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To my grandson Louis

“The world is so full of a number of things,

I’m sure we should all be as happy as kings.”

Robert Louis Stevenson



Preface

Symmetry is a general principle, which plays an important role in various areas
of knowledge and perception, ranging from arts and aesthetics to natural sciences
and mathematics. According to Barut,1 the symmetry of a physical system may be
looked at in a number of different ways. We can think of symmetry as representing

• the impossibility of knowing or measuring some quantities, e.g., the impossibility
of measuring absolute positions, absolute directions or absolute left or right;

• the impossibility of distinguishing between two situations;
• the independence of physical laws or equations from certain coordinate systems,

i.e., the independence of absolute coordinates;
• the invariance of physical laws or equations under certain transformations;
• the existence of constants of motions and quantum numbers;
• the equivalence of different descriptions of the same system.

Chemists are more used to the operational definition of symmetry, which crystallo-
graphers have been using long before the advent of quantum chemistry. Their ball-
and-stick models of molecules naturally exhibit the symmetry properties of macro-
scopic objects: they pass into congruent forms upon application of bodily rotations
about proper and improper axes of symmetry. Needless to say, the practitioner of
quantum chemistry and molecular modeling is not concerned with balls and sticks,
but with subatomic particles, nuclei, and electrons. It is hard to see how bodily ro-
tations, which leave all interparticle distances unaltered, could affect in any way the
study of molecular phenomena that only depend on these internal distances. Hence,
the purpose of the book will be to come to terms with the subtle metaphors that re-
late our macroscopic intuitive ideas about symmetry to the molecular world. In the
end the reader should have acquired the skills to make use of the mathematical tools
of group theory for whatever chemical problems he/she will be confronted with in
the course of his or her own research.

1A.O. Barut, Dynamical Groups and Generalized Symmetries in Quantum Theory, Bascands,
Christchurch (New Zealand) (1972)
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Chapter 1

Operations

Abstract In this chapter we examine the precise meaning of the statement that a
symmetry operation acts on a point in space, on a function, and on an operator. The
difference between active and passive views of symmetry is explained, and a few
practical conventions are introduced.

Contents

1.1 Operations and Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Operations and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Operations and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 An Aide Mémoire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Operations and Points

In the usual crystallographic sense, symmetry operations are defined as rotations
and reflections that turn a body into a congruent position. This can be realized in
two ways. The active view of a rotation is the following. An observer takes a snap-
shot of a crystal, then the crystal is rotated while the camera is left immobile. A sec-
ond snapshot is taken. If the two snapshots are identical, then we have performed a
symmetry operation. In the passive view, the camera takes a snapshot of the crystal,
then the camera is displaced while the crystal is left immobile. From a new perspec-
tive a second snapshot is taken. If this is the same as the first one, we have found
a symmetry-related position. Both points of view are equivalent as far as the rela-

tive positions of the observer and the crystal are concerned. However, viewed in the
frame of absolute space, there is an important difference: if the rotation of the crys-
tal in the active view is taken to be counterclockwise, the rotation of the observer in
the passive alternative will be clockwise. Hence, the transformation from active to
passive involves a change of the sign of the rotation angle. In order to avoid annoy-
ing sign problems, only one choice of definition should be adhered to. In the present
monograph we shall consistently adopt the active view, in line with the usual con-
vention in chemistry textbooks. In this script the part of the observer is played by

A.J. Ceulemans, Group Theory Applied to Chemistry, Theoretical Chemistry and
Computational Modelling, DOI 10.1007/978-94-007-6863-5_1,
© Springer Science+Business Media Dordrecht 2013
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2 1 Operations

Fig. 1.1 Stereographic view
of the reflection plane. The
point P1, indicated by X, is
above the plane of the gray
disc. The reflection operation
in the horizontal plane, σ̂h, is
the result of the Ĉz

2 rotation
around the center by an angle
of π , followed by inversion
through the center of the
diagram, to reach the position
P3 below the plane, indicated
by the small circle

the set of coordinate axes that defines the absolute space in a Cartesian way. They
will stay where they are. On the other hand, the structures, which are operated on,
are moving on the scene. To be precise, a symmetry operation R̂ will move a point
P1 with coordinates1 (x1,y1, z1) to a new position P2 with coordinates (x2,y2, z2):

R̂P1 = P2 (1.1)

A pure rotation, Ĉn (n > 1), around a given axis through an angle 2π/n radians
displaces all the points, except the ones that are lying on the rotation axis itself. A
reflection plane, σ̂h, moves all points except the ones lying in the reflection plane
itself. A rotation–reflection, Ŝn (n > 2), is a combination in either order of a Ĉn

rotation and a reflection through a plane perpendicular to the rotation axis. As a
result, only the point of intersection of the plane with the axis perpendicular to it is
kept. A special case arises for n= 2. The Ŝ2 operator corresponds to the inversion
and will be denoted as ı̂. It maps every point onto its antipode. A plane of symmetry
can also be expressed as the result of a rotation through an angle π around an axis
perpendicular to the plane, followed by inversion through the intersection point of
the axis and the plane. A convenient way to present these operations is shown in
Fig. 1.1. Operator products are “right-justified,” so that ı̂Ĉz

2 means that Ĉz
2 is applied

first, and then the inversion acts on the intermediate result:

σ̂hP1 = ı̂Ĉz
2P1 = ı̂P2 = P3 (1.2)

From the mathematical point of view the rotation of a point corresponds to
a transformation of its coordinates. Consider a right-handed Cartesian coordinate
frame and a point P1 lying in the xy plane. The point is being subjected to a rotation
about the upright z-axis by an angle α. By convention, a positive value of α will
correspond to a counterclockwise direction of rotation. An observer on the pole of
the rotation axis and looking down onto the plane will view this rotation as going

1The use of upright (roman) symbols for the coordinates is deliberate. Italics will be reserved
for variables, but here x1,y1, . . . refer to fixed values of the coordinates. The importance of this
difference will become clear later (see Eq. (1.15)).
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Fig. 1.2 Counterclockwise
rotation of the point P1 by an
angle α in the xy plane

in the opposite sense to that of the rotation of the hands on his watch. A synonym
for counterclockwise here is right-handed. If the reader orients his/her thumb in
the direction of the rotational pole, the palm of his/her right hand will indicate the
counterclockwise direction. The transformation can be obtained as follows. Let r be
the length of the radius-vector, r, from the origin to the point P1, and let φ1 be the
angular coordinate of the point measured in the horizontal plane starting from the
x-direction, as shown in Fig. 1.2. The coordinates of P1 are then given by

x1 = r cosφ1

y1 = r sinφ1

z1 = 0

(1.3)

Rotating the point will not change its distance from the origin, but the angular co-
ordinate will increase by α. The angular coordinate of P2 will thus be given by
φ2 = φ1 + α. The coordinates of the image point in terms of the coordinates of the
original point are thus given by

x2 = r cosφ2 = r cos(φ1 + α)

= r cosφ1 cosα − r sinφ1 sinα

= x1 cosα − y1 sinα

y2 = r sinφ2 = r sin(φ1 + α)

= r cosφ1 sinα + r sinφ1 cosα

= x1 sinα + y1 cosα

z2 = 0

(1.4)

In this way the coordinates of P2 are obtained as functions of the coordinates of P1

and the rotation angle. This derivation depends simply on the trigonometric rela-
tionships for sums and differences of angles. We may also express this result in the
form of a matrix transformation. For this, we put the coordinates in a column vector
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and operate on it (on the left) by means of a transformation matrix D(R):
(

x2
y2

)

=D(R)

(

x1
y1

)

=
(

cosα − sinα
sinα cosα

)(

x1
y1

)

(1.5)

Having obtained the algebraic expressions, it is always prudent to consider whether
the results make sense. Hence, while the point P1 is rotated as shown in the picture,
its x-coordinate will decrease, while its y-coordinate will increase. This is reflected
by the entries in the first row of the matrix which show how x1 will change: the
cosα factor is smaller than 1 and thus will reduce the x-value as the acute angle
increases, and this will be reinforced by the second term, −y1 sinα, which will be
negative for a point with y1 and sinα both positive. In what follows we also need
the inverse operation, R̂−1, which will undo the operation itself. In the case of a
rotation this is simply the rotation around the same axis by the same angle but in
the opposite direction, that is, by an angle −α. The combination of clockwise and
counterclockwise rotations by the same angle will leave all points unchanged. The
resulting nil operation is called the unit operation, Ê:

R̂R̂−1 = R̂−1R̂ = Ê (1.6)

1.2 Operations and Functions

Chemistry of course goes beyond the structural characteristics of molecules and
considers functional properties associated with the structures. This is certainly the
case for the quantum-mechanical description of the molecular world. The primary
functions which come to mind are the orbitals, which describe the distribution of the
electrons in atoms and molecules. A function f (x, y, z) associates a certain property
(usually a scalar number) with a particular coordinate position. A displacement of
a point will thus induce a change of the function. This can again be defined in
several ways. Let us agree on the following: when we displace a point, the property
associated with that point will likewise be displaced with it. In this way we create a
new property distribution in space and hence a new function. This new function will
be denoted by R̂f (or sometimes as f ′), i.e., it is viewed as the result of the action
of the operation on the original function. In line with our agreement, a property
associated with the displaced point will have the same value as that property had
when associated with the original point, hence:

R̂f (P2)= f (P1) (1.7)

or, in general,

R̂f (R̂P1)= f (P1) (1.8)

Note that in this expression the same symbol R̂ is used in two different meanings,
either as transforming coordinates or a function, as is evident from the entity that fol-
lows the operator. This rule is sufficient to plot the transformed function, as shown
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Fig. 1.3 The rotation of the
function f (x, y)
counterclockwise by an angle
α generates a new function,
f ′(x, y). The value of the
new function at P2 is equal to
the value of the old function
at P1. Similarly, to find the
value of the new function at
P1, we have to retrieve the
value of the old function at a
point P0, which is the point
that will be reached by the
clockwise rotation of P1

in Fig. 1.3. In order to determine the mathematical form of the new transformed
function, we must be able to compare the value of the new function with the origi-
nal function at the same point, i.e., we must be able to see how the property changes
at a given point. Thus, we would like to know what would be the value of R̂f in the
original point P1. Equation (1.8) cannot be used to determine this since the trans-
formed function is as yet unknown and we thus do not know the rules for working
out the brackets in the left-hand side of the equation. However, this relationship
must be true for every point; thus, we may substitute R̂−1P1 for P1 on both the left-
and right-hand sides of Eq. (1.8). The equation thus becomes

R̂f
(

R̂
(

R̂−1P1
))

= R̂f (ÊP1)= R̂f (P1)= f
(

R̂−1P1
)

(1.9)

This result reads as follows: the transformed function attributes to the original point
P1 the property that the original function attributed to the point R̂−1P1. In Fig. 1.3
this point from which the function value was retrieved is indicated as P0. Thus, the
function and the coordinates transform in opposite ways.2 This connection transfers
the operation from the function to the coordinates, and, since the original function
is a known function, we can also use the toolbox of corresponding rules to work out
the bracket on the right-hand side of Eq. (1.9).

As an example, consider the familiar 2p orbitals in the xy plane: 2px,2py . These
orbitals are usually represented by the iconic dumbell structure.3 We can easily
find out what happens to these upon rotation, simply by inspection of Fig. 1.4, in
which we performed the rotation of the 2px orbital by an angle α around the z-axis.
Clearly, when the orbital rotates, the overlap with the 2px function decreases, and
the 2py orbital gradually appears. Now let us apply the formula to determine R̂2px .
The functional form of the 2px orbital for a hydrogen atom, in polar coordinates,
reads: R2p(r)Θ2p|1|(θ)Φx(φ), where R2p(r) is the radial part, Θ2p|1|(θ) is the part

2A more general expression for the transportation of a quantum state may also involve an additional
phase factor, which depends on the path. See, e.g., [1].
3The electron distribution corresponding to the square of these orbitals is described by a lemniscate
of Bernoulli. The angular parts of the orbitals themselves are describable by osculating spheres.
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Fig. 1.4 The dashed orbital
is obtained by rotating the
2px orbital, counterclockwise
through an angle α

which depends on the azimuthal angle, and Φx(φ) indicates how the function de-
pends on the angle φ in the xy plane, measured from the positive x-direction. One
has:

Φx(φ)=
1√
π

cosφ

Φy(φ)=
1√
π

sinφ

(1.10)

Both r and θ are invariant under a rotation around the z-direction, θ1 = θ0, and
r1 = r0; hence, only the φ part will matter when we rotate in the plane. The trans-
formed functions are easily determined starting from the general equation and using
the matrix expression for the coordinate rotation, where we replace α by −α, since
we need the inverse operation here:

R̂(cosφ1) = cosφ0 = cos(φ1 − α)

= cosφ1 cosα + sinφ1 sinα

R̂(sinφ1) = sinφ0 = sin(φ1 − α)

= sinφ1 cosα − cosφ1 sinα (1.11)

Multiplying with the radial and azimuthal parts, we obtain the desired functional
transformation of the in-plane 2p-orbitals:

R̂2px = 2px cosα + 2py sinα

R̂2py =−2px sinα + 2py cosα
(1.12)

Again we should get accustomed to read these expressions almost visually. For in-
stance, when the angle is 90◦, one has 2p′x = 2py and 2p′y = −2px . This sim-
ply means: take the 2px orbital, rotate it over 90◦ counterclockwise around the z-
direction, and it will become 2py . If the same is done with 2py , it will go over into
−2px since the plus and minus lobes of the dumbell become congruent with the
oppositely signed lobes of the 2px orbital.
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Equation (1.12) further reveals an important point. To express the transformation
of a function, one almost automatically encounters the concept of a function space.
To describe the transformation of the cosine function, one really also needs the sine.
The two form a two-dimensional space, which we shall call a vector space. This will
be explained in greater depth in Chap. 2. For now, we may cast the transformation
of the basis components of this space in matrix form. This time we arrange the basis
orbitals in a row-vector notation, so that the transformation matrix is written to the
right of the basis. Thus,

R̂
(

2px 2py
)

=
(

2px 2py
)

(

cosα − sinα
sinα cosα

)

(1.13)

The matrix that is used here is precisely the same matrix which we used for the
coordinate transformation. How is this possible if functions and points transform in
opposite ways? The reason is of course that we also switched from a column vector
for points to a row vector for functions. Indeed, transposition, T, of the entire matrix
multiplication simultaneously inverts the transformation matrix and interchanges
columns and rows:

[

D
−1
(

x

y

)]T

=
(

x y
) (

D
−1)T =

(

x y
)

D (1.14)

where we made use of the property that transposition of the rotation matrix changes
α into −α and thus is the same as taking the inverse of D. The final point about
functions is somewhat tricky, so attention is required. Just like the value of a field,
or the amplitude of an orbital, the values of the coordinates themselves are properties
associated with points. As an example, the function that yields the x-coordinate of
a point P1, will be denoted as x(P1). The value of this function is x1, where we
are using different styles to distinguish the function x, which is a variable, and the
coordinate x1, which is a number. We can thus write

x(P1)= x1 (1.15)

A typical quantum-chemical example of the use of these coordinate functions is
the dipole operator; e.g., the x-component of the electric dipole is simply given by
μx = −ex, where −e is the electronic charge. We may thus write in analogy with
Eq. (1.5)

R̂
(

x y
)

=
(

x y
)

(

cosα − sinα
sinα cosα

)

(1.16)

In summary, we have learned that when a symmetry operator acts on all the points
of a space, it induces a change of the functions defined in that space. The trans-
formed functions are the result of a direct action of the symmetry operator in a
corresponding function space. Furthermore, there exists a dual relation between the
transformations of coordinate points and of functions. They are mutual inverses. Fi-
nally, the active picture also applies to the functions: the symmetry operation sets
the function itself into motion as if we were (physically) grasping the orbitals and
twisting them.
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1.3 Operations and Operators

Besides functions, we must also consider the action of operations on operators. In
quantum chemistry, operators, such as the Hamiltonian, H, are usually spatial func-
tions and, as such, are transformed in the same way as ordinary functions, e.g.,
H′(P1) =H(R̂−1P1). So why devote a special section to this? Well, operators are
different from functions in the sense that they also operate on a subsequent argu-
ment, which is itself usually a function. Hence, when symmetry is applied to an
operator, it will also affect whatever follows the operator. Symmetry operations act
on the entire expression at once. This can be stated for a general operator O as
follows:

R̂Of =O′R̂f (1.17)

From this we can identify the transformed operator O′ by smuggling R̂−1R̂ (= Ê)
into the left-hand side of the equation:

R̂OR̂−1R̂f =O′R̂f (1.18)

This equality is true for any function f and thus implies4 that the operators preced-
ing R̂f on both sides must be the same:

O′ = R̂OR̂−1 (1.19)

This equation provides the algebraic formalism for the transformation of an op-
erator. In the case where O′ = O, we say that the operator is invariant under the
symmetry operation. Equation (1.19) then reduces to

R̂O−OR̂ = [R̂,O] = 0 (1.20)

This bracket is know as the commutator of R̂ and O. If the commutator vanishes, we
say that R̂ and O commute. This is typically the case for the Hamiltonian. As an ap-
plication, we shall study the functional transformations of the differential operators
∂
∂x
, ∂
∂y

under a rotation around the positive z-axis. To find the transformed opera-

tors, we have to work out expressions such as ∂
∂x′ where x′ = x(R̂−1P1). Hence, we

are confronted with a functional form, viz., the derivative operator, of a transformed
argument, x′, but this is precisely where classical analysis comes to our rescue be-
cause it provides the chain rule needed to work out the coordinate change. We have:

∂

∂x′
= ∂x

∂x′
∂

∂x
+ ∂y

∂x′
∂

∂y
(1.21)

In order to evaluate this equation, we have to determine the partial derivatives in the
transformed coordinates. Using the result in Sect. 1.1 but keeping in mind that the

4The fact that two operators transform a given function in the same way does not automatically
imply that those operators are the same. Operators will be the same if this relationship extends over
the entire Hilbert space.
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coordinates are rotated in the opposite direction (hence α is replaced by −α), one
obtains

x′ = x cosα + y sinα

y′ =−x sinα + y cosα
(1.22)

Invert these equations to express x and y as a function of x′ and y′:

x = x′ cosα − y′ sinα

y = x′ sinα+ y′ cosα
(1.23)

The partial derivatives needed in the chain rule can now be obtained by direct deriva-
tion:

∂x

∂x′
= cosα

∂y

∂x′
= sinα

∂x

∂y′
=− sinα

∂y

∂y′
= cosα

(1.24)

Hence, the transformation of the derivatives is entirely similar to the transformation
of the x, y functions themselves:

R̂
(

∂
∂x

∂
∂y

)

=
(

∂
∂x

∂
∂y

)

(

cosα − sinα
sinα cosα

)

(1.25)

In an operator formalism, we should denote this as
[

R̂,
∂

∂x

]

= cosα
∂

∂x
+ sinα

∂

∂y
[

R̂,
∂

∂y

]

=− sinα
∂

∂x
+ cosα

∂

∂y

(1.26)

As a further example, consider a symmetry transformation of a symmetry operator
itself. Take, for instance, a rotation, Ĉx

2 , corresponding to a rotation about the x-axis
of 180◦ and rotate this 90◦ counterclockwise about the z-direction by Ĉz

4 . Applying
the general expression for an operator transformation yields

(

Ĉx
2

)′ = Ĉz
4Ĉ

x
2

(

Ĉz
4

)−1 (1.27)

The result of this transformation corresponds to an equivalent twofold rotation
around the y-direction, Ĉy

2 . The rotation around x is thus mapped onto a rotation
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around y by a fourfold rotation axis along the z direction. In Chap. 3, we shall see
that this relation installs an equivalence between both twofold rotations whenever
such a Ĉz

4 is present.

1.4 An Aide Mémoire

• Use a right-handed coordinate system.
• Always leave the Cartesian directions unchanged.
• Symmetry operations are defined in an active sense.
• Rotations through positive angles appear counterclockwise, when viewed from

the rotational pole; “counterclockwise is positive.”
• The transformation of the coordinates of a point is written in a column vector

notation.
• The transformation of a function space is written in a row vector notation.
• There is a dual relationship between the transformations of functions and of co-

ordinates: R̂f (r)= f (R̂−1r).
• The transformation of an operator O is given by R̂OR̂−1.

1.5 Problems

1.1 Use the stereographic representation of Fig. 1.1 to show that [ı̂, Ĉz
2] = 0.

1.2 The square of the radial distance of the point P1 in the xy plane may be obtained
by multiplying the coordinate column by its transposed row:

r2 = x2
1 + y2

1 =
(

x1 y1
)

(

x1
y1

)

(1.28)

Show that this scalar product is invariant under a rotation about the z-axis.
1.3 Derive the general form of a 2× 2 matrix that leaves this radial distance invari-

ant.
1.4 The translation operator Ta displaces a point with x-coordinate x1 to a new

position x1 + a. Apply this operator to the wavefunction eikx .
1.5 Construct a differential operator such that its action on the coordinate functions

x and y matches the matrix transformation in Eq. (1.16). What is the angular
derivative of this operator as the rotation angle tends to zero? Can you relate
this limit to the angular momentum operator Lz?
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Chapter 2

Function Spaces and Matrices

Abstract This chapter refreshes such necessary algebraic knowledge as will be
needed in this book. It introduces function spaces, the meaning of a linear opera-
tor, and the properties of unitary matrices. The homomorphism between operations
and matrix multiplications is established, and the Dirac notation for function spaces
is defined. For those who might wonder why the linearity of operators need be con-
sidered, the final section introduces time reversal, which is anti-linear.
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2.1 Function Spaces

In the first chapter, we saw that if we wanted to rotate the 2px function, we auto-
matically also needed its companion 2py function. If this is extended to out-of-plane
rotations, the 2pz function will also be needed. The set of the three p-orbitals forms
a prime example of what is called a linear vector space. In general, this is a space
that consists of components that can be combined linearly using real or complex
numbers as coefficients. An n-dimensional linear vector space consists of a set of n
vectors that are linearly independent. The components or basis vectors will be de-
noted as fl , with l ranging from 1 to n. At this point we shall introduce the Dirac no-
tation [1] and rewrite these functions as |fl〉, which characterizes them as so-called
ket-functions. Whenever we have such a set of vectors, we can set up a complemen-
tary set of so-called bra-functions, denoted as 〈fk|. The scalar product of a bra and a
ket yields a number. It is denoted as the bracket: 〈fk|fl〉. In other words, when a bra
collides with a ket on its right, it yields a scalar number. A bra-vector is completely
defined when its scalar product with every ket-vector of the vector space is given.

A.J. Ceulemans, Group Theory Applied to Chemistry, Theoretical Chemistry and
Computational Modelling, DOI 10.1007/978-94-007-6863-5_2,
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For linearly independent functions, we have

∀ k 
= l : 〈fk|fl〉 = 0 (2.1)

The basis is orthonormal if all vectors are in addition normalized to +1:

∀ k : 〈fk|fk〉 = 1 (2.2)

This result can be summarized with the help of the Kronecker delta, δij , which is
zero unless the subscript indices are identical, in which case it is unity. Hence, for
an orthonormal basis set,

〈fk|fl〉 = δkl (2.3)

In quantum mechanics, the bra-function of fk is simply the complex-conjugate func-
tion, f̄k , and the bracket or scalar product is defined as the integral of the product of
the functions over space:

〈fk|fl〉 =
∫ ∫ ∫

f̄kfl dV (2.4)

One thus also has

〈fk|fl〉 = 〈fl |fk〉 (2.5)

2.2 Linear Operators and Transformation Matrices

A linear operator is an operator that commutes with multiplicative scalars and is
distributive with respect to summation: this means that when it acts on a sum of
functions, it will operate on each term of the sum:

R̂c|fk〉 = cR̂|fk〉

R̂
(

|fk〉 + |fl〉
)

= R̂|fk〉 + R̂|fl〉
(2.6)

If the transformations of functions under an operator can be expressed as a map-
ping of these functions onto a linear combination of the basis vectors in the function
space, then the operator is said to leave the function space invariant. The corre-
sponding coefficients can then be collected in a transformation matrix. For this pur-
pose, we arrange the components in a row vector, (|f1〉, |f2〉, . . . , |fn〉), as agreed
upon in Chap. 1. This row precedes the transformation matrix. The usual symbols
are R̂ for the operator and D(R) for the corresponding matrix:

R̂
(

|f1〉|f2〉 · · · |fn〉
)

=
(

|f1〉|f2〉 · · · |fn〉
)

⎛

⎝ D(R)

⎞

⎠
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i.e.,

R̂|fi〉 =
n
∑

j=1

Dji(R)|fj 〉 (2.7)

When multiplying this equation left and right with a given bra-function in an or-
thonormal basis, one obtains

〈fk|R̂|fi〉 =
n
∑

j=1

Dji(R)〈fk|fj 〉 =
n
∑

j=1

Dji(R)δkj =Dki(R) (2.8)

where the summation index j has been restricted to k by the Kronecker delta. Hence,
the elements of the transformation matrix are recognized as matrix elements of the
symmetry operators. The transformation of bra-functions runs entirely parallel with
the transformation of ket-functions, except that the complex conjugate of the trans-
formation matrix has to be taken, and hence,

R̂〈fi | =
n
∑

j=1

D̄ji(R)〈fj | (2.9)

For convenience, we sometimes abbreviate the row vector of the function space
as |f〉, so that the transformation is written as

R|f〉 = |f〉D(R) (2.10)

When the bra-functions are also ordered in a row vector, we likewise have:

R̂〈f| = 〈f|D̄(R) (2.11)

A product of two operators is executed consecutively, and hence the one closest to
the ket acts first. In detail,

R̂Ŝ|fi〉 = R̂
∑

j

Dji(S)|fj 〉

=
∑

k,j

Dkj (R)Dji(S)|fk〉

=
∑

k

[

D(R)×D(S)
]

ki
|fk〉 (2.12)

Here, the symbol × refers to the product of two matrices.

R̂Ŝ|f〉 = |f〉D(R)×D(S) (2.13)

This is an important result. It shows that the consecutive action of two operators can
be expressed by the product of the corresponding matrices. The matrices are said to
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Fig. 2.1 Matrix
representation of a group: the
operators (left) are mapped
onto the transformations
(right) of a function space.
The consecutive action of two
operators on the left

(symbolized by •) is replaced
by the multiplication of two
matrices on the right

(symbolized by ×)

represent the action of the corresponding operators. The relationship between both
is a mapping. In this mapping the operators are replaced by their respective matrices,
and the product of the operators is mapped onto the product of the corresponding
matrices. In this mapping the order of the elements is kept.

D(RS)=D(R)×D(S) (2.14)

In mathematical terms, such a mapping is called a homomorphism (see Fig. 2.1). In
Eq. (2.14) both the operators and matrices that represent them are right-justified; that
is, the operator (matrix) on the right is applied first, and then the operator (matrix)
immediately to the left of it is applied to the result of the action of the right-hand op-
erator (matrix). The conservation of the order is an important characteristic, which
in the active picture entirely relies on the convention for collecting the functions in a
row vector. In the column vector notation the order would be reversed. Further con-
sequences of the homomorphism are that the unit element is represented by the unit
matrix, I, and that an inverse element is represented by the corresponding inverse
matrix:

D(E)= I

D
(

R−1)=
[

D(R)
]−1

(2.15)

2.3 Unitary Matrices

A matrix is unitary if its rows and columns are orthonormal. In this definition the
scalar product of two rows (or two columns) is obtained by adding pairwise prod-
ucts of the corresponding elements, ĀijAkj , one of which is taken to be complex
conjugate:

∑

j

ĀijAkj =
∑

j

ĀjiAjk = δik↔A is unitary (2.16)

A unitary matrix has several interesting properties, which can easily be checked
from the general definition:
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• The inverse of a unitary matrix is obtained by combining complex conjugation
and transposition:

A
−1 = Ā

T (2.17)

Here, T denotes transposition of rows and columns. This result implies that
A−1
ij = Āji .

• The inverse and the transpose of a unitary matrix are unitary.
• The product of unitary matrices is a unitary matrix.
• The determinant of a unitary matrix has an absolute value of unity.

To prove the final property, we note that the determinant of a product of matrices is
equal to the product of the determinants of the individual matrices, and we also note
that the determinant does not change upon transposition of a matrix. By definition,
I=A×A

−1, and it then follows:

det
(

A×A
−1) = det(A)det

(

A
−1)

= det(A)det
(

Ā
T)

= det(A)det(Ā)

= det(A)det(A)

=
∣

∣det(A)
∣

∣

2 = det(I)= 1 (2.18)

Now consider a function space |f〉 and a linear transformation matrix, A, which
recombines the basis functions to yield a transformed basis set, say |f′〉. Such a
linear transformation of an orthonormal vector space preserves orthonormality if

and only if the transformation matrix A is unitary. Assuming that A is unitary, the
forward implication is easily proven:

〈

f ′k|f ′l
〉

=
∑

ij

ĀikAj l〈fi |fj 〉

=
∑

ij

ĀikAj lδij

=
∑

i

ĀikAil

= δkl (2.19)

The converse implication is that if a transformation preserves orthonormality, the
corresponding representation matrix will be unitary. Here, the starting point is the
assumption that the basis remains orthonormal after transformation:

∑

i

ĀikAil = δkl (2.20)
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This result may be recast in a matrix multiplication as

∑

i

ĀT
kiAil =

[

Ā
T ×A

]

kl
= δkl (2.21)

or ĀT×A= I. In order to prove the unitary property, we also have to prove that the
matrix order in this multiplication may be switched. This is achieved1 as follows:

Ā
T ×A= I

A× Ā
T ×A=A

A× Ā
T =A×A

−1

A× Ā
T = I

(2.22)

Left or right multiplication by ĀT thus turns the matrix A into the unit matrix, and
the inverse of a matrix is unique; it thus follows that the inverse of A is obtained
by taking the complex-conjugate transposed form, which means that the matrix is
unitary. Note that the result in Eq. (2.22) is valid only if the matrix A is nonsingular.
However, this will certainly be the case since

det
(

Ā
T
)

det(A)=
∣

∣det(A)
∣

∣

2 = 1 (2.23)

Spatial symmetry operations are linear transformations of a coordinate function
space. When choosing the space in orthonormal form, symmetry operations will
conserve orthonormality, and hence all transformations will be carried out by unitary
matrices. This will be the case for all spatial representation matrices in this book.
When all elements of a unitary matrix are real, it is called an orthogonal matrix. As
unitary matrices, orthogonal matrices have the same properties except that complex
conjugation leaves them unchanged. The determinant of an orthogonal matrix will
thus be equal to ±1. The rotation matrices in Chap. 1 are all orthogonal and have
determinant +1.

2.4 Time Reversal as an Anti-linear Operator

The fact that an operator cannot change a scalar constant in front of the function on
which it operates seems to be evident. However, in quantum mechanics there is one
important operator that does affect a scalar constant and turns it into its complex
conjugate. This is the operator of time reversal, i.e., the operator which inverts time,
t→−t , and sends the system back to its own past. If we are looking at a stationary

1Adapted from: [2, Problem 8, p. 59].
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state, with no explicit time dependence, time inversion really means reversal of the
direction of motion, where all angular momenta will be changing sign, including the
“spinning” of the electrons. We shall denote this operator as ϑ̂ . It has the following
properties:

ϑ̂(|fk〉 + |fl〉)= ϑ̂ |fk〉 + ϑ̂ |fl〉

ϑ̂c|fk〉 = c̄ϑ̂ |fk〉
(2.24)

These properties are characteristic of an anti-linear operator. As a rationale for the
complex conjugation upon commutation with a multiplicative constant, we consider
a simple case-study of a stationary quantum state. The time-dependent Schrödinger
equation, describing the time evolution of a wavefunction, Ψ , defined by a Hamil-
tonian H, is given by

−�

i

∂Ψ

∂t
=HΨ (2.25)

For a stationary state, the Hamiltonian is independent of time, and the wavefunction
is characterized by an eigenenergy, E; hence the right-hand side of the equation is
given by HΨ =EΨ . The solution for the stationary state then becomes

Ψ (t)= Ψ (t0) exp

(

− iE(t − t0)

�

)

(2.26)

Hence, the phase of a stationary state is “pulsating” at a frequency given by E/�.
Now we demonstrate the anti-linear character, using Wigner’s argument that a per-
fect looping in time would bring a system back to its original state.2 Such a process
can be achieved by running backwards in time over a certain interval and then re-
turning to the original starting time. Let Tt represent a displacement in time toward
the future over an interval t , and T−t a displacement over the same interval but
toward the past. The consecutive action of Tt and T−t certainly describes a per-
fect loop in time, and thus we can write:

T̂t T̂−t = Ê (2.27)

The reversal of the translation in time is the result of a reversal of the time variable.
We thus can apply the operator transformation under ϑ̂ , in line with the previous
results in Sect. 1.3:

T̂−t = ϑ̂ T̂t ϑ̂
−1 (2.28)

The complete loop can thus be written as follows:

Tt ϑ̂Tt ϑ̂
−1 = Ê (2.29)

2Adapted from [3, Chap. 26].
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This equation decomposes the closed path in time in four consecutive steps. Reading
Eq. (2.29) from right to left, one sets off at time t0 and reverses time (ϑ̂−1). Now
time runs for a certain interval t along the reversed time axis. A positive interval
actually means that we are returning in time since the time axis has been oriented
toward the past. This operation is presented by the displacement T̂t . Then one
applies the time reversal again and now runs forward over the same interval to close
the loop. The forward translation corresponds to the same T̂t operator since again
the interval is positive. Now multiply both sides of the equation, on the right, by
ϑ̂ T̂−t :

T̂t ϑ̂ = ϑ̂ T̂−t (2.30)

The actions of the translations on the wavefunction are given by

TtΨ (t0)= Ψ (t0) exp

(

− iEt

�

)

T−tΨ (t0)= Ψ (t0) exp

(

iEt

�

)

(2.31)

Applying now both sides of Eq. (2.30) to the initial state yields

TtϑΨ (t0) = ϑT−tΨ (t0)

= ϑ exp

(

iEt

�

)

Ψ (t0) (2.32)

Since the Hamiltonian that we have used is invariant under time reversal, the func-
tion ϑΨ (t0) on the left-hand side of Eq. (2.32) will be characterized by the same
energy, E, and thus translate in time with the same phase factor as Ψ (t0) itself.
Then the equation becomes

exp

(

− iEt

�

)

ϑΨ (t0)= ϑ exp

(

iEt

�

)

Ψ (t0) (2.33)

which shows that time reversal will invert scalar constants to their complex conju-
gate, and hence it will be an anti-linear operator.

Note that in the present derivation we avoided providing an explicit form for the
inverse of the time reversal operator. As a matter of fact, while space inversion is its
own inverse, applying time reversal twice may give rise to an additional phase factor,
which is +1 for systems with an even number of electrons, but −1 for systems with
an odd number of electrons. We shall demonstrate this point later in Sect. 7.6. Hence,
ϑ−1 =±ϑ , or

ϑ̂2 =±1 (2.34)
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2.5 Problems

2.1 A complex number can be characterized by an absolute value and a phase.
A 2× 2 complex matrix thus contains eight parameters, say

C=
(

|a|eiα |b|eiβ
|c|eiγ |d|eiδ

)

Impose now the requirement that this matrix is unitary. This will introduce rela-
tionships between the parameters. Try to solve these by adopting a reduced set
of parameters.

2.2 The cyclic waves eikφ and e−ikφ are defined in a circular interval φ ∈ [0,2π[.
Normalize these waves over the interval. Are they mutually orthogonal?

2.3 A matrix H which is equal to its complex-conjugate transpose, H = H̄
T, is

called Hermitian. It follows that the diagonal elements of such a matrix are
real, while corresponding off-diagonal elements form complex-conjugate pairs:

H Hermitian →Hii ∈R; Hij = H̄ji

Prove that the eigenvalues of a Hermitian matrix are real. If the matrix is skew-
Hermitian, H=−H̄T, the eigenvalues are all imaginary.
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Chapter 3

Groups

Abstract The concept of a group is introduced using the example of the symmetry
group of the ammonia molecule. In spite of its tiny size, this molecule has a struc-
tural symmetry that is the same as the symmetry of a macroscopic trigonal pyramid.
From the mathematical point of view, a group is an elementary structure that proves
to be a powerful tool for describing molecular properties. Three ways of dividing
(and conquering) groups are shown: subgroups, cosets, and classes. An overview
of molecular symmetry groups is given. The relationship between rotational groups
and chirality is explained, and symmetry lowerings due to applied magnetic and
electric fields are determined.
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3.1 The Symmetry of Ammonia

The umbrella shape of the ammonia molecule has trigonal symmetry with, in ad-
dition, three vertical reflection planes through the hydrogen atoms. Together these
symmetry elements form a point group, which, in the Schoenflies notation, is de-
noted as C3v . It is good practice to start the treatment by making a simple sketch of
the molecule and putting it in a right-handed Cartesian frame, as shown in Fig. 3.1.
By convention, the z-axis is defined as the principal threefold axis. One of the hydro-
gens is put in the xz plane as shown in the figure. We attach labels A, B, C to distin-
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Fig. 3.1 Group theory of the
ammonia molecule, with
three sets of labels: x, y, z
label the Cartesian axes,
σ̂1, σ̂2, σ̂3 label the symmetry
planes, and A, B, C label the
hydrogen atoms

guish the equivalent hydrogen atoms. In the active view, which we keep throughout,
the atoms will be displaced while the symmetry elements remain tied to the immo-
bile Cartesian frame. We shall thus not label the reflection planes by A,B,C, but we
shall instead denote them as σ̂1, σ̂2, σ̂3. The σ̂1 reflection plane coincides with the
xz coordinate plane. The action of the symmetry elements will be to permute the
atoms. The threefold axis, rotating counterclockwise about z, moves the atom A to
the position of B, which itself is displaced to the position originally occupied by C.
Finally, C travels to the place previously occupied by atom A. The σ̂1 plane will
leave A unchanged and will interchange B and C. Now consider the combination
σ̂1Ĉ3 of these two elements. We place the structure to the right of the right-justified
operators and then simply work out the action from right to left; hence, first the Ĉ3
axis, and then the plane. This is shown in a pictorial way in Fig. 3.2. First, the axis
will permute the atoms so that C takes the place of A. Consequently, the σ̂1 plane
will now conserve C and interchange A and B. The combined action is itself again
one of the symmetry elements, viz., σ̂2. The reverse product order yields a different
result. In summary,

σ̂1Ĉ3 = σ̂2

Ĉ3σ̂1 = σ̂3

(3.1)

In this way we can easily work out the full set of binary products, keeping in
mind that applying the threefold rotation three times, or the symmetry planes twice,
leaves every atom in place and thus corresponds to the unit element. The results are
gathered in the 6× 6 multiplication Table 3.1. This table should be read from left
to right, i.e., the product R̂iR̂j is found in the ith row and j th column. We may
symbolically denote the matrix elements in the table as

Mij = R̂iR̂j (3.2)
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Fig. 3.2 Applying σ̂1Ĉ3 to the starting structure is equivalent to applying σ̂2

Table 3.1 Multiplication
table for the point group C3v

C3v Ê Ĉ3 Ĉ2
3 σ̂1 σ̂2 σ̂3

Ê Ê Ĉ3 Ĉ2
3 σ̂1 σ̂2 σ̂3

Ĉ3 Ĉ3 Ĉ2
3 Ê σ̂3 σ̂1 σ̂2

Ĉ2
3 Ĉ2

3 Ê Ĉ3 σ̂2 σ̂3 σ̂1

σ̂1 σ̂1 σ̂2 σ̂3 Ê Ĉ3 Ĉ2
3

σ̂2 σ̂2 σ̂3 σ̂1 Ĉ2
3 Ê Ĉ3

σ̂3 σ̂3 σ̂1 σ̂2 Ĉ3 Ĉ2
3 Ê

As has already been shown, these operations can also be performed directly in func-
tion space. Choosing the xy-plane 2p-orbitals on nitrogen, {px,py}, as a suitable
basis set, we may represent all the symmetry elements by transformation matrices.
The resulting matrices are summarized in Table 3.2. Note that all six matrices are
different. The mapping between the symmetry elements and the matrices is there-
fore one-to-one, and the representation is said to be faithful. For the Ĉ3 axis, the
matrix corresponds to the one in Eq. (1.13), with rotation angle α = 2π/3, and for
the Ĉ2

3 axis, one has α = 4π/3, which is equivalent to the inverse angle α =−2π/3.
The σ̂1 element leaves px unchanged and inverts py . The other reflection planes are
similar to σ̂1, which means that they can be obtained by a symmetry transformation
of this operator, using the results in Sect. 1.3; hence,

σ̂2 = Ĉ3σ̂1Ĉ
−1
3

σ̂3 = Ĉ3σ̂2Ĉ
−1
3

(3.3)

The set of the six matrices in Table 3.2 offers an alternative algebraic way of con-
structing the multiplication table by direct matrix multiplication. The product Ĉ3σ̂1
is then replaced by the matrix multiplication D(C3)×D(σ1):

⎛

⎝

− 1
2 −

√
3

2

+
√

3
2 − 1

2

⎞

⎠×
(

1 0
0 −1

)

=

⎛

⎝

− 1
2 +

√
3

2

+
√

3
2 + 1

2

⎞

⎠ (3.4)

which yields the representation matrix for σ̂3, in line with Eq. (3.1).
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Table 3.2 Representation
matrices for the (px ,py)
basis in C3v

D(E)=
(

1 0

0 1

)

D(σ1)=
(

1 0

0 −1

)

D(C3)=

⎛

⎝

− 1
2 −

√
3

2

+
√

3
2 − 1

2

⎞

⎠ D(σ2)=

⎛

⎝

− 1
2 −

√
3

2

−
√

3
2 + 1

2

⎞

⎠

D(C2
3 )=

⎛

⎝

− 1
2 +

√
3

2

−
√

3
2 − 1

2

⎞

⎠ D(σ3)=

⎛

⎝

− 1
2 +

√
3

2

+
√

3
2 + 1

2

⎞

⎠

3.2 The Group Structure

The set of symmetry operations of ammonia is said to form a group, G. This is a fun-
damental mathematical structure consisting of a set of elements and a multiplication
rule with the following characteristics:

• Existence of a unit element, Ê, which leaves all elements unchanged:

ÊR̂ = R̂Ê = R̂ (3.5)

In the list of elements the unit element is placed in front. As a result, the first row
and first column of the multiplication table will simply repeat the ordered list of
symmetry elements on which the table was based.

• Existence of an inverse element, R̂−1, for every element R̂:

R̂R̂−1 = R̂−1R̂ = Ê (3.6)

Hence every action can also be undone. If this were not the case, we would have
produced a monster that can only continue to grow. In the multiplication table, a
unit element at position ij indicates that R̂i and R̂j are mutual inverses. Clearly,
for the unit element, as well as for the reflection planes, R̂ and R̂−1 coincide,
while, for the Ĉ3 axis, the inverse is equal to Ĉ2

3 , which completes a full turn.
• Closure:

∀R̂ ∈G & Ŝ ∈G⇒ R̂Ŝ ∈G&ŜR̂ ∈G (3.7)

In the multiplication table, this is apparent by the fact that no entries are left open.
• Associativity:

R̂(ŜT̂ )= (R̂Ŝ)T̂ (3.8)

It is difficult to imagine that such a simple set of rules can give rise to such a pow-
erful structure on which entire properties of molecules will depend. Note that, com-
pared with a number system, a group is an even more primitive concept since it
contains only one operation, multiplication, by means of which two elements of the
group may be combined. In contrast, the set of numbers allows for addition and mul-
tiplication, which results in two kinds of unit elements, zero for addition and unity
for multiplication. A closer look at the multiplication table of the group shows that it
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has very remarkable properties. Each row and each column represent a permutation
of the ordered set of elements, but in such a way that every element occurs only
once in each row and column. This is a direct consequence of the group properties.
As in many group-theoretical proofs, the simplest way to show this is by a reductio

ad absurdum. Suppose that a given element, T̂ , occurred at entries ij and ik, with
R̂k 
= R̂j . Then one would have, by applying the rules:

R̂iR̂j = R̂iR̂k

R̂−1
i (R̂iR̂j )= R̂−1

i (R̂iR̂k)

(

R̂−1
i R̂i

)

R̂j =
(

R̂−1
i R̂i

)

R̂k

ÊR̂j = ÊR̂k

R̂j = R̂k

(3.9)

which would contradict the original supposition. Along the same lines it is easy to
prove that the inverse of a product is equal to the product of the inverses in the
opposite order:

(R̂iR̂j )
−1 = R̂−1

j R̂−1
i (3.10)

As a matter of principle, the group multiplication table contains everything there is
to know about the group. It is, though, not necessary to store the whole multiplica-
tion table. A more compact way uses generators. The generators are defined as a
minimal set of elements capable of generating the whole group. For the present ex-
ample, two generators are needed, e.g., Ĉ3 and σ̂1. It is sufficient to make all binary
combinations of these two operators in order to generate all remaining elements:

Ĉ3Ĉ3 = Ĉ2
3

σ̂1σ̂1 = Ê

Ĉ3σ̂1 = σ̂3

σ̂1Ĉ3 = σ̂2

(3.11)

Alternatively, any pair of reflection planes would suffice as generators, say σ̂1
and σ̂2, but in this case the remaining symmetry plane can be obtained only by a
further multiplication:

σ̂1σ̂1 = Ê

σ̂2σ̂2 = Ê

σ̂1σ̂2 = Ĉ3

σ̂2σ̂1 = Ĉ2
3

σ̂1σ̂2σ̂1 = σ̂3

(3.12)
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Fig. 3.3 Cayley graph of the
C3v point group. The
generators are c= Ĉ3 and
s = σ̂1

A presentation of a group is a set of generators, together with a minimal set of rela-
tions that are sufficient to work out any product of two elements. As an example, let
us denote the Ĉ3, σ̂1 generators as c, s. Just three relations among these generators
are sufficient to derive the whole multiplication table: c3 = s2 = e, sc = c2s. The
generation of the six elements of the group follows from Eq. (3.11):

Ê = e

Ĉ3 = c

Ĉ2
3 = c2

σ̂1 = s

σ̂2 = sc

σ̂3 = cs

(3.13)

Any product of these elements can be shown to be closed using only the presenta-
tion. As an example, the rule σ̂2σ̂3 = Ĉ3, is expressed in the presentation as follows:

sccs = s
(

c2s
)

= s(sc)= s2c= c (3.14)

In this way the whole multiplication table can be derived.
The structure of the group can also be encoded in a graph known as the Cayley

graph. A graph is an abstract mathematical object consisting of a set of points, or
nodes, and a set of lines connecting pairs of these points. In a directed graph these
pairs are ordered, which means that directional arrows are added to the connecting
lines. In the Cayley graph every element of the group corresponds to a node. The
lines correspond to the action of the group generators. The generator ĝ connects
a given node 〈R̂i〉 by a directed line to the resulting node 〈ĝR̂i〉. The action of
the group on its own Cayley graph will not only map nodes onto nodes, but will
also preserve the directed connections. As a result, the symmetry group will map
the graph onto itself. Such a mapping is called an automorphism. The group G is
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Table 3.3 Multiplication
table for the point group D2

D2 Ê Ĉx
2 Ĉ

y

2 Ĉz
2

Ê Ê Ĉx
2 Ĉ

y

2 Ĉz
2

Ĉx
2 Ĉx

2 Ê Ĉz
2 Ĉ

y

2

Ĉ
y

2 Ĉ
y

2 Ĉz
2 Ê Ĉx

2

Ĉz
2 Ĉz

2 Ĉ
y

2 Ĉx
2 Ê

thus isomorphic to the automorphism group of its Cayley graph. The Cayley graph
corresponding to the group C3v , generated by Ĉ3 and σ̂1, is shown in Fig. 3.3. It
resembles a trigonal prism, but with opposite directions in the upper and the lower
triangle. The σ̂1 generator corresponds to the upright edges of the prism. Since this
generator is its own inverse, these edges can be traversed in both directions, so they
are really undirected.

3.3 Some Special Groups

Abelian groups1 are groups with a commutative multiplication rule, i.e.,

∀R̂ ∈G & Ŝ ∈G⇒ R̂Ŝ = ŜR̂ (3.15)

Hence, in an abelian group, the multiplication table is symmetric about the diagonal.
Clearly, our group C3v is not abelian.

Cyclic groups are groups with only one generator. They are usually denoted as
Cn. The threefold axis gives rise to the cyclic group C3. Its elements consist of
products of the generator. By analogy with number theory, such multiple products
are called powers; hence, C3 = {Ĉ3, Ĉ

2
3 , Ĉ

3
3}, where the third power is of course

the unit element. Similarly, the reflection planes yield a cyclic group of order 2. The
standard notation for this group is not C2 but Cs . Cyclic groups are of course abelian
because the products of elements give rise to a sum of powers and summation is
commutative:

ĈiĈj = Ĉi+j = Ĉj+i = Ĉj Ĉi (3.16)

By contrast, not all abelian groups are cyclic. A simple example is the group2 D2 of
order 4, which is presented in Table 3.3. It needs two perpendicular twofold axes as
generators and thus cannot be cyclic. Nonetheless, it is abelian since its generators
commute.

The symmetric group, Sn, is the group of all permutations of the elements of a
set of cardinality n. The order of Sn is equal to n!. As it happens, our C3v group
is isomorphic to S3. The permutations are defined on the ordered set of the three

1Named after the Norwegian mathematician Niels Henrik Abel (1802–1829).
2This group is isomorphic to Felix Klein’s four-group (Vierergruppe).



28 3 Groups

hydrogen atomic labels 〈ABC〉. Interchange of A and B means that, in this row,
the element A is replaced by B and vice versa. Another way to express this is that
“A becomes B, and B becomes A,” and hence (A→ B→A). This interchange is a
transposition or 2-cycle, which will be denoted as (AB). The operation for the entire
set is then written as a sequence of two disjunct cycles (C)(AB), where the 1-cycle
indicates that the element C remains unchanged. The 3-cycle (ABC) corresponds
to a cyclic permutation of all three elements: (A→ B→ C→ A). The successive
application of both operations, acting on the letter string, can be worked out as
follows:

〈ABC〉
(C) (AB) ⇓

〈BAC〉
(ABC) ⇓

〈CBA〉

(3.17)

The result is to permute A and C, and leave B invariant. This result defines the
product of the two operations as

(ABC) · (C)(AB)= (B)(AC) (3.18)

The multiplication table for the whole group is given in Table 3.4. The group multi-
plication tables of S3 and C3v clearly have the same structure, but the isomorphism
can be realized in six different ways, as there are six ways to associate the three
letters with the three trigonal sites. It is important to keep in mind that the two
kinds of groups have a very different meaning. The C3v operations refer to spatial
symmetry operations of the ammonia molecule, while the permutational group is a
set-theoretic concept and acts on elements in an ordered set. As an example, one
might easily identify the σ̂1 reflection plane with the (A)(BC) permutation opera-
tion since it indeed leaves A invariant and swaps B and C. However, as shown in
Fig. 3.2, when this reflection is preceded by a trigonal symmetry axis, the atom C
has taken the place of A, and the σ̂1 plane now should be described as (C)(AB).
For a proper definition of the relationship between nuclear permutations and spatial
symmetry operations, we refer to Sect. 5.4, where the molecular symmetry group is
introduced.

In S3 the number of transpositions, i.e., pairwise interchanges of atoms, is zero
for the unit element, one for the reflection planes, and two for the threefold axes.
Odd permutations are defined by an odd number of transpositions. The product of
two even permutations is an even permutation, and for this reason, the even per-
mutations alone will also form a group, known as the alternating group, An. In the
present example, the alternating group A3 is isomorphic to the cyclic group C3. By
contrast, the product of two odd permutations is not odd, but even. So odd permuta-
tions cannot form a separate group.
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Table 3.4 Multiplication table for the symmetric group S3. The unit element can also be expressed
as three 1-cycles: (A)(B)(C)

S3 Ê (ABC) (ACB) (A)(BC) (B)(AC) (C)(AB)

Ê Ê (ABC) (ACB) (A)(BC) (B)(AC) (C)(AB)

(ABC) (ABC) (ACB) Ê (C)(AB) (A)(BC) (B)(AC)

(ACB) (ACB) Ê (ABC) (B)(AC) (C)(AB) (A)(BC)

(A)(BC) (A)(BC) (B)(AC) (C)(AB) Ê (ABC) (ACB)

(B)(AC) (B)(AC) (C)(AB) (A)(BC) (ACB) Ê (ABC)

(C)(AB) (C)(BA) (A)(BC) (B)(AC) (ABC) (ACB) Ê

The group multiplication table contains all there is to know about a group. It

hides a wealth of internal structure that is directly relevant to the physical phenom-

ena to which the group applies. In order to elucidate this structure, three ways of

delineating subsets of the group are useful: subgroups, cosets, and classes.

3.4 Subgroups

A subgroup H of G, denoted H ⊂G, is a subset of elements of G, which itself has
the group property. Trivial subgroups are the group containing the identity alone,
denoted as C1 = {Ê}, and the group G itself. Besides these, in the case of the group
of ammonia, C3v , there are four nontrivial subgroups: C3 = {Ê, Ĉ3, Ĉ

2
3 }, and Cs =

{Ê, σ̂i} with i = 1,2, or 3. The three Cs groups are equivalent. We can construct
a simplified genealogical tree, which shows the subgroup structure (Fig. 3.4). In
chemistry and physics, subgroup structures are highly relevant since the distortions
of a symmetric system can be described as a descent down the genealogical tree. We
shall describe this in Sect. 4.6 as the subduction process. For the moment, we retain
Cayley’s theorem:

Theorem 1 Every group of order n is isomorphic with a subgroup of the symmetric

group Sn.

This theorem is immediately clear from the multiplication table. A given row of
the table shows how the corresponding element maps the entire set of elements onto
itself. This mapping is a permutation of the n elements, and every element gives
rise to a different permutation since no two rows are the same. Thus, G must be
a subgroup of Sn. The importance of this theorem is especially evident from the
mathematical point of view. It tells us that the symmetric groups exhaust all the
possible structures of finite groups.
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Fig. 3.4 Genealogical tree,
representing progressive
symmetry breaking of the
C3v point group. The Cs box
stands for the three equivalent
reflections groups

3.5 Cosets

A genuine partitioning of a group is achieved when the set of elements is divided
into separate subsets that do not exhibit any overlap and, together, constitute the
whole group. Subgroups clearly do not form a partitioning since, for instance, they
all share the same unit element. On the other hand, cosets do form a partitioning.
In molecules, the natural realizations of the cosets are the sets of equivalent sites.
These are atoms or groups of atoms that are permuted by the action of the molec-
ular symmetry group. In the example of the ammonia molecule, each of the three
hydrogen atoms occupies an equivalent site with Cs symmetry. The nitrogen atom,
however, occupies a unique site that has the full C3v symmetry. Now consider the
site of one particular hydrogen atom, say A. The Cs subgroup that leaves this site
invariant consists of only two symmetry elements: Ê and σ̂1. This subgroup is called
the stabilizer of the site. When we multiply each element of this subgroup (on the
left) with an element outside it, say Ĉ3, we obtain two new elements, Ĉ3 and σ̂3,
which both share the property that they map A onto B. They form a (left) coset of
the original Cs subgroup, and the element that we used to form this coset is the
coset-representative. There is still another coset, which may be generated by one
of the remaining elements, say Ĉ2

3 . In this way, one finds the coset, {Ĉ2
3 , σ̂2}, of

elements which have the property that they both map A onto C. The sum of all the
cosets forms the total set, and hence,

C3v = {Ê, σ̂1} + {Ĉ3, σ̂3} +
{

Ĉ2
3 , σ̂2

}

(3.19)

We can rewrite this in general as

G=
∑

n

R̂nH (3.20)

where R̂n denotes a coset representative, and the product R̂nH denotes the nth coset,
obtained by multiplying every element of the subgroup on the left by the generator.
The choice of coset representatives is not unique since every element of a given
coset may act as representative. In the case of the present group, we can choose all
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representatives as powers of the threefold axis, which allows introduction of a cyclic
summation:

C3v =
3
∑

n=1

(Ĉ3)
nCs (3.21)

This expression forms a nice illustration of how representatives make different maps
of the subgroup. These cosets form an orbit inside the group. Note that the way
cosets are defined here is based on left multiplication by the generators, giving rise
to what are also denoted as left cosets. An analogous partitioning of the group can
also be based on right cosets. The partitioning of a group in cosets gives rise to the
famous Lagrange theorem:

Theorem 2 The order of a subgroup of a finite group is a divisor of the order of the

group.

Consider a group G and subgroup H with respective orders |G| and |H |. The
theorem states that |G|/|H | is an integer. The proof is based on two elements. One
first has to prove that all elements in a given coset are different and further that
different cosets do not manifest any overlap.

Consider a coset R̂iH with elements R̂i ĥx . For ĥx 
= ĥy , R̂i ĥx must be different
from R̂i ĥy , simply because two elements in the same row in the multiplication table
can never be equal, as was proven in Eq. (3.9). Hence, the size of the coset will be
equal to |H |. Then we consider an element R̂j /∈ R̂iH . This new element will in turn
be the representative of a new coset, R̂jH , and we must prove that this new coset
does not overlap with the previous one. This can easily be demonstrated by reductio

ad absurdum. Suppose that there is an element R̂j ĥx in the second coset that also
belongs to the first coset, as R̂i ĥy . We then have:

R̂j ĥx = R̂i ĥy

R̂−1
i R̂j = ĥy ĥ

−1
x

(3.22)

Since the subgroup H has the group property, the inverse element ĥ−1
x is also an

element of H , and so is its product with ĥy . Hence, the product R̂−1
i R̂j will be an

element of H , say ĥz = ĥy ĥ
−1
x . The first coset will of course contain the element

R̂i ĥz, which reduces to

R̂i ĥz = R̂i ĥy ĥ
−1
x = R̂iR̂

−1
i R̂j = R̂j (3.23)

Hence, R̂j ∈ R̂iH , contrary to the assumption. The expansion of the group in cosets
thus leads to a complete partitioning in subsets of equal sizes. It starts by the subset
formed by the subgroup H . If H is smaller than G, take an element outside H and
form with this element a coset, which will have the same dimension as H . If there
are still elements outside, use one of these to form a new coset, again containing |H |
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elements, etc. Each time a coset is formed, a block of size |H | is occupied till the
full territory of the group is occupied by subsets of the same size. Their order must
thus be a divisor of the group order. In a sense, one could describe this collection
of cosets as the quotient, resulting from the “division” of the group by a subgroup.
We shall make use of this concept in the induction of representations in Sect. 4.6. In
the present example, the point group of ammonia is of order 6, with divisors 1, 2, 3,
and 6, and for each of these, there are indeed subgroups. This is rather exceptional,
though. It is not the case that for every divisor there should be a subgroup. As a
further corollary, groups with an order which is a prime number have no nontrivial
subgroups.

3.6 Classes

Probably, the most natural way to partition a group is by putting all elements “of the
same kind” into separate classes. Hence, in the group C3v we could put the three
planes in one class; the unit element is of course a separate class, but what about
the Ĉ3 and Ĉ2

3 axes? Are they of the same kind or not? Clearly, we need a rigorous
definition of what it means for two symmetry elements to be equivalent. We can use
as a criterion the symmetry transformations of an operator, as explained in Sect. 1.3.
Hence, two elements Â and B̂ will belong to the same class, Â∼ B̂ , if there exists
(denoted as ∃) a symmetry operation Û that belongs to the group and transforms B̂
into Â:

Â∼ B̂ : ∃Û ∈G→ Â= Û B̂Û−1 (3.24)

In C3v , the symmetry planes will map Ĉ3 onto Ĉ2
3 . Hence, we can safely say that the

two threefold elements belong to the same class, because of the existence of sym-
metry planes, which can reverse the direction of rotation. Synonyms for “to belong
to the same class” are: “to be (class-)conjugate” or “to be similarity transforms.” If
the element Û transforms B̂ to Â, then the inverse element, Û−1, which because
of the group properties also belongs to G, will do the reverse and will transform Â

into B̂ . Hence, conjugation is reflexive. It is, furthermore, transitive:

(Â∼ B̂)&(B̂ ∼ Ĉ)→ (Â∼ Ĉ) (3.25)

The set of all elements that are conjugate with a given element is a conjugacy class

or simply a class. A class is fully denoted by specifying any one of its elements in
the same way as a coset is defined by any one of its representatives. The total group
is of course the sum of all its classes. In abelian groups, the similarity transformation
will always return the element on which it was acting; hence, in this case, all classes
will be singletons (sets of order 1). The unit element is unique, so it is always in its
own class.

Theorem 3 The number of elements in a class is a divisor of the group order.
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The proof makes use of the coset concept. We start by considering all elements
that stabilize a given element, say Â0, of the group. One can prove that these ele-
ments constitute a subgroup H ⊂G. Hence, we write:

ĥx ∈H ⇔ ĥxÂ0ĥ
−1
x = Â0 (3.26)

The proof consists of a check of the four group criteria. The closure, for instance, is
proven as follows: suppose that both ĥx and ĥy stabilize Â0; then their product will
also be a stabilizer:

ĥx ĥyÂ0(ĥx ĥy)
−1 = ĥx ĥyÂ0ĥ

−1
y ĥ−1

x = ĥxÂ0ĥ
−1
x = Â0 (3.27)

where we use the result of Eq. (3.10) that the inverse of a product is equal to the
product of the inverses in the reverse order. Next, we expand G in cosets of this
newly found subgroup H . All elements of a coset R̂iH , with R̂i /∈H , will transform
Â0 into the same new element Âi :

R̂i ĥxÂ0(R̂i ĥx)
−1 = R̂i ĥxÂ0ĥ

−1
x R̂−1

i = R̂iÂ0R̂
−1
i = Âi (3.28)

The result must be different from Â0 because, otherwise, R̂i would be an element
of H . In order to prove the theorem, the following remaining questions have to be
decided. Do different cosets give rise to different similarity transforms? Does one
obtain all elements of a class by finding all transforms of a given starting element?
The answers to both questions are affirmative. For the first question, if R̂i and R̂j

represent different cosets, one should conclude that Âi 
= Âj . Suppose that the op-
posite is true:

R̂iÂ0R̂
−1
i = R̂j Â0R̂

−1
j

R̂−1
i R̂j Â0R̂

−1
j R̂i = Â0

R̂−1
i R̂j Â0

(

R̂−1
i R̂j

)−1 = Â0

(3.29)

This implies that R̂−1
i R̂j stabilizes Â0 and thus must belong to H , where it corre-

sponds to, say, ĥz. But one then again has

R̂i ĥz = R̂iR̂
−1
i R̂j = R̂j (3.30)

and thus R̂j is a representative of the same coset as R̂i , which contradicts the starting
assumption. Hence, there will be at least as many equivalent elements in the class as
there are cosets of the stabilizing subgroup. Have we then generated the entire class?
Yes, because by going through all the cosets, we run through the entire group. In this
way, we have found all elements that are conjugate to a given one, but, because of
transitivity, this also means that there cannot be other conjugate elements. The one-
to-one mapping between conjugate elements and cosets implies that the number in
a class is equal to the number of cosets of the stabilizing subgroup and hence—by
Lagrange’s theorem—must be a divisor of the group order.
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The proof illustrates the connection between cosets and conjugacy classes. A spe-
cial example of this arises in the case of normal, or invariant, subgroups. A subgroup
H is normal if its left and right cosets coincide, i.e., if R̂iH = HR̂i . This implies
that all the elements of the group will map the subgroup onto itself or, for a normal
subgroup H ,

∀Û ∈G & ĥx ∈H : Û ĥxÛ−1 ∈H (3.31)

Normal subgroups are thus made up of entire conjugacy classes of G. As an exam-
ple, the group C3 is a normal subgroup of C3v since it contains the whole conjugacy
class of the trigonal elements. A molecular site that is stabilized by a normal sub-
group must be unique since it can be mapped only onto itself. Such is the case for
the nitrogen atom in ammonia. By contrast, the Cs subgroups stabilizing the hy-
drogen sites in ammonia are not normal since they are based on only one reflection
plane, while there are three symmetry planes in the corresponding conjugacy class.
Accordingly, the hydrogen sites are not unrelated.

3.7 Overview of the Point Groups

The highest point group symmetry is that of the spherical symmetry group. The
gradual descent in symmetry from the sphere provides a practical tool to determine
and classify molecular symmetry groups. Molecules with a symmetry that is closest
to the sphere are isotropic, in the sense that there is no unique direction to orient
them. The corresponding symmetry groups are the cubic and icosahedral groups.

Breaking spherical symmetry gives rise to symmetry groups based on the cylin-
der. Cylindrical symmetry splits 3D space into an axial 1D component and an equa-
torial 2D space, which remains isotropic. Molecules with cylindrical shapes have a
unique anisotropy axis, along which they may be oriented in space. Conventionally
this direction is denoted as the z-direction. Along this direction they have a principal
n-fold rotation or rotation–reflection axis, which is responsible for the remaining in-
plane isotropy. Finally, further removal of all Ĉn or Ŝn with n > 2 leads to molecules
that are completely anisotropic and have at most orthorhombic symmetry, D2h. In
this section we will provide a concise overview of the point groups, following a path
of descent in symmetry. We thereby refer to the list of point groups presented in the
character tables in Appendix A.

Spherical Symmetry and the Platonic Solids

Any plane through the center of a sphere is a reflection plane, and any axis through
the center is a rotation axis, as well as a rotation–reflection axis. In addition, the
sphere also is centrosymmetric, which means that the center is a point of inversion.
The resulting infinite-dimensional symmetry group of the sphere is usually denoted
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Table 3.5 The Platonic
solids and their point groups.
The numbers count the
triangles, squares, and
pentagons, that intersect in a
vertex of the solid

Triangle Square Pentagon

3 Tetrahedron (Td ) Cube (Oh) Dodecahedron (Ih)

4 Octahedron (Oh)

5 Icosahedron (Ih)

as O(3), which refers to the orthogonal group in three dimensions. This assignment
is based on the one-to-one correspondence between the symmetry operations of the
sphere and the set of 3×3 orthogonal matrices. This will be explained in more detail
in Sect. 7.1. Only isolated atoms exhibit spherical symmetry. Molecular shapes that
approximate perfect spherical symmetry are based on the regular polyhedra, the
building blocks of which are regular polygons. These polygons are obtained by
distributing n points around a circle in such a way that all points are equivalent, i.e.,
that the distances between any two neighboring points are the same, implying that
the angles subtended by adjacent edges are also the same. In this way the circle may
circumscribe an equilateral triangle, a square, a regular pentagon, etc.

In fact, for any integer nwith 3≤ n≤∞, a regular n-gon can be obtained, though
not all of them can be drawn by use of a ruler and compass. In 3D things are quite
different. Defining regular polyhedra by distributing n points over a sphere in such a
way that all vertices, edges, and faces of the resulting structures are the same cannot
be realized in infinitely many ways: quite on the contrary, only five solutions are pos-
sible.3 These are known as the Platonic solids, and they are listed in Table 3.5. They
played an important role in Pythagorean tradition, as well as in Eastern philosophy
and religion. The fact that in 3D only five solutions exist was considered to reveal
a fundamental truth about nature, to the extent that Plato, in his Timaeus, based his
natural philosophy on these solids. The ancient doctrine of the four elements was
placed in correspondence with four of the solids. The tetrahedron (or 4-plane), with
symmetry Td , has the most acute angles and was associated with fire. The cube, or
hexahedron (6-plane), with symmetry Oh, is clearly the most stable structure and
refers to the earth. The icosahedron (20-plane), with symmetry Ih, contains twenty
faces and is therefore closest to a globular surface, which symbolizes the most fluid
element, water. Both cube and icosahedron have a dual partner, which is obtained
by replacing vertices by faces and vice versa. The dual of the cube is the octahedron
(8-plane), which figured for air. In Table 3.5, the octahedron is placed between the
tetrahedron and the icosahedron, and this seemed appropriate for air because it is
intermediate between fire and water in its mobility, sharpness, and ability to pen-
etrate. The dual of the icosahedron is the regular dodecahedron (12-plane). There
being only four elements, the discovery of the fifth solid caused some embarrass-
ment, which found an elegant solution by its being assigned to the substance of the

3The sum of the angles subtended at a vertex of a Platonic solid must be smaller than a full angle
of 2π . Hence, no more than five triangles, three squares, or three pentagons can meet in a vertex;
regular hexagons are already excluded since the junction of three such hexagons already gives rise
to an angle of 2π at the shared vertex.
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Fig. 3.5 Genealogical tree
for the cubic and icosahedral
point groups

heavens. The dodecahedron and its intriguing symmetry were considered worthy of
the stars, with their perfect cosmic order. Besides the three point groups, Td ,Oh,
and Ih, represented by the Platonic solids, there are four more groups that belong
to the isotropic family: Th, T ,O , and I . They are subgroups of the octahedral and
icosahedral groups, as shown in Fig. 3.5.

The Tetrahedron

Td symmetry (Fig. 3.6(a)) plays a crucial role in chemistry. It is the symmetry of
the valence structure of aliphatic carbon. The attribution of this symmetry to carbon
by Van’t Hoff4 as early as 1874, i.e., well before the modern concept of molecular
structure and some two and a half millennia after Pythagoras, remains a tribute to
the Greek vision that the fundamental structure of matter consists of ideal symmetric
shapes. The tetrahedron is the most fundamental of the solids since it is the simplex

of 3D space. A simplex is a figure consisting of vertices that are all equivalent and
are equidistant from each other.5 In an n-dimensional space the simplex contains
n+ 1 vertices, e.g., in 2D Euclidean space exactly three points can be distributed in
such a way that they are equidistant, viz., by occupying the vertices of an equilateral
triangle. In 3D space only four points can be distributed in such a way that they have
this property, the solution being the tetrahedron. The perfect permutational symme-
try of the vertices of the n-simplex implies that the corresponding symmetry group
is isomorphic to the symmetric group Sn. We have already seen that the triangular
symmetry of the hydrogens in ammonia could be described by S3; in the same way
the tetrahedral symmetry group is isomorphic to S4. The rotational subgroup of Td
is the group T , which, in turn, is isomorphic to the alternating group A4. An ex-
traordinary member of the tetrahedral family is the group Th, which has the same

4Van’t Hoff published his findings in 1874 in Utrecht. In the same year, Le Bel came to the same
conclusion, based on the investigation of optical rotatory power. An English translation of the
original papers of both chemists can be found in: [1].
5In graph theory the graph of a simplex with n vertices is the complete n-graph, Kn. In such
a graph, each of the n vertices is connected to all the other (n − 1) vertices. There is only one
simplex for each dimension.
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Fig. 3.6 The tetrahedral and octahedral symmetry groups: (a) tetrahedron, inscribed in a cube by
connecting four alternating corners; (b) orientation of the cube based on fourfold axes along the
Cartesian directions; Ĉxy

2 lies along the acute bisector of the x and y directions; the dashed triangle
is one face of the inscribed tetrahedron; (c) construction drawing of the octahedron in the same
fourfold setting; the Ĉ2 axis shown is the bisector of the positive x and negative y direction; and
(d) same drawing of the octahedron with a trigonal coordinate orientation: the z′ direction is along
the Ĉ3 axis, and the x′-direction is along the bisector of the positive x- and negative y-directions

order as Td and also contains T as its rotational subgroup. Molecular examples of
this group are quite rare and will mostly be encountered as symmetry lowering of
cubic or icosahedral molecules (see later, Fig. 3.8).

The Cube and Octahedron

The group Oh contains 48 elements and is the symmetry group of the octahedron
and the cube (see Fig. 3.6(b)). The system of Cartesian axes itself has octahedral
symmetry, and, as such, this symmetry group is the natural representative of 3D
space. It is ubiquitous in ionic crystals, where it corresponds to coordination num-
bers 6 (as in rock salt, NaCl) or 8 (as in caesium chloride, CsCl). It is also the
dominant symmetry group of coordination compounds. The rotational subgroup is
the group O with 24 elements. The octahedron provides us with an insight into the
basic architecture of polyhedra. There are three structural elements: vertices, edges,
and faces. Through each of these runs a rotational symmetry axis: a Ĉ4 axis through
the vertices, a Ĉ2 axis through the edge, and a Ĉ3 axis through the face center. In
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Fig. 3.7 (a) Icosahedron in a D2h setting, (b) Th structure based on the icosahedral edges through
the Cartesian coordinate axes

a triangular face, the product of the three rotations equals the unit element. For the
triangle that is turned toward the viewer in Fig. 3.6(c), this is

Ĉxz
2 Ĉ

xyz

3 Ĉz
4 = Ê (3.32)

The symmetry elements are labeled by the indices x, y, and z, which refer to their
orientation in the Cartesian coordinate system, e.g., Ĉxyz

3 indicates the Ĉ3 axis,
which is the diagonal of the positive Cartesian directions. This notation emphasizes
that symmetry elements are tied to the coordinate system and stay fixed in space.

The Icosahedron and Dodecahedron

Icosahedral symmetry is less obvious and thus more intriguing than cubic sym-
metry. Whilst tetrahedral and octahedral molecules were already known before the
turn of the nineteenth/twentieth century, the first structural study of an icosahedral
molecule was the closo-dodecaborane, B12H

2−
12 , in 1960. More examples would

follow: in 1984, dodecahedrane, C20H20, and then the supermolecule Buckminster-
fullerene, C60, which has the shape of a truncated icosahedron [2–4]. Icosahedral
structures can be drawn inside a regular hexagon, as shown in Fig. 3.7(a). The co-
ordinate axes in this figure are chosen in such a way that each of the Cartesian
directions coincides with a twofold axis. These axes together form a D2h subgroup.
This orientation thus corresponds to a D2h setting. Figure 3.7(b) shows the orienta-
tion of the edges through the Cartesian directions. When going from one axis to a
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Fig. 3.8 (a) Dodecahedron, the square is the top face of an inscribed cube; (b) supramolecu-
lar complex of C60 Buckminsterfullerene with six η2-platina-bis(triphenyl)phosphine adducts on
double bonds adjacent to two hexagons; the adducts adopt a D2h setting and reduce the icosahedral
symmetry of the buckyball to Th

neighboring axis, one always rotates the edges by 90◦. In fact, there are two ways to
realize this D2h setting either with the top edge in the xz plane, as in Fig. 3.7(b), or
in the yz plane [5]. The reason is that the Oh symmetry of the Cartesian frame is not
a subgroup of Ih since |Oh| is not a divisor of |Ih|. Their highest common subgroup
is the 24-element group Th, as indicated in Fig. 3.5. The structure of the six edges in
Fig. 3.7(b) does indeed have Th symmetry. Note that Th is a normal subgroup of Oh,
but not of Ih. The dual of the icosahedron is the dodecahedron, shown in Fig. 3.8(a).
In a dodecahedron, one can select a set of eight vertices that form the corners of a
cube. The dashed square in the figure is the top face of such an inscribed cube. Eu-
clid already demonstrated that a cube could be drawn inside a dodecahedron in such
a way that its twelve edges each lie in one of the twelve faces of the dodecahedron.
In turn, in the center of each of the faces of this cube there lies a dodecahedral edge,
which breaks the fourfold symmetry axes of the cube. The stabilizer of the cube in-
side Ih is the subgroup Th. The icosahedral group can be partitioned into five cosets
of Th, which can be generated in a cyclic orbit by a pentagonal generator:

Ih =
5
∑

n=1

(Ĉ5)
nTh (3.33)

Each of the cosets refers to an inscribed cube, exactly as the three Cs cosets in
C3v ammonia refer to the three equivalent hydrogen sites. Hence, in a dodecahe-
dron there will be five inscribed cubes. Since the order of the Ih group is 120,
which equals 5!, it is tempting to think of this group as isomorphic to S5, permuting
the five inscribed cubes. This, however, is not the case since Ih contains 10-fold



40 3 Groups

rotation-reflection axes, which are not present in S5. On the other hand, the rota-
tional subgroup I is indeed isomorphic to the alternating group A5. The icosahedral
rotations act transitively on the set of five cubes. The icosahedron also contains six-
fold rotation–reflection axes, Ŝ6. These symmetry elements act transitively on the
set of the six pentagonal directions. C60 (Buckminsterfullerene) has perfect Ih sym-
metry and corresponds to a truncated icosahedron. Bonds that are adjacent to two
hexagons have pronounced double-bonding character. Metal fragments can coordi-
nate [6] to these bonds, as shown in Fig. 3.8(b). A hexa-adduct is formed with near
Th symmetry.

Cylindrical Symmetries

Cylinders, Prisms, Antiprisms

The full symmetry group of an ideal cylinder is denoted by D∞h. The D stands for
dihedral6 and h for horizontal. Like the spherical group, the cylindrical symmetry
group is a continuous symmetry group, which has an infinite number of elements. It
contains any rotation or rotation–reflection about the z-axis, any Ĉ2 axis in the equa-
tor and any vertical symmetry plane, σ̂v . In addition there are four singleton classes,
viz. the identity, the Ĉz

2 rotation, the unique horizontal symmetry plane, and spatial
inversion. Cylindrical symmetry is met only in linear molecules such as homonu-
clear diatomics. Obviously, in nonlinear molecules the rotational symmetry of the
cylinder is replaced by a finite cyclic symmetry. Two shapes are realizations of max-
imal finite subgroups of the cylinder: prisms and antiprisms with respective symme-
tries Dnh and Dnd . In both structures the principal axis is a Ĉn axis, perpendicular
to which there are n twofold axes. The horizontal symmetry plane is conserved
only in prisms, and not in antiprisms. In Fig. 3.9(a), the staggered configuration in
ferrocene exemplifies a pentagonal antiprism, while the eclipsed configuration in
ruthenocene is a pentagonal prism. The presence of inversion symmetry depends
on the parity of n. It is present only in D2nh prisms and D(2n+1)d antiprisms. The
cylindrical symmetries reach their lower limit when the principal rotation axis is
twofold. In the D2h case, the equatorial directions are no longer equivalent, and we
have a rectangular parallelepiped that is an orthorhombic structure with three dif-
ferent and mutually perpendicular directions. By contrast, in the twofold antiprism,
with symmetry D2d , we have a scalenohedron that has two directions perpendicular
to the z-axis, which are equivalent. In fact, the highest symmetry element in this
case is an Ŝ4 rotation–reflection axis, which is responsible for the equivalence of the

6Dihedral means literally “having two planes.” The dihedral angle is an important molecular de-
scriptor. The dihedral angle of the central B−C bond in an A−B−C−D chain is the angle between
the ABC and BCD faces. In the present context, the term dihedral originates from crystallography,
such as when two plane faces meet in an apex of a crystal.
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Fig. 3.9 Molecular realizations of cylindrical symmetry: (a) D5h ruthenocene in an eclipsed pen-
tagonal prismatic conformation and D5d ferrocene in a staggered pentagonal antiprismatic con-
formation; (b) top view of the pentagonal antiprism with the position of the five twofold axes
perpendicular to the pentagonal direction; (c) staggered conformation of triplet ethylene with D2d

symmetry and horizontal Ŝ4 axis (in the triplet the two carbon 2p-orbitals shown are singly occu-
pied); (d) alternative view of the D2d symmetry of a bisphenoid, with vertical Ŝ4 axis

in-plane Ĉ2 axes. The triplet excited state of ethylene adopts a staggered conforma-
tion, which has D2d symmetry (Fig. 3.9(c)). Benzene has prismatic D6h symmetry.
In this case, there are two classes of perpendicular twofold axes, which are distin-
guished in the tables by the labels Ĉ′2 and Ĉ′′2 , and, likewise, two classes of vertical
symmetry planes, σ̂v and σ̂d . The standard choice for orienting these elements in the
hexagonal molecular frame is shown in Fig. 3.10. This choice is conventional and
may be changed, but note that the two symmetries are coupled in that the σ̂v planes
contain the Ĉ′2 axes and, similarly, the σ̂d planes contain the Ĉ′′2 axes.

The Rotating Cylinder

Other than geometrical distortions, symmetry breaking of a cylinder may also be
realized by a dynamic effect, as in a rotating cylinder. In this case, only symmetry
elements that will not change the direction of rotation are allowed. As a result, the
twofold rotation axes have to be removed, and the cylindrical symmetry is reduced
to that of the point group, C∞h. This is the symmetry of an axial vector or pseu-
dovector. It corresponds to the spatial symmetry of a magnetic field. Note that this
group is abelian, and so are its molecular subgroups, with symmetry Cnh. Again, the
parity of n is important here. C(2n+1)h groups are cyclic. They have one generator,
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Fig. 3.10 Hexagonal D6h
symmetry of benzene:
Orientation of twofold
symmetry elements. Ĉ′2 and
σ̂v pass through opposite
atoms; Ĉ′′2 and σ̂d bisect
opposite bonds

Fig. 3.11 The rotating
cylinder has the symmetry of
a magnetic field, B , along the
cylinder axis. (a) shows a
tetra-imine macrocycle, with
the bridging CH2 groups
below and above the
molecular plane; the resulting
symmetry group is C2h;
(b) shows stereographic
projections of C2h and S4

which is a reflection axis, Ŝ2n+1, of order 4n+ 2. For rotations of even order, two
kinds of subgroups arise: the C2nh groups and the S2n groups. The latter are not to
be confused with the symmetric groups but designate cyclic groups, generated by
a 2n-fold rotation–reflection axis. Figure 3.11 shows the stereographic projections
for C2h and S4, and a molecular realization of C2h. Note that the latter symmetry
group is a combination of the three different kinds of binary symmetry elements of
the point groups: a twofold rotation, the reflection plane, and the spatial inversion.
It reminds us of the famous Euler identity eiπ = −1, which brings together three
special numbers: the base of natural logarithms (e), the square-root of −1 (i), and
the ratio of the circumference to the diameter of a circle (π ).
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Fig. 3.12 The twisted
cylinder. On the right is a
cartoon of the green
fluorescent protein (GFP). It
adopts a β-barrel structure.
Eleven β-sheet strands are
wound in a helix around the
central fluorophore. The
approximate symmetry is
D11. In the barrel a cleft is
opened to provide
interactions with the
surrounding solvent

The Twisted Cylinder

An alternative symmetry lowering of the cylinder is attained in the twisted cylinder.
Here, all improper symmetry elements are broken, the remaining group being the
rotational subgroup, D∞ (see Fig. 3.12). The twist itself can be in two opposite
directions, which are mirror images of each other. Molecules of this type may be
formed by applying a twist to prisms or antiprisms. A simple example is ethane.
In the eclipsed high-energy conformation this is a prism with D3h symmetry, while
in the staggered conformation it is an antiprism, D3d . By rotating the two methyl
groups with respect to each other in opposite senses about the threefold axis, we may
interconvert these two conformations. In between the two extremal conformations
the frame adopts the largest common subgroup, which is D3.

Cones

A cone can be considered as a deformation of a cylinder, in which the poles of the
uniaxial direction are no longer equivalent. The symmetry group is reduced accord-
ingly to C∞v , where only the vertical symmetry planes remain. Conical symmetry
is exemplified by hetero-nuclear diatomic molecules, but it is also the symmetry of
a polar vector, such as a translation in a given direction, or a polarized medium or
an electric field, etc. Conical molecules have Cnv symmetries, as was the case for
the ammonia model. Again, the smallest trivial member of this series is C2v , which
is fully anisotropic. This is the point group of the water molecule.

The Rotating Cone

Adding a rotation to the cone will destroy the vertical symmetry planes, since reflec-
tion in these planes would alter the sense of the rotation. As a result, only rotations
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Fig. 3.13 The rotating cone. The molecule is a subporphyrin and consists of a central boron in
a tri-pyrrole macrocycle. The subporphyrin itself has the shape of a trigonal dome and exhibits
C3v symmetry. Three phenyl substituents at the meso-positions are arranged like a propeller and
reduce the symmetry to C3. A further symmetry lowering to C1 is caused by an apical hydroxyl
substituent at the boron position, with its hydrogen pointing in the direction of the upper phenyl
group

around the axis of the cone are retained, limiting the symmetry group to C∞. Its
molecular point groups are the cyclic groups, Cn. These symmetries are encoun-
tered in propeller-like molecules. An example of a subporphyrin [7] is shown in
Fig. 3.13. The smallest nontrivial Cn group is found for n= 2. This is the symmetry
of the Möbius strip, which may also be attained in Möbius-type annulenes.

3.8 Rotational Groups and Chiral Molecules

The symmetry operations that we have encountered are either proper or improper.
Proper symmetry elements are rotations, also including the unit element. The im-
proper rotations comprise planes of symmetry, rotation–reflection axes, and spatial
inversion. All improper elements can be written as the product of spatial inversion
and a proper rotation (see, e.g., Fig. 1.1). The difference between the two kinds of
symmetry elements is that proper rotations can be carried out in real space, while
improper elements require the inversion of space and thus a mapping of every point
onto its antipode. This can only be done in a virtual way by looking at the struc-
ture via a mirror. From a mathematical point of view, this difference is manifested
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in the sign of the determinant of the corresponding representation matrices in the
(x, y, z) basis. For proper rotations, the determinant is equal to +1. For improper
rotations, it is equal to −1. This minus sign comes from the representation matrix
for the inversion centre, which corresponds to minus the unit matrix:

ı̂
(

x y z
)

=
(

x y z
)

⎛

⎝

−1 0 0
0 −1 0
0 0 −1

⎞

⎠ (3.34)

Since the determinant of a matrix product is the product of the determinants of the
individual matrices, multiplication of proper rotations will yield again a proper ro-
tation, and for this reason, the proper rotations form a rotational group. In contrast,
the product of improper rotations will square out the action of the spatial inversion
and thus yield a proper rotation. For this reason, improper rotations cannot form a
subgroup, only a coset. Since the inversion matrix is proportional to the unit ma-
trix, the result also implies that spatial inversion will commute with all symmetry
elements.

In all the point groups with improper rotations, we shall thus always also have a
rotational subgroup, like Dn in Dnd or Dnh, or T in Td and Th, etc. Moreover, this
rotational subgroup is always a halving subgroup, i.e., its order is half the order of
the full group. This can easily be demonstrated. Let Hrot be the rotational subgroup
of G, and consider an improper symmetry element, Ŝi , as coset generator. The coset
ŜiHrot will contain only improper symmetry elements, and its order will be equal to
|Hrot|. Now is it possible that the group contains additional improper elements, out-
side this coset? Suppose that we find such an element, say Ŝj . Of course, the product
Ŝ−1
i Ŝj is the combination of two improper elements and thus must be a proper rota-

tion, included in the rotational subgroup. Let us denote this element as R̂z. Hence,
it follows that

ŜiR̂z = Ŝi Ŝ
−1
i Ŝj = Ŝj (3.35)

This result confirms that Sj is included in the coset of Ŝi and thus implies that
there is only one coset of improper rotations, covering half of the set of symmetry
elements.

A group is a direct product of two subgroups, H1 and H2, if the operations of H1
commute with the operations of H2 and every operation of the group can be written
uniquely as a product of an operation of H1 and an operation of H2. This may be
denoted in general as

G=H1 ×H2 (3.36)

This is certainly the case when a group is centrosymmetric, i.e., when it contains
an inversion centre. Since the inversion operation commutes with all operations,
a centrosymmetric group can be written as the direct product Ci ×Hrot, where Ci =
{Ê, ı̂}. However, direct product groups are not limited to centrosymmetry. In the
group D3h, for example, the horizontal symmetry plane forms a separate conjugacy
class, which means that it commutes with all the operations of the group. It thus
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Fig. 3.14 Dimethyl
substituted allene occurs in
two chiral forms, which are
the mirror image of each
other, and cannot be
superimposed; the point
group of each form is C2

generates a normal Cs subgroup. The full group D3h can then be written as a direct
product of this normal subgroup and the rotational subgroup:

D3h = Cs ×D3 (3.37)

When the symmetry of a molecule is a purely rotational group, then the molecule
does not coincide with its mirror image, and there will be two copies of it, which re-
late to each other as do right and left hands. This is illustrated in Fig. 3.14. Molecules
with only rotational symmetry are chiral, meaning that the molecule and its reflec-
tion form optical antipodes. A synonym is enantiomeric, which literally means: on
both sides of the mirror. By contrast, when a molecular point group contains any
improper symmetry element, the molecule will be congruent to its mirror image
and is achiral. Why does the absence of an improper symmetry element prevent the
molecule’s coinciding with its mirror image? Congruence operations are whole ro-
tations and/or translations that are performed in order to superimpose the image on
the object. As we have shown, when reflecting a molecule through a mirror, spatial
inversion is implied, and this cannot be undone by rotations or translations, but only
by another improper symmetry element that restores the inversion. Such symmetry
elements are absent in molecules with only rotational point group symmetries, and,
hence, they cannot be made to coincide with their mirror image. Molecular chiral-
ity thus derives from an obvious and basic symmetry characteristic; nonetheless, it
has far reaching physical and chemical consequences. Chiral molecules are opti-
cally active, which means that the plane of polarization of linearly polarized light
is rotated when passing through a medium with chiral molecules. The absorption
coefficients of chiral molecules for left- and right-circularly polarized light are also
different, giving rise to natural circular dichroism (CD) spectra. This will be illus-
trated in Sect. 6.8. The chemical consequences of chirality are of vital importance:
living organisms are based on biochemical molecules with strict chirality.

3.9 Applications: Magnetic and Electric Fields

In many spectroscopic applications external magnetic or electric fields are applied
to a molecular sample. For magnetic fields, the perturbing influence of the field
is known as the Zeeman effect. Electric fields give rise to the Stark effect. As we
have seen, uniform magnetic and electric fields have symmetries C∞h and C∞v ,
respectively. In this case, the symmetry group of the experiment will be constrained
to these operations, which leave the {molecule + field} combination invariant. It
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Table 3.6 Symmetries of a
tetrahedral molecule in a
uniform magnetic (B) or
electric (E) field

Ê 8Ĉ3 3Ĉ2 6Ŝ4 6σ̂d Td ∩C∞h

B ‖ Ŝ4 Ê Ĉ2 2Ŝ4 S4

B ‖ Ĉ3 Ê 2Ĉ3 C3

B ⊥ σ̂d Ê σ̂d Cs

Td ∩C∞v

E ‖ Ŝ4 Ê Ĉ2 2σ̂d C2v

E ‖ Ĉ3 Ê 2Ĉ3 3σ̂d C3v

E ∈ σ̂d Ê σ̂d Cs

will thus consist only of symmetry elements that are common to both parts. These
elements form the intersection of both symmetry groups. The elements of an inter-
section themselves form a group, which is the largest common subgroup of both
symmetry groups. This can be written as follows:

magnetic field :H =G∩C∞h

electric field :H =G∩C∞v

(3.38)

This intersection group will depend on the orientation of the field in the molecu-
lar frame. In Table 3.6 we work out an example of a tetrahedral molecule. The top
row lists the symmetry elements of Td . The fields can be oriented along several di-
rections. The highest symmetry positions are along the fourfold or threefold axes.
A lower symmetry position is within or perpendicular to a symmetry plane, or finally
along an arbitrary direction with no symmetry at all. In Appendix B we list repre-
sentative intersection groups for several point groups and orientations. Note that in
the case of a magnetic field, the resulting intersection group is always abelian. This
is of course a consequence of C∞h being abelian.

3.10 Problems

3.1 The multiplication table of a set of elements is given below. Does this set form
a group?

A B C D

A C D A B

B D C B A

C A B C D

D B A D C

3.2 Use molecular ball and stick models to construct examples of molecules that
have a reflection plane as the only symmetry element. Similarly, for a center of
inversion and for a twofold axis. In each case find the solution with the smallest
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number of atoms! Explain your reasoning. What is the smallest molecule with
no symmetry at all?

3.3 The 2D analogue of a polyhedron is a polygon. In a regular polygon all vertices,
edges, and angles between adjacent edges are identical. A 2D plane can be
tessellated in identical regular polygons, which then form a covering of the
plane. In how many ways can this be performed?

3.4 Why is the order of a rotational axis of a polyhedral object always an integer?
3.5 Prove that a halving subgroup is always a normal subgroup.
3.6 Determine the point group of a soccer ball, a tennis ball, a basketball, and a

trefoil knot.

3.7 The parameter equations defining a helix in Cartesian space are given by

x(t) = a cos

(

nt

a

)

y(t) = a sin

(

nt

a

)

z(t) = t

Here a is the radius. Is this helix left- or right-handed? Write down the param-
eterization of its enantiomer. The symmetry of a helix is based on a screw axis,
which corresponds to a translation in t . It is composed of a translation along the
z-direction with a concomitant rotation in the xy-plane. Now decorate the helix
with atoms at points tk/a = 2πk/m, where k and m are integers. Determine
the screw symmetry of this molecular helix. If n/m is irrational, the helix is
noncommensurate. Will it still have a symmetry in this case?
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Chapter 4

Representations

Abstract Having made acquaintance with the basic properties of groups, we now
turn our attention to the structure of the matrices that represent the group action in
a function space. It turns out that there exists only a limited set of standard patterns.
These are called the irreducible representations. They form the principal mathemat-
ical concept on which this monograph is based, and much care is devoted to acquire
a gradual understanding of what this concept really means. Then the character the-
orem, matrix theorems, and projection operators are introduced. The concepts of
subduction and induction relate the representations of subgroups and those of their
parent groups. The chapter also offers a detailed group-theoretical analysis of three
chemical applications: the tetrahedral hybridization of carbon, the molecular vibra-
tions of UF6, and the electronic structure of conjugated hydrocarbons, according to
the Hückel model and the method of the London model of gauge-invariant atomic
orbitals.
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4.1 Symmetry-Adapted Linear Combinations of Hydrogen

Orbitals in Ammonia

From now on we shall no longer be working with the nuclei, but with electronic
orbital functions that are anchored on the nuclei. As an example, we take the 1s
orbitals on the hydrogen atoms in ammonia. The |1sA〉 is defined in Eq. (4.1), where
RA denotes the position vector of atom A with respect to the Cartesian origin; a0 is
the Bohr radius (0.529 Å), which is the atomic unit of length.

|1sA〉 =
1√
π

(

1

a0

)3/2

exp

(

−|r−RA|
a0

)

(4.1)

Following Sect. 1.2, the transformation of this function by the threefold axis is given
by

Ĉ3|1sA〉 =
1√
π

(

1

a0

)3/2

exp

(

−
|[Ĉ−1

3 r] −RA|
a0

)

(4.2)

The distance between the electron at position Ĉ−1
3 r and nucleus A is equal to the

distance between the electron at position r and nucleus B. This can be established by
working out the distances as functions of the Cartesian coordinates, but a straight-
forward demonstration is based on the fact that the distance does not change if we
rotate both nuclei and electrons:
∣

∣

[

Ĉ−1
3 r
]

−RA
∣

∣= Q̂3
∣

∣

[

Ĉ−1
3 r
]

−RA
∣

∣=
∣

∣

[

Q̂3Ĉ
−1
3 r
]

− Q̂3RA
∣

∣= |r−RB| (4.3)

Here, we have denoted the bodily rotation of the entire molecule as Q̂3 in order to
indicate that its action also involves the nuclei, as opposed to Ĉ3, which is reserved
for electrons. In the expression of Eq. (4.1), RA is replaced by RB, or

Ĉ3|1sA〉 = |1sB〉 (4.4)

This confirms the active view, propagated from the beginning, as applied to the
functions. We rotate the |1sA〉 orbital itself counterclockwise over 120◦. The result
is equal to the |1sB〉 orbital. We now put the three components of the function space
together in a row vector:

|f〉 =
(

|1sA〉 |1sB〉 |1sC〉
)

(4.5)

The action of the operator in the function space now reads as follows:

Ĉ3|f〉 = |f〉D(C3) (4.6)

where the representation matrix is given by

D(C3)=

⎛

⎝

0 0 1
1 0 0
0 1 0

⎞

⎠ (4.7)



4.1 Symmetry-Adapted Linear Combinations of Hydrogen Orbitals in Ammonia 53

While the function space is clearly invariant, i.e., it transforms into itself under the
rotation, the individual components are not: they are mutually permuted. Our ob-
jective is to find symmetry-adapted linear combinations (SALCs) that are invariant
under the operator, except, possibly, for a phase factor. The combinations we are
looking for are thus nothing other than eigenfunctions of the symmetry operator,
in the same way as solutions of the Schrödinger equation are eigenfunctions of the
Hamiltonian. Unlike the Hamiltonian eigenfunctions, however, which will usually
consist of linear combinations in an infinite Hilbert space, the present exercise is car-
ried out in a space of three functions only since this space is already closed under
the operator. We shall solve this symmetry eigenvalue problem in a purely algebraic
way. Let |ψm〉 be a SALC:

|ψm〉 =
∑

X=A,B,C

cX|1sX〉 (4.8)

which we shall again write as the product of a row vector and a column vector:

|ψm〉 =
(

|1sA〉 |1sB〉 |1sC〉
)

⎛

⎝

cA
cB
cC

⎞

⎠ (4.9)

The transformation of this function is then given by

Ĉ3|ψm〉 = |f〉

⎛

⎝

0 0 1
1 0 0
0 1 0

⎞

⎠

⎛

⎝

cA
cB
cC

⎞

⎠ (4.10)

We now require this function to be an eigenfunction of the threefold rotation opera-
tor with eigenvalue λ:

Ĉ3|ψm〉 = λ|ψm〉 (4.11)

Combining Eqs. (4.10) and (4.11), we see that the function is an eigenfunction if
the product of the D matrix with the column vector of the coefficients returns the
coefficient column, multiplied by the eigenvalue λ, i.e.,

⎛

⎝

0 0 1
1 0 0
0 1 0

⎞

⎠

⎛

⎝

cA
cB
cC

⎞

⎠= λ

⎛

⎝

cA
cB
cC

⎞

⎠ (4.12)

This equation can also be rewritten as
⎛

⎝

−λ 0 1
1 −λ 0
0 1 −λ

⎞

⎠

⎛

⎝

cA
cB
cC

⎞

⎠= 0 (4.13)

Equation (4.13) forms a homogeneous system of equations in the three unknowns. It
will have solutions only if the matrix preceding the column vector of the unknowns
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has determinant zero. This requirement is written as
∣

∣D(C3)− λI
∣

∣= 0 (4.14)

Here, the vertical bars denote the determinant. Equation (4.14) is called the secular

equation. It has the form of a simple cubic equation in the eigenvalue λ:

−λ3 + 1= 0 (4.15)

This equation is the Euler equation. It has three roots:

λm = exp

(

2mπi

3

)

(4.16)

where m can take the values −1,0,+1. What we have just performed is a matrix
diagonalization of the representation matrix. We obtain at once not one but three
eigenvalues. The eigenfunction corresponding to a given root can now be found by
introducing this λ value in the system of equations, Eq. (4.13). Since the system
is homogeneous, the three unknown coefficients can be determined only up to a
constant factor. We find the absolute values of these vector coefficients by invoking a
normalization condition that requires the vectors to be of unit length. The simplified
normalization condition, neglecting overlap integrals, reads:

|cA|2 + |cB|2 + |cC|2 = 1 (4.17)

In this way we obtain three SALCs, each characterized by a different eigenvalue for
the symmetry operator:

|ψ0〉 =
1√
3

(

|1sA〉 + |1sB〉 + |1sC〉
)

|ψ+1〉 =
1√
3

(

|1sA〉 + ǭ|1sB〉 + ǫ|1sC〉
)

|ψ−1〉 =
1√
3

(

|1sA〉 + ǫ|1sB〉 + ǭ|1sC〉
)

(4.18)

where ǫ = exp 2πi/3. The set of corresponding eigenvalues is called the spectrum of
the operator. It will be evident that this spectrum consists of the cube roots of 1, since
operating with Ĉ3 three times in succession is equivalent to applying the identity
operator:

Ĉ3
3 |ψm〉 = λ3|ψm〉 = Ê|ψm〉 (4.19)

For any operator, one can find eigenfunctions by simply diagonalizing the corre-
sponding representation matrix. However, our objective is more ambitious. We want
to obtain functions that are not only adapted to a single symmetry element but to the
group as a whole. This really amounts to finding SALCs for the set of group gener-
ators, since adaptation to the generators implies that the function is adapted to any
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combination of generators and, hence, to the whole group. So, in the case of C3v ,
we have to examine the behavior of the |ψm〉 functions under a vertical symmetry
plane as well, say σ̂1. This plane will leave |1sA〉 unchanged and will interchange
|1sB〉 and |1sC〉. Its effect on the trigonal eigenfunctions is thus given by

σ̂1|ψ0〉 = |ψ0〉
σ̂1|ψ+1〉 = |ψ−1〉 (4.20)

σ̂1|ψ−1〉 = |ψ+1〉

What does this result tell us? The SALC |ψ0〉 is simultaneously an eigenfunction
of both Ĉ3 and σ̂1; hence, it forms in itself a one-dimensional function space that
is completely adapted to the full group. This symmetry characteristic will be de-
noted by the totally symmetric representation A1. However, the other two SALCs
are transformed into each other. We can easily turn them into eigenfunctions of σ̂1
and in this way obtain alternative eigenfunctions, one of which is symmetric un-
der reflection and one of which is antisymmetric. These will be labeled as x and
y, respectively, since their symmetry under reflection mimics the symmetries of px
and py :

|ψx〉 =
1√
2

(

|ψ+1〉 + |ψ−1〉
)

= 1√
6

(

2|1sA〉 − |1sB〉 − |1sC〉
)

|ψy〉 =
i√
2

(

|ψ+1〉 − |ψ−1〉
)

= 1√
2

(

|1sB〉 − |1sC〉
)

(4.21)

A schematic drawing of these eigenfunctions is shown in Fig. 4.1. The downside
of this symmetry adaptation is that it has destroyed the diagonalization along the
trigonal axis. Indeed, one has:

Ĉ3
(

|ψx〉 |ψy〉
)

=
(

|ψx〉 |ψy〉
)

(

cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

)

(4.22)

Hence, it is impossible to resolve the function space formed by |ψ±1〉 into simul-
taneous eigenfunctions of both generators. The action of the symmetry group ties
these functions together into a two-dimensional space, which is thus irreducible.
This symmetry characteristic is denoted by the degenerate irreducible representa-
tion E. We have learned form this simple example the following. The construction
of SALCs of a symmetry group is based on simultaneous diagonalization of the
representation matrices of the group generators. This will resolve the function space
into separate blocks, which may consist of one function, or which may form a sub-
space that cannot be further reduced. The results are functions that transform as
irreducible representations (irreps). Why is such a resolution important? The irre-
ducible subspaces into which the function space has been separated are invariant
under the actions of the actual symmetry group. This means that there are no op-
erators that send SALCs from one irreducible subspace into SALCs from another
irreducible subspace. This also implies that the eigenenergies associated with these
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Fig. 4.1 Hydrogen SALCs in
ammonia. The size of the
circles is proportional to the
eigenfunction coefficients.
|ψ0〉 transforms as the totally
symmetric irrep A1; |ψx〉 and
|ψy〉 are components of the
degenerate E representation

irreducible blocks are not be related. We will return to this in much more detail
in Sect. 5.2. The algebraic treatment also provides an insight into the meaning of
degeneracy. The two components of the E irrep are locked in the same function
space because it is not possible to diagonalize the representation matrices for both
generators simultaneously. If two operators commute, it is always possible to find
solutions that are simultaneous eigenfunctions of both. However, the two generators
of C3v do not commute as this group is not abelian. The fact that the correspond-
ing representation matrices also do not commute explains why it is impossible to
block-diagonalize the E irrep.

4.2 Character Theorems

When examining a function space from a symmetry point of view, we note that there
are two basic questions to be asked:

1. What are the symmetry ingredients of the function space; in other words, which
irreps describe the symmetry of this space?

2. What do the corresponding SALCs look like?

The present section on characters deals with the first question and provides an ele-
gant description of the symmetries of function spaces. In the subsequent sections,
matrix theorems are used for the construction of projection operators that will carry
out the job of obtaining the suitable SALCs. The intuitive algebraic approach that
we have demonstrated in the previous section has been formalized by Schur, Frobe-
nius,1 and others into a fully fledged character theory, which reveals which irreps

1The papers by Schur and Frobenius have been edited as C. Frobenius, The Collected Works of
Frobenius (1849–1917), J.-P. Serre (ed.), Springer, Berlin (1968), 3 vols.; I. Schur, Gesammelte
Abhandlungen, A. Brauer and H. Rohrbach (eds.) Springer, Berlin (1973), 3 vols.
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a given group can sustain and how to analyze the irreducible contents of a given
function space. Characters are nothing other than the traces (that is, the sum of the
diagonal elements) of representation matrices. They will be represented as χ(R):

χ(R)=
∑

i

Dii(R) (4.23)

If the functional basis of a representation is transformed by a unitary transformation,
the trace does not change, as can easily be demonstrated. Define |f′〉 = |f〉U. Then
the corresponding representation matrices, D′(R), also undergo a unitary transfor-
mation:

R̂|f′〉 = R̂|f〉U= |f〉D(R)U
= |f′〉U−1

D(R)U

= |f′〉D′(R) (4.24)

from which it follows that

D
′(R)=U

−1
D(R)U (4.25)

or, for unitary U, that

D′ij (R) =
∑

kl

ŪT
ikDkl(R)Ulj

=
∑

kl

ŪkiDkl(R)Ulj (4.26)

The invariance of the character then follows from the orthogonality of the rows of
the unitary matrix:

χ ′(R) =
∑

i

D′ii(R)

=
∑

kl

Dkl

(

∑

i

ŪkiUli

)

=
∑

kl

Dkl(R)δkl

=
∑

k

Dkk(R)

= χ(R) (4.27)

Hence, sets of characters literally characterize representations since they are im-
mune to the effects of unitary transformations, such as occur in Eq. (4.21) between
the complex functions |ψ+1〉, |ψ−1〉 and the real functions |ψx〉, |ψy〉. The charac-
ters for the irreps are brought together in a character table. Here, the conjugacy class
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Table 4.1 Character table for
the group C3v and reducible
characters of the hydrogen 1s
functions χ(1s) and
hydrogen bends χ(φ). The
χ(1s) row is equal to the sum
of the A1 and E rows, and the
χ(φ) row is equal to the
sum of the A2 and E rows

C3v Ê 2Ĉ3 3σ̂v 〈χ |χ〉

A1 1 1 1 6

A2 1 1 −1 6

E 2 −1 0 6

χ(1s) 3 0 1 12

χ(φ) 3 0 −1 12

concept comes in very useful. Indeed, since all elements belonging to the same class
are similarity transforms, their representation matrices are unitary transforms and,
hence, all have the same character. We can thus group elements together in classes.
In Table 4.1 we show the character table for C3v as can be obtained by algebraic
techniques such as the one we used in the previous section. We recognize at once
the characters for the totally symmetric A1 and the twofold-degenerate E irrep. In
addition, there is another one-dimensional irrep, A2, which is symmetric under the
threefold axis and antisymmetric under the reflection planes.

Let us denote an irrep as Γi and the string of characters, arranged in a row over
the full group, in a Dirac form as |χΓi 〉. The norm of this string2 will then be denoted
as a bracket, i.e.,

〈

χΓi |χΓi
〉

=
∑

R∈G
χ̄Γi (R)χΓi (R) (4.28)

Since the matrices are unitary, we could also replace the complex-conjugate char-
acter by the character of the inverse element:

χ̄Γi (R)= χΓi
(

R−1) (4.29)

The character strings obey the following character theorem:

Theorem 4 The norm of the character string is equal to the order of the group if

and only if the characters refer to an irreducible representation. The scalar product

of two character strings of different irreps is equal to zero.

This theorem can be expressed as follows:

〈

χΓi |χΓj
〉

=
∑

R∈G
χ̄Γi (R)χΓj (R)= δij |G| (4.30)

where Γi and Γj refer to irreducible representations, and |G| is the order of the
group. This theorem provides an elegant and simple solution for determining the ir-

2Since elements in the same class have the same character, we can also simplify the expression to
a summation over all classes, provided that we then multiply each term by the number of elements
in the class under consideration.



4.2 Character Theorems 59

Fig. 4.2 Symmetry
coordinates for the in-plane
bending of the hydrogen
atoms in ammonia. The
length of the arrows is
proportional to the SALC
coefficients

rep content of a function space. One first determines the characters of the represen-
tation matrices, χ(R). They will be equal to the sums of the traces of the individual
irreducible symmetry blocks. This can be expressed as follows:

χ(R)=
∑

i

ciχ
Γi (R) (4.31)

Here, the important quantities are the ci coefficients. These are integers that tell
how many times a given irrep Γi is contained in the function space. They can easily
be calculated by using the character theorems. All one has to do is to evaluate the
scalar product of a given irreducible character, say Γk , and the reducible character,
and then divide by the group order.

1

|G|
〈

χΓk |χ
〉

= 1

|G|
∑

i

ci
〈

χΓk |χΓi
〉

=
∑

i

ciδki = ck (4.32)

It is also clear that the norm of the reducible character is a multiple of the group
order, since

〈χ |χ〉 =
∑

ij

cicj
〈

χΓi |χΓj
〉

=
∑

i

c2
i |G| (4.33)

This procedure may seem quite complicated, but it is in fact very simple. Let us
demonstrate this for the previous example, the set of the three 1s-orbitals on the
hydrogens in NH3. We first determine the reducible character of this set (see χ(1s)
in Table 4.1). We do not have to do this for all six elements of C3v but only for one
representative of each class since conjugate elements have the same characters. For
the unit element, the representation matrix is of course the 3× 3 unit matrix, and its
trace is equal to three, the dimension of the set. For the other elements, we do not
need to know the full matrix representation; indeed, we need only the elements on

the diagonal. Now a diagonal entry in a representation matrix can differ from zero
only if a component function is turned into itself, or at least into a fraction of itself.
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The threefold axis moves all three 1s-orbitals around and hence has zeros only on
the diagonal; thus, χ(C3)= 0 (see Eq. (4.7)). For the reflection planes, one element
is stabilized, while the other two are interchanged; hence, there is only one nonzero
diagonal element, which will be equal to +1 since the orbital is not affected; hence,
χ(σ1)=+1. The norm of the character string is given by

〈χ |χ〉 = 32 + 2× 0+ 3× 12 = 12= 2|C3v| (4.34)

Since the norm is twice the order of the group, we know for certain that the symme-
try of the function space is reducible. In fact, we also predict that it will reduce to
two irreps, each of which occurs once, since the sum of the squares of the multiplici-
ties in Eq. (4.33) is equal to 2. These coefficients can now be obtained by calculating
the character brackets, which yields the previous result: cA1 = 1, cA2 = 0, cE = 1.
From Table 4.1 one can also verify that the sum of χA1 and χE equals χ(1s). This
is sometimes also expressed in a formal way as

Γ =A1 +E (4.35)

As a further example, we can take the set of the two in-plane 2p-orbitals on nitrogen,
px and py . Here, the character for the threefold axis is

χpx ,py (C3)= 2 cos(2πi/3)=−1 (4.36)

Under the σ̂1 plane of symmetry, one of the orbitals is antisymmetric, while the other
is symmetric, and so the trace of the matrix vanishes. The characters of this p-set
are thus precisely the ones for the E irrep, and we can therefore state that the set
{px,py} transforms irreducibly as the E representation. As a final example, let us
take the alternative set consisting of three counterclockwise displacement vectors of
the hydrogen atoms, along a tangent to the (imagined) circumscribed circle through
the hydrogens, as indicated in Fig. 4.2. In this example the function space is the set
of three bendings: φA,φB,φC. We must realize that in this case the function on
which we are operating is actually the distortion itself, and to rotate this distortion in
an active sense means to take the distortion vector and displace it to the next nucleus.
Hence, nuclei are left immobile: only the distortions are moved. One could easily
reconcile this view with the previous orbital rotations by thinking of the distortions
as little tangent p-orbitals with positive and negative lobes corresponding to the
head and tail of the vectors, respectively. Hence, as an example, one has

Ĉ3φA =φB (4.37)

Since all distortions are cyclically permuted, the character under this generator is
zero. On the other hand, for the reflection plane, one has:

σ̂1φA =−φA

σ̂1φB =−φC

σ̂1φC =−φB

(4.38)
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In this case, the only contribution to the trace comes from the distortion of A, which
is mapped onto minus itself; hence, χ(σ1)=−1. The resulting character string also
has norm 12, but in this case it decomposes into A2 +E. As shown in Fig. 4.2, the
A2 component is the sum of the three distortions, which corresponds to a bodily
rotation of the molecule around its vertical axis. The E components are given by

QEx =
1√
2
(φC −φB)

QEy =
1√
6
(2φA −φB −φC)

(4.39)

Perhaps the most surprising result is that the symmetry eigenfunctions of the C3v
group can be only of three different types: A1,A2, and E. In fact, this is another
result derived by Schur.

Theorem 5 The number of irreps in a group is equal to the number of conjugacy

classes.

The fact that there are only a few canonical ways of representing a symmetry
group can be rationalized in a general way as follows. Consider a molecule with
symmetry group G and a function that is localized on an arbitrary point in the
molecule, i.e., a point which is lying neither on an axis of symmetry, nor in a re-
flection plane, nor in the inversion center or the center of a rotation–reflection axis.
We shall denote this function as |fE〉 since it is stabilized by, and only by, the unit
element. Any other element would move this function to some other point that is a
copy of the original one. We write this as

R̂|fE〉 = |fR〉 (4.40)

In this way the entire group generates a set of |G| functions, which all are different.
Indeed, suppose that, for R̂ 
= Ŝ, the two corresponding functions are the same; then
the product operation Ŝ−1R̂ maps |fE〉 onto itself. This contradicts the assump-
tion that |fE〉 is stabilized only by the unit element. Furthermore, the closure of the
group also guarantees that this set of functions forms an invariant function space.
This function space transforms according to a reducible representation, which is
called the regular representation, Γreg. This representation describes the most gen-
eral function basis that one can consider since it is based on functions that have no
symmetry whatsoever. Now let us determine the symmetry ingredients of this space
using the standard character procedure. The character of the regular representation
is equal to |G| for the unit element and zero for all other elements since none of the
functions is stabilized:

χΓreg(R)= |G|δER (4.41)

Inserting this result into the expression for the multiplicity coefficients yields

ck =
1

|G|
〈

χΓk |χΓreg
〉

= χ̄Γk (E)= dim(Γk) (4.42)
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Hence, every irrep occurs as many times as its own dimension. The sum of all these
irreducible blocks must yield the regular representation. Thus one has

∑

k

ckdim(Γk)=
∑

k

[

dim(Γk)
]2 = |G| (4.43)

This result tells us that, in a group of order |G|, there are exactly |G| independent
vectors. Rewriting these vectors in the form of SALCs exhausts all possible sym-
metries that can be realized in this group. If a group is abelian, every class is a
singleton, and hence the number of classes is equal to the order of the group. In this
case, Eq. (4.43) can be fulfilled only if all irreps are one-dimensional. Hence, in an
abelian group all irreps are one-dimensional.

4.3 Character Tables

In Appendix A, we reproduce the character tables for the point groups and the sym-
metric groups, following the standard form introduced by Mulliken [1]. The top row
of the table lists the conjugacy classes. In some cases the designations of the sym-
metry operations can be ambiguous, and additional labels are added, such as h,v,
and d for horizontal, vertical, and dihedral, respectively (see also, e.g., Fig. 3.10).
In the final columns of the tables we list some simple functions, which transform
according to the corresponding irreps. Irreps are denoted by letters that are related
to their degeneracy. A and B stand for one-dimensional irreps, which are symmet-
ric or antisymmetric with respect to some principal symmetry element. E and T are
used for two- and three-dimensional irreps, respectively. Sometimes, in physics text-
books, T is replaced by F . This alphabetical order is then continued for the fourfold-
and fivefold-degenerate irreps in the icosahedral symmetry, which are denoted as G
and H . Further subscripts are added to distinguish symmetry characteristics with
respect to secondary symmetry elements. Best known are the g and u subscripts,
which distinguish between even (gerade) and odd (ungerade) symmetries with re-
spect to spatial inversion. Primes or double primes are used to distinguish symmet-
ric versus antisymmetric behavior with respect to a horizontal symmetry plane in
groups such as D(2n+1)h or C(2n+1)h. In addition, numerical indices can appear as
subscripts, such as in A1,A2 in the C3v group. It should be clear that this labeling
is somewhat ad hoc, and one should consult the actual tables in order to find out the
precise meaning of the symbols used.

Some point groups, viz. the cyclic groups Cn, C(2n+1)h, S2n, and also T and Th,
have irreps with complex characters. In these cases, for an irrep Γk with complex
characters, there will always be a complementary irrep with a complex-conjugate
character string, which is denoted as Γ̄k . Hence, one has

χ Γ̄k (R)= χ̄Γk (R) (4.44)



4.4 Matrix Theorem 63

Note that if Γk fulfills the character theorems, then Γ̄k also does, and hence it, too,
must be irreducible. The two irreps are said to be complex conjugates. They are or-
thogonal to each other, and hence there is no point group operation that can turn a
function belonging to Γk into a function belonging to Γ̄k . For this reason, we also
should denote them by two separate labels. However, in the absence of external
magnetic fields, symmetry is not restricted to spatial symmetry, but also includes
time-reversal symmetry. As we have seen in Sect. 2.4, this symmetry will precisely
turn functions into their complex conjugates and thus also interchange the corre-
sponding conjugate irreps. Complex-conjugate irreps thus remain degenerate under
time reversal, and for this reason, they are usually indicated by means of a brace.

4.4 Matrix Theorem

Determining the symmetry contents of a function space is only a first step. We would
also like to know what are the SALCs that correspond to the different irreps. To carry
out this task, we have to work with the representation matrices themselves. In the
group C3v the matrices for the one-dimensional irreps A1 and A2 are trivial since
these are simply equal to the corresponding characters. For the E irrep, we need to
determine the generator matrices and perform the proper multiplications in order to
generate all DE(R) for the whole group. These matrices are already available from
Table 3.2 for the standard basis of the px and py orbitals. An important theorem,
known as the Great Orthogonality Theorem (GOT), is due to Schur.

Theorem 6 Let Ω and Ω ′ be two irreducible representations of a group G, and

consider vectors formed by taking elements {ij} and {kl} from the respective repre-

sentation matrices for every element of the group. Then these vectors are orthogonal

to each other, and their squared norm is equal to the order of the group, divided by

the dimension of the irrep:

∑

R∈G
D̄Ω
ij (R)D

Ω ′
kl (R)=

|G|
dim(Ω)

δΩ,Ω ′δikδj l (4.45)

The theorem thus proceeds as follows: take a given entry ij in the representation
matrix of the irrep Ω for every R and order these elements to form a vector of
length |G|. Do the same with another entry, kl, for a different representation, Ω ′,
and also arrange these to form a vector. Then take the scalar product of these two
vectors, bearing in mind that, in this process, the complex conjugate of one of them
should be taken (it does not matter which one since the scalar product is always
real). The theorem states that this scalar product is zero unless the same irrep is
taken, and in this irrep the same row and column index are selected. In that case, the
scalar product yields the norm of the vector equal to |G|/dim(Ω).

Let us apply this to C3v . For this group, the total number of {Ω, i, j} combi-
nations that can be formed according to the GOT procedure is equal to 6. These
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Table 4.2 Complete set of matrix element strings for the group C3v

C3v Ê Ĉ3 Ĉ2
3 σ̂1 σ̂2 σ̂3 〈DΩ

ij |DΩ
ij 〉

A1 1 1 1 1 1 1 6

A2 1 1 1 −1 −1 −1 6

E11 1 − 1
2 − 1

2 1 − 1
2 − 1

2 3

E21 0 +
√

3
2 −

√
3

2 0 −
√

3
2 +

√
3

2 3

E12 0 −
√

3
2 +

√
3

2 0 −
√

3
2 +

√
3

2 3

E22 1 − 1
2 − 1

2 −1 + 1
2 + 1

2 3

are listed in Table 4.2, based on the matrices in Table 3.2. In general, this num-
ber is always equal to the order of the group since, for every irrep, the number of
{i, j} combinations is equal to the squared dimension of that irrep, and, according
to Eq. (4.43), the sum of these squares is equal to |G|. The strings in Table 4.2 thus
form a set of six linearly independent vectors. This is in accord with our earlier find-
ing that the set of arbitrary functions that form the most general function space for a
group has dimension |G|. The GOT thus offers the complete list of coefficients from
which SALCs may be constructed. How this can be done is shown in the next sec-
tion. Note that the trace theorem in the previous section is a direct consequence of
the GOT that is obtained by taking diagonal matrix entries ii and kk and summing
over i and k:

〈

χΩ |χΩ ′ 〉 =
∑

i,k

∑

R∈G
D̄Ω
ii (R)D

Ω ′
kk (R)

= |G|
dim(Ω)

δΩ,Ω ′
∑

ik

δik

= |G|
dim(Ω)

δΩ,Ω ′dim(Ω)

= δΩ,Ω ′ |G| (4.46)

4.5 Projection Operators

We recapitulate what we have so far: a group G has been identified, and a func-
tion space |f〉 was constructed, which is invariant under the action of the group.
Next, the characters were determined for each conjugacy class and arranged in a
character string, |χ〉, which was mapped onto the irreducible characters in the ta-
ble. Nonzero brackets determined which irreps are present in the function space.
Now, the final step is to carry out the actual symmetry adaptation and to obtain
the resulting SALCs, say |ΦΩ

i 〉. The SALCs are characterized by two indices: the
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upper index, Ω , which stands for the irrep, and the lower index, i. The latter in-
dex is sometimes called the subrepresentation and also contains a specific piece of
information. It determines the component of the irrep, i.e., it refers to a particular
column in the irreducible representation matrix that describes the transformation of
this component:

R̂|ΦΩ
i 〉 =

∑

j

|ΦΩ
j 〉DΩ

ji (R) (4.47)

This symbol of course makes sense only if we do not limit ourselves to the charac-
ters, but also determine the representation matrices for all nondegenerate irreps of
the group. These will depend on the choice of a particular canonical basis set. Tabu-
lar material containing suitable sets of irrep matrices is rather sparse. Some standard
choices are provided in Appendix C. Now we construct the projector P̂ based on the
available matrices:

P̂Ω ′
kl =

dim(Ω ′)

|G|
∑

R∈G
D̄Ω ′
kl (R)R̂ (4.48)

Let us apply this projector to the SALC |ΦΩ
i 〉. This requires the combination of Eqs.

(4.47) and (4.48) and exploits the full GOT potential:

P̂Ω ′
kl |ΦΩ

i 〉 =
dim(Ω ′)

|G|
∑

R∈G

∑

j

D̄Ω ′
kl (R)D

Ω
ji (R)

∣

∣ΦΩ
j

〉

=
∑

j

δΩ ′,Ωδkj δli
∣

∣ΦΩ
j

〉

=
∣

∣ΦΩ ′
k

〉

δΩ ′,Ωδli (4.49)

The action of the projector entails a twofold selection, both at the level of the repre-
sentation and of the subrepresentation, indicated by the two Kronecker deltas. First,
it compares the irreps of the operator and of the SALC. If they do not match, then
the SALC is simply destroyed. Second, the δli selection rule comes into play—
under the “protection,” as it were, of the first Kronecker delta, which assures that
the second selection rule will matter only when we are already inside the same ir-
rep. This second rule compares index l of the projection operator with index i of
the target, and annihilates the target unless they are the same; it therefore selectively
picks out the SALC that transforms exactly as the lth component of the Ω ′ irrep.
Third, instead of delivering as result this particular component, the projector also
has a built-in ability to act as a ladder operator and turn the lth component so ob-
tained into a kth component. If we do not want this ladder aspect, we simply use the
diagonal projection operator with k = l. Let us illustrate this for the QEx hydrogen
bending mode in Fig. 4.2. If we want to obtain from this the QEy component, we
should use a projection operator that recognizes the x and replaces it by y; hence, it
must belong to the E irrep, its row index should be 2, and its column index 1. This
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indeed generates the y component of Eq. (4.39):

P̂E
21QEx =

1

3

√
3

2

[

Ĉ3 − Ĉ2
3 − σ̂2 + σ̂3

] 1√
2
(φC −φB)

= 1

2
√

6

[

(φA −φC)− (φB −φA)

− (−φA +φB)+ (−φC +φA)
]

= 1√
6
(2φA −φB −φC)

=QEy (4.50)

For a given irrep, the number of projectors that can be constructed is equal to the
number of all possible {k, l} combinations, which equals dim(Ω ′)2. By varying the
row index, k, one can obtain all the components of the invariance space of a given
irrep. This is demonstrated by acting on the operators with an element Ŝ:

ŜP̂Ω ′
kl =

dim(Ω ′)

|G|
∑

R∈G

∑

j

D̄Ω ′
kl (R)ŜR̂

= dim(Ω ′)

|G|
∑

T ∈G
D̄Ω ′
kl

(

S−1T
)

T̂

= dim(Ω ′)

|G|
∑

T ∈G

(

∑

m

D̄Ω ′
km

(

S−1)D̄Ω ′
ml (T )

)

T̂

= dim(Ω ′)

|G|
∑

m

DΩ ′
mk(S)

(

∑

T ∈G
D̄Ω ′
ml (T )T̂

)

=
∑

m

DΩ ′
mk(S)P̂

Ω ′
ml (4.51)

In this derivation we have used the substitution ŜR̂ = T̂ . The result shows that the
set of projectors with fixed index l forms a complete basis set for the Ω ′ irrep. On
the other hand, by changing the column index l we have access to different sets
of SALCs with the same symmetry. This applies only when the function space has
multiplicities, cΓ , greater than one. This can be illustrated for the {|fR〉} function
space transforming as the regular representation that has the maximal degree of
freedom. Two projectors with the same k index, but different l indices, will project
out two functions that are linearly independent, as the following overlap calculation
shows:

〈

P̂Ω
kl fE |P̂Ω

kl′fE
〉

= dim(Ω)2

|G|2
〈

∑

R

D̄Ω
kl (R)R̂fE |

∑

S

D̄Ω
kl (S)ŜfE

〉

= dim(Ω)2

|G|2
∑

R,S

DΩ
kl (R)D̄

Ω
kl (S)〈fR|fS〉
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= dim(Ω)2

|G|2
∑

R,S

DΩ
kl (R)D̄

Ω
kl (S)δR,S

= dim(Ω)2

|G|2
∑

R

DΩ
kl (R)D̄

Ω
kl′(R)

= dim(Ω)

|G| δl,l′ (4.52)

Hence, if the multiplicity is greater than one, an additional label preceding the irrep
label has to be introduced in order to distinguish SALCs with the same symmetry,
and, by varying the l index of the projector, all these can be projected out. Note
that the maximal invariance space of a symmetry group is bound to be the regular
representation; hence, multiplicities of an invariant function space cannot exceed
the dimensions of the irreps and thus will always be covered by the variation of
index l. If the multiplicity is smaller than dim(Ω), variation of l will give rise to
redundancies.

The action of the projector on an arbitrary function can be written as

P̂ Γ
kl |fx〉 = SΓ lx

∣

∣ΦΓ
k

〉

(4.53)

Hence, the projector takes out of the function an irreducible part that transforms as
the |ΦΓ

k 〉 SALC multiplied by an overlap factor, SΓ lx , which indicates the extent to
which the |ΦΓ

l 〉 SALC is present in this function. A very concise formulation of this
result can be achieved by the use of the Dirac notation. In this notation, the projector
is written as

P̂ Γ
kl =

∣

∣ΦΓ
k

〉〈

ΦΓ
l

∣

∣ (4.54)

In the ket–bra combination, all the aspects of the projector come together. Let us
apply this to our function:

P̂ Γ
kl |fx〉 =

∣

∣ΦΓ
k

〉〈

ΦΓ
l

∣

∣

∣

∣fx
〉

=
∣

∣ΦΓ
k

〉〈

ΦΓ
l

∣

∣fx
〉

(4.55)

where the convention is followed that the juxtaposition of two vertical lines is con-
tracted to one. Comparing Eqs. (4.54) and (4.55), one can identify the bracket:

SΓ lx =
〈

ΦΓ
l

∣

∣fx
〉

(4.56)

When the projection operator acts (on the left) on a function |fx〉, it forms a bracket,
which is the overlap factor measuring how much of the |ΦΓ

l 〉 SALC is present in the
target. This is the “recognition” part of the projection. It then returns, as a result, the
desired SALC |ΦΓ

k 〉 multiplied by the overlap factor. This is the ladder aspect. As

an example, consider the action of the P̂E projection operators on the |1sA〉 orbital
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in ammonia. One has:

P̂11|1sA〉 =
1

3

[

2|1sA〉 − |1sB〉 − |1sC〉
]

=
√

2√
3
|ψx〉

P̂21|1sA〉 =
√

2√
3
|ψy〉

P̂12|1sA〉 = 0

P̂22|1sA〉 = 0

(4.57)

Note that the bracket 〈ψy |1sA〉 vanishes because |1sA〉 does not occur in the |ψy〉
target, and this gives rise to the zeros in Eq. (4.57). If one wants to avoid the cum-
bersome construction of the irreducible representation matrices, one can construct
trace projectors by putting k = l and summing over all k:

∑

k

P̂ Γ
kk =

dim(Γ )

|G|
∑

k

∑

R

D̄Γ
kk(R)R̂

= dim(Γ )

|G|
∑

R

χ̄Γ (R)R̂ (4.58)

In this case, only the character tables are needed in order to construct such projec-
tors. They will certainly destroy all parts of the function space that do not belong
to the irrep Γ , but, on the other hand, one loses the additional information in the
subrepresentation. As we will see in the subsequent chapters, these little auxiliary
indices are nonetheless valuable. A further remarkable property of a projector is that
if it is applied twice with inverted kl indices, one again obtains a projector:

P̂ Γ
lk P̂

Γ
kl =

dim(Γ )2

|G|2
∑

RS

D̄Γ
lk (R)D̄

Γ
kl (S)R̂Ŝ

= dim(Γ )2

|G|2
∑

RT

D̄Γ
lk (R)D̄

Γ
kl

(

R−1T
)

T̂

= dim(Γ )2

|G|2
∑

T

∑

m

∑

R

D̄Γ
lk (R)D̄

Γ
km

(

R−1)D̄Γ
ml(T )T̂

= dim(Γ )2

|G|2
∑

T

∑

m

(

∑

R

D̄Γ
lk (R)D

Γ
mk(R)

)

D̄Γ
ml(T )T̂

= dim(Γ )

|G|
∑

T

(

∑

m

δm,lD̄
Γ
ml(T )

)

T̂

= P̂ Γ
ll (4.59)
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This also implies that the diagonal operator P̂kk is idempotent, i.e., applying it twice
gives exactly the same result as applying it once:

P̂ Γ
kkP̂

Γ
kk = P̂ Γ

kk (4.60)

Finally, summing over all diagonal projectors gives rise to the unit element:
∑

Γ

∑

i

P̂ Γ
ii = Ê (4.61)

The proof is as follows:

∑

Γ

∑

i

P̂ Γ
ii =

1

|G|
∑

Γ

dim(Γ )
∑

i

∑

R

D̄Γ
ii (R)R̂

= 1

|G|
∑

Γ

dim(Γ )
∑

R

χ̄Γ (R)R̂

= 1

|G|
∑

R

(

∑

Γ

dim(Γ )χΓ (R)

)

R̂

=
∑

R

δR,ER̂

= Ê (4.62)

Here, we have made use of the fact that the sum over all characters multiplied by the
dimension of the irrep is the character of the regular representation, and this vanishes
for all R except for the unit element, where it is equal to |G| (see Eq. (4.41)). In
Dirac terminology this reads

∑

Γ

∑

i

∣

∣ΦΓ
i

〉〈

ΦΓ
i

∣

∣= 1 (4.63)

This relation is also known as the closure relation. It is frequently applied in the
context of the crystal field theory of the lanthanides.

4.6 Subduction and Induction

Many applications are concerned with the reduction of symmetry by external or in-
ternal perturbations. Subduction corresponds to the lowering a symmetry group G

to one of its subgroups, H , and is denoted by G ↓ H . It can consist of a chain of
consecutive symmetry lowerings, following a path of descent in symmetry down
the genealogical tree of the group. In physics a typical form of external symmetry
breaking is through application of a uniform magnetic or electric field. It leads to
a subgroup that is the intersection of the molecular point group and the axial or
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Table 4.3 Subduction of T1u in Oh ↓D3d

Oh Ê 8Ĉ3 6Ĉ2 6Ĉ4 3Ĉ2 ı̂ 6Ŝ4 8Ŝ6 3σ̂h 6σ̂d
T1u 3 0 −1 1 −1 −3 −1 0 1 1

D3d Ê 2Ĉ3 3Ĉ2 ı̂ 2Ŝ6 3σ̂d
T1u 3 0 −1 −3 0 1

A2u 1 1 −1 −1 −1 1

Eu 2 −1 0 −2 1 0

polar symmetry of the applied field, as discussed in Sect. 3.9. In chemistry a com-
mon approach to external symmetry breaking is to substitute one or more atoms or
atomic groups by homologues, or to interchange sites, which may give rise to dif-
ferent stereo-isomers. Internal symmetry breaking is more subtle and may arise as
a consequence of the Jahn–Teller effect. In this case the presence of a degenerate
electronic state in the high-symmetry conformation of the molecule may provoke a
spontaneous geometric distortion of the nuclear frame, leading to a lower symmetry
in which the degeneracy is removed. This effect involves the coupling of represen-
tations and will be discussed in Sect. 6.6. Our concern here is what will happen to
the irreps of G when the symmetry is reduced to H . This can easily be decided on
the basis of the character theorem. We simply have to determine the character of
the representation in the subgroup. The procedure consists of three steps. One first
identifies the correspondence between the elements of G and the elements of H .
Then the characters of the irrep in G are transferred to the characters for the corre-
sponding operations in the subgroup. Third, the character string in the subgroup is
reduced according to the standard procedure of the character theorem. Hence, let Γ
denote an irrep of the parent group, and γ an irrep of the subgroup. The number of
times that this subgroup representation occurs in the subduction G ↓H is given by

cγ (Γ G ↓H)= 1

|H |
∑

h∈H
χ̄γ (h)χΓ (h) (4.64)

In Table 4.3 we follow as an example the fate of the octahedral T1u irrep for the
subduction Oh ↓ D3d . When the subduction is performed, the anchoring of the
correspondences in the first step of the procedure is very important. For instance,
the octahedron has two conjugacy classes of Ĉ2 axes. The 6 Ĉ2 class collects the
twofold axes which bisect the Cartesian directions, while the 3 Ĉ2 class is made up
of the Ĉ2

4 axes along the Cartesian directions. In the case of subduction to D3d , the
three axes perpendicular to the trigonal direction belong to the 6 Ĉ2 class. As the
table indicates, in D3d the threefold-degenerate representation becomes reducible
by splitting into two trigonal irreps:

Oh ↓D3d : T1u→A2u +Eu (4.65)

In some cases a subgroup can be reached via two different symmetry breakings. An
example is the subduction Oh ↓ D2h. Here, two pathways for symmetry breaking



4.6 Subduction and Induction 71

Fig. 4.3 (a) generation of equivalent sites in a square starting from 〈a〉, (b) substitutional symme-
try lowering of Oh ↓D2h in the MX2Y2Z2 complex isomer, and (c) Oh ↓D′2h symmetry lowering
by bidentate ligands in trans-M(L− L)2X2

Table 4.4 Subduction of T2g
under Oh ↓D2h

Oh Ê 3Ĉ2 ı̂ 3σ̂h
↓ ւ ↓ ց ↓ ւ ↓ ց

D2h Ê Ĉx
2 Ĉ

y

2 Ĉz
2 ı̂ σ̂xy σ̂xz σ̂yz

T2g 3 −1 −1 −1 3 −1 −1 −1

B1g 1 −1 −1 1 1 1 −1 −1

B2g 1 −1 1 −1 1 −1 1 −1

B3g 1 1 −1 −1 1 −1 −1 1

are present. The three Ĉ2 axes of the orthorhombic symmetry are either based on the
3 Ĉ2 class, {Ĉx

2 , Ĉ
y

2 , Ĉ
z
2}, or on a mixture of the two classes, as in {Ĉz

2, Ĉ
xy

2 , Ĉ
x̄y

2 }.
We shall denote the latter group as D′2h. Simple molecular examples of both are
shown in Fig. 4.3. Tables 4.4 and 4.5 present the splitting of the T2g irrep over these
two subduction paths. The corresponding splitting schemes are as follows:

Oh ↓D2h : T2g→ B1g +B2g +B3g

Oh ↓D′2h : T2g→Ag +B2g +B3g
(4.66)

Subduction tables are available in Appendix D.
The opposite process to subduction is induction. Here, we start from an irrep in

a subgroup H . By coset expansion, this subgroup is put on an orbit inside a higher
symmetry group. This leads to an extension of the function space and generates
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Table 4.5 Subduction of T2g
under Oh ↓D′2h Oh Ê 6Ĉ2 3Ĉ2 ı̂ 3σ̂h 6σ̂d

↓ ↓ ց ↓ ↓ ↓ ↓ ց
D′2h Ê Ĉx

2 Ĉ
y

2 Ĉz
2 ı̂ σ̂xy σ̂xz σ̂yz

T2g 3 1 1 −1 3 −1 1 1

Ag 1 1 1 1 1 1 1 1

B2g 1 −1 1 −1 1 −1 1 −1

B3g 1 1 −1 −1 1 −1 −1 1

irreps of the parent group. The outcome of the induction is determined by the reci-
procity theorem due to Frobenius.

Theorem 7 The number of times that a given irrep Γ of a parent group G occurs

in the induction H ↑G of a subgroup irrep γ is equal to the number of times that γ

is present in the subduction G ↓H of that irrep Γ .

We shall present the proof here since it introduces the important concept of the
ground representation [2, 3]. This concept is especially useful when considering
a polyhedral molecular cluster or complex consisting of several equivalent sites.
Typically, these sites could be the atoms in a network covering a hollow cage, or
ligands in a metal complex. In the case of ammonia, the sites are simply the three
hydrogen atoms. Usually, the site group is of type Cnv . We choose site 〈a〉 as the
starting site, which is stabilized by the subgroup HA. The group G is expanded in
cosets of this subgroup, with coset representatives ĝκ :

G=
∑

κ

ĝκHA (4.67)

As we have seen in the previous chapter, the coset representatives each address a
copy of site 〈a〉, which we shall label as 〈κ〉. The site group that stabilizes this site
is isomorphic to HA and is denoted by Hκ . We thus have the following mappings:

〈κ〉 = ĝκ 〈a〉

Hκ = ĝκHAĝ
−1
κ

(4.68)

The mapping of the stabilizer, HA →Hκ , is recognized as a similarity transforma-
tion of the whole subgroup. Two different sites can share the same site group. As
an example, in a square pyramidal complex, with parent group C4v and site groups
Cs , two ligands, trans to each other, have the same site group. With reference to the
square in Fig. 4.3a, the cosets may be generated as follows:

C4v =
3
∑

k=0

Ĉk
4 {Ê, σ̂1} = {Ê, σ̂1} + {Ĉ4, σ̂4} +

{

Ĉ2
4 , σ̂2

}

+
{

Ĉ3
4 , σ̂3

}

(4.69)
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Hence, the four sites of the square are denoted by the coset generators as
〈a〉, 〈Ĉ4〉, 〈Ĉ2

4〉, and 〈Ĉ3
4〉. Now we also introduce a functional basis on site 〈a〉,

which is represented by the irrep γ , with component labeling mγ :

ĥA|γmγ ;a〉 =
∑

m′γ

|γm′γ ;a〉D
γ

m′γmγ
(hA) (4.70)

The coset generators will once again take this functional space around in an orbit
which visits all the equivalent sites. Local basis sets are thus defined as

|γmγ ;κ〉 = ĝκ |γmγ ;a〉 (4.71)

The total induction space is the sum of all these basis sets on the different sites.
As we have seen, the operators of the group act transitively on the cosets. This

means that the cosets are permuted among themselves. The permutation matrix is
denoted as P(g). One has

ĝ(ĝκHA)=
∑

λ

Pλκ (g)ĝλHA (4.72)

with

Pλκ (g)= 1 if ĝ(ĝκHA)= ĝλHA

Pλκ (g)= 0 if ĝ(ĝκHA) 
= ĝλHA
(4.73)

This permutational representation is also called the ground representation. It de-
scribes the transformation of the coset space. The dimension of this coset space is
|G|/|H |. In the case of a cluster, where each coset corresponds to a site, it repre-
sents the permutation of the positions of the sites. For this reason, it is also called
the positional representation. Indeed, Eq. (4.72) may equally well be written as

ĝ〈κ〉 =
∑

λ

Pλκ (g)〈λ〉 (4.74)

For the λ-value, which marks the position of the nonzero element in the κ th column
of the matrix P, the product ĝ−1

λ ĝĝκ is an element of HA. We call this the subelement

of ĝ in HA. As an example, for the case of the pyramidal complex, the matrices of
the positional representation are listed in Table 4.6. If ĝ = ĝκ ĥĝ

−1
κ , the diagonal

element will be nonzero: Pκκ(g) = 1. The following sum rules will thus hold, as
can be verified from Table 4.6:

∑

κ

Pκκ
(

gκhg
−1
κ

)

= |G||H |
∑

h∈H
Pκκ
(

gκhg
−1
κ

)

= |H |
(4.75)
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Table 4.6 Ground or
positional representation of
the four equatorial ligand
sites in a square pyramidal
complex; the sites are ordered
as in Fig. 4.3(a)

P(E)=

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

P(σ1)=

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞

⎟

⎟

⎟

⎟

⎠

P(C4)=

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎠

P(σ2)=

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

P(C2
4 )=

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞

⎟

⎟

⎟

⎟

⎠

P(σ3)=

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

P(C3
4 )=

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

P(σ4)=

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎠

We are now ready to start the proof. The total induction space is invariant under
the operations of the group G. As an example, we can act with an operator of the
group on one of the functions on one of the sites:

ĝ|γmγ ;κ〉 = ĝĝκ |γmγ ;a〉 =
∑

λ

Pλκ(g)ĝλ
[

ĝ−1
λ ĝĝκ

]

|γmγ ;a〉 (4.76)

where we have placed the subelement of ĝ in square brackets. This subelement
belongs to HA, under the protection of the Pλκ (g) prefactor, which will be nonzero
only for values of ĝ for which this is indeed the case. We can thus introduce the
representation matrix for the local on-site transformations:

ĝ|γmγ ;κ〉 =
∑

λ

∑

m′γ

Pλκ (g)ĝλ|γm′γ ;a〉D
γ

m′γmγ

(

g−1
λ ggκ

)

=
∑

λ

∑

m′γ

Pλκ (g)|γm′γ ;λ〉D
γ

m′γmγ

(

g−1
λ ggκ

)

(4.77)

This result provides the matrix transformation that shows how the basis functions
of the total induction space are transformed under the operations of G. We shall
denote this matrix as D

H↑G. The structure of this matrix is based on the per-
mutational structure of the ground representation, but the zeros are replaced by
small zero blocks of dimension dim(γ ) × dim(γ ), and, instead of the ones, the
D
γ (g−1

λ ggκ) matrices are inserted. A diagonal element of this matrix will be given
by Pκκ(g)D

γ
mγmγ

(ĝ−1
κ ĝĝκ).
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Knowing the diagonal elements of the induction matrix, we can now calculate
the frequency of a given Γ irrep of the main group, using the character theorem:

cΓ (γH ↑G) =
1

|G|
∑

g∈G
χ̄Γ (g)Tr

[

D
H↑G(g)

]

= 1

|G|
∑

g∈G
χ̄Γ (g)

∑

κ

Pκκ(g)χ
γ
(

g−1
κ ggκ

)

(4.78)

The only elements ĝ that are allowed in the summation over κ are the ones such
that (ĝ−1

κ ĝĝκ) ∈ HA. For other elements, Pκκ(g) are zero. Let us denote by ĥ the
subelement that allows us to express ĝ as

ĝ = ĝκ ĥĝ
−1
κ (4.79)

Introducing this substitution in Eq. (4.78) yields

cΓ (γH ↑G)=
1

|G|
∑

h∈H

∑

κ

χ̄Γ
(

gκhg
−1
κ

)

χγ (h)Pκκ
(

gκhg
−1
κ

)

(4.80)

The first character in this equation belongs to the full group and is the same for all
elements of a conjugacy class, and hence,

χΓ
(

gκhg
−1
κ

)

= χΓ (h) (4.81)

Substituting the result of Eq. (4.81) and the sum rule in Eq. (4.75) into the character
expression finally gives

cΓ (γH ↑G) =
1

|G|
∑

h∈H

∑

κ

χ̄Γ (h)χγ (h)Pκκ
(

gκhg
−1
κ

)

= 1

|G|
∑

h∈H
χ̄Γ (h)χγ (h)

(

∑

κ

Pκκ
(

gκhg
−1
κ

)

)

= 1

|H |
∑

h∈H
χ̄Γ (h)χγ (h)

= cγ (Γ G ↓H) (4.82)

which concludes the proof. Armed with the subduction tables, we can now read
these at once in the opposite sense and obtain the corresponding induction frequen-
cies. As a simple example, consider a hydrogen atom in ammonia. The site symme-
try is Cs , and the subduction from C3v reads:

A1 → a

A2 → b

E→ a + b

(4.83)
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Fig. 4.4 Tetrahedral SALCs
in methane. The open circles

are positive and the filled

circles are negative. The T2
orbitals match the sign
pattern of central p-orbitals

Using reciprocity, we can thus immediately infer the SALC symmetries of the hy-
drogen basis functions by selecting the C3v irreps that subduce a in the case of the
1s orbitals and b in the case of the bending coordinates:

Hydrogen 1s : aCs ↑ C3v =A1 +E

Hydrogen φ : bCs ↑ C3v =A2 +E
(4.84)

Some induction schemes for σ,π , and δ orbital basis sets on Cnv sites of polyhe-
dral complexes are to be found in Appendix D. In addition to the Frobenius theo-
rem, there is also a stronger result for induction theory based on the concept of a
fiber bundle. This requires the coupling of representations and will be considered in
Sect. 6.9.

4.7 Application: The sp3 Hybridization of Carbon

Methane is the prototype of the saturated aliphatic hydrocarbons. The four hydrogen
atoms occupy the corners of a regular tetrahedron, as in Fig. 4.4. Their site symmetry
is C3v . The 1s atomic orbital on hydrogen is totally symmetric in the site group. The
symmetries of the corresponding SALCs can of course be obtained by the standard
character procedure, as for the case of ammonia, but we might as well directly obtain
them by induction:

Γ (a1C3v ↑ Td)=A1 + T2 (4.85)

The corresponding SALCs can easily be projected:

(

|A1〉 |T2x〉 |T2y〉 |T2z〉
)

=
(

|1sA〉 |1sB〉 |1sC〉 |1sD〉
)

×T (4.86)
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with

T= 1

2

⎛

⎜

⎜

⎝

1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

⎞

⎟

⎟

⎠

(4.87)

SALCs are normalized to unity, neglecting overlap between the sites. The matrix T

transforms the localized orbitals on the sites to delocalized molecular orbitals with
irreducible symmetry characteristics. The inverse matrix T

−1 fulfills the opposite
role and localizes the molecular orbital set back on the atomic sites.

The valence shell of the central carbon atom contains four orbitals, which inci-
dentally also transform as A1 + T2. The precise correspondence is as follows:

|2s〉↔A1

|2px〉↔ T2x

|2py〉↔ T2y

|2pz〉↔ T2z

(4.88)

Hence, we can match the central valence shell with the hydrogen SALCs. In fact,
this correspondence provides a simple pictorial method for obtaining the SALCs
immediately. The weighting coefficients for a given SALC are simply taken as pro-
portional to the local amplitude of the central 2s or 2p function, with the same
symmetry, as is illustrated in Fig. 4.4. In this way one obtains a SALC that has the
same nodal characteristics and thus the same symmetry as the central orbital. Note
that this procedure also aligns the phases of the peripheral and central orbitals.

Starting from on-site localized atomic orbitals, we have thus transformed these
into SALCs using the T matrix and then found a perfect matching with the central
valence orbitals on carbon. What would now be the effect of applying the inverse
transformation, T−1, not to the hydrogen SALCs but to the central carbon orbitals?
This yields an interesting result. The inverse matrix, which transforms delocalized
SALCs back into localized orbitals, reshapes the carbon valence orbitals by pro-
jecting out linear combinations, of mixed or hybrid character, which are maximally
directed to a single site of the tetrahedron. These are the ubiquitous sp3 hybrids of
Pauling, which we can label with the site labels A,B,C, and D:

(

|sp3
A〉 |sp3

B〉 |sp3
C〉 |sp3

D〉
)

=
(

|2s〉 |2px〉 |2py〉 |2pz〉
) 1

2

⎛

⎜

⎜

⎝

1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

⎞

⎟

⎟

⎠

(4.89)

The components of the valence shell of carbon being a scalar (2s) and a vector
(2p), the tetrahedron is the optimal geometry that provides four valence sites, which
together transform precisely as scalar and vector. The alternative high-symmetry
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four-site structure is the square, but, from the tables in Appendix D, the induction
from the C2v sites in a square-planar structure yields

Γ (a1C2v ↑D4h)=A1g +B2g +Eu (4.90)

This matches the symmetry of sp2d hybrids. It is thus not suitable for carbon, but
indeed describes the valence structure of square-planar transition-metal complexes
where d-orbitals are involved in the bonding.

4.8 Application: The Vibrations of UF6

As we have already mentioned, representations not only apply to orbitals, but
equally well to vibrational coordinates. The function space in such a case consists
of a set of distortions. When applying symmetry operations we do not move the
atoms, but the distortions. Let us consider the vibrations of an octahedral complex,
such as UF6, which can be brought into the gas phase and which has been studied
in great detail since it is the carrier of uranium in the gas diffusion process for en-
richment of nuclear fuel. The atoms are labeled as in Fig. 4.5, and on each atom
we define a local coordinate system that parallels the central system. In the nota-
tion adopted, Y2 is a variable for a displacement of atom 2 over a distance 

in the positive y-direction. A symmetry operation such as Ĉz
4 transforms this Y2

into −X3. The seven atoms give rise to 21 distortions, which include six spuri-
ous modes, corresponding to three translations and three rotations. The seven atoms
form two different orbits: the orbit containing the six fluoride ligands and the one-
atom orbit of the central uranium atom. The displacements of one ligand can further
be separated into a radial or σ -mode and two tangential or π -modes, which, in the
C4v site group, transform as a1 and e, respectively. Altogether, the distortion space
thus contains three different basis sets: the central atom, the ligand σ -modes, and
the ligand π -modes. For each of these, the symmetry content may be determined by
directly applying the character theorem, or—for the case of the ligands—by using
induction. The three displacements of the uranium atom transform as the T1u irrep
of the central translation mode. The ligand inductions are as follows:

Fσ : Γ (a1C4v ↑Oh)=A1g +Eg + T1u

Fπ : Γ (eC4v ↑Oh)= T1g + T2g + T1u + T2u
(4.91)

We can now determine the symmetry-adapted coordinates by applying the pro-
jection operators, but the results can be written down almost immediately by again
using the criterion of overlap with central symmetry functions. The A1g , T1u, and
Eg + T2g SALCs reflect the nodal patterns of central s, p, and d functions, respec-
tively. The T1g mode corresponds to the rotation and evidently consists of tangential
displacements of ligands in the equator perpendicular to the rotation axis. Finally,
the T2u is a buckling mode, which has the symmetry of central f orbitals, viz.
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Fig. 4.5 Ligand numbering
and displacement coordinates
for UF6

Table 4.7 Symmetry coordinates for UF6

UT1upx X0

UT1upy Y0

UT1upz Z0

FσA1gs 1/
√

6(Z1 +X2 +Y3 −X4 −Y5 −Z6)

FσEgdz2 1/
√

12(2Z1 −X2 −Y3 +X4 +Y5 − 2Z6)

FσEgdx2−y2 1/2(X2 −Y3 −X4 +Y5)

FσT1upx 1/
√

2(X2 +X4)

FσT1upy 1/
√

2(Y3 +Y5)

FσT1upz 1/
√

2(Z1 +Z6)

FπT1gx 1/2(−Y1 +Z3 −Z5 +Y6)

FπT1gy 1/2(X1 −Z2 −X6 +Z4)

FπT1gz 1/2(Y2 −X3 −Y4 +X5)

FπT2gdyz 1/2(Y1 +Z3 −Z5 −Y6)

FπT2gdxz 1/2(X1 +Z2 −X6 −Z4)

FπT2gdxy 1/2(Y2 +X3 −Y4 −X5)

FπT1upx 1/2(X1 +X3 +X5 +X6)

FπT1upy 1/2(Y1 +Y2 +Y4 +Y6)

FπT1upz 1/2(Z2 +Z3 +Z4 +Z5)

FπT2ufx(y2−z2) 1/2(−X1 +X3 +X5 −X6)

FπT2ufy(z2−x2) 1/2(Y1 −Y2 −Y4 +Y6)

FπT2ufz(x2−y2 ) 1/2(Z2 −Z3 +Z4 −Z5)

fz(x2−y2), and its cyclic permutations fx(y2−z2) and fy(z2−x2). In Table 4.7 we list
all 21 symmetry coordinates by category, using labels that refer to the central har-
monic functions. We may denote the 21 symmetry coordinates by a row vector S.
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The kinetic energy is then given by

T = 1

2

21
∑

i=1

mi

(

dSi
dt

)2

= M

2

3
∑

i=1

(

dSi
dt

)2

+ m

2

21
∑

i=4

(

dSi
dt

)2

(4.92)

Here, M is the atomic mass of uranium, and m is the atomic mass of fluorine. The
kinetic energy can be reduced to a uniform scalar product by mass weighting the
coordinates, i.e., by multiplying the S coordinates with the square root of the atomic
mass of the displaced atom. We shall denote these as the vector Q. Hence, Qi =√
miSi :

T = 1

2

∑

i

(

dQi

dt

)2

= 1

2

∑

i

Q̇2
i (4.93)

where the dot over Q denotes the time derivative. The potential energy will be ap-
proximated by second-order derivatives of the potential energy surface V (Q) in the
mass-weighted coordinates:

Vij =
∂2V

∂Qi∂Qj

(4.94)

These derivatives are the elements of the Hessian matrix, V, which is symmetric
about the diagonal. The potential minimum coincides with the octahedral geometry.
The resulting potential energy is

V = 1

2

∑

i,j

VijQiQj (4.95)

The kinetic and potential energies are combined to form the Lagrangian, L= T −V .
The equation of motion is given by

∂L

∂Qk

= d

dt

∂L

∂Q̇k

(4.96)

The partial derivatives in this equation are given by

∂L

∂Qk

= − ∂V

∂Qk

=−VkkQk −
1

2

∑

i 
=k
(Vik + Vki)Qi

= −VkkQk −
∑

i 
=k
VkiQi =−

∑

i

VkiQi (4.97)

d

dt

∂L

∂Q̇k

= d

dt

∂T

∂Q̇k

= d

dt
Q̇k = Q̈k (4.98)
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Table 4.8 Vibrational spectrum of UF6

Symmetry Type ν̄(cm−1) Calc. Technique

ν1(A1g) Breathing 667 669 Raman (very strong)

ν2(Eg) Stretching 533 534 Raman (weak)

ν3(T1u) Stretching 626 624 IR

ν4(T1u) Bending 186 181 IR

ν5(T2g) Bending 202 191 Raman (weak)

ν6(T2u) Buckling 142 140 Overtone

It will be assumed that the coordinates vary in a harmonic manner with an angular
frequency ω; hence, Qk =Qmax

k cosωt . The second derivative is then given by

Q̈k =−ω2Qk =−(2πν)2Qk (4.99)

where ν is the vibrational frequency in Hertz. The equation of motion then is turned
into a set of homogeneous linear equations:

∀k :
∑

i

(

Vki − δkiω
2)Qi = 0 (4.100)

This set of equations is solved in the standard way by diagonalizing the Hessian
matrix, as

∣

∣V−ω2
I
∣

∣= 0 (4.101)

The eigenvalues of the secular equation yield the frequencies of the normal modes,
which are usually expressed as wavenumbers, ν̄, preferentially in reciprocal cen-
timetres, cm−1 by dividing the frequency by the speed of light, c.

ν̄ = ν

c
= ω

2πc
(4.102)

In Table 4.8 we present the experimental results [4] for U238F6, as compared with
the Hessian eigenvalues, based on extensive relativistic calculations [5]. The eigen-
functions of the Hessian matrix are the corresponding normal modes. The Hessian
matrix will be block-diagonal over the irreps of the group and, within each irrep,
over the individual components of the irrep. Moreover, the blocks are independent
of the components. All this illustrates the power of symmetry, and the reasons for it
will be explained in detail in the next chapter. As an immediate consequence, sym-
metry coordinates, which belong to irreps that occur only once, are exact normal
modes of the Hessian. Five irreps fulfil this criterion: the T1g mode, which corre-
sponds to the overall rotations, and the vibrational modes, A1g + Eg + T2g + T2u.
Only the T1u irrep gives rise to a triple multiplicity. In this case, the actual normal
modes will depend on the matrix elements in the Hessian. Let us study this in detail
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Fig. 4.6 T1u distortion space for UF6 with coordinates as defined in Eq. (4.103); Tz is the transla-
tion of mass. The circle, perpendicular to this direction, is the space of vibrational stretching and
bending, with coordinates defined in Eqs. (4.104) and (4.105). The angle 〈σ2|σ1〉 is −10.5◦

for the three T1uz-components, which we shall abbreviate as follows:

QU =
√
MZ0

Qσ =
√
m√
2
(Z1 +Z6)

Qπ =
√
m

2
(Z2 +Z3 +Z4 +Z5)

(4.103)

This space is still reducible since it includes the translation in the z-direction. The
translation coordinate corresponds to the displacement of the center of mass in the
z-direction. It is given by

∑

imiZi , which can be expressed as follows:

Tz =MZ0 +m(Z1 +Z2 +Z3 +Z4 +Z5 +Z6)

=
√
MQU +

√
2mQσ +

√
4mQπ (4.104)

We can remove this degree of freedom from the function space by a standard orthog-
onalization procedure. One option is to construct first a pure stretching mode, which
does not involve the Qπ coordinate. This mode is denoted by |σ1〉. The remainder
of the function space, which is orthogonal both to the translation and to this pure
stretching mode, is then denoted by |π1〉. Normalizing these modes with respect to
mass-weighted coordinates yields:

|σ1〉 =
−
√

2mQU +
√
MQσ√

M + 2m

|π1〉 =
−
√

4mMQU −m
√

8Qσ + (M + 2m)Qπ√
(M + 2m)(M + 6m)

(4.105)
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An alternative option would be to construct a pure bending mode, based on the
tangent motions. Let us denote this by |π2〉. The remainder is then denoted by |σ2〉.

|σ2〉 =
−
√

2mMQU + (M + 4m)Qσ −m
√

8Qπ√
(M + 4m)(M + 6m)

|π2〉 =
−
√

4mQU +
√
MQπ√

M + 4m

(4.106)

In Fig. 4.6 we present both choices of bases. The angle, α, between both basis sets
is defined by

cosα =
√

M(M + 6m)

(M + 2m)(M + 4m)
(4.107)

In the case of UF6 (m = 18.998, M = 238.050) this angle is −10.5◦. The actual
eigenmodes are found by setting up the Hessian in one of these coordinate sets and
diagonalizing it. This Hessian matrix is symmetric and thus contains three inde-
pendent parameters: the two diagonal elements and the single off-diagonal element.
The sum of the resulting eigenvalues is equal to the trace of the matrix, and the
product is equal to its determinant; this leaves still one degree of freedom, which
can be associated with the composition of the normal mode, viz. the angle of rota-
tion in the diagram. It is important to realize that this composition also gives rise to
observables, albeit not the eigenfrequencies, but a variety of other properties, such
as the intensities of the vibrational transition, isotope shifts and isotope splittings,
or electron diffraction amplitudes. For most octahedral complexes, as in the case of
UF6, the rotation angle for the actual T1u eigenmodes lies in the interval [0, α]. This
means that the modes may approximately be assigned as a stretching and a bending
mode. In the spectrum their frequencies are denoted as ν3 and ν4, respectively. The
isotope effect of the radioactive nucleus U235, as distinct from U238, is absent for all
modes, except for the T1u modes, since these involve the displacement of uranium.
Of the latter two, the strongest effect is expected for the stretching vibration, since
this involves the largest displacement of the central atom. The pure stretching mode,
|σ1〉, can be expressed in terms of the displacements along the z-direction as

|σ1〉 =
√

2mM

M + 2m

(

−Z0 +
Z1 +Z6

2

)

(4.108)

This is precisely the antisymmetric mode for a triatomic F–U–F oscillator. The
square root preceding the modes corresponds to a mass weighting by the reduced
mass, μ, for such an oscillator:

μ=
(

1

M
+ 1

2m

)−1

= 2mM

M + 2m
(4.109)

Substitution of U238 by the U235 isotope will reduce this effective mass by a factor
0.9982. The frequency is accordingly increased by the square root of this factor.
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This gives an increase of frequency of 0.56 cm−1, which is close to the experimental
value [6] of 0.60 cm−1. This confirms the dominant stretching character of the ν3
mode.

What have we learned from this example? The Hessian matrix is block diagonal
over the irreps of the point group, and, as a result, the normal modes are character-
ized by symmetry labels. These labels are exact spectral assignments. In the long
run their relevance for the study of symmetry may be more important than the tem-
porary gain in computational time for evaluation and diagonalization of the Hessian
matrix.

4.9 Application: Hückel Theory

The Hückel model for the chemist (or the analogous tight-binding model for the
condensed-matter physicist) is an extremely simplified molecular orbital model [7],
which nevertheless continues to play an important role in our understanding of elec-
tronic structures and properties. It emphasizes the molecule–graph analogy and uses
what is now regarded as spectral graph theory [8, 9] in order to obtain molecular or-
bitals. Its strength comes from the fact that, in spite of the approximations involved,
it incorporates the essential topological and symmetry aspects of electronic struc-
tures, and, as we keep repeating, these are simple but exact properties of complex
molecular quantum-systems. Hückel theory is preferentially applied to molecular
systems where each atom or node carries one atomic orbital, say |φi〉. Molecular or-
bitals will be denoted as |Φk〉. To find the molecular orbitals, one sets up the Hückel
Hamiltonian matrix, which in its most simplified form is proportional to the adja-
cency matrix, A, of the molecular graph. Elements of the adjacency matrix are zero,
unless row and column index refer to neighboring nodes, in which case the matrix
element is equal to one. The Hamiltonian matrix then is given by

〈φi |H|φj 〉 = αδij + βAij (4.110)

or, in operator form,

H=
∑

i

α|φi〉〈φi | +
∑

i 
=j
βAij |φi〉〈φj | (4.111)

Here, α is the so-called Coulomb integral, which corresponds to the on-site inter-
action element. It defines the zero-point of energy and thus has only a symbolic
significance in homogeneous systems. However, in hetero-atomic systems, it is im-
portant to differentiate the atoms. As an example, the Coulomb integral for nitrogen
will be more negative than the one for carbon because the heavier nitrogen nucleus
exerts a greater attraction on the electrons. The β parameter is the resonance or
inter-site hopping integral. It represents a bonding interaction and thus is negative.
The Hückel eigenvalues are thus of opposite sign as compared with the correspond-
ing eigenvalues of the adjacency matrix. The molecular symmetry group is called in
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to transform the atomic basis into SALCs according to the irreps of the point group.
Molecular orbitals have a definite irrep and component symmetry and thus contain
only SALCs with these same symmetry characteristics. Transforming the atomic
basis into SALCs will reduce the Hamiltonian matrix to a set of smaller symmetry
blocks. From the eigenfunctions one can determine π -contributions to properties
such as the on-site atomic population, qr , and the inter-site π -bond order, prs . The
population of atom r and the bond order of the bond between atoms r and s are
given by

qr =
∑

k

nk|ckr |2

prs =
∑

k

nkckr c
k
s

(4.112)

Here, the index k runs over the eigenfunctions: nk is the occupation number (0,1,
or 2) of the kth eigenlevel, and ckr is the coefficient of the |φr 〉 atomic orbital for
the normalized eigenfunction. The atomic populations are simply the densities or
weights at the atomic sites and may vary between 0 and 2. The neutral atom has a
population of one pz-electron, and sites with qr < 1 are cationic and with qr > 1
anionic. The bond order adopts the form of a correlation coefficient between two
sites. The π -bond order for a full π -bond in ethylene is equal to 1, and for benzene,
it is 2/3. Below we shall examine in detail some special cases where symmetry
plays an important role.

Cyclic Polyenes

Cyclic polyenes, also known as annulenes, are hydrocarbon rings, CnHn. Each car-
bon atom contributes one pz-orbital, perpendicular to the plane of the ring, which
gives rise to conjugated π -bonding. The prototype is the aromatic molecule ben-
zene. The adjacency matrix has the form of a circulant matrix. This is a matrix
where each row is rotated one element to the right relative to the preceding row.
Because each atom is linked to only two neighbors, each row contains only two
elements. These are arranged left and right of the diagonal, which is characteristic
for a chain, but with additional nonzero elements in the upper right and lower left
corners, where both ends of the chain meet. For benzene, it is given by

A=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.113)
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The symmetry of an N -atom ring is DNh, but in practice the cyclic group CN is
sufficient to solve the eigenvalue problem. Atoms are numbered from 0 to N − 1.
The cyclic projection operator, P̂k , is given by

P̂k =
1

N

N−1
∑

j=0

exp

(

2πi
jk

N

)

Ĉ
j

N (4.114)

Projectors are characterized by an integer k in a periodic interval. We may choose
the range ]−N/2,+N/2] as the standard interval. The total number of integers in
this interval is N . Keeping in mind the active view, where the rotation axis will
rotate all the orbitals one step further in a counterclockwise way, we now act with
the projection operator on the starting orbital, |φ0〉:

P̂k|φ0〉 =
1

N

N−1
∑

j=0

exp

(

2πi
jk

N

)

|φj 〉 (4.115)

The result is an unnormalized SALC, which we denote as |Φk〉. Neglecting overlap
between adjacent atoms, we obtain the normalized SALC as

|Φk〉 =
√
NP̂k|φ0〉 (4.116)

The transformation properties of this SALC under the rotation axis are characterized
as

ĈN |Φk〉 =
1√
N

N−1
∑

j=0

exp

(

2πi
jk

N

)

|φj+1〉

= 1√
N

N−1
∑

j=0

exp

(

2πi
(j − 1)k

N

)

|φj 〉

= exp

(

−2πi
k

N

)

|Φk〉 (4.117)

Applying this symmetry element N times is identical to the unit operation and raises
the exponential factor in this expression to the N th power:

(

exp

(

−2πi
k

N

))N

= exp(−2πik)= 1 (4.118)

Each integer value of k in the periodic interval ]−N/2,+N/2] thus characterizes a
different SALC. The corresponding energy eigenvalues are also easily extracted:

Ek = 〈Φk|H|Φk〉

= 1

N

N−1
∑

j,j ′=0

exp

(

2πi
k(−j + j ′)

N

)

〈φj |H|φj ′〉
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Fig. 4.7 Hückel orbital
energy spectrum of benzene
as a function of index k, with
allowed values 0,±1,±2,3

= 1

N

N−1
∑

j=0

(

α+ β
[

exp(−2πik/N)+ exp(+2πik/N)
])

= α+ 2β cos(2πk/N) (4.119)

The energies are thus seen to form N discrete levels, which are points on a cosine
curve, as shown in Fig. 4.7. Except for k = 0, and in the case of N even, k =N/2,
all levels Ek and E−k are twofold-degenerate. Closed-shell structures thus will be
realized for N = 4n + 2, which is the famous Hückel condition for aromaticity.
These cyclic labels can easily be expanded to the full irrep designations of the D6h

symmetry group for benzene. The atomic pz-orbitals transform as b1 in the C2v site
group. In accord with the conventions for the D6h point group symmetry, as pictured
in Fig. 3.10, this site group is based on operators of type Ĉ′2 and σ̂v . The induced
irrep of the six atomic orbitals then becomes

Γ (b1C2v ↑D6h)=A2u +E1g +E2u +B2g (4.120)

Since each irrep occurs only once, there is a one-to-one correlation between these
irreps and the cycle index k, which can be retrieved from the D6h ↓ C6 subduction
rules :

A2u −→A (k = 0)

E1g −→E1 (k =±1)

E2u −→E2 (k =±2)

B2g −→ B (k = 3)

(4.121)

We will now engage in a more elaborate application of Hückel theory, which
demonstrates the power of this simple model. The purpose is to determine the en-
ergy shifts of the eigenvalues when an annulene is brought into a uniform magnetic
field, B. This field is independent of position and time. It can be defined as the “curl”
(or rotation) of a vector potential A, and, in terms of a position vector r from a given
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origin, the relevant relations are as follows:

B=∇ ∧A

A= 1

2
B∧ r

(4.122)

This implies that the divergence of the vector potential is zero, and hence A and ∇

commute: [∇,A] = 0. The introduction of the magnetic field will add an extra term
in the kinetic energy operator, which becomes

T = 1

2m

(

�

i
∇+ eA

)2

= − h2

8π2m

(

∇+ i
e

�
A

)2

= − h2

8π2m

(

+ i
e

�
A ·∇+ i

e

�
∇ ·A− e2

�2
A2
)

= − h2

8π2m

(

+ 2i
e

�
A ·∇− e2

�2
A2
)

(4.123)

where we have taken into account that the “del” (or nabla) operator and the vector
potential commute. The electron charge is −e. London proposed that the atomic
basis functions should be multiplied by a phase factor, which explicitly depends on
the vector potential [10]. In this London gauge the atomic orbitals are rewritten as

|χj 〉 = exp

(

−i e

�
Aj · r

)

|φj 〉 (4.124)

where Aj is the vector potential at the position of the j th atom. The effect of this
phase factor is to move the origin of the vector potential from an arbitrary origin to
the local position of atom j . The action of the del operator and Laplacian on this
gauge is given by

∇ exp

(

−i e

�
Aj · r

)

= exp

(

−i e

�
Aj · r

)(

−i e

�
Aj +∇

)

 exp

(

−i e

�
Aj · r

)

= exp

(

−i e

�
Aj · r

)(

− e2

�2
A2
j − 2i

e

�
Aj ·∇+

)

(4.125)

Combining this result with Eqs. (4.123) and (4.124) yields

T |χj 〉 = −
h2

8π2m
exp

(

−i e

�
Aj · r

)

×
[

+ 2i
e

�
(A−Aj ) ·∇−

e2

�2
(A−Aj ) · (A−Aj )

]

|φj 〉 (4.126)
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The first term in the brackets is the usual kinetic energy term, while the second term
produces the orbital Zeeman effect. The third term describes the second-order inter-
actions corresponding to the atomic contribution to the susceptibility. The second
term can easily be converted into the more familiar form of the Zeeman operator as
follows:

e

m
(A−Aj ) ·

(

�

i
∇

)

= e

2m
B ·
[

(r−Rj )∧ p
]

= e

2m
l ·B

= −m ·B (4.127)

Here, p is the momentum operator of the electron in atom j , l is the corresponding
angular momentum operator, and m is the magnetic dipole operator. These operators
are related by

m=− e

2m
l =−μB

�
l (4.128)

Here μB is the Bohr magneton. Angular momentum is thus expressed in units of �,
and the magnetic moment in units of the Bohr magneton. The basis atomic orbitals
will be eigenfunctions of the first two operators. So to first order the London basis
orbitals are eigenfunctions of the total Hamiltonian. Moreover, for a pz-orbital, the
Zeeman effect for a magnetic field along the z-axis vanishes. As a result, the on-site
parameter α is independent of the London gauge:

〈χj |H|χj 〉 = α〈χj |χj 〉 = α (4.129)

However, the inter-site integrals, which depend on the potential energy, V , are in-
fluenced by the gauge factors:

〈χi |V |χj 〉 =
〈

φi

∣

∣

∣

∣

V exp

(

i
e

�
(Ai −Aj ) · r

)∣

∣

∣

∣

φj

〉

(4.130)

At this point London introduced an important approximation by replacing the vari-
able position vector in this equation by the position vector (relative to the arbitrary
origin) of the center of the bond between the two atoms:

r= (Ri +Rj )/2 (4.131)

In this approximation the phase factor is turned into a constant, which can be re-
moved from the brackets. One has:

1

2
(Ai −Aj ) · (Ri +Rj ) =

1

4

[

(B∧Ri) ·Rj − (B∧Rj ) ·Ri

]

= 1

2
B · (Ri ∧Rj )

= B · Sij (4.132)
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Fig. 4.8 Triangular surface
vector: Sj,j+1 = 1

2 Rj ∧Rj+1

Here Sij is the directed area of the triangle formed by the position vectors of the
atoms i and j from the origin, as shown in Fig. 4.8. The orientation of the vector
Sij follows the right thumb rule. So if the atom numbers increase counterclockwise,
this vector will be oriented in the positive z-direction. One also has:

Sij =−Sji (4.133)

The interaction elements in the Hückel matrix are thus replaced by

〈χi |V |χj 〉 = exp

(

i
e

�
B · Sij

)

β

〈χj |V |χi〉 = exp

(

−i e

�
B · Sij

)

β

(4.134)

We further define a vector S as

N−1
∑

j=0

Sj,j+1 = S (4.135)

The magnitude of this vector is equal to the area of the polygon. Because of cyclic
symmetry, we can also write

Sj,j+1 =
1

N
S (4.136)

The action of the symmetry operators on the London gauge is as follows:

ĈN exp

(

−i e

�
Aj · r

)

= exp

[

−i e

�
Aj ·

(

Ĉ−1
N r
)

]

= exp

(

−i e

�
Aj+1 · r

)

(4.137)

which may easily be proven by writing out Aj and Ĉ−1
N r in full. Hence, the rotation

axis will perform a cyclic permutation of the |χj 〉 kets, exactly in the same way
as for the |φj 〉 kets. The magnetic field reduces the Dnh symmetry of the regular
polygon to Cnh (see Appendix B), so the cyclic symmetry is conserved, and thus
the projection operators of Eq. (4.114) remain valid, and so do the eigenfunctions.
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We shall denote these as |Ψk〉. One has:

|Ψk〉 =
1√
N

N−1
∑

j=0

exp

(

2πi
jk

N

)

|χj 〉 (4.138)

The corresponding eigenvalues can be worked out in the same way as in the absence
of the field (see Eq. (4.119)):

Ek = 〈Ψk|H|Ψk〉

= 1

N

N−1
∑

j,j ′=0

exp

(

2πi
k(−j + j ′)

N

)

〈χj |H|χj ′〉

= α + 1

N

N−1
∑

j=0

β

[

exp

(

−2πik

N
+ i

e

�
B · Sj,j−1

)

+ exp

(

2πik

N
+ i

e

�
B · Sj,j+1

)]

= α + 2β cos

[

2π

N

(

k + e

�
B · S

)]

(4.139)

The result is of the same form as in the absence of the field, except for a shift of the
quantum number k under the influence of the magnetic field. The magnitude of this
shift, e/�B · S, is equal to the magnetic flux through the area of the ring, multiplied
by the constant e/�. As a result of this shift, the energy levels that were originally
degenerate now display a Zeeman splitting. For B · S > 0, the Zeeman contribution
adds to k in the energy expression. This implies that the points on the k axis in
Fig. 4.7 are displaced to the right. The roots with k = 1,2 thus increase in energy,
while their counterparts, k =−1,−2, become lower in energy. Likewise, the root at
the bottom (k = 0) increases in energy, while the root at the top, k = 3, decreases,
but the changes in these extremal points are only of second order.

This simple model is at the basis of a whole corpus of electromagnetic studies
of conjugated polyenes, involving, inter alia, the calculation of magnetic suscep-
tibilities, current densities, ring currents, and chemical shifts in nuclear magnetic
resonance (NMR). From the point of view of symmetry, it is to be noted that the
magnetic field has removed all degeneracies. The time-reversal symmetry is indeed
no longer valid. However, if one reverses the momenta, k→−k, and at the same
time switches the magnetic field, B→−B, the energies are still invariant. This op-
eration is no longer an invariance operation of one measurement though, but rather
a comparison between two separate experiments with opposite fields.

Polyhedral Hückel Systems of Equivalent Atoms

The polygonal system of the annulenes can be extended to polyhedral systems of
equivalent atoms. Atoms are equivalent if the symmetry group of the molecule—or
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more generally the automorphism group of the molecular graph—acts transitively
on the set of atomic nodes. So, for any pair of atoms 〈k〉〈l〉, there is a symmetry
element that will map 〈k〉 onto 〈l〉, and then of course there is always an inverse
element that maps 〈l〉 onto 〈k〉. The solution of the Hamiltonian matrix for such
a system can almost entirely be performed by symmetry arguments. The first step
consists in the construction of SALCs, using the projection operators on the atomic
orbital on site 〈a〉:

|ΦΩ
ik 〉 = P̂Ω

ik |φA〉 =
dim(Ω)

|G|
∑

R∈G
D̄Ω
ik (R)R̂|φA〉 (4.140)

These functions are not yet normalized. This can be done later. Let us first consider
a general matrix element:

〈

ΦΩ
ik |H|ΦΩ ′

j l

〉

= dim(Ω)2

|G|2
∑

R,S

DΩ
ik (R)D̄

Ω ′
j l (S)〈R̂φA|H|ŜφA〉

= dim(Ω)2

|G|2
∑

R,Q

DΩ
ik (R)D̄

Ω ′
j l (RQ)〈R̂φA|H| ˆRQφA〉

= dim(Ω)2

|G|2
∑

R,Q

∑

m

DΩ
ik (R)D̄

Ω ′
jm(R)D̄

Ω ′
ml (Q)

〈

φA|R̂−1HR̂|Q̂φA
〉

= dim(Ω)

|G| δΩΩ ′δij
∑

Q

D̄Ω
kl (Q)〈φA|H|Q̂φA〉 (4.141)

The by-now experienced reader has recognized in the second line of this derivation
the use of a substitution, Ŝ→ R̂Q̂, as well as the invariance of the Hamiltonian
under the symmetry transformation in the third line. Let us now use this equation to
normalize the SALCs. This can be done by simply setting the Hamiltonian equal to
unity. Adopting the Hückel approximation, which neglects all overlaps between the
sites, we obtain:

〈

ΦΩ
ik |ΦΩ

ik

〉

= dim(Ω)

|G|
∑

Q

D̄Ω
kk(Q)δQ,E =

dim(Ω)

|G| (4.142)

Hence, the normalized SALCs should be redefined as

|ΦΩ
ik 〉 =

√

dim(Ω)

|G|
∑

R∈G
D̄Ω
ik (R)R̂|φA〉 (4.143)

The matrix elements are accordingly simplified to

〈

ΦΩ
ik |H|ΦΩ

il

〉

=
∑

Q

D̄Ω
kl (Q)〈φA|H|Q̂φA〉 (4.144)
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Fig. 4.9 Orientation in a
cube of a tetragonal (x, y, z)
and trigonal (x′, y′, z′)
system. The symmetry
elements Ĉz

4 , (Ĉz
4)
−1, and

Ĉ
xy

2 take the trigonal site to
its nearest neighbors

The Hückel approximation considers only hopping between nearest neighbors,
and hence the sum in this expression is limited to only those operators that link
the starting site to its neighbours. We thus do not need all the irrep matrices, but
only a few of them. As an example, the cube is a trivalent polyhedron, i.e., each
atom has three bonds to its neighbors. The neighbors of site 〈a〉 can be reached
by Ĉ4, Ĉ

−1
4 , Ĉ

xy

2 , where the twofold axis belongs to the 6Ĉ′2 class. We thus need
to know the irrep matrices for these three elements only. In principle, according to
the above derivation, for each component of each irrep, we can, by varying the in-
dex k, construct a number of projection operations which is equal to dim(Ω). As
we have already discussed, we effectively need all these only when the induced rep-
resentation of the atoms is equal to the regular representation. This is the case if the
number of atoms is equal to the order of the group, i.e., when there are no symmetry
elements “going through” the atoms, so that their site group is the trivial C1. For
octahedral symmetry, this is a polyhedron with 48 vertices. It belongs to the family
of the Archimedean solids and is known as the great rhombicuboctahedron. The
highest Archimedean solid is a polyhedron with 120 equivalent vertices, which is
known as the great rhombicosidodecahedron.3 The representation of its vertices is
the regular representation of the group Ih. In the case where the number of atoms
is less, and thus the site symmetry is higher, the projection operators will give rise
to redundancies. To avoid these, we can make use of the Frobenius reciprocity the-
orem. The number of times a given irrep occurs in the induction is exactly equal to
the number of times it subduces the totally symmetric irrep at the site group. The
number of projection operations should thus also be restricted to this number. This
can be achieved when the D

Ω matrices are constructed in such a way that they are
block diagonal in the stabilizing sitegroup of site 〈a〉. In that case the k indices of
the projection operators should then be chosen in such a way that they correspond
to components that are totally symmetric in that sitegroup.4 As an example, con-
sider the cube. The site group is C3v , and induction tells us that the function space,
spanned by the 8 atoms, is given by

Γ (a1C3v ↑Oh)=A1g + T2g + T1u +A2u (4.145)

3Calculations predict that a C120 molecular realization of this solid should exist. See [11, 12].
4For more elaborate treatments, including the use of the Cayley graph, see [13, 14].
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All these irreps occur only once; hence, when we choose a trigonal symmetry adap-
tation for constructing representation matrices, for all these matrices, there will be
exactly one index k that labels the component that is totally symmetric in C3v . For
this value, the matrix elements read

〈

ΦΩ
ik |H|ΦΩ

ik

〉

= β
[

D̄Ω
kk(C4)+ D̄Ω

kk

(

C−1
4

)

+ D̄Ω
kk(C2)

]

(4.146)

To obtain these eigenvalues, we thus have to mould the representation matrices for
Oh in a trigonal setting. For the one-dimensional irreps, A1g and A2u, this is trivial
since the matrix elements in Eq. (4.146) are simply the characters. We thus obtain:

E(A1g)= β
[

χA1g (C4)+ χA1g
(

C−1
4

)

+ χA1g (C2)
]

= 3β

E(A2u)= β
[

χA2u(C4)+ χA2u
(

C−1
4

)

+ χA2u(C2)
]

=−3β
(4.147)

For the T1u irrep, we can use the set of the p-orbitals. In the standard Cartesian ori-
entation, this set is adapted to the tetragonal site symmetry. In Fig. 4.9 we illustrate
an alternative trigonal basis (see also Fig. 3.6(d)). The transformation between the
two sets is given by

|p′z〉 =
1√
3

(

|px〉 + |py〉 + |pz〉
)

|p′x〉 =
1√
2

(

|px〉 − |py〉
)

|p′y〉 =
1√
6

(

|px〉 + |py〉 − 2|pz〉
)

(4.148)

Here, the first component points in the threefold direction and thus is adapted to
the C3v site symmetry. We require only the diagonal matrix elements for this com-
ponent. They can easily be obtained by expressing these elements in the standard
canonical set:

Dz′z′(C4) =
〈

p′z|Ĉ4|p′z
〉

= 1

3

(〈

px | +
〈

py | + 〈pz|
)

Ĉ4
(

|px〉 + |py
〉

+ |pz
〉)

= 1

3

(〈

px | +
〈

py | + 〈pz|
)(

|py〉 − |px
〉

+ |pz
〉)

= 1

3

Dz′z′
(

C−1
4

)

=
〈

p′z|Ĉ−1
4 |p′z

〉

= 1

3

(〈

px | + 〈py | + |pz〉
)

Ĉ−1
4

(

|px
〉

+ |py〉 + |pz〉
)

= 1

3

(〈

px | +
〈

py | + 〈pz|
)(

−|py〉 + |px
〉

+ |pz
〉)

= 1

3
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Dz′z′
(

C′2
)

=
〈

p′z|Ĉ′2|p′z
〉

= 1

3

(〈

px | +
〈

py | +
〈

pz|
)

Ĉ′2
(

|px
〉

+ |py
〉

+ |pz
〉)

= 1

3

(〈

px | +
〈

py | + 〈pz|
)(

|py〉 + |px
〉

− |pz
〉)

= 1

3
(4.149)

An entirely similar derivation can be made for the T2g irrep, using the d-orbital set.
The results are:

E(T1u)= β

E(T2g)=−β
(4.150)

Triphenylmethyl Radical and Hidden Symmetry

As a final application, we discuss an example of a molecular radical, where more
symmetry is present than the eye meets. The triphenylmethyl radical, C19H15, is a
planar, conjugated, hydrocarbon-radical, with 19 π -electrons. The molecular point
group for the planar configuration is D3h, but, since all valence 2pz-orbitals are
antisymmetric with respect to the horizontal symmetry plane, the relevant symmetry
of the valence shell is only C3v as seen from Fig. 4.10. The molecular symmetry
group distributes the 19 atoms over five trigonal orbits of atoms that, under C3v , can
solely be permuted with partners in the same orbit.

1. The central atom {o}.

2. The three atoms that are adjacent to o: {a, b, c}.
3. The six atoms in the ortho positions: {d, e, f, g,h, i}.
4. The six atoms in the meta positions: {p,q, r, s, t, u}.
5. The three atoms in the para positions: {x, y, z}.

The separate rotation of a single phenyl group by 180◦ around its twofold direc-
tion will not change the connectivity of the graph. Yet this cannot be achieved by
elements of the point group. It is, however, a legitimate symmetry operation as far
as the graph is concerned since it preserves the connectivity. The resulting automor-
phism group is thus larger than the point group and in fact is isomorphic to Oh [15].
The three phenyl groups can be associated with the three Cartesian directions of this
octahedral group. The six atoms in the ortho orbit can be formally associated with
the six corners of this octahedron, each connected to a meta position (Fig. 4.10). This
implies that the ortho and meta atoms occupy C4v sites. The three-atom orbits corre-
spond to the three tetragonal directions in the octahedron. The site group that leaves
such a tetragonal direction invariant is not of the conical Cnv type, but D4h. These
correspondences allow identification of all the permutations. As examples, the Ĉ4
symmetry element through the upper phenyl group and the Ŝ6 rotation–reflection
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Fig. 4.10 (a) molecular graph of triphenylmethyl, (b) correspondence between ortho and meta
sites and octahedral C4v positions, and (c) Hückel spectrum

extension along the threefold direction of the trigonal axis of the molecular frame
permute the atoms as follows:

Ĉ4 → (o)(a)(d)(p)(x)(q)(e)(b, c)(y, z)(f,h, g, i)(r, t, s, u)

Ŝ6 → (o)(a, c, b)(x, z, y)(d, i, f, e,h, g)(p,u, r, q, t, s)

(4.151)

A horizontal coordinate plane, σ̂h, of the octahedron has the effect of flipping one
single phenyl group around. We can at once determine the irreps of the different
orbits by induction:

{a, b, c} : Γ (a1gD4h ↑Oh)=A1g +Eg

{x, y, z} : Γ (a1gD4h ↑Oh)=A1g +Eg

{d, e, f, g,h, i} : Γ (a1C4v ↑Oh)=A1g +Eg + T1u

{p,q, r, s, t, u} : Γ (a1C4v ↑Oh)=A1g +Eg + T1u

(4.152)
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The central atom is invariant in Oh and thus transforms as A1g . The total induced
representation of the function space thus is given by

Γ = 5A1g + 4Eg + 2T1u (4.153)

The 19-dimensional Hückel matrix thus will be resolved into five blocks, one of
dimension 5, two identical blocks of dimension 4, and three identical blocks of
dimension 2. In Table 4.9 we display the blocks for each irrep and the corresponding
SALCs for one component. The corresponding secular equations are:

A1g : λ
(

λ4 − 8λ2 + 13
)2 = 0

Eg : λ4 − 5λ2 + 4= 0

T1u : λ2 − 1= 0 (4.154)

Symmetry has taken us to a point where still quintic, quartic, and quadratic secular
equations must be solved. However, a closer look at this equations shows that they
can easily be solved. Apparently, a further symmetry principle is present, which
leads to simple analytical solutions of the secular equations. Triphenylmethyl is an
alternant hydrocarbon. In an alternant, atoms can be given two different colors in
such a way that all bonds are between atoms of different colors; hence, no atoms
of the same color are adjacent. A graph with this property is bipartite,5 and its
eigenvalue spectrum obeys the celebrated Coulson–Rushbrooke theorem [16].

Theorem 8 The eigenvalues of an alternant are symmetrically distributed about the

zero energy level. The corresponding eigenfunctions also show a mirror relation-

ship, except for a difference of sign (only) in every other atomic orbital coefficient.
The total charge density at any carbon atom in the neutral alternant hydrocarbon

equals unity.

Since triphenylmethyl is an odd alternant, there should be at least one eigenvalue
at energy zero. This root will be necessarily of A1g symmetry since this is the only
irrep that occurs an odd number of times. All other roots occur in pairs of opposite
energies. This is confirmed by the secular equations in Eq. (4.154), where the A1g
equation indeed has a root at λ= 0, and all remaining equations contain only even
powers of λ. The roots are then easily determined (see also Fig. 4.10):

A1g : λ= 0,±
√

4±
√

3

Eg : λ=±1,±2

T1u : λ=±1

(4.155)

5Note that in fact a molecular graph will always be bipartite unless it contains one or more odd-
membered rings.
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Table 4.9 SALCs and Hückel matrices, in units of β , for triphenylmethyl. For the degenerate
irreps, only one component is given

A1g

|o〉
1/
√

3(|a〉 + |b〉 + |c〉)
1/
√

3(|x〉 + |y〉 + |z〉)
1/
√

6(|d〉 + |e〉 + |f 〉 + |g〉 + |h〉 + |i〉)
1/
√

6(|p〉 + |q〉 + |r〉 + |s〉 + |t〉 + |u〉)

−λ
√

3 0 0 0√
3 −λ 0

√
2 0

0 0 −λ 0
√

2

0
√

2 0 −λ 1

0 0
√

2 1 −λ

Eg

1/
√

2(|b〉 − |c〉)
1/
√

2(|y〉 − |z〉)
1/2(|f 〉 + |g〉 − |h〉 − |i〉)
1/2(|r〉 + |s〉 − |t〉 − |u〉)

−λ 0
√

2 0

0 −λ 0
√

2√
2 0 −λ 1

0
√

2 1 −λ

T1u

1/
√

2(|d〉 − |e〉)
1/
√

2(|p〉 − |q〉)
−λ 1

1 −λ

The spectrum contains unexpected fivefold degeneracies at E =±β , where the T1u

and Eg levels coincide. This degeneracy is considered accidental, to the extent that
it does not correspond to a single irrep of the automorphism group of the graph.
However, the fivefold degeneracy can easily be rationalized as follows: E = β is the
eigenenergy of the degenerate highest occupied molecular orbital (HOMO) in an
isolated phenyl-ring. The three rings thus give rise to six orbitals with this energy.
The symmetry of this orbital space in Oh is equal to A1g +Eg + T1u. Of these only
the A1g combination is of the right symmetry to interact with the central atom. For
the five others, there can be no communication between the phenyl rings since the
channel via the central atom is open only to A1g symmetries. As a result, for these
solutions, there is no overlap between the rings, and five isolated phenyl solutions
persist at E = β . A similar argument applies to the level E =−β , which stems from
the phenyl lowest unoccupied orbital (LUMO).

Many features thus come together in triphenylmethyl. Besides the C3v molecular
point group, the Hückel matrix obeys an additional or hidden Oh symmetry. This
is a typical feature of the nearest-neighbor approximation, which requires only that
symmetry operations should preserve the connections with the nearest neighbors.
This precisely complies with the definition of the automorphism group of the graph.
Furthermore, the special bipartite properties of the graph further impose constraints
on the spectrum, which in this case lead to a complete reduction of the secular equa-
tions. Finally, an unexpected additional degeneracy manifests itself, which is related
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to the composite nature of the molecule being considered, with several fragments
bound to one central atom.

4.10 Problems

4.1 A Schlegel diagram of a polyhedron is a projection into a plane figure. The fig-
ure below shows the Schlegel diagram for a dodecahedron. As was explained
in the preceding chapter (see Fig. 3.8(a)), a dodecahedron contains five cubes,
e.g., the cube based on the nodes 〈1,3,9,10, a, c, i, j〉. Symmetry elements of
Ih permute these cubes. Construct the set of the five cubes and determine the
irreps of this set. Can you obtain this result by induction?

4.2 Consider the set of eight tangential π -orbitals on a tetrahedron. Derive the
irreducible representations in the Td point group. How would you label the
canonical symmetry of the combinations that are shown in the figure below?

4.3 Consider the set of perpendicular pz-orbitals in the polyaromatic planar
molecule coronene shown below. This set gives rise to a symmetry of molec-
ular orbitals of a1u and b1g . Can you draw both these orbitals? (Use the stan-
dard orientation of the central benzene frame, as shown in Fig. 3.10)
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4.4 In dodecaborane, B12H
2−
12 , the twelve boron atoms occupy the vertices of an

icosahedral cage. Determine the irreducible representations of the set of their
tangential π -orbitals.

4.5 Consider a degenerate manifold, transforming as the irrep Γi . The appropriate
projector was applied to the basis to yield one component of the degeneracy
space. Which other projectors do you need to use to generate all the remaining
components?

4.6 Consider the expression for a totally symmetric projection operator and
demonstrate that it is indeed totally symmetric under any group element.

4.7 Construct the three sp2 hybrids in the xy plane.
4.8 The picture below shows the distortion of an equilateral triangle. Determine

the representation of this distortion.

4.9 Construct the character table for a cyclic group of order 5.
4.10 In a molecule with D6h symmetry, the choice of Ĉ′2 and Ĉ′′2 directions is ar-

bitrary, but, once the twofold directions are chosen, the σ̂v and σ̂d reflection
planes are also fixed, as was indicated in Fig. 3.10. Show that these spatial re-
lationships between the axes and the planes is in line with the character table
for D6h.

4.11 Consider a molecule with D3h symmetry and apply a distortion mode that
transforms according to the a′′2 irrep. A distortion along this coordinate breaks
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the original symmetry to a subgroup of D3h. Which subgroup? Try to gener-
alize this example to a general rule.

4.12 Below is shown the Schlegel diagram for the C24 fullerene. It is a cage struc-
ture with hexagonal faces at top and bottom, capping a crown of twelve pen-
tagons around its waist. The valence shell of this structure is formed by a set
of 24 radial pσ -orbitals, one on each carbon. Determine the point group of this
molecule and the irreps describing the valence shell. (Hint: divide the set of
24 orbitals into two separate orbits.)
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Chapter 5

What has Quantum Chemistry Got to Do
with It?

Abstract The time has come to see how the concept of irreducible representations
ties in with quantum chemistry. After a brief introduction to the prequantum prin-
ciples of symmetry, we will show that eigenfunctions of the Hamiltonian are also
eigenfunctions of the symmetry operators that commute with the Hamiltonian. We
further analyze the concept of a degeneracy and show how the degenerate com-
ponents can be characterized by canonical symmetry relationships. The final sec-
tion will then provide a detailed account of the symmetry operations that leave the
Hamiltonian invariant.
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5.1 The Prequantum Era

Nature around us is full of disorder and chaos, yet it also offers intriguing examples
of perfect order and symmetry. Ever since prehistoric times, man has been admiring
the circular geometry of a full moon or the perfectly flat surface of a calm sea.
Crystals offer another example of almost ideal symmetrical shapes, and it is no
surprise that early recognition of the important role of symmetry in physics was
based on the study of properties of crystals. Two pioneers of the prequantum era,
Franz Neumann and Pierre Curie [1], stand out for their important conjectures.

Theorem 9 Neumann’s principle states that the symmetry elements of any physical

property of a crystal must include all the symmetry elements of the point group of

the crystal.

We can apply this directly to a molecule such as ammonia. Ammonia carries a
permanent dipole moment, μz, which is oriented along the threefold axis. In-plane
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components of the dipole moment are strictly forbidden. This is in agreement with
the Neumann principle. A dipole moment corresponds to a displacement of charge,
and the only displacement that does not destroy the molecular point group is along
the z-direction. Hence, this is the only direction that is compatible with the Neumann
principle.

Pierre Curie realized that this principle is not limited to crystals, but applies to
physical phenomena in general, and not only to isolated systems, but also to sys-
tems subject to external perturbations. His proposition is known as the principle of
dissymmetry.

Theorem 10 The symmetry of a phenomenon is the maximal symmetry compatible

with the existence of the phenomenon. In order for a phenomenon to exist, it is

necessary that certain elements of symmetry are absent: dissymmetry creates the

phenomenon.

Curie understood that under stress, or in the presence of external electric or mag-
netic fields, the symmetry of a system is changed. The Neumann principle still ap-
plies but should no longer be based on the symmetry of the isolated crystal, but on
that of the combined system of crystal and external field, as we have considered in
Sect. 3.9. In the case of ammonia, application of an electric field has the C∞v sym-
metry of a polar vector. The symmetry that results from the superposition of the field
with the molecular point group C3v depends on the orientation (see Appendix B).
In the coordinate frame of Fig. 3.1 one has:

z : C∞v ∩C3v = C3v

x : C∞v ∩C3v = Cs

y : C∞v ∩C3v = C1

(5.1)

If the field is oriented along the z-direction, it will keep the C3v symmetry of
the molecule. This is also in line with the existence of a permanent dipole in the
z-direction according to the Neumann principle since a charge dipole has the same
symmetry as an electric field. If an external field is applied in the x-direction, the
symmetry is reduced to the reflection group, Cs = {Ê, σ̂1}. In the presence of such
a field, displacement of charge in the x-direction is compatible with the extended
symmetry principle, which means that ammonia can acquire an induced dipole mo-
ment in the x-direction. However, a field along x cannot induce a dipole moment in
the y-direction since the σ1 reflection plane is incompatible with the displacement
of charge across the plane of symmetry.

The symmetry principles of Neumann and Curie can be recast in the language
of irreducible representations. The requirement that physical properties be invariant
under the symmetry elements of the point group simply means that they should
transform as the totally symmetric irrep. For the dipole moment, the components
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transform as follows:

Γ (μz)= a1

Γ (μx,μy)= e
(5.2)

Hence, only the z-component is compatible with the existence of a dipole moment.
The principles of Neumann and Curie are of course based on classical physics.

They remain valid for quantum systems but do not include typical quantum phenom-
ena, such as the existence of electronic degeneracy or transitions between quantum
states. A proper quantum description of molecular symmetry is thus required.

5.2 The Schrödinger Equation

According to quantum mechanics, the stationary states of a molecule are described
by the eigenfunctions of the Hamiltonian, H, corresponding to a quantized set of
eigenvalues,

H|Ψ k
j 〉 =Ek|Ψ k

j 〉 (5.3)

Here, Ek is a fixed eigenvalue, and |Ψ k
j 〉 is an associated eigenfunction. The index

j takes into account the possibility that several eigenfunctions may be associated
with the same eigenvalue. In this case the set of these functions forms an eigenspace
{|Ψ k

j 〉}j=1,...,n, where n denotes the dimension of this space, and the Ek eigenvalue
is said to be n-fold degenerate. As usual, the eigenspace will be taken to be or-
thonormal. The Hamiltonian expresses the kinematics of the electrons in the frame
of the nuclei subject to Coulomb forces. We shall study this in detail in Sect. 5.4.
For the moment, all we need to know is that the operators of the molecular point
group leave H invariant:

∀ R̂ ∈G→[R̂,H] = 0 (5.4)

Now applying R̂ to the Schrödinger equation yields

R̂H
∣

∣Ψ k
j

〉

=HR̂
∣

∣Ψ k
j

〉

=EkR̂
∣

∣Ψ k
j

〉

(5.5)

Here, we have made use of the commutation relation in Eq. (5.4) and the property
that R̂ as a linear operator does not affect the constant eigenvalue. The equation
signifies that if |Ψ k

j 〉 is an eigenfunction, the transformed function, R̂|Ψ k
j 〉, also

is an eigenfunction with the same eigenvalue. This is an important result, which
ties quantum mechanics and group theory together, and is essentially the reason
why group theory can be applied to chemistry! Now, there are two possibilities,
depending on the degeneracy.

1. The electronic state is nondegenerate (n= 1). In this case the transformed eigen-
function must necessarily be proportional to the original one. Since the transfor-
mation does not change normalization, the proportionality constant must be a
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unimodular number:

R̂
∣

∣Ψ k
〉

= exp(iκR)
∣

∣Ψ k
〉

(5.6)

Here, we have dropped the index j since there is only one eigenfunction in this
case. This equation indicates that this eigenfunction must transform as a nonde-
generate irrep of the point group, say Γk , with

exp(iκR)= χΓk (R) (5.7)

2. The electronic state is degenerate (n > 1). In this case the transformed function
may not be proportional to the original one, but in any case it is also an eigen-
function of H with the same eigenvalue. This means that it must be mapped onto
a linear combination of the components of the eigenspace; hence, the eigenspace
itself must form a function space that is invariant under G:

R
∣

∣Ψ k
j

〉

=
n
∑

i=1

Dij (R)
∣

∣Ψ k
i

〉

(5.8)

Here, the eigenfunctions have again been arranged as a row vector, and the coef-
ficients are gathered in a transformation matrix, D(R). There are now two possi-
bilities:

• The matrix representation is an irrep of the point group.
In this case the electronic degeneracy is equal to the dimension of an irrep of
the point group.

• The matrix representation is reducible.
In this case the eigenspace can always be separated in irreducible blocks by
using projection operators.

This list of possibilities shows that eigenfunctions of the Hamiltonian will also
be (or can be made to be) eigenfunctions of the symmetry group of the Hamilto-
nian. When there is a perfect match between the eigenfunctions and an irrep, the
presence of degeneracy or nondegeneracy can directly be attributed to the symme-
try of the eigenstates. The remaining possibility that the eigenspace may consist of
several irreducible blocks could be described as a case of “accidental degeneracy”,
in the sense that symmetry cannot explain the fact that stationary states are degener-
ate. When this happens, it could mean that the symmetry of the system exceeds the
apparent spatial symmetry group. This case is referred to as “hidden symmetry”.
A special case of this is Kramers’ degeneracy, which is treated in Sect. 7.6. Or it
could be that a simplified model Hamiltonian was used, such as, e.g., the nearest-
neighbor Hamiltonian in Hückel theory, which may give rise to additional degen-
eracies, as we have explained for the example of triphenylmethyl in the previous
chapter. In addition to these possibilities—in the words of Griffith [2]—experience
tells that “accidents don’t happen, at least in that part of physics which is under-
stood”.

The significance of these observations can hardly be overestimated. The deriva-
tion refers to the properties of the exact Hamiltonian and its eigenfunctions. In actual
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calculations one must usually introduce approximate Hamiltonians and eigenspaces.
However, there is at least one simple way to endow these approximate eigenfunc-
tions with an exact property, i.e., by making sure that they are eigenfunctions of
the symmetry group of the exact Hamiltonian. The great success of semiempirical
theories, such as ligand-field theory for transition-metal and lanthanide complexes,
is in fact due to this consistent use of atomic and molecular symmetry. But also in
computational chemistry the effort of symmetrizing the orbital basis pays off in a
considerable gain of computation time, and it facilitates the assignment of spectro-
scopic data.

5.3 How to Structure a Degenerate Space

The eigenfunctions of an n-fold degenerate state are defined up to unitary equiva-
lence, which means that any complex linear combination of eigenfunctions is again
an eigenfunction. It is convenient to define a standard basis, which brings some
structure in this degenerate space. The tool that can be used for this is furnished by
the following lemma due to Schur.

Theorem 11 If a matrix commutes with all the matrices of an irreducible represen-

tation, the matrix must be a multiple of the unit matrix:

∀ R̂ ∈G :UD(R)=D(R)U→U∼ I (5.9)

This theorem implies that, if we combine the basis functions of a space in such a
way that their representation matrices of the group generators coincide with a canon-
ical choice, then the entire basis set will be completely fixed, up to a global phase
factor. This remaining phase freedom is external to the symmetry group. A basis set
that complies with a specified set of representation matrices is called a canonical

basis. A convenient strategy for defining a canonical basis is founded on a split-

ting field. In this case the basis is chosen in such a way that it is diagonal with
respect to a particular generator, usually a principal axis of rotation. The compo-
nents then appear as eigenfunctions of the splitting field. In order for the splitting
to be unequivocal, all eigenvalues should be different. The splitting field then “rec-
ognizes” each component by its individual eigenvalue. As an example, consider the
twofold degenerate E-state in an octahedron. As a splitting field, we take the Ĉ4
axis along the z-direction. The standard components, which are recognized individ-
ually by this field, are denoted as |Eθ〉 and |Eǫ〉. They are respectively symmetric
and anti-symmetric with respect to the rotation axis:

Ĉz
4|Eθ〉 = |Eθ〉

Ĉz
4|Eǫ〉 = −|Eǫ〉

(5.10)

In octahedral transition-metal complexes, the d-orbitals, which transform as the E
irrep, are dz2 and dx2−y2 . They are seen to match |Eθ〉 and |Eǫ〉, respectively. The
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conventional choice of the real d-orbitals is thus based on a tetragonal splitting field.
Once the splitting field has been applied, the eigenspace is already nearly fixed;
the only freedom that remains is the relative phases of the components. To freeze
these phases, one can sometimes use an extra ladder operator, which moves from
one component to the other, thereby imposing a phase convention. For the E-state,
one uses a threefold axis to connect the two components, and the corresponding
representation matrix is defined by

Ĉ3
(

|Eθ〉 |Eǫ〉
)

=
(

|Eθ〉 |Eǫ〉
)

(

−1/2 −
√

3/2√
3/2 −1/2

)

(5.11)

This operator connects the two components, and, therefore, if we require that the
matrix be of the specified form, then the relative phase freedom is lifted. With such
a connecting element, one can indeed easily construct a proper ladder operator:

2√
3

[

Ĉ3 +
1

2
Ê

]

|Êθ〉 = |Êǫ〉

− 2√
3

[

Ĉ3 +
1

2
Ê

]

|Êǫ〉 = |Êθ〉
(5.12)

In Appendix D we list standard conventions that are frequently used to define canon-
ical basis sets for degenerate irreps.

For the octahedral T1 state, the standard basis complies with the transformation
properties of the real p-orbitals and is marked as |T1x〉, |T1y〉, |T1z〉. If we diago-
nalize this set under a fourfold splitting field, we obtain the complex p-orbitals. In
applications where real functions are preferred, the Ĉ4 axis is represented as

Ĉ4
(

|T1x〉 |T1y〉 |T1z〉
)

=
(

|T1x〉 |T1y〉 |T1z〉
)

⎛

⎝

0 −1 0
1 0 0
0 0 1

⎞

⎠ (5.13)

Here, |T1z〉 is recognized as a totally symmetric eigenfunction, and it is uniquely
defined by this eigenvalue since the other eigenvalues are ±i. The splitting field is
thus operating only partially; nonetheless, it uniquely picks the z-component. Then
the Ĉ3 axis is a perfect ladder operator, effecting a cyclic permutation of z to x, and
further to y.

5.4 The Molecular Symmetry Group

So far, the symmetry of the Hamiltonian was defined as the set of all operations that
leave the Hamiltonian invariant. This invariance group was assumed to coincide with
the point group of the nuclear frame of the molecule, but it is now time to provide
a clear explanation of this connection. This section relies on the definition of the
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symmetry groups of nonrigid molecules proposed by Longuet-Higgins [3]. We start
by writing down in explicit form the Schrödinger Hamiltonian for a molecule:

H= Te + TN + VNN + VeN + Vee (5.14)

The T operators are the kinetic energy operators for electrons and nuclei:

Te =−
�

2

2me

∑

i

(

∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i

)

TN =−
�

2

2

∑

n

1

mn

(

∂2

∂X2
n

+ ∂2

∂Y 2
n

+ ∂2

∂Z2
n

)

(5.15)

The V operators are the Coulomb interactions between the particles:

VNN =
∑

n<m

ZnZme2

4πǫ0|Rn −Rm|

VeN =−
∑

i,n

Zne2

4πǫ0|Rn − ri |

Vee =
∑

i<j

e2

4πǫ0|ri − rj |

(5.16)

The Hamiltonian may contain additional terms describing coupling between orbital
and spin momenta. Longuet-Higgins stated that this full Hamiltonian must be in-
variant under the following types of transformations:

1. Any permutation of the positions and spins of the electrons.
2. Any rotation of the positions and spins of all particles (electrons and nuclei)

about any axis through the center of mass.
3. Any over-all translation in space.
4. The reversal of all particle momenta and spins.
5. The simultaneous inversion of the positions of all particles in the center of mass.
6. Any permutation of the positions and spins of any set of identical nuclei.

The complete group of the Hamiltonian is the combination of all these possible
symmetries. This derivation is directly evident from the mathematical form of the
Hamiltonian and expresses fundamental properties of molecular space and time. Yet
it took 40 years, from Schrödinger to Longuet-Higgins, to obtain a clear definition
of the molecular-symmetry group. Three kinds of symmetries may be identified:

• Space symmetries. Space is uniform, isotropic, and has inversion symmetry. This
is clear from the fact that the kinetic energy Laplacian operators are trace oper-
ators of second derivatives; hence, they are invariant under a sign change of all
coordinates and isotropic under rotations. All potential-energy operators depend
only on relative distances between particles and thus do not change under trans-
lations, rotations, or inversion.
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• Time symmetry. The reversal of all momenta and spins is nothing other than the
time-reversal operator we introduced earlier. As long as no external magnetic
fields are present, time is reversible.

• Elementary particles of the same kind are indistinguishable. The remaining sym-
metries do not refer to space or time but to the permutational symmetry of a set
of particles. All electrons are the same, and thus the Hamiltonian does not change
when we permute electron labels. This symmetry becomes apparent only when
multielectronic wavefunctions are considered, and these will be treated in the next
chapter. Likewise, identical nuclei can be permuted without changing the Hamil-
tonian. This is reflected in the potential energy terms, which consist of sums over
all pairwise interactions. Permutations of particle labels change only the order of
the terms in these summations.

As an example, in Fig. 5.1 we return to our favored ammonia molecule and list all
nuclear permutations, with and without the all-particle inversion operator, that leave
the full Hamiltonian invariant. Nuclear permutations are defined here in the same
way as in Sect. 3.3. A permutation such as (ABC) means that the letters A, B, and
C are replaced by B, C, and A, respectively.1 The inversion operator, Ê∗, inverts the
positions of all particles through a common inversion center, which can be conve-
niently chosen in the mass origin. In total, 12 combinations of such operations are
found, which together form a group that is isomorphic to D3h. How is this related
to our previous C3v point group? At this point it is very important to recall that the
state of a molecule is not only determined by its Hamiltonian but also, and to an
equal extent, by the boundary conditions. The eigenvalue equation is a differential
equation that has a very extensive set of mathematical solutions, but not all these
solutions are also acceptable states of the physical system. The role of the boundary
conditions is to define constraints that filter out physically unacceptable states of the
system. In most cases these constraints also lead to the quantization of the energies.

From our present perspective the invariance group should not only leave the
Hamiltonian invariant, but also it should not alter the boundary conditions. Now,
in most quantum-chemical applications a very stringent boundary condition is of-
fered by the Born−Oppenheimer approximation. This simply states that the nuclei
are considered immobile. It seriously restricts the Longuet-Higgins list. Indeed, we
should retain only those operations that leave all nuclei in their rest positions. Ap-
plying this to ammonia, of the twelve operations we retain only those that do not
affect the starting structure, i.e., only those combinations of permutations, permu-
tation inversion, and overall rotations that, as a net result, keep the nuclei fixed in
space. This immediately constrains the symmetry group to the familiar C3v molec-
ular point group. As an example, the permutation of nuclei B and C followed by the
inversion of all particles gives rise to the structure, marked (A)(BC)∗ in Fig. 5.1,
in which the ammonia molecule has been turned upside down. The nuclei can be
moved back to their original positions by rotating the whole molecule by 180◦ about

1See also [4, Chap. 1].
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Fig. 5.1 Dynamic symmetry group of ammonia, with permutations of nuclei, and inversion of
all particles (indicated by an asterisk). The plus (minus) sign indicates the position of an electron
above (below) the plane of the hydrogen atoms

Table 5.1 Embedding of the
C3v point group in the
Longuet-Higgins group. The
symmetry elements of the
point group act on the
electrons. They are identified
as the product of nuclear
permutations, inversion of all
particles (star operation), and
bodily rotations of all
particles (Q̂ operators) along
particular directions

C3v Rotation × Inversion × Permutation

Ê Ê Ê Ê

Ĉ3 Q̂
z
3 Ê (ABC)

Ĉ2
3 (Q̂z

3)
−1 Ê (ACB)

σ̂1 Q̂
⊥σ1
2 Ê∗ (A)(BC)

σ̂2 Q̂
⊥σ2
2 Ê∗ (B)(AC)

σ̂3 Q̂
⊥σ3
2 Ê∗ (C)(AB)

an axis that is perpendicular to the σ̂1 reflection plane. The net result is that the elec-
tron, marked by the little circle in the figure, has been reflected in this plane. This
operation thus leaves the nuclei in place, and only the positions of the electrons are
changed. This is precisely the definition of symmetry operators that we have been
using all along. The operators are displacing the electrons and in this way lead to
transformations of the electronic wavefunctions. The complete embedding of C3v

in the Longuet-Higgins group is given in Table 5.1.
By contrast, an operation such as (A)(BC), not followed by spatial inversion of

all particles, gives rise to an alternative arrangement of the nuclei, which cannot be
brought into coincidence with the original positions by mere spatial rotations. As a
result, this operation is not compatible with the Born−Oppenheimer boundary con-
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ditions. On the other hand, going beyond the Born−Oppenheimer approximation,
one may consider the dynamic states of ammonia that correspond to the tunnelling
of the nitrogen through the triangle of the hydrogens. For the tunnelling states, the

all-particle inversion operator, Ê∗, is also a symmetry element, and the symmetry
group of the nonrigid ammonia thus attains the full D3h Longuet-Higgins group.

5.5 Problems

5.1 Prove that the electron-repulsion operator, Vee , is invariant under the rotation
around the z-axis.

5.2 Construct a splitting field and ladder operators for the canonical components of
the icosahedral irreps in Appendix D.

5.3 Derive the permutation–inversion group for CH3BF2 (methyl-boron-difluoride)
under the assumption that the methylgroup is almost freely rotating. This means
that the result of a permutation inversion can be rotated back by a bodily rota-
tion to a rotamer of the original structure. Determine the point group that is
isomorphic to the resulting dynamic symmetry group.

5.4 The barrier to rotation of the cylopentadienyl rings in Fe(C5H5)2 (ferrocene, see
Fig. 3.9(a)), measured in the gas phase, is only a kcal/mol. Construct a dynamic
symmetry group for this molecule.
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Chapter 6

Interactions

Abstract In quantum mechanics the observable phenomena are interactions, ex-
pressed as matrix elements of operators in a function space. These spaces and oper-
ators are like communicating vessels, reality is neither the operation nor the repre-
sentation, but the interaction. The evaluation of the corresponding matrix elements
requires the coupling of representations, and can be factorized into an intrinsic scalar
quantity that contains the physics of the interaction, and a tensorial coupling coeffi-
cient that contains its symmetry. This factorization is first illustrated for the case of
overlap integrals, where the operator is just the unit operator, and then extended to
the case of non-trivial operators, such as the Hamiltonian, and electric and magnetic
dipole operators. The Wigner–Eckart theorem is introduced, together with the sym-
metry selection rules, both at the level of representations and subrepresentations.
The results are applied to chemical reaction theory, and to the theory of the Jahn–
Teller effect. Selection rules are illustrated for linear and circular dichroism. Finally,
the polyhedral Euler theorem is introduced and applied to valence-bond theory for
clusters.
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6.1 Overlap Integrals

Operations and representations are merely theoretical constructs. What is actually
observed are the interactions. In quantum mechanics, interactions are expressed as
matrix elements of operators in a function space. When the operator is the unit
operator, the matrix elements are just overlap integrals. These are the simplest form
of interactions.

We start our analysis by examining symmetry selection rules for overlap inte-
grals. Consider the overlap integral between the ith component of a function space
which transforms according to the irrep Γ , and the kth component of another func-
tion space transforming as Γ ′. The overlap integral, Ski , is a scalar quantity and
thus must be invariant under the action of linear symmetry operators acting on the
functions.

Ski =
〈

φΓ
′

k

∣

∣ψΓ
i

〉

= R̂
〈

φΓ
′

k

∣

∣ψΓ
i

〉

(6.1)

An integral being an infinite sum, the operator can be brought inside the bracket and
then transform the bra and ket parts directly.

R̂
〈

φΓ
′

k

∣

∣ψΓ
i

〉

=
〈

R̂φΓ
′

k

∣

∣R̂ψΓ
i

〉

=
∑

j l

D̄Γ ′
lk (R)D

Γ
ji(R)

〈

φΓ
′

l

∣

∣ψΓ
j

〉

(6.2)

By summing over all R̂ ∈G and dividing by the group order one obtains a form to
which the GOT can be applied.

〈

φΓ
′

k

∣

∣ψΓ
i

〉

= 1

|G|
∑

R∈G
R̂
〈

φΓ
′

k

∣

∣ψΓ
i

〉

= 1

|G|
∑

j l

(

∑

R

D̄Γ ′
lk (R)D

Γ
ji(R)

)

〈

φΓ
′

l

∣

∣ψΓ
j

〉

= δΓ ′Γ δik
1

dim(Γ )

∑

j

〈

φΓ
′

j

∣

∣ψΓ
j

〉

(6.3)

We now rewrite this result in terms of elements of the overlap matrix S:

Ski = δΓ ′Γ δik
1

dim(Γ )

∑

j

Sjj = δΓ ′Γ δik
1

dim(Γ )
Tr(S) (6.4)

This simple derivation yields three important results:

1. Overlap integrals between functions which transform according to different ir-
reps are zero.

2. Overlap integrals between functions which belong to different components of the
same irrep are zero.

3. Overlap integrals between functions with the same symmetry properties, i.e.
transforming as the same component of the same irrep, are independent of the
component choice provided that both components are normalized.
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These results clearly illustrate the importance of the GOT. It not only provides a
selection rule at the level of the irreps, but also at the level of the components. Of
course, the latter selection rule will work only if we ensured that the symmetry adap-
tation of the basis set has been carried out at the component level, as was explained
in Sect. 5.3.

A further consequence is that SALCs on peripheral atom sites can quite often
easily be derived from central symmetry-adapted orbitals. One simply has to make
sure that the SALCs have the same nodal characteristics as the central functions, so
as to guarantee maximal overlap. This is well illustrated in Fig. 4.4.

6.2 The Coupling of Representations

Overlap integrals are scalar products of a bra and a ket function. A general matrix
element is an integral of the outer product of a bra, an operator, and a ket, giving
rise to a triad of irreps. The evaluation of such elements is based on the coupling of
irreps. This concept refers to the formation of a product space. The simplest example
is the formation of a two-electron wavefunction, obtained by multiplying two one-
electron functions. This section will be devoted entirely to the formation of such
product spaces.

Consider two sets of orbitals, transforming as the irreps Γa and Γb respectively,
each occupied by one electron. A two-electron wavefunction with electron 1 in the
γa component of the first set, and electron 2 in the γb component of the second set
is written as a simple product function: |Γaγa(1)〉|Γbγb(2)〉. Clearly, since the one-
electron function spaces are invariants of the group, their product space is invariant,
too. Now the question is to determine the symmetry of this new space. The recipe
to find this symmetry can safely be based on the character theorem: first determine
the character string for the product basis, and then carry out the reduction according
to the character theorem. Symmetry operators are all-electron operators affecting all
particles together; hence, the effect of a symmetry operation on a ket product is to
transform both kets simultaneously.

R̂
(∣

∣Γaγa(1)
〉∣

∣Γbγb(2)
〉)

=
∑

γ ′a

∑

γ ′b

D
Γa
γ ′aγa

(R)D
Γb
γ ′bγb

(R)
∣

∣Γaγ
′
a(1)

〉∣

∣Γbγ
′
b(2)

〉

(6.5)

The transformation of the product functions is thus expressed by a super matrix,
each element of which is a product of two matrix elements for the individual orbital
transformations. The trace of this super matrix is given by:

χΓa×Γb (R) =
∑

γaγb

DΓa
γaγa

(R)DΓb
γbγb

(R)

= χΓa (R)χΓb (R) (6.6)

This is a gratifying result. The character of a product space is simply the product of
the characters of the factor spaces. Accordingly, the symmetry of the product space
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Table 6.1 Direct product of Eg × T2g in Oh symmetry

Oh Ê 8Ĉ3 6Ĉ2 6Ĉ4 3Ĉ2 î 6Ŝ4 8Ŝ6 3σ̂h 6σ̂d

Eg 2 −1 0 0 2 2 0 −1 2 0

T2g 3 0 1 −1 −1 3 −1 0 −1 1

Eg × T2g 6 0 0 0 −2 6 0 0 −2 0

T1g 3 0 −1 1 −1 3 1 0 −1 −1

T2g 3 0 1 −1 −1 3 −1 0 −1 1

is identified as the direct product of the orbital irreps, and is denoted as Γa × Γb .
If both irreps are degenerate, the direct product will be reducible. Let cΓ be the
number of times that the irrep Γ occurs in the direct product:

Γa × Γb =
∑

Γ

cΓ Γ (6.7)

By straightforward application of the character theorem one obtains:

cΓ =
1

|G|
∑

R

χ̄Γ (R)χΓa×Γb(R)

= 1

|G|
∑

R

χ̄Γ (R)χΓa (R)χΓb (R) (6.8)

Here we have, for the first time, a formula with a triad of irreps. This will form the
basis for the symmetry evaluation of general matrix elements. The cΓ coefficients
are obtained by performing product manipulations on the character tables. As an
example, Table 6.1 illustrates the reduction of the Eg × T2g product in Oh, as given
in Eq. (6.9). Product tables are given in Appendix E.

Eg × T2g = T1g + T2g (6.9)

Let us now proceed with the two-electron problem and address the next ques-
tion, which is that, after having determined which symmetry species are present, we
should like to know what the corresponding two-electron wavefunctions look like,
i.e. we should like to construct the SALCs. This construction does not pose any
new problems; the projection operators that were introduced in Sect. 4.5 will do the
job perfectly well. Some notation is important here. The product function will be
written as:

∣

∣Γ γ (1,2)
〉

=
∑

γa

∑

γb

cΓ γγaγb

∣

∣Γaγa(1)
〉∣

∣Γbγb(2)
〉

(6.10)

The combination coefficient is itself identified as a matrix element, by multiplying
left and right with the one-electron bra functions and using orthonormality of the
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basis orbitals.

cΓγaγb =
〈

Γaγa(1)Γbγb(2)|Γ γ (1,2)
〉

≡ 〈ΓaγaΓbγb|Γ γ 〉 (6.11)

This coefficient is known as a Clebsch–Gordan (CG) coupling coefficient and de-
noted by the 3Γ bracket 〈ΓaγaΓbγb|Γ γ 〉. It indicates how the orbital irreps Γa and
Γb have to be combined to yield a product ket that transforms as |Γ γ 〉. The CG-
coefficients can be determined by using projection operators. The results are listed
in Appendix F. It is often possible to obtain these results by a simpler procedure.
We illustrate this for the components of the T1g two-electron state, obtained in Eq.
(6.9). The z-component of this state is the only component that is totally symmetric
under the Ĉ4 splitting field. It is clear that this symmetry can be obtained only by
multiplying the |egǫ〉 and |t2gζ 〉 components, since these are both antisymmetric
and thus will form a symmetric product. From here on we will adopt for the product
functions the usual notation of small letters for the orbitals and capital letters for the
coupled states. Hence:

|T1gz〉 = |egǫ〉|t2gζ 〉 (6.12)

The coupling coefficient 〈EgǫT2gζ |T1gz〉 is thus equal to 1. The x and y compo-
nents may then immediately be obtained by applying the cyclic Ĉ3 generator. As an
example for the x-component:

|T1gx〉 = Ĉ3|T1gz〉

=
(

Ĉ3|egǫ〉
)(

Ĉ3|t2gζ 〉
)

=
(

−
√

3

2
|egθ〉 −

1

2
|egǫ〉

)

|t2gξ 〉

= −
√

3

2
|egθ〉|t2gξ 〉 −

1

2
|egǫ〉|t2gξ 〉 (6.13)

Thus: 〈θξ |x〉 = −
√

3/2; 〈ǫξ |x〉 = −1/2. The resulting coupling coefficients are
shown in Table 6.2.

6.3 Symmetry Properties of the Coupling Coefficients

The CG-coefficients in the finite point groups stem from Wigner’s celebrated cou-
pling coefficients for the spherical symmetry group [1]. Wigner proposed reformu-
lating these coefficients in terms of more primitive 3j symbols, which contain, in
a uniform way, the permutational properties of the spherical coupling coefficients.
Several attempts have been made to define similar 3Γ symbols for the point group,
but this requires the introduction of quite detailed phase conventions, which lim-
its the efficiency of this formalism [2, 3]. We shall therefore not engage in a further
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Table 6.2 The coupling
coefficients for the direct
product Eg × T2g in Oh

symmetry

Eg × T2g T1g T2g

x y z ξ η ζ

|θ〉|ξ〉 −
√

3
2 0 0 − 1

2 0 0

|θ〉|η〉 0
√

3
2 0 0 − 1

2 0

|θ〉|ζ 〉 0 0 0 0 0 1

|ǫ〉|ξ〉 − 1
2 0 0

√
3

2 0 0

|ǫ〉|η〉 0 − 1
2 0 0 −

√
3

2 0

|ǫ〉|ζ 〉 0 0 1 0 0 0

factorization of the coupling coefficients, but, express the important symmetry prop-
erties of the couplings at the level of the brackets. Two guidelines will thereby be
used: when dealing with coupling coefficients it is important to bear in mind that
the coupling is based on the formation of a product, as we have illustrated in the
preceding section, and, secondly, that we should treat the coupling coefficients as
far as possible as ordinary brackets.

A direct consequence of the latter viewpoint is that the rules for complex conju-
gation of brackets apply:

〈ΓaγaΓbγb|Γ γ 〉 = 〈Γ γ |ΓaγaΓbγb〉 (6.14)

Being expansion coefficients of SALCs, the coupling coefficients also obey
two orthogonality rules. Column-wise orthonormality results from the orthonormal
properties of the coupled states.

∑

γaγb

〈

Γ ′γ ′|ΓaγaΓbγb
〉

〈ΓaγaΓbγb|Γ γ 〉 = δΓ Γ ′δγ γ ′ (6.15)

In addition, the scalar products along rows are orthonormal, because of the orthonor-
mal properties of the basic kets. Note that the summation runs over the irreps of the
entire product space: Γ ∈ Γa × Γb .

∑

Γ γ

〈

Γaγ
′
aΓbγ

′
b|Γ γ

〉

〈Γ γ |ΓaγaΓbγb〉 = δγ ′aγaδγ ′bγb
(6.16)

The permutational properties of the CG-coefficients refer to interchange of the
bra and ket irreps. If Γa and Γb are not equivalent, their ordering will not affect the
symmetry of the coupled state, since the factors in the direct product commute:

Γa × Γb = Γb × Γa (6.17)

We can therefore define the coupling coefficients in such a way that interchange of
the coupled irreps leaves the coefficient invariant:

Γa 
= Γb : 〈ΓaγaΓbγb|Γ γ 〉 ≡ 〈ΓbγbΓaγa|Γ γ 〉 (6.18)
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If the coupled electrons are equivalent, i.e. belong to the same shell, the situation
is different. In this case, Γa = Γb , and the direct product becomes a direct square.
For non-equivalent irreps, exchange of the components γa and γb was not possible,
because they refer to different irreps. However, when they are components of the
same irrep, this exchange is an important symmetry of the product space. Indeed,
the squared space can be split into two separate blocks, one block which contains
product functions that are symmetric under exchange of the component labels and
one block which is antisymmetric. This implies that we can define two separate sets
of direct square coupling coefficients, which are either symmetric or antisymmet-
ric under exchange of the labels, i.e.: 〈ΓaγaΓaγb|Γ γ 〉 = ±〈ΓaγbΓaγa|Γ γ 〉. The
symmetrized part of the direct square is denoted as [Γa]2. For n = dim(Γa), the
dimension of this subspace is equal to the number of symmetric combinations:

dim
(

[Γa]2
)

=
∑

γa

1+
∑

γa<γb

1= n+ n(n− 1)/2= n(n+ 1)/2 (6.19)

On the other hand, if the coupling coefficients are antisymmetric under exchange of
the labels, the coupled state belongs to the antisymmetrized direct square, denoted as
{Γa}2. This product space is restricted to combinations with γa 
= γb; its dimension
is equal to n(n−1)/2. The characters for either part of the square can be determined
separately. For the character of the {Γa}2 part the derivation runs as follows: one first
applies a symmetry operator to an arbitrary antisymmetric function. The ket product
|Γaγa(1)〉|Γaγb(2)〉 will be abbreviated here as: γa(1)γb(2).

R̂
(

γa(1)γb(2)− γb(1)γa(2)
)

=
∑

γ ′aγ
′
b

(

γ ′a(1)γ
′
b(2)− γ ′b(1)γ

′
a(2)

)

D
Γa
γ ′aγa

(R)D
Γa
γ ′bγb

(R)

=
∑

γ ′aγ
′
b

γ ′a(1)γ
′
b(2)

(

D
Γa
γ ′aγa

(R)D
Γa
γ ′bγb

(R)−D
Γa
γ ′aγb

(R)D
Γa
γ ′bγa

(R)
)

= 1

2

∑

γ ′aγ
′
b

(

γ ′a(1)γ
′
b(2)− γ ′b(1)γ

′
a(2)

)(

D
Γa
γ ′aγa

(R)D
Γa
γ ′bγb

(R)−D
Γa
γ ′aγb

(R)D
Γa
γ ′bγa

(R)
)

(6.20)

Taking the trace then yields:

χ {Γa}
2
(R) = 1

2

∑

γaγb

(

DΓa
γaγa

(R)DΓa
γbγb

(R)−DΓa
γaγb

(R)DΓa
γbγa

(R)
)

= 1

2

(

(

χΓa (R)
)2 −

∑

γa

DΓa
γaγa

(

R2)
)

= 1

2

((

χΓa (R)
)2 − χΓa

(

R2)) (6.21)
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Table 6.3 Direct square Hg ×Hg in Ih symmetry

Ih Ê 12Ĉ5 12Ĉ2
5 20Ĉ3 15Ĉ2 î 12Ŝ10 12Ŝ3

10 20Ŝ6 15σ̂

χHg 5 0 0 −1 1 5 0 0 −1 1
χHg

2
25 0 0 1 1 25 0 0 1 1

χHg (R2) 5 0 0 −1 5 5 0 0 −1 5

χ [Hg ]2 15 0 0 0 3 15 0 0 0 3
χ {Hg}2 10 0 0 1 −2 10 0 0 1 −2

The trace for the symmetrized product is then found by subtracting the trace in Eq.
(6.21) from the total trace for the direct product.

χ [Γa ]
2
(R) = χΓa

2
(R)− χ {Γa}

2
(R)

= 1

2

((

χΓa (R)
)2 + χΓa

(

R2)) (6.22)

In Table 6.3 these quantities are given for the direct product Hg ×Hg in icosahedral
symmetry. The product resolution is as follows:

Hg ×Hg = [Ag +Gg + 2Hg] + {T1g + T2g +Gg} (6.23)

Note that this product contains one totally-symmetric irrep, notably in the sym-
metrized part. In general, for irreps with real characters the totally-symmetric ir-
rep, Γ0, appears in a direct square only once. This can easily be derived from Eq.
(6.8). When Γa is an irrep with real characters, one has:

〈

χΓ0 |χΓa×Γb 〉 =
∑

R

χ̄Γ0(R)χΓa (R)χΓb (R)

=
∑

R

χΓa (R)χΓb (R)

= |G|δΓaΓb (6.24)

In the case of irreps that can be represented by real transformation matrices, it
is possible to show that this totally-symmetric irrep will belong to the symmetrized
part. In order to apply the character theorem to Eq. (6.22), the following intermediate
result is needed:

∑

R

χΓa
(

R2) =
∑

R

∑

i

[

D
Γa (R)×D

Γa (R)
]

ii

=
∑

R

∑

i

∑

j

D
Γa
ij (R)D

Γa
ji (R)

= |G|
dim(Γa)

∑

i

∑

j

δij = |G| (6.25)

In order to arrive at this result we have made use of the GOT, on the assumption
that the D matrices are real. Combining the results of Eqs. (6.24) and (6.25) with
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Eq. (6.22) then leads to the conclusion that the unique totally-symmetric irrep be-
longs to the symmetrized part of the direct square:

1

|G|
〈

χΓ0 |χ [Γa ]2
〉

= 1

2|G|
∑

R

χΓ0(R)
[

χΓa
2
(R)+ χΓa

(

R2)]= 1 (6.26)

For irreps with real characters, but transformation matrices that cannot be all real,
the unique totally-symmetric product appears in the antisymmetrized part. This is
the case for spin representations, which will be dealt with in Chap. 7. In summary,
as far as complex-conjugation properties are concerned, we have three kinds of ir-
reps:

1. Irreps with real characters, and for which all D(R) transformation matrices can
be put in real form. In this case: Γ0 ∈ [Γa]2.

2. Irreps with real characters, but which cannot be represented by transformation
matrices that are all real. In this case Γ0 ∈ {Γa}2.

3. Irreps with complex characters. In this case there is always a complex-conjugate
irrep, and Γ0 ∈ Γ × Γ̄ .

Equation (6.23) further exemplifies a case of product multiplicity. This is when
an irrep occurs more than once in the decomposition of a direct product. Both the Hg

and Gg irreps appear twice in the direct product Hg ×Hg . In the point groups prod-
uct multiplicity is quite rare. It occurs only in the icosahedral group for the products
G×H and H ×H , as well for spin representations in cubic and icosahedral sym-
metries. Product multiplicity means that there are different coupling schemes for ar-
riving at the product states. Each of these “channels” corresponds to a separate set of
CG coupling coefficients. There are several ways of obtaining linearly-independent
sets of coupling coefficients. For the separation of the two Gg irreps in Eq. (6.23)
symmetrization of the product space is sufficient, since the symmetrized and anti-
symmetrized parts each contain one Gg . This strategy does not work for the two Hg

irreps, which are both the result of symmetrized coupling. In this case, more elabo-
rate splitting schemes have been constructed, based inter alia on higher symmetries
[4, 5].

Last but not least, we should consider the relationship between coupling coef-
ficients where irreps from bra and ket parts are interchanged. We shall limit the
discussion here to the simplified case in which all ingredients of the coupling are
taken to be real. A case with complex irreps will be treated in Chap. 7. Consider two
related couplings: Γa × Γb = Γ and Γ × Γb = Γa . The corresponding expansion
coefficients are scalar matrix elements and are thus invariant under the group ac-
tion. By importing the group action inside the brackets, as we have frequently done
before, we obtain a set of equations in the CG-coefficients:

〈ΓaγaΓbγb|Γ γ 〉 =
∑

γ ′aγ
′
bγ

[

1

|G|
∑

R

D̄
Γa
γ ′aγa

(R)D̄
Γb
γ ′bγb

(R)DΓ
γ ′γ (R)

]

〈

Γaγ
′
aΓbγ

′
b|Γ γ ′

〉

(6.27)
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〈Γ γΓbγb|Γaγa〉 =
∑

γ ′aγ
′
bγ

[

1

|G|
∑

R

D
Γa
γ ′aγa

(R)D̄
Γb
γ ′bγb

(R)D̄Γ
γ ′γ (R)

]

〈

Γ γ ′Γbγ
′
b|Γaγ ′a

〉

(6.28)

These equations form a system of homogeneous linear equations from which the
coupling coefficients can be obtained. At present, we shall use this result only in
the simplified case where all components have been chosen to be real, so that Eqs.
(6.27) and (6.28) form the same system of equations.1 From this it follows that the
corresponding coupling coefficients will be proportional to each other, independent
of the components; hence:

〈ΓaγaΓbγb|Γ γ 〉 = x〈Γ γΓbγb|Γaγa〉 (6.29)

The proportionality constant can be determined by summing the square of the coef-
ficients over all components and using the normalization result from Eq. (6.15).

∑

γaγbγ

∣

∣〈ΓaγaΓbγb|Γ γ 〉
∣

∣

2 = x2
∑

γaγbγ

∣

∣〈Γ γΓbγb|Γaγa〉
∣

∣

2

dim(Γ ) = x2dim(Γa) (6.30)

The permutation of irreps between bra and ket in the CG-coefficients thus requires
a uniform dimensional renormalization:

[

dim(Γ )
]−1/2〈ΓaγaΓbγb|Γ γ 〉 = ±

[

dim(Γa)
]−1/2〈Γ γΓbγb|Γaγa〉 (6.31)

The renormalization leaves a phase factor undetermined. This phase factor is the
same for the entire coupling table, and thus can be chosen in arbitrarity. As an
example, in the group O (see Appendix F), the coefficients 〈T2ξT1x|Eθ〉 and
〈EθT1x|T2ξ 〉 are related as follows:

1√
2
〈T2ξT1x|Eθ〉 =

1√
3
〈EθT1x|T2ξ 〉 = −

1

2
(6.32)

Here the phase was chosen to be +1.

6.4 Product Symmetrization and the Pauli Exchange-Symmetry

In principle, the T1g and T2g coupled two-electron states, which we obtained in
Table 6.2 of the previous section, could apply to the case of the (t2g)1(eg)1 excited
states of a d2 transition-metal ion in an octahedral ligand field, which splits the d

1The general case with complex irreps is exemplified for the coupling of spin representations in
Sect. 7.4.
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orbitals into a t2g and an eg shell. However, these coupled descriptions are not yet
sufficient, since they make a distinction between electron 1, which resides in the
t2g orbital, and electron 2, which was promoted to the eg level. The fundamental
symmetry requirement that electrons must be indistinguishable is thus not fulfilled.
The operator that permutes the two electrons is represented as P̂12:

P̂12
∣

∣Γ γ (1,2)
〉

=
∣

∣Γ γ (2,1)
〉

=
∑

γa

∑

γb

〈ΓaγaΓbγb|Γ γ 〉
∣

∣Γaγa(2)
〉∣

∣Γbγb(1)
〉

(6.33)

The |Γ γ (1,2)〉 and |Γ γ (2,1)〉 states will have exactly the same symmetries, since
the factors in the direct product commute:

Γa × Γb = Γb × Γa (6.34)

As a result, P̂12 commutes with the spatial symmetry operators, and we can sym-
metrize the coupled states with respect to the electron permutation. The permutation
operator is the generator of the symmetric group, S2, which has only two irreps, one
symmetric and one antisymmetric, corresponding, respectively, to the plus and mi-
nus combination in Eq. (6.35).

|Γ γ ;±〉 = 1√
2

[∣

∣Γ γ (1,2)
〉

±
∣

∣Γ γ (2,1)
〉]

= 1√
2

∑

γa

∑

γb

〈ΓaγaΓbγb|Γ γ 〉

×
[∣

∣Γaγa(1)
〉∣

∣Γbγb(2)
〉

±
∣

∣Γbγb(1)
〉∣

∣Γaγa(2)
〉]

(6.35)

These states have distinct permutation symmetries, and spatial symmetry operators
cannot mix + and − states. This is a very general property of multi-particle states,
to which no exceptions are known.

On the other hand the permutation symmetry of multi-electron wavefunctions is
restricted by the Pauli principle.

Theorem 11 The total wavefunction should be antisymmetric with respect to ex-

change of any pair of electrons. Hence, in the symmetric group S2, or, for an n-

electron system, the symmetric group, Sn, the total wavefunction should change sign

under odd permutations, i.e. under permutations that consist of an odd number of

transpositions of two elements, and should remain invariant under even permuta-

tions.

Until now we have limited ourselves to the spatial part of the wavefunction. So
far, only the antisymmetrized part obeys the Pauli principle. However, the principle
places a requirement only on the total wavefunction. This also involves a spin part,
which should be multiplied by the orbital part. Anticipating the results of Chap. 7,
we here provide the spin functions for a two-electron system. Spin functions are
characterized by a spin quantum number, S, and a component, MS , in the range
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{−S,−S + 1,−S + 2, . . . , S − 1, S}. The total number of components, hence the
dimension of the spin-space for a given S, is equal to 2S + 1. This number is called
the spin multiplicity. For a two-electron system, S can be 0 or 1; hence, there is one
singlet state, and there are three components belonging to a triplet state. In a |SMS〉
notation they are given by:

|0,0〉 = 1√
2

[

α(1)β(2)− β(1)α(2)
]

|1,1〉 = α(1)α(2)

|1,0〉 = 1√
2

[

α(1)β(2)+ β(1)α(2)
]

|1,−1〉 = β(1)β(2)

(6.36)

These functions also exhibit permutation symmetry: the triplet functions are sym-
metric under exchange of the two particles, while the singlet function is antisym-
metric under such an exchange. The total wavefunction can thus always be put in
line with the Pauli principle by combining the coupled orbital states with spin states
of opposite permutation symmetry. Altogether we can thus construct four states:
1T1g,

1T2g,
3T1g,

3T2g . This set of four states, totalling 24 wavefunctions, forms a
manifold, representing all the coupled states resulting from the (t2g)1(eg)1 configu-
ration. The dimension of the manifold is equal to the product of the six possible t2g
substates (including spin), and the four possible eg substates. In this case, where the
coupling involves electrons belonging to different shells, the Pauli principle does
not restrict the total dimension of the manifold, since all combinations remain pos-
sible. All states can be written as linear combinations of Slater determinants. As an
example, for the |1T1gz〉 state, one writes:

∣

∣

1T1gz
〉

= 1√
2

(∣

∣ǫ(1)
〉∣

∣ζ(2)
〉

+
∣

∣ǫ(2)
〉∣

∣ζ(1)
〉) 1√

2

[

α(1)β(2)− β(1)α(2)
]

= 1√
2

∣

∣(ǫα)(ζβ)
∣

∣− 1√
2

∣

∣(ǫβ)(ζα)
∣

∣ (6.37)

The situation is different when coupling two equivalent electrons; these are elec-
trons that belong to the same shell. In this case, the coupled states are already eigen-
functions of the exchange operator as a result of the special symmetrization prop-
erties of the coupling coefficients for direct squares. Equation (6.10) will take the
following form:

|Γ γ (1,2)〉 =
∑

γaγb

〈γaγb|Γ γ 〉
∣

∣γa(1)
〉∣

∣γb(2)
〉

=
∑

γa

〈γaγa|Γ γ 〉
∣

∣γa(1)
〉∣

∣γa(2)
〉

+
∑

γa<γb

[

〈γaγb|Γ γ 〉
∣

∣γa(1)
〉∣

∣γb(2)
〉

+ 〈γbγa|Γ γ 〉
∣

∣γb(1)
〉∣

∣γa(2)
〉]

(6.38)
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Now, if the product representation belongs to the symmetrized square, Γ ∈ [Γa]2,
this result simplifies to:

|Γ γ 〉 =
∑

γa

〈γaγa|Γ γ 〉
∣

∣γa(1)
〉∣

∣γa(2)
〉

+
∑

γa<γb

〈γaγb|Γ γ 〉
(∣

∣γa(1)〉
∣

∣γb(2)〉 +
∣

∣γb(1)
〉∣

∣γa(2)
〉)

(6.39)

Hence, this function is symmetric under the P̂12 operator. It also obeys the nor-
malization condition of Eq. (6.15). It should always be multiplied by an antisym-
metric singlet spin-function in order to obey the Pauli exclusion principle. On the
other hand, if the product representation belongs to the antisymmetrized square,
Γ ∈ {Γa}2, the coupled state is given by:

|Γ γ 〉 =
∑

γa<γb

〈γaγb|Γ γ 〉
(∣

∣γa(1)
〉∣

∣γb(2)
〉

−
∣

∣γb(1)
〉∣

∣γa(2)
〉)

(6.40)

This function is antisymmetric under the P̂12 operator, and should be multiplied by a
symmetric triplet spin-function in order to obey the Pauli principle. As an example,
for the (eg)2 configuration the allowed states are:

eg × eg = [A1g +Eg] + {A2g}⇒ 1A1g + 1Eg + 3A2g (6.41)

For equivalent electrons the Pauli principle thus really does function as an exclusion
principle, since the coupled states are either triplets or singlets, depending on their
symmetrization. The dimension of the manifold is given by the binomial coefficient,
where q is the number of equivalent substates (including spin), and n is the number
of electrons:

(

q

n

)

= q!
n!(q − n)! (6.42)

For the (eg)
2 problem, one has n = 2 and q = 4; there are thus six two-electron

states in this configuration (see Eq. (6.41)).
As a special result, we examine the symmetry of the maximal spin-multiplicity

ground state of a system with a half-filled shell. The shell consists of the components
|f1〉 · · · |fn〉, transforming according to the irrep Γa , and each will be occupied by
one electron with α spin. The ground state corresponds to a single determinant:

|Ψ 〉 = |f1α · · ·f2α| =
1√
n!
∑

σ∈Sn
sgn(σ )

[

f1α(σ1) · · ·fnα(σn)
]

= 1√
n!
∑

σ∈Sn
sgn(σ )

[

fσ1α(1) · · ·fσnα(n)
]

(6.43)
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Here, σ ∈ Sn is an element of the permutation group of the n electron labels, and
sgn(σ ) is its parity.2 Equation (6.43) indicates that this permutation can equally well
be applied to the component labels, since the determinant is invariant under matrix
transposition. We can now calculate the matrix element in the symmetry operator:

〈Ψ |R̂|Ψ 〉 = 1

n!
∑

σ,π∈Sn
sgn(σ )sgn(π)

[〈

fσ1α(1)|R̂|fπ1α(1)
〉

· · ·
〈

fσnα(n)|R̂|fπnα(n)
〉]

= 1

n!
∑

σ,π∈Sn
sgn(σ )sgn(π)

[

DΓa
σ1π1

(R) · · ·DΓa
σnπn

(R)
]

=
∑

λ∈Sn
sgn(λ)

[

D
Γa
1λ1

(R) · · ·DΓa
nλn

(R)
]

= det
(

D
Γa
)

(6.44)

In this equation we have used the result from Eq. (2.8), which identified matrix
elements over symmetry operators as elements of the representation matrix. The
double summation over permutations covers the permutation group twice and could
be reduced to a single sum. The result indicates that the spatial symmetry of the half-
filled shell ground state transforms as the determinant of the irrep of the shell. This
is also called the determinantal representation. For the eg shell the determinantal
irrep is A2g . The shell ground state is thus a 3A2g .

6.5 Matrix Elements and the Wigner–Eckart Theorem

A general interaction element is a bracket around an operator. Each of the three in-
gredients, bra, ket, and operator, can be put in symmetry-adapted form, so that it
transforms according to a given irrep. Moreover, provided that the symmetry adap-
tation is done properly, not only the irrep itself but also the subrepresentation is well
defined. Altogether, the matrix element will thus be characterized by six symmetry
labels, as: 〈ψΩ

ω |OΛ
λ |φΓγ 〉. The labels imply that the symmetry behaviour of each of

these ingredients is fully known:

R̂
〈

ψΩ
ω

∣

∣=
∑

ω′
D̄Ω
ω′ω(R)

〈

ψΩ
ω′
∣

∣

R̂
∣

∣φΓγ
〉

=
∑

γ ′
DΓ
γ ′γ (R)

∣

∣φΓγ ′
〉

R̂
∣

∣OΛ
λ

∣

∣R−1 =
∑

λ′
DΛ
λ′λ(R)

∣

∣OΛ
λ′
∣

∣

(6.45)

2Any permutation can be expressed as a sequence of transpositions of two elements. If the total
number of transpositions is even, sgn(σ )=+1; if it is odd, sgn(σ )=−1. See also Sect. 3.3.
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Note that the general form of the operator |OΛ
λ | refers to a component of an ir-

reducible set. Such a set of operators is usually referred to as a tensor operator.
Obvious examples are the components of the electric or magnetic dipole-moment
operators. The Wigner–Eckart theorem introduces a symmetry factorization, which
simplifies the evaluation of matrix elements.

Theorem 12 A matrix element, involving a tensor operator, may be factorized into

a product of an intrinsic scalar part and an appropriate 3Γ coupling coefficient.

The scalar constant is denoted by 〈ψΩ ‖ OΛ ‖ φΓ 〉, and is called the reduced

matrix element.
〈

ψΩ
ω

∣

∣OΛ
λ |φΓγ

〉

=
〈

ψΩ ‖OΛ ‖ φΓ
〉

〈Ωω|ΛλΓ γ 〉 (6.46)

To prove this theorem, one first considers the coupling of two ingredients of the ma-
trix element, and then compares the result with the third one. We thus first consider
the coupling of the operator and the ket. The transformation of their product does
indeed correspond to the super matrix which is due to the direct product Λ× Γ .

R̂
∣

∣OΛ
λ |φΓγ

〉

= R̂
∣

∣OΛ
λ |R̂−1R̂|φΓγ

〉

=
∑

λ′

∑

γ ′
DΛ
λ′λ(R)D

Γ
γ ′γ (R)|OΛ

λ′
∣

∣φΓγ ′
〉

(6.47)

This means that we couple the tensor operator and the ket to form product entities:

∣

∣(Oφ)Ππ
〉

=
∑

λ′

∑

γ ′

∣

∣OΛ
λ′ |φΓγ ′

〉〈

Λλ′Γ γ ′|Ππ
〉

(6.48)

We now invert this equation, using the unitary properties of the coupling coeffi-
cients, to yield:

∣

∣OΛ
λ |φΓγ

〉

=
∑

Π ′

∑

π ′

∣

∣(Oφ)Π
′

π ′
〉〈

Π ′π ′|ΛλΓ γ
〉

(6.49)

Then we combine this expression with the bra.

〈

ψΩ
ω |OΛ

λ |φΓγ
〉

=
∑

Π ′

∑

π ′

〈

ψΩ
ω |(Oφ)Π

′
π ′
〉〈

Π ′π ′|ΛλΓ γ
〉

(6.50)

The matrix elements on the right-hand side are now in fact reduced to an overlap in-
tegral where the direct product irreps are compared with the irrep of the bra. Hence,
the selection rules for the overlap integrals apply:

〈

Ωω|(Oφ)Π
′

π ′
〉

= δΩ,Π ′δωπ ′
1

dim(Ω)

∑

ω′

〈

Ωω′
∣

∣(Oφ)Ω
′

ω′
〉

≡
〈

ψΩ ‖OΛ ‖ φΓ
〉

(6.51)

The trace summation in this equation is identified as a scalar interaction constant,
which is represented by the reduced matrix element.
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Combination of Eqs. (6.50) and (6.51) then yields the Wigner–Eckart theorem of
Eq. (6.46), where the total interaction is the product of a scalar interaction constant
and a CG coupling coefficient. The former refers to the interaction itself, the latter
extracts the transformation properties. In case of product multiplicity, there will be
one reduced matrix element for every coupling channel, and the matrix element is
decomposed into a sum over the channels. The Wigner–Eckart theorem or matrix-
element theorem is at the heart of most chemical applications of group theory. It
provides an elegant method for separating interactions into an intrinsic part and a
part that depends only on the symmetry of the problem under consideration.

An important consequence of the matrix element theorem concerns the definition
of selection rules. An interaction will be forbidden if the corresponding coupling
coefficient in the Wigner–Eckart theorem is zero. The conditions that control the
zero values of the coupling coefficients are called triangular conditions, since they
involve the combination of three irreps. Two kinds of triangular conditions must be
taken into account:

1. Selectivity on the representations: an interaction element is forbidden if the cou-
pling of the three irreps involved is zero, i.e. if the direct product of the operator
and ket parts does not include the irrep of the bra.

Ω /∈Λ× Γ (6.52)

The triad of the three irreps may also be seen as a triple direct product,
Ω̄ ×Λ× Γ , where the bra irrep appears in its complex-conjugate form. Equa-
tion (6.8) can now also be read as the character overlap between the totally-
symmetric irrep and the triple product. Accordingly, the selection rule of Eq.
(6.52) can also be reformulated as: an interaction will be forbidden if the triple
product of the irreps does not contain the totally-symmetric irrep.

Γ0 /∈ Ω̄ ×Λ× Γ (6.53)

2. Selectivity on the subrepresentations: subrepresentations that are defined in a
splitting field must obey the triangular conditions for the subduced irreps in the
corresponding subgroup.

6.6 Application: The Jahn–Teller Effect

In 1937 Jahn and Teller made the claim that degenerate states of molecules are
intrinsically unstable [6, 7].

Theorem 13 Non-linear molecules in a spatially-degenerate electronic state are

subject to spontaneous symmetry-breaking forces that distort the molecule to a ge-

ometry of lower symmetry, where the degeneracy is removed.
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The theorem is based on a perturbation of the Hamiltonian by small displace-
ments of the nuclei. A high-symmetry geometry is chosen as the origin, and the
nuclear displacements are described by normal modes which transform as irreps of
the point group. The nuclear positions are parameters in the electronic Hamiltonian.
One has, to second-order:

H=H0 +H′

H′ =
∑

QΓ γ

(

∂H

∂QΓ γ

)

0
QΓ γ +

1

2

∑

QΓ γ

∑

QΓ ′γ ′

(

∂2H

∂QΓ γ ∂QΓ ′γ ′

)

0
QΓ γQΓ ′γ ′

(6.54)

The partial derivatives with respect to the normal modes will affect only the elec-
trostatic VNe term in the Hamiltonian. These operators are thus electrostatic one-
electron operators. At the coordinate origin, the electronic state is degenerate, and is
described by a set of wavefunctions, |Γaγa〉, where Γa is a degenerate irrep. The en-
ergies as functions of the coordinates are obtained by diagonalizing the Hamiltonian
matrix, H, with elements:

Hγaγb = 〈Γaγa|H|Γaγb〉 =E0δγaγb +
〈

Γaγa|H′|Γaγb
〉

(6.55)

The matrix in H′ is also called the Jahn–Teller (JT) matrix. The linear terms in this
matrix are of type:

〈

Γaγa

∣

∣

∣

∣

(

∂H

∂QΓ γ

)

0
QΓ γ

∣

∣

∣

∣

Γaγb

〉

=
〈

Γaγa

∣

∣

∣

∣

∂H

∂QΓ γ

∣

∣

∣

∣

Γaγb

〉

0
QΓ γ (6.56)

We have used the fact that the integration in this matrix element runs over elec-
tronic coordinates, and does not affect the nuclear coordinates. The Wigner–Eckart
theorem can be applied to derive the selection rules. Since the Hamiltonian is in-
variant under the elements of the symmetry group, the transformation properties of
the operator part in this matrix element will be determined by the partial derivatives,
∂/∂QΓ γ . As we have seen in Sect. 1.3, a partial derivative in a variable has the same
transformation properties as the variable itself.3 The operator part is thus given by:

〈

Γaγa

∣

∣

∣

∣

∂H

∂QΓ γ

∣

∣

∣

∣

Γaγb

〉

0
= 〈Γa ‖ Γ ‖ Γa〉〈Γaγa|Γ γΓaγb〉 (6.57)

The coupling coefficient on the right-hand side of Eq. (6.57) restricts the symmetry
of the nuclear displacements to the direct square of the irrep of the electronic wave-
function. This selection rule is made even more stringent by time-reversal symmetry.
The Hamiltonian is based on displacement of nuclear charges, and not on momenta,
so as an operator it is time-even or real.4 For spatially-degenerate irreps, which are

3For complex variables, variable and derivative have complex-conjugate transformation properties.
4The general time-reversal selection rules are discussed in Sect. 7.6.
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of the first kind, i.e. can be represented by real functions, JT matrix elements can
thus be chosen to be entirely real, which implies:

〈

Γaγa|H′|Γaγb
〉

=
〈

Γaγb|H′|Γaγa
〉

(6.58)

Combining this result with Eq. (6.57) implies that the coupling coefficients, to first-
order, should obey:

〈Γaγa|Γ γΓaγb〉 = 〈Γaγb|Γ γΓaγa〉 (6.59)

In view of Eq. (6.31) this condition can be rewritten as:

〈ΓaγaΓaγb|Γ γ 〉 = 〈ΓaγbΓaγa|Γ γ 〉 (6.60)

The JT distortion modes are thus restricted to the symmetrized square of the degen-
erate irrep of the electronic state, minus the totally-symmetric modes, since these
cannot lower the symmetry:

Γ ∈
(

[Γa × Γa] − Γ0
)

(6.61)

Modes that obey this selection rule, are said to be JT active. The evaluation of the
second-order matrix elements requires two steps. One first couples the two distortion
modes to a composite tensor operator: |Ωω|.

∣

∣

∣

∣

∂2H

∂QΓ γ ∂QΓ ′γ ′

∣

∣

∣

∣

=
∑

Ωω

|Ωω|
〈

Ωω|Γ γΓ ′γ ′
〉

(6.62)

The second-order matrix element then becomes:
〈

Γaγa

∣

∣

∣

∣

∂2H

∂QΓ γ ∂QΓ ′γ ′

∣

∣

∣

∣

Γaγb

〉

0

=
∑

Ωω

〈Γa ‖Ω ‖ Γa〉
〈

Ωω|Γ γΓ ′γ ′
〉

〈Γaγa|ΩωΓaγb〉 (6.63)

The second-order elements thus are related to a product of two 3Γ symbols.5 A spe-
cial element arises when Ω is totally symmetric. In this case, the coupling coeffi-
cients are given by:

〈

Γ0|Γ γΓ ′γ ′
〉

= 1√
dim(Γ )

δΓ Γ ′δγ γ ′

〈Γaγa|Γ0Γaγb〉 = δγaγb

(6.64)

5Such combinations can be cast in a higher-order symbol, known as 6Γ symbol, by analogy with
the 6j coupling coefficients in atomic spectroscopy.
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The second-order expressions then are reduced to a diagonal matrix element:

〈Γa ‖ Γ0 ‖ Γa〉
〈

Γ0|Γ γΓ ′γ ′
〉

〈Γaγb|Γ0Γaγb〉

= 1√
dim(Γ )

〈Γa ‖ Γ0 ‖ Γa〉δΓ Γ ′δγ γ ′δγaγb =KΓ δΓ Γ ′δγ γ ′δγaγb (6.65)

KΓ in this equation is the harmonic force-constant. It gives rise to a constant di-
agonal term which provides an attractive potential around the minimum and keeps
the surface bound at larger distances from the origin. The general expression for the
potential-energy surface then becomes:

Ek(Q)=E0 +
∑

Γ

1

2
KΓ

(

∑

γ

Q2
Γ γ

)

+ εk(Q) (6.66)

Here, εk(Q) represents the kth root of the Hamiltonian matrix. This equation de-
scribes a surface with multiple sheets, one for each root, which cross in the high-
symmetry origin. In its simplest form the Hamiltonian can be restricted to the linear
terms only. In the second-order approximation non-totally-symmetric second-order
terms will also be included.

The prototype of the JT surface is the celebrated Mexican hat potential, which
describes the effect of the twofold-degenerate cubic or trigonal E state. A typical
example is the 2Eg ground state of octahedral Cu2+ complexes, with (t2g)

6(eg)
3

configuration. The JT-active mode in this case is restricted to an eg mode, corre-
sponding to the symmetrized square.

[Eg ×Eg] −A1g =Eg (6.67)

This distortion mode consists of the tetragonal and orthorhombic stretchings, which
we already encountered as vibrational modes of UF6, and are depicted in Fig. 6.1.
By use of the appropriate 〈Ei|EjEk〉 coupling coefficients the JT matrix can easily
be derived. The force element is defined as:

FE =
〈

Eθ

∣

∣

∣

∣

∂H

∂Qθ

∣

∣

∣

∣

Eθ

〉

(6.68)

The matrix then becomes:

H=
(

E0 +
1

2
KE

(

Q2
θ +Q2

ǫ

)

)[

1 0
0 1

]

+ FE

[

Qθ Qǫ

Qǫ −Qθ

]

(6.69)

To diagonalize this Hamiltonian, it is convenient to transform to cylindrical coordi-
nates {ρ,ϕ}:

Qθ = ρ cosϕ

Qǫ = ρ sinϕ
(6.70)
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Fig. 6.1 The Mexican hat potential-energy surface of the E × e linear JT problem. The nuclear
displacement coordinates are the tetragonal elongation, Qθ , and the orthorhombic in-plane distor-
tion, Qǫ

Then the secular equation of the force element matrix in Eq. (6.69) becomes:

ε2
k − F 2

Eρ
2 cos2 ϕ − F 2

Eρ
2 sin2 ϕ = 0 (6.71)

Two roots are found, which are independent of the angular coordinate. The corre-
sponding eigenfunctions are:

ǫ1 = FEρ −→ |ψ1〉 = cos
ϕ

2
|Eθ〉 + sin

ϕ

2
|Eǫ〉

ǫ2 =−FEρ −→ |ψ2〉 = − sin
ϕ

2
|Eθ〉 + cos

ϕ

2
|Eǫ〉

(6.72)

The surface consists of two sheets and exhibits rotational symmetry.

E± = E0 +
1

2
KEρ

2 ± FEρ

= E0 +
1

2
KE

(

Q2
θ +Q2

ǫ

)

± FE

√

Q2
θ +Q2

ǫ (6.73)

A cross section of this surface looks like a two-well potential, with two displaced
parabolæ. The depth of the well is called the JT stabilization energy:

EJT =−
F 2
E

2KE

(6.74)

In the 2D space of the active modes these parabolæ revolve around the centre, giv-
ing rise to the Mexican hat appearance. At the origin this surface has the shape
of a conical intersection, indicating that the high-symmetry point is unstable, and
will spontaneously relax to the circular trough surrounding the degeneracy [8]. The
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distorted system in the trough orbits around the origin. This motion is a pseudo-
rotation, i.e. it is not a rotation of the molecular frame, but a gradual redistribution
of the distortions between the Cartesian directions. We illustrate this in Fig. 6.2.
The starting point is at ϕ = 0, in the direction of the Qθ mode. In this mode the
z-axis is elongated, and the xy-plane is contracted. A counterclockwise rotation ac-
tivates the orthorhombic Qǫ mode, while the tetragonal Qθ mode is receding. This
introduces a difference between the x- and y-axes: the distortion in the x-direction
becomes more pronounced, while the y-axis contracts further. At the same time the
elongation of the z-axis diminishes. At an angle of 60◦ the x- and z-axes are both
elongated to an equal extent, giving rise to a weak xz-plane and a strong y-axis.
At the 90◦ point the Qθ contribution vanishes, and the distortion is orthorhombic,
with a short y-axis, an elongated x-axis, and an undistorted z-axis. At an angle of
120◦ we reach the point where the x-axis is weak, and the perpendicular yz-plane is
strong. We thus have regained an elongated tetragonal configuration, but the elon-
gation has been rotated from the z-axis to the x-axis. Continuing now at 240◦ we
shall have travelled another third of the trough and reoriented the tetragonal axis
along the y-direction. We can also follow the wavevector along the trough. If it is
assumed that FE < 0, the lower eigenfunction will be the |ψ1〉 eigenfunction of Eq.
(6.72). In the starting elongated tetragonal configuration the ground state coincides
with the |Eθ〉 basis function. By the time we have reached the orthorhombic config-
uration at ϕ = 90◦, the ground state has rotated by only half that angle and equals
1/
√

2(|Eθ〉+|Eǫ〉). At 180◦, we reach a structure which is tetragonally compressed
along the z-direction. Accordingly, the Qθ mode has changed sign, in contrast to the
eigenfunction, where |Eθ〉 is replaced by |Eǫ〉. The observation of rotational sym-
metry is an unexpected feature, which is not related to the point group, but which
stems from the limitation of the JT Hamiltonian to linear terms. To describe this
symmetry we first reformulate the force element Hamiltonian in Eq. (6.69) in Dirac
notation:

H′ = FE
(

Qθ

[

|Eθ〉〈Eθ | − |Eǫ〉〈Eǫ|
]

+Qǫ

[

|Eθ〉〈Eǫ| + |Eǫ〉〈Eθ |
])

(6.75)

The angular momentum operator, corresponding to a rotation in coordinate space,
is given by:

L= ∂

∂ϕ
= ∂Qǫ

∂ϕ

∂

∂Qǫ

+ ∂Qθ

∂ϕ

∂

∂Qθ

=Qθ

∂

∂Qǫ

−Qǫ

∂

∂Qθ

(6.76)

The partial derivatives were obtained from Eq. (6.70). The commutator of this op-
erator with the Hamiltonian is:
[

L,H′
]

= FE
(

−Qǫ

[

|Eθ〉〈Eθ |− |Eǫ〉〈Eǫ|
]

+Qθ

[

|Eθ〉〈Eǫ|+ |Eǫ〉〈Eθ |
])

(6.77)

Surprisingly, this commutator does not vanish. This is an important observation,
which directly points to the vibrational-electronic or vibronic coupling between the
distortion modes and the electronic wavevector. When the system rotates around the
origin in coordinate space, not only are the coordinates changing, but the wavevec-
tor is also rotating simultaneously, so we must also provide an angular momentum
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Fig. 6.2 Rotation of the
distortion in the trough of the
Mexican hat. Along the Qθ

coordinate the complex is
elongated along its z-axis.
Rotation around the centre in
the direction of Qǫ will
shorten the z-axis and
increase the x-axis. At an
angle of revolution of 120◦ a
tetragonally elongated
structure is again found, but
this time with the elongation
along the x-direction, and
similarly at 240◦, with the
elongation along the y-axis

operator for a rotation in the function space (see [9]). We can construct this by anal-
ogy with Eq. (6.76), but with an important amendment: as we have argued while
discussing Fig. 6.2, the coordinates rotate twice as quickly as the wavevector, and
hence a prefactor of 1/2 is required!

S = 1

2

(

|Eθ〉〈Eǫ| − |Eǫ〉〈Eθ |
)

(6.78)

Only in this case does the total momentum operator J = L+ S commute with the
Hamiltonian:

[

J ,H′
]

=
[

L,H′
]

+
[

S,H′
]

= 0 (6.79)

As the reader will have noticed, we have made use of the standard spectroscopic
symbols for orbital angular momentum, spin momentum, and total momentum.
Vibronic coupling is indeed analogous to coupling of spin and orbit momenta in
cylindrical molecules. To form the vibronic wavefunction, describing the dynamics
of the Mexican hat system, the electronic state has to be combined with nuclear
wavefunctions. If the JT effect is pronounced, the vibronic levels take the form of
a radial oscillator, describing transverse oscillations in the bottom of the through,
and pseudo-rotational levels, describing the longitudinal motion along the bottom
of the trough. The total vibronic wavefunction should of course be single-valued
after a full turn around the trough, which takes the system back to the starting point.
Hence, since the electronic part changes sign after a full turn, the vibrational part
should also show a compensating sign change. This is indeed the case: the pseudo-
rotational levels are characterized by half-integral angular momentum [10].

6.7 Application: Pseudo-Jahn–Teller interactions

Pseudo-JT interactions (PJT) refer to the second-order vibronic coupling between
electronic states which are separated by a gap [11]. In this section we describe the
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case of a non-degenerate ground state, |ψΣσ 〉, which is coupled to an excited mani-
fold. The Hamiltonian is identical to the expression in Eq. (6.54). Application of the
selection rules shows that the diagonal contribution, 〈ψΣσ |H|ψΣσ 〉, is limited to the
totally-symmetric operator associated with the harmonic restoring-force, as in Eq.
(6.66). Perturbation theory further provides interactions between the ground and ex-
cited states. These interactions are usually limited to first-order contributions, which
give rise to a quadratic coordinate dependence. Hence one has, to second-order in
the displacements:

E(Q) = E0 +
∑

Γ

1

2
KΓ

(

∑

γ

Q2
Γ γ

)

+
∑

Λλ

∑

Γ γ

|〈ψΛλ| ∂H
∂QΓ γ

|ψΣσ 〉0|2

E0 −EΛ

Q2
Γ γ (6.80)

where we have used the property that the Hamiltonian matrix is hermitian. The
selection rule in this process resides with the matrix elements in the enumerator
of the bilinear term. The vibronic operator must couple ground and excited states;
hence, it is required that their triple direct product contains the totally-symmetric
irrep:

Γ0 ∈ Γ̄Λ × Γ ×Σ (6.81)

Applying the Wigner–Eckart theorem to the matrix element yields:

〈

ψΛλ

∣

∣

∣

∣

∂H

∂QΓ γ

∣

∣

∣

∣

ψΣσ

〉

0
= 〈Λλ|Γ γΣσ 〉〈Λ ‖ Γ ‖Σ〉 (6.82)

The sum over the λ components of the excited state, transforming as the Λ irrep,
can be simplified by using the orthonormality property of the coupling coefficients
from Eq. (6.16).

∑

λ∈Λ

|〈ψΛλ| ∂H
∂QΓ γ

|ψΣσ 〉0|2

E0 −EΛ

=
∑

λ∈Λ

|〈Λλ|Γ γΣσ 〉〈Λ ‖ Γ ‖Σ〉|2
E0 −EΛ

= |〈Λ ‖ Γ ‖Σ〉|
2

E0 −EΛ

(6.83)

Note that in case of a non-degenerate ground state the product Γ ×Σ yields only
one irrep, since the norm of the product character string equals the order of the
group.

〈

χΓ×Σ |χΓ×Σ 〉=
〈

χΓ χΣ |χΓ χΣ
〉

=
〈

χΓ |χΓ
〉

= |G| (6.84)
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Fig. 6.3 Ring closure of cis-butadiene to cyclo-butene. In C2v symmetry there is a symmetry
mismatch between the a2 and a1 occupied orbitals. Vibronic orbital coupling requires a concerted
mechanism, based on a conrotatory ring closure, which conserves only the Ĉ2 axis

The summation over λ ∈ Λ thus covers the entire product space of Γ ×Σ . Com-
bining the sum rule of Eq. (6.83) with the total expression for the PJT, one finds:

E(Q)=E0 +
∑

Γ

{

1

2
KΓ +

∑

Λ

|〈Λ ‖ Γ ‖Σ〉|2
E0 −EΛ

}(

∑

γ

Q2
Γ γ

)

(6.85)

Hence, when the ground state is non-degenerate, the first-order dependence of the
energy on symmetry-lowering displacement vanishes, and the second-order term
contains two contributions: the diagonal harmonic force constant, which is always
positive, and the bilinear relaxation term, which is always negative. If the excited
states are close in energy to the ground state, and if the vibronic coupling is strong,
the relaxation term may be dominant, and a second-order symmetry-breaking effect
will result. This is known as the pseudo-JT effect. There are two main applications
of this effect: in geometry optimization, and in reaction dynamics.

In reaction dynamics the PJT may be responsible for stereoselectivity, because of
the selection rules for vibronic coupling matrix elements. Via these relaxation matrix
elements the Wigner–Eckart theorem is at the basis of the Woodward–Hoffmann
rules [12]. We shall not discuss these rules in general, but consider some simple
illustrations, related to electrocyclic reactions.6 Take as a simple example the ring
closure of cis-butadiene, as illustrated in Fig. 6.3. The relevant occupied orbitals are

6Based on [13].
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Fig. 6.4 Ring closure of cis-1,3,5-hexatriene to cyclo-hexadiene. In C2v symmetry there is a
symmetry mismatch between the b1 and a1 occupied orbitals. Vibronic orbital coupling requires a
concerted mechanism, based on a disrotatory ring closure, which conserves only the σ̂1 plane

the π -bonds in the reagent, and the remaining π - and newly formed σ -bonds in the
product. As the diagram shows, in the common C2v point group there is a mismatch
between the symmetries. In order for the reaction to occur, the reaction coordinate
has to reduce the symmetry so that the a2-orbital can interchange with an a1-orbital.
This interchange is taking place via a PJT mechanism which couples the a2 occupied
orbital to an a1 virtual orbital in the reagent. As the reaction coordinate proceeds,
this coupling is intensified and leads to an interchange of both. The relevant matrix
element is thus an orbital vibronic coupling element:

〈

a2

∣

∣

∣

∣

∂H

∂QΓ γ

∣

∣

∣

∣

a1

〉


= 0 (6.86)

Hence, a distortion coordinate is required which transforms as a2×a1 = a2. The co-
ordinate with this symmetry is the one that destroys the symmetry planes but keeps
the twofold axis. This is typically a conrotatory reaction, where the extremal carbon
atoms rotate simultaneously in the same sense, to form the σ -bond. Ring closure of
substituted butadienes thus follows a conrotatory reaction stereochemistry, at least
if the reaction is concerted.

This ring-closure selection rule is further confirmed by the closure reaction for
the cis-1,3,5 hexatriene to 1,3-cyclohexadiene, as illustrated in Fig. 6.4. Here, a b1-
orbital has to interchange with a virtual orbital of a1 symmetry. The selection takes
thus place at the level of the orbital matrix element:

〈

b1

∣

∣

∣

∣

∂H

∂QΓ γ

∣

∣

∣

∣

a1

〉


= 0 (6.87)

Clearly, the distortion coordinate should now be of b1 × a1 = b1 symmetry, and
this corresponds to the disrotatory mode, which destroys the Ĉ2 axis but keeps the
vertical reflection plane.
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6.8 Application: Linear and Circular Dichroism

Selection rules are of primary importance in spectroscopy, where they provide direct
evidence concerning the nature of excited states. As an application, we study the
linear and circular dichroism of tris-chelate transition-metal complexes [14]. The
prototype is a divalent ruthenium complex with three 2,2′-bipyridyl ligands, which
is an important chromophore for energy conversion. In this section we shall describe
the charge transfer and intra-ligand transitions of this type of complex. The linear
dichroism (LD) spectrum measures the absorption of the chromophore under plane-
polarized incident light for different orientations of the polarization with respect to
the molecular frame. This requires that the molecules should be embedded in an
oriented phase, such as a crystalline host. Circular dichroism (CD) measures the
difference in absorption between left and right circularly polarized light. Since this
is based on the intrinsic helicity of the molecule, it can be performed in non-oriented
medium, such as a solution.

As always, we start the treatment by making a simple sketch of the structure.
Two sets of Cartesian axes are relevant. In the usual octahedral coordinate system
the x, y, z-axes coincide with the metal-ligand bond directions, assuming that the
ligator atoms form a perfect octahedron. In addition, in Fig. 3.6 of Chap. 3 a primed
x′, y′, z′-coordinate system was introduced, which is adapted to the tris-chelate ge-
ometry. The z′-axis is along the threefold direction, and the x′ axis is oriented along
a twofold axis, coinciding with the bisector of the positive x and the negative y

axes. Next, we determine the point group, which in the present case is D3. This
is a rotational group, which implies that the molecule is chiral. The figure shows
the -enantiomer.7 Thirdly, we define the functional basis. The relevant orbitals
are the metal t2g orbitals, which are fully occupied in the Ru2+ ground state, and
the frontier orbitals on the ligand. For conjugated bidentate ligands, such as 2,2′-
bipyridyl (bipy) or 2,4-pentanedionate (also named “acetylacetonate”, acac−), the
frontier orbitals are of π -type. The essential parts of these orbitals are the contribu-
tions on the ligator atoms. These are either symmetric or antisymmetric with respect
to the twofold axis through the bidentate ligand, as shown in Fig. 6.5. Following
Orgel, we denote them as χ - or ψ -type, respectively [15]. The standard techniques
of characters and projection operators yield SALCs for all these basis sets. The re-
sults are shown in Table 6.4. For the e-irrep the components are labelled as eθ and
eǫ , following the standard canonical format. As a splitting field we use the twofold
axis along x′. Finally, we also include in the table the symmetries of the transi-
tion dipoles, which are the operators for the optical transitions. This completes the
groundwork for the symmetry analysis.

7In tris-chelate complexes  refers to a right-handed (dextro) helix. A left-handed helix (lævo) is
denoted as Λ.
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Fig. 6.5 -enantiomer of tris-chelate octahedral complex of D3 symmetry. The xyz-coordinate
system passes through the ligator atoms; the primed coordinate system has the z′-direction along
the threefold axis, and x′ on a twofold axis through ligand A. The ligand orbital shown on the right
is of ψ -type: it is antisymmetric under a rotation about the twofold axis through the ligator bridge.
The ψ orbital on ligand A interacts with the 1√

2
(dxz − dyz)-combination on the metal

Table 6.4 Symmetry-adapted zeroth-order metal and ligand orbital functions

t2g-orbitals dipole moments

|a1〉 = 1√
3
(dxy + dxz + dyz) a2 : μz′

|eθ 〉 = 1√
6
(−2dxy + dxz + dyz) eθ : μx′

|eǫ〉 = 1√
2
(dxz − dyz) eǫ : μy′

ψ-orbitals χ -orbitals

|a2〉 = 1√
3
(|ψA〉 + |ψB 〉 + |ψC〉) |a1〉 = 1√

3
(|χA〉 + |χB 〉 + |χC〉)

|eθ 〉 = 1√
2
(|ψC〉 − |ψB 〉) |eθ 〉 = 1√

6
(2|χA〉 − |χB 〉 − |χC〉)

|eǫ〉 = 1√
6
(2|ψA〉 − |ψB 〉 − |ψC〉) |eǫ〉 = 1√

2
(|χB 〉 − |χC〉)

Linear Dichroism

The linear dichroism is associated with the metal-to-ligand charge-transfer (CT)
transitions [16]. Dipole-allowed transitions between the orbitals are governed by the
appropriate D3 coupling coefficients. However, since both donor and acceptor or-
bitals, as well as the transition operators, each involve two irreps, several symmetry-
independent coupling channels are possible. As is often the case in transition-metal
spectroscopy, it is not sufficient to identify the reduced matrix elements; for a deeper
understanding a further development of the model is often required to compare the
reduced matrix elements. In the case of the CT bands the model of Day and Sanders
offers just that little extra [17]. According to this simple model, a charge-transfer
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(CT) transition between metal and ligand gains intensity when the relevant metal
and ligand orbitals interact.

We first calculate the interaction terms between the metal and isolated ligand or-
bitals. The bipy ligand has low-lying unoccupied levels of ψ -character, which form
π -acceptor interactions with the metal t2g orbitals. Let Hπ represent the elementary
interaction between a ligand ψ orbital and a metal t2g orbital, directed towards one
ligator. The allowed interactions are then obtained by cyclic permutation:

Hπ =
〈

dxz|H|ψA
〉

=−
〈

dyz|H|ψA
〉

=
〈

dxy |H|ψB
〉

=−
〈

dxz|H|ψB
〉

=
〈

dyz|H|ψC
〉

=−
〈

dxy |H|ψC
〉

(6.88)

In order to apply the model of Day and Sanders, we now consider the CT transition
between the ligand orbital on A and the t2g combination that interacts with it. As
shown in Fig. 6.5, the ψA-acceptor orbital is antisymmetric with respect to the Ĉx′

2
axis and antisymmetric in the xy-plane. The only matching t2g combination on the
metal is the |eǫ(t2g)〉 component (see Table 6.4). In the local C2v symmetry, |ψA〉
and |eǫ(t2g)〉 both transform as b2 (taking the horizontal plane as the local σ̂1). Their
interaction element is expressed as:

〈

eǫ(t2g)|H|ψA
〉

= 1√
2

〈

dxz − dyz|H|ψA
〉

=
√

2Hπ (6.89)

We now consider the transition dipole moment between these orbitals along the
x′ direction, with μx′ = −ex′. In C2v symmetry this component transforms as a1,
while μy′ and μz′ are antisymmetric with respect to the Ĉx′

2 axis. According to the
Wigner–Eckart theorem, a transition dipole between two b2 orbitals must transform
as the direct product b2 × b2 = a1; hence, only the x′- component will be dipole-
allowed. In a perturbative approach, which takes into account the symmetry-allowed
interaction between the metal and ligand orbitals, one has:

μ
(

eǫ(t2g)→ψA
)

=
〈

eǫ(t2g)|μx′ |ψA
〉

− 〈eǫ(t2g)|H|ψ
A〉

Eψ −Et2g

〈

ψA|μx′ |ψA
〉

(6.90)

In this expression the first term is the contact term between the zeroth-order orbitals.
The second term is the transfer term, arising from the interaction between the donor
and acceptor orbitals. In the simplified model of Day and Sanders this term is the
dominant contribution. The transfer-dipole matrix element in Eq. (6.90) is approxi-
mated as the dipole length of the transferred charge, which we will represent as μA.

〈

ψA|μx′ |ψA
〉

=−e
〈

ψA|x′|ψA
〉

≈−e|RA| = −eρ ≡ μA (6.91)

where RA is the radius vector from the origin to the centre of ligand A, with
length ρ. Since the three ligands are equivalent, we further write:

μA = μB = μC ≡ μ⊥ (6.92)
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The three vectors of the ligand positions can be expressed in a row notation for the
primed x′, y′, z′ coordinate system as:

RA = ρ(1,0,0)

RB = ρ

(

−1

2
,

√
3

2
,0

)

RC = ρ

(

−1

2
,−
√

3

2
,0

)

(6.93)

The transfer term then becomes:

µ
(

eǫ(t2g)→ψA
)

=−eκRA = κµA (6.94)

where the parameter κ is an overlap factor which indicates what fraction of the
charge is actually transferred:

κ =−〈eǫ(t2g)|H|ψ
A〉

Eψ −Et2g

=−
√

2Hπ

Eψ −Et2g

(6.95)

Note that the transfer term is always polarized in the direction of the transferred
charge.

This parametrization can now be used to calculate the transfer term for the rele-
vant trigonal transitions. The Hamiltonian operator is of course totally symmetric, so
allowed interactions can take place only between orbitals with the same symmetry,
and are independent of the component; hence:

〈

eǫ(t2g)|H|eǫ(ψ)
〉

=
√

3Hπ

〈

eθ (t2g)|H|eθ (ψ)
〉

=
√

3Hπ

(6.96)

Symmetry prevents interaction between the a1(t2g) and a2(ψ) orbitals. The
metal-ligand π acceptor interaction will thus stabilize the e-component of the t2g
shell, while leaving the a1-orbital in place, as shown in the simple orbital-energy
diagram in the left panel of Fig. 6.6. We can now calculate the transfer term for the
e→ e and e→ a2 orbital transitions. In each case only one component needs to be
calculated. The interaction element in this case is obtained from Eq. (6.96) and the
transfer fraction reads:

−
√

3Hπ

Eψ −Et2g

=
√

3

2
κ (6.97)

The transfer-dipole element is given by:

1

6

〈

2ψA −ψB −ψC |µ|2ψA −ψB −ψC
〉

= 1

6
[4µA +µB +µC] =

1

2
µA (6.98)
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Fig. 6.6 Allowed CT transitions from the t2g shell to ψ - or χ -type ligand acceptor orbitals for
tris-chelate complexes with D3 symmetry

Here, we have made use of the fact that the sum of the three dipole vectors vanishes.
The effective transfer term thus becomes:

µ
(

eǫ(t2g)→ eǫ(ψ)
)

=
√

3

8
κµA (6.99)

In the Wigner–Eckart formalism, this matrix element is written as:

〈

eǫ(t2g)|μx′ |eǫ(ψ)
〉

= 〈Eǫ|EθEǫ〉
〈

e(t2g) ‖ e(μ) ‖ e(ψ)
〉

(6.100)

The coupling coefficient in this equation is equal to 1/
√

2. We can thus identify the
reduced matrix element as:

〈

e(t2g) ‖ e(μ) ‖ e(ψ)
〉

=
√

3

2
κμA (6.101)

All other e→ e transfer terms can then be obtained by simply varying the coupling
coefficients. We give one more example of a transition that requires an operator
which is μy′ polarized:

〈

eθ (t2g)|µ|eǫ(ψ)
〉

= 1√
8
κ
〈

ψC −ψB |µ|2ψA −ψB −ψC
〉

= 1√
8
κ(µB −µC) (6.102)

The vector µB − µC in this expression is directed in the μy′ direction, as required
by the selection rule. Moreover, the length of this vector is

√
3μ⊥:

(µB −µC) · (µB −µC)= 2
(

μ⊥
)2 − 2µB ·µC = 3

(

μ⊥
)2 (6.103)
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Hence, the transfer-dipole length for this y′-polarized transition also measures√
3/8κ , which is exactly the same as for the x′-polarized transition, given in Eq.

(6.99). This is expected since the corresponding coupling coefficients, 〈Eǫ|EθEǫ〉
and 〈Eθ |EǫEǫ〉, are equal.

Using the transfer model, we can also express the reduced matrix elements for
the e→ a2 channel. Even though there is no overlap between these orbitals, they do
give rise to a transfer-term intensity. Orbital interaction does indeed delocalize the
e(t2g) orbitals over the ligands. The dipole operators, centred on the complex origin,
will then couple the e(ψ) and a2(ψ) ligand-centred orbitals. Hence, we write:

µ
(

eǫ(t2g)→ a2(ψ)
)

= −〈eǫ(t2g)|H|eǫ(ψ)〉
Eψ −Et2g

〈

eǫ(ψ)|µ|a2(ψ)
〉

=
√

3

2
κ
〈

eǫ(ψ)|µ|a2(ψ)
〉

(6.104)

The dipole matrix element in this expression can easily be evaluated:

〈

eǫ(ψ)|µ|a2(ψ)
〉

= 1

3
√

2

〈

2ψA −ψB −ψC |µ|ψA +ψB +ψC
〉

= 1

3
√

2
(2µA −µB −µC)

= 1√
2
µA (6.105)

The total transfer term is obtained by combining Eqs. (6.104) and (6.105):

µ
(

eǫ(t2g)→ a2(ψ)
)

=
√

3

2
κµA (6.106)

A final task is to calculate the transition-moments between the corresponding multi-
electronic states based on the orbital-transition moments obtained. In the tris-chelate
complex under consideration, a 1A1 → 1E state transition can be associated with
each allowed orbital-transition. The 1A1 corresponds to the closed-shell ground
state, based on the (t2g)6 configuration. Both the e→ a2 and e→ e transitions will
give rise to a twofold-degenerate 1E state. As an example, the θ states are written in
determinantal notation as follows, where we write only the orbitals that are singly
occupied:

∣

∣

1Eθ (e→ a2)
〉

= 1√
2

[∣

∣

(

eǫ(t2g)α
)(

a2(ψ)β
)∣

∣−
∣

∣

(

eǫ(t2g)β
)(

a2(ψ)α
)∣

∣

]

∣

∣

1Eθ (e→ e)
〉

= 1

2

[∣

∣

(

eθ (t2g)α
)(

eθ (ψ)β
)∣

∣−
∣

∣

(

eθ (t2g)β
)(

eθ (ψ)α
)∣

∣

−
∣

∣

(

eǫ(t2g)α
)(

eǫ(ψ)β
)∣

∣+
∣

∣

(

eǫ(t2g)β
)(

eǫ(ψ)α
)∣

∣

]

(6.107)
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Table 6.5 Transfer-term contributions to 1A1 → 1E CT transitions, with ψ and χ acceptor or-
bitals

ψ ligand orbitals χ ligand orbitals

1E(a1 → e(ψ)) 0 1E(a1 → e(χ))
√

2κ ′

1E(e→ a2(ψ))

√

3
2κ

1E(e→ a1(χ))
1√
2
κ ′

1E(e→ e(ψ))

√

3
2κ

1E(e→ e(χ)) 1√
2
κ ′

The resulting state transition-moments are then expressed in terms of orbital
transition-moments as:

〈1A1|µ|1Eθ (e→ a2)
〉

=
√

2
〈

eǫ(t2g)|µ|a2(ψ)
〉

=
√

3/2κ
〈1A1|µ|1Eθ (e→ e)

〉

= 2
〈

eθ (t2g)|µ|eθ (ψ)
〉

=
√

3/2κ
(6.108)

On the other hand, the a1(t2g) orbital does not delocalize over the ligands. As a
result, there can be no transfer term associated with transitions from this orbital. One
expects only a weak contact term. The lowest transition corresponds to a1(t2g)→
a2(ψ). The only non-zero coupling coefficient for this transition is 〈A1|A2A2〉. This
transition will thus be dipole allowed under μz′ . Polarized absorption spectra are
in line with this analysis: the spectral onset of the CT region is characterized by
a weak absorption band in parallel polarization, followed by two strong absorption
bands in perpendicular polarization. This assignment is based on the assumption that
the vertical Franck–Condon excitations reach delocalized charge-transfer states. At
least in the case of Ru(bipy)2+3 , this is supported by detailed spectral measurements
[18]. An entirely similar analysis can be performed in the case when the ligand
orbital is of χ -type. The transition-moments are collected in Table 6.5. In this case,
the ligand and metal part both transform as a1+ e (see Table 6.4). As a result, three
transitions are found to carry transfer-term intensity, as indicated in Fig. 6.6.

Circular Dichroism

The tris-chelate compounds are chiral compounds, with an apparent helical struc-
ture, which can easily be related to their circular-dichroic properties by use of
symmetry selection rules. The CT transitions that we have just discussed cannot
be responsible for the primary CD strength, since they are in-plane polarized, and
thus do not carry intrinsic helicity. Instead, the prominent peaks in the CD spec-
trum are observed at higher energies, and are associated with the intra-ligand ππ∗-
transitions. These transitions take place between occupied and virtual ligand-centred
orbitals which are of opposite signature, and hence are of type ψ→ χ or vice-versa.
Such transitions are long-axis polarized, i.e. the transition dipole moment is oriented
along the ligand bridge as shown in Fig. 6.7.
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Fig. 6.7 Allowed intra-ligand transitions from χ - to ψ -type ligand orbitals for tris-chelate com-
plexes with D3 symmetry. The circular dichroism has a lower right-circularly polarized (rcp) band
and an upper left-circularly polarized (lcp) band. This gives the CD spectrum the appearance of the
first derivative of a Gaussian curve, with a negative part at longer wavelength and a positive part at
shorter wavelength

We designate these dipole moments as µ
‖
A,µ

‖
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‖
C . These vectors can be ex-

pressed in a row notation for the primed x′, y′, z′ coordinate system as follows:
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The scalar products between these orientations are equal to 1/2, which corresponds
to angles of 60◦. Each of the three transitions gives rise to an excited state. In D3

symmetry these states transform as A2+E. The composition of these exciton states8

is as follows:

∣

∣

1A2
〉

= 1√
3

[

(χA→ψA)
1 + (χB →ψB)

1 + (χC →ψC)
1]

∣

∣

1Eθ

〉

= 1√
2

[

−(χB →ψB)
1 + (χC →ψC)

1]

∣

∣

1Eǫ

〉

= 1√
6

[

2(χA→ψA)
1 − (χB →ψB)

1 − (χC →ψC)
1]

(6.110)

8The excitation creates an electron-hole pair, which can move from one ligand to another. This is
called an exciton.
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Here, the notation refers to a singlet orbital transition, which can be written in de-
terminantal form as:

(χA→ψA)
1 = 1√

2

[∣

∣(χAα)(ψAβ)
∣

∣−
∣

∣(χAβ)(ψAα)
∣

∣

]

(6.111)

To first approximation, the metal centre is not taking part in the electronic proper-
ties, but merely serves as a structural template which keeps the ligands in place.
Distant interactions between the three transitions can be described by a simple
exciton-coupling model. In this model, the interaction between transitions is approx-
imated by the electrostatic interaction potential between the corresponding transi-
tion dipoles. This potential is given by:

Vij =
1

4πǫ0

(

µi ·µj

R3
ij

− 3(µi ·Rij )(µ
j ·Rij )

R5
ij

)

(6.112)

where Rij is the distance between the dipoles, and Rij =Rj −Ri . The length of the
distance vector is thus

√
3ρ. The energies of the exciton states are then given by:

〈1A2|V |1A2
〉

= (μ‖)2

4πǫ0ρ3

1

6
√

3

〈1E|V |1E
〉

=− (μ‖)2

4πǫ0
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3ρ3

1

12
√

3
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The 1A2 state thus goes up in energy twice as much as the 1E state goes down,
thus keeping the barycentre energy at the zeroth-order position. Now, in order to
determine the CD strength, we need for the two states both the electric and the
magnetic transition dipoles from the ground state. The electric dipoles are easily
obtained by combining the state vectors:

µ
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= 1√
3
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µ
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2
μ‖(1,0,0)
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The calculation of the magnetic transition dipoles requires a preamble. The magnetic
moment was already defined in Eq. (4.128) of Chap. 4. By explicitly writing the
angular momentum operator in terms of the linear momentum operator as r×p one
obtains:

m=− e

2m
l =− e

2m
r × p (6.115)
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The commutator of the one-electron Hamiltonian with the position operator is given
by:

[H, r] =
[(

p · p
2m

+ V (r)

)

, r

]

=− i�

m
p (6.116)

Here, we used the Heisenberg commutator relation between the conjugate position
and momentum operators: [x,px] = i�. The magnetic moment matrix element of
the intra-ligand transition with respect to the common origin of the coordinate sys-
tem is given by:

mA = 〈ψA|m|χA〉 = −
e

2m

〈

ψA|(RA + r)× p|χA
〉

=− e

2m
RA × 〈ψA|p|χA〉

(6.117)
where it was assumed that the chromophore has no intrinsic magnetic transition-
moment. The momentum matrix element in this equation can now be evaluated with
the help of Eq. (6.116):

〈ψA|p|χA〉 =
im

�
〈ψA|Hr − rH|χA〉

= im

�

(

〈HψA|r|χA〉 − 〈ψA|rH|χA〉
)

= im

�
(Eψ −Eχ )〈ψA|r|χA〉

= 2πimν〈ψA|r|χA〉 (6.118)

Here, ν is the frequency of the intra-ligand transition. The combination of this result
with Eq. (6.117) yields:
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As we indicated the above formalism applies to chromophores that have no intrinsic
magnetic moment.
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(6.120)
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A transition will be characterized by a helical displacement of the electron if the
magnetic and electric transition dipoles are aligned. This is reflected in the Rosen-
feld equation for the CD intensity or rotatory strength, Ra→j , for a transition from a
ground state a to an excited state j in a collection of randomly-oriented molecules:

Ra→j = Im
{

〈a|µ|j 〉 · 〈j |m|a〉
}

(6.121)

Straightforward application to the exciton bands yields:
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2
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2
πνρ

(
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)2

(6.122)

The out-of-plane polarized transition to the 1A2 state, which lies at higher energy,
has a positive CD signal, while the in-plane polarized transition to the lower 1E state
has a negative CD signal. The latter transition consists of two components along the
two in-plane directions. Summing over the three components in Eq. (6.122), shows
that the total rotatory strength, for randomly-oriented molecules, is exactly zero.
This is a general sum rule for CD spectra. If one now takes the spectrum of the chiral
antipode, the Λ tris-chelate complex, the spectra are exactly the same but the signs
are reversed. Mirror image in actual geometry thus becomes reflection symmetry in
the spectrum.

6.9 Induction Revisited: The Fibre Bundle

In Chap. 4 we left induction after the proof of the Frobenius reciprocity theorem.
In that proof the important concept of the positional representation was introduced.
This described the permutation of the sites under the action of the group elements.
Further, we defined local functions on the sites which transformed as irreps of the
site symmetry. As an example, if we want to describe the displacement of a cluster
atom in a polyhedron, two local functions are required: a totally-symmetric one for
the radial displacement and a twofold-degenerate one for the tangential displace-
ments. In cylindrical symmetry, these are labelled σ and π , respectively. The me-

chanical representation, i.e. the representation of the cluster displacements, is then
the sum of the two induced representations:

Γmech = Γ (σH ↑G)+ Γ (πH ↑G) (6.123)

As an example using the induction tables in Sect. C.2 for an octahedron, we have:

Γmech = (A1g +Eg + T1u)+ (T1g + T2g + T1u + T2u) (6.124)
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This is precisely the set of fluorine displacements that we constructed in Sect. 4.8 in
order to describe the vibrational modes of UF6. One remarkable result of induction
theory is that the mechanical representation can also be obtained as the direct prod-
uct of the positional representation and the translational representation, T1u; this is
the representation of the three displacements of the centre of the cluster.

Γmech = T1u × (A1g +Eg + T1u)

= T1u + (T1u + T2u)+ (A1g +Eg + T1g + T2g) (6.125)

It is as if the displacements of the central point of the octahedron were relocated to
every ligand site. The elementary function space of the displacements of the central
atom, which transforms as the translational irrep, T1u, is called the standard fibre.
This fibre is attached to every site of the cluster, and the set of these fibres is the
fibre bundle. The action of the group permutes fibres of the bundle. The following
induction theorem holds:

Theorem 14 Consider a standard fibre, consisting of a function space that is in-

variant under the action of the group. In a cluster of equivalent sites, we can form

a fibre bundle by associating this standard fibre with every site position. The in-

duced representation of the fibre bundle is then the direct product of the irrep of the

standard fibre with the positional representation.

For V being the representation of the standard fibre, T1u in our example, and P

the positional representation of the set of equivalent sites in the molecule, one has
for the induced representation:

Γ
(

{V}H ↑G
)

= V ×P(H ↑G) (6.126)

For a proof of this theorem, we refer to the literature [19, 20]. The theorem is not
only applicable to molecular vibrations but is also directly in line with the LCAO
method in molecular quantum chemistry. In this method the molecular orbitals
(MOs) are constructed from atomic basis sets that are defined on the constituent
atoms. An atomic basis set, such as 3d or 4f , corresponds to a fibre, emanating, as
it were, from the atomic centre. Usually, such basis sets obey spherical symmetry,
since they are defined for the isolated atoms. As such, they are also invariant under
the molecular point group [21]. As an example, a set of 4f polarisation functions on
a chlorine ligand in a RhCl3−6 complex is itself adapted to octahedral symmetry as
a2u+ t1u+ t2u. This representation thus corresponds to V . In the C4v site symmetry
these irreps subduce: a1+b1+b2+2e. According to the theorem, the LCAOs based
on the 4f orbitals thus will transform as:

Γ
(

{a1 + b1 + b2 + 2e}C4v ↑Oh

)

= (a2u + t1u + t2u)× (a1g + eg + t1u)

= a1g + a2g + 2eg + 2t1g + 3t2g + a2u + eu + 3t1u + 3t2u (6.127)
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In this LCAO space several irreps occur multiple times, but they can all be distin-
guished by the specific direct product from which they originated.

6.10 Application: Bonding Schemes for Polyhedra

Leonhard Euler dominated the mathematics of the 18th century. One of his famous
discoveries was the polyhedral theorem, which marks the beginning of topology.
A polyhedron has three structural elements: vertices, edges, and faces.9 The num-
bers of these will be represented as v, e, and f , respectively. Then, for a polyhedron,
the following theorem holds:

Theorem 15 In a convex polyhedron the alternating sum of the numbers of vertices,
edges, and faces is always equal to 2.

v − e+ f = 2 (6.128)

As an example, in a cube one has v = 8, e= 12, f = 6, and hence 8− 12+ 6= 2.
The 2 in the right-hand side of Eq. (6.128) is called the Euler invariant. It is a topo-

logical characteristic. Topology draws attention to properties of surfaces, which are
not affected when surfaces are stretched or deformed, as one can do with objects
made of rubber or clay. Topology is thus not concerned with regular shapes, and in
this sense seems to be completely outside our subject of symmetry; yet, as we intend
to show in this section, there is in fact a deep connection, which also carries over to
molecular properties. The surface to which the 2 in the theorem refers is the surface
of a sphere. A convex polyhedron is indeed a polyhedron which can be embedded
or mapped on the surface of a sphere. Group theory, and in particular the induction
of representations, provides the tools to understand this invariant. To this end, each
of the terms in the Euler equation is replaced by an induced representation, which
is based on the particular nature of the corresponding structural element. In Fig. 6.8
we illustrate the results for the case of the tetrahedron.

• The vertices, being zero-dimensional points, form a set of nodes, {〈u〉}, which are
permuted under the symmetry operations of the polyhedron. The representation
of this set is the positional representation, Γσ (v). The σ here refers to the fact that
the sites themselves transform as totally-symmetric objects in the site group. If
the cluster contains several orbits, the induced representation is of course the sum
of the individual positional representations. In Fig. 6.8 the vertex representation is
A1 + T2. In Sect. 4.7 we have already encountered these irreps, when discussing
the sp3 hybridization of carbon.

Γσ (v)= Γ (a1C3v ↑ Td)=A1 + T2 (6.129)

9In geometry a vertex is a point were two or more lines meet.
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Fig. 6.8 Face, edge and vertex SALCs for a tetrahedron. The δ symbol denotes taking the bound-
ary, from faces to edges, and from edges to vertices (see text). The two topological invariants are
the A2 face term and the A1 vertex term

• The edges are one-dimensional lines. They form a set of ordered pairs, {〈u,v〉}.
Each of these can be thought of as an arrow, directed along the edge. The sym-
metry operations will interchange these arrows, but may also change their sense.
The corresponding representation is labelled as Γ‖(e). This symbol indicates that
the basic objects on the edge sites are not symmetric points but directed arrows.
The site group through the centre of an edge has maximal symmetry C2v and in
this site group the arrows transform as the b1 irrep, which is symmetric under
reflection in a plane containing the edge and antisymmetric under the symme-
try plane perpendicular to the edge. For a tetrahedron there are six edge vectors,
transforming as T1 + T2.

Γ‖(e)= Γ (b1C2v ↑ Td)= T1 + T2 (6.130)

• The faces may be represented as closed chains of nodes, which are bordering
a polyhedral face, {〈u,v,w, . . .〉}. The sequence forms a circulation around the
face, in a particular sense (going from 〈u〉 to 〈w〉 over 〈v〉, etc.). The set of face
rotations forms the basis for the face representation, which is denoted as Γ�(f ).
In a polyhedron the maximal site group of a face is Cnv , and in this site group
the face rotation transforms as the rotation around the Ĉn axis, i.e. it is symmetric
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under the axis and antisymmetric with respect to the vertical σ̂v planes, which
invert the sense of rotation. For the tetrahedron, the face circulations transform as
A2 + T2, as shown in Fig. 6.8.

Γ� = Γ (a2C3v ↑ Td)=A2 + T1 (6.131)

The following theorem [22] applies:

Theorem 16 The alternating sum of induced representations of the vertex nodes,
edge arrows, and face rotations, is equal to the sum of the totally-symmetric repre-

sentation, Γ0, and the pseudo-scalar representation, Γǫ . The latter representation

is symmetric under proper symmetry elements and antisymmetric under improper

symmetry elements.

Γσ (v)− Γ‖(e)+ Γ�(f )= Γ0 + Γǫ (6.132)

The Euler theorem may be considered as the dimensional form of this theorem,
which states that the alternating sum of the characters of the induced representations
under the unit element, Ê, is equal to 2, but the present theorem extends this char-
acter equality to all the operations of the group. The theorem silently implies that
irreps can be added and subtracted. In the example of the tetrahedron, the theorem
is expressed as:

Γσ (v)−Γ‖(e)+Γ�(f )= (A1+T2)− (T1+T2)+ (A2+T2)=A1+A2 (6.133)

A straightforward interpretation of the theorem is possible in terms of fluid flow
on the surface of a polyhedron.10 Suppose observers are positioned on the vertices,
edge centres and face centres, and register the local fluid flow. When the incoming
and outgoing currents at a node are not in balance, the observers located on these
nodes will report piling up or depletion of the local fluid level. This is the scalar
property represented by the vertex term. The corresponding connection between
edge flow and vertex density is expressed by the boundary operation, indicated by
δ in Fig. 6.8. Taking the boundary of an edge arrow means replacing the arrow by
the difference of two vertex-localized scalars: a positive one (indicated by a white
circle in the figure) at the node to which the arrow’s head is pointing, and a negative
one (indicated by a black circle) at the node facing the arrow’s tail. This projection
from edge to vertex will not change the symmetry. Hence, in this way, the boundary
of the T2 edge irrep is the T2 vertex SALC, as illustrated in the figure. Similarly,
observers in face centres will notice the net current that is circulating around the
face. Such a circular current through the edges does not give rise to changes at the
nodes (indeed the incoming flow at a node is also leaving again), but is observable
from the centre of the face around which the current is circulating. The boundaries

10This flow description provides a simple pictorial illustration of the abstract homology theory.
The standard reference is: [23].
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of circular currents around face centres are thus chains of arrows on the edges,
which again conserve the symmetry. In Fig. 6.8 the boundary of the T1 face term is
thus the T1 edge term. Clearly, the sum of the vertex and face observations should
account for all currents going through the edges, except for two additional terms
which escape edge observations. These are the two Euler invariants: the totally-
symmetric Γ0 component corresponds to a uniform change of fluid amplitude at all
vertex basins. This does not give rise to edge currents, since it creates no gradients
over the edges. The other is the Γǫ component. It corresponds to a simultaneous
rotation around all faces in the same sense. Again, such rotor flows do not create net
flows through the edges, because two opposite currents are flowing through every
edge. The Euler invariant thus points to two invariant characteristic modes of the
sphere. They are not boundaries of a mode at a higher level, nor are they bounded
by a mode at a lower level. The phenomena, that these two terms describe, might
also be referred to in a topological context as the electric and magnetic monopoles.

Because of this connection to density and current, this theorem may be applied in
various ways to describe chemical bonding, frontier orbital structure, and vibrational
properties. The applications of this theorem can be greatly extended by introducing
fibre representations, as is shown below.

Taking the Dual To take the dual of a polyhedron is to replace vertices by faces
and vice-versa, as was already mentioned in Sect. 3.7 in relation to the Platonic
solids. The dual has the same number of edges as the original, but every edge is
rotated 90◦. Hence the relations between vD, eD, fD for the dual and v, e, f for the
original are:

vD = f

eD = e (6.134)

fD = v

As a result the Euler formula is invariant under the dual operation.

v− e+ f = vD − eD + fD = 2 (6.135)

A similar invariance holds for the symmetry extension, but in this case “to take the
dual” corresponds to multiplying all terms by the pseudo-scalar irrep Γǫ . The terms
are then changed as follows:

Γσ (v)× Γǫ = Γ�(v)= Γ�

(

fD
)

Γ‖(e)× Γǫ = Γ⊥(e)= Γ‖
(

eD
)

Γ�(f )× Γǫ = Γσ (f )= Γσ
(

vD
)

(Γ0 + Γǫ)× Γǫ = Γ0 + Γǫ

(6.136)

Hence, if the theorem holds for the original, it also holds for the dual.
(

Γσ (v)−Γ‖(e)+Γ�(f )
)

×Γǫ = Γσ
(

vD
)

−Γ‖
(

eD
)

+Γ�

(

fD
)

= Γ0+Γǫ (6.137)
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Note especially the fibre modification of the edge term. The maximal local sym-
metry of an edge is C2v . The arrow along the edge transforms as b1, while the
pseudo-scalar irrep in C2v is a2. The product b1×a2 produces b2, which is precisely
the symmetry of an arrow, tangent to the surface of the polyhedron, but directed
perpendicular to the edge. Multiplication with the pseudo-scalar irrep thus has the
effect of rotating the edges through 90◦. In Eq. (6.136) the resulting representation
is denoted as Γ⊥(e).

Deltahedra Deltahedra are polyhedra that consist entirely of triangular faces.
Three of the Platonic solids are deltahedra: the tetrahedron, the octahedron and
the icosahedron. In a convex deltahedron the bond stretches (i.e. stretchings of the
edges) span precisely the representation of the internal vibrations. In other words,
a convex deltahedron cannot vibrate if it is made of rigid rods. This is the Cauchy
theorem:

Theorem 17 Convex polyhedra in three dimensions with congruent corresponding

faces must be congruent to each other. In consequence, if a polyhedron is made up

of triangles with rigid rods, the angles between the triangular faces are fixed.

This result can be cast in the language of induced representations. The stretchings
of the edges correspond to scalar changes of edge lengths and transform as σ -type
objects, and hence will correspond to Γσ (e). On the other hand, the internal vibra-
tions span the mechanical representation, which can be written as a bundle of the
translation, minus the spurious modes of translation and rotation. The symmetries
of these will be denoted as ΓT and ΓR , respectively. One thus has:

Deltahedron: Γσ (v)× ΓT − ΓT − ΓR = Γσ (e) (6.138)

Trivalent Polyhedra The dual of a deltahedron is a trivalent polyhedron, meaning
that every vertex is connected to three nearest neighbours. The fullerene networks of
carbon are usually trivalent polyhedra. This reflects the sp2 hybridization of carbon,
which can form three σ -bonds. Also in this case several specialized forms of the
Euler symmetry theorem can be formulated. We may start from Eq. (6.138) and
replace vertices by faces. The edge terms remain the same since they are totally
symmetric under the local symmetries of the edges. Rotations of the edges by 90◦

will thus not affect these terms.

Trivalent: Γσ (f )× ΓT − ΓT − ΓR = Γσ (e) (6.139)

Furthermore, by multiplying the vertices in a trivalent polyhedron by three, we have
accounted for all the edges twice, since each edge is linked to two vertices, hence:

Trivalent: 3v = 2e (6.140)

The 3v in this formula suggests once again taking the fibre representation
Γσ (v)× ΓT . In doing so we have considered on each vertex one σ and two π
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Fig. 6.9 Edge bonding in electron-precise trivalent cages. The valence shell splits into an occupied
set of localized edge-bonds, and a matching virtual set of edge-anti-bonds. The sets may be further
differentiated by use of the symmetry theorems

objects. Hence, this is not only the mechanical representation with three displace-
ments on each vertex, but it is equally well the symmetry of a set of sp2 hybrids on
every vertex, directed along the three edges. Along each edge the hybrids at either
end can be combined in a local bonding and anti-bonding combination. The cor-
responding induced representations are respectively: Γσ (e) and Γ‖(e); hence, the
symmetry extension of Eq. (6.140) reads:

Trivalent: Γσ (v)× ΓT = Γσ (e)+ Γ‖(e) (6.141)

Edge Bonding in Trivalent Polyhedra

The understanding of the bonding schemes in polyhedra is based on the correct
identification of the local hybridization scheme on the constituent fragments. Triva-
lent polyhedra are often electron-precise: this means that the fragment has three
electrons in three orbitals, which are available for cluster bonding and give rise to
edge-localized σ -bonds. Such is the case for the methyne fragment, CH, forming
polyhedranes, but equally well for the isolobal [24] organo-transition-metal frag-
ments such as M(CO)3, where M is a d9 metal such as Co,Rh or Ir. Figure 6.9
shows the bonding pattern based on such electron-precise fragments. As indicated
before, the orbital basis corresponds to the fibre representation Γσ (v)×ΓT , and con-
tains 3n orbitals. Local interactions along the edges will split this orbital basis into
an occupied σ -bonding half and a virtual σ -anti-bonding counterpart, transforming
as Γσ (e) and Γ‖(e), respectively. This is precisely the result of Eq. (6.141). Now,



156 6 Interactions

for each half, a more detailed pattern can be discerned [25]. For the anti-bonding
orbitals, the general theorem, Eq. (6.132), can be applied directly. The result is il-
lustrated in Fig. 6.9. By this theorem, the 3n/2 edge anti-bonds are split into two
subsets containing (1 + n/2) and (n − 1) orbitals. The former, higher lying, sub-
set transforms as Γ�−Γǫ . These terms correspond to circulations around the faces,
which means that these levels will be highly anti-bonding. In fact, they are always at
the top of the skeletal spectrum. Note that the pseudo-scalar term, Γǫ , does not take
part. This is because a uniform circulation around all faces in the same sense has no
contribution on the edges. Below this is a subset of weakly anti-bonding orbitals,
transforming as Γσ (v)− Γ0. These orbitals are more localized on the vertices. The
Γ0 term is not included since this is the totally-symmetric molecular orbital which
is completely bonding, and thus will appear in the lower half of the diagram.

Furthermore, the edge-bonding half can be analysed with the help of Eq. (6.139).
The 3n/2 edge bonds split into two subsets of dimension (n − 2) and (2 + n/2).
This analysis involves the fibre representation Γσ (f )× ΓT , which can be decom-
posed into a radial σ - and tangential π -part. The σ -part corresponds to cylindrically-
symmetric bonds around the faces, and will thus be strongly bonding. For the π -part
the face terms contain a nodal plane through the faces, and thus will be less bonding.

Frontier Orbitals in Leapfrog Fullerenes

Fullerenes are trivalent polyhedra of carbon, consisting of hexagons and pentagons.
The following relations hold:

v − e+ f = 2

3v = 2e

f5 + f6 = f

5f5 + 6f6 = 3v

(6.142)

The first two relationships are from Eqs. (6.128) and (6.140). The third expresses
that the total number of the faces is the sum of the number of pentagons (f5), and
hexagons (f6). The final equation indicates that by counting the hexagons six times,
and the pentagons five times, we have counted all vertices three times, since ev-
ery vertex is at the junction of three faces. Even though there are fewer equations,
here, than unknowns, it can easily be seen by manipulation of Eq. (6.142) that the
only value that the number of pentagons, f5, can take on is 12. Hence, the smallest
fullerene is the dodecahedron C20, which only consists of pentagons. Also note that
the number of atoms in a fullerene must be even, since 3v must be divisible by 2, as
e is an integer. Taking the leapfrog, L, of a primitive fullerene, P , is an operation of
cage expansion, which yields a fullerene with three times as many atoms [26]. This
procedure is described by the following rule:

L=Dual(OmnicapP) (6.143)
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Fig. 6.10 The leapfrog
extension consists of two
operations: first, place an
extra atom in the centres of
all the polygons (middle

panel), then, take the dual.
The result is indicated by the

solid lines in the right panel

It involves two operations, which are carried out consecutively, as illustrated in
Fig. 6.10. One first places an extra capping atom on all pentagons and hexagons.
This leads to a cage which consists only of triangles, and this is a deltahedron. By
taking the dual one restores a trivalent cage. As can be seen, all vertices of the prim-
itive have been turned into hexagons, while the original pentagons and hexagons
are recovered, but in a rotational stagger. The edges of the primitive are also re-
covered, but rotated 90◦. In summary, the leapfrog operation inserts 6 vertices in
the hexagons of P , and 5 vertices in the pentagons, which, according to the final
expression in Eq. (6.142), multiplies the number of atoms by 3. The first and best
known leapfrog is Buckminsterfullerene, C60, which is the leapfrog of the dodec-
ahedron itself. Each carbon atom contributes, besides the sp2 orbitals, which build
the σ -frame, one radial pr -orbital. These orbitals form π -bonds which control the
frontier orbitals of fullerenes. In the case of the leapfrog, this frontier MO region
is always characterized by six low-lying almost non-bonding orbitals, which, more-
over, always transform as ΓT +ΓR . This can be explained with the help of the Euler
rules [27].

As in the case of C60, all leapfrogs can be considered to be truncations of the
primitive fullerenes, in the sense that all the faces of the primitive have become iso-
lated islands, surrounded by rings of hexagons. With every bond of the primitive
is associated a perpendicular bond, which always forms a bridge between these is-
lands. Based on this neat bond separation, two canonical valence-bond frames can
be constructed for the leapfrog, which in a sense are the extremes of a correlation
diagram, with the actual bonding somewhere in between. These bond schemes are
known as the Fries and the Clar structures. The Fries structure is an extreme case
where all bridges are isolated π -bonds. The induced representation for these bonds
corresponds to Γσ (e

P ). On the other hand, in the Clar structures the bonding is
completely redistributed to aromatic sextets on the hexagonal and pentagonal is-
lands. The corresponding representation is the fibre bundle Γσ (f P )× ΓT . We now
compare the representations of both bonding schemes, using the symmetry theo-
rems. We start with the main theorem, applied to the primitive P , and multiply left
and right with ΓR .

Γσ
(

vP
)

× ΓR − Γ‖
(

eP
)

× ΓR + Γ�

(

f P
)

× ΓR = ΓT + ΓR (6.144)
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Fig. 6.11 Correlation diagram for C60. The Fries and Clar structures are bonding extremes, where
double bonds are either localized on the 30 bonds between the pentagons (Fries), or form isolated
aromatic sextets on the twelve pentagons. The true conjugation scheme is found in between, and is
characterized by six unoccupied levels, which are anti-bonding in the Fries structure and bonding
in the Clar structure, and which transform as rotations and translations. Buckminsterfullerene has
low-lying LUMO and LUMO+1 levels of t1u(ΓT ) and t1g(ΓR) symmetry

Since ΓR = ΓT × Γǫ , we could already simplify the face term to a form which
precisely corresponds to the Clar representation:

Γ�

(

f P
)

× ΓR = Γσ
(

f P
)

× ΓT = ΓClar (6.145)

The vertex term can be expressed with the help of Eq. (6.141):

Trivalent: Γσ
(

vP
)

× ΓR = Γσ
(

eP
)

× Γǫ + Γ‖
(

eP
)

× Γǫ = Γ�

(

eP
)

+ Γ⊥
(

eP
)

(6.146)

where the pseudo-scalar irrep turns a σ -object into a circular current, and rotates the
parallel edge current over 90◦. Note that this is applied in the primitive cage, to the
edges of P only. To complete the derivation one final fibre bundle is needed, which
applies to all convex polyhedra:

Γσ (e)× ΓT = Γσ (e)+ Γ‖(e)+ Γ⊥(e) (6.147)

This result is based on the C2v site-symmetry of an edge. The translation in this
site has a radial σ -component of a1 symmetry, and two tangential π -components
of b1 + b2 symmetry. The fibre bundle will thus correspond to the induction of
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a1 + b1 + b2, which is precisely the meaning of the three terms on the right-hand
side of Eq. (6.147). This expression may be transformed in two steps to the term
which is required in the derivation. One first changes the substrate of the fibre from
Γσ (e) to Γ‖(e). This associates the edges with b1 objects, and combination with
a1 + b1 + b2 will thus yield b1 + a1 + a2, or:

Γ‖(e)× ΓT = Γ‖(e)+ Γσ (e)+ Γ�(e) (6.148)

Finally, multiply this result by Γǫ :

Γ‖(e)× ΓR = Γ⊥(e)+ Γ�(e)+ Γσ (e) (6.149)

We now combine Eqs. (6.146) and (6.149), and find:

Trivalent: Γ‖
(

eP
)

× ΓR − Γσ
(

vP
)

× ΓR = Γσ
(

eP
)

= ΓFries (6.150)

This is precisely the representation of the Fries bonds. We can thus compare the
Fries and Clar structures in a general leapfrog, and find from Eq. (6.144):

ΓClar − ΓFries = ΓT + ΓR (6.151)

The Clar structure thus has six extra bonding orbitals as compared with the Fries
structure. When both bonding schemes are correlated, as illustrated in Fig. 6.11,
this sextet must correlate with the anti-bonding half of the Fries structure. It will
thus be placed on top of the Clar band, and actually be nearly non-bonding, forming
six low-lying virtual orbitals, which explains the electron deficiency of the leapfrog
fullerenes. Moreover, as the derivation shows, they transform exactly as rotations
and translations.

6.11 Problems

6.1 A three-electron wavefunction in an octahedron is given by:

Ψ =
∣

∣(t1uxα)(t1uyα)(t1uzα)
∣

∣ (6.152)

The vertical bars denote a Slater determinant. Determine the symmetry of this
function, starting from parent two-electron coupled states, to which the third
electron is coupled. Make use of the coupling coefficients in Appendix F.

6.2 Write the Jahn-Teller matrix for a threefold degenerate T1u level in an icosahe-
dral molecule. How many reduced matrix elements are needed?

6.3 Do you expect octahedral eg orbitals to show a magnetic dipole moment?
6.4 Binaphthyl consists of two linked naphthalene molecules. The dihedral angle

between the two naphthyl planes is around 70◦, and can be stabilized by bulky
substituents on the naphthyl units, as indicated below for the case of 2,2′-di-
biphenylphosphine-1,1′-binaphthyl. A circular dichroism signal is detected in
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the UV region, corresponding to the long-axis polarized transitions of the naph-
thyl units (indicated by the arrows in the figure). Construct the appropriate ex-
citon states and determine the CD profile of the two enantiomers of binaphthyl.

6.5 A diradical is a molecule with two open orbitals, each containing one electron.
Consider as an example twisted ethylene (D2d symmetry, see Fig. 3.9). The
HOMO is a degenerate e-orbital, occupied by two electrons. Construct the e2

diradical states for this molecule, and determine their symmetries.
6.6 Planar trimethylenemethane (TMM), C4H6, is a diradical with trigonal symme-

try. Determine the Hückel spectrum for the four carbon pz-orbitals perpendic-
ular to the plane of the molecule. The HOMO in D3h has e′′ symmetry and is
also occupied by two electrons. Determine the corresponding diradical states,
and compare with the results for twisted ethylene. How would you describe the
valence bond structure of this molecule?
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Chapter 7

Spherical Symmetry and Spins

Abstract A brief excursion is made into the concept of continuous groups, with an
example of the rotation groups. The purpose is to familiarize the reader with the
concept of electron spin. The coupling of spins is discussed. Applications are taken
from Crystal-Field Theory and Electron Spin Resonance.
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7.1 The Spherical-Symmetry Group

Consider the row vector of coordinate functions (|x〉 |y〉 |z〉) in 3D space. A rotation
must conserve the norm of this function space. As we have seen in Chap. 2, this can
be realized by a unitary matrix transformation. For real functions, the unitary trans-
formation is reduced to an orthogonal one. A matrix is orthogonal if the following
condition is fulfilled (where T denotes transposition):

D
T
D= I=DD

T (7.1)

The set of all ortho-gonal 3 × 3 matrices forms a group, which is called the or-
thogonal group in three dimensions, O(3). The order of this group is infinite. It can
be shown that this group is isomorphic with the complete group of all proper and
improper rotations in three dimensions. The structure that embodies this symme-
try is the sphere. Hence, O(3) is the symmetry group of the sphere. The determi-
nants of the matrices must be real with modulus one, which means that they can
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Fig. 7.1 The dashed line

represents an axis of rotation
at an angle θ from the
positive z-axis and an angle φ
in the (x, y)-plane, measured
counterclockwise from the
positive x-direction

only be ±1. Improper symmetry elements are represented by matrices with deter-
minant −1, while the proper symmetry elements have determinant +1. The latter
matrices form a halving subgroup, which is called the special orthogonal group in
three dimensions, SO(3). This subgroup describes the rotational subgroup of the
sphere. A convenient representation of an arbitrary rotation is described by four pa-
rameters: the rotation angle, α, and three direction cosines, nx, ny, nz, indicating
the orientation of the pole of the rotation axis in the Cartesian frame. The latter are
normalized as n2

x + n2
y + n2

z = 1. This means that only three angles are required
to describe a rotation: the rotational angle α and two angular coordinates of the
rotational pole (see Fig. 7.1), a result which was obtained by Euler [1]:

nx = sin θ cosφ

ny = sin θ sinφ

nz = cos θ

(7.2)

This SO(3) matrix for the row vector (|x〉|y〉|z〉) under a rotation R̂(α,nx, ny, nz)
reads:

O(R)=

⎛

⎜

⎝

1− 2(n2
y + n2

z)γ −nz sinα + 2nxnyγ ny sinα + 2nznxγ

nz sinα + 2nxnyγ 1− 2(n2
z + n2

x)γ −nx sinα + 2nynzγ

−ny sinα + 2nznxγ nx sinα+ 2nynzγ 1− 2(n2
x + n2

y)γ

⎞

⎟

⎠

(7.3)
with γ = sin2(α/2).

The determinant of this matrix is +1, as expected. In (nx, ny, nz) space any rota-
tion R̂ ∈G has two poles. These are the points on the unit sphere that are invariant
under the rotation. These points are at ±n and thus are mutual antipodes. We recall
that a rotation over a positive angle is viewed from the pole as counterclockwise. In
the antipodal pole this rotation is observed as clockwise. Rotations about antipodal
poles and over opposite angles thus produce the same effect. Hence, a sign change
of all parameters leaves the matrix invariant. Moreover, since a rotation through an
angle of 2π is equivalent to the unit element, the rotation angle can also be specified
as α − 2π . In total in the range [−2π,+2π], there are thus four equivalent sets of
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parameters that give rise to the same matrix O(R):

R̂(α,nx, ny, nz)

R̂(−α,−nx,−ny,−nz)

R̂(−2π + α,nx, ny, nz)

R̂(2π − α,−nx,−ny,−nz)

(7.4)

The transformations of the standard vector form the fundamental irrep of spherical
symmetry. All other irreps can be constructed by taking direct products of this vec-
tor. In particular, the spherical harmonic functions can be constructed by taking fully
symmetrized powers of the vector. The symmetrized direct square of the p-functions
yields a six-dimensional function space with components: {z2, x2, y2, yz, xz, xy}.
This space is not orthonormal: the components are not normalized, and the first
three components do overlap. In fact, the space is reducible since the sum of the
squares z2 + x2 + y2 is a radial function, which is totally symmetric under rota-
tions. Taking out this root leaves five components, which are irreducible and cor-
respond to the five d orbitals, shown in Table 7.1. This result parallels the cubic
[T1u]2 =A1g +Eg + T2g coupling [2].

When extending these results to the nth power of the p-irrep, symmetriza-
tion will be governed by the irreducible representations of the corresponding
Sn permutation group. The f -orbitals may be generated by the third power of
the p-irrep. Full symmetrization of the three components generates 10 functions,
{z3, x3, y3, z2x, z2y, x2z, x2y, y2z, y2x, xyz}, which in cubic symmetry transform
as A2u + 2T1u + T2u. Again, this space is reducible and contains a p- and an
f -subspace. The reduction is based on the removal of the totally symmetric trace.
Indeed, the combination z(x2 + y2 + z2) and its cyclic permutations reduce to the
fundamental p-vector. The remainder of the space is irreducible and corresponds
to the seven f -functions listed in Table 7.1. Further explorations of the spherical
symmetry group opens the book of angular momentum arithmetic and the under-
lying theory of Lie groups.1 This is outside the present scope. We shall restrict
the treatment to indicating the subduction rules, which describe the decomposition
of the spherical irreps in point-group symmetries. To obtain these rules, we have
to derive the character of function space of the spherical harmonics, {Yℓmℓ

}, for
mℓ =−ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ, under the proper and improper rotations of the point
group. We shall start by considering the proper ones first. It is sufficient to limit the
treatment to rotations around the z-axis since on a sphere all directions are equiva-
lent. Rotations around z will affect only the angular coordinate, φ, in the equatorial
plane and leave the azimuthal coordinate, θ , unchanged. The φ-dependence of the

1See, e.g., [3, 4].
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Table 7.1 Complex and cubic real forms of the spherical harmonics for ℓ = 0,1,2,3. The con-
stants Nℓ are the common normalizing factors over the θ and φ coordinates

ℓ Nℓ |LM〉 |Γ γ 〉

s

√

1
4π |00〉 = 1 |A1g〉 = 1

p

√

3
4π r

−1 |1+ 1〉 = − 1√
2
(x + iy) |T1ux〉 = x

|1− 1〉 = 1√
2
(x − iy) |T1uy〉 = y

|10〉 = z |T1uz〉 = z

d

√

15
8π r

−2 |2+ 2〉 = 1
2 (x + iy)2 |Egθ〉 = 1√

6
(3z2 − r2)

|2− 2〉 = 1
2 (x − iy)2 |Egǫ〉 = 1√

2
(x2 − y2)

|2+ 1〉 = −(x + iy)z |T2gξ〉 =
√

2yz

|2− 1〉 = (x − iy)z |T2gη〉 =
√

2xz

|20〉 = 1√
6
(3z2 − r2) |T2gζ 〉 =

√
2xy

f

√

35
8π r

−3 |3+ 3〉 = − 1
2
√

2
(x + iy)3 |A2u〉 =

√

3
2xyz

|3− 3〉 = 1
2
√

2
(x − iy)3 |T1ux〉 = 1√

10
x(5x2 − 3r2)

|3+ 2〉 =
√

3
2 z(x + iy)2 |T1uy〉 = 1√

10
y(5y2 − 3r2)

|3− 2〉 =
√

3
2 z(x − iy)2 |T1uz〉 = 1√

10
z(5z2 − 3r2)

|3+ 1〉 = −
√

3
2
√

10
(x + iy)(5z2 − 3r2) |T2uξ〉 =

√

3
2x(z

2 − y2)

|3− 1〉 =
√

3
2
√

10
(x − iy)(5z2 − 3r2) |T2uη〉 =

√

3
2y(x

2 − z2)

|30〉 = 1√
10
z(5z2 − 3r2) |T2uζ 〉 =

√

3
2 z(y

2 − x2)

spherical harmonics is given by

Φmℓ
(φ)= 1√

2π
exp(imℓφ) (7.5)

A rotation Ĉα about the z-direction affects this function in the following way:

ĈαΦmℓ
(φ)=Φmℓ

(φ − α)= exp(−imℓα)Φmℓ
(φ) (7.6)

The trace over the entire function space is then given by

χℓ(Cα)=
ℓ
∑

mℓ=−ℓ
exp(−imℓα)=

sin(ℓ+ 1/2)α

sin(α/2)
(7.7)



7.2 Application: Crystal-Field Potentials 167

To obtain this result, the following sum-rule was used, which is obtained by carrying
out a straightforward division:

N
∑

n=0

rn = 1− rN

1− r
(7.8)

As an example, for ℓ= 1, the rotation matrix corresponds to the matrix O(R) in Eq.
(7.3). Its trace is given by

χp(Cα)= 3− 4 sin2(α/2)= sin(3α/2)

sin(α/2)
(7.9)

Improper rotations can always be written as the products of a proper rotation and
the inversion operation. The resulting character is then given by the product of the
rotational character in Eq. (7.7), times the parity of the spherical harmonics, which
is given by

ı̂Yℓmℓ
= (−1)ℓYℓmℓ

(7.10)

Finally, we also remind that the definition of the spherical harmonics in the standard
phase convention implies complex conjugation, as

Ȳℓmℓ
= (−1)mℓYℓ−mℓ

(7.11)

In Sect. A.2 the character tables for the groups O(3) and SO(3) are given. The
subduction relations are listed in Sect. C.1.

7.2 Application: Crystal-Field Potentials

Model treatments of transition-metal and lanthanide complexes are essentially based
on the dn or f n open-shell states of the central metal atom, which are perturbed by
the electrostatic field of the surrounding ligating groups:

VCF =
∑

L

e2ZL

4πǫ0|RL − r| (7.12)

This term describes the electrostatic repulsion between an electron residing in the
metal orbital at a position r and a negatively charged ligand, with charge −eZL at
a position RL. In crystal-field theory the electrostatic field of the surroundings is
written as an expansion in spherical harmonic operators, as these elements will be
evaluated in the d or f function space of the central metal atom. Series expansion
for distances r < RL yields

VCF =
∑

L

e2ZL

4πǫ0

∞
∑

ℓ=0

mℓ=+ℓ
∑

mℓ=−ℓ

4π

2ℓ+ 1

rℓ

Rℓ+1
Yℓmℓ

(θ,φ)Ȳℓmℓ
(θL, φL) (7.13)
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This potential is invariant under the symmetry properties of the metal complex. As a
result, the operator part reduces to the totally symmetric components of the spherical
harmonics. Moreover, interactions with d electrons imply that ℓ must be limited to
four, and to six for f electrons. In the case of an octahedral field, the subduction
relations for spherical harmonics (see Sect. C.1) indicate that a totally symmetric
A1g component can be subduced only from ℓ= 4 and ℓ= 6. Filling in the angular
positions of the ligands in an octahedron then yields

VOh
= 6e2ZL√

4πǫ0RL

Y00 +
e2ZLr

4

√
4πǫ0R

5
L

√
35

6
√

2

(

Y44 + Y4−4 +
√

14√
5
Y40

)

(7.14)

This is the famous crystal-field operator for an octahedron, which splits the d-shell
into eg and t2g subshells. The crystal-field interaction is usually parameterized by
the crystal-field parameter, 10Dq , which corresponds to the splitting of the eg and
t2g orbitals. The term in brackets here is the octahedral invariant of rank 4. In the
multipole expansion this corresponds to a hexadecapole operator. In normalized
form it reads

|4A1g| =
1

2
√

3

(

√
5√
2
(Y44 + Y4−4)+

√
7Y40

)

(7.15)

Here the notation between vertical bars indicates that this is an operator. We shall
now derive this expression with the aid of the coupling coefficients. Since the d or-
bitals transform as eg+ t2g , the squares of the d-orbitals yield two totally symmetric
results, which may be abbreviated as follows:

∣

∣A1g(e× e)
∣

∣= 1√
2

(

θ2 + ǫ2)

∣

∣A1g(t2 × t2)
∣

∣= 1√
3

(

ξ2 + η2 + ζ 2)
(7.16)

These two invariants are at the origin of two spherical operators: one corresponds
to the constant scalar |0A1g|, and the other to |4A1g|. The former invariant may be
obtained by taking the norm of the entire d-manifold, which can be expressed in the
A1g functions of Eq. (7.16) as follows:

|0A1g| =
1√
5

(

θ2 + ǫ2 + ξ2 + η2 + ζ 2)

= 1√
5

(
√

2
∣

∣A1g(e× e)
∣

∣+
√

3
∣

∣A1g(t2 × t2)
∣

∣

)

(7.17)

The |4A1g| invariant must be orthonormal to this result and thus will be given by

|4A1g| =
1√
5

(
√

3
∣

∣A1g(e× e)
∣

∣−
√

2
∣

∣A1g(t2 × t2)
∣

∣

)

(7.18)
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Fig. 7.2 The octahedral
crystal-field potential
corresponding to the |4A1|
hexadecapole. Grey and black

refer to positive and negative
values, respectively

We can use this result to write the functional form of the hexadecapolar invariant by
combining the squares of the d-functions:

|4A1g| =
1√
5

[

√
3√
2

(

θ2 + ǫ2)−
√

2√
3

(

ξ2 + η2 + ζ 2)
]

∼
[

z4 + x4 + y4 − 3
(

x2y2 + x2z2 + y2z2)] (7.19)

This function corresponds precisely to the crystal-field operator of Eq. (7.14). Fig-
ure 7.2 shows this invariant. It is clearly a function that mimics the octahedral sym-
metry. Moreover, it reflects the multipole character of the crystal-field potential. The
potential is repulsive along the coordinate axes where the ligands are and of oppo-
site sign along the threefold directions, in between the ligands, corresponding to the
vertices of the cube. In fact, Eq. (7.19) provides a direct route to the crystal-field
splitting. The coefficient in front of θ2 and ǫ2 in this equation is proportional to the
interaction of these eg-orbitals with the crystal-field operator, and similarly for the
coefficient in front of the t2g orbitals. The ratio of these coefficients can be reduced
to

√
3√
2

−
√

2√
3

= 3

−2
(7.20)

which reflects the crystal-field splitting of the d-shell, where the eg level is raised
by 6Dq , while the t2g level is lowered by 4Dq , so that the barycentre is conserved
and that the total splitting remains 10Dq .
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Typically, the first invariant multipole corresponds to the charge distribution of
the Platonic solids of the given symmetry: hence, the L = 4 term describes the
octahedron, and its dual the cube, while the next invariant, belonging to the L= 6
multipoles, represents the dominant term for the charge distribution in the 12-vertex
Archimedean solid, known as the cuboctahedron, with a ligand in every edge of
the octahedron. Entirely similar relations exist for the icosahedral group. The first
icosahedral invariant, with L= 6, is the dominant term for the icosahedron and its
dual dodecahedron. The next term, with L = 10, is the leading multipole for the
truncated dodecahedron, alias the “buckyball” [5, 6].

7.3 Interactions of a Two-Component Spinor

The standard vector space in spherical symmetry has three components. We now
explore the possibility of a function space with only two components. Such a space
will correspond to a spinor. The strategy is to set up a general Hamiltonian matrix in
a space with two components and verify that it has spherical symmetry. In order to
describe the general interaction Hamiltonian in a space of only two components, a
2× 2 Hermitian matrix, H, is required. We can take this matrix to be traceless since
the trace will not introduce an interaction inside the spin space but will simply shift
the barycentre of the two levels with respect to an external reference. In its most
general form, such a traceless Hermitian matrix will thus contain three independent
real parameters, which we shall label as x, y, z:

H=
(

z x − iy

x + iy −z

)

(7.21)

We have purposely chosen the Cartesian labels for the three independent parameters
since, later on, a connection will be established between the 2D complex interaction
space and the real 3D vector space. An example of such a Hamiltonian is the Zeeman
interaction of an isolated spin in a magnetic field:

H= 2.0023
μB

�
B·S (7.22)

Here, S is the operator for the spin momentum, expressed in units of �. The x, y, z
parameters in this case are proportional to the magnitude of the magnetic field, B,
in the three Cartesian directions.

However, for now, we shall not yet make use of this spatial connotation and
just continue to consider x, y, z as the general variables of the Hamiltonian matrix.
The two components of the space will be denoted as the spin functions |α〉, |β〉,
which together form a spinor. The corresponding interaction operator can then be
expressed as

H = z
(

|α〉〈α| − |β〉〈β|
)

+ x
(

|α〉〈β| + |β〉〈α|
)

− iy
(

|α〉〈β|−|β〉〈α|
)

(7.23)
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This result can also be recast in matrix form as

H=
(

|α〉 |β〉
)

H

(

〈α|
〈β|

)

(7.24)

or, inversely, as

H=
(

〈α|
〈β|

)

H
(

|α〉 |β〉
)

(7.25)

To establish the connection between the spinor and the vector, we now need to verify
how transformations in the spinor are manifested as transformations in the vector.
Consider a finite unitary transformation of the spinor. The transformation belongs
to the unitary group, U(2), and, as we have seen, the determinant of this matrix is
unimodular. We consider the special case, however, where the determinant is +1.
Such matrices form the special unitary group, SU(2). The most general form of an
SU(2) matrix involves two complex parameters, say a and b, subject to the condition
that their squared norm, |a|2 + |b|2, equals unity. These parameters are also known
as the Cayley–Klein parameters. (Cf. Problem 2.1.) One has

U=
(

a b

−b̄ ā

)

(7.26)

The operation R̂ transforms the spinor as follows:
(

|α′〉 |β ′〉
)

= R̂
(

|α〉 |β〉
)

=
(

|α〉 |β〉
)

U(R) (7.27)

In order to apply the transformation to the interaction operator, we must also con-
sider the effect of R̂ on the column of bra-functions. This simply requires the inverse
of the matrix, which, for a unitary matrix, is nothing but its complex conjugate trans-
posed:

(

〈α′|
〈β ′|

)

= R̂

(

〈α|
〈β|

)

= Ū
T (R)

(

〈α|
〈β|

)

(7.28)

The transformation of the spinor thus changes the interaction matrix as follows:

H
′ =
(

〈α′|
〈β ′|

)

H
(

|α′〉 |β ′〉
)

= Ū
T

(

〈α|
〈β|

)

H
(

|α〉 |β〉
)

U

= Ū
T ×H×U (7.29)

The transformed Hamiltonian matrix is defined by a new set of parameters
(x′, y′, z′):

H
′ =
(

z′ x′ − iy′

x′ + iy′ −z′
)

(7.30)
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In this way, the transformation of the spinor (|α〉 |β〉)→ (|α′〉 |β ′〉) induces a trans-
formation of the vector (x y z)→ (x′ y′ z′). In the vector space this transformation
is described by a matrix O(R). This matrix may easily be constructed by combining
the previous two equations. One has

(

x′ y′ z′
)

= R̂(x y z)= (x y z)O(R) (7.31)

where the transformation matrix is given by

O(R)=

⎛

⎜

⎝

1
2 (a

2 + ā2 − b2 − b̄2) − i
2 (a

2 − ā2 + b2 − b̄2) −ab− ab

i
2 (a

2 − ā2 − b2 + b̄2) 1
2 (a

2 + ā2 + b2 + b̄2) −i(ab− ab)

ab̄+ āb −i(ab̄− āb) |a|2 − |b|2

⎞

⎟

⎠

(7.32)
It can easily be shown that this matrix is an orthogonal transformation with determi-
nant equal to unity. Hence, it belongs to the SO(3) group. As a result, it will leave
the squared length of the vector invariant:

x2 + y2 + z2 = x′2 + y′2 + z′2 (7.33)

This conservation of length is the property that confirms the previous identification
of the interaction matrix elements with a 3-vector and relates it to ordinary space. In
fact, by identifying the rotation matrices in Eqs. (7.3) and (7.32), we may determine
the Cayley–Klein parameters. Two solutions with opposite signs are possible:

a =
(

cos
α

2
− inz sin

α

2

)

b=
(

−ny sin
α

2
− inx sin

α

2

)

(7.34)

or

a =−
(

cos
α

2
− inz sin

α

2

)

b=−
(

−ny sin
α

2
− inx sin

α

2

)

(7.35)

As this equation shows, the mapping O(R) is not an isomorphism but a homomor-
phism (see Fig. 7.3). Indeed, the elements of the matrix O are bilinear in the a and
b parameters; hence, an overall sign change of the two Cayley–Klein parameters
will give the same rotational matrix. The mapping between SU(2) and SO(3) is a
two-to-one mapping. Each element of the rotation group in 3D space is the image
of two elements in SU(2). For this reason, SU(2) is also called a covering group
of SO(3). The unit element in SO(3) is the image of the identity matrix in SU(2)
and minus the identity matrix. This homomorphism also appears when we check
the parameter list of Eq. (7.4), which leaves the rotation matrix of the vector un-
changed. The overall sign change of the rotation angle and the directional cosines to
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Fig. 7.3 Homomorphism
between SU(2) and SO(3)

R̂(−α,−n) leaves the Cayley–Klein parameters unchanged. By contrast, the combi-
nations R̂(2π − α,−n) and R̂(−2π + α,n) change the signs of both Cayley–Klein
parameters.

7.4 The Coupling of Spins

The entries in the Hamiltonian provide us with coupling coefficients between vec-
tor and spinor. Applying the Wigner–Eckart theorem to the matrix elements of the
Zeeman spin Hamiltonian and separating out the constant parameters for the mag-
netic field yield the following nonzero coupling coefficients in the spin operator S,
where K is the reduced matrix element:

〈α|Ŝz|α〉 =K〈α|zα〉 = 1/2

〈β|Ŝz|β〉 =K〈β|zβ〉 = −1/2

〈α|Ŝx |β〉 =K〈α|xβ〉 = 1/2

〈β|Ŝx |α〉 =K〈β|xα〉 = 1/2

〈α|Ŝy |β〉 =K〈α|yβ〉 = −i/2

〈β|Ŝy |α〉 =K〈β|zα〉 = i/2

(7.36)

These coefficients can also be reversed to describe the coupling between two spinors
to yield a vector. This requires that the ket spin in the coefficients is relocated to
the bra part. In Sect. 6.3 we indicated that, for real functions, such a shift does
not change the coupling, except for a renormalization factor. The transposition of
the spin functions is more delicate since the bra functions transform as the com-
plex conjugate of the ket functions, as indicated in Eq. (7.28). In order to establish
the equivalences between transformations of bra and ket spins, one must identify
the basis transformation that turns the matrix U into its complex conjugate. This
transformation is readily achieved by replacing |α〉 by |β〉, and |β〉 by −|α〉. The
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Table 7.2 The coupling coefficients for the direct product of two spins

S = 0 S = 1

|+1〉 |0〉 |−1〉 |x〉 |y〉 |z〉

|α〉|α〉 0 1 0 0 −1/
√

2 i/
√

2 0

|α〉|β〉 1/
√

2 0 1/
√

2 0 0 0 1/
√

2

|β〉|α〉 −1/
√

2 0 1/
√

2 0 0 0 1/
√

2

|β〉|β〉 0 0 0 1 1/
√

2 i/
√

2 0

interchange corresponds to the following matrix transformation:

(

|α〉 |β〉
)

(

0 −1
1 0

)

(7.37)

This matrix gives rise to the mapping of U onto its complex conjugate:

(

0 −1
1 0

)(

a b

−b̄ ā

)(

0 1
−1 0

)

=
(

ā b̄

−b a

)

(7.38)

For this reason, the matrix in Eq. (7.37) is also called the conjugating matrix. The
conjugating matrix is defined up to an arbitrary phase. We have taken here the stan-
dard phase choice. The conjugating relationships between the two spins can now be
used to transfer the spin functions in the coupling coefficients from the ket to the
bra part. An α spin in the ket part becomes a β spin in the bra part, while a β spin
in the ket becomes a −α spin in the bra part.

The corresponding coupling coefficients are summarized in Table 7.2. They in-
dicate how two spins can be coupled to a vector. Here, we also express the vector in
complex form, as

|+1〉 = − 1√
2

(

|x〉 + i|y〉
)

|0〉 = |z〉 (7.39)

|−1〉 = 1√
2

(

|x〉 − i|y〉
)

This transformation is in accordance with the Condon–Shortley phase conventions
for the spherical basis functions [7]. In fact, our initial Hamiltonian matrix in
Eq. (7.21) was constructed in this way. The resulting vector corresponds to the triplet
spin functions, which we used in Sect. 6.4. The total spinor product space has di-
mension 4. The remainder after extraction of the three triplet functions corresponds
to the spin singlet, which is invariant and transforms as a scalar. Spinors are thus
the fundamental building blocks of 3D space. Their transformation properties were
known to Rodrigues as early as 1840. It was some ninety years before Pauli realized
that elementary particles, such as electrons, had properties that could be described
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as internal spin states. In spin-orbit coupling the internal spin degrees of the electron
are coupled to its external momentum, and this can be based on the embedding of
SO(3) in SU(2).

7.5 Double Groups

The spinor basis enables us to obtain a two-dimensional matrix representation of the
point-group operations. Let us first limit ourselves to the relationships for the proper
rotations. The counterclockwise rotation of the vector over an angle α with the pole
at the positive z-axis is given by the matrix:

R̂
(

|x〉 |y〉 |z〉
)

=
(

|x〉 |y〉 |z〉
)

⎛

⎝

cosα − sinα 0
sinα cosα 0

0 0 1

⎞

⎠ (7.40)

According to Eqs. (7.34) and (7.35), the corresponding rotation matrix in the spinor
basis is determined up to a sign by

R̂
(

|α〉 |β〉
)

=±
(

|α〉 |β〉
)

(

exp(−iα2 ) 0
exp( iα2 )

)

(7.41)

How does one deal with this ambiguity of sign? A plausible way is to use a conti-
nuity argument [8]. If we approach the neighborhood of the unit element for both
spinor and vector by letting α decrease to zero, we should converge to the unit ma-
trix and, hence, take the + sign in Eq. (7.41) with α = 0. Now let the rotation angle
increase continuously from 0 to 2π . While the matrix O(R) is periodic in α and
passes again to the unit matrix, the spinor matrix becomes minus the unit matrix.
Continuing the path in parameter space and increasing the angle to 4π drive the
vector rotation once again over the same interval, while the spinor rotation finally
completes its path and reaches the unit element again. So, the difference between
U and −U can be interpreted as a rotation over a full angle of 2π . From the topo-
logical point of view, the path that we have described corresponds to a full circle in
the 4-parameter space of SU(2), and the rotation over 2π connects a point in this
space to its antipode. In this space the SO(3) operations may be identified as the set
of straight lines connecting antipodal points.

Our real interest at present is molecular Hamiltonians that are characterized by a
point group G. However, as compared with the Hamiltonian considered in Chap. 5,
we should also include spin-orbit coupling operators. These will be invariant only
under concerted transformations of the orbital and spin parts. The homomorphism
between SO(3) and SU(2) provides a straightforward algebraic way to construct the
spinor group associated with the point group. For each operation, R̂ ∈G, a matrix
O(R) is defined, which offers a faithful representation of G and, in turn, gives rise
to two spinor matrices,±U(R), which describe the spinor transformation. The set of
these matrices forms a group, which contains twice as many elements as G and thus
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Table 7.3 Representation
matrices for the spinor basis
in D∗2

D(E)=
(

1 0

0 1

)

D(ℵ)=
(

−1 0

0 −1

)

D(Cx
2 )=

(

0 −i
−i 0

)

D(ℵCx
2 )=

(

0 i

i 0

)

D(C
y

2 )=
(

0 −1

1 0

)

D(ℵCy

2 )=
(

0 1

−1 0

)

D(Cz
2)=

(

−i 0

0 i

)

D(ℵCz
2)=

(

i 0

0 −i

)

is called the double group, denoted by G∗. While this construction is algebraic, the
definition of a geometrical link between both groups is much less straightforward
and unavoidably involves the introduction of phase conventions. Bethe introduced
a formal symmetry operation, R, which corresponds to a rotation over 2π . Subse-
quently, we shall replace this by the symbol ℵ, in order to avoid confusion. This
operation is fictitious to the extent that the poles of this rotation are left undefined. It
can be multiplied with every operator in the group and thus leads to an actual dou-
bling of the number of symmetry elements. Nonetheless, the double group is not the
direct product of G with the group {Ê,ℵ}. The reason is that G is not a subgroup of
G∗ because it is no longer closed. Indeed, applying a Ĉn axis in G n times will not
lead to the unit element but to ℵ.

For the actual construction of the double group as a group of operators, we need
a convention to connect the spatial operators to the spinor matrices. As we have seen
in Sect. 7.2, the four possible parametric descriptions of a given rotation yield two
different choices for the Cayley–Klein parameters. Hence, our convention should
define how to characterize unequivocally the parameters of a rotation. It will con-
sist of two criteria: the rotation angle must be positive, and the pole from which the
rotation is seen as counterclockwise must belong to the positive hemisphere in the
nx, ny, nz parameter space. This is the hemisphere above the equatorial plane, i.e.,
with nz > 0. In the (nx, ny)-plane, we include the half-circle of points with posi-
tive nx -value, i.e., with nz = 0, nx > 0, and also the point with ny = 1, nx = 0, and
nz = 0. The rotational parameters (α,n) are thus chosen in such a way that α is pos-
itive, i.e., counterclockwise, and that the vector n points to the positive hemisphere.
This eliminates three of the four equivalent parameter choices of Eq. (7.4). The only
remaining description is then inserted into Eq. (7.34) to determine the Cayley–Klein
parameters.

As a straightforward example, we take the double group of D2. The standard
drawing puts the twofold rotational axes in the positive hemisphere, and the corre-
sponding spinor matrices are easily obtained from Eq. (7.34). The results are given
in Table 7.3. For each operation of G, there are two operations in the double group,
R̂ and ℵR̂. Note that the Bethe operation, ℵ, commutes with every element of the
group. Armed with this set of matrices, one can easily construct the multiplication
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Table 7.4 Character table for
the double group D∗2 Ê ℵ

(

Ĉz
2

ℵĈz
2

) (

Ĉ
y

2

ℵĈy

2

) (

Ĉx
2

ℵĈx
2

)

A 1 1 1 1 1

B1 1 1 1 −1 −1

B2 1 1 −1 1 −1

B3 1 1 −1 −1 1

E1/2 2 −2 0 0 0

Fig. 7.4 D3 trischelate
complex: orientation of the
twofold axes on the positive
hemicircle in the (x′, y′)
plane

table; as an example,

D(C2x)×D(C2y)=D(ℵC2z) (7.42)

From the multiplication table one can obtain the conjugacy classes. The double
group, D∗2 , has five classes; hence, it will contain one extra irrep, as compared
with the parent group. The character table is shown in Table 7.4. The irreps are
of two different kinds. The orbital irreps are not changed under ℵ and thus retain
the characters of the single group. The other kind is the spin irreps, which are anti-
symmetric under ℵ. Direct product tables may also be constructed. Note that the
totally symmetric component in this case belongs to the anti-symmetrized part of
the direct square of the spinor irreps. Relevant tabular information concerning the
double groups and spinor irreps is gathered in Appendix G.

As a further example, in the D3 symmetry group, the three Ĉ2 operators, which
bisect the chelating ligand (cf. Fig. 6.5), all lie in the (x′, y′) plane. In order to obey
the conventions, we have to take the poles of these axes in the positive semicircle
with x′ > 0 (see Fig. 7.4). The (α,nx′ , ny′ , nz′) labeling in the primed coordinate
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Table 7.5 Representation
matrices for the spinor basis
in D∗3 . ω= exp iπ

6

D(E)=
(

1 0

0 1

)

D(CA
2 )=

(

0 −i
−i 0

)

D(C3)=
(

ω̄2 0

0 ω2

)

D(CB
2 )=

(

0 ω̄

−ω 0

)

D(C2
3 )=

(

−ω2 0

0 −ω̄2

)

D(CC
2 )=

(

0 −ω
ω̄ 0

)

Table 7.6 Character table for the double group D∗3

Ê ℵ
(

Ĉ3

ℵĈ2
3

) (

ℵĈ3

Ĉ2
3

)

⎛

⎜

⎝

ĈA
2

ℵĈB
2

ℵĈC
2

⎞

⎟

⎠

⎛

⎜

⎝

ℵĈA
2

ĈB
2

ĈC
2

⎞

⎟

⎠

E1/2 2 −2 1 −1 0 0

E3/2
{

ρ1 1 −1 −1 1 i −i
ρ2 1 −1 −1 1 −i i

system is thus as follows:

ĈA
2 (180◦, 1, 0, 0)

ĈB
2

(

180◦,
1

2
, −

√
3

2
, 0

)

ĈC
2

(

180◦,
1

2
,

√
3

2
, 0

)

(7.43)

The corresponding Cayley–Klein parameters are then determined as

ĈA
2 (a = 0, b=−i)

ĈB
2

(

a = 0, b=
√

3

2
− i

2

)

ĈC
2

(

a = 0, b=−
√

3

2
− i

2

)

(7.44)

In Tables 7.5 and 7.6 we provide the corresponding matrices and the character
table. The ρ designations in the latter table refer to Kramers doublets and will be
explained in the subsequent section. The class structure of the double group in con-
nection to the point group is determined by the Opechowski theorem [9].

Theorem 17 If a set of proper rotations, Ĉn, forms a class in the single group G,
then it gives rise to two separate classes in the double group, corresponding to

conjugacy classes {Ĉn} and {ℵĈn}. The case of n = 2 is exceptional: when n = 2
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and there is another twofold axis in G perpendicular to this Ĉ2, both this Ĉ2 and

ℵĈ2 belong to the same class.

The theorem can easily be demonstrated in an algebraic way. If a symmetry el-
ement Â is conjugate to B̂ , then element ℵÂ is conjugate to ℵB̂ , since the Bethe
operation commutes with all symmetry elements:

Â= X̂B̂X̂−1 →ℵÂ= X̂ℵB̂X̂−1 (7.45)

Since multiplication by ℵ corresponds to multiplication by −I, a symmetry element
Â and its double-group partner ℵÂ have characters that differ by sign. Unless their
characters are zero, they cannot belong to the same class since symmetry elements
in the same class must have the same character. This explains the first rule of the
theorem.2

Exceptions can exist when the character is zero. The character of the spinor irrep
is given by

χ spin = a + ā =±2 cos
α

2
(7.46)

This character can be zero only for α = ±π and, hence, for binary rotations with
n = 2. To examine whether or not the matrix for a binary rotation can be class-
conjugated to minus itself, we may limit ourselves to the study of one orientation
of the rotation axis, say Ĉz

2 . Indeed, in SU(2) any orientation can always be trans-
formed backward to this standard choice by a unitary transformation. The problem
thus reduces to finding a spinor operation X̂ represented by a matrix X with Cayley–
Klein parameters ax, bx , which transforms D(Cz

2) into minus itself:

X̂Ĉz
2X̂

−1 =ℵĈz
2 (7.47)

or, in terms of the spinor matrices,
(

ax bx
−b̄x āx

)(

−i 0
0 i

)(

āx −bx
b̄x ax

)

=
(

i 0
0 −i

)

(7.48)

This expression reduces to a set of two equations:

|ax |2 − |bx |2 =−1

axbx = 0
(7.49)

These equations can be solved only when ax is equal to zero. This implies that both
the real and complex parts of this parameter must be equal to zero; hence,

α = π mod 2π

nz = 0
(7.50)

2Note that not all elements in the same class will be oriented in the positive hemisphere, as is clear
from Tables 7.4 and 7.6.
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This result identifies the X̂ operator as a twofold rotation in a plane perpendicular to
the z-direction. Hence, a twofold rotation axis, Ĉ2, and its double group extension
ℵĈ2 belong to the same class only if the group contains additional binary elements
in a plane perpendicular to this axis. Otherwise, the first rule will apply. The excep-
tion referred to in this theorem is illustrated by the D∗2 class structure as shown in
Table 7.4.

So far, we have been concerned only with proper rotations because in the spinor
basis improper rotations are not defined. Since the electron spin is associated with
an internal “spinning” of the electron around its axis, the electron spin is assigned an
intrinsic positive parity. As we have seen before in Sect. 3.8, every improper rotation
can be written as the product of a proper rotation and an inversion; therefore, when-
ever an improper rotation acts on a spinor, we simply take the matrix representation
for the proper factor in this improper rotation.

7.6 Kramers Degeneracy

In 1930, Kramers showed that in the presence of an arbitrary electrostatic field all
states with an odd number of spins must still have even degeneracy.3

Theorem 18 The energy levels of a system that contains an odd number of spin- 1
2

particles are at least doubly degenerate in the absence of an external magnetic field.

This theorem reflects the influence of time-reversal symmetry. Already in
Chap. 2, we showed that the time-reversal operator is an anti-linear operator. It
will turn any spatial wavefunction into its complex conjugate. Applying it twice
in succession will return the original wavefunction, and, hence, we may write for
spatial functions:

vectors : ϑ2 =+1 (7.51)

However, the time-reversal properties of a spinor are different. Here we can use the
same argument as in Sect. 7.4, viz. in Eq. (7.38), by requiring that the time reversal
of the spinor components would lead to complex conjugation of their transformation
properties. This implies that time reversal must turn |α〉 into |β〉, and vice versa, but
with a sign difference:

ϑ |α〉 = |β〉
ϑ |β〉 = −|α〉

(7.52)

Hence, for spinors, applying time reversal twice leads to a sign change:

spinors : ϑ2 =−1 (7.53)

3Adapted from [10].
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Note that the action of time reversal on the spin functions precisely corresponds to
the Ĉy

2 operator and thus is represented by D(C
y

2 ). This result may be generalized,
in the sense that time reversal can be represented as the product of complex conju-
gation, denoted as K , and a unitary operator acting on the components of a function
space, which we shall denote by the unitary matrix U. We thus write ϑ = UK .
When this operator is applied twice, it must return the same state, except possibly
for a phase factor, say exp(iκ). Following Wigner, we now show that the two cases
ϑ2 =±1 are in fact the only possibilities. Hence, the phase factor can be only either
+1 (time-even state) or −1 (time-odd state) [11, Chap. 26]. Taking time reversal
twice, we have

ϑ2 =UKUK =U× Ū= exp(iκ)I (7.54)

Since U is unitary, we have U× Ū
T = I. Comparing this result with the previous

expression, it follows that

Ū= exp(iκ)ŪT (7.55)

Taking the transpose of both matrices in this equation will not affect the phase factor:

Ū
T = exp(iκ)Ū (7.56)

Combining Eqs. (7.55) and (7.56) yields

Ū= exp(2iκ)Ū (7.57)

which implies that exp(iκ)=±1.
We shall now examine the effects of these two kinds of time-reversal symmetry

on quantum systems under time-even Hamiltonians, i.e., in the absence of external
magnetic fields.

• ϑ2 =+1. In the case of a positive sign, it is always possible to write states that
are time invariant. Consider a state that is described by a complex wavefunction,
|Ψ 〉, which is an eigenfunction of a time-even Hamiltonian. The time-reversed
function, ϑ |Ψ 〉, will thus also be an eigenfunction with the same eigenenergy. The
two functions will either coincide or be linearly independent. The latter case leads
to a state that is at least twofold-degenerate. Both components of this degeneracy
may transform as the complex-conjugate irreps of point groups such as the cyclic
groups or the Th group. When ϑ2 =+1, it is always possible to recombine these
two degenerate states into two linear combinations that are invariant under time
reversal. It is indeed sufficient to project the real and imaginary parts of these
functions:

|φ〉 = 1√
2

(

|Ψ 〉 + ϑ |Ψ 〉
)

|χ〉 = −i√
2

(

|Ψ 〉 − ϑ |Ψ 〉
)

(7.58)
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It can easily be demonstrated that the Hamiltonian in this new basis is real:

〈φ|H|χ〉 =
〈

ϑφ|ϑ(Hχ)
〉

=
〈

ϑφ|ϑHϑ |ϑχ
〉

= 〈φ|H|χ〉 (7.59)

Hence, in this case, it is always possible to rewrite the basis in such a way that the
Hamiltonian matrix is completely real, and the states behave in all respects as a
real twofold-degenerate irrep, which can be split by symmetry-lowering electro-
static fields. In particular, such states will be subject to Jahn–Teller distortions.

• ϑ2 =−1. In the case of a negative sign, it is impossible to obtain states that are
time invariant. This can be shown as follows. We start again with two states that
are each other’s time inverse (|Ψ 〉 and ϑ |Ψ 〉) and first show that these states must
be linearly independent:

〈Ψ |ϑΨ 〉 =
〈

ϑΨ |ϑ2Ψ
〉

=−〈ϑΨ |Ψ 〉 = −〈Ψ |ϑΨ 〉 = 0 (7.60)

In contrast to the previous case, all attempts to construct a linear combination of
these basis states that is invariant under time reversal, fail. Indeed, suppose that
|X〉 is a linear combination with coefficients a and b, such that ϑ |X〉 = |X〉. Then
we have:

|X〉 = a|Ψ 〉 + bϑ |Ψ 〉

ϑ |X〉 = āϑ |Ψ 〉 − b̄|Ψ 〉 ≡ a|Ψ 〉 + bϑ |Ψ 〉
(7.61)

Since the two kets are linearly independent, their respective coefficients must
coincide, and this is possible only for a = b = 0. Hence, it is not possible to
remove the degeneracy by time-even external fields. In particular, these states
will not be subject to the JT effect.

Time-Reversal Selection Rules

The argument used in Eq. (7.59) can be generalized to describe selection rules that
depend on time reversal [12]. We first introduce two parities, τ and η, which de-
scribe the time-dependence of the state and of the Hamiltonian:

ϑ2 = (−1)τ Ê

ϑHϑ−1 = (−1)ηH
(7.62)

The first label, τ , indicates the parity of the state functions, as we have just intro-
duced in this section. The second label, η, indicates whether the Hamiltonian is
time-even or time-odd. Time-even interactions are typically interactions associated
with the electrostatic potential, such as the Jahn–Teller and Stark effects. Time-odd
interactions are electrodynamic in nature, the most common one being the Zeeman
interaction. We shall now study a function space that is invariant under time reversal
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and transforms according to a degenerate irrep Γ with all characters real. As we
have seen, this can be either an orbital or a spinor irrep. If |φ〉 is an element of this
space, so is ϑ |φ〉. Now, instead of considering matrix elements of type 〈φ|H|χ〉,
we shall replace the bra-functions by their time-reversed partners. The interaction
element will then be of type 〈ϑφ|H|χ〉. This may seem awkward, but in fact it does
not lead to inconsistencies. In the case of orbital irreps, basis functions will either
be real or may be arranged in complex-conjugate pairs, which are mutually time
inverses. For spinor irreps, we can always write the basis functions in time-reversal
pairs, such as the α and β spins.

The Hamiltonian for physical interactions must be Hermitian; hence, the bracket
will be equal to the complex-conjugate inverted bracket:

〈ϑφ|H|χ〉 = 〈χ |H|ϑφ〉 (7.63)

Complex conjugation of the bracket can also be achieved by time reversal. But, as
an operator, time reversal can also enter into the bracket and operate on the compo-
nents:

〈χ |H|ϑφ〉 =
〈

ϑχ |ϑ(Hϑφ)
〉

=
〈

ϑχ |ϑHϑ−1|ϑ2φ
〉

= (−1)τ+η〈ϑχ |H|φ〉 (7.64)

By combining these results we may thus write

〈ϑφ|H|χ〉 = 1

2

[

〈ϑφ|H|χ〉 + (−1)τ+η〈ϑχ |H|φ〉
]

(7.65)

The transformations of a time-reversed bra, 〈ϑfi |, and its original ket, |fi〉, are de-
scribed by exactly the same matrices because complex conjugation is applied twice:

R̂〈ϑfi | =
∑

j

DΓ
ji(R)〈ϑfj |

R̂|fi〉 =
∑

j

DΓ
ji(R)fj 〉

(7.66)

This implies that the matrix elements in Eq. (7.65) are described by CG coupling
coefficients, which are symmetric with respect to exchange of the bra and ket parts.
This result leads to the following selection rules:

1. If the Hamiltonian and the system have the same parity under time reversal, in-
teraction can take place only with the symmetrized square of the irrep, [Γ ]2.

2. If the Hamiltonian and the system have opposite parity under time reversal, the
only allowed interaction elements must belong to the anti-symmetrized square of
the irrep, {Γ }2.

As a case in point, the JT Hamiltonian for orbital systems is limited to the
symmetrized square, whereas the Zeeman Hamiltonian only arises if the anti-
symmetrized square contains the symmetries of an axial field. For systems with
an odd number of electrons, which therefore transform according to spinor repre-
sentations, the selection rules are exactly opposite.
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7.7 Application: Spin Hamiltonian for the Octahedral Quartet

State

The octahedral double group contains a four-dimensional spin representation, which
is commonly denoted as the Γ8 quartet, or U ′ in Griffith’s notation. The direct square
of this irrep is given by

Γ8 × Γ8 = [A2 + 2T1 + T2] + {A1 +E + T2} (7.67)

According to the time-reversal selection rules, time-odd interactions with a magnetic
field will be based on the symmetrized square. The spin-operator of the Zeeman
Hamiltonian transforms as T1g , which is indeed included in the symmetrized square.
The present case is, however, special since the T1g irrep occurs twice in the product.
The multiplicity separation cannot be achieved on the basis of symmetrization since
both T1g irreps appear in the symmetrized part. One way to distinguish the two
products is through the subduction process from spherical symmetry. The addition
rules of angular momenta give rise to

3/2× 3/2= [p+ f ] + {s + d} (7.68)

On these grounds the two T1g interactions can be distinguished on the basis of a
different spherical parentage corresponding to p or f coupling. We shall return to
this point in a moment. For a systematic treatment of this problem, we start by set-
ting up a suitable function space. The spherical S = 3/2 spin-quartet level subduces
directly the octahedral Γ8. We can thus use the quartet spin functions as symmetry
bases. The components of S = 3/2 can be obtained by a fully symmetrized product
of the basic spinor:

|3/2+ 3/2〉 = α1α2α3

|3/2+ 1/2〉 = 1√
3
(α1α2β3 + α1β2α3 + β1α2α3)

|3/2− 1/2〉 = 1√
3
(α1β2β3 + β1α2β3 + β1β2α3)

|3/2− 3/2〉 = β1β2β3

(7.69)

In this expression the fundamental {|α〉, |β〉} spinor resembles a quark state: three
quarks are coupled together to form the quartet result. The use of the quartet spin
bases does not mean that our Γ8 really corresponds to a quartet spin. It only means
that we can introduce a fictitious spin operator, S̃, which acts on the Γ8 components
in the same way as the real spin momentum would act on the components of a
spin quartet. The transformations of the Γ8 spinor under the elements of the group
O∗ may be obtained by combining the transformation matrices for the fundamental
(|α〉|β〉) spins with the quartet coupling scheme in Eq. (7.69). In the group O∗, this
irrep is denoted as Γ6. In Table 7.7 the results are shown for two generators of the
octahedral group. These matrices can be taken as the canonical basis relationships
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Table 7.7 Representation matrices for the spinor basis in O∗

D
Γ6 (Cz

4)= 1√
2

(

1− i 0

0 1+ i

)

D
Γ6 (C

xyz

3 )= 1
2

(

1− i −1− i

1− i 1+ i

)

D
Γ8 (Ĉz

4)= 1√
2

⎛

⎜

⎜

⎜

⎜

⎝

−1− i 0 0 0

0 1− i 0 0

0 0 1+ i 0

0 0 0 −1+ i

⎞

⎟

⎟

⎟

⎟

⎠

D
Γ8 (Ĉ

xyz

3 )= 1
4

⎛

⎜

⎜

⎜

⎜

⎝

−1− i
√

3(−1+ i)
√

3(1+ i) 1− i√
3(−1− i) −1+ i −1− i

√
3(−1+ i)√

3(−1− i) 1− i −1− i
√

3(1− i)

−1− i
√

3(1− i)
√

3(1+ i) −1+ i

⎞

⎟

⎟

⎟

⎟

⎠

that define the components of the Γ8. In Griffith’s notation, these four components
are defined in the following way:

|U ′κ〉 ∼
∣

∣

∣

∣

3

2
+ 3

2

〉

|U ′λ〉 ∼
∣

∣

∣

∣

3

2
+ 1

2

〉

|U ′μ〉 ∼
∣

∣

∣

∣

3

2
− 1

2

〉

|U ′ν〉 ∼
∣

∣

∣

∣

3

2
− 3

2

〉

(7.70)

Knowing the symmetries of the components, we can now turn to the coupling
coefficients that describe their interactions. The coupling coefficients that we need
are determined by the Zeeman Hamiltonian, which can be written as

HZe =
μB

�
B · (L+ 2.0023S) (7.71)

The electronic part of this operator contains the orbital angular momentum and the
spin operator. In octahedral symmetry the overall electronic operator transforms
as T1g . Applying the Wigner–Eckart theorem to the interaction elements in this op-
erator yields

μB

�

〈

Γ8i|(L+ 2.0023S)|Γ8j
〉

= 〈Γ8||T1||Γ8〉a〈Γ8i|T1jΓ8k〉a

+ 〈Γ8||T1||Γ8〉b〈Γ8i|T1jΓ8k〉b (7.72)

Here, we have introduced the extra labels a and b in order to distinguish that
there are two coupling channels. The coupling coefficients that are required are
of type 〈Γ8k|Γ8iT1j 〉, while the coefficients, as given in Appendix G, are of type



186 7 Spherical Symmetry and Spins

〈Γ8iT1j |Γ8k〉 and describe the spin-orbit coupling coefficients for the spin-orbit lev-
els of a 4T1 state. However, since all coefficients in the table are real, turning them
around does not make any difference. Hence, we can directly use the spin-orbit
tables to obtain the Zeeman matrix. Only one of the coupling channels is seen to
link the κ and ν levels. In spherical symmetry this requires a jump of 3 spin units,
which can be bridged only by an ℓ = 3 operator. The coupling coefficients of this
channel are thus of spherical octupole parentage (ℓ = 3), while the other set is of
dipole parentage (ℓ = 1). We shall parameterize the corresponding reduced matrix
elements as Jf and Jp , respectively. The constant μB/�, as well as a common fac-
tor of 1/

√
15, is also absorbed into these parameters. The electronic operator will

be represented as |Ti |, and the Zeeman Hamiltonian is then recast in complex form
as

HZe = Bx |Tx | +By |Ty | +Bz|Tz|

= Bz|T0| −
1√
2
(Bx − iBy)|T+1| +

1√
2
(Bx + iBy)|T−1| (7.73)

This expression follows the convention of Eq. (7.39). The operator part is defined
by

|T0| = |Tz|

|T+1| = −
1√
2

(

|Tx | + i|Ty |
)

(7.74)

|T−1| =
1√
2

(

|Tx | − i|Ty |
)

The elements of the interaction matrix are then given by

Hij = Bz

(

Jp〈Γ8i|T0Γ8j 〉p + Jf 〈Γ8i|T0Γ8j 〉f
)

− 1√
2
(Bx − iBy)

(

Jp〈Γ8i|T+1Γ8j 〉p + Jf 〈Γ8i|T+1Γ8j 〉f
)

+ 1√
2
(Bx + iBy)

(

Jp〈Γ8i|T−1Γ8j 〉p + Jf 〈Γ8i|T−1Γ8j 〉f
)

(7.75)

The resulting interaction matrix is given in Table 7.8. Since the Zeeman inter-
action leads to a splitting of the levels that conserves the barycentre, the secular
equation does not contain odd powers in the energy:

aE4 + bE2 + c= 0 (7.76)
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Table 7.8 Spin Hamiltonian matrix for the octahedral quartet irrep. A common factor of 1/
√

15
is absorbed into the J -parameters

Bz |Γ8κ〉 |Γ8λ〉 |Γ8μ〉 |Γ8ν〉

〈Γ8κ| (3Jp − Jf )

〈Γ8λ| (Jp + 3Jf )

〈Γ8μ| −(Jp + 3Jf )

〈Γ8ν| −(3Jp − Jf )

Bx − iBy |Γ8κ〉 |Γ8λ〉 |Γ8μ〉 |Γ8ν〉

〈Γ8κ|
√

3(Jp + 1
2Jf )

〈Γ8λ| (2Jp − 3
2Jf )

〈Γ8μ|
√

3(Jp + 1
2Jf )

〈Γ8ν| − 5
2Jf

Bx + iBy |Γ8κ〉 |Γ8λ〉 |Γ8μ〉 |Γ8ν〉

〈Γ8κ| − 5
2Jf

〈Γ8λ|
√

3(Jp + 1
2Jf )

〈Γ8μ| (2Jp − 3
2Jf )

〈Γ8ν|
√

3(Jp + 1
2Jf )

The parameters are identified as

a = 1

b=−10
(

B2
x +B2

y +B2
z

)(

J 2
p + J 2

f

)

c=
(

B4
x +B4

y +B4
z

)(

9J 4
p + 48J 3

pJf + 46J 2
pJ

2
f − 48JpJ

3
f + 9J 4

f

)

+
(

B2
xB

2
y +B2

xB
2
z +B2

yB
2
z

)

×
(

18J 4
p − 144J 3

pJf + 32J 2
pJ

2
f + 24JpJ

3
f + 63J 4

f

)

(7.77)

The parameter b in this expression is isotropic, i.e., it does not depend on the ori-
entation of the magnetic field in the octahedron. On the other hand, the parameter c
contains an anisotropic contribution. It depends on the orientation of the magnetic
field in the octahedron, but symmetry-equivalent orientations must, of course, yield
the same splitting. This means that c is certainly an octahedral invariant and may
thus be written as the sum of the familiar scalar L = 0 and hexadecapolar L = 4
cubic invariants that we derived in Sect. 7.2. We thus write

c = c1
(

B2
x +B2

y +B2
z

)2

+ c2
(

B4
x +B4

y +B4
z − 3B2

xB
2
y − 3B2

xB
2
z − 3B2

yB
2
z

)

(7.78)
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Fig. 7.5 Possible isotropic Zeeman splittings of the octahedral Γ8 spinor irrep

The coefficients in this equation are identified as

c1 = 9J 4
p + 34J 2

pJ
2
f − 24JpJ

3
f + 18J 4

f

c2 = Jf (4Jp + 2Jf )
2(3Jp − 9/4Jf )

(7.79)

The c2 coefficient is of special interest since it controls the only octahedral term
in the linear Zeeman effect. If this coefficient vanishes, the splitting will be com-
pletely isotropic and does not depend on the orientation of the magnetic field in the
octahedron. There are three possible isotropies [13].

• For Jf = 0, the spin operator is strictly dipolar, and the Zeeman Hamiltonian will
induce a regular splitting of the quartet level, which is proportional to the spin
quantum number, MS . This case is illustrated in the left-hand panel of Fig. 7.5.
Such cases will arise for an octahedral 4A1 state and also for the quartet spin-orbit
level of a 2T1 state.

• For 4Jp + 2Jf = 0, the matrix splits into two separate 2 × 2 blocks, which
have the same eigenvalues. The splitting pattern is thus as in the central panel
of Fig. 7.5. Such a case can occur for a 2E state. The orbital part of this state has
no angular momentum, since the corresponding operator is not included in the
direct square: T1 /∈ E × E. As a result, the magnetic moment of such a state is
due only to the doublet spin part. Such a state behaves as a pseudo-doublet.

• Finally, for 3Jp − 9/4Jf = 0, the splitting again resembles the Zeeman splitting
of a regular spherical quartet, but the spin labels are interchanged, as compared
with the standard quartet splitting: the ±3/2 levels become the inner levels of
the split manifold, while the ±1/2 levels form the outer levels. This inverted

quartet behavior is observed for 2A2 and 2T2 states. The orbital part in these
states reverses the assignment of the fictitious spin levels, as can be seen, for
instance, from the A2 × Γ8 coupling table in Appendix G.
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To conclude, we present the eigenenergies in the notation of Satten [14], who used
parameters g1 and g2. The reduced matrix elements are expressed as

Jp =
μB

2�

g1 + 9g2

10

Jf =
μB

2�

3(g1 − g2)

10

(7.80)

Furthermore, the magnetic field is represented by directional cosines as Bz =
Bnz,Bx = Bnx,By = Bny . The four eigenvalues then become

E = ±μB

2�
B

[

1

2

(

g2
1 + 9g2

2

)

± 1

4
√

2
(g1 + 3g2)

(

9(g1 − 9g2)(g1 − g2)F

−
(

g2
1 − 42g1g2 + 9g2

2

))1/2
]1/2

(7.81)

The three isotropic cases are reflected by the zeroes of the three factors preceding
the function F = (n4

x + n4
y + n4

z).

7.8 Problems

7.1 Find a relationship between the crystal-field potentials of an octahedron and a
cube.

7.2 The product of two rotations is a rotation. Obtain an expression for the Cayley–
Klein parameters of the product as a function of the parameters of its factors.
Is the product commutative? The SU(2) matrices may also be identified as nor-
malized quaternions.

7.3 Work out the group multiplication table for the D∗3 double group and derive the
class structure.

7.4 Consider a set of three eigenlevels transforming as A1 + E in D3 symmetry.
A general matrix for the interaction between the states can be written as

H |A1〉 |Ex〉 |Ey〉

〈A1| −2 a+ ib c+ id
〈Ex | a− ib  e− if
〈Ey | c− id e+ if 

Introduce a fictitious spin operator S̃ that recognizes these states as the compo-
nents of a triplet spin, S̃ = 1, and consider the spin Hamiltonian

HZe =
μB

�

[

g‖BzS̃z + g⊥(Bx S̃x +By S̃y)
]

(7.82)

Express the a, . . . , f parameters as functions of the two g-parameters.
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7.5 In octahedral symmetry the fictitious S̃ operator follows the T1 irrep. Its third
symmetrized power transforms as the components of the f -harmonics and also
subduces a T1 irrep, as indicated in Table 7.1. Rewrite the p- and f -parts of
the |Ti | operators for the Γ8 quartet state as a spin Hamiltonian of the fictitious
spin.
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Character tables were introduced to chemistry through the pioneering work of
Robert Mulliken [1]. The book on “Chemical Applications of Group Theory” by
F. Albert Cotton has been instrumental in disseminating their use in chemistry [2].
Atkins, Child, and Phillips [3] produced a handy pamphlet of the point group char-
acter tables.1

1In the tables the columns on the right list representative coordinate functions that transform ac-
cording to the corresponding irrep. The symbols Rx ,Ry ,Rz stand for rotations about the Cartesian
directions.
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A.1 Finite Point Groups

C1 and the Binary Groups Cs,Ci,C2

C1 Ê

A 1

Cs Ê σ̂h

A′ 1 1 x, y,Rz x2, y2, z2, xy

A′′ 1 −1 z,Rx,Ry yz, xz

Ci Ê ı̂

Ag 1 1 Rx,Ry,Rz x2, y2, z2, yz, xz, xy

Au 1 −1 x, y, z

C2 Ê Ĉz
2

A 1 1 z,Rz x2, y2, z2, xy

B 1 −1 x, y,Rx,Ry yz, xz

The Cyclic Groups Cn (n = 3,4,5,6,7,8)

C3 Ê Ĉ3 Ĉ2
3 ǫ = exp(2πi/3)

A 1 1 1 z,Rz x2 + y2, z2

E

{

1 ǫ ǭ
(x, y)(Rx,Ry) (x2 − y2, xy)(yz, xz)

1 ǭ ǫ

C4 Ê Ĉ4 Ĉ2 Ĉ3
4

A 1 1 1 1 z,Rz x2 + y2, z2

B 1 −1 1 −1 x2 − y2, xy

E

{

1 i −1 −i
(x, y)(Rx,Ry) (yz, xz)1 −i −1 i
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C5 Ê Ĉ5 Ĉ2
5 Ĉ3

5 Ĉ4
5 ǫ = exp(2πi/5)

A 1 1 1 1 1 z,Rz x2 + y2, z2

E1

{

1 ǫ ǫ2 ǭ2 ǭ
(x, y)(Rx,Ry) (yz, xz)

1 ǭ ǭ2 ǫ2 ǫ

E2

{

1 ǫ2 ǭ ǫ ǭ2
(x2 − y2, xy)

1 ǭ2 ǫ ǭ ǫ2

C6 Ê Ĉ6 Ĉ3 Ĉ2 Ĉ2
3 Ĉ5

6 ǫ = exp(2πi/6)

A 1 1 1 1 1 1 z,Rz x2 + y2, z2

B 1 −1 1 −1 1 −1

E1

{

1 ǫ −ǭ −1 −ǫ ǭ
(x, y)(Rx,Ry) (yz, xz)

1 ǭ −ǫ −1 −ǭ ǫ

E2

{

1 −ǭ −ǫ 1 −ǭ −ǫ
(x2 − y2, xy)

1 −ǫ −ǭ 1 −ǫ −ǭ

C7 Ê Ĉ7 Ĉ2
7 Ĉ3

7 Ĉ4
7 Ĉ5

7 Ĉ6
7 ǫ = exp(2πi/7)

A 1 1 1 1 1 1 1 z,Rz x2 + y2, z2

E1

{

1 ǫ ǫ2 ǫ3 ǭ3 ǭ2 ǭ
(x, y)(Rx,Ry) (yz, xz)

1 ǭ ǭ2 ǭ3 ǫ3 ǫ2 ǫ

E2

{

1 ǫ2 ǭ3 ǭ ǫ ǫ3 ǭ2
(x2 − y2, xy)

1 ǭ2 ǫ3 ǫ ǭ ǭ3 ǫ2

E3

{

1 ǫ3 ǭ ǫ2 ǭ2 ǫ ǭ3 [x(x2 − 3y2),
y(3x2 − y2)]1 ǭ3 ǫ ǭ2 ǫ2 ǭ ǫ3

C8 Ê Ĉ8 Ĉ4 Ĉ2 Ĉ3
4 Ĉ3

8 Ĉ5
8 Ĉ7

8 ǫ = exp(2πi/8)

A 1 1 1 1 1 1 1 1 z,Rz x2 + y2, z2

B 1 −1 1 1 1 −1 −1 −1

E1

{

1 ǫ i −1 −i −ǭ −ǫ ǭ
(x, y)(Rx,Ry) (yz, xz)

1 ǭ −i −1 i −ǫ −ǭ ǫ

E2

{

1 i −1 1 −1 −i i −i
(x2 − y2, xy)

1 −i −1 1 −1 i −i i

E3

{

1 −ǫ i −1 −i ǭ ǫ −ǭ [x(x2 − 3y2),
y(3x2 − y2)]1 −ǭ −i −1 i ǫ ǭ −ǫ
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The Dihedral Groups Dn (n = 2,3,4,5,6)

D2 Ê Ĉz
2 Ĉ

y

2 Ĉx
2

A 1 1 1 1 x2, y2, z2

B1 1 1 −1 −1 z,Rz xy

B2 1 −1 1 −1 y,Ry xz

B3 1 −1 −1 1 x,Rx yz

D3 Ê 2Ĉ3 3Ĉ2

A1 1 1 1 x2 + y2, z2

A2 1 1 −1 z,Rz

E 2 −1 0 (x, y)(Rx,Ry) (xz, yz)(x2 − y2, xy)

D4 Ê 2Ĉ4 Ĉ2 (= Ĉ2
4) 2Ĉ′2 2Ĉ′′2

A1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 −1 −1 z,Rz

B1 1 −1 1 1 −1 x2 − y2

B2 1 −1 1 −1 1 xy

E 2 0 −2 0 0 (x, y)(Rx,Ry) (xz, yz)

D5 Ê 2Ĉ5 2Ĉ2
5 5Ĉ′2

A1 1 1 1 1 x2 + y2, z2

A2 1 1 1 −1 z,Rz

E1 2 2 cos(2π/5) 2 cos(4π/5) 0 (x, y)(Rx,Ry) (xz, yz)

E2 2 2 cos(4π/5) 2 cos(2π/5) 0 (x2 − y2, xy)

D6 Ê 2Ĉ6 2Ĉ3 Ĉ2 3Ĉ′2 3Ĉ′′2

A1 1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 1 −1 −1 z,Rz

B1 1 −1 1 −1 1 −1 x(x2 − 3y2)

B2 1 −1 1 −1 −1 1 y(3x2 − y2)

E1 2 1 −1 −2 0 0 (x, y)(Rx,Ry) (xz, yz)

E2 2 −1 −1 2 0 0 (x2 − y2, xy)
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The Conical Groups Cnv (n = 2,3,4,5,6)

C2v Ê Ĉz
2 σ̂ xzv σ̂

yz
v

A1 1 1 1 1 z x2, y2, z2

A2 1 1 −1 −1 Rz xy

B1 1 −1 1 −1 x,Ry xz

B2 1 −1 −1 1 y,Rx yz

C3v Ê 2Ĉ3 3σ̂v

A1 1 1 1 z x2 + y2, z2

A2 1 1 −1 Rz

E 2 −1 0 (x, y)(Rx,Ry) (x2 − y2, xy)(xz, yz)

C4v Ê 2Ĉ4 Ĉ2 2σ̂v 2σ̂d

A1 1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 −1 −1 Rz

B1 1 −1 1 1 −1 x2 − y2

B2 1 −1 1 −1 1 xy

E 2 0 −2 0 0 (x, y)(Rx,Ry) (xz, yz)

C5v Ê 2Ĉ5 2Ĉ2
5 5σ̂v

A1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 −1 Rz

E1 2 2 cos(2π/5) 2 cos(4π/5) 0 (x, y)(Rx,Ry) (xz, yz)

E2 2 2 cos(4π/5) 2 cos(2π/5) 0 (x2 − y2, xy)

C6v Ê 2Ĉ6 2Ĉ3 Ĉ2 3σ̂v 3σ̂d

A1 1 1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 1 −1 −1 Rz

B1 1 −1 1 −1 1 −1 x(x2 − 3y2)

B2 1 −1 1 −1 −1 1 y(3x2 − y2)

E1 2 1 −1 −2 0 0 (x, y)(Rx,Ry) (xz, yz)

E2 2 −1 −1 2 0 0 (x2 − y2, xy)
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The Cnh Groups (n = 2,3,4,5,6)

C2h Ê Ĉz
2 ı̂ σ̂h

Ag 1 1 1 1 Rz x2, y2, z2, xy

Bg 1 −1 1 −1 Rx,Ry xz, yz

Au 1 1 −1 −1 z

Bu 1 −1 −1 1 x, y

C3h Ê Ĉ3 Ĉ2
3 σ̂h Ŝ3 Ŝ2

3 ǫ = exp(2πi/3)

A′ 1 1 1 1 1 1 Rz x2 + y2, z2

E′
{

1 ǫ ǭ 1 ǫ ǭ
(x, y) (x2 − y2, xy)

1 ǭ ǫ 1 ǭ ǫ

A′′ 1 1 1 −1 −1 −1 z

E′′
{

1 ǫ ǭ −1 −ǫ −ǭ
(Rx,Ry) (xz, yz)

1 ǭ ǫ −1 −ǭ −ǫ

C4h Ê Ĉ4 Ĉ2 Ĉ3
4 ı̂ Ŝ3

4 σ̂h Ŝ4

Ag 1 1 1 1 1 1 1 1 Rz x2 + y2, z2

Bg 1 −1 1 −1 1 −1 1 −1 x2 − y2, xy

Eg

{

1 i −1 −i 1 i −1 −i
(Rx,Ry) (yz, xz)

1 −i −1 i 1 −i −1 i

Au 1 1 1 1 −1 −1 −1 −1 z

Bu 1 −1 1 −1 −1 1 −1 1

Eu

{

1 i −1 −i −1 −i 1 i
(x, y)

1 −i −1 i −1 i 1 −i

C5h Ê Ĉ5 Ĉ2
5 Ĉ3

5 Ĉ4
5 σ̂h Ŝ5 Ŝ7

5 Ŝ3
5 Ŝ9

5 ǫ = exp(2πi/5)

A′ 1 1 1 1 1 1 1 1 1 1 Rz x2 + y2, z2

E′1

{

1 ǫ ǫ2 ǭ2 ǭ 1 ǫ ǫ2 ǭ2 ǭ
(x, y)

1 ǭ ǭ2 ǫ2 ǫ 1 ǭ ǭ2 ǫ2 ǫ

E′2

{

1 ǫ2 ǭ ǫ ǭ2 1 ǫ2 ǭ ǫ ǭ2
(x2 − y2, xy)

1 ǭ2 ǫ ǭ ǫ2 1 ǭ2 ǫ ǭ ǫ2

A′′ 1 1 1 1 1 −1 −1 −1 −1 −1 z

E′′1

{

1 ǫ ǫ2 ǭ2 ǭ −1 −ǫ −ǫ2 −ǭ2 −ǭ
(Rx,Ry) (xz, yz)

1 ǭ ǭ2 ǫ2 ǫ −1 −ǭ −ǭ2 −ǫ2 −ǫ

E′′2

{

1 ǫ2 ǭ ǫ ǭ2 −1 −ǫ2 −ǭ −ǫ −ǭ2

1 ǭ2 ǫ ǭ ǫ2 −1 −ǭ2 −ǫ −ǭ −ǫ2
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C6h Ê Ĉ6 Ĉ3 Ĉ2 Ĉ2
3 Ĉ5

6 ı̂ Ŝ5
3 Ŝ5

6 σ̂h Ŝ6 Ŝ3 ǫ = exp(2πi/6)

Ag 1 1 1 1 1 1 1 1 1 1 1 1 Rz x2 + y2, z2

Bg 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

E1g

{

1 ǫ −ǭ −1 −ǫ ǭ 1 ǫ −ǭ −1 −ǫ ǭ
(Rx,Ry) (yz, xz)

1 ǭ −ǫ −1 −ǭ ǫ 1 ǭ −ǫ −1 −ǭ ǫ

E2g

{

1 −ǭ −ǫ 1 −ǭ −ǫ 1 −ǭ −ǫ 1 −ǭ −ǫ
1 −ǫ −ǭ 1 −ǫ −ǭ 1 −ǫ −ǭ 1 −ǫ −ǭ

Au 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 z x2 + y2, z2

Bu 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1

E1u

{

1 ǫ −ǭ −1 −ǫ ǭ −1 −ǫ ǭ 1 ǫ −ǭ
(x, y)

1 ǭ −ǫ −1 −ǭ ǫ −1 −ǭ ǫ 1 ǭ −ǫ

E2u

{

1 −ǭ −ǫ 1 −ǭ −ǫ −1 ǭ ǫ −1 ǭ ǫ

1 −ǫ −ǭ 1 −ǫ −ǭ −1 ǫ ǭ −1 ǫ ǭ

The Rotation–Reflection Groups S2n (n = 2,3,4)

S4 Ê Ŝ4 Ĉ2 Ŝ3
4

A 1 1 1 1 Rz x2 + y2, z2

B 1 −1 1 −1 z x2 − y2, xy

E

{

1 i −1 −i
(x, y)(Rx,Ry) (xz, yz)1 −i −1 i

S6 Ê Ĉ3 Ĉ2
3 ı̂ Ŝ5

6 Ŝ6 ǫ = exp(2πi/3)

Ag 1 1 1 1 1 1 Rz x2 + y2, z2

Eg

{

1 ǫ ǭ 1 ǫ ǭ
(Rx,Ry) (x2 − y2, xy)(yz, xz)1 ǭ ǫ 1 ǭ ǫ

Au 1 1 1 −1 −1 −1 z

Eu

{

1 ǫ ǭ −1 −ǫ −ǭ
(x, y)1 ǭ ǫ −1 −ǭ −ǫ

S8 Ê Ŝ8 Ĉ4 Ŝ3
8 Ĉ2 Ŝ5

8 Ĉ3
4 Ŝ7

8 ǫ = exp(2πi/8)

A 1 1 1 1 1 1 1 1 Rz x2 + y2, z2

B 1 −1 1 −1 1 −1 1 −1 z

E1

{

1 ǫ i −ǭ −1 −ǫ −i ǭ
(x, y)(Rx,Ry)1 ǭ −i −ǫ −1 −ǭ i ǫ

E2

{

1 i −1 −i 1 i −1 −i
(x2 − y2, xy)

1 −i −1 i 1 −i −1 i

E3

{

1 −ǭ −i ǫ −1 ǭ i −ǫ
(xz, yz)

1 −ǫ i ǭ −1 ǫ −i −ǭ
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The Prismatic Groups Dnh (n = 2,3,4,5,6,8)

D2h Ê Ĉz
2 Ĉ

y

2 Ĉx
2 ı̂ σ̂xy σ̂xz σ̂yz

Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 −1 −1 1 1 −1 −1 Rz xy
B2g 1 −1 1 −1 1 −1 1 −1 Ry xz
B3g 1 −1 −1 1 1 −1 −1 1 Rx yz
Au 1 1 1 1 −1 −1 −1 −1 xyz
B1u 1 1 −1 −1 −1 −1 1 1 z
B2u 1 −1 1 −1 −1 1 −1 1 y
B3u 1 −1 −1 1 −1 1 1 −1 x

D3h Ê 2Ĉ3 3Ĉ2 σ̂h 2Ŝ3 3σ̂v

A′1 1 1 1 1 1 1 x2 + y2, z2

A′2 1 1 −1 1 1 −1 Rz

E′ 2 −1 0 2 −1 0 (x, y) (x2 − y2, xy)

A′′1 1 1 1 −1 −1 −1

A′′2 1 1 −1 −1 −1 1 z

E′′ 2 −1 0 −2 1 0 (Rx,Ry) (xz, yz)

D4h Ê 2Ĉ4 Ĉ2 2Ĉ′2 2Ĉ′′2 ı̂ 2Ŝ4 σ̂h 2σ̂v 2σ̂d

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 −1 −1 1 1 1 −1 −1 Rz

B1g 1 −1 1 1 −1 1 −1 1 1 −1 x2 − y2

B2g 1 −1 1 −1 1 1 −1 1 −1 1 xy
Eg 2 0 −2 0 0 2 0 −2 0 0 (Rx,Ry) (xz, yz)
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z
B1u 1 −1 1 1 −1 −1 1 −1 −1 1
B2u 1 −1 1 −1 1 −1 1 −1 1 −1
Eu 2 0 −2 0 0 −2 0 2 0 0 (x, y)

D5h Ê 2Ĉ5 2Ĉ2
5 5Ĉ2 σ̂h 2Ŝ5 2Ŝ3

5 5σ̂v α = cos(2π/5) β = cos(4π/5)

A′1 1 1 1 1 1 1 1 1 x2 + y2, z2

A′2 1 1 1 −1 1 1 1 −1 Rz

E′1 2 2α 2β 0 2 2α 2β 0 (x, y)

E′2 2 2β 2α 0 2 2β 2α 0 (x2 − y2, xy)

A′′1 1 1 1 1 −1 −1 −1 −1

A′′2 1 1 1 −1 −1 −1 −1 1 z

E′′1 2 2α 2β 0 −2 −2α −2β 0 (Rx,Ry)

E′′2 2 2β 2α 0 −2 −2β −2α 0 (xz, yz)
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D6h Ê 2Ĉ6 2Ĉ3 Ĉ2 3Ĉ′2 3Ĉ′′2 ı̂ 2Ŝ3 2Ŝ6 σ̂h 3σ̂d 3σ̂v

A1g 1 1 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1 Rz

B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1
E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0 (Rx,Ry)(xz, yz)

E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0 (x2 − y2, xy)

A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 z

B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 x(x2 − 3y2)

B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1 y(3x2 − y2)

E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0 (x, y)

E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0

D8h Ê 2Ĉ8 2Ĉ3
8 2Ĉ4 Ĉ2 4Ĉ′2 4Ĉ′′2 ı̂ 2Ŝ3

8 2Ŝ8 2Ŝ4 σ̂h 4σ̂v 4σ̂d

A1g 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 1 1 −1 −1 1 1 1 1 1 −1 −1
B1g 1 −1 −1 1 1 1 −1 1 −1 −1 1 1 1 −1
B2g 1 −1 −1 1 1 −1 1 1 −1 −1 1 1 −1 1
E1g 2

√
2 −

√
2 0 −2 0 0 2

√
2 −

√
2 0 −2 0 0

E2g 2 0 0 −2 2 0 0 2 0 0 −2 2 0 0
E3g 2 −

√
2

√
2 0 −2 0 0 2 −

√
2

√
2 0 −2 0 0

A1u 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1
A2u 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 1 1
B1u 1 −1 −1 1 1 1 −1 −1 1 1 −1 −1 −1 1
B2u 1 −1 −1 1 1 −1 1 −1 1 1 −1 −1 1 −1
E1u 2

√
2 −

√
2 0 −2 0 0 −2 −

√
2

√
2 0 2 0 0

E2u 2 0 0 −2 2 0 0 −2 0 0 2 −2 0 0
E3u 2 −

√
2

√
2 0 −2 0 0 −2

√
2 −

√
2 0 2 0 0

The Antiprismatic Groups Dnd (n = 2,3,4,5,6)

D2d Ê 2Ŝ4 Ĉ2 2Ĉ′2 2σ̂d

A1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 −1 −1 Rz

B1 1 −1 1 1 −1 x2 − y2

B2 1 −1 1 −1 1 z xy

E 2 0 −2 0 0 (x, y)(Rx,Ry) (xz, yz)
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D3d Ê 2Ĉ3 3Ĉ2 ı̂ 2Ŝ6 3σ̂d

A1g 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 −1 1 1 −1 Rz

Eg 2 −1 0 2 −1 0 (Rx,Ry) (x2 − y2, xy)(xz, yz)

A1u 1 1 1 −1 −1 −1
A2u 1 1 −1 −1 −1 1 z

Eu 2 −1 0 −2 1 0 (x, y)

D4d Ê 2Ŝ8 2Ĉ4 2Ŝ3
8 Ĉ2 4Ĉ′2 4σ̂d

A1 1 1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 1 1 −1 −1 Rz

B1 1 −1 1 −1 1 1 −1
B2 1 −1 1 −1 1 −1 1 z

E1 2
√

2 0 −
√

2 −2 0 0 (x, y)

E2 2 0 −2 0 2 0 0 (x2 − y2, xy)

E3 2 −
√

2 0
√

2 −2 0 0 (Rx,Ry) (xz, yz)

D5d Ê 2Ĉ5 2Ĉ2
5 5Ĉ2 ı̂ 2Ŝ3

10 2Ŝ10 5σ̂d α = cos(2π/5) β = cos(4π/5)

A1g 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 −1 1 1 1 −1 Rz

E1g 2 2α 2β 0 2 2α 2β 0 (Rx,Ry) (xz, yz)

E2g 2 2β 2α 0 2 2β 2α 0 (x2 − y2, xy)

A1u 1 1 1 1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 1 z

E1u 2 2α 2β 0 −2 −2α −2β 0 (x, y)

E2u 2 2β 2α 0 −2 −2β −2α 0

D6d Ê 2Ŝ12 2Ĉ6 2Ŝ4 2Ĉ3 2Ŝ5
12 Ĉ2 6Ĉ′2 6σ̂d

A1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 1 1 1 1 −1 −1 Rz

B1 1 −1 1 −1 1 −1 1 1 −1
B2 1 −1 1 −1 1 −1 1 −1 1 z

E1 2
√

3 1 0 −1 −
√

3 −2 0 0 (x, y)

E2 2 1 −1 −2 −1 1 2 0 0 (x2 − y2, xy)

E3 2 0 −2 0 2 0 −2 0 0
E4 2 −1 −1 2 −1 −1 2 0 0
E5 2 −

√
3 1 0 −1

√
3 −2 0 0 (Rx,Ry) (xz, yz)
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The Tetrahedral and Cubic Groups

T Ê 4Ĉ3 4Ĉ2
3 3Ĉ2 ǫ = exp(2πi/3)

A 1 1 1 1 x2 + y2 + z2

E

{

1 ǫ ǭ 1
(2z2 − x2 − y2, x2 − y2)

1 ǭ ǫ 1
T 3 0 0 −1 (Rx,Ry,Rz)(x, y, z) (xz, yx, xy)

Td Ê 8Ĉ3 3Ĉ2 6Ŝ4 6σ̂d

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 −1 −1
E 2 −1 2 0 0 (2z2 − x2 − y2, x2 − y2)

T1 3 0 −1 1 −1 (Rx,Ry,Rz)

T2 3 0 −1 −1 1 (x, y, z) (xz, yz, xy)

Th Ê 4Ĉ3 4Ĉ2
3 3Ĉ2 ı̂ 4Ŝ5

6 4Ŝ6 3σ̂h ǫ = exp(2πi/3)

Ag 1 1 1 1 1 1 1 1 x2 + y2 + z2

Au 1 1 1 1 −1 −1 −1 −1

Eg

{

1 ǫ ǭ 1 1 ǫ ǭ 1 (2z2 − x2 − y2,
x2 − y2)1 ǭ ǫ 1 1 ǭ ǫ 1

Eu

{

1 ǫ ǭ 1 −1 −ǫ −ǭ −1
1 ǭ ǫ 1 −1 −ǭ −ǫ −1

Tg 3 0 0 −1 3 0 0 −1 (Rx,Ry,Rz) (xz, yz, xy)

Tu 3 0 0 −1 −3 0 0 1 (x, y, z)

O Ê 6Ĉ4 3Ĉ2 (= Ĉ2
4) 8Ĉ3 6Ĉ2

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 −1 1 1 −1
E 2 0 2 −1 0 (2z2 − x2 − y2,

x2 − y2)

T1 3 1 −1 0 −1 (Rx,Ry,Rz)(x, y, z)

T2 3 −1 −1 0 1 (xz, yz, xy)
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Oh Ê 8Ĉ3 6Ĉ2 6Ĉ4 3Ĉ2 ı̂ 6Ŝ4 8Ŝ6 3σ̂h 6σ̂d

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 −1 −1 1 1 −1 1 1 −1
Eg 2 −1 0 0 2 2 0 −1 2 0 (2z2 − x2 − y2,

x2 − y2)

T1g 3 0 −1 1 −1 3 1 0 −1 −1 (Rx,Ry,Rz)

T2g 3 0 1 −1 −1 3 −1 0 −1 1 (xz, yz, xy)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 −1 −1 1 −1 1 −1 −1 1
Eu 2 −1 0 0 2 −2 0 1 −2 0
T1u 3 0 −1 1 −1 −3 −1 0 1 1 (x, y, z)

T2u 3 0 1 −1 −1 −3 1 0 1 −1

The Icosahedral Groups

I Ê 12Ĉ5 12Ĉ2
5 20Ĉ3 15Ĉ2 φ = (1+

√
5)/2

A 1 1 1 1 1 x2 + y2 + z2

T1 3 φ −φ−1 0 −1 (Rx,Ry,Rz)(x, y, z)

T2 3 −φ−1 φ 0 −1
G 4 −1 −1 1 0
H 5 0 0 −1 1 (2z2 − x2 − y2,

x2 − y2,

(xz, yz, xy)

Ih Ê 12Ĉ5 12Ĉ2
5 20Ĉ3 15Ĉ2 ı̂ 12Ŝ10 12Ŝ3

10 20Ŝ6 15σ̂ φ = (1+
√

5)/2

Ag 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

T1g 3 φ −φ−1 0 −1 3 −φ−1 φ 0 −1 (Rx ,Ry ,Rz)

T2g 3 −φ−1 φ 0 −1 3 φ −φ−1 0 −1
Gg 4 −1 −1 1 0 4 −1 −1 1 0
Hg 5 0 0 −1 1 5 0 0 −1 1 (2z2 − x2 − y2,

x2 − y2,

xz, yz, xy)

Au 1 1 1 1 1 −1 −1 −1 −1 −1
T1u 3 φ −φ−1 0 −1 −3 φ−1 −φ 0 1 (x, y, z)

T2u 3 −φ−1 φ 0 −1 −3 −φ φ−1 0 1
Gu 4 −1 −1 1 0 −4 1 1 −1 0
Hu 5 0 0 −1 1 −5 0 0 1 −1
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A.2 Infinite Groups

Cylindrical Symmetry

C∞ Ê Ĉ2 Ĉφ

Σ 1 1 1 z x2 + y2, z2

Π

{

1 −1 exp(iφ)
(x, y) (xz, yz)

1 −1 exp(−iφ)



{

1 1 exp(2iφ)
(x2 − y2, xy)

1 1 exp(−2iφ)

Φ

{

1 −1 exp(3iφ) [x(x2 − 3y2), y(3x2 − y2)]
1 −1 exp(−3iφ)

C∞v Ê Ĉ2 2Ĉφ ∞σ̂v

Σ+ 1 1 1 1 z x2 + y2, z2

Σ− 1 1 1 −1 Rz

Π 2 −2 2 cos(φ) 0 (x, y)(Rx,Ry) (xz, yz)

 2 2 2 cos(2φ) 0 (x2 − y2, xy)

Φ 2 −2 2 cos(3φ) 0

C∞h Ê Ĉ2 Ĉφ ı̂ Ŝφ σ̂h

Σg 1 1 1 1 1 1 x2 + y2, z2

Πg

{

1 −1 exp(iφ) 1 − exp(iφ) −1
(xz, yz)

1 −1 exp(−iφ) 1 − exp(−iφ) −1

g

{

1 1 exp(2iφ) 1 exp(2iφ) 1
(x2 − y2, xy)

1 1 exp(−2iφ) 1 exp(−2iφ) 1

Φg

{

1 −1 exp(3iφ) 1 − exp(3iφ) −1

1 −1 exp(−3iφ) 1 − exp(−3iφ) −1

Σu 1 1 1 −1 −1 −1 z z3

Πu

{

1 −1 exp(iφ) −1 exp(iφ) 1
(x, y) (xz2, yz2)

1 −1 exp(−iφ) −1 exp(−iφ) 1

u

{

1 1 exp(2iφ) −1 − exp(2iφ) −1 ((x2 − y2)z,
xyz)1 1 exp(−2iφ) −1 − exp(−2iφ) −1

Φu

{

1 −1 exp(3iφ) −1 exp(3iφ) 1

1 −1 exp(−3iφ) −1 exp(−3iφ) 1
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D∞h Ê Ĉz
2 2Ĉφ ∞σ̂v ı̂ 2Ŝφ ∞Ĉ⊥2

Σ+
g 1 1 1 1 1 1 1 x2 + y2, z2

Σ−
g 1 1 1 −1 1 1 −1 Rz

Πg 2 −2 2 cos(φ) 0 2 −2 cos(φ) 0 (Rx,Ry) (xz, yz)

g 2 2 2 cos(2φ) 0 2 2 cos(2φ) 0 (x2 − y2, xy)

Φg 2 −2 2 cos(3φ) 0 2 −2 cos(3φ) 0
. . .
Σ+
u 1 1 1 1 −1 −1 −1 z

Σ−
u 1 1 1 −1 −1 −1 1

Πu 2 −2 2 cos(φ) 0 −2 2 cos(φ) 0 (x, y)

u 2 2 2 cos(2φ) 0 −2 −2 cos(2φ) 0
Φu 2 −2 2 cos(3φ) 0 −2 2 cos(3φ) 0

Spherical Symmetry

SO(3) Ê ∞Ĉ
φθ
α

S 1 1 x2 + y2 + z2

P 3 1+ 2 cosα (x, y, z)(Rx,Ry,Rz)

D 5 1+ 2 cosα + 2 cos 2α (2z2 − x2 − y2,

x2 − y2, xz, yz, xy)

. . .

L 2L+ 1
sin(L+ 1

2 )α

sin 1
2α

O(3) Ê ∞Ĉ
φθ
α ı̂ ∞σ̂ ∞Ŝ

θ,φ
α

Sg 1 1 1 1 1 x2 + y2 + z2

Pg 3 1+ 2 cosα 3 −1 1− 2 cosα (Rx,Ry,Rz)

Dg 5 1+ 2 cosα 5 1 1− 2 cosα d-orbitals
+ 2 cos 2α + 2 cos 2α

Lg 2L+ 1
sin(L+ 1

2 )α

sin 1
2α

2L+ 1 (−1)L
(−1)L cos(L+ 1

2 )α

cos 1
2α

. . .
Su 1 1 −1 −1 −1
Pu 3 1+ 2 cosα −3 1 −1+ 2 cosα p-orbitals
Du 5 1+ 2 cosα −5 −1 −1+ 2 cosα

+ 2 cos 2α − 2 cos 2α

Lu 2L+ 1
sin(L+ 1

2 )α

sin 1
2α

−(2L+ 1) (−1)L+1 (−1)L+1 cos(L+ 1
2 )α

cos 1
2α
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Symmetry Breaking by Uniform Linear Electric
and Magnetic Fields
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B.1 Spherical Groups

G B E

T C3,C2,C1 C3,C2,C1

Td S4,C3,C2,Cs,C1 C3v,C2v,Cs,C1

Th S6,C2h,Ci C3,C2,Cs,C1

O C4,C3,C2,C1 C4,C3,C2,C1

Oh C4h, S6,C2h,Ci C4v,C3v,C2v,Cs,C1

I C5,C3,C2,C1 C5,C3,C2,C1

Ih S10, S6,C2h,Ci C5v,C3v,C2v,Cs,C1

B.2 Binary and Cylindrical Groups

The ‖ notation refers to a field oriented along the principal cylindrical axis; in the
⊥ direction several symmetry breakings are possible: C2 symmetry implies that the
field coincides with the Ĉ2 axis; a magnetic field perpendicular to a symmetry plane
or an electric field in a symmetry plane will conserve at least Cs symmetry.
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G B E

‖ ⊥ ‖ ⊥

Ci Ci C1
Cs C1 Cs Cs C1
C2 C2 C1 C2 C1
Cn Cn C1 Cn C1
Dn Cn C2,C1 Cn C2,C1
Cnv Cn Cs,C1 Cnv Cs,C1
C2nh C2nh Ci C2n Cs

C(2n+1)h C(2n+1)h C1 C2n+1 Cs

S4n S4n C1 C2n C1
S4n+2 S4n+2 Ci C2n+1 C1
D2nh C2nh C2h,Ci C2nv C2v,Cs

D(2n+1)h C(2n+1)h C2,Cs,C1 C(2n+1)v C2,Cs

D2nd S4n C2,Cs,C1 C2nv C2,Cs,C1
D(2n+1)d S4n+2 C2h,Ci C(2n+1)v C2,Cs,C1
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C.1 Subduction G ↓ H

C6v C6 Cv
3v Cd

3v C2v

2Ĉ3,3σ̂v 2Ĉ3,3σ̂d

A1 A A1 A1 A1

A2 A A2 A2 A2

B1 B A1 A2 B1

B2 B A2 A1 B2

E1 E1 E E B1 +B2

E2 E2 E E A1 +A2
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D4h D2d C4h Czv
2v Czd

2v C′2v C′′2v
Ĉz

2,2Ĉ′2,2σ̂d Ĉz
2,2σ̂v Ĉz

2,2σ̂d Ĉ′2, σ̂h, σ̂v Ĉ′′2 , σ̂h, σ̂d

A1g A1 Ag A1 A1 A1 A1

A2g A2 Ag A2 A2 B1 B1

B1g B1 Bg A1 A2 A1 B1

B2g B2 Bg A2 A1 B1 A1

Eg E E B1 +B2 B1 +B2 A2 +B2 A2 +B2

A1u B1 Au A2 A2 A2 A2

A2u B2 Au A1 A1 B2 B2

B1u A1 Bu A2 A1 A2 B2

B2u A2 Bu A1 A2 B2 A2

Eu E E B1 +B2 B1 +B2 A1 +B1 A1 +B1

D3d S6 C3v C2h

A1g Ag A1 Ag

A2g Ag A2 Bg

Eg Eg E Ag +Bg

A1u Au A2 Au

A2u Au A1 Bu

Eu Eu E Au +Bu

Td D2d C3v D2 C2v S4

A1 A1 A1 A A1 A

A2 B1 A2 A A2 B

E A1 +B1 E 2A A1 +A2 A+B

T1 A2 +E A2 +E B1 +B2 +B3 A2 +B1 +B2 A+E

T2 B2 +E A1 +E B1 +B2 +B3 A1 +B1 +B2 B +E

Th D2h S6 C2v C2h

Ag Ag Ag A1 Ag

Au Au Au A2 Au

Eg 2Ag Eg 2A1 2Ag

Eu 2Au Eu 2A2 2Au

Tg B1g +B2g +B3g Ag +Eg A2 +B1 +B2 Ag + 2Bg

Tu B1u +B2u +B3u Au +Eu A1 +B1 +B2 Au + 2Bu
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Oh Td D4h D3d Th Dz
2h D′2h

A1g A1 A1g A1g Ag Ag Ag

A2g A2 B1g A2g Ag Ag B1g

Eg E A1g +B1g Eg Eg 2Ag Ag +B1g

T1g T1 A2g +Eg A2g +Eg Tg B1g +B2g +B3g B1g +B2g +B3g

T2g T2 B2g +Eg A1g +Eg Tg B1g +B2g +B3g Ag +B2g +B3g

A1u A2 A1u A1u Au Au Au

A2u A1 B1u A2u Au Au B1u

Eu E A1u +B1u Eu Eu 2Au Au +B1u

T1u T2 A2u +Eu A2u +Eu Tu B1u +B2u +B3u B1u +B2u +B3u

T2u T1 B2u +Eu A1u +Eu Tu B1u +B2u +B3u Au +B2u +B3u

Ih Th D5d D3d D2h C2v

Ag Ag A1g A1g Ag A1

T1g Tg A2g +E1g A2g +Eg B1g +B2g +B3g A2 +B1 +B2

T2g Tg A2g +E2g A2g +Eg B1g +B2g +B3g A2 +B1 +B2

Gg Ag + Tg E1g +E2g A1g +A2g Ag +B1g A1 +A2 +B1

+Eg +B2g +B3g +B2

Hg Eg + Tg A1g +E1g A1g + 2Eg 2Ag +B1g 2A1 +A2 +B1

+E2g +B2g +B3g +B2

Au Au A1u A1u Au A2

T1u Tu A2u +E1u A2u +Eu B1u +B2u +B3u A1 +B1 +B2

T2u Tu A2u +E2u A2u +Eu B1u +B2u +B3u A1 +B1 +B2

Gu Au + Tu E1u +E2u A1u +A2u Au +B1u A1 +A2 +B1

+Eu +B2u +B3u +B2

Hu Eu + Tu A1u +E1u A1u + 2Eu 2Au +B1u A1 + 2A2 +B1

+E2u +B2u +B3u +B2
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SO(3) I O

ℓ

0 (S) A A1

1 (P ) T1 T1

2 (D) H E + T2

3 (F ) T2 +G A2 + T1 + T2

4 (G) G+H A1 +E + T1 + T2

5 T1 + T2 +H E + 2T1 + T2

6 A+ T1 +G+H A1 +A2 +E + T1 + 2T2

7 T1 + T2 +G+H A2 +E + 2T1 + 2T2

8 T2 +G+ 2H A1 + 2E + 2T1 + 2T2

9 T1 + T2 + 2G+H A1 +A2 +E + 3T1 + 2T2

10 A+ T1 + T2 +G+ 2H A1 +A2 + 2E + 2T1 + 3T2

11 2T1 + T2 +G+ 2H A2 + 2E + 3T1 + 3T2

12 A+ T1 + T2 + 2G+ 2H A1 + Γreg



C.2 Induction: H ↑G 211

C.2 Induction: H ↑ G

Ascent in symmetry tables have been provided by Boyle [4]. Fowler and Quinn
have listed the irreps that are induced by σ -, π -, and δ-type orbitals on molecu-
lar sites [5]. These tables are reproduced below. They are useful for the construc-
tion of cluster orbitals. Γreg always denotes the regular representation. Γσ corre-
sponds to the positional representation. The mechanical representation is the sum
Γσ + Γπ .

G H G
H

Γσ Γπ Γδ

D2 Cz
2 2 A+B1 2B2 + 2B3 2Γσ

D3 C2 3 A1 +E 2A2 + 2E 2Γσ
D4 C4 2 A1 +A2 2E 2B1 + 2B2

C′2 4 A1 +B1 +E 2A2 + 2B2 + 2E 2Γσ
C′′2 4 A2 +B2 +E 2A2 + 2B1 + 2E 2Γσ

D5 C5 2 A1 +A2 2E1 2E2

C2 4 A1 +E1 +E2 2A2 + 2E1 + 2E2 2Γσ
D6 C6 6 A1 +A2 2E1 2E2

C′2 4 A1 +B1 +E1 +E2 2A2 + 2B2 + 2E1 + 2E2 2Γσ
C′′2 4 A1 +B2 +E1 +E2 2A2 + 2B1 + 2E1 + 2E2 2Γσ

C2v Cxz
s 2 A1 +B1 Γreg Γreg

C3v Cs 3 A1 +E Γreg Γreg

C4v Cv
s 4 A1 +B1 +E Γreg Γreg

Cd
s 4 A1 +B2 +E Γreg Γreg

C5v Cs 5 A1 +E1 +E2 Γreg Γreg

C6v Cv
s 6 A1 +B1 +E1 +E2 Γreg Γreg

Cd
s 6 A1 +B2 +E1 +E2 Γreg Γreg

C2h C2 2 Ag +Au 2Bg + 2Bu 2Γσ
Cs 2 Ag +Bu Γreg Γreg

C3h C3 2 A′ +A′′ E′ +E′′ E′ +E′′

Cs 3 A′ +E′ Γreg Γreg

C4h C4 2 Ag +Au Eg +Eu 2Bg + 2Bu

Cs 4 Ag +Bg +Eu Γreg Γreg

C5h C5 2 A′ +A′′ E′1 +E′′1 E′2 +E′′2
Cs 5 A′ +E′1 +E′2 Γreg Γreg

C6h C6 2 Ag +Au E1g +E1u E2g +E2u

Cs 6 Ag +Bu +E2g Γreg Γreg

+E1u

S4 C2 2 A+B 2E 2Γσ
S6 C3 2 Ag +Au Eg +Eu Eg +Eu
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G H
|G|
|H | Γσ Γπ Γδ

D2h Cz
2v 2 Ag +B1u B2g +B2u +B3g Ag +Au +B1g

+B3u +B1u

C
xy
s 4 Ag +B1g +B2u Γreg Γreg

+B3u

D3h C3v 2 A′1 +A′′2 E′ +E′′ E′ +E′′

C2v 3 A′1 +E′ A′1 +A′′2 +E′ +E′′ A′1 +A′′1 +E′ +E′′

Cv
s 6 A′1 +A′′2 +E′ +E′′ Γreg Γreg

D4h C4v 2 A1g +A2u Eg +Eu B1g +B1u +B2g

+B2u

C′2v 4 A1g +B1g +Eu A2g +A2u +B2g A1g +A1u +B1g

+B2u +Eg +Eu +B1u +Eg +Eu

C′′2v 4 A1g +B2g +Eu A2g +A2u +B1g A1g +A1u +B2g

+B1u +Eg +Eu +B2u +Eg +Eu

Ch
s 8 A1g +A2g +B1g Γreg Γreg

+B2g + 2Eu

Cv
s 8 A1g +A2u +B1g Γreg Γreg

+B2u +Eg +Eu

Cd
s 8 A1g +A2u +B1u Γreg Γreg

+B2g +Eg +Eu

D5h C5v 2 A′1 +A′′2 E′1 +E′′1 E′2 +E′′2
C2v 5 A′1 +E′1 +E′2 A′2 +A′′2 +E′1 +E′′1 A′1 +A′′1 +E′1 +E′′1

+E′2 +E′′2 +E′2 +E′′2
Ch
s 10 A′1 +A′2 + 2E′1 + 2E′2 Γreg Γreg

Cv
s 10 A′1 +A′′2 +E′1 +E′′1 Γreg Γreg

+E′2 +E′′2
D6h C6v 2 A1g +A2u E1g +E1u E2g +E2u

C′2v 6 A1g +B1u +E1u A2g +A2u +B2g A1g +A1u +B1g

+E2g +B2u +E1g +E1u +B1u +E1g

+E2g +E2u +E1u +E2g +E2u

C′′2v 6 A1g +B2u +E1u A2g +A2u +B1g A1g +A1u +B2g

+E2g +B1u +E1g +E1u +B2u +E1g

+E2g +E2u +E1u +E2g +E2u

Ch
s 12 A1g +A2g +B1u Γreg Γreg

+B2u + 2E1u + 2E2g

Cv
s 12 A1g +A2u +B1g Γreg Γreg

+B2u +E1g +E1u

+E2g +E2u

Cd
s 12 A1g +A2u +B1g Γreg Γreg

+B2u +E1g +E1u

+E2g +E2u
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G H
|G|
|H | Γσ Γπ Γδ

D2d Cz
2v 2 A1 +B2 2E A1 +A2 +B1 +B2

C′2 4 A1 +B1 +E 2A2 + 2B2 + 2E 2Γσ
Cs 4 A1 +B2 +E Γreg Γreg

D3d C3v 2 A1g +A2u Eg +Eu Eg +Eu

C2 6 A1g +A1u +Eg +Eu 2A2g + 2A2u 2Γσ
+ 2Eg + 2Eu

Cs 6 A1g +A2u +Eg +Eu Γreg Γreg

D4d C4v 2 A1 +B2 E1 +E3 2E2

C′2 8 A1 +B1 +E1 +E2 2A2 + 2B2 + 2E1 2Γσ
+E3 + 2E2 + 2E3

Cs 8 A1 +B2 +E1 +E2 Γreg Γreg

+E3

D5d C5v 2 A1g +A2u E1g +E1u E2g +E2u

C2 10 A1g +A1u +E1g 2A2g + 2A2u + 2E1g 2Γσ
+E1u +E2g +E2u + 2E1u + 2E2g

+ 2E2u

Cs 10 A1g +A2u +E1g Γreg Γreg

+E1u +E2g +E2u

D6d C6v 2 A1 +B2 E1 +E5 E2 +E4

C′2 12 A1 +B1 +E1 +E2 2A2 + 2B2 + 2E1 2Γσ
+E3 +E4 +E5 + 2E2 + 2E3

+ 2E4 + 2E5

Cs 12 A1 +B2 +E1 +E2 Γreg Γreg

+E3 +E4 +E5

T C3 4 A+ T E + 2T Γπ

C2 6 A+E + T 4T 2Γσ
Td C3v 4 A1 + T2 E + T1 + T2 Γπ

C2v 6 A1 +E + T2 2T1 + 2T2 A1 +A2 + 2E

+ T1 + T2

Cs 12 A1 +E + T1 + 2T2 Γreg Γreg

Th C3 8 Ag +Au + Tg + Tu Eg +Eu + 2Tg + 2Tu Γπ

C2v 6 Ag +Eg + Tu 2Tg + 2Tu Ag +Au +Eg

+Eu + Tg + Tu

Cs 12 Ag +Eg + Tg + 2Tu Γreg Γreg

O C4 6 A1 +E + T1 2T1 + 2T2 2A2 + 2E + 2T2

C3 8 A1 +A2 + T1 + T2 2E + 2T1 + 2T2 Γπ

C2 12 A1 +E + T1 + 2T2 2A2 + 2E + 4T1 + 2T2 2Γσ



214 C Subduction and Induction

G H
|G|
|H | Γσ Γπ Γδ

Oh C4v 6 A1g +Eg + T1u T1g + T1u + T2g + T2u A2g +A2u +Eg

+Eu + T2g + T2u

C3v 8 A1g +A2u + T1u Eg +Eu + T1g + T1u Γπ

+ T2g + T2g + T2u

C2v 12 A1g +Eg + T1u A2g +A2u +Eg +Eu A1g +A1u +Eg

+ T2g + T2u + 2T1g + 2T1u +Eu + T1g + T1u

+ T2g + T2u + 2T2g + 2T2u

Ch
s 24 A1g +A2g + 2Eg Γreg Γreg

+ T1g + 2T1u + T2g

+ 2T2u

Cd
s 24 A1g +A2u +Eg Γreg Γreg

+Eu + T1g + 2T1u

+ 2T2g + T2u

I C5 12 A+ T1 + T2 +H 2T1 + 2G+ 2H 2T2 + 2G+ 2H

C3 20 A+ T1 + T2 2T1 + 2T2 + 2G Γπ

+ 2G+H + 4H

C2 30 A+ T1 + T2 4T1 + 4T2 + 4G 2Γσ
+ 2G+ 3H + 4H

Ih C5v 12 Ag + T1u + T2u +Hg T1g + T1u +Gg T2g + T2u +Gg

+Gu +Hg +Hu +Gu +Hg +Hu

C3v 20 Ag + T1u + T2u T1g + T1u + T2g Γπ

+Gg +Gu +Hg + T2u +Gg +Gu

+ 2Hg + 2Hu

C2v 30 Ag + T1u + T2u +Gg 2T1g + 2T1u + 2T2g Ag +Au + T1g + T1u

+Gu + 2Hg +Hu + 2T2u + 2Gg + T2g + T2u + 2Gg

+ 2Gu + 2Hg + 2Gu + 3Hg + 3Hu

+ 2Hu

Cs 60 Ag + T1g + 2T1u Γreg Γreg

+ T2g + 2T2u + 2Gg

+ 2Gu + 3Hg + 2Hu



Appendix D

Canonical-Basis Relationships

The importance of canonical-basis relationships was demonstrated by Griffith in his
monumental work on the theory of transition-metal ions [6]. The icosahedral basis
sets were defined by Boyle and Parker [7].

D3 D(Cz
3) D(Cx

2 )

|Ex〉, |Ey〉

⎛

⎝

− 1
2 −

√
3

2

+
√

3
2 − 1

2

⎞

⎠

(

1 0
0 −1

)

D4 D(Cz
4) D(Cx

2 )

|Ex〉, |Ey〉
(

0 −1
1 0

) (

1 0
0 −1

)

D5 D(Cz
5) D(Cx

2 )

|E1x〉, |E1y〉
(

cos(2π/5) − sin(2π/5)
sin(2π/5) cos(2π/5)

) (

1 0
0 −1

)

|E2x〉, |E2y〉
(

cos(4π/5) − sin(4π/5)
sin(4π/5) cos(4π/5)

) (

1 0
0 −1

)

D6 D(Cz
6) D(Cx

2 )

|E1x〉, |E1y〉

⎛

⎝

1
2 −

√
3

2

+
√

3
2

1
2

⎞

⎠

(

1 0
0 −1

)

|E2x〉, |E2y〉

⎛

⎝

− 1
2 −

√
3

2

+
√

3
2 − 1

2

⎞

⎠

(

1 0
0 −1

)
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Fig. D.1 Octahedron with x, y, z coordinates in D4 and D3 setting

O (D4 basis) D(Cz
4) D(C

xyz

3 )

|Eθ 〉, |Eǫ〉
(

1 0
0 −1

)

⎛

⎝

− 1
2 −

√
3

2

+
√

3
2 − 1

2

⎞

⎠

|T1x〉, |T1y〉, |T1z〉

⎛

⎝

0 −1 0
1 0 0
0 0 1

⎞

⎠

⎛

⎝

0 0 1
1 0 0
0 1 0

⎞

⎠

|T2ξ 〉, |T2η〉, |T2ζ 〉

⎛

⎝

0 1 0
−1 0 0
0 0 −1

⎞

⎠

⎛

⎝

0 0 1
1 0 0
0 1 0

⎞

⎠

(See Fig. D.1.) Transformation to trigonal basis set:

|Eθ 〉 = dz2 =
1√
3
(−dx′2−y′2 −

√
2dy′z′)

|Eǫ〉 = dx2−y2 =
1√
3
(dx′y′ +

√
2dx′z′)

|T1a〉 =
1√
3

(

|T1x〉 + |T1y〉 + |T1z〉
)

= pz′

|T1θ 〉 =
1√
2

(

|T1x〉 − |T1y〉
)

= px′

|T1ǫ〉 =
1√
6

(

|T1x〉 + |T1y〉 − 2|T1z〉
)

= py′
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Fig. D.2 Icosahedron with
x, y, z coordinates in D2
setting

|T2a〉 =
1√
3

(

|T2ξ 〉 + |T2η〉 + |T2ζ 〉
)

= dz′2

|T2θ 〉 =
1√
6

(

|T2ξ 〉 + |T2η〉 − 2|T2ζ 〉
)

= 1√
3
(
√

2dx′2−y′2 − dy′z′)

|T2ǫ〉 =
1√
2

(

|T2η〉 − |T2ξ 〉
)

= 1√
3
(−
√

2dx′y′ + dx′z′)

O (D3 basis) D(Cz′
3 ) D(Cx′

2 )

|Eθ 〉, |Eǫ〉

⎛

⎝

− 1
2 −

√
3

2

+
√

3
2 − 1

2

⎞

⎠

(

1 0
0 −1

)

|T1a〉, |T1θ 〉, |T1ǫ〉

⎛

⎜

⎝

1 0 0

0 − 1
2 −

√
3

2

0 +
√

3
2 − 1

2

⎞

⎟

⎠

⎛

⎝

−1 0 0
0 1 0
0 0 −1

⎞

⎠

|T2a〉, |T2θ 〉, |T2ǫ〉

⎛

⎜

⎝

1 0 0

0 − 1
2 −

√
3

2

0 +
√

3
2 − 1

2

⎞

⎟

⎠

⎛

⎝

1 0 0
0 1 0
0 0 −1

⎞

⎠
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I (D2 basis, Fig. D.2) D(C5) D(C
xyz

3 ) D(Cz
2)

|T1x〉, |T1y〉, |T1z〉 1
2

⎛

⎝

1 −φ φ−1

φ φ−1 −1
φ−1 1 φ

⎞

⎠

⎛

⎝

0 0 1
1 0 0
0 1 0

⎞

⎠

⎛

⎝

−1 0 0
0 −1 0
0 0 1

⎞

⎠

|T2x〉, |T2y〉, |T2z〉 1
2

⎛

⎝

1 φ−1 −φ
−φ−1 −φ −1
−φ 1 −φ−1

⎞

⎠

⎛

⎝

0 0 1
1 0 0
0 1 0

⎞

⎠

⎛

⎝

−1 0 0
0 −1 0
0 0 1

⎞

⎠

|Ga〉, |Gx〉, |Gy〉,
|Gz〉

1
4

⎛

⎜

⎜

⎝

−1 −
√

5
√

5
√

5√
5 −3 −1 −1√
5 1 −1 3

−
√

5 −1 −3 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 0 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞

⎟

⎟

⎠

I |Hθ〉, |Hǫ〉, |Hξ 〉, |Hη〉, |Hζ 〉

D(C5) D(C
xyz

3 ) D(Cz
2)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− 1
4 −

√
3

4
1√
8

1√
2
− 1√

8

−
√

3
4

1
4 −

√
3√
8

0 −
√

3√
8

− 1√
8

√
3√
8

0 1
2

1
2

1√
2

0 − 1
2

1
2 0

1√
8

√
3√
8

1
2 0 − 1

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− 1
2 −

√
3

2 0 0 0
√

3
2 − 1

2 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

It is important to note that in the Boyle and Parker basis the |Hθ〉 and |Hǫ〉
components do not denote components that transform like the functions dz2 and
dx2−y2 , but refer to linear combinations of these:

|Hθ〉 =
√

3

8
dz2 +

√

5

8
dx2−y2

|Hǫ〉 = −
√

5

8
dz2 +

√

3

8
dx2−y2

Griffith has presented the subduction of spherical |JM〉 states to point-group
canonical bases for the case of the octahedral group. Similar tables for subduc-
tion to the icosahedral canonical basis have been published by Qiu and Ceulemans
[8]. Extensive tables of bases in terms of spherical harmonics for several branching
schemes are also provided by Butler [9].



Appendix E

Direct-Product Tables

Extensive direct-product tables are provided by Herzberg [10]. Antisymmetrized
and symmetrized parts of direct squares are indicated by braces and brackets, re-
spectively.

D3 A1 A2 E

A1 A1 A2 E
A2 A2 A1 E
E E E [A1 +E] + {A2}

D4 A1 A2 B1 B2 E

A1 A1 A2 B1 B2 E
A2 A2 A1 B2 B1 E
B1 B1 B2 A1 A2 E
B2 B2 B1 A2 A1 E
E E E E E [A1 +B1 +B2] + {A2}

D5 A1 A2 E1 E2

A1 A1 A2 E1 E2
A2 A2 A1 E1 E2
E1 E1 E1 [A1 +E2] + {A2} E1 +E2
E2 E2 E2 E1 +E2 [A1 +E1] + {A2}

D6 A1 A2 B1 B2 E1 E2

A1 A1 A2 B1 B2 E1 E2
A2 A2 A1 B2 B1 E1 E2
B1 B1 B2 A1 A2 E2 E1
B2 B2 B1 A2 A1 E2 E1
E1 E1 E1 E2 E2 [A1 +E2] + {A2} B1 +B2 +E1
E2 E2 E2 E1 E1 B1 +B2 +E1 [A1 +E2] + {A2}
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220 E Direct-Product Tables

Td A1 A2 E T1 T2

A1 A1 A2 E T1 T2
A2 A2 A1 E T2 T1
E E E [A1 +E] + {A2} T1 + T2 T1 + T2
T1 T1 T2 T1 + T2 [A1 +E + T2] + {T1} A2 +E + T1 + T2
T2 T2 T1 T1 + T2 A2 +E + T1 + T2 [A1 +E + T2] + {T1}

O A1 A2 E T1 T2

A1 A1 A2 E T1 T2
A2 A2 A1 E T2 T1
E E E [A1 +E] + {A2} T1 + T2 T1 + T2
T1 T1 T2 T1 + T2 [A1 +E + T2] + {T1} A2 +E + T1 + T2
T2 T2 T1 T1 + T2 A2 +E + T1 + T2 [A1 +E + T2] + {T1}

I A T1 T2 G H

A A T1 T2 G H

T1 T1 [A+H ] + {T1} G+H T2 +G+H T1 + T2 +G+H

T2 T2 G+H [A+H ] + {T2} T1 +G+H T1 + T2 +G+H

G G T2 +G+H T1 +G+H [A+G+H ] T1 + T2 +G+ 2H
+ {T1 + T2}

H H T1 + T2 +G T1 + T2 +G T1 + T2 +G [A+G+ 2H ]
+H +H + 2H + {T1 + T2 +G}



Appendix F

Coupling Coefficients

Coupling coefficients are denoted as 3Γ symbols: 〈ΓaγaΓbγb|Γ γ 〉. Their symme-
try properties were given in Sect. 6.3. Octahedral coefficients have been listed by
Griffith. Icosahedral coefficients are taken from the work of Fowler and Ceulemans
[11].

D3
A2 ×E E

x y

a2 x 0 −1
a2 y 1 0

D3
E ×E A1 A2 E

a1 a2 x y

x x 1√
2

0 − 1√
2

0

y y 1√
2

0 1√
2

0

x y 0 1√
2

0 1√
2

y x 0 − 1√
2

0 1√
2

D4
E ×E A1 A2 B1 B2

a1 a2 b1 b2

x x 1√
2

0 − 1√
2

0

y y 1√
2

0 1√
2

0

x y 0 1√
2

0 1√
2

y x 0 − 1√
2

0 1√
2
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D5
E1 ×E1 A1 A2 E2

a1 a2 c s

x x 1√
2

0 1√
2

0

y y 1√
2

0 − 1√
2

0

x y 0 1√
2

0 1√
2

y x 0 − 1√
2

0 1√
2

D5
E2 ×E2 A1 A2 E1

a1 a2 x y

c c 1√
2

0 − 1√
2

0

s s 1√
2

0 1√
2

0

c s 0 1√
2

0 1√
2

s c 0 − 1√
2

0 1√
2

D5
E1 ×E2 E1 E2

x y c s

x c 1√
2

0 − 1√
2

0

y s 1√
2

0 1√
2

0

x s 0 1√
2

0 1√
2

y c 0 − 1√
2

0 1√
2

D6
E1 ×E1 A1 A2 E2

a1 a2 c s

x x 1√
2

0 1√
2

0

y y 1√
2

0 − 1√
2

0

x y 0 1√
2

0 1√
2

y x 0 − 1√
2

0 1√
2
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D6
E2 ×E2 A1 A2 E1

a1 a2 x y

c c 1√
2

0 − 1√
2

0

s s 1√
2

0 1√
2

0

c s 0 1√
2

0 1√
2

s c 0 − 1√
2

0 1√
2

D6

E1 ×E2 B1 B2 E1

b1 b2 x y

x c 1√
2

0 1√
2

0

y s − 1√
2

0 1√
2

0

x s 0 1√
2

0 1√
2

y c 0 1√
2

0 − 1√
2

O

A2 ×E E

θ ǫ

a2 θ 0 −1
a2 ǫ 1 0

O

A2 × T1 T2
ξ η ζ

a2 x 1 0 0
a2 y 0 1 0
a2 z 0 0 1

O

A2 × T2 T1
x y z

a2 ξ 1 0 0
a2 η 0 1 0
a2 ζ 0 0 1

O

E ×E A1 A2 E

a1 a2 θ ǫ

θ θ 1√
2

0 − 1√
2

0

ǫ ǫ 1√
2

0 1√
2

0

θ ǫ 0 1√
2

0 1√
2

ǫ θ 0 − 1√
2

0 1√
2
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O

E × T1 T1 T2
x y z ξ η ζ

θ x − 1
2 0 0 −

√
3

2 0 0

θ y 0 − 1
2 0 0

√
3

2 0
θ z 0 0 1 0 0 0

ǫ x
√

3
2 0 0 − 1

2 0 0

ǫ y 0 −
√

3
2 0 0 − 1

2 0
ǫ z 0 0 0 0 0 1

O

E × T2 T1 T2
x y z ξ η ζ

θ ξ −
√

3
2 0 0 − 1

2 0 0

θ η 0
√

3
2 0 0 − 1

2 0
θ ζ 0 0 0 0 0 1

ǫ ξ − 1
2 0 0

√
3

2 0 0

ǫ η 0 − 1
2 0 0 −

√
3

2 0
ǫ ζ 0 0 1 0 0 0

O

T1 × T1 or T2 × T2 A1 E

a1 θ ǫ

x x ξ ξ 1√
3

1√
6
− 1√

2
y y η η 1√

3
1√
6

1√
2

z z ζ ζ 1√
3
− 2√

6
0

O

T1 × T2 A2 E

a2 θ ǫ

x ξ 1√
3

− 1√
2

− 1√
6

y η 1√
3

1√
2

− 1√
6

z ζ 1√
3

0 2√
6

O

T1 × T1 or T2 × T2 T1 T2
x y z ξ η ζ

x y ξ η 0 0 − 1√
2

0 0 − 1√
2

x z ξ ζ 0 1√
2

0 0 − 1√
2

0

y x η ξ 0 0 1√
2

0 0 − 1√
2

y z η ζ − 1√
2

0 0 − 1√
2

0 0

z x ζ ξ 0 − 1√
2

0 0 − 1√
2

0

z y ζ η 1√
2

0 0 − 1√
2

0 0
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O

T1 × T2 T1 T2
x y z ξ η ζ

x η 0 0 − 1√
2

0 0 − 1√
2

x ζ 0 − 1√
2

0 0 1√
2

0

y ξ 0 0 − 1√
2

0 0 1√
2

y ζ − 1√
2

0 0 − 1√
2

0 0

z ξ 0 − 1√
2

0 0 − 1√
2

0

z η − 1√
2

0 0 1√
2

0 0

In the icosahedral tables, φ denotes the golden number (1 +
√

5)/2, and
α = 3φ − 1, β = 3φ−1 + 1.

I

T1 × T1 A T1 H

x y z θ ǫ ξ η θ

x x 1√
3

0 0 0 φ−1

2
φ2

2
√

3
0 0 0

x y 0 0 0 1√
2

0 0 0 0 1√
2

x z 0 0 − 1√
2

0 0 0 0 1√
2

0

y x 0 0 0 − 1√
2

0 0 0 0 1√
2

y y 1√
3

0 0 0 −φ
2 − φ−2

2
√

3
0 0 0

y z 0 1√
2

0 0 0 0 1√
2

0 0

z x 0 0 1√
2

0 0 0 0 1√
2

0

z y 0 − 1√
2

0 0 0 0 1√
2

0 0

z z 1√
3

0 0 0 1
2 −

√
5

2
√

3
0 0 0
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I

T1 × T2 G H

a x y z θ ǫ ξ η ζ

x x 1√
3

0 0 0 1√
6

− 1√
2

0 0 0

x y 0 0 0 −φ−1
√

3
0 0 0 0 φ√

3

x z 0 0 − φ√
3

0 0 0 0 −φ−1
√

3
0

y x 0 0 0 − φ√
3

0 0 0 0 −φ−1
√

3
y y 1√

3
0 0 0 1√

6
1√
2

0 0 0

y z 0 −φ−1
√

3
0 0 0 0 φ√

3
0 0

z x 0 0 −φ−1
√

3
0 0 0 0 φ√

3
0

z y 0 − φ√
3

0 0 0 0 −φ−1
√

3
0 0

z z 1√
3

0 0 0 −
√

2√
3

0 0 0 0

I

T1 ×G T2 G H

x y z a x y z θ ǫ ξ η ζ

x a 1
2 0 0 0 1√

3
0 0 0 0

√
5

2
√

3
0 0

x x 0 0 0 − 1√
3

0 0 0 − β

2
√

6
− φ

2
√

2
0 0 0

x y 0 0 − φ
2 0 0 0 1√

3
0 0 0 0 φ−2

2
√

3

x z 0 − φ−1

2 0 0 0 − 1√
3

0 0 0 0 φ2

2
√

3
0

y a 0 1
2 0 0 0 1√

3
0 0 0 0

√
5

2
√

3
0

y x 0 0 − φ−1

2 0 0 0 − 1√
3

0 0 0 0 φ2

2
√

3

y y 0 0 0 − 1√
3

0 0 0 α

2
√

6
− φ−1

2
√

2
0 0 0

y z − φ
2 0 0 0 1√

3
0 0 0 0 φ−2

2
√

3
0 0

z a 0 0 1
2 0 0 0 1√

3
0 0 0 0

√
5

2
√

3

z x 0 − φ
2 0 0 0 1√

3
0 0 0 0 φ−2

2
√

3
0

z y − φ−1

2 0 0 0 − 1√
3

0 0 0 0 φ2

2
√

3
0 0

z z 0 0 0 − 1√
3

0 0 0 − 1
2
√

6

√
5

2
√

2
0 0 0
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I

T2 ×G T1 G H

x y z a x y z θ ǫ ξ η ζ

x a 1
2 0 0 0 1√

3
0 0 0 0

√
5

2
√

3
0 0

x x 0 0 0 − 1√
3

0 0 0 α

2
√

6
φ−1

2
√

2
0 0 0

x y 0 0 − φ−1

2 0 0 0 − 1√
3

0 0 0 0 φ2

2
√

3

x z 0 − φ
2 0 0 0 1√

3
0 0 0 0 φ−2

2
√

3
0

y a 0 1
2 0 0 0 1√

3
0 0 0 0

√
5

2
√

3
0

y x 0 0 − φ
2 0 0 0 1√

3
0 0 0 0 φ−2

2
√

3
y y 0 0 0 − 1√

3
0 0 0 − β

2
√

6
φ

2
√

2
0 0 0

y z − φ−1

2 0 0 0 − 1√
3

0 0 0 0 φ2

2
√

3
0 0

z a 0 0 1
2 0 0 0 1√

3
0 0 0 0

√
5

2
√

3

z x 0 − φ−1

2 0 0 0 − 1√
3

0 0 0 0 φ2

2
√

3
0

z y − φ
2 0 0 0 1√

3
0 0 0 0 φ−2

2
√

3
0 0

z z 0 0 0 − 1√
3

0 0 0 − 1
2
√

6
−
√

5
2
√

2
0 0 0

I

T1 ×H T1 T2 G

x y z x y z a x y z

x θ
φ−1

√
3

2
√

5
0 0 1√

10
0 0 0 β√

30
0 0

x ǫ
φ2

2
√

5
0 0 − 3√

10
0 0 0 φ√

10
0 0

x ξ 0 0 0 0 0 0 − 1√
3

0 0 0

x η 0 0
√

3√
10

0 0 − φ−1
√

5
0 0 0 − φ2

√
15

x ζ 0
√

3√
10

0 0 φ√
5

0 0 0 − φ−2
√

15
0

y θ 0 − φ
√

3
2
√

5
0 0 1√

10
0 0 0 − α√

30
0

y ǫ 0 − φ−2

2
√

5
0 0 3√

10
0 0 0 φ−1

√
10

0

y ξ 0 0
√

3√
10

0 0 φ√
5

0 0 0 − φ−2
√

15
y η 0 0 0 0 0 0 − 1√

3
0 0 0

y ζ
√

3√
10

0 0 − φ−1
√

5
0 0 0 − φ2

√
15

0 0

z θ 0 0
√

3
2
√

5
0 0 −

√
2√
5

0 0 0 1√
30

z ǫ 0 0 − 1
2 0 0 0 0 0 0 − 1√

2

z ξ 0
√

3√
10

0 0 − φ−1
√

5
0 0 0 − φ2

√
15

0

z η
√

3√
10

0 0 φ√
5

0 0 0 − φ−2
√

15
0 0

z ζ 0 0 0 0 0 0 − 1√
3

0 0 0
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I

T2 × T2 A T2 H

x y z θ ǫ x y z

x x 1√
3

0 0 0 φ
2 − φ−2

2
√

3
0 0 0

x y 0 0 0 1√
2

0 0 0 0 − 1√
2

x z 0 0 − 1√
2

0 0 0 0 − 1√
2

0

y x 0 0 0 − 1√
2

0 0 0 0 − 1√
2

y y 1√
3

0 0 0 −φ−1

2
φ2

2
√

3
0 0 0

y z 0 1√
2

0 0 0 0 − 1√
2

0 0

z x 0 0 1√
2

0 0 0 0 − 1√
2

0

z y 0 − 1√
2

0 0 0 0 − 1√
2

0 0

z z 1√
3

0 0 0 − 1
2 −

√
5

2
√

3
0 0 0

I

T2 ×H T1 T2 G

x y z x y z a x y z

x θ 1√
10

0 0 φ
√

3
2
√

5
0 0 0 α√

30
0 0

x ǫ − 3√
10

0 0 − φ−2

2
√

5
0 0 0 φ−1

√
10

0 0

x ξ 0 0 0 0 0 0 1√
3

0 0 0

x η 0 0 φ√
5

0 0 −
√

3√
10

0 0 0 φ−2
√

15

x ζ 0 − φ−1
√

5
0 0 −

√
3√

10
0 0 0 φ2

√
15

0

y θ 0 1√
10

0 0 − φ−1
√

3
2
√

5
0 0 0 − β√

30
0

y ǫ 0 3√
10

0 0 φ2

2
√

5
0 0 0 φ√

10
0

y ξ 0 0 − φ−1
√

5
0 0 −

√
3√

10
0 0 0 φ2

√
15

y η 0 0 0 0 0 0 1√
3

0 0 0

y ζ
φ√
5

0 0 −
√

3√
10

0 0 0 φ−2
√

15
0 0

z θ 0 0 −
√

2√
5

0 0 −
√

3
2
√

5
0 0 0 − 1√

30
z ǫ 0 0 0 0 0 − 1

2 0 0 0 − 1√
2

z ξ 0 φ√
5

0 0 −
√

3√
10

0 0 0 φ−2
√

15

z η − φ−1
√

5
0 0 −

√
3√

10
0 0 0 φ2

√
15

0 0

z ζ 0 0 0 0 0 0 1√
3

0 0 0
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I

T1 ×H H

θ ǫ ξ η ζ

x θ 0 0 φ2

2
√

3
0 0

x ǫ 0 0 − φ−1

2 0 0

x ξ − φ2

2
√

3
φ−1

2 0 0 0

x η 0 0 0 0 1√
6

x ζ 0 0 0 − 1√
6

0

y θ 0 0 0 − φ−2

2
√

3
0

y ǫ 0 0 0 φ
2 0

y ξ 0 0 0 0 − 1√
6

y η
φ−2

2
√

3
− φ

2 0 0 0

y ζ 0 0 1√
6

0 0

z θ 0 0 0 0 −
√

5
2
√

3

z ǫ 0 0 0 0 − 1
2

z ξ 0 0 0 1√
6

0

z η 0 0 − 1√
6

0 0

z ζ
√

5
2
√

3
1
2 0 0 0

I

T2 ×H H

θ ǫ ξ η ζ

x θ 0 0 φ−2

2
√

3
0 0

x ǫ 0 0 φ
2 0 0

x ξ − φ−2

2
√

3
− φ

2 0 0 0

x η 0 0 0 0 1√
6

x ζ 0 0 0 − 1√
6

0

y θ 0 0 0 − φ2

2
√

3
0

y ǫ 0 0 0 − φ−1

2 0

y ξ 0 0 0 0 − 1√
6

y η
φ2

2
√

3
φ−1

2 0 0 0

y ζ 0 0 1√
6

0 0

z θ 0 0 0 0
√

5
2
√

3

z ǫ 0 0 0 0 − 1
2

z ξ 0 0 0 1√
6

0

z η 0 0 − 1√
6

0 0

z ζ −
√

5
2
√

3
1
2 0 0 0
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I

G×G A T1 T2

x y z x y z

a a 1
2 0 0 0 0 0 0

a x 0 1
2 0 0 1

2 0 0

a y 0 0 1
2 0 0 1

2 0

a z 0 0 0 1
2 0 0 1

2

x a 0 − 1
2 0 0 − 1

2 0 0

x x 1
2 0 0 0 0 0 0

x y 0 0 0 1
2 0 0 − 1

2

x z 0 0 − 1
2 0 0 1

2 0

y a 0 0 − 1
2 0 0 − 1

2 0

y x 0 0 0 − 1
2 0 0 1

2

y y 1
2 0 0 0 0 0 0

y z 0 1
2 0 0 − 1

2 0 0

z a 0 0 0 − 1
2 0 0 − 1

2

z x 0 0 1
2 0 0 − 1

2 0

z y 0 − 1
2 0 0 1

2 0 0

z z 1
2 0 0 0 0 0 0
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I

G×G G H

a x y z θ ǫ ξ η ζ

a a 1
2
√

3
0 0 0 0 0 0 0 0

a x 0 − 1
2
√

3
0 0 0 0

√
5

2
√

3
0 0

a y 0 0 − 1
2
√

3
0 0 0 0

√
5

2
√

3
0

a z 0 0 0 − 1
2
√

3
0 0 0 0

√
5

2
√

3

x a 0 − 1
2
√

3
0 0 0 0

√
5

2
√

3
0 0

x x − 1
2
√

3
0 0 0 − 1√

6
1√
2

0 0 0

x y 0 0 0 −
√

5
2
√

3
0 0 0 0 − 1

2
√

3

x z 0 0 −
√

5
2
√

3
0 0 0 0 − 1

2
√

3
0

y a 0 0 − 1
2
√

3
0 0 0 0

√
5

2
√

3
0

y x 0 0 0 −
√

5
2
√

3
0 0 0 0 − 1

2
√

3

y y − 1
2
√

3
0 0 0 − 1√

6
− 1√

2
0 0 0

y z 0 −
√

5
2
√

3
0 0 0 0 − 1

2
√

3
0 0

z a 0 0 0 − 1
2
√

3
0 0 0 0

√
5

2
√

3

z x 0 0 −
√

5
2
√

3
0 0 0 0 − 1

2
√

3
0

z y 0 −
√

5
2
√

3
0 0 0 0 − 1

2
√

3
0 0

z z − 1
2
√

3
0 0 0

√
2√
3

0 0 0 0
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I

H ×H A T1 T2
x y z x y z

θ θ 1√
5

0 0 0 0 0 0

θ ǫ 0 0 0 0 0 0 0

θ ξ 0 φ2

2
√

5
0 0 φ−2

2
√

5
0 0

θ η 0 0 − φ−2

2
√

5
0 0 − φ2

2
√

5
0

θ ζ 0 0 0 − 1
2 0 0 1

2

ǫ θ 0 0 0 0 0 0 0

ǫ ǫ 1√
5

0 0 0 0 0 0

ǫ ξ 0 −φ−1
√

3
2
√

5
0 0 φ

√
3

2
√

5
0 0

ǫ η 0 0 φ
√

3
2
√

5
0 0 −φ−1

√
3

2
√

5
0

ǫ ζ 0 0 0 −
√

3
2
√

5
0 0 −

√
3

2
√

5

ξ θ 0 − φ2

2
√

5
0 0 − φ−2

2
√

5
0 0

ξ ǫ 0 φ−1
√

3
2
√

5
0 0 −φ

√
3

2
√

5
0 0

ξ ξ 1√
5

0 0 0 0 0 0

ξ η 0 0 0 1√
10

0 0 1√
10

ξ ζ 0 0 − 1√
10

0 0 − 1√
10

0

η θ 0 0 φ−2

2
√

5
0 0 φ2

2
√

5
0

η ǫ 0 0 −φ
√

3
2
√

5
0 0 φ−1

√
3

2
√

5
0

η ξ 0 0 0 − 1√
10

0 0 − 1√
10

η η 1√
5

0 0 0 0 0 0

η ζ 0 1√
10

0 0 1√
10

0 0

ζ θ 0 0 0 1
2 0 0 − 1

2

ζ ǫ 0 0 0
√

3
2
√

5
0 0

√
3

2
√

5

ζ ξ 0 0 1√
10

0 0 1√
10

0

ζ η 0 − 1√
10

0 0 − 1√
10

0 0

ζ ζ 1√
5

0 0 0 0 0 0
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I

H ×H [G] {G}
a x y z a x y z

θ θ
√

3√
10

0 0 0 0 0 0 0

θ ǫ 0 0 0 0 − 1√
2

0 0 0

θ ξ 0 − 1
2
√

3
0 0 0

√
3

2
√

5
0 0

θ η 0 0 − 1
2
√

3
0 0 0 −

√
3

2
√

5
0

θ ζ 0 0 0 1√
3

0 0 0 0

ǫ θ 0 0 0 0 1√
2

0 0 0

ǫ ǫ
√

3√
10

0 0 0 0 0 0 0

ǫ ξ 0 1
2 0 0 0 1

2
√

5
0 0

ǫ η 0 0 − 1
2 0 0 0 1

2
√

5
0

ǫ ζ 0 0 0 0 0 0 0 − 1√
5

ξ θ 0 − 1
2
√

3
0 0 0 −

√
3

2
√

5
0 0

ξ ǫ 0 1
2 0 0 0 − 1

2
√

5
0 0

ξ ξ −
√

2√
15

0 0 0 0 0 0 0

ξ η 0 0 0 1√
6

0 0 0 −
√

3√
10

ξ ζ 0 0 1√
6

0 0 0
√

3√
10

0

η θ 0 0 − 1
2
√

3
0 0 0

√
3

2
√

5
0

η ǫ 0 0 − 1
2 0 0 0 − 1

2
√

5
0

η ξ 0 0 0 1√
6

0 0 0
√

3√
10

η η −
√

2√
15

0 0 0 0 0 0 0

η ζ 0 1√
6

0 0 0 −
√

3√
10

0 0

ζ θ 0 0 0 1√
3

0 0 0 0

ζ ǫ 0 0 0 0 0 0 0 1√
5

ζ ξ 0 0 1√
6

0 0 0 −
√

3√
10

0

ζ η 0 1√
6

0 0 0
√

3√
10

0 0

ζ ζ −
√

2√
15

0 0 0 0 0 0 0
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I

H ×H Ha Hb

θ ǫ ξ η ζ θ ǫ ξ η ζ

θ θ
√

3
2
√

2
0 0 0 0 0 1

2
√

2
0 0 0

θ ǫ 0 −
√

3
2
√

2
0 0 0 1

2
√

2
0 0 0 0

θ ξ 0 0 − 1
2
√

6
0 0 0 0

√
3

2
√

2
0 0

θ η 0 0 0 − 1
2
√

6
0 0 0 0 −

√
3

2
√

2
0

θ ζ 0 0 0 0 1√
6

0 0 0 0 0

ǫ θ 0 −
√

3
2
√

2
0 0 0 1

2
√

2
0 0 0 0

ǫ ǫ −
√

3
2
√

2
0 0 0 0 0 − 1

2
√

2
0 0 0

ǫ ξ 0 0 1
2
√

2
0 0 0 0 1

2
√

2
0 0

ǫ η 0 0 0 − 1
2
√

2
0 0 0 0 1

2
√

2
0

ǫ ζ 0 0 0 0 0 0 0 0 0 − 1√
2

ξ θ 0 0 − 1
2
√

6
0 0 0 0

√
3

2
√

2
0 0

ξ ǫ 0 0 1
2
√

2
0 0 0 0 1

2
√

2
0 0

ξ ξ − 1
2
√

6
1

2
√

2
0 0 0

√
3

2
√

2
1

2
√

2
0 0 0

ξ η 0 0 0 0 − 1√
3

0 0 0 0 0

ξ ζ 0 0 0 − 1√
3

0 0 0 0 0 0

η θ 0 0 0 − 1
2
√

6
0 0 0 0 −

√
3

2
√

2
0

η ǫ 0 0 0 − 1
2
√

2
0 0 0 0

√
1

2
√

2
0

η ξ 0 0 0 0 − 1√
3

0 0 0 0 0

η η − 1
2
√

6
− 1

2
√

2
0 0 0 −

√
3

2
√

2
1

2
√

2
0 0 0

η ζ 0 0 − 1√
3

0 0 0 0 0 0 0

ζ θ 0 0 0 0 1√
6

0 0 0 0 0

ζ ǫ 0 0 0 0 0 0 0 0 0 − 1√
2

ζ ξ 0 0 0 − 1√
3

0 0 0 0 0 0

ζ η 0 0 − 1√
3

0 0 0 0 0 0 0

ζ ζ 1√
6

0 0 0 0 0 − 1√
2

0 0 0
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Extensive character tables for double groups were provided by Herzberg. The
ℵ symbol in the present table corresponds to the Bethe rotation through an angle
of 2π . Spin-orbit coupling coefficients for the icosahedral double group have been
listed by Fowler and Ceulemans [12]. The notation ρ1, ρ2 for conjugate components
follows Griffith. The single-valued irreps in Appendix A also represent the double
groups. The rotation through 2π leaves these irreps invariant. Their characters under
R̂ and ℵR̂ are thus the same.

G.1 Character Tables

D∗2 Ê ℵ̂ 2Ĉz
2 2Ĉy

2 2Ĉx
2

E1/2(Γ5) 2 −2 0 0 0

D∗3 Ê ℵ̂ 2Ĉ3 2ℵ̂Ĉ3 3Ĉ2 3ℵ̂Ĉ2

E1/2(Γ4) 2 −2 1 −1 0 0
E3/2

{

ρ1 1 −1 −1 1 i −i
ρ2 1 −1 −1 1 −i i
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D∗4 Ê ℵ̂ 2Ĉ4 2ℵ̂Ĉ4 2Ĉ2 (= Ĉ2
4) 4Ĉ′2 4Ĉ′′2

E1/2(Γ6) 2 −2
√

2 −
√

2 0 0 0
E3/2(Γ7) 2 −2 −

√
2

√
2 0 0 0

D∗5 Ê ℵ̂ 2Ĉ5 2ℵ̂Ĉ5 2Ĉ2
5 2ℵ̂Ĉ2

5 5Ĉ′2 5ℵ̂Ĉ′2
E1/2 2 −2 φ −φ φ−1 −φ−1 0 0
E3/2 2 −2 −φ−1 φ−1 −φ φ 0 0
E5/2

{

ρ1 1 −1 −1 1 1 −1 i −i
ρ2 1 −1 −1 1 1 −1 −i i

D∗6 Ê ℵ̂ 2Ĉ6 2ℵ̂Ĉ6 2Ĉ3 2ℵ̂Ĉ3 2Ĉ2 6Ĉ′2 6Ĉ′′2

E1/2(Γ7) 2 −2
√

3 −
√

3 1 −1 0 0 0
E5/2(Γ8) 2 −2 −

√
3

√
3 1 −1 0 0 0

E3/2(Γ9) 2 −2 0 0 −2 2 0 0 0

T ∗ Ê ℵ̂ 4Ĉ3 4ℵ̂Ĉ3 4Ĉ2
3 4ℵ̂Ĉ2

3 6Ĉ2 ǫ = exp(2πi/3)

E1/2 2 −2 1 −1 −1 1 0
G3/2

{

E′′ 2 −2 ǫ −ǫ −ǭ ǭ 0
E′′′ 2 −2 ǭ −ǭ −ǫ ǫ 0

T ∗d Ê ℵ̂ 8Ĉ3 8ℵ̂Ĉ3 6Ĉ2 6Ŝ4 6ℵ̂Ŝ4 12σ̂d

O∗ Ê ℵ̂ 8Ĉ3 8ℵ̂Ĉ3 6Ĉ2 6Ĉ4 6ℵ̂Ĉ4 12Ĉ′2

E1/2(Γ6) 2 −2 1 −1 0
√

2 −
√

2 0
E5/2(Γ7) 2 −2 1 −1 0 −

√
2

√
2 0

G3/2(Γ8) 4 −4 −1 1 0 0 0 0

I ∗ Ê ℵ̂ 12Ĉ5 12ℵ̂Ĉ5 12Ĉ2
5 12ℵ̂Ĉ2

5 20Ĉ3 20ℵ̂Ĉ3 30Ĉ2

E1/2(Γ6) 2 −2 φ −φ φ−1 −φ−1 1 −1 0
E7/2(Γ7) 2 −2 −φ−1 φ−1 −φ φ 1 −1 0
G3/2(Γ8) 4 −4 1 −1 −1 1 −1 1 0
I5/2(Γ9) 6 −6 −1 1 1 −1 0 0 0
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G.2 Subduction

SO(3) I O

j

1/2 E1/2 E1/2
3/2 G3/2 G3/2
5/2 I5/2 E5/2 +G3/2
7/2 E7/2 + I5/2 E1/2 +E5/2 +G3/2
9/2 G3/2 + I5/2 E1/2 + 2G3/2
11/2 E1/2 +G3/2 + I5/2 E1/2 +E5/2 + 2G3/2
13/2 E1/2 +E7/2 +G3/2 + I5/2 E1/2 + 2E5/2 + 2G3/2
15/2 G3/2 + 2I5/2 E1/2 +E5/2 + 3G3/2
17/2 E7/2 +G3/2 + 2I5/2 2E1/2 +E5/2 + 3G3/2
19/2 E1/2 +E7/2 +G3/2 + 2I5/2 2E1/2 + 2E5/2 + 3G3/2

G.3 Canonical-Basis Relationships

D∗3 D(Cz
3) D(Cx

2 )

|E1/2α〉, |E1/2β〉
(

1−i
√

3
2 0

0 1+i
√

3
2

)

(

0 −i
−i 0

)

|E3/2ρ1〉 (−1) (i)

|E3/2ρ2〉 (−1) (−i)

D∗4 D(Cz
4) D(Cx

2 )

|E1/2α〉, |E1/2β〉
(

1−i√
2

0

0 1+i√
2

)

(

0 −i
−i 0

)

|E3/2α
′〉, |E3/2β

′〉
( −1+i√

2
0

0 −1−i√
2

)

(

0 −i
−i 0

)

The components of the fourfold-degenerate G3/2 irrep in O∗ and I ∗ are la-
beled as κ,λ,μ, and ν. For a quartet spin, these labels correspond to MS =
+3/2,+1/2,−1/2, and −3/2, respectively.

O∗ D(Cz
4) D(C

xyz

3 )

|E1/2α〉, |E1/2β〉 1√
2

(

1− i 0
0 1+ i

)

(

1−i
2

−1−i
2

1−i
2

1+i
2

)

|E5/2α
′〉, |E5/2β

′〉 1√
2

(

−1+ i 0
0 −1− i

)

(

1−i
2

−1−i
2

1−i
2

1+i
2

)
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O∗ |G3/2κ〉, |G3/2λ〉|G3/2μ〉, |G3/2ν〉

D(Cz
4)

1√
2

⎛

⎜

⎜

⎝

−1− i 0 0 0
0 1− i 0 0
0 0 1+ i 0
0 0 0 −1+ i

⎞

⎟

⎟

⎠

D(C
xyz

3 )

1
4

⎛

⎜

⎜

⎝

−1− i
√

3(−1+ i)
√

3(1+ i) 1− i√
3(−1− i) −1+ i −1− i

√
3(−1+ i)√

3(−1− i) 1− i −1− i
√

3(1− i)

−1− i
√

3(1− i)
√

3(1+ i) −1+ i

⎞

⎟

⎟

⎠

I ∗ D(C5) D(C
x,y,z

3 )

|E1/2α〉, |E1/2β〉 1
2

(

φ − i −iφ−1

−iφ−1 φ + i

)

1
2

(

1− i −1− i

1− i 1+ i

)

|E7/2α
′〉, |E7/2β

′〉 1
2

(

−φ−1 − i iφ

iφ −φ−1 + i

)

1
2

(

1− i −1− i

1− i 1+ i

)

I ∗ |G3/2κ〉, |G3/2λ〉|G3/2μ〉, |G3/2ν〉

D(C5)

1
8

⎛

⎜

⎜

⎝

−φ−1 − iφ4 −
√

3(2+ i)

−
√

3(2+ i) 3+ φ + i(3− φ−4)

−
√

3(φ−1 − iφ−2) −i(4+ φ−3)

iφ−3 −
√

3(φ−1 + iφ−2)

−
√

3(φ−1 − iφ−2) iφ−3

−i(4+ φ−3) −
√

3(φ−1 + iφ−2)

3+ φ + i(3− φ−4)
√

3(2− i)√
3(2− i) −φ−1 + iφ4

⎞

⎟

⎟

⎠

D(C
x,y,z

3 )

1
4

⎛

⎜

⎜

⎝

−1− i
√

3(−1+ i)
√

3(1+ i) 1− i√
3(−1− i) −1+ i −1− i

√
3(−1+ i)√

3(−1− i) 1− i −1− i
√

3(1− i)

−1− i
√

3(1− i)
√

3(1+ i) −1+ i

⎞

⎟

⎟

⎠
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I ∗I5/2 : |5/2〉, |3/2〉|1/2〉, |−1/2〉, |−3/2〉, |−5/2〉
D(C5)

1
32

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−7− i − φ(10+ 5i) −
√

5φ(4− 3i)
√

10(φ−3 + iφ2)

−
√

5φ(4− 3i) −5− 3i + 6φ−1 − 7iφ −
√

2(2+ i)(5φ − 2)√
10(φ−3 + iφ2) −

√
2(2+ i)(5φ − 2) 2φ3 − 2iφ2

√
10φ−2(2+ i) −

√
2(3+ 2φ + i − 3iφ) −2i(8+ φ)√

5(φ−3 − iφ−4) i(−8+ 7φ) −
√

2(3+ 2φ − i + 3iφ)

−iφ−5
√

5(φ−3 + iφ−4) −
√

10φ−2(2− i)
√

10φ−2(2+ i)
√

5(φ−3 − iφ−4) −iφ−5

−
√

2(3+ 2φ + i − 3iφ) i(−8+ 7φ)
√

5(φ−3 + iφ−4)

−2i(8+ φ) −
√

2(3+ 2φ − i + 3iφ) −
√

10φ−2(2− i)

2φ3 + 2iφ2
√

2(2− i)(5φ − 2)
√

10(φ−3 − iφ2)√
2(2− i)(5φ − 2) −5+ 3i + 6φ−1 + 7iφ

√
5φ(4+ 3i)√

10(φ−3 − iφ2)
√

5φ(4+ 3i) −7+ i − φ(10− 5i)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

D(C
x,y,z

3 )

1
8

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1+ i
√

5(1+ i)
√

10(1− i) −
√

10(1+ i)

−
√

5(1− i) 3(1+ i)
√

2(1− i)
√

2(1+ i)

−
√

10(1− i)
√

2(1+ i) 2(−1+ i) 2(1+ i)

−
√

10(1− i) −
√

2(1+ i) 2(−1+ i) −2(1+ i)

−
√

5(1− i) −3(1+ i)
√

2(1− i) −
√

2(1+ i)

−1+ i −
√

5(1+ i)
√

10(1− i)
√

10(1+ i)

−
√

5(1− i) 1+ i

3(1− i) −
√

5(1+ i)

−
√

2(1− i)
√

10(1+ i)

−
√

2(1− i) −
√

10(1+ i)

3(1− i)
√

5(1+ i)

−
√

5(1− i) −1− i

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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G.4 Direct-Product Tables

D∗3 E1/2 ρ1 ρ2

A1 E1/2 ρ1 ρ2
A2 E1/2 ρ2 ρ1
E E1/2 +E3/2 E1/2 E1/2
E1/2 [A2 +E] + {A1} E E

ρ1 E A2 A1
ρ2 E A1 A2

D∗4 E1/2 E3/2

A1 E1/2 E3/2
A2 E1/2 E3/2
B1 E3/2 E1/2
B2 E3/2 E1/2
E E1/2 +E3/2 E1/2 +E3/2
E1/2 [A2 +E] + {A1} B1 +B2 +E

E3/2 B1 +B2 +E [A2 +E] + {A1}

D∗5 E1/2 E3/2 ρ1 ρ2

A1 E1/2 E3/2 ρ1 ρ2
A2 E1/2 E3/2 ρ2 ρ1
E1 E1/2 +E3/2 E1/2 +E5/2 E3/2 E3/2
E2 E3/2 +E5/2 E1/2 +E3/2 E1/2 E1/2
E1/2 [A2 +E1] + {A1} E1 +E2 E2 E2
E3/2 E1 +E2 [A2 +E2] + {A1} E1 E1
ρ1 E2 E1 A2 A1
ρ2 E2 E1 A1 A2

D∗6 E1/2(Γ7) E5/2(Γ8) E3/2(Γ9)

A1 E1/2 E5/2 E3/2
A2 E1/2 E5/2 E3/2
B1 E5/2 E1/2 E3/2
B2 E5/2 E1/2 E3/2
E1 E1/2 +E3/2 E5/2 +E3/2 E1/2 +E5/2
E2 E5/2 +E3/2 E1/2 +E3/2 E1/2 +E5/2
E1/2 [A2 +E1] + {A1} B1 +B2 +E2 E1 +E2
E5/2 B1 +B2 +E2 [A2 +E1] + {A1} E1 +E2
E3/2 E1 +E2 E1 +E2 [A2 +B1 +B2] + {A1}
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O∗ E1/2 E5/2 G3/2

A1 E1/2 E5/2 G3/2

A2 E5/2 E1/2 G3/2

E G3/2 G3/2 E1/2 +E5/2 +G3/2

T1 E1/2 +G3/2 E5/2 +G3/2 E1/2 +E5/2 + 2G3/2

T2 E5/2 +G3/2 E1/2 +G3/2 E1/2 +E5/2 + 2G3/2

E1/2 [T1] + {A1} A2 + T2 E + T1 + T2

E5/2 A2 + T2 [T1] + {A1} E + T1 + T2

G3/2 E + T1 + T2 E + T1 + T2 [A2 + 2T1 + T2] + {A1 +E + T2}

I ∗ E1/2 E7/2 G3/2 I5/2

A E1/2 E7/2 G3/2 I5/2

T1 E1/2 +G3/2 I5/2 E1/2 +G3/2 + I5/2 E7/2 +G3/2 + 2I5/2

T2 I5/2 E7/2 +G3/2 E7/2 +G3/2 + I5/2 E1/2 +G3/2 + 2I5/2

G E7/2 + I5/2 E1/2 + I5/2 G3/2 + 2I5/2 E1/2 +E7/2 + 2G3/2

+ 2I5/2

H G3/2 + I5/2 G3/2 + I5/2 E1/2 +E7/2 +G3/2 E1/2 +E7/2 + 2G3/2

+ 2I5/2 + 3I5/2

E1/2 [T1] + {A} G T1 +H T2 +G+H

E7/2 G [T2] + {A} T2 +H T1 +G+H

G3/2 T1 +H T2 +H [T1 + T2 +G] T1 + T2 + 2G+ 2H

+ {A+H }
I5/2 T2 +G+H T1 +G+H T1 + T2 + 2G+ 2H [2T1 + 2T2 +G+H ]

+ {A+G+ 2H }

G.5 Coupling Coefficients

O∗

A2 ×G3/2 G3/2

κ λ μ ν

a2 κ 0 0 1 0

a2 λ 0 0 0 −1

a2 μ −1 0 0 0

a2 ν 0 1 0 0

O∗

E ×E1/2 G3/2

κ λ μ ν

θ α 0 −1 0 0

θ β 0 0 1 0

ǫ α 0 0 0 −1

ǫ β 1 0 0 0
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O∗

E ×E5/2 G3/2
κ λ μ ν

θ α′ 0 0 0 −1
θ β ′ 1 0 0 0
ǫ α′ 0 1 0 0
ǫ β ′ 0 0 −1 0

O∗

E ×G3/2 E1/2 E5/2 G3/2
α β α′ β ′ κ λ μ ν

θ κ 0 0 0 1√
2

1√
2

0 0 0

θ λ 1√
2

0 0 0 0 − 1√
2

0 0

θ μ 0 − 1√
2

0 0 0 0 − 1√
2

0

θ ν 0 0 − 1√
2

0 0 0 0 1√
2

ǫ κ 0 − 1√
2

0 0 0 0 1√
2

0

ǫ λ 0 0 1√
2

0 0 0 0 1√
2

ǫ μ 0 0 0 − 1√
2

1√
2

0 0 0

ǫ ν 1√
2

0 0 0 0 1√
2

0 0

Canonical complex T1 and T2 basis functions:

T1 : |1〉 = 1√
2

[

−|T1x〉 − i|T1y〉
]

|0〉 = |T1z〉

|−1〉 = 1√
2

[

|T1x〉 − i|T1y〉
]

T2 : |1〉 = 1√
2

[

−|T2x〉 − i|T2y〉
]

|0〉 = |T2z〉

|−1〉 = 1√
2

[

|T2x〉 − i|T2y〉
]
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O∗

T1 ×E1/2 E1/2 G3/2

α β κ λ μ ν

1 α 0 0 1 0 0 0

0 α 1√
3

0 0
√

2√
3

0 0

−1 α 0
√

2√
3

0 0 1√
3

0

1 β −
√

2√
3

0 0 1√
3

0 0

0 β 0 − 1√
3

0 0
√

2√
3

0

−1 β 0 0 0 0 0 1

O∗

T2 ×E1/2 E5/2 G3/2

α′ β ′ κ λ μ ν

1 α′ 0 0 0 0 1 0

0 α′ 1√
3

0 0 0 0 −
√

2√
3

−1 α′ 0
√

2√
3
− 1√

3
0 0 0

1 β ′ −
√

2√
3

0 0 0 0 − 1√
3

0 β ′ 0 − 1√
3
−
√

2√
3

0 0 0

−1 β ′ 0 0 0 1 0 0

O∗ T1 ×G3/2
E1/2 E5/2 G3/2 G3/2
α β α′ β ′ κ λ μ ν κ λ μ ν

1 κ 0 0 1√
6

0 0 0 0 0 0 0 0
√

5√
6

0 κ 0 0 0 − 1√
3

√
3√
5

0 0 0 − 1√
15

0 0 0

−1 κ 1√
2

0 0 0 0
√

2√
5

0 0 0 1√
10

0 0

1 λ 0 0 0 − 1√
2
−
√

2√
5

0 0 0 − 1√
10

0 0 0

0 λ − 1√
3

0 0 0 0 1√
15

0 0 0
√

3√
5

0 0

−1 λ 0 1√
6

0 0 0 0 2
√

2√
15

0 0 0 −
√

3√
10

0

1 μ 1√
6

0 0 0 0 − 2
√

2√
15

0 0 0
√

3√
10

0 0

0 μ 0 − 1√
3

0 0 0 0 − 1√
15

0 0 0 −
√

3√
5

0

−1 μ 0 0 − 1√
2

0 0 0 0
√

2√
5

0 0 0 1√
10

1 ν 0 1√
2

0 0 0 0 −
√

2√
5

0 0 0 − 1√
10

0

0 ν 0 0 − 1√
3

0 0 0 0 −
√

3√
5

0 0 0 1√
15

−1 ν 0 0 0 1√
6

0 0 0 0 −
√

5√
6

0 0 0

I ∗ T1 ×E1/2 T2 ×E1/2

E1/2 G3/2 I5/2

α β κ λ μ ν 5
2

3
2

1
2 − 1

2 − 3
2 − 5

2

1 α 0 0 1 0 0 0 1 α′ 0 − 1
4 0

√
5

2
√

2
0 −

√
5

4

0 α 1√
3

0 0
√

2√
3

0 0 0 α′ 1
2
√

2
0 1

2 0
√

5
2
√

2
0

−1 α 0
√

2√
3

0 0 1√
3

0 −1 α′ 0
√

5
4 0 − 1

2
√

2
0 − 3

4

1 β −
√

2√
3

0 0 1√
3

0 0 1 β ′ 3
4 0 1

2
√

2
0 −

√
5

4 0

0 β 0 − 1√
3

0 0
√

2√
3

0 0 β ′ 0 −
√

5
2
√

2
0 − 1

2 0 − 1
2
√

2

−1 β 0 0 0 0 0 1 −1 β ′
√

5
4 0 −

√
5

2
√

2
0 1

4 0
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I ∗ T1 ×G3/2
E1/2 G3/2 I5/2

α β κ λ μ ν 5
2

3
2

1
2 − 1

2 − 3
2 − 5

2

1 κ 0 0 0 0 0 0 1 0 0 0 0 0

0 κ 0 0
√

3√
5

0 0 0 0
√

2√
5

0 0 0 0

−1 κ − 1√
2

0 0
√

2√
5

0 0 0 0 1√
10

0 0 0

1 λ 0 0 −
√

2√
5

0 0 0 0
√

3√
5

0 0 0 0

0 λ 1√
3

0 0 1√
15

0 0 0 0
√

3√
5

0 0 0

−1 λ 0 − 1√
6

0 0 2
√

2√
15

0 0 0 0
√

3√
10

0 0

1 μ − 1√
6

0 0 − 2
√

2√
15

0 0 0 0
√

3√
10

0 0 0

0 μ 0 1√
3

0 0 − 1√
15

0 0 0 0
√

3√
5

0 0

−1 μ 0 0 0 0 0
√

2√
5

0 0 0 0
√

3√
5

0

1 ν 0 − 1√
2

0 0 −
√

2√
5

0 0 0 0 1√
10

0 0

0 ν 0 0 0 0 0 −
√

3√
5

0 0 0 0
√

2√
5

0

−1 ν 0 0 0 0 0 0 0 0 0 0 0 1



Solutions to Problems

1.1 The diagram for the product Ĉz
2 ı̂ is the same as in Fig. 1.1, except for the

intermediate point P2, which should be denoted by a circle instead of a cross,
since it is now below the gray disc. However, the end point P3 remains the same,
irrespective of the order of the operators. This implies that their commutator
vanishes.

1.2 Represent the rotation of the coordinates by the rotational matrix D as given by
(

x2

y2

)

=D

(

x1

y1

)

=
(

cosα − sinα

sinα cosα

)(

x1

y1

)

(

x2 y2
)

=
(

x1 y1
)

D
T =

(

x1 y1
)

(

cosα sinα

− sinα cosα

)

Express the sum x2
2 + y2

2 as the scalar product of the coordinate row with the
coordinate column and verify that this scalar product remains invariant under
the matrix transformation.

1.3 In general, the radius does not change if D is orthogonal, i.e., if

D
T ×D= I

1.4 Apply the general rule that a displacement of the function corresponds to an op-
posite coordinate displacement. As a result of the transformation, the function
acquires an additional phase factor:

Ta e
ikx = eik(x−a) = e−ikaeikx

1.5 The action of a rotation about the z-axis can be expressed by a differential
operator as

Ô(α)= cosα

(

x
∂

∂x
+ y

∂

∂y

)

+ sinα

(

y
∂

∂x
− x

∂

∂y

)

The unit element corresponds to α = 0, and hence,

Ê = Ô(0)=
(

x
∂

∂x
+ y

∂

∂y

)
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The angular momentum operator is given by

Lz = xpy − ypx

= �

i

(

x
∂

∂y
− y

∂

∂x

)

=−�

i
lim
α→0

Ô(α)− Ê

α

The angular momentum operator thus is proportional to an infinitesimal rotation
in the neighborhood of the unit element.

2.1 The condition that C be unitary gives rise to six equations:

1= |a|2 + |b|2

1= |a|2 + |c|2

1= |b|2 + |d|2

1= |c|2 + |d|2

0= |ac|ei(α−γ ) + |bd|ei(β−δ)

0= |ab|ei(α−β) + |cd|ei(γ−δ)

From these equations it is clear that |a| = |d| and |b| = |c|. The phase relation-
ships may be reduced to

ei(β+γ ) =−ei(α+δ)

With the help of these results the four matrix entries can be rewritten as

|a|eiα = |a|ei(α+δ)/2ei(α−δ)/2

|d|eiδ = |a|ei(α+δ)/2e−i(α−δ)/2

|b|eiβ = |b|ei(α+δ)/2ei[β−
α+δ

2 ]

|c|eiγ =−|b|ei(α+δ)/2ei[−β+
α+δ

2 ]

The general U(2) matrix may thus be rewritten as

U= ei(α+δ)/2
(

|a|ei(α−δ)/2 |b|ei[β− α+δ
2 ]

−|b|ei[−β+ α+δ
2 ] |a|e−i(α−δ)/2

)

with |a|2 + |b|2 = 1. Note that a general phase factor has been taken out. The
remaining matrix has determinant+1 and is called a special unitary matrix (see
further in Chap. 7).

2.2 The relevant integrals are given by

∫ 2π

0
e−ikφeikφdφ = [φ]2π0 = 2π

∫ 2π

0
e±2ikφdφ = 1

±2ik

[

e±2ikφ]2π
0 = 0
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The normalized cyclic waves are thus given by

| ± k〉 = 1√
2π

e±ikφ

and these waves are orthogonal: 〈−k|k〉 = 0.
2.3 The combination of transposition and complex conjugation is called the adjoint

operation, indicated by a dagger. A Hermitian matrix is thus self-adjoint. An
eigenfunction of this matrix, operating in a function space, may be expressed as
a linear combination

|ψm〉 =
∑

k

ck|fk〉

We may arrange the expansion coefficients as a column vector c. This is called
the eigenvector. Its adjoint, c†, is then the complex-conjugate row vector. The
corresponding eigenvalue is denoted as Em. Now start by writing the eigenvalue
equation and multiply left and right with the adjoint eigenvector:

Hc=Emc

c†
Hc=Emc†c

Now take the adjoint and use the self-adjoint property of H:

c†
H

†c= Ēmc†c

c†
Hc= Ēmc†c

A comparison of both results shows that the eigenvalue must be equal to its
complex conjugate and hence be real. If H is skew-symmetric, a similar argu-
ment shows that the eigenvalue must be imaginary.

3.1 The table is a valid multiplication table of a group that is isomorphic to D2. The
element C is the unit element. There are six ways to assign the three twofold
axes to the letters A,B,D.

3.2 Any nonlinear triatomic molecule with three different atoms has only Cs sym-
metry, e.g., a water molecule with one hydrogen replaced by deuterium. C2
symmetry requires a nonplanar tetra-atomic molecule, such as H2O2. In the
free state the dihedral angle of this molecule is almost a right angle (see the
figure). To realize Ci symmetry, one needs at least six atoms. Since three atoms
are always coplanar, the smallest molecule with no symmetry at all has at least
four atoms.
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3.3 There are only three regular tesselations of the plane: triangles, squares, and
hexagons.

3.4 The rotation generates points that are lying on a circle, perpendicular to the ro-
tation. If the rotational angle is not a rational fraction of a full angle, every time
the rotation is repeated, a new point will be generated. To obtain an integer or-
der, the additional requirement is to be added that the original point is retrieved
after one full turn.

3.5 Consider a subgroup H ⊂G such that |G|/|H | = 2. Then the coset expansion
of G will be limited to only two cosets:

G=H + ĝH

Here ĝ is a coset generator outside H . The subgroup is normal if the right and
left cosets coincide, Since there is only one coset outside H , it is required that

ĝH =Hĝ

Suppose that this equation does not hold. Then this can only mean that there are
elements in H such that

ĥx ĝ = ĥy

But then the coset generator must be an element of H , which contradicts the
staring assumption.

3.6 Soccer ball: Ih. Tennis ball: D2d . Basketball: D2h. Trefoil knot: D3.
3.7 The figure (from Wikipedia) shows the helix function for n= 1. One full turn

is realized for t/a = 2π ≈ 6.283. This is a right-handed helix.
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The enantiomeric function reads:

x(t)= a cos

(

nt

a

)

y(t)= a sin

(

−nt

a

)

z(t)= t

Note that a uniform sign change of t would leave the right-handed helix un-
changed. For the discrete helix, the screw symmetry consists of a translation in
the z-direction over a distance 2πa/m in combination with a rotation around
the z-axis over an angle 2πn/m. If m is irrational, the helix will not be periodic,
and the screw symmetry is lost.

4.1 The site symmetry of a cube is Th. The cube is an invariant of its site group
and transforms as ag in Th. The set of five cubes thus spans the induced rep-
resentation: aTh ↑ Ih. Applying the Frobenius theorem to the subduction (see
Sect. C.1), one obtains

aTh ↑ Ih =Ag +Gg (1)

4.2 The irreps can be obtained from the induction table in Sect. C.2, as ΓπC3v ↑ Td :

ΓπC3v ↑ Td =E + T1 + T2 (2)

The SALCs shown span the tetrahedral E irrep, the one on the left is the
Eθ component, and the one on the right is the Eǫ component. Note that they
transform into each other by rotating all π -orbitals over 90◦ in the same sense
[13].

4.3 The 24 carbon atoms of coronene form three orbits: two orbits of six atoms,
corresponding to the internal hexagon and to the six atoms on the outer ring
that have bonds to the inner ring, and one orbit of the twelve remaining atoms.
The elements of the 6-orbit occupy sites of C′2v symmetry, based on Ĉ′2, σ̂h, σ̂v
in D6h. The pz orbitals on these sites transform as b1, and hence the induced
irreps are as in the case of benzene:

b1C2v ↑D6h = B2g +A2u +E1g +E2u (3)

The remaining 12-orbit connects carbon atoms with only Cs site symmetry,
the pz orbitals on these sites transforming as a′′. The induced irreps read:

a′′Cs ↑D6h = B1g +B2g +A1u +A2u + 2E1g + 2E2u (4)

The A1u and B1g irreps only appear in the 12-orbit, so we can infer that the
molecular orbitals with this symmetry will entirely be localized on the 12-
orbit. The SALCs can easily be constructed, as they should be antisymmetric
with respect to the σ̂v planes in order not to hybridize with the SALCs based
on the 6-orbits.
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4.4 The tangential π -orbitals transform as Γπ in the C5v site group of Ih. Accord-
ing to Sect. C.2, one has:

Γπ C5v ↑ Ih = T1g + T1u +Gg +Gu +Hg +Hu

4.5 When the projector that generated the component is characterized as P̂ Γi
kl , the

other components may be found by varying the k index.
4.6 Act with an operator Ŝ on the projector and carry out the substitution R̂ =

Ŝ−1T̂ :

ŜP̂
Γ0
11 = Ŝ

1

|G|
∑

R

R̂

= 1

|G|
∑

R

ŜR̂ = 1

|G|
∑

T

T̂ = P̂
Γ0
11

4.7 Applying the inverse transformation to the SALCs of the hydrogens in ammo-
nia yields

(

|sp2
A〉 |sp2

B〉 |sp2
C〉
)

=
(

|2s〉 |2px〉 |2py〉
)

⎛

⎜

⎜

⎝

1√
3

1√
3

1√
3

2√
6
− 1√

6
− 1√

6

0 1√
2

− 1√
2

⎞

⎟

⎟

⎠

4.8 This mode transforms as Ey . It can be written as a linear combination of a
radial and a tangent mode:

Q= −1√
2
Qrad
y + 1√

2
Qtan
y

with

Qrad
y = 1√

2
(RB −RC)

Qtan
y = 1√

6
R(2φA −φB −φC)

This mode preserves the center of mass and is a genuine normal mode.
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4.9 Since all irreps are one-dimensional, the characters can only consist of a phase
factor:

D(C5)= eiλI (5)

The fifth power of the generator will yield the unit element, and hence,

e5iλ = 1 (6)

This is the Euler equation. Its solutions are the characters in the table of C5,
as given in Appendix A.

4.10 The product of inversion with a Ĉ2 axis must yield a reflection plane, per-
pendicular to this axis. As an example, a product of type ı̂ · Ĉ′2 must yield a
reflection plane of σ̂d type, as this is perpendicular to the primed twofold axis.
For the one-dimensional irreps of D6h, one thus should have

χ(ı)χ
(

C′2
)

= χ(σd) (7)

This is indeed verified to be the case.
4.11 The a′′2 distortion is antisymmetric with respect to 3Ĉ2, σ̂h, and 2Ŝ3. As a

result, when the mode is launched, all these symmetry elements will be de-
stroyed, and the symmetry reduces to the subgroup C3v . In general, the result
of a distortion will always be the maximal subgroup for which the distortion
is totally symmetric [14].

4.12 The group of this fullerene is D6d . The 24 atoms separate into two orbits: a 12-
orbit containing the top and bottom hexagons and another 12-orbit containing
the crown of the 12 atoms, numbered from 7 to 18. In both cases the site group
is only Cs , and hence both orbits will span the same irreps:

a′Cs ↑D6d =A1 +B2 +E1 +E2 +E3 +E4 +E5

Quite remarkably, the Hückel spectrum for this fullerene has a nonbonding
level of E4 symmetry.

5.1 Let ri and rj denote the position vectors of electrons i and j . The electron
repulsion operator contains the distance between both electrons as |ri−rj |. The
matrix D(R) expresses the transformation of the Cartesian coordinates under a
rotation. This matrix will also rotate the coordinate differences:

R̂

⎛

⎝

xi − xj
yi − yj
zi − zj

⎞

⎠=D(R)

⎛

⎝

xi − xj
yi − yj
zi − zj

⎞

⎠ (8)

Exactly as in the derivation for Problem 1.2, the square of the distance between
the two electrons is then found to be invariant under any orthogonal transfor-
mation of the coordinates.

5.2 For the G irrep, it is noted from Sect. C.1 that a tetrahedral splitting field will
branch G into A+ T . It thus acts as a splitting field to isolate the unique Ga
component. Symmetry adaptation to Ĉz

2 will yield two totally symmetric com-
ponents, one of which will be the Ga already obtained; the remaining one is
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then Gz. The corresponding Gx and Gy may then be found by cyclic permuta-
tion under the Ĉxyz

3 axis.

For the H irrep, one may make use of the Ĉ
xyz

3 axis again. It resolves H
into A1+ 2E. This unique A1 component will be the sum Hξ +Hη+Hζ . We
can project the Hζ component out of this sum by using the Ĉz

2 axis. Although
the H level subduces three totally symmetric irreps in C2, there will be no
contamination with Hθ and Hǫ since these were already removed in the first
step by projecting out the trigonal A1.

5.3 The total number of nuclear permutations and permutation-inversions for
CH3BF2 is 24. This is the product of six permutations of the protons, two
permutations of the fluorine nuclei, and the binary group of the spatial inver-
sion. However, as the fluxionality of this molecule is limited to free rotations
of the methyl group, the operations should be limited to those permutations
or permutation-inversions that lead to structures that can be rotated back to
the original frame or to a rotamer of this frame. Only half of the operations
will comply with this requirement. As an example, the odd permutations of the
protons are not allowed since the resulting structure cannot be turned into the
original one by outer rotations or by rotations of the methyl group around the
C-B bond. The results are given in [15]. The corresponding symmetry group is
isomorphic with D3h.

5.4 Ferrocene is a molecule with two identical coaxial rotors. Its nuclear permu-
tation-inversion group consists of 100 elements. It has a halving rotational sub-
group of 50 proper permutations: for each of the cyclo-pentadienyl rings, there
are 5 cyclic permutation operations, yielding a total of 52 = 25 operations, and
this number must be doubled to account for the permutation of the upper and
lower rings. In addition, there is a coset of improper permutation-inversions
containing the other 50 elements. This coset also contains two kinds of ele-
ments. In the table we summarize the structure of the group. The carbon atoms
are numbered 1, . . . ,5 in the upper ring and 6, . . . ,10 in the lower ring.

Nuclear permutation-inversion group for ferrocene (u and l refer to upper
and lower rotor)

R̂ #

Cu
5 ×Cl

5 (12345) 25
(ul) (16) (2,10) (39) (48) (57) 25
5σ̂ uv × 5σ̂ lv (25) (34) (7,10) (89)∗ 25
(ul)∗ (16) (27) (38) (49) (5,10)∗ 25

6.1 The (t1u)2 configuration gives rise to 15 states. The direct product decomposes
as follows (see Appendix D):

T1u × T1u = [A1g +Eg + T2g] + {T1g}
The symmetrized part will give rise to six singlet functions, while there are
nine triplet substates, forming a 3T1g multiplet. Since the 3-electron Ψ state is a
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quartet, the singlet states cannot contribute, and we need to couple the triplet to
a 2T1u state, resulting from a (t1u)1 configuration. The orbital part of the triplet
is obtained from the T1 × T1 = T1 coupling table in Appendix F:

|T1gx〉 =
1√
2

[

−y(1)z(2)+ z(1)y(2)
]

|T1gy〉 =
1√
2

[

x(1)z(2)− z(1)x(2)
]

|T1gz〉 =
1√
2

[

−x(1)y(2)+ y(1)x(2)
]

The coupling with the third electron can yield A1u, Eu, T1u, and T2u states. Our
results is based on the A1u product. This yields

A1u =
1√
3

[

|T1gx〉|x(3)〉 + |T1gy〉|y(3)〉 + |T1gz〉|z(3)〉
]

=− 1√
6

∣

∣

∣

∣

∣

∣

∣

∣

x(1) y(1) z(1)

x(2) y(2) z(2)

x(3) y(3) z(3)

∣

∣

∣

∣

∣

∣

∣

∣

This should be multiplied by the product of the three α-spins, α1α2α3, to obtain
the 4A1u ground state of the (t1u)3 configuration.

6.2 The JT problem is determined by the symmetrized direct product of T1u. As we
have seen in the previous problem, this product contains A1g+Eg+T2g . Since
A1g modes do not break the symmetry, the JT problem is of type T1×(e+ t2). In
the linear problem only two force elements are required. The distortion matrix
is thus as follows:

H′ = FE√
6

⎛

⎜

⎜

⎝

Qθ 0 0

0 Qθ 0

0 0 −2Qθ

⎞

⎟

⎟

⎠

+ FT√
2

⎛

⎜

⎜

⎝

0 −Qζ −Qη

−Qζ 0 −Qξ

−Qη 0ξ 0

⎞

⎟

⎟

⎠

6.3 The magnetic dipole operator transforms as T1g , while the direct square of eg
irreps yields A1g + A2g + Eg . Since the operator irrep is not contained in the
product space, the selection rules will not allow a dipole matrix element be-
tween eg orbitals.

6.4 We first draw a simple diagram representing the R-conformation. The point
group is C2. The twofold-axis is oriented along the y-direction, and the centers
of the two chromophores are placed on the positive and negative x-axes. The
dipole moments are then oriented as

µ1 = μ

(

0, cos
α

2
,− sin

α

2

)

µ2 = μ

(

0, cos
α

2
, sin

α

2

)
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The exciton states on both chromophores are interchanged by the twofold axis
and can be recombined to yield a symmetric and an antisymmetric combination,
denoted as A and B , respectively. One has:

|ΨA〉 =
1√
2

(

|Ψ1〉 + |Ψ2〉
)

|ΨB〉 =
1√
2

(

|Ψ1〉 − |Ψ2〉
)

The corresponding transition dipoles are oriented along the positive y- and neg-
ative z-direction, respectively:

µA =
√

2μ

(

0, cos
α

2
,0

)

µB =
√

2μ

(

0,0,− sin
α

2

)

The dipole-dipole interaction is given by

V12 =
1

4πǫ0

cosα

R3
12

(9)

For α < π/2, the dipole orientation is repulsive. As a result, the in-phase cou-
pled exciton state |ΨA〉will be at higher energy than the out-of-phase |ΨB〉 state.
Finally, we also calculate the magnetic transition dipoles, using the expressions
from Sect. 6.8:

mA =
iπν√

2
(r1 ×µ1 + r2 ×µ2)=

iπνμ√
2
R12 sin

α

2
(0,1,0)

mB =
iπν√

2
(r1 ×µ1 − r2 ×µ2)=

iπνμ√
2
R12 cos

α

2
(0,0,1)

These results are now combined in the Rosenfeld equation to yield the rotatory
strength of both exciton states:

RA =
πνμ2

2
R12 sinα
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RB =−
πνμ2

2
R12 sinα

This result predicts a normal CD sign, with a lower negative branch (B-state)
and an upper positive branch (A-state) [16]. This is a typical right-handed helix,
corresponding to a rotation of the dipoles in the right-handed sense when going
from chromophore 1 to chromophore 2 along the inter-chromophore axis. In
the S-conformation the sign of α will change, and the CD spectrum will be
inverted.

6.5 The direct square of the e-irrep in D2d yields four coupled states:

e× e=A1 +A2 +B1 +B2 (10)

The corresponding coupling coefficients are given in the table below. This table
is almost the same as the table for D4 in Appendix F, but note that B1 and
B2 are interchanged. Such details are important, and therefore we draw again a
simple picture of the molecule in a Cartesian system. Both in D4 and in D2d ,
the B1 and B2 irreps are distinguished by their symmetry with respect to the Ĉ′2
axes.

D2d
E ×E A1 A2 B1 B2

a1 a2 b1 b2

x x 1√
2

0 0 − 1√
2

y y 1√
2

0 0 1√
2

x y 0 1√
2

1√
2

0

y x 0 − 1√
2

1√
2

0

In the orientation of twisted ethylene, as indicated in the figure below, the direc-
tions of these axes are along the bisectors of x and y. In contrast, in the standard
orientation for D4 they are along the x and y axes, while the bisector directions
coincide with the Ĉ′′2 axes, and hence the interchange between B1 and B2.
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Note that the two-electron states are symmetrized, except the A2 combination.
The symmetrized states will combine with singlet spin states, while the A2 state
will be a triplet. One thus has:

1A1 =
1√
2

(

x(1)x(2)+ y(1)y(2)
) 1√

2

(

α(1)β(2)− β(1)α(2)
)

= 1√
2

(∣

∣(xα)(xβ)
∣

∣+
∣

∣(yα)(yβ)
∣

∣

)

1B1 =
1√
2

(∣

∣(xα)(yβ)
∣

∣+
∣

∣(yα)(xβ)
∣

∣

)

1B2 =
1√
2

(

−
∣

∣(xα)(xβ)
∣

∣+
∣

∣(yα)(yβ)
∣

∣

)

3A2 =
∣

∣(xα)(yα)
∣

∣

The 1A1 and 1B2 states are the zwitterionic states, while the 1B1 and 3A2 states
are called the diradical states. It is clear from the expressions that in both cases
the two radical carbon sites are neutral. The zwitterionic states are easily polar-
izable though.

6.6 The carbon atoms form two orbits. The pz orbital on the central atom is in
the center of the symmetry group and transforms as a′′2 . The three methylene
orbitals are in C2v sites, transforming as the b2 irrep of the site group, i.e., they
are antisymmetric with respect to σ̂h and symmetric with respect to σ̂v . The
induced representation is

b2C2v ↑D3h = a′′2 + e′′ (11)

The SALCs are entirely similar to the hydrogen SALCs in the case of am-
monia; this implies, for instance, that the component labeled x is symmetric
under the vertical symmetry plane through atom A. It will be antisymmetric
for the twofold-axis going through atom A since the relevant orbital is of pz
type:

|Ψa〉 =
1√
3

(

|pA〉 + |pB〉 + |pC〉
)

|Ψx〉 =
1√
6

(

2|pA〉 − |pB〉 − |pC〉
)

|Ψy〉 =
1√
2

(

|pB〉 − |pC〉
)

The a′′2 orbitals interact to yield bonding and antibonding combinations at
E = α±

√
3β . Since the graph is bipartite, the remaining e′′ orbitals are neces-
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sarily nonbonding and will be occupied by two electrons. The direct square of
this irrep yields symmetrized A′1 and E′ states and an antisymmetrized A′2 state.
The expressions for these states are obtained from the coupling coefficients for
D3 in Appendix F:

1A′1 =
1√
2

(

x(1)x(2)+ y(1)y(2)
) 1√

2

(

α(1)β(2)− β(1)α(2)
)

= 1√
2

(∣

∣(xα)(xβ)
∣

∣+
∣

∣(yα)(yβ)
∣

∣

)

1E′x =
1√
2

(∣

∣(xα)(yβ)
∣

∣+
∣

∣(yα)(xβ)
∣

∣

)

1E′y =
1√
2

(

−
∣

∣(xα)(xβ)
∣

∣+
∣

∣(yα)(yβ)
∣

∣

)

3A2 =
∣

∣(xα)(yα)
∣

∣

Note that the distinction between zwitterionic and diradical states does not
hold in this case. Formally, TMM can be described as a valence isomer be-
tween three configurations in which one of the peripheral atoms has a dou-
ble bond to the central atom and the other two sites carry an unpaired elec-
tron.

7.1 In a cube the d-shell also splits in eg+ t2g , but the ordering is reversed. Explicit
calculation of the potential shows that the splitting is reduced by a factor 8/9:

cube =−
8

9
octahhedron

7.2 Perform the matrix multiplication and verify that the product matrix is of
Cayley–Klein form. The multiplication is not commutative:

(

a1 b1

−b̄1 ā1

)

×
(

a2 b2

−b̄2 ā2

)

=
(

a1a2 − b1b̄2 a1b2 + ā2b1

−ā1b̄2 − a2b̄1 ā1ā2 − b̄1b2

)

(12)

7.3 The double group D∗3 contains 12 elements. In Table 7.5 we have listed the six

representation matrices for the elements on the positive hemisphere. The ĈA
2

axis is along the x-direction, ĈB
2 is at −60◦ and ĈC

2 is at +60◦. The derivation
of the multiplication table and the underlying class structure (see Table 7.6) is
based on a straightforward matrix multiplication.
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Multiplication table for the double group D∗3

D∗3 Ê Ĉ3 Ĉ2
3 ℵĈ3 ℵĈ2

3 ℵ ĈA
2 ĈB

2 ĈC
2 ℵĈA

2 ℵĈB
2 ℵĈC

2

Ê Ê Ĉ3 Ĉ2
3 ℵĈ3 ℵĈ2

3 ℵ ĈA
2 ĈB

2 ĈC
2 ℵĈA

2 ℵĈB
2 ℵĈC

2

Ĉ3 Ĉ3 Ĉ2
3 ℵ ℵĈ2

3 Ê ℵĈ3 ĈC
2 ĈA

2 ℵĈB
2 ℵĈC

2 ℵĈA
2 ĈB

2

Ĉ2
3 Ĉ2

3 ℵ ℵĈ3 Ê Ĉ3 ℵĈ2
3 ℵĈB

2 ĈC
2 ℵĈA

2 ĈB
2 ℵĈC

2 ĈA
2

ℵĈ3 ℵĈ3 ℵĈ2
3 Ê Ĉ2

3 ℵ Ĉ3 ℵĈC
2 ℵĈA

2 ĈB
2 ĈC

2 ĈA
2 ℵĈB

2

ℵĈ2
3 ℵĈ2

3 Ê Ĉ3 ℵ ℵĈ3 Ĉ2
3 ĈB

2 ℵĈC
2 ĈA

2 ℵĈB
2 ĈC

2 ℵĈA
2

ℵ ℵ ℵĈ3 ℵĈ2
3 Ĉ3 Ĉ2

3 Ê ℵĈA
2 ℵĈB

2 ℵĈC
2 ĈA

2 ĈB
2 ĈC

2

ĈA
2 ĈA

2 ĈB
2 ℵĈC

2 ℵĈB
2 ĈC

2 ℵĈA
2 ℵ ℵĈ3 Ĉ2

3 Ê Ĉ3 ℵĈ2
3

ĈB
2 ĈB

2 ℵĈC
2 ℵĈA

2 ĈC
2 ĈA

2 ℵĈB
2 Ĉ2

3 ℵ Ĉ3 ℵĈ2
3 Ê ℵĈ3

ĈC
2 ĈC

2 ĈA
2 ĈB

2 ℵĈA
2 ℵĈB

2 ℵĈC
2 ℵĈ3 ℵĈ2

3 ℵ Ĉ3 Ĉ2
3 Ê

ℵĈA
2 ℵĈA

2 ℵĈB
2 ĈC

2 ĈB
2 ℵĈC

2 ĈA
2 Ê Ĉ3 ℵĈ2

3 ℵ ℵĈ3 Ĉ2
3

ℵĈB
2 ℵĈB

2 ĈC
2 ĈA

2 ℵĈC
2 ℵĈA

2 ĈB
2 ℵĈ2

3 Ê ℵĈ3 Ĉ2
3 ℵ Ĉ3

ℵĈC
2 ℵĈC

2 ℵĈA
2 ℵĈB

2 ĈA
2 ĈB

2 ĈC
2 Ĉ3 Ĉ2

3 Ê ℵĈ3 ℵĈ2
3 ℵ

7.4 The action of the spin operators on the components of a spin-triplet can
be found by acting on the coupled states, as summarized in Table 7.2. As
an example, where we have added the electron labels 1 and 2 for clar-
ity:

Sx | + 1〉 = Sx
[

|α1〉|α2〉
]

=
[

Sx |α1〉
]

|α2〉 + |α1〉
[

Sx |α2〉
]

= �

2

[

|β1〉|α2〉 + |α1〉|β2〉
]

= �√
2
|0〉

Sy | − 1〉 = − i�√
2
|0〉

These results can be generalized as follows:

Sz|MS〉 = �MS |MS〉

(Sx ± iSy)|MS〉 = �
[

(S ∓MS)(S ±Ms + 1)
]

1
2 |Ms ± 1〉

The action of the spin Hamiltonian in the fictitious spin basis gives then rise to
the following Hamiltonian matrix (in units of μB ):

HZe |0〉 |+1〉 |−1〉

〈0| 0 g⊥ 1√
2
(Bx + iBy) g⊥ 1√

2
(Bx − iBy)

〈+1| g⊥ 1√
2
(Bx − iBy) g||Bz 0

〈−1| g⊥ 1√
2
(Bx + iBy) 0 −g||Bz

We can now identify these expressions with the actual matrix elements in
the basis of the three D3 components, keeping in mind the relationship be-
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tween the complex and real triplet basis, as given in Eq. (7.39). One ob-
tains:

〈0|HZe| + 1〉 = − 1√
2
〈A1|H|Ex + iEy〉 =

1√
2

[

−a + d + i(−b− c)
]

〈0|HZe| − 1〉 = 1√
2
〈A1|H|Ex − iEy〉 =

1√
2

[

a + d + i(b− c)
]

〈±1|HZe| ± 1〉 = 1

2

[

〈x|H|x〉 + 〈y|H|y〉 ± i
(

〈x|H|y〉 − 〈y|H|x〉
)]

=±f

From these equations the parameters may be identified as follows:

a = 0

b=−g⊥By

c= 0

d = g⊥Bx

e= 0

f = g||Bz

The Zeeman Hamiltonian does not include the zero-field splitting between the
A1 and E states. This can be rendered by a second-order spin operator, which
transforms as the octahedral Egθ quadrupole component:

HZF =
D

3�2

(

2S̃2
z − S̃2

x − S̃2
y

)

= D

�2

(

S̃2
z −

1

3
S̃2
)

One then obtains

D = 3

7.5 The action of the components of the fictitious spin operator on the Γ8 basis is
dictated by the general expressions for the action of the spin operators on the
S = 3

2 basis functions. It is verified that the spin-Hamiltonian that generates the
Jp part of the matrix precisely corresponds to

Hp = JpB · S̃
The fictitious spin operator indeed transforms as a T1 operator and has the
tensorial rank of a p-orbital. However, as we have shown, the full Hamil-
tonian also includes a Jf part, which involves an f -like operator. To mimic
this part by a spin Hamiltonian, one thus will need a symmetrized triple prod-
uct of the fictitious spin, which will embody an f -tensor, transforming in the
octahedral symmetry as the T1 irrep. These f -functions can be found in Ta-
ble 7.1 and are of type z(5z2 − 3r2). But beware! To find the correspond-
ing spin operator, it is not sufficient simply to substitute the Cartesian vari-
ables by the corresponding spinor components, i.e., z by S̃z, etc.; indeed,
while products of x, y, and z are commutative, the products of the corre-
sponding operators are not. Hence, when constructing the octupolar product
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of the spin components, products of noncommuting operators must be fully
symmetrized. For the fz3 function, this is the case for the functions 3zx2 and
3xy2, which are parts of 3zr3. As an example, the operator analogue of 3zx2

reads

3zx2 → S̃zS̃x S̃x + S̃x S̃zS̃x + S̃x S̃x S̃z

One then has for the operator equivalent of 3z(x2 + y2):

S̃zS̃x S̃x + S̃x S̃zS̃x + S̃x S̃x S̃z + S̃zS̃y S̃y + S̃y S̃zS̃y + S̃y S̃y S̃z

= 3S̃z
(

S̃2
x + S̃2

y

)

+ i�(S̃x S̃y − S̃y S̃x)= 3S̃z
(

S̃2
x + S̃2

y

)

− �
2S̃z

where we have used the commutation relation for the spin-operators:

SxSy − SySx = i�Sz

The octupolar spin operator will then be of type

Hf =
μB

�3
gfBz

(

S̃3
z −

3

5
S̃zS̃

2 + 1

5
�

2S̃z

)

+Bx

(

S̃3
x −

3

5
S̃x S̃

2 + 1

5
�

2S̃x

)

+By

(

S̃3
y −

3

5
S̃y S̃

2 + 1

5
�

2S̃y

)

In order to identify the parameter correspondence, let us work out the action
of this operator on the quartet functions. As an example for a magnetic field
along the z-direction, the matrix is diagonal, and its elements (in units of μB )
are given by

〈

±3

2

∣

∣

∣

∣

Hf

∣

∣

∣

∣

± 3

2

〉

=±gfBz

3

2

(

9

4
− 45

20
+ 1

5

)

=± 3

10
gfBz

〈

±1

2

∣

∣

∣

∣

Hf

∣

∣

∣

∣

± 1

2

〉

=∓ 9

10
gfBz

By comparing these elements to the results in Table 7.8 we can identify the
parameter correspondence as

Jf =−
3

10
gf (13)
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graph, 26, 27, 93
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Kroto, 38, 49

L

Lagrange theorem, 31
Lagrangian, 80
Lanthanides, 69
Le Bel, 36
Leapfrog, 156, 157, 159
Lie groups, 165, 190

SO(3), O(3), 35, 163, 164, 167, 172, 173,
175, 204, 210, 237

SU(2), U(2), 171–173, 175, 179, 189, 246
Ligand orbitals, 140, 144, 145
Ligator, 138–140
Lijnen, ix, 121, 160, 170, 190
Linear dichroism, 138, 139, 161
Linearly polarized, 46
Lipscomb, 38, 48

London, 88
London approximation, 89
Longuet-Higgins, 109–112, 261
Lulek, ix, 149, 161
LUMO, 98, 158

M

Magnetic, 21, 41, 42, 46, 47, 63, 69, 87–91,
104, 110, 113, 127, 146–148, 153, 159,
170, 173, 180, 181, 184, 187–189, 205,
206, 253, 254, 260

see Faraday
see London
dipole, 89, 113, 127, 159, 253, 254
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Odabaşi, 174
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