
Undergraduate Topics in Computer Science

Gerard O’Regan

Concise Guide
to Software
Engineering
From Fundamentals to Application
Methods

Undergraduate Topics in Computer
Science

Series editor

Ian Mackie

Advisory Boards

Samson Abramsky, University of Oxford, Oxford, UK

Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro,

Brazil

Chris Hankin, Imperial College London, London, UK

Dexter Kozen, Cornell University, Ithaca, USA

Andrew Pitts, University of Cambridge, Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark

Steven Skiena, Stony Brook University, Stony Brook, USA

Iain Stewart, University of Durham, Durham, UK

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional

content for undergraduates studying in all areas of computing and information science.

From core foundational and theoretical material to final-year topics and applications,

UTiCS books take a fresh, concise, and modern approach and are ideal for self-study or

for a one- or two-semester course. The texts are all authored by established experts in

their fields, reviewed by an international advisory board, and contain numerous

examples and problems. Many include fully worked solutions.

More information about this series at http://www.springer.com/series/7592

Gerard O’Regan

Concise Guide to Software
Engineering

From Fundamentals to Application
Methods

123

Gerard O’Regan
SQC Consulting
Cork
Ireland

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-319-57749-4 ISBN 978-3-319-57750-0 (eBook)
DOI 10.1007/978-3-319-57750-0

Library of Congress Control Number: 2017939621

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this

publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

In memory of my dear godmother

Mrs. Maureen Barry

Preface

Overview

The objective of this book was to provide a concise introduction to the software

engineering field to students and practitioners. The principles of software engi-

neering are discussed, and the goal is to give the reader a grasp of the fundamentals

of the software engineering field, as well as guidance on how to apply the theory in

an industrial environment.

Organization and Features

Chapter 1 presents a broad overview of software engineering, and discusses various

software lifecycles and the phases in software development. We discuss require-

ments gathering and specification, software design, implementation, testing and

maintenance. The lightweight Agile methodology is introduced, and it has become

very popular in industry.

Chapter 2 provides an introduction to project management for traditional soft-

ware engineering, and we discuss project estimation, project planning and

scheduling, project monitoring and control, risk management, managing commu-

nication and change, and managing project quality.

Chapter 3 discusses requirements engineering and discusses activities such as

requirements gathering, requirements elicitation, requirements analysis, require-

ments management, and requirements verification and validation.

Chapter 4 discusses design and development, and software design is the blue-

print of the solution to be developed. It is concerned with the high-level architecture

of the system, as well as the detailed design that describes the algorithms and

functionality of the individual programmes. The detailed design is then imple-

mented in a programming language such as C++ or Java. We discuss software

development topics such as software reuse, customized-off-the-shelf software

(COTS) and open-source software development.

vii

Chapter 5 discusses software configuration management and discusses the

fundamental concept of a baseline. Configuration management is concerned with

identifying those deliverables that must be subject to change control, and control-

ling changes to them.

Chapter 6 discusses software inspections, which play an important role in

building quality into a product. The well-known Fagan inspection process that was

developed at IBM in the 1970s is discussed, as well as lighter review and

walk-through methodologies.

Chapter 7 is concerned with software testing, and discusses the various types of

testing that may be carried out during the project. We discuss test planning, test case

definition, test environment set-up, test execution, test tracking, test metrics, test

reporting and testing in an e-commerce environment.

Chapter 8 is concerned with the selection and management of a software sup-

plier. It discusses how candidate suppliers may be identified, formally evaluated

against defined selection criteria, and how the appropriate supplier is selected. We

discuss how the selected supplier is managed during the project.

Chapter 9 discusses software quality assurance and the importance of process

quality. It is a premise in the quality field that good processes and conformance to

them is essential for the delivery of high-quality product, and this chapter discusses

audits and describes how they are carried out.

Chapter 10 is concerned with software metrics and problem-solving, and this

includes a discussion of the balanced score card which assists in identifying

appropriate metrics for the organization. The Goal Question Metric (GQM)

approach is discussed, and this allows appropriate metrics related to the organi-

zation goals to be defined. A selection of sample metrics for an organization is

presented, and problem-solving tools such as fishbone diagrams, pareto charts and

trend charts are discussed.

Chapter 11 discusses software reliability and dependability, and covers topics

such as software reliability and software reliability models; the Cleanroom

methodology, system availability; safety and security critical systems; and

dependability engineering.

Chapter 12 discusses formal methods, which consist of a set of mathematical

techniques to specify and derive a programme from its specification. Formal

methods may be employed to rigorously state the requirements of the proposed

system. They may be employed to derive a programme from its mathematical

specification, and they may be used to provide a rigorous proof that the imple-

mented programme satisfies its specification. They have been mainly applied to the

safety critical field.

Chapter 13 presents the Z specification language, which is one of the more

popular formal methods. It was developed at the Programming Research Group at

Oxford University in the early 1980s. Z specifications are mathematical, and the use

of mathematics ensures precision and allows inconsistencies and gaps in the

specification to be identified. Theorem provers may be employed to demonstrate

that the software implementation meets its specification.

viii Preface

Chapter 14 presents the unified modelling language (UML), which is a visual

modelling language for software systems, and I used to present several views of the

system architecture. It was developed at Rational Corporation as a notation for

modelling object-oriented systems. We present various UML diagrams such as use

case diagrams, sequence diagrams and activity diagrams.

Chapter 15 discusses software process improvement. It begins with a discussion

of a software process, and discusses the benefits that may be gained from a software

process improvement initiative. Various models that support software process

improvement are discussed, and these include the Capability Maturity Model

Integration (CMMI), ISO 9000, Personal Software Process (PSP) and Team Soft-

ware Process (TSP).

Chapter 16 gives an overview of the CMMI model and discusses its five

maturity levels and their constituent process areas. We discuss both the staged and

continuous representations of the CMMI, and SCAMPI appraisals that indicate the

extent to which the CMMI has been implemented in the organization, as well as

identifying opportunities for improvement.

Chapter 17 discusses various tools to support the various software engineering

activities. The focus is first to define the process and then to find tools to support the

process. Tools to support project management are discussed as well as tools to

support requirements engineering, configuration management, design and devel-

opment activities and software testing.

Chapter 18 discusses the Agile methodology which is a popular lightweight

approach to software development. Agile provides opportunities to assess the

direction of a project throughout the development lifecycle, and ongoing changes to

requirements are considered normal in the Agile world. It has a strong collaborative

style of working, and it advocates adaptive planning and evolutionary development,

Chapter 19 discusses innovation in the software field including miscellaneous

topics such as distributed systems, service-oriented architecture, software as a

service, cloud computing and embedded systems. We discuss the need for inno-

vation in software engineering, and discuss some recent innovations such as

aspect-oriented software engineering.

Chapter 20 is the concluding chapter in which we summarize the journey that we

have travelled in this book.

Audience

The main audience of this book are computer science students who are interested in

learning about software engineering and in learning on how to build high-quality

and reliable software on time and on budget. It will also be of interest to indus-

trialists including software engineers, quality professionals and software managers,

as well as the motivated general reader.

Preface ix

Acknowledgements

I am deeply indebted to family and friends who supported my efforts in this

endeavour, and my thanks, as always, to the team at Springer. This book is dedi-

cated to my late godmother (Mrs. Maureen Barry), who I always enjoyed visiting in

Ringaskiddy, Co. Cork.

Cork, Ireland Gerard O’Regan

x Preface

Contents

1 Background . 1

1.1 Introduction . 1

1.2 What Is Software Engineering? . 4

1.3 Challenges in Software Engineering 7

1.4 Software Processes and Lifecycles . 8

1.4.1 Waterfall Lifecycle . 9

1.4.2 Spiral Lifecycles. 10

1.4.3 Rational Unified Process . 11

1.4.4 Agile Development. 12

1.5 Activities in Waterfall Lifecycle . 15

1.5.1 User Requirements Definition 15

1.5.2 Specification of System Requirements 16

1.5.3 Design . 16

1.5.4 Implementation . 17

1.5.5 Software Testing . 18

1.5.6 Support and Maintenance . 19

1.6 Software Inspections . 20

1.7 Software Project Management . 21

1.8 CMMI Maturity Model . 22

1.9 Formal Methods. 23

1.10 Review Questions. 24

1.11 Summary . 24

References . 25

2 Software Project Management . 27

2.1 Introduction . 27

2.2 Project Start-up and Initiation . 29

2.3 Estimation . 30

2.3.1 Estimation Techniques . 31

2.3.2 Work-Breakdown Structure 31

2.4 Project Planning and Scheduling . 32

2.5 Risk Management. 36

2.6 Quality Management in Projects. 36

2.7 Project Monitoring and Control . 38

xi

2.8 Managing Issues and Change Requests 39

2.9 Project Board and Governance . 40

2.10 Project Reporting . 42

2.11 Project Closure . 42

2.12 Prince 2 Methodology. 43

2.13 Review Questions. 45

2.14 Summary . 45

Reference . 46

3 Requirements Engineering . 47

3.1 Introduction . 47

3.2 Requirements Process . 48

3.2.1 Requirements Elicitation and Specification. 51

3.2.2 Requirements Analysis . 54

3.2.3 Requirements Verification and Validation 54

3.2.4 Requirements Managements. 55

3.2.5 Requirements Traceability . 56

3.3 System Modelling . 57

3.4 Review Questions. 59

3.5 Summary . 59

References . 60

4 Software Design and Development . 61

4.1 Introduction . 61

4.2 Architecture Design . 62

4.3 Detailed Design and Development . 66

4.3.1 Function-Oriented Design . 67

4.3.2 Object-Oriented Design . 67

4.3.3 User Interface Design . 68

4.3.4 Open-Source Development 70

4.3.5 Customized Off-the-Shelf Software 70

4.3.6 Software Reuse . 71

4.3.7 Object-Oriented Programming 71

4.4 Software Maintenance and Evolution 73

4.5 Review Questions. 73

4.6 Summary . 73

References . 74

5 Configuration Management . 75

5.1 Introduction . 75

5.2 Configuration Management System. 79

5.2.1 Identify Configuration Items 80

5.2.2 Document Control Management 80

5.2.3 Source Code Control Management 81

5.2.4 Configuration Management Plan. 81

5.3 Change Control . 82

xii Contents

5.4 Configuration Management Audits . 84

5.5 Review Questions. 85

5.6 Summary . 86

6 Software Inspections . 87

6.1 Introduction . 87

6.2 Economic Benefits of Software Inspections 89

6.3 Informal Reviews . 90

6.4 Structured Walk-through . 91

6.5 Semi-formal Review Meeting. 91

6.6 Fagan Inspections. 92

6.6.1 Fagan Inspection Guidelines 93

6.6.2 Inspectors and Roles . 96

6.6.3 Inspection Entry Criteria . 96

6.6.4 Preparation . 96

6.6.5 The Inspection Meeting. 98

6.6.6 Inspection Exit Criteria . 99

6.6.7 Issue Severity . 99

6.6.8 Defect Type. 100

6.7 Automated Software Inspections. 101

6.8 Review Questions. 103

6.9 Summary . 104

References . 104

7 Software Testing . 105

7.1 Introduction . 105

7.2 Test Process . 107

7.3 Test Planning. 111

7.4 Test Case Design and Definition . 112

7.5 Test Execution . 113

7.6 Test Reporting and Project Sign-Off 114

7.7 Testing and Quality Improvement. 115

7.8 Traceability of Requirements . 116

7.9 Test Tools . 116

7.9.1 Test Management Tools . 116

7.9.2 Miscellaneous Testing Tools 117

7.10 e-Commerce Testing . 118

7.11 Test-Driven Development . 119

7.12 Review Questions. 120

7.13 Summary . 121

8 Supplier Selection and Management . 123

8.1 Introduction . 123

8.2 Planning and Requirements . 125

8.3 Identifying Suppliers. 125

8.4 Prepare and Issue RFP . 126

Contents xiii

8.5 Evaluate Proposals and Select Supplier 126

8.6 Formal Agreement . 127

8.7 Managing the Supplier . 128

8.8 Acceptance of Software. 128

8.9 Roll-out and Customer Support . 129

8.10 Review Questions. 129

8.11 Summary . 129

9 Software Quality Assurance . 131

9.1 Introduction . 131

9.2 Audit Planning. 134

9.3 Audit Meeting . 135

9.4 Audit Reporting . 136

9.5 Follow-Up Activity. 136

9.6 Audit Escalation. 137

9.7 Review of Audit Activities . 137

9.8 Other Audits . 137

9.9 Review Questions. 138

9.10 Summary . 138

10 Software Metrics and Problem-Solving . 139

10.1 Introduction . 139

10.2 The Goal, Question, Metric Paradigm 141

10.3 The Balanced Scorecard . 143

10.4 Metrics for an Organization . 145

10.4.1 Customer Satisfaction Metrics 145

10.4.2 Process Improvement Metrics. 146

10.4.3 Human Resources and Training Metrics 148

10.4.4 Project Management Metrics 149

10.4.5 Development Quality Metrics. 151

10.4.6 Quality Audit Metrics . 153

10.4.7 Customer Care Metrics . 155

10.4.8 Miscellaneous Metrics. 157

10.5 Implementing a Metrics Programme 159

10.5.1 Data Gathering for Metrics 160

10.6 Problem-Solving Techniques . 161

10.6.1 Fishbone Diagram . 162

10.6.2 Histograms . 164

10.6.3 Pareto Chart . 165

10.6.4 Trend Graphs. 166

10.6.5 Scatter Graphs . 167

10.6.6 Metrics and Statistical Process Control 168

10.7 Review Questions. 169

10.8 Summary . 169

References . 170

xiv Contents

11 Software Reliability and Dependability . 171

11.1 Introduction . 171

11.2 Software Reliability . 172

11.2.1 Software Reliability and Defects. 173

11.2.2 Cleanroom Methodology . 175

11.2.3 Software Reliability Models. 176

11.3 Dependability . 178

11.4 Computer Security . 180

11.5 System Availability . 181

11.6 Safety Critical Systems . 182

11.7 Review Questions. 183

11.8 Summary . 184

References . 184

12 Formal Methods . 185

12.1 Introduction . 185

12.2 Why Should We Use Formal Methods? 187

12.3 Applications of Formal Methods . 189

12.4 Tools for Formal Methods . 190

12.5 Approaches to Formal Methods . 190

12.5.1 Model-Oriented Approach . 190

12.5.2 Axiomatic Approach . 192

12.6 Proof and Formal Methods . 193

12.7 The Future of Formal Methods . 194

12.8 The Vienna Development Method . 194

12.9 VDM♣, The Irish School of VDM . 196

12.10 The Z Specification Language . 197

12.11 The B-Method . 198

12.12 Predicate Transformers and Weakest Preconditions 199

12.13 The Process Calculii . 200

12.14 Finite State Machines . 200

12.15 The Parnas Way. 201

12.16 Usability of Formal Methods . 202

12.17 Review Questions. 205

12.18 Summary . 205

References . 206

13 Z Formal Specification Language . 209

13.1 Introduction . 209

13.2 Sets . 212

13.3 Relations . 213

13.4 Functions . 215

13.5 Sequences . 216

13.6 Bags . 217

13.7 Schemas and Schema Composition . 218

Contents xv

13.8 Reification and Decomposition. 221

13.9 Proof in Z . 222

13.10 Review Questions. 223

13.11 Summary . 223

References . 224

14 Unified Modelling Language . 225

14.1 Introduction . 225

14.2 Overview of UML . 226

14.3 UML Diagrams . 228

14.4 Object Constraint Language. 234

14.5 Tools for UML . 235

14.6 Rational Unified Process . 235

14.7 Review Questions. 237

14.8 Summary . 238

References . 238

15 Software Process Improvement . 239

15.1 Introduction . 239

15.2 What Is a Software Process? . 240

15.3 What Is Software Process Improvement? 242

15.4 Benefits of Software Process Improvement 243

15.5 Software Process Improvement Models 244

15.6 Process Mapping . 247

15.7 Process Improvement Initiatives . 248

15.8 Barriers to Success . 249

15.9 Setting Up an Improvement Initiative 249

15.10 Appraisals . 251

15.11 Review Questions. 253

15.12 Summary . 253

References . 254

16 Capability Maturity Model Integration . 255

16.1 Introduction . 255

16.2 The CMMI . 258

16.3 CMMI Maturity Levels . 261

16.3.1 CMMI Representations . 264

16.4 Categories of CMMI Processes . 266

16.5 CMMI Process Areas . 267

16.6 Components of CMMI Process Areas 270

16.7 SCAMPI Appraisals . 275

16.8 Review Questions. 275

16.9 Summary . 276

References . 276

xvi Contents

17 Software Engineering Tools . 279

17.1 Introduction . 279

17.2 Tools for Project Management . 280

17.3 Tools for Requirements . 284

17.4 Tools for Design and Development. 287

17.5 Tools for Configuration Management and Change Control. . . . 290

17.6 Tools for Code Analysis and Code Inspections 290

17.7 Tools for Testing . 292

17.8 Review Questions. 294

17.9 Summary . 294

Reference . 295

18 Agile Methodology . 297

18.1 Introduction . 297

18.2 Scrum Methodology . 300

18.3 User Stories. 301

18.4 Estimation in Agile. 302

18.5 Test-Driven Development . 302

18.6 Pair Programming . 303

18.7 Review Questions. 304

18.8 Summary . 304

Reference . 305

19 A Miscellany of Innovation. 307

19.1 Introduction . 307

19.2 Distributed Systems . 308

19.3 Service-Oriented Architecture. 309

19.4 Software as a Service . 310

19.5 Cloud Computing. 311

19.6 Embedded Systems. 312

19.7 Software Engineering and Innovation 313

19.7.1 Aspect-Oriented Software Engineering 313

19.8 Review Questions. 314

19.9 Summary . 314

References . 315

20 Epilogue . 317

20.1 The Future of Software Engineering 319

Glossary . 321

References . 327

Index . 329

Contents xvii

List of Figures

Fig. 1.1 Standish report—results of 1995 and 2009 survey 3

Fig. 1.2 Standish 1998 report—estimation accuracy 7

Fig. 1.3 Waterfall V lifecycle model . 9

Fig. 1.4 SPIRAL lifecycle model … public domain 10

Fig. 1.5 Rational Unified Process . 12

Fig. 2.1 Simple process map for project planning 34

Fig. 2.2 Sample microsoft project schedule . 34

Fig. 2.3 Simple process map for project monitoring and control 39

Fig. 2.4 Prince 2 project board . 41

Fig. 2.5 Project management triangle . 43

Fig. 2.6 Prince 2 processes . 44

Fig. 3.1 Requirements process . 52

Fig. 4.1 C.A.R Hoare (public domain) . 64

Fig. 4.2 David Parnas . 65

Fig. 5.1 Simple process map for change requests 83

Fig. 5.2 Simple process map for configuration management. 84

Fig. 6.1 Michael Fagan. 88

Fig. 6.2 Template for semi-formal review . 94

Fig. 6.3 Sample defect types in a project (ODC) 101

Fig. 6.4 Template for Fagan inspection . 102

Fig. 7.1 Simplified test process. 108

Fig. 7.2 Sample test status . 110

Fig. 7.3 Cumulative defects . 114

Fig. 9.1 Sample audit process. 133

Fig. 10.1 GQM example . 141

Fig. 10.2 The balanced scorecard . 143

Fig. 10.3 Balanced score card and implementing strategy 143

Fig. 10.4 Customer survey arrivals . 145

Fig. 10.5 Customer satisfaction measurements . 146

Fig. 10.6 Process improvement measurements . 146

Fig. 10.7 Status of process improvement suggestions 147

Fig. 10.8 Age of open process improvement suggestions 147

Fig. 10.9 Process improvement productivity. 148

Fig. 10.10 Employee headcount in current year . 148

xix

Fig. 10.11 Employee turnover in current year . 149

Fig. 10.12 Schedule timeliness metric . 149

Fig. 10.13 Effort timeliness metric . 150

Fig. 10.14 Requirements delivered . 151

Fig. 10.15 Total number of issues in project . 151

Fig. 10.16 Open issues in project . 152

Fig. 10.17 Age of open defects in project . 152

Fig. 10.18 Problem arrivals per month . 153

Fig. 10.19 Phase containment effectiveness . 153

Fig. 10.20 Annual audit schedule . 154

Fig. 10.21 Status of audit actions . 154

Fig. 10.22 Audit action types . 155

Fig. 10.23 Customer queries (arrivals/closures) . 155

Fig. 10.24 Outage time per customer . 156

Fig. 10.25 Availability of system per month . 157

Fig. 10.26 Configuration management . 157

Fig. 10.27 CMMI maturity in current year . 158

Fig. 10.28 Cost of poor quality (COPQ) . 159

Fig. 10.29 Fishbone cause-and-effect diagram . 163

Fig. 10.30 Histogram . 165

Fig. 10.31 Pareto chart outages . 166

Fig. 10.32 Trend chart estimation accuracy . 167

Fig. 10.33 Scatter graph amount inspected rate/error density 168

Fig. 10.34 Estimation accuracy and control charts 168

Fig. 12.1 Deterministic finite state machine . 202

Fig. 13.1 Specification of positive square root . 210

Fig. 13.2 Specification of a library system . 212

Fig. 13.3 Specification of borrow operation . 212

Fig. 13.4 Specification of vending machine using bags 218

Fig. 13.5 Schema inclusion . 220

Fig. 13.6 Merging schemas (S1 _ S2) . 220

Fig. 13.7 Schema composition . 221

Fig. 13.8 Refinement commuting diagram . 222

Fig. 14.1 Simple object diagram. 230

Fig. 14.2 Use case diagram of ATM machine . 231

Fig. 14.3 UML sequence diagram for balance enquiry 232

Fig. 14.4 UML activity diagram . 233

Fig. 14.5 UML state diagram . 233

Fig. 14.6 Iteration in rational unified process . 236

Fig. 14.7 Phases and workflows in rational unified process 237

Fig. 15.1 Process as glue for people, procedures and tools 241

Fig. 15.2 Sample process map . 242

Fig. 15.3 Steps in process improvement . 243

Fig. 15.4 ISO 9001 quality management system 246

xx List of Figures

Fig. 15.5 Continuous improvement cycle . 250

Fig. 15.6 Appraisals . 252

Fig. 16.1 Process as glue for people, procedures and tools 256

Fig. 16.2 ISO/IEC 12207 standard for software engineering

processes . 257

Fig. 16.3 CMMI worldwide maturity 2013 . 260

Fig. 16.4 CMMI maturity levels . 264

Fig. 16.5 CMMI capability levels. 265

Fig. 16.6 CMMI—continuous representation . 265

Fig. 16.7 CMMI-staged model . 270

Fig. 16.8 Specific practices for SG1—manage requirements 271

Fig. 17.1 Dashboard views in planview enterprise 283

Fig. 17.2 Planview process builder . 284

Fig. 17.3 IBM Rational DOORS tool . 286

Fig. 17.4 IBM Rational Software Modeler . 287

Fig. 17.5 Sparx Enterprise Architect. 288

Fig. 17.6 LDRA code coverage analysis report . 291

Fig. 17.7 HP Quality Center. 293

Fig. 19.1 A distributed system . 308

Fig. 19.2 Service-oriented architecture . 310

Fig. 19.3 Cloud computing. Creative commons . 311

Fig. 19.4 Example of an embedded system . 312

List of Figures xxi

List of Tables

Table 2.1 Estimation techniques . 32

Table 2.2 Example work-breakdown structure . 33

Table 2.3 Sample project management checklist . 35

Table 2.4 Risk management activities . 37

Table 2.5 Activities in managing issues and change requests 40

Table 2.6 Project board roles and responsibilities 41

Table 2.7 Key processes in Prince 2 . 44

Table 3.1 Characteristics of good requirements . 49

Table 3.2 Symptoms of poor requirements process 50

Table 3.3 Managing change requests . 57

Table 3.4 Sample trace matrix . 58

Table 4.1 Views of system architecture . 63

Table 4.2 Object-oriented paradigm. 69

Table 5.1 Features of good configuration management 76

Table 5.2 Symptoms of poor configuration management 77

Table 5.3 Software configuration management activities 78

Table 5.4 Build plan for project . 78

Table 5.5 CMMI requirements for configuration management 79

Table 5.6 Sample configuration management audit checklist 85

Table 6.1 Informal review . 90

Table 6.2 Structured walk-throughs . 91

Table 6.3 Activities for semi-formal review meeting 93

Table 6.4 Overview Fagan inspection process . 95

Table 6.5 Strict Fagan inspection guidelines . 96

Table 6.6 Tailored (Relaxed) Fagan inspection guidelines 96

Table 6.7 Inspector roles . 97

Table 6.8 Fagan entry criteria . 97

Table 6.9 Inspection meeting . 98

Table 6.10 Fagan exit criteria . 99

Table 6.11 Issue severity . 99

Table 6.12 Classification of defects in Fagan inspections 100

Table 6.13 Classification of ODC defect types . 100

Table 7.1 Types of testing . 109

Table 7.2 Simple test schedule . 112

xxiii

Table 8.1 Supplier selection and management . 124

Table 9.1 Auditing activities . 132

Table 9.2 Sample auditing checklist . 135

Table 9.3 Sample audit report . 136

Table 10.1 BSC objectives and measures for IT service organization 144

Table 10.2 Cost of quality categories . 158

Table 10.3 Implementing metrics . 159

Table 10.4 Goals and questions . 160

Table 10.5 Phase containment effectiveness . 160

Table 11.1 Adam’s 1984 study of software failures of IBM products 175

Table 11.2 New and old version of software . 175

Table 11.3 Cleanroom results in IBM . 176

Table 11.4 Characteristics of good software reliability model 177

Table 11.5 Software reliability models . 177

Table 11.6 Dimensions of dependability . 180

Table 12.1 Criticisms of formal methods . 188

Table 12.2 Parnas’s contributions to software engineering 202

Table 12.3 Techniques for validation of formal specification. 204

Table 12.4 Why are formal methods difficult?. 204

Table 12.5 Characteristics of a usable formal method 204

Table 13.1 Schema composition . 220

Table 14.1 Classification of UML things . 227

Table 14.2 UML diagrams . 228

Table 14.3 Simple class diagram . 229

Table 14.4 Advantages of UML . 234

Table 14.5 OCL constraints . 235

Table 14.6 UML tools . 235

Table 15.1 Benefits of software process improvement (CMMI). 245

Table 15.2 Continuous improvement cycle . 251

Table 15.3 Teams in improvement programme . 252

Table 15.4 Phases in an Appraisal. 253

Table 16.1 Motivation for CMMI implementation. 260

Table 16.2 Benefits of CMMI implementation . 261

Table 16.3 CMMI maturity levels . 262

Table 16.4 CMMI capability levels for continuous representation 266

Table 16.5 CMMI process categories . 267

Table 16.6 CMMI Process Areas. 268

Table 16.7 CMMI generic practices . 272

Table 16.8 Implementation of generic practices. 274

Table 17.1 Tool evaluation table . 280

Table 17.2 Key capabilities of planview enterprise 283

Table 17.3 Tools for requirements development and management. 285

Table 17.4 Tools for software design . 287

Table 17.5 Integrated development environment . 289

xxiv List of Tables

1Background

Abstract

This chapter presents a broad overview of software engineering and discusses

various software lifecycles and the phases in software development. We discuss

requirements gathering and specification, software design, implementation,

testing and maintenance. The lightweight Agile methodology is introduced, and

it has become very popular in industry. Mathematics may potentially assist

software engineers in delivering high-quality software products that are safe to

use and the extent to which mathematics should be employed remains a topic of

active debate.

Keywords

Standish chaos report � Software lifecycles � Waterfall model � Spiral model �
Rational Unified Process � Agile development � Software inspections � Software

testing � Project management

1.1 Introduction

The approach to software development in the 1950s and 1960s has been described

as the “Mongolian Hordes Approach” by Brooks [1].1 The “method” or lack of

method was applied to projects that were running late, and it involved adding a

large number of inexperienced programmers to the project, with the expectation that

this would allow the project schedule to be recovered. However, this approach was

deeply flawed as it led to inexperienced programmers with inadequate knowledge

1The “Mongolian Hordes” management myth is the belief that adding more programmers to a

software project that is running late will allow catch-up. In fact, as Brooks says adding people to a

late software project actually makes it later.

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_1

1

of the project attempting to solve problems, and they inevitably required significant

time from the other project team members.

This resulted in the project being delivered even later, as well as subsequent

problems with quality (i.e. the approach of throwing people at a problem does not

work). The philosophy of software development back in the 1950/1960s was

characterized by:

The completed code will always be full of defects.

The coding should be finished quickly to correct these defects.

Design as you code approach.

This philosophy accepted defeat in software development and suggested that

irrespective of a solid engineering approach, the completed software would always

contain lots of defects and that it therefore made sense to code as quickly as

possible and to then identify the defects that were present, so as to correct them as

quickly as possible to solve a problem.

In the late 1960s, it was clear that the existing approaches to software devel-

opment were deeply flawed and that there was an urgent need for change.

The NATO Science Committee organized two famous conferences to discuss

critical issues in software development [2]. The first conference was held at Gar-

misch, Germany, in 1968, and it was followed by a second conference in Rome in

1969. Over fifty people from eleven countries attended the Garmisch conference,

including Edsger Dijkstra, who did important theoretical work on formal specifi-

cation and verification. The NATO conferences highlighted problems that existed in

the software sector in the late 1960s, and the term “software crisis” was coined to

refer to these. There were problems with budget and schedule overruns, as well as

the quality and reliability of the delivered software.

The conference led to the birth of software engineering as a discipline in its own

right and the realization that programming is quite distinct from science and

mathematics. Programmers are like engineers in that they build software products,

and they therefore need education in traditional engineering as well as the latest

technologies. The education of a classical engineer includes product design and

mathematics. However, often computer science education places an emphasis on

the latest technologies, rather than on the important engineering foundations of

designing and building high-quality products that are safe for the public to use.

Programmers therefore need to learn the key engineering skills to enable them to

build products that are safe for the public to use. This includes a solid foundation on

design and on the mathematics required for building safe software products.

Mathematics plays a key role in classical engineering, and in some situations, it

may also assist software engineers in the delivery of high-quality software products.

Several mathematical approaches to assist software engineers are described in [3].

There are parallels between the software crisis in the late 1960s and serious

problems with bridge construction in the nineteenth century. Several bridges col-

lapsed or were delivered late or overbudget, due to the fact that people involved in

their design and construction did not have the required engineering knowledge.

2 1 Background

This led to bridges that were poorly designed and constructed, leading to their

collapse and loss of life, as well as endangering the lives of the public.

This led to legislation requiring engineers to be licensed by the Professional

Engineering Association prior to practicing as engineers. This organization speci-

fied a core body of knowledge that the engineer is required to possess, and the

licensing body verifies that the engineer has the required qualifications and expe-

rience. This helps to ensure that only personnel competent to design and build

products actually do so. Engineers have a professional responsibility to ensure that

the products are properly built and are safe for the public to use.

The Standish group has conducted research (Fig. 1.1) on the extent of problems

with IT projects since the mid-1990s. These studies were conducted in the USA, but

there is no reason to believe that European or Asian companies perform any better.

The results indicate serious problems with on-time delivery of projects and projects

being cancelled prior to completion.2 However, the comparison between 1995 and

2009 suggests that there have been some improvements with a greater percentage of

projects being delivered successfully and a reduction in the percentage of projects

being cancelled.

Fred Brooks argues that software is inherently complex and that there is no silver

bullet that will resolve all of the problems associated with software development

such as schedule or budget overruns [1, 4]. Poor software quality can lead to defects

in the software that may adversely impact the customer and even lead to loss of life.

It is therefore essential that software development organizations place sufficient

emphasis on quality throughout the software development lifecycle.

The Y2K problem was caused by a two-digit representation of dates, and it

required major rework to enable legacy software to function for the new millen-

nium. Clearly, well-designed programs would have hidden the representation of the

date, which would have required minimal changes for year 2000 compliance.

Instead, companies spent vast sums of money to rectify the problem.

Fig. 1.1 Standish report—

results of 1995 and 2009

survey

2These are IT projects covering diverse sectors including banking and telecommunications, rather

than pure software companies. Software companies following maturity frameworks such as the

CMMI generally achieve more consistent results.

1.1 Introduction 3

The quality of software produced by some companies is impressive.3 These

companies employ mature software processes and are committed to continuous

improvement. There is a lot of industrial interest in software process maturity

models for software organizations, and various approaches to assess and mature

software companies are described in [5, 6].4 These models focus on improving the

effectiveness of the management, engineering and organization practices related to

software engineering and in introducing best practice in software engineering. The

disciplined use of the mature software processes by the software engineers enables

high-quality software to be consistently produced.

1.2 What Is Software Engineering?

Software engineering involves the multi-person construction of multi-version pro-

grams. The IEEE 610.12 definition of software engineering is:

Software engineering is the application of a systematic, disciplined, quantifiable approach

to the development, operation, and maintenance of software; that is, the application of

engineering to software, and the study of such approaches.

Software engineering includes the following:

1. Methodologies to design, develop and test software to meet customers’ needs.

2. Software is engineered. That is, the software products are properly designed,

developed and tested in accordance with engineering principles.

3. Quality and safety are properly addressed.

4. Mathematics may be employed to assist with the design and verification of

software products. The level of mathematics employed will depend on the safety

critical nature of the product. Systematic peer reviews and rigorous testing will

often be sufficient to build quality into the software, with heavy mathematical

techniques reserved for safety and security critical software.

5. Sound project management and quality management practices are employed.

6. Support and maintenance of the software is properly addressed.

Software engineering is not just programming. It requires the engineer to state

precisely the requirements that the software product is to satisfy and then to produce

designs that will meet these requirements. The project needs to be planned and

3I recall projects at Motorola that regularly achieved 5.6r-quality in a L4 CMM environment

(i.e. approx. 20 defects per million lines of code. This represents very high quality).
4Approaches such as the CMM or SPICE (ISO 15504) focus mainly on the management and

organizational practices required in software engineering. The emphasis is on defining software

processes that are fit for purpose and consistently following them. The process maturity models

focus on what needs to be done rather how it should be done. This gives the organization the

freedom to choose the appropriate implementation to meet its needs. The models provide useful

information on practices to consider in the implementation.

4 1 Background

delivered on time and budget. The requirements must provide a precise description

of the problem to be solved, i.e. it should be evident from the requirements what is

and what is not required.

The requirements need to be rigorously reviewed to ensure that they are stated

clearly and unambiguously and reflect the customer’s needs. The next step is then

to create the design that will solve the problem, and it is essential to validate the

correctness of the design. Next, the software code to implement the design is

written, and peer reviews and software testing are employed to verify and validate

the correctness of the software.

The verification and validation of the design is rigorously performed for safety

critical systems, and it is sometimes appropriate to employ mathematical techniques

for these systems. However, it will usually be sufficient to employ peer reviews or

software inspections as these methodologies provide a high degree of rigour. This

may include approaches such as Fagan inspections [7], Gilb’s inspections [8] or

Prince 2’s approach to quality reviews [9].

The term “engineer” is a title that is awarded on merit in classical engineering. It

is generally applied only to people who have attained the necessary education and

competence to be called engineers and who base their practice on classical engi-

neering principles. The title places responsibilities on its holder to behave profes-

sionally and ethically. Often, in computer science, the term “software engineer” is

employed loosely to refer to anyone who builds things, rather than to an individual

with a core set of knowledge, experience and competence.

Several computer scientists (such as Parnas5) have argued that computer

scientists should be educated as engineers to enable them to apply appropriate

scientific principles to their work. They argue that computer scientists should

receive a solid foundation in mathematics and design, to enable them to have the

professional competence to perform as engineers in building high-quality products

that are safe for the public to use. The use of mathematics is an integral part of the

engineer’s work in other engineering disciplines, and so the software engineer

should be able to use mathematics to assist in the modelling or understanding of the

behaviour or properties of the proposed software system.

Software engineers need education6 on specification, design, turning designs

into programs, software inspections and testing. The education should enable the

software engineer to produce well-structured programs that are fit for purpose.

5Parnas has made important contributions to computer science. He advocates a solid engineering

approach with the extensive use of classical mathematical techniques in software development. He

also introduced information hiding in the 1970s, which is now a part of object-oriented design.
6Software companies that are following approaches such as the CMM or ISO 9001 consider the

education and qualification of staff prior to assigning staff to performing specific tasks. The

appropriate qualifications and experience for the specific role are considered prior to appointing a

person to carry out the role. Many companies are committed to the education and continuous

development of their staff and on introducing best practice in software engineering into their

organization.

1.2 What Is Software Engineering? 5

Parnas has argued that software engineers have responsibilities as professional

engineers.7 They are responsible for designing and implementing high-quality and

reliable software that is safe to use. They are also accountable for their decisions

and actions8 and have a responsibility to object to decisions that violate professional

standards. Engineers are required to behave professionally and ethically with their

clients. The membership of the professional engineering body requires the member

to adhere to the code of ethics9 of the profession. Engineers in other professions are

licensed, and therefore, Parnas argues a similar licensing approach be adopted for

professional software engineers10 to provide confidence that they are competent for

the particular assignment. Professional software engineers are required to follow

best practice in software engineering and the defined software processes.11

Many software companies invest heavily in training, as the education and

knowledge of its staff are essential to delivering high-quality products and services.

Employees receive professional training related to the roles that they are per-

forming, such as project management, software design and development, software

testing and service management. The fact that the employees are professionally

qualified increases confidence in the ability of the company to deliver high-quality

products and services. A company that pays little attention to the competence and

continuous development of its staff will obtain poor results and suffer a loss of

reputation and market share.

7The ancient Babylonians used the concept of accountability, and they employed a code of laws

(known as the Hammurabi Code) c. 1750 B.C. It included a law that stated that if a house

collapsed and killed the owner, then the builder of the house would be executed.
8However, it is unlikely that an individual programmer would be subject to litigation in the case of

a flaw in a program causing damage or loss of life. A comprehensive disclaimer of responsibility

for problems rather than a guarantee of quality accompanies most software products. Software

engineering is a team-based activity involving many engineers in various parts of the project, and it

would be potentially difficult for an outside party to prove that the cause of a particular problem is

due to the professional negligence of a particular software engineer, as there are many others

involved in the process such as reviewers of documentation and code and the various test groups.

Companies are more likely to be subject to litigation, as a company is legally responsible for the

actions of their employees in the workplace, and a company is a wealthier entity than one of its

employees. The legal aspects of licensing software may protect software companies from

litigation. However, greater legal protection for the customer can be built into the contract between

the supplier and the customer for bespoke software development.
9Many software companies have a defined code of ethics that employees are expected to adhere.

Larger companies will wish to project a good corporate image and to be respected worldwide.
10The British Computer Society (BCS) has introduced a qualification system for computer science

professionals that it used to show that professionals are properly qualified. The most important of

these is the BCS Information System Examination Board (ISEB) which allows IT professionals to

be qualified in service management, project management, software testing and so on.
11Software companies that are following the CMMI or ISO 9001 standards will employ audits to

verify that the processes and procedures have been followed. Auditors report their findings to

management, and the findings are addressed appropriately by the project team and affected

individuals.

6 1 Background

1.3 Challenges in Software Engineering

The challenge in software engineering is to deliver high-quality software on time

and on budget to customers. The research done by the Standish group was dis-

cussed earlier in this chapter, and the results of their 1998 research (Fig. 1.2) on

project cost overruns in the US indicated that 33% of projects are between 21 and

50% overestimate, 18% are between 51 and 100% overestimate and 11% of pro-

jects are between 101 and 200% overestimate.

The accurate estimation of project cost, effort and schedule is a challenge in

software engineering. Therefore, project managers need to determine how good

their estimation process actually is and to make appropriate improvements. The use

of software metrics is an objective way to do this, and improvements in estimation

will be evident from a reduced variance between estimated and actual effort. The

project manager will determine and report the actual versus estimated effort and

schedule for the project.

Risk management is an important part of project management, and the objective

is to identify potential risks early and throughout the project and to manage them

appropriately. The probability of each risk occurring and its impact is determined,

and the risks are managed during project execution.

Software quality needs to be properly planned to enable the project to deliver a

quality product. Flaws with poor quality software lead to a negative perception of

the company and may potentially lead to damage to the customer relationship with a

subsequent loss of market share.

There is a strong economic case to building quality into the software, as less time

is spent in reworking defective software. The cost of poor quality (COPQ) should

be measured and targets set for its reductions. It is important that lessons are learned

during the project and acted upon appropriately. This helps to promote a culture of

continuous improvement.

A number of high-profile software failures are discussed in [6]. These include

the millennium bug (Y2K) problem; the floating-point bug in the Intel micropro-

cessor; the European Space Agency Ariane-5 disaster; and so on. These failures led

to embarrassment for the organizations, as well as the associated cost of replace-

ment and correction.

Fig. 1.2 Standish 1998

report—estimation accuracy

1.3 Challenges in Software Engineering 7

The millennium bug was due to the use of two digits to represent dates rather

than four digits. The solution involved finding and analysing all code that had a

Y2K impact; planning and making the necessary changes; and verifying the cor-

rectness of the changes. The worldwide cost of correcting the millennium bug is

estimated to have been in billions of dollars.

The Intel Corporation was slow to acknowledge the floating-point problem in its

Pentium microprocessor and in providing adequate information on its impact to

its customers. It incurred a large financial cost in replacing microprocessors for its

customers. The Ariane-5 failure caused major embarrassment and damage to the

credibility of the European Space Agency (ESA). Its maiden flight ended in failure

on 4 June 1996, after a flight time of just 40 s.

These failures indicate that quality needs to be carefully considered when

designing and developing software. The effect of software failure may be large

costs to correct the software, loss of credibility of the company or even loss of life.

1.4 Software Processes and Lifecycles

Organizations vary by size and complexity, and the processes employed will reflect

the nature of their business. The development of software involves many processes

such as those for defining requirements; processes for project estimation and

planning; and processes for design, implementation, testing, and so on.

It is important that the processes employed are fit for purpose, and a key premise

in the software quality field is that the quality of the resulting software is influenced

by the quality and maturity of the underlying processes and compliance to them.

Therefore, it is necessary to focus on the quality of the processes as well as the

quality of the resulting software.

There is, of course, little point in having high-quality processes unless their use

is institutionalized in the organization. That is, all employees need to follow the

processes consistently. This requires that the employees are trained on the processes

and that process discipline is instilled with an appropriate audit strategy that ensures

compliance to them. Data will be collected to improve the process. The software

process assets in an organization generally consist of:

– A software development policy for the organization,

– Process maps that describe the flow of activities,

– Procedures and guidelines that describe the processes in more detail,

– Checklists to assist with the performance of the process,

– Templates for the performance of specific activities (e.g. design, testing),

– Training materials.

8 1 Background

The processes employed to develop high-quality software generally include the

following:

– Project management process,

– Requirements process,

– Design process,

– Coding process,

– Peer review process,

– Testing process,

– Supplier selection and management processes,

– Configuration management process,

– Audit process,

– Measurement process,

– Improvement process,

– Customer support and maintenance processes.

The software development process has an associated lifecycle that consists of

various phases. There are several well-known lifecycles employed such as the

waterfall model [10], the spiral model [11], the Rational Unified Process [12] and

the Agile methodology [13] which have become popular in recent years. The choice

of a particular software development lifecycle is determined from the particular

needs of the specific project. The various lifecycles are described in more detail in

the following sections.

1.4.1 Waterfall Lifecycle

The waterfall model (Fig. 1.3) starts with requirements gathering and definition. It

is followed by the system specification (with the functional and non-functional

requirements), the design and implementation of the software, and comprehensive

testing. The testing generally includes unit, system and user acceptance testing.

The waterfall model is employed for projects where the requirements can be

identified early in the project lifecycle or are known in advance. We are treating the

waterfall model as the “V” life cycle model, with the left-hand side of the “V”

Fig. 1.3 Waterfall V

lifecycle model

1.4 Software Processes and Lifecycles 9

detailing requirements, specification, design and coding and the right-hand side

detailing unit tests, integration tests, system tests and acceptance testing. Each

phase has entry and exit criteria that must be satisfied before the next phase

commences. There are several variations to the waterfall model.

Many companies employ a set of templates to enable the activities in the various

phases to be consistently performed. Templates may be employed for project

planning and reporting; requirements definition; design; testing; and so on. These

templates may be based on the IEEE standards or industrial best practice.

1.4.2 Spiral Lifecycles

The spiral model (Fig. 1.4) was developed by Barry Boehm in the 1980s [11], and

it is useful for projects where the requirements are not fully known at project

initiation, or where the requirements evolve as a part of the development lifecycle.

The development proceeds in a number of spirals, where each spiral typically

involves objectives and an analysis of the risks, updates to the requirements, design,

code, testing and a user review of the particular iteration or spiral.

Fig. 1.4 SPIRAL lifecycle model … public domain

10 1 Background

The spiral is, in effect, a reusable prototype with the business analysts and the

customer reviewing the current iteration and providing feedback to the development

team. The feedback is analysed and used to plan the next iteration. This approach is

often used in joint application development, where the usability and look and feel of

the application are a key concern. This is important in Web-based development and

in the development of a graphical user interface (GUI). The implementation of part

of the system helps in gaining a better understanding of the requirements of the

system, and this feeds into subsequent development cycles. The process repeats

until the requirements and the software product are fully complete.

There are several variations of the spiral model including rapid application

development (RAD); joint application development (JAD) models; and the

dynamic systems development method (DSDM) model. The Agile methodology

(discussed in Chap. 18) has become popular in recent years, and it employs sprints

(or iterations) of 2- to 4-week duration to implement a number of user stories.

A sample spiral model is shown in Fig. 1.4.

There are other life-cycle models such as the iterative development process that

combines the waterfall and spiral lifecycle model. An overview of Cleanroom is

presented in Chap. 11, and the methodology was developed by Harlan Mills at

IBM. It includes a phase for formal specification, and its approach to software

testing is based on the predicted usage of the software product, which allows a

software reliability measure to be calculated. The Rational Unified Process

(RUP) was developed by Rational, and it is discussed in the next section.

1.4.3 Rational Unified Process

The Rational Unified Process [12] was developed at the Rational Corporation (now

part of IBM) in the late 1990s. It uses the unified modelling language (UML) as a

tool for specification and design, where UML is a visual modelling language for

software systems that provides a means of specifying, constructing and docu-

menting the object-oriented system. It was developed by James Rumbaugh, Grady

Booch and Ivar Jacobson, and it facilitates the understanding of the architecture and

complexity of the system.

RUP is use case driven, architecture centric, iterative and incremental and

includes cycles, phases, workflows, risk mitigation, quality control, project man-

agement and configuration control (Fig. 1.5). Software projects may be very

complex, and there are risks that requirements may be incomplete or that the

interpretation of a requirement may differ between the customer and the project

team. RUP is a way to reduce risk in software engineering.

Requirements are gathered as use cases, where the use cases describe the

functional requirements from the point of view of the user of the system. They

describe what the system will do at a high level and ensure that there is an

appropriate focus on the user when defining the scope of the project. Use cases also

drive the development process, as the developers create a series of design and

implementation models that realize the use cases. The developers review each

1.4 Software Processes and Lifecycles 11

http://dx.doi.org/10.1007/978-3-319-57750-0_18
http://dx.doi.org/10.1007/978-3-319-57750-0_11

successive model for conformance to the use case model, and the test team verifies

that the implementation correctly implements the use cases.

The software architecture concept embodies the most significant static and

dynamic aspects of the system. The architecture grows out of the use cases and

factors such as the platform that the software is to run on, deployment considera-

tions, legacy systems and the non-functional requirements.

RUP decomposes the work of a large project into smaller slices or mini-projects,

and each mini-project is an iteration that results in an increment to the product.

The iteration consists of one or more steps in the workflow and generally leads to

the growth of the product. If there is a need to repeat an iteration, then all that is lost

is the misdirected effort of one iteration, rather than the entire product. In other

words, RUP is a way to mitigate risk in software engineering.

1.4.4 Agile Development

There has been a massive growth of popularity among software developers in

lightweight methodologies such as Agile. This is a software development

methodology that is more responsive to customer needs than traditional methods

such as the waterfall model. The waterfall development model is similar to a wide

and slow moving value stream, and halfway through the project, 100% of the

requirements are typically 50% done. However, for agile development, 50% of

requirements are typically 100% done halfway through the project.

This methodology has a strong collaborative style of working, and its approach

includes the following:

Fig. 1.5 Rational Unified Process

12 1 Background

– Aims to achieve a narrow fast flowing value stream,

– Feedback and adaptation employed in decision-making,

– User stories and sprints are employed,

– Stories are either done or not done (no such thing as 50% done),

– Iterative and incremental development is employed,

– A project is divided into iterations,

– An iteration has a fixed length (i.e. time boxing is employed),

– Entire software development lifecycle is employed for the implementation of

each story,

– Change is accepted as a normal part of life in the Agile world,

– Delivery is made as early as possible,

– Maintenance is seen as part of the development process,

– Refactoring and evolutionary design employed,

– Continuous integration is employed,

– Short cycle times,

– Emphasis on quality,

– Stand-up meetings,

– Plan regularly,

– Direct interaction preferred over documentation,

– Rapid conversion of requirements into working functionality,

– Demonstrate value early,

– Early decision-making.

Ongoing changes to requirements are considered normal in the Agile world, and

it is believed to be more realistic to change requirements regularly throughout the

project rather than attempting to define all of the requirements at the start of the

project. The methodology includes controls to manage changes to the requirements,

and good communication and early regular feedback are an essential part of the

process.

A story may be a new feature or a modification to an existing feature. It is

reduced to the minimum scope that can deliver business value, and a feature may

give rise to several stories. Stories often build upon other stories, and the entire

software development lifecycle is employed for the implementation of each story.

Stories are either done or not done, i.e. there is such thing as a story being 80%

done. The story is complete only when it passes its acceptance tests. Stories are

prioritized based on a number of factors including:

– Business value of story,

– Mitigation of risk,

– Dependencies on other stories.

The Scrum approach is an Agile method for managing iterative development,

and it consists of an outline planning phase for the project followed by a set of

1.4 Software Processes and Lifecycles 13

sprint cycles (where each cycle develops an increment). Sprint planning is per-

formed before the start of the iteration, and stories are assigned to the iteration to fill

the available time. Each Scrum sprint is of a fixed length (usually 2–4 weeks), and

it develops an increment of the system. The estimates for each story and their

priority are determined, and the prioritized stories are assigned to the iteration. A

short morning stand-up meeting is held daily during the iteration and attended by

the Scrum master, the project manager12 and the project team. It discusses the

progress made the previous day, problem reporting and tracking, and the work

planned for the day ahead. A separate meeting is held for issues that require more

detailed discussion.

Once the iteration is complete, the latest product increment is demonstrated to an

audience including the product owner. This is to receive feedback and to identify

new requirements. The team also conducts a retrospective meeting to identify what

went well and what went poorly during the iteration. This is for continuous

improvement of the future iterations. Planning for the next sprint then commences.

The Scrum master is a facilitator who arranges the daily meetings and ensures that

the Scrum process is followed. The role involves removing roadblocks so that the

team can achieve their goals and communicating with other stakeholders.

Agile employs pair programming and a collaborative style of working with the

philosophy that two heads are better than one. This allows multiple perspectives in

decision-making and a broader understanding of the issues.

Software testing is very important, and Agile generally employs automated

testing for unit, acceptance, performance and integration testing. Tests are run

frequently with the goal of catching programming errors early. They are generally

run on a separate build server to ensure that all dependencies are checked. Tests are

rerun before making a release. Agile employs test-driven development with tests

written before the code. The developers write code to make a test pass with ideally

developers only coding against failing tests. This approach forces the developer to

write testable code.

Refactoring is employed in Agile as a design and coding practice. The objective

is to change how the software is written without changing what it does. Refactoring

is a tool for evolutionary design where the design is regularly evaluated, and

improvements are implemented as they are identified. It helps in improving the

maintainability and readability of the code and in reducing complexity. The auto-

mated test suite is essential in showing that the integrity of the software is main-

tained following refactoring.

Continuous integration allows the system to be built with every change. Early

and regular integration allows early feedback to be provided. It also allows all of the

automated tests to be run, thereby identifying problems earlier. Agile is discussed in

more detail in Chap. 18.

12Agile teams are self-organizing and the project manager role is generally not employed for small

projects (<20 staff).

14 1 Background

http://dx.doi.org/10.1007/978-3-319-57750-0_18

1.5 Activities in Waterfall Lifecycle

The waterfall software development lifecycle consists of various activities including

the following:

• User (Business) requirements definition,

• Specification of system requirements,

• Design,

• Implementation,

• Unit testing,

• System testing,

• UAT testing,

• Support and maintenance.

These activities are discussed in the following sections, and the description is

specific to the non-Agile world.

1.5.1 User Requirements Definition

The user (business) requirements specify what the customer wants and define what

the software system is required to do (as distinct from how this is to be done). The

requirements are the foundation for the system, and if they are incorrect, then the

implemented system will be incorrect. Prototyping may be employed to assist in

the definition and validation of the requirements. The process of determining the

requirements, analysing and validating them and managing them throughout the

project lifecycle is termed requirements engineering.

The user requirements are determined from discussions with the customer to

determine their actual needs, and they are then refined into the system requirements,

which state the functional and non-functional requirements of the system. The

specification of the user requirements needs to be unambiguous to ensure that all

parties involved in the development of the system share a common understanding

of what is to be developed and tested.

Requirements gathering involves meetings with the stakeholders to gather all

relevant information for the proposed product. The stakeholders are interviewed,

and requirements workshops are conducted to elicit the requirements from them. An

early working system (prototype) is often used to identify gaps and misunder-

standings between developers and users. The prototype may serve as a basis for

writing the specification.

The requirements workshops are used to discuss and prioritize the requirements,

as well as identifying and resolving any conflicting requirements. The collected

information is consolidated into a coherent set of requirements. Changes to the

requirements may occur during the project, and these need to be controlled. It is

1.5 Activities in Waterfall Lifecycle 15

essential to understand the impacts (e.g. schedule, budget and technical) of a pro-

posed change to the requirements prior to its approval.

Requirements verification is concerned with ensuring that the requirements are

properly implemented (i.e. building it right) in the design and implementation.

Requirements validation is concerned with ensuring that the right requirements are

defined (building the right system) and that they are precise, complete and reflect

the actual needs of the customer.

The requirements are validated by the stakeholders to ensure that they are

actually those desired and to establish their feasibility. This may involve several

reviews of the requirements until all stakeholders are ready to approve the

requirements document. Other validation activities include reviews of the prototype

and the design, and user acceptance testing.

The requirements for a system are generally documented in a natural language

such as “English”. Other notations that are employed include the visual modelling

language UML [14] and formal specification languages such as VDM or Z for the

safety critical field.

The Agile software development methodology argues that as requirements

change so quickly that a requirements document is unnecessary, since such a

document would be out of date as soon as it was written.

1.5.2 Specification of System Requirements

The specification of the system requirements of the product is essentially a state-

ment of what the software development organization will provide to meet the

business (user) requirements. That is, the detailed business requirements are a

statement of what the customer wants, whereas the specification of the system

requirements is a statement of what will be delivered by the software development

organization.

It is essential that the system requirements are valid with respect to the user

requirements, and they are reviewed by the stakeholders to ensure their validity.

Traceability may be employed to show that the business requirements are addressed

by the system requirements.

There are two categories of system requirements, namely functional and

non-functional requirements. The functional requirements define the functionality

that is required of the system, and it may include screenshots, report layouts or

desired functionality specified as use cases. The non-functional requirements will

generally include security, reliability, availability, performance and portability

requirements, as well as usability and maintainability requirements.

1.5.3 Design

The design of the system consists of engineering activities to describe the archi-

tecture or structure of the system, as well as activities to describe the algorithms and

16 1 Background

functions required to implement the system requirements. It is a creative process

concerned with how the system will be implemented, and its activities include

architecture design, interface design and data structure design. There are often

several possible design solutions for a particular system, and the designer will need

to decide on the most appropriate solution.

The design may be specified in various ways such as graphical notations that

display the relationships between the components making up the design. The

notation may include flow charts, or various UML diagrams such as sequence

diagrams, state charts and so on. Program description languages or pseudocode may

be employed to define the algorithms and data structures that are the basis for

implementation.

Function-oriented design is mainly historical, and it involves starting with a

high-level view of the system and refining it into a more detailed design. The

system state is centralized and shared between the functions operating on that state.

Object-oriented design has become popular, and it is based on the concept of

information hiding developed by Parnas [15]. The system is viewed as a collection

of objects rather than functions, with each object managing its own state infor-

mation. The system state is decentralized, and an object is a member of a class. The

definition of a class includes attributes and operations on class members, and these

may be inherited from superclasses. Objects communicate by exchanging

messages.

It is essential to verify and validate the design with respect to the system

requirements, and this will be done by traceability of the design to the system

requirements and design reviews.

1.5.4 Implementation

This phase is concerned with implementing the design in the target language and

environment (e.g. C++ or Java), and it involves writing or generating the actual

code. The development team divides up the work to be done, with each programmer

responsible for one or more modules. The coding activities often include code

reviews or walk-throughs to ensure that quality code is produced and to verify its

correctness. The code reviews will verify that the source code conforms to the

coding standards and that maintainability issues are addressed. They will also verify

that the code produced is a valid implementation of the software design.

Software reuse provides a way to speed up the development process. Compo-

nents or objects that may be reused need to be identified and handled accordingly.

The implemented code may use software components that have either being

developed internally or purchased off the shelf. Open-source software has become

popular in recent years, and it allows software developed by others to be used

(under an open-source licence) in the development of applications.

The benefits of software reuse include increased productivity and a faster time to

market. There are inherent risks with customized-off-the shelf (COTS) software, as

the supplier may decide to no longer support the software, or there is no guarantee

1.5 Activities in Waterfall Lifecycle 17

that software that has worked successfully in one domain will work correctly in a

different domain. It is therefore important to consider the risks as well as the

benefits of software reuse and open-source software.

1.5.5 Software Testing

Software testing is employed to verify that the requirements have been correctly

implemented and that the software is fit for purpose, as well as identifying defects

present in the software. There are various types of testing that may be conducted

including unit testing, integration testing, system testing, performance testing and

user acceptance testing. These are described below:

Unit Testing

Unit testing is performed by the programmer on the completed unit (or module) and

prior to its integration with other modules. The programmer writes these tests, and

the objective is to show that the code satisfies the design. The unit test case is

generally documented, and it should include the test objective and the expected

results.

Code coverage and branch coverage metrics are often generated to give an

indication of how comprehensive the unit testing has been. These metrics provide

visibility into the number of lines of code executed, as well as the branches covered

during unit testing.

The developer executes the unit tests; records the results; corrects any identified

defects; and retests the software. Test-driven development (TDD) has become

popular (e.g. in the Agile world) this involves writing the unit test cases (and

possibly other test cases) before the code, and the code is then written to pass the

defined test cases.

Integration Test

The development team performs this type of testing on the integrated system, once

all of the individual units work correctly in isolation. The objective is to verify that

all of the modules and their interfaces work correctly together and to identify and

resolve any issues. Modules that work correctly in isolation may fail when inte-

grated with other modules. The developers generally perform this type of testing.

System Test

The purpose of system testing is to verify that the implementation is valid with

respect to the system requirements. It involves the specification of system test cases,

and the execution of the test cases will verify that the system requirements have

been correctly implemented. An independent test group generally conducts this type

of testing, and the system tests are traceable to the system requirements.

18 1 Background

Any system requirements that have been incorrectly implemented will be

identified and defects logged and reported to the developers. The test group will

verify that the new version of the software is correct, and regression testing is

conducted to verify system integrity. System testing may include security testing,

usability testing and performance testing.

The preparation of the test environment requires detailed planning, and it may

involve ordering special hardware and tools. It is important that the test environ-

ment is set up early to allow the timely execution of the test cases.

Performance Test

The purpose of performance testing is to ensure that the performance of the system

is within the bounds specified by the non-functional requirements. It may include

load performance testing, where the system is subjected to heavy loads over a long

period of time, and stress testing, where the system is subjected to heavy loads

during a short time interval.

Performance testing often involves the simulation of many users using the

system and involves measuring the response times for various activities. Test tools

are employed to simulate a large number of users and heavy loads. It is also

employed to determine whether the system is scalable to support future growth.

User Acceptance Test

UAT testing is usually performed under controlled conditions at the customer site,

and its operation will closely resemble the real-life behaviour of the system. The

customer will see the product in operation and will judge whether or not the system

is fit for purpose.

The objective is to demonstrate that the product satisfies the business require-

ments and meets the customer expectations. Upon its successful completion, the

customer is happy to accept the product.

1.5.6 Support and Maintenance

This phase continues after the release of the software product to the customer.

Software systems often have a long lifetime, and the software needs to be con-

tinuously enhanced over its lifetime to meet the evolving needs of the customers.

This may involve regular new releases with new functionality and corrections to

known defects.

Any problems that the customer identifies with the software are reported as per

the customer support and maintenance agreement. The support issues will require

investigation, and the issue may be a defect in the software, an enhancement to the

software or due to a misunderstanding. The support and maintenance team will

identify the causes of any identified defects and will implement an appropriate

solution to resolve. Testing is conducted to verify that the solution is correct and

1.5 Activities in Waterfall Lifecycle 19

that the changes made have not adversely affected other parts of the system. Mature

organizations will conduct post-mortems to learn lessons from the defect13 and will

take corrective action to prevent a reoccurrence.

The presence of a maintenance phase suggests an acceptance of the reality that

problems with the software will be identified post-release. The goal of building a

correct and reliable software product the first time is very difficult to achieve, and the

customer is always likely to find some issues with the released software product. It is

accepted today that quality needs to be built into each step in the development process,

with the role of software inspections and testing to identify asmany defects as possible

prior to release and minimize the risk that serious defects will be found post-release.

The effective in-phase inspections of the deliverables will influence the quality

of the resulting software and lead to a corresponding reduction in the number of

defects. The testing group plays a key role in verifying that the system is correct and

in providing confidence that the software is fit for purpose and ready to be released.

The approach to software correctness involves testing and retesting, until the testing

group believes that all defects have been eliminated. Dijkstra [16] comments on

testing are well known:

Testing a program demonstrates that it contains errors, never that it is correct.

That is, irrespective of the amount of time spent testing, it can never be said with

absolute confidence that all defects have been found in the software. Testing pro-

vides increased confidence that the program is correct, and statistical techniques

may be employed to give a measure of the software reliability.

Many software companies may consider one defect per thousand lines of code

(KLOC) to be reasonable quality. However, if the system contains one million lines

of code, this is equivalent to a thousand post-release defects, which is unacceptable.

Some mature organizations have a quality objective of three defects per million

lines of code, which was introduced by Motorola as part of its Six-Sigma (6r)

program. It was originally applied it to its manufacturing businesses and subse-

quently applied to its software organizations. The goal is to reduce variability in

manufacturing processes and to ensure that the processes performed within strict

process control limits.

1.6 Software Inspections

Software inspections are used to build quality into software products. There are a

number of well-known approaches such as the Fagan methodology [17]; Gilb’s

approach [8]; and Prince 2’s approach.

13This is essential for serious defects that have caused significant inconvenience to customers (e.g.

a major telecoms outage). The software development organization will wish to learn lessons to

determine what went wrong in its processes that prevented the defect from been identified during

peer reviews and testing. Actions to prevent a reoccurrence will be identified and implemented.

20 1 Background

Fagan inspections were developed by Michael Fagan of IBM. It is a seven-step

process that identifies and removes errors in work products. The process mandates

that requirement documents, design documents, source code and test plans are all

formally inspected by experts independent of the author of the deliverable to ensure

quality.

There are various roles defined in the process including the moderator who

chairs the inspection. The reader’s responsibility is to read or paraphrase the par-

ticular deliverable, and the author is the creator of the deliverable and has a special

interest in ensuring that it is correct. The tester role is concerned with the test

viewpoint.

The inspection process will consider whether the design is correct with respect to

the requirements, and whether the source code is correct with respect to the design.

Software inspections play an important role in building quality into software and in

reducing the cost of poor quality in the organization.

1.7 Software Project Management

The timely delivery of quality software requires good management and engineering

processes. Software projects have a history of being delivered late or overbudget,

and good project management practices include the following activities:

– Estimation of cost, effort and schedule for the project,

– Identifying and managing risks,

– Preparing the project plan,

– Preparing the initial project schedule and key milestones,

– Obtaining approval for the project plan and schedule,

– Staffing the project,

– Monitoring progress, budget, schedule, effort, risks, issues, change requests and

quality,

– Taking corrective action,

– Replanning and rescheduling,

– Communicating progress to affected stakeholders,

– Preparing status reports and presentations.

The project plan will contain or reference several other plans such as the project

quality plan; the communication plan; the configuration management plan; and the

test plan.

Project estimation and scheduling are difficult as often software projects are

breaking new ground and may differ from previous projects. That is, previous

estimates may often not be a good basis for estimation for the current project. Often,

unanticipated problems can arise for technically advanced projects, and the

1.6 Software Inspections 21

estimates may often be optimistic. Gantt charts are often employed for project

scheduling, and these show the work breakdown for the project, as well as task

dependencies and allocation of staff to the various tasks.

The effective management of risk during a project is essential to project success.

Risks arise due to uncertainty, and the risk management cycle involves14 risk

identification; risk analysis and evaluation; identifying responses to risks; selecting

and planning a response to the risk; and risk monitoring. The risks are logged, and

the likelihood of each risk arising and its impact is then determined. The risk is

assigned an owner and an appropriate response to the risk determined.

1.8 CMMI Maturity Model

The CMMI is a framework to assist an organization in the implementation of best

practice in software and systems engineering. It is an internationally recognized

model for software process improvement and assessment and is used worldwide by

thousands of organizations. It provides a solid engineering approach to the devel-

opment of software, and it supports the definition of high-quality processes for the

various software engineering and management activities.

It was developed by the Software Engineering Institute (SEI) who adapted the

process improvement principles used in the manufacturing field to the software

field. They developed the original CMM model and its successor CMMI.

The CMMI states what the organization needs to do to mature its processes rather

than how this should be done.

The CMMI consists of five maturity levels with each maturity level consisting of

several process areas. Each process area consists of a set of goals, and these goals

are implemented by practices related to that process area. Level two is focused on

management practices; level three is focused on engineering and organization

practices; level four is concerned with ensuring that key processes are performing

within strict quantitative limits; and level five is concerned with continuous process

improvement. Maturity levels may not be skipped in the staged representation of

the CMMI, as each maturity level is the foundation for the next level. The CMMI

and Agile are compatible, and CMMI v1.3 supports Agile software development.

The CMMI allows organizations to benchmark themselves against other orga-

nizations. This is done by a formal SCAMPI appraisal conducted by an authorized

lead appraiser. The results of the appraisal are generally reported back to the SEI,

and there is a strict qualification process to become an authorized lead appraiser.

An appraisal is useful in verifying that an organization has improved, and it enables

the organization to prioritize improvements for the next improvement cycle.

The CMMI is discussed in more detail in Chap. 16.

14These are the risk management activities in the Prince 2 methodology.

22 1 Background

http://dx.doi.org/10.1007/978-3-319-57750-0_16

1.9 Formal Methods

Dijkstra and Hoare have argued that the way to develop correct software is to derive

the program from its specifications using mathematics and to employ mathematical

proof to demonstrate its correctness with respect to the specification. This offers a

rigorous framework to develop programs adhering to the highest quality constraints.

However, in practice, mathematical techniques have proved to be cumbersome to

use, and their widespread use in industry is unlikely at this time.

The safety-critical area is one domain to which mathematical techniques have

been successfully applied. There is a need for extra rigour in the safety and security

critical fields, and mathematical techniques can demonstrate the presence or

absence of certain desirable or undesirable properties (e.g. “when a train is in a

level crossing, then the gate is closed”).

Spivey [18] defines a “formal specification” as the use of mathematical notation

to describe in a precise way the properties which an information system must have,

without unduly constraining the way in which these properties are achieved. It

describes what the system must do, as distinct from how it is to be done. This

abstraction away from implementation enables questions about what the system

does to be answered, independently of the detailed code. Further, the unambiguous

nature of mathematical notation avoids the problem of ambiguity in an imprecisely

worded natural language description of a system.

The formal specification thus becomes the key reference point for the different

parties concerned with the construction of the system and is a useful way of

promoting a common understanding for all those concerned with the system. The

term “formal methods” is used to describe a formal specification language and a

method for the design and implementation of computer systems.

The specification is written precisely in a mathematical language. The derivation

of an implementation from the specification may be achieved via stepwise refine-

ment. Each refinement step makes the specification more concrete and closer to the

actual implementation. There is an associated proof obligation that the refinement

be valid and that the concrete state preserves the properties of the more abstract

state. Thus, assuming the original specification is correct, and the proofs of cor-

rectness of each refinement step are valid; then, there is a very high degree of

confidence in the correctness of the implemented software.

Formal methods have been applied to a diverse range of applications, including

circuit design, artificial intelligence, specification of standards, specification and

verification of programs. They are described in more detail in Chap. 12.

1.9 Formal Methods 23

http://dx.doi.org/10.1007/978-3-319-57750-0_12

1.10 Review Questions

1. Discuss the research results of the Standish group the current state of IT

project delivery?

2. What are the main challenges in software engineering?

3. Describe various software lifecycles such as the waterfall model and the

spiral model.

4. Discuss the benefits of Agile over conventional approaches. List any risks

and disadvantages?

5. Describe the purpose of the CMMI? What are the benefits?

6. Describe the main activities in software inspections.

7. Describe the main activities in software testing.

8. Describe the main activities in project management?

9. What are the advantages and disadvantages of formal methods?

1.11 Summary

The birth of software engineering was at the NATO conference held in 1968 in

Germany. This conference highlighted the problems that existed in the software

sector in the late 1960s, and the term “software crisis” was coined to refer to these.

The conference led to the realization that programming is quite distinct from sci-

ence and mathematics and that software engineers need to be properly trained to

enable them to build high-quality products that are safe to use.

The Standish group conducts research on the extent of problems with the

delivery of projects on time and budget. Their research indicates that it remains a

challenge to deliver projects on time, on budget and with the right quality.

Programmers are like engineers in the sense that they build products. Therefore,

programmers need to receive an appropriate education in engineering as part of

their training. The education of traditional engineers includes training on product

design and an appropriate level of mathematics.

Software engineering involves multi-person construction of multi-version pro-

grams. It is a systematic approach to the development and maintenance of the soft-

ware, and it requires a precise statement of the requirements of the software product

and then the design and development of a solution to meet these requirements. It

includes methodologies to design, develop, implement and test software as well as

sound project management, quality management and configuration management

practices. Support and maintenance of the software needs to be properly addressed.

24 1 Background

Software process maturity models such as the CMMI have become popular in

recent years. They place an emphasis on understanding and improving the software

process to enable software engineers to be more effective in their work.

References

1. F. Brooks, The Mythical Man Month (Addison Wesley, Boston, 1975)

2. Petrocelli, in Software Engineering, eds. by IN. Buxton, P. Naur, B. Randell. Report on two

NATO Conferences held in Garmisch, Germany (October 1968) and Rome, Italy (October

1969) (1975)

3. G. O’Regan, Mathematical Approaches to Software Quality (Springer, London, 2006)

4. F. Brooks, No Silver Bullet. Essence and Accidents of Software Engineering. Information

Processing (Elsevier, Amsterdam, 1986)

5. G. O’Regan, Introduction to Software Process Improvement (Springer, London 2010)

6. G. O’Regan, Introduction to Software Quality (Springer, Switzerland, 2014)

7. M. Fagan, design and code inspections to reduce errors in software development. IBM Syst.

J. 15(3) (1976)

8. T. Gilb, D. Graham, Software Inspections. (Addison Wesley, Boston, 1994)

9. Office of Government Commerce, Managing Successful Projects with PRINCE2 (2004)

10. W. Royce, in The Software Lifecycle Model (Waterfall Model). Proceedings of WESTCON,

August, 1970

11. B. Boehm, A spiral model for software development and enhancement. Computer 21(5),

61–72 (1988)

12. J. Rumbaugh et al., The Unified Software Development Process (Addison Wesley, Boston,

1999)

13. K. Beck, Extreme Programming Explained. Embrace Change (Addison Wesley, Boston,

2000)

14. I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Modelling Language User Guide

(Addison-Wesley, Boston, 1999)

15. D. Parnas, On the criteria to be used in decomposing systems into modules. Commun. ACM

15(12), 1053–1058 (1972)

16. E.W. Dijkstra, Structured Programming (Academic Press, Cambridge, 1972)

17. M. Fagan, Design and code inspections to reduce errors in software development. IBM Syst.

J. 15(3) (1976)

18. J.M. Spivey, The Z Notation. A Reference Manual. Prentice Hall International Series in

Computer Science, 1992

1.11 Summary 25

2Software Project Management

Abstract

This chapter provides an introduction to project management for traditional

software engineering, and we discuss project estimation, project planning and

scheduling, project monitoring and control, risk management, managing

communication and change and managing project quality.

Keywords

Business case � Project planning � Estimation � Scheduling � Risk management �
Project board � Project governance � Project reports � Project metrics � Project

monitoring and control � Quality management � Prince 2 � PMP and PMBOK

2.1 Introduction

Software projects have a history of being delivered late or over budget, and soft-

ware project management is concerned with the effective management of software

projects to ensure the successful delivery of a high-quality product, on time and on

budget, to the customer. A project is a temporary group activity designed to

accomplish a specific goal such as the delivery of a product to a customer. It has a

clearly defined beginning and end in time.

Project management involves good project planning and estimation; the man-

agement of resources; the management of issues and change requests that arise

during the project; managing quality; managing risks; managing the budget;

monitoring progress; taking appropriate action when progress deviates from

expectations; communicating progress to the various stakeholders; and delivering a

high-quality product to the customer. It involves the following:

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-57750-0_2

27

– Defining the business case for the project,

– Defining the scope of the project and what it is to achieve,

– Estimation of the cost, effort and schedule,

– Determining the start and end dates for the project,

– Determining the resources required,

– Assigning resources to the various tasks and activities,

– Determining the project lifecycle and phases of the project,

– Staffing the project,

– Preparing the project plan,

– Scheduling the various tasks and activities in the schedule,

– Preparing the initial project schedule and key milestones,

– Obtaining approval for the project plan and schedule,

– Identifying and managing risks,

– Monitoring progress, budget, schedule, effort, risks, issues, change requests and

quality,

– Taking corrective action,

– Replanning and rescheduling,

– Communicating progress to affected stakeholders,

– Preparing status reports and presentations.

The scope of the project needs to be determined, and the estimated effort for the

various tasks and activities established. The project plan and schedule will then be

developed and approved by the stakeholders, and these are maintained during the

project. The project plan will contain or reference several other plans such as the

project quality plan; the communication plan; the configuration management plan;

and the test plan.

Project estimation and scheduling are difficult as software projects are often

breaking new ground and differ from previous projects. That is, historical estimates

may often not be a good basis for estimation for the current project. Often, unan-

ticipated problems may arise for technically advanced projects, and the estimates

may be overly optimistic.

Gantt charts are generally employed for project scheduling, and these show the

work breakdown for the project as well as task dependencies and allocation of staff

to the various tasks.

The effective management of risk during a project is essential to project success.

Risks arise due to uncertainty, and the risk management cycle involves1 risk

identification; risk analysis and evaluation; identifying responses to risks; selecting

and planning a response to the risk; and risk monitoring.

Once the risks have been identified, they are logged (e.g. in the risk log). The

likelihood of each risk arising and its impact is then determined. The risk is

assigned an owner and an appropriate response to the risk determined.

1These are the risk management activities in the Prince2 methodology.

28 2 Software Project Management

Once the planning is complete, the project execution commences, and the focus

moves to monitoring progress, managing risks and issues, replanning as appro-

priate, providing regular progress reports to the project board and so on.

Two popular project management methodologies are the Prince 2 methodology,

which was developed in the UK, and Project Management Professional (PMP) and

its associated project management body of knowledge (PMBOK) from the Project

Management Institute (PMI) in the USA.

2.2 Project Start-up and Initiation

There are many ways in which a project may arise, but it is always essential that

there is a clear rationale (business case) for the project. A telecoms company may

wish to develop a new version of its software with attractive features to gain market

share. An internal IT department may receive a request from its business users to

alter its business software in order to satisfy new legal or regulatory requirements.

A software development company may be contacted by a business to develop a

bespoke solution to meet its needs and so on.

All parties must be clear on what the project is to achieve, and how it will be

achieved. It is fundamental that there is a business case for the project (this is the

reason for the project), as it clearly does not make sense for the organization to

spend a large amount of money without a sound rationale for the project. In other

words, the project must make business sense (e.g. it may have a financial return on

the investment or it may be to satisfy some business or regulatory requirement).

At the project start-up, the initial scope and costing for the project are deter-

mined, and the feasibility of the project is determined.2 The project is authorized,3

and a project board is set up for project governance. The project board verifies that

there is a sound business case for the project, and a project manager is appointed to

manage the project.

The project board (or steering group) includes the key stakeholders and is

accountable for the success of the project. The project manager provides regular

status reports to the project board during the project, and the project board is

consulted when key project decisions need to be made.

The project manager is responsible for the day-to-day management of the pro-

ject, and good planning is essential to its success. The approach to the project is

decided,4 and the project manager kicks off the project and mobilizes the project

team. The detailed requirements and estimates for the project are determined, the

2This refers to whether the project is technically and financially feasible.
3Organizations have limited resources, and as many projects may be proposed it will not be
possible to authorise every project, and so several projects with weak business cases may be
rejected.
4For example, it may be decided to outsource the development to a third party provider, purchase
an off-the-shelf solution, or develop the solution internally.

2.1 Introduction 29

schedule of activities and tasks established, and resources are assigned for the

various tasks and activities.5 The project manager prepares the project plan, which

is subject to the approval of the key stakeholders. The initial risks are identified and

managed, and a risk log (or repository) is set up for the project. Once the planning is

complete, project execution commences.

2.3 Estimation

Estimation is an important part of project management, and the accurate estimates

of effort, cost and schedule are essential to delivering a project on time and on

budget, and with the right quality.6 Estimation is employed in the planning process

to determine the resources and effort required, and it feeds into the scheduling of the

project. The problems with over- or underestimation of projects are well known,

and good estimates allow the following:

– Accurate calculation of the project cost and its feasibility,

– Accurate scheduling of the project,

– Measurement of progress and costs against the estimates,

– Determining the resources required for the project.

Poor estimation leads to:

– Projects being over- or underestimated,

– Projects being over or under-resourced (impacting staff morale),

– Negative impression of the project manager.

Consequently, estimation needs to be rigorous, and there are several well-known

techniques available (e.g. work-breakdown structures, function points and so on).

Estimation applies to both the early and later parts of the project, with the later

phases of the project refining the initial estimates, as a more detailed understanding

of the project activities is then available. The new estimates are used to reschedule

and to predict the eventual effort, delivery date and cost of the project. The fol-

lowing are guidelines for estimation:

– Sufficient time needs to be allowed to do estimation,

– Estimates are produced for each phase of software development,

– The initial estimates are high level,

5The project scheduling is usually done with the Microsoft Project tool.
6The consequences of under estimating a project include the project being delivered late, with the
project team working late nights and weekends to recover the schedule, quality being
compromised with steps in the process omitted, and so on.

30 2 Software Project Management

– The estimates for the next phase should be solid, whereas estimates for the later

phases may be high level,

– The estimates should be conservative rather than optimistic,

– Estimates will usually include contingency,

– Estimates should be reviewed to ensure their adequacy,

– Estimates from independent experts may be useful,

– It may be useful to prepare estimates using various methods and to compare.

Project metrics may be employed to measure the accuracy of the estimates.

These metrics are reported during the project and include the following:

– Effort Estimation Accuracy,

– Budget Estimation Accuracy,

– Schedule Estimation Accuracy.

Next, we discuss various estimation techniques including the work-breakdown

structure, the analogy method and the Delphi method.

2.3.1 Estimation Techniques

Estimates need to be produced consistently, and it would be inappropriate to have

an estimation procedure such as “Go ask Fred”,7 as this clearly relies on an indi-

vidual and is not a repeatable process. The estimates may be based on a

work-breakdown structure, function points or another appropriate methodology.

There are several approaches to project estimation (Table 2.1) including the

following:

2.3.2 Work-Breakdown Structure

This is a popular approach to project estimation (it is also known as decomposition)

and involves the following:

– Identify the project deliverables to be produced during the project,

– Estimate the size of each deliverable (in pages or LOC),

– Estimate the effort (number of days) required to complete the deliverable based

on its complexity and size, and experience of team,

– Estimate the cost of the completed deliverable,

– The estimate for the project is the sum of the individual estimates.

7Unless “Go Ask Fred” is the name of the estimation methodology or the estimation tool
employed.

2.3 Estimation 31

The approach often uses productivity data that is available from previously

completed projects. The effort required for a complex deliverable is higher than that

of a simple deliverable (where both are of the same size). The project planning

section in the project plan (or a separate estimation plan) will include the lifecycle

phases and the deliverables/tasks to be carried out in each phase. It may include a

table along the following lines (Table 2.2).

2.4 Project Planning and Scheduling

A well-managed project has an increased chance of success, and good planning is

an essential part of project management. There is the well-known adage that states,

“Fail to plan, plan to fail”.8 The project manager and the relevant stakeholders will

consider the appropriate approach for the project and determine whether a solution

should be purchased off the shelf, whether to outsource the software development to

Table 2.1 Estimation techniques

Technique Description

Work-breakdown
structure

Identify the project deliverables to be produced during the project.
Estimate the size of each deliverable (in pages or LOC). Estimate the
effort (number of days) required to complete the deliverable based on its
size and complexity. Estimate the cost of the completed deliverable

Analogy method This involves comparing the proposed project with a previously
completed project (i.e. similar to the proposed project). The historical data
and metrics for schedule, effort and budget estimation accuracy are
considered, as well as similarities and differences between the projects to
provide effort, schedule and budget estimates

Expert judgement This involves consultation with experienced personnel to derive the
estimate. The expert(s) can factor in differences between past project
experiences, knowledge of existing systems and the specific requirements
of the project

Delphi method The Delphi method is a consensus method used to produce accurate
schedules and estimates. It was developed by the Rand Corporation and
improved by Barry Boehm and others. It provides extra confidence in the
project estimates by using experts independent of the project manager or
third party supplier

Cost predictor
models

These include various cost prediction models such as Cocomo and Slim.
The Costar tool supports Cocomo, and the Qsm tool supports Slim

Function points Function points were developed by Allan Albrecht at IBM in the late
1970s and involve analysing each functional requirement and assigning a
number of function points based on its size and complexity. This total
number of function points is a measure of the estimate for the project

8This quotation is adapted from Benjamin Franklin (an inventor and signatory to the American
declaration of independence).

32 2 Software Project Management

a third party supplier or whether to develop the solution internally. A simple pro-

cess map for project planning is presented in Fig. 2.1.

Estimation is a key part of project planning, and the effort estimates are used for

scheduling of the tasks and activities in a project-scheduling tool such as Microsoft

Project (Fig. 2.2).

The schedule will detail the phases in the project, the key project milestones, the

activities and tasks to be performed in each phase as well as their associated

timescales, and the resources required to carry out each task. The project manager

will update the project schedule regularly during the project.

Projects vary in size and complexity, and the formality of the software devel-

opment process employed needs to reflect this. The project plan defines how the

project will be carried out, and it generally includes sections such as:

– Business case,

– Project scope,

– Project goals and objectives,

– Key milestones,

Table 2.2 Example work-breakdown structure

Lifecycle phase Project deliverable or task
description

Est. size Est.
effort

Est.
cost

Planning and
requirements

Project plan 40 10 days $5000

Project schedule 20 5 days $2500

Business requirements 20 10 days $5000

Test plan 15 5 days $2500

Issue/risk log 3 2 days $1000

Lessons learned log 1 1 day $500

Design System requirements 15 5 days $2500

Technical/DB design 30 10 days $5000

Coding Source code 5000 (LOC) 10 days $5000

Unit tests/results 200 2 days $1000

Testing ST specs 30 10 days $5000

System testing 10 days $5000

UAT specs 30 10 days $5000

UAT testing 10 days $5000

Deployment Release notes/procedures 20 5 days $2500

User manuals 50 10 days $5000

Support procedures 15 10 days $5000

Training plan 25 5 days $2500

Project closure End project report 10 2 days $1000

Lessons learned report 5 2 days $1000

Contingency 10% 13.4 $6700

Total 147.4 $73,700

2.4 Project Planning and Scheduling 33

Planning

Data

Establish

Estimates

Develop Project

Plan

Project Plan

Approved

Project Plan

Approve

Project Plan?

Yes

No

Fig. 2.1 Simple process map for project planning

Fig. 2.2 Sample Microsoft project schedule

34 2 Software Project Management

– Project planning and estimates,

– Key stakeholders,

– Project team and responsibilities,

– Knowledge and skills required,

– Communication planning,

– Financial planning,

– Quality and test planning,

– Configuration management.

Communication planning describes how communication will be carried out

during the project, and it includes the various project meetings and reports that will

be produced; financial planning is concerned with budget planning for the project;

quality and test planning is concerned with the planning required to ensure that a

high-quality product is delivered; and configuration management is concerned with

identifying the configuration items to be controlled and systematically controlling

changes to them throughout the lifecycle. It ensures that all deliverables are kept

consistent following approved changes.

The project plan is a key project document, and it needs to be approved by all

stakeholders. The project manager needs to ensure that the project plan, schedule

and technical work products are kept consistent with the requirements. Another

words, if there are changes to the requirement, then the project plan and schedule

will need to be updated accordingly.

Checklists are useful in verifying that the tasks have been completed. The

sample project management checklist below (Table 2.3) verifies that project plan-

ning has been appropriately performed and that controls are in place.

Table 2.3 Sample project management checklist

No. Item to check

1. Is the project plan complete and approved by the stakeholders?

2. Does the project have a sound business case?

3. Are the risk log, issue log and lessons learned log set up?

4. Are the responses to the risks and issues appropriate?

5. Is the Microsoft Schedule available for the project?

6. Is the project schedule up to date?

7. Is the project appropriately resourced?

8. Are estimates available for the project? Are they realistic?

9. Has quality planning been completed for the project?

10. Has the change control mechanism been set up for the project?

11. Are all deliverables under configuration management control?

12. Has project communication been appropriately planned?

13. Is the project directory set up for the project?

14. Are the key milestones defined in the project plan?

2.4 Project Planning and Scheduling 35

2.5 Risk Management

Risks arise due to uncertainty, and risk management is concerned with managing

uncertainty, and especially the management of any undesired events. Risks need to

be identified, analysed and controlled in order for the project to be successful, and

risk management activities take place throughout the project lifecycle.

Once the initial set of risks to the project has been identified, they are analysed to

determine their likelihood of occurrence and their impact (e.g. on cost, schedule or

quality). These two parameters determine the risk category, and the most serious

risk category refers to a risk with a high probability of occurrence and a high impact

on occurrence.

Countermeasures are defined to reduce the likelihood of occurrence and impact

of the risks, and contingency plans are prepared to deal with the situation of the risk

actually occurring. Additional risks may arise during the project, and the project

manager needs to be proactive in their identification and management.

Risks need to be reviewed regularly especially following changes to the project.

These could be changes to the business case or the business requirements, loss of

key personnel and so on. Events that occur may affect existing risks (including the

probability of their occurrence and their impact) and may lead to new risks.

Countermeasures need to be kept up to date during the project. Risks are reported

regularly throughout the project.

The risk management cycle is concerned with identifying and managing risks

throughout the project lifecycle. It involves identifying risks; determining their

probability of occurrence and impact should they occur; identifying responses to the

risks; and monitoring and reporting. Table 2.4 describes these activities in greater

detail:

The project manager will maintain a risk repository (this may be a tool or a risk

log) to record details of each risk, including its type and description; its likelihood

and its impact (yielding the risk category); and the response to the risk.

2.6 Quality Management in Projects

There are various definitions of “quality” such as Juran’s definition that quality is

“fitness for purpose”, and Crosby’s definition of quality as “conformance to the

requirements”. The Crosby’s definition is useful when asking whether we are

building it right, whereas the Juran’s definition is useful when asking whether we

are building the right system. Crosby’s definition is useful in requirements verifi-

cation, where software inspections and testing verify that the requirements have

been correctly implemented. Juran’s definition is useful in requirements validation.

It is a fundamental premise in the quality field that it is more cost effective to

build quality into the product, rather than adding it later during the testing phase.

Therefore, quality needs to be considered at every step during the project, and every

36 2 Software Project Management

deliverable needs to be reviewed to ensure its fitness for purpose. The review may

be similar to a software inspection, a structured walk-through or another appro-

priate methodology.

The project plan will include a section on quality planning for the project (this

may be a reference to a separate plan). The quality plan will define how the project

plans to deliver a high-quality project, as well as the quality controls and quality

assurance activities that will take place during project execution. The quality

planning for the project needs to ensure that the customer’s quality expectations

will be achieved.

The project manager has overall responsibility for project quality, and the quality

department (if one exists) will assign a quality engineer to the project, and the

quality engineer will promote quality and its importance to the project team, as well

as facilitating quality improvement. The project manager needs to ensure that sound

Table 2.4 Risk management activities

Activity Description

Risk management
strategy

This defines how the risks will be identified, monitored, reviewed and
reported during the project, as well as the frequency of monitoring and
reporting

Risk identification This involves identifying the risks to the project and recording them in
a risk repository (e.g. risk log). It continues throughout the project
lifecycle. Prince 2 classifies risks into:
– Business (e.g. collapse of subcontractors)
– Legal and regulatory

– Organizational (e.g. skilled resources/management)
– Technical (e.g. scope creep, architecture, design)
– Environmental (e.g. flooding or fires)

Evaluating the risks This involves assessing the likelihood of occurrence of a particular risk
and its impact (on cost, schedule, etc.) should it materialize. These two
parameters result in the risk category.

Identifying risk
responses

The project manager (and stakeholders) will determine the appropriate
response to a risk such as reducing the probability of its occurrence or
its impact should it occur. These include the following:
– Prevention which aims to prevent it from occurring
– Reduction aims to reduce the probability of occurrence or impact
should it occur

– Transfer aims to transfer the risk to a third party
– Acceptance is when nothing can be done about it
– Contingency is actions that are carried out should the risk
materialize

Risk monitoring and
reporting

This involves monitoring existing risks to verify that the actions taken
to manage the risks are effective, as well as identifying new risks. This
provides an early warning that an identified risk is going to materialize,
and a risk that materializes is a new project issue that needs to be dealt
with

Lessons learned This is concerned with determining the effectiveness of risk
management during the project and to learn any lessons for future
projects

2.6 Quality Management in Projects 37

software engineering processes are employed, as well as ensuring that the defined

standards and templates are followed.

It is an accepted principle in the quality field that good processes and confor-

mance to them are essential for the delivery of a high-quality product. The quality

engineer will conduct process audits to ensure that the processes and standards are

followed consistently during the project. An audit report is published, and any audit

actions are tracked to closure.

Software testing is conducted to verify that the software correctly implements

the requirements, and a separate project test plan will define the various types of

testing to be performed during the project. These will typically include unit, inte-

gration, system, performance and acceptance testing and the results from the var-

ious test activities enable the fitness for purpose of the software to be determined, as

well as judging whether it is ready to be released or not.

The project manager will report the various project metrics (including the quality

metrics) in the regular project status reports, and the quality metrics provide an

objective indication of the quality of the product at that moment in time.

The cost of poor quality may be determined at the end of the project, and this

may require a time recording system for the various project activities. The effort

involved in detecting and correcting defects may be recorded, and a COPQ chart

similar to Fig. 10.28 presented.

Poor quality may arise due to several reasons. For example, it may be caused by

inadequate reviews or testing of the software; inadequate skills or experience of the

project team; or poorly defined or understood requirements.

The project manager will conduct a lessons learned meeting at the end of the

project to identify and record all of the lessons learned from the project. These are

then published as a lessons learned report and shared with relevant stakeholders as

part of continuous improvement.

2.7 Project Monitoring and Control

Project monitoring and control are concerned with monitoring project execution

and taking corrective action when project performance deviates from expectations.

The progress of the project should be monitored against the plan and corrective

actions taken as appropriate. The key project parameters such as budget, effort and

schedule as well as risks and issues are monitored, and the status of the project

communicated regularly to the affected stakeholders.

The project manager will conduct progress and milestone reviews to determine

the actual progress, with new issues identified and monitored. The appropriate

corrective actions are identified and are tracked to closure. The main focus of

project monitoring and control is as follows:

– Monitor the project plan and schedule and keep on track,

– Monitor the key project parameters,

38 2 Software Project Management

http://dx.doi.org/10.1007/978-3-319-57750-0_10

Risks /

Issues

Monitor

progress against

plan

Manage

Corrective

Action

Corrective Actions

Identified & Taken

Yes

No

All Closed ?

Fig. 2.3 Simple process map for project monitoring and control

– Conduct progress and milestone reviews to determine the actual status,

– Replan as appropriate,

– Monitor risks and take appropriate action,

– Analyse issues and change requests and take appropriate action,

– Track corrective action to closure,

– Monitor resources and manage any resource issues,

– Report the project status to management and project board.

A sample process map is presented in Fig. 2.3.

The project manager will monitor progress, risks and issues during the project,

and take appropriate corrective action. The status of the project will be reported in

the regular status reports sent to management and the project board, with the status

reviewed with management regularly during the project.

2.8 Managing Issues and Change Requests

The management of issues and change requests is a normal part of project man-

agement. An issue can arise at any time during the project (e.g. a supplier to the

project may go out of business, an employee may resign, specialized hardware for

testing may not arrive in time and so on), and an issue refers to a problem that has

occurred which may have a negative impact on the project. The severity of the issue

is an indication of its impact on the project, and the project manager needs to

manage it appropriately.

2.7 Project Monitoring and Control 39

A change request is a stakeholder request for a change to the scope of the

project, and it may arise at any time during the project. The impacts of the change

request (e.g. technical, cost and schedule) need to be carefully considered, as a

change introduces new risks to the project that may adversely affect cost, schedule

and quality. It is therefore essential to fully understand the impacts in order to make

an informed decision on whether to authorize or reject the change request. The

project manager may directly approve small change requests, with the impacts of a

larger change request considered by the project change control board (CCB).

The activities involved in managing issues and change requests are summarized

in Table 2.5.

2.9 Project Board and Governance

The project board9 (or steering group) is responsible for directing the project, and it

is directly accountable for the success of the project. It consists of senior managers

and staff in the organization who have the authority to make resources available, to

remove roadblocks and to get things done.

It is consulted whenever key project decisions need to be made, and it plays a

key role in project governance. The project board ensures that there is a clear

business case for the project, and that the capital funding for the project is adequate

and well spent. The project board may cancel the project at any stage during project

Table 2.5 Activities in managing issues and change requests

Activity Description of issue/change request

Log issue or change
request

The project manager logs the issue or change request. It is assigned to a
unique reference number and priority (severity), and categorized into an
issue (problem) or change request

Assess impact This involves analysis to determine the impacts such as technical, cost,
schedule and quality. The risks need to be identified

Decision on
implementation

A decision is made on how to deal with the issue or change request.
The CCB is often involved in the decision to authorize a change request

Implement solution The affected project documents and software modules are identified and
modified accordingly

Verify solution Testing (Unit, System and UAT) is employed to verify the correctness of
the solution

Close issue/CR The issue or change request is closed

9The project board in the Prince 2 methodology includes roles such as the project executive, senior
supplier, senior user, project assurance, and the project manager. These roles have distinct
responsibilities.

40 2 Software Project Management

execution should there cease to be a business case, or should project spending

exceed tolerance and go out of control.10

The project manager reports to the project board and sends regular status reports

to highlight progress made as well as key project risks and issues. The project board

meets at an appropriate frequency during the project (with extra sessions held

should serious project issues arise) (Fig. 2.4).

There are several roles on the project board (an individual could perform more

than one role) and their responsibilities include (Table 2.6) the following:

Fig. 2.4 Prince 2 project board

Table 2.6 Project board roles and responsibilities

Role Responsibility

Project

director

Ultimately responsible for the project. Provides overall guidance to the project

Senior

customer

Represents the interests of users

Senior

supplier

Represents the resources responsible for implementation of project (e.g. IS
manager)

Project

manager

Link between project board and project team

Project

assurance

Internal role (optional) that provides an independent (of project manager)
objective view of the project

Safety

(optional)
Ensure adherence to health and safety standards

10The project plan will usually specify a tolerance level for schedule and spending, where the
project may spend (perhaps less than 10%) in excess of the allocated capital for the project before
seeking authorization for further capital funding for the project.

2.9 Project Board and Governance 41

2.10 Project Reporting

The frequency of project reporting is defined in the project plan (or the commu-

nications plan). The project report advises management and the key stakeholders of

the current status of the project and includes key project information such as:

– Completed deliverables (during period),

– New risks and issues,

– Schedule, effort and budget status (e.g. RAG metrics11),

– Quality and test status,

– Key risks and issues,

– Milestone status,

– Deliverables planned (next period).

The project manager discusses the project report with management and the

project board and presents the current status of the project as well as the key risks

and issues. The project manager will present a recovery plan (exception report) to

deal with the situation where the project has fallen significantly outside the defined

project tolerance (i.e. it is significantly behind schedule or over budget).

The key risks and issues will be discussed, and the project manager will explain

how the key issues are being dealt with, and how the key risks will be managed.

The new risks and issues will also be discussed, and the project board will carefully

consider how the project manager plans to deal with these and will provide

appropriate support.

The project board will carefully consider the status of the project as well as the

input from the project manager before deciding on the appropriate course of action

(which could include the immediate termination of the project if there is no longer a

business case for it).

2.11 Project Closure

A project is a temporary activity, and once the project goals have been achieved and

the product handed over to the customer and support group, it is ready to be closed.

The project manager will prepare an end of project report detailing the extent to

which the project achieved its targeted objectives. The report will include a sum-

mary of key project metrics including key quality metrics and the budget and

timeliness metrics.

11Often, a colour coding mechanism is employed with a red flag indicating a serious issue; amber
highlighting a potentially serious issue; and green indicating that everything is ok.

42 2 Software Project Management

The success of the project is judged on the extent to which the defined objectives

have been achieved, and on the extent to which the project has delivered the agreed

functionality on schedule, on budget and with the right quality. This is often

referred to as the project management triangle (Fig. 2.5).

The project manager presents the end project report to the project board,

including any factors (e.g. change requests) that may have affected the timely

delivery of the project or the allocated budget. The project is then officially closed.

The project manager then schedules a meeting with the team review the lessons

learned from the project. The team records the lessons learned during the project

(typically in a lessons learned log), and the key lessons learned are summarized in

the lessons learned report. Any actions identified are assigned to individuals and

followed through to closure, and the lessons learned report is made available to

other projects (with the goal of learning from experience). The project team is

disbanded, and the project team members are assigned to other duties.

2.12 Prince 2 Methodology

Prince 2 (Projects in controlled environments) is a popular project management

methodology that is widely used in the UK and Europe. It is a structured,

process-driven approach to project management, with processes for project start-up,

initiating a project, controlling a stage, managing stage boundaries, closing a pro-

ject, managing product delivery, planning and directing a project (Fig. 2.6). It has

procedures to coordinate people and activities in a project, as well as procedures to

monitor and control project activities.

These key processes are summarized in Table 2.7, and more detailed informa-

tion on Prince 2 is in [1].

Fig. 2.5 Project
management triangle

2.11 Project Closure 43

Fig. 2.6 Prince 2 processes

Table 2.7 Key processes in Prince 2

Process Description

Start-up Project manager and project board appointed, project approach and
project brief defined

Initiating Project and quality plan completed, business case and risks refined,
project files set up and project authorized

Controlling a stage Stage plan prepared, quality and risks/issues managed, progress
reviewed and reported

Managing stage
boundary

Stage status reviewed and next stage planned, actual products produced
versus original stage plan compared, stage or exception report produced

Closing a project Orderly closure of project with project board, end project report and
lessons learned report

Managing product
delivery

Covers product creation by the team or a third party supplier. Ensure
that the planned deliverables meet quality criteria

Planning Prince 2 employs product-based planning which involves identifying
the products required, and the activities and resources to provide them

Directing a project The project board consists of senior management, and it controls the
project. It has the authority to authorize and define what is required
from the project, commitment of resources and funds and management
direction

44 2 Software Project Management

2.13 Review Questions

1. What is a project? What is project management?

2. Describe various approaches to estimation.

3. What activities take place at project start-up and initiation?

4. What skills are required to be a good project manager?

5. What is the purpose of the project board? Explain project governance.

6. What is the purpose of risk management? How are risks managed?

7. Describe the main activities in project management.

8. What is the difference between a risk and an issue?

9. What is the purpose of project reporting?

10. How is quality managed in a project?

2.14 Summary

Project management is concerned with the effective management of projects, and

the goal is to deliver a high-quality product, on time and on budget, to the customer.

It involves good project planning and estimation; managing resources; managing

changes and issues that arise; managing quality; managing risks; managing the

budget; monitoring progress and taking corrective action; communicating progress;

and delivering a high-quality product to the customer.

The scope of the project needs to be determined and estimates established. The

project plan is developed and approved by the stakeholders, and it will contain or

reference several other plans. It needs to be maintained during the project. Project

estimation and scheduling are difficult as often software projects are quite different

from previous projects. Gantt charts are often employed for project scheduling, and

these show the work breakdown for the project, as well as task dependencies and

the assignment of staff to the various tasks.

2.12 Prince 2 Methodology 45

The effective management of risk during a project is essential to project success.

Risks arise due to uncertainty, and the risk management cycle involves risk iden-

tification; risk analysis and evaluation; identifying responses to risks; selecting and

planning a response to the risk; and risk monitoring.

Once the planning is complete, the project execution commences, and the focus

moves to monitoring progress, replanning as appropriate, managing risks and

issues, providing regular progress reports to the project board and so on. Finally,

there is an orderly close of the project.

Reference

1. Office of Government Commerce, Managing Successful Projects with PRINCE2, 2004

46 2 Software Project Management

3Requirements Engineering

Abstract

This chapter discusses requirements engineering and discusses activities such as

requirements gathering, requirements elicitation, requirements analysis, require-

ments management, and requirements verification and validation.

Keywords

User requirements � System requirements � Functional and non-functional

requirements � Requirements elicitation � Requirements analysis � Requirements

verification and validation � Requirements management � Requirements

traceability

3.1 Introduction

The user requirements specify what the customer wants and define what the soft-

ware system is required to do, as distinct from how this is to be done. The

requirements are the foundation for the system, and if they are incorrect then

irrespective of the best software development processes in the world, the imple-

mented system will be incorrect. The process of determining the requirements,

analysing and validating them and managing them throughout the project lifecycle

is termed requirements engineering.

Often, the initial requirements for a project arise due to a particular problem that

the business or customer needs to solve. This leads to a project to implement an

appropriate solution, and the first step is to determine the scope of work and the

actual requirements for the project, and whether the project is feasible from the cost,

time and technical considerations.

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_3

47

The user requirements are determined from discussions with the customer to

determine their actual needs, and they are then refined into the system requirements,

which state the functional and non-functional requirements of the system.

The requirements must be precise and unambiguous to ensure that all stake-

holders are clear on what is (and what is not) to be delivered, and prototyping may

be employed to clarify the requirements and to assist in their definition.

Requirements verification is concerned with ensuring that the requirements are

properly implemented (i.e. building it right). In other words, it is concerned with

ensuring that the requirements are properly addressed in the design and imple-

mentation, and a traceability matrix and testing are often employed as part of the

verification activities.

Requirements validation (i.e. building the right system) is concerned with

ensuring that the right requirements are defined and that they are precise, complete,

consistent, realizable and reflect the actual needs of the customer. The validation of

the requirements is done by the stakeholders, and it involves several reviews of the

requirements (and prototype), reviews of the design and user acceptance testing.

The Agile software development methodology (discussed in more detail in

Chap. 18) has become very popular in recent years, and its lightweight approach is

to be contrasted with the traditional waterfall model. It argues that requirements

change so quickly that a requirements document is unnecessary, since such a

document would be out of date as soon as it was written.

However, this chapter will focus on requirements engineering as it is in tradi-

tional software engineering, and the reader may consult Chap. 18 and the various

texts on Agile to understand its approach.

3.2 Requirements Process

The process of determining the requirements for a proposed system involves dis-

cussions with the relevant stakeholders to determine their needs and to explicitly

define what functionality the system should provide, as well as any hardware and

performance constraints.

The specification of the requirements needs to be precise and unambiguous to

ensure that all parties involved share a common understanding of the system and

fully agree on what is to be developed and tested. A feasibility study may be needed

to demonstrate that the requirements are feasible and may be implemented within

the defined schedule and cost constraints.

The requirements are the foundation for the system, and project planning is

based on the defined requirements. It is therefore essential that the requirements are

complete (all services required by the user are defined), consistent (requirements

should not contradict one another) and unambiguous (the requirements are clear and

definite in meaning). Table 3.1 presents characteristics of good requirements.

48 3 Requirements Engineering

http://dx.doi.org/10.1007/978-3-319-57750-0_18
http://dx.doi.org/10.1007/978-3-319-57750-0_18

Prototyping may be employed to assist in the definition and validation of the

requirements, and a suitable prototype will include key parts of the system. It will

allow users to give early feedback on the proposed system and on the extent to

which it meets their needs. Prototyping is useful in clarifying the requirements and

helps to reduce the risk of implementing the incorrect solution.

The implications of the proposed set of requirements need to be understood, as

the choice of a particular requirement may affect the choice of another requirement.

For example, in the telecommunication domain, two features may work correctly in

isolation, but when present together, they interact in an undesirable way. Therefore,

feature interactions need to be identified and investigated at the requirements phase

to determine how interactions should be resolved.

In situations where an inadequate requirements process is employed, then there

may be serious problems in the project. This may be manifested by requirements

that are poorly defined or controlled, or requirements that are incomplete, inade-

quately documented or untestable. In other cases, there may be major scope creep

with requirements accepted from any source.

Changes to the requirements may lead to a high level of rework, or cause major

delays to the project schedule, or major increases in project cost. In other cases,

where poor configuration management practices are employed, the changes to the

requirements may not be reflected in the project plan, and the deliverables may be

inconsistent with the requirements. Table 3.2 presents symptoms of a poor

requirements process:

The following activities are involved in the requirements process, and they are

discussed in more detail in the following sections:

– Requirements elicitation and specification

– Requirements analysis

– Requirements verification and validation

Table 3.1 Characteristics of good requirements

No. Characteristics of good requirements

1. Each requirement is clear and unambiguous

2. Each requirement has a priority to indicate its importance

3. Each requirement may be implemented

4. Each requirement is testable

5. Each requirement is necessary

6. Any conflicts between the requirements are resolved

7. Each requirement is broken down as fully as possible

8. Each requirement is consistent with the project’s objectives

9. Each requirement is stated as a stakeholder need (i.e. premature design/solution or

implementation information is not included)

10. The user (business) requirements are traceable (in both directions) throughout the

development cycle

11. The requirements are complete and consistent

3.2 Requirements Process 49

– Requirements traceability

– Requirements management.

We distinguish between the user (or business) requirements and the system

requirements. The user requirements are the high-level requirements for the system

(they tend to be high-level statements in a natural language with diagrams and

tables), whereas the system requirements are a more detailed description of what the

system is to do. The user requirements are more abstract than the system require-

ments, and a user requirement is typically expanded into several system require-

ments. The system requirements provide more detailed information on the system to

be implemented, and it details the functionality to be provided and any operational

constraints.

The system requirements include the functional and non-functional require-

ments. A functional requirement is a statement about the functionality of the sys-

tem, i.e. a description of the behaviour of the system and how it should respond to

particular inputs. A non-functional requirement is a constraint on the functionality

of the system (e.g. a timing, performance, reliability, availability, portability,

usability, safety, security, dependability or a hardware constraint).

It is essential that the functional and non-functional requirements are stated

precisely, and the non-functional requirements are often quantitatively specified so

that it may be objectively determined (by testing) whether they are satisfied or not.

Further, it is essential that the non-functional requirements are satisfied, as other-

wise the delivered system may be unusable or unacceptable to the client. The

non-functional requirements often affect the overall architecture of the system,

rather than the individual components of the system.

Next, we discuss the process of determining the requirements for the system and

specifying them in a requirements document.

Table 3.2 Symptoms of poor requirements process

No. Symptom

1. High level of requirements creep during the project

2. Requirements changing regularly during the project

3. Missing requirements

4. Changes to the requirements are not controlled

5. Requirements accepted from any source

6. High level of rework during the project

7. Design, implementation and test products inconsistently interpret the requirements

8. Deliverables are inconsistent with the requirements

9. Untestable requirements

10. Inability to demonstrate that the implementation satisfies the requirements

50 3 Requirements Engineering

3.2.1 Requirements Elicitation and Specification

Requirements elicitation is the process of determining the requirements for the

proposed system, and it involves discussions with the relevant stakeholders to

determine their needs and to explicitly define what functionality the system should

provide, as well as any operational and performance constraints. The process of

eliciting the requirements from the stakeholders is difficult as

– Stakeholders often do not know what they want from the system.

– Stakeholders often do not know what is or what is not technically feasible and

may have unrealistic expectations.

– Stakeholders express the requirements in the language of their domain, which

may differ from the language of the business analysts.

– Different stakeholders may want different things from the system resulting in

conflicts that need to be resolved.

The project manager/business analyst and the relevant stakeholders will conduct

a brainstorming session to define the high-level requirements for the proposed

system (or modification to an existing system). The requirements gathering may

involve interviews with the stakeholders to allow them to talk about how they

currently perform their work and to determine their requirements from the proposed

system. It may also include observation session where the business analyst observes

the users to see how the work is currently performed.

Further requirements workshops will review and analyse the draft user and

system requirements documents and identify all other relevant information for the

proposed system. There will typically be two requirements documents produced,

and these are the user (sometimes called business) requirements specification (URS

or BRS) and the system requirements specification (SRS). These two documents

could potentially be combined into one document (Fig. 3.1).

The user requirements document is usually written in a natural language such as

English (it may include diagrams and tables), and it describes the external beha-

viour of the system and specifies the functional and non-functional requirements in

non-technical language. The systems requirements document will be an expanded

version of the user requirements, and it provides the detail as to how the user

requirements are provided in the system. It is a detailed specification of the entire

system, with the aim of describing the external behaviour of the system and

excluding (as far as possible) design information.1 The SRS may be written in:

1It is desirable that the user or system requirements describe what is to be provided rather than how

it is to be provided. That is, in theory, design or implementation information should be excluded in

the specification. However, in practice, it is sometimes difficult to exclude all design information

(e.g. consider the case where a system needs to work with an existing system).

3.2 Requirements Process 51

– A natural language

– A graphical language

– Formal specification language.

The system specification is generally written in a natural language such as

“English” (with diagrams and tables included). Natural language is inherently

ambiguous, and therefore, care is required to ensure that the definition is precise and

unambiguous, and the specification needs to be carefully reviewed to ensure that

any ambiguities are identified and removed.

The specification may be written in a graphical specification language such as

UML, which is often employed in defining the functional requirements of a system

using use case diagrams, state diagrams and sequence diagrams. Finally, extra

precision is needed for the specification of the requirements in the safety critical and

security critical fields, and a formal mathematical specification language (such as

VDM or Z) is often used in these domains.

Prototyping may be employed, and it helps in identifying gaps and misunder-

standings in the definition of the requirements. The prototype is an early working

version of the system, it is used to give the users a flavour of what the working

system will look like, and its evaluation by the stakeholders helps in clarifying the

requirements. The prototype may be thrown away at the end of prototyping, or it

may be reused in the development of the system. Prototyping involves:

– Define prototype objectives

– Decide which functional requirements will be prototyped

– Develop the prototype

– Evaluate the prototype.

The project manager (or a business analyst) will facilitate the requirements

workshops, and the initial workshop is an interview and brainstorming session2

Brainstorm

Draft high-level

user requirements

Requirements Elicitation

Draft URS

Requirements Analysis / Validation

Approved URS

Create System Reqs

Draft SRS

System Reqs Analysis

/ Validation

Approved SRS

Fig. 3.1 Requirements

process

2It may involve getting end-users to talk about how they currently do a certain task and

brainstorming on better ways in which the proposed system can do the same task.

52 3 Requirements Engineering

focused on requirements discovery. This involves identifying and gathering the

requirements from the various stakeholders, analysing and prioritising them,

resolving conflicts between them and consolidating them into a coherent set of user

requirements.

This leads to the first draft of the user requirements, which is prepared by the

project manager/business analyst, and the draft document is circulated to the

stakeholders for review and comments. Further requirements workshops are then

held to discuss and analyse the current draft of the user requirements, to ensure that

they meet the needs of the stakeholders, as well as identifying new requirements

and resolving any conflicts.3 This process continues until all stakeholders are in

agreement with the user requirements and are prepared to approve them. In some

cases, the user requirements may already be defined and documented by the

customer.

The project manager/business analyst may employ a checklist as an aid to

determine that the requirements process has been followed and to verify that the

user requirements have been fully specified and that every requirement specified is

actually necessary. The final version of the user requirements document is circu-

lated to all participants for their final review and approval.

Once the user requirements have been approved by all stakeholders, the work on

the system requirements commences, and the business analyst expands the user

requirements into more specific and detailed system requirements. Several

workshops/reviews of the system requirement specification take place with the

stakeholders, with the goal of ensuring that the system requirements are valid with

respect to the business requirements and that they meet stakeholders’ needs and are

fit for purpose. Finally, the stakeholders approve the SRS.

Scenarios are useful in adding detail to the requirements, with each scenario

covering a small number of possible interactions with the system. Use cases are

often used to identify the actors involved in the interactions, and they provide a

useful way to elicit the requirements from the stakeholders who interact directly

with the system.

The ambiguity of natural language has led to interest in more precise notations to

express requirements unambiguously. We mentioned the graphical unified mod-

elling language (UML) [1], which has become popular in recent years. Its use case

diagram is often used for requirements elicitation, with the use cases (Fig. 14.2)

describing the functional requirements of the system graphically. The use cases

describe the scenarios (or sequences of actions) in the system from the user’s

viewpoint (actor). It shows how the actor interacts with the system, where an actor

represents the set of roles that a user can play, and the actor may be human or an

automated system. Use case diagrams and various UML diagrams are discussed in

Chap. 14.

3Conflicts are inevitable as stakeholders will have different needs, and so discussion and

negotiation are required to resolve these conflicts and achieve consensus.

3.2 Requirements Process 53

http://dx.doi.org/10.1007/978-3-319-57750-0_14
http://dx.doi.org/10.1007/978-3-319-57750-0_14

Formal specification notations such as Z or VDM are often employed in the

safety critical or security critical fields. The advantage of these mathematical lan-

guages is that they are precise and amenable to proof, and mathematical analysis

may be employed in a sense to debug4 the requirements. This provides increased

confidence in the correctness and validity of the requirements. However, these

notations are perceived as being difficult to use by industrialists, and they are not

widely employed in mainstream software engineering. Formal methods are dis-

cussed in more detail in Chap. 12.

3.2.2 Requirements Analysis

The requirements analysis activities are conducted as part of requirements elicita-

tion, and the requirements are analysed to ensure that they are those that are actually

required; that they are precisely and unambiguously stated; that they are complete

and consistent; that they are categorized and prioritised; and that any conflicts

between them are identified and resolved. There may be an initial feasibility study

prior to the commencement of the project to ensure that the proposed system is

technically feasible and achievable within the defined budget and time constraints.

The resolution of any conflicts is through discussion and negotiations with the

stakeholders. The requirements are generally prioritised to define the importance of

each requirement, and a number of development models (e.g. the Rational Unified

Process) implement the most important requirements first. Requirements analysis is

an iterative process with feedback going back to the stakeholders in the require-

ments elicitation process.

The requirements workshops will verify that the system requirements are valid

with respect to the user requirements, and technical workshops will need to be

conducted to determine the appropriate approach to their implementation.

3.2.3 Requirements Verification and Validation

The difference between requirements validation and verification is illustrated by the

phrase “Building the right thing” versus “building it right”. In other words, vali-

dation is concerned with ensuring that the correct requirements are being imple-

mented, whereas verification is concerned with ensuring that the defined

requirements are being implemented correctly.

The stakeholders validate the requirements to ensure that they are the right set of

requirements and that their implementation will result in a system that is fit for

purpose. It is essential to validate the requirements, as the cost of correction of a

requirements defect increases the later that the defect is discovered. Therefore, it is

essential to identify a requirements defect as early as possible, as otherwise there

4Essentially, the mathematical language provides the facility to prove that certain properties are

true of the specification, and that certain undesirable properties are false in the specification.

54 3 Requirements Engineering

http://dx.doi.org/10.1007/978-3-319-57750-0_12

may be major cost and time involved in its correction, especially if the defect is

discovered late in the software development lifecycle.

The validation activities may involve checks that the requirements are complete,

consistent, feasible, testable and are fit for purpose. The validation may involve

prototyping and several reviews (and updates) of the requirements (and prototype)

by the stakeholders, until all stakeholders are ready to approve the requirements of

the system.

The validation of the requirements will ensure that the requirements are com-

plete and consistent, as well as reflecting the needs of the customer. The final

validation step is the user acceptance testing, and this is performed by the customer

to confirm that the completed system is fit for purpose and satisfies customer

expectations. The lifecycle model employed determines the verification and vali-

dation activities to be conducted during the project, with models such as joint

application development (JAD) and Agile involving a high level of customer

involvement throughout the lifecycle.

Requirements verification is concerned with ensuring that the system as built

(from design, to implementation, to testing and deployment) properly implements

the defined requirements. A traceability matrix (Table 3.4) shows how the

requirements are implemented and tested, and it may be employed as part of

requirements verification.

It shows how the user requirements have been addressed in the system

requirements, and how they have been implemented in the design of the system, as

well as showing how the test cases have verified that the implementation has

implemented the requirements correctly.

3.2.4 Requirements Managements

Requirements management is concerned with managing changes to the require-

ments, and in ensuring that the project maintains an up-to-date approved set of

requirements throughout the project lifecycle. It is essential that the project deliv-

erables are kept consistent with the latest version of the requirements, and that when

the requirements document changes then all other project deliverables such as the

design document, software modules and test specifications are kept consistent with

the new version of the requirements.

It is an important area to get right as all project activities are planned from the

approved set of requirements. Requirements management is concerned with

managing changes to the requirements of the project, and in identifying inconsis-

tencies between the requirements and the project plans and work products. Its focus

is on the activities for managing changes to the requirements, as distinct from the

activities in gathering and defining the requirements.

It is important that changes to the requirements are controlled, and that the

impacts of the changes are fully understood prior to authorization. Once the system

requirements have been approved, any proposed changes to the requirements are

subject to formal change control. The project will set up a group that is responsible

3.2 Requirements Process 55

for authorizing changes to the requirements [usually called the change control

board (CCB)]. The CCB is responsible for analysing requests to change the

requirements, and it makes an informed decision on whether to accept or reject the

change request based on its impacts and risks.

The need to change the requirements may be due to business or regulatory

changes, or to a customer need becoming apparent at a late stage of the project

when the project is nearing completion. A request to change the requirements is

termed a change request (CR), and this is a stakeholder request for a change to the

scope of the project, and it may arise at any time during the project. The impacts of

the CR (e.g. technical, risks, cost, budget, and schedule) need to be carefully

considered, as a change introduces new risks to the project, and may adversely

affect cost, schedule and quality.

Therefore, it is essential that the impacts of the CR be fully considered prior to

its authorization. The CR is considered by the CCB, and an informed decision is

made to authorize or reject the request. The activities involved in managing change

requests are summarized in Table 3.3.

Following the approval of a CR, the affected documents such as the system

requirements, the design and software modules are modified accordingly. This is

done to ensure that all of the project deliverables are kept consistent with the latest

version of the requirements. Testing is carried out to verify that the changes have

been implemented correctly.

3.2.5 Requirements Traceability

The objective of requirements traceability is to verify that all of the defined

requirements for the project have been implemented and tested. One way to do this

is to consider each requirement number and to go through every part of the design

document to find where the requirement is being implemented in the design and

similarly to go through the test documents and find any reference to the requirement

number to show where it is being tested. This would demonstrate that the particular

requirement number has been implemented and tested.

A more effective mechanism to do this is to employ a traceability matrix, which

may be employed to map the user requirements to the system requirements; the

system requirements to the design; the design to the unit test cases; the system test

cases; and the UAT test cases. That is, traceability is defined through the project

lifecycle, and the matrix provides a crisp summary of how the requirements have

been implemented and tested.

The traceability of the requirements is bidirectional, and the traceability matrix

may be maintained as a separate document, or as part of the requirements docu-

ment. The basic idea is that a mapping between the requirement numbers and

sections of the design or test plan is defined, and this provides confidence that all of

the requirements have been implemented and tested.

Requirements will usually be numbered, and a single requirement number may

map on to several sections of the design or to several test cases, i.e. the mapping is

56 3 Requirements Engineering

often one to many. The traceability matrix (Table 3.4) provides the mapping

between individual requirement numbers, and the sections in the design or test plan

corresponding to the particular requirement number.

It is essential to keep the traceability matrix up to date during the project and

especially after changes to the requirements. The traceability matrix is useful as a

tool whenever there are changes to the requirements as it allows the impacts of the

change on the other requirements (and other project deliverables) to be easily

determined.

3.3 System Modelling

A model is an abstraction (simplification) of the physical world, and it acts as a

representation of reality. The aim of the model is to capture the essential details of

the real world, and as it is a simplification of the reality, it does not include all

aspects of the physical world. However, it is important that all of the key aspects to

be studied are included in the model and to determine the adequacy of the model as

a representation of the real world.

A model is considered suitable if its properties closely match those of the system

being modelled. It is common to employ models in engineering: for example, in

civil engineering, it is normal to develop models of bridges and traffic flow prior to

constructing a bridge. These models help in understanding the anticipated stresses

on the bridge and play an important role in the design of a bridge that is safe to use.

It is important that the models are an adequate representation of the reality, as

otherwise there is the potential for serious consequences. For example, the model of

the Tacoma Narrows Bridge did not include aerodynamic forces, and this proved to

be a major factor in its subsequent collapse [2].

A good model will allow predictions of future behaviour to be made, and the

adequacy of the model is determined from model exploration. This involves asking

questions and determining the extent to which the model provides accurate answers

Table 3.3 Managing change requests

Activity Change request

Log change

request

The change request is logged and a unique reference number and priority

assigned

Assess impact The cost, schedule, technical and quality impacts are determined and the

risks identified

Decision The CCB authorizes or rejects the change request

Implement

solution

The affected project documents and software modules are identified and

modified accordingly

Verify solution Testing (unit, system and UAT) is employed to verify the correctness of the

solution

Close CR The change request is closed

3.2 Requirements Process 57

to the questions. Inadequate models are replaced over time with better models that

provide a better explanation of the reality. For example, the Ptolemaic cosmological

model was replaced by the Copernican model, and Newtonian mechanics was

replaced the theory of relativity when dealing with velocities that are close to the

speed of light [3].

The adequacy of the model will determine its acceptability as a representation of

the physical world. Models that are ineffective will be replaced with models that

offer a better explanation of the manifested physical behaviour.

Occam’s Razor5 (‘principle of parsimony’) is a key principle employed in

modelling [4]. It states that the number of entities employed to explain the reality

should be kept to a minimum, with every entity used actually required for the

explanation. In other words, the simplest model should be chosen with the least

number of assumptions, and all superfluous concepts that are not required to explain

the phenomena should be removed. This results in a crisp and simpler model.

System modelling is an abstraction of the existing and proposed system, and it

helps in clarifying what the existing system does and in communicating and clar-

ifying requirements of the proposed system. The model is a simplification of the

system, and it may be explored to identify strengths and weaknesses in the existing

system. This leads to requirements for the new system.

Models of the new system may be used to communicate the proposed require-

ments to the other stakeholders, and more than one model (e.g. using several UML

diagrams) may be employed to represent the system from a number of different

viewpoints (e.g. environment, behaviour, structural or behaviour). The use of the

graphical UML diagrams to represent the software system is a useful type of system

modelling.

Another important approach (used mainly in the safety and security critical field)

is the use of mathematical models that provide abstract mathematical models of the

proposed software system.

Model-driven engineering is concerned with the generation of the programs from

the models, and the Rational/IBM tools allow programs to be generated from the

UML diagrams.

Table 3.4 Sample trace

matrix
Requirement

no.

Sections in design Test cases in test

plan

Rl.l D1.4, D1.5, D3.2 T1.2, T1.7

R1.2 D1.8, D8.3 T1.4

R1.3 D2.2 T1.3

R1.50 D20.1, D30.4 T20.1, T24.2

5This principle is named after the medieval philosopher, William of Ockham.

58 3 Requirements Engineering

3.4 Review Questions

1. What is the difference between a functional and non-functional

requirement?

2. What is the difference between requirements verification and validation?

3. What is requirements engineering? How are requirements elicited from

the customer?

4. Explain the difference between a user requirement and a system

requirement?

5. How are changes to the requirements managed? Why is it important to

keep project deliverables consistent with the requirements?

6. What is the purpose of requirements traceability?

7. Explain the advantages and disadvantages of specifying the system

requirements in a natural language. Describe other approaches.

8. Explain the purpose of a model and how models may be used in

requirements engineering.

3.5 Summary

The user requirements specify what the customer wants and define what the soft-

ware system is required to do, as distinct from how this is to be done. The

requirements are the foundation for the system, and so if they are incorrect, then the

implemented system will be incorrect. The process of determining the requirements,

analysing and validating them and managing them throughout the project lifecycle

is termed requirements engineering.

The user requirements are determined from discussions with the customer to

determine their actual needs, and they are then refined into the system requirements,

which state the functional and non-functional requirements of the system. The

requirements must be precise and unambiguous to ensure that all stakeholders are

clear on what is (and what is not) to be delivered.

Prototyping may be employed to assist in the definition of the requirements.

Requirements verification is concerned with ensuring that the requirements are

properly implemented, and it is concerned with ensuring that the requirements are

properly addressed in the design and implementation. A traceability matrix and

testing are often employed as part of the verification activities.

Requirements validation is concerned with ensuring that the right requirements

are defined and that they are complete, consistent and reflect the actual needs of the

customer. The validation of the requirements is done by the stakeholders, and it

3.3 System Modelling 59

involves several reviews of the requirements (and prototype), reviews of the design

and user acceptance testing.

Requirements management is concerned with managing changes to the

requirements, and in ensuring that the project maintains an up-to-date approved set

of requirements throughout the project lifecycle. It ensures that the project deliv-

erables are kept consistent with the latest version of the requirements, and when the

requirements document changes, then all other project deliverables need to be kept

consistent with the new version of the requirements.

The objective of requirements traceability is to verify that all of the defined

requirements for the project have been implemented and tested. The traceability

matrix provides a crisp summary of how the requirements have been implemented

and tested, and it provides a bidirectional mapping of the requirements to the design

and test case.

References

1. I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Modelling Language User Guide

(Addison-Wesley, Reading, 1999)

2. G. O’Regan, A Practical Approach to Software Quality (Springer, New York, 2002)

3. T. Kuhn, The Structure of Scientific Revolutions (University of Chicago Press, Chicago, 1970)

4. M.M.A. Airchinnigh, Conceptual models and computing. PhD Thesis. Department of

Computer Science, University of Dublin. Trinity College, Dublin, 1990

60 3 Requirements Engineering

4Software Design and Development

Abstract

This chapter discusses design and development, and software design is the

blueprint of the solution to be developed. It is concerned with the high-level

architecture of the system, as well as the detailed design that describes the

algorithms and functionality of the individual programs. The detailed design is

then implemented in a programming language such as C++ or Java. We discuss

software development topics such as software reuse, customized-off-the-shelf

software (COTS) and open-source software development.

Keywords

Architectural design � Detailed design � Function-oriented design �

Object-oriented design � Object-oriented development � User interface design �

Open-source development � Customized off-the-shelf software (COTS) �

Software reuse � Software maintenance and evolution

4.1 Introduction

The user requirements specify what the customer wants and define what the soft-

ware system is required to do, as distinct from how this is to be done. The user

requirements are determined from discussions with the stakeholders to determine

their actual needs, and they are then refined into the system requirements, which

state the functional and non-functional requirements of the system.

The software design of the system is a blueprint of the solution of the system to

be developed. It is concerned with the high-level architecture of the system, as well

as the detailed design that describes the algorithms and functionality of the

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_4

61

individual programs. The detailed design is then implemented in a programming

language such as C++ or Java.

Software design is a creative process that is concerned with how the system will

be organized and implemented. It consists of the high-level system architecture and

the low-level detailed design. The system architecture may include hardware such

as personal computers and servers, as well as the definition of the subsystems with

the various software modules and their interfaces. The choice of the architecture of

the system is a key design decision, as it affects the performance and maintainability

of the system.

The architecture is often modelled with block diagrams that give a high-level

picture of the system structure, where each diagram represents a subsystem (or

component) with arrows indicating the flow of data or control. The architecture

facilitates discussion of the system design, as well as recording the design deci-

sions. Architecture in the small is concerned with the architecture of individual

programs, whereas architecture in the large is concerned with the architecture of

large complex systems that may include other systems.

The system architecture is analogous to the architecture of a building, and it

describes how the system is organized as a set of communicating structures (or

subsystems). It presents the high-level design of the system, and there may be

several views of the architecture (e.g. Kruchten’s 4+1 model), which describe the

system from different viewpoints (e.g. end-users and managers). The views (e.g.

logical, development, process and physical) may be presented using various UML

diagrams (e.g. class, activity and state diagrams).

The choice of the architectural design will determine the extent to which key

non-functional requirements such as performance, reliability and availability are

satisfied. Further, the architecture of the system is costly and difficult to modify, and

so it is essential that the right architecture be chosen first time (issues such as

scalability may also need to be considered). Detailed (Low-level) design is con-

cerned with the specification of the design of the modules or individual programs.

The software development is concerned with the actual implementation of the

design, and it is implemented in some programming language such as C++ or Java.

The software may be developed internally or it may be outsourced to another

company; existing open-source software may be employed or modified accordingly

or a solution may be purchased off-the-shelf. It is essential that the design is valid

with respect to the requirements and that the implemented system is valid with

respect to the design.

4.2 Architecture Design

The design of the system consists of engineering activities to describe the archi-

tecture model or structure of the system that will satisfy the functional and

non-functional requirements, as well as the design of the individual programs to

62 4 Software Design and Development

describe the algorithms and functionality required to implement the system

requirements.

The design is concerned with how the system will be organized, and the

architecture design is often presented as a set of interacting components. The design

activities include architecture design, interface design, component design, algorithm

design, and data structure design. There are often several possible design solutions

for a particular system, and the designer will need to choose the most appropriate

design of the system.

The architectural model of the system is an abstract visual representation of the

structure of the system, and it is often presented as a set of boxes or block diagrams.

It shows the major components of the system (i.e., the subsystems) and their

interactions, and each box represents a component with the architecture showing all

of the components and their connections. A box within a box represents a sub-

component, and arrows are used to represent the flow of data between the com-

ponents. This abstract description of the system provides a high-level view of the

system and is an effective way to facilitate discussion about the system design with

the relevant stakeholders.

There is a need to present multiple views of the system architecture such as how

the system is decomposed into modules, how the run-time processes interact and

how the hardware is distributed across the processors in the system. These views

may include Krutchen’s 4+1 model (Table 4.1) [1].

The process view may be described by data flow diagrams (part of the SSADM

method), which show the flow of data through a system. UML is a popular design

method that gives several views of the architecture of the system.

The interface design defines the interfaces between the system components, and

this allows a component to be used without knowing how it is implemented. Once

the interface designs have been specified, the components may be designed and

developed concurrently. The component design defines how each component will

operate, and the database design defines the data structures that are required. It is

essential to validate the design with respect to the system requirements and to

ensure that the architecture will satisfy the functional and non-functional

requirements.

Table 4.1 Views of system architecture

View Description

Logical This view shows the key abstractions in the system as objects or object

classes

Process view This view shows how the system is composed of interacting processes at

run-time

Development

view

This view shows how the software is decomposed into modules/components

for development

Physical view This view shows the system hardware and how the software components are

distributed across the processors in the system

4.2 Architecture Design 63

Architectural design patterns are popular and date back to the mid-1990s.

A design pattern is an abstract description of best practice that has worked suc-

cessfully in different systems and environments, and it acts as a reusable solution

that may be used in many situations. It is more a description or template on how to

solve the problem within a particular context, rather than a finished solution. There

are many examples of design patterns (e.g. the client server pattern includes servers

and clients with services delivered from the servers).

The views of C.A.R. Hoare (Fig. 4.1) on software design are interesting. He

states that there are two ways of constructing a software design.

One way is to make it so simple that there are obviously no deficiencies.

The other way is to make it so complex that there are no obvious deficiencies.

He argues that the first method is far more difficult to achieve and that it requires

skill and insight. The starting point in design is always the problem domain, and it

is essential that the problem to be solved be understood from a number of different

viewpoints. A number of potential solutions may then be identified, and each

potential solution is evaluated. This leads to the chosen solution that may, for

example, be the simplest and least costly.

Design is an iterative process and the goal is to describe the system architecture

that will satisfy the functional and non-functional requirements. It involves

describing the system at a number of different levels of abstraction, with the

designer starting off with an informal picture of the design that is then refined by

adding more information.

Parnas’s ideas on architecture and design have been quite influential, and he

recognized that the structure of a software system matters, and getting the structure

right is important. His 1972 paper “On the criteria to be used in decomposing

systems into modules” [2] is a classic in software engineering. He introduced the

Fig. 4.1 C.A.R Hoare

(public domain)

64 4 Software Design and Development

revolutionary information hiding principle, which allows software to be designed in

a way to deal with change (Fig. 4.2).

A module is characterized by its knowledge of a design decision (secret) that it

hides from all other modules. Every information-hiding module has an interface

that provides the only means to access the services provided by the modules. The

interface hides the module’s implementation. Information hiding is a fundamental

principle that is used in object-oriented programming, and Parnas argues in his

1972 paper that:

It is almost always incorrect to begin the decomposition of a system into modules on the

basis of a flowchart. We propose instead that one begins with a list of difficult design

decisions or design decisions which are likely to change. Each module is then designed to

hide such a decision from the others

The design may be specified in various ways such as graphical notations that

display the relationships between the various components making up the design.

The notation may include block diagrams, flow charts or various UML diagrams

such as sequence diagrams and state charts.

The design of programs may employ pseudocode to specify the algorithms, as

well as the data structures that are the basis for implementation. Natural language is

often used to express information that cannot be expressed formally, but it is

essential that the natural language description is precise and unambiguous. The

design activities include:

– Architecture Design of system (with all subsystems)

– Abstract specification of each subsystem

Fig. 4.2 David Parnas

4.2 Architecture Design 65

– Interface Design (for each subsystem)

– Component Design

– Data Structure Design

– Algorithm Design.

The quality of the software architecture directly impacts the robustness, per-

formance and maintainability of the system. The software architecture needs to

manage the inherent complexity of the system, and it must ensure a solid perfor-

mance of the implemented system, with safety, security, availability and main-

tainability requirements properly addressed.

4.3 Detailed Design and Development

The design of the system consists of engineering activities to describe the com-

ponents of the system, as well as the algorithms and functions required to imple-

ment the system requirements. Design and development are concerned with

developing an executable software system.

Function-oriented design involves starting with a high-level view of the system

and refining it into a more detailed design. The system state is centralized and

shared between the functions operating on that state. Functional design has been

overtaken by object-oriented design, and so it is mainly of historic interest today.

Object-oriented design (OOD) is popular, and it is based on the concept of

information hiding developed by Parnas. The system is viewed as a collection of

objects rather than functions, with each object managing its own state information.

The system state is decentralized and an object is a member of an object class. The

definition of a class includes attributes and operations on class members, and these

may be inherited from superclasses. Objects communicate by exchanging mes-

sages, and messages are the only way to access an object. The internal details of the

object are kept private.

Software design and development are closely linked, and often proceed in

parallel. Software design is the creative process that identifies the software com-

ponents and their relationships, whereas software development is concerned with

the implementation of the design in some programming language. The choice of

language reflects the problem domain, and it may be an object-oriented language

such as C++ or Java, or a procedural language such as C or FORTRAN. It is important

that the software code is subject to a peer review to ensure that it is of high quality

and that it is a valid implementation of the requirements and design. The coding

standards for the language need to be followed, as this helps with the maintain-

ability of the code.

Software reuse has become important and organizations recognize the impor-

tance of reuse during software development. Its advantages are that it improves

software productivity and potentially provides higher quality software. Customized

off-the-shelf software (COTS) provides specific functionality that may be purchased

66 4 Software Design and Development

and tailored for use in the software development. It may be possible to buy the

entire system off-the-shelf, and so one of the earliest design decisions is whether to

buy or build the application.

Open-source software development has become popular, and the idea is that the

source code is not proprietary, but is freely available (under an open-source licence)

for software developers to use and modify as they wish. It offers a way to speed up

software development, as well as potentially providing a high-quality cost-effective

solution.

4.3.1 Function-Oriented Design

Function-oriented design is one of the older design methodologies, and it involves

starting with a high-level view of the system and refining it into a more detailed

design. The system is considered to be a set of modules with clearly defined

behaviour, which interact with each other in a defined manner to produce some

system behaviour.

Function-oriented design views the software design as a set of functions that

share state, and the functions transform the inputs to the desired outputs. The

system state is centralized and shared between the functions operating on the state,

and at the end of the phase, all of the major modules (as well as their interactions)

and all of the main data structures of the system have been defined.

The system design (top level design) first determines which modules are needed

for the system, and the detailed design expands on the system design and is focused

on the internal design and specification of the modules. The detailed design is

concerned with how the modules are interconnected and implemented.

The functional design is a refinement of the architectural design in that the

architectural design has identified the key components, and the functional design

then in a sense then determines the module structure for each component (the

modules created need to be consistent with the architecture). Functional design is

mainly of historic interest, as it has been overtaken by OOD.

4.3.2 Object-Oriented Design

OOD is a design method that models the system as a set of cooperating objects

(rather than as a set of functions), and where the individual objects are viewed as

instances of a class. OOD is concerned with the object-oriented decomposition of

the system, and it involves defining the required objects and their interactions to

solve the particular problem. The system state is decentralized with each object

managing its own state information. The objects have a collection of attributes that

define their state and operations that act on the state. The data in the object is

hidden, and the only access to the data is with the operations.

The difference between a class and an object may be seen from the example that

walls and windows are classes, whereas individual doors and windows are objects.

4.3 Detailed Design and Development 67

A class is a set of objects (rather than an individual object), and all members of the

class share the same attributes, operations and relationships. A class may represent a

software thing or a hardware thing.

A class may inherit its behaviour from one or more superclasses, with the class

definition setting out the differences between the class and its superclasses. The

communication between objects is done by exchanging messages (in practice, an

object calls a procedure associated with another object).

An object is a “black box” that sends and receives messages. A black box

consists of code (computer instructions) and data (information which these

instructions operate on). The traditional way of programming kept code and data

separate. For example, functions and data structures in the C programming lan-

guage are not connected. However, in the object-oriented world, code and data are

merged into a single indivisible thing called an object.

The reason that an object is called a black box is that the user of an object never

needs to look inside the box, since all communication to it is done via messages.

Messages define the interface to the object. Everything an object can do is repre-

sented by its message interface. Therefore, there is no need to know anything about

what is in the black box (or object) in order to use it. The access to an object is only

through its messages, while keeping the internal details private. This is called

information hiding and is due to work by Parnas in the early 1970s.

The main features of the object-oriented paradigm are described in Table 4.2.

There is a need to understand the relationship between the software to be

designed and its external environment. This may involve using UML to develop

models such as a system context model that shows the other systems in its envi-

ronment, and an interaction model that shows the interaction between the system

and its environment.

This leads to the architectural design where the major components of the system

and their interactions are identified. The UML diagrams help in identifying the

objects and operations in the system, and the various UML models (e.g. sequence

diagrams and state diagrams) show the relationships between the objects. Design

patterns (best practice of solutions to common problems that may be reused) are

often employed in OOD. The various UML diagrams are described in more detail in

Chap. 14.

4.3.3 User Interface Design

User interface design is concerned with the design of the user interface for machines

and software. The user interface is the boundary between the user and the system,

and the usability of the system (as well as the user experience) will be determined

by the quality of the user interface design. The user interface needs to take into

account the knowledge and experience of the user, and the user interactions with the

system should be as simple and efficient as possible.

68 4 Software Design and Development

http://dx.doi.org/10.1007/978-3-319-57750-0_14

User interface design requires a good understanding of user needs, as well as

how the user will interact with the system. It may involve prototyping of the

interface and usability testing of the prototypes to judge its fitness for use. There are

usability standards (e.g. ISO 9241 and ISO 16982) that provide guidance on

usability.

Today’s graphical user interfaces (GUI) have become ubiquitous for applications

on personal computers, and a GUI is characterized by:

– Multiple windows on the screen

– Use of icon to represent information

– Command selection via menus

– Use of a mouse.

Table 4.2 Object-oriented paradigm

Feature Description

Class A class defines the abstract characteristics of a thing, including its

attributes (or properties) and its behaviours (or methods). The

members of a class are termed objects

Object An object is a particular instance of a class with its own set of

attributes. The set of values of the attributes of a particular object is

called its state

Method The methods associated with a class represent the behaviours of the

objects in the class

Message passing Message passing is the process by which an object sends data to

another object or asks the other object to invoke a method

Inheritance A class may have subclasses (or children classes) that are more

specialized versions of the class. A subclass inherits the attributes

and methods of the parent class. This allows the programmer to

create new classes from existing classes. The derived classes inherit

the methods and data structures of the parent class

Encapsulation

(information hiding)

One fundamental principle of the object-oriented world is

encapsulation (or information hiding). The internals of an object

are kept private to the object and may not be accessed from outside

the object. That is, encapsulation hides the details of how a

particular class works, and it requires a clearly specified interface

around the services provided

Abstraction Abstraction simplifies complexity by modelling classes and

removing all unnecessary detail. All essential detail is represented,

and non-essential information is ignored

Polymorphism Polymorphism is a behaviour that varies depending on the class in

which the behaviour is invoked. Two or more classes may react

differently to the same message. The same name is given to

methods in different subclasses: i.e. one interface and multiple

methods

4.3 Detailed Design and Development 69

The advantages of GUIs are that they are easy to learn and use, with users with

limited computing experience able to learn the user interface quite quickly.

4.3.4 Open-Source Development

Open-source development is a modern approach to software development in which

the source code is published, and thousands of volunteer software developers from

around the world participate in developing and improving the software. The idea is

that the source code is not proprietary, and that it is freely available for software

developers to use and modify as they wish. One useful benefit is that it may

potentially speed up development time thereby shortening time to market.

The roots of open-source development are in the Free Software Foundation

(FSF). This is a non-profit organization founded by Richard Stallman [3] to pro-

mote the free software movement, and it has developed a legal framework for the

free software movement.

The Linux operating system is a well-known open-source product, and other

products include mySQL, Firefox and Apache HTTP server. The quality of soft-

ware produced by the open-source movement is good, and defects are generally

identified and fixed faster than with proprietary software development.

A company needs to decide whether the product to be developed should use an

open-source approach, as well as determining the risks and benefits associated with

this approach. The type of open-source licence required needs to be identified and

obtained.

4.3.5 Customized Off-the-Shelf Software

Customized off-the-shelf software (COTS) is a software (or a system) that is ready

made and may be purchased off-the-shelf and adapted to the user’s requirements.

A COTS product typically needs to be configured for the specific use required, and

the tailoring is within the parameters of the commercial software, and so custom

development is usually not required.

The use of COTS components may shorten the time to market and help to reduce

software development costs, as the components may be purchased from a

third-party vendor rather than developed internally. Further, there is greater con-

fidence in the quality and reliability of the COTS software (compared to custom

built software), as its reliability has already been shown through its use with other

organizations.

The disadvantages of COTS are that it could lead to dependency on a particular

vendor, or the risk that the COTS product could become obsolete with the vendor

no longer supporting it. Further, there may also be security risks if the COTS

software contains security vulnerabilities (this is even more serious if the COTS

software is integrated with other software products to create larger systems). For

70 4 Software Design and Development

this reason, the product development strategy needs to be clearly thought through,

with all risks carefully considered.

4.3.6 Software Reuse

Software reuse is the systematic reuse of existing software technology to build

software. It involves the reuse of software deliverables produced during the soft-

ware development lifecycle (e.g. designs, code and test suites), and its successful

implementation may shorten the time to market, as well as reducing software costs

and improving software quality and productivity.

The successful introduction of reuse in an organization requires an infrastructure

to support reuse. It is a lot more than creating a repository of software assets, where

software engineers add software items to the depository, with the hope that other

software engineers will use the contents of the repository.1

The reuse process involves activities to manage the reuse infrastructure, and

establishing the reuse goals and the roles involved. It includes activities to create

reusable assets which involve understanding the domain in which the software will

be used, and designing the software for use in multiple products, as well as iden-

tifying, collecting and representing the required software assets.

Finally, it involves activities to classify and retrieve the assets in the reuse

library, and activities to search and retrieve the required software assets from the

library.

4.3.7 Object-Oriented Programming

Object-oriented programming has become popular in large-scale software devel-

opment, and it became the dominant paradigm in programming from the early

1990s. Its proponents argue that it is easier to learn, and simpler to develop and

maintain such programs, and its growth in popularity was helped by the rise in

popularity of GUI, which are well suited to object-oriented programming. The

C++ programming language has become popular, and it is an object-oriented

extension of the C programming language.

The traditional view of programming is that a program is a collection of func-

tions, or a list of instructions to be performed on the computer. Object-oriented

programming is a paradigm shift in programming, where a computer program is

considered to be a collection of objects that act on each other. Each object is

capable of sending and receiving messages and processing data. That is, each object

may be viewed as an independent entity or actor with a distinct role or

responsibility.

1I recall Parnas making a joke many years ago that we have developed all of this reusable software

that nobody reuses.

4.3 Detailed Design and Development 71

The origins of object-oriented programming go back to the invention of Simula

67 at the Norwegian Computing Research Centre2 in the late 1960s. It introduced

the notion of a class and instances of a class.3 Simula 67 influenced later languages

such as the Smalltalk object-oriented language developed at Xerox PARC in the

mid-1970s.

Xerox introduced the term “Object-oriented programming” for the use of objects

and messages as the basis for computation. Most modern programming languages

support object-oriented programming, and object-oriented features have been added

to many existing languages such as BASIC, FORTRAN and Ada.

C++ and Java Bjarne Stroustrup developed the C++ programming language in

1983 as an object-oriented extension of the C programming language. It was

designed to use the power of object-oriented programming and to maintain the

speed and portability of C. It provides a significant extension of C’s capabilities, but

it does not force the programmer to use the object-oriented features of the language.

A key difference between C++ and C is the concept of a class. A class is an

extension to the C concept of a structure. The main difference is that while a C data

structure can hold only data, a C++ class may hold both data and functions. An

object is an instantiation of a class: i.e. the class is essentially the type, whereas the

object is essentially a variable of that type. Classes are defined in C++ by using the

keyword class.

Java is an object-oriented programming language developed by James Gosling

and others at Sun Microsystems in the early 1990s. C and C++ influenced the

syntax of the language, and the language was designed with portability in mind.

The objective is for a program to be written once and executed anywhere. Platform

independence is achieved by compiling the Java code into Java bytecode, which are

simplified machine instructions specific to the Java platform.

This code is then run on a Java virtual machine (JVM) that interprets and

executes the Java bytecode. The JVM is specific to the native code on the host

hardware. The problem with interpreting bytecode is that it is slow compared to

traditional compilation. However, Java has a number of techniques to address this

including just in time compilation and dynamic recompilation. Java also provides

automatic garbage collection. This is a very useful feature as it protects program-

mers who forget to deallocate memory (thereby causing memory leaks).

The reader is referred to [4] for a more detailed explanation of the design and

development activities.

2The inventors of Simula-67 were Ole-Johan Dahl and Kristen Nygaard.
3Dahl and Nygaard were working on ship simulations and were attempting to address the huge

number of combinations of different attributes from different types of ships. Their insight was to

group the different types of ships into different classes of objects, with each class of objects being

responsible for defining its own data and behaviour.

72 4 Software Design and Development

4.4 Software Maintenance and Evolution

Software maintenance is the process of changing a system after it has been deliv-

ered to the customer, and it involves correcting any defects that are present in the

software and enhancing the system to meet the evolving needs of the customer.

The defects may be due to coding, design or requirements errors, with coding

defects the cheapest to fix and requirements defects the most expensive to correct.

The resolution to the defects involves identifying the affected software components

and modifying them, and verifying that the solution is correct and that no new

problems have been introduced.

Software systems often have a long lifetime (e.g. some systems have a lifetime

of 20–30 years), and so the software needs to be continuously enhanced over its

lifetime to meet the evolving needs of the customer. Software evolution is con-

cerned with the continued development and maintenance of the software after its

initial release, with new releases of the software prepared each year. Each new

release includes new functionality and corrections to the known defects.

4.5 Review Questions

1. What is the difference between requirements and design?

2. Explain the difference between architectural design and detailed design.

3. Explain the difference between functional-oriented design and OOD.

4. What are the advantages and disadvantages of COTS software.

5. What is object-oriented programming?

6. What is software reuse and how is it accomplished?

7. Explain the differences between COTS, software reuse and open-source

software.

8. Explain the difference between software maintenance and evolution.

4.6 Summary

The success of business is highly influenced by software, and companies may

develop their own software internally, or they may acquire software solutions

off-the-shelf or from bespoke software development.

4.4 Software Maintenance and Evolution 73

The user requirements specify what the customer wants and define what the

software system is required to do, as distinct from how this is to be done. The

requirements are the foundation for the system, and it is essential that they are

correct and reflect the needs of the customer.

The software design of the system is a blueprint of the system to be developed. It

is concerned with the high-level architecture of the system, as well as the detailed

design that describes the algorithms and functionality of the individual programs.

Software design is a creative process that is concerned with how the system will be

organized and implemented.

The system architecture may include hardware such as computers and servers, as

well as the definition of the subsystems with the various software modules and their

interfaces. The choice of the architecture of the system is a key design decision, as it

affects the performance and maintainability of the system.

The detailed software design of the system is concerned with activities to

describe the algorithms and functions required to implement the system require-

ments. It may include hardware as well as the various software modules and their

interfaces. Design and development are concerned with developing an executable

software system.

The software development is concerned with the actual implementation of the

design in some programming language such as C++ or Java. The software may be

developed internally or it may be outsourced to another company or a solution may

be purchased off-the-shelf. It is essential that the design is valid with respect to the

requirements and that the implemented system is valid with respect to the design.

References

1. P. Kruchten, Architectural blueprints—the “4+1” view model of software architecture. IEEE

Softw. 12(6), 42–50 (1995)

2. D. Parnas, On the criteria to be used in decomposing systems into modules. Commun. ACM 15

(12) (1972)

3. G. O’Regan, Giants of Computing (Springer, London, 2013)

4. I. Sommerville, Software Engineering, 9th edn. (Pearson, Boston, 2011)

74 4 Software Design and Development

5Configuration Management

Abstract

This chapter discusses configuration management and discusses the fundamental

concept of a baseline. Configuration management is concerned with identifying

those deliverables that must be subject to change control and controlling changes

to them.

Keywords

Configuration management system � Configuration items � Baseline � File

naming conventions � Version control � Change control � Change control board �

Configuration management audits

5.1 Introduction

Software configuration management (SCM) is concerned with tracking and con-

trolling changes to the software and project deliverables, and it provides full

traceability of the changes made during the project. It provides a record of what has

been changed, as well as who changed it. SCM involves identifying the configu-

ration items of the system; controlling changes to them; and maintaining integrity

and traceability.

The origins of software configuration management go back to the early days of

computing when the principles of configuration management used in the hardware

design field were applied to software development in the 1950s. It has evolved over

time to a set of procedures and tools to manage changes to the software.

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_5

75

The configuration items are generally documents in the early part of the software

development lifecycle, whereas the focus is on source code control management

and software release management in the later parts of development. Software

configuration management involves:

– Identifying what needs to be controlled

– Ensuring those items are accurately defined and documented

– Ensuring that changes are made in a controlled manner

– Ensuring that the correct version of a work product is being used

– Knowing the version and status of a configuration item at any time

– Ensuring adherence to standards

– Planning builds and releases.

Software configuration management allows the orderly development of software,

and it ensures that only authorized changes to the software are made. It ensures that

releases are planned and that the impacts of proposed changes are considered prior

to their authorization. The integrity of the system is maintained at all times, and the

constituents of the software (including their version numbers) are known at any

time.

Effective configuration management allows questions such as the following

(Table 5.1) to be easily answered:

The symptoms of poor configuration management include corrected defects that

suddenly begin to reappear, difficulty in or failure to locate the latest version of

source code or failure to determine the source code that corresponds to a software

release.

Therefore, it is important to employ sound configuration management practices

to enable high-quality software to be consistently produced. Poor configuration

management practices lead to quality problems resulting in a loss of the credibility

and reputation of a company. Several symptoms of poor configuration management

practices are listed in Table 5.2.

Table 5.1 Features of good

configuration management
Features of good configuration management

What is the correct version of the software module to be

updated?

Where can I get a copy of R4.7 of software system X?

What versions of the software system X are installed at the

various customer sites?

What changes have been introduced in the new release of

software (version R4.8 from the previous release of R4.7)?

What version of the design document corresponds to software

system version R3.5?

What customers use R3.5 of the software system?

Are there undocumented or unapproved changes included in the

released version of the software?

76 5 Configuration Management

Configuration management involves identifying the configuration items to be

controlled and systematically controlling change to them, in order to maintain the

integrity and traceability of the configuration throughout the software development

lifecycle. There is a need to manage and control changes to documents and source

code, including the project plan, the requirements document, design documents,

code and test plans.

A key concept in configuration management is that of a “baseline,” which is a

set of work products that have been formally reviewed and agreed upon and serves

as the foundation for future development work.

A baseline can only be changed through formal change control procedures,

which leads to a new baseline. It provides a stable basis for the continuing evolution

of the configuration items, and all approved changes move forward from the current

baseline leading to the creation of a new baseline. The change control board

(CCB) or a similar mechanism authorizes the release of baselines, and the content

of each baseline is documented. All configuration items must be approved before

they are entered into the released baselines.

Therefore, it is necessary to identify the configuration items that need to be

placed under formal change control and to maintain a history of the changes made

to the baseline. There are four key parts to software configuration management

(Table 5.3).

A typical set of software releases (e.g., in the telecommunications domain)

consists of incremental development, where the software to be released consists of a

number of releases builds with the early builds consisting of new functionality, and

the later builds consisting of fix releases.

Software configuration management is planned for the project, and each project

will typically have a configuration management plan which will detail the planned

delivery of functionality and fix release for the project (Table 5.4).

Each of the R.1.0.O.k baselines are termed release builds, and they consist of

new functionality and fixes to the identified problems. The content of each release

build is known; i.e., the project team and manager will target specific functionality

and fixes for each build, and the actual content of the particular release baseline is

documented. Each release build can be replicated, as the version of source code to

create the build is known, and the source code is under control management.

Table 5.2 Symptoms of

poor configuration

management

Symptoms of poor configuration management

Defects corrected suddenly begin to reappear

Cannot find the latest version of the source code

Unable to match the source code and object code

Wrong version of software sent to the customer

Wrong code tested

Cannot replicate previously released code

Simultaneous changes to same source component by multiple

developers with some changes lost

5.1 Introduction 77

There are various tools employed for software configuration management

activities, and these include well-known tools such as Clearcase, PVCS and Visual

Source Safe (VSS) for source code control management. The PV tracker tool and

Clearquest may be used for tracking defects and change requests. A defect-tracking

tool will list all of the open defects against the software, and a defect may require

several change requests to correct the software (as a problem may affect different

parts of the software product as well as different versions of the product, and a

change request may be necessary for each part). The tool will generally link the

Table 5.3 Software configuration management activities

Area Description

Configuration

identification

This requires identifying the configuration items to be controlled and

implementing a sound configuration management system, including a

repository where documents and source code are placed under controlled

access. It includes a mechanism for releasing documents or code, a file

naming convention and a version numbering system for documents and

code and baseline/release planning. The version and status of each

configuration item should be known

Configuration

control

This involves tracking and controlling change requests and controlling

changes to the configuration items. Any changes to the work products are

controlled and authorized by a change control board or similar

mechanism. Problems or defects reported by the test groups or customer

are analyzed, and any changes made are subject to change control. The

version of the work product is known, and the constituents of a particular

release are known and controlled. The previous versions of releases can

be recreated, as the source code constituents are fully known and

available

Configuration

auditing

This includes audits to verify the integrity of the baseline, and audits of

the configuration management system verify that the standards and

procedures are followed. The results of the audits are communicated to

the affected groups, and corrective action is taken to address the findings

Status accounting This involves data collection and report generation. These reports include

the software baseline status, the summary of changes to the software

baseline, problem report summaries and change request summaries

Table 5.4 Build plan for

project
Release baseline Contents Date

R. 1.0.0.0 F4, F5, F7 31.01.17

R. 1.0.0.1 F1, F2, F6 + fixes 15.02.17

R. 1.0.0.2 F3 + fixes 28.02.17

R. 1.0.0.3 F8 + fixes (functionality freeze) 07.03.17

R. 1.0.0.4 Fixes 14.03.17

R. 1.0.0.5 Fixes 21.03.17

R. 1.0.0.6 Official release 31.03.17

78 5 Configuration Management

change requests to the problem report. The current status of the problem report can

be determined, and the targeted release build for the problem identified.

The CMMI provides guidance on practices to be implemented for sound con-

figuration management (Table 5.5).

The CMMI requirements are concerned with establishing a configuration man-

agement system; identifying the work products that need to be subject to change

control; controlling changes to these work products over time; controlling releases

of work products; creating baselines; maintaining the integrity of baselines; pro-

viding accurate configuration data to stakeholders; recording and reporting the

status of configuration items and change requests; and verifying the correctness and

completeness of configuration items with configuration audits. We shall discuss the

key parts of configuration management in the following sections.

5.2 Configuration Management System

The configuration management system enables the controlled evolution of the

documents and the software modules produced during the project. It includes

– Configuration management planning

– A document repository with check in/check out features

– A source code repository with check in/check out features

– A configuration manager (may be a part-time role)

– File naming convention for documents and source code

– Project directory structure

– Version Numbering System for documents

– Standard templates for documents

– Facility to create a baseline

– A release procedure

– A group (change control board) to approve changes to baseline

Table 5.5 CMMI requirements for configuration management

Specific goal Specific practice Description of specific practice/goal

SG 1 Establish baselines

SP 1.1 Identify configuration items

SP 1.2 Establish a configuration management system

SP 1.3 Create or release baselines

SG 2 Track and control changes

SP 2.1 Track change requests

SP 2.2 Control configuration items

SG 3 Establish integrity

SP 3.1 Establish configuration management records

SP 3.2 Perform configuration audits

5.1 Introduction 79

– A change control procedure

– Configuration management audits to verify the integrity of baseline.

5.2.1 Identify Configuration Items

The configuration items are the work products to be placed under configuration man-

agement control, and they include project documents, source code and data files. They

may also include compilers as well as any supporting tools employed in the project.

The project documentation will typically include project plans, the user

requirements specification, the system requirements specification, the architecture

and technical design documents and the test plans.

The items to be placed under configuration management control are identified

and documented early in the project lifecycle. Each configuration item needs to be

uniquely identified and controlled. This may be done with a naming convention for

the project deliverables and source code and applying it consistently. For example,

a simple approach is to employ mnemonics labels and version numbers to uniquely

identify project deliverables. A user requirements specification for project 005 in

the finance business area may be represented simply by:

FIN 005 URS

5.2.2 Document Control Management

The project documents are stored in a document repository using a configuration

management tool such as PVCS or VSS. For consistency, a standard directory

structure is often employed for projects, as this makes it easier to locate particular

configuration items. A single repository may be employed for both documents and

software code (or a separate repository for each).

Clearly, it is undesirable for two individuals to modify the same document at the

same time, and the document repository will include check in/check out procedures.

The document must be checked out prior to its modification, and once it is checked

out, another user may not modify it until it has been checked back in. An audit trail

of all modifications made to a particular document is maintained, including details

of the person who made the change, the date that the change was made and the

rationale for the change.

Version Numbering of Documents

A simple version numbering system may be employed to record the versions of

documents: e.g., v0.1, v0.2 and v0.3 is often used for draft documents, with version

v1.0 being the first approved version of the document. Each time a document is

modified its version number is incremented, and the document history records the

reasons for the modification.

80 5 Configuration Management

– V0.1 Initial draft of document

– V0.x Revised draft (x > 0)

– V1.0 Approved baseline version

– V1.x Approved minor revision (x > 0)

– Vn.0 Approved major revision (n > 1)

– Vn.x Approved minor revision (x > 0, n > 1).

The document will provide information on whether it is a draft or approved, as

well as the date of last modification, the person who made the modification, and the

rationale for the modification. The configuration management system will provide

records of the configuration management activities, as well as the status of the

configuration items and the status of the change requests. The revision history of the

configuration items will be maintained.

5.2.3 Source Code Control Management

The source code and data files are stored in a source code repository using a tool

such as PVCS, VSS or Clearcase, and the repository provides an audit trail of all the

changes made to the source code. An item must first be checked out for modifi-

cation, the changes are made, and it is then checked back into the repository. The

source code management system provides security and control of the configuration

items, and the procedures include:

– Access controls

– Checking in/out configuration items

– Merging and Branching

– Labels (labelling releases)

– Reporting.

The source code configuration management tool ensures the integrity of the

source code and prevents more than one person from altering the software code at

the same time.

5.2.4 Configuration Management Plan

A software configuration management plan (it may be part of the project plan or a

separate plan) is prepared early in the project, and it defines the configuration

management activities for the project. It will detail the items to be placed under

configuration management control, the standards for naming configuration items,

5.2 Configuration Management System 81

the version numbering system, as well as version control and release management.1

The CM plan is placed under configuration management control.

The content of each software release is documented as well as installation and

rollback instructions. The content includes the requirements and change requests

implemented, as well as the defects corrected and the version of the new release.

A list is maintained of the customer sites of where the release has been installed. All

software releases are tested prior to their approval. The CM plan will include:

– Roles and responsibilities

– Configuration Items

– Naming Conventions

– Version Control

– Filing Structure for the project.

The stakeholders and roles involved are identified and documented in the CM

plan. Often, the role of a software configuration manager is employed, and this may

be a full time or part-time role.2 The CM manager ensures that the configuration

management activities are carried out correctly and will conduct and report the

results of the CM audits.

5.3 Change Control

A change request (CR) database3 is set up to record change requests made during the

project. The change requests are documented and considered by the change control

board (CCB). The CCBmay just consist of the project manager and the system owner

for small projects, or a management and technical team for larger projects.

The impacts and risks of the proposed change need to be considered, and an

informed decision made on whether to reject or approve the CR. The proposed

change may have technical impacts, as well as introducing new project risks, and

may adversely affect the schedule and budget. It is important to keep change to a

minimum at the later stages of the project in order to reduce risks to quality.

Figure 5.1 describes a simple process for raising a change request, performing an

impact assessment, deciding on whether to approve or reject the change request and

proceeding with implementation (where applicable).

The results of the CCB review of each change request (including the rationale of

the decision made) will be recorded. Change requests and problem reports for all

configuration items are recorded and analyzed, reviewed, approved (or rejected) and

tracked to closure.

1These may be defined in a Configuration Management procedure and referenced in the CM plan.
2This depends on the size of the organization and projects. The project manager may perform the

CM manager role for small projects.
3This may just be a simple Excel spread sheet or a sophisticated tool.

82 5 Configuration Management

A sample configuration management process map is detailed in Fig. 5.2, and it

shows the process for updates to configuration information following an approved

change request. The deliverable is checked out of the repository; modifications are

made and the changes approved; configuration information is updated and the

deliverable is checked back into the repository.

Change Request

Log CR

1. Log in Issue Log

2. Complete Change

Request Form

1. Logged CR

2. CR form completed

Assess Impact of

Change

1. Cost / schedule impacts

2. Technical Impacts

3. Deliverables affected

Impact recorded (on CR

Form)

Approve CR

1. Update CR Form

2. Update Issue Log

Updated

CR Form & Issue Log.

Y

Approve

CR?
No

Closed CR

Close CR

1. Update CR Form

2. Update Issue Log

Implement Changes

Fig. 5.1 Simple process map for change requests

5.3 Change Control 83

5.4 Configuration Management Audits

Configuration management audits are conducted during the project to verify that

the configuration is consistent and complete. Every project should have at least one

configuration audit, and the objective is to verify the completeness and correctness

of the configuration system for the project. The audit will check that the records

correctly identify the configuration and that the configuration management stan-

dards and procedures have been followed. Table 5.6 presents a sample configura-

tion management checklist.

Change Approved

Modify deliverable

1. Check out of repository

2. Make Changes

3. Review & update

4. Update document

history

5. Update Version Number

New

Deliverable ?

N

Create deliverable

1. Create deliverable

(using template)

2. Review & update

4. Update document

history

5. Update Version Number

6. Assign Document ID

Y

Created deliverable Modified deliverable

Approve

Deliverable ?

Approve

Deliverable ?

N N

Approved deliverable

Check in deliverable

1. Check into repository

2. Record comments

Checked in deliverable

Fig. 5.2 Simple process map for configuration management

84 5 Configuration Management

There may also be a librarian role in setting up the filing structure for the

project, or the configuration manager may perform this role. The project manager

assigns responsibilities for performing configuration management activities. All

involved in the process receive appropriate training on the process.

5.5 Review Questions

1. What is software configuration management?

2. What is change control?

3. What is a baseline?

4. Explain source code control management.

5. Explain document control management.

6. What is a configuration management audit and explain how it differs from

a standard audit?

7. Describe the role of the configuration manager and librarian.

8. Describe the main elements in a software configuration management

system.

Table 5.6 Sample configuration management audit checklist

No. Item to check

1. Is the Directory Structure set up for the project?

2. Are the configuration items identified and listed?

3. Have the latest versions of the templates been used?

4. Is a unique document Id employed for each document?

5. Is the standard version numbering system followed for the project?

6. Are all versions of documents and software modules in the document/source code

repository?

7. Is the Configuration Management plan up to date?

8. Are the roles defined in the Configuration Management Plan performing their assigned

responsibilities?

9. Are changes to the approved documents formally controlled?

10. Is the version number of a document incremented following an agreed change to an

approved document?

11. Is there a change control board set up to approve change requests?

12. Is there a record of which releases are installed at the various customer sites?

13. Are all documents/software modules produced by vendors under appropriate

configuration management control?

5.4 Configuration Management Audits 85

5.6 Summary

Software configuration management is concerned with the orderly development and

evolution of the software. It is concerned with tracking and controlling changes to

the software and project deliverables, and it provides full traceability of the changes

made during the project.

It involves identifying the configuration items that are subject to change control,

controlling changes to them, and maintaining integrity and traceability throughout

the software development lifecycle. The configuration items are generally docu-

ments in the early part of the development lifecycle, whereas the focus is on source

code control management and software release management in the later parts of the

development lifecycle.

The company standards need to be adhered to, and the correct version of a work

product should be known at all time. There is a need for a document and source

code repository, which has access controls, checking in and checking out proce-

dures and labelling of releases.

A project will have a configuration management plan, and the configuration

manager role is responsible for ensuring that the configuration management

activities are carried out correctly.

Configuration management ensures that the impacts of proposed changes are

considered prior to authorization. It ensures that releases are planned and that only

authorized changes to the software are made. The integrity of the system is

maintained, and the constituents of the software system and their version numbers

are known at all times. Configuration audits will be conducted to verify that the CM

activities have been carried out correctly.

86 5 Configuration Management

6Software Inspections

Abstract

This chapter discusses software inspections, which play an important role in

building quality into a product. The well-known Fagan inspection process that

was developed at IBM in the 1970s is discussed, as well as lighter review and

walkthrough methodologies.

Keywords

Informal review � Structured walk-through � Fagan inspection �Gilb inspections �
Economic benefits of inspections � Inspection guides � Entry and exit criteria �

Automated software inspections

6.1 Introduction

The objective of software inspections is to build quality into the software product,

rather than adding quality later. There is clear evidence that the cost of correction of

a defect increases the later that it is detected, and it is therefore more cost effective

to build quality in rather than adding it later in the development cycle. Software

inspections are an effective way of doing this.

There are several approaches to software inspections, and these vary in the

formality of the process. An informal review consists of a walk-through of the

document or code by an individual other than the author. The meeting usually takes

place at the author’s desk (or in a meeting room), and the reviewer and author

discuss the document or code informally.

There are formal software inspection methodologies such as the well-known

Fagan inspection methodology [1] and the Gilb methodology [2]. These method-

ologies include pre-inspection activity, an inspection meeting and post-inspection

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_6

87

activity. Several inspection roles are typically employed, including an author role,

an inspector role, a tester role and a moderator role.

The Fagan inspection methodology was developed by Michael Fagan (Fig. 6.1)

at IBM in the mid-1970s, and Tom Gilb developed Gilb’s approach in the early

1990s. The formality of the software inspection methodology employed is influ-

enced by the impacts of software failure on the customer’s business, as a failure

may have a major negative impact on the customer. For example, an incorrect

one-line change to telecommunications software could lead to failure resulting in a

major telecommunications outage and significant disruption to customers.

Further, there may be financial impacts, as the service level agreement details the

service level that will be provided, and the compensation given for service dis-

ruption. Consequently, a telecommunications company needs to ensure that its

software is fit for purpose, and a formal software inspection process tends to be

employed to ensure that quality is built in. This means that requirement documents,

high-level and detailed design documents and software code are all inspected, and

generally inspections are explicitly planned in the project schedule.

Another words, an organization needs to define an inspection process that is

appropriate to its business, and it may adopt a rigorous approach such as the Fagan

or Gilb methodology, or a less formal process where the impact of failure is less

severe. It may not be possible to have all of the participants present in a room, and

Fig. 6.1 Michael Fagan

88 6 Software Inspections

participation by conference call or video link may need to be employed. A formal

process may not suit some organizations, and a structured walk-through may be the

adopted approach.

Software inspections play an important role in building quality into the software,

and in ensuring that the quality of the delivered product is good. The quality of the

delivered software product is only as good as the quality at the end each phase, and

therefore a phase should be exited only when the desired quality has been achieved.

The effectiveness of an inspection is influenced by the expertise of the inspec-

tors, adequate preparation, the speed of the inspection and compliance to the

inspection process. The inspection methodology provides guidelines on the

inspection and preparation rates for an inspection, and guidelines on the entry and

exit criteria for an inspection.

There are typically at least two roles in the inspection methodology. These

include the author role and the inspector role. The moderator, tester and the reader

roles may also be present in the methodology.

The next section describes the benefits of software inspections, and this is fol-

lowed by a discussion of a simple review methodology where the reviewers send

comments directly to the author. Then, a structured walk-through and a semi-formal

review process are described, and finally the Fagan inspection process is described

in detail.

6.2 Economic Benefits of Software Inspections

There is clear evidence that a software inspection program provides a return on

investment and has tangible benefits in terms of quality, productivity, time to

market and customer satisfaction. For example, IBM Houston employed software

inspections for the space shuttle missions: 85% of the defects were found by

inspections and 15% were found by testing. There were no defects found on the

space missions, and about 2 million lines of computer software were inspected.

IBM, North Harbour in the UK quoted a 9% increase in productivity with 93% of

defects found by software inspections.

Software inspections are useful for educating new employees on the product, and

on the standards and procedures used in the organization. They ensure that

knowledge is shared among the employees, rather than understood by just one

individual. Inspections improve software productivity, as less time is spent in

correcting defective software.

The cost of correction of a defect increases the later that it is identified in the

lifecycle. Boehm [3] states that the cost of correction of a requirements defect

identified in the field is over 40 times more expensive than if it were detected at the

requirements phase, and so it is most economical to detect and fix the defect in

phase. The cost of correction of a requirements defect identified at the customer site

includes the cost of correcting the requirements, the cost of design, coding, unit

testing, system testing and regression testing. It may be necessary to send an

6.1 Introduction 89

engineer on site to fix the problem, and there may be hidden costs in the negative

perception of the company with a subsequent loss of sales.

There is a powerful argument to identify defects as early as possible, and soft-

ware inspections are a cost-effective way of doing this. There are various estimates

of the cost of poor quality (COPQ) in an organization (Fig. 10.29), and some

estimates suggest that it could be as high as 20–40% of sales. The exact calculation

may be determined by a time sheet accountancy system, which details the cost of

internal and external failure, and the cost of appraisal and prevention.

The return on investment from the introduction of software inspections may be

calculated, and the evidence is that it leads to reductions in the cost of poor quality.

Inspections provide a cost-effective way of improving quality and productivity.

6.3 Informal Reviews

This type of review involves reviewers sending comments directly to the author (e.g.

email orwritten), and there is no actual reviewmeeting. It is not as effective as the Fagan

inspection process, but it helps in identifying some defects in the work products.

The author is responsible for making sure that the review happens and advises

the participants that comments are due by a certain date. The author analyses the

comments received, makes the required changes and circulates the document for

approval. The activities are described in Table 6.1:

Comment:

The informal review process may help to improve quality in an organization. It

is dependent on the participants adequately reviewing the deliverable and sending

comments to the author. The author can only request the reviewer to send com-

ments. There is no independent monitoring of the author to ensure that the review

actually happens and is effective, and that comments are requested, received and

implemented.

Table 6.1 Informal review

Step Description

1. The author circulates the deliverable (either physically or electronically) to the review

audience

2. The author advises the review audience of the due date for comments

3. The due date for comments is typically one week or longer

4. The author checks that all comments have been received by the due date

5. The author contacts any reviewers who have not provided feedback and requests

comments

6. The author analyses all comments received and implements the appropriate changes

7. The deliverable is circulated to the review audience for sign off

8. The reviewers sign off (with any final comments) indicating that the document has been

correctly amended by the author

9. The author/project leader stores the comments received

90 6 Software Inspections

http://dx.doi.org/10.1007/978-3-319-57750-0_10

6.4 Structured Walk-through

A structured walk-through is a peer review in which the author of a deliverable (e.g.

a project document or actual code) brings one or more reviewers through the

deliverable. The objective is to get feedback from the reviewers on the quality of the

document or code and to familiarize the review audience with the author’s work.

The walk-through includes several roles, namely, the review leader (usually the

author), the author, the scribe (may be the author) and the review audience

(Table 6.2).

6.5 Semi-formal Review Meeting

A semi-formal review (a simplified version of the Fagan inspection) is a moderated

review meeting chaired by the review leader. The author selects the reviewers and

appoints a review leader (who may be the author). The review leader chairs the

meeting and verifies that the follow-up activity has been completed. The author

distributes the deliverable to be reviewed and provides a brief overview as

appropriate. The material in this section is adapted from [4].

The review leader schedules the review meeting with the reviewers (with pos-

sible participation via a conference call). The review leader chairs the meeting and

is responsible for keeping the meeting focused and running smoothly, resolving any

conflicts, recording actions and completing the review form.

The review leader checks that all participants including conference call partic-

ipants are present, and that all have done adequate preparation. Each reviewer is

invited to give general comments, as this will determine whether the deliverable is

Table 6.2 Structured walk-throughs

Step Description

1. The author circulates the deliverable (either physically or electronically) to the review

audience

2. The author schedules a meeting with the reviewers

3. The reviewers familiarize themselves with the deliverable

4. The review leader (usually the author) chairs the meeting

5. The author brings the review audience through the deliverable, explaining what each

section is aiming to achieve, and requesting comments from them as to its correctness

6. The scribe (usually the author) records errors, decisions and any action items

7. A meeting outcome is agreed, and the author addresses all agreed items. If the meeting

outcome is that a second review should be held then go to Step 1

8. The deliverable is circulated to reviewers for sign off, and the reviewers sign off (with any

final comments) indicating that the deliverable has been correctly amended by the author

9. The author/project leader stores the comments and sign offs

6.3 Informal Reviews 91

ready to be reviewed, and whether the review should take place. Participants who

are unable to attend are required to send their comments to the review leader prior

to the review, and the review leader will present these comments at the meeting.

The material is typically reviewed page by page for a document review, and each

reviewer is invited to comment on the current page. Code reviews may focus on

coding standards, or on both coding standards and on finding defects in the software

code. The issues noted during the review are recorded, and these may include items

requiring further investigation.

The review outcome is decided at the end of the review (i.e. whether the

deliverable needs a second review). The author then carries out the necessary

corrections and investigation, and the review leader verifies that the follow-up

activities have been completed. The document is then circulated to the review

audience for sign off.

Comment:

The semi-formal review process works well for an organization when the review

leader is not the author. This ensures that the review is conducted effectively, and

that the follow-up activity takes place. It may work with the author acting as review

leader provided the author has received the right training on software inspections

and follows the review process.

The process for semi-formal reviews is summarized in Table 6.3. Figure 6.2

presents a template to record the issues identified during the review.

6.6 Fagan Inspections

The Fagan methodology (Table 6.4) is a well-known software inspection

methodology. It is a seven-step process that includes planning, overview, prepa-

ration, an inspection meeting, process improvement, rework and follow-up activi-

ties. Its objectives are to identify and remove errors in the work products, and to

identify any systemic defects in the processes used to create the work products.

The Fagan inspection process stipulates that requirement documents, design

documents, source code and test plans all be formally inspected by experts inde-

pendent of the author, and the inspection is conducted from different viewpoints

such as requirements, design and test.

There are various roles defined in the inspection process, including the moder-

ator, who chairs the inspection; the reader, who paraphrases the particular deliv-

erable; the author, who is the creator of the deliverable; and the tester, who is

concerned with the testing viewpoint. The inspection process will also consider

whether the design is correct with respect to the requirements, and whether the

source code is correct with respect to the design.

The goal is to identify as many defects as possible and to confirm the correctness

of a particular deliverable. Inspection data is recorded and may be used to determine

the effectiveness of the organization in detecting and preventing defects.

92 6 Software Inspections

The moderator records the defects identified during the inspection, and the

defects are classified according to their type and severity. The defect data may be

entered into an inspection database to enable analysis to be performed and metrics

to be generated. The severity of the defect is recorded, and the major defects are

classified [e.g. according to the Fagan defect classification or some other scheme

such as the orthogonal defect classification (ODC)].

The next section describes the Fagan inspection guidelines, which include rec-

ommendations on the time to spend on the various inspection activities. An orga-

nization may need to tailor the Fagan inspection process to suit its needs, and the

tailored guidelines need evidence to confirm that they are effective.

6.6.1 Fagan Inspection Guidelines

The Fagan inspection guidelines are based on studies by Michael Fagan, and they

provide recommendations on the time to spend on the various inspection activities. It

Table 6.3 Activities for semi-formal review meeting

Phase Review task Roles

Planning Ensure document/code is ready to be reviewed

Appoint review leader (may be author)

Select reviewers with appropriate knowledge/experience and assign

roles

Author

Leader

Distribution Distribute document/code and other material to reviewers (at least

3 days before the meeting)

Schedule the meeting

Author

Leader

Optional

meeting

Give overview of deliverable to be reviewed

Allow reviewers to ask any questions

Author

Reviewers

Preparation Read through document/code, marking up issues/questions

Mark minor issues on their copy of the document/code

Reviewers

Review

meeting

Review leaders chairs the meeting

Explains purpose of the review and how it will proceed

Set time limit for meeting

Keep review meeting focused and moving

Review document page by page

Code reviews may focus on standards/defects

Resolve any conflicts or defer as investigates

Note comments/shortcomings on review form

Raise issues—(Do not fix them)

Present comments/suggestions/questions

Pass review documents/code with marked up minor issues directly to

the author

Respond to any questions or issues raised

Propose outcome of review meeting

Complete review summary form/return to author

Keep a record of the review form

Leader

Reviewers

Post-review Investigate and resolve any issues/shortcomings identified at review

Verify that the author has made the required corrections

Author

Leader

6.6 Fagan Inspections 93

Date _______ Deliverable __________________ Version No. ______ #Reviews _____

Author _____________________Review Leader _______________________________

Reviewers___

Page/Line No. Description Action

Unresolved Issued / Investigates

Issue Reason unresolved Verified.

Review Outcome (Tick)

No changes required □ Verification by Review Leader only □ Full review required □
Review incomplete □

Review Summary (Optional)

#Major Defects_______ # Minor Defects ______ Estimated Rework time ______

Hours Preparation _______ #Hours Review ______ Amount Reviewed _______

Fig. 6.2 Template for semi-formal review

94 6 Software Inspections

is important that sufficient time is spent on the various inspection activities, and that

the speed of the inspection is appropriate. We present the strict Fagan guidelines as

defined by the Fagan methodology (Table 6.5), and more relaxed guidelines that

have been shown to be effective in the telecommunications field (Table 6.6).

The effort involved in adherence to the strict Fagan guidelines is substantial, and

this led to the development of tailored guidelines. The tailoring of any methodology

requires care, and the effectiveness of the tailored process needs to be demonstrated

by empirical evidence. (e.g. as a pilot prior to its deployment as well as quantitative

data to show that the inspection is effective and results in a low number of escaped

customer defects).

It is important to comply with the guidelines once they are deployed in the

organization, and trained moderators and inspectors will ensure awareness and

compliance. Audits may be employed to verify compliance.

The tailored guidelines are presented in Table 6.6.

Table 6.4 Overview Fagan inspection process

Activity Role/Responsibility Objective

Planning Moderator Identify inspectors and roles

Verify material is ready for inspection

Distribute inspection material

Book a room for the inspection

Overview

(Optional)

Author Brief participants on material

Give background information

Preparation Inspectors Prepare for the meeting and role

Checklist may be employed

Read through the deliverable and mark up

issues/questions

Inspection

meeting

Moderator/Inspectors The moderator will cancel the inspection if inadequate

preparation is done

Time limit set for inspection

Moderator keeps meeting focused

The inspectors perform their roles

Emphasis on finding defects not solutions

Defects are recorded and classified

Author responds to any questions

The duration of the meeting is recorded

An inspection outcome is agreed

Process

improvement

Inspectors Continuous improvement of development and inspection

process

The causes of major defects are recorded

Root cause analysis to identify any systemic defect with

development or inspection process

Recommendations are made to the process improvement

team

Rework Author The author corrects the defects and carries out any

necessary investigations

Follow-up Moderator/Author The moderator verifies that the author has resolved the

defects and investigations

6.6 Fagan Inspections 95

6.6.2 Inspectors and Roles

There are four inspector roles identified in a Fagan Inspection and these include

(Table 6.7):

6.6.3 Inspection Entry Criteria

There are explicit entry and exit criteria defined for the various types of inspections.

These criteria need to be satisfied to ensure that the inspection is effective. The entry

criteria (Table 6.8) for the various inspections are as follows:

6.6.4 Preparation

Preparation is a key part of the inspection process, as the inspection will be inef-

fective if the inspectors are insufficiently prepared. The moderator is required to

cancel the inspection if any of the inspectors has been unable to do appropriate

preparation.

Table 6.5 Strict Fagan

inspection guidelines
Activity Area Amount/Hr Max/Hr

Preparation time Requirements 4 pages 6 pages

Design 4 pages 6 pages

Code 100 LOC 125 LOC

Test plans 4 pages 6 pages

Inspection time Requirements 4 pages 6 pages

Design 4 pages 6 pages

Code 100 LOC 125 LOC

Test plans 4 pages 6 pages

Table 6.6 Tailored

(Relaxed) Fagan inspection

guidelines

Activity Area Amount/Hr Max/Hr

Preparation time Requirements 10–15 pages 30 pages

Design 10–15 pages 30 pages

Code 300 LOC 500 LOC

Test plans 10–15 pages 30 pages

Inspection time Requirements 10–15 pages 30 pages

Design 10–15 pages 30 pages

Code 300 LOC 500 LOC

Test plans 10–15 pages 30 pages

96 6 Software Inspections

Table 6.7 Inspector roles

Role Responsibilities

Moderator Manages the inspection process and ensures compliance to the process

Plans the inspection and chairs the meeting

Keeps the meeting focused and resolves any conflicts

Keeps to the inspection guidelines

Verifies that the deliverables are ready to be inspected

Verifies that the inspectors have done adequate preparation

Records the defects on the inspection sheet

Verifies that the agreed follow-up work has been completed

Skilled in the inspection process and appropriately trained

Skilful, diplomatic and occasionally forceful

Reader Paraphrases the deliverable and gives an independent view of it

Actively participates in the inspection

Author Creator of the work product being inspected

Has an interest in finding all defects present in the deliverable

Ensures that the work product is ready to be inspected

Gives an overview to inspectors (if required)

Participates actively during inspection and answers all questions

Resolves all identified defects and carries out any required investigation

Tester Role is focused on how the product would be tested

Role often employed in requirements inspection/test plan inspection

The tester participates actively in the inspection

Table 6.8 Fagan entry criteria

Inspection type Entry criteria Roles

Requirements Inspector(s) with sufficient expertise available

Preparation done by inspectors

Correct requirements template used

Moderator/Inspectors

Design inspection Requirements inspected and signed off

Correct design template used to produce design

Inspector(s) have sufficient domain knowledge

Preparation done by inspectors

Moderator/Inspectors

Code inspection Requirements/Design inspected and signed off

Overview provided

Preparation done by inspectors

Code listing available

Clean compile of source code

Coding standards satisfied

Inspector(s) have sufficient domain knowledge

Moderator/Inspectors

Test plan

inspection

Requirements/Design inspected and signed off

Preparation done by inspectors

Inspector(s) have sufficient domain knowledge

Correct test plan template employed

Moderator/Inspectors

6.6 Fagan Inspections 97

6.6.5 The Inspection Meeting

The inspection meeting (Table 6.9) consists of a formal meeting between the author

and at least one inspector. It is concerned with finding defects in the particular

deliverable and verifying the correctness of the inspected material. The effective-

ness of the inspection is influenced by

– The expertise and experience of the inspector(s)

– Preparation done by inspector(s)

– The speed of the inspection

These factors are quite clear since an inexperienced inspector will lack the

appropriate domain knowledge to understand the material in depth. Second, an

inspector who has inadequately prepared will be unable to make a substantial

contribution during the inspection. Third, the inspection is ineffective if it tries to

cover too much material in a short space of time. The moderator will complete the

inspection form (Fig. 6.4) to record the results from the inspection.

The final part of the inspection is concerned with process improvement.

The inspector(s) and author examine the major defects, identify the root causes of

the defect and determine corrective action to address any systemic defects in the

software process. The moderator is responsible for completing the inspection

summary form and the defect log form, and for entering the inspection data into the

inspection database. The moderator will give any process improvement suggestions

directly to the process improvement team.

Table 6.9 Inspection meeting

Inspection

type

Purpose Procedure

Requirements Find requirements defects

Confirm requirements

correct

Inspectors review each page of requirements and

raise questions or concerns. Defects recorded by

moderator

Design Find defects in design

Confirm correct (with

respect to requirements)

Inspectors review each page of design (compare to

requirements) and raise questions or concerns.

Defects recorded by moderator

Code Find defects in the code

Confirm correct (with

respect to design/reqs)

Inspectors review the code and compare to

requirements/design and raise questions or

concerns. Defects recorded by moderator

Test Find defects in test

cases/test plan

Confirm test cases can

verify design/requirements

Inspectors review each page of test

plan/specification, compare to requirements/design

and raise questions or concerns. Defects recorded

by moderator

98 6 Software Inspections

6.6.6 Inspection Exit Criteria

The exit criteria (Table 6.10) for the various inspections are as follows:

6.6.7 Issue Severity

The severity of an issue identified in the Fagan inspection may be classified as

major, minor, a process improvement item or an item requiring further investiga-

tion. It is classified as major if its non-detection would lead to a defect report being

raised later in the development cycle, whereas a defect report would generally not

be raised for a minor issue. An issue classified as an investigate item requires

further study, and an issue classified as process improvement is used to improve the

software development process (Table 6.11).

Table 6.10 Fagan exit criteria

Inspection type Exit criteria

Requirements Requirements satisfy the customer’s needs

All requirements defects are corrected

Design Design satisfies the requirements

All identified defects are corrected

Design satisfies the design standards

Code Code satisfies the design and requirements

Code satisfies coding standards and compiles cleanly

All identified defects are corrected

Test Test plan sufficient to test the requirements/design

Test plan follows test standards

All identified defects corrected

Table 6.11 Issue severity

Issue severity Definition

Major (M) A defect in the work product that would lead to a customer-reported

problem if undetected

Minor (m) A minor issue in the work product

Process

improvement (PI)

A process improvement suggestion based on analysis of major defects

Investigate (INV) An item to be investigated

6.6 Fagan Inspections 99

6.6.8 Defect Type

There are several defect-type classification schemes employed in software inspec-

tions. These include the Fagan inspection defect classification (Table 6.12) and the

orthogonal defect classification scheme (Table 6.13).

The orthogonal defect classification (ODC) scheme was developed at IBM [5],

and a defect is classified according to three (orthogonal) viewpoints. The defect

trigger is the catalyst that led the defect to manifest itself; the defect type indicates

the change required for correction; and the defect impact indicates the impact of the

defect at the phase in which it was identified. The ODC classification yields a rich

pool of information about the defect, but effort is required to record this informa-

tion. The defect-type classification is described in Table 6.13.

The defect impact provides a mechanism to relate the impact of the software

defect to customer satisfaction. The impact of a defect identified pre-release is

Table 6.12 Classification of defects in Fagan inspections

Code inspection Type Design inspections Type Requirements inspections Type

Logic (code) LO Usability UY Product objectives PO

Design DE Requirements RQ Documentation DS

Requirements RQ Logic LO Hardware interface HI

Maintainable MN Systems inter- IS Competition CO

Interface IF face Analysis

Data usage DA Portability PY Function FU

Performance PE Reliability RY Software interface SI

Standards ST Maintainability MN Performance PE

Code CC Error handling EH Reliability RL

Comments Other OT Spelling GS

Table 6.13 Classification of ODC defect types

Defect type Code Definition

Checking CHK Omission or incorrect validation of parameters or data in conditional

statements

Assignment ASN Value incorrectly assigned or not assigned at all

Algorithm ALG Efficiency or correctness issue in algorithm

Timing TIM Timing/serialization error between modules, shared resources

Interface INT Interface error (error in communications between modules, operating

system, etc.)

Function FUN Omission of significant functionality

Documentation DOC Error in user guides, installation guides or code comments

Build/Merge BLD Error in build process/library system or version control

Miscellaneous MIS None of the above

100 6 Software Inspections

viewed as the impact of it being detected by an end-user, and for a

customer-reported defect its impact is the actual information reported by the

customer.

The inspection data is typically recorded in an inspection database, which allows

analysis to be performed on the most common types of defects, and the preparation

of action plans to minimize reoccurrence (Fig. 6.3). The frequency of defects per

category is identified, and causal analysis is employed to identify preventive

actions. Often, the most problematic areas are targeted first (as identified in a Pareto

chart), and an investigation into the particular category is conducted. The action

plans will identify actions to be carried out to improve the existing processes.

The ODC classification scheme may be used to give early warning on the quality

and reliability of the software, as its use leads to an expected profile of defects for

the various lifecycle phases. The actual profile may then be compared to the

expected profile, and the presence of significant differences between these may

indicate risks to quality.

For example, if the actual defect profile at the system test phase resembles the

defect profile of the unit-testing phase, then it is likely that there are quality

problems. This is clear since the unit-testing phase is expected to yield a certain

pool of defects, with system testing receiving higher quality software with the

defects found during unit testing corrected. Consequently, ODC may be applied to

make a judgment of product quality and performance.

The inspection data will enable the phase containment effectiveness (PCE) met-

ric to be determined (Fig. 10.19), and to determine if the software is ready for

release to the customer.

6.7 Automated Software Inspections

Static code analysis is the analysis of software code without executing the code. It is

usually performed with automated tools, and the sophistication of the tool deter-

mines the actual analysis done. Some tools may analyse individual statements or

Fig. 6.3 Sample defect types

in a project (ODC)

6.6 Fagan Inspections 101

http://dx.doi.org/10.1007/978-3-319-57750-0_10

Inspection Type __________ Deliverable ________________ Project ______________

Date __________________ Amount Inspected ______ Version No. ____

Author_________________ Moderator________________ No. of Reviews _____

Inspectors ___

#Hours Preparation _________ # Hours Inspection __________ #Hours Rework _____

Summary of Findings: # Majors _____ # Minors ____ # PIs _____ # INVs ____

ODC Summary (Majors): #CHK __ #ASS___ #ALG___ #TIM___ # INT__ #FUN____ # DOC___# BLD___

__

No. Page/Line No. Severity Type Description

Top 3 Root Causes of Major Defects / Process Improvement Actions

1.

2.

3.

Review Out come

No changes □ Verification by Moderator □ Full Review □ Review Incomplete □
 Defects per KLOC _____ Defects per page _____ Verification of Rework _____________

 Date Verified ________ Inspection Data in Database ____

Fig. 6.4 Template for Fagan inspection

102 6 Software Inspections

declarations, whereas others may analyse the whole source code. The objective of

the analysis is to highlight potential coding errors early in the software development

lifecycle.

These automated software inspection tools provide quality assessment reports on

the extent to which the coding standards are satisfied. Many integrated development

environments (IDEs) provide basic functionality for automated code reviews. These

include Microsoft Visual Studio and Eclipse.

The LDRA Testbed tool automatically determines the complexity of the source

code, and it provides metrics that give an indication of the maintainability of the

code. A useful feature of the LDRA tool is that it gives a visual picture of system

complexity, and it has a re-factoring tool to assist with reducing complexity. It

automatically generates code assessment reports listing all of the files examined and

provides metrics on the clarity, maintainability and testability of the code.

Compliance to coding standards is important in producing readable code and in

preventing error-prone coding styles. There are several tools available to check con-

formance to coding standards including the LDRATBvision tool, which has reporting

capabilities to show code quality as well as fault detection and avoidance measures. It

includes functionality to allow users to view the results presented intuitively in various

graphs and reports. A selection of LDRA tools are presented in Chap. 17.

6.8 Review Questions

1. What are software inspections?

2. Explain the difference between informal reviews, structured

walk-throughs, semi-formal reviews and formal inspections.

3. What are the benefits of software inspections?

4. Describe the seven steps in the Fagan inspection process.

5. What is the purpose of entry and exit criteria in software inspections?

6. What factors influence the effectiveness of a software inspection?

7. Describe the roles involved in a Fagan inspection.

8. Describe the benefits of automated inspections.

6.7 Automated Software Inspections 103

http://dx.doi.org/10.1007/978-3-319-57750-0_17

6.9 Summary

The objective of software inspections is to build quality into the software product,

and there is clear evidence that the cost of correction of a defect increases the later

in the software development cycle in which it is detected. Consequently, there is an

economic argument to employing software inspections, as it is more cost effective

to build quality in rather than adding it later in the development cycle.

There are several approaches to software inspections, and these vary in the level

of formality employed. A simple approach consists of a walk-through of the doc-

ument or code by an individual other than the author. The meeting is informal and

usually takes place at the author’s desk or in a meeting room, and the reviewer and

author discuss the document or code informally.

There are formal software inspection methodologies such as the well-known Fagan

inspectionmethodology. This approach includes pre-inspection activity, an inspection

meeting and post-inspection activity. Several inspection roles are typically employed,

including an author role, an inspector role, a tester role and a moderator role.

An organization will need to devise an inspection process that is suitable for its

particular needs. The level of formality is influenced by its business, its culture and the

potential impact of a software defect on its customers. Itmaynot bepossible to have all of

the participants present in a room, and participation by conference callmay be employed.

Software inspections play an important role in building quality into each phase,

and in ensuring that the quality of the delivered product is good. The quality of the

delivered software product is only as good as the quality at the end each phase, and

therefore a phase should be exited only when the desired quality has been achieved.

The effectiveness of an inspection is influenced by the expertise of the inspec-

tors, adequate preparation and speed of the inspection, and compliance to the

inspection process. The inspection methodology provides guidelines on the

inspection and preparation rates for an inspection, and guidelines on the entry and

exit criteria for an inspection.

References

1. M. Fagan, Design and code inspections to reduce errors in software development. IBM Syst.

J. 15(3) (1976)

2. T. Gilb, D. Graham, Software Inspections (Addison Wesley, Boston, 1994)

3. B. Boehm, Software Engineering Economics (Prentice Hall, New Jersey, 1981)

4. F. O’Hara,Peer Reviews—The Key to Cost Effective Quality. (European SEPG, Amsterdam, 1998)

5. I. Bhandari, A case study of software process improvement during development. IEEE Trans.

Softw. Eng. 19(12), 1157–1170 (1993)

104 6 Software Inspections

7Software Testing

Abstract

This chapter is concerned with software testing and discusses the various types

of testing that may be carried out during the project. We discuss test planning,

test case definition, test environment set-up, test execution, test tracking, test

metrics, test reporting and testing in an e-commerce environment.

Keywords

Test planning � Test case design � Unit testing � System testing � Performance

testing � e-commerce testing � Acceptance testing � White box testing � Black

box testing � Test tools � Test environment � Test reporting

7.1 Introduction

Testing plays a key role in verifying the correctness of software and confirming that

the requirements have been correctly implemented. It is a constructive and

destructive activity in that while on the one hand it aims to verify the correctness of

the software, on the other hand it aims to find as many defects as possible in the

software. The vast majority of defects (e.g. 80%) will be detected by software

inspections in a mature software organization, with the remainder detected by the

various types of testing carried out during the project.

Software testing provides confidence that the product is ready for release to

potential customers, and the recommendation of the testing department is crucial in

the decision as to whether the software product should be released or not. The test

manager highlights any risks associated with the product, and these are considered

prior to its release. The test manager and test department can be influential in an

organization by providing strategic advice on product quality, and in encouraging

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_7

105

organization change to improve the quality of the software product through the use

of best practice in software engineering.

The testers need a detailed understanding of the software requirements to enable

them to develop appropriate test cases to verify the correctness of the software. Test

planning commences at the early stages of the project, and testers play a role in

building quality into the software product and verifying its correctness. The testers

generally participate in the review of the requirements, and the testing viewpoint is

important during the review to ensure that the requirements are correct and are

testable.

The test plan for the project is documented (this could be part of the project plan

or a separate document), and it includes the personnel involved, the resources and

effort required, the definition of the testing environment to enable effective testing

to take place, any special hardware and test tools required, and the planned

schedule. There is a separate test specification plan for the various types of testing,

and it records the test cases, including the purpose of the test case, the inputs and

expected outputs and the test procedure for the particular test case.

Various types of testing are performed during the project, including unit, inte-

gration, system, regression, performance and user acceptance testing. The software

developers perform the unit testing, and the objective is to verify the correctness of

a module. This type of testing is termed “white box” testing and is based on

knowledge of the internals of the software module. White box testing typically

involves checking that every path in a module has been tested, and it involves

defining and executing test cases to ensure code and branch coverage. The objective

of “black box” testing is to verify the functionality of a module (or feature or the

complete system itself), and knowledge of the internals of the software module is

not required.

Test reporting is an important part of the project, and it ensures that all project

participants understand the current quality of the software, as well as understanding

what needs to be done to ensure that the product achieves the required quality

criteria. The test status is reported regularly during the project, and once the tester

discovers a defect, a problem report is opened, and the problem is analysed and

corrected by the software developers. The problem may indicate a genuine defect, a

misunderstanding by the tester or a request for an enhancement.

An independent test group is generally more effective than a test group that is

directly reporting to the development manager. The independence of the test group

helps to ensure that quality is not compromised when the project is under pressure

to make its committed delivery dates. A good test group will play a proactive role in

quality improvement, and this may involve participation in the analysis of the

defects identified during testing phase at the end of the project, with the goal of

prevention or minimization of the reoccurrence of the defects.

Real-world issues such as the late delivery of the software from the developers

often complicate the software testing. Software development is challenging and

deadline-driven, and missed developer deadlines may lead to compression of the

testing schedule, as the project manager may wish to stay with the original

schedule. There are risks associated with shortening the test cycle, as the testers

106 7 Software Testing

may be unable to complete the planned test activities. This means that insufficient

data are available to make an informed judgment as to whether the software is ready

for release, leading to risks that a defect-laden product may be shipped to the

customer.

Test departments may be understaffed, as management may consider additional

testers to be expensive and may wish to minimize costs. The test manager needs to

be assertive in presenting the test status of the project, stating the known quality and

risks, and the recommendation of the test manager needs to be carefully considered

by the project manager and other stakeholders.

7.2 Test Process

The quality of the testing is dependent on the maturity of the test process, and a

good test process will include test planning, test case analysis and design, test

execution and test reporting. A simplified test process is sketched in Fig. 7.1, and

the test process will include as follows:

– Test planning and risk management.

– Dedicated test environment and test tools.

– Test case definition.

– Test automation.

– Test execution.

– Formality in handover to test department.

– Test result analysis.

– Test reporting.

– Measurements of test effectiveness.

– Lessons learned and test process improvement.

Test planning consists of a documented plan defining the scope of testing and the

various types of testing to be performed, the definition of the test environment, the

required hardware or software for the test environment, the estimation of effort and

resources for the various activities, risk management, the deliverables to be pro-

duced, the key test milestones and the test schedule.

The test plan is reviewed to ensure its fitness for purpose and to obtain com-

mitment to the plan, as well as ensuring that all involved understand and agree to

their responsibilities. The test plan may be revised in a controlled manner during the

project. It is described in more detail in Sect. 7.3.

The test environment varies according to the type of business and project

requirements. Large organizations may employ dedicated test laboratories, whereas

a single workstation may be sufficient in a small organization. A dedicated test

environment may require significant capital investment, but it will pay for itself in

reducing the cost of poor quality, by identifying defects, and verifying that the

software is fit for purpose.

7.1 Introduction 107

The test environment includes the hardware and software needed to verify the

correctness of the software. It is defined early in the project so that any required

hardware or software may be ordered in time. It may include simulation tools,

automated regression and performance test tools, as well as tools for defect

reporting and tracking.

Fig. 7.1 Simplified test process

108 7 Software Testing

The software developers produce a software build under configuration man-

agement control, and the build is verified for integrity to ensure that testing may

commence. There is generally a formal or informal handover of the software to the

test department, and a formal handover includes criteria that must be satisfied for

the handover to take place. The test department must be ready for testing with the

test cases and test environment prepared.

The various types of testing employed to verify the correctness of the software

are described in Table 7.1. They may include:

The effectiveness of the testing is dependent on the definition of good test cases,

which need to be complete in the sense that their successful execution will provide

confidence in the correctness of the software. Hence, the test cases must relate or

cover the software requirements, and we discussed the concept of a traceability matrix

(that maps the requirements to the design and test cases) in Chap. 3 (Table 3.4). The

traceability matrix provides confidence that each requirement has a corresponding

test case for verification. The test cases will consist of a format similar to the

following:

Table 7.1 Types of testing

Test type Description

Unit testing This testing is performed by the software developers, and it verifies the

correctness of the software modules

Component

testing

This testing is used to verify the correctness of software components to

ensure that the component is correct and may be reused

System testing This testing is (usually) carried out by an independent test group to verify

the correctness of the complete system

Performance

testing

This testing is (usually) carried out by an independent test group to ensure

that the performance of the system is within the defined parameters. It may

require tools to simulate clients and heavy loads, and precise

measurements of performance are made

Load/stress

testing

This testing is used to verify that the system performance is within the

defined limits for heavy system loads over long or short periods of time

Browser

compatibility

This testing is specific to web-based applications and verifies that the

website functions correctly with the supported browsers

Usability testing This testing verifies that the software is easy to use, and that the look and

feel of the application is good

Security testing This testing verifies that the confidentiality, integrity and availability

requirements are satisfied

Regression

testing

This testing verifies that the core functionality is preserved following

changes or corrections to the software. Test automation may be employed

to increase its productivity and efficiency

Test simulation This testing simulates part of the system where the real system currently

does not exist, or where the real live situation is hard to replicate

Acceptance

testing

This testing carried out by the customer to verify that the software matches

the customer’s expectations prior to acceptance

7.2 Test Process 109

http://dx.doi.org/10.1007/978-3-319-57750-0_3
http://dx.doi.org/10.1007/978-3-319-57750-0_3

– Purpose of the test case.

– Set-up required to execute the test case.

– Inputs to the test case.

– The test procedure.

– Expected outputs or results.

The test execution will follow the procedure defined in the test cases, and the

tester will compare the actual results obtained with the expected results. The test

completion status will be passed, failed or blocked (if unable to run at this time).

The test results summary will indicate which test cases could be executed, which

passed, which failed and which could not be executed.

The tester documents the test results including detailed information on the

passed and failed tests. This will assist the software developers in identifying the

precise causes of failure and the appropriate corrective actions. The developers and

tester will agree to open a defect report in the defect-tracking system to track the

successful correction of the defect.

The test status (Fig. 7.2) consists of the number of tests planned, the number of

test cases run, the number that have passed and the number of failed and blocked

tests. The test status is reported regularly to management during the testing cycle.

The test status and test results are analysed and extra resources provided where

necessary to ensure that the product is of high quality with all defects corrected

prior to the acceptance of the product.

Test tools and test automation are used to support the test process and lead to

improvements in quality, reduced cycle time and productivity. Tool selection (see

Chap. 17) needs to be performed in a controlled manner, and it is best to identify the

requirements for the tool first and then to examine a selection of tools to determine

which best meets the requirements. Tools may be applied to test management and

reporting, test results management, defect management and to the various types of

testing.

Fig. 7.2 Sample test status

110 7 Software Testing

http://dx.doi.org/10.1007/978-3-319-57750-0_17

A good test process will maintain measurements to determine its effectiveness,

and an end of testing review is conducted to identify any lessons that need to be

learned for continual improvement. The test metrics employed will answer ques-

tions such as:

• What is the current quality of the software?

• How stable is the product at this time?

• Is the product ready to be released at this time?

• What are the key risks and are they all managed?

• How good was the quality of the software that was handed over?

• How does the product quality compare to other products?

• How effective was the testing performed on the software?

• How many open problems are there and how serious are they?

• How much testing remains to be done?

7.3 Test Planning

Testing is a sub-project of a project and needs to be managed as such, and so good

project planning and monitoring and control are required. The IEEE 829 standard

includes a template for test planning, and test planning involves defining the scope

of the testing to be performed, defining the test environment, estimating the effort

required to define the test cases and to perform the testing, identifying the resources

needed (including people, hardware, software and tools), assigning the resources to

the tasks, defining the schedule, and identifying any risks to the testing and

managing them.

The monitoring and control of the testing involves tracking progress and taking

corrective action, replanning as appropriate where the scope of the testing has

changed, providing test reports to give visibility of the test status to the project team

(including the number of tests planned, executed, passed, blocked and failed),

retesting corrections to the failed or blocked test cases, taking corrective action to

ensure quality and schedule are achieved, managing risks and providing a final test

report with a recommendation to go to acceptance testing. Test management

involves as follows:

• Identify the scope of testing to be done.

• Determine types of testing to be performed.

• Estimates of time, resources, people, hardware, software and tools.

• Determine how test progress and results will be communicated.

• Define how test defects will be logged and reported.

• Provide resources needed.

• Definition of test environment.

• Assignment of people to tasks.

7.2 Test Process 111

• Define the schedule.

• Identify and manage risks.

• Track progress and take corrective action.

• Provide regular test status of passed, blocked, failed tests.

• Re-plan if scope of the project changes.

• Conduct post-mortem to learn any lessons.

Table 7.2 presents a simple test schedule for a small project, and the test

manager will often employ Microsoft Project (or a similar scheduling tool) for

planning and tracking of larger projects (e.g. Fig. 2.2). The activities in the test

schedule are tracked and updated accordingly to record the tasks that have been

completed, and dates are rescheduled as appropriate. Testing is a key sub-project of

the main project, and the project manager will track the key test milestones and will

maintain close contact with the test manager.

It is prudent to consider risk management early in test planning, to identify risks

that could potentially arise during the testing, to estimate the probability of

occurrence of the risk and its impact should it occur, and to identify (as far as is

practical) actions to mitigate the risk or a contingency plan to address the risk if it

materializes.

7.4 Test Case Design and Definition

Several types of testing that may be performed during the project were described in

Table 7.1, and there is often a separate test plan for unit, system and UAT testing.

The unit tests are based on the software design, the system tests are based on the

Table 7.2 Simple test schedule

Activity Resource

name(s)

Start date End/Re-plan

date

Comments

Review requirements Test team 15.02.2017 16.02.2017 Complete

Project test plan/review J. DiNatale 15.02.2017 28.02.2017 Complete

System test plan/review P. Cuitino 01.03.2017 22.03.2017 Complete

Performance test

plan/review

L. Padilla 15.03.2017 31.03.2017 Complete

Regression plan/review P. Cuitino 01.03.2017 15.03.2017 Complete

Set-up test environment P. Cuitino 15.03.2017 31.03.2017 Complete

System testing P. Cuitino 01.04.2017 31.05.2017 In progress

Performance testing L. Padilla 15.04.2017 07.05.2017 In progress

Regression testing L. Padilla 07.05.2017 31.05.2017 In progress

Test reporting J. DiNatale 01.04.2017 31.05.2017 In progress

112 7 Software Testing

http://dx.doi.org/10.1007/978-3-319-57750-0_2

system requirements, and the UAT tests are based on the business (or user)

requirements.

Each of these test plans contains test scripts (e.g. the unit test plan contains the

unit test scripts), and the test scripts are traceable to the design (for the unit tests),

and for the system requirements (for the system test scripts). The unit tests are more

focused on white box testing, whereas the system test and UAT tests are focused on

black box testing.

Each test script contains the objective of the test script and the procedure by

which the test is carried out. Each test script includes as follows:

– Test case ID

– Test type (e.g. unit, system, UAT)

– Objective/description

– Test script steps

– Expected results

– Actual results

– Tested by

Regression testing involves carrying out a subset of the defined tests to verify

that the core functionality of the software remains in place following changes to the

system.

7.5 Test Execution

The software developers will carry out the unit and integration testing as part of the

normal software development activities. The developers will correct any identified

defects, and the development continues until all unit and integration tests pass, and

the software is fit to be released to the test group.

The test group will usually be independent (i.e. it has an independent reporting

channel), and it will usually perform the system testing, performance testing,

usability testing and so on. There is usually a formal handover from development to

the test group prior to the commencement of testing, and the handover criteria need

to be satisfied in order for the software to be accepted for testing by the test group.

The handover criteria will generally require that all unit and integration tests

have been run and passed, that all known risks have been identified, that the test

environment is ready for independent testing, and that the system, performance and

all other relevant test scripts are available, and that all required resources required

for testing are available.

Test execution then commences and the testers run the system tests and other

tests, log any defects in the defect-tracking tool and communicate progress to the

test manager. The test status is communicated to the project team, and the devel-

opers correct the identified defects and produce new releases. The test group retests

7.4 Test Case Design and Definition 113

the failed and blocked tests and performs regression testing to ensure that the core

functionality remains in place. This continues until the quality goals for the project

have been achieved.

7.6 Test Reporting and Project Sign-Off

The test manager will report progress regularly during the project. The report

provides the current status of testing for the project and includes as follows:

• Quality status (including tests run, passed and blocked).

• Risks and issues.

• Status of test schedule.

• Deliverables planned (next period).

The test manager discusses the test status with management and highlights the

key risks and issues to be dealt with. The test manager may require management

support to deal with these.

The test status is important in judging whether the software is ready to be

released to the customer. Various quality metrics may be employed to measure the

quality of the software, and the key risks and issues are considered. The test

manager will make a recommendation to release or not based on the actual test

status. One useful metric (one of many) is the cumulative arrival rate (Fig. 7.3) that

gives an indication of the stability of the product.

The slope of the curve is initially steep as testing commences and defects are

detected. As testing continues and defects are corrected and retested, the slope of

the curves levels off, and over time the indications are that the software has sta-

bilized and is potentially ready to be released to the customer.

However, it is important not to rush to conclusions based on an individual

measurement. For example, the above chart could possibly indicate that testing

halted on May 13th with no testing since then, and that would explain why the

defect arrival rate per week is zero. Careful investigation and analysis needs to be

done before the interpretation of a measurement is made, and usually several

measurements rather than one are employed to make a sound decision.

Fig. 7.3 Cumulative defects

114 7 Software Testing

7.7 Testing and Quality Improvement

Testing is an essential part of the software development process, and the recom-

mendation of the test manager is carefully considered in the decision to release the

software product. Decision-making is based on objective facts, and measurements

are employed to assess the quality of the software. The open-problem status

(Figs. 10.16 and 10.17), the problem arrival rate (Fig. 10.18) and the cumulative

problem arrival rate (Fig. 7.3) give an indication of the quality and stability of the

software product and may be used in conjunction with other measures to decide on

whether it is appropriate to release the software, or whether further testing should be

performed.

Test defects are valuable in the sense that they provide the organization the

opportunity to improve its software development process to prevent the defects

from reoccurring in the future. A mature development organization will perform

internal reviews of requirements, design and code prior to testing. The effectiveness

of the internal review process and the test process may be seen in the phase

containment metric (PCE), which is discussed in Chap. 10.

Figure 10.19 indicates that the project had a phase containment effectiveness of

approximately 54%. That is, the developers identified 54% of the defects, the

system-testing phase identified approximately 23% of the defects, acceptance

testing identified approximately 14% of the defects, and the customer identified

approximately 9% of the defects. Many organizations set goals with respect to the

phase containment effectiveness of their software. For example, a mature organi-

zation might aim for their software development department to have a phase con-

tainment effectiveness goal of 80%. This means that 80% of the defects should be

found by software inspections.

The improvement trends in phase containment effectiveness may be tracked over

time. There is no point in setting a goal for a particular group or area unless there is

a clear mechanism to achieve the goal. Thus to achieve a goal of 80% phase

containment effectiveness, the organization will need to implement a formal soft-

ware inspection methodology as described in Chap. 6. Training on inspections will

be required, and the effectiveness of software inspections was monitored and

improved.

A mature organization will aim to have 0% of defects reported by the customer,

and this goal requires improvements in its software inspection methodology and its

software testing methodology. Measurements provide a way to verify that the

improvements have been successful. Each defect is potentially valuable as it, in

effect, enables the organization to identify weaknesses in the software process and

to target improvements.

Escaped customer defects offer an opportunity to improve the testing process, as

it indicates a weakness in the test process. The defects are categorized, causal

analysis is performed, and corrective actions are identified to improve the testing

process. This helps to prevent a reoccurrence of the defects. Thus, software testing

plays an important role in quality improvement.

7.7 Testing and Quality Improvement 115

http://dx.doi.org/10.1007/978-3-319-57750-0_10
http://dx.doi.org/10.1007/978-3-319-57750-0_10
http://dx.doi.org/10.1007/978-3-319-57750-0_10
http://dx.doi.org/10.1007/978-3-319-57750-0_10
http://dx.doi.org/10.1007/978-3-319-57750-0_10
http://dx.doi.org/10.1007/978-3-319-57750-0_6

7.8 Traceability of Requirements

The objective of requirements traceability (as discussed in Chap. 3) is to verify that

all of the requirements have been implemented and tested. One way to do this

would be to examine each requirement number and to go through every part of the

design document to find any reference to the particular requirement number, and

similarly to go through the test plan and find any reference to the requirement

number. This would demonstrate that the particular requirement number has been

implemented and tested.

A more effective mechanism to do this is with a traceability matrix (Table 3.4).

This may be a separate document or part of the test documents. The idea is that a

mapping between the requirement numbers and the associated test cases is defined,

and this provides confidence that all of the requirements have been implemented

and tested.

A requirement number may map on to several test cases, i.e., the mapping may

be one to many with several test cases employed to verify the correctness of a

particular requirement. Traceability provides confidence that each requirement

number has been implemented in the software design and tested via the test plan.

7.9 Test Tools

Test tools are employed to support the test process and are used to enhance quality,

reduce cycle time and increase productivity. Tool selection needs to be planned, and

the evaluation and selection of a particular tool involves defining the requirements for

the proposed tool and identifying candidate tools to evaluate against the requirements.

Each tool is then evaluated to yield an evaluation profile, and the results are analysed

to enable an informed decision to be made. Tools to support the various software

engineering activities (including testing) are described in Chap. 17.

There are various tools to support testing such as test planning and management

tools, defect-tracking tools, regression test automation tools, performance tools.

There are tools available from various vendors such as Compuware, Software

Research, Inc., HP, LDRA, McCabe and Associates, and IBM Rational.

7.9.1 Test Management Tools

There are various test management tools available (e.g. the Quality Center tool from

HP), and the main features of such a tool are as follows:

• Management of entire testing process.

• Test planning.

• Support for building and recording test scripts.

116 7 Software Testing

http://dx.doi.org/10.1007/978-3-319-57750-0_3
http://dx.doi.org/10.1007/978-3-319-57750-0_3
http://dx.doi.org/10.1007/978-3-319-57750-0_17

• Test status and reporting.

• Graphs for presentation.

• Defect control system.

• Support for many testers.

• Support for large volume of test data.

• Audit trail proof that testing has been done.

• Test automation.

• Support for various types of testing.

The Quality Center™ tool standardizes and manages the entire test and quality

process, and it is a web-based system for automated software quality management

and testing. It employs dashboard technology to give visibility into the process.

It provides a consistent repeatable process for gathering requirements, planning

and scheduling tests, analysing results and managing defects. It supports a high

level of collaboration and communication between the stakeholders. It allows the

business analysts to define the application requirements and testing objectives. The

test managers and testers may then design test plans, test cases and automated

scripts. The testers then run the manual and automated tests, report results and log

the defects.

The developers review and correct the logged defects. Project and test managers

can create status reports and manage test resources. Test and product managers

decide objectively whether the application is ready to be released.

7.9.2 Miscellaneous Testing Tools

There is a wide collection of test tools to support activities such as static testing,

unit testing, system testing, performance testing and regression testing.

Code coverage tools are useful for unit testing, and, for example, the LDRA

Testbed is able to analyse source files to report on areas of code that were not

executed at run-time, thereby facilitating the identification of missing test data.

Code coverage tools are useful in identifying the sources of errors, as they will

typically show the code areas that were executed through textual or graphic reports.

Regression testing involves rerunning existing test cases to verify that the

software remains correct following the changes made. It is often automated with

capture and playback tools, and the Winrunner tool1 that was developed by Mer-

cury (now part of HP) captures, verifies and replays user interactions, and allows

regression testing to be automated. Effort is required to set-up the tests for

automation, but the payback is improvements in quality and productivity.

The purpose of performance testing is to verify that system performance is

within the defined limits, and it requires measures on the server side, network side

and client side (e.g. processor speed, disk space used, memory used,). It includes

load testing and stress testing. Mercury’s LoadRunner (now called HP Loadrunner)

1The Winrunner tool has been replaced by HP Unified Functional Testing Software.

7.9 Test Tools 117

tool allows the software application to be tested with hundreds or thousands of

concurrent users to determine its performance under heavy loads. It allows the

scalability of the software system to be tested, to determine whether can support the

predicted growth.

The decision on whether to automate and what to automate often involves a test

process improvement team. It tends to be difficult for a small organization to make a

major investment in test tools (especially if the projects are small). However, larger

organizations will require a more sophisticated testing process to ensure that

high-quality software is consistently produced.

7.10 e-commerce Testing

There has been an explosive growth in electronic commerce, and website quality

and performance is a key concern. A website is a software application, and so

standard software engineering principles are employed to verify the quality of a

website. e-commerce applications are characterized by:

• Distributed system with millions of servers and billions of participants.

• High availability requirements (24 * 7 * 365).

• Look and feel of the website is highly important.

• Browsers may be unknown.

• Performance may be unpredictable.

• Users may be unknown.

• Security threats may be from anywhere.

• Often rapid application development is required.

• Design a little, implement a little and test a little.

• Rapidly changing technologies.

The standard waterfall life cycle model is rarely employed for the front end of a

web application, and instead, RAD/JAD/Agile models are employed. The use of

lightweight development methodologies does not mean that anything goes in

software development, and similar project documentation should be produced

(except that the chronological sequence of delivery of the documentation is more

flexible). Joint application development allows early user feedback to be received

on the look and feel and correctness of the application, and the method of design a

little, implement a little and test a little is valid for web development. The various

types of web testing include as follows:

• Static testing.

• Unit testing.

• Functional testing.

• Browser compatibility testing.

• Usability testing.

118 7 Software Testing

• Security testing.

• Load/performance/stress testing.

• Availability testing.

• Post-deployment testing.

Static testing generally involves inspections and reviews of documentation. The

purpose of static testing of websites is to check the content of the web pages for

accuracy, consistency, correctness and usability, and also to identify any syntax

errors or anomalies in the HTML. There are tools available (e.g. NetMechanic) for

statically checking the HTML for syntax correctness.

The purpose of unit testing is to verify that the content of the web pages cor-

responds to the design, that the content is correct, that all the links are valid and that

the web navigation operates correctly.

The purpose of functional testing is to verify that the functional requirements are

satisfied. It may be quite complex as e-commerce applications may involve product

catalogue searches, order processing, credit checking and payment processing, and

the application may liaise with legacy systems. Also, testing of cookies, whether

enabled or disabled, needs to be considered.

The purpose of browser compatibility testing is to verify that the web browsers

that are to be supported are actually supported. The purpose of usability testing is to

verify that the look and feel of the application is good and that web performance

(loading web pages, graphics, etc.) is good. There are automated browsing tools

which go through all of the links on a page, attempt to load each link and produce a

report including the timing for loading an object or page. Usability needs to be

considered early in design and is important in GUI applications.

The purpose of security testing is to ensure that the website is secure. The

purpose of load, performance and stress testing is to ensure that the performance of

the system is within the defined parameters.

The purpose of post-deployment testing is to ensure that website performance

remains good, and this may be done as part of a service level agreement (SLA).

A SLA typically includes a penalty clause if the availability of the system or its

performance falls outside the defined parameters. Consequently, it is important to

identify performance and availability issues early before they become a problem.

Thus, post-deployment testing includes monitoring of website availability, perfor-

mance and security and taking corrective action. e-commerce sites operate 24 h a

day for 365 days a year, and major financial loss is incurred in the case of a major

outage.

7.11 Test-Driven Development

Test-driven development (TDD) was developed by Kent Beck and others as part of

extreme programming, and it ensures that test cases are written early with the

software code written to pass the test cases. It is a paradigm shift from traditional

7.10 e-commerce Testing 119

software engineering, where unit tests are written and executed after the code has

been written.

The set of test cases is derived from the requirements, and the software is then

written to pass the test cases. Another words, the test-driven development of a new

feature begins with writing a suite of test cases based on the requirements for the

feature, and the code for the feature is then written to pass the test cases.

Initially, all tests fail as no code has been written, and so the first step is to write

some code that enables the new test cases to pass. This new code may be imperfect

(it will be improved later), but this is initially acceptable as the only purpose is to

pass the new test cases. The next step is to ensure that the new feature works with

the existing features, and this involves executing all new and existing test cases.

This may involve modification of the source code to enable all of the tests to

pass and to ensure that all features work correctly together. The final step is

refactoring the code, and this involves cleaning up and restructuring the code. The

test cases are rerun during the refactoring to ensure that the functionality is not

altered in any way. The process repeats with the addition of each new feature. TDD

is described in more detail in Chap. 18.

7.12 Review Questions

1. Describe the main activities in test planning.

2. What does the test environment consist of? When should it be set-up?

3. Explain the traceability of the requirements to the test cases?

4. Describe the various types of testing that may be performed.

5. Investigate available test tools to support testing? What areas of testing do

they support and what are their benefits?

6. Describe an effective way to evaluate and select a test tool.

7. What are the characteristics of e-commerce testing that make it unique

from other domains.

8. Discuss test reporting and the influence of the test manager in project

sign-off.

9. Explain test-driven development.

120 7 Software Testing

http://dx.doi.org/10.1007/978-3-319-57750-0_18

7.13 Summary

This chapter discussed software testing and how testing may be used to verify that

the software is of a high quality and fit to be released to potential customers. Testing

is both a constructive and destructive activity, in that while on the one hand it aims

to verify the correctness of the software, on the other hand it aims to find as many

defects as possible.

Various test activities were discussed including test planning, setting up the test

environment, test case definition, test execution, defect reporting, and test man-

agement and reporting.

We discussed black box testing and white box testing, unit and integration

testing, system testing, performance testing, security and usability testing. Testing

in an e-commerce environment was considered.

Test reporting enables all project participants to understand the current quality of

the software and to understand what needs to be done to ensure that the product

meets the required quality criteria.

Various tools to support the testing process were discussed, and a methodology

to assist in the selection and evaluation of tools is essential. Metrics are useful in

providing visibility into test progress and into the quality of the software. The role

of testing in promoting quality improvement was discussed.

Testing is often complicated by the late delivery of the software from the

developers, and this may lead to the compression of the testing schedule. The

recommendation of the test manager on whether to release the product needs to be

carefully considered.

7.13 Summary 121

8Supplier Selection and Management

Abstract

This chapter is concerned with the selection and management of a software

supplier. It discusses how candidate suppliers may be identified, formally

evaluated against defined selection criteria, and how the appropriate supplier is

selected. We discuss how the selected supplier is managed during the project.

Keywords

Request for proposal � Supplier evaluation � Formal agreement � Statement of

work � Managing supplier � Service level agreement � Escrow � Acceptance of

software

8.1 Introduction

Supplier selection and management is concerned with the selection and manage-

ment of a third-party software supplier. Many large projects involve total or partial

outsourcing of the software development, and it is therefore essential to select a

supplier that is capable of delivering high-quality and reliable software on time and

on budget.

This means that the process for the selection of the supplier needs to be rigorous

and that the capability of the supplier is clearly understood, and the associated risks

are known prior to selection. The selection is based on objective criteria such as

cost, the approach, the ability of the supplier to deliver the required solution, and

the supplier capability, and while cost is an important criterion, it is just one among

several other important factors.

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_8

123

Once the selection of the supplier is finalized, a legal agreement is drawn up

between the contractor and supplier, which states the terms and condition of the

contract, as well as the statement of work. The statement of work details the work to

be carried out, the deliverables to be produced, when they will be produced, the

personnel involved their roles and responsibilities, any training to be provided, and

the standards to be followed.

The supplier then commences the defined work and is appropriately managed for

the duration of the contract. This will involve regular progress reviews, and

acceptance testing is carried out prior to accepting the software from the supplier.

The following activities are generally employed for supplier selection and man-

agement (Table 8.1).

Table 8.1 Supplier selection and management

Activity Description

Planning and

requirements

This involves defining the approach to the procurement. It involves:

– Defining the procurement requirements

– Forming the evaluation team to rate each supplier against objective

criteria

Identify suppliers This involves identifying suppliers and may involve research,

recommendations from colleagues or previous working relationships.

Usually, three to five potential suppliers will be identified

Prepare and issue

RFP

This involves the preparation and issuing of the Request for Proposal

(RFP) to potential suppliers. The RFP may include the evaluation

criteria and a preliminary legal agreement

Evaluate proposals The received proposals are evaluated and a shortlist was produced. The

shortlisted suppliers are invited to make a presentation of their proposed

solution

Select supplier Each supplier makes a presentation followed by a Q&A session. The

evaluation criteria are completed for each supplier and reference sites

were checked (as appropriate). The decision on the preferred supplier is

made

Define supplier

agreement

A formal agreement is made with the preferred supplier. This may

include the following:

– Negotiations with the supplier/involvement with Legal

Department

– Agreement may vary (statement of work, service level agreement,

Escrow, etc.)

– Formal agreement signed by both parties

– Unsuccessful parties informed

– Purchase order raised

Managing the

supplier

This is concerned with monitoring progress, project risks, milestones

and issues, and taking action when progress deviates from expectations

Acceptance This is concerned with the acceptance of the software and involves

acceptance testing to ensure that the supplied software is fit for purpose

Roll-out This is concerned with the deployment of the software and

support/maintenance activities

124 8 Supplier Selection and Management

8.2 Planning and Requirements

The potential acquisition of software arises as part of a make-or-buy analysis at

project initiation. The decision is whether the project team should (or has the

competence to) develop a particular software system (or component of it), or

whether there is a need to outsource (or purchase off-the-shelf) the required soft-

ware. The supplied software may be the complete solution to the project’s

requirements, or it may need to be integrated with other software produced for the

project. The following tasks are involved:

– The requirements are defined (these may be a subset of the overall business

requirements).

– The solution may be available as an off-the-shelf software package (with con-

figuration needed to meet the requirements).

– The solution may be to outsource all or part of the software development.

– The solution may be a combination of the above.

Once the decision has been made to outsource or purchase an off-the-shelf

solution, an evaluation team is formed to identify potential suppliers and evaluation

criteria is defined to enable each supplier’s solution to be objectively rated.

A plan will be prepared by the project manager detailing the approach to the

procurement, defining how the evaluation will be conducted, defining the members

of the evaluation team and their roles and responsibilities, and preparing a schedule

of the procurement activities to be carried out.

The remainder of this chapter is focused on the selection of a supplier for the

outsourcing of all (or part) of the software development, but it could be easily

adapted to deal with the selection of an off-the-shelf software package.

8.3 Identifying Suppliers

A list of potential suppliers may be determined in various ways including:

– Previous working relationship with suppliers.

– Research via the Internet/Gartner.

– Recommendations from colleagues or another company.

– Advertisements/other.

A previous working relationship with a supplier provides useful information on

the capability of the supplier, and whether it would be a suitable candidate for the

work to be done. Companies will often maintain a list of preferred suppliers, and

these are the suppliers that have worked previously with the company and whose

capability is known. The risks associated with a supplier on the preferred supplier

8.1 Introduction 125

list are known and are generally less than those of an unknown supplier. If the

experience of working with the supplier is poor, then the supplier may be removed

from the preferred supplier list.

There may be additional requirements for public procurement to ensure fairness

in the procurement process, and often-public contracts need to be more widely

advertised to allow all interested parties the opportunity to make a proposal to

provide the product or service.

The list of candidate suppliers may potentially be quite large, and so short listing

may be employed to reduce the list to a more manageable size of around five

candidate suppliers.

8.4 Prepare and Issue RFP

The Request for Proposal (RFP) is prepared and issued to potential suppliers, and

the suppliers are required to complete a proposal detailing the solution that they will

provide, as well as the associated costs, by the closing date. The proposal will need

to detail the specifics of the supplier’s solution, and it needs to show how the

supplier plans to implement the requirements.

The RFP details the requirements for the software and must contain sufficient

information to allow the candidate supplier to provide a complete and accurate

response. The completed proposal will include technical and financial information,

which allows a rigorous evaluation of each received proposal to be carried out.

The RFP may include the criteria defined to evaluate the supplier, and often

weightings are employed to reflect the importance of individual criteria. The

evaluation criteria may include several categories such as the following:

– Functional (related to business requirements).

– Technology (related to the technologies/non-functional requirements).

– Supplier capability and maturity.

– Delivery approach.

– Overall cost.

Once the proposals have been received further short listing may take place to

limit the formal evaluation to around three suppliers.

8.5 Evaluate Proposals and Select Supplier

The evaluation team will evaluate all received proposals using an evaluation

spreadsheet (or similar mechanism), and the results of the evaluation yield a short

list of around three suppliers. The shortlisted suppliers are then invited to make a

presentation to the evaluation team, and this allows the team to question each

126 8 Supplier Selection and Management

supplier in detail to gain a better understanding of the solution that they are offering,

and any risks associated with the supplier and their proposed solution.

Following the presentations and Q&A sessions, the evaluation team will follow

up with checks on reference sites for each supplier. The evaluation spread sheet is

updated with all the information gained from the presentations, the reference site

checks, and the risks associated with individual suppliers.

Finally, an evaluation report is prepared to give a summary of the evaluation,

and this includes the recommendation of the preferred supplier. The project board

then makes a decision to accept the recommendation; select an alternate supplier; or

restart the procurement process.

8.6 Formal Agreement

The preferred supplier is informed on the outcome of the evaluation, and negoti-

ations on a formal legal agreement commences. The agreement will need to be

signed by both parties and may (depending on the type of agreement) include the

following:

– Legal contract.

– Statement of work.

– Implementation plan.

– Training plan.

– User guides and manuals.

– Customer support to be provided.

– Service level agreement.

– Escrow agreement.

– Warranty period.

The statement of work (SOW) is employed in bespoke software development,

and it details the work to be carried out, the activities involved, the deliverables to

be produced, the personnel involved, and their roles and responsibilities.

A service level agreement (SLA) is an agreement between the customer and

service provider which specifies the service that the customer will receive as well as

the response time to customer issues and problems. It will also detail the penalties

should the service performance fall below the defined levels.

An Escrow agreement is an agreement made between two parties where an

independent trusted third party acts as an intermediary between both parties. The

intermediary receives money from one party and sends it to the other party when

contractual obligations are satisfied. Under an Escrow agreement, the trusted third

party may also hold documents and source code.

8.5 Evaluate Proposals and Select Supplier 127

8.7 Managing the Supplier

The activities involved in the management of the supplier are similar to the standard

project management activities discussed in Chap. 2. The supplier may be based in a

different physical location (possibly in another country), and so regular commu-

nication is essential for the duration of the contract. The project manager is

responsible for managing the supplier and will typically communicate with the

supplier on a daily basis. The supplier will send regular status reports detailing

progress made as well as any risks and issues. The activities involved include the

following:

– Monitoring progress.

– Managing schedule, effort and budget.

– Managing risks and issues.

– Managing changes to the scope of the project.

– Obtaining weekly progress reports from the supplier.

– Managing project milestones.

– Managing quality.

– Reviewing the supplier’s work.

– Performing audits of the project.

– Monitoring test results and correction of defects.

– Acceptance testing of the delivered software.

The project manager will maintain daily/weekly contact with the supplier and

will monitor progress, milestones, risks, and issues. The risks associated with the

supplier include the supplier delivering late or delivering poor quality, and all risks

need to be managed.

8.8 Acceptance of Software

Acceptance testing is carried out to ensure that the software developed by the

supplier is fit for purpose. The supplied software may just be a part of the overall

system, and it may need to be integrated with other software. The acceptance testing

involves the following:

– Preparation of acceptance test cases (this is the acceptance criteria).

– Planning and scheduling of acceptance testing.

– Setting up the test environment.

– Execution of test cases (UAT testing) to verify acceptance criteria is satisfied.

– Test reporting.

– Communication of defects to supplier.

– Correction of the defects by supplier.

– Re-testing and Acceptance of software.

128 8 Supplier Selection and Management

http://dx.doi.org/10.1007/978-3-319-57750-0_2

The project manager will communicate the identified defects with the software to

the supplier, and the supplier makes the required corrections and modifications to

the software. Re-testing then takes place, and once all acceptance tests have suc-

cessfully passed, the software is accepted.

8.9 Roll-out and Customer Support

This activity is concerned with the roll-out of the software at the customer site, and

the handover to the support and maintenance team. It involves:

– Deployment of the software at customer site.

– Provision of training to staff.

– Handover to the Support and Maintenance Team.

8.10 Review Questions

1. What are the main activities in supplier selection and management?

2. What factors would lead an organization to seek a supplier rather than

developing a software solution in-house?

3. What are the benefits of outsourcing?

4. Describe how a supplier should be selected.

5. Describe how a supplier should be managed.

6. What is a service level agreement?

7. Describe the purpose of a statement of work?

8. What is an Escrow agreement?

8.11 Summary

Supplier selection and management is concerned with the selection and manage-

ment of a third-party software supplier. Many large projects often involve total or

partial outsourcing of the software development, and it is therefore essential to

select a supplier who is capable of delivering high-quality and reliable software on

time and on budget.

8.8 Acceptance of Software 129

This means that the process for the selection of the supplier needs to be rigorous,

and that the capability of the supplier is clearly understood, as well as knowing any

risks associated with the supplier. The selection is based on objective criteria, and

the evaluation team will rate each supplier against the criteria and recommend their

preferred supplier.

Once the selection is finalized, a legal agreement is drawn up (which usually

includes the terms and condition of the contract as well as a statement of work). The

supplier then commences the defined work and is appropriately managed for the

duration of the contract.

The project manager is responsible for managing the supplier, and this involves

communicating with the supplier on a daily basis and managing issues and risks.

The software is subject to acceptance testing before it is accepted from the supplier.

130 8 Supplier Selection and Management

9Software Quality Assurance

Abstract

This chapter discusses software quality assurance and the importance of process

quality. It is a premise in the quality field that good processes and conformance

to them are essential for the delivery of high-quality product, and this chapter

discusses audits and describes how they are carried out.

Keywords

Auditor � Independence of auditor � SQA team �Audit planning �Audit meeting �

Audit reporting � Audit actions � Tracking actions � Audit escalation � Training

9.1 Introduction

The purpose of software quality assurance is to provide visibility to management on

the processes being followed and the work products being produced in the orga-

nization. It is a systematic enquiry into the way that things are done in the orga-

nization, and involves conducting audits of projects, suppliers and departments. It

provides:

– Visibility into the extent of compliance to the defined processes and standards.

– Visibility into the processes and standards in use in the organization.

– Visibility into the effectiveness of the defined processes.

– Visibility into the fitness for use of the work products produced.

Software quality assurance involves planning and conducting audits; reporting

the results to the affected groups; tracking the assigned audit actions to completion;

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_9

131

and conducting follow-up audits, as appropriate. It is generally conducted by the

SQA group,1 and this group is independent of the groups being audited.

The activities involved include (Table 9.1):

All involved in the audit process need to receive appropriate training. This

includes the participants in the audit who receive appropriate orientation on the

purpose of audits and their role in it. The auditor needs to be trained in interview

techniques, including asking open and closed questions, as well as possessing

effective documentation skills in report writing, in order to record the results of the

audit. The auditor needs to be able to deal with any conflicts that might arise during

an audit.2

The flow of activities in a typical audit process is sketched in Fig. 9.1, and they

are described in more detail in the following sections.

Table 9.1 Auditing activities

Activity Description

Audit planning – Select projects/areas to be audited during period

– Agree audit dates with affected groups

– Agree scope of audit and advise attendees what needs to be brought to the

meeting

– Book room and send invitation to the attendees

– Prepare/update the audit schedule

Audit meeting – Ask attendees as to their specific role (in the project), the activities

performed and determine the extent to which the process is followed

– Employ an audit checklist as an aid

– Review agreed documentation

– Determine if processes are followed and effective

Audit reporting – Revise notes from the audit meeting and review any appropriate additional

documentation

– Prepare audit report and record audit actions (consider getting feedback on

report prior to publication)

– Agree closure dates of the audit actions

– Circulate approved report to attendees/management

Track actions – Track audit actions to closure

– Record the audit action status

– Escalation (where appropriate) to resolve open actions

Audit closure – Once all actions are resolved, the audit is closed

1This group may vary from a team of auditors in a large organization to a part-time role in a small

organization.
2The auditor may face a situation where one or more individuals become defensive and will need

to reassure individuals that the objective of the audit is not to find fault with individuals, rather the

objective is to determine whether the process is fit for purpose and to promote continuous

improvement, as well as identifying any quality risks with the project. The culture of an

organization has an influence on how open individuals will be during an audit (e.g. individuals

may be defensive if there is a blame culture in the organization rather than an emphasis on fixing

the process).

132 9 Software Quality Assurance

Audit schedule

Plan Audit

1. Select areas to audit

2. Advise attendees

3. Arrange logistics

4. Update audit schedule

1. Updated audit schedule

2. Attendees invited

3. Logistics dealt with

Conduct audit

1. Interview attendees /

roles

2. Review documentation

3. Determine extent to

which process is followed

4. Identify issues to be

addressed

Draft audit report / issues

Audit Reporting

1. Circulate audit report

2. Update Audit Schedule

Updated Audit Actions

Y

Approve audit

report ?

No

Track Actions

1. Monitor closure of

actions

2. Update Audit Actions

Approved audit report / issues

Audit Actions

complete?

Y
N

Escalate

1. Escalate to management

2. Details of Noncompliance

Escalate

action(s)

Close Audit

Y

N

Fig. 9.1 Sample audit process

9.1 Introduction 133

9.2 Audit Planning

Organizations vary in size and complexity and so the planning required for audits will

vary. In a large organization, the quality manager or auditor is responsible for plan-

ning and scheduling the audits. In a small organization, the quality assurance activities

may be performed by a part-time auditor who plans and schedules the audits.

A representative sample of projects/areas in the organization will be audited, and

the number and types of audits conducted will depend on the current maturity of the

organization. Mature organizations with a strong process culture will require fewer

audits, whereas immature organizations may need a larger number of audits to

ensure that the process is ingrained in the way that work is done.

It is essential that the auditor is independent of the area being audited. That is,

the auditor should not be reporting to the manager whose area is being audited, as

otherwise important findings in the audit could be omitted from the report. The

independence of the auditor helps to ensure that the findings are fair and objective,

as the auditor may state the facts as they are without fear of negative consequences.

The auditor needs to be familiar with the process and in a position to judge the

extent to which the standards have been followed. The audit report needs to be

accurate, as incorrect statements made will damage the credibility of the auditor.

The planning and scheduling activities will include:

– Project/area to be audited.

– Planned date of audit.

– Scope of audit.

– Checklist to be used.

– Documentation required.

– Auditor.

– Attendees.

The auditor may receive orientation on the project/area to be audited prior to the

meeting and may review relevant documentation in advance. A checklist may be

employed by the auditor as an aid to structure the interview.

The role requires good verbal and documentation skills, as well as the ability to

deal with any conflicts that may arise during the audit. The auditor needs to be fair

and objective, and audit criteria will be employed to establish the facts in a

non-judgmental manner.

Software quality assurance requires that an independent group (e.g. the SQA

group) be set up. This may be a part-time group of one person in a small organization

or a team of auditors in a large organization. The auditors must be appropriately

trained to carry out their roles. The individuals being audited need to receive ori-

entation on the purpose of audits and their role in the audit.

134 9 Software Quality Assurance

9.3 Audit Meeting

An audit consists of interviews and document reviews and involves a structured

interview of the various team members. The goal is to give the auditor an under-

standing of the work done, the processes employed and the extent to which they are

followed and effective. A checklist tailored to the particular type of audit being

conducted is often employed. This will assist in determining relevant facts to judge

whether the process is followed and effective. Table 9.2 gives a small selection of

questions that may be part of an audit checklist.

The audit is an enquiry into the particular role of each attendee, the activities

performed, the output produced, the standards followed and so on. The auditor

needs to be familiar with the process and in a position to judge the extent to which it

has been followed.

Table 9.2 Sample auditing checklist

Item to check

Project management

Has the project planning process been consistently followed?

Is the project plan complete and approved?

Are the risk log, issue log and lessons learned log set up?

Is the Microsoft Schedule (or equivalent) available and up to date?

Are the weekly status reports available and do they follow the template?

Configuration management

Are the appropriate people involved in defining, assessing the impact and approving the change

request?

Are the affected deliverables (with the CR) identified and updated?

Are all documents and source code in the repository?

Are checking in/checking out procedures followed?

Supplier management

Is the statement of work complete?

Have the PM skills of the supplier been considered in the evaluation?

Does the formal agreement include strict change control?

Requirements, design and testing

Are the user requirements complete and approved?

Are the system requirements complete and approved?

Is the design complete and approved?

Are the requirements traceable to the design and test deliverables?

Are the unit test scripts available with the results recorded?

Are the system test cases available with results recorded?

Are UAT test cases available with results recorded?

Deployment and support

Are the user manuals complete and available?

Are all open problems documented?

9.3 Audit Meeting 135

The auditor opens the meeting with an explanation of the purpose and scope of

the audit and usually starts with one or more open questions to get the participants

to describe their particular role. Each attendee is asked to describe their specific

role, the activities performed, the deliverables produced and the standards followed.

Closed questions are employed to obtain specific information when required.

The auditor will take notes during the meeting, and these are reviewed and

revised after the audit. There may be a need to review additional documentation

after the meeting or to schedule follow-up meetings.

9.4 Audit Reporting

Once the audit meeting and follow-up activities have been completed, the auditor will

need to prepare an audit report to communicate the findings from the audit. A draft

audit report is prepared and circulated to the attendees, and the auditor reviews any

comments received and makes final changes to address any valid feedback.3 The

approved audit report is then circulated to the attendees and management.

The audit report will include audit actions that need to be addressed by groups

and individuals, and the auditor will track these actions to completion. In rare cases,

the auditor may need to escalate the audit actions to management to ensure

resolution.

The audit report generally includes three parts, namely the overview, the detailed

findings and an action plan. This is described in Table 9.3.

9.5 Follow-Up Activity

Once the auditor has circulated the audit report to the affected groups, the focus then

moves to closure of the assigned audit actions. The auditor will follow up with the

affected individuals to monitor closure of the actions by the agreed date, and where

Table 9.3 Sample audit report

Area Description

Overview of

audit

This gives an overview of the audit including the area audited, the date of the

audit, its scope, the auditor and attendees, and the number of audit actions

raised

Audit findings These will vary depending on the type of audit, but it may include findings

from project management, requirements, design, coding, configuration

management, testing and peer reviews, customer support, etc.

Action plan This will include an action plan to address the findings

3It is essential that the audit report is accurate, as otherwise the auditor will lose credibility and

become ineffective. Therefore, it is useful to get feedback from the attendees prior to publication of

the report, in order to validate the findings. However, in some implementations of software quality

assurance, the audit report is issued directly to the attendees without the performance of this step.

136 9 Software Quality Assurance

appropriate, a time extension may be granted. The auditor will update the status of

an audit action to closed once it has been completed correctly. In rare cases, the

auditor may need to escalate the audit action to management for resolution. This

may happen when an assigned action has not been dealt with despite one or more

time extensions. Once all audit actions have been closed, the audit is closed.

9.6 Audit Escalation

In rare cases, the auditor may encounter resistance from one or more individuals in

completing the agreed audit actions. The auditor will remind the individual(s) of the

auditprocessand their responsibilities in theprocess. In rare cases,where the individual

(s) fail to address their assigned action(s) in a reasonable time frame, the auditor will

escalate the non-compliance to management. The escalation may involve:

• Escalation of actions to middle management.

• Escalation to senior management.

Escalation is generally a rare occurrence, especially if good software engineering

practices are embedded in the organization.

9.7 Review of Audit Activities

The results of the audit activities will be reviewed with management on a periodic

basis. Audits provide important information to management on the processes being

used in the organization; the extent to which they are followed; and the extent to

which they are effective.

An independent audit (usually a third party or separate internal audit function) of

SQA activities may be conducted to ensure that the SQA function is effective. Any

non-compliance issues are identified and assigned to the auditor and quality man-

ager for resolution.

9.8 Other Audits

The audit process that we discussed has been focused on process audits conducted

during a project. Other audits that may be conducted include supplier audits, where

the auditor visits the supplier to determine the extent to which they are following

the agreed processes and standards for the outsourced work.

The SQA team is often the point of contact to facilitate customer audits, where

an audit team from the customer visits the organization to determine the extent to

which they are following processes and standards.

9.5 Follow-Up Activity 137

9.9 Review Questions

1. What is the purpose of an audit?

2. What planning is done prior to the audit?

3. Explain why the auditor needs to be independent?

4. Describe the activities in the audit process.

5. What happens at an audit meeting?

6. What happens after an audit meeting?

7. How will the auditor deal with a situation where the audit actions are still

open after the due date?

9.10 Summary

The purpose of software quality assurance is to provide visibility to management on

the processes being followed and the work products being produced in the orga-

nization. It is a systematic enquiry into the way that things are done in the orga-

nization, and it involves conducting audits of projects, suppliers and departments.

It provides visibility into the processes and standards in use, their effectiveness

and the extent of compliance to them. It involves planning and conducting audits;

reporting the results to the affected groups; tracking the assigned audit actions to

completion; and conducting follow-up audits, as appropriate. It is generally con-

ducted by the SQA group, and this group is independent of the groups being audited.

The audit planning is concerned with selecting projects/areas to be audited,

determining who needs to be involved and dealing with the logistics. The audit

meeting is a formal meeting with the audit participants to discuss their specific

responsibilities in the project, the processes followed and so on.

The audit report details the findings from the audit and includes audit actions that

need to be resolved. Once the audit report has been published, the auditor will track

the assigned audit actions to completion, and once all actions have been addressed,

the audit may then be closed.

138 9 Software Quality Assurance

10Software Metrics and Problem-Solving

Abstract

This chapter is concerned with metrics and problem-solving, and this includes a

discussion of the Balanced Scorecard which assists in identifying appropriate

metrics for the organization. The Goal, Question, Metrics (GQM) approach is

discussed, and this allows metrics related to the organization goals to be defined.

A selection of sample metrics for an organization is presented, and

problem-solving tools such as fishbone diagrams, Pareto charts, trend charts

are discussed.

Keywords

Measurement � Goal, Question, Metric � Balanced scorecard � Problem-solving �
Data gathering � Fishbone diagram � Histogram � Pareto chart � Trend graph �
Scatter graph � Statistical process control

10.1 Introduction

Measurement is an essential part of mathematics and the physical sciences, and it

has been successfully applied to the software engineering field. The purpose of a

measurement programme is to establish and use quantitative measurements to

manage the software development processes and software quality in an organiza-

tion; to assist the organization in understanding its current software engineering

capability; and to provide an objective indication that software process improve-

ments have been successful.

Measurements provide visibility into the various functional areas in the orga-

nization, and the quantitative data allows trends to be seen over time. The analysis

of the measurements allows action plans to be produced for continuous

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_10

139

improvement. Measurements may be employed to track the quality, timeliness,

cost, schedule and effort of software projects. The terms “metric” and “measure-

ment” are used interchangeably in this book. The formal definition of measurement

given by Fenton [1] is:

Measurement is the process by which numbers or symbols are assigned to attributes or

entities in the real world in such a way as to describe them according to clearly defined

rules.

Measurement plays a key role in the physical sciences and everyday life, for

example, calculating the distance to the planets and stars; determining the mass of

objects; computing the speed of mechanical vehicles; calculating the electric current

flowing through a wire; computing the rate of inflation; estimating the unemployment

rate. Measurement provides a more precise understanding of the entity under study.

Often several measurements are used to provide a detailed understanding of the

entity under study. For example, the cockpit of an airplane contains measurements

of altitude, speed, temperature, fuel, latitude, longitude, and various devices

essential to modern navigation and flight, and clearly an airline offering to fly

passengers using just the altitude measurement would not be taken seriously.

Metrics play a key role in problem-solving, and various problem-solving tech-

niques will be discussed later in this chapter. Measurement data is essential in

quantifying how serious a particular problem is, and they provide a precise quan-

titative measure of the extent of the problem. For example, a telecommunications

outage is measured as the elapsed time between the downtime and the subsequent

uptime, and the longer the outage lasts the more serious it is. It is essential to

minimize outages and their impact, and measurement data is invaluable in proving

an objective account of the extent of the problem. Measurement data may be used to

perform analysis on the root cause of a particular problem, e.g. of a telecommu-

nications outage, and to verify that the actions taken to correct the problem have

been effective.

Metrics provide an internal view of the quality of the software product, but care is

needed before deducing the behaviour that a product will exhibit externally from the

various internal measurements of the product. A leading measure is a software

measure that usually precedes the attribute that is under examination; for example, the

arrival rate of software problems is a leading indicator of the maintenance effort.

Leading measures provide an indication of the likely behaviour of the product in the

field and need to be examined closely. A lagging indicator is a software measure that

is likely to follow the attribute being studied; for example, escaped customer defects

are an indicator of the quality and reliability of the software. It is important to learn

from lagging indicators even if the data can have little impact on the current project.

140 10 Software Metrics and Problem-Solving

10.2 The Goal, Question, Metric Paradigm

Many software metrics programmes have failed because they had poorly defined, or

non-existent goals and objectives, with the metrics defined unrelated to the

achievement of the business goals. The Goal, Question, Metric (GQM) paradigm

was developed by Victor Basili and others of the University of Maryland [2]. It is a

rigorous goal-oriented approach to measurement, in which goals, questions and

measurements are closely integrated.

The business goals are first defined, and then questions that relate to the

achievement of the goal are identified. For each question, a metric that gives an

objective answer to the particular question is defined. The statement of the business

goal is precise, and it is related to individuals or groups. The GQM approach is a

simple one, and managers and engineers proceed according to the following three

stages:

• Set goals specific to needs in terms of purpose, perspective and environment.

• Refine the goals into quantifiable questions.

• Deduce the metrics and data to be collected (and the means for collecting them)

to answer the questions.

GQM has been applied to several domains, and so we consider an example from

the software field. Consider the goal of determining the effectiveness of a new

programming language L. There are several valid questions that may be asked at

this stage, including who are the programmers that use L?; and what is their level of

experience?; What is the quality of software code produced with language L?; and

What is the productivity of language L? This leads naturally to the quality and

productivity metrics as detailed in Fig. 10.1.

Fig. 10.1 GQM example

10.2 The Goal, Question, Metric Paradigm 141

Goal

The focus on improvements should be closely related to the business goals, and the

first step is to identify the key goals that are essential for business success (or to the

success of an improvement programme). The business goals are related to the

strategic direction of the organization and the problems that it is currently facing.

There is little sense in directing improvement activities to areas that do not require

improvement, or for which there is no business need to improve, or from which

there will be a minimal return to the organization.

Question

These are the key questions that determine the extent to which the goal is being

satisfied, and for each business goal the set of pertinent questions need to be

identified. The information that is required to determine the current status of the

goal is determined, and this naturally leads to the set of questions that must be

answered to provide this information. Each question is analysed to determine the

best approach to obtain an objective answer, and to define the metrics that are

needed, and the data that needs to be gathered to answer the question objectively.

Metrics

These are measurements that give a quantitative answer to the particular question,

and they are closely related to the achievement of the goals. They provide an

objective picture of the extent to which the goal is currently satisfied. Measurement

improves the understanding of a specific process or product, and the GQM

approach leads to measurements that are closely related to the goal, rather than

measurement for the sake of measurement.

GQM helps to ensure that the defined measurements will be relevant and used by

the organizations to understand its current performance, and to improve and satisfy

the business goals more effectively. Successful improvement is impossible without

clear improvement goals that are related to the business goals. GQM is a rigorous

approach to software measurement, and the measures may be from various view-

points, e.g. manager viewpoint, project team viewpoint. The idea is always first to

identify the goals, and once the goals have been decided, common-sense questions

and measurement are employed.

There are two key approaches to software process improvement, i.e. top-down or

bottom-up improvement. Top-down approaches are based on process improvement

models and appraisals, e.g. models such as the CMMI, ISO 15504 and ISO 9000,

whereas GQM is a bottom-up approach to software process improvement and is

focused on improvements related to certain specific goals. The top-down and

bottom-up approaches are often combined in practice.

142 10 Software Metrics and Problem-Solving

10.3 The Balanced Scorecard

The Balanced Scorecard (BSC) (Fig. 10.2) is a management tool that is used to

clarify and translate the organization vision and strategy into action. It was

developed by Kaplan and Norton [3] and has been applied to many organizations.

The European Software Institute (ESI) developed a tailored version of the BSC for

the IT sector (the IT Balanced Scorecard).

The BSC assists in selecting appropriate measurements to indicate the success or

failure of the organization’s strategy. There are four perspectives in the scorecard:

customer, financial, internal process, and learning and growth. Each perspective

includes objectives to be accomplished for the strategy to succeed, measures to

indicate the extent to which the objectives are being met, targets to be achieved in

the perspective and initiatives to achieve the targets. The Balanced Scorecard

includes financial and non-financial measures.

The BSC is useful in selecting the key processes that the organization should

focus its process improvement efforts on in order to achieve its strategy (Fig. 10.3).

Traditional improvement is based on improving quality; reducing costs; and

Fig. 10.2 The Balanced

Scorecard

Fig. 10.3 Balanced

Scorecard and implementing

strategy

10.3 The Balanced Scorecard 143

improving productivity, whereas the Balanced Scorecard takes the future needs of

the organization into account and identifies the processes that the organization

needs to excel at in the future to achieve its strategy. This results in focused process

improvement, and the intention is to yield the greatest business benefit from the

improvement programme.

The starting point is for the organization to define its vision and strategy for the

future. This often involves strategy meetings with the senior management to clarify

the vision and to achieve consensus on the strategic direction for the organization

among the senior management team. The vision and strategy are then translated into

objectives for the organization or business unit. The next step is communication,

and the vision and strategy and objectives are communicated to all employees.

These critical objectives must be achieved in order for the strategy to succeed, and

so all employees (with management support) will need to determine their own local

objectives to support the organization strategy. Goals are set and rewards are linked

to performance measures.

The financial and customer objectives are first determined from the strategy, and

the key business processes to be improved are then identified. These are the key

processes that will lead to a breakthrough in performance for customers and share-

holders of the company. It may require new processes with retraining of employees on

the new processes necessary, and the Balanced Scorecard is very effective in driving

organization change. The financial objectives require targets to be set for customer,

internal business process and the learning and growth perspective. The learning and

growth perspective will examine competencies and capabilities of employees and the

level of employee satisfaction. Figure 10.3 describes how the Balanced Scorecard

may be used for implementing the organization vision and strategy.

Table 10.1 presents sample objectives and measures for the four perspectives in

the BSC for an IT service organization.

Table 10.1 BSC objectives and measures for IT service organization

Financial

Cost of provision of services

Cost of hardware/software

Increase revenue

Reduce costs

Timeliness of solution

99.999% network availability

24 � 7 customer support

Customer

Quality service

Reliability of solution

Rapid response time

Accurate information

Timeliness of solution

99.999% network availability

24 � 7 customer support

Internal business process

Requirements definition

Software design

Implementation

Testing

Maintenance

Customer support

Security/proprietary information

Disaster prevention and recovery

Learning and growth

Expertise of staff

Software development capability

Project management

Customer support

Staff development career structure

Objectives for staff

Employee satisfaction

Leadership

144 10 Software Metrics and Problem-Solving

10.4 Metrics for an Organization

The objective of this section is to present a set of metrics to provide visibility into

various areas in the organization and to show how metrics can facilitate improve-

ment. The metrics presented may be applied or tailored to individual organizations,

and the objective is to show how metrics may be employed for effective man-

agement. Many organizations have monthly quality or operation reviews, in which

the presentation of metrics is an important part.

We present sample metrics for the various functional areas in a software

development organization, including human resources, customer satisfaction, sup-

plier quality, internal audit, project management, requirements and development,

testing and process improvement. These metrics are typically presented at a

monthly management review, and performance trends are observed. The main

output from a management review is a series of improvement actions.

10.4.1 Customer Satisfaction Metrics

Figure 10.4 shows the customer survey arrival rate per customer per month, and it

indicates that there is a customer satisfaction process in place in the organization

and that the customers are surveyed and the extent to which they are surveyed. It

does not provide any information as to whether the customers are satisfied, whether

any follow-up activity from the survey is required, or whether the frequency of

surveys is sufficient (or excessive) for the organization.

Figure 10.5 gives the customer satisfaction measurements in several categories

including quality, the ability of the company to meet the committed dates and to

deliver the agreed content, the ease of use of the software, the expertise of the staff

and the value for money. Figure 10.5 is interpreted as follows:

Fig. 10.4 Customer survey arrivals

10.4 Metrics for an Organization 145

8–10 Exceeds expectations,

7 Meets expectations,

5–6 Fair and

0–4 Below expectations.

Another words, a score of 8 for quality indicates that the customers considers the

software to be of high quality, and a score of 9 for value for money indicates that

the customers considers the solution to be excellent value. It is fundamental that the

customer feedback is analysed (with follow-up meetings held with the customer

where appropriate). There may be a need to produce an action plan to deal with

customer issues, to communicate the plan to the customer and to execute the action

plan in a timely manner.

10.4.2 Process Improvement Metrics

The objective of process improvement metrics is to provide visibility into the

process improvement programme in the organization. Figure 10.6 shows the arrival

rate of improvement suggestions from the software community. The chart indicates

Fig. 10.5 Customer satisfaction measurements

Fig. 10.6 Process improvement measurements

146 10 Software Metrics and Problem-Solving

that initially the arrival rate is high and the closure rate is low, which is consistent

with the commencement of a process improvement programme. The closure rate

then improves which indicates that the improvement team is active and acting upon

the improvement suggestions. The closure rate is low during July and August,

which may be explained by the traditional holiday period.

The chart does not indicate the effectiveness of the process improvement sug-

gestions, and the overall impact the particular suggestion has on quality, cycle time

or productivity. There are no measurements of the cost of performing improve-

ments, and this is important for a cost–benefit analysis of the benefits of the

improvements obtained versus the cost of the improvements.

Figure 10.7 provides visibility into the status of the improvement suggestions,

and the number of raised, open and closed suggestions per month. The chart

indicates that gradual progress has been made in the improvement programme with

a gradual increase in the number of suggestions that are closed.

Figure 10.8 provides visibility into the age of the improvement suggestions, and

this is a measure of the productivity of the improvement team and its ability to do

its assigned work.

Fig. 10.7 Status of process improvement suggestions

Fig. 10.8 Age of open process improvement suggestions

10.4 Metrics for an Organization 147

Figure 10.9 gives an indication of the productivity of the improvement pro-

gramme, and it shows how often the team meets to discuss the improvement

suggestions and to act upon them. This chart is slightly naive as it just tracks the

number of improvement meetings that have taken place during the year, and it has

no information on the actual productivity of the meeting. The chart could be

considered with Figs. 10.6, 10.7 and 10.8, to get more accurate information on the

productivity of the team.

There will usually be other charts associated with an improvement programme,

for example, a metric to indicate the status of the CMMI programme is provided in

Fig. 10.26. Similarly, a measure of the current status of an ISO 9000 implemen-

tation could be derived from the number of actions which are required to implement

ISO 9000, the number implemented and the number outstanding.

10.4.3 Human Resources and Training Metrics

These metrics give visibility into the human resources and training areas of a

company. They provide visibility into the current headcount (Fig. 10.10) of the

organization per calendar month and the turnover of staff in the organization

(Fig. 10.11). The human resources department will typically maintain

Fig. 10.9 Process improvement productivity

Fig. 10.10 Employee headcount in current year

148 10 Software Metrics and Problem-Solving

measurements of the number of job openings to be filled per month, the arrival rate

of resumes per month, the average number of interviews to fill one position, the

percentage of employees that have received their annual appraisal, etc.

The key goals of the HR department are defined and the questions and metrics

are associated with the key goals. For example, one of the key goals of the HR

department is to attract and retain the best employees, and this breaks down into the

two obvious subgoals of attracting the best employees and retaining them. The next

chart gives visibility into the turnover of staff during the calendar year. It indicates

the effectiveness of staff retention in the organization.

10.4.4 Project Management Metrics

The goal of project management is to deliver a high-quality product that is fit for

purpose on time and on budget. The project management metrics provide visibility

into the effectiveness of the project manager in delivering the project on time, on

budget and with the right quality.

The timeliness metric provides visibility into the extent to which the project has

been delivered on time (Fig. 10.12), and the number of months over or under

Fig. 10.11 Employee turnover in current year

Fig. 10.12 Schedule timeliness metric

10.4 Metrics for an Organization 149

schedule per project in the organization is shown. The schedule timeliness metric is

a lagging measure, as it indicates that the project has been delivered within schedule

or not after the event.

The on-time delivery of a project requires that the various milestones in the

project be carefully tracked and corrective actions are taken to address slippage in

milestones during the project.

The second metric provides visibility into the effort estimation accuracy of a

project (Fig. 10.13). Effort estimation is a key component in calculating the cost of

a project and in preparing the schedule, and its accuracy is essential. We mentioned

the Standish research data on projects in an earlier chapter, and this report showed

that accurate effort and schedule estimation is difficult.

The effort estimation chart is similar to the schedule estimation chart, except that

the schedule metric is referring to time as recorded in elapsed calendar months,

whereas the effort estimation chart refers to the planned number of person months

required to carry out the work, and the actual number of person months that it

actually took. Projects need an effective estimation methodology to enable them to

be successful in project management, and the project manager will use metrics to

determine how accurate the estimation has actually been.

The next metric is related to the commitments that are made to the customer with

respect to the content of a particular release, and it indicates the effectiveness of the

projects in delivering the agreed requirements to the customer (Fig. 10.14). This

chart could be adapted to include enhancements or fixes promised to a customer for

a particular release of a software product.

Fig. 10.13 Effort timeliness metric

150 10 Software Metrics and Problem-Solving

10.4.5 Development Quality Metrics

These metrics give visibility into the development and testing of the software

product, and we presented a sample of testing metrics in Chap. 7. Figure 10.15

gives an indication of the quality of the software produced and the quality of the

definition of the initial requirements. It shows the total number of defects and the

total number of change requests raised during the project, as well as details on their

severities. The presence of a large number of change requests suggests that the

initial definition of the requirement was incomplete and that there is considerable

room for improvement in the requirements elicitation process.

Figure 10.16 gives the status of open issues with the project, which gives an

indication of the current quality of the project, and the effort required to achieve the

desired quality in the software. This chart is not used in isolation, as the project

manager will need to know the arrival rate of problems to determine the stability of

the software product.

The organization may decide to release a software product with open problems,

provided that the associated risks with the known problems can be managed. It is

Fig. 10.14 Requirements delivered

Fig. 10.15 Total number of issues in project

10.4 Metrics for an Organization 151

http://dx.doi.org/10.1007/978-3-319-57750-0_7

important to perform a risk assessment to ensure that these may be managed, and

the known problems (and workarounds) should be documented in the release notes

for the product.

The project manager will need to know the age of the open problems to

determine the effectiveness of the project team in resolving problems in a timely

manner. Figure 10.17 presents the age of the open defects, and it highlights the fact

that there is one major problem that has been open for over one year. The project

manager needs to prevent this situation from arising, as critical and major problems

need to be swiftly resolved.

The problem arrival rate enables the project manager to judge the stability of the

software, and this (with other metrics) helps in judging whether the software is fit

for purpose and ready for release to potential customers. Figure 10.18 presents a

sample problem arrival chart, and the chart indicates positive trends with the arrival

rate of problems falling to very low levels.

The project manager will need to do analysis to determine whether there are

other causes that could contribute to the fall in the arrival rate; for example, it may

be the case that testing was completed in September, which would mean, in effect,

that no testing has been performed since then, with an inevitable fall in the number

of problems reported. The important point is not to jump to a conclusion based on a

particular chart, as the circumstances behind the chart must be fully known and

taken into account in order to draw valid conclusions.

Fig. 10.16 Open issues in project

Fig. 10.17 Age of open defects in project

152 10 Software Metrics and Problem-Solving

Figure 10.19 measures the effectiveness of the project in identifying defects in

the development phase and the effectiveness of the test groups in detecting defects

that are present in the software. The development portion typically includes defects

reported on inspection forms and in unit testing.

The various types of testing (e.g. unit, system, performance, usability, accep-

tance) were discussed in Chap. 7. Figure 10.19 indicates that the project had a

phase containment effectiveness of approximately 54%. That is, the developers

identified 54% of the defects, the system-testing phase identified approximately

23% of the defects, acceptance testing identified approximately 14% of the defects

and the customer identified approximately 9% of the defects. The objective is that

the number of defects reported at acceptance test and after the product is officially

released to customer should be minimal.

10.4.6 Quality Audit Metrics

These metrics provide visibility into the audit programme and include metrics for

the number of audits planned and performed (Fig. 10.20), and the status of the audit

actions (Fig. 10.21). Figure 10.20 presents visibility into the number of audits

carried out in the organization and the number of audits that remain to be done.

Fig. 10.18 Problem arrivals per month

Fig. 10.19 Phase containment effectiveness

10.4 Metrics for an Organization 153

http://dx.doi.org/10.1007/978-3-319-57750-0_7

It shows that the organization has an audit programme and gives information on

the number of audits performed during a particular time period. The chart does not

give a breakdown into the type of audits performed, e.g. supplier audits, project

audits and audits of particular departments in the organization, but it could be

adapted to provide this information.

Figure 10.21 chart gives an indication of the status of the various audits per-

formed. An auditor performs an audit and the results are documented in an audit

report, and the associated audit actions need to be completed by the affected

individuals and groups. Figure 10.21 presents the status of the audit actions

assigned to the affected groups.

Figure 10.22 gives visibility into the type of actions raised during the audit of a

particular area. They could potentially include entry and exit criteria, planning

issues, configuration management issues, issues with compliance to the lifecycle or

templates, traceability to the requirements, issues with the review of various

deliverables, issues with testing or process improvement suggestions.

Fig. 10.20 Annual audit schedule

Fig. 10.21 Status of audit actions

154 10 Software Metrics and Problem-Solving

10.4.7 Customer Care Metrics

The goals of the customer care group in an organization are to respond efficiently and

effectively to customer problems, to ensure that their customers receive the highest

standards of service from the company and to ensure that its products function reliably

at the customer’s site. The organization will need to know its efficiency in resolving

customer queries, the number of customer queries, the availability of its software

systems at the customer site and the age of open queries. A customer query may result

in a defect report in the case of a problem with the software.

Figure 10.23 presents the arrival and closure rate of customer queries (it could

be developed further to include a severity attribute for the query). Quantitative goals

are generally set for the resolution of queries (especially in the case of service level

agreements). A chart for the age of open queries (similar to Fig. 10.17) is generally

maintained. The organization will need to know the status of the backlog of open

queries per month, and a simple trend graph would provide this. Figure 10.23

shows that the arrival rate of queries: in the early part of the year exceeds the

closure rate of queries per month. This indicates an increasing backlog that needs to

be addressed.

Fig. 10.22 Audit action types

Fig. 10.23 Customer queries (arrivals/closures)

10.4 Metrics for an Organization 155

The customer care department responds to any outages and ensures that the

outage time is kept to a minimum. Many companies set ambitious goals for network

availability: for example, the “five nines initiative” has the objective of developing

systems which are available 99.999% of the time, i.e. approximately five minutes of

downtime per year. The calculation of availability is from the formula:

Availability ¼
MTBF

MTBFþMTTR

where the mean time between failures (MTBF) is the average length of time

between outages.

MTBF ¼
Sample interval time

#Outages

The formula for MTBF above is for a single system only, and the formula is

adjusted when there are multiple systems.

MTBF ¼
Sample interval time

#Outages
�#Systems

The mean time to repair (MTTR) is the average length of time that it takes to

correct the outage, i.e. the average duration of the outages that have occurred, and it

is calculated from the following formula:

MTTR ¼
Total outage time

#Outages

Figure 10.24 presents outage information on the customers impacted by the

outage during the particular month, and the extent of the impact on the customer.

An effective customer care department will ensure that a post-mortem of an

outage is performed to ensure that lessons are learned to prevent a reoccurrence.

This causal analysis details the root causes of the outage, and corrective actions are

Fig. 10.24 Outage time per customer

156 10 Software Metrics and Problem-Solving

implemented to prevent a reoccurrence. Metrics to record the amount of system

availability and outage time per month will typically be maintained by the customer

care group in the form of a trend graph.

Figure 10.25 provides visibility on the availability of the system at the customer

sites, and many organizations are designing systems to be available 99.999% of the

time. System availability and software reliability are discussed in more detail in

Chap. 11.

10.4.8 Miscellaneous Metrics

Metrics may be applied to many other areas in the organization. This section

includes metrics on the CMMI maturity of an organization (where an organization

is implementing the CMMI), configuration management and the cost of poor

quality. Figure 10.26 gives visibility into the time to create a software release from

the configuration management system.

The internal CMMI maturity of the organization is given by Fig. 10.27, and this

chart is an indication of its readiness for a formal CMMI assessment. A numeric

score of 1–10 is used to rate each process area, and a score of 7 or above indicates

that the process area is satisfied.

Crosby argued that the most meaningful measurement of quality is the cost of

poor quality [4] and that the emphasis on the improvement activities in the

Fig. 10.25 Availability of system per month

Fig. 10.26 Configuration management

10.4 Metrics for an Organization 157

http://dx.doi.org/10.1007/978-3-319-57750-0_11

organization should therefore be to reduce the cost of poor quality (COPQ). The

cost of quality includes the cost of external and internal failure, the cost of pro-

viding an infrastructure to prevent the occurrence of problems and the cost of the

infrastructure to verify the correctness of the product.

The cost of quality was divided into four subcategories (Table 10.2) by

Feigenbaum in the 1950s and evolved further by James Harrington of IBM.

The cost of quality graph (Fig. 10.28) will initially show high external and

internal costs and low prevention costs, and the total quality costs will be high.

However, as an effective quality system is put in place and becomes fully opera-

tional, there will be a noticeable decrease in the external and internal cost of quality

and a gradual increase in the cost of prevention and appraisal.

The total cost of quality will substantially decrease, as the cost of provision of

the quality system is substantially below the cost of internal and external failure.

The COPQ curve will indicate where the organization is in relation to the cost of

poor quality, and the organization will need to execute its improvement plan to put

an effective quality management system in place to minimize the cost of poor

quality.

Fig. 10.27 CMMI maturity in current year

Table 10.2 Cost of quality categories

Type of cost Description

Cost external This includes the cost of external failure and includes engineering repair,

warranties and a customer support function

Cost internal This includes the internal failure cost and includes the cost of reworking and

retesting of any defects found internally

Cost

prevention

This includes the cost of maintaining a quality system to prevent the occurrence

of problems and includes the cost of software quality assurance and the cost of

training.

Cost

appraisal

This includes the cost of verifying the conformance of a product to the

requirements and includes the cost of provision of software inspections and

testing processes

158 10 Software Metrics and Problem-Solving

10.5 Implementing a Metrics Programme

The metrics discussed in this chapter may be adapted and tailored to meet the needs

of organizations. The metrics are only as good as the underlying data, and good data

gathering is essential. The following are typical steps in the implementation of a

metrics programme (Table 10.3):

The business goals are the starting point in the implementation of a metrics

programme, as there is no sense in measurement for the sake of measurement, and

so metrics must be closely related to the business goals. The next step is to identify

the relevant questions to determine the extent to which the business goal is being

satisfied, and to define metrics that provide an objective answer to the questions.

The organization defines its business goals, and each department develops

specific goals to meet the organization’s goals. Measurement will indicate the

extent to which specific goals are being achieved, and good data gathering and

recording are essential. First, the organization will need to determine which data

needs to be gathered and to determine methods by which the data may be recorded.

The information that is needed to answer the questions related to the goals will

determine the precise data to be recorded. A small organization may decide to

record the data manually, but often automated or semi-automated tools will be

employed. It is essential that the data collection and extraction is efficient, as

otherwise the metrics programme is likely to fail.

Fig. 10.28 Cost of poor quality (COPQ)

Table 10.3 Implementing

metrics
Implementing metrics in organization

Define the business goals

Determine the pertinent questions

Define the metrics

Identify tools to (semi-) automate metrics

Determine data that needs to be gathered

Identify and provide needed resources

Gather data and prepare metrics

Communicate the metrics and review monthly

Provide training

10.5 Implementing a Metrics Programme 159

The roles and responsibilities of staff with respect to the implementation and

day-to-day operation of the metrics programme need to be defined. Training is

needed to enable staff to perform their roles effectively. Finally, a regular man-

agement review is needed, where the metrics and trends are presented, and actions

identified and carried out to ensure that the business goals are achieved.

10.5.1 Data Gathering for Metrics

Metrics are only as good as the underlying data, and so data gathering is a key

activity in a metrics programme. The data to be recorded will be closely related to

the questions, and the data is used to give an objective answer to the questions. The

business goals are usually expressed quantitatively for extra precision, and

Table 10.4 presents an example of how the questions related to a particular goal are

identified.

Table 10.5 is designed to determine the effectiveness of the software develop-

ment process and to enable the above questions to be answered. It includes a

column for inspection data that records the number of defects recorded at the

various inspections. The defects include the phase where the defect originated; for

example, a defect identified in the coding phase may have originated in the

requirements or design phase. This data is typically maintained in a spreadsheet,

e.g. Excel (or a dedicated tool), and it needs to be kept up to date. It enables the

phase containment effectiveness (PCE) to be calculated for the various phases.

Table 10.4 Goals and questions

Goal Reduce escaped defects from each lifecycle phases by 10%

Questions How many defects are identified within each lifecycle phase?

How many defects are identified after each lifecycle phase is exited?

What percentage of defects escaped from each lifecycle phase?

Table 10.5 Phase containment effectiveness

Phase of origin

Phase Inspect

defects

Reqs Design Code Accept

test

In-phase

defects

Other

defects

%

PCE

Reqs 4 1 1 4 6 40

Design 3 3 4 42

Code 20 20 15 57

Unit test 2 2 10

System

test

2 2 5

Accept

test

160 10 Software Metrics and Problem-Solving

We will distinguish between a defect that is detected in-phase and a defect that is

detected out-of-phase. An in-phase defect is a problem that is detected in the phase

in which it is created (e.g. usually by a software inspection). An out-of-phase defect

is detected in a later phase (e.g. a problem with the requirements may be discovered

in the design phase, which is a later phase from the phrase in which it was created).

The effectiveness of the requirements phase in Table 10.5 is judged by its

success in identifying defects as early as possible, as the cost of correction of a

requirements defect increases the later in the cycle that it is identified. The

requirements PCE is calculated to be 40%, i.e. the total number of defects identified

in phase divided by the total number of defects identified. There were four defects

identified at the inspection of the requirements, and six defects were identified

outside of the requirements phase: one in the design phase, one in the coding phase,

two in the unit testing phase and two at the system-testing phase, i.e. 4/10 = 40%.

Similarly, the code PCE is calculated to be 57%.

The overall PCE for the project is calculated to be the total number of defects

detected in phase in the project divided by the total number of defects, i.e.

27/52 = 52%. Table 10.4 is a summary of the collected data and its construction

consists of the following:

• Maintain inspection data of requirements, design and code inspections.

• Identify defects in each phase and determine their phase of origin.

• Record the number of defects in each phase per phase of origin.

The staff who perform inspections need to record the problems identified,

whether it is a defect, and its phase of origin. Staff will need to be appropriately

trained to do this consistently.

The above is just one example of data gathering, and in practice, the organization

will need to collect various data to enable it to give an objective answer to the

extent that the particular goal is being satisfied.

10.6 Problem-Solving Techniques

Problem-solving is a key part of quality improvement, and a quality circle

(or problem-solving team) is a group of employees who do similar work and

volunteer to come together on company time to identify and analyse work-related

problems. Quality circles were first proposed by Ishikawa in Japan in the 1960s.

Various tools that assist problem-solving include process mapping, trend charts,

bar charts, scatter diagrams, fishbone diagrams, histograms, control charts and

Pareto charts [5]. These provide visibility into the problem and help to quantify the

extent of the problem. The main features of a problem-solving team include:

• Group of employees who do similar work.

• Voluntarily meet regularly on company time.

10.5 Implementing a Metrics Programme 161

• Supervisor as leader.

• Identify and analyse work-related problems.

• Recommend solutions to management.

• Implement solution where possible.

The facilitator of the quality circle coordinates the activities, ensures that the

team leaders and team members receive sufficient training and obtains specialist

help where required. The quality circle facilitator has the following responsibilities:

• Focal point of quality circle activities.

• Train circle leaders/members.

• Coordinate activities of all the circle groups.

• Assist in intercircle investigations.

• Obtain specialist help when required.

The circle leaders receive training in problem-solving techniques and are

responsible for training the team members. The leader needs to keep the meeting

focused and requires skills in team building. The steps in problem-solving include:

• Select the problem.

• State and restate the problem.

• Collect the facts.

• Brainstorm.

• Choose course of action.

• Present to management.

• Measurement of success.

The benefits of a successful problem-solving culture in the organization include:

• Savings of time and money.

• Increased productivity.

• Reduced defects.

• Fire prevention culture.

Various problem-solving tools are discussed in the following sections.

10.6.1 Fishbone Diagram

This well-known problem-solving tool consists of a cause-and-effect diagram that is

in the shape of the backbone of a fish. The objective is to identify the various causes

of some particular problem, and then, these causes are broken down into a number

of subcauses. The various causes and subcauses are analysed to determine the root

cause of the particular problem, and actions to address the root cause are then

162 10 Software Metrics and Problem-Solving

defined to prevent a reoccurrence of the manifested effect. There are various cat-

egories of causes, and these may include people, methods and tools, and training.

The great advantage of the fishbone diagram is that it offers a crisp mechanism to

summarize the collective knowledge that a team has about a particular problem, as

it focuses on the causes of the problem, and facilitates the detailed exploration of

the causes.

The construction of a fishbone diagram involves a clear statement of the par-

ticular effect, and the effect is placed at the right-hand side of the diagram. The

major categories of cause are drawn on the backbone of the fishbone diagram;

brainstorming is used to identify causes; and these are then placed in the appropriate

category. For each cause identified, the various subcauses may be identified by

asking the question “Why does this happen?” This leads to a more detailed

understanding of the causes and subcauses of a particular problem.

Example 10.1 An organization wishes to determine the causes of a high number of

customer reported defects. There are various categories that may be employed such

as people, training, methods, tools and environment. In practice, the fishbone

diagram in Fig. 10.29 would be more detailed than that presented, as subcauses

would also be identified by a detailed examination of the identified causes. The root

cause(s) are determined from detailed analysis.

This example suggests that the organization has significant work to do in several

areas and that an improvement programme is required. The improvements needed

include the implementation of a software development process and a software test

process; the provision of training to enable staff to do their jobs more effectively;

and the implementation of better management practices to motivate staff and to

provide a supportive environment for software development.

The causes identified may be symptoms rather than actual root causes: for

example, high staff turnover may be the result of poor morale and a “blame cul-

ture”, rather than a cause in itself of poor-quality software. The fishbone diagram

Fig. 10.29 Fishbone cause-and-effect diagram

10.6 Problem-Solving Techniques 163

gives a better understanding of the possible causes of the high number of customer

defects. A small subset of these causes is then identified as the root cause(s) of the

problem following further discussion and analysis.

The root causes are then addressed by appropriate corrective actions (e.g. an

appropriate software development process and test process are defined and pro-

viding training to all development staff on the new processes). The management

attitude and organization culture will need to be corrected to enable a supportive

software development environment to be put in place.

10.6.2 Histograms

A histogram is a way of representing data in bar chart format, and it shows the

relative frequency of various data values or ranges of data values. It is typically

employed when there are a large number of data values, and it gives a very crisp

picture of the spread of the data values and the centring and variance from the

mean.

The histogram has an associated shape; for example, it may be a normal dis-

tribution, a bimodal or multi-modal distribution, or be positively or negatively

skewed. The variation and centring refer to the spread of data and the relation of the

centre of the histogram to the customer requirements. The spread of the data is

important as it indicates whether the process is too variable, or whether it is per-

forming within the requirements. The histogram is termed process centred if its

centre coincides with the customer requirements; otherwise, the process is too high

or too low. A histogram enables predictions of future performance to be made,

assuming that the future will resemble the past.

The construction of a histogram first requires that a frequency table be con-

structed, and this requires that the range of data values be determined. The data is

divided into a number of data buckets, where a bucket is a particular range of data

values, and the relative frequency of each bucket is displayed in bar format. The

number of class intervals or buckets is determined, and the class intervals are

defined. The class intervals are mutually disjoint and span the range of the data

values. Each data value belongs to exactly one class interval and the frequency of

each class interval is determined.

The histogram is a well-known statistical tool and its construction is made more

concrete with the following example.

Example 10.2 Anorganizationwishes to characterize the behaviour of the process for

the resolution of customer queries in order to achieve its customer satisfaction goal.

Goal

Resolve all customer queries within 24 h.

Question

How effective is the current customer query resolution process?

What action is required (if any) to achieve this goal?

164 10 Software Metrics and Problem-Solving

The data class size chosen for the histogram below is six hours, and the data

class sizes are of the same in standard histograms (they may be of unequal size for

non-standard histograms). The sample mean is 19 h for this example. The his-

togram shown (Fig. 10.30) is based on query resolution data from 36 samples. The

organization goal of customer resolution of all queries within 24 h is not met, and

the goal is satisfied in (25/36 = 70% for this particular sample).

Further analysis is needed to determine the reasons why 30% of the goals are

outside the target 24-h time period. It may prove to be impossible to meet the goal

for all queries, and the organization may need to refine the goal to state that instead

all critical and major queries will be resolved within 24 h.

10.6.3 Pareto Chart

The objective of a Pareto chart is to identify and focus on the resolution of problems

that have the greatest impact (as often 20% of the causes are responsible for 80% of

the problems). The problems are classified into various categories, and the fre-

quency of each category of problem is determined. The Pareto chart is displayed in

a descending sequence of frequency, with the most significant cause presented first,

and the least significant cause presented last.

The Pareto chart is a key problem-solving tool, and a properly constructed chart

will enable the organization to resolve the key causes of problems and to verify

their resolution. The effectiveness of the improvements may be judged at a later

stage from the analysis of new problems and the creation of a new Pareto chart. The

results should show tangible improvements, with less problems arising in the cat-

egory that was the major source of problems.

The construction of a Pareto chart requires the organization to decide on the

problem to be investigated; to identify the causes of the problem via brainstorming;

to analyse the historical or real time data; to compute the frequency of each cause;

and finally to display the frequency in descending order for each cause category.

Fig. 10.30 Histogram

10.6 Problem-Solving Techniques 165

Example 10.3 An organization wishes to understand the various causes of outages

and to minimize their occurrence.

The Pareto chart (Fig. 10.31) below includes data from an analysis of outages,

where each outage is classified into a particular cause. The six causal categories

identified are hardware, software, operator error, power failure, an act of nature and

unknown. The three main causes of outages are hardware, software and operator

error, and analysis is needed to identify appropriate actions to address these. The

hardware category may indicate that there are problems with the reliability of the

system hardware and that existing hardware systems may need improvement or

replacement. There may be a need to address availability and reliability concerns

with more robust hardware solutions.

The software category may be due to the release of poor-quality software, or to

usability issues in the software, and this requires further investigation. Finally,

operator issues may be due to lack of knowledge or inadequate training of the

operators. An improvement plan needs to be prepared and implemented, and its

effectiveness will be judged by a reduction in outages and reductions of problems in

the targeted category.

10.6.4 Trend Graphs

A trend graph monitors the performance of a variable over time, and it allows trends

in performance to be identified, as well as allowing predictions of future trends to be

made (assuming that the future resembles the past). Its construction involves

deciding on the variable to measure and to gather the data points to plot the data.

Example 10.4 An organization plans to deploy an enhanced estimation process and

wishes to determine whether estimation is actually improving with the new process.

The estimation accuracy determines the extent to which the actual effort differs

from the estimated effort. A reading of 25% indicates that the project effort was

Fig. 10.31 Pareto chart outages

166 10 Software Metrics and Problem-Solving

25% more than estimated, whereas a reading of −10% indicates that the actual effort

was 10% less than estimated.

The trend chart (Fig. 10.32) indicates that initially that estimation accuracy is

very poor, but then, there is a gradual improvement coinciding with the imple-

mentation of the new estimation process.

It is important to analyse the performance trends in the chart. For example, the

estimation accuracy for August (17% in the chart) needs to be investigated to

determine the reasons why it occurred. It could potentially indicate that a project is

using the old estimation process or that a new project manager received no training

on the new process). A trend graph is useful for noting positive or negative trends in

performance, with negative trends analysed and actions identified to correct

performance.

10.6.5 Scatter Graphs

The scatter diagram is used to determine whether there is a relationship or corre-

lation between two variables, and where there is to measure the relationship

between them. The results may be a positive correlation, negative correlation, or no

correlation. Correlation has a precise statistical definition, and it provides a precise

mathematical understanding of the extent to which the two variables are related or

unrelated.

The scatter graph provides a graphical way to determine the extent that two

variables are related, and it is often used to determine whether there is a connection

between an identified cause and the effect. The construction of a scatter diagram

requires the collection of paired samples of data, and the drawing of one variable as

the x-axis, and the other as the y-axis. The data is then plotted and interpreted.

Example 10.5 An organization wishes to determine whether there is a relationship

between the inspection rate and the error density of defects identified.

Fig. 10.32 Trend chart estimation accuracy

10.6 Problem-Solving Techniques 167

The scatter graph (Fig. 10.33) provides evidence for the hypothesis that there is

a relationship between the lines of code inspected and the error density recorded

(per KLOC). The graph suggests that the error density of defects identified during

inspections is low if the speed of inspection is too fast, and the error density is high

if the speed of inspection is below 300 lines of code per hour. A line can be drawn

through the data that indicates a linear relationship.

10.6.6 Metrics and Statistical Process Control

The principles of statistical process control (SPC) are important in the monitoring

and control of a process. It involves developing a control chart, which is a tool that

may be used to control the process, with upper and lower limits for process per-

formance specified. The process is under control if it is performing within the lower

and upper control limits.

Figure 10.34 presents an example on breakthrough in performance of an esti-

mation process, and is adapted from [6]. The initial upper and lower control limits

Fig. 10.33 Scatter graph amount inspected rate/error density

Fig. 10.34 Estimation accuracy and control charts

168 10 Software Metrics and Problem-Solving

for estimation accuracy are set at ±40%, and the performance of the process is

within the defined upper and control limits.

However, the organization will wish to improve its estimation accuracy and this

leads to the organization’s revising the upper and lower control limits to ±25%.

The organization will need to analyse the slippage data to determine the reasons for

the wide variance in the estimation, and part of the solution will be the use of

enhanced estimation methods in the organization. In this chart, the organization

succeeds in performing within the revised control limit of ±25%, and the limit is

revised again to ±15%.

This requires further analysis to determine the causes for slippage and further

improvement actions are needed to ensure that the organization performs within the

±15% control limit.

10.7 Review Questions

1. Describe the Goal, Question, Metric model.

2. Explain how the Balanced Scorecard may be used in the implementation

of organization strategy.

3. Describe various problem-solving techniques.

4. What is a fishbone diagram?

5. What is a histogram and describe its applications?

6. What is a scatter graph?

7. What is a Pareto chart? Describe its applications.

8. Discuss how a metrics programme may be implemented.

9. What is statistical process control?

10.8 Summary

Measurement is an essential part of mathematics and the physical sciences, and it

has been successfully applied to the software engineering field. The purpose of a

software measurement programme is to establish and use quantitative measure-

ments to manage the software development processes in the organization, and to

assist the organization in understanding its current software capability and to

confirm that improvements have been successful.

10.6 Problem-Solving Techniques 169

This chapter includes a collection of sample metrics to give visibility into the

various functional areas in the organization, including customer satisfaction met-

rics, process improvement metrics, project management metrics, HR metrics,

development and quality metrics, and customer care metrics.

The Balanced Scorecard assists the organization in selecting appropriate mea-

surements to indicate the success or failure of the organization’s strategy. Each of

the four scorecard perspectives includes objectives that need to be achieved for the

strategy to succeed, and measurements indicate the extent to which the objectives

are being met.

The Goal, Question, Metric paradigm is a rigorous, goal-oriented approach to

measurement in which goals, questions, and measurements are closely integrated.

The business goals are first defined, and then, the questions that relate to the

achievement of the goal are identified, and for each question, a metric that gives an

objective answer to the particular question is defined.

Metrics play a key role in problem-solving, and various problem-solving tech-

niques were discussed. These include histograms, Pareto charts, trend charts and

scatter graphs. The measurement data is used to assist the analysis, to determine the

root cause of a particular problem and to verify that the actions taken to correct

the problem have been effective. Trends may be seen over time, and the analysis of

the trends allows action plans to be prepared for continuous improvement.

Metrics may be employed to track the quality, timeliness, cost, schedule and

effort of software projects. They provide an internal view of the quality of the

software product, but care is needed before deducing the behaviour that a product

will exhibit externally.

References

1. N. Fenton, Software metrics: A Rigorous Approach (Thompson Computer Press, 1995)

2. Victor Basili and H. Rombach, The TAME project. Towards improvement-oriented software

environments. IEEE Trans. Softw. Eng. 14(6) (1988)

3. R.S. Kaplan, D.P. Norton, The Balanced Scorecard. Translating Strategy into Action (Harvard

Business School Press, 1996)

4. P. Crosby, Quality is Free. The Art of Making Quality Certain (McGraw Hill, 1979)

5. B. Michael, R. Diane, The Memory Jogger. A Pocket Guide of Tools for Continuous

Improvement and Effective Planning (Goal I QPC, Methuen, MA, 1994)

6. G. Keeni et al., The evolution of quality processes at Tate Consulting Services. IEEE Softw.

17(4) (2000)

170 10 Software Metrics and Problem-Solving

11Software Reliability and Dependability

Abstract

This chapter discusses software reliability and dependability and covers topics

such as software reliability and software reliability models, the Cleanroom

methodology, system availability, safety and security critical systems and

dependability engineering.

Key Words

Software reliability � Software reliability models � System availability �
Dependability � Computer security � Safety critical systems � Cleanroom

11.1 Introduction

This chapter gives an introduction to the important area of software reliability and

dependability, and it introduces important topics in software engineering such as

software reliability and availability; software reliability models; the Cleanroom

methodology; dependability and its various dimensions; security engineering; and

safety critical systems.

Software reliability is the probability that the program works without failure for a

period of time, and it is usually expressed as themean time to failure. It is different from

hardware reliability, in that hardware is characterized by components that physically

wear out, whereas software is intangible and software failures are due to design and

implementation errors. In another words, software is either correct or incorrect when it

is designed and developed, and it does not physically deteriorate over time.

Harlan Mills and others at IBM developed the Cleanroom approach to software

development, and the process is described in [1]. It involves the application of

statistical techniques to calculate a software reliability measure based on the

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_11

171

expected usage of the software.1 This involves executing tests chosen from the

population of all possible uses of the software in accordance with the probability of

its expected use. Statistical usage testing is more effective at finding defects that

lead to failure than coverage testing.

Models are simplifications of the reality, and a good model allows accurate

predictions of future behaviour to be made. A model is judged effective if there is

good empirical evidence to support it, and a good software reliability model will

have good theoretical foundations and realistic assumptions. The extent to which

the software reliability model can be trusted depends on the accuracy of its pre-

dictions, and empirical data will need to be gathered to judge its accuracy.

It is essential that software that is widely used is dependable, which means that

the software is available whenever required and that it operates safely and reliably

without any adverse side effects. Today, billions of computers are connected to the

Internet, and this has led to a growth in attacks on computers. It is essential that

computer security is carefully considered and that developers are aware of

the threats facing a system and techniques to eliminate them. The developers need

to be able to develop secure dependable systems that are able to deal with and

recover from external attacks.

11.2 Software Reliability

The design and development of high-quality software has become increasingly

important for society. The hardware field has been very successful in developing

sound reliability models, which allow useful predictions of how long a hardware

component (or product) will function reliably. This has led to a growing interest in

the software field in the development of a sound software reliability model. An

effective software reliability model would provide a sound mechanism to predict the

reliability of the software prior to its deployment at the customer site, as well as

confidence that the software is fit for purpose and safe to use.

Definition 11.1 (Software Reliability)

Software reliability is the probability that the program works without failure for

a specified length of time, and it is a statement of the future behaviour of the

software. It is generally expressed in terms of the mean time to failure (MTTF) or

the mean time between failure (MTBF).

Statistical sampling techniques are often employed to predict the reliability of

hardware, as it is not feasible to test all items in a production environment. The

quality of the sample is then used to make inferences on the quality of the entire

1The expected usage of the software (or operational profile) is a quantitative characterization

(usually based on probability) of how the system will be used.

172 11 Software Reliability and Dependability

population, and this approach is effective in manufacturing environments where

variations in the manufacturing process often lead to defects in the physical

products.

There are similarities and differences between hardware and software reliability.

A hardware failure generally arises due to a component wearing out due to its age,

and often, a replacement component is required. Many hardware components are

expected to last for a certain period of time, and the variation in the failure rate of a

hardware component is often due to variations in the manufacturing process or to

the operating environment of the component. Good hardware reliability predictors

have been developed, and each hardware component has an expected mean time to

failure. The reliability of a product may be determined from the reliability of the

individual components of the hardware.

Software is an intellectual undertaking involving a team of designers and pro-

grammers. It does not physically wear out as such, and software failures manifest

themselves from particular user inputs. Each copy of the software code is identical,

and the software code is either correct or incorrect. That is, software failures are due

to design and implementation errors, rather than due to the software physically

wearing out over time. A number of software reliability models (e.g. the software

reliability growth models) have been developed, but the software engineering

community has not yet developed a sound software reliability predictor model that

can be trusted.

The software population to be sampled consists of all possible execution paths of

the software, and since this is potentially infinite, it is generally not possible to

perform exhaustive testing. The way in which the software is used (i.e. the inputs

entered by the users) will impact upon its perceived reliability. Let If represent the

fault set of inputs (i.e. if 2 If if and only if the input of if by the user leads to failure).

The randomness of the time to software failure is due to the unpredictability in the

selection of an input if 2 If. It may be that the elements in If are inputs that are rarely

used, and therefore, the software will be perceived as being reliable.

Statistical usage testing may be used to make predictions on the future perfor-

mance and reliability of the software. This requires an understanding of the

expected usage profile of the system, as well as the population of all possible usages

of the software. The sampling is done in accordance with the expected usage

profile, and a software reliability measure is calculated.

11.2.1 Software Reliability and Defects

The release of an unreliable software product may result in damage to property or

injury (including loss of life) to a third party. Consequently, companies need to be

confident that their software products are fit for purpose prior to their release. The

project team needs to conduct extensive inspections and testing of the software, as

well as considering all associated risks prior to its release.

Objective product quality criteria may be set (e.g. 100% of tests performed and

passed) to be satisfied prior to release. This provides a degree of confidence that the

11.2 Software Reliability 173

software has achieved the desired quality and is safe and fit for to use at the

customer site. However, these results are historical in the sense that they are a

statement of past quality and present quality. The question is whether the past

behaviour and performance provides a sound indication of future behaviour.

Software reliability models are an attempt to predict the future reliability of the

software and to assist in deciding on whether the software is ready for release.

A defect does not always result in a failure, as it may occur on a rarely used

execution path. Studies indicate that many observed failures arise from a small

proportion of the existing defects.

Adam’s 1984 case study [2] indicates that over 33% of the defects led to an

observed failure with mean time to failure greater than 5000 years, whereas less

than 2% of defects led to an observed failure with a mean time to failure less than

50 years. This suggests that a small proportion of defects often lead to almost all of

the observed failures (Table 11.1).

The analysis shows that 61.6% of all fixes (Group 1 and 2) were for failures that

will be observed less than once in 1580 years of expected use and that these

constitute only 2.9% of the failures observed by typical users. On the other hand,

groups 7 and 8 constitute 53.7% of the failures observed by typical users and only

1.4% of fixes.

This case study showed that coverage testing is not cost-effective in increasing

MTTF. Usage testing, in contrast, would allocate 53.7% of the test effort to fixes

that will occur 53.7% of the time for a typical user. Harlan Mills has argued [3] that

the data in the table shows that usage testing is 21 times more effective than

coverage testing

There is a need to be careful with reliability growth models, as there is no

tangible growth in reliability unless the corrected defects are likely to manifest

themselves as a failure.2 Many existing software reliability growth models assume

that all remaining defects in the software have an equal probability of failure and

that the correction of a defect leads to an increase in software reliability. These

assumptions are questionable.

The defect count and defect density may be poor predictors of operational

reliability, and an emphasis on removing a large number of defects from the

software may not be sufficient to achieve high reliability.

The correction of defects in the software leads to a newer version of the soft-

ware, and reliability models assume reliability growth; i.e., the new version is more

reliable than the older version as several identified defects have been corrected.

However, in some sectors (such as the safety critical field), the view is that the new

version of a program is a new entity and that no inferences may be drawn until

further investigation has been done. There are a number of ways to interpret the

relationship between the new version of the software and the older version as shown

by Table 11.2.

2We are assuming that the defect has been corrected perfectly with no new defects introduced by

the changes made.

174 11 Software Reliability and Dependability

The safety critical industry (e.g. the nuclear power industry) takes the conser-

vative viewpoint that any change to a program creates a new program. The new

program is therefore required to demonstrate its reliability, and so extensive testing

needs to be performed before any conclusions may be made.

11.2.2 Cleanroom Methodology

Harlan Mills and others at IBM developed the Cleanroom methodology as a way to

develop high-quality software [3]. Cleanroom helps to ensure that the software is

released only when it has achieved the desired quality level, and the probability of

zero defects is very high.

The way in which the software is used will impact on its perceived quality and

reliability. Failures will manifest themselves on certain input sequences only, and as

users often employ different input sequences, each user may have a different per-

ception of the reliability of the software. The knowledge of how the software will

be used allows the software testing to focus on verifying the correctness of common

everyday tasks carried out by users.

This means that it is important to determine the operational profile of users to

enable effective software testing to be performed. The operational profile may be

difficult to determine, and it could change over time, as users may change their

behaviour as their needs evolve over time. The determination of the operational

profile involves identifying the common operations to be performed and the

probability of each operation being performed.

Cleanroom employs statistical usage testing rather than coverage testing, and it

applies statistical quality control to certify the mean time to failure of the software.

This software reliability measure is calculated by statistical techniques based on the

Table 11.1 Adam’s 1984 study of software failures of IBM products

Rare Frequent

1 2 3 4 5 6 7 8

MTTF (years) 5000 1580 500 158 50 15.8 5 1.58

Avg % fixes 33.4 28.2 18.7 10.6 5.2 2.5 1.0 0.4

Prob failure 0.008 0.021 0.044 0.079 0.123 0.187 0.237 0.300

Table 11.2 New and old version of software

Similarities and differences between new/old version

∙ The new version of the software is identical to the previous version except that the identified

defects have been corrected

∙ The new version of the software is identical to the previous version, except that the identified

defects have been corrected, but the developers have introduced some new defects

∙ No assumptions can be made about the behaviour of the new version of the software until

further data is obtained

11.2 Software Reliability 175

expected usage of the software, and the statistical usage testing involves executing

tests chosen from the population of all possible uses of the software in accordance

with the probability of expected use.

Coverage testing involves designing tests that cover every path through the

program, and this type of testing is as likely to find a rare execution failure as well

as a frequent execution failure. It is highly desirable to find failures that occur on

frequently used parts of the system.

The advantage of statistical usage testing (that matches the actual execution

profile of the software) is that it has a better chance of finding execution failures on

frequently used parts of the system. This helps to maximize the expected mean time

to failure of the software.

The Cleanroom software development process and calculation of the software

reliability measure are described in [1], and the Cleanroom development process

enables engineers to deliver high-quality software on time and on budget. Some of

the successes and benefits of the use of Cleanroom on projects at IBM are described

in [3] and summarized in Table 11.3.

11.2.3 Software Reliability Models

Models are simplifications of the reality, and a good model allows accurate pre-

dictions of future behaviour to be made. It is important to determine the adequacy of

the model, and this is done by model exploration and determining the extent to

which it explains the actual manifested behaviour, as well as the accuracy of its

predictions.

A model is judged effective if there is good empirical evidence to support it, and

more accurate models are sought to replace inadequate models. Models are often

modified (or replaced) over time, as further facts and observations are identified that

cannot be explained with the current model. A good software reliability model will

have the following characteristics (Table 11.4):

Table 11.3 Cleanroom results in IBM

Project Results

Flight control project (1987) 33 KLOC Completed ahead of schedule

Error-fix effort reduced by factor of five

Commercial product (1988) Deployment failures of 0.1/KLOC

Certification testing failures 3.4/KLOC

Productivity 740 LOC/month

Satellite control (1989) 80 KLOC

(partial Cleanroom)

50% improvement in quality

Certification testing failures of 3.3/KLOC

Productivity 780 LOC/month

80% improvement in productivity

Research project (1990) 12 KLOC Certified to 0.9978 with 989 test cases

176 11 Software Reliability and Dependability

There are several software reliability predictor models employed (Table 11.5)

with varying degrees of success. Some of them just compute defect counts rather

than estimating software reliability in terms of mean time to failure. They may be

categorized into:

• Size and Complexity Metrics

These are used to predict the number of defects that a system will reveal in

operation or testing.

Table 11.4 Characteristics

of good software reliability

model

Characteristics of good software reliability model

Good theoretical foundation

Realistic assumptions

Good empirical support

As simple as possible (Ockham’s Razor)

Trustworthy and accurate

Table 11.5 Software reliability models

Model Description Comments

Jelinski/Moranda

model

The failure rate is a Poisson processa

and is proportional to the current

defect content of program. The

initial defect count is N; the initial

failure rate is Nu; it decreases to

(N − 1)u after the first fault is

detected and eliminated, and so on.

The constant u is termed the

proportionality constant

Assumes defects corrected perfectly

and no new defects are introduced

Assumes each fault contributes the

same amount to failure rate

Littlewood/Verrall

model

Successive execution time between

failures is independent exponentially

distributed random variablesb.

Software failures are the result of the

particular inputs and faults

introduced from the correction of

defects

Does not assume perfect correction

of defects

Seeding and

tagging

This is analogous to estimating the

fish population of a lake (Mills).

A known number of defects is

inserted into a software program and

the proportion of these identified

during testing determined

Another approach (Hyman) is to

regard the defects found by one

tester as tagged and then to

determine the proportion of tagged

defects found by a 2nd independent

tester

Estimate of the total number of

defects in the software but not a not

s/w reliability predictor

Assumes all faults equally likely to

be found and introduced faults

representative of existing

(continued)

11.2 Software Reliability 177

• Operational Usage Profile

These predict failure rates based on the expected operational usage profile of the

system. The number of failures encountered is determined, and the software

reliability is predicted (e.g. Cleanroom and its prediction of the MTTF).

• Quality of the Development Process

These predict failure rates based on the process maturity of the software

development process in the organization (e.g. CMMI maturity).

The extent to which the software reliability model can be trusted depends on the

accuracy of its predictions, and empirical data will need to be gathered to make a

judgment. It may be acceptable to have a little inaccuracy during the early stages of

prediction, provided the predictions of operational reliability are close to the

observations. A model that gives overly optimistic results is termed “optimistic”,

whereas a model that gives overly pessimistic results is termed “pessimistic”.

The assumptions in the reliability model need to be examined to determine

whether they are realistic. Several software reliability models have questionable

assumptions such as:

• All defects are corrected perfectly,

• Defects are independent of one another,

• Failure rate decreases as defects are corrected,

• Each fault contributes the same amount to the failure rate.

11.3 Dependability

Software is ubiquitous and is important to all sections of society, and so it is

essential that widely used software is dependable (or trustworthy). In other words,

the software should be available whenever required, as well as operating properly,

Table 11.5 (continued)

Model Description Comments

Generalized

Poisson model

The number of failures observed in

ith time interval si has a Poisson

distribution with mean

/(N − Mi−1)si
a where N is the initial

number of faults; Mi−1 is the total

number of faults removed up to the

end of the (i − 1)th time interval;

and / is the proportionality constant

Assumes faults removed perfectly

at end of time interval

aThe Poisson process is a widely used counting process (especially in counting the occurrence of

certain events that appear to happen at a certain rate but at random). A Poisson random variable is

of the form P{X = i} = e−kki/i!
bThe exponential distribution is used to model the time between the occurrence of events in an

interval of time. Its probability density function is given by f(x) = ke−kx

178 11 Software Reliability and Dependability

safely and reliably, without any adverse side effects or security concerns. It is

essential that the software used in the safety critical and security critical fields is

dependable, as the consequence of failure (e.g. the failure of a nuclear power plant)

could be massive damage leading to loss of life or endangering the lives of the

public.

Dependability engineering is concerned with techniques to improve the

dependability of systems, and it involves the use of a rigorous design and devel-

opment process to minimize the number of defects in the software. A dependable

system is generally designed for fault tolerance, where the system can deal with

(and recover from) faults that occur during software execution. Such a system needs

to be secure and able to protect itself from accidental or deliberate external attacks.

Table 11.6 lists a number of dimensions to dependability.

Modern software systems are subject to attack by malicious software such as

viruses that may change its behaviour or corrupt data causing the system to become

unreliable. Other malicious attacks include a denial of service attack that negatively

impacts the system’s availability.

The design and development of dependable software needs to include protection

measures to prevent against such external attacks that compromise the availability

and security of the system. Further, a dependable system needs to include recovery

mechanisms to enable normal service to be restored as quickly as possible fol-

lowing an attack.

Dependability engineering is concerned with techniques to improve the

dependability of systems and in designing dependable systems. A dependable

system will generally be developed using an explicitly defined repeatable process,

and it may employ redundancy (spare capacity) and diversity (different types) to

achieve reliability.

There is a trade-off between dependability and performance of the system, as

dependable systems will need to carry out extra checks to monitor themselves and

to check for erroneous states, and to recover from faults before failure occurs. This

inevitably leads to increased costs in the design and development of dependable

systems.

Software availability is the percentage of the time that the software system is

running and is a measure of the uptime/downtime of the software during a particular

time period. The downtime refers to a period of time when the software is

unavailable for use (including planned and unplanned outages), and many com-

panies aim to develop software that is available for using 99.999% of the time in the

year (i.e. an annual downtime of less than 5 min per annum). This goal is known as

five nines, and it is a common goal in the telecommunications sector. We discussed

availability metrics in Chap. 10.

Safety-critical systems are systems where it is essential that the system is safe for

the public and that people or the environment are not harmed in the event of system

failure. These include aircraft control systems and process control systems for

chemical and nuclear power plants. The failure of a safety critical system could in

some situations lead to loss of life or serious economic damage.

11.3 Dependability 179

http://dx.doi.org/10.1007/978-3-319-57750-0_10

Formal methods are discussed in Chap. 12, and they provide a precise way of

specifying the requirements and demonstrating (using mathematics) that key

properties are satisfied in the formal specification. Further, they may be used to

show that the implemented program satisfies its specification. The use of formal

methods leads to increased confidence in the correctness of safety critical and

security critical systems.

The security of the system refers to its ability to protect itself from accidental or

deliberate external attacks, which are common today since most computers are

networked and connected to the Internet. There are various security threats in any

networked system including threats to the confidentiality and integrity of the system

and its data and threats to the availability of the system.

Therefore, controls are required to enhance security and to ensure that attacks are

unsuccessful. Encryption is one way to reduce system vulnerability, as encrypted

data is unreadable to the attacker. There may be controls that detect and repel

attacks, and these controls are used to monitor the system and to take action to shut

down parts of the system or restrict access in the event of an attack. There may be

controls that limit exposure (e.g. insurance policies and automated backup strate-

gies) that allows recovery from the problems introduced.

It is important to have a reasonable level of security as otherwise all of the other

dimensions of dependability (reliability, availability and safety) are compromised.

Security loopholes may be introduced in the development of the system, and so care

needs to be taken to prevent hackers from exploiting security vulnerabilities.

Risk analysis plays a key role in the specification of security and dependability

requirements, and this involves identifying risks that can result in serious incidents.

This leads to the generation of specific security requirements as part of the system

requirements to ensure that these risks do not materialize, or if they do materialize,

then serious incidents will not materialize.

11.4 Computer Security

The introduction of the Internet in the early 1990s has transformed the world of

computing, and it has led inexorably to more and more computers being connected

to the Internet. This has subsequently led to an explosive growth in attacks on

computers and systems, as hackers and malicious software seek to exploit known

Table 11.6 Dimensions of dependability

Dimension Description

Availability The system is available for use at any time

Reliability The system operates correctly and is trustworthy

Safety The system operates safely and does not injure people or damage the

environment

Security The system is secure and prevents unauthorized intrusions

180 11 Software Reliability and Dependability

http://dx.doi.org/10.1007/978-3-319-57750-0_12

security vulnerabilities. It is therefore essential to develop secure systems that can

deal with and recover from such external attacks.

Hackers will often attempt to steal confidential data and to disrupt the services

being offered by a system. Security engineering is concerned with the development

of systems that can prevent such malicious attacks and recover from them. It has

become an important part of software and system engineering, and software

developers need to be aware of the threats facing a system and develop solutions to

eliminate them.

Hackers may probe parts of the system for weaknesses, and system vulnera-

bilities may lead to attackers gaining unauthorized access to the system. There is a

need to conduct a risk assessment of the security threats facing a system early in the

software development process, and this will lead to several security requirements

for the system.

The system needs to be designed for security, as it is difficult to add security after

it has been implemented. Security loopholes may be introduced in the development

of the system, and so care needs to be taken to prevent these as well as preventing

hackers from exploiting security vulnerabilities. Encryption is one way to reduce

system vulnerability, as encrypted data is unreadable to the attacker. There may be

controls that detect and repel attacks, and these controls are used to monitor the

system and to take action to shut down parts of the system or restrict access in the

event of an attack.

The choice of architecture and how the system is organized are fundamental to

the security of the system, and different types of systems will require different

technical solutions to provide an acceptable level of security to its users. The

following guidelines for designing secure systems are described in [4]:

– Security decisions should be based on the security policy,

– A security critical system should fail securely,

– A secure system should be designed for recoverability,

– A balance is needed between security and usability,

– A single point of failure should be avoided,

– A log of user actions should be maintained,

– Redundancy and diversity should be employed,

– Organization information in system into compartments.

It is important to have a reasonable level of security, as otherwise all of the other

dimensions of dependability (reliability, availability and safety) are compromised.

11.5 System Availability

System availability is the percentage of time that the software system is running

without downtime, and robust systems will generally aim to achieve 5-nine avail-

ability (i.e. 99.999% availability). This is equivalent to approximately 5 min of

11.4 Computer Security 181

downtime (including planned/unplanned outages) per year. The availability of a

system is measured by its performance when a subsystem fails, and its ability to

resume service in a state close to the original state. A fault-tolerant system continues

to operate correctly (possibly at a reduced level) after some part of the system fails,

and it aims to achieve 100% availability.

System availability and software reliability are related with availability mea-

suring the percentage of time that the system is operational and reliability mea-

suring the probability of failure-free operation over a period of time. The

consequence of a system failure may be to freeze or crash the system, and system

availability is measured by how long it takes to recover and restart after a failure.

A system may be unreliable and yet have good availability metrics (fast restart after

failure), or it may be highly reliable with poor availability metrics (taking a long

time to recover after a failure).

Software that satisfies strict availability constraints is usually reliable. The

downtime generally includes the time needed for activities such as rebooting a

machine, upgrading to a new version of software and planned and unplanned

outages. It is theoretically possible for software to be highly unreliable but yet to be

highly available. Consider, for example, software that fails consistently for 0.5 s

every day. Then, the total failure time is 183 s or approximately 3 min, and such a

system would satisfy 5-nine availability. However, this scenario is highly unlikely

for almost all systems, and the satisfaction of strict availability constraints usually

means that the software is also highly reliable.

It is also theoretically possible that software that is highly reliable may satisfy

poor availability metrics. Consider the upgrade version of software at a customer

site to a new version, where the upgrade path is complex or poorly designed (e.g.

taking 2 days). Then, the availability measure is very poor even though the product

may be highly reliable. Further, the time that system unavailability occurs is rele-

vant, as a system that is unavailable at 03:00 in the morning may have minimal

impacts on users. Consequently, care is required before drawing conclusions

between software reliability and software availability metrics.

11.6 Safety Critical Systems

A safety critical system is a system whose failure could result in significant eco-

nomic damage or loss of life. There are many examples of safety critical systems

including aircraft flight control systems and missile systems. It is therefore essential

to employ rigorous processes in their design and development of safety critical

systems, and software testing alone is usually insufficient in verifying the correct-

ness of a safety critical system.

The safety critical industry takes the view that any change to safety critical

software creates a new program. The new program is therefore required to

demonstrate that it is reliable and safe to the public, and so extensive testing needs

182 11 Software Reliability and Dependability

to be performed. Other techniques such as formal verification and model checking

may be employed to provide an extra level of assurance in the correctness of the

safety critical system.

Safety critical systems need to be dependable and available for use whenever

required. Safety critical software must operate correctly and reliably without any

adverse side effects. The consequence of failure (e.g. the failure of a weapons

system) could be massive damage, leading to loss of life or endangering the lives of

the public.

The development of a safety critical system needs to be rigorous and subjects to

strict quality assurance to ensure that the system is safe to use and that the public

will not be in danger. This involves rigorous design and development processes to

minimize the number of defects in the software, as well as comprehensive testing to

verify its correctness.

Formal methods consist of a set of mathematical techniques to rigorously state

the requirements of the proposed system. They may be employed to derive a

program from its mathematical specification, and they may be used to provide a

rigorous proof that the implemented program satisfies its specification. Formal

methods provide the facility to prove that certain properties are true of the speci-

fication, and this is valuable, especially in safety critical and security critical

applications. The advantages of a mathematical specification are that it is not

subject to the ambiguities inherent in a natural language description of a system,

and they may be subjected to a rigorous analysis to demonstrate the presence or

absence of key properties. Formal methods are discussed in Chap. 12.

Safety critical systems are generally designed for fault tolerance, where the

system can deal with (and recover from) faults that occur during execution. Fault

tolerance is achieved by anticipating exceptional events and in designing the system

to handle them. A fault-tolerant system is designed to fail safely, and programs are

designed to continue working (possibly at a reduced level of performance) rather

than crashing after the occurrence of an error or exception. Many fault-tolerant

systems mirror all operations, where each operation is performed on two or more

duplicate systems, and so if one fails, then the other system can take over.

11.7 Review Questions

1. Explain the difference between software reliability and system availability.

2. What is software dependability?

3. Explain the significance of Adam’s 1984 study of software defects at

IBM.

4. Describe the Cleanroom methodology.

11.6 Safety Critical Systems 183

http://dx.doi.org/10.1007/978-3-319-57750-0_12

5. Describe the characteristics of a good software reliability model.

6. Explain the relevance of security engineering.

7. What is a safety critical system?

11.8 Summary

This chapter gave an introduction to some important topics in software engineering

including software reliability and the Cleanroom methodology; dependability;

availability; security; and safety critical systems.

Software reliability is the probability that the program works without failure for

a period of time, and it is usually expressed as the mean time to failure. Cleanroom

involves the application of statistical techniques to calculate software reliability,

and it is based on the expected usage of the software.

It is essential that software used in the safety and security critical fields is

dependable, with the software available when required, as well as operating safely

and reliably without any adverse side effects. Many of these systems are fault

tolerant and are designed to deal with (and recover) from faults that occur during

execution.

Such a system needs to be secure and able to protect itself from external attacks

and needs to include recovery mechanisms to enable normal service to be restored

as quickly as possible. In another words, it is essential that if the system fails, then it

fails safely.

Today, billions of computers are connected to the Internet, and this has led to a

growth in attacks on computers. It is essential that developers are aware of the

threats facing a system and are familiar with techniques to eliminate them.

References

1. G. O’Regan, Mathematical Approaches to Software Quality (Springer Verlag, London, 2006)

2. E. Adams, Optimizing preventive service of software products. IBM Res. J. 28(1), 2–14 (1984)

3. R.H. Cobb, H.D. Mills, Engineering software under statistical quality control. IEEE Software

7(6) (1990)

4. I. Sommerville, Software Engineering, 9th edn. (Pearson, 2011)

184 11 Software Reliability and Dependability

12Formal Methods

Abstract

This chapter discusses formal methods, which consist of a set of mathematic

techniques that provide an extra level of confidence in the correctness of the

software. They consist of a formal specification language and employ a

collection of tools to support the syntax checking of the specification, as well as

the proof of properties of the specification. They allow questions to be asked

about what the system does independently of the implementation, and they may

be employed to formally state the requirements of the proposed system and to

derive a program from its mathematical specification. They may be employed to

provide a rigorous proof that the implemented program satisfies its specification,

and they have been applied mainly to the safety-critical field.

Keywords

Formal specification � Vienna development method � Z specification language �
B-method �Model-oriented approach � Axiomatic approach � Process calculus �
Refinement � Finite state machines � Usability of formal methods

12.1 Introduction

The term “formal methods” refers to various mathematical techniques used for the

formal specification and development of software. They consist of a formal spec-

ification language and employ a collection of tools to support the syntax checking

of the specification, as well as the proof of properties of the specification. They

allow questions to be asked about what the system does independently of the

implementation.

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_12

185

The use of mathematical notation avoids speculation about the meaning of

phrases in an imprecisely worded natural language description of a system. Natural

language is inherently ambiguous, whereas mathematics employs a precise rigorous

notation. Spivey [1] defines formal specification as follows:

Definition 12.1(Formal Specification) Formal specification is the use of mathe-

matical notation to describe in a precise way the properties that an information

system must have, without unduly constraining the way in which these properties

are achieved.

The formal specification thus becomes the key reference point for the different

parties involved in the construction of the system. It may be used as the reference

point for the requirements; program implementation; testing and program docu-

mentation. It promotes a common understanding for all those concerned with the

system. The term “formal methods” is used to describe a formal specification

language and a method for the design and implementation of a computer system.

Formal methods may be employed at a number of levels:

– Formal specification only (program developed informally);

– Formal specification, refinement and verification (some proofs);

– Formal specification, refinement and verification (with extensive theorem

proving).

The specification is written in a mathematical language, and the implementation

may be derived from the specification via stepwise refinement.1 The refinement step

makes the specification more concrete and closer to the actual implementation.

There is an associated proof obligation to demonstrate that the refinement is valid

and that the concrete state preserves the properties of the abstract state. Thus,

assuming that the original specification is correct and the proofs of correctness of

each refinement step are valid, then there is a very high degree of confidence in the

correctness of the implemented software.

Stepwise refinement is illustrated as follows: the initial specification S is the

initial model M0; it is then refined into the more concrete model M1, and M1 is then

refined into M2, and so on until the eventual implementation Mn = E is produced.

S ¼ M0YM1YM2YM3Y. . .YMn ¼ E

Requirements are the foundation of the system to be built, and irrespective of the

best design and development practices, the product will be incorrect if the

requirements are incorrect. The objective of requirements validation is to ensure

1It is questionable whether stepwise refinement is cost-effective in mainstream software

engineering, as it involves rewriting a specification ad nauseum. It is time-consuming to proceed

in refinement steps with significant time also required to prove that the refinement step is valid. It is

more relevant to the safety-critical field. Others in the formal methods field may disagree with this

position.

186 12 Formal Methods

that the requirements reflect what is actually required by the customer (in order to

build the right system). Formal methods may be employed to model the require-

ments, and the model exploration yields further desirable or undesirable properties.

Formal methods provide the facility to prove that certain properties are true of

the specification, and this is valuable, especially in safety-critical and

security-critical applications. The properties are a logical consequence of the

mathematical requirements, and the requirements may be amended where appro-

priate. Thus, formal methods may be employed in a sense to debug the require-

ments during requirements validation.

The use of formal methods generally leads to more robust software and to

increased confidence in its correctness. Formal methods may be employed at dif-

ferent levels (e.g. it may just be used for specification with the program developed

informally). The challenges involved in the deployment of formal methods in an

organization include the education of staff in formal specification, as the use of

these mathematical techniques may be a culture shock to many staff.

Formal methods have been applied to a diverse range of applications, including

the safety and security-critical fields to develop dependable software. The appli-

cations include the railway sector, microprocessor verification, the specification of

standards, and the specification and verification of programs. Parnas and others

have criticized formal methods on the following grounds (Table 12.1).

However, formal methods are potentially quite useful and reasonably easy to

use. The use of a formal method such as Z or VDM forces the software engineer to

be precise and helps to avoid ambiguities present in natural language. Clearly, a

formal specification should be subject to peer review to provide confidence in its

correctness. New formalisms need to be intuitive to be usable by practitioners, and

an advantage of classical mathematics is that it is familiar to students.

12.2 Why Should We Use Formal Methods?

There is a strong motivation to use best practice in software engineering in order to

produce software adhering to high-quality standards. Quality problems with soft-

ware may cause minor irritations or major damage to a customer’s business

including loss of life. Formal methods are a leading-edge technology that may be of

benefit to companies in reducing the occurrence of defects in software products.

Brown [2] argues that for the safety-critical field that:

Comment 12.1 (Missile Safety)Missile systems must be presumed dangerous until

shown to be safe, and that the absence of evidence for the existence of dangerous

errors does not amount to evidence for the absence of danger.

This suggests that companies in the safety-critical field will need to demonstrate

that every reasonable practice was taken to prevent the occurrence of defects. One

such practice is the use of formal methods, and its exclusion may need to be

12.1 Introduction 187

justified in some domains. It is quite possible that a software company may be sued

for software which injures a third party, and this suggests that companies will need

a rigorous quality assurance system to prevent the occurrence of defects.

There is some evidence to suggest that the use of formal methods provides

savings in the cost of the project. For example, a 9% cost saving is attributed to the

use of formal methods during the CICS project; the T800 project attributes a

12-month reduction in testing time to the use of formal methods. These are dis-

cussed in more detail in chapter one of [3].

The use of formal methods is mandatory in certain circumstances. The Ministry

of Defence (MOD) in the UK issued two safety-critical standards2 in the early

1990s related to the use of formal methods in the software development lifecycle.

Table 12.1 Criticisms of formal methods

No. Criticism

1. Often the formal specification is as difficult to read as the programa

2. Many formal specifications are wrongb

3. Formal methods are strong on syntax but provide little assistance in deciding on what

technical information should be recorded using the syntaxc

4. Formal specifications provide a model of the proposed system. However, a precise

unambiguous mathematical statement of the requirements is what is neededd

5. Stepwise refinement is unrealistic.e It is like, for example, deriving a bridge from the

description of a river and the expected traffic on the bridge. There is always a need for

the creative step in design

6. Much unnecessary mathematical formalisms have been developed rather than using the

available classical mathematicsf

aOf course, others might reply by saying that some of Parnas’s tables are not exactly intuitive and

that the notation he employs in some of his tables is quite unfriendly. The usability of all of the

mathematical approaches needs to be enhanced if they are to be taken seriously by industrialists
bObviously, the formal specification must be analysed using mathematical reasoning and tools to

provide confidence in its correctness. The validation of a formal specification can be carried out

using mathematical proof of key properties of the specification; software inspections; or

specification animation
cApproaches such as VDM include a method for software development as well as the specification

language
dModels are extremely valuable as they allow simplification of the reality. A mathematical study of

the model demonstrates whether it is a suitable representation of the system. Models allow

properties of the proposed requirements to be studied prior to implementation
eStepwise refinement involves rewriting a specification with each refinement step producing a

more concrete specification (that includes code and formal specification) until eventually the

detailed code is produced. It is difficult and time-consuming, but tool support may make

refinement easier
fApproaches such as VDM or Z are useful in that they add greater rigour to the software

development process. They are reasonably easy to learn, and there have been some good results

obtained by their use. Classical mathematics is familiar to students, and therefore, it is desirable

that new formalisms are introduced only where absolutely necessary

2The UK Defence Standards 0055 and 0056 were later revised to be less prescriptive on the use of

formal methods.

188 12 Formal Methods

The first is Defence Standard 00-55, “The Procurement of safety-critical software in

defense equipment” [4] which makes it mandatory to employ formal methods in the

development of safety-critical software in the UK. The standard mandates the use of

formal proof that the most crucial programs correctly implement their specifications.

The other is Def. Stan 00-56 “Hazard analysis and safety classification of the

computer and programmable electronic system elements of defense equipment” [5].

The objective of this standard is to provide guidance to identify which systems or

parts of systems being developed are safety-critical and thereby require the use of

formal methods. This proposed system is subject to an initial hazard analysis to

determine whether there are safety-critical parts.

The reaction to these defence standards 00-55 and 00-56 was quite hostile

initially, as most suppliers were unlikely to meet the technical and organization

requirements of the standard. This is described in [6].

12.3 Applications of Formal Methods

Formal methods have been employed to verify the correctness of software in

several domains such as the safety and security-critical fields. This includes

applications to the nuclear power industry, the aerospace industry, the security

technology area and the railroad domain. These sectors are subject to stringent

regulatory controls to ensure that safety and security are properly addressed.

Several organizations have piloted formal methods in their organizations (with

varying degrees of success). IBM developed the VDM specification language at its

laboratory in Vienna, and it piloted the Z formal specification language on the CICS

(Customer Information Control System) project at its plant in Hursley, England (with

a 9% cost saving).

The mathematical techniques developed by Parnas (i.e. his requirements model

and tabular expressions) have been employed to specify the requirements of the A-7

aircraft as part of a research project for the US Navy.3 Tabular expressions were

also employed for the software inspection of the automated shutdown software of

the Darlington Nuclear power plant in Canada.4 These were two successful uses of

mathematical techniques in software engineering.

There are examples of the use of formal methods in the railway domain, and

examples dealing with the modelling and verification of a railroad gate controller

and railway signalling are described in [3]. Clearly, it is essential to verify

safety-critical properties such as “when the train goes through the level crossing

then the gate is closed”.

3However, the resulting software was never actually deployed on the A-7 aircraft.
4This was an impressive use of mathematical techniques and it has been acknowledged that formal

methods must play an important role in future developments at Darlington. However, given the

time and cost involved in the software inspection of the shutdown software some managers have

less enthusiasm in shifting from hardware to software controllers [7].

12.2 Why Should We Use Formal Methods? 189

12.4 Tools for Formal Methods

Formal methods have been criticized for the limited availability of tools to support

the software engineer in writing the formal specification and in conducting proof.

Many of the early tools were criticized as not being of industrial strength. However,

in recent years, more advanced tools have become available to support the software

engineer’s work in formal specification and formal proof, and this is likely to

continue in the coming years.

The tools include syntax checkers that determine whether the specification is

syntactically correct; specialized editors which ensure that the written specification

is syntactically correct; tools to support refinement; automated code generators that

generate a high-level language corresponding to the specification; theorem provers

to demonstrate the correctness of refinement steps, and to identify and resolve proof

obligations, as well as proving the presence or absence of key properties; and

specification animation tools where the execution of the specification can be

simulated.

The B-Toolkit from B-Core is an integrated set of tools that supports the B-

Method. It provides functionality for syntax and type checking, specification ani-

mation, proof obligation generator, an auto-prover, a proof assistor and code gen-

eration. This, in theory, allows the complete formal development from the initial

specification to the final implementation, with every proof obligation justified,

leading to a provably correct program.

The IFAD Toolbox5 is a support tool for the VDM-SL specification language,

and it provides support for syntax and type checking, an interpreter and debugger to

execute and debug the specification, and a code generator to convert from VDM-SL

to C++. The Overture Integrated Development Environment (IDE) is an

open-source tool for formal modelling and analysis of VDM-SL specifications.

12.5 Approaches to Formal Methods

There are two key approaches to formal methods, namely the model-oriented

approach of VDM or Z, and the algebraic or axiomatic approach of the process

calculi such as the calculus communicating systems (CCS) or communicating

sequential processes (CSP).

12.5.1 Model-Oriented Approach

The model-oriented approach to specification is based on mathematical models,

where a model is a simplification or abstraction of the real world that contains only

5The IFAD Toolbox has been renamed to VDM Tools as IFAD sold the VDM Tools to CSK in

Japan.

190 12 Formal Methods

the essential details. For example, the model of an aircraft will not include the

colour of the aircraft, and the objective would be to model the aerodynamics of the

aircraft. There are many models employed in the physical world, such as meteo-

rological models that allow weather forecasts to be given.

The importance of models is that they serve to explain the behaviour of a

particular entity and may also be used to predict future behaviour. Models may vary

in their ability to explain aspects of the entity under study. One model may be good

at explaining some aspects of the behaviour, whereas another model might be good

at explaining other aspects. The adequacy of a model is a key concept in modelling,

and it is determined by the effectiveness of the model in representing the underlying

behaviour and in its ability to predict future behaviour. Model exploration consists

of asking questions and determining the extent to which the model is able to give an

effective answer to the particular question. A good model is chosen as a repre-

sentation of the real world and is referred to whenever there are questions in relation

to the aspect of the real world.

It is fundamental to explore the model to determine its adequacy, and to

determine the extent to which it explains the underlying physical behaviour, and

allows accurate predictions of future behaviour to be made. There may be more than

one possible model of a particular entity; for example, the Ptolemaic model and the

Copernican model are different models of the solar system. This leads to the

question as to which is the best or most appropriate model to use, and on the criteria

to use to determine which is more suitable. The ability of the model to explain the

behaviour, its simplicity and its elegance will be part of the criteria. The principle of

“Ockham’s Razor” (law of parsimony) is often used in modelling, and it suggests

that the simplest model with the least number of assumptions required should be

selected.

The adequacy of the model will determine its acceptability as a representation of

the physical world. Models that are ineffective will be replaced with models that

offer a better explanation of the manifested physical behaviour. There are many

examples in science of the replacement of one theory by a newer one. For example,

the Copernican model of the universe replaced the older Ptolemaic model, and

Newtonian physics was replaced by Einstein’s theories of relativity. The structure

of the revolutions that take place in science is described in [8].

Modelling can play a key role in computer science, as computer systems tend to

be highly complex, whereas a model allows simplification or an abstraction of the

underlying complexity, and it enables a richer understanding of the underlying

reality to be gained. We discussed system modelling in Chap. 3, and it provides an

abstraction of the existing and proposed system, and it helps in clarifying what the

existing system does, and in communicating and clarifying the requirements of the

proposed system.

The model-oriented approach to software development involves defining an

abstract model of the proposed software system, and the model is then explored to

determine its suitability as a representation of the system. This takes the form of

12.5 Approaches to Formal Methods 191

http://dx.doi.org/10.1007/978-3-319-57750-0_3

model interrogation, i.e. asking questions and determining the extent to which the

model can answer the questions. The modelling in formal methods is typically

performed via elementary discrete mathematics, including set theory, sequences,

functions and relations.

Various models have been applied to assist with the complexities in software

development. These include the Capability Maturity Model (CMM), which is

employed as a framework to enhance the capability of the organization in software

development; UML, which has various graphical diagrams that are employed to

model the requirements and design; and mathematical models that are employed for

formal specification.

VDM and Z are model-oriented approaches to formal methods. VDM arose from

work done at the IBM laboratory in Vienna in formalizing the semantics for the

PL/1 compiler in the early 1970s, and it was later applied to the specification of

software systems. The origin of the Z specification language is in work done at

Oxford University in the early 1980s.

12.5.2 Axiomatic Approach

The axiomatic approach focuses on the properties that the proposed system is to

satisfy, and there is no intention to produce an abstract model of the system. The

required properties and behaviour of the system are stated in mathematical notation.

The difference between the axiomatic specification and a model-based approach

may be seen in the example of a stack.

The stack includes operators for pushing an element onto the stack and popping

an element from the stack. The properties of pop and push are explicitly defined in

the axiomatic approach. The model-oriented approach constructs an explicit model

of the stack, and the operations are defined in terms of the effect that they have on

the model. The axiomatic specification of the pop operation on a stack is given by

properties, for example pop(push(s, x)) = s.

Comment 12.2 (Axiomatic Approach)The property-oriented approach has the

advantage that the implementer is not constrained to a particular choice of

implementation, and the only constraint is that the implementation must satisfy the

stipulated properties.

The emphasis is on specifying the required properties of the system, and

implementation issues are avoided. The properties are typically stated using

mathematical logic (or higher-order logics). Mechanized theorem-proving tech-

niques may be employed to prove results.

One potential problem with the axiomatic approach is that the properties spec-

ified may not be realized in any implementation. Thus, whenever a “formal axio-

matic theory” is developed, a corresponding “model” of the theory must be

192 12 Formal Methods

identified, in order to ensure that the properties may be realized in practice. That is,

when proposing a system that is to satisfy some set of properties, there is a need to

prove that there is at least one system that will satisfy the set of properties.

12.6 Proof and Formal Methods

A mathematical proof typically includes natural language and mathematical sym-

bols, and often many of the tedious details of the proof are omitted. The proof may

employ a “divide and conquer” technique, i.e. breaking the conjecture down into

subgoals and then attempting to prove each of the subgoals.

Many proofs in formal methods are concerned with cross-checking the details of

the specification, or in checking the validity of the refinement steps, or checking

that certain properties are satisfied by the specification. There are often many

tedious lemmas to be proved, and theorem provers6 are essential in dealing with

these. Machine proof is explicit, and reliance on some brilliant insight is avoided.

Proofs by hand are notorious for containing errors or jumps in reasoning, while

machine proofs are explicit but are often extremely lengthy and unreadable. The

infamous machine proof of the correctness of the VIPER microprocessor7 consisted

of several million formulae [6].

A formal mathematical proof consists of a sequence of formulae, where each

element is either an axiom or derived from a previous element in the series by

applying a fixed set of mechanical rules.

The application of formal methods in an industrial environment requires the use

of machine-assisted proof, since thousands of proof obligations arise from a formal

specification, and theorem provers are essential in resolving these efficiently.

Automated theorem proving is difficult, as often mathematicians prove a theorem

with an initial intuitive feeling that the theorem is true. Human intervention to

provide guidance or intuition improves the effectiveness of the theorem prover.

The proof of various properties about a program increases confidence in its

correctness. However, an absolute proof of correctness8 is unlikely except for the

most trivial of programs. A program may consist of legacy software that is assumed

to work; a compiler that is assumed to work correctly creates it. Theorem provers

6Many existing theorem provers are difficult to use and are for specialist use only. There is a need

to improve the usability of theorem provers.
7This verification was controversial with RSRE and Charter overselling VIPER as a chip design

that conforms to its formal specification.
8This position is controversial with others arguing that if correctness is defined mathematically

then the mathematical definition (i.e. formal specification) is a theorem, and the task is to prove

that the program satisfies the theorem. They argue that the proofs for non-trivial programs exist

and that the reason why there are not many examples of such proofs is due to a lack of

mathematical specifications.

12.5 Approaches to Formal Methods 193

are programs that are assumed to function correctly. The best that formal methods

can claim is increased confidence in correctness of the software, rather than an

absolute proof of correctness.

12.7 The Future of Formal Methods

The debate concerning the level of use of mathematics in software engineering is

still ongoing. Many practitioners are against the use of mathematics and avoid its

use. They tend to employ methodologies such as software inspections and testing

(or more recently, the Agile approach has become popular) to improve confidence

in the correctness of the software. They argue that in the current competitive

industrial environment, where time to market is a key driver, that the use of such

formal mathematical techniques would seriously impact the market opportunity.

Industrialists often need to balance conflicting needs such as quality, cost and

delivering on time. They argue that the commercial realities require methodologies

and techniques that allow them to achieve their business goals effectively.

The other camp argues that the use of mathematics is essential in the delivery of

high-quality and reliable software and that if a company does not place sufficient

emphasis on quality, then it will pay the price in terms of poor quality and the loss

of its reputation in the marketplace.

It is generally accepted that mathematics and formal methods must play a role in

the safety-critical and security-critical fields. Apart from that, the extent of the use

of mathematics is a hotly disputed topic. The pace of change in the world is

extraordinary, and companies face significant competitive forces in a global mar-

ketplace. It is unrealistic to expect companies to deploy formal methods unless they

have clear evidence that it will support them in delivering commercial products to

the marketplace ahead of their competition, at the right price and with the right

quality. Formal methods need to prove that it can do this if it wishes to be taken

seriously in mainstream software engineering. The issue of technology transfer of

formal methods to industry is discussed in [9].

12.8 The Vienna Development Method

VDM dates from work done by the IBM research laboratory in Vienna. This group

was specifying the semantics of the PL/1 programming language using an operational

semantic approach. That is, the semantics of the language were defined in terms of a

hypothetical machine which interprets the programs of that language [10, 11]. Later

work led to the Vienna Development Method (VDM) with its specification language,

Meta IV. Thiswas used to give the denotational semantics of programming languages;

i.e. a mathematical object (set, function, etc.) is associated with each phrase of the

language [11]. The mathematical object is termed the denotation of the phrase.

194 12 Formal Methods

VDM is a model-oriented approach, and this means that an explicit model of the

state of an abstract machine is given, and operations are defined in terms of the

state. Operations may act on the system state, taking inputs, and producing outputs

as well as a new system state. Operations are defined in a precondition and

post-condition style. Each operation has an associated proof obligation to ensure

that if the precondition is true, then the operation preserves the system invariant.

The initial state itself is, of course, required to satisfy the system invariant.

VDM uses keywords to distinguish different parts of the specification, e.g.

preconditions, post-conditions, as introduced by the keywords pre and post,

respectively. In keeping with the philosophy that formal methods specify what a

system does as distinct from how, VDM employs post-conditions to stipulate the

effect of the operation on the state. The previous state is then distinguished by

employing hooked variables, e.g. v¬, and the post-condition specifies the new state

which is defined by a logical predicate relating the prestate to the post-state.

VDM is more than its specification language VDM-SL, and is, in fact, a software

development method, with rules to verify the steps of development. The rules

enable the executable specification, i.e. the detailed code, to be obtained from the

initial specification via refinement steps. Thus, we have a sequence S = S0, S1, …,

Sn = E of specifications, where S is the initial specification and E is the final

(executable) specification.

Retrieval functions enable a return from a more concrete specification to the

more abstract specification. The initial specification consists of an initial state, a

system state, and a set of operations. The system state is a particular domain, where

a domain is built out of primitive domains such as the set of natural numbers and

integers, or constructed from primitive domains using domain constructors such as

Cartesian product and disjoint union. A domain-invariant predicate may further

constrain the domain, and a type in VDM reflects a domain obtained in this way.

Thus, a type in VDM is more specific than the signature of the type and thus

represents values in the domain defined by the signature, which satisfy the domain

invariant. In view of this approach to types, it is clear that VDM types may not be

“statically type checked”.

VDM specifications are structured into modules, with a module containing the

module name, parameters, types, operations, etc. Partial functions occur frequently

in computer science as many functions, may be undefined or fail to terminate for

some arguments in their domain. VDM addresses partial functions by employing

non-standard logical operators, namely the logic of partial functions (LPFs), which

is discussed in [12].

VDM has been used in industrial projects, and its tool support includes the IFAD

Toolbox.9 VDM is described in more detail in [9]. There are several variants of

VDM, including VDM++, the object-oriented extension of VDM, and the Irish

school of the VDM, which is discussed in the next section.

9The VDM Tools are now available from the CSK Group in Japan.

12.8 the Vienna Development Method 195

12.9 VDM♣, The Irish School of VDM

The Irish School of VDM is a variant of standard VDM and is characterized by its

constructive approach, classical mathematical style, and its terse notation [13]. This

method aims to combine the what and how of formal methods in that its terse

specification style stipulates in concise form what the system should do; further-

more, the fact that its specifications are constructive (or functional) means that the

how is included with the what.

However, it is important to qualify this by stating that the how as presented by

VDM♣ is not directly executable, as several of its mathematical data types have no

corresponding structure in high-level or functional programming languages. Thus, a

conversion or reification of the specification into a functional or high-level language

must take place to ensure a successful execution. Further, the fact that a specifi-

cation is constructive is no guarantee that it is a good implementation strategy, if the

construction itself is naive.

The Irish school follows a similar development methodology to standard VDM,

and it is a model-oriented approach. The initial specification is presented, with the

initial state and operations defined. The operations are presented with precondi-

tions; however, no post-condition is necessary as the operation is “functionally”

(i.e. explicitly) constructed.

There are proof obligations to demonstrate that the operations preserve the

invariant. That is, if the precondition for the operation is true, and the operation is

performed, then the system invariant remains true after the operation. The philos-

ophy is to exhibit existence constructively rather than providing a theoretical proof

of existence that demonstrates the existence of a solution without presenting an

algorithm to construct the solution.

The school avoids the existential quantifier of predicate calculus, and reliance on

logic in proof is kept to a minimum, with emphasis instead placed on equational

reasoning. Structures with nice algebraic properties are sought, and one nice

algebraic structure employed is the monoid, which has closure, associative, and a

unit element. The concept of isomorphism is powerful, reflecting that two structures

are essentially identical, and thus, we may choose to work with either, depending on

which is more convenient for the task in hand.

The school has been influenced by the work of Polya and Lakatos. The former

[14] advocated a style of problem-solving characterized by first considering an

easier subproblem and considering several examples. This generally leads to a

clearer insight into solving the main problem. Lakatos’s approach to mathematical

discovery [15] is characterized by heuristic methods. A primitive conjecture is

proposed, and if global counterexamples to the statement of the conjecture are

discovered, then the corresponding hidden lemma for which this global coun-

terexample is a local counter example is identified and added to the statement of the

primitive conjecture. The process repeats, until no more global counterexamples are

found. A sceptical view of absolute truth or certainty is inherent in this.

196 12 Formal Methods

Partial functions are the norm in VDM♣, and as in standard VDM, the problem

is that functions may be undefined or fail to terminate for several of the arguments

in their domain. The LPFs is avoided, and instead care is taken with recursive

definitions to ensure termination is achieved for each argument. Academic and

industrial projects have been conducted using the method of the Irish school, but

tool support is limited.

12.10 The Z Specification Language

Z is a formal specification language founded on Zermelo set theory, and it was

developed by Abrial at Oxford University in the early 1980s. It is used for the

formal specification of software and is a model-oriented approach. An explicit

model of the state of an abstract machine is given, and the operations are defined in

terms of the effect on the state. It includes a mathematical notation that is similar to

VDM and the visually striking schema calculus. The latter consists essentially of

boxes (or schemas), and these are used to describe operations and states. The

schema calculus enables schemas to be used as building blocks and combined with

other schemas. The Z specification language was published as an ISO standard

(ISO/IEC 13568:2002) in 2002.

The schema calculus is a powerful means of decomposing a specification into

smaller pieces or schemas. This helps to make Z specification highly readable, as

each individual schema is small in size and self-contained. Exception handling is

done by defining schemas for the exception cases, and these are then combined with

the original operation schema. Mathematical data types are used to model the data

in a system, and these data types obey mathematical laws. These laws enable

simplification of expressions and are useful with proofs.

Operations are defined in a precondition/post-condition style. However, the

precondition is implicitly defined within the operation; i.e. it is not separated out as

in standard VDM. Each operation has an associated proof obligation to ensure that

if the precondition is true, then the operation preserves the system invariant. The

initial state itself is, of course, required to satisfy the system invariant.

Post-conditions employ a logical predicate which relates the prestate to the

post-state, and the post-state of a variable v is given by priming, e.g. v′. Various

conventions are employed; e.g. v? indicates that v is an input variable and v!

indicates that v is an output variable. The symbol N Op operation indicates that this

operation does not affect the state, whereas D Op indicates that this operation affects

the state.

Many data types employed in Z have no counterpart in standard programming

languages. It is therefore important to identify and describe the concrete data

structures that will ultimately represent the abstract mathematical structures. The

operations on the abstract data structures may need to be refined to yield operations

on the concrete data structure that yield equivalent results. For simple systems,

direct refinement (i.e. one step from abstract specification to implementation) may

12.9 VDM♣, The Irish School of VDM 197

be possible; in more complex systems, deferred refinement is employed, where a

sequence of increasingly concrete specifications are produced to eventually yield

the executable specification.

Z has been successfully applied in industry, and one of its well-known successes

is the CICS project at IBM Hursley in England. Z is described in more detail in

Chap. 13.

12.11 The B-Method

The B-Technologies [16] consist of three components: a method for software

development, namely the B-Method; a supporting set of tools, namely the B-

Toolkit; and a generic program for symbol manipulation, namely the B-Tool (from

which the B-Toolkit is derived). The B-Method is a model-oriented approach and is

closely related to the Z specification language. Abrial developed the B specification

language, and every construct in the language has a set-theoretic counterpart, and

the method is founded on Zermelo set theory. Each operation has an explicit

precondition.

A key role of the abstract machine in the B-Method is to provide encapsulation

of variables representing the state of the machine and operations that manipulate the

state. Machines may refer to other machines, and a machine may be introduced as a

refinement of another machine. The abstract machines are specification machines,

refinement machines, or implementable machines. The B-Method adopts a layered

approach to design where the design is gradually made more concrete by a

sequence of design layers. Each design layer is a refinement that involves a more

detailed implementation in terms of the abstract machines of the previous layer. The

design refinement ends when the final layer is implemented purely in terms of

library machines. Any refinement of a machine by another has associated proof

obligations, and proof is required to verify the validity of the refinement step.

Specification animation of the Abstract Machine Notation (AMN) specification

is possible with the B-Toolkit, and this enables typical usage scenarios to be

explored for requirements validation. This is, in effect, an early form of testing, and

it may be used to demonstrate the presence or absence of desirable or undesirable

behaviour. Verification takes the form of a proof to demonstrate that the invariant is

preserved when the operation is executed within its precondition, and this is per-

formed on the AMN specification with the B-Toolkit.

The B-Toolkit provides several tools that support the B-Method, and these

include syntax and type checking; specification animation, proof obligation gen-

erator, auto-prover, proof assistor, and code generation. Thus, in theory, a complete

formal development from initial specification to final implementation may be

achieved, with every proof obligation justified, leading to a provably correct

program.

198 12 Formal Methods

http://dx.doi.org/10.1007/978-3-319-57750-0_13

The B-Method and toolkit have been successfully applied in industrial appli-

cations, including the CICS project at IBM Hursley in the UK [17]. The automated

support provided has been cited as a major benefit of the application of the B-

Method and the B-Toolkit.

12.12 Predicate Transformers and Weakest Preconditions

The precondition of a program S is a predicate, i.e. a statement that may be true or

false, and it is usually required to prove that if the precondition Q is true, then

execution of S is guaranteed to terminate in a finite amount of time in a state

satisfying R. This is written as {Q}S{R}.

The weakest precondition of a command S with respect to a post-condition

R [18] represents the set of all states such that if execution begins in any one of

these states, then execution will terminate in a finite amount of time in a state with

R true. These set of states may be represented by a predicate Q′, so that wp(S,

R) = wpS (R) = Q′, and so wpS is a predicate transformer; i.e. it may be regarded as

a function on predicates. The weakest precondition is the precondition that places

the fewest constraints on the state than all of the other preconditions of (S,R). That

is, all of the other preconditions are stronger than the weakest precondition.

The notation Q{S}R is used to denote partial correctness, and indicates that if

execution of S commences in any state satisfying Q, and if execution terminates,

then the final state will satisfy R. Often, a predicate Q which is stronger than the

weakest precondition wp(S,R) is employed, especially where the calculation of the

weakest precondition is non-trivial. Thus, a stronger predicate Q such that Q) wp

(S,R) is often employed.

There are many properties associated with the weakest preconditions, and these

may be used to simplify expressions involving weakest preconditions, and in

determining the weakest preconditions of various program commands such as

assignments and iterations. Weakest preconditions may be used in developing a

proof of correctness of a program in parallel with its development [9].

An imperative program F may be regarded as a predicate transformer. This is

since a predicate P characterizes the set of states in which the predicate P is true,

and an imperative program may be regarded as a binary relation on states, which

leads to the Hoare triple P{F}Q. That is, the program F acts as a predicate trans-

former with the predicate P regarded as an input assertion, i.e. a Boolean expression

that must be true before the program F is executed, and the predicate Q is the output

assertion, which is true if the program F terminates (where F commenced in a state

satisfying P).

12.11 The B-Method 199

12.13 The Process Calculii

The objectives of the process calculi [19] are to provide mathematical models which

provide insight into the diverse issues involved in the specification, design and

implementation of computer systems which continuously act and interact with their

environment. These systems may be decomposed into subsystems that interact with

each other and their environment.

The basic building block is the process, which is a mathematical abstraction of

the interactions between a system and its environment. A process that lasts indef-

initely may be specified recursively. Processes may be assembled into systems; they

may execute concurrently or communicate with each other. Process communication

may be synchronized, and this takes the form of one process outputting a message

simultaneously to another process inputting a message. Resources may be shared

among several processes. Process calculi such as CSP [19] and CCS [20] have been

developed, and they enrich the understanding of communication and concurrency,

and they obey several mathematical laws.

The expression (a ? P) in CSP describes a process which first engages in event a,

and then behaves as process P. A recursive definition is written as (lX) � F(X), and
an example of a simple chocolate vending machine is:

VMS ¼ lX : coin; chocf g � coin? choc?Xð Þð Þ

The simple vending machine has an alphabet of two symbols, namely coin and

choc. The behaviour of the machine is that a coin is entered into the machine; then, a

chocolate is selected and provided; and finally, the machine is ready for further use.

CSP processes use channels to communicate values with their environment, and

input on channel c is denoted by (c?.x Px). This describes a process that accepts any

value x on channel c and then behaves as process Px. In contrast, (c!e P) defines a

process which outputs the expression e on channel c and then behaves as process P.

The p calculus is a process calculus based on names. Communication between

processes takes place between known channels, and the name of a channel may be

passed over a channel. There is no distinction between channel names and data

values in the p-calculus. The output of a value v on channel a is given by āv; i.e.

output is a negative prefix. Input on a channel a is given by a(x) and is a positive

prefix. Private links or restrictions are denoted by (x)P.

12.14 Finite State Machines

Warren McCulloch and Walter Pitts published early work on finite state automata in

1943. They were interested in modelling the thought process for humans and

machines. Moore and Mealy developed this work further, and these machines are

referred to as the “Moore machine” and the “Mealy machine”. The Mealy machine

200 12 Formal Methods

determines its outputs through the current state and the input, whereas the output of

Moore’s machine is based upon the current state alone.

Definition 12.2(Finite State Machine) A finite state machine (FSM) is an abstract

mathematical machine that consists of a finite number of states. It includes a start

state q0 in which the machine is in initially; a finite set of states Q; an input alphabet

R; a state transition function d; and a set of final accepting states F (where F �, Q).

The state transition function takes the current state and an input and returns the

next state. That is, the transition function is of the form:

d : Q� R ! Q

The transition function provides rules that define the action of the machine for

each input, and it may be extended to provide output as well as a state transition.

State diagrams are used to represent finite state machines, and each state accepts a

finite number of inputs. A FSM may be deterministic or non-deterministic, and a

deterministic machine (Fig. 12.1) changes to exactly one state for each input

transition, whereas a non-deterministic machine may have a choice of states to

move to for a particular input.

Finite state automata can compute only very primitive functions and are not an

adequate model for computing. There are more powerful automata such as the

Turing machine [12] that is essentially a finite state automaton with a potentially

infinite storage (memory). Anything that is computable by a Turing machine.

The memory of the Turing machine is a tape that consists of a potentially infinite

number of one-dimensional cells. The Turing machine provides a mathematical

abstraction of computer execution and storage, as well as provides a mathematical

definition of an algorithm.

12.15 The Parnas Way

Parnas has been influential in the computing field, and his ideas on the specification,

design, implementation, maintenance, and documentation of computer software

remain important. He advocates a solid engineering approach and argues that the

role of the engineer is to apply scientific principles and mathematics to design and

develop products. He argues that computer scientists need to be educated as

engineers to ensure that they have the appropriate background to build software

correctly. His contributions to software engineering include (Table 12.2).

12.14 Finite State Machines 201

12.16 Usability of Formal Methods

There are practical difficulties associated with the industrial use of formal methods.

It seems to be assumed that programmers and customers are willing to become

familiar with the mathematics used in formal methods, but this is true in only some

domains.10 Customers are concerned with their own domain and speak the technical

A B C

0 0

1 1

Fig. 12.1 Deterministic finite state machine

Table 12.2 Parnas’s contributions to software engineering

Area Contribution

Tabular expressions These are mathematical tables for specifying requirements and enable

complex predicate logic expressions to be represented in a simpler

form

Mathematical

documentation

He advocates the use of precise mathematical documentation for

requirements and design

Requirements

specification

He advocates the use of mathematical relations to specify the

requirements precisely

Software design He developed information hiding that is used in object-oriented

designa and allows software to be designed for change. Every

information-hiding module has an interface that provides the only

means to access the services provided by the modules. The interface

hides the module’s implementation

Software inspections His approach requires the reviewers to take an active part in the

inspection. They are provided with a list of questions by the author,

and their analysis involves the production of mathematical table to

justify the answers

Predicate logic He developed an extension of the predicate calculus to deal with

partial functions, and it preserves the classical two-valued logic when

dealing with undefined values
aIt is surprising that many in the object-oriented world seem unaware that information hiding goes

back to the early 1970s and many have never heard of Parnas

10The domain in which the software is being used will influence the willingness or otherwise of the

customers to become familiar with the mathematics required. There appears to be little interest in

mainstream software engineering, and their perception is that formal methods are unusable.

However, in there is a greater interest in the mathematical approach in the safety-critical field.

202 12 Formal Methods

language of that domain.11 Often, the use of mathematics is an alien activity that

bears little resemblance to their normal work. Programmers are interested in pro-

gramming rather than in mathematics and are generally are not interested in

becoming mathematicians.12

However, the mathematics involved in most formal methods is reasonably ele-

mentary, and, in theory, if both customers and programmers are willing to learn the

formal mathematical notation, then a rigorous validation of the formal specification

can take place to verify its correctness. It is usually possible to get a developer to

learn a formal method, as a programmer has some experience of mathematics and

logic; however, in practice, it is more difficult to get a customer to learn a formal

method.

This often means that often a formal specification of the requirements and an

informal definition of the requirements using a natural language are maintained. It is

essential that both of these are consistent and that there is a rigorous validation of

the formal specification. Otherwise, if the programmer proves the correctness of the

code with respect to the formal specification, and the formal specification is

incorrect, then the formal development of the software is incorrect. There are

several techniques to validate a formal specification (Table 12.3), and these are

described in more detail in [21]:

Why are Formal Methods difficult?

Formal methods are perceived as being difficult to use and of providing limited

value in mainstream software engineering. Programmers receive education in

mathematics as part of their studies, but many never use formal methods or

mathematics again once they take an industrial position.

It may well be that the very nature of formal methods is such that it is suited only

for specialists with a strong background in mathematics. Some of the reasons why

formal methods are perceived as being difficult are listed in Table 12.4.

Characteristics of a Usable Formal Method

It is important to investigate ways by which formal methods can be made more

usable to software engineers. This may involve designing more usable notations

and better tools to support the process. Practical training and coaching to employees

can help. Some of the characteristics of a usable formal method are listed in

Table 12.5.

11Most customers have a very limited interest and even less willingness to use mathematics. There

are exceptions to this especially in the regulated sector.
12Mathematics that is potentially useful to software engineers is discussed in [11].

12.16 Usability of Formal Methods 203

Table 12.3 Techniques for validation of formal specification

Technique Description

Proof This involves demonstrating that the formal specification satisfies key

properties of the requirements. The implementation will need to preserve

these properties

Software

inspections

This involves a Fagan-like inspection to compare an informal set of

requirements (unless the customer has learned the formal method) with

the formal specification and to ensure consistency between them

Specification

animation

This involves program (or specification) execution as a way to validate

the formal specification. It is similar to testing

Tools Tools provide some limited support in validating a formal specification

Table 12.4 Why are formal methods difficult?

Factor Description

Notation/intuition The notation employed differs from that employed in mathematics.

Many programmers find the notation in formal methods to be

unintuitive

Formal specification It is easier to read a formal specification than to write one

Validation of formal

specification

The validation of a formal specification using proof techniques or a

Fagan-like inspection is difficult

Refinementa The refinement of a formal specification into more concrete

specifications with proof of each refinement step is difficult and

time-consuming

Proof Proof can be difficult and time-consuming

Tool support Many of the existing tools are difficult to use
aThe author doubts that refinement is cost-effective for mainstream software engineering.

However, it may be useful in the regulated environment

Table 12.5 Characteristics of a usable formal method

Characteristic Description

Intuitive A formal method should be intuitive

Teachable A formal method needs to be teachable to the average software engineer.

The training should include writing practical formal specifications

Tool support Good tools to support formal specification, validation, refinement and

proof are required

Adaptable to

change

Change is common in a software engineering environment. A usable

formal method should be adaptable to change

Technology

transfer path

The process for software development needs to be defined to include

formal methods. The migration to formal methods needs to be managed

Costa The use of formal methods should be cost-effective with a return on

investment (e.g. benefits in time, quality and productivity)
aA commercial company will expect a return on investment from the use of a new technology. This

may be reduced software development costs, improved quality and improved timeliness of

projects, and improvements in productivity. A company does not go to the trouble of deploying a

new technology just to satisfy academic interest

204 12 Formal Methods

12.17 Review Questions

1. What are formal methods and describe their potential benefits? How

essential is tool support?

2. What is stepwise refinement and how realistic is it in mainstream soft-

ware engineering?

3. Discuss Parnas’s criticisms of formal methods and discuss whether his

views are valid.

4. Discuss the applications of formal methods and which areas have bene-

fited most from their use? What problems have arisen?

5. Describe a technology transfer path for the deployment of formal methods

in an organization.

6. Explain the difference between the model-oriented approach and the

axiomatic approach.

7. Discuss the nature of proof in formal methods and tools to support proof.

8. Discuss the VDM and explain the difference between standard VDM and

VDM♣.

9. Discuss Z and B. Describe the tools in the B-Toolkit.

10. Discuss process calculi such as CSP, CCS or p–calculus.

12.18 Summary

This chapter discussed formal methods which offer a mathematical approach to the

development of high-quality software. Formal methods employ mathematical

techniques for the specification and development of software and are useful in the

safety-critical field. They consist of a formal specification language; a methodology

for formal software development; and a set of tools to support the syntax checking

of the specification, as well as the proof of properties of the specification.

The model-oriented approach includes formal methods such as VDM, Z and B,

whereas the axiomatic approach includes the process calculi such as CSP, CCS and

the p calculus. VDM was developed at the IBM laboratory in Vienna, and it has

been used in academia and industry. CSP was developed by C.A.R Hoare and CCS

by Robin Milner.

Formal methods allow questions to be asked and answered about what the

system does independently of the implementation. They offer a way to debug the

requirements and to show that certain desirable properties are true of the specifi-

cation, whereas certain undesirable properties are absent.

12.17 Review Questions 205

The use of formal methods generally leads to more robust software and to

increased confidence in its correctness. There are challenges involved in the

deployment of formal methods, as the use of these mathematical techniques may be

a culture shock to many staff.

The usability of existing formal methods was considered, and the reasons for

their perceived difficulty were considered. The characteristics of a usable formal

method were explored.

There are various tools to support formal methods including syntax checkers;

specialized editors; tools to support refinement; automated code generators that

generate a high-level language corresponding to the specification; theorem provers;

and specification animation tools where the execution of the specification can be

simulated.

References

1. J.M. Spivey, The Z Notation. A Reference Manual. Prentice Hall International Series in

Computer Science (Prentice-Hall, Inc., Upper Saddle River, 1992)

2. M.J.D Brown, Rationale for the development of the UK Defence Standards for Safety Critical

Software. COMPASS Conference, 1990

3. M. Hinchey, J. Bowen (eds.), Applications of Formal Methods. Prentice Hall International

Series in Computer Science (Prentice-Hall, Inc., Upper Saddle River, 1995)

4. Ministry of Defence-55 (PART 1), I Issue 1, The Procurement of Safety Critical software in

Defence Equipment, PART 1: Requirements. Interim Defence Standard, U.K., 1991a

5. Ministry of Defence-55 (PART 2), I Issue 1, The Procurement of Safety Critical software in

Defence Equipment, PART 2: Guidance. Interim Defence Standard, UK., 1991b

6. T. Kuhn, The Structure of Scientific Revolutions (University of Chicago Press, Chicago, 1970)

7. S. Gerhart, D. Craighen, T. Ralston, Experience with formal methods in critical systems.

IEEE Softw. 11, 21 (1994)

8. M. Tierney, The Evolution of Def Stan 00-55 and 00-56: An Intensification of the “Formal

Methods debate” in the UK. Research Centre for Social Sciences, University of Edinburgh,

1991

9. G. O’Regan, Mathematical Approaches to Software Quality (Springer, London, 2006

10. D. Bjorner, C. Jones, The Vienna Development Method. The meta language. Lecture Notes in

Computer Science, vol. 61 (Springer, New York, 1978)

11. D. Bjorner, C. Jones, Formal Specification and software Development. Prentice Hall

International Series in Computer Science (Prentice-Hall, Inc., Upper Saddle River, 1982)

12. G. O’Regan, Guide to Discrete Mathematics (Springer, Switzerland, 2016)

13. M.M.A. Airchinnigh, Conceptual Models and Computing. PhD Thesis. Department of

Computer Science, University of Dublin, Trinity College, Dublin, 1990

14. G. Polya, How to Solve It. A New Aspect of Mathematical Method (Princeton University

Press, Princeton, 1957)

15. I. Lakatos, Proof and Refutations. The Logic of Mathematical Discovery (Cambridge

University Press, Cambridge, 1976)

16. E. McDonnell, MSc Thesis. Department of Computer Science, Trinity College, Dublin, 1994

17. J.P. Hoare, Application of the B-Method to CICS, in Applications of Formal Methods, ed.

By M. Hinchey, J.P. Bowen. Prentice Hall International Series in Computer Science

(Prentice-Hall, Inc., Upper Saddle River, 1995)

206 12 Formal Methods

18. D. Gries, The Science of Programming (Springer, Berlin, 1981)

19. C.A.R. Hoare, Communicating Sequential Processes. Prentice Hall International Series in

Computer Science (Prentice-Hall, Inc., Upper Saddle River, 1985)

20. R. Milner et al., A Calculus of Mobile Processes (Part 1). LFCS Report Series.

ECS-LFCS-89-85. Department of Computer Science, University of Edinburgh, 1989

21. B.A. Wickmann, A Personal View of Formal Methods. National Physical Laboratory, 2000

References 207

13Z Formal Specification Language

Abstract

This chapter presents the Z specification language, which is one of the most
widely used formal methods. Z is a formal specification language based on
Zermelo set theory. It was developed at the Programming Research Group at
Oxford University in the early 1980s. Z specifications are mathematical and
employ a classical two-valued logic. The use of mathematics ensures precision
and allows inconsistencies and gaps in the specification to be identified.
Theorem provers may be employed to demonstrate that the software implemen-
tation meets its specification.

Keywords

Sets, relations and functions � Bags and sequences � Precondition �
Post-condition � Invariant � Data reification � Refinement � Schema calculus �
Proof in Z

13.1 Introduction

Z is a formal specification language based on Zermelo set theory. It was developed
at the Programming Research Group at Oxford University in the early 1980s [1] and
became an ISO standard in 2002. Z specifications are mathematical and employ a
classical two-valued logic. The use of mathematics ensures precision and allows
inconsistencies and gaps in the specification to be identified. Theorem provers may
be employed to prove properties of the specification and to demonstrate that the
software implementation meets its specification.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-57750-0_13

209

Z is a “and an explicit model” approach with an explicit model of the state of an
abstract machine given, and operations are defined in terms of this state. Its
mathematical notation is used for formal specification, and its schema calculus is
used to structure the specification. The schema calculus is visually striking and
consists essentially of boxes, with these boxes or schemas used to describe oper-
ations and states. The schemas may be used as building blocks and combined with
other schemas. The simple schema below (Fig. 13.1) is the specification of the
positive square root of a real number.

The schema calculus is a powerful means of decomposing a specification into
smaller pieces or schemas. This helps to make Z specifications highly readable, as
each individual schema is small in size and self-contained. Exception handling is
addressed by defining schemas for the exception cases. These are then combined
with the original operation schema. Mathematical data types are used to model the
data in a system, and these data types obey mathematical laws. These laws enable
simplification of expressions and are useful with proofs.

Operations are defined in a precondition/post-condition style. A precondition
must be true before the operation is executed, and the post-condition must be true
after the operation has executed. The precondition is implicitly defined within the
operation. Each operation has an associated proof obligation to ensure that if the
precondition is true, then the operation preserves the system invariant. The system
invariant is a property of the system that must be true at all times. The initial state
itself is, of course, required to satisfy the system invariant.

The precondition for the specification of the square root function above is that
num? � 0; i.e., the function SqRoot may be applied to positive real numbers only.
The post-condition for the square root function is root!2 = num? and root! � 0.
That is, the square root of a number is positive and its square gives the number.
Post-conditions employ a logical predicate which relates the prestate to the
post-state, with the post-state of a variable being distinguished by priming the
variable, e.g. v′.

Z is a typed language, and whenever a variable is introduced, its type must be
given. A type is simply a collection of objects, and there are several standard types
in Z. These include the natural numbers ℕ, the integers ℤ and the real numbers ℝ.
The declaration of a variable x of type X is written as x:X. It is also possible to
create your own types in Z.

│--SqRoot-----------------
│num?, root! : ℝ
│---------
│num? ≥ 0
│root!2 = num?
│root! ≥ 0
│-----------------------

Fig. 13.1 Specification of positive square root

210 13 Z Formal Specification Language

Various conventions are employed within Z specification: for example, v?
indicates that v is an input variable, and v! indicates that v is an output variable. The
variable num? is an input variable, and root! is an output variable in the square root
schema above. The notation N Op in a schema indicates that the operation Op does
not affect the state, whereas the notation ΔOp in the schema indicates that Op is an
operation that affects the state.

Many of the data types employed in Z have no counterpart in standard pro-
gramming languages. It is therefore important to identify and describe the concrete
data structures that ultimately will represent the abstract mathematical structures. As
the concrete structures may differ from the abstract, the operations on the abstract
data structures may need to be refined to yield operations on the concrete data that
yield equivalent results. For simple systems, direct refinement (i.e. one step from
abstract specification to implementation) may be possible; in more complex sys-
tems, deferred refinement1 is employed, where a sequence of increasingly concrete
specifications are produced to yield the executable specification. There is a calculus
for combining schemas to make larger specifications, and this is discussed later in
the chapter.

Example 13.1 The following is a Z specification to borrow a book from a library
system. The library is made up of books that are on the shelf; books that are
borrowed; and books that are missing. The specification models a library with sets
representing books on the shelf, on loan or missing. These are three mutually
disjoint subsets of the set of books Bkd-Id. The system state is defined in the
Library schema (Fig. 13.2), and operations such as Borrow and Return affect the
state. The Borrow operation is specified in Fig. 13.3.

The notation ℙBkd-Id is used to represent the power set of Bkd-Id (i.e. the set of
all subsets of Bkd-Id). The disjointness condition for the library is expressed by the
requirement that the pairwise intersection of the subsets on-shelf, borrowed and

missing is the empty set.
The precondition for the Borrow operation is that this book must be available on

the shelf to borrow. The post-condition is that the borrowed book is added to the set
of borrowed books and is removed from the books on the shelf.

Z has been successfully applied in industry including the CICS project at IBM
Hursley in the UK.2 Next, we describe key parts of Z including sets, relations,
functions, sequences and bags.

1Stepwise refinement involves producing a sequence of increasingly more concrete specifications
until eventually the executable code is produced. Each refinement step has associated proof
obligations to prove that the refinement step is valid.
2This project claimed a 9% increase in productivity attributed to the use of formal methods.

13.1 Introduction 211

13.2 Sets

A set is a collection of well-defined objects, and this section focuses on their use in Z.
Sets may be enumerated by listing all of their elements. Thus, the set of all even
natural numbers less than or equal to 10 is as follows:

2; 4; 6; 8; 10f g

Sets may be created from other sets using set comprehension, i.e. stating the
properties that its members must satisfy. For example, the set of even natural
numbers less than or equal to 10 is given by set comprehension as follows:

fn : Njn 6¼ 0 ^ n� 10 ^ n mod 2 ¼ 0 � ng

There are three main parts to the set comprehension above. The first part is the
signature of the set, and this is given by n:ℕ. The first part is separated from the
second part by a vertical line. The second part is given by a predicate, and for this
example, the predicate is n 6¼ 0 ^ n � 10 ^ n mod 2 = 0. The second part is
separated from the third part by a bullet. The third part is a term, and for this
example, it is simply n. The term is often a more complex expression, e.g. log(n2).

In mathematics, there is just one empty set∅. However, there is an empty set for
each type of set in Z (as Z is a typed language), and so there are an infinite number
of empty sets in Z. The empty set is written as ∅ [X] where X is the type of the
empty set. However, in practice, X is omitted when the type is clear.

│--Library-----------------
│on-shelf, missing, borrowed : ℙ Bkd-Id
│---------
│on-shelf ∩ missing = Ø
│on-shelf ∩ borrowed = Ø
│borrowed ∩ missing = Ø
│------------------------------------

Fig. 13.2 Specification of a library system

│--Borrow-----------------
│Δ Library
│b? :Bkd-Id
│---------
│ b? ∈ on-shelf
│on-shelf’ = on-shelf \ {b?}
│borrowed’ = borrowed ∪ {b?}
│-----------------------------------

Fig. 13.3 Specification of borrow operation

212 13 Z Formal Specification Language

Various set operations such as union, intersection, set difference and symmetric
difference are employed in Z. The power set of a set X is the set of all subsets of X,
and it is denoted by ℙX. The set of non-empty subsets of X is denoted by ℙ1X
where

P1X ¼¼ fU : PXjU 6¼ ø ½X�g

A finite set of elements of type X (denoted by F X) is a subset of X that cannot
be put into a one to one correspondence with a proper subset of itself. That is:

F X == {U : ℙ X | ¬∃V: ℙ U • V≠ U ∧ (∃f:V U)}

The expression f:V U denotes that f is a bijection from U to V, and
injective, surjective and bijective functions are discussed in [2].

The fact that Z is a typed language means that whenever a variable is introduced
(e.g. in quantification with 8 and 9), it is first declared. For example, 8j:J � P) Q.
There is also the unique existential quantifier 91 j:J|P which states that there is
exactly one j of type J that has property P.

13.3 Relations

Relations are used extensively in Z, and a relation R between X and Y is any subset
of the Cartesian product of X and Y, i.e., R � (X � Y). A relation in Z is denoted
by R: X $Y, and the notation x ↦ y indicates that the pair (x, y) 2 R.

Consider the relation home_owner: Person $ Home that exists between people
and their homes. An entry daphne ↦ mandalay 2 home_owner if daphne is the
owner of mandalay. It is possible for a person to own more than one home:

rebecca 7! nirvana 2 home owner

rebecca 7! tivoli 2 home owner

It is possible for two people to share ownership of a home:

rebecca 7! nirvana 2 home owner

lawrence 7! nirvana 2 home owner

There may be some people who do not own a home, and there is no entry for
these people in the relation home_owner. The type Person includes every possible
person, and the type Home includes every possible home. The domain of the
relation home_owner is given by:

x 2 dom home owner , 9h : Home � x 7! h 2 home owner:

13.2 Sets 213

The range of the relation home_owner is given by:

h 2 ran home owner , 9x : Person � x 7! h 2 home owner:

The composition of two relations home_owner: Person $ Home and home_-

value: Home $ Value yields the relation owner_wealth: Person $ Value and is
given by the relational composition home_owner; home_value where

p 7! v 2 home owner; home value ,
ð9h : Home � p 7! h 2 home owner ^ h 7! v 2 home valueÞ

The relational composition may also be expressed as:

owner wealth ¼ home value o home owner

The union of two relations often arises in practice. Suppose a new entry ais-

ling ↦ muckross is to be added. Then, this is given by

home owner0 ¼ home owner [faisling 7!muckrossg

Suppose that we are interested in knowing all females who are house owners.
Then, we restrict the relation home_owner so that the first element of all ordered
pairs has to be female. Consider female: ℙ Person with {aisling, rebecca} �
female.

home owner ¼ faisling 7!muckross; rebecca 7! nirvana;

lawrence 7! nirvanag

female / home owner ¼ faisling 7!muckross; rebecca 7! nirvanag

That is, female / home owner is a relation that is a subset of home_owner, such
that the first element of each ordered pair in the relation is female. The operation /

is termed domain restriction, and its fundamental property is:

x 7! y 2 U / R , ðx 2 U ^ x 7! y 2 Rg

where R: X $Y and U: ℙX.
There is also a domain anti-restriction (subtraction) operation, and its funda-

mental property is:

x ↦ y ∈ U ⊳ R ⇔ (x ∉ U ∧ x ↦ y ∈ R}

where R: X $Y and U: ℙX.
There are also range restriction (the . operator) and the range anti-restriction

operator (the ⊲operator). These are discussed in [1].

214 13 Z Formal Specification Language

13.4 Functions

A function is an association between objects of some type X and objects of another
type Y such that given an object of type X, there exists only one object in Y asso-
ciated with that object [1]. A function is a set of ordered pairs where the first
element of the ordered pair has at most one element associated with it. A function is
therefore a special type of relation, and a function may be total or partial.

A total function has exactly one element in Y associated with each element of X,
whereas a partial function has at most one element of Y associated with each
element of X (there may be elements of X that have no element of Y associated with
them). A partial function from X to Y(f: X 9Y) is a relation f: X $Y such that:

8x : X; y; z : Y � ðx 7! y 2 f ^ x 7! z 2 f) y ¼ zÞ

The association between x and y is denoted by f(x) = y, and this indicates that the
value of the partial function f at x is y. A total function from X to Y (denoted
f: X ! Y) is a partial function such that every element in X is associated with some
value of Y.

f : X ! Y , f : X9Y ^ dom f ¼ X

Clearly, every total function is a partial function but not vice versa.

│--TempMap-----------------
│CityList : ℙCity
│ temp : City ↛Z
│---------
│dom temp = CityList
│------------------------------------

One operation that arises quite frequently in specifications is the function
override operation. Consider the specification of a temperature map above and an
example temperature map given by temp = {Cork ↦ 17, Dublin ↦ 19, Lon-

don ↦ 15}. Then, consider the problem of updating the temperature map if a new
temperature reading is made in Cork, e.g. {Cork ↦ 18}. Then, the new temper-
ature chart is obtained from the old temperature chart by function override to yield
{Cork ↦ 18, Dublin ↦ 19, London ↦ 15}. This is written as follows:

temp0 ¼ temp�fCork 7! 18g

The function override operation combines two functions of the same type to give
a new function of the same type. The effect of the override operation is that the
entry {Cork ↦ 17} is removed from the temperature chart and replaced with the
entry {Cork ↦ 18}.

Suppose f, g: X9Y are partial functions, then f ⊕ g is defined and indicates that
f is overridden by g. It is defined as follows:

13.4 Functions 215

ðf�gÞðxÞ ¼ gðxÞwhere x 2 dom g

ðf�gÞðxÞ ¼ f ðxÞwhere x 62 dom g ^ x 2 dom f

This may also be expressed (using domain anti-restriction) as follows:

f ⊕ g = ((dom g) ⊳ f) ∪ g

There is notation in Z for injective, surjective and bijective functions. An
injective function is one to one, i.e.

f xð Þ ¼ f yð Þ) x ¼ y

A surjective function is onto, i.e.
Given y 2 Y, 9x 2 X such that f(x) = y

A bijective function is one to one and onto, and it indicates that the sets X and
Y can be put into one to one correspondence with one another. Z includes lambda
calculus notation (k calculus is discussed in [2]) to define functions. For example,
the function cube = kx:N � x * x * x. Function composition is f; g is similar to
relational composition.

13.5 Sequences

The type of all sequences of elements drawn from a set X is denoted by seq
X. Sequences are written as x1; x2; . . . xnh i, and the empty sequence is denoted
by 〈〉. Sequences may be used to specify the changing state of a variable over time,
with each element of the sequence representing the value of the variable at a
discrete time instance.

Sequences are functions, and a sequence of elements drawn from a set X is a
finite function from the set of natural numbers to X. A finite partial function f from
X to Y is denoted by f: X Y.

A finite sequence of elements of X is given by f: N X, and the domain of the
function consists of all numbers between 1 and #f (where #f is the cardinality of f). It
is defined formally as follows:

seq X == {f : N X | dom f = 1 .. # f • f }

The sequence x1; x2; . . . xnh i above is given by:

f1 7! x1; 2 7! x2; . . . n 7! xng

There are various functions to manipulate sequences. These include the sequence
concatenation operation. Suppose r ¼ x1; x2; . . . xnh i and s ¼ y1; y2; . . . ymh i, then:

216 13 Z Formal Specification Language

r\ s ¼ x1; x2; . . . xn; y1; y2; . . . ymh i

The head of a non-empty sequence gives the first element of the sequence:

heads r ¼ head x1; x2; . . . xnh i ¼ x1

The tail of a non-empty sequence is the same sequence except that the first
element of the sequence is removed:

tail r ¼ tail x1; x2; . . . xnh i ¼ x2; . . . xnh i

Suppose f: X ! Y and a sequence r: seq X, then the function map applies f to
each element of r:

map fr ¼ map f x1; x2; . . . xnh i ¼ f x1ð Þ; f x2ð Þ; . . . f xnð Þh i

The map function may also be expressed via function composition as:

map f r ¼ r; f

The reverse order of a sequence is given by the rev function:

rev r ¼ rev x1; x2; . . . xnh i ¼ xn; . . . x2; x1h i

13.6 Bags

A bag is similar to a set except that there may be multiple occurrences of each
element in the bag. A bag of elements of type X is defined as a partial function from
the type of the elements of the bag to positive whole numbers. The definition of a
bag of type X is:

bagX ¼ X9N1:

For example, a bag of marbles may contain 3 blue marbles, 2 red marbles and 1
green marble. This is denoted by B = [−b, b, b, g, r, r]. The bag of marbles is thus
denoted by:

bagMarble ¼ Marble9N1:

The function count determines the number of occurrences of an element in a bag.
For the example above, count Marble b = 3 and count Marble y = 0 since there are
no yellow marbles in the bag. This is defined formally as follows:

13.5 Sequences 217

count bagX y ¼ 0 y 62 bag X

count bagX y ¼ bagXð ÞðyÞ y 2 bag X

An element y is in bag X if and only if y is in the domain of bag X:

y in bagX , y 2 dom bagXð Þ

The union of two bags of marbles B1 = [b, b, b, g, r, r] and B2 = [b, g, r, y] is
given by B1 ⊎ B2 = [b, b, b, b, g, g, r, r, r, y]. It is defined formally as follows:

ðB1]B2Þ yð Þ ¼ B2 yð Þ y 62 domB1 ^ y 2 domB2

ðB1]B2Þ yð Þ ¼ B1 yð Þ y 2 domB1 ^ y 62 domB2

ðB1]B2Þ yð Þ ¼ B1 yð ÞþB2 yð Þ y 2 domB1 ^ y 2 domB2

A bag may be used to record the number of occurrences of each product in a
warehouse as part of an inventory system. It may model the number of items
remaining for each product in a vending machine (Fig. 13.4).

The operation of a vending machine would require other operations such as
identifying the set of acceptable coins, checking that the customer has entered
sufficient coins to cover the cost of the good, returning change to the customer and
updating the quantity on hand of each good after a purchase. A detailed account is
in [1].

13.7 Schemas and Schema Composition

The Z specification is presented in visually striking boxes called schemas. These are
used for specifying states and state transitions, and they employ notation to rep-
resent the before and after state (e.g. s and s′ where s′ represents the after state of s).
They group all relevant information that belongs to a state description.

There are a number of useful schema operations such as schema inclusion,
schema composition and the use of propositional connectives to link schemas
together. The Δ convention indicates that the operation affects the state, whereas the
N convention indicates that the state is not affected. These conventions allow
complex operations to be specified concisely and assist with the readability of the

│--∆ Vending Machine----------
│stock : bag Good
│price : Good → ℕ1
│---------
│dom stock ⊆ dom price
│---

Fig. 13.4 Specification of vending machine using bags

218 13 Z Formal Specification Language

specification. Schema composition is analogous to relational composition and
allows new schemas to be derived from existing schemas.

A schema name S1 may be included in the declaration part of another schema S2.
The effect of the inclusion is that the declarations in S1 are now part of S2 and the
predicates of S1 are S2 are joined together by conjunction. If the same variable is
defined in both S1 and S2, then it must be of the same type in both.

│-- S1---------- │-- S2----------
│x,y : ℕ │ S1 ; z : ℕ
│--------- │---------
│x + y > 2 │z = x + y
│------------ │------------

The result is that S2 includes the declarations and predicates of S1 (Fig. 13.5):
Two schemas may be linked by propositional connectives such as S1 ^ S2, S1 _

S2, S1) S2, and S1 , S2. The schema S1 _ S2 is formed by merging the
declaration parts of S1 and S2 and then combining their predicates by the logical _
operator. For example, S = S1 _ S2 yields as shown in Fig. 13.6.

Schema inclusion and the linking of schemas use normalization to convert
subtypes to maximal types, and predicates are employed to restrict the maximal
type to the subtype. This involves replacing declarations of variables (e.g. u: 1.35
with u:Z, and adding the predicate u > 0 and u < 36 to the predicate part). The Δ

and N conventions are used extensively, where the notation ΔTempMap is used in
the specification of schemas that involve a change of state.

DTempMap ¼ TempMap ^ TempMap’

The longer form of ΔTempMap is written as follows:

│--∆TempMap-----------------
│CityList, CityList’ : ℙ City
│ temp, temp’ : City↛Z
│---------
│dom temp = CityList
│dom temp’ = CityList’
│------------------------------------

The notation N TempMap is used in the specification of operations that do not
involve a change to the state.

│--Ξ TempMap-----------------
│∆TempMap
│------------
│CityList = CityList’
│ temp = temp’
│------------------------------------

13.7 Schemas and Schema Composition 219

Schema composition is analogous to relational composition, and it allows new
specifications to be built from existing ones. It allows the after state variables of one
schema to be related with the before variables of another schema. The composition
of two schemas S and T (S; T) is described in detail in [1] and involves 4 steps
(Table 13.1):

The example below should make schema composition clearer. Consider the
composition of S and T where S and T are defined as follows:

│-- S---------- │-- T----------
│x,x’,y? : ℕ │x,x’ : ℕ
│--------- │---------
│x’ = y? - 2 │x’ = x + 1
│------------ │------------

│-- S1---------- │-- T1----------
│x,x+,y? : ℕ │x+,x’ : ℕ
│--------- │---------
│ x+ = y? - 2 │x’ = x+ + 1
│------------ │------------

│-- S2----------
│ x,y : ℕ
│ z : ℕ
│---------
│ x + y > 2
│ z = x + y
│------------

Fig. 13.5 Schema inclusion

│-- S----------
│x,y : ℕ
│z : ℕ
│---------

│x + y > 2 ∨ z = x + y
│------------

Fig. 13.6 Merging schemas (S1 _ S2)

Table 13.1 Schema composition

Step Procedure

1. Rename all after state variables in S to something new: S [s+/s′]

2. Rename all before state variables in T to the same new thing, i.e. T [s+/s]

3. Form the conjunction of the two new schemas: S [s+/s′] ^ T [s+/s]

4. Hide the variable introduced in step 1 and 2. S; T = (S [s+/s′] ^ T [s+/s])\(s+)

220 13 Z Formal Specification Language

S1 and T1 represent the results of step 1 and step 2, with x′ renamed to x
+ in S,

and x renamed to x+ in T. Step 3 and step 4 yield as shown in Fig. 13.7.
Schema composition is useful as it allows new specifications to be created from

existing ones.

13.8 Reification and Decomposition

A Z specification involves defining the state of the system and then specifying the
required operations. The Z specification language employs many constructs that are
not part of conventional programming languages, and a Z specification is therefore
not directly executable on a computer. A programmer implements the formal
specification, and mathematical proof may be employed to prove that a program
meets its specification.

Often, there is a need to write an intermediate specification that is between the
original Z specification and the eventual program code. This intermediate specifi-
cation is more algorithmic and uses less abstract data types than the Z specification.
The intermediate specification needs to be correct with respect to the specification,
and the program needs to be correct with respect to the intermediate specification.
The intermediate specification is a refinement (reification) of the state of the
specification, and the operations of the specification have been decomposed into
those of the intermediate specification.

The representation of an abstract data type such as a set by a sequence is termed
data reification, and data reification is concerned with the process of transforming
an abstract data type into a concrete data type. The abstract and concrete data types
are related by the retrieve function, and the retrieve function maps the concrete data
type to the abstract data type. There are typically several possible concrete data
types for a particular abstract data type (i.e. refinement is a relation), whereas there
is one abstract data type for a concrete data type (i.e. retrieval is a function). For
example, sets are often refined to unique sequences; however, more than one unique
sequence can represent a set, whereas a unique sequence represents exactly one set.

The operations defined on the concrete data type are related to the operations
defined on the abstract data type. That is, the commuting diagram property is
required to hold (Fig. 13.8). That is, for an operation � on the concrete data type to

│-- S1 ∧T1---------- │--S ; T----------
│x,x+,x’,y? : ℕ │x, x’, y? : ℕ
│--------- │---------
│ x+ = y? – 2 │∃x+: ℕ ••
│x’ = x+ + 1 │ (x+ = y? – 2
│------------ │ x’ = x+ + 1)

│------------

Fig. 13.7 Schema composition

13.7 Schemas and Schema Composition 221

correctly model the operation 	 on the abstract data type, the commuting diagram
property must hold. That is, it is required to prove that:

retðr�sÞ ¼ ðret rÞ 	 ðret sÞ

In Z, the refinement and decomposition are done with schemas. It is required to
prove that the concrete schema is a valid refinement of the abstract schema, and this
gives rise to a number of proof obligations. It needs to be proved that the initial
states correspond to one another; that each operation in the concrete schema is
correct with respect to the operation in the abstract schema; and also that it is
applicable (i.e. whenever the abstract operation may be performed, the concrete
operation may also be performed).

13.9 Proof in Z

Mathematicians perform rigorous proof of theorems using technical and natural
language. Logicians employ formal proofs to prove theorems using propositional
and predicate calculus. Formal proofs generally involve a long chain of reasoning
with every step of the proof justified. Rigorous proofs involve precise reasoning
using a mixture of natural and mathematical language. Rigorous proofs [1] have
been described as being analogous to high-level programming languages, with
formal proofs analogous to machine language.

A mathematical proof includes natural language and mathematical symbols, and
often many of the tedious details of the proof are omitted. Many proofs in formal
methods such as Z are concerned with cross-checking on the details of the speci-
fication, or on the validity of the refinement step, or proofs that certain properties
are satisfied by the specification. There are often many tedious lemmas to be
proved, and tool support is essential as proof by hand often contains errors or jumps
in reasoning. Machine proofs are lengthy and largely unreadable; however, they
provide extra confidence as every step in the proof is justified. The proof of various
properties about the programs increases confidence in its correctness.

retr (σ),

retr (τ)
retr

(σ ⊡ τ)

(σ ⊡ τ)

retr(σ) ʘ retr(τ)

Fig. 13.8 Refinement commuting diagram

222 13 Z Formal Specification Language

13.10 Review Questions

1. Describe the main features of the Z specification language.
2. Explain the difference between ℙ1X, ℙX and FX.
3. Explain the three main parts of set comprehension in Z. Give examples.
4. Discuss the applications of Z. What problems have arisen?
5. Give examples to illustrate the use of domain and range restriction

operators and domain and range anti-restriction operators with relations
in Z.

6. Give examples to illustrate relational composition.
7. Explain the difference between a partial and total function, and give

examples to illustrate function override.
8. Give examples to illustrate the various operations on sequences including

concatenation, head, tail, map and reverse operations.
9. Give examples to illustrate the various operations on bags.

10. Discuss the nature of proof in Z and tools to support proof.
11. Explain the process of refining an abstract schema to a more concrete

representation, the proof obligations and the commuting diagram
property.

13.11 Summary

Z is a formal specification language that was developed in the early 1980s at Oxford
University in England. It has been employed in both industry and academia, and it
was used successfully on the IBM’s CICS project at Hursley. Its specifications are
mathematical, and this allows properties to be proved about the specification, and
any gaps or inconsistencies in the specification may be identified.

Z is a “and an explicit model” approach and an explicit model of the state of an
abstract machine is given, and the operations are defined in terms of their effect on
the state. Its main features include a mathematical notation that is similar to VDM
and the schema calculus. The latter consists essentially of boxes that are used to
describe operations and states.

The schemas are used as building blocks to form larger specifications, and they
are a powerful means of decomposing a specification into smaller pieces. This helps
with the readability of Z specifications, since each schema is small in size and
self-contained.

13.10 Review Questions 223

Z is a highly expressive specification language, and it includes notation for sets,
functions, relations, bags, sequences, predicate calculus, and schema calculus.
Z specifications are not directly executable, as many of its data types and constructs
are not part of modern programming languages. A programmer implements the
formal specification, and mathematical proof may be employed to prove that a
program meets its specification.

Often, there is a need to write an intermediate specification that is between the
original Z specification and the eventual program code. This intermediate specifi-
cation is more algorithmic and uses less abstract data types than the Z specification.
The intermediate specification needs to be correct with respect to the specification,
and the program needs to be correct with respect to the intermediate specification.
The intermediate specification is a refinement (reification) of the state of the
specification, and the operations of the specification have been decomposed into
those of the intermediate specification.

Therefore, there is a need to refine the Z specification into a more concrete
representation and prove that the refinement is valid. The refinement and decom-
position are done with schemas, and it is required to prove that the concrete schema
is a valid refinement of the abstract schema. This gives rise to a number of proof
obligations, and it needs to be shown that each operation in the concrete schema is
correct with respect to the operation in the abstract schema.

References

1. A. Diller, Z. An Introduction to Formal Methods (John Wiley and Sons, England, 1990)
2. G. O’Regan, Guide to Discrete Mathematics (Springer, 2016)

224 13 Z Formal Specification Language

14Unified Modelling Language

Abstract

This chapter presents the unified modelling language (UML), which is a visual

modelling language for software systems, and it is used to present several views

of the system architecture. It was developed at rational corporation as a notation

for modelling object-oriented systems. We present various UML diagrams such

as use case diagrams, sequence diagrams and activity diagrams.

Keywords

Use case diagrams �Classes and objects �Sequence diagrams �Activity diagrams �
State diagrams � Collaboration diagrams � Object constraint language � Rational

unified process

14.1 Introduction

The unified modelling language (UML) is a visual modelling language for software

systems. It was developed by Jim Rumbaugh, Grady Booch and Ivar Jacobson [1]

at rational corporation (now part of IBM), as a notation for modelling

object-oriented systems. It provides a visual means of specifying, constructing and

documenting object-oriented systems, and it facilitates the understanding of the

architecture of the system, and in managing the complexity of a large system.

The language was strongly influenced by three existing methods: the object

modelling technique (OMT) developed by Rumbaught, the Booch Method devel-

oped by Booch and object-oriented software engineering (OOSE) developed by

Jacobson. UML unifies and improves upon these methods, and it has become a

popular formal approach to modelling software systems.

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_14

225

Models provide a better understanding of the system to be developed, and a

UML model allows the system to be visualized prior to its implementation, and it

simplifies the underlying reality. Large complex systems are difficult to understand

in their entirety, and the use of a UML model is an aid to abstracting and simpli-

fying complexity. The choice of the model is fundamental, and a good model will

provide a good insight into the system. Models need to be explored and tested to

ensure their adequacy as a representation of the system. Models simplify the reality,

but it is important to ensure that the simplification does not exclude any important

details. The chosen model affects the view of the system, and different roles require

different viewpoints of the proposed system.

An architect will design a house prior to its construction, and the blueprints will

contain details of the plan of each room, as well as plans for electricity and plumbing.

That is, the plans for a house include floor plans, electrical plans and plumping plans.

These plans provide different viewpoints of the house to be constructed and are used to

provide estimates of the time and materials required to construct it.

A database developer will often focus on entity-relationship models, whereas a

systems analyst may focus on algorithmic models. An object-oriented developer will

focus on classes and on the interactions of classes. Often, there is a need to view the

system at different levels of detail, and no single model in itself is sufficient for this.

This leads to the development of a small number of interrelated models.

UML provides a formal model to the system, and it allows the same information

to be presented in several ways, and at different levels of detail. The requirements of

the system are expressed in terms of use cases; the design view captures the

problem space and solution space; the process view models the systems processes;

the implementation view addresses the implementation of the system, and the

deployment view models the physical deployment of the system.

There are several UML diagrams providing different viewpoints of the system,

and these provide the blueprint of the software.

14.2 Overview of UML

UML is an expressive graphical modelling language for visualizing, specifying,

constructing and documenting a software system. It provides several views of the

software’s architecture, and it has a clearly defined syntax and semantics. Each

stakeholder (e.g. project manager, developers and testers) has a different perspective

and looks at the system in different ways at different times during the project. UML

is a way to model the software system before implementing it in a programming

language.

A UML specification consists of precise, complete and unambiguous models.

The models may be employed to generate code in a programming language such as

Java or C++. The reverse is also possible, and so it is possible to work with either

the graphical notation of UML or the textual notation of a programming language.

UML expresses things that are best expressed graphically, whereas a programming

226 14 Unified Modelling Language

language expresses things that are best expressed textually, and tools are employed

to keep both views consistent. UML may be employed to document the software

system, and it has been employed in several domains including the banking sector,

defence and telecommunications.

The use of UML requires an understanding of its basic building blocks, the rules

for combining the building blocks and the common mechanisms that apply

throughout the language. There are three kinds of building blocks employed:

• Things

• Relationships

• Diagrams

Things are the object-oriented building blocks of the UML. They include

structural things, behavioural things, grouping things and annotational things

(Table 14.1). Structural things are the nouns of the UML models, behavioural

things are the dynamic parts and represent behaviour and their interactions over

time, grouping things are the organization parts of UML, and annotation things are

the explanatory parts. Things, relationships and diagrams are all described graph-

ically and are discussed in detail in [1].

Table 14.1 Classification of UML things

Thing Kind Description

Structural Class A class is a description of a set of objects that share the same

attributes and operations

Interface An interface is a collection of operations that specify a

service of a class or component. It specifies externally visible

behaviour of the element

Collaboration A collaboration defines an interaction between software

objects

Use case A use case is a set of actions that define the interaction

between an actor and the system to achieve a particular goal

Active class An active class is used to describe concurrent behaviour of a

system

Component A component is used to represent any part of a system for

which UML diagrams are made

Node A node is used to represent a physical part of the system (e.g.

server and network)

Behavioural Interaction These comprise interactions (message exchange between

components) expressed as sequence diagrams or

collaboration diagrams

State

machine

A state machine is used to describe different states of system

components

Grouping Packages These are the organization parts of UML models. A package

organizes elements into groups and is a way to organize a

UML model

Annotation These are the explanatory parts (notes) of UML

14.2 Overview of UML 227

There are four kinds of relationship in UML:

• Dependency

• Association

• Generalization

• Extensibility

Dependency is used to represent a relationship between two elements of a sys-

tem, in which a change to one thing affects the other thing (dependent thing).

Association describes how elements in the UML diagram are associated and

describes a set of connections among elements in a system. Aggregation is an

association that represents a structural relationship between a whole and its parts.

A generalization is a parent–child relationship in which the objects of the spe-

cialized element (child) are substituted for objects of the generalized element (the

parent). Extensibility refers to a mechanism to extend the power of the language to

represent extra behaviour of the system. Next, we describe the key UML diagrams.

14.3 UML Diagrams

The UML diagrams provide a graphical visualization of the system from different

viewpoints, and we present several key UML diagrams in Table 14.2.

Table 14.2 UML diagrams

Diagram Description

Class A class is a key building block of any objected-oriented system. The class

diagram shows the classes, their attributes and operations, and the

relationships between them

Object This shows a set of objects and their relationships. An object diagram is an

instance of a class diagram

Use case These show the actors in the system and the different functions that they

require from the system

Sequence These diagrams show how objects interact with each other, and the order in

which the interactions occur

Collaboration This is an interaction diagram that emphasizes the structural organization of

objects that send and receive messages

State chart These describe the behaviour of objects that act differently according to the

state that they are in

Activity This diagram is used to illustrate the flow of control in a system (it is similar

to a flow chart)

Component This diagram shows the structural relationship of components of a software

system and their relationships/interfaces

Deployment This diagram is used for visualizing the deployment view of a system and

shows the hardware of the system and the software on the hardware

228 14 Unified Modelling Language

The concept of class and objects are taken from object-oriented design, and classes

are the most important building block of any object-oriented system. A class is a set of

objects that share the same attributes, operations, relationships and semantics [1].

Classesmay represent software things and hardware things. For example, walls, doors

and windows are all classes, whereas individual doors and windows are objects.

A class represents a set of objects rather than an individual object.

Automated bank teller machines (ATMs) include two key classes: Customers and

Accounts. The class definition includes both the data structure for Customers and

Accounts, and the operations on Customers and Accounts. These include operations

to add or remove a Customer, operations to debit or credit an Account, or to transfer

from one Account to another. There are several instances of Customers and

Accounts, and these are the actual Customers of the bank and their Accounts.

Every class has a name (e.g. Customer and Account) to distinguish it from other

classes. There will generally be several objects associated with the class. The class

diagram describes the name of the class, its attributes and its operations. An

attribute represents some property of the class that is shared by all objects; for

example, the attributes of the class “Customer” are name and address. Attributes are

listed below the class name, and the operations are listed below the attributes. The

operations may be applied to any object in the class. The responsibilities of a class

may also be included in the definition (Table 14.3).

Class diagrams typically include various relationships between classes. In

practice, very few classes are stand alone, and most collaborate with others in

various ways. The relationship between classes needs to be considered, and these

provide different ways of combining classes to form new classes. The relationships

include dependencies (a change to one thing affects the dependent thing), gener-

alizations (these link generalized classes to their specializations in a

subclass/superclass relationship) and associations (these represent structural rela-

tionships among objects).

A dependency is a relationship that states that a change in the specification of

one thing affects the dependent thing. It is indicated by a dashed line (—— >).

Generalizations allow a child class to be created from one or more parent classes

(single inheritance or multiple inheritance). A class that has no parents is termed a

base class (e.g. consider the base class Shape with three children: Rectangle, Circle

and Polygon, and where Rectangle has one child namely Square). Generalization is

indicated by a solid directed line that points to the parent (——►). Association is a

Table 14.3 Simple class

diagram
Customer Account

Name: String

Address: String

Balance:Real

Type:String

Add()

Remove()

Debit()

Credit()

CheckBal()

Transfer()

14.3 UML Diagrams 229

structural relationship that specifies that objects of one thing are connected to

objects of another thing. It is indicated by a solid line connecting the same or

different classes.

The object diagram (Fig. 14.1) shows a set of objects and their relationships at a

point of time. It is related to the class diagram in that the object is an instance of the

class. The ATM example above had two classes (Customers and Accounts), and the

objects of these classes are the actual Customers and their corresponding Accounts.

Each Customer may have several Accounts, and the names and addresses of the

Customers are detailed as well as the corresponding balance in the Customer’s

Accounts. There is one instance of the Customer class and two instances of the

Account class in this example.

An object has a state that has a given value at each time instance. Operations on

the object will typically (with the exception of query operations) change its state.

An object diagram contains objects and links to other objects and gives a snapshot

of the system at a particular moment of time.

A use case diagram models the dynamic aspects of the system, and it shows a set

of use cases and actors and their relationships. It describes scenarios (or sequences

of actions) in the system from the user’s viewpoint (actor) and shows how the actor

interacts with the system. An actor represents the set of roles that a user can play,

and the actor may be human or an automated system. Actors are connected to use

cases by association, and they may communicate by sending and receiving

messages.

A use case diagram shows a set of use cases, with each use case representing a

functional requirement. Use cases are employed to model the visible services that

the system provides within the context of its environment, and for specifying the

requirements of the system as a black box. Each use case carries out some work that

is of value to the actor, and the behaviour of the use case is described by the flow of

events in text. The description includes the main flow of events for the use case and

the exceptional flow of events. These flows may also be represented graphically.

There may also be alternate flows and the main flow of the use case. Each sequence

is termed a scenario, and a scenario is one instance of a use case.

Use cases provide a way for the end-users and developers to share a common

understanding of the system. They may be applied to all or part of the system

(subsystem), and the use cases are the basis for development and testing. A use case

is represented graphically by an ellipse. The benefits of use cases include:

Customer (J.Bloggs)

Name = “J.Bloggs”
Address= “Mallow”

Customer (J.Bloggs)

Name = “J.Bloggs”
Address= “Mallow”

Customer (J.Bloggs)Customer (J.Bloggs)Customer (J.Bloggs)

Name = “J.Bloggs”
Address= “Mallow”
Name = “J.Bloggs”
Address= “Mallow”
Name = “J.Bloggs”
Address= “Mallow”

Account (J.Bloggs

personal account)

Account (J.Bloggs

personal account)

Balance=1,000
Type= “Saving”

Balance=500
Type= “Current”

Account (J.Bloggs

personal account)

Account (J.Bloggs

personal account)

Balance=1,000
Type= “Saving”

Balance=500
Type= “Current”

Account (J.Bloggs

personal account)

Account (J.Bloggs

personal account)

Account (J.Bloggs

personal account)

Account (J.Bloggs

personal account)

Account (J.Bloggs

personal account)

Account (J.Bloggs

personal account)

Balance=1,000
Type= “Saving”
Balance=1,000
Type= “Saving”
Balance=1,000
Type= “Saving”

Balance=500
Type= “Current”
Balance=500
Type= “Current”
Balance=500
Type= “Current”

Fig. 14.1 Simple object

diagram

230 14 Unified Modelling Language

• Enables the stakeholders (e.g. domain experts, developers, testers and end-users)

to share a common understanding of the functional requirements.

• Models the requirements (specifies what the system should do).

• Models the context of a system (identifies actors and their roles)

• May be used for development and testing.

Figure 14.2 presents a simple example of the definition of the use cases for an

ATM application. The typical user operations at an ATM machine include the

balance enquiry operation, cash withdrawal and the transfer of funds from one

Account to another. The actors for the system include “Customer” and “admin,”

and these actors have different needs and expectations of the system.

The behaviour from the user’s viewpoint is described, and the use cases include

“withdraw cash,” “balance enquiry,” “transfer” and “maintain/reports.” The use

case view includes the actors who are performing the sequence of actions.

The next UML diagram considered is the sequence diagram which models the

dynamic aspects of the system and shows the interaction between objects/classes in

the system for each use case. The interactions model the flow of control that

characterizes the behaviour of the system, and the objects that play a role in the

interaction are identified. A sequence diagram emphasizes the time ordering of

messages, and the interactions may include messages that are dispatched from

object to object, with the messages ordered in sequence by time.

The example in Fig. 14.3 considers the sequences of interactions between

objects for the “Balance Enquiry” use case. This sequence diagram is specific to the

case of a valid balance enquiry, and a sequence diagram is also needed to handle the

exception cases.

The behaviour of the “balance enquiry” operation is evident from the diagram.

The Customer inserts the card into the ATM machine, and the PIN number is

requested by the ATM. The Customer then enters the number, and the ATM

Fig. 14.2 Use case diagram of ATM machine

14.3 UML Diagrams 231

machine contacts the bank for verification of the number. The bank confirms the

validity of the number, and the Customer then selects the balance enquiry operation.

The ATM contacts the bank to request the balance of the particular Account, and

the bank sends the details to the ATM machine. The balance is displayed on the

screen of the ATM machine. The Customer then withdraws the card. The actual

sequence of interactions is evident from the sequence diagram.

The example above has four objects (Customer, ATM, Bank and Account), and

these are laid out from left to right at the top of the sequence diagram. Collaboration

diagrams are interaction diagrams that consist of objects and their relationships.

However, while sequence diagrams emphasize the time ordering of messages, a

collaboration diagram emphasizes the structural organization of the objects that

send and receive messages. Sequence diagrams and collaboration diagrams may be

converted to the other without loss of information. Collaboration diagrams are

described in more detail in [1].

The activity diagram is considered in Fig. 14.4, and this diagram is essentially a

flow chart showing the flow of control from one activity to another. It is used to

model the dynamic aspects of a system, and this involves modelling the sequential

and possibly concurrent steps in a computational process. It is different from a

sequence diagram in that it shows the flow from activity to activity, whereas a

sequence diagram shows the flow from object to object.

State diagrams (also known as state machine diagrams or state charts) show the

dynamic behaviour of a class and how an object behaves differently depending on

the state that it is in. There is an initial state and a final state, and the operation

generally results in a change of state, with the operations resulting in different states

being entered and exited. A state diagram is an enhanced version of a finite state

machine (as discussed in Chap. 12) Fig. 14.5.

Fig. 14.3 UML sequence diagram for balance enquiry

232 14 Unified Modelling Language

http://dx.doi.org/10.1007/978-3-319-57750-0_12

There are several other UML diagrams including component and deployment

diagrams. The reader is referred to [1].

Advantages of UML UML offers a rich notation to model software systems and to

understand the proposed system from different viewpoints. Its main advantages are

shown in Table 14.4.

Fig. 14.4 UML activity

diagram

Insert

Welcome Validation Display

Error

valid

invalid balance

withdraw

Display

Process

Return card

end

end

Card removed

Fig. 14.5 UML state diagram

14.3 UML Diagrams 233

14.4 Object Constraint Language

The object constraint language (OCL) is a declarative language that provides a

precise way of describing rules (or expressing constraints) on the UML models.

OCL was originally developed as a business modelling language by Jos Warmer at

IBM, and it was developed further by the Object Management Group (OMG), as

part of a formal specification language extension to UML. It was initially used as

part of UML, but it is now used independently of UML.

OCL is a pure expression language, i.e., there are no side effects as in imperative

programming languages, and the OCL expressions can be used in various places in

the UML model including:

• Specify the initial value of an attribute.

• Specify the body of an operation.

• Specify a condition.

There are several types of OCL constraints including are shown in Table 14.5.

There are various tools available to support OCL, and these include OCL

compilers (or checkers) that provide syntax and consistency checking of the OCL

constraints, and the USE specification environment is based on UML/OCL.

Table 14.4 Advantages of

UML
Advantages of UML

Visual modelling language with a rich expressive notation

Mechanism to manage complexity of a large system

Enables the proposed system to be studied before

implementation

Visualization of architecture design of the system

It provides different views of the system

Visualization of system from different viewpoints

Use cases allow the description of typical user behaviour

Better understanding of implications of user behaviour

Use cases provide a mechanism to communicate the proposed

behaviour of the software system

Use cases are the basis of development and testing

234 14 Unified Modelling Language

14.5 Tools for UML

There are many tools that support UML (mainly developed by IBM/Rational), and a

small selection is listed in Table 14.6.

14.6 Rational Unified Process

Software projects need a well-structured software development process to achieve

their objectives, and the Rational Unified Development Software Process (RUP) [2]

is a way to mitigate risk in software development projects. RUP and UML are often

used together, and RUP is

• Use case driven

• Architecture centric

• Iterative and incremental

Table 14.5 OCL constraints

OCL

constraint

Description

Invariant A condition that must always be true. An invariant may be placed on an attribute

in a class, and this has the effect of restricting the value of the attribute. All

instances of the class are required to satisfy the invariant. An invariant is a

predicate and is introduced after the keyword inv

Precondition A condition that must be true before the operation is executed. A precondition is

a predicate and is introduced after the keyword pre

Postcondition A condition that must be true when the operation has just completed execution.

A post-condition is a predicate and is introduced after the keyword post

Guard A condition that must be true before the state transition occurs

Table 14.6 UML tools

Tool Description

Requisite pro Requirements and use case management tool. It provides

requirements management and traceability

Rational software

modeller (RSM)

Visual modelling and design tool that is used by systems

architects/systems analysts to communicate processes, flows and

designs

Rational software

architect (RSA)

RSA is a tool that enables good architectures to be created

ClearCase/ClearQuest These are configuration management/change control tools that are

used to manage change in the project

14.5 Tools for UML 235

It includes iterations, phases, workflows, risk mitigation, quality control, project

management and configuration control. Software projects may be complex, and

there are risks that requirements may be missed in the process, or that the inter-

pretation of a requirement may differ between the Customer and developer. RUP

gathers requirements as use cases, which describe the functional requirements from

the point of view of the users of the system.

The use case model describes what the system will do at a high level, and there is

a focus on the users in defining the scope the project. Use cases drive the devel-

opment process, and the developers create a series of design and implementation

models that realize the use cases. The developers review each successive model for

conformance to the use case model. The testers verify that the implementation

model correctly implements the use cases.

The software architecture concept embodies the most significant static and

dynamic aspects of the system. The architecture grows out of the use cases and

factors such as the platform that the software is to run on, deployment considera-

tions, legacy systems and non-functional requirements.

A commercial software product is a large undertaking, and the work is

decomposed into smaller slices or mini-projects, where each mini-project is a

manageable chunk. Each mini-project is an iteration that results in an increment to

the product (Fig. 14.6).

Iterations refer to the steps in the workflow, and an increment leads to the growth

of the product. If the developers need to repeat the iteration, then the organization

loses only the misdirected effort of a single iteration, rather than the entire product.

Therefore, the unified process is a way to reduce risk in software engineering. The

early iterations implement the areas of greatest risk to the project.

RUP consists of four phases, and these are inception, elaboration, construction

and transition (Fig. 14.7). Each phase consists of one or more iterations, where each

iteration consists of several workflows. The workflows may be requirements,

Fig. 14.6 Iteration in rational unified process

236 14 Unified Modelling Language

analysis, design, implementation and test. Each phase terminates in a milestone

with one or more project deliverables.

The inception identifies and prioritizes the most important project risks, and it is

concerned with initial project planning, cost estimation and early work on the

architecture and functional requirements for the product. The elaboration phase

specifies most of the use cases in detail. The construction phase is concerned with

building the product and implements all agreed use cases. The transition phase

covers the period during which the product moves into the Customer site and

includes activities such as training Customer personnel, providing helpline assis-

tance and correcting defects found after delivery.

The waterfall lifecycle has the disadvantage that the risk is greater towards the

end of the project, where it is costly to undo mistakes from earlier phases. The

iterative process develops an increment (i.e. a subset of the system functionality

with the waterfall steps applied in the iteration), then another, and so on, and avoids

developing the whole system in one step as in the waterfall methodology. That is,

the RUP approach is a way to mitigate risk in software development projects.

14.7 Review Questions

1. What is UML? Explain its main features.

2. Explain the difference between an object and a class.

3. Describe the various UML diagrams.

4. What are the advantages and disadvantages of UML?

5. What is the Rational Unified Process?

6. Describe the workflows in a typical iteration of RUP.

7. Describe the phases in the Rational Unified Process.

Fig. 14.7 Phases and workflows in rational unified process

14.6 Rational Unified Process 237

8. Describe OCL and explain how it is used with UML.

9. Investigate and describe tools to support UML.

14.8 Summary

The unified modelling language is a visual modelling language for software sys-

tems, and it facilitates the understanding of the architecture, and management of the

complexity of large systems. It was developed by Rumbaugh, Booch and Jacobson

as a notation for modelling object-oriented systems and it provides a visual means

of specifying, constructing and documenting such systems. It facilitates the

understanding of the architecture of the system and in managing its complexity.

UML allows the same information to be presented in several different ways and

at different levels of detail. The requirements of the system are expressed in use

cases, and other views include the design view that captures the problem space and

solution space, the process view which models the systems processes, the imple-

mentation view and the deployment view.

The UML diagrams provide different viewpoints of the system and provide the

blueprint of the software. These include class and object diagrams, use case dia-

grams, sequence diagrams, collaboration diagrams, activity diagrams, state charts,

collaboration diagrams and deployment diagrams.

The OCL is an expression language, and the OCL expressions may be used in

various places in a UML model to specify the initial value of an attribute, the body

of an operation or a condition.

RUP consists of four phases, and these are inception, elaboration, construction

and transition. Each phase consists of one or more iterations, and the iteration

consists of several workflows. The workflows may be requirements, analysis,

design, implementation and test. Each phase terminates in a milestone with one or

more project deliverables. The RUP approach is a way to mitigate risk in software

development project.

References

1. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Software Modelling Language User

Guide (Addison-Wesley, New York, 1999)

2. J. Rumbaugh et al., The Unified Software Development Process (Addison Wesley, New York,

1999)

238 14 Unified Modelling Language

15Software Process Improvement

Abstract

This chapter discusses software process improvement. It begins with a

discussion of a software process and discusses the benefits that may be gained

from a software process improvement initiative. Various models that support

software process improvement are discussed, and these include the Capability

Maturity Model Integration (CMMI), ISO 9000, Personal Software Process

(PSP) and Team Software Process (TSP).

Keywords

Software process � Software process improvement � Process mapping � Benefits

of software process improvement � CMMI � ISO/IEC 15504 (SPICE) � ISO

9000 � PSP and TSP � Root cause analysis � Six sigma

15.1 Introduction

The success of business today is highly influenced by the functionality and quality

of the software that it uses. It is essential that the software is safe, reliable, of a high

quality and fit for purpose. Companies may develop their own software internally,

or they may acquire software solutions off-the-shelf or from bespoke software

development. Software development companies need to deliver high-quality and

reliable software consistently on time to their customers.

Cost is a key driver in most organizations, and it is essential that software is

produced as cheaply and efficiently as possible, and that waste is reduced or

eliminated in the software development process. In a nutshell, companies need to

produce software that is better, faster and cheaper than their competitors in order to

survive in the marketplace. Another words, companies need to continuously work

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_15

239

smarter to improve their businesses, and to deliver superior solutions to their

customers.

Software process improvement initiatives are aligned to business goals and play

a key role in helping companies achieve their strategic goals. It is invaluable in the

implementation of best practice in organizations and allows companies to focus on

fire prevention rather than firefighting. It allows companies to problem solve key

issues to eliminate quality problems, and to critically examine their current pro-

cesses to determine the extent to which they meet its needs, as well as identifying

how the processes may be improved and identifying where waste can be minimized

or eliminated.

It allows companies to identify the root causes of problems (e.g. using the five

why tool) and to determine appropriate solutions to the problems. The benefits of

successful process improvement include the consistent delivery of high-quality

software, improved financial results and increased customer satisfaction.

Software process improvement initiatives lead to a focus on the process and on

ways to improve it. Many problems are caused by a defective process rather than

people, and a focus on the process helps to avoid the blame culture that arises when

blame is apportioned to individuals rather than the process. The focus on the

process leads to a culture of openness in discussing problems and their solutions,

and in instilling process ownership among the process practitioners.

Software process improvement (SPI) allows companies to mature their software

engineering processes and to achieve their business goals more effectively. It helps

software companies to improve performance and to deliver high-quality software on

time and on budget, as well, reducing the cost of development and improving

customer satisfaction. It has become an indispensable tool for software engineers

and managers to achieve their goals, and it provides a return on investment to the

organization.

15.2 What Is a Software Process?

A software development process is the process used by software engineers to design

and develop computer software. It may be an undocumented ad hoc process as

devised by the team for a particular project, or it may be a standardized and

documented process used by various teams on similar projects. The process is seen

as the glue that ties people, technology and procedures coherently together.

The processes employed in software development include processes to deter-

mine the requirements, processes for the design and development of the software,

processes to verify that the software is fit for purpose and processes to maintain the

software.

A software process is a set of activities, methods, practices and transformations

that people use to develop and maintain software and the associated work products.

240 15 Software Process Improvement

Definition 15.1 (Software Process)

A process is a set of practices or tasks performed to achieve a given purpose. It may

include tools, methods, material and people.

An organization will typically have many processes in place for doing its work,

and the objective of process improvement is to improve these to meet business

goals more effectively.

The Software Engineering Institute (SEI) believes that there is a close relationship

between the quality of the delivered software and the quality and maturity of the

underlying processes employed to create the software. The SEI adopted and applied

the principles of process improvement used in the manufacturing field to develop

process maturity models such as the Capability Maturity Model (CMM) and its

successor the CapabilityMaturityModel Integration (CMMI). Thesematuritymodels

are invaluable inmaturing the software processes in software-intensive organizations.

The process is an abstraction of the way in which work is done in the organi-

zation, and it is seen as the glue (Fig. 15.1) that ties people, procedures and tools

together.

A process is often represented by a process map which details the flow of

activities and tasks. The process map will typically include the inputs to each

activity and the output from an activity. Often, the output from one activity will

become an input to the next activity. A simple example of a process map for

creating the system requirements specification is described in Fig. 15.2. The input

to the activity to create the system requirements specification will typically be the

business (user) requirements, whereas the output is the system requirements

specification document itself.

Process

Procedures

People Technology

Standards

Procedures

Checklists

Fig. 15.1 Process as glue for people, procedures and tools

15.2 What Is a Software Process? 241

As a process matures, it is defined in more detail and documented. It will have

clearly defined entry and exit criteria, inputs and outputs, an explicit description of

the tasks, verification of the process and consistent implementation throughout the

organization.

15.3 What Is Software Process Improvement?

The origins of the software process improvement field go back to Walter She-

whart’s work on statistical process control in the 1930s. Shewhart’s work was later

refined by Deming and Juran, and they argued that high-quality processes are

essential to the delivery of a high-quality product. Deming and Juran argued that the

quality of the end product is largely determined by the processes used to produce

and support, and that therefore there needs to be an emphasis on the process as well

as on the product.

These quality gurus argued that product quality will improve as variability in

process performance is reduced [1], and their approach was effective in trans-

forming manufacturing companies with quality problems to companies that would

consistently deliver high-quality products. Further, the improvements to quality led

to cost reductions and higher productivity, as less time was spent in reworking

defective products.

The work of Deming and Juran was later applied to the software quality field by

Watts Humphrey and others at the SEI leading to the birth of the software process

improvement field. Software process improvement is concerned with practical

action to improve the software processes in the organization to improve perfor-

mance, and to ensure that business goals are achieved more effectively. For

example, the business goals may be to deliver projects faster with higher quality.

Definition 15.2 (Software Process Improvement)

A program of activities is designed to improve the performance and maturity of the

organization’s software processes and the results of such a program.

Software process improvement initiatives (Fig. 15.3) support the organization in

achieving its key business goals more effectively, where the business goals could be

delivering software faster to the market, improving quality and reducing or elimi-

nating waste. The objective is to work smarter and to build software better, faster

and cheaper than competitors. Software process improvement makes business

sense, and it provides a return on investment.

Create System

Requirements
Business

Requirements

System

Requirements

Specification

Fig. 15.2 Sample process map

242 15 Software Process Improvement

There are international standards and models available to support software

process improvement. These include the CMMI model, the ISO 90001 standard and

ISO 15504 (popularly known as SPICE). The SEI developed the CMMI model, and

it includes best practice for processes in software and systems engineering. The ISO

9001 standard is a quality management system that may be employed in hardware,

software development or service companies. The ISO 15504 standard is an inter-

national standard for software process improvement and process assessment, and it

is popular in the automotive sector.

Software process improvement is concerned with defining the right processes

and following them consistently. It involves training all staff on the new processes,

refining the processes and continuously improving the processes. The need for a

process improvement initiative often arises due to the realization that the organi-

zation is weak in some areas in software engineering, and that it needs to improve to

achieve its business goals more effectively. The starting point of any improvement

initiative is an examination of the business needs of the organization, and these may

include goals such as delivering high-quality products on time or delivering

products faster to the market.

15.4 Benefits of Software Process Improvement

It is a challenge to deliver high-quality software consistently on time and on budget.

There are problems with budget and schedule overruns, late delivery of the soft-

ware, spiralling costs, quality problems with the delivered software, customer

complaints and staff morale.

Fig. 15.3 Steps in process improvement

15.3 What Is Software Process Improvement? 243

Software process improvement can assist in dealing with these problems. There

are costs involved, but it provides a return on the investment made. Specifically, the

benefits from software process improvement include as follows:

– Improvements to quality

– Reductions in the cost of poor quality

– Improvements in productivity

– Reductions to the cost of software development

– Improvements in on-time delivery

– Improved consistency in budget and schedule delivery

– Improvements to customer satisfaction

– Improvements to employee morale

The SEI maintains data on the benefits that organizations have achieved from

using the CMMI. These include improvements in several categories such as cost,

schedule, productivity, quality, customer satisfaction and the return on investment.

Table 15.1 presents results in software process improvement collaborations of

twenty-five organizations taken from conference presentations, published papers

and individual [2].

For example, Northrop Grumman Defense Systems met every milestone (25 in a

row) with high quality and customer satisfaction; Lockheed Martin reported an 80%

increase in software productivity over a five-year period when it achieved CMM

level 5 and obtained further increases in productivity as it moved to CMMI level 5.

Siemens (India) reported an improved defect removal rate from over 50% before

testing to over 70% before testing and a post-release defect rate of 0.35 defects per

KLOC. Accenture reported a 5:1 return on investment from software process

improvement activities.

15.5 Software Process Improvement Models

A process model1 such as the CMMI defines best practice for software processes in

an organization. It describes what the processes should do rather than how they

should be done, and this allows the organization to use its professional judgment in

the implementation of processes to meet its needs. The process model will need to

be interpreted and tailored to the particular organization.

A process model provides a place to start an improvement initiative, and it

provides a common language and shared vision for improvement. It provides a

framework to prioritize actions and it allows the benefits of the experience of other

organizations to be shared. The popular process models used in software process

improvement include as follows:

1There is the well-known adage “All models are wrong, some are useful”.

244 15 Software Process Improvement

– Capability Maturity Model Integration (CMMI)

– ISO 9001 Standard

– ISO 15504

– PSP and TSP

– Six sigma

– Root cause analysis (RCA)

– Balanced score card

The CMMI was developed by the SEI, and it is the successor to the older

software CMM which was released in the early 1990s. The latter is specific to the

software field, and it was influenced by Watts Humphrey’s work at IBM [3].

The CMMI is a suite of products used for improving processes, and it includes

models, appraisal methods and training material. The CMMI models address three

areas of interest:

– CMMI for Development (CMMI-DEV)

– CMMI for Services (CMMI-SVC)

– CMMI for Acquisition (CMMI-ACQ)

The CMMI Development Model is discussed in Chap. 16, and it provides a

structured approach to improvement, which allows the organization to set its

improvement goals and priorities. The CMMI framework allows organizations to

improve their maturity by improvements to their underlying processes. It provides a

clearly defined road map for improvement, and it allows the organization to

improve at its own pace. Its approach is evolutionary rather than revolutionary, and

it recognizes that a balance is required between project needs and process

improvement needs. It allows the processes to evolve from ad hoc immature

activities to disciplined mature processes.

The CMMI practices may be used for the development, acquisition and main-

tenance of products and services. A SCAMPI appraisal determines the actual

process maturity of an organization, and a SCAMPI class A appraisal allows the

organization to benchmark itself against other organizations.

ISO 9001 is an internationally recognized quality management standard

(Fig. 15.4), and it is customer and process focused. It applies to the processes that

an organization uses to create and control products and services, and it emphasizes

Table 15.1 Benefits of

software process

improvement (CMMI)

Improvements Median #Data points Low High

Cost 20% 21 3% 87%

Schedule 37% 19 2% 90%

Productivity 62% 17 9% 255%

Quality 50% 20 7% 132%

Customer satisfaction 14% 6 −4% 55%

ROI 4.7:1 16 2:1 27:1

15.5 Software Process Improvement Models 245

http://dx.doi.org/10.1007/978-3-319-57750-0_16

continuous improvement.2 The standard is designed to apply to any product or

service that an organization supplies.

The implementation of ISO 9001 involves understanding the requirements of the

standard and how the standard applies to the organization. It requires the organi-

zation to identify its quality objectives, define a quality policy, produce documented

procedures and carry out independent audits to ensure that the processes and pro-

cedures are followed. An organization may be certified against the ISO 9001

standard to gain recognition on its commitment to quality and continuous

improvement. The certification involves an independent assessment of the organi-

zation to verify that it has implemented the ISO 9001 requirements properly, and

that the quality management system is effective. It will also verify that the processes

and procedures defined are consistently followed and that appropriate records are

maintained. The ISO 9004 standard provides guidance for continuous

improvement.

The ISO/IEC 15504 standard (popularly known as ISO SPICE) is an interna-

tional standard for process assessment. It includes guidance for process improve-

ment and for process capability determination, as well as for performing an

assessment. It uses the international standard for software and systems lifecycle

processes (ISO/IEC 12207) as its process model.

The ISO 12207 standard distinguishes between several categories of software

processes including the primary lifecycle processes for developing and maintaining

software, supporting processes to support the software development lifecycle and

organizing lifecycle processes. There is a version of SPICE termed “Automotive

SPICE” that is popular in the automotive sector. ISO/IEC 15504 can be used in a

similar way to the CMMI, and its process model (i.e. ISO 12207) may be employed

Fig. 15.4 ISO 9001 quality management system

2The ISO 9004 standard provides guidance on continuous improvement.

246 15 Software Process Improvement

to implement best practice in the definition of processes. Assessments may be

performed to identify strengths and opportunities for improvement.

The Personal Software Process (PSP) is a disciplined data-driven software

development process that is designed to help software engineers understand and to

improve their PSP performance. It was developed by Watts Humphrey at the SEI,

and it helps engineers to improve their estimation and planning skills and to reduce

the number of defects in their work. This enables them to make commitments that

they can keep and to manage the quality of their projects.

The Team Software Process (TSP) was developed by Watts Humphrey at the

SEI and is a structured approach designed to help software teams understand and

improve their quality and productivity. Its focus is on building an effective software

development team, and it involves establishing team goals, assigning team roles as

well as other teamwork activities. Team members must already be familiar with the

PSP.

Six sigma (6r) was developed by Motorola as a way to improve quality and

reduce waste. Its approach is to identify and remove the causes of defects in

processes by reducing process variability. It uses quality management techniques

and tools such as the five whys, business process mapping, statistical techniques,

and the DMAIC and DMADV methodologies. There are several roles involved in

six sigma initiatives such as Champions, Black Belts and Green Belts, and each role

requires knowledge and experience, and is awarded on merit subject to training and

certification. Sponsorship and leadership are required from top management to

ensure the success of a 6r initiative, and 6r was influenced by earlier quality

management techniques developed by Shewhart, Deming and Juran. A 6r project

follows a defined sequence of steps and has quantified targets (e.g. financial,

quality, customer satisfaction and cycle time reduction).

15.6 Process Mapping

The starting point for improving a process is first to understand the process as it is

currently performed and to determine the extent to which it is effective. The process

stakeholders reach a common understanding of how the process is actually per-

formed, and the process (as currently performed) is then sketched pictorially, with

the activities and their inputs and outputs recorded graphically. This graphical

representation is termed as “process map,” and is an abstract description of the

process “as is.”

The process map is an abstraction of the way that work is done, and it may be

critically examined to determine how effective it really is and to identify weak-

nesses and potential improvements. This critical examination by the process

practitioners leads to modifications to its definition, and the proposed definition is

sketched in a new process map to yield the process “to be.”

15.5 Software Process Improvement Models 247

Each activity has an input and an output, and these are recorded in the process

map. Once the team has agreed the definition of new process, the supporting

templates required become clear from an examination of the input and output of the

various activities. There may be a need for standards to support the process (e.g.

procedures and templates), and the procedures or guidelines will be documented to

provide the details on how the process is to be carried out, and they will detail the

tasks and activities, and the roles required to perform them.

15.7 Process Improvement Initiatives

The need for a software process improvement initiative often arises from the

realization that the organization is weak in some areas in software engineering, and

that it needs to improve to achieve its business goals more effectively. The starting

point of any improvement initiative is an examination of the business goals of the

organization, and these may include as follows:

– Delivering high-quality products on time

– Delivering products faster to the market

– Reducing the cost of software development

– Improving software quality

There is more than one approach to the implementation of an improvement

programme. A small organization has fewer resources available, and team members

involved in the initiative will typically be working part-time. Larger organizations

may be able to assign people full time on the improvement activities. The software

process improvement initiative is designed to enable the organization achieve its

business goals more effectively.

Once the organization goals have been defined, the improvement initiative

commences. This involves conducting an appraisal (Fig. 15.6) to determine the

current strengths and weaknesses of the processes, analysing the results to for-

mulate a process improvement plan, implementing the plan, piloting the improved

processes and verifying that they are effective, training staff and rolling out the new

processes. The improvements are monitored for effectiveness and the cycle repeats.

The software process improvement philosophy is as follows:

• The improvement initiative is based on business needs.

• Improvements should be planned based on the strengths and weaknesses of the

processes in the organization.

• The CMMI model (or an alternate model) is the vehicle for improvement.

• The improvements are prioritized (it is not possible to do everything at once).

• The improvement initiative needs to be planned and managed as a project.

• The results achieved need to be reviewed at the end of the period, and a new

improvement cycle started for continuous improvement

248 15 Software Process Improvement

• Software process improvement requires people to change their behaviour, and

so organization culture (and training) needs to be considered.

• There needs to be a process champion/project manager to drive the process

improvement initiative in the organization.

• Senior management need to be 100% committed to the success of the initiative.

• Staff need to be involved in the improvement initiative, and there needs to be a

balance between project needs and the improvement activities.

15.8 Barriers to Success

Software process improvement initiatives are not always successful and occasion-

ally are abandoned. Some of the reasons for failure are as follows:

– Unrealistic expectations

– Trying to do too much at once

– Lack of senior management sponsorship

– Focusing on a maturity level

– Poor project management of the initiative

– Not run as a standard project

– Insufficient involvement of staff

– Insufficient time to work on improvements

– Inadequate training on software process improvement

– Lack of pilots to validate new processes

– Inadequate training/roll-out of new processes

It is essential that a software process improvement initiative be treated as a

standard project with a project manager assigned to manage the initiative. Senior

management need to be 100% committed to the success of the initiative, and they

need to make staff available to work on the improvement activities. It needs to be

clear to all staff that the improvement initiative is a priority to the organization. All

employees need to receive appropriate training on software process improvement

and on the process maturity model.

The CMMI project manager needs to consider the risks of failure of the initiative

and to manage them accordingly.

15.9 Setting Up an Improvement Initiative

The implementation of an improvement initiative is a project, and it needs good

planning and management to ensure its success. Once an organization makes a

decision to embark on such an initiative, a project manager needs to be appointed to

15.7 Process Improvement Initiatives 249

manage the project. The project manager will treat the implementation as a standard

project, and plans are made to implement the initiative within the approved

schedule and budget. The improvement initiative will often consist of several

improvement cycles, with each improvement cycle implementing one or more

process areas. Small improvement cycles may be employed to implement findings

from an appraisal or improvement suggestions from staff.

One of the earliest activities carried out on any improvement initiative is to

determine the current maturity of the organization with respect to the model. This

will usually involve an appraisal conducted by one or more experienced appraisers.

The findings will indicate the current strengths and weaknesses of the processes, as

well as gaps with respect to the practices in the model. This initial appraisal is

important, as it allows management in the organization to understand its current

maturity with respect to the model and to communicate where it wants to be, as well

as how it plans to get there. The initial appraisal assists in prioritizing improvements

for the first improvement cycle.

The project manager will then prepare a project plan and schedule. The plan will

detail the scope of the initiative, the budget, the process areas to be implemented,

the teams and resources required, the initial risks identified, the key milestones, the

quality and communication plan and so on. The project schedule will detail the

deliverables to be produced, the resources required and the associated timeline for

delivery. Project management was discussed in Chap. 2.

The software process improvement initiative is designed to support the organi-

zation in achieving its business goals more effectively. The steps include examining

organization needs, conducting an appraisal to determine the current strengths and

weaknesses and analysing the results to formulate an improvement plan. The

improvement plan is then implemented; the improvements monitored and con-

firmed as being effective, and the improvement cycle repeats. The continuous

improvement cycle is described in Fig. 15.5 and Table 15.2.

The teams involved in implementation are discussed in Table 15.3.

Implement

 Improvements

1. Define Processes

2. SEPG Review

3. Approve for Pilot

Plan Improvements

1. Agree Scope

2. Plan & schedule

3. Provide Resources

Pilots / Refine

1. Get Feedback

2. Refine processes

Deploy

1. Train Staff

2. Deploy

3. Conduct audits

Identifying Improvements

1. Improvement Suggestions

2. Appraisal Recommendations

3. Lessons Learned

4. Periodic Process Reviews

Fig. 15.5 Continuous improvement cycle

250 15 Software Process Improvement

http://dx.doi.org/10.1007/978-3-319-57750-0_2

15.10 Appraisals

Appraisals (Fig. 15.6) play an essential role in the software process improvement

programme. They allow an organization to understand its current software process

maturity, including the strengths and weaknesses in its processes. An initial

appraisal is conducted at the start of the initiative to allow the organization to

understand its current process maturity, and to plan and prioritize improvements for

the first improvement cycle. Improvements are then implemented, and an appraisal

is typically conducted at the end of the cycle to confirm that progress has been made

in the improvement initiative.

An appraisal is an independent examination of the software engineering and

management practices in the organization and is conducted using an appraisal

methodology (e.g. SCAMPI). It will identify strengths and weaknesses in the

processes and any gaps that exist with respect to the maturity model.

The appraisal leader kicks off the appraisal with an opening presentation, which

introduces the appraisal team, and presents the activities that will be carried out

during the appraisal. These will include presentations, interviews, reviews of project

documentation and detailed analysis to determine the extent to which the practices

in the model have been implemented.

Table 15.2 Continuous improvement cycle

Activity Description

Identify improvements

to be made

The improvements to be made during an improvement cycle come

from several sources

– Improvement suggestions from staff

– Lessons learned by projects

– Periodic process reviews

– Recommendations from appraisals

Plan improvements A project plan and schedule is prepared for a large improvement

cycle (involving the implementation of several process areas). An

action plan (with owners and target completion dates) is sufficient

for small improvement initiatives

Implement

improvements

The improvements will consist of new processes, standards,

templates, procedures, guidelines checklists and tools (where

appropriate) to support the process

Pilots/refine Selected new processes and standards will often be piloteda prior to

their deployment to ensure that they are fit for purpose

Deploy – Staff are trained on the new processes and standards

– Staff receive support during the deployment

– Audits are conducted

Do it all again Improvement is continuous and as soon as an improvement cycle is

complete its effectiveness is considered, and a new improvement

cycle is ready to commence
aThe result from the pilot may be that the new process is not suitable to be deployed in the

organization or that it needs to be significantly revised prior to deployment

15.10 Appraisals 251

Table 15.3 Teams in improvement programme

Role/Team Members Responsibility

Project

manager

Project manager Project manage the improvement project

Provide leadership on process improvement

Steering group

(project board)

Senior manager(s)/

project manager

Provides management sponsorship of initiative

Provides resources and funding for the initiative

Uses influence to remove any roadblocks that

arise with the improvement activities

SEPG team Managers, technical

and project manager

Coordinate day-to-day improvement activities

Provides direction and support to improvement

terms

Review and approve new processes and

coordinate pilots, training and roll-out of new

processes

Improvement

teams

Process users/project

manager

Focus on specific process area(s)

Review the current process “as is” and define the

new process “to be”

Obtain feedback on new process, conduct pilots,

refine process, provide training and conduct

roll-out of new process

Staff All affected staff Participate in improvement teams

Participate in pilots

Participate in training on new processes

Adhere to new processes

External

consultancy

External consultant Conduct appraisal to determine initial maturity

and assist in planning of first improvement cycle

Provide expertise/training on the maturity model

Conduct periodic process reviews

Conduct appraisal at end of each improvement

cycle

Fig. 15.6 Appraisals

252 15 Software Process Improvement

The appraisal leader will present the appraisal findings, and this may include a

presentation and an appraisal report. The appraisal output summarizes the strengths

andweaknesses, and ratings of the process areas will be provided (where this is part of

the appraisal). The appraisal findings are valuable and will allow the project manager

to plan and schedule the next improvement cycle. They allow an organization to:

• Understand its current process maturity (including strengths and weaknesses)

• Relate its strengths and weaknesses to the improvement model

• Prioritize its improvements for the next improvement cycle

• Benchmark itself against other organizations

There are three phases in an appraisal (Table 15.4).

15.11 Review Questions

1. What is a software process?

2. What is software process improvement?

3. What are the benefits of software process improvement?

4. Describe the various models available for software process improvement?

5. Draw the process map for the process of cooking your favourite meal.

6. Describe how a process improvement initiative may be run?

7. What are the main barriers to successful software process improvement

initiatives and how can they be overcome?

8. Describe the three phases in an appraisal.

15.12 Summary

The success of business is highly influenced by software, and companies may

develop their own software internally, or they may acquire software solutions

off-the-shelf or from bespoke software development.

Table 15.4 Phases in an Appraisal

Phase Description

Planning and

preparation

This involves identifying the sponsor’s objectives and the requirements

for the appraisal. A good appraisal plan is essential to its success

Conducting the

appraisal

The appraisal team interviews the participants and examines data to

judge the extent to which the CMMI is implemented in the organization

Reporting the

results

The findings (including a presentation and an appraisal report).are

reported to the sponsor

15.10 Appraisals 253

Software process improvement plays a key role in helping companies to improve

their software engineering capability and to achieve their strategic goals. It enables

organizations to implement best practice in software engineering and to achieve

improved results. It allows companies to focus on fire prevention rather than fire-

fighting, by critically examine their processes to determine the extent to which they

are fit for purpose. It helps in identifying how the process may be improved and

how waste may be eliminated.

Software process improvement initiatives lead to a focus on the process, which is

important since many problems are caused by defective processes rather than by

people. This leads to a culture of openness in discussing problems and instills

process ownership among the process practitioners.

Software process improvement helps software companies to deliver the agreed

software on time and on budget, as well as improving the quality of the delivered

software, reducing the cost of development and improving customer satisfaction.

It has become an indispensable tool for software engineers and managers to

achieve their goals, and it provides a return on investment to the organization. The

next chapter gives an introduction to the CMMI, which has become a useful

framework in maturing software engineering processes.

References

1. W. Edwards Deming, Out of Crisis (MIT Press, Cambridge, 1986)

2. Software Engineering Institute, in CMMI Executive Overview. Presentation by the SEI, 2006

3. W. Humphry, Managing the Software Process (Addison Wesley, New York, 1989)

254 15 Software Process Improvement

16Capability Maturity Model Integration

Abstract

This chapter gives an overview of the CMMI model and discusses its five maturity

levels and their constituent process areas. We discuss both the staged and continuous

representations of theCMMI, andSCAMPIappraisals that indicate the extent towhich

the CMMI has been implemented in the organization, as well as identifying

opportunities for improvement.

Keywords

CMMI maturity levels � CMMI capability levels � CMMI staged representation �

CMMI continuous representation � CMMI process areas � Appraisals

16.1 Introduction

The Software Engineering Institute1 developed the Capability Maturity Model

(CMM) in the early 1990s as a framework to help software organizations improve

their software process maturity. The CMMI is the successor to the older CMM, and

its implementation brings best practice in software and systems engineering into the

organization. The SEI and many other quality experts believe that there is a close

relationship between the maturity of software processes and the quality of the

delivered software product.

1The SEI was founded by the US Congress in 1984 and has worked successfully in advancing

software engineering practices in the US and worldwide. It performs research to find solutions to

key software engineering problems, and its proposed solutions are validated through pilots. These

solutions are then disseminated to the wider software engineering community through its training

programme. The SEI’s research and maturity models have played an important role in helping

companies to deliver high-quality software consistently on time and on budget.

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_16

255

The CMM built upon the work of quality gurus such as Deming [1], Juran [2]

and Crosby [3]. These quality gurus were effective in transforming struggling

manufacturing companies with quality problem to companies that could consis-

tently produce high-quality products. Their success was due to the focus on

improving the manufacturing process and in reducing variability in the process. The

work of these quality experts is discussed in [4].

Similarly, software companies need to have quality software processes to deliver

high-quality software to their customers. The SEI has collected empirical data to

suggest that there is a close relationship between software process maturity and the

quality of the delivered software. Therefore, there is a need to focus on the software

process as well as on the product.

The CMM was released in 1991 and its successor, the CMMI® model, was

released in 2002 [5]. The CMMI is a framework to assist an organization in the

implementation of best practice in software and systems engineering. It is an

internationally recognized model for process improvement and is used worldwide

by thousands of organizations.

The focus of the CMMI is on improvements to the software process to ensure

that they meet business needs more effectively. A process is a set of practices or

tasks performed to achieve a given purpose. It may include tools, methods, mate-

rials and people. An organization will typically have many processes in place for

doing its work, and the object of process improvement is to improve these to meet

business goals more effectively.

The process is an abstraction of the way in which work is done in the organi-

zation, and is seen as the glue (Fig. 16.1) that ties people, procedures and tools

together.

It may be described by a process map which details the flow of activities and

tasks. The process map will include the input to each activity and the output from

each activity. Often, the output from one activity will become the input to the next

activity. A simple example of a process map for creating the system requirements

specification was described in Chap. 15 (Fig. 15.2).

The ISO/IEC 12207 standard for software processes distinguishes between

several categories of software processes, including the primary lifecycle processes

for developing and maintaining software; supporting processes to support the

software development lifecycle, and organization lifecycle processes. These are

summarized in Fig. 16.2.

Fig. 16.1 Process as glue for

people, procedures and tools

256 16 Capability Maturity Model Integration

http://dx.doi.org/10.1007/978-3-319-57750-0_15
http://dx.doi.org/10.1007/978-3-319-57750-0_15

Watts Humphrey began applying the ideas of Deming, Juran and Crosby to

software development, and he published the book “Managing the Software Pro-

cess” [6]. He moved to the SEI to work on software process maturity models with

the other SEI experts, and the SEI released the Capability Maturity Model in the

early 1990s. This process model has proved to be effective in assisting companies in

improving their software engineering practices and in achieving consistent results

and high-quality software.

The CMM is a process model and it defines the characteristics or best practices

of good processes. It does not prescribe how the processes should be defined, and it

allows the organization the freedom to interpret the model to suit its particular

context and business needs. It also provides a roadmap for an organization to get

from where it is today to a higher level of maturity. The advantage of model-based

improvement is that it provides a place to start process improvement, as well as a

common language and a shared vision.

The CMM consists of five maturity levels with the higher maturity levels rep-

resenting advanced software engineering capability. The lowest maturity level is

level one and the highest is level five. The SEI developed an assessment

methodology (CBA IPI) to determine the maturity of software organizations, and

initially most organizations were assessed at level one maturity. However, over time

companies embarked on improvement initiatives and matured their software pro-

cesses, and today, many companies are performing at the higher maturity levels.

Primary Life Cycle

Processes

Organization Life Cycle Processes

Acquisition

Supply

Development

Operations

Maintenance

Supporting Life Cycle

Processes

Management

Improvement

Infrastructure

Training

Documentation

Configuration Mgt.
Verification

Validation

Quality Assurance

Joint Review
Problem Resolution.

Audit

Fig. 16.2 ISO/IEC 12207 standard for software engineering processes

16.1 Introduction 257

The first company to be assessed at CMM level 52 was the Motorola plant in

Bangalore in India. The success of the software CMM led to the development of

other process maturity models such as the systems engineering capability maturity

model (CMM/SE) which is concerned with maturing systems engineering practices,

and the people Capability Maturity Model (P-CMM) which is concerned with

improving the ability of the software organizations to attract, develop and retain

talented software engineering professionals.

The SEI commenced work on the CMMI® [5] in the late 1990s. This is a

replacement for the older CMM model, and its development involved merging the

software CMM and the systems CMM, and ensuring that the new model was

compatible with ISO 15504 standard.3 The CMMI is described in the next section.

16.2 The CMMI

The CMMI consists of five maturity levels (Fig. 16.4) with each maturity level

(except level one) consisting of a number of process areas. Each process area

consists of a set of goals, and these must be implemented by a set of related

practices in order for the process area to be satisfied. The practices specify what is

to be done rather than how it should be done. Processes are activities associated

with carrying out certain tasks, and they need to be defined and documented. The

users of the process need to receive appropriate training to enable them to carry out

the process, and process discipline need to be enforced by independent audits.

Process performance needs to be monitored and improvements made to ineffective

processes.

The emphasis on level two of the CMMI is on maturing management practices

such as project management, requirements management and configuration man-

agement. The emphasis on level three of the CMMI is on maturing engineering and

organization practices. Maturity level three is concerned with defining standard

organization processes, and it also includes process areas for the various engi-

neering activities needed to design and develop the software. Level four is con-

cerned with ensuring that key processes are performing within strict quantitative

limits, and adjusting processes, where necessary, to perform within these limits.

Level five is concerned with continuous process improvement. Maturity levels may

not be skipped in the staged implementation of the CMMI, as each maturity level is

the foundation for work on the next level.

2Of course, the fact that a company has been appraised at a certain CMM or CMMI rating is no

guarantee that it is performing effectively as a commercial organization. For example, the Motorola

plant in India was appraised at CMM level 5 in the late 1990s while Motorola lost business

opportunities in the GSM market.
3ISO 15504 (popularly known as SPICE) is an international standard for software process

assessment.

258 16 Capability Maturity Model Integration

There is also a continuous representation4 of the CMMI (similar to ISO 15504)

that allows the organization to focus its improvements on the key processes that are

closely related to its business goals. This allows it the freedom to choose an

approach that should result in the greatest business benefit rather than proceeding

with the standard improvement roadmap of the staged approach. However, in

practice, it is often necessary to implement several of the level two process areas

before serious work can be done on maturing a process to a higher capability level.

Table 16.1 presents motivations for the implementation of the CMMI.

The CMMI model covers both the software engineering and systems engineering

disciplines. Systems engineering is concerned with the development of systems that

may or may not include software, whereas software engineering is concerned with

the development of software systems. The model contains extra information rele-

vant to a particular discipline, and this is done by discipline amplification.5

The CMMI has been updated in recent years to provide support for the Agile

methodology.

The CMMI allows organizations to benchmark themselves against similar

organizations (Fig. 16.3). This is generally done by a formal SEI SCAMPI Class A

appraisal6 conducted by an authorized SCAMPI lead appraiser. The results will

generally be reported back to the SEI, and there is a strict qualification process to

become an authorized lead appraiser. The qualification process helps to ensure that

the appraisals are conducted fairly and objectively and that the results are consis-

tent. An appraisal verifies that an organization has improved, and it enables the

organization to prioritize improvements for the next improvement cycle. Small

organizations will often prefer a SCAMPI Class B or C appraisal, as these are less

expensive and time consuming.7

4Our focus is on the implementation of the staged representation of the CMMI rather than the

continuous representation. This provides a clearly defined roadmap to improvement, and it also

allows benchmarking of organizations. Appraisals against the staged representation are useful

since a CMMI maturity level rating is awarded to the organization, and the company may use this

to publicize its software engineering capability.
5Discipline amplification is a specialized piece of information that is relevant to a particular

discipline. It is introduced in the model by text such as “For Systems Engineering”.
6A SCAMPI Class An appraisal is a systematic examination of the processes in an organization to

determine the maturity of the organization with respect to the CMMI. An appraisal team consists

of a SCAMPI lead appraiser, one or more external appraisers, and usually one internal appraiser. It

consists of interviews with senior and middle management and reviews with project managers and

project teams. The appraisers will review documentation and determine the extent to which the

processes defined are effective, as well as the extent to which they are institutionalized in the

organization. Data will be gathered and reviewed by the appraisers, ratings produced and the

findings presented.
7Small organizations may not have the budget for a formal SCAMPI Class A appraisal. They may

be more interested in an independent SCAMPI Class B or C appraisal, which is used to provide

feedback on their strengths and opportunities for improvement. Feedback allows the organization

to focus its improvement efforts for the next improvement cycle.

16.2 The CMMI 259

The time required to implement the CMMI in an organization depends on its size

and current maturity. It generally takes one to two years to implement maturity level

two, and a further one to two years to implement level 3. The implementation of the

CMMI needs to be balanced against the day-to-day needs of the organization in

delivering products and services to its customers.

The SEI has gathered empirical data (Table 16.2) on the benefits gained from the

implementation of the CMMI [7]. The table shows the median results reported to

the SEI.

Table 16.1 Motivation for

CMMI implementation
Motivation for CMMI implementation

Enhances the credibility of the company

Marketing benefit of CMMI maturity level

Implementation of best practice in software and systems

engineering

Clearly defined roadmap for improvement

It increases the capability and maturity of an organization

It improves the management of subcontractors

It provides improved technical and management practices

It leads to higher quality of software

It leads to increased timeliness of projects

It reduces the cost of maintenance and incidence of defects

It allows the measurement of processes and products

It allows projects/products to be quantitatively managed

It allows innovative technologies to be rigorously evaluated to

enhance process performance

It improves customer satisfaction

It changes the culture from firefighting to fire prevention

It leads to a culture of improvement

It leads to higher morale in company

Fig. 16.3 CMMI worldwide maturity 2013

260 16 Capability Maturity Model Integration

The processes implemented during a CMMI initiative will generally include:

• Developing and Managing Requirements

• Design and Development

• Project Management

• Selecting and managing Subcontractors

• Managing change and Configurations

• Peer reviews

• Risk Management and Decision Analysis

• Testing

• Audits

16.3 CMMI Maturity Levels

The CMMI is divided into five maturity levels (Table 16.3) with each maturity level

(except level one) consisting of several process areas. The maturity level is a

predictor of the results that will be obtained from following the software process,

and the higher the maturity level of the organization, the more capable it is and the

more predictable its results. The current maturity level acts as the foundation for the

improvements to be made in the move to the next maturity level.

The maturity levels provide a roadmap for improvements in the organization,

and maturity levels are not skipped in the staged implementation. A particular

maturity level is achieved only when all process areas belonging to that maturity

level (and all process areas belonging to lower maturity levels) have been suc-

cessfully implemented and institutionalized8 in the organization.

Table 16.2 Benefits of

CMMI implementation
Benefit Actual saving

Cost 34%

Schedule 50%

Productivity 61%

Quality 48%

Customer satisfaction 14%

Return on investment 4:1

8Institutionalization is a technical term and means that the process is ingrained in the way in which

work is performed in the organization. An institutionalized process is defined, documented and

followed in the organization. All employees have been appropriately trained in its use and process

discipline is enforced via audits. It is illustrated by the phrase “That’s the way we do things around

here”.

16.2 The CMMI 261

Table 16.3 CMMI maturity levels

Maturity level Description

Initial Processes are often ad hoc or chaotic with performance often

unpredictable. Success is often due to the heroics of people rather than

having high-quality processes in place. The defined process is often

abandoned in times of crisis, and there are no audits to enforce the

process

It is difficult to repeat previous success since success is due to heroic

efforts of its people rather than processes. These organizations often

over-commit, as they often lack an appropriate estimation process on

which to base project commitments

Firefighting is a way of life in these organizations. High-quality software

might be produced, but at a cost including long hours, high level of

rework, over budget and schedule and unhappy staff and customers.

Projects do not perform consistently as their success is dependent on the

people involved

They may have few processes defined and poor change control, poor

estimation and project planning and weak enforcement of standards

Managed A level two organization has good project management practices in place,

and planning and managing new projects is based on experience with

similar previous projects

The process is planned, performed and controlled. A level two

organization is disciplined in following processes, and the process is

enforced with independent audits

The status of the work products produced by the process is visible to

management at major milestones, and changes to work products are

controlled. The work products are placed under appropriate configuration

management control

The requirements for a project are managed and changes to the

requirements are controlled. Project management practices are in place to

manage the project, and a set of measures are defined for the budget,

schedule and effort variance. Subcontractors are managed

Independent audits are conducted to enforce the process. The processes in

a level two organization are defined at the project level

Defined A maturity level three organization has standard processes defined that

support the whole organization

These standard processes ensure consistency in the way that projects are

conducted across the organization. There are guidelines defined that allow

the organization process to be tailored and applied to each project

There are standards in place for design and development and procedures

defined for effective risk management and decision analysis

Level 3 processes are generally defined more rigorously than level 2

processes, and the definition includes the purpose of the process, inputs,

entry criteria, activities, roles, measures, verification steps, exit criteria

and output. There is also an organization-wide training program and

improvement data is collected

(continued)

262 16 Capability Maturity Model Integration

The implementation of the CMMI generally starts with improvements to pro-

cesses at the project level. The focus at level two is on improvements to managing

projects and suppliers and improving project management, supplier selection,

management practices and so on.

The improvements at level 3 involve a shift from the focus on projects to the

organization. It involves defining standard processes for the organization, and

projects may then tailor the standard process (using tailoring guidelines) to produce

the project’s software process. Projects are not required to do everything in the

same way as the tailoring of the process allows the project’s defined software

process to reflect the unique characteristics of the project: i.e., a degree of variation

is allowed as per the tailoring guidelines to reflect the unique characteristics of the

project.

The implementation of level three involves defining procedures and standards

for engineering activities such as design, coding and testing. Procedures are defined

for peer reviews, testing, risk management and decision analysis.

The implementation of level four involves achieving process performance within

defined quantitative limits. This involves the use of metrics and setting quantitative

goals for project and process performance and managing process performance. The

implementation of level 5 is concerned with achieving a culture of continuous

improvement in the company. The causes of defects are identified and resolution

actions implemented to prevent a reoccurrence.

Table 16.3 (continued)

Maturity level Description

Quantitatively

managed

A level 4 organization sets quantitative goals for the performance of key

processes, and these processes are controlled using statistical techniques

Processes are stable and perform within narrowly defined limits. Software

process and product quality goals are set and managed

A level 4 organization has predictable process performance, with

variation in process performance identified and the causes of variation

corrected

Optimizing A level 5 organization has a continuous process improvement culture in

place, and processes are improved based on a quantitative understanding

of variation

Defect prevention activities are an integral part of the development

lifecycle. New technologies are evaluated and introduced (where

appropriate) into the organization. Processes may be improved

incrementally or through innovative process and technology

improvements

16.3 CMMI Maturity Levels 263

16.3.1 CMMI Representations

The CMMI is available in the staged and continuous representations. Both repre-

sentations use the same process areas as well as the same specific and generic goals

and practices.

The staged representation was described in Fig. 16.4, and it follows the

well-known improvement roadmap from maturity level one through improvement

cycles until the organization has achieved its desired level of maturity. The staged

approach is concerned with organization maturity, and it allows statements of

organization maturity to be made, whereas the continuous representation is con-

cerned with individual process capability.

The continuous representation is illustrated in Fig. 16.5, and it has been influ-

enced by ISO 15504 (the standard for software process assessment). It is concerned

with improving the capability of those selected processes, and it gives the orga-

nization the freedom to choose the order of improvements that best meet its busi-

Managed (L2)

Requirements Management

Project Planning

Project Monitoring and Control

Supplier Agreement Management

Measurement and Analysis

Process and Product Quality Assurance

Configuration Management

Defined (L3)

Requirements Development

Technical Solution

Product Integration

Verification

Validation

Organisation Process Focus

Organisation Process Definition

Organisation Training

Integrated Project Management

Risk Management

Decision Analysis and Resolution

Quantitatively Managed (L4)

Organisation Process Performance

Quantitative Project Management

Optimising (L5)

Organisation Innovation and Deployment

Causal Analysis and Resolution

Initial (L1)

Fig. 16.4 CMMI maturity levels

264 16 Capability Maturity Model Integration

ness needs (Fig. 16.6). The continuous representation allows statements of indi-

vidual process capability to be made. It employs six capability levels and a process

is rated at a particular capability level.

Each capability level consists of a set of specific and generic goals and practices,

and the capability levels provide a path for process improvement within the process

area. Process improvement is achieved by the evolution of a process from its current

capability level to a higher capability level. For example, a company may wish to

mature its project planning process from its current process rating of capability level

2 to a rating of capability level 3. This requires the implementation of practices to

define a standard project planning process as well as collecting improvement data.

The capability levels are shown in Table 16.4.

An incomplete process is a process that is either partially performed or not per-

formed at all. A performed process carries out the expected practices and work prod-

ucts. However, such a processmay not be adequately planned or enforced. Amanaged

process is planned and executed with appropriately skilled and trained personnel. The

process is monitored and controlled and periodically enforced via audits.

PP

PMC DAR

Processes

Capability

RD

SAM

VER

CL 1

CL 2

CL 3

CL 4

CL 5

Fig. 16.5 CMMI capability levels

Fig. 16.6 CMMI—continuous representation

16.3 CMMI Maturity Levels 265

A defined process is a managed process that is tailored from the standard process

in the organization using tailoring guidelines. A quantitatively managed process is a

defined process that is controlled using quantitative techniques. An optimizing

process is a quantitatively managed process that is continuously improved through

incremental and innovative improvements.

The process is rated at a particular capability level provided it satisfies all of the

specific and generic goals of that capability level, and it also satisfies the specific

and generic goals of all lower capability levels.

We shall be concerned with the implementation of the staged representation of

the CMMI rather than the continuous representation. The reader is referred to [5]

for more information on both representations.

16.4 Categories of CMMI Processes

The process areas on the CMMI can be divided into four categories. These are

shown in Table 16.5.

Table 16.4 CMMI capability levels for continuous representation

Capability level Description

Incomplete (0) The process does not implement all of the capability level one generic

and specific practices. The process is either not performed or partially

performed

Performed (1) A process that performs all of the specific practices and satisfies its

specific goals. Performance may not be stable

Managed (2) A process at this level has the infrastructure to support the process. It is

managed: i.e., planned and executed in accordance with policy, its

users are trained; it is monitored and controlled and audited for

adherence to its process description

Defined (3) A process at this level has a defined process: i.e., a managed process

that is tailored from the organization’s set of standard processes. It

contributes work products, measures and other process improvement

information to the organization’s process assets

Quantitatively

managed (4)

A process at this level is a quantitatively managed process: i.e., a

defined process that is controlled by statistical techniques. Quantitative

objectives for quality and process performance are established and used

to control the process

Optimizing (5) A process at this level is an optimizing process: i.e., a quantitatively

managed process that is continually improved through incremental and

innovative improvements

266 16 Capability Maturity Model Integration

16.5 CMMI Process Areas

This section provides a brief overview of the process areas of the CMMI model. All

maturity levels (with the exception of level one) contain several process areas. The

process areas are described in more detail in [5] (Table 16.6).

Table 16.5 CMMI process categories

Maturity level Description

Process

management

The process areas in this category are concerned with activities to define,

plan, implement, deploy, monitor, control, appraise, measure and improve

the processes in the organization: They include:

• Organization process focus

• Organization process definition

• Organization training

• Organization process performance

• Organization innovation and deployment

Project

management

These process areas are concerned with activities to create and maintain a

project plan, tailoring the standard process to produce the project’s defined

process, monitoring progress with respect to the plan, taking corrective

action, the selection and management of suppliers, and the management of

risk. They include:

• Project planning

• Project monitoring and control

• Risk management

• Integrated project management

• Supplier agreement management

• Quantitative project management

Engineering These process areas are concerned with engineering activities such as

determining and managing requirements, design and development, testing

and maintenance of the product. They include:

• Requirements development

• Requirements management

• Technical solution

• Product integration

• Verification

• Validation

Support This includes activities that support product development and maintenance

• Configuration management

• Process and product quality assurance

• Measurement and analysis

• Decision analysis and resolution

16.4 Categories of CMMI Processes 267

Table 16.6 CMMI Process Areas

Maturity

level

Process

area

Description of process area

Level 2 REQM Requirements management

This process area is concerned with managing the requirements for

the project and ensuring that the work products are kept consistent

with the requirements

PP Project planning

This process area is concerned with estimation for the project,

developing and obtaining commitment to the project plan and

maintaining the plan

PMC Project monitoring and control

This process area is concerned with monitoring progress against the

plan and taking corrective action when project performance deviates

from the plan

SAM Supplier agreement management

This process area is concerned with the selection of suppliers,

documenting the (legal) agreement/statement of work with the

supplier and managing the supplier during the execution of the

agreement

MA Measurement and analysis

This process area is concerned with determining management

information needs and measurement objectives. Measures are then

specified to meet these objectives, and data collection and analysis

procedures defined

PPQA Process and product quality assurance

This process area is concerned with providing visibility to

management on process compliance. Non-compliance issues are

documented and resolved by the project team

CM Configuration management

This process area is concerned with setting up a configuration

management system; identifying the items that will be subject to

change control, and controlling changes to them

Level 3 RD Requirements development

This process area is concerned with specifying the user and system

requirements, and analyzing and validating them

TS Technical solution

This process area is concerned with the design, development and

implementation of an appropriate solution to the customer

requirements

PI Product integration

This process area is concerned with the assembly of the product

components to deliver the product and verifying that the assembled

components function correctly together

VER Verification

This process area is concerned with ensuring that selected work

products satisfy their specified requirements. This is achieved by

peer reviews and testing

(continued)

268 16 Capability Maturity Model Integration

Table 16.6 (continued)

Maturity

level

Process

area

Description of process area

VAL Validation

This process area is concerned with demonstrating that the product

or product component is fit for purpose and satisfies its intended use

OPF Organization process focus

This process area is concerned with planning and implementing

process improvements based on a clear understanding of the current

strengths and weakness of the organization’s processes

OPD Organization process definition

This process area is concerned with creating and maintaining a

usable set of organization processes. This allows consistent process

performance across the organization

OT Organization training

This process area is concerned with developing the skills and

knowledge of people to enable them to perform their roles effectively

IPM Integrated project management

This process area is concerned with tailoring the organization set of

standard processes to define the project’s defined process. The

project is managed according to the project’s defined process

RSKM Risk management

This process area is concerned with identifying risks and determining

their probability of occurrence and impact should they occur. Risks

are identified and managed throughout the project

DAR Decision analysis and resolution

This process area is concerned with formal decision making. It

involves identifying options, specifying evaluation criteria and

method, performing the evaluation, and recommending a solution

Level 4 OPP Organization process performance

This process area is concerned with obtaining a quantitative

understanding of the performance of selected organization processes

in order to quantitatively manage projects in the organization

QPM Quantitative project management

This process area is concerned with quantitatively managing the

project’s defined process to achieve the project’s quality and

performance objectives

Level 5 OID Organization innovation and deployment

This process area is concerned with incremental and innovative

process improvements

CAR Causal analysis and resolution

This process area is concerned with identifying causes of defects and

taking corrective action to prevent a reoccurrence in the future

16.5 CMMI Process Areas 269

16.6 Components of CMMI Process Areas

The maturity level of an organization indicates the expected results that its projects

will achieve and is a predictor of future project performance. Each maturity level

consists of a number of process areas, and each process area consists of specific and

generic goals, and specific and generic practices. Each maturity level is the foun-

dation for improvements for the next level (Fig. 16.7).

The specific goals and practices are listed first and then followed by the generic

goals and practices. The specific goals and practices are unique to the process area

being implemented and are concerned with what needs to be done to perform the

process. The specific practices are linked to a particular specific goal, and they

describe activities that when performed achieve the associated specific goal for the

process area.

The generic goals and practices are common to all process areas for that maturity

level and are concerned with process institutionalization at that level. The generic

practices are organized by four common features:

• Commitment to perform

• Ability to perform

• Directing implementation

• Verifying implementation

Fig. 16.7 CMMI-staged model

270 16 Capability Maturity Model Integration

SP 1.1

Obtain an understanding

of Requirements

SP 1.2

Obtain commitment

to Requirements

SP 1.3

Manage Requirements

changes

SP 1.4

Maintain bi-directional

Requirements Traceability

Requirements

SG1 – Manage Requirements

SP 1.5

Identify inconsistencies

between work

products and requirements

Fig. 16.8 Specific practices for SG1—manage requirements

They describe activities that when implemented achieve the associated generic

goal(s) for the process area. The commitment to perform practices relate to the

creation of policies and sponsorship of process improvement; the ability to perform

practices are related to the provision of appropriate resources and training to per-

form the process; the directing implementation practices relate to activities to

control and manage the process; and verifying practices relate to activities to verify

adherence to the process.

The implementation of the generic practices institutionalizes the process and

makes it ingrained in the way that work is done. Institutionalization means that the

process is defined, documented and understood. Process users are appropriately

trained and the process is enforced by independent audits. Institutionalization helps

to ensure that the process is performed consistently and is more likely to be retained

during times of stress. The degree of institutionalization is reflected in the extent to

which the generic goals and practices are satisfied. The generic practices ensure the

sustainability of the specific practices over time.

There is one specific goal associated with the Requirements Management pro-

cess area (Fig. 16.8), and it has five associated specific practices:

SG 1—Manage Requirements Requirements are managed and inconsistencies

with project plans and work products are identified.

The components of the CMMI model are grouped into three categories, namely

required, expected and informative components. The required category is essential

to achieving goals in a particular area and includes the specific and generic goals

that must be implemented and institutionalized for the process area to be satisfied.

The expected category includes the specific and generic practices that an organi-

zation will typically implement to perform the process effectively. These are

intended to guide individuals or groups who are implementing improvements, or

who are performing appraisals to determine the current maturity of the organization.

16.6 Components of CMMI Process Areas 271

Table 16.7 CMMI generic practices

Generic goal Generic

practice

Description of generic practice

GG 1 Performed

process

GP 1.1 Perform base practices

The purpose of this generic practice is to produce the

work products and services associated with the process

(i.e., as detailed in the specific practices). These

practices may be done informally without following a

documented process description and success may be

dependent on the individuals performing the work.

That is, the basic process is performed but it may be

immature

GG 2 Managed

process

GP 2.1 Organization policy

The organization policy is established by senior

management and defines the management expectations

of the organization

GP 2.2 Plan the process

A plan is prepared to perform the process and it will

assign responsibilities and document the resources

needed to perform the process as well as any training

requirements. The plan is revised as appropriate

GP 2.3 Provide resources

This is concerned with ensuring that the resources

required to perform the process (as specified in the

plan) are available when required

GP 2.4 Assign responsibility

The purpose of this generic practice is to assign

responsibility for performing the process

GP 2.5 Train people

This generic practice is concerned with ensuring that

people receive the appropriate training to enable them

to perform and support the process

GP 2.6 Manage configurations

This generic practice is concerned with identifying the

work products created by the process that will be

subject to configuration management control

GP 2.7 Identify and involve relevant stakeholders

This is concerned with ensuring that the stakeholders

are identified (as described in the plan), and involved

appropriately during the execution of the process

GP 2.8 Monitor and control the process

This generic practice is concerned with monitoring

process performance and taking corrective action

GP 2.9 Objectively evaluate adherence

This is concerned with conducting audits to verify that

process execution adheres to the process description

(continued)

272 16 Capability Maturity Model Integration

They state what needs to be done rather than how it should be done, thereby giving

the organization freedom on the most appropriate implementation.

The informative category includes information to guide the implementer on how

best to approach the implementation of the specific and generic goals and practices.

These include subpractices, typical work products and discipline amplifications.

This information assists with the implementation of the process area.

The implementation and institutionalization of a process area involves the

implementation of the specific and generic practices. The specific practices are

concerned with process implementation and are described in detail in [8]. The

generic practices are concerned with process institutionalization and are summa-

rized in Table 16.7.

The generic goals support an evolution of process maturity, and the imple-

mentation of each generic goal provides a foundation for further process

improvements. That is, a process rated at a particular maturity level has all of the

Table 16.7 (continued)

Generic goal Generic

practice

Description of generic practice

GP 2.10 Review status with higher level management

This is concerned with providing higher level

management with appropriate visibility into the

process

GG 3 Defined process GP 3.1 Establish a defined process

This is concerned with tailoring the organization set of

standard processes to produce the project’s defined

process

GP 3.2 Collect improvement information

This generic practice is concerned with collecting

improvement information and work products to

support future improvement of the processes

GG 4 Quantitatively

managed process

GP 4.1 Establish quantitative objectives

This is concerned with agreeing on quantitative

objectives (e.g., quality/performance) for the process

with the stakeholders

GP 4.2 Stabilize subprocess performance

This generic practice is concerned with stabilizing the

performance of one or more key subprocesses of the

process using statistical techniques. This enables the

process to achieve its objectives

GG 5 Optimizing

process

GP 5.1 Ensure continuous process improvement

This generic practice is concerned with systematically

improving selected processes to meet quality and

process performance targets

GP 5.2 Correct root cause of problems

This generic practice is concerned with analyzing

defects encountered to correct the root cause of these

problems and to prevent reoccurrence

16.6 Components of CMMI Process Areas 273

maturity of a process at the lower levels and the additional maturity of its rated

level. In other words, a defined process is a managed process; a quantitatively

managed process is a defined process, and so on.

Several of the CMMI process areas support the implementation of the generic

goals and practices. These process areas contain one or more specific practices that

when implemented may either fully implement a generic practice or generate a

work product that is used in the implementation of the generic practice. The

implementation of the generic practices is supported by the following process areas

(Table 16.8).

Table 16.8 Implementation of generic practices

Generic goal Generic practice Process area supporting

implementation of generic practice

GG 2 Managed process GP 2.2

Plan the process

Project planning

GP 2.5

Train the people

Organization training

Project planning

GP 2.6

Manage configurations

Configuration management

GP 2.7

Identify/involve relevant

stakeholders

Project planning

GP 2.8

Monitor and control the

process

Project monitoring and control

GP 2.9

Objectively evaluate

adherence

Process and product quality

assurance

GG 3 Defined process GP 3.1

Establish defined process

Integrated project management

Organization process definition

GP 3.2

Improvement information

Integrated project management

Organization process focus

Organization process definition

GG 4 Quantitatively

managed process

GP4.1

Establish quantitative

objectives for process

Quantitative project management

Organization process performance

GP 4.2

Stabilize subprocess

performance

Quantitative project management

Organization process performance

GG 5 Optimizing

process

GP5.1

Ensure continuous process

improvement

Organization innovation and

deployment

GP 5.2

Correct root cause of

problems

Causal analysis and resolution

274 16 Capability Maturity Model Integration

16.7 SCAMPI Appraisals

SCAMPI appraisals are conducted to enable an organization to understand its

current software process maturity, and to prioritize future improvements [9]. The

appraisal is an independent examination of the processes used in the organization

against the CMMI model, and its objective is to identify strengths and weaknesses

in the processes, which are then used to prioritize improvements in the next

improvement cycle.

The SCAMPI methodology is the appraisal methodology used with the CMMI,

and there are three distinct classes of appraisal (SCAMPI Class A, B and C) [10].

These classes vary in formality, the cost, effort and timescales involved, the rating

of the processes and the reporting of results.

The scope of the appraisal includes the process areas to be examined, and the

projects and organization unit to be examined. It may be limited to the level 2

process areas, or the level 2 and level 3 process areas, and so on. The scope depends

on how active the organization has been in process improvement.

The appraisal will identify any gaps that exist with respect to the implementation

of the CMMI practices for each process area within the scope of the appraisal. The

appraisal team will conduct interviews and review project documentation, and they

will examine the extent to which the practices are implemented.

The appraisal findings are presented and are used to plan and prioritize the next

improvement cycle. SCAMPI appraisals are discussed in more detail in [4].

16.8 Review Questions

1. Describe the CMMI Model.

2. Describe the staged and continuous representations of the CMMI.

3. What are the advantages and disadvantages of each CMMI

representation?

4. Describe the CMMI maturity levels and the process areas in each level.

5. What is the purpose of the CMMI specific and generic practices?

6. Describe how the generic practices are implemented?

7. What is the difference between implementation and institutionalization?

8. What is the purpose of SCAMPI appraisals?

9. How do appraisals fit into the software process improvement cycle?

16.7 SCAMPI Appraisals 275

16.9 Summary

The Capability Maturity Model Integration is a framework to assist an organization

in the implementation of best practice in software and systems engineering. It was

developed at the Software Engineering Institute and is used by many organizations

around the world.

The SEI and other quality experts believe that there is a close relationship

between the quality of the delivered software and the maturity of the processes used

to create the software. Therefore, there needs to be a focus on the process as well as

on the product, and the CMMI contains best practice in software and systems

engineering to assist in the creation of high-quality processes.

The process is seen as the glue that ties people, technology and procedures

coherently together. Processes are activities associated with carrying out certain

tasks, and they need to be defined and documented. The users of the process need to

receive appropriate training on their use, and process discipline needs to be

enforced with independent audits. Process performance needs to be monitored and

improvements made to ineffective processes.

The CMMI consists of five maturity levels with each maturity level (except level

one) consisting of several process areas. Each maturity level acts as a foundation for

improvement for the next improvement level, and each increase in maturity level

represents more advanced software engineering capability. The higher the maturity

level of the organization, the more capable it is, and the more predictable its results.

The lowest level of maturity is maturity level 1 and the highest level is maturity

level 5.

Each process area consists of a set of specific and generic goals, and these must

be implemented by an associated set of specific and generic practices. The practices

specify what is to be done rather than how it should be done, and the organization is

given freedom in choosing the most appropriate implementation to meet its needs.

The SCAMPI appraisal methodology is used to determine the maturity of

software organizations. It is a systematic examination of the processes used in the

organization against the CMMI model, and it includes interviews and reviews of

documentation. A successful SCAMPI Class A appraisal allows the organization to

report its maturity rating to the SEI and to benchmark itself against other compa-

nies. Appraisals are a part of the improvement cycle, and improvement plans are

prepared after the appraisal to address the findings and to prioritize improvements.

References

1. W. Edwards Deming, Out of Crisis (MIT Press, Cambridge, 1986)

2. J. Juran, Juran’s Quality Handbook (McGraw Hill, New York, 1951)

3. P. Crosby, Quality is Free. The Art of Making Quality Certain (McGraw Hill, New York,

1979)

4. G. O’Regan, Introduction to Software Quality (Springer, Switzerland, 2014)

276 16 Capability Maturity Model Integration

5. M.D. Chrissis, M. Conrad, S. Shrum, CMMI for Development. Guidelines for Process

Integration and Product Improvement, 3rd edn. SEI Series in Software Engineering (Addison

Wesley, New York, 2011)

6. W. Humphry, Managing the Software Process. (Addison Wesley, New York, 1989)

7. Software Engineering Institute. August 2009 CMMI Impact. Presentation by Anita Carleton

8. G. O’Regan, Introduction to Software Process Improvement (Springer, London, 2010)

9. Standard CMMI Appraisal Method for Process Improvement. CMU/SEI-2006-HB-002. V1.2.

August 2006

10. Appraisal Requirements for CMMI V1.2. (ARC V1.2). SCAMPI Upgrade Team. TR

CMU/SEI-2006-TR-011. August 2006

References 277

17Software Engineering Tools

Abstract

This chapter discusses various tools to support the various software engineering

activities. The focus is first to define the process and then to find tools to support

the process. Tools to support project management are discussed as well as tools

to support requirements engineering, configuration management, design and

development activities and software testing.

Keywords

Microsoft project � COCOMO � Planview enterprise � IBM Rational DOORS �
Rational software modeler � LDRA testbed � Integrated development environ-

ment � Sparx Enterprise Architect � HP Quality Center

17.1 Introduction

The goal of this chapter is to give a flavour of a selection of tools1 that can support

the performance of the various software engineering activities. Tools for project

management, requirements management, configuration management, design and

development, testing and so on are considered. The approach is generally to choose

tools to support the process, rather than choosing a process to support the tool.2

Mature organizations will employ a structured approach to the introduction of

new tools. First, the requirements for a new tool are specified, and the options to

satisfy the requirements are considered. These may include developing a tool

1The list of tools discussed in this chapter is intended to give a flavour of what tools are available,

and the inclusion of a particular tool is not intended as a recommendation of that tool. Similarly,

the omission of a particular tool should not be interpreted as disapproval of that tool.
2That is, the process normally comes first then the tool rather than the other way around.

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_17

279

internally, outsourcing the development of a tool to a third-party supplier or pur-

chasing an off-the-shelf solution from a vendor.

The sample tool evaluation process below (Table 17.1) lists all of the require-

ments vertically that the test tool is to satisfy, and the candidate tools that are to be

evaluated and rated against each requirement are listed horizontally. Various rating

schemes may be employed, and a simple numeric mechanism is employed for the

example below. The tool evaluation criteria are used to rate the effectiveness of each

candidate tool and to indicate the extent to which the tool satisfies the defined

requirements. The chosen tool in this example is Tool k as it is the most highly rated

of the evaluated tools.

Several candidate tools will be identified and considered prior to selection, and

each candidate tool will be evaluated to determine the extent to which it satisfies the

specified requirements. An informed decision is then made, and the proposed tool

will be piloted prior to its deployment. The pilot provides feedback on its suit-

ability, and the feedback will be considered prior to a decision on full deployment,

and whether any customization is required prior to roll-out.

Finally, the users are trained on the tool, and the tool is rolled out throughout the

organization. Support is provided for a period post-deployment. First, we consider a

selection of tools for project management.

17.2 Tools for Project Management

There are several tools to support the various project management activities such as

estimation and cost prediction, planning and scheduling, monitoring risks and

issues, and managing a portfolio of projects. These include tools like Microsoft

Project, which is a powerful project planning and scheduling tool that is widely

used in industry. Small projects may employ a simpler tool such as Microsoft Excel

for their project scheduling activities.

The Constructive Cost Model (COCOMO) is a cost prediction model developed by

Boehm [1], and it is used to estimate effort, schedule and cost for small and medium

projects. It is based on an effort estimation equation that calculates the software

development effort in person-months from the estimated project size. The effort

estimation calculation is based on the estimate of a project’s size in thousands of

Table 17.1 Tool evaluation

table
Tool 1 Tool 2 … Tool k

Requirement 1 8 7 9

Requirement 2 4 6 8

…

…

Requirement n 3 6 8

Total 35 38 … 45

280 17 Software Engineering Tools

source lines of code (SLOC3). The accuracy of the tool is limited, as there is a great

deal of variation among teams due to differences in the expertise and experience of

the personnel in the project team.

There are several commercial variants of the tool including the COCOMO Basic,

Intermediate and Advanced Models. The Intermediate Model includes several cost

drivers to model the project environment, and each cost driver is rated. There are

over fifteen cost drivers used, and these include product complexity, reliability and

experience of personnel as well as programming language experience. The COCOMO

parameters need to be calibrated to reflect the actual project development envi-

ronment. The effort equation used in COCOMO is given by:

Effort ¼ 2:94 � EAF � KSLOCð ÞE ð17:1Þ

In this equation, EAF refers to the effort adjustment factor that is derived from

the cost drivers, and E is the exponent that is derived from the five scale drivers.4

The Costar tool is a commercial tool that implements the COCOMO Model, and it

may be used on small or large projects. It needs to be calibrated to reflect the

particular software engineering environment, and this will enable more accurate

estimates to be produced.

Microsoft Project (Fig. 2.2) is a project management tool that is used for

planning, scheduling and charting project information. It enables a realistic project

schedule to be created, and the schedule is updated regularly during the project to

reflect the actual progress made, and the project is re-planned as appropriate. We

discussed project management in Chap. 2.

A project is defined as a series of steps or tasks to achieve a specific goal. The

amount of time that it takes to complete a task is termed its duration, and tasks are

performed in a sequence determined by the nature of the project. Resources such as

people and equipment are required to perform a task. A project will typically consist

of several phases such as planning and requirements, design, implementation,

testing and closing the project.

The project schedule (Fig. 2.2) shows the tasks and activities to be carried out

during the project, the effort and duration of each task and activity, the percentage

complete of each task and the resources needed to carry out the various tasks. The

schedule shows how the project will be delivered within the key project parameters

such as time, cost and functionality without compromising quality in any way.

The project manager is responsible for managing the schedule and will take

corrective action when project performance deviates from expectations. The project

schedule will be updated regularly to reflect actual progress made, and the project

re-planned appropriately.

3SLOC includes delivered source lines of code created by project staff (excluding automated code

generated and also code comments).
4The five scale drivers are factors contributing to duration and cost and they determine the

exponent used in the Effort equation. Examples include team cohesion and process maturity.

17.2 Tools for Project Management 281

http://dx.doi.org/10.1007/978-3-319-57750-0_2
http://dx.doi.org/10.1007/978-3-319-57750-0_2
http://dx.doi.org/10.1007/978-3-319-57750-0_2

The project manager may employ tools for recording and managing risks and

issues, and this may be as simple as using an excel spreadsheet. The project

manager may maintain a lessons learned log to record the lessons learned during a

project, and these will be analysed towards the end of a project and the lessons

learned report prepared. The project reporting may be done with a tool or with a

standard Microsoft Word report.

Project portfolio management (PPM) is concerned with managing a portfolio of

projects, and it allows the organization to choose the mix and sequencing of its

projects in order to yield the greatest business benefit to the organization.

PPM tools analyse the project’s total expected cost, the resources required, the

schedule, the benefits that will be realized as well as interdependencies with other

projects in the portfolio. This allows project investment decisions to be made

methodically to deliver the greatest benefit to the organization. This approach

moves away from the normal once off analysis of an individual project proposal, to

the analysis of a portfolio of projects. PPM tools aim to manage the continuous flow

of projects from concept all the way to completion.

There are several commercial portfolio management tools available from various

vendors. These include Clarity PPM from Computer Associates, Change Point from

Compuware, RPM from IBM Rational, PPM Center from HP and Planview

Enterprise from Planview. We limit our discussion in this section to the Planview

Enterprise tool.

Planview Enterprise Portfolio Management allows organizations to manage

projects and resources across the enterprise and to align their initiatives for maxi-

mum business benefit. It provides visibility into and control of project portfolios

and allows the organization to prioritize and manage its projects and resources. This

allows it to make better investment decisions and to balance its business strategy

against its available resources. Planview helps an organization to optimize its

business through eight key capabilities (Table 17.2):

Planview allows key project performance indicators to be closely tracked, and

these include dashboard views of variances of cost, effort and schedule, which are

used for analysis and reporting (Fig. 17.1).

Planview includes Process Builder (Fig. 17.2), which allows modelling and

management of enterprise-wide processes. It provides tracking, control and audit

capabilities in key process areas such as requirements management and product

development, as well as satisfying key regulatory requirements.

The organization may define and model its processes in Process Builder, and this

includes process adoption, compliance and continuous improvement. The func-

tionality includes as follows:

• Process design.

• Process automation.

• Process measurement.

• Process auditing.

282 17 Software Engineering Tools

Table 17.2 Key capabilities of planview enterprise

Capability Description

Strategic planning Define mission, objectives and strategies

Allocate funding/staffing for chosen strategy

Automate and manage strategic process

Investment analysis Devise strategic long-term plans

Identify key criteria to evaluate initiatives

Optimize strategic and project investments to maximize business

benefit

Capacity

management

Balance resources with business demands

Ensure capacity supports business strategy

Align top-down and bottom-up planning

Forecast resource capacity

Demand

management

Request work and check status

Review lifecycles

Project management Scope, schedule and execution of work

Track/report time worked against projects

Track and manage risks and issues

Track/display performance and trend analysis

Financial

management

Collaborate to better forecast cost

Monitor spending

Resource

management

Balance portfolios/assign people efficiently

Improve forecasting

Keep staff productive

Change management Determine impact of change on schedule/cost

Effectively manage change

Fig. 17.1 Dashboard views in planview enterprise

17.2 Tools for Project Management 283

Next, we will consider tools to support requirements development and

management.

17.3 Tools for Requirements

There are several tools available to assist organizations in carrying out requirements

development and management. These tools assist in eliciting requirements from the

stakeholders, modelling requirements, verifying and validating the requirements,

managing the requirements throughout the lifecycle, and providing traceability of

the requirements to the design and test cases. The following is a small selection of

some of the tools that are available (Table 17.3):

DOORS
® (Dynamic Object-Oriented Requirements System) is a requirements

management tool developed by IBM Rational. It allows the stakeholders to actively

participate in the requirements process and aims to optimize requirements com-

munication, collaboration and verification. High-quality requirements help the

organization in reducing costs5 and in meeting their business objectives.

Fig. 17.2 Planview process builder

5A good requirements process will enable high-quality requirements to be consistently produced,

and the cost of poor quality is reduced as wastage and rework are minimized. The requirements are

the foundation of the system, and if they are incorrect then the delivered system will not be fit for

purpose.

284 17 Software Engineering Tools

Table 17.3 Tools for requirements development and management

Tool Description

DOORS (IBM/Rational) This is a requirements management tool developed by Telelogic

(which is now part of IBM/Rational)

RequisitePro

(IBM/Rational)

This is a requirements management and use case management tool

developed by IBM/Rational

Enterprise Architect

(Sparx Systems)

This is a UML analysis and design tool that covers requirements

gathering, analysis and design, and testing and maintenance. It

was developed by Sparx Systems and integrates requirements

management with the other software development activities

CORE (Vitech) This is a requirements tool developed by Vitech, which may be

used for modelling and simulation

Integrity (MKS) This tool was developed by MKS and enables organizations to

capture and validate software requirements, and to link them to

downstream development and testing activities

The tool can capture, link, trace, analyse and manage changes to the requirements.

It enhances communication and collaboration to ensure that the project conforms to

the customer requirements, as well as compliance to regulations and standards.

Requirements are documented in a way that is easy to interpret and navigate. It is

easy to locate information within the database, and the user requirements are

recorded in a document style showing each individual requirement. It provides

views of the list with assigned identifiers and also an Explorer-like navigation tree.

The tool employs links to support traceability of the requirements, and these are

traversed with a simple click of the mouse to the corresponding object. The links

are easy to create by dragging and dropping; for example, a new link from the user

requirements to the system requirements is created in this way. The tool provides

dynamic reporting on traceability, and filters may be employed to ensure that

traceability is complete. Traceability is essential in demonstrating that the

requirements have been implemented and tested.

The management of change is an important part of the requirements process. The

DOORS tool supports changes to requirements and allows an impact analysis of the

proposed changes to be performed. It allows changes that could impact other

requirements or design items and test cases to be tagged. The DOORS
® tool

(Fig. 17.3) provides:

• A comprehensive requirements management environment.

• Web browser access to the requirements database.

• Manages changes to requirements.

• Scalable solution for managing project scope and cost.

• Traceability to design items, Test Plans and test cases.

• Active engagement from stakeholders.

• Integrates with other IBM Rational tools.

There are several other IBM Rational tools that may be integrated with DOORS
®.

These include the IBM Rational System Architect, Requirements Composer,

Rhapsody and Quality Manager.

17.3 Tools for Requirements 285

IBM Rational RequisitePro is a requirements management tool that allows

requirements to be documented with familiar document-based methods, and it

provides capabilities such as requirements traceability and impact analysis.

Requirements are managed throughout the lifecycle, and changes to the require-

ments controlled.

The CORE product suite was developed by Vitech, and it has functionality for

requirements management, modelling and simulation, and verification and valida-

tion. It supports UML activity and sequence diagrams, which are used to describe

the desired behaviour and flow of control, as well as allowing analysis to be carried

out. The tool provides:

• Comprehensive end-to-end system traceability.

• Change impact analysis.

• Multiple modelling notations with integrated graphical views.

• System simulation based on behavioural models.

• Generation of documentation from the database.

The Integrity tool was developed by MKS, and it enables organizations to

capture and validate software requirements. It enables them to link the requirements

to downstream development and testing activities, and to manage changes to the

requirements. Next, we will consider tools to support software design and

development.

Fig. 17.3 IBM Rational DOORS tool

286 17 Software Engineering Tools

17.4 Tools for Design and Development

Table 17.4 describes various tools to support software design and development

activities. The software design includes the high-level architecture of the system, as

well as the lower level design and algorithms.

Table 17.4 Tools for software design

Tool Description

Microsoft Visio This tool is used to create many types of drawings such as

flowcharts, work flow diagrams and network diagrams

IBM Rational Software

Modeler

This is a UML-based visual modelling and software design tool

IBM Rational Rhapsody This modelling environment tool is based on UML and provides a

visual development environment for software engineers. It uses

graphical models and generates code in C, C++ and Java

IBM Rational Software

Architect

This modelling and development tool uses UML for designing

architecture for C++ and Java applications

Enterprise Architect

(Sparx Systems)

This UML analysis and design tool is used for modelling systems

with traceability from requirements to design and testing. It

supports code generation

Fig. 17.4 IBM Rational Software Modeler

17.4 Tools for Design and Development 287

IBM Rational Software Modeler® (RSM) is a UML-based visual modelling and

design tool (Fig. 17.4). It promotes communication and collaboration during design

and development and allows information about development projects to be speci-

fied and communicated from several perspectives. It is used for model-driven

development and aligns the business needs with the product.

It gives the organization control over the evolving architecture and provides an

integrated analysis and design platform. Abstract UML specifications may be built

with traceability and impact analysis shown.

It has an intuitive user interface and a diagram editor to create expressive and

interactive diagrams. The tool may be integrated with other IBM Rational tools

such as Clearcase, Clearquest and RequisitePro.

IBM Rational Rhapsody® is a visual development environment used in real-time

or embedded systems. It helps teams collaborate to understand and elaborate

requirements, abstract complexity using modelling languages such as UML, vali-

date functionality early in development and automate code generation to speed up

the development process.

Sparx Enterprise Architect (Fig. 17.5) is a UML analysis and design tool used

for modelling business and IT systems. It was developed by the Australian com-

pany, Sparx Systems, and it covers the full product development lifecycle,

including business modelling, requirements management, software design, code

generation and testing. It supports automated document generation, code generation

and reverse engineering of source code. Its reverse engineering feature allows a

visual representation of the software application to be provided.

Fig. 17.5 Sparx Enterprise Architect

288 17 Software Engineering Tools

It is a multi-user graphical tool with built-in reporting and documentation. It can

model, manage and trace requirements to the design, test cases and deployment, and

it can trace the implementation of the system requirements to model elements. It can

search and report on requirements and perform an impact analysis on proposed

changes to the requirements.

The tool allows deployments scripts to be built, debugged and tested and exe-

cuted from within its development environment. UML and modelling are integrated

into the development process, and debugging capabilities are provided. This

includes runtime examination of the executing code for several programming lan-

guages, and NUnit and JUnit test classes (used as part of test-driven development)

may be generated and integrated directly into the test process.

An integrated development environment (IDE) is a software application that

provides comprehensive support facilities to software developers. It includes spe-

cialized text editors, a compiler, build automation and debugging capabilities. The

features of an IDE are described in Table 17.5 below:

IDEs help to improve programmer productivity. They are usually dedicated to a

specific programming language, although there are some multi-language tools such

as Eclipse and Microsoft Visual Studio. There are many IDEs for languages such as

Pascal, C, C++ and Java. The next section is concerned with tools to support

configuration management.

Table 17.5 Integrated development environment

Item Description

Source code

editor

This is a specialized text editor (e.g. Microsoft Visual Studio) designed

for editing the source code. It includes features to speed up the input of

source code, including syntax checking of the code while the programmer

types

Compiler or

interpreter

A compiler is a computer program that translates the high-level

programming language source code into object code to produce the

executable code. A compiler carries out lexical analysis, parsing and code

generation

An interpreter is a program that executes instructions written in a

programming language. It may involve the direction execution of the

code, translation of the code into an intermediate representation and

immediate direct execution, or execution of stored precompiled code

made by a compiler which is part of the Interpreter System

Build automation

tools

Build automation involves scripting to automate the build process. This

includes tasks such as compiling the source code, linking the object code

and building the executable software, performing automated tests and

reporting results, reporting the build status and generating release notes

Debugger A debugger is a software application that is used to debug and test other

software programs. Debuggers offer step-by-step execution of the code, or

execution to break points in the code. Examples include IBM Rational

Purify and Microsoft Visual Studio Debugger

17.4 Tools for Design and Development 289

17.5 Tools for Configuration Management and Change
Control

Configuration management is concerned with identifying the work products that are

subject to change control, and controlling changes to them. It involves creating and

releasing baselines, maintaining their integrity, recording and reporting the status of

the configuration items and change requests, and verifying the correctness and

completeness of the configuration items with configuration audits.

Visual Source Safe (VSS) is a version control management system for source

code and binary files. It was developed by the Microsoft Corporation and is used

mainly by small software development organizations. It allows multiple users to

place their source code and work products under version control management. It is

fairly easy to use and may be integrated with the Microsoft Visual Studio tool.

Microsoft plans to replace VSS with its Visual Studio Team System tool.

Polytron Version Control System (PVCS) is a version control system for soft-

ware code and binary files. It was developed by Serena Software Inc. and is suitable

for use by large or small teams. It allows multiple users to place their source code

and project deliverables under version control management, and it allows files to be

checked in and checked out, baselines to be controlled, rollback of code and

tracking of check-ins. It includes functionality for branching, merging and labelling.

It includes the PV Tracker tool for tracking defects, and the PV Builder tool for

performing builds and releases.

The PV Tracker tool automates the capture and communication of issues and

change requests. This is done throughout the software development lifecycle for

project teams, and the tool allows the developers to link the affected source code

files with issues and changes. It allows managers to determine and report on team

progress, and to prioritize tasks. PV Builder maintains an audit trail of the files

included in the build as well as their versions.

IBM Rational Clearcase and Clearquest are popular configuration management

tools with a rich feature set. Clearcase allows software code and other software

deliverables to be placed under version control management, and it may be

employed in large or medium projects. It can handle a large number of files, and it

supports standard configuration management tasks such as checking in and

checking out of the software assets as well as labelling and branching. Objects are

stored in repositories called VOBs.

Clearquest may be linked to Clearcase and to other IBM Rational tools. It allows

the defects in a project to be tracked, and it allows the versions of source code

modules that were changed to be linked to a defect number in Clearquest.

17.6 Tools for Code Analysis and Code Inspections

Static code analysis is the analysis of software code without the actual execution of

the code. It is usually performed with automated tools, and the analysis performed

depends on the sophistication of the tools. Some tools may analyse individual

290 17 Software Engineering Tools

statements or declarations, whereas others may analyse the whole source code. The

objective of the analysis is to highlight potential coding errors early in the devel-

opment lifecycle.

The LDRA Tools automatically determine the complexity of the source code and

provide metrics that give an indication of the maintainability of the code. A useful

feature of LDRA is that it gives a visual picture of system complexity, and it has a

re-factoring tool to assist with its reduction. It generates code assessment reports

listing all of the files examined and providing metrics of the clarity, maintainability

and testability of the code. Other LDRA tools may be used for code coverage

analysis (Fig. 17.6).

Compliance to coding standards is important in producing readable code and in

preventing error-prone coding styles. There are several tools available to check

conformance to coding standards including the LDRA TBvision tool, which has

reporting capabilities to show code quality as well as fault detection and avoidance

measures. It provides intuitive functionality to view the results in various graphs

and reports.

Some static code analysis tools (e.g. tools for formal methods) aim to prove

properties about a particular program. This may include reasoning about program

correctness or that of a program meeting its specification. These tools often provide

support for assertions, and a precondition is the assertion placed before the code

fragment, and this predicate is true before execution of the code. The post-condition

is the assertion placed after the code fragment, and this predicate is true after the

execution of the code.

Fig. 17.6 LDRA code coverage analysis report

17.6 Tools for Code Analysis and Code Inspections 291

There are several open-source tools available for static code analysis, and these

include the RATS tools which provide multi-language support for C, C++, Perl and

PHP, and the PMD tool for Java. There are several commercial tools available, and

these include the LDRA Testbed tool which provides support for C, C++ and Java.

The fortify tool helps developers to identify security vulnerabilities in C, C++ and

Java, and the Parasoft tool helps developers to identify coding issues that lead to

security, reliability, performance and maintainability issues later.

17.7 Tools for Testing

Testing plays a key role in verifying that the software system satisfies the

requirements and is fit for purpose. There are various tools to support testing such

as test management tools, defect tracking tools, regression test automation tools and

performance tools. The tools considered in this section include as follows:

• Test Director (HP Quality Center).

• Winrunner.

• Load Runner.

Test Director (now called HP Quality Center) is a web-based test management

tool developed by HP Mercury.6 It provides a consistent repeatable process for

gathering requirements, planning and scheduling tests, analysing results and

managing defects. It consists of four modules namely:

• Requirements.

• Test Plan.

• Test Lab.

• Defect management.

The Requirements module supports requirements management and traceability

of the test cases to the requirements. The Test Plan module supports the creation

and update of test cases. The Test Lab module supports execution of the test cases

defined in the Test Plan module. The Defect Management module supports the

logging of defects, and these defects can be linked back to the test cases that failed.

HP Quality Center supports a high level of collaboration and communication

between the stakeholders. It allows the business analysts to define the application

requirements and testing objectives. The test managers and testers may then design

Test Plans, test cases and automated scripts. The testers then run the manual and

6Mercury is now part of HP.

292 17 Software Engineering Tools

automated tests, report results and log the defects. The developers review and

correct the logged defects. Project and test managers can create status reports and

manage test resources. Test and product managers decide objectively whether the

application is ready to be released.

The HP Quality Center™ tool (Fig. 17.7) standardizes and manages the entire

test and quality process and is a web-based system for automated software quality

management and testing. It employs dashboard technology to give visibility into the

process.

Mercury developed the Winrunner tool that automatically captures, verifies and

replays user interactions. It is mainly used to automate regression testing, which

improves productivity and allows defects to be identified in a timely manner. This

provides confidence that enhancements to the software have had no negative impact

on the integrity of the system. The Winrunner tool has been replaced by HP Unified

Functional Testing Software, which includes HP Quick Test Professional and HP

Service Test.

Mercury developed the LoadRunner performance testing tool, which allows a

software application to be tested with thousands of concurrent users to determine its

performance under heavy loads. It allows the scalability of the software system to

be determined, and whether it can support future predicted growth.

Fig. 17.7 HP Quality Center

17.7 Tools for Testing 293

17.8 Review Questions

1. Why are tools used in software engineering?

2. How should a tool be selected?

3. What is the relationship between the process and the tool?

4. What tools would you recommend for project management?

5. Describe how you would go about selecting a tool for requirements

development.

6. Describe various tools that are available for design and development.

7. What tools would you recommend for testing?

8. What tools would you recommend for configuration management?

17.9 Summary

The objective of this chapter was to give a flavour of various tools available to

support the organization in engineering software. These included tools for project

management, configuration management, design and development, test manage-

ment. The tools are chosen to support the process.

The project management tools included a discussion of the COCOMO Cost Model,

which may be employed to estimate the cost and effort for a project, and the

Microsoft Project tool, which is used extensively by project managers to schedule

and track their projects. The Planview Portfolio Management Tool was also dis-

cussed, and this tool allows an organization to manage a portfolio of projects.

The tools to support requirements development and management included IBM

Rational DOORS, RequisitePro and CORE. The DOORS tool allows all stakeholders to

actively participate in the requirements process and aims to optimize requirements

communication, collaboration and verification.

The tools to support design and development included the IBM Rational Soft-

ware Modeler tool, the Sparx Enterprise Architect tool and Integrated Developer

Environments to support software developers. The Rational Software Modeler®

(RSM) is a UML-based visual modelling and design tool. Enterprise Architect is a

UML analysis and design tool and provides traceability from requirements to

design, testing and deployment. The tools discussed to support configuration

management included PVCS and Clearcase.

294 17 Software Engineering Tools

The tools to support testing included Quality Center™, Winrunner and

LoadRunner. HP Quality Center™ standardizes and manages the entire test process.

It has modules for requirements management, test planning, Test Lab and defect

management.

Tool selection is done in a controlled manner. First, the organization needs to

determine its requirements for the tool. Various candidate tools are evaluated, and a

decision on the proposed tool is made. Next, the tool is piloted to ensure that it

meets the needs of the organization, and feedback from the pilot may lead to

changes or customizations of the tool. Finally, the end-users are trained on the use

of the tool, and it is rolled out throughout the organization.

Reference

1. B. Boehm, Software Engineering Economics (Prentice Hall, New Jersey, 1981)

17.9 Summary 295

18Agile Methodology

Abstract

This chapter discusses the Agile methodology which is a popular lightweight

approach to software development. Agile provides opportunities to assess the

direction of a project throughout the development lifecycle, and ongoing

changes to requirements are considered normal in the Agile world. It has a strong

collaborative style of working, and it advocates adaptive planning and

evolutionary development.

Keywords

Sprints � Stand-up meeting � Scrum � Stories � Refactoring � Pair programming �

Test-driven development � Continuous integration

18.1 Introduction

Agile is a popular lightweight software development methodology that provides

opportunities to assess the direction of a project throughout the development life-

cycle. There has been a growth in interest in lightweight software development

methodologies since the 1990s, and these include approaches such as rapid appli-

cation development (RAD), dynamic systems development method (DSDM) and

extreme programming (XP). These approaches are referred to collectively as agile

methods.

Every aspect of Agile development such as requirements and design is contin-

uously revisited during the development, and the direction of the project is regularly

evaluated. Agile focuses on rapid and frequent delivery of partial solutions

developed in an iterative and incremental manner. Each partial solution is evaluated

by the product owner, and the feedback is used to determine the next steps for the

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_18

297

project. Agile claims to be more responsive to customer needs than traditional

methods such as the waterfall model, and its adherents believe that it results in:

• higher quality

• higher productivity

• faster time to market

• improved customer satisfaction.

It advocates adaptive planning, evolutionary development, early development,

continuous improvement and a rapid response to change. The term “agile” was

coined by Kent Beck and others in the Agile Manifesto in 2001 [1]. The traditional

waterfall model is similar to a wide and slow-moving value stream, and halfway

through the project 100% of the requirements are typically 50% done. However,

50% of the requirements are typically 100% done halfway through an agile project.

Agile has a strong collaborative style of working, and ongoing changes to

requirements are considered normal in the Agile world. It argues that it is more

realistic to change requirements regularly throughout the project, rather than

attempting to define all of the requirements at the start of the project (as in the

waterfall methodology). Agile includes controls to manage changes to the

requirements, and good communication and early regular feedback is an essential

part of the process.

A user story may be a new feature or a modification to an existing feature. The

feature is reduced to the minimum scope that can deliver business value, and a

feature may give rise to several stories. Stories often build upon other stories, and

the entire software development lifecycle is employed for the implementation of

each story. Stories are either done or not done (i.e. there is no such thing as 50%

done), and the story is complete only when it passes its acceptance tests.

Scrum is an Agile method for managing iterative development, and it consists of

an outline planning phase for the project, followed by a set of sprint cycles (where

each cycle develops an increment). Sprint planning is performed before the start of

the iteration, and stories are assigned to the iteration to fill the available time. Each

Scrum sprint is of a fixed length (usually 2–4 weeks), and it develops an increment

of the system.

The estimates for each story and their priority are determined, and the prioritized

stories are assigned to the iteration. A short (usually 15 min) morning stand-up

meeting is held daily during the iteration, and it is attended by the Scrum master, the

project manager1 and the project team. It discusses the progress made the previous

day, problem reporting and tracking, and the work planned for the day ahead.

A separate meeting is held for issues that require more detailed discussion.

Once the iteration is complete, the latest product increment is demonstrated to a

review audience including the product owner. This is to receive feedback and to

identify new requirements. The team also conducts a retrospective meeting to

1Agile teams are self-organizing, and small teams (team size <20 people) do not usually have a

project manager role, and the Scrum master performs some light project management tasks.

298 18 Agile Methodology

identify what went well and what went poorly during the iteration, as part of

continuous improvement for future iterations.

The planning for the next sprint then commences. The Scrum master is a

facilitator who arranges the daily meetings and ensures that the Scrum process is

followed. The role involves removing roadblocks so that the team can achieve their

goals, and communicating with other stakeholders. Agile employs pair program-

ming and a collaborative style of working with the philosophy that two heads are

better than one. This allows multiple perspectives in decision-making which pro-

vides a broader understanding of the issues.

Software testing is very important in verifying that the software is fit for purpose,

and Agile generally employs automated testing for unit, acceptance, performance

and integration testing. Agile employs test-driven development with tests written

before the code. The developers write code to make a test pass with ideally

developers only coding against failing tests. This approach forces the developer to

write testable code, as well as ensuring that the requirements are testable. Tests are

run frequently with the goal of catching programming errors early. They are gen-

erally run on a separate build server to ensure that all the dependencies are checked.

Tests are rerun before making a release.

Refactoring is employed in Agile as a design and coding practice. The objective

is to change how the software is written without changing what it does. Refactoring

is a tool for evolutionary design where the design is regularly evaluated, and

improvements are implemented as they are identified. It helps in improving the

maintainability and readability of the code and in reducing complexity. The auto-

mated test suite is essential in demonstrating that the integrity of the software is

maintained following refactoring.

Continuous integration allows the system to be built with every change. Early

and regular integration allows early feedback to be provided, and it also allows all

of the automated tests to be run, thereby identifying problems earlier. The main

philosophy and features of Agile are:

– Working software is more useful than presenting documents

– Direct interaction preferred over documentation

– Change is accepted as a normal part of life in the Agile world

– Customer involved throughout the project

– Demonstrate value early

– Feedback and adaptation employed in decision-making

– Aim is to achieve a narrow fast-flowing value stream

– User stories and sprints are employed

– A project is divided into iterations

– An iteration has a fixed length (i.e. time boxing is employed)

– Entire software development lifecycle is employed for implementation of the

story

– Stories are either done or not done (no such thing as 50% done)

– Iterative and incremental development is employed

– Emphasis on quality

18.1 Introduction 299

– Stand-up meetings held daily

– Rapid conversion of requirements into working functionality

– Delivery is made as early as possible.

– Maintenance is seen as part of the development process

– Refactoring and evolutionary design employed

– Continuous integration is employed

– Short cycle times

– Plan regularly

– Early decision-making.

Stories are prioritized based on a number of factors including:

– Business value of story

– Mitigation of risk

– Dependencies on other stories.

18.2 Scrum Methodology

Scrum is a framework for managing an Agile software development project. It is

not a prescriptive methodology as such, and it relies on a self-organizing,

cross-functional team to take the feature from idea to implementation. The

cross-functional team includes the product owner who represents the interest of the

users and ensures that the right product is built; the Scrum master is the coach for

the team and helps the team to understand the Scrum process and to perform at the

highest level, as well as performing some light project management activities such

as project tracking, and the team itself who decide on which person should work on

which tasks and so on.

The Scrum methodology breaks the software development for the project into a

series of sprints, where each sprint is of fixed time duration of 2–4 weeks. There is a

planning meeting at the start of the sprint where the team members determine the

number of items/tasks that they can commit to, and then create a sprint backlog

(to do list) of the tasks to be performed during the sprint. The Scrum team takes a

small set of features from idea to coded and tested functionality that is integrated

into the evolving product.

The team attends a daily stand-up meeting (usually of 15-min duration) where

the progress of the previous day is discussed, as well as any obstacles to progress.

The new functionality is demonstrated to the product owner and any other relevant

stakeholders at the end of the sprint, and this may result in changes to the delivered

functionality or the addition of new items to the product backlog. There is a sprint

retrospective meeting to reflect on the sprint and to identify improvement

opportunities.

300 18 Agile Methodology

The main deliverable produced using the Scrum framework is the product itself,

and Scrum expects to build a properly tested product increment (in a shippable

state) at the end of each sprint. The product backlog is another deliverable, and it is

maintained and prioritized by the product owner. It is a complete list of the func-

tionality (user stories) to be added to the product, and there is also the sprint

backlog which is the list of functionality to be implemented in the sprint. Other

deliverables are the sprint burnout and release burnout charts, which show the

amount of work remaining in a sprint or release, and indicate the extent to which the

sprint or release is on schedule.

The Scrum Master is the expert on the Agile process and acts as a coach to the

team, thereby helping the team to achieve a high level of performance. The role

differs from that of a project manager, as the Scrum Master does not assign tasks to

individuals or provide day-to-day direction to the team. However, the Scrum master

typically performs some light project management tasks.

Many of the traditional project manager responsibilities such as task assignment

and day-to-day project decisions revert back to the team, and the responsibility for

the scope and schedule trade-off goes to the product owner. The product owner

creates and communicates a solid vision of the product and shares the vision

through the product backlog. Larger Agile projects (team size > 20) will often have

a dedicated project manager role.

18.3 User Stories

A user story is a short simple description of a feature written from the viewpoint of

the user of the system. They are often written on index cards or sticky notes and

arranged on walls or tables to facilitate discussion. This approach facilitates the

discussion of the functionality rather than the written text.

A user story can be written at varying levels of detail, and a large detailed user

story is known as an epic. An epic story is often too large to be implemented in one

sprint, and such a story is often split into several smaller user stories.

It is the product owner’s responsibility to ensure that a product backlog of user

stories exist, but the product owner is not required to write all stories. In fact,

anyone can write a user story, and each team member usually writes a user story

during an Agile project. User stories are written throughout an Agile project, with a

user story-writing workshop held at the beginning of the project. This leads to the

product backlog that describes the functionality to be added during the project.

Some of these will be epics, and these will need to be decomposed into smaller

stories that will fit into the time boxed sprint. New user stories may be written at

any time and added to the product backlog.

There is no requirements document as such in Agile, and the product backlog

(i.e. the prioritized list of functionality of the product to be developed) is closest to

the idea of a requirements document for a traditional project. However, the written

part of a user story in Agile is incomplete until the discussion of that story takes

18.2 Scrum Methodology 301

place. It is often useful to think of the written part of a story as a pointer to the real

requirement, such as a diagram showing a workflow or the formula for a

calculation.

18.4 Estimation in Agile

Planning poker is a popular consensus-based estimation technique often used in

Agile, and it is used to estimate the effort required to implement a user story. The

planning session starts with the product owner reading the user story or describing a

feature to the estimators.

Each estimator holds a deck of planning poker cards with values like 0, 1, 2, 3, 5,

8, 13, 20, 40 and 100, where the values represent the units in which the team

estimates. The estimators discuss the feature with the product owner, and when the

discussion is fully complete and all questions answered, each estimator privately

selects a card to reflect his or her estimate.

All cards are then revealed, and if all values are the same then that value is

chosen as the estimate. Otherwise, the estimators discuss their estimates with the

rationale for the highest and lowest discussed in detail. Each estimator then rese-

lects an estimate card, and the process continues until consensus is achieved, or if

consensus cannot be achieved the estimation of the particular item is deferred until

more information is available.

The initial estimation session usually takes place after the initial product backlog

is written. This session may take a number of days, and it is used to create the initial

estimates of the size and scope of the project. Further estimation and planning

sessions take place regularly during the project as user stories are added to the

product backlog, and these will typically take place towards the end of the current

sprint.

The advantage of the estimation process employed is that it brings multiple

expert opinions from the cross-functional team together, and the experts justify their

estimates in the detailed discussion. This helps to improve the estimation accuracy

in the project.

18.5 Test-Driven Development

Test-driven development (TDD) is a software development process often employed

in Agile. It was developed by Kent Beck and others as part of XP, and the

developers focus on testing the requirements before writing the code. The appli-

cation is written with testability in mind, and the developers must consider how to

test the application in advance. Further, it ensures that test cases for every feature

are written, and writing tests early help in gaining a deeper understanding of the

requirements.

302 18 Agile Methodology

TDD is based on the transition of the requirements into a set of test cases, and

the software is then written to pass the test cases. Another words, the TDD of a new

feature begins with writing a suite of test cases based on the requirements for the

feature, and the code for the feature is written to pass the test cases. This is a

paradigm shift from traditional software engineering where the unit tests are written

and executed after the code is written.

The tests are written for the new feature, and initially all tests fail as no code has

been written, and so the first step is to write some code that enables the new test

cases to pass. This new code may be imperfect (it will be improved later), but this is

acceptable at this time as the only purpose is to pass the new test cases. The next

step is to ensure that the new feature works with the existing features, and this

involves executing all new and existing test cases.

This may involve modification of the source code to enable all of the tests to

pass and to ensure that all features work correctly together. The final step is

refactoring the code, and this involves cleaning up and restructuring the code, and

improving its structure and readability. The test cases are rerun during the refac-

toring to ensure that the functionality is not altered in any way. The process repeats

with the addition of each new feature.

Continuous integration allows the system to be built with every change, and this

allows early feedback to be provided. It also allows all of the automated tests to be

run, thereby ensuring that the new feature works with the existing functionality, and

identifying problems earlier.

18.6 Pair Programming

Pair programming is an agile technique where two programmers work together at

one computer. The author of the code is termed the driver, and the other pro-

grammer is termed the observer (or navigator), and is responsible for reviewing

each line of written code. The observer also considers the strategic direction of the

coding and proposes improvement suggestions and potential problems that may

need to be addressed. The driver can focus on the implementation of the current

task and use the observer as a safety net. The two programmers switch roles

regularly during the development of the new functionality.

Pair programming requires more programming effort to develop code compared

to programmers working individually. However, the resulting code is of higher

quality, with fewer defects and a reduction in the cost of maintenance. Further, pair

programming enables a better design solution to be created as more design alter-

natives are considered.

This is since two programmers are bringing different experiences to the problem,

and they may have different ways of solving the problem. This leads them to

explore a larger number of ways of solving the problem than an individual pro-

grammer. Finally, pair programming is good for knowledge sharing and learning,

18.5 Test-Driven Development 303

and it allows knowledge to be shared on programming practice and design and

allows knowledge about the system to be shared throughout the team.

18.7 Review Questions

1. What is Agile?

2. How does Agile differ from the waterfall model?

3. What is a user story?

4. Explain how estimation is done in Agile.

5. What is test-driven development?

6. Describe the Scrum methodology and the role of the Scrum Master.

7. Explain pair programming and describe its advantages.

18.8 Summary

This chapter gave a brief introduction to Agile, which is a popular lightweight

software development methodology. Agile advocates adaptive planning, evolu-

tionary development, early development, continuous improvement and a rapid

response to change. The traditional waterfall model is similar to a wide and

slow-moving value stream, and halfway through the project 100% of the require-

ments are typically 50% done. However, 50% of the requirements are typically

100% done halfway through an agile project.

Agile has a strong collaborative style of working, and ongoing changes to

requirements are considered normal in the Agile world. It includes controls to

manage changes to the requirements, and good communication and early regular

feedback is an essential part of the process.

A story may be a new feature or a modification to an existing feature. It is

reduced to the minimum scope that can deliver business value, and a feature may

give rise to several stories. Stories often build upon other stories, and the entire

software development lifecycle is employed for the implementation of each story.

Stories are either done or not done, and the story is complete only when it passes its

acceptance tests.

The Scrum approach is an Agile method for managing iterative development,

and it consists of an outline planning phase for the project followed by a set of

sprint cycles (where each cycle develops an increment). Each Scrum sprint is of a

fixed length (usually 2–4 weeks), and it develops an increment of the system.

304 18 Agile Methodology

The estimates for each story and their priority are determined, and the prioritized

stories are assigned to the iteration. A short (usually 15 min) morning stand-up

meeting is held daily during the iteration and attended by the project manager and

the project team. It discusses the progress made the previous day, problem reporting

and tracking, and the work planned for the day ahead.

Once the iteration is complete, the latest product increment is demonstrated to a

review audience including the product owner. This is to receive feedback and to

identify new requirements. The team also conducts a retrospective meeting to

identify what went well and what went poorly during the iteration, as part of

continuous improvement for future sprints.

Reference

1. K. Beck et al., Manifesto for Agile Software Development. Agile Alliance (2001), http://

agilemanifesto.org/

18.8 Summary 305

http://agilemanifesto.org/
http://agilemanifesto.org/

19A Miscellany of Innovation

Abstract

This chapter discusses innovation in the software field including miscellaneous

topics such as distributed systems, service-oriented architecture (SOA), software

as a service (SaaS), cloud computing and embedded systems. We discuss the

need for innovation in software engineering and discuss some recent innovations

including aspect-oriented software engineering (AOSE).

Keywords

Distributed system � Service-oriented architecture � Software as a service �

Cloud computing � Aspect-oriented software engineering � Embedded systems �
Innovation in software engineering

19.1 Introduction

The objective of this chapter is to give a flavour of several topics that have become

relevant to the software engineering field in recent times. The software field is

highly innovative and continually evolving, and this has led to the development of

many new technologies and systems. This includes distributed systems,

service-oriented architecture (SOA), software as a service (SaaS), cloud computing,

embedded systems. Software engineering needs to continually respond to the

emerging technology trends with innovative solutions and methodologies to sup-

port the latest developments.

A distributed system is a collection of computers that appears to be a single

system, and many large computer systems used today are distributed systems.

A distributed system allows hardware and software resources to be shared, and it

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_19

307

supports concurrency with multiple processors running on different computers on

the network.

SOA is a way of developing a distributed system consisting of stand-alone web

services that may be executing on distributed computers in different geographical

regions. SaaS allows software to be hosted remotely on a server (or servers), and the

user is able to access the software over the Internet through a web browser. Cloud

computing is a type of Internet-based computing that provides computing resources

and various other services on demand.

An embedded system is a computer system within a larger electrical or

mechanical system, and it is embedded as part of a complete system that includes

hardware and mechanical parts. An embedded system is usually designed to do a

specific task rather than as a general purpose device, and it may be subject to

real-time performance constraints.

Many innovative software engineering practices have been developed since the

birth of software engineering. We discuss aspect-oriented software engineering

(AOSE), which is based on the principle of separation of concerns. It states that

software should be organized so that each program element does exactly one thing

and one thing only. AOSE has been applied to requirements engineering, software

design and programming, with the goal is to make it easier to maintain and reuse the

software.

19.2 Distributed Systems

A distributed system (Fig. 19.1) is a collection of computers, interconnected via a

network, which is capable of collaborating on a task. It appears to be a single

integrated computing system to the user, and most large computer systems today

are distributed systems. The components (or nodes) of a distributed system are

located on networked computers and interact to achieve a common goal.

Fig. 19.1 A distributed

system

308 19 A Miscellany of Innovation

The communication and coordination of action is via message passing. A dis-

tributed system is not centrally controlled, and as a result, the individual computers

may behave differently at different times, and each computer has a limited and

incomplete view of the system.

A distributed system allows hardware and software resources (e.g. printers and

files) to be shared, and information may be shared between people and processes

located in distant geographical regions. It supports concurrency with multiple

processors running on different computers on the network. The processors in a

distributed system run concurrently in parallel, and each computer is running on its

own local operating system.

A distributed system is designed to tolerate failures on individual computers, and

the system is designed to be reliable and to continue service when a node fails.

Another words, a distributed system needs to be designed to be fault tolerant, and it

must remain available even if there are hardware, software or network failures. This

requires recovery and redundancy features such as the duplication of information on

several computers to be built in. The fault-tolerant design allows continuity of

service (possibly a degraded service) when failures occur.

The design of distributed systems is more complex than a centralized system, as

there may be complex interactions between its components and the system

infrastructure. The performance of the distributed system is dependent on the

network bandwidth and load, as well as on the speed of the computers that are on

the network. This differs from a centralized system, which is dependent on the

speed of a single processor. The performance and response time of a distributed

system may vary (and be unpredictable) depending on the network load and net-

work bandwidth, and so the response time may vary from user to user.

The nodes in a distributed system are often independent systems with no central

control, and the network connecting the nodes is a complex system in its own right,

which is not controlled by the systems using the network. There are many appli-

cations of distributed system in the telecommunication domain, such as fixed line,

mobile and wireless networks, company intranets, the Internet and the World Wide

Web. Next, we describe SOA and how it is used in distributed systems.

19.3 Service-Oriented Architecture

The objective of this section is to give a brief introduction to SOA, which is a way

of developing a distributed system using stand-alone web services executing on

distributed computers in different geographical regions. It is an approach to create

an architecture based upon the use of services, where a service may carry out some

small functions such as producing data or validating a customer.

A web service is a computational or information resource that may be used by

another program, and it allows a service provider to provide a service to an

application (service requestor) that wishes to use the service. The web service may

be accessed remotely and is acted upon independently. The service provider is

19.2 Distributed Systems 309

responsible for designing and implementing the services and specifying the inter-

face to the service.

The service is platform and implementation language independent, and it is

designed and implemented by the service provider with the interface to the service

specified. Information about the service is published in an accessible registry, and

service clients (requestor) are able to locate the service provider and link their

application with the specific service and communicate with it. The idea of a SOA is

illustrated in Fig. 19.2.

There are a number of standards that support communication between services,

as well as standards for service interface definition. These are discussed in [1].

19.4 Software as a Service

The idea of SaaS is that the software may be hosted remotely on a server (or

servers), and access provided to it over the Internet through a web browser. The

functionality is provided at the remote server with client access provided through

the web browser.

The cost model for traditional software is made up of an upfront cost for a

perpetual licence and optional ongoing support fees. SaaS is a software licensing

and delivery model where the software is licensed to the user on a subscription

basis. The software provider owns and provides the service, whereas the software

organization that is using the service will pay a subscription for its use. Occa-

sionally, the software is free to use with funding for the service provided through

the use of advertisements, or there may be a free basic service provided with

charges applied for the more advanced version.

A key benefit of SaaS is that the cost of hosting and management of the service

is transferred to the service provider, with the provider responsible for resolving

defects and installing upgrades of the software. Consequently, the initial set-up

costs for users is significantly less than for traditional software.

The disadvantages to the user are that data has to be transferred at the speed of

the network, and the transfer of a large amount of data may take a lot of time. The

subscription charges may be monthly or annual, with extra charges possibly due

depending on the amount of data transferred.

Service

Registry

Service

Requestor

Service

Provider

service

find publish

bind

Fig. 19.2 Service-oriented

architecture

310 19 A Miscellany of Innovation

19.5 Cloud Computing

Cloud computing is a type of Internet-based computing that provides computing

processing resources on demand. It provides access to a shared pool of configurable

computing resources such as networks, servers and applications on demand, and

such resources may be provided and released with minimal effort. It provides users

and organizations with capabilities to store and process their data in third-party data

centres that may be in distant geographical locations.

A key advantage of cloud computing is that it allows companies to avoid large

upfront infrastructure costs such as purchasing hardware and servers, and it also

allows organizations to focus on their core business. Further, it allows companies to

get their applications operational in a shorter period of time, as well as providing an

efficient way for companies to adjust resources to deal with fluctuating demand.

Companies can scale up as computing needs increase and scale down as demand

decreases. Cloud providers generally use a “pay as you go” model (Fig. 19.3).

Among the well-known cloud computing platforms are Amazon’s Elastic

Compute Cloud, Microsoft’s Azure and Oracle’s cloud. The main enabling tech-

nology for cloud computing is virtualization, which separates a physical computing

device into one or more virtual devices. Each of the virtual devices may be easily

used and managed to perform computing tasks, and this leads to the creation of a

scalable system of multiple independent computing devices that allows the idle

physical resources to be allocated and used more effectively.

Fig. 19.3 Cloud computing. Creative commons

19.5 Cloud Computing 311

Cloud computing providers offer their services according to different models.

These include infrastructure as a service (IaaS) where computing infrastructure such

as virtual machines and other resources are provided as a service to subscribers.

Platform as a service (PaaS) provides capability to the consumer to deploy

infrastructure related or application related that are supported by the provider onto

the cloud. PaaS vendors offer a development platform to application developers.

SaaS provides capability to the consumer to use the provider’s applications running

on a cloud infrastructure through a web browser or a program interface. Cloud

providers manage the infrastructure and platforms that run the applications.

19.6 Embedded Systems

An embedded system is a computer system within a larger electrical or mechanical

system that is usually subject to real-time constraints. The computer system is

embedded as part of a complete system that includes hardware and mechanical

parts. Embedded systems vary from personal devices such as MP3 players and

mobile phones, to household devices such as dishwashers and cookers, to the

automotive sector and to traffic lights. An embedded system is usually designed to

do a specific task rather than as a general purpose device, and it may be subject to

real-time performance constraints (Fig. 19.4).

Some embedded systems are termed reactive systems as they react to events that

occur in their environment, and so their design is often based on a stimulus–

response model. An event (or condition) that occurs in the system environment that

causes the system to respond in some way is termed a stimulus, and a response is a

signal sent by the software to its environment. For example, in the automotive

sector, there are sensors in a car that detect when the temperature in the engine goes

too high, and the response may be an audio alarm and visual warning to the driver.

Fig. 19.4 Example of an

embedded system

312 19 A Miscellany of Innovation

One of the earliest embedded systems was the guidance computer developed for

the Minuteman II missile [2] in the mid-1960s. Embedded systems are ubiquitous

today, and they control many devices that are in common use such as microwave

ovens, washing machines, coffee makers, clocks, DVD players, mobile phones and

televisions.

Embedded systems became more popular following the introduction of the

microprocessor in the early 1970s, as cheap microprocessors were able to fulfil the

same role as a large number of components. The vast majority of microprocessors

produced today are used as components of embedded systems.

19.7 Software Engineering and Innovation

The software field is highly innovative, and many new technologies and systems

have been developed. We have discussed a sample of these innovations in this

chapter, and the software engineering field needs to continually respond to these

emerging technology trends with innovative solutions and methodologies to sup-

port the latest developments.

There have been many innovations in software engineering since its birth in the

late 1960s. These include the waterfall and spiral lifecycle models, the Rational

Unified Process and iterative development, the Agile methodology, software

inspections and reviews, software testing and test-driven development, information

hiding, object-oriented design and development, formal methods and UML, soft-

ware process improvement, the CMM, CMMI and ISO SPICE.

There is also the need to focus on best practice in software engineering, as well

as emerging technologies from various research programs. Piloting or technology

transfer of innovative technology is an important part of continuous improvement.

We discuss AOSE to illustrate innovation in software engineering.

19.7.1 Aspect-Oriented Software Engineering

The objective of this section is to give a brief introduction to AOSE, which is a

recent innovation in software engineering based on the principle of separation of

concerns. This principle states that software should be organized so that each

program element does exactly one thing and one thing only. It is an important way

to think about and structure software systems and makes it easier to maintain and

reuse the software. AOSE may be applied to requirements engineering, software

design and programming.

Concerns reflect system requirements, and examples of concerns are specific

functionality, performance requirements, security requirements and so on. In most

systems, the mapping between the requirements (concerns) and components is not

one to one, and this means that the implementation of a change to the requirements

may involve changes to more than one component. AOSE is an approach that aims

19.6 Embedded Systems 313

to address this problem, and it is based on the idea of an aspect, which is a program

abstraction that encapsulates functionality based on the separation of concerns.

Programs that have been designed with the principle of separation of concerns have

clear traceability to the requirements.

The principle of separation of concerns is a key principle in software engineering

and requires that the software be organized in such a way that each element in the

program (e.g. class and procedure) does exactly one thing. Another words, it is a

design principle that separates a computer program into distinct sections such that

each section addresses a separate concern.

A modular program implements the principle of separation of concerns through

information hiding, where access to the module is through a well-defined interface

with the information inside the module hidden. The value of the principle of sep-

aration of concerns is that individual sections of programs may be reused or

modified independently without needing to be familiar with or modifying other

sections of the program.

19.8 Review Questions

1. What is a distributed system?

2. What is service-oriented architecture?

3. What is software as a service?

4. What is cloud computing?

5. What is embedded software engineering?

6. Describe the various models that are used in cloud computing.

7. What is aspect-oriented software engineering?

19.9 Summary

This chapter gave a brief introduction to distributed systems, SOA, SaaS, cloud

computing, embedded systems and AOSE.

A distributed system is a collection of interconnected computers that appears to

be a single system. SOA is a way of developing a distributed system consisting of

stand-alone web service executing on distributed computers in different geo-

graphical regions. SaaS allows software to be hosted remotely on a server (or

servers), and access is provided to it over the Internet through a web browser. Cloud

computing is a type of Internet-based computing that provides computing resources

and various other services on demand.

314 19 A Miscellany of Innovation

An embedded system is a computer system within a larger electrical or

mechanical system, and it is usually designed to do a specific task rather than as a

general purpose device, and it may be subject to real-time performance constraints.

AOSE is based on the principle of separation of concerns, and it has been

applied to requirements engineering, software design and programming, with the

goal is to make it easier to maintain and reuse the software.

References

1. I. Sommerville, Software Engineering, 9th edn. (Pearson, Boston, 2011)

2. G. O’Regan, Introduction to the History of Computing (Springer, Switzerland, 2016)

19.9 Summary 315

20Epilogue

Abstract

This chapter is the concluding chapter in which we summarize the journey that

we have travelled in this book.

Keywords

Future of Software Engineering

We embarked on a long journey in this book and set ourselves the objective of

providing a concise introduction to the software engineering field to students and

practitioners. The book was based on the author’s experience at leading industrial

companies, and it covered both theory and practice. The objective was to give the

reader a grasp of the fundamentals of the software engineering field, as well as

guidance on how to apply the theory in an industrial environment.

Customers today have very high expectations on quality and expect high-quality

software to be consistently delivered on time and on budget. The focus on quality

requires that sound software engineering practices be employed to enable

quality software to be consistently produced. Further, it is an accepted view in the soft-

ware qualityfield that the quality of the delivered software is closely related to the quality

of the underlying processes used to build the software and on adherence to them.

Many processes are employed in the design and development of software, and

companies need to determine the extent to which the underlying processes used to

design, develop, test andmanage software projects arefit for purpose. The processwill

need to be continuously improved, and often, model-based improvement using a

framework such as the Capability Maturity Model Integration (CMMI) is employed.

There is also the need to focus on best practice in software engineering, as well as

emerging technologies from various research programmes. Piloting or technology

transfer of innovative technology is an important part of continuous improvement.

Companies need to focus on customer satisfaction and software quality, and they need

to ensure that the desired quality is built into the software product.

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0_20

317

We discussed project planning and tracking, software lifecycles, software

inspections and testing, configuration management, software quality assurance, etc.

The CMMI was discussed, and it provides a framework that assists organizations in

software process improvement. The appraisal of an organization against the CMMI

allows the organization to determine the current capability or maturity of selected

software processes and to prioritize improvements. It reveals strengths and weak-

nesses of the management and engineering processes in the organization. The

output from the appraisal is used to formulate an improvement plan, which is then

tracked to completion.

We provided an introduction to project management and discussed project

estimation; project planning and scheduling, project monitoring and control, risk

management and managing project quality.

We discussed requirements engineering including activities such as requirements

gathering, requirements elicitation, requirements analysis, requirements manage-

ment, and requirements verification and validation.

We then discussed design and development, including the high-level architec-

tural design, the low-level design of individual programmes, and software devel-

opment and reuse. The views of Hoare and Parnas on software design were

discussed, and we discussed function-oriented design and object-oriented design.

We discussed software development topics such as software reuse, customized-

off-the-shelf software (COTS), and open-source software development.

We then moved on to discuss configuration management and discussed the

concept of a baseline. Configuration management is concerned with identifying

those deliverables that are subject to change control and controlling changes to

them.

We discussed software inspections including Fagan inspections, as well as the

less formal review and walk-through methodologies. Software testing was then

discussed, including the various types of testing that may be carried out, and we

discussed test planning, test case definition, test tracking, test metrics, test reporting

and testing in an e-commerce environment.

We then discussed the selection and management of a software supplier and

described how candidate suppliers may be formally evaluated, selected and man-

aged during the project.

We discussed software quality assurance and the importance of process quality,

and the discussion included audits and described how they are carried out. We then

discussed metrics and problem-solving, including the balanced score card and

GQM, as well as presenting a collection of sample metrics for an organization.

We then discussed software reliability and dependability and covered topics such

as software reliability and software reliability models; the Cleanroom methodology;

system availability; safety and security critical systems, and dependency

engineering.

We discussed formal methods, which are often employed in the safety critical

and security critical fields. These consist of a set of mathematical techniques to

specify and derive a programme from its specification. Formal methods may be

employed to rigorously state the requirements of the proposed system; they may be

318 20 Epilogue

employed to derive a programme from its mathematical specification; and they

provide a rigorous proof that the implemented programme satisfies its specification.

We discussed the Z specification language, which was developed at the Pro-

gramming Research Group at Oxford University in the early 1980s. Z specifications

are mathematical and the use of mathematics ensures precision and allows incon-

sistencies and gaps in the specification to be identified. Theorem provers may be

employed to demonstrate that the software implementation meets its specification.

We then discussed the unified modelling language (UML), which is a visual

modelling language for software systems, and it is used to present several views of

the system architecture. We presented various UML diagrams such as use case

diagrams, sequence diagrams and activity diagrams.

We then discussed the important field of software process improvement, dis-

cussed the idea of a software process and discussed the benefits that may be gained

from software process improvement.

We gave an overview of the CMMI model, and discussed its five maturity levels

and their constituent process areas. We discussed both the staged and continuous

representations of the CMMI.

We then discussed a selection of tools to support various software engineering

activities, including tools to support project management, requirements engineer-

ing, configuration management, design and development activities and software

testing.

We discussed the Agile methodology which is a popular lightweight approach to

software development. Agile has a strong collaborative style of working, and it

advocates adaptive planning and evolutionary development,

We then discussed some innovative developments in the computer field, such as

distributed systems, service-oriented architecture, software as a service, cloud

computing and embedded systems. This led to a discussion of the many innovations

in the software engineering and the need for continuous innovation.

20.1 The Future of Software Engineering

Software engineering has come a long way since the 1950s and 1960s, when it was

accepted that the completed software would always contain lots of defects and that

the coding should be done as quickly as possible, to enable these defects to be

quickly identified and corrected.

The software crisis in the late 1960s highlighted problems with budget and

schedule overruns, as well as problems with the quality and reliability of the

delivered software. This led to the birth of software engineering as a discipline in its

own right and the realization that programming is quite distinct from science and

mathematics.

The software engineering field is highly innovative and many new technologies

and systems have been developed over the decades. These include object-oriented

design and development; formal methods and UML; the waterfall and spiral

20 Epilogue 319

models; software inspections and software testing; software process improvement

and the CMMI; and the Agile methodology.

Software engineering will continue to be fundamental to the success of projects.

There is not a one size that fits all: some companies (e.g. in the safety critical or

security critical fields) are likely to focus on formal methods and software process

maturity models such as the CMMI. For other areas, the lightweight Agile

methodology may be the appropriate software development methodology.

Companies are likely to measure the cost of poor quality in the future, as driving

down the cost of poor quality will become more important. Software components

and the verification of software components are likely to become important, in order

to speed up software development and to shorten time to market. Software reuse

and open-source software development are likely to grow in popularity, and con-

tinuous innovation will continue in the software engineering field.

320 20 Epilogue

Glossary

AMN Abstract Machine Notation

AOSE Aspect Oriented Software Engineering

ATM Automated Teller Machine

BCS British Computer Society

BRS Business Requirements Specification

BSC Balanced Scorecard

CAR Causal Analysis and Resolution

CBA IPI CMM Based Assessment Internal Process Improvement

CCB Change Control Board

CCS Calculus Communicating Systems

CICS Customer Information Control System

CM Configuration Management

CMM® Capability Maturity Model

CMMI® Capability Maturity Model Integration

COCOMO Constructive Cost Model

COPQ Cost of Poor Quality

COTS Customized Off-the-Shelf

CR Change Request

CSP Communicating Sequential Processes

DAR Decision Analysis and Resolution

DMAIC Define, Measure, Analyse, Improve, Control

DMADV Define, Measure, Analyse, Design, Verify

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0

321

DOORS Dynamic Object-Oriented Requirements System

DSDM Dynamic Systems Development Method

EAF Effort Adjustment Factor

ESA European Space Agency

ESI European Software Institute

FSF Free Software Foundation

FSM Finite State Machine

GG Generic Goal

GP Generic Practice

GQM Goal, Question, Metric

GUI Graphical User Interface

HP Hewlett-Packard

HR Human Resources

HTM Hyper-Text Mark-up Language

IaaS Infrastructure as a Service

IBM International Business Machines

IDE Integrated Development Environment

IEC International Electro technical Commission

IEEE Institute of Electrical and Electronic Engineers

IPM Integrated Project Management

ISEB Information System Examination Board

ISO International Standards Organization

JAD Joint Application Development

JVM Java Virtual Machine

KLOC Thousand Lines of Code

LCL Lower Control Limit

LDRA Liverpool Data Research Associates

LPF Logic of Partial Functions

LOC Lines of Code

MA Measurement and Analysis

322 Glossary

MOD Ministry of Defence

MTBF Mean Time Between Failure

MTTF Mean Time to Failure

MTTR Mean Time to Repair

NATO North Atlantic Treaty Organization

OCL Object Constraint Language

ODC Orthogonal Defect Classification

OID Organization Innovation and Deployment

OMT Object Modelling Technique

OOD Object-oriented Design

OOSE Object-Oriented Software Engineering

OPD Organization Process Definition

OPF Organization Process Focus

OPP Organization Process Performance

OT Organization Training

PaaS Platform as a Service

PCE Phase Containment Effectiveness

P-CM People Capability Maturity Model

PI Product Integration

PL/1 Programming Language

PMBOK Project Management Book of Knowledge

PMI Project Management Institute

PMC Project Monitoring and Control

PMP Project Management Professional

PP Project Planning

PPM Project Portfolio Management

PPQA Process and Product Quality Assurance

Prince Projects In a Controlled Environment

PSP Personal Software Process

PVCS Polytron Version Control System

Glossary 323

QPM Quantitative Project Management

RAD Rapid Application Development

RAG Red, Amber, Green

RCA Root Cause Analysis

RD Requirements Development

REQM Requirements Management

RFP Request for Proposal

ROI Return on Investment

RPM Rational Portfolio Manager

RSM Rational Software Modeller

RSKM Risk Management

RUP Rational Unified Process

SaaS Software as a Service

SAM Supplier Agreement Management

SCAMPI Standard CMMI Appraisal Method for Process, Improvement

SCM Software Configuration Management

SEI Software Engineering Institute

SEPG Software Engineering Process Group

SG Specific Goal

SLA Service Level Agreement

SLOC Source lines of code

SOA Service Oriented Architecture

SOW Statement of Work

SP Specific Practice

SPC Statistical Process Control

SPI Software Process Improvement

SPICE Software Process Improvement Capability dEtermination

SQA Software Quality Assurance

SRS System Requirements Specification

SSADM Structured Systems Analysis and Design Method

324 Glossary

TDD Test Driven Development

TS Technical Solution

TSP Team Software Process

UAT User Acceptance Testing

UCL Upper Control Limit

UK United Kingdom

UML Unified Modelling Language

URS User Requirements Specification

VAL Validation

VDM Vienna Development Method

VDM
♣ Irish School of VDM

VER Verification

VOB Version Object Base

VSS Visual Source Safe

XP Extreme Programming

Y2K Year 2000

Glossary 325

References

1. ARC:06 Appraisal Requirements for CMMI V1.2. (ARC V1.2). SCAMPI Upgrade Team. TR

CMU/SEI-2006-TR-011, August, 2006

2. I. Bhandari, A case study of software process improvement during development. IEEE Trans.

Softw. Eng. 19(12)

3. M.B. Chrissis, M. Conrad, S. Shrum, CMMI for Development. Guidelines for Process

Integration and Product Improvement, 3rd edn. SEI Series in Software Engineering (Addison

Wesley, Boston, 2011)

4. W. Edwards Deming, Out of Crisis (M.I.T. Press, Cambridge, 1986)

5. W. Humphry, Managing the Software Process (Addison Wesley, Boston, 1989)

6. J, Juran, Juran’s Quality Handbook (McGraw Hill, New York, 1951)

7. Ministry of Defence, 00-55 (PART 2) I Issue 1, The Procurement of Safety Critical software in

Defence Equipment, PART 2: Guidance. Interim Defence Standard, UK, 1991

8. F. O’Hara, Peer reviews—the key to cost effective quality. European SEPG, Amsterdam, 1998

9. Standard CMMI Appraisal Method for Process Improvement. CMU/SEI-2006-HB-002. V1.2,

August 2006

10. CMMI Executive Overview. Presentation by the SEI. Software Engineering Institute, 2006

11. CMMI Impact. Presentation by Anita Carleton. Software Engineering Institute, August 2009

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0

327

Index

A

Agile development, 12

Analogy method, 32

Architecture design, 62

Ariane 5 disaster, 7

Audit escalation, 136

Audit meeting, 135

Audit planning, 134

Audit reporting, 135

Automated software inspections, 101

Axiomatic approach, 192

B

Bags, 217

Balanced scorecard, 143

Barriers to success, 249, 251

Baseline, 77

B method, 198

Booch method, 225

Business case, 29

C

C++, 72

Capability Maturity Model Integration

(CMMI), 258, 276, 321

Categories of CMMI processes, 266

CCS, 200

Change control, 82

Change control board, 40

Change request, 40

CICS, 189

Clarity PPM, 282

Class diagrams, 229

Cleanroom methodology, 175

Clearcase, 78

Clear quest, 78

Cloud computing, 311

CMMI maturity levels, 261

CMMI process areas, 267

CMMI representations, 264

COCOMO, 280

Commuting diagram property, 222

Computer security, 180

Configuration control, 78

Configuration identification, 78

Configuration management, 75

Configuration management audits, 84

Configuration management plan, 81

Continuous representation, 264

Cost of poor quality, 90, 158

Cost predictor models, 32

CSP, 200

Customer care metrics, 155

Customer satisfaction metrics, 145

Customized off-the-shelf software, 70

D

Darlington nuclear power plant, 189

Data gathering for metrics, 160

Data reification, 221

Decomposition, 221

Def stan 00-55, 189

Dependability, 171, 178

Development quality metrics, 151

Distributed systems, 308

Document control management, 80

DOORS, 284

E

E-commerce testing, 118

Embedded systems, 312

Enterprise architect, 288

Escrow agreement, 127

Estimation, 30

Estimation in agile, 302

European space agency, 8

Expert judgment, 32

© Springer International Publishing AG 2017

G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics

in Computer Science, DOI 10.1007/978-3-319-57750-0

329

F

Fagan inspection guidelines, 93

Fagan inspections, 5, 21, 92

Finite state machines, 200

Fishbone diagram, 162

Formal methods, 23

Formal specification, 186

Functional requirement, 50

Function-oriented design, 67

Function points, 32

G

Generic goals, 270

Generic practices, 271

Goal question metric, 141

H

Histograms, 164

Human resources and training metrics, 148

I

IEEE standards, 10

Information hiding, 65, 202

Inspection meeting, 98

Integrated development environment, 289

ISO 9001, 245

J

Java, 72

L

LDRA tool, 103, 291

M

Maintenance, 20

Mathematical proof, 193, 222

Measurement, 139

Microsoft project, 281

Model, 9

Model-oriented approach, 191

Mongolian hordes approach, 1

N

Non-functional requirement, 50

O

Object diagram, 230

Object modelling technique, 225

Object-oriented design, 67

Object-oriented programming, 71

Object-oriented software engineering, 225

Open source development, 70

Overture integrated development environment,

190

P

Pair programming, 303

Pareto chart, 165

Parnas, 5, 6, 17, 66, 201

Partial correctness, 199

Partial function, 215

Performance testing, 19

Personal software process, 247

Phase containment effectiveness, 101

Planview, 282

Planview enterprise, 282

PMBOK, 29, 323

Polytron Version Control System (PVCS), 78,

290

Postcondition, 197

Precondition, 197, 199

Predicate transformer, 199

Prince 2, 5, 20, 29, 43

Problem-solving techniques, 161

Process maturity models, 22

Process calculi, 200

Process improvement metrics, 146

Process mapping, 247

Process model, 244

Professional engineering association, 3

Professional engineers, 6

Project, 27

Project board, 29, 40

Project closure, 42

Project management, 21, 27

Project management metrics, 149

Project manager, 29

Project monitoring and control, 38

Project reporting, 42

Proof in Z, 222

Prototyping, 15, 49

Q

Quality audit metrics, 153

Quality center, 117, 293

Quality management, 36

R

Rational software modeler, 288

Rational unified process, 9, 11, 236, 324

Refinement, 186

Reification, 221

Request for proposal, 126

Requirements analysis, 54

Requirements elicitation, 51

Requirements management, 55

Requirements process, 48

Requirements validation, 54, 186

Requirements verification, 55

330 Index

Requirement traceability, 56, 60

RequisitePro, 286

Risk management, 36

S

Safety critical systems, 182

SCAMPI appraisals, 275

Scatter graphs, 167

Schema calculus, 197

Schema composition, 218, 220

Schema inclusion, 218

Schemas, 218

Scientific revolutions, 191

Scrum methodology, 300

Sequence diagram, 231, 232

Sequences, 216

Service-oriented architecture, 309

Simula 67, 72

Six sigma, 20, 247

Software as a service, 310

Software crisis, 2, 24

Software design, 61, 61, 74

Software engineering, 2, 4, 7, 319

Software failures, 7

Software inspections, 87

Software process, 240

Software process improvement, 242

Software reliability, 171, 172, 174

Software reliability and defects, 173

Software reliability models, 176

Software reuse, 17, 71

Software testing, 18

Source code control management, 81

Specific goals, 270

Specific practices, 270

Spiral model, 10

Sprint planning, 14, 298

Standish group, 3, 24

State diagrams, 232

Statement of work, 127

Statistical process control, 168

Statistical usage testing, 176

Steering group, 252

Story, 13, 298, 304

Structured walkthrough, 91

Supplier selection, 123

System availability, 181

System modelling, 57

System testing, 18, 19

T

Team software process, 247

Test case design, 112

Test cases, 109

Test director, 292

Test driven development, 18, 119, 302

Test environment, 107

Test execution, 113

Test planning, 107, 111

Test process, 107

Test reporting, 114

Test tools, 110, 116

Traceability, 16, 135, 285

U

UAT testing, 19

UML activity diagram, 233

UML diagrams, 228

Unified modeling language, 225, 238

Unit testing, 18

Use-case diagram, 231

User-interface design, 68

User requirements, 47, 59, 61

User stories, 301

V

VDM, 187, 195, 197

Victor basili, 141

VIPER, 193

Visual source safe, 78, 290

W

Walter shewhart, 242

Waterfall model, 9

Watts Humphrey, 257

Weakest precondition, 199

Work breakdown structure, 32

Y

Y2K, 3, 7, 8

Y2K bug, 8

Z

Zermelo set theory, 198

Z specification, 197, 210

Z specification language, 197

Index 331

	Preface
	Overview
	Organization and Features
	Audience
	Acknowledgements

	Contents
	List of Figures
	List of Tables
	1 Background
	Abstract
	1.1 Introduction
	1.2 What Is Software Engineering?
	1.3 Challenges in Software Engineering
	1.4 Software Processes and Lifecycles
	1.4.1 Waterfall Lifecycle
	1.4.2 Spiral Lifecycles
	1.4.3 Rational Unified Process
	1.4.4 Agile Development

	1.5 Activities in Waterfall Lifecycle
	1.5.1 User Requirements Definition
	1.5.2 Specification of System Requirements
	1.5.3 Design
	1.5.4 Implementation
	1.5.5 Software Testing
	1.5.6 Support and Maintenance

	1.6 Software Inspections
	1.7 Software Project Management
	1.8 CMMI Maturity Model
	1.9 Formal Methods
	1.10 Review Questions
	1.11 Summary
	References

	2 Software Project Management
	Abstract
	2.1 Introduction
	2.2 Project Start-up and Initiation
	2.3 Estimation
	2.3.1 Estimation Techniques
	2.3.2 Work-Breakdown Structure

	2.4 Project Planning and Scheduling
	2.5 Risk Management
	2.6 Quality Management in Projects
	2.7 Project Monitoring and Control
	2.8 Managing Issues and Change Requests
	2.9 Project Board and Governance
	2.10 Project Reporting
	2.11 Project Closure
	2.12 Prince 2 Methodology
	2.13 Review Questions
	2.14 Summary
	Reference

	3 Requirements Engineering
	Abstract
	3.1 Introduction
	3.2 Requirements Process
	3.2.1 Requirements Elicitation and Specification
	3.2.2 Requirements Analysis
	3.2.3 Requirements Verification and Validation
	3.2.4 Requirements Managements
	3.2.5 Requirements Traceability

	3.3 System Modelling
	3.4 Review Questions
	3.5 Summary
	References

	4 Software Design and Development
	Abstract
	4.1 Introduction
	4.2 Architecture Design
	4.3 Detailed Design and Development
	4.3.1 Function-Oriented Design
	4.3.2 Object-Oriented Design
	4.3.3 User Interface Design
	4.3.4 Open-Source Development
	4.3.5 Customized Off-the-Shelf Software
	4.3.6 Software Reuse
	4.3.7 Object-Oriented Programming

	4.4 Software Maintenance and Evolution
	4.5 Review Questions
	4.6 Summary
	References

	5 Configuration Management
	Abstract
	5.1 Introduction
	5.2 Configuration Management System
	5.2.1 Identify Configuration Items
	5.2.2 Document Control Management
	5.2.3 Source Code Control Management
	5.2.4 Configuration Management Plan

	5.3 Change Control
	5.4 Configuration Management Audits
	5.5 Review Questions
	5.6 Summary

	6 Software Inspections
	Abstract
	6.1 Introduction
	6.2 Economic Benefits of Software Inspections
	6.3 Informal Reviews
	6.4 Structured Walk-through
	6.5 Semi-formal Review Meeting
	6.6 Fagan Inspections
	6.6.1 Fagan Inspection Guidelines
	6.6.2 Inspectors and Roles
	6.6.3 Inspection Entry Criteria
	6.6.4 Preparation
	6.6.5 The Inspection Meeting
	6.6.6 Inspection Exit Criteria
	6.6.7 Issue Severity
	6.6.8 Defect Type

	6.7 Automated Software Inspections
	6.8 Review Questions
	6.9 Summary
	References

	7 Software Testing
	Abstract
	7.1 Introduction
	7.2 Test Process
	7.3 Test Planning
	7.4 Test Case Design and Definition
	7.5 Test Execution
	7.6 Test Reporting and Project Sign-Off
	7.7 Testing and Quality Improvement
	7.8 Traceability of Requirements
	7.9 Test Tools
	7.9.1 Test Management Tools
	7.9.2 Miscellaneous Testing Tools

	7.10 e-commerce Testing
	7.11 Test-Driven Development
	7.12 Review Questions
	7.13 Summary

	8 Supplier Selection and Management
	Abstract
	8.1 Introduction
	8.2 Planning and Requirements
	8.3 Identifying Suppliers
	8.4 Prepare and Issue RFP
	8.5 Evaluate Proposals and Select Supplier
	8.6 Formal Agreement
	8.7 Managing the Supplier
	8.8 Acceptance of Software
	8.9 Roll-out and Customer Support
	8.10 Review Questions
	8.11 Summary

	9 Software Quality Assurance
	Abstract
	9.1 Introduction
	9.2 Audit Planning
	9.3 Audit Meeting
	9.4 Audit Reporting
	9.5 Follow-Up Activity
	9.6 Audit Escalation
	9.7 Review of Audit Activities
	9.8 Other Audits
	9.9 Review Questions
	9.10 Summary

	10 Software Metrics and Problem-Solving
	Abstract
	10.1 Introduction
	10.2 The Goal, Question, Metric Paradigm
	10.3 The Balanced Scorecard
	10.4 Metrics for an Organization
	10.4.1 Customer Satisfaction Metrics
	10.4.2 Process Improvement Metrics
	10.4.3 Human Resources and Training Metrics
	10.4.4 Project Management Metrics
	10.4.5 Development Quality Metrics
	10.4.6 Quality Audit Metrics
	10.4.7 Customer Care Metrics
	10.4.8 Miscellaneous Metrics

	10.5 Implementing a Metrics Programme
	10.5.1 Data Gathering for Metrics

	10.6 Problem-Solving Techniques
	10.6.1 Fishbone Diagram
	10.6.2 Histograms
	10.6.3 Pareto Chart
	10.6.4 Trend Graphs
	10.6.5 Scatter Graphs
	10.6.6 Metrics and Statistical Process Control

	10.7 Review Questions
	10.8 Summary
	References

	11 Software Reliability and Dependability
	Abstract
	11.1 Introduction
	11.2 Software Reliability
	11.2.1 Software Reliability and Defects
	11.2.2 Cleanroom Methodology
	11.2.3 Software Reliability Models

	11.3 Dependability
	11.4 Computer Security
	11.5 System Availability
	11.6 Safety Critical Systems
	11.7 Review Questions
	11.8 Summary
	References

	12 Formal Methods
	Abstract
	12.1 Introduction
	12.2 Why Should We Use Formal Methods?
	12.3 Applications of Formal Methods
	12.4 Tools for Formal Methods
	12.5 Approaches to Formal Methods
	12.5.1 Model-Oriented Approach
	12.5.2 Axiomatic Approach

	12.6 Proof and Formal Methods
	12.7 The Future of Formal Methods
	12.8 The Vienna Development Method
	12.9 VDM♣, The Irish School of VDM
	12.10 The Z Specification Language
	12.11 The B-Method
	12.12 Predicate Transformers and Weakest Preconditions
	12.13 The Process Calculii
	12.14 Finite State Machines
	12.15 The Parnas Way
	12.16 Usability of Formal Methods
	12.17 Review Questions
	12.18 Summary
	References

	13 Z Formal Specification Language
	Abstract
	13.1 Introduction
	13.2 Sets
	13.3 Relations
	13.4 Functions
	13.5 Sequences
	13.6 Bags
	13.7 Schemas and Schema Composition
	13.8 Reification and Decomposition
	13.9 Proof in Z
	13.10 Review Questions
	13.11 Summary
	References

	14 Unified Modelling Language
	Abstract
	14.1 Introduction
	14.2 Overview of UML
	14.3 UML Diagrams
	14.4 Object Constraint Language
	14.5 Tools for UML
	14.6 Rational Unified Process
	14.7 Review Questions
	14.8 Summary
	References

	15 Software Process Improvement
	Abstract
	15.1 Introduction
	15.2 What Is a Software Process?
	15.3 What Is Software Process Improvement?
	15.4 Benefits of Software Process Improvement
	15.5 Software Process Improvement Models
	15.6 Process Mapping
	15.7 Process Improvement Initiatives
	15.8 Barriers to Success
	15.9 Setting Up an Improvement Initiative
	15.10 Appraisals
	15.11 Review Questions
	15.12 Summary
	References

	16 Capability Maturity Model Integration
	Abstract
	16.1 Introduction
	16.2 The CMMI
	16.3 CMMI Maturity Levels
	16.3.1 CMMI Representations

	16.4 Categories of CMMI Processes
	16.5 CMMI Process Areas
	16.6 Components of CMMI Process Areas
	16.7 SCAMPI Appraisals
	16.8 Review Questions
	16.9 Summary
	References

	17 Software Engineering Tools
	Abstract
	17.1 Introduction
	17.2 Tools for Project Management
	17.3 Tools for Requirements
	17.4 Tools for Design and Development
	17.5 Tools for Configuration Management and Change Control
	17.6 Tools for Code Analysis and Code Inspections
	17.7 Tools for Testing
	17.8 Review Questions
	17.9 Summary
	Reference

	18 Agile Methodology
	Abstract
	18.1 Introduction
	18.2 Scrum Methodology
	18.3 User Stories
	18.4 Estimation in Agile
	18.5 Test-Driven Development
	18.6 Pair Programming
	18.7 Review Questions
	18.8 Summary
	Reference

	19 A Miscellany of Innovation
	Abstract
	19.1 Introduction
	19.2 Distributed Systems
	19.3 Service-Oriented Architecture
	19.4 Software as a Service
	19.5 Cloud Computing
	19.6 Embedded Systems
	19.7 Software Engineering and Innovation
	19.7.1 Aspect-Oriented Software Engineering

	19.8 Review Questions
	19.9 Summary
	References

	20 Epilogue
	Abstract
	20.1 The Future of Software Engineering

	Glossary
	References

	References
	Index

