( S )  and C ( S )  are defined in Table 12.4 
and approach unity as the mesh is refined. 
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I 
0.4 - 

0.1 - 

0.25 
Sln 

Figure 12.9: Discretization factors A, B, and C2 versus di- 
mensionless mesh spacing S = ah = 2 r h l X .  These represent 
Oth, first, and second derivative discretization effects for 1- 
D linear finite elements (Galerkin), for a Fourier mode of 
wavelength A. In each case, perfection is unity. Left: full 
ran e terminating at the Nyquist point X = 2h. Right: Well- 7 reso ved range terminating at X = 10h. 

Discretization factors related to each dimension appear in Table 12.7, and the 2-D Fourier trans- 
forms are listed in 12.8. These are the straightforward extension of the l - D  tables; the reader is 
encouraged to derive them. 

Notice that the Finite Difference results are identical to the linear Galerkin results in this 
analysis, with the simple substitution A = 1. 
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F D  F E  

4i+19j-24i,j ++i-l,j 1 $z+l,j+l-24i,.f+l+di-l,.j+l ) 
h2 g ( h2 

4 4i+l,j-24i,j+4i-l,.? 
+g(  h2 ' >  

1 di+l,j-l-24i,j-l+di-l,j-l 
+g(  h2 ) 

1 $z+l,j+l-24i+l,j+4. 
g ( h2 z+13j-1 ) 

4 4i,j+1-24i,j+4i9j-l 
+g(  h2 ) 
1 ~ i - l , j + l - 2 ~ i - l , . j + ~ i - l , . j - l  +a(  h2 ) 

+i+l,j+l-+i-l,j+l-4i+l,j-l+4i-l,.i-l 4i+l,j+l-$i-l,j+l-4i+l,j-l+4i-l,j-l 
dxay 4h2 4h2 

2 123 
4i+1,j-4i-l7j 1 4z+1 .+1-4i-l,j+l 

2h a(  ' " 2h 
4 4i+l .-4i-1,9 

) 

+s( '.'2h ' >  

1 4i+l,j-1-4i-l.j-l 
+g(  2h 1 

1 4,+1 .+I--$. 
G (  ' " 2h z+lli-l ) 

4 4i .+1-4i ' -1  +a(  '3 2 h "  ) 
1 4i-l,j+1-4i-l,j-l +a( 2h ) 

1 dz+l,j+l+4di,j+l+4i--l,j+l 
6 ( 6 

4 4i+l,j+44i,j++i-l,j 

1 
+a(  6 ) 

1 4i+l,j-l+4di,j-l+4i-l,j-l) +a( 6 

Table 12.6: 2-D Difference Operators for FD and FE Approximations. 

A, = 4+2 cos(S) - 4+2cos(G) 
6 4 - 6 

B, = sin(S) By = sin(G) 

S G 

c, = sin(Sl2) c, = sin(Gl2) 
(S12) (GI21 

Table 12.7: De nition of discretization factors for solutions of the form 
21) 

fi 4 = 4. .  e ~ ( " " + ~ ~  . Ax = Ay = h is the mesh spacing; S - ah; G F yh. 



12.2. FOURIER TRANSFORMS FOR DIFFERENCE EXPRESSIONS 

F D  F E  

i j  -czg24ij -AyCza 2 2 4, .. 

2 2 .. A ~2 2 .. & I . .  dy2 2J -cy7 ~ Z J  - Z y 7  4ZJ 

& I -BxBYw4ij -BzBya'Y4i j 

$Iij jBxa4ij .iAyBza4ij 

Iij i jAzBy74ij 

4Iij 4ij A x A y 4 i j  

Table 12.8: Difference operators as in Table 12.6 for 4 = g5ij ei(""+7y). 
The discretization factors A, B and C are defined in Table 12.7 and 
approach unity as the mesh is refined. 
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12.3 2-D Elliptic Equations 

Laplace Equation on Bilinear Rectangles 

In two dimensions, the Laplace Equation is 

For Fourier modes of the form 
,(, ) = u , ~ ( ~ x + Y Y )  

7 Y "7 

we have the dispersion relationship 
a2 + y2 = O 

We imagine a boundary along the x-axis with Dirichlet boundary condition characterized by a 
Fourier series with real wavenumbers a = 27r/X. The problem then is to find the Fourier spectrum 
in the y-direction, given a. The dispersion relationship is readily rearranged: 

and reveals the familiar result that a periodic mode in the x dimension (a  real) must be accompanied 
by an exponential decay mode in the y dimension (y imaginary). It is convenient to multiply both 
terms by h2: 

s2 + G~ = 0 (12.66) 

These relations characterize the analytic solution. 

The Galerkin approximation on linear elements is 

or equivalently 
c: 2 c2 
-S + J G ~ = o  (12.68) 
Ax A, 

The factor 9 is plotted above in Figure 12.4. Over the well-resolved range it is close to unity and 
rises monotonically with S or G, reaching a roughly 3% error at X = 10h (table 12.1). 

Figure 12.10 plots the dispersion relation for both analytic and numerical cases. The fidelity is 
qualitatively and quantitatively excellent over the well-resolved range. The curvature in this Figure 
indicates that for a given real a ,  (S2 2 O), the numerical damping errs on the high side relative to 
the analytic. The roles of S and G are symmetric. 

This numerical relationship is monotonic over the whole range of 0 < S < 2x13 i.e. for X 2 3h. 
In this range, G is strictly imaginary. For larger S (A < 3h), G becomes complex with real part 
= T, indicating that at these very coarse values of S, the accompanying G represents an oscillatory 
mode in the y-direction with X = 2h. The imaginary part of G for these modes represents very 
high damping, with e-folding lengths of less than one mesh spacing from S = 2x13 all the way to 
the Nyquist point S = T. These very poorly-resolved modes are trapped close to their origin, as 
for example at a boundary where a Dirichlet condition is enforced. 

In Figure 12.11 the imaginary part of G is plotted for all real values of S > 0. The cutoff point 
is clearly visible at S = 2 ~ 1 3 .  The e-folding length of the G mode is 1 I IM (G), in units of h. 
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Figure 12.10: Dispersion relation for the 2-D Laplace equa- 
tion in analytic and numerical form. Left: Coarse range 
of (S2, G2) terminating at the cutoff point a h  = 2x13 
i.e. X = 3h. Over this range, G is purely imaginary indicat- 
ing a monotonic exponential decay in the y-direction. Right: 
Well-resolved range terminating at X = 10h. 

Sln 

Figure 12.11: 2-D Laplace equation: Imaginary part of G 
versus S. (The e-folding length is l /Im(G), in units of h.) 
Below S = 2x13, Re(G) = 0, indicating monotonic decay as 
in the analytic solution. For higher values of S, Re(G) = x, 
indicating an oscillator mode of length 2h. This plot shows 
that for a Fourier mo c!l' e in the x-direction with reasonable 
resolution, the corresponding y-mode is qualitatively correct 
and quantitatively accurate; while very poorly resolved x- 
modes are trapped close to their source by high damping 
rates in the y-direction and with node-to-node oscillations 
for the worst cases X < 3h. 
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Helmholtz Equation on Bilinear Rectangles 

In two dimensions, the Helmholtz Equation is 

The wavenumber k is often a scaled excitation frequency in many applications; it sets an internal 
length scale for the problem, 1 = 2n/k, a feature missing in the Laplace equation. Thus a numerical 
solution must resolve this length scale as well as any introduced at boundaries. 

As in the 2-D Laplace analysis, we imagine a boundary along the x-axis characterized by a 
Fourier series with wavenumbers a = 27r/A. The problem then is to find the Fourier spectrum in 
the y-direction, given k2 and a. We restrict this analysis to real, positive values of k2 and a. 

For Fourier modes of the form 

we have the dispersion relationship 
a2 + y2 = k2 

or equivalently 

For a given k2, long-wavelength periodic modes in the x dimension (small a2) will be accompanied 
by undamped wave propagation in the y-direction. Short-wavelength x-modes (large a2)  will be 
accompanied by pure exponential decay in the y-direction. The cutoff point is a = k or, in terms 
of the internal length scale, 1 = A. 

The Galerkin approximation on linear elements is 

or equivalently 

with K 2  - k2h2. 

The solution for G2 is plotted in Figure 12.12, for an intermediate value of K2  = .04. AS in the 
analytic solution, we have real, positive G2 for small S2, reverting to real, negative G2 near the 
analytic crossover point S2 = K2. For larger values of S2, G2 remains negative and real as in the 
analytic solution. Near S = 2x13 there is a transformation to complex G2, qualitatively departing 
from the analytic behaviour as in the case of the 2D Laplace equation above. These very poorly 
resolved modes have Re(G) = .rr i.e. their wavelengths are all equal to 2h. Their imaginary parts 
all exceed unity, indicating e-folding lengths of less than one grid spacing. Qualitatively, we have 
fidelity to the analytic solution up to this break point: wave-like behaviour over the long-wavelength 
end of the a spectrum, exponential decay over the short-wave end, and a good approximation of 
the crossover point S2 = K2 separating these two extremes. Quantitatively, in the well-resolved 
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Figure 12.12: Dispersion relation for the 2-D Helmholtz equa- 
tion with ~ ~ / . r r ~  = .04. Left: Coarse range S2, G2 terminat- 
ing near t.he cutoff point N a h  = 2 ~ / 3  i.e. X = 3h. Right: 
Well-resolved range. 

Figure 12.13: Dispersion relation for the 2-D Helmholtz equa- 
tion with ~ ~ / . r r ~  = .0015. Same setup as Figure 12.12. 

Discrete Y- 
Figure 12.14: Dispersion relation for the 2-D Helmholtz equa- 
tion with K ~ / T ~  = -2. Same setup as Figure 12.12. 
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range we have excellent agreement with the analytic solution. Generally, where exponential decay 
is present, it is overestimated by the numerical solution. At the very coarse end of resolution, S 
modes are strongly trapped near their source. 

In Figure 12.13 we show the case of high internal resolution, K2/.rr2 = .0015. This case has the 
same general features, and is close to the Laplace equation except at very high resolution (near the 
origin of the plot). 

In Figure 12.14 we show the case K2/x2 = -2. This represents coarse resolution of the internal 
length scale, with l/h z 4.5. The dispersion relation is qualitatively the same as the previous 
cases. There is an overall loss of accuracy, however, which is of order 10% as apparent in the plots. 
Essentially, a coarse value of K 2  requires comparable coarseness in either G2 or S2, or both. The 
transformation to complex G2 occurs around S2/.rr2 = .55, beyond which G represents oscillatory 
modes with X = 2h and very strong damping as in the previous cases. 

12.4 Diffusion Equation 

Here we have 
au  - a2u = D- 
at dx2 

We seek solutions of the form 
U(X, t )  = ~ , e ~ ~ e j ~ "  

The exact solution requires 
a =  -Do 2 

indicating that all modes will decay, with more rapid decay for short wavelength modes (large a)  
than for long wavelength modes (small a).  This expresses the smoothing effect of the diffusion 
operator. 

Consider first the discrete form of the x-derivative, leaving the time derivative in its continuous 
form. On 1-D linear finite elements we have the system of ODE'S 

Substituting 12.77, we obtain 
Aa = - D C ~ O ~  

The discretization factor $ approaches unity at small S, so the numerical and analytic dispersion 
relations converge there. For finite S, ($ - 1) quantifies the discretization error. This was studied 
earlier (figure 12.4 and Table 12.1). We have quantitative agreement to about 3% for reasonable 
resolution, and qualitative agreement over the whole range of possible S. The numerical solution 
consistently overestimates the magnitude of a. 
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Next we discretize the time-domain. We will use a standard two-level timestepping method, 
with k indicating time level: 

on the left side, and 
uk+O + 0uk+l + (1 - O)uk 

on the right side. The result, after Fourier transformation, is 

in which P = eaAt is the ratio of the solution at adjacent time levels: 

Rearranging terms we have 

DAt C2 (P - 1) = --[OD + (1 - @)I-s2 
h2 A 

Introducing the dimensionless timestep r = y, we have 

and finally 

,G' is the ratio of solutions at adjacent points in time, and this expression contains a wealth of 
information. Below we examine it for stability, ((PI < 1) monotonicity, (P 2 0) and accuracy 
(fidelity between P and its analytic counterpart). 

We will restrict our analysis to 0 5 0 5 1, and to real, non-negative wavenumbers 0 5 S 5 T. 
C2 and A are therefore real and positive, as is the dimensionless timestep r. 

Stability (-1 5 /3 < I) 

p 5 1 for all r and S > 0. The limiting case P = 1 occurs as S + 0, as in the analytic 
solution. 

The condition -1 5 P controls stability. This requires 

This is always met if 0 exceeds 112, irrespective to the size of r or S. Thus we have uncon- 
ditional stability for 0 > 112. 
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For smaller 8, we have 
c2s2 

r- 
2 

A ' (1 - 28) 

For a given r and 8, the worst case is the highest wavenumber S = T, for which C2S2 = 4 
and A = 113. In that case, we have 

Any practical calculation will have information at all wavenumbers, due to noise in initial 
conditions, data, and the accumulation of roundoff error. Thus this limitation on stability 
for the shortest waves S = .rr governs even in otherwise well-resolved calculations, since tiny 
amounts of noise will be amplified and ultimately overwhelm the calculation if condition 12.94 
is violated. 

The summary result for stability is: 
8 2 112: unconditional stability 
8 < 112: r 5 &, limited by S = n 

Monotonicity (0 5 P )  

Assuming stability, we are also concerned with the condition that solutions do not "wiggle7' in time, 
which occurs when ,f3 is negative. This would be a qualitative departure from the analytic solution. 
The condition for a monotone solution is ,B > 0, and from 12.90 we have 

The case 8 = 1 is special in that it preserves monotonicity for all S, irrespective of the size of 
the timestep r. For a given r and 8 < 1, the largest wavenumbers S will be at risk of losing 
monotonicity. The worst case is S = .rr, for which we have C2S2 = 4 and A = 113:. 

Since we are assuming stability, the poorly resolved modes will decay and there should be no 
mechanism for them to achieve significant amplitude. Therefore their nonmonotonicity may not 
be a practical problem. The threshold for reasonable resolution is X = 10h i .e .  S = .27r. For this 
value of S, we have C2S2/A M -40. Thus, 

should provide monotone behaviour for reasonably-well-resolved modes. This may be a more prac- 
tical criterion for discretization. 

The summary result for monotonicity is: 
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8 = 1: unconditional monotonicity 
8 < 1: r 5 & gives monotonicity for the entire spectrum 0 5 S 5 7r. For higher values 
of r, monotonlcity is lost, beginning with the shortest modes S = 7r. 

8 < 1: r 5 2 gives monotonicity for the well-resolved part of the spectrum, 0 5 S 5 .27r 
(1-0) 

Figures 12.15 and 12.16 illustrate these properties of stability and monotonicity. 

Accuracy 

The above analyses of P are useful in a qualitative sense and predict the conditions under which 
important departures from the analytic behaviour occur. For a more quantitative analysis we 
examine the ratio of p to the analytic value pa: 

This ratio is the ratio of numerical to analytic solution after one time step, starting from the same 
initial conditions. A good method would have this ratio close to unity. However, as At is refined, 
,B converges to its analytic counterpart and therefore the information in this measure is lost. As 
a remedy, we examine the ratio of numerical to analytic solution after a characteristic time has 
passed: 

7 = NAt (12.100) 

and examine the "Propagation Factor" T: 

In this way, as At is decreased, N is increased, partially offsetting the per-step convergence by 
requiring more steps. We take T to be the e-folding time of the analytic solution for a given mode1: 

and thus 

Finally, 

This is a useful measure of accuracy for stable, monotone modes, with T = 1 indicating perfection. 

Figure 12.17 illustrates the use of T .  

Leapfrog Time-Stepping 

As a complement to the 2-level timestepping scheme studied above, consider the explicit, 3-level 
Leapfrog scheme with 

duk uk+l  - uk-l 
- 
d t  

+ 
2At 

l ~ o t e  that T depends on a; large-u modes decay more quickly. 
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Figure 12.15: P = eaAt versus S for the diffusion equation, 
with dimensionless timestep r = 1. /3 represents the per- 
timestep growth rate of a Fourier mode with wavenumber 
S. There are three zones. 1) Stable, monotone modes have 
0 < p < 1; this characterizes the analytic solution. 2) Stable, 
nonmonotone modes -1 < p 5 0; these modes change sign 
every timestep and have no analytic counterpart. 3) Unstable 
modes, ,B < -1; these modes can be seeded by roundoff error, 
data noise, etc. and grow without bound. 

Figure 12.16: Same as Figure 12.15, but with r = 5: 
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Introduction of 12.77 leads to 

As above, ,B = eaAt = uf+'/uq is the ratio of the solution at adjacent time levels. Rearranging 
terms we have 

2 D A t  c2s2 
(12.108) 

Introducing the dimensionless timestep r = 9, we have the quadratic equation 

There are 2 roots: 

Since [ r q ]  2 0,  the negative option always represents an unstable oscillatory mode 

irrespective of t imestep or wavenumber. This scheme is unconditionally unstable. 

Because the positive option is stable, monotonic, and a good approximant to the analytic 
solution, this scheme could be used if an effective filter could be devised to prevent the growth of the 
unstable modes which have no analytic counterpart. This however would require the introduction 
of an additional formal algebraic operation which would have to be analyzed. 

3-level Implicit Time-Stepping 

A generalization of the leapfrog scheme is 

Here the approximation to the spatial derivative is centered and implicit, requiring matrix factor- 
ization for the unknowns at time k + 1. The leapfro case studied above is recovered here with 5 
8 = 0. Following the above development, with R = r 9 ,  we obtain 

[1+ R0]p2 + [2R(1 - 8)]P  + [ - I +  RO] = 0 (12.114) 

The roots are 
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and a little rearrangement produces 

Stability for these roots is most easily obtained by applying the general result for quadratic 
roots in the appendix. The stability condition is 

irrespective of timestep or wavenumber. This is consistent with the leapfrog findings above - 
unconditional instability for 0 = 0. 

We restrict our attention to the range 112 5 0 < 1. The -J option for ,B represents a spurious 
temporal mode which is generally negative, representing time-oscillations with period 2At, for all 
wavelengths irrespective of resolution. The +J option mimics the analytic solution for good 
resolution. Its monotonicity requires P real and in the range 0 < /? < 1. /3 will become complex 
when R2[20 - 11 exceeds unity; so real-valued ,8 requires 

Assuming this, P 2 0 requires 

For 0 < 1, the monotonicity requirement is 

This requirement is more strict than the non-complex requirement (12.118) 

Summarizing, this scheme has two temporal modes associated with each S. Both are uncondi- 
tionally stable for 0 > 112, and unconditionally unstable otherwise. In the range 112 5 0 5 1, one 
of the two modes will generally be nonmonotonic and spurious for all wavelengths, while the other 
is realistic and monotonic provided that 

1 
R < 3  (12.121) 

Since R E r q, the worst case is the shortest-wavelength modes for which = 12. Thus, we 
expect non-monotonic behaviour to infect the realistic modes of the solution when 

The loss of monotonicity will be initiated at the short-wavelength end of the Fourier spectrum 
and progress to longer-wavelength modes with rising r .  At the threshold of reasonable resolution, 

C 2 S 2  S = .27r (A = lOh), we have 7 z -4, and these modes will lose monotonicity for 
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12.5 Explicit Wave Equation 

In one spatial dimension, we have the wave equation 

with c2 real and positive. For solutions of the form 12.77, we have the analytic dispersion relation 

a = f j c a  

indicating that all real wavenumber modes propagate with wavespeed c: 

As in the diffusion equation analysis, it is instructive to discretize only the x-derivative, leaving 
the time derivative continuous. On l-D linear finite elements we have the system of ODE'S 

Substituting 12.77, we obtain 
~~2 = - C 2 ~ 2 0 2  

The discretization factor $ again appears as the effect of the spatial discretization. (9 - 1) 
quantifies the discretization error. This was studied earlier (figure 12.4 and Table 12.1). We have 
quantitative agreement to about 3% for reasonable resolution, and because $ is real and positive, 
we have qualitative agreement over the whole range of possible S; la1 rises monotonically with 1 0 1 .  

Next we discretize the time-domain. Because this equation is second-order in time, we must 
use at least three discrete time levels. Consider the centered, explicit approximation 

which is in some ways analogous to the leapfrog method examined above. Finite element discretiza- 
tion and Fourier transformation yields 

As above, ,B G eaAt is the ratio of the solution at adjacent time levels. Rearranging terms we have 
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with Co the Courant number, 

The roots of this equation are 

Stability 

2 
For [l - co2 q] < 1, /3 is complex and 1/31 = 1, indicating a propagating mode with undamped 

amplitude - neutral stability, qualitatively faithful to the analytic solution. For 1 - co2 q] > 1, 

,6 is real and ,B- < -1 i.e. that root is unstable. So the stability criterion is 
[ 

The worst case is S = n, in which case C2S2 = 4 and A = 113. So the stability criterion is 

Accuracy 

As for the diffusion equation, we examine the propagation factor, the ratio of numerical to analytic 
solution after N  time steps, sufficient to advance the solution one characteristic time T = NAt: 

Here we take T to be the time for analytic propagation of one wavelength: 

2n N = -  - - - 
2n 

acAt CoS 

For this undamped wave equation, this choice of T results in ,f3: = 1, so the expression for T is 
especially simple: 

T = P ~  (12.144) 

An accurate method would have T close to unity. Since for this method, (PI = 1, we have (TI = 1. 
But since T is complex, its argument (phase) will contain discretization error. arg(T)/2n - 1 is 
a normalized measure of phase error due to discretization. This is displayed in Figure 12.18. For 
well-resolved modes (SIT < .2 i.e. . X > lOh), the phase error is within about 2% for all stable Co. 
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Figure 12.17: Plots of the Propagation Factor T for the 2- 
level-in-time diffusion e uation, over the well-resolved range 9 of S for several values o dimensionless timestep r. 

Figure 12.18: Plots of the Propa ation Factor phase error for 
the explicit wave equation. Le !? t: well-resolved range of S; 
right, full range. Co is the Courant number, 9. 
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12.6 Implicit Wave Equation 

The Courant number restriction limits the time step size for the explicit wave equation. Consider 
the centered-in-time implicit version: 

This will require a matrix factorization and solution for the unknowns at time level k + 1. Finite 
element discretization and Fourier transformation yields 

As above, /3 E eaAt is the ratio of the solution at adjacent time levels; and Co = 9 is the Courant 

number. Temporarily denoting x = co2 7, we have 

and rearranging terms we obtain 

Solving for /3, we obtain 

Stability 

Provided the term under the radical is real, we have 1/31 = 1 and thus a neutrally stable represen- 
tation of undamped propagating modes. Otherwise, inspection of 12.150 shows t hat I /3I exceeds 

Since x and 8 are real and positive, the lower limit governs and the stability criterion is: 

(1 - a e ) ~  5 4 (12.153) 

If 8 exceeds 112, then this is always true and we have unconditional stability. Otherwise, the 
stability is conditional: 
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With x = co2 9, this is 

The worst case is for S = a ,  when 9 = 12. Thus we have the requirement 

co2 ' 1 1 , 8 < -  
3(1 - 28) 2 

and unconditional stability for 8 > $. As in previous analyses, the stability is dictated by the 
shortest wavelength modes, which are presumed to be present due to accumulated roundoff error 
and noisy data. 

Accuracy 

We quantify accuracy as in the explicit wave equation case, with the Propagation Factor T = P N  
with N = 2alCoS. As before, for stable modes we have IPI = 1 and thus any discretization error 
will be expressed in the phase of T. Figure 12.19 displays arg(T)/2a - 1 for some representative 
parameters. The small range of Co is the same used in Figure 12.18 for the explicit case. Relative 
to that case, the phase error has been reversed in sign. The larger range of Co begins to show 
significant phase errors - for example, for Co = 2, the error approaches -a for S = -4, indicating 
that these modes are propagating with only about 50% of their analytic wavespeed. 

This is potentially misleading. Notice that since the wavespeed c is the ratio of the wavelength 
X to the period P, the Courant number is the ratio of spatial resolution X/h to temporal resolution 
PI At: 

This value of S = .4 represents X = 5h. With Co = 1 we have the same temporal resolution i.e. 5 At 
per period; and at Co = 2 we have only 2.5At per period. To expect accurate propagation phasing 
under these coarse resolutions would be unrealistic. A more reasonable scenario for an implicit 
method would be the case where geometric constraints require unusually high spatial resolution. 
A small Courant number as required by the explicit method would then demand similarly fine 
resolution in time, just to maintain stability. A larger Courant number would be desireable in 
this situation, hence the potential value of the implicit method. Following this mesh refinement 
scenario, as one jumps from Co = .5, explicit to Co = 2, implicit in Figures 12.18 and 12.19, a 
comparable shift by a factor of 4 is appropriate in S/a, say from .2 to .05. This significantly alters 
the interpretation of these Figures. 

12.7 Advection Equation 

The advection equation in one space dimension is 

For solutions of the form u(x, t)  = ~,,e"~ej"", we have the analytic dispersion relation 
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Figure 12.19: Plots of the Propagation Factor hase error for 
the implicit wave equation, 8 = 1. Left: small o; right, large 
Co. 

e 

and solutions of the form result, with period P = and wavelength X = %. The 
ratio ,B of u(x, t + At) to u(x, t) is 

with the subscript a indicating the analytic solution. Introducing a characteristic length h, we have 
in dimensionless form 

p - e-jSK 
a - (12.161) 

with S = ah as usual, and K the advective Courant Number 

v a t  
K E -  

h 

The number of time steps N required for the propagation of one wavelength is given by NAt = P:  

and /3f = 1. 

Euler Advection 

The simplest Euler time-discretization is 

Its GalerkinIFourier form is 
A(P - 1) + jSBK = 0 

and thus 
. S B  

@ = I - 3 - K  
A 



12.7. ADVECTION EQUATION 

Since S, B, A, and K are real, we have a complex number with magnitude > 1: 

This scheme is therefore unconditionally unstable. 

Two-Level Implicit Advection 

The general two-time-level scheme is 

Following the usual path, the Galerkin-Fourier result is 

and we have 
i - (1 - 8 ) j Y ~  

'= I + B ~ ? K  

Stability is guaranteed for 8 2 112. 

For a measure of accuracy, we examine the propagation factor T, 

In the case 8 = 112, we have [PI = 1 and therefore IT1 = 1, giving us perfect amplitude preservation. 
Discretization error for this case is confined to the phase of T. 

In Figure 12.20 we display the normalized phase error - 1, for 8 = 112. (arg(T) = 
N . arg(/3).) A negative error in this context indicates that the numerical waves propagate more 
slowly than their analytic counterparts. This is the case for all waves in Figure 12.20, and the error 
grows with increasing S (decreasing wavelength). Note that an error of -.l on this plot means 
that the numerical wave speed is 90% of the analytic; such a mode will be 180" out of phase in 
a spatial sense after propagating only 5 wavelengths. For K = 2, for example, numerical wave 
speeds vary by about 10% over the well-resolved range 0 < S < .27r. Thus a well-resolved spatial 
signal will undergo increasing distortion as a simulation progresses, with the lower-wavenumber 
components propagating at close to the analytic speed, and the higher-wavenumber components 
(around X = 10h) slowed down and thoroughly bogused. This effect is more pronounced at large 
K.  

Leapfrog Advection 

Finally, consider the Leapfrog scheme 
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Figure 12.20: Normalized phase error, - 1, for the two- 
level advection equation with 8 = 112. K is the advective 
Courant number, VAtlh. 

Its GalerkinIFourier form is 
A ( @ ~  - 1) + 2jSBKP = 0 

with S, B, A, and K real and positive. There are two roots: 

If Y K  5 1 then la2 = 1 and this scheme is neutrally stable. Otherwise, 

Since by hypothesis [YK] > 1, the negative option is unstable. The condition for stability is 
therefore 

SB 
-K 5 1 
A 

(12.178) 

The limiting case is at the maximum of Y, which occurs at S = 2x13 i.e. X = 3h. For this mode, 
- S B  = A and thus the stability constraint for the leapfrog method is 
A 

v a t  1 K = -  1 - = .577 
h A  

By introducing a third level in time, the leapfrog scheme necessarily has two temporal modes 
,B for each S, equation (12.176). In the stable range, the negative option has negative real part. 
In the limit of small K  this mode has a temporal period of 2At. It is therefore the parasitic or 
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spurious mode; the positive option corresponds to the analytic solution. This may be confirmed by 
Taylor Series expansions of Pa and P+: 

For high resolution, S/A + 1 and the agreement between Pa and P+ is correct to order [SKI3. P- 
has no analytic counterpart. 

Control of the spurious mode /3- is a central challenge for this scheme. If that can be met, the 
accuracy of p+ is measured by its propagation factor. Since /PI = 1, then also (TI = 1 and the 
discretization error is concentrated in the phase of T. As in the 2-level scheme, we consider the 
normalized phase error arg(T) / ( -2~)  - 1 with arg(T) = Narg(P). This is plotted in Figure 12.21. 

Sln 

Figure 12.21: Normalized phase error, - 1, for the 
leapfrog advection equation. T is based on P+, equation 
12.176. K is the advective Courant number, VAt/h. 

12.8 Advective-Diffusive Equation 

Next we add a diffusion term to equation 12.158: 

Assuming solutions of the form u(x, t )  = ~ , e " ~ e j ~ ~ ,  the analytic dispersion relation is 

cr = -jaV - a 2 ~  (12.184) 
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and solutions of the form ~ , e - ~ ~ ~ ~ e j ~ ( ~ - ~ ~ )  result. We have wave propagation at uniform speed 
V as in pure advection, accompanied by exponential decay at the rate - u 2 ~  as in pure diffusion. 
The ratio /3 of u(x, t + At) to u(x, t)  is 

with S G uh the dimensionless wavenumber, K f the advective Courant number as in the 
advection discussion, and r - the dimensionless timestep as in the diffusion discussion. It is 
useful to introduce a Peclet nuLber. 

which is a measure of the relative strength of advection to diffusion. An equivalent expression for 
Pa is 

pa = e-rS2e-jrSPe (12.187) 

Euler 

For Euler time-stepping we have the explicit time-discrete equation 

The GalerkinIFourier version is 

Solving for B. we have 

or, with K = rPe, 

We know from the steady-state form of this equation (section 12.1) that P, > 2 produces 
wrinkled steady solutions. We also know from studies of the pure diffusion equation (section 12.4) 
that r > 116 will be unstable for the shortest waves S = T, and this will govern here since the 
Fourier factor B representing the first derivative vanishes at S = T. Finally, it is evident that the 
imaginary part of P will exceed unity when KT > 1, and so this clearly bounds the region of 
stability. The worst case here is at the maximum of y, which occurs at S = 2x13, i.e. X = 3h, 
and this leads to the constraint K < I/&. So we restrict our analysis to 

Since K = rPe, the first two bounds imply the third. These are approximate guidelines. 

From (12.191) we have the magnitude of P: 
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and from the triangle inequality, we have 

The approximate rules obtained above can be seen to be operative here - the restriction on r keeps 
the first term below unity; the restriction on K = r P e  keeps the second term below unity. 

2-Level Implicit 

A more general 2-level scheme is 

The GalerkinIFourier version is 

and solving for ,B we obtain 

This scheme is unconditionally stable for 8 2 112. In Figure 12.22 we display the zone of 
stability in (r,  Pe) space, for various values of 8 < 112. This plot was obtained by fixing r and 8 
and determining by direct evaluation the maximum stable P e  for which all S are stable. Generally, 
there is a decrease in allowable P e  with r, and an abrupt transition to unconditional stability at 
the pure diffusion limit r = &. The case 8 = 0 confirms the approximate rules arrived at 
above. If one stays within the P e  5 2 guideline suggested above, it is evident that the diffusion 
term alone governs stability. 

The right panel in Figure 12.22 is the same function expressed in (r, K )  space. It is useful to 
keep in mind that both r and K are proportional to At; otherwise it is possible to misinterpret the 
decrease in allowable K at low r. 

As a measure of accuracy, we look at the propagation factor T 

with N defined as in the pure advection case to be the number of time steps needed to propagate 
one wavelength, analytically: 

With this definition, we have 
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Fi ure 12.22: Stability envelopes for the 2-level advective 
1 usive equation. Left: maximum stable P e  is plotted as a d 4  

function of r, for three values of 8. Combinations of (r,  Pe) 
below/to left of the curve are stable at the indicated value 
of 8. Right: the same function displayed in (r,  K )  space 
( K  = rPe). 

and measures of amplitude and phase are 

For a perfect scheme, [TI = 1 and arg(T) = 27r. Figures 12.23 and 12.24 display the explicit case 
8 = 0; Figures 12.25 and 12.26 display the centered implicit case 8 = 0.5. At r = .l, the phase 
error is improved in the implicit scheme by a factor of 10, reflecting the second-order temporal 
truncation error for 0 = .5. 

A more appropriate evaluation for the implicit scheme would involve a larger timestep r. Figure 
12.27 shows the effect of increasing both r and K by a factor of 10. 

It is interesting to put these last calculations in perspective, since the errors in IT1 are severe. 
For r = 1, K = 2.5, we have P e  = 2.5, in the range of qualitatively poor steady state solutions. At 
S = .47r, X = 5h and N = 2, i.e. it takes only 2 timesteps to propagate one wavelength. This is 
very coarse temporal and spatial resolution, and while the scheme is stable, its accuracy is poor. 

Leapfrog 

The leapfrog Advective-Diffusive equation is 

The Galerkin/Fourier version is 
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Sln Sln 

Figure 12.23: Propagation Factor accuracy for the 2-level 
explicit advective diffusive equation, 8 = 0. Left: ITI; perfec- 
tion is unity. Right: normalized phase error. 

This scheme is unconditionally unstable. At S = T, B = 0 and the advection term is null, leaving 
only diffusion dynamics. We know from section 12.4 that leapfrog diffusion is unconditionally 
unstable for this mode. That instability governs the advective-diffusive equation also. 
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Figure 12.24: Propa ation Factor accuracy for the 2-level 
explicit advective di usive e uation, 8 = 0. Same as Figure 4 12.23 except the well-resolve range of S is displayed. 
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Figure 12.25: Propagation Factor accuracy for the 2-level 
implicit advective diffusive equation, 8 = 0.5. Left: IT[; per- 
fection is unity. Right: normalized phase error. 
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Sln 

Figure 12.26: Propagation Factor accuracy for the 2-level 
implicit advective diffusive equation, 8 = 0.5. Same as Figure 
12.25 except the well-resolved range of S is displayed. 
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Figure 12.27: Propagation Factor for centered implicit 
scheme. Same as Figure 12.26 but with At increased by a 
factor of 10. 
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Chapter 13 

Inverse Noise, SVD, and Linear Least 
Squares 

So far we have concentrated on conventional problem formulations: a PDE is defined by natural 
principles, the necessary and sufficient boundary and initial conditions are given from either data 
or hypothesis, and there is a unique solution. The job has been to define discrete approximations 
which have analogous properties - i.e. there is a set of necessary and sufficient information (ICs, 
BCs, forcing, parameters) which, once specified, guarantees a computable and unique solution. If 
the numerical method is good, that discrete solution will mimic the true solution in calculus and, 
by extension, in nature. Numerical Analysis reveals the degree of agreement. 

Many important problems can be successfully and precisely posed in this way. But in fact, 
practical obstacles frequently prevent the assembly of the data required for a unique solution. 
Some data may be missing altogether; while the rest is certainly known only imperfectly. Further, 
we may be given some of the answer, i.e. observations of the field quantity which is to be known; 
we then expect a numerical solution to reproduce the observations. Of course the observations 
are incomplete (why else would we be resorting to computation?) and are certainly imprecise at 
some level. So we are faced with the problem of estimating the imperfectly-known but necessary 
BC's and forcing, and thence estimating the unknown field which is itself partially but imprecisely 
known. This is the sense of mathematical inversion - the need to work a problem backwards, with 
the objective of estimating both inputs and outputs. The extreme of this situation is the case 
where abundant data describe the response or system output, and the inputs - BC's, IC's, forcing, 
parameters - are the basic subject of investigation. 

In this section we explore some of the basic ideas which are useful in inversion. We presume 
the forward problem is a well-posed FEM statement based on a differential equation, with well- 
known requirements for the necessary/sufficient data support. Our emphasis will be on formulations 
and algorithms which exploit properties of such systems: well-conditioned problems with square, 
nonsingular matrices which can be assumed to be sparse and/or banded. 
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13.1 Matrix Inversion and Inverse Noise 

For starters, we have been solving the matrix inversion problem all along:' 

Both of these have been treated as equivalent so far - essentially, we assume that [K-'1 exists, can 
be computed, and that multiplication by either [K]  or [K-'1 produces orderly results. When [K]  
is obtained by a valid FD or FE method, with proper forcing and BC enforcement, then that is a 
consequence. By definition, [K]  is square, and of full rank (all of its rows are linearly independent). 
Furthermore, [K-'1 will generally be a full matrix even though [K]  is commonly sparse and banded. 
This is a consequence of the fact that each result uj is influenced by each of the forcings bi. 

The right-hand side {b) in all such cases represents the sum of boundary condition values and 
forcing on the interior of the domain. What if {b) is known only imprecisely? 

Mean and Variability. 

First, distinguish between mean and actual values of {b): 

{b) = {b) + (6) (13.2) 

with (6) the "mean" or "true" value of {b), which is assumed known; and {b} a perturbation, 
representing an unknown part due to measurement noise, uncertainty in a prediction context, or 
the variation among an ensemble of similar right-hand sides. We refer to {b) as the system Noise. 
A similar decomposition of { u )  is useful: 

{ u )  = {E) + { i )  (13.3) 

and we have the twin relations 

[Kl { a )  = (5) @ {E} = [K-'1 {X) (13.4) 

[ K l { i )  = + { i )  = [K-'1 {b} (13.5) 

The mean response {E) is computable from (5);  { i )  is the Inverse Noise and is linear in the noise 
{b). Note that if the overbar indicates an ensemble average, then as a matter of definition, 

- - 
{ i )  = 0 and {b) = 0 (13.6) 

Covariance. 

The statistics of the inverse noise are of fundamental importance. By definition the mean noise 
is zero. What about its covariance - i.e. the expected value of iz and of all the various products 
i i i j ?  These are all the entries in the matrix { i ) { ~ ) ~ .  Define the covariance matrix as 

[Cov(i)] = { i ) { i ) T  (13.7) 

l~hrou~hout  we assume {b), {x), etc. are column vectors; their transposes { b j T ,  {$ IT  are row vectors. 
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For any realization of { a }  we have 
{ii} = [K-'I { 6 }  

and therefore2 
{ i i } { ~ } ~  = [K-'1 [ K - ~ ]  

It follows that 

In the simple case of uncorrelated noise, we have 

with a2 the noise variance. This produces inverse noise 

We see in this case that [K-'1 [K-*] is a noise filter - either a suppressor or an amplifier. An 
undesirable situation would have the latter property. 

The RHS vector { a }  represents the system forcing - for PDE7s, it includes the sum of boundary 
condition forcing and interior forcing: 

with subscripts D, N, I indicating Dirichlet and Neumann boundary condition variability, and 
Interior forcing variability. Each realization of the inverse noise is additive: 

The variability of (6) is 

If the 3 sources of variability are statistically independent, then the noise covariance is additive: 

as is the inverse noise covariance: 

Otherwise, the three sources are correlated and we need additional terms in the covariance among 
them; the separation of the variability becomes less useful. 

[ K - ~ ]  indicates the inverse transpose. Recall that inversion and transposition are commutative. 
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Variance. 

The diagonals of the covariance matrix are the variances, i.e. the expected squared values, of the 
individual members of the vector involved. The sum of the diagonals of a matrix is its Trace; so the 
Trace of [Cow(&)] is a convenient scalar measure of the variability of {u). It is otherwise expressed 
as {C)T{C), or xi?. Divided by N, it is the mean squared size of 18). We define variance of a 
vector C as the trace of its covariance: 

Var (a) = {B)~{C) = T r  [Cov(C)] = $- 
i 

This scalar metric is the simple addition of the variances of all the individual Gi, without regard 
for their covariance. The observations above about additive noise covariance pertain here as well. 

For the inversion considered here, 

[Kl {fi) = (6) H {C} = [K-'1 {b) 

we have 
Var(C) = {blT [K-T] [K-l] {b) 

Noise Models. 

It is useful to pose analytic models of input variability, or "noise models". An example is the 
distance-based form - - - 

bibj = 02(1 + rij/l)e-'')/' 

with rij the separation distance between locations (nodes) i and j, a the scale of the variability, 
and 1 a correlation length scale. Many such forms have been posed as models of noise generated by 
various processes, using combinations of exponential decay, polynomial dependence, and periodicity. 
This two-parameter model has zero gradient, maximum value a2 at r = 0, and monotonic decay 
with r. (See Figure 13.1 .) At a separation of one correlation length, this covariance decays to about 
75% of its peak value; at two correlation lengths, 40% of peak value; at four lengths, 10%. 

Covariance matrices formed from these functions will be symmetric as required, with a strong 
diagonal structure. They will be full matrices, with some very small numbers, unless something is 
done to eliminate the tiny covariance among very distant points. The inverse noise 

will be a full matrix anyway, as [K-'1 is a full matrix as assumed herein. The diagonals of [Cov(ii)] 
are the expected or mean values of C2. They represent limits within which nodal values of u can be 
known, due to similar limits in the specification of the RHS. A map of these diagonals plotted as 
contours of nodal values on a finite element mesh constitutes a map of inverse noise or imprecision. 
(More later on this.) 

Example: Suppose we have a system where node 2 contains a point source of strength 1 & .5; 
node 3 is on a Neumann boundary with $ %&ds = .5 f .3; and nodes 4, 5, and 6 are uniformly- 
spaced Dirichlet boundary nodes with values .6 f .2. The Dirichlet data is correlated with length 
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Scaled Separation Distance, dl 

Figure 13.1: Distance-based covariance of the form a2(1 + 
~ - / l ) e - ~ / ~ ,  (equation 13.24). 

scale = 1 element size and the covariance model of equation 13.24. The rest of the forcing is 
completely independent. The right hand sides are 

and the covariances are 
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with a = 2e-I and b = 3eF2. 

EigenTheory 

Returning to the question of whether matrix inversion is a noise amplifier: consider the special case 
where [K] is real, square (N x N ) ,  and symmetric. Then there exist N  independent vectors {VJi, 
each of which solves the eigenvalue problem: 

with a real eigenvalue Xi accompanying each eigenvector {V)i. The {V)i are orthogonal - {v)T{v)~ = 
0 for all i # j ;  and we can easily normalize them so that {v)?{v)~ = 1 for all i. The collection of 
Xi is the spectrum of [K]. 

Let the square matrix [V] have columns {VIj. The basic eigenvector relation is 

Since [V] is orthonormal, we have 

so that postmultiplying 13.31 by [vlT we have the eigenvalue decomposition of [K]: 

If [K] is square and symmetric, the above decomposition exists and all Xi 2 0. If [K] is singular, 
then one or more of the Xi vanishes. Otherwise, we have a unique inverse 

[K]-' = [V] [&ag (:)I [vlT 
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and for [K] {u) = {b) we have 

Now the vectors {V)i comprise a complete basis for any N-dimensional vector. And, they are 
the natural basis for {u) and {b): 

Here, c is the projection of {u) onto V-space; {d) is the projection of { l~} .~  Premultiplying 13.35 
by [Vk,)and substituting 13.36 and 13.37, we have 

{c) = [diag(X)] {d) (13.40) 

or for all i, 

Effectively: in V space, achieves inversion of [K]. If any Xi is zero, then the inversion is undefined 
unless we are lucky and {b) happens to be orthogonal to { v ) ~ . ~  If Xi is very small, then noise 
projected onto {V)i is amplified by $. Viewed in the original coordinate system (equation 13.35), 
inversion goes like this: {b) is projected onto V-space; multiplied by i; and the results projected 
back into {u}. 

So here is a criterion for noise amplification: small eigenvalues of the system matrix [K]. If 
some X's are small, the inversion will amplify components of {b) selectively - specifically, that part 
of {b) which projects onto (is parallel to) the associated {V)i. 

The Condition Number r; is defined as the ratio of the largest to the smallest Xi, in absolute 
value. If r; is of order 1, then noise in {b) will be passed into {u) relatively undistorted. If r; >> 1, 
then the noise is filtered and selectively amplified. This situation is a criterion for near-singularity, 
i.e. as one or more X + 0, and K -+ 00. 

The covariance of {u) and {c) are 

3~quivalently, in terms of the individual vectors {V)i, we have 

4 ~ n  that case, there are multiple solutions. 
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If [Cov(b)] = a2 [I], then [Cov (d)] = a2 [I] and 

ICOV(C)] = a2 [diag (i) 2] 

with individual entries 

As described above, the diagonals of the covariance matrices are the variances, i. e. the expected 
squared values, of the individual members of the vector involved. The sum of the diagonals, i.e. the 
Bace of [Cov(u)], is a convenient scalar measure of variability. It is most simply expressed as - 
Var(u) = xi u:. Divided by N, it is the mean squared size of {u). Some useful relations are 

Var(u) 2 max (:)2 

From 13.49 we see that only one bad (small) X can spoil the whole inversion, by ruining its precision. 
The only (unlikely) exception would be if the associated di is guaranteed to be comparably small. 
Of course that puts restrictions on the allowable right-hand sides {b). 

If as above we have the simple situation [Cov(b)] = a2[I], then the individual variances 
Var(bi) = Var(di) = a2 and we have 

The above theory applies only when [K] is square and symmetric. Fortunately, its generalization 
to the nonsymmetric and nonsquare case is available - the Singular Value Decomposition. This is 
reviewed in the next section. 

13.2 The Singular Value Decomposition 

Now for the general case: the matrix equation 

[Kl{u) = {b) 
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with [K] nonsquare, dimension m x n matrix5. We will assume that and m 2 n. The simple inverse 
[K]-I is undefined here, as is a unique solution in general. But it is meaningful to ask in what 
sense we might find {u) which satisfies 13.53 in some sense, as a linear operation on {b}: 

Essentially, we are looking for a definition of the inverse of a general nonsquare matrix. 

SVD Basics 

Any matrix [K] may be factored as 

and the following properties pertain: 
[K] and [U] dimensioned m x n 
[diag(w)] and [V] dimensioned n x n 
Columns of [U] are orthogonal, [UIT[U] = [I] 
Columns of [V] (rows of [vIT) are orthogonal, [vIT[v] = [I] 
Since [V] is square, its rows are also orthogonal: [v][v]~ = [I] 
If m = n then [U] is square and its rows are also orthogonal: [U][uIT = [I] 
All wi 2 0 

Because the columns of [U] and [V] , {U)i and {V)i, are of prime importance, it is useful to write 
the SVD 13.55 in greater detail as 

(The layout is meant to reinforce the condition that m 2 n.) {UIi comprise the Left Singular 
Vectors of [K]; {V)i are its Right Singular Vectors; wi are its Singular Values. The vectors {VIi 
are a complete, orthogonal basis for any n-dimensional vector. In the square case (m = n), the set 
of {UIi is a distinct but still complete basis in n-space. It is conventional to order the w in order 
by size, beginning with the largest. The same reordering is required of the Singular Vectors. The 
condition number /G of the matrix [K] is defined as the ratio of the largest to the smallest Singular 
Value: /G wl/wn. 

From equation 13.55 and the orthogonality of [V], we have 

[K] = 

or, for each i, 
[K] {V)i = wi {U)i 

- - 

t t t  t 
Ul U2 U3 +.  ' Un 
-1 -1 -1 -1 

- w1 0 0 ... 
0 w2 0 ... 0 
0 0 w3 ... 0 

. . . 
0 0 0 . . a  W n  - 

Essentially, [K] maps {V)i onto {UIi with scaling wi. 

5m TOWS, n columns 

0 - - . . .  .+ Vl +. . . . -  
. . . . + V 2 . . .  
... .+ V3 +. ... 

- ... .+ Vn +. ... - 
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The Square, Nonsingular Case 

In the square case, m = n, we have the inverse 

which is defined if all of the wi > 0. Otherwise, [K] is singular and its inverse is undefined. For 
the nonsingular case, 

and we see that 

the columns of [V] constitute a natural basis for {u).  The projection of {u) onto [V]-space 
is {c): 

1.) = [vlT (4 * [vl (4 = (4 (13.61) 

the columns of [U] are the natural basis for {b). The projection of {b) onto [U]-space is {d): 

(the right half of this pair requires that m = n). 

inversion comprises projecting {b) onto [U]-space; modulation by the diagonal matrix [A]; 
and reassembly of {u) in [V]-space: 

When [K] is square and nonsingular, this is the unique solution. When [K] is symmetric, [U] = [V] 
and we recover the special eigenvalue theory described in the previous section with w + A. 

Relative to noise in the {b) vector, we have the standard result 

and from 13.59 we have 

[CW (u)] = [V] [diag(l)] w [ulT [Cov (b)] [U] [diag(l)] w [vT] (13.65) 

and for the Variance, 
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1 
mgx (:) < Var (u) < Var (6) x - 

w; 
j 

If the forcing covariance is homogeneous and uncorrelated, i. e. [Cov(b)] = a2 [I] = [Cov(d)], then 
we have 

[Cov(u)] = o2 [V] diag(-) vT [ : 2 1 r  1 
[Cov(c)] = a2 diag(,) [ w ' l  

These results essentially replicate those in the preceeding (EigenTheory) section, with the un- 
derstanding that {b) is projected onto [U] rather than [V]. The take-home message is that noise 
present in {U)i (the forcing) will show up in the answer in terms of {V)i, amplified by &. Thus 
small wi constitute noise amplifiers relative to larger ones. The measure of this noise distortion is 
the condition number. 

The Square, Singular Case 

Now suppose that one of the singular values, WN, is exactly zero. The general SVD inversion stated 
in the form 

2 - 
di c. - - @ (4 = C{v>i {u>i {b) (13.74) 
wi i wi 

with di = {U)i . {b). It is clear that we have a problem. There are two situations to note, based 
on whether the forcing {b) projects onto {U)N or not. 

Consider first the special case where {b) is orthogonal to {U)N: {b) - {U)N = 0 (i.e. , dN = 0). 
A complete and exact solution is 

that is, the final term involving {VIN is left off since it is not needed to satisfy [K] {u) = {b). 
However this solution is not unique. By definition we have 

for all i, and we also have WN = 0, such that 

Thus we can add an arbitrary amount of {V)N to the answer without affecting the right hand side 
in the least. So we have a family of solutions with parameter a: 
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and each of them satisfies [ K ]  { u )  = {b) exactly. 

We need a criterion for selecting a. The variance of { u )  can be a criterion here: 

By setting a to zero, we achieve the minimum variance, exact solution. Operationally, this amounts 
to setting & to zero rather than infinity, thereby avoiding an inadvertant division by zero. 

The other case is more likely, wherein dN = {U)i . {b) is nonzero, either by definition or due to 
imperfect precision. We still have the same options: either include an arbitrary amount of { V ) N  
in the solution, knowing that it can contribute nothing to the right-hand side, or to remove it. In 
either case, we have a nonzero residual in the governing equation [ K ] { u )  - {b) = { r )  f 0, since 
[ K ]  cannot produce any {U)N which is present in {b). Expressing u  in the basis [V]:  

substituting into [ K ] { u )  = {b) = di{U)i, and using the fact that [ K ]  {V) i  = w ~ { U ) ~ ,  we obtain 
the residual 

Since W N  = 0, we have 
N-1 

{ r )  = C (eiwi - (1) {U)i - ~ N { U ) N  
2 

The variance of the residual is 

V a r  ( r )  = C ( ~ w ,  - di)2 + d$ 

Clearly, the minimum variance solution is gotten by setting 

and the parameter a is left undetermined as above. The choice a = 0 adds nothing to the residual 
and achieves the minimum norm solution as before. 

Operationally, the rule is the same, and remarkably simple. If W N  = 0, treat it as if it were 
infinite. The result will be the Minimum Variance solution which also achieves the Minimum 
Variance residual. In special cases where dN is luckily zero, the solution will be exact. Otherwise, 
the residual will reside entirely in { U ) N ,  and nothing can be done about it. In all cases, the solution 
will have zero projection along the direction { V ) N .  

Put in other words: if W N  = 0, keep { V ) N  out of the solution - it is undetermined - and ignore 
the presence of {U)N in the forcing - there is no way to reduce its presence in the residual. 
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The Square, Nearly-Singular Case 

Next suppose that one of the WN is nearly zero - e.g. near the limit of machine precision. This 
case is the practical one, since the exact occurrence of wi = 0 is highly unlikely for big matrices on 
a finite machine. 

We have a choice: include WN in the computation, or treat it as if it were zero. In the former 
case, we retain a full N- dimensional basis for {b) and {u); but the inversion becomes a noise 
amplifier. In the latter case, we avoid the amplified noise at the expense of forbidding the solution 
to ever have any {V)N content; any forcing in the vector {U)N is ignored. If {U)N is an important 
mode of the forcing, then we are in trouble; noise in its specification will overwhelm other modes 
of the solution. If it is not, then we are justified somewhat in ignoring it. Important physical 
questions concern the existence of such a poorly conditioned mode. 

The practical solution is to consider as zero all wi which fail to meet a precision criterion based 
on condition number - essentially insisting on a cutoff on condition number by treating the smallest 
WN as if they were exactly zero. In effect, we eliminate the possibility of {V)i in the solution for 
those smallest w's. If by chance there is a tiny bit of {U)N in the forcing, then we ignore it rather 
than amplify it. 

The Over-Determined Case 

This is the case m > n, i.e. where there are more equations than unknowns. Assuming all equations 
are independent, we generally have no hope of a perfect solution. There will always be a nonzero 
residual {r) = [K] {u) - {b). The SVD is still defined for this case, and the procedure outlined 
above gives the smallest residual i. e. minimizes Var (r) . 

The SVD is defined as in equation 13.55: 

with the attendant properties as stated at equation 13.55. Note, however, that here m > n, so [U] 
is not square and its rows are not orthogonal: [U][UIT # [I]. 

The columns of [V] constitute a complete, orthonormal basis for {u). 

and the columns of [U] constitute a natural, orthonormal basis for {b). However, since m > n, this 
basis is incomplete: 

{dl = [ulT {b) @ [Ul {dl = {b) - {b') (13.87) 

with {b') lying outside the [U] space: 
T I  

[Ul {b 1 = 0 

As in the general case, [K] maps {V,) onto {Ui) with scaling wi: 

Since {u) is completely contained within [V], then [K] {u) is completely contained within [U]. 
Therefore {b') cannot be reached by any {u). For the most general solution {u) = Cy=l ci {V,), 
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we have the residual 
n. 

{r) = C ( C ~ W ~  - di) {Ui) - {b') 
i=l 

Since all vectors {Ui) and {bl) are orthogonal, we have 

. - 
Var (r) = C (qwi - di)2 + Var (bl) 

i 

Therefore the solution 

is the Minimum Variance solution. 

Because of this property, the SVD solution is frequently invoked in Least-Squares problems. 
Provided the equations are scaled properly, this is one obvious path to the minimum variance 
estimate for linear systems. 

If wi is too small, it can be treated as if it were zero, as in the square cases. One avoids the 
creation of some inverse noise, by leaving it untouched in the solution residual {b'). 

The Under-Determined Case 

This is the case m < n, where we have more unknowns than equations. Normally this will give us an 
exact solution with n - m arbitrary parameters (assuming that the equations are all independent). 
The SVD theory above can be applied by augmenting the system with empty equations of the form 
0 . u = 0, such that m = n. We will generate n - m modes with wi = 0, which are readily handled 
as above. So we need no special theory for this case. The standard SVD solution will have zero 
residual; and, among that subset of solutions, Var(u) will be minimized. 

SVD Covariance 

In every case we have the same general procedure: eliminate all singular and nearly-singular modes 
(wi = 0) from the calculations. The result is a reduced-rank system which prevents noise creation 
by leaving it essentially uninverted, when to do otherwise would be to greatly amplify it. The Rank 
R is defined as the number of active modes - the number of practically nonzero w. 

The covariance formula for the answer u is given above. For the special case Cov(b) = a2 [I], 
i. e. uncorrelated, homogeneous noise of size a2, individual entries in Cov(u) are 

The effect of reducing the rank R is obvious here. Overall, Var(u) is similarly reduced: 
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Since in this case we have Var(b) = ma2 and Var(bl) = (m - R ) u ~ ,  therefore the residual variance 
is 

Var(r) = Var(bl) = (m - ~ ) a ~  (13.95) 

Clearly, increasing the rank R reduces Var(r), transferring it to Var (u) with multiplier i. 

SVD References 

The reader is referred to more fundamental expositions of the SVD, for example that provided 
by Golub and Van Loan [35]. Press et al. [99] offer an excellent practical account. Both of these 
stress practical computability concerns. The public software implementation in LAPACK [3] is 
recommended. 

13.3 Linear Least Squares and the Normal Equations 

Here we summarize the standard formulation of the Linear Least Squares problem in terms of 
the Normal Equations. Given an overdetermined system of linear equations (more independent 
equations than unknowns), this classic formulation expresses the first-order conditions for the min- 
imum of a quadratic norm of the misfit. The Normal Equations are linear in the unknowns. The 
Generalized Least Squares (GLS) approach at the end of this section provides the key operational 
extension to the underdetermined case. GLS is also the link to SVD theory. A good reference for 
LLS is Seber [loo]. 

Quadratic Forms and Gradient 

First consider the general quadratic norm of a vector {x) : 

Q = { x ) ~  [W] {x) = C C xiWijxj 
i j 

The derivative with respect to an individual xk is 

There are two parts: the dot product of x with row k and with column k of [W]. Pictorially, this is 

Assembling all the individual into the gradient vector VQ, we have 
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In many practical contexts, [ W ]  will be symmetric. In that case we have 

{ V Q )  = 2 [WI { X I  
For the scalar product of { x )  with any vector { V ) ,  

s = {x lT  { V )  = C xi& = { v ) ~  { I )  
i 

it is easy to confirm that = V, and therefore 

Ordinary Least Squares 

Now we have the linear system6 

[A1 { X I  = {b) 

with [A] nonsquare (m x n, m > n) and nonsymmetric; {b) known; and { x )  unknown. Assuming 
that [A] has more than n independent rows, then the system is overdetermined; no solution exists 
which satisfies all the equations. Define the residual of the system as 

and under these conditions, { r )  is necessarily nonzero. So it is reasonable to seek its minimum. 
First, simply work with its variance, and make this our metric R, which will be minimized: 

R = V a r ( r )  = {rlT { r )  (13.106) 

Substituting for { r )  we obtain 

The gradient of R is, using the previous results, 

Since [ A ] ~  [A] is symmetric, [ I 
The first-order conditions for minimizing R are the vanishing of all components of its gradient. 
So this leads to the OLS Normal Equations which define the solution with minimum residual 
variance: 

[[A]' PI] { x )  = [ A IT{b}  

' ~ o t e  here we treat a general matrix equation, and save the notation [K] {u)  = { b )  to denote the well-posed FE 
or FD model. 
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Notice that effectively we have premultiplied the original donsquare equation by [AIT; the result is 
an n x n system with the formal solution obtained by inverting [AIT [A]:  

Now the question turns to the conditioning of [AIT [A] and the existence of its inverse at all. In 
the context of experimental work, it is common to find that while all equations are independent, 
the normal equations are poorly conditioned and produce noisy results. An obvious strategy is to 
solve the normal equations using SVD and to control the rank to keep out modes of the solution 
which have small singular values. The discussion in the previous section details this strategy. 

Of course, the direct solution of equation 13.104 by SVD is possible, without the intervening 
construction of the Normal Equations. 

Weighted Least Squares 

Next suppose that "all residuals are not equal". We can formally insert a weighting matrix [ W ]  
into R: 

0' = {r lT  [W] { r )  (13.114) 

At its most elementary, the diagonals of [W] adjust for units, expected size of each residual, etc. But 
this quadratic norm offers the additional possibility of penalizing cross-products of the residuals 
(riWijrj) .  More fundamentally, we may be concerned with differences among the ri and other 
linear combinations: 

{r ' )  = [v] { r )  (13.115) 
where the V,j could be positive or negative. Then the variance of {r')  is 

R' = Var ( r l )  = {r lT  [vlT [V] { r )  (13.116) 

In this more general case, the weighting matrix [ W ]  = [vlT [V] is symmetric, and [V] expresses 
prior attitude about what is important in the residual { r ) .  

Following the procedure of the previous section, we can arrive at the Normal Equations for this 
case of Weighted Least Squares. We will assume that [ W ]  is symmetric. (It is also reasonable to 
assume that [ W ]  is nonsingular, but that is not needed yet.) 

= {xIT  PIT [Wl [A] ( 2 )  - 2 {x lT  [A]T [Wl {b) f WT [Wl {b) (13.118) 

The gradient of R' is 

and the first-order conditions for minimizing R' are 

These are the WLS Normal Equations. As in the OLS version, we have squared up the system 
by premultiplication by [AIT [ W ] ;  the end result is an n x n system with the formal solution obtained 
by inverting [AIT [ W ]  [A].  The previous discussion concerning conditioning of the OLS matrix (the 
case [W] = [ I ] ) ,  and the SVD solution, applies here too. 
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General Least Squares 

Finally: in the most general case, we may express concern over both the residual { r )  and the answer 

{ X I :  

' I '  = {r)T [WT] { r )  + {x)' [Wx] { x )  (13.121) 
= 0' + {x)' [W,] { x )  (13.122) 

As above, the weight matrices [W,] and [W,] express unhappiness with the size and various aspects 
of the shape of the two vectors involved, relative to prior opinion, i.e. logically prior to the inversion. 
We assume symmetry for both matrices. The gradient is obtained by extension of {VR') from 
above: 

Setting the gradient to zero gives the GLS Normal Equations: 

[[A]' [WTI [A1 + [wxl] { I )  = [[A]' [wTl] { b )  

If we contemplate the inversion of this system, 

= [['I' [WTI [A] + [ w ~ ] ]  [[A]' [wT]]  { b )  

it becomes clear that [W,] can add desirable conditioning. Suppose, for example, that [W,] = -$I [I] 
- expressing a simple preference for answers which are not big compared to a. In this case, [W,] 
just beefs up the diagonal of the GLS system, presumably enhancing its invertability compared to 
the simpler cases which rely on the potentially ill-conditioned system matrix [A]' [A]. It is therefore 
common in linear least squares problems to invoke [W,] as a regularization effect, i.e. as a way 
to avoid solutions which are big or noisy. This is seeking the same general outcome as provided by 
the direct SVD solution of equation 13.104, wherein the rank of the system is used to tune out such 
unwanted effects. In both cases we add a bias in favor of solutions which are smaller than might 
otherwise be produced. 

Now all this makes the selection of the weight matrices seem arbitrary, based on convenience. 
There is however good statistical reasoning to support the following conclusion: the weight matrix 
should be the inverse of the covariance of the vector being estimated: 

More precisely, these should be prior estimates of the covariances, i.e. without the benefit of knowing 
the Least-Squares result {x) .  The Appendix provides some theoretical support for this; we will use 
this approach throughout. 

There is a second consideration concerning [W,] and GLS in general. In cases where OLS or 
WLS is underdetermined - m < n, i.e. fewer equations than unknowns - then GLS still provides a 
unique answer, and [W] is the key to it. Consider the special case with rank R = m < n; all the 

' ~ t  is reasonable to hope that the GLS matrix [ A ] ~  [WT] [A] + [WZ] has an inverse. Certainly [W,] is, ideally, 
invertable, since its inverse is [Cov(x)]. 
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equations are independent. [ A ] ~  [A] necessarily has no inverse; we have multiple solutions which 
each produce { r )  = 0; and OLS/WLS provides no choice among them. If { b )  is noisy, then we are 
fitting noise with potentially silly answers {x) .  But with GLS, we add a second consideration to 
the objective $2, in the term {xlT [W,] {z) which penalizes the size and shape of {x) .  Among the 
solutions with { r )  = 0, the small, smooth ones are favored. The solution selected may well have 
nonzero {r) if there is noise (always!). WLS achieves a balance between small { r )  and credible 
{x). The balance achieved is implied in the details of [W,] and [W,]. 

This is strongly reminiscent of SVD solutions to underdetermined systems. Full-rank SVD 
drives { r )  to zero first, then works on minimizing {x).  Reducing the rank of the system below 
R = m, by condition number control, permits some nonzero { r )  to occur. Effects similar to WLS 
are achieved, although the details are different. But SVD has one scalar control, and therefore no 
analog of the flexibility introduced into GLS by the weight matrix [W,]. 

So, the GLS system is an important endpoint for Linear Least Squares. It provides much 
freedom in tayloring a problem in both over- and under-determined cases. 

All of this suggests a joint strategy of first formulating the GLS normal equations, concentrating 
on the weight matrices [W,] and [Wr] in the design of the inversion; and then using SVD to solve 
the resulting square system, using condition number control to avoid near-singularities and the 
resultant noise amplification in the normal equations. 



Chapter 14 

Fitting Models to Data 

14.1 Inverting Data 

Now we return to the general problem posed at the outset: using observations of a system to 
determine the necessary/sufficient forcing. We have the well-posed FD or FE model: 

with {b) the unknown system forcing, {u) the unknown response, and [K]  the known FEM system 
matrix. We assume the existence of [K-'1. 

The strategy: 
Measure {u). We assume the measurements are incomplete (all ui cannot be measured - why 
else would we be using a model?). We also assume that the measurements are not perfect. 
Deduce {b) by making a least-squares fit of 14.1 to the data. 
Estimate the complete response {u) implied by 14.1 and the estimated {b). This includes 
the potential for "correcting" the measurements to account for measurement error. 
Estimate the uncertainty (inverse noise) associated with {u) and {b). 
Examine the misfit between the model {u) and the data. 

To do this we need prior estimates of the covariances of {u), {b), and the expected disagreement 
between model and data. 

Model-Data Misfit 

Define the data {d) as the sum of the sample of {u) plus a model-data misfit (6) 

Here [S] is a nonsquare sampling matrix representing all the ways we could sample the model 
output {u): direct sampling of nodal values, interpolation among them, differentiation, averaging, 
integrating, etc. - all of these are linear operations and representable as a linear sample. The misfit 
{S) represents the sum of two effects: the measurement error, plus the discrepancy between model 
and reality ({u) is the model response, while {d) is obtained from nature). These two contributors 
to {S) are indistinguishable here without more information. 
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As an example of the sampling matrix [S], consider a measurement of the true field p(x, y, z) 
at a point k, (x, y, z)k, in nature. The standard FEM representation of the model field u is 

and direct sampling at point k gives 

and thus Sk,j = 4j(x, y, Z ) ~ ,  with k the row index and j the column index. More generally, any 
linear sample Lk(p) of the natural field p 

can also be obtained from the FEM representation as 

and thus 
S k , i  = Lk(4i) 

Essentially, [q is a matrix of samples of the FEM interpolants 4. Because of the local nature of 
these FEM interpolants, local sampling leads to a sparse sampling matrix [S]. We reiterate that 
L(u) represents any linear sampling of a continuous field, including point sampling, averaging, dif- 
ferencing, differentiating, integrating, etc. Of course, each sample Lk has its own intrinsic sampling 
error (variance about the truth). 

Now we have the two fundamental equations 14.2 and 14.1: 

(Recall that [K]-' exists by definition, because the FEM statement is well-posed.) Before going 
further, we should de-mean everything. Introducing for each vector {u) ,  {b) and {d)  a mean value 
and a perturbation, 

{ u )  = { E )  + { G )  {b) = {Z) + { i )  {d)  = {Z) + {d)  (14.9) 

we obtain for the mean1 

(2 )  = [sl {z) {n) = [K]-I ( 6 )  (14.10) 

and for the variability 

{ d )  = [sl {G) + 16) {G) = [K]-' ( 9 )  (14.11) 

Henceforth we deal with t h e  perturbations only, assuming the means are known. We drop 
the notational distinction for cleanliness. 

' ~o t i ce  here that we are asserting that the FEM model mean is equal to the natural mean, i .e .  there is no model 
bias. 
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Equations 14.11 are the fundamental ones. Eliminating {u) among them we obtain the basic 
statement that the model-data misfit is linear in the data and in the unknowns {b): 

(6) = id) - [Sl [KIP {b) (14.12) 

Essentially, we want an estimate of {b) such that 

[Sl LK1-l {b) 21 {dl 

in some least-squares sense. Equivalently, 

(6) E 0 

Note here that [S] [K]-' is not square so no conventional inverse exists. 

Direct Solution Strategies and Inverse Noise 

In general, all solution strategies for equation 14.13 which we will consider will produce estimates 
of {b) which are linear in the data: 

{b) = PI {d) (14.15) 
with [B] the pseudo-inverse of [S] [K]-l. Accordingly, the estimate of {u) is also linear in the data: 

(No data, no {b), no {u) and no misfit. Ignorance is bliss!) Assuming some data, the inverse noise 
is obtained directly: 

[Cov(b)l = PI [Cov(d)l [BIT 
[Cov(u)] = [K]-' [Cov(b)] [ K ] - ~  

= [K]-' [B] [Cov(d)] [ B ] ~  [ K ] - ~  

Different solution strategies will have different linear estimators [B]. For example, straight 
solution of equation 14.13 via SVD requires only one parameter, the condition number cutoff. 
SVD will minimize Var(S), driving it to zero if possible, and in that case minimizing Var(b) as a 
secondary goal. The relations for [B] are covered in the foregoing section in terms of the Singular 
Vectors and Values of the matrix [S] [K]-l: 

If GLS is used, the principle will be minimization of the composite criterion 

= {6jT [W6] (6) + {blT [Wb] {b) (14.20) 

and the estimator [B] is obtained from the normal equations: 

Here we need to introduce [Ws] and [Wb]; ideally these are the inverse prior covariances of (6) 
and {b), respectively. The equations 14.17 and 14.18 above for [Cov(b)] and [Cov(u)] are posterior 
estimates i.e. they are posterior to the data and the inversion of it. 

2 ~ h e  prior and posterior relationships between [Cov(u)] and [Cov(b)] are identical, [Cov(u)] = 
[w-' [Cov(b)] [l(l-=, due to the direct correspondence between u and b: { u )  = [K]-' {b}, independent of the 
data. 
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More on the Model-Data Misfit 

Above we asserted that (6) comprises two parts, due to model and data imperfections. It is useful 
to develop this a little further. 

Let {p) be the Truth, i.e. the true state of nature3; and {u) be the model version as above. 
Define the discrepancy as {ern), the "model error7': 

As above, define the data as the sum of a sample of Truth plus measurement error {ed) ("data 
error" ; "measurement noise" ) 

{d) = [Sl {PI f {€dl  (14.23) 

The model-data misfit is now 

and so the misfit {S) can be separated in principle into two parts representing a sampling of model 
imperfections, plus measurement noise: 

In other words, the misfit is the superposition of the effects of imperfect model and imperfect 
data. The superposition depends on linearity in the sampling and in the processes generating {em) 
and { E ~ ) .  But it is valid for nonlinear as well as linear models. Assuming the two sources are 
independent, and independent of the state of nature {p), we have 

and 

[Cov(d)l = [Sl [Cov(p)I PlT + [Cov k d ) l  

The former is needed in specifying [Ws]; it combines the two sources of statistical misfit. The latter 
is needed in developing the posterior covariances [Cov (b)] and [Cov(u)] , equations 14.17 and 14.18. 
It combines natural variability with measurement variability. If {u) and {em) are independent, 
then we have the further relation 

All of these additive covariance relations are intuitively sensible, and useful. Accounting for covari- 
ance among {u) ,  {em), { E ~ ) ,  etc, is difficult except in special cases. 

Note: Cov(u) in 14.28 is defined in the absence of data. It is logically prior to the data. In 
14.18 we have Cov(u) posterior to the data - the variability of the estimate of u from the data. 
These two covariances are fundamentally different and it is important to distinguish them. 

3Tkuth is by definition unknowable with certainty; it can only be estimated. 
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14.2 Constrained Minimization and Gradient Descent 

In this section we describe the Generalized Least Squares problem for minimizing Model-Data misfit 
as one of constrained minimization. The classic notion of Lagrange Multipliers is introduced. The 
multipliers are additional mathematical variables - the Adjoint Variables - which figure prominently 
in iterative solution strategies by Gradient Descent toward the GLS minimum. This approach 
achieves the same solution as the GLS solution, but the path is different and we encounter the 
Adjoint Variables along the way. 

Generalized Least Squares as Constrained Minimization 

We are concerned with minimizing a general quadratic functional R which combines model-data 
misfit and solution: 

= {bjT [Wb] {b) + {dlT [W6] (6) (14.29) 

with [Wb], [W6] symmetric positive definite; and subject to the constraints 

Eliminating 6 by substitution leaves us the minimization of 

subject to the remaining constraint 

[Kl{u) = {b )  

This is the problem we will solve. It is posed as one of constrained minimization. We have 
control variables (unknowns) {b) and {u) to be manipulated, but they are not independent; the 
constraint 14.33 must be enforced among them. The classical approach is to construct an augmented 
quadratic form 

which includes the constraints weighted by the Lagrange Multipliers {A). These supplement the 
list of unknowns. Intuitively, the minimum value of R+ will occur with [K] {u) = {b), in which 
case R and R+ have the same value. The value of Xi represents the resistance of the minimum to 
violation of the ith constraint. 

With the constraint embedded in R+, we may proceed to describe the first-order conditions for 
its minimum. Specifically, the gradient of RS with respect to the three controls {b), {u), and {A), 
is 

} = -2 [sTw6] {d} + 2  [ s ~ w ~ s ]  {u) + [ K ] ~ { A )  
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All components of this gradient must vanish. Before proceeding, let's demonstrate that the 
condition VR+ = 0 produces the identical solution to that obtained with the normal equations. 
Solving 14.35 for {b) and 14.37 for {u )  gives us 

Substitution of these into 14.36 gives us the single equation for {b): 

-2 [sTw6] {d)  + 2 [ S ~ W ~ S K - ' 1  {b) + 2 [KTWb] {b) = 0 (14.40) 

[ [ S T W ~ S K - ' 1  + [ K T W ~ ] ]  {b) = [sTw6] { d )  

Premultiplying by [K-lIT = [KT]-' = [KPT] gives us 

[ K - ~ s ~ w ~ s K - '  + wb] {b) = [ K - ~ s ~ w ~ ]  {d)  

which is identical to that derived above (equation 13.124) for GLS for [S][K-']{b) = {d)  (with 
[A] = [SK-I] ,  etc.). Thus we see that introduction of the Lagrange Multipliers does not change 
the basic answer - but it introduces some flexibility in the solution technique. 

The Adjoint Method 

Here we describe the solution of equations (14.35, 14.36, 14.37) by iteration. The method is 
frequently referred to as the "adjoint method". Rather than eliminating the adjoint variables 
{A) algebraically, they are retained and explicitly computed. They play a prominent role in the 
iteration. Instead of computing a large concatenation of matrices involving several full-matrix 
products and inversions, we concentrate on solving the easy subsets of the algebra iteratively. 

The basic idea is expressed procedurally: 

1. Guess {b). At the start, this is the Prior Estimate of the basic unknown. 

2. Solve 14.37 for {u): 

[Kl {ul  = {b )  

Since [K] is a conventional FEM matrix, it can be counted on to be well-conditioned, and 
sparse. Its efficient and accurate solution is assumed. Its right-hand side is the most recent 
estimate of {b). This system is referred to as the Forward System or Forward Model, since 
it represents the basic problem being posed. Here we solve it with the best available estimate 
of the unknown right-hand side. 

3. Evaluate the model-data misfit (6)  

(This step is optional, and can be accomplished implicitly in the assembly of the right-hand 
side in step 4.) 
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4. Solve 14.36 for { A ) :  

[qT {A) = 2 [sT w,] { d )  - 2 [sT W ~ S ]  {u) 

Efficient and accurate solution of this system is assumed based on the properties of [KIT 
which mirror those of [K].  This system is referred to as the Adjoint System or Adjoint 
Model. It is structurally the transpose of the Forward System. 

5. Evaluate the remaining first-order conditions - equation 14.35. This is the gradient of R+ 
with respect to {b) :  

If this is zero, STOP.  All the conditions for a minimum are satisfied. Otherwise, make an 
adjustment to { b )  and REITERATE, returning to step 2. 

This procedure amounts to a search in the decision space { b )  for that location (set of unknown 
forcings) which minimizes a+. Each step is intrinsically simple. The computationally intensive ones 
are steps 2 and 4, both of which involve repetitive solution of a sparse, well-conditioned matrix 
equation arising in FEM analysis. Since the matrices involved are [K] and its transpose, a single 
factorization at the beginning of the iteration is desirable. For example, using LU decomposition, 

Similar efficiencies are available with other matrix factorization schemes. The computational re- 
quirements therefore scale as a single common FEM assembly and factorization at the start (neces- 
sary anyway!), plus two common FEM back-substitutions per iteration. Efficiency in the iteration 
is therefore critical. The key to this efficiency will be found in step 5, the computation of the up- 
date to the estimate of {b} .  Below we discuss two common methods: the Steepest Descent Method 
and the Conjugate Gradient Method. Both share a two-part structure which relies on information 
about the nonzero gradient of obtained in step 5. 

Gradient Descent 

We are searching for the minimum of the scalar functional R+, in the multidimensional space {b) .  
We assume the ability to evaluate R+ and its gradient vector {VR+) = {%+} at any point. 
Assuming that VR+ # 0, we require an update to the current best estimate of { b )  which makes 
R+ get smaller. 

Let the current position be { b I k .  Then 

Furthermore, divide { A b )  into direction { d b )  and magnitude a: 

{ A b )  = a { d b )  
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(It is suggested that {db)  be a unit vector, or otherwise scaled to some sensible size; but that is not 
necessary.) There are two questions: which direction to select, and how far to go in that direction. 

We will address the latter question first. Given a direction {db) ,  we are searching along a line 
in the n- dimensional {b)- space. The idea is to minimize R+ along this line, by selecting the 
optimal value of a. This is a nice subproblem which has a simple solution. 

First define the effect of {db):  

{ d u )  = [K-'1 {db )  

{ a s }  = - [s] {BU)  

and notice that the algebra is linear in a: 

{ A b )  = a { d b )  

{AU} = [K-l] { a b }  = a {au)  

{ a s }  = a { a s >  

So the objective Q+ at the new position is 

+ = {ak [Ws] {dk + A d )  + {bk + A b j T  [Wb]{bk + A b )  (14.57) 

= + [Ws] {be)  + {6klT [Ws] { A h )  + { ~ b ) ~  [Ws] { A b )  (14.58) 

+ {nb>T [Wb] {bk)  f {bklT [Wb] { A b )  + { ~ b ) ~  [Wb] { A b )  (14.59) 

AR+ = 2 a  {dbjT [Ws] { b k )  + a2 {dblT [Ws] ( 8 6 )  (14.60) 

+ 2a(dblT [Wb] {bk)  f a2 [wb] {db)  (14.61) 

(We have assumed that [Wb] and [Ws] are symmetric.) Now by differentiating relative to the scalar 
a we obtain the condition for the minimum along the line parallel to db: 

This equation is valid for a for any given direction {db).  What is left is, how to select the direction. 

Steepest Descent 

This is the simplest gradient descent method. The direction {db)  is chosen to be parallel to the 
negative gradient: 

{ d l )  = - {gi} (14.63) 

or any normalization of the gradient. Since the gradient is the direction of maximum increase, 
then this is the Method of Steepest Descent. Coupled with equation 14.62, we have a method 
which selects the steepest direction down, and goes straight in that direction until it bottoms 
out. Then it changes direction. Although this is intuitively appealing, and simple, it has pitfalls 
and is usually avoided. There is no guarantee that the directions chosen will not repeat or nearly 
repeat themselves, resulting in slow convergence. The method has no memory of previous directions 
used. It will converge to the correct answer since in this case (Linear Least Squares) only a single 
minimum is possible. In general an infinite number of iterations is needed, as with most iterative 
methods. 
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Conjugate Gradient Descent 

This method computes a sequence of gradients {%Ik = {gIk, and a sequence of directions = 

{hIk. The sequences are computed as follows: 

The scalar parameter y is recomputed at each step as 

This method may be started with {hIl = - {gIl, i. e. using steepest descent for the first step. Note 
that once started, there is memory in the direction-setting. The step size a is optimized as in 14.62. 

Details of this method are beyond our purpose here; see for example Golub and Van Loan, 
[35]. The method was initially developed as a direct solution strategy for linear systems; in the 
present context it converges to the exact solution in exactly n iterations, with the first iterations 
making the most progress. However the iterations are unstable in the presence of roundoff, so it is 
important to stop this method well short of n steps. In practice the Conjugate Gradient Descent 
can be significantly faster than Steepest Descent. The notation here follows that of Press et al. [99], 
except for a reversal in the sign of {g). 

Summary - Adjoint Method with Gradient Descent 

In Figure 14.1 we summarize the iterative method outlined above. Each iteration consists of a 
forward and an adjoint model run; the objective is the minimization of a+ which includes the 
quadratic norms of the Model-Data Misfit (6) and the Forcing {b). The gradient of is used to 
direct the next iteration. 

Monte Carlo Variance Estimation - Inverse Noise 

The Gradient Descent methods normally do not include an iterative estimate of [Cov(u)]. Since 
they converge to the same solution as GLS, the expressions for [Cov(u)] from that development 
pertain here; they can be evaluated after the iteration has converged. 

Iterative methods are frequently invoked when memory, run-time, or coding considerations are 
dominant. In particular, note that the method summarized in Figure 14.1 requires only factorization 
of the FEM matrices [K] and its transpose, plus some more elementary operations, all of which are 
necessary in a standard 'forward model' run and its comparison with data. It may be constructed 
fairly simply, starting from a conventional 'forward model' environment. In these cases, the matrix 
formalism is likely to be awkward or unavailable for constructing the Covariances. 

An alternative approach is to perform an ensemble of iterative inversions, each with a statis- 
tically valid perturbation added to the data. The ensemble of results {u) can then be sampled 
for mean and variance. The mean is then the estimated answer (inverse of the data); and the 
variance is then the estimate of the diagonal of [Cov(u)]. For a sufficiently large ensemble, properly 
representing [Cov(d)], these estimates are precise and equivalent to the algebraic expressions given 
above for GLS. 
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Figure 14.1: Adjoint method of iterative solution of the GLS Model-Data Misfit problem. 
There are two alternate return paths. On the left side, the forward model and misfit are 
recalculated once the full increment to { b )  is known. On the right side, linear superposition 
is used to project the new Misfit. The superposition saves one forward model run per 
iteration. 

This "Monte Carlo" approach rests on generation of ensembles of randomly-perturbed data. 
When the data are statistically independent, this is straightforward and supported in most com- 
putational systems. When they covary, however, the problem becomes more sophisticated. A 
transformation method involving the Cholesky decomposition is described in the Appendix. 

Much has been written about Monte Carlo methods; we refer the reader to the literature 
(e.g. Winston, [114]). 

14.3 Inverting Data With Representers 

A distinctly different approach to the GLS minimization of Model-Data Misfit is the Representer 
approach. We pose the same problem as above, in terms of Lagrange Multipliers. The first-order 
conditions for a minimum comprise the basic problem statement. The path to solution begins 
with the Adjoint equations, forced by a single misfit 4. With m data, exactly m such solutions 
(Representers) are needed to close the calculation in a final m x m matrix inversion. The result 
is a direct solution technique which is efficient when the number of data m is much less than the 
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number of unknowns n. 

The equations and unknowns are the same as expressed in the first steps of the Adjoint method, 
Figure 14.1. Their order is rearranged here to suit the exposition: 

Notice that here we have set {g) = 0 rather than using it to direct a gradient search. Also note 
that we have assumed that [Wb] = [~ov(b)]-l .  Significantly, this particular arrangement of the 
first-order minimum conditions requires no matrix inversion beyond the factorization of the FEM 
system matrix [K], which is assumed to be routine here. 

The Procedure 

Construct a solution of 14.66 through 14.68, starting with Unit Misfit Si = 1, Sjfi = 0. Call the 
resulting forward model solution {U)i. Sample it; and call its sampling the Representer {r)i = 
[S'l {Uji. Do this once for each datum, i = 1 + m. 

Now if the individual misfits Si were known, then by superposition we have 

where the Representer vectors {rIi are the columns of [R]. The basic idea is to use this to calculate 

(6): 
[I + R]{S) = {dl (14.71) 

The matrix [I + R] is square, m x m, and presumably full. Its inversion closes the system, efficiently 
if m << n and all data are independent. 

With (6) known, the solution {u) can be synthesized from the unit response vectors {U)i: 

where the vectors {U}2 are the columns of [U]. Alternatively, if [U] has not been saved, one can 
simply re-solve equations 14.66, 14.67, and 14.68, starting with the known (6). 

If m is the number of data, this procedure requires the construction of m representers, each 
of which requires a forward and an adjoint solution, a sampling of {u), plus a computation of 
{b). The latter is reduced to a simple matrix product because [wb]-' = [Cov(b)], a prior input. 
Roughly, this is comparable to solving 2m forward problems, requiring only a single factorization 
of the FEM system [K] at the start. The final step requires solving the dense m x m system once, 
followed by a pair of forward solutions to recover {b} and {u). So we see that for small m, the 
Representer method is very attractive. 
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Naturally, one needs to worry about the conditioning of the matrix [I + R]. Since this blends 
many features of the problem, caution is advised and inversion via SVD and inspection of the 
condition number is recommended. 

Inverse Noise 

The estimator for {u) is linear in the data: 

{u) = [U] [I + R]-' {d) 

and the covariance is 

[Cov (u)] = [U] [I + R]-' [Cov(d)] [I + R ] - ~  [ u ] ~  (14.74) 

This particular expression is remarkably compact; and efficient to the extent that inversion of 
[I + R] is efficient. Note the absence of the FEM matrix [K] and its inverse here; and the sampling 
matrix [S]. They are implicit in the construction of [R] and [U]. 

14.4 Inverting Data with Unit Responses 

Representers are effective when m (the # of data) is small relative to n (the number of unknowns). 
The procedure collects the calculations into a single dense m x m matrix expression of the model- 
data misfit. The result: a direct method which requires 2 m  forward model solutions, a single m x m 
inversion, and two more forward model solutions. 

In the opposite case, when n << m, an analogous procedure is based on responses to unit forcing, 
with the system closing around the relation between {b) and {A). The work involved is 2n + 1 
forward solutions, a single n x n inversion, and one final forward solution. As above we assume 
that each forward model solution is relatively easy and well-conditioned. 

Procedure 

The standard four equations are reexpressed in the most convenient order: 

First, construct n solutions of 14.75 and 14.76 with unit forcing, bi = 1, bjfi = 0. Sample each one 
using [S]; call those resulting vectors the unit predictions {P)i. Now the misfit may be expressed 
as the superposition of the unit responses {P)i, with unknown weights bi = 1: 

(6) = {d) - bi {P)i 
i 
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Next create n + 1 forward solutions to 14.77, driven individually by {d )  and by the {PI i .  Call 
these solutions { X I d  and { X I i .  With these in hand, {A)  can be expressed as a linear combination 
of the unknown biz 

( X I  = {A)d - bi iA ) i  = {X)d - Ib) (14.80) 
i 

where the columns of [A] are the individual responses { X I i  to unit forcing bi. Equation 14.78 can 
now be assembled: 

(14.81) 

and the final form is 

(2  [I1 + [Cov(b)l PI )  {b) = [Cov(b)l lX)d 

Solution of this for {b), plus a single forward solution to 14.75 for {u ) ,  completes the procedure. 

14.5 Summary: GLS Data Inversion 

We have examined several approaches to inverting data. All share the same relations: 

(Forward F E M  Model) (14.83) 

(Model - Data M i s f i t )  (14.84) 

and the same general objective, to minimize {S)  in some sense. By eliminating { u ) ,  we have 

and wanting the misfit (6 )  to be small, we seek {b) such that the sampled model fits the data: 

[S] [K]-' is generally not invertable; but we seek its pseudo-inversion. The residual of this equation 
is the model-data misfit. 

The SVD is unique in that Var(6)  is minimized alone. Otherwise, the objective is to minimize 
0: 

0 = {blT [Wb] {b)  + {61T [W6] ( 6 )  (14.87) 

In every case the control variables are the two arrays {b) and {S).  The size of the system is n 
equations and m data. With the exception of SVD, all methods can be viewed as rearrangements 
of the same first-order conditions for the same extremum of R. We assume that [ K ]  is sparse, 
nonsingular and easily factorable, being a discrete, well-posed approximant to a PDE. Existence of 
its inverse is guaranteed. 

a SVD is a direct method using factorization of [S]  [K]- l .  It is supported by a general theory 
which is a direct extension of EigenTheory. It highlights the role of small Singular Values as 
amplifying noise contained in the associated Singular Vectors. 

The direct GLS method uses the Generalized Normal Equations for equation 14.86. Inversion 
of a full, n x n matrix is required; there is no guarantee of its condition. 
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An iterative method introduces Lagrange Multipliers as additional adjoint variables; and uses 
Gradient Descent in the decision space {b) .  Each iteration requires a forward and an adjoint 
model run. Each iteration is comparable to two forward model runs with pre-computed and 
factored matrix [K]. Slow convergence can offset the speed per iteration. 

A direct method uses Representers (responses to unit misfits). It requires computation of m 
representers and inversion of a dense m x m matrix. It is desirable when m << n. 

A second direct method uses Impulse Responses (responses to unit forcing). It is analogous 
to the Representer approach and is attractive when n << m. 

Other iterative methods are not discussed but are desirable. In particular a Gradient Descent 
method in { S )  space might be efficient for m << n. 

All results are linear in the data: 

Each method has a different approach to the practical computation of [B]; they are alge- 
braically identical with the exception of SVD. 

The weight matrices are ideally equal to the Prior Inverse Covariances: 

The method of computing Posterior Covariances depends for convenience on the solution 
path chosen. All are consistent. For the Gradient Descent method, no direct formula is easily 
gotten. A Monte Carlo method for computing variance is likely to be preferred in this case, 
since these methods are most attractive when the forward model is easily solved but the 
algebra associated with direct solution is prohibitively large. 

Generally [Cov(u)] (the inverse noise) is dependent on [Cov(d)] but not on the data them- 
selves. 

14.6 Parameter Estimation 

In this section we turn to the problem of estimating the parameters of a PDE and its discrete 
representation. By parameters we refer specifically to coefficients appearing in the governing PDE. 
Boundary conditions, initial conditions, etc. are excluded by this definition. We will employ a 
General Least Squares approach, as in the inverse problems described above. However, the param- 
eter estimation problem is significantly different. Even for a linear PDE and linear discretization 
of same, the dependent variables {u) are nonlinear in the parameters - by definition, the PDE 
involves products of its parameters with the dependent variables. And its discrete representation 
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has unknown [K], thus spoiling the algebraic linearity which would occur if only {u) and {b) were 
unknown. Here we assume that {u) and {b) are unknown as before, and we have an additional 
vector of unknowns {y) which appear in the discretized PDE. They typically are the degrees 
of freedom involved in a discrete representation of continuous parameter field(s). Accordingly, 
[K] = [K(y)], and we have the nonlinear forward problem 

with unknowns {u), {b), {y), and imperfect observations {d) of the system state {u). 

In a GLS sense, the model-data misfit {S) is to be minimized. Solution by iteration is necessitated 
by the nonlinearity. 

GLS Objective 

We have the minimization of the GLS objective 

subject to the constraints 14.94 and 14.95 above. As usual [Wb] = [~ov(b)]-l  and similarly for [Ws] 
and [Wy]. TO enforce the forward model constraint 14.94, we introduce the Lagrange Multipliers 
{A). The objective becomes minimization of the augmented RSS, which now involves terms in the 
misfit {S), the forcing {b), the parameters {y), and {A): 

Eliminating 6 by substitution of 14.95 leads us to the minimization of 

with control variables {b), {u), {y), and {A), and with the understanding that {S) is a surrogate 
of {u): 

(6) - Id) - [Sl{u) (14.99) 

First-Order Conditions for GLS Extremum 

With the constraint embedded in R++, we may proceed to describe the first-order conditions for 
its minimum. Specifically, the gradient of RS+ with respect to the four controls {b), {u), {A), and 
{Y} is 

{z"} = [KIT {A) - 2 [sTw6] (6) 
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plus the surrogate relation 

(6) = { d )  - [Sl{u) 

These are essentially unchanged from the comparable first-order conditions for estimating { b ) ,  
except for 

the dependence of [K] everywhere on the unknown {y); and 

the additional fourth gradient vector 14.103 relative to the parameters {y). 

If we freeze {y), then 14.103 is irrelevant and the equations reduce to the fixed-parameter set pre- 
viously studied. If the number of parameters is small, we may get away with nesting an estimation 
for {b), with any of the above techniques, within an iteration for {y), such that the newly-hatched 
gradient 14.103 is annihilated. This is particularly attractive when the number of data are small, 
in which case we could expect the Representer approach to be very effective. A good prior estimate 
of {y) is a necessity. 

Equation 14.103 is new. The first term is familiar by now; recall especially that [w,]-' = 
[Cov(y)], and that this represents a prior estimate; i.e. it is independent of the solution. The 
second term deserves some special attention; its most general expansion is 

If [K] is linear in the parameters {y), then the matrices involved here are constants; however even 
in this case they present important requirements for storage, especially when the dimension of {y) 
is high; and the assembly of 14.105 will be computationally intensive for the general case. 

We will review this term before going further, to see if we can take advantage of the fact that 
[K] is a standard FEM matrix representing familiar FEM constructions. 

The Gradient in Parameter Space 

Here it is convenient to reintroduce the FEM residual vector {r): 

and the final term in R++ (equation 14.98) is 

{X)T {r) = C Airi 
i 

If each individual ri is a MWR statement with weighting function 4i(x), then this term is a MWR 
statement with weighting function X(x) = xi Xi4i(x). The gradient relative to y, is 
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Example. Consider the PDE 

-v - (yVu) = f 

with Neumann boundary data q. Its MWR expression is 

If the parameter y(x) is expressed in the basis +(x), 

then we have 

and the contribution to the gradient is 

If X and u are known, or presumed known in an iteration, then this gradient vector is readily 
evaluated using standard FEM assembly procedures, treating X and u as data. Since we need to 
iterate on the parameter estimation problem a priori, with routine re-assembly of the basic FEM 
matrix [K] in each iteration, only marginal additional work need be generated in the same loop to 
assemble the gradient. 

From the more general perspective of equation 14.105, we have 

which leads to the same result. 

For this case, then, we can pull together the complete specification of the gradient, from 14.103: 

If Dirichlet BC's are involved, we need an extra measure of care here. Suppose, for example, 
that u5 is a Dirichlet node, and row 5 of [K] has been replaced with a direct specification of u5 
(unity on the diagonal, zero off-diagonal). In this case, 7-5 is completely insensitive to any of the 
parameters ym; so in the assembly of 14.113, X5 needs to be temporarily treated as if it were zero. 
(In general, X5 # 0, hence this is a procedural workaround. Other assembly procedures can be 
fashioned for the Dirichlet case.) 
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An Adjoint Met hod for Parameter Estimation 

Here we sketch an Adjoint-based iterative method for satisfying the first-order conditions. The idea 
is a straight generalization of that expressed in section 14.2, for the estimation of {b). Here we add 
gradient descent in the combined {b), {y) space. The basic idea is expressed procedurally: 

1. Prior  Estimates of {b), {y) are needed. These are the basic unknowns. At the start, a good 
guess is needed. 

2. Forward Model: Assemble the forward model system [K(y)] and [%I. Solve 14.102 for 

{u): 
[K]{u) = {b )  (14.118) 

3. Model-Data Misfit: Evaluate (6) from the new value of {u) using equation 14.104 

4. Adjoint Model: Solve 14.101 for {A): 

5. Gradient Descent: Evaluate the remaining first-order conditions - equations 14.100 and 
14.103. These give the gradient of R++ with respect to {b) and {y) 

If these gradients are zero, STOP. All the conditions for a minimum are satisfied. Otherwise, 
make an adjustment to {b) and {y), and REITERATE, returning to step 2 (Forward model 
assembly and solution) above. 

14.7 Summary - Terminology 

Here is a general summary of terminology used so far in the discussion of fitting algebraic models 
to data: 

The finite element model is [K] {u) = {b) 

[K] is the FEM matrix, sparse, well-conditioned 

{u) is the field variable of interest 

{b) is the unknown forcing vector (BC's + inhomogeneous term in the PDE) 

{ r )  is the residual in the FEM equations, [K] {u) - {b). It is normally zero here except during 
an iteration. 
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{ p )  is the true field variable in nature, unknown but approximated by {d) and by { u )  

{d) is the data, imperfect observations of { p )  

{ E )  indicates an error i .e .  a discrepancy between Truth and an Estimate. Since Truth is a 
priori unknowable except in a statistical sense, therefore errors are unknowable. 

{E,) is the model error: {u )  = { p )  + { e m )  

{ E ~ )  is the observational error: {d) = [S] { p )  + {ed) 

{Y) is the vector of unknown model parameters: [K] = [K(y)] 

[S] is a sampling matrix: [S] {u )  approximates the data 

{S) is the model-data misfit: {S) = {d) - [S] {u). In terms of the errors, (6) = {ed) - [S] {E,) 
which is useful in constructing [Cov(G)] . 

[W]  indicates a weight matrix used in GLS minimization. Generally, for any variable { x )  
being estimated, [W,] = [COV (x)]-l . 



Chapter 15 

Dynamic Inversion 

In the previous chapter we examined inversion of static or steady-state models. Here we examine 
models of time-dynamic processes. As in the steady case, we will restrict our analysis to models 
which are linear in the necessary forcing; the associated inverse problems will be linear in the 
data. The parameter estimation problem is fundamentally nonlinear even for a linear model in the 
conventional sense. In either case, most of the apparatus already introduced will be used here. In 
particular, iterative solutions will be especially attractive if they take advantage of efficient forward 
model solvers. 

15.1 Parabolic Model: Advective-Diffusive Transport 

Consider the linear transport equation for a single unknown u(x, y, z, t): 

with parameters v, D (transport) and r; (first-order decay rate); and an exogenous source a. For 
the time being we will assume that the parameters are known perfectly; and that the source a is 
known imperfectly. 

To complete the problem specification, we require boundary conditions and initial conditions. 
Both are assumed to be known imperfectly. In addition, we know the field u(x, y, z) at a future 
time, the Terminal Condition, but only imperfectly. The conventional forward problem would have 
us integrate forward in time from assumed initial conditions, using best estimates of IC's, BC's, and 
sources, in the hope of hitting the terminal condition. By assuming that these (plus the parameters) 
are known, we specify a unique solution; and in a practical world, the hope of perfect success is nil. 
So conventional practice would ask for reasonable adjustments in the information which is the least 
well-known - IC's, BC's, and sources - in order to achieve a reasonable match with TC's. Inversion 
is the formalization of this procedure to produce optimal estimates of u as well as supplements to 
all information which is imperfectly known (IC's, BC's, TC's, and sources).' 

'Notice here we are not treating IC's as observations, as was effectively the case in the static problems in the 
previous chapters. The forward problem requires simultaneous IC's , i.e. a synoptic field u(x, y ,  z ) .  In practice such 
a field observation would not be ossible; so it is assumed here that IC's are obtained by a blend of observations and 
model calculations, with various kvels of pmcessin to obtain the field estimate. We also assume that such rocessing 
includes an estimate of the field covariance as wely as the state itself. The same discussion pertains to ~ 8 ' s .  Later 
we will explore this distinction. 
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For Euler time-stepping with Galerkin FEM, we would have: 

Mij = (4j4i) 
Aij = (4j4i) - A t ( v .  V4j  +i + DV4j V4i + K +jdi)  

k 

bik = At ( ( a  4i) + f ~ 2 4 i d s )  

For a more general implicit time-stepping scheme, we have: 

Mij = ( 4 .  j4i) + A t ( v .  V4j  4i + DVdj . V4i + K 4j4i)O 
Aij = (4j4i) - At (v 'V4 j  4i + DV4j .V4i + K  4jdi)(l - 0) 

k+0 
bik = At ( ( a  4i) + f D ~ C ~ S )  

with 4 the basis and 0 a time-weighting parameter. 

Table 15.1: FEM discretization of advective-diffusive-reactive equation; 
terms as in equations 15.2-15.4. 

Forward Model in Discrete Form 

The simulation model in discrete form is: 

Initial Condition 
{u)o = {fi)o 

Dynamic 

[ M ] { u ) k + l = [ A ] { u ) k + { i ) k  k = [ o , n - l ]  

Terminal Condition 

{u),  = @>n 

with 

{uIk: Vector of Concentrations at time k (state variables in forward model) 
{ii)o, {ii),: InitiallTerminal Conditions (Prior estimate) 
[MI, [A]: Physical Transport Matrices (advection + dispersion + decay, storage) 
( 8 )  : Source + Inhomogeneous Boundary Conditions (Prior estimate) 

k 

(Notice that the tilde notation indicates a best prior estimate.) A typical FEM discretization is 
given in Table 15.1. 

In normal forward or "open-loop" mode, integration from IC's (equation 15.2) generates disagree- 
ments with terminal conditions (equation 15.4). The goal is to reduce the disagreement by augment- 
ing the source terms and/or the initial conditions optimally. Accordingly we rewrite the forward 
model with three explicit sources of error or uncertainty in the simulation: 

Initial Condition 

( 4 0  = { G I 0  + {Q) 
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Dynamic 

[ M ] { ~ ) k + l = [ A ~ { u ) l ; + { a ) k f { ~ )  k = [ " , n - l l  (15.6) 

Terminal Condition 

{ ~ ) n  = {')n + (6) 

The vectors {a), {S), and {p) are unknown; but there is a prior estimate of their covariances 
[Cov(a)], [Cov(S)], and [Cov(p)]. {p) is here assumed to be constant through time (but spatially 
varying i .e .  all scalar entries in the vector are independent). Time-variation in {p) is an interesting 
extension; we ignore it here to start. 

Objective and First-Order Conditions 

We seek a generalized least squares (GLS) fit to the Initial and Terminal Conditions: 

Minimize 0 = f ({alT [W,] {a) + { P ) ~  [Wp] {p) + {dlT [WJ] (6)) 

subject to the forward model constraints, with [W,] = [Cov(a)]-I etc. The controls available are 
{a), {S), and {p), in addition to the basic unknown solution { u ) ~ .  To handle the constraints, we 
introduce the Lagrange Multipliers {A) and minimize the functional Z: 

The gradient of Z is: 
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{g) = Forward Model 

Setting these to zero gives the necessary conditions for a minimum. { X I  = 0 recovers the forward 

model, equations 15.5, 15.6, 15.7. { } = 0 gives the adjoint model. The derivatives with 
respect to the perturbations { a ) ,  (61, and { p ) ,  give the relationships among the two models. 

Adjoint Model 

From the first-order conditions {$$I = 0, we have the relationships among the Lagrange Multipli- 
ers. This is the adjoint model: 

Initial Condition 
{i}o - PIT { X I ,  = 0 

Dynamic 
[ M ] ~  {XIk  - [ A ] ~  {X)k+l = 0 k = [I, n - l] (15.16) 

Terminal Condition 

[MIT { ~ ) n  = - {'In 
The relationships between the forward and adjoint variables are gotten from the final gradients 
relative to {a), {S), and { p ) :  

Recall that [w,]-' = [Cov(p ) ] ;  so these relations are readily solved in either direction. 

Note the adjoint structure is the dual of the forward model: 

The adjoint variables are the Lagrange Multipliers associated with the forward model dynam- 
ics 
Integration is backward in time from the T.C. 
Advection is reversed in [ A ] ~  
Adjoint boundary conditions are the homogeneous form of the forward model 
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The forward model produces the terminal misfit 16). This forces the adjoint model, { X I n  = 

[Ws] (6). No {S), no adjoint solution needed. 
The adjoint solution produces: 

the supplement to the source terms: p C Ak 
the initial condition supplement a N io 

We see that the adjoint model inherits its general structure and properties from the forward model. 
If the forward model can be assembled and easily solved, we can expect the same from the adjoint 
model. 

Direct Solution - An Elliptic Problem in Time 

It is useful first to condense the system a little by eliminating the intermediary variables {a}, {p), 
{S), leaving only the prime (u) and dual (A) variables: 

Forward Model 

Adjoint Model 

The combined system is formally a two-point (in time), elliptic boundary value problem, subject 
to constraints on initial and terminal conditions. To see this, we eliminate {A) to obtain: 

with boundary conditions2 

[MI { u ) ~  - [A] {u), = {bjo  - [cm(P)l [MT - AT]-1 {c) (15.27) 

The quantity {c) driving these BC's is a composite of initial and terminal misfits; it is the same at 
both ends: 

= [ W ~ I  ({U)O - {8j0) + [W*I ({Uln - {GI,) (15.29) 

Effectively, these are Type 3 or mixed boundary conditions. As ([W,], [Ws]) become large, we 
approach stronger Type 1 conditions on uo and u,. 

Direct solution of this linear system is possible. It requires constructing and factoring a large matrix 
and is not pursued further here. An iterative strategy is developed below. 

w e  have used equation (15.40) in developing the BC's. 
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Iterative Solution by Gradient Descent 

We iterate using a Gradient Descent method. We enforce the gradient conditions (15.10 - 15.14), 
and use p and a as control parameters for the reduction of Z. The imbalance in the gradient 
conditions (15.8, 15.9) will drive the descent. 

Initially, assume {p) = {a) = 0. Then: 

Compute {u) via forward model, forced by the best guess for {p) and {a); evaluate (61, the 
terminal error: 

Compute {A) by backwards-in-time integration of the adjoint model, forced by (6): 

{i} = [AT] {A), 

Compute {VZ) = ({%I, {%}I 

If {VZ) E 0, STOP. All first-order conditions for a minimum are satisfied. Otherwise, 

Compute an appropriate descent direction ({dp) , {da)) , e.g. via Steepest Descent or Con- 
jugate Gradient Descent; and increment ({p) , {a)) in that direction with stepsize a: 

Reiterate to convergence at V Z  % 0. 

An interesting property of the adjoint is gotten by summing equations (15.15), (15.16), and (15.17): 
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Optimal Step Size 

In each iteration we increment ({p) , {a)) from their current values ({pk) , {ak)), in a prescribed 
direction ({dp) , {da)), with stepsize a: 

This results in increments in {du) and {ad): 

{u)k+~ = {uIk + a {du) 

1 = {dl, + a{dd) 

where ({au) , {ad)) is the impact of a forward model run with a = 1. These in turn alter the 
objective as follows: 

Proper selection of the direction guarantees that the objective Z will decrease locally. The scalar 
a is selected to have maximum impact on 2. The first-order condition = 0 gives the optimum 
step size: 

Procedurally, we can get away with only a single adjoint solution per iteration as follows. First, 
compute {du) and {ad) using a = 1 as per the definition. This enables calculation of a .  Then by 
superposition (equations 15.43 and 15.44), recomputation of the adjoint model is unnecessary to 
complete the iteration. 

Direction of Descent 

Earlier in Section 14.2 we discussed the selection of the descent direction ({dp) , {da)). The most 
intuitive approach is Steepest Descent: proceed in the direction of the negative gradient. This 
method is workable and will ultimately succeed for a linear problem, since one is always going 
"downhill" and a unique minimum exists. It is well-established however that this can lead to slow 
convergence. A common alternative is the Conjugate Gradient Descent. Like Steepest Descent, 
this method begins in the direction of the negative gradient; however the second and subsequent 
directions are selected with memory of the previous directions in addition to the local gradient. 
The details are such that the minimum is reached theoretically in finite number of steps (n, the 
dimension of the search space), with the most rapid progress realized early. Since the method is 
unstable in the presence of roundoff error, it is important to stop the iteration well short of n steps. 

3 ~ o t i c e  that by definition (equation 15.32), (36) {du), here. 
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Special Case #1: "Shooting" 

Suppose that the IC's are known to be perfect, a priori. In that case, we need to remove {a) from 
the system of unknowns ({a) = 0 everywhere) and delete the gradient of Z with respect to {a), 
{g ). The forward model is: 

Initial Condition 

{u)o = {GI0 

Dynamic 

[MI {u)k+1 = i u ) k  + i b ) k  + {p) 

Terminal Condition 

{u>n = {G>n + (6) 

Objective: Minimize Z: 

Essentially, starting from known IC's, minimize the misfit with the TC's, (61, in a GLS sense, 
by adjusting the unknown controls {p). We are "shooting" at the TC's. If {p) were known with 
certainty, the problem would be overdetermined. 

The first-order necessary conditions are 
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= Forward Model 

The adjoint model is then 

Initial Condition 

Dynamic 
[ M ] ~ { X ) , - [ A ] ~ { X } ~ + ~ = O  L = [ l , n - l ]  

Terminal Condition 

[ M ] ~  = - {i} n = - [ w ~ ] { J )  

and the relations between adjoint and forward model are 

Summing the adjoint equations we obtain a modification of (15.40) 

Special Case #2: Agnostic p 

Consider the special case where the variance of { p )  is infinite, i.e. there is no prior knowledge 
about it. In this case the above relations are valid with the simple proviso [Wp] = 0; we do not care 
about the size and shape of these variables. The most notable change in the result is the gradient 
expression 

which would be used to direct a gradient descent iteration. 

McGillicuddy et al. [85] used a shooting formulation with agnostic p to estimate population 
dynamics for a marine species based on observations of its spatial distribution. The forward model 
was a 2-D transient Advective-Diffusive FEM, with known parameters. An adjoint-based solution 
was used, with Conjugate Gradient-directed iterative descent in the solution space p. 

Parameter Estimation 

Suppose one or more of the parameters of the PDE are unknown precisely; then we have the 
problem of estimating them as well. As discussed above, this makes an otherwise linear problem 
'necessarily nonlinear; there is the product of parameter and dependent variable to contend with. 
As a result, an iterative strategy is necessary. We assume familiarity with the previous discussion 
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of static problems in section 14.6; we will extend that discussion by example here in the dynamic 
case. 

The basic extension needed is to introduce unknown parameters {y) to the problem. The 
expression for the objective is now augmented by the extra regularization term 

All of the previously defined gradient conditions remain unchanged, although we need to keep in 
mind that the matrices [MI and [A] are now dependent on {y); therefore they change every time 
the parameter estimate changes. And, there is a new first-order condition to satisfy, the gradient 
with respect to the parameters. For the case studied here, we have 

Now the gradient of a matrix is an unpleasant thing to need - a three-dimensional array. But we 
can take advantage of the FEM origin of [MI and [A] here, and avoid the explicit computation and 
storage of this gradient. 

For simplicity, let's concentrate on the estimation of the first-order reaction parameter K. The 
part of the matrices affected by K are: 

Furthermore, assume that K(X, y) is expressed in a known scalar basis $(x, y): 

with parameters K'. (Here we use superscripts to isolate the parameter index.) The matrix gradients 
are 

If we express continuous fields zk(x, y) and Xk(x, y) in the FEM basis 4(x, y): 

Then the quadratic gradient forms may be assembled as follows: 
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The vector nature of the second term is associated with the several bases @. The scalar components 
of the gradient may be easier to comprehend: 

az n 

- = Regularization + ( $ J ' A ~ E ~ ) A ~  
ad k=l 

These are quantities which are readily assembled within FEM, assuming the current estimates of 
X and u are available. Essentially, during the element loop to assemble [MI and [A], assemble the 
inner product of X and 2, weighted with the functions qbl. The summation is over all time steps. 
The work involved is roughly the same as that for assembling the RHS for a single forward model 
run. 

The reader is encouraged to revisit the discussion in section 14.6 where the static version of this 
problem is discussed in terms of a gradient descent iteration. That discussion is directly applicable 
to the dynamic case here. In particular, care must be exercised when there are Dirichlet or other 
conditions which distort the matrices [MI and [A] relative to the formulas presented here. 

15.2 Hyperbolic Model: Telegraph Equation 

Problem Statement 

Here we consider a Hyperbolic PDE in one variable u(x, y, t): 

We will consider the IC's, the forcing P(x, y, t), and the parameters T and gh to be known; and the 
BC's to be unknown. We assume data are available at unstructured locations in (x, y, t) ,  and seek 
to minimize the misfit in a GLS sense. As usual we assume a prior estimate of the BC's and their 
covariance; and a prior estimate of the covariance of the model-data misfit. 

The problem will be discretized on a conventional mesh of elements for (x, y), and with a 
conventional FD timestepping method. The result is a set of linear difference equations in the 
discrete variables { u ) ~ ,  with subscript k indicating a time level. Because of the second derivative 
in time, two initial conditions are required and assumed known with certainty. 

Forward Model 

Initial Condition 

Dynamic 

[MI { u ) ~ + ~  = [A] {u)k f [B] {u)k-1 + [Ek+ll {~)k+i  + {b)k+i k = [0, N - 1] (15.78) 

Misfits 
{6Ik = {2lk - [Tk] {")k - [UkI { ~ } k - 1  k =  [ L N ]  
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For a conventional discretization using C0 elements, and a 3-level in time 
integration, implicit and centered with time parameter 0, we have: 

I- At 0At2 
Mij = (4j  4i) (1 + T) + T ( g h ~ 4 j  * V4i) 

Aij = 2(4j 4i) - (1 - 0 ) ~ t ~ ( ~ h V 4 j  . V4i) 

T A ~  0At2 
Bij = (4 .  di) (-1 + ,) - ?(ghVdj . V4i) 

bi = (/34i) + f ds 
n 

where 4(x, y) is the basis for u; and <> indicates integration over x, y; 
and $ ds is the boundary integral. 

Table 15.2: FEM discretization of Wave equation (15.78). 

Definitions 
{ulk: Vector of unknowns at time k (State variables in forward model) 
{GIk: IC7s; assumed known with certainty 
{ d )  : Observations of u in time window [k - 1, k] 

k 
{dlk: Model-data misfits in time window [k - 1, k] 
[Tk], [Uk]: sampling matrices; these interpolate the model output {u) to the space-time 
observation points 
{p}: the vector of control variables (Dirichlet BC's). 
[Ek]: projects {p) onto the simulation as Dirichlet BC's at time k 
{bIk: Vector of known forcing at time k 

The matrices for a typical FEM treatment of 15.78 are given in Table 15.2. Note that the BC 
control vector {p) is not time-indexed here. In this formulation {p) contains the temporal as well 
as spatial degrees of freedom in the BC's; and [Cov(p)] is assumed to account for that. The selection 
of BC info in time as well as space is handled by [Ek]. 

Optimal Fit: GLS Objective and First-Order Conditions 

We seek the least squares fit: 
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Introduce the Lagrange Multipliers {i), and {A), and minimize the functional R: 

The gradient of R with respect to the Lagrange Multipliers recovers the forward model. The 
other gradient terms are: 

Setting the first two of these conditions to zero, and eliminating {i), gives the Adjoint Model 
for k = [I, N]: 

lMIT {A)k - ['lT jA)k+l - I B I ~  {A)k+2 = LTklT [W61 I6 )k  

+ [ u k + d T  [W61 i6)k+i (15.83) 

with Terminal Conditions for k > N 

{6),7 {A), = 0 (15.84) 

It is interesting to note that the adjoint model is forced by the model-data misfit. No misfit, then 
the adjoint solution is the null one. Also, due to the homogeneous terminal conditions, the adjoint 
variables will be zero for all time following the last observation. For a Hyperbolic problem, forcing 
information propagates forward in time; in its adjoint, misfit information propagates backward in 
time. 

The last gradient condition (equation 15.82) is enforced in different ways, depending on the 
method of solution. For iterative gradient descent algorithms, it gives the direction of steepest 
descent, and is set to zero by iteration. In that case it directs the recipe for improvement in the 
estimate for {p). For direct solution by the method of representers, equation 15.82 is set to zero 
directly in order to compute {p). Both methods are described below. 
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Gradient Descent Algorithms 

We search for the minimum R in the parameter space p. From any given point { P ) ~ ,  there are 2 
decisions: which direction to move in (the vector {dp)) and how far to go in that direction (a, the 
scalar step size) before changing direction. With superscript 1 indicating iteration number, we have 

The direction of most rapid decrease in R is given by its negative gradient - {g} - - {g}. 
The steepest descent algorithm selects this direction: 

and therefore 
{pY+l = {pli - a (9) 

with still-arbitrary a > 0. This or any other selection of {dp) will produce new misfits4 

with (6)) the current misfit, at time level k, following iteration 1; and the change in the 
misfit achieved with a = 1. In turn the objective function will become 

The optimal a is obtained by simple minimization: 

Substitution of this value of a gives the change in the objective function: 

which is obviously an improvement in R. Equivalently, 

The steepest descent algorithm is summarized as follows: 
Given ip)', {(s), and the gradient { g ), compute the direction of descent {dp) 

4 ~ h e  nomenclature here can confuse; (6); indicates a misfit at time k, as estimated during iteration 1. During 
each iteration, all time levels k are recomputed. 



15.2. HYPERBOLIC MODEL: TELEGRAPH EQUATION 

A single forward-model calculation with a = 1 is sufficient to calculate {aS}, 
Compute the optimal value of a 
By superposition, update the new estimates {p}z+l and {6}:+' 

This completes the new, improved forward solution. It is followed by an adjoint solution forced by 
the new values of {S}, , resulting in a new gradient {g  }, and the cycle continued to convergence. 
A suitable convergence rule is the achievement of vanishingly small values of the gradient, thereby 
satisfying the final first-order condition for an optimal solution. Note that only a single forward 
and adjoint solution is required per iteration. 

Conjugate Gradient Descent 

An alternative iterative strategy employs the same general machinery as the Steepest Descent 
method, except that the direction in each iteration is selected differently. We identify a sequence 

1 - a0 1 
of gradients {g} = {%} and directions {h}', with I indicating iteration n ~ m b e r . ~  The gradients 
are computed from the first-order condition as above. The direction is computed as a blend of the 
current gradient and the previous direction: 

{ap} is then computed as an increment of arbitrary length in this direction, 

The iteration is otherwise the same as steepest descent, in particular the procedure for computing 
the optimal step size a once the direction is known. The method reduces to the steepest descent 
method if y is arbitrarily set to zero. Initially, {h)' = - {g}O is sufficient to get things started. 

Lynch and Hannah [68] solved a generalized hyperbolic system of this form, using the adjoint 
approach with Conjugate Gradient descent, in order to fit an ocean circulation model to velocity 
data. 

Solution by Representers 

This is a direct (non-iterative) solution strategy. The idea is to compute impulse responses of the 
adjointlforward system, each forced by a unit misfit at a single measurement point in space-time. 
With m observations, there will be m impulse responses. The solution is then synthesized as a 
linear combination of these "representer" solutions. Each representer is computed non-iteratively 
as follows: 

Beginning with a single unit misfit, compute the adjoint solution {A)  
-- 

5 ~ h e  notation here is taken from Press et al. [99], Chapter 10.6, with the sign of g reversed. 



320 CHAPTER 15. DYNAMIC INVERSION 

Compute the boundary conditions {p) from the gradient condition (equation 15.82) {g }  = 

o : ~  
N 

Since [Wp] = [COV (p)] -I, then this calculation is conveniently restated: 

and the inversion of the Covariance matrix is not needed. 

Compute a forward solution forced by {p) and sample and record the model response {u) at 
all the space-time observation points (equation 15.79). Call this vector of sampled {u), the 
representer {rIj; it is the forward model response, sampled at all the data points, to a unit 
misfit at data point j. 

Assemble the misfit relation by superposition of the representers: 

and finally, 
[I + R] (6) = (2) 

with [R] the representer matrix, with columns {rIj 

This equation may be solved directly and finally for the misfits (6). Once these are computed, 
a single adjointlforward run completes the calculation. With m observations, there are m ad- 
jointlforward solutions required to form the representer matrix [R]; an inversion of the m x m 
system for (6); and a final adjoint/forward solution. The total number of equivalent forward 
model solutions is therefore 2m + 2. If m is small compared to n (the state space of the system) 
then this is very attractive. (Recall that Conjugate Gradient Descent scales with n.) 

Notes: 

Here the vectors (6) and {J} are the concatenation of their counterparts in specific time 

windows {dlk and {a}* . 
Each column of [R] is a single representer, projecting the influence of a single unit misfit onto 
the forward model solution at the observation points. 

The representers are independent of the data themselves; they depend only on their space- 
time locations. In cases where the observational program is known ahead of time, they may 
be pre-computed. In addition they contain information essential to the evaluation of an 
experimental design. 

There is an obvious computational advantage if m is small; and conversely, a computational 
penalty for redundant sampling. 

' ~ o t e  that this condition is enforced directly here; in the gradient descent algorithms it is satisfied only after the 
iterations have converged. 
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15.3 Regularization 

Almost any inverse PDE problem rapidly grows in the number of unknowns, if for no other rea- 
son than the process of increasing resolution. One result is that the number of unknowns being 
estimated is likely always to overwhelm the number of data available. So, relative to model data 
misfit, we can expect to have many nearly equivalent inverse solutions. Regularization is the general 
term for injecting additional considerations to discriminate among them. In effect, we either penal- 
ize unlikely candidates in the GLS sense, based on their statistical improbability; or we eliminate 
them entirely, a priori, by restricting the form of solutions considered. Generally, a blend of these 
strategies is used, serially. 

Reduction of the DoF's 

The first step is to avoid creating a flood of inverse Degrees of Freedom (DoF's) in the first place. 
Remember that it is always necessary to obtain prior estimates of the mean and covariance among 
all the DoF's; and that more does not always lead to a better solution, but it does necessarily lead 
to more work and slower estimation. It is far less work to solve a problem with a few DoF's, than 
to solve it with many more which are strongly correlated. The solutions should be materially the 
same, but the work of getting there is not. 

Here one needs to be creative, using physical insight into the system being modeled. Some 
strategies for reducing the number of DoF's: 

Reduce the spatial basis of the forcing. For FEM fields, this amounts to using simpler bases 
for the forcing than for the dependent variable; generally, using appropriate resolution for 
each field, by tayloring the FEM basis to it. 

Express the forcing in non-FEM bases: e.g. , the first few terms of a spatial Fourier Series 
for boundary conditions [75]; or the first few EOF's of observed variability. 

Use coarse temporal resolution (large At) for timeseries of forcing which are known to vary 
more slowly than the system response might allow [68]. Effectively this creates temporal 
smoothing a priori. 

Use a time-harmonic representation for variables which are known to be periodic, or when 
the periodic steady-state is of interest. This greatly reduces the number of degrees of freedom 
from of order 20 (enough to discretize a sine wave) to 2 (amplitude and phase) assuming the 
frequency is known [75]. 

Use the convolution of a measured surrogate timeseries, with lags of undetermined size, to 
represent an unknown timeseries which is known to be correlated. The sizes of the lag 
coefficients become the unknowns. This was used in [74, 601; observed wind timeseries at lags 
of 0, 3, and 6 hours were a useful surrogate for oceanic pressure boundary conditions. The 
result was the reduction of temporal degrees of freedom to about 6% of baseline; more rapid 
convergence of a Conjugate Gradient iteration; and run-time reduction by a factor of 5-10. 

The inversion DoF's need not be limited to single fields, nor is space-time separation necessary. 
There is general idea of specifying Features - dynamical space-time, multi-field entities which 
approximate modes of the solution. EOF7s (Empirical Orthogonal Functions) are Features 
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obtained via statistical analysis. Features may also be identified and specified by less formal 
means, and may in fact represent solutions to simplified forms of the governing equations 
[34, 561. 

Naturally, all of these strategies require considerable physical insight about the solution and dy- 
namics under investigation. There is no substitute for this; the alternative is brute force which will 
almost always produce slow and costly results of limited value. 

The Weight Matrix 

Once the inversion DoF's are specified, the mathematics takes over through the GLS regularization 
(weight) matrices [W]. Since [W,] = [~ov(x)]- l ,  we need to either express the covariance among 
the DoF's, or construct [W] directly on heuristic or "acceptability" arguments. The specification 
of these matrices is substantive and challenging. 

The derivation of covariance among variables is beyond our scope. If the data are available to 
support that, it is surely desirable. If data are available from a suitable simulation, that may suffice 
as well. In practice it is common to assume (or derive) a closed-form model of variability based on 
pseudo-distance among points in the same scalar or vector field, as for example described previously 
in the section on "noise models" (section 13.1). Normally, analytic distance-based covariance models 
lead to completely full covariance matrices; these may be truncated by setting tiny covariances 
among distant points to zero; however the matrix [W] = [~ov(x)]- '  will still be completely full. 

Absent these approaches, one normally resorts to heuristic arguments about expected size, 
shape, and/or smoothness as qualities of acceptable fields. These arguments are quite common, 
hence the meaningful labels "weight matrices", "weighted least squares7', etc. For example, a 
baseline practice is to simply weight the size of the variance of a variable [XI by its expected 
variance a2: 

1 
[wxl= b l [ l l  (15.100) 

This is equivalent to the assumption of uniform, independent (uncorrelated) variation among the 
xi, each with variance u2: 

[Cov(x)] = [w,] -I = u2 [ I ] (15.101) 

This discriminates against large x but expresses no concern for smoothness, perhaps in the case 
where the selection of the DoF's has taken care of that. At least, this specification takes care of 
units! Further decoration of this idea is common and becomes increasingly problem-specific. 

It is easy to automate this practice with standard FEM apparatus, as described below 

Heuristic Specification of [W] using FEM 

Suppose a field f to be estimated is expressed in a basis &(x, y): 
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We might be concerned with its mean size and/or slope: 

where A is the domain area, A = J J dx dy = (1). So we could construct a heuristic weighting 
matrix comprising a weighted blend of mean size and slope: 

and the quadratic form would have weight matrix 

[Wjl = [w0(4i4j) + wl(V4iV4j)l 

Similarly for a boundary field g(s) = C g&(s), the weight matrix 

would penalize mean size and smoothness of g(s) on the boundary. These matrices are easily 
assembled using standard FEM technology. In [68] this type of regularization is used to estimate 
oceanic boundary conditions. 

15.4 Example: Nonlinear Inversion 

Here we illustrate by example the construction of a nonlinear inverse from linearized inverses, 
iteratively. In the literature this is referred to variously as the "Incremental" or the "Tangent 
Linear" approach, the latter usually referring specifically to the use of linearized adjoint models. 
We proceed intuitively. The works involved include [70, 75, 68, 74, 89, 61, 591. 

The physical context is hindcasting oceanic motion, specifically the motion occurring over the 
continental shelf. There exists a canonical set of 3-D nonlinear dynamical equations (mixed, hy- 
perbolic and parabolic; a specialization of the general Navier-Stokes and advective-diffusion equa- 
tions) and several well-known approaches to their discrete forward solution. That used here is the 
"Quoddy" model, [70]. It requires IC's and BC's which are imperfectly known. Therefore the 
problem posed is to deduce these, and the resultant motion, from measurements. In our case, the 
measurements include fluid velocity and density inside an artificially bounded domain; the bound- 
aries are mainly ones of convenience but not natural in the mathematical sense. So estimation of 
BC's and IC's is a prime issue. By comparison with these, local meteorological forcing (local wind 
and heat flux) are reasonably well-known from direct observation. 

The principal motions can be separated scales of time variability and motion, corresponding to 
primary physical forcing: 
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tide: V - 1 m/s, 7 - 3 hours 
wind: V .10 - .50 m/s, r N 1 - 5 days 
baroclinicity: V N .10 - .20 m/s, r - 10 - 30 days 

Isolation of the tidal motion is further simplified by the fact that the motions are periodic with 
known frequencies, with persistent amplitudes and phases which vary spatially and possibly on long 
(baroclinic) timescales. 

A principal nonlinearity in the forward (Quoddy) model is the turbulence and stratification. 
Both affect the effective eddy viscosity in the vertical, which affects all motions; and in addition 
the stratification creates internally-driven baroclinic motions in itself. Therefore, the linearized 
inverses are based on mean values of these features, estimated from the latest run of Quoddy. 

Figure 15.1 is a schematic of such an inverse, from [68]. It is designed to estimate BC's in the 
wind band; Saco is a linearized forward model (linearized Quoddy); Moody is an exact adjoint 
of Saco. Both require the linearized representation of stratification and turbulence as indicated. 
Gradient Descent iteration is used to solve these models. Basic input is interior velocity data 
which are otherwise unexplained; output is a set of BC's which minimize (in GLS sense) the Saco 
misfit with same. The union of Saco and Moody constitutes the linearized inverse Casco for the 
wind-band motions. Essentially, Casco operates in the time domain; it seeks wind-band motions by 
restricting the BC variability to a) appropriately long time steps; b) a convolution of the observed 
local wind timeseries with proper smoothing; and/or c) by heuristic regularization, penalizing the 

aBC square of r. 
The Casco model may be nested in a larger iteration in order to deal with the actual nonlinear- 

ities in the forward model. This is illustrated in Figure 15.2. The premise of this arrangement is 
that the linearization of the turbulence-dependent terms is valid and captures the dominant nonlin- 
earities. There are other nonlinearities, of course; the hypothesis here is based on physical intuition, 
that the dominant nonlinearity affecting the wind-band motions can be captured'in this iteration. 
The question of valid linearization remains theoretically open in this and any other application. 

Figure 15.3 is a condensation of Figure 15.2. Added is a second linearized inverse, Truxton 
[75], arranged in series with Casco in each overall iteration. Truxton inverts the Quoddy misfits 
first, seeking fast tide-band signals at pre-determined temporal frequencies. It is a direct GLS 
inversion, with degrees of freedom corresponding to harmonic amplitudes and phases for the various 
tidal frequencies. Because of this, the linearized forward model involved is an elliptic (Helmholtz) 
equation which permits direct solution easily. Regularization is achieved by restricting the spatial 
bases a priori, or by GLS weighting which discriminates against size and slope of the BC's. This 
arrangement was used in the studies [89, 741. 

The serial arrangement of Casco and Truxton can be described as "detiding" followed by 
"dewinding" of the same misfit signal. The two models are sensitive to separate time-variabilities, 
and experience proves them to be effectively orthogonal to each other. Specifically, the Casco in- 
version produces essentially the same result whether or not it is preceded by Truxton. By design, 
the two inverse solution spaces are practically independent. 

In the present hierarchy, Baroclinic variability is the slowest; it is expressed most clearly in the 
density data. The studies cited here are focused on a temporal window of 5-10 days. Accordingly, 
these data are "assimilated" as Initial Conditions only. Figure 15.4 illustrates this, using an Objec- 
tive Analysis or Statistical Interpolation procedure (see Chapter 18). Longer Quoddy simulations 
would need to compute misfits with these data at later times, and properly invert them. 



15.4. EXAMPLE: NONLINEAR INVERSION 

Basis for BC's 
Cov (BC's. Misfits) 

Convergence Criterion 

\ 

Figure 15.1: Iteration to solve Forward (Saco) and Adjoint 
(Moody) models. via gradient descent. Control variables are 
limited to the barotropic boundary conditions. The large 
square box encloses the linear inverse model Casco. As in 
I681 

ABC 9 Sam(FonvardModel) 0 OuQut Misfit 
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Q9Q 9 on Data 
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Boundary 
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Cov (BC's, Misfits) 
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Figure 15.2: Grand iteration to solve nonlinear Forward 
(Quoddy) and linearized Inverse (Casco) models. Saco is 
a linearized version of Quoddy; Moody is its exact adjoint. 
Casco is the gradient descent solution of Saco/Moody, en- 
closed in the rectangular box as in 15.1. The turbulence 
estimate is updated in each iteration from the latest Quodd d run. Control variables are limited to the barotropic boun - 
ary conditions, reflecting prior physical reasoning about the 
principal unknowns affecting wind-band motions. 
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Stratification I V I  

Expected BC's 
Expected Misfit 

Figure 15.3: Flowchart of iterative nonlinear inversion 
and sequential arrangement of the nonlinear forward model 
(Quoddy) and the two linearized inverses, Truxton and 
Casco. As in [74] 
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Figure 15.4: Assimilation of density data by OA (the Oafe 
module) to IC's. Casco, Truxton, Quoddy, Oafe in a big 
network. 



Chapter 16 

Time Convent ions for Real-Time 
Assimilat ion 

16.1 Time 

To begin with, we distinguish two relevant "times". The first is the Time of Occurrence of a 
natural event. The second is the Time of Availability i.e. the time at which an observation of that 
event is recorded, processed, and resident in a secure data server with instant access. Availability 
here means available to a data assimilative modeling system, on demand. Figure 16.1 shows these 
graphically. All data and data products are located on this plot by their times of occurrence and 
availability. 

Time of Occurrence 4 

Time of Availability 

Figure 16.1: Timing diagram relating the time at which an 
event occurs in nature, versus the time at which information 
about that occurrence is available. 

16.2 Observational Data 

By necessity, all observational data lie on or below the 45" line. Instantaneously available obser- 
vations would lie on the line; practical observations of necessity involve a nonzero Observational 
Delay. Contributors to this delay include instrument response time and, more importantly, aver- 
aging intervals. 

Figure 16.2 plots a simple timeseries where each individual datum is available serially, as soon 
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as it is observed. Figure 16.3 shows a batch process wherein data is published less frequently than 
it is observed. This introduces an additional Publication Delay related to the batch size. 

The process of becoming available thus involves time delays for observation and publication. 
The distinction is only meaningful when significant publication delays are necessitated by a slow 
network connecting measurement sources with the assimilative modeling system. For example, a 
mooring which computes an hourly average and transmits data once a day would have a 0.5 hour 
observational delay and a 24 hour publication delay. 

Time of Occurrence It\ 

I / Observational Delay 

Time of Availability 

Figure 16.2: Timeseries published one point at a time. 

Time of OccurrenceIt\ 

/ 
Observat~onal Time of Availability - 

Delay 

Figure 16.3: Timeseries published in batch mode; a publica- 
tion delay is introduced. 

16.3 Simulation Data Products 

Outputs of simulation models constitute a second type of data product. These data are synthetic, 
constituting an alternative estimate of the state of the ocean. The same time conventions are 
relevant. In this case the 45" line divides Forecast from Hindcast as illustrated in Figure 16.4. 

Figure 16.5 shows a single assimilative simulation. This simulation is launched at the Bell Time 
tb, and is complete and published after an Assimilation Delay. The hindcast period terminates at 
t = tb. The forecast period is from there onward. The assimilation delay has two consequences: 

a) Data which occur during the assimilation delay are not assimilated. This includes the very 
latest observations as well as older observations which were delayed in publication. 
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Time of Occurrence rt\ 

Time of Availability 

Figure 16.4: Simulation data products address both historical 
(hindcast) and future (forecast) events. 

b) At the time of its publication, the forecast is already old, and 'forecast' extends backwards 
on the occurrence (vertical) axis to tb. 

A variant is presented in Figure 16.6 wherein simulation results are published incrementally 
during a simulation, rather than in a single batch at the end of a simulation. This decreases the 
assimilation delay for the early results. Also, data availability for the later results is increased, 
since in this "just-in-time" model we use data which occurs after the bell. 

Time Occurrenc 

Forecast Period 

Data Available 
for Assimilation 

Hindcast Period 

H-u I ~ i m e  of Availability 
Bell Assimilation Delay 

Figure 16.5: Operational timing. A hindcast/forecast prod- 
uct is initiated at the bell time and published following an 
assimilation delay. 

16.4 Sequential Simulation 

Figure 16.7 illustrates a sequence of two data-assimilative simulations, separated by a Bell Interval. 
The first simulation constitutes the Best Prior Estimate, or BPE, for initializing and forcing the 
second. The second simulation is fitted to the most recent data. The memory of the earlier data 
is entrusted to the BPE. Note that some late-availability data goes unused; and depending on 
the details of the data assimilation method, a nonzero Initialization Period may be required in 
the second simulation. This Figure applies directly to the more general case of a sequence of 
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Time Occurrenc 1 
I mta Available 

for Assimilaticn 

Occurrence 
Forecast 

mta Available 

Availability 

Assimilaticm Delay 

Figure 16.6: Just-in-time version of Figure 16.5. Calculations 
are published sequentially during the simulation. 

data-assimilative simulations, at regular bell intervals. 

16.5 What Time Is It? 

Geophysical-scale phenomena place serious demands on the space-time location of things. Both 
observations and model calculations have to be put into a consistent coordinate system for any 
comparison to be meaningful. Fortunately we are in the realm of classical phenomena, where time 
and space are well-defined on planetary scales. Appeal to those standards is very important. 

In particular, the issue of precise time-registration of both observational and computational 
data products is critical. As soon as more than one source of information is presented, the issue of 
time-stamping becomes critical. Appeal to Greenwich time, with the Gregorian standard for t = 0, 
is routine and recommended. Care has to be taken to avoid the buildup of round-off by keeping 
integer and real parts of "time", and there are a series of bookkeeping considerations stemming 
from that. Related is the variable length of individual months and years. In the Appendix we 
present one example of a little library and convention set which deals with this. 

Another issue in timing relates to periodic phenomena - tides - which are routinely reported 
in terms of amplitude and phase. Because accumulation of time errors due to finite frequency can 
be serious, it is crucial to invoke standards for tidal timing - notably the conventions for phase, 
frequency, and start time. The Appendix contains one instance of standards and software for this 
second critical aspect of timing, affecting both observational and simulation data products. 

16.6 Example: R-T Operations, Cruise EL 9904 

In April 1999 the first operational forecast system for Georges Bank was deployed at sea, aboard 
R/V Edwin Link. Georges Bank is a topographic feature with length scale 200 km, on the US- 
Canadian border at the edge of the continental shelf. The system involved an atmospheric forecast 
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Time of Occurrenc 

I 

Data Assimilated Bell Interval 
into BPE 

Figure 16.7: A sequence of hindcastlforecast simulations. 

and two marine forecasts, and was operated once a day. The atmospheric forecast was taken 
from modeled winds, as web-published by the National Center for Environmental Prediction. This 
product included a three-day forecast period subject to a 4-hour assimilation delay, preceded by a 
data-assimilative hindcast. This was used to drive a far-field oceanic hindcast/forecast, consisting 
of a barotropic wind+tide calculation on a wide-area finite element mesh covering roughly half 
of the Atlantic basin. The purpose of this was to provide the wind-band pressure forcing in the 
vicinity of Georges Bank (GB). This product was then used to force the boundary conditions on the 
Georges Bank near-field calculation, using a limited-area, high-resolution mesh. Additional forcing 
to this final calculation included observed/forecast local wind and heat flux plus tides. The near 
field calculation was initialized with observed hydrography and assimilated velocity observations 
from drifters on the bank. 

The timeline achieved in this initial operation is illustrated in figure 16.8. Delays associated 
with assimilation and publication of the various products are indicated. Overall the delay from 
atmospheric bell to GB forecast was 25 hours, partitioned as follows: 

Assimilation: 9.5 hours 
Elective Assimilative Delay: 6 hours 
Publication: 9.5 hours 

The assimilation delay is largely the sum of the three computational times. In the short run this 
may be presumed to be at an irreducible minimum. The publication delay represents several com- 
plications related to the network and the distribution of effort. The far-field oceanic calculation 
was performed at a shore station; the GB calculation was performed at sea. Shore-to-ship commu- 
nications and the initial procedure for procuring the atmospheric data products imposed important 
limitations and contributed most of the publication delay. The Elective Assimilative delay occurred 
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between receipt of the oceanic forecast on ship, and the GB bell. It represents burn-in of the as- 
similation procedure, tuning of archival strategies, manual examination of incoming data streams, 
and various scientific investigations. Much of this elective delay can be eliminated with further 
automation of the data feeds and experience. This results in a minimum overall delay of 9.5 hours 
from atmospheric bell to GB forecast publication. It is interesting that if the oceanic forecast were 
not needed, the delay between shipboard observations and forecast could be reduced to 3.5 hours. 

More details of this and subsequent real-time exercises are described in [59]. 

GMT 0000 0230 0400 1000 1 30 1600 
0600 1 1200 %:: :/ Time of EDT 2000 2230 2400 Availability 

Oceanic 0 eanic Oceanic Forecast GB Bell B 
Bell Fo =cast Transmitted 

f 
Fo cast 

to Ship 

Atmospheric (Atmospheric Forecast 
Hindcast Transmitted to UNC) 1 day 

4 5 5 days 

A: Assimilative Delay = 9.5 hn  
A€: Elective Assimilative Delay = 6 h n  
P: Publication Delay = 9.5 h n  

Figure 16.8: Timeline for cruise EL9904, the first Georges 
Bank at-sea assimilation exercise in real time. From [59] 



Chapter 17 

Skill Assessment for Data 
Assimilat ive Models 

In this chapter we describe vocabulary for assessment of skill, as used generally in [68, 74, 891. 
Then we present an example drawn from [68]. 

17.1 Vocabulary 

Forward and Inverse Models 

Forward Model: simulates nature with a fixed set of discretized differential equations. Any model 
has a set of necessary and sufficient inputs which are required to produce a simulation: 
parameters, initial conditions, boundary conditions, and forcing functions e.g. atmospheric 
and river forcing. These are referred to as Essential Data. 

Inverse Model: a procedure for estimating missing or imprecise essential data by fitting a forward 
model to observations of other, non-essential data. There are multiple levels: 

Parameter Estimation 
Initial Condition Estimation 
Boundary Condition Estimation 
Forcing Function Estimation 

The quantities being estimated are called the Control Variables. These comprise a subset of 
the Essential Data. 

Model Identification deals with selecting among various candidate forward models which have dif- 
ferent mathematical structure, typically by comparing model performance with observations. 
The formal version of this utilizes inversion. 

Truth, Data, Prediction 

Truth is that which we measure and simulate. In nature, Truth can only be estimated. But its 
existence and uniqueness is not questioned here. 

Estimate: an approximation to Truth. Estimates can be based on observations, simulations, or 
simply prior opinion; or a composite of these. 
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Data = Truth + Observational Error, at given space-time observation points. Only a statistical 
description of Observational Error is meaningful. Data are either active or passive in terms 
of their role in inversion. 

Active Data are used in inversion, i.e. the model is required to fit these data. 

Passive Data are not used in inversion; they are available only post-inversion. Since the model is 
not required to fit these data, they provide an approximate measure of prediction error. 

Data Product: published information formed from observation, simulation, or other method. 

Prediction is a Model-based estimate of truth. It is defined and known perfectly everywhere. 

Prior: without the benefit of data 
Posterior: with the benefit of data 

Note that "prediction" does not imply "future" here. It is meaningful to predict past events. 

Notice that in the special case of an Observational System Simulation Experiment (OSSE, see 
example below), the only Truth is a virtual truth, i.e. a model-generated product. This is known 
without error or uncertainty, everywhere. Data in this case is synthetic; a Truth sample plus a 
fabricated measurement error. Prediction Error for OSSE's is known perfectly because Truth is 
known. 

Skill 

Prediction Error = Truth - Prediction, defined everywhere. In nature it is unknowable; it must 
be estimated as it refers to Truth. 

Skill is good if Prediction = Truth i.e. Prediction Error = 0, statistically. The scale of this zero 
is set by a) the observational error, and b) the model's fidelity to Truth processes. Four Skill 
distinctions are useful: 

Interpolation: Prediction among the data, spatially 
Extrapolation: Prediction beyond the data, spatially 
Hindcast: Prediction within the time window of the data 
Forecast: Prediction beyond the time window of the data 

Misfit = Data - Prediction. Misfit is defined only at the observation points; it is the sum of 
Observational and Prediction Errors. 

Fit is good if Misfit = 0 statistically; if models were perfect, Misfit = Observational Error. 

Overfitting drives the Misfit below the Observational Error, fitting noise at the expense of Skill. 

Skill can be further decomposed. Let the observations d be expressed as the sum of Truth 2 plus 
a random component d^ representing observational error. 
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- A 

d is the ensemble mean over many measurements; d has zero mean. Linear inverse models produce 
a prediction P which is linear in the data: 

P = [LI d = [LIZ+ [LI 2 (17.2) 

Any prediction will be the superposition of the inverse truth P = [L] d and one realization of the 
inverse noise p = [L] d7 The Prediction Error Ep would then be 

and in the ensemble mean, - 
E~ = (T - P )  

Agreement between P and Truth is a measure of accuracy. Inaccuracy amounts to a bias in the 
inversion - a mean preference for something other than Truth. The inverse noise p is a measure of 
the precision of the prediction in the face of observational error. An ensemble of possible exists; 
only the statistics of this ensemble are meaningful. Although these definitions are strictly valid for 
linear Predictions, we incorporate them into our vocabulary: 

Accuracy concerns the agreement between the ensemble mean Prediction and Truth. (The en- 
semble here is all the possible realizations of the Observational Error, for a given Prediction 
procedure.) Inaccuracy or Bias is quantified by the ensemble mean Prediction Error Ep. 

Precision concerns the variance of the Prediction as caused by the ensemble of Observational 
Errors. This is the inverse noise F .  

17.2 0 bservational System Simulation Experiments: Example 

Lynch and Hannah [68] studied inversion of 2-D hydrodynamical data to obtain circulation estimates 
in an idealized, rectangular segment of the coastal ocean (figure 17.1). Truth (figure 17.2) was 
a simulation; this allowed perfect knowledge of the truth everywhere. Data were obtained by 
sampling the truth at six locations, without error. Subsequently the data were contaminated by 
adding different types of error and the effect of the error on the inversion studied. This constitutes 
an Observational System Simulation Experiment (OSSE) - truth and data are simulated with 
complete experimental control. Further, the inverse model was identical to that which generated 
the truth. So, a perfect inverse is possible, i.e. one which exactly reproduces the truth everywhere, 
not just the data. OSSE's with this characteristic are referred to as "Twin Experiments7'. Control 
variables were pressure BC's; data were velocity observations. Model physics represented linear, 
hyperbolic oceanic fluid mechanics. The experiment focused on the steady-state model response 
following a brief startup transient. The inverse method was adjoint-based with gradient descent. 
Regularization terms involved the size and smoothness of the boundary conditions. A Monte Carlo 
approach was used, with data errors simulated via an ensemble of data noise vectors. 

The "Inverse Truth" is illustrated below (figures 17.3). This is the inverse solution forced by 
perfect data. It demonstrates interpolative skill, but limited extrapolation skill. Figure 17.4 is 
a map of error or bias - the discrepancy between Inverse Truth and the real Truth. The bias is 
negligible in the interpolation zone among the data locations; it grows as one extrapolates away from 
the data, as the regularization terms become dominant. Especially important in this case is the fact 
that boundary controls along the bottom boundary cause only very small motions at the observation 
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points; hence the regularization controls their estimation. In this OSSE the regularization favors no 
pressure variation there, hence flow parallel to that boundary. This phenomena is a manifestation 
of the physics of the system. 

The inverse noise map for this inversion is illustrated in Figure 17.5. This was obtained by 
inverting an ensemble of data vectors containing statistical noise only (zero mean); and then com- 
piling a map of RMS speed across the ensemble. As can be seen, an ensemble size of about 50 
was sufficient. Any real inversion of this linear system will produce the superposition of the inverse 
truth (with its bias) and one realization of the inverse noise. 

Figure 17.1: Test case geometry. Left: FE mesh. Right: 
bathymetry (dash contours) and data locations (dots). From 
[681. 
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Figure 17.2: Steady-state Truth. From [68]. 
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Figure 17.3: Inverse Truth. This results from inverting per- 
fect data, i.e. truth sampled with no observational error. 
From [68]. 
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Delta Velocity Delta Velocity (cnVs) 

m 

Figure 17.4: Inverse Error: the difference between the in- 
verse solution (figure 17.3) and truth (figure 17.2). This is 
a map of inaccuracy or bias. The bias is introduced by the 
regularization which prefers small, smooth solutions; it con- 
trols the inversion where the influence of the data is weak. 
From [68]. 

Number of Reallzamns 

Figure 17.5: Inverse noise, i.e. inverse model res onse to 
data noise only. Left: map of ensemble RMS speed: Right: 
RMS (top) and mean (bottom) speeds at selected nodes, 
versus ensemble size. From [68]. 



Chapter 18 

St at ist ical Interpolation 

In this chapter we address the interpolation of data. It is assumed that the data are imperfect and 
that therefore a good interpolant should be immune to the peculiarities of the data error. Also, it is 
assumed that the data are sparse and leave a lot unmeasured. So we have to assume the availability 
of a statistical model of the data errors; and combine that with a statistical model of the variability 
of the field being estimated; and make a good balance of these in an average sense. The field of 
Statistical Interpolation addresses this topic in general; it is highly developed. (See e.g. Liebelt [57], 
Cressie [27], Journel and Huijbregts [50], Daley, [28], Bras and Rodriguez-Iturbe [18], Christakos 
[24].) Our objective here is to introduce basic notions, and then to develop a credible argument 
for the classic Gauss-Markov theorem. This theorem is the cornerstone of the ideas presented here. 
Approaches based on this theorem are variously known as Objective Analysis (OA) and Optimal 
Interpolation (01) in some communities; and as Kriging and its variants in others. All rely on a 
statistical description of the quantities being interpolated, estimated, predicted, or mapped. For 
present purposes these words all mean the same practical thing. 

We illustrate the use of stochastic differential equation (SDE) solutions in developing the nec- 
essary knowledge of the field covariance. The relation to GLS minimization of model-data misfit is 
developed. 

Overall, an effective FEM strategy for Statistical Interpolation is demonstrated. 

18.1 Introduction: Point Estimation 

To fix ideas, imagine that we have a scalar physical variable being measured simultaneously by two 
instruments. Both instruments introduce measurement error. The two measurement errors have 
distinct statistical descriptions. The relations among data d, truth p, and measurement error e are 

dl = ~ + E I  (18.1) 

d2 = p + €2 (18.2) 

and we want an estimate of p. Call this estimate u, and assume that u is to be a linear combination 
of the data: 

u = bldl + b2d2 (18.3) 

This is a linear estimator. The estimation error E, is the difference between u and truth p: 

E, u - p = (bl + b2 - 1)p + blel + b2e2 (18.4) 
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Now we invent an ensemble of such data, all statistically the same. (The measurement errors are 
all from the same distribution). The mean of all such estimates is 

with the overbar indicating the ensemble average. Some elementary points: 

We are allowing natural variability, hence p is the mean state of nature. 
We will assume that the measurement errors ~i have zero mean, Zi = 0. If not, we are assuming 
that the data and errors are mathematically demeaned prior to this analysis. 
The unbiased case requires the constraint bl + b2 = 1. Otherwise the average estimate is not 
equal to the average truth. 

The variance of the estimation error, in the unbiased case, is the expected or mean squared 
departure from truth: 

(u - p)2 = b : z  + b z q  + 2 b l b 2 m  (18.6) 

Suppose we minimize the variance subject to the constraint bl + b2 = 1 

M i n  { Z  = b:? + b i z  + 2 b l b 2 m  + A (bl + b2 - 1)) (18.7) 

The first-order conditions for a minimum are: 

The solution is 
@ - - ) d l +  ( 2 - - I d 2  

u = - - (18.11) 
E? + E; - 2 q z 5  

This is the Best Linear Unbiased Estimator (BLUE) in this context. The simplest case is that 
of uncorrelated measurement errors, E1E2 = 0. The BLUE is intuitively sensible here, with higher 
weight going to the datum with the smaller error. 

If we abandon the requirement of no bias, we have 

where ,B = bl + b2 - 1. Notice the cross-correlation terms among errors, m and between error 
and truth, m. We will ignore the latter assuming = 0. This is common practice. However, 
this asserts, among other things, that large signals p are not accompanied by large errors, etc. An 
error model of the form E = ap ,  i.e. the error is proportional to the truth, i.e. truth = data h a 
fixed percentage, is ruled out. Beware of glossing over these little details at the outset. 

The first-order conditions in this case are 
- 

( 2 + ? ) b l + ( ~ 1 ~ 2 + p ) b 2  = p2 
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and the solution is 

Note the simplest case m = 0. By comparison with equation 18.11 it is clear that this estimator 
has a bias toward underprediction. So here, if we allow a biased estimator, we can expect a smaller 
mean squared error than the BLUE. 

18.2 Interpolation and the Gauss-Markov Theorem 

Next, add spatial variations to the truth, p = p(x, y); and assume that the two measurements dl 
and d2 are at different points (x, y)l and (x, Y ) ~ :  

The field estimate wanted is in general at a third spatial point (x, Y ) ~ :  

The variance of the Estimation Error e ,  = u - ,u is 

The First Order Conditions, with no constraints on bk,i concerning the estimation bias, are: 

and the solution is 

This gives the vector of estimator coefficients for a single estimation point lc, based on observations 
at the two data points 1 and 2. If we add a third datum, the system of first-order conditions extends 

-- { st;, } = 
dld2 dl d3 -- dl ~k 

d2d2 d2d3 ]-I { } - -  (18.27) 
d3d2 d3d3 d 3 ~ k  

and so on for an arbitrary collection of data: 
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The vector { b I k  contains the interpolation weights to be assigned to the various data, for estimating 

This easily generalizes to several estimation points, k = 1, K ;  in that case we have a matrix of 
coefficients [B], whose rows are the vectors { b I k :  

such that the estimator is 

( 4  = [Bl I d )  

Here we need to introduce a more compact notation for covariance matrices: 

Using this convention, the estimation matrix [B] is 

and the estimate is 
{ u )  = [B] { d l  = [cpd] [cddl- l  { d )  

It is useful to pause here and examine these matrices and vectors. The underlying field p(x, y) 
is continuous in space. {d) is a vector of M different data; { u )  is a vector of K estimates of p, 
each at a different location. The covariances involved are among these M + K items and are finite 
matrices. In particular the covariances involving p address the truth values at the K estimation 
points; those involving data address the M specific data at hand. [Cpd] has dimension K x M ;  
[Cpp] is K x K; [Cdd], A4 x M; etc. Everything is finite, determined by the observation points and 
the estimation points. 

For present purposes, equations 18.33 and 18.34 are the bottom line of our simple demonstration. 
They prescribe a statistically optimal (minimum variance) estimation for the true field p(x, y) based 
on linear combinations of the data. The coefficients of [B] invoke prior knowledge of the covariance 
of the data with itself and with the truth. Rigorous development of this result is found elsewhere 
under several guises; we refer to its proof as the Gauss-Markov Theorem, and to the use of equation 
18.34 for estimating fields from data as Gauss-Markov Estimation. The estimation problem may 
be viewed as the statistical interpolation of data, and this procedure is frequently referred to as 
Optimal Interpolation (01). The phrase Objective Analysis (OA) is frequently associated with 
the process of Gauss-Markov field estimation. An additional key result is the variability of the 
estimation error, e,  - u - p: 

E, I = [CppI - [ BI [cdpl (18.35) 

The diagonals of this matrix are the expected squared Estimation ~ r r o r ' ;  their sum is minimized 
compared with any other selection of [B] - i.e. the Gauss-Markov estimator is a minimum variance 
estimator. Finally, the bias of the estimate, 

'Notice that here, E indicates a measurement error, defined a t  the measurement points; while E, is the estimation 
error, defined at the estimation points. As always, error indicates discrepancy with truth. 
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is generally nonzero. If p and d have zero means, then the estimate is also unbiased and therefore 
it is the BLUE. It is desirable to deal with de-meaned data and fields to achieve this. 

It is common to go one practical step further. Since { d )  = {p) + (€1, we have 

If we assume that measurement error is not correlated with truth: 

then we have a final form of 18.33 and 18.34: 

and finally, the optimal estimate is 

18.3 Interpolating and Sampling Finite Fields 

In this section we revisit some of the terminology and ideas examined i n  
section 14.1 concerning model error, measurement error, sampling, and the 
model-data misfit. It is a good idea to first review what we covered there. 

Suppose we introduce interpolating bases CJ~~(X, y) among the estimation points, such that the 
estimated field is continuous: 

K 

~ ( x ,  Y) = uk$k(x, Y) (18.43) 
k=l 

Naturally, we are anticipating here the use of the FEM bases $k and nodal values uk; with the 
estimation points the nodes of a FE grid. We will refer to the field u(x, y) as the model field. Now 
use the same bases for the true field p (x, y) : 

where es(x, y) is the part of the truth which is outside the basis. It is variously the subgrid-scale 
variability (hence the subscript); the truncation error; or the unresolvable truth. Assuming E,(x, y) 
is unknowable, we have a finite truth vector {p) and its estimate {u). 



346 CHAPTER 18. STATISTICAL INTERPOLATION 

Data are imperfect linear samples of truth, with observational error { E ~ )  added. For an indi- 
vidual datum dk we have a linear sampling operator Lk: 

Therefore the data vector is expressed as a matrix equation 

with sampling matrix [S] comprising the scalar entries 

i.e. Sk is the kth sample of the jth basis function. Notice that {E) is a combination of observational 
error and a sampling of the unresolvable, subgrid truth: 

Sampled, unresolved truth is indistinguishable from measurement error in this context. Their sum 
{E) is referred to here as Sampling Error, to distinguish it from measurement error per se. 

We may proceed from here as above. Assuming we are minimizing the variance of the estimation 
error at the node points, { E ~ )  = {u) - {p), then the previous development is unchanged, leading 
to the same result for the estimate 

and its precision 

[Ceeeel = [CppI - [Bl [Cdpl 

Now the final step needs to recognize the effect of the sampling: 

Similarly, 
T 

[CPdl = [CWl [slT + [CPJ 
With the usual assumption that [p] and [E] are uncorrelated, we have 
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Finally the Gauss-Markov estimator is: 

[Bl = [ [ ~ P P I  [slT] [PI [cwl [slT + [ C ~ ~ I ]  PI (18.60) 

with the estimate 

(4 = [Bl Id} = [[C,,] PIT] [PI [CPPI [slT + [ ~ € € l ]  -l id) (18.61) 

and precision 

[C€e,eI = [',,I - [BI ['I [',PI (18.62) 

The key from this point on is the estimation of the Covariance among the truth {p) and among 
the "noise" {e). 

An alternative expression for the Gauss-Markov estimator [B] is obtained by application of the 
matrix identity 18.103. The result: 

In the present context this is a less appealing form due to the multiple inverses; later it will be used 
and we note it here. 

Aside, notice that the model-data misfit now is a sampled version of equation 18.48, based on 
the estimate {u): 

(6) is an estimate of {E), which is unknowable except statistically. Included in (6) are a sample 
of the estimation error {p - u), a sample of the unresolved field, plus measurement error. These 
are three different things; computation will inevitably focus on the first, since the latter two are 
known only in a statistical sense. This illustrates the importance of not reducing the misfit below 
the expected level of the latter two terms combined; that would be overfitting, chasing noise. 
Essentially, statistical. zero is set by this noise level - the combination of sampled subgrid-scale 
variability and measurement error. Correct specification of [C,,] is essential here. In the absence of 
formal statistical descriptions of noise covariance among instruments and locations, one relies on 
the intuition expressed in the experimental plan or design. 

Relative to the field variability, appreciate the great strength of the FEM here. In setting out 
the estimation points one presumes prior knowledge of [C,,] among them. In a heterogeneous field 
with spatially-variable length scales, a uniform lattice of estimation points would seem to be the 
worst choice. Instead, one should strive for closely-spaced points where spatial gradients are high, 
and sparse spacing where gradients are low. This is of course exactly what the FEM grid generator 
is expected to achieve! And although grid generation is an heuristic and iterative process, relying 
on the intuition and experience of the generator, nevertheless an acceptable FEM grid embodies all 
the best wisdom about resolving expected variations in the field being approximated. So a prior 
estimate of [C,,] has already been stated, implicit in the grid. 
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So to proceed we need to be able to specify the covariances of { p )  and {E) .  We will concentrate 
on the specification of [C,,] via the FEM, in the subsequent sections. But first, here is a collection 
of definitions which accompany the basic G-M estimator, equations 18.60 - 18.62: 

I I { p )  is the vector of truth at the sampling points (nodes of a computational mesh) I I I I {u )  is the estimate of {p }  I I 
I I {E,) = {U - p )  is the estimation error. I I 
I I { E )  - {d)  - [S] { p )  is the sampling error, defined at the data points; it is the sum 

of measurement error per se plus a sample of the unresolved or subgrid-scale / I 
truth. 

(6) - {d)  - [S] {u )  is the model-data misfit, an estimate of { E )  

{ p )  and therefore { E )  are unknowable; {u )  and {S) are estimates of them. {E,) is the estimation 
error; its covariance needs to be estimated posterior to the data, to accompany the estimate {u).  

18.4 Analytic Covariance Functions 

Practical procedures try to fit simple analytic covariance functions to data. In section 13.1 we 
introduced an example of a distance-based covariance function. Many have been proposed and 
used. Almost universally, these are spatially homogeneous, isotropic functions with a small number 
of degrees of freedom (1 or 2), the amount of data limiting the introduction of further sophistication. 
This is a potentially serious limitation, especially when the assumptions of homogeneity and isotropy 
are basically inappropriate. But practical estimation procedures have been realized. Bretherton 
et al. ([19]) provides a general discussion. Typical are covariances of the form C(r) ,  where r is 
scaled distance or pseudo-distance separating any two points. These are readily made and easily 
interpreted conceptually. 

Vector as well as scalar fields have been described this way. In particular, this is important 
when there are constraints among vector components and/or a scalar - e.g. an incompressibility 
constraint; or a directional constraint; or a relation of a vector to a potential function. Effectively, 
this amounts to embedding analytic PDE constraints into the estimation. Some examples follow. 

Freeland and Gould [32] estimated streamfunction from oceanic velocity measurements. Distance- 
based covariance functions C++ (r) , Cuu (r) , Cvv (r) describe the streamfunction and the longitudinal 
and transverse2 velocity covariances, as functions of the spatial separation distance r. Classical fluid 
mechanical constraints were imposed (non-divergent, geostrophic flow). The forms used were 

C@+(r) = (1 + br + b2r2/3)eYbT (18.67) 

Cu,(r) = (1 + b ~ ) e - ~ ~  (18.68) 

( r )  = (1 + br  - b2r2)e-bT (18.69) 

'These directions are relative to the separation vector r, which was isotropic and homogeneous. 
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This is one-parameter, homogeneous isotropic covariance within 3 scalar fields which recognizes 
simple PDE constraints. The data were used to estimate b. McWilliams [86] made similar estimates, 
fitting the 3-parameter functions 

The constraint b2 = y262/(y2 + S2) reduced the three parameters (b, y, 6) to two. 

Denman and Freeland [30] estimated 2-parameter covariance functions from oceanic observa- 
tions over the continental shelf. Fitted hydrodynamic fields are reported under similar assumptions 
as Freeland and Gould 1321. Related scalar fields are also estimated. Functional forms included 

(Jo is the Bessel function of the first kind.) 

Hendry and He [41] implemented OA for shelf estimations using the covariance function as in 
Freeland and Gould [32] 

Cuu (P) = (1 f P + p2/3) ePP (18.76) 

In that implementation, p is an anisotropic, space-time pseudo-distance, with principal axes and 
scaling defined locally, prior to the data. Several studies including [go], [70], [40], [58], and [85] 
have used this procedure to estimate scalar oceanic fields, with the local axes defined by local 
topography. 

Zhou [I191 studied space-time interpolation of oceanic plankton data, using the covariance 
function 

C(p) = (1 - p)e-P (18.77) 

where again p is a scaled pseudo-distance, in this case involving an isotropic 2-D spatial scale and 
a temporal scale. The observations were advected either forward or backward to a common time, 
to offset the non-synoptic sampling. 

These types of covariance functions have served well in the studies cited. But in practical esti- 
mation problems, there are many potentially serious complications: 

boundary constraints: analytic covariance functions ignore them 
anisotropy: advection creates locally-anisotropic covariance, oriented to streamlines; other 
dynamical processes may be oriented by local parameters and their gradients 
inhomogeneity: correlation scales and principal axes may vary locally, with covariance based 
on distance along curved (not straight) lines. 

Practical incorporation of these effects into [Cuu] is our goal in the next section. An underlying PDE 
in invoked, with boundary conditions and inhomogeneous, anisotropic coefficients, and stochastic 
forcing. 
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18.5 Stochastically-Forced Differential Equation (SDE) 

In this section (adapted from Lynch and McGillicuddy, [72]), the prior covariance of the field to be 
estimated is posed as the outcome of stochastically-forced differential equation, subject to boundary 
conditions with inhomogeneous, anisotropic parameters. Numerical solution is readily implemented 
in standard finite element methodology. Far from boundaries and inhomogeneities, the procedure 
defaults to standard OA methods using distance-based covariance functions. 

Our basic idea is to represent the underlying field variability as the outcome of a structured 
stochastic process; specifically, the result of a stochastically-forced differential equation (SDE). For 
example, the simple equation 

with the process noise q a (0, l )  random disturbance with no spatial correlation, has covariance 

Cpp(r) = (1 + kr) epkr (18.79) 

when posed in an unbounded domain. Thus (18.78) and (18.79) are equivalent statements of the 
same problem. The 2-D pair 

v 2 p  - k2p = q(x, Y) (18.80) 

C,, (r) = krKl (kr) 2: (:kr) ' (1 + &) e-kr kr + 00 

are likewise equivalent statements ([7]). (Kl is the Bessel function of the second kind.) 

The importance of the SDE approach is that C,, can be computed numerically for realistic con- 
ditions - realistic anisotropy, variable coefficients, resolution, boundary conditions - which make 
analytic solutions impossible. The parameters and process noise model q can be chosen to represent 
real processes affecting the field of interest. The limiting case, far from boundaries and inhomo- 
geneities, will default to an equivalent C(r) structure. Balgovind et al. [7] used the SDE approach 
(specifically, the Helmholtz equation (18.80) with k2 varying with latitude) to compute a realistic 
spatially-varying covariance for meteorological forecast error. 

Discretization of (18.78), (18.80) or any other differential operator on a finite element grid leads 
to the matrix form 

[Kl {PI = {q) (18.82) 

in which all boundary constraints are incorporated automatically. The discrete process noise {q) 
drives the variability in {p). The resulting covariance of {p) is obtained directly: 

Immediately we have accounted, formally, for a) realistic oceanic transport processes and BCs in 
[K], and b) realistic process errors in C,,, representing processes not modeled in [K] or in the prior 
estimate or forcing. Knowledge of these two effects allows us to compute [C,,] using standard finite 
element solution techniques. Coupling (18.83) with (18.60 - 18.62), we have Objective Analysis. 

Two examples follow. Notice here we are using [K] to indicate a well-posed FEM system matrix 
for a conventional (forward) problem. 



18.5. STOCHASTICALLY-FORCED DIFFERENTIAL EQUATION (SDE) 

Example 1 

Consider the SDE 

Assuming constant D, the discrete forward model is 

with three dimensionless quantities 

The parameter a accounts for either Galerkin FEM on linear elements (a = 116); the lumped-mass 
version of same (a = 0); or standard FD (a = 0). In matrix form we have 

[K] is tridiagonal; [K]~[K] is pentadiagonal. In the case a = 0, an interior row of [K]*[K] will be 

Using the centered difference operators Sn, these rows represent the discrete operator 

The original PDE has been elevated,term by term, and become symmetric: 
the Diffusion term, formerly representing Laplacian smoothing, has become biharmonic 
the Advective term has lost its directional (forward-backward) bias and plays a diffusive role 
the Helmholtz term now provides a balance between diffusive smoothing and local decay, 
setting the decorrelation length scale at d v  or, normalizing by mesh size, 1/K. 

The inverse of [KIT[K], assuming [CNN] = [I], gives the covariance Cpp. This will be a full 
matrix, with the covariance structure centered on the diagonal. It is plotted in Figures 18.1 and 
18.2, assuming periodic boundary conditions. Note that K: = & where M is the number of grid 
cells per e-folding length for the analytic solution as well as for the discrete solution (above). Thus 
a reasonable discretization has K: =0(1) or less. Similarly, P e  = 1 is a threshold for poor resolution 
of advection and accompanies loss of diagonal dominance in the case IC2 = 0. 

In Figure 18.1 we show Cpp with periodic BCs, for P e  = 0. From (18.79) and the above 
discussion we expect the decorrelation scale to be 1/K: grid cells. Figure 18.1 confirms that for 
large K: we have essentially an unbounded domain. Decreasing K: broadens the covariance. Figure 
18.1 also confirms that for large K: we recover the analytical result; while at small K: (=.01 in this 
example) the BCs have effect and the free-space analytic solution becomes invalid. 

Figure 18.2 shows Cpp, again with periodic BCs, for various values of Pe. The effect of ad- 
vection is to lengthen the correlation scale, increasing covariance in the along-stream direction. 
In the steady state, the upstream and downstream effect is symmetric. Creative use of these two 
parameters sets a baseline correlation scale via K: and directional anisotropy via Pe, both of which 
can be locally variable. Modulation near boundaries is naturally incorporated from the outset. 
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In Figure 18.3 we show the effect of a spatial variation in diffusion coefficient. In this case 
there is a step change by a factor of 10 in D at node 19. The result is asymmetry (right curve) 
and inhomogeneity (left curve versus right) in the covariance. Figure 18.4 shows the result of 
an impermeable (Neumann) boundary between nodes 31 and 32. Disturbances introduced near 
this boundary must diffuse around it by a much longer path; thus the covariance of geographic 
near-neighbors is greatly reduced in the presence of isolating boundaries. 

These results illustrate local control of the correlation length scales using physical parameters 
and boundary conditions of the underlying differential equation. 

Objective analyses of 5 data sampled at intervals of lOAx are plotted in Figure 18.5. The 
three cases illustrate the significant variations among the interpolants, depending on the details 
of boundary conditions. Also shown are the estimated standard deviations of the interpolations 
and of the data. At Neumann boundaries, the interpolation is discontinuous and the interpolation 
uncertainty grows where data needs to be extrapolated. Another effect of the internal Neumann 
boundary is the reduction of the interpolation maximum at node 35, due to its isolation from the 
data to the left (bottom panel of Figure 18.5). 

Numerical versus Unbounded Analytic Covariance 
vs. K2 

Node Number 

Figure 18.1: Covariance for the advective-diffusive-reactive equation (18.86) 
with periodic boundary conditions (dots), compared with the analytic free- 
space result (solid). Three different values of iC2 are shown; P e  = 0. The 
plots have been self-normalized. (From [72].) 
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covariance vs. pe I 

Node Number 

Figure 18.2: Covariance for the advective-diffusive-reactive equation, for 5 
values of Pe; IC2 = 0.1. Periodic BCs. (From 1721.) 

Node Number 

Figure 18.3: Effect of variable diffusion coefficient on covariance. To the 
left of node 19, D = Do/lO; to the right, D = Do. The two curves are 
associated with nodes 10 (left curve) and 25 (right curve). Periodic BCs; 
P e  = 0; IC: = 0.1 (From [72].) 
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Node Number 

Node Number 

Figure 18.4: Effect of no-flux boundary condition between nodes 30 and 31 
on covariance with nodes 10 (left curves) and 25 (right curves). Periodic 
BCs; P, = 0; IC2 = .O1 (top) and 0.1 (bottom). (From [72].) 
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Figure 18.5: Objective Analysis of 5 data with various boundary conditions; P e  = 0, 
IC2 = .01. The data [0 0 0 1 11 are connected by a solid line representing simple linear 
interpolation. The OA estimates are indicated by the circles. The standard deviations of the 
data (error bars) and of the estimated interpolant (solid lines) are also shown. Top: periodic 
BCs at left and right. Middle: Neumann BCs at left and right. Bottom: Neumann BCs 
in center of domain (just left of Node 30) and periodic BC's at left and right. Standard 
deviations of observational noise SE (equation 18.50) and process noise Sq (equation 18.82) 
are (0.1, 0.05) respectively. The middle and bottom panels illustrate the successful blocking 
of interpolation across a no-flux (homogeneous Neumann) boundary. (From [72] .) 
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Example 2 

Next consider the 2-D transport equation 

with 
u=field anomaly 
H=bathymetric depth 
D=dispersion coefficient 
V=fluid velocity 
k2=first-order decay rate 
qs= surface forcing 
qp= isolated inputs from point sources (e.g. river discharges) 

We imagine for example that estimates of all transport parameters are available, and that a prior 
estimate of the transported field has been subtracted from the data. Standard Galerkin FEM 
discretization leads to 

[Kl {PI = (77s) + {qp) + {r) (18.91) 

Kij =< -HDV$j . V4i - H V  . V4j 4i - > (18.92) 

where the usual FEM conventions are used: < >, integration over the spatial domain; $, inte- 
gration over its boundary. The {qs) vector might be constituted as random noise plus a highly 
structured response correlated with weather; {qp) might be correlated with hydrological conditions 
or industrial activity. They are separated because they are assumed uncorrelated. 

In [72] this formulation was used to interpolate oceanic plankton data. The context included lo- 
cally dominant advection and resulting anisotropy along/across streamlines; high spatial variability 
in the diffusion coefficient; and important no-flux boundaries. 

18.6 OA-GLS Equivalence 

Statistical Estimation, equations 18.60 - 18.62, with [Cpp] from a discretized SDE as in equation 
18.83, is equivalent to solving the GLS problem 

Minimize {{dlT [Cs6]-' {d) + jqlT [c,]-' {q}} (18.96) 

subject to the constraints which define the model-data mismatch 6 and the process noise q in terms 
of the model 18.82 and the sampling 18.64: 
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This is the standard problem of fitting the model 18.97 to the data, by adjusting the controls (7). 
To see this, we will examine and manipulate the two estimates. 

GLS: 

Earlier we developed the GLS estimator for this problem, in several forms. The direct expression 
based on the normal equations is given in equation 14.21. Adjusting to the terminology here 
(equations 18.96-18.98), we have 

Equation 18.61 gives the general OA estimator 

Using the SDE-based approach to [CPP], equation 18.83 

we get the OA/SDE estimator: 

This appears to be a different estimate from that just given for GLS. Now we need to invoke an 
obscure but powerful matrix identity ([57], equation 1-51): 

[XI [YIT [[Y] [XI [YIT + [z]] -' = [[YIT [z] -' [Y] + [XI -11 -' [YIT [z] -I 

Use of this with [XI = [C,,], [Y] = [S] [K]-l, [Z] = [C,,] gives us the equivalent expression 

{ u )  = [K]-' [[KI-T [slT [Ce,]-' [S] [K]-' + [4,]-1] [ [K] -~  [slT [CCe]-'] { d )  (18.104) 

This is identical to the GLS estimator, with the only difference being the use of [C,,] rather than 
[CJ6]. The practical distinction is null. Recall that E is the gap between truth and model estimate, 
i.e. the model error at the data points. It is unknowable except in the sense of the model-data 
misfit 6; and a computable distinction between the two prior estimates of covariance is unlikely. So 
we have practical identity between OA/SDE and GLS estimators. (The reader is referred back to 
equation 18.64 and the adjacent material.) 

An alternative path to 18.104 is to use the alternative OA form 18.63 identified earlier, which was 
also based on the identity 18.103. Substitution of 18.101 for [CPP] and a little bit of rearrangement 
leads directly to 18.104, as one should expect. 

This OA - GLS equivalence is a remarkable result. It is at once intuitive, unlikely, and pleasantly 
surprising; and it suggests a hunt for some estimation algorithms which exploit it. It was pointed 
out by Wunsch [I151 in the oceanographic context; presumably it has been brought down from the 
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ancient sources in various forms. It is one of the pathways to the standard conclusion that a GLS 
weight matrix should be the inverse of the covariance matrix for any control variable. (See also the 
Appendix.) 

The identity 18.103 is from Liebelt [57], who provides a collection of related identities plus a 
derivation. These are also reported selectively in Westlake [I131 and Wunsch [115]. Here they 
are used only to demonstrate the present equivalence. However they also suggest alternative com- 
putational paths to estimation and potentially new algorithms which take advantage of specific 
properties of selected matrices. We leave this idea for the reader to explore. 

The bottom line here is: OA with SDE-based covariance is the same GLS estimation - within 
the linear world that we pose. 

18.7 Kriging 

An independent development of the same ideas presented here as OA or 01 has been pursued in the 
statistical description of mineral deposits. The methods are referred to as Kriging and its variants. 
Cressie [26] gives an historical account of this development. There is no substantive difference in 
intent or outcome, although the terminology is different and that leads to some different issues. 

Probably the most central distinction is the use of the Variogram or SemiVariogram as the basic 
descriptor of field variability. This occupies the place of the covariance [Cpp] in the OA development. 
Briefly, if we have two locations Xi and Xj with field values Ui and Uj7 the SemiVariogram 7 is 
defined in terms of the difference among them: 

while the covariance is defined simply in terms of their product: 

It is easy to discover that 

and if the statistics are homogeneous, 

As in OA/O17 the common practice is to make prior estimates of the SemiVariogram assuming 
homogeneous functional forms of the distance between i and j .  

A subtle issue is that the Variogram describes measured quantities, and as such includes mea- 
surement error as well as natural variation. As a result, 7ii # 0 - an apparent contradiction which 
must be assigned to either measurement error or to true small-scale variability. This is referred 
to as the nugget effect in the Kriging literature. Cressie [27] states that ambiguity on the distinc- 
tion between these two contributors to the nugget "is the source of the 'kriging is/is not an exact 
interpolator' controversy". 
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For a fuller exposition of Kriging and its variants, the reader is referred to [50], [27], or [23]. 
Kitanidis [51] gives an excellent practical exposition. Cressie [26] provides a detailed map of the 
relationship between Kriging and OA/OI - essentially the Rosetta Stone of the business. It estab- 
lishes the equivalence between the mining (Kriging) and meteorological (OA/OI) literatures which 
grew up independently with different terminology during the 1960's. (Gandin [33] produced the 
definitive modern work in the latter area.) 

18.8 Concluding Remarks 

The observational opportunities for environmental fields are enormous today, and full of promise. 
At the same time, the computational power available is unprecedented. The merger of the formerly 
separate fields of PDE solution and Field Estimation represents a major opportunity with broad 
implications for scientific advance and engineering practice. 

In classical Gauss-Markov estimation, prior knowledge of the covariance of the field to be es- 
timated is critical. Stochastically-forced differential equations representing physical processes are 
a natural way forward, accommodating the complexity represented in modern PDE solution. The 
combination of G-M estimation with SDE-based field covariance is potentially very powerful, and 
equivalent to a certain GLS minimization of model-data misfit. This OA-SDE approach focuses 
special attention on a) what processes are relevant to the observed field variability; b) the nature 
of the stochastic forcing (the process noise); and c) the nature of the observational noise. 

It is important to pay attention to the spatial correlation in the process noise. There is much 
substance in the specification of this Covariance model. Distance-based Covariance models for 
this forcing may suffice in many practical cases, especially since the intervening PDE insulates the 
estimation by an extra layer of structured space-time covariance. But essentially, these are physical 
questions and must ultimately be resolved in those terms. 

Related is the need to describe the observational noise via a relevant statistical model. Every 
data product needs to have an associated error model! And, any data being analyzed should 
generally be reduced by removal of a structured prior estimate (spatially-variable mean), in the 
hope of achieving the zero-mean condition generally assumed and/or required. We can anticipate 
considerable scientific advances in areas fueled by this (formerly) interdisciplinary consideration. 

From a computational point of view, the FEM-based Covariance matrices and their inverses are, 
a priori, full. As computational meshes grow in scope and refinement, dense matrix manipulations 
certainly scale badly. It will be practical to reduce matrix density by truncating covariance matrices 
beyond some practical limit, and exploiting the resulting sparse matrix structure. 



Appendices 



Al .  Vector Identities 

Triple Products 

Differentiation 

Integration 

A right-handed (n, s) boundary coordinate system is conventional, with n directed outward and s 
a two-dimensional surface space normal to it. The scalar ds is an increment of surface area and 
has area units. 
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In 2-D, a common scalar coordinate convention is (n, s ,  z)  with z normal to the plane of analysis 
and n directed outward like before, but in the plane of analysis. Similarly, ds is a 1-D increment of 
line length in the plane, and dv is the increment of area in the plane. The 2-D circulation theorem 
is conveniently expressed as 

Integration by Parts 

Combining differentiation and integration as recorded above we get these identities: 

In PDE usage, the following forms of these are common: 



AZ. Coordinate Systems 

Cartesian ( x ,  y ,  z): 

Cylindrical (r ,  8, z): 

dl = Pdx +ydy +id2 

dl = fdr + 8rd0 + idz 

A good source for practical identities is Hildebrand [43]. 



A3. Stability of the Roots of the 
Quadratic Equation 

Consider the general quadratic equation 

aX2 + bX + c = O (1) 

where it is assumed that a, b, and c are real and that a is positive. The standard solution is 

For : > (&)27 X will be complex and its magnitude is given by 

The necessary -and sufficient condition for the stability of the complex roots of (1) is thus 
n 

2 
If : 5 (&) , X will be real and for one of the roots (2), 

The condition (4) is thus necessary for the stability of the real roots as well. From (5), a second 
necessary condition is 

Assuming that (6) is satisfied, the stability constraint for the real roots is 

Since both sides of (8) are nonnegative, they may be squared to produce 
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Rearrangement of (9) gives the stability constraint for the real roots: 

0 1 7  

Ibl 2 a + c  (11) 

As long as (4) is satisfied, (11) implies (6). It can be shown that when (4) is satisfied but (11) is 
not, the roots of (1) are necessarily real. From (ll), 

and thus, 
b2 > 4ac 

Thus under these conditions the roots are real and unstable. The necessary and sufficient conditions, 
then, for the stability of the roots of (1) are: 

and 
Ibl l a + c  



A4. Inversion Notes 

Some facts: 

a [ A ] ~  indicates the transpose of [A] - - - - 
T . [AT] -l = [A-l] = [A-T] 

&([A1 x)  = [A1 &(x)  
a Cov ([A] x)  = [A] Cov ( x )  [AIT 
a Cov(x) is symmetric, positive definite 
a [A] Symmetric Positive Definite implies that [A] = [R] [ R ] ~  exists, with [R] the "square root" 

matrix. . 1x1 [YIT [[Y] [XI [YIT + [Z]]  -I  = [[YIT [z]-l [Y] + [XI-'] -l [YIT [zl-' 

I tem 1: The WLS weight matrix should be the inverse of the covariance matrix. 

We routinely minimize sums of mutually independent, squared errors. If we have covariance 
among the errors: 

E = (0, [VI) (1) 

then [V] has square-root factors [K]:  

[Vl = [KIT [Kl 

Introduce the variable p: 
p = [ K ] - ~  E 

and we have 
Cov(p) = C O ~ I ( [ K ] - ~  E )  = [KlpT COV(E) [K]-' 

Cov(p) = [ K ] - ~  [KIT [K]  [K]-' = [I] ( 5 )  

that is, 

P = (0, [ I ] )  

So p are independent with zero mean, unit variance. If we minimize the quadratic form 

In other words, minimizing the quadratic form 

ET [W] E 
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is equivalent to minimizing the norm of independent errors p = (0, [V]) 

pTp 

provided the weight matrix is the inverse of the covariance matrix: 

[W] = [VI-l 

Item 2: Regularization of a FEM result. 

Given a discretized PDE 
[K]x = b + ~  

with known [K] and b, and stochastic perturbations E 

First, demean the relationship with it = x - 37: 

[K]:=b and [ K ] i t = ~  

Now we have 
it = [KI -~  E 

and the proper regularization weight [W] for the quadratic form 

itT [W] it 

is 
[W] = [cov(it)]-l 

From above, 
[Cov(i)] = [K]-' u2 [K]-* 

and therefore 
1 

[Wl = 2 WlT [Kl (20) 

Thus, we minimize the quadratic form 
1 

-itT [ K ] ~  [K] 2 
02 (21) 

For example, if [K] is a (symmetric) Laplacian, then the proper quadratic form is [W] = 5 [ K ] ~  
i. e. a biharmonic smoother. 

Item 3: Generating random numbers. 

Given a random number generator which produces E = (0,a2 [I]). We want to generate a 
distribution x with known covariance. Postulate a linear generator [A]: 

x = [A] E (22) 

Since we know the covariance of x, then we have 

Cov (x) = Cov ([A] E) = [A] a2 [ A ] ~  (23) 

So the constraint on [A] is 
1 

[A1 WIT = 2 [Cov(x)l (24) 

If we want to generate x from E, [A] must be the square root of the known [Cov(x)]. The Cholesky 
Square-Root algorithm is commonly invoked for this factorization; it is a special case of LU factor- 
ization for symmetric matrices, [u]=[L]~ 



A5. Time Conventions for 
Geophysical Fields 

Here we describe one example of a set of a library of software and standards that addresses this 
critical problem. NML refers the the Numerical Methods Laboratory at Dartmouth College; IOS, 
to the Institute of Ocean Sciences at Victoria, BC. 

All subroutines and programs listed here are available in sourcecode at 
http://www-nml.dartmouth.edu/Software/. 

Time Registration 

There are three time standards in current use: Gregorian, DMY, and UTCO. In all cases, timing 
is assumed to be referenced to the Greenwich Meridian and the contemporary Gregorian calendar. 

Gregorian Time. Precision timing needs to be maintained in Geophysical models over long sim- 
ulation times. Hence, time needs to be kept with an integer part and a real (precision) part. The 
most natural and robust integer part is the Gregorian Day, which establishes an absolute timeline3 
and properly accounts for variable numbers of days in months, leap years, etc. The real part S is 
assumed to be kept in seconds to accomodate the MKS system. 

The natural time convention for these models is the Gregorian time (K,S): 
K = Gregorian Day # 
S = elapsed time (seconds) since day K began at the Greenwich Meridian. 

The Gregorian time at 1:00 AM (Greenwich), January 1, 1999 is (730121, 3600.0). 

The accumulation of large S threatens precision. The NML subroutine Up_Date2(K, S) increments 
the Gregorian K, if possible, and decrements S accordingly. This means the largest necessary value 
of S is 86,400. seconds (one day) and one-second precision should be possible in timekeeping on 
ordinary machines. 

D M Y  Time. An equivalent integer part is the 3-integer DMY (day, month, year) convention. 
This is intuitively appealing but raises problems with respect to time intervals since months and 
years are of different duration. The Gregorian Calendar provides the unique, sequential day num- 
bering system and the IOS routines GDAY(ID, IM, IY, K) and DMY(ID, IM, IY, K) provide the 
translations. GDAY converts to Gregorian Day; DMY is its inverse. 

An equivalent, intuitively appealing time stamp then is DMY time (ID, IM, IY, S) 

3Gregorian day 1 is January 1, Year 0000 AD. 
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ID = Day number of month 
IM = Month number (1 = January etc.) 
IY = Year number (e.9. 1999) 
S = elapsed time (seconds) since the day began (time 0000 on that day, at  Greenwich). 

S is identical in both Gregorian and DMY systems. The DMY time a t  1:00 AM GMT, 
January 1, 1999 is (1, 1, 1999, 3600.0). 

UTCO (or GMTO) Time. An alternate time convention is the UTCO time. In this case the 
Gregorian year (e.9. 1999) is recorded as the integer part, and the precision part is the elapsed 
time since the beginning of the year, in decimal days. UTCO is identical to GMTO, an older 
nomenclature. 

The UTCO time convention is (IY,D): 
IY = Gregorian Year # 
D = elapsed time (decimal days) since Year IY began at the Greenwich Meridian. 

The UTCO time at 1:00 AM (Greenwich), January 1, 1999 is (1999, .0416666666667). 

Calculation of time intervals involving two different years requires access to the Gregorian stan- 
dard; the NML routine UTCO-GDAY(IY, D, K, S) converts UTCO (IY, D) to Gregorian (K, 
S). Its inverse GDAY-UTCO(K, S, IY, D) converts Gregorian to UTCO. To service the older 
GMTO standard, routines GMTO-GDAY and GDAY-GMTO are maintained. These simply call the 
appropriate UTCO conversion. 

Figure 1 depicts these standards and their conversions. 

GMTO = UTCO 

GDAY-UTCO 

UTCOGDAY 

( 'y 'D)  Gregorian 

Figure 1: Time standards and their conversions. 

Tidal Synthesis 

Tidal timeseries are intrinsically periodic, with known harmonic frequencies established by astro- 
physical motions. The most commonly used conventions for analysis and synthesis of tidal time- 
series are those of Godin, as implemented by Foreman [31]. Each constituent (individual harmonic 
component) is characterized by three real numbers: 

amplitude A, [meters] 
frequency w [radianslsec] 
Greenwich phaselag g, [degrees] 
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These units are consistent with NML software standards. Synthesis of tidal timeseries is then a 
summation over all frequencies: 

An absolute time standard t is implied; it is the Gregorian time. The reference time to is arbitrary; 
V(to) adjusts for it. f and u are slowly-varying functions of time and account for the nodal modu- 
lation (the result of bundling several closely-spaced constituents into a single standard constituent 
e.g. M2.) In principle f and u are needed at every synthesis time t. Because they vary slowly, 
in practical simulations it is often reasonable to evaluate them once, at t = to, and treat them as 
constants. 

Subroutine VUF-NML provides values of w for all standard tidal constituents; plus V(to), f (to), 
and u(to) for any given time to coinciding with the start of a Gregorian day. Thus the complete 
and unambiguous synthesis of tidal signals is achieved by the three data (A, w, g) plus access to 
VUF-NML and 10s-tidetbl. 

Usage: 

Call VUF-NML(Kd,KONk,xlat ,fk,vuk,freqk) 

Inputs: 

Kd: Gregorian day to. (The start of this day is to); 

KONk [character*5]: Constituent name as a 5-character string, left-justified 

(\eg M2bbb; or 2MS2b). 

xlat: latitude; decimal degrees North. 

Outputs: 

fk: amplitude modulation factor f ;  dimensionless 

vuk: V(to) + u(to), radians. 

freqk: constituent frequency w, radianslsec. 

VUF-NML is bundled from three standard IOS routines OPNVUF, SETVUF, and VUF, to provide 
I/O compatible with NML standards (see Table 1). It reads the data file 10s-tidetbl when first 
invoked. Notice that to is restricted to be the start of a day when using this subroutine. 

There is a simpler description of tidal timeseries, suitable for short-term analysis and synthesis: 

with to defined by convenience, and phaselag 4 linked to to appropriately. With this standard, 
four data are needed for tidal synthesis: ( 2 ,  4, w, to). Note that w is the same quantity as in the 
ForemanIGodin form; except here it is radianslsec, not cycles/hour. The amplitude and phase 
parameters differ due to the timing conventions and to the accounting for nodal modulation. 

The NML subroutine RADIANS is available to evaluate w[t - to] for a particular constituent. 
Its use is: 
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Usage: 

Call RADIANS(omegat, kd, kdO, seckd, seckd0, omega, k) 

Output: 

omegat : result w[t - to]; radians 

Inputs: 
k : constituent index L 
(kd, seckd) : time of evaluation t; Gregorian standard (day, seconds) 
(kdO(k), seckdO(k)) : array of to for all constituents k; Gregorian standard 
omega(k) : array of frequencies w for constituent k; radianslsec 

Equivalent to (2) is a description in terms of complex amplitude Z: 

Here the amplitude and phase are embedded in the single complex number 2: 

lr ) - - 4 = arg(2) = arctan (- 
180 

This description is the most appealing for analytical work, as it utilizes the elegant apparatus of 
complex analysis. 
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Table 1: The basic IOS tidal routines which are bundled in VUF-NML. These are available at 
http://www-nml.dartmouth.edu/Software/iospak 

The IOS subroutines may be used separately and provide values of Vo, f ,  and u at  hourly incre- 
ments. They are invoked in three steps: 

Call OPNVUF (Kh,KONk,xlat,fk,vuk,freqk) - this reads and saves the file 10s-tidetbl and 
calls SETVUF. It uses none of its arguments but passes them to SETVUF. 

Call SETVUF (Kh,KONk,xlat,fk,vuk,freqk) - this evaluates and saves f ,  (V + u), and w for 
all constituents listed in 10s-tidetbl. It  uses only the time and latitude arguments Kh and 
xlat. 

Call VUF (Kh,KONk,xlat,fk,vuk,freqk) - this reports back (fk,vuk,freqk) for the single con- 
stituent KONk, based on the calculations done in SETVUF for all constituents. VUF ignores 
Kh and xlat. 

The first two routines need to be called only once. Then VUF is invoked for each individual tidal 
constituent separately to get w, f ,  and (Vo + u). The arguments are: 

Inputs: 

- Kh [integer]: Gregorian hour to ; (GregorianDay*24) 

- KONk [character*5]: Constituent name as a 5-character string, left-justified 
(e.g. M2bbb; or 2MS2b). 

- xlat [real]: latitude; decimal degrees North. 

Outputs: 

- fk [real]: amplitude modulation factor f ;  dimensionless 

- vuk [real]: V(to) + u(to), cycles. 

- freqk [undeclared] constituent frequency w, cycles/hour 

Beware of the units! IOS time is hours. and frequencies and angles are in cycles, not radians. 
Subroutine VUF-NML calls these in an edcient order, and translates the units. 
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