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Preface

This is the first draft of the lecture notes for ELE32DSP. Your comments and feedbacks are wel-
come. Send your comments/corrections to: d.deng@latrobe.edu.au

The first draft was finished on August 17, 2001. In version 1.1, some typing errors identified by
Mr Finn Thain (ELE32DSP student) are fixed. Last revised: July 2008.

I intend to use it as the key teaching material for this subject. However, it is not a text book. It can
not replace the recommended text book.

The textbook for this subject is "DSP First A Multimedia Approach", by J. H. McClellan, R. W.
Schafer and M. A. Yoder. This book is published by Prentice Hall.
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1 Introduction

In this lecture, we try to answer the following questions relating to digital signal processing (DSP).
What is it about? What is the advantage of using DSP? What are the major applications of DSP? Can
you show me a few simple examples?

1.0.1 Signals and systems1

What are signals and systems? There are different type of signal processing systems. In this subject,
we are only concerned with linear time-invariant systems.

1.0.2 Advantages of using DSP

Compared with analog signal processing, DSP has a number of advantages:

• flexibility in system reconfiguration

• better control of accuracy

• perfectly reproducible

• no performance drift with temperature or age

• signal processors are becoming more powerful and cheaper

1.0.3 Applications of DSP

Digital signal processing technologies have found a wide range of applications in telecommunica-
tions, defense, biomedical engineering, aviation, home electronic appliances and many other areas.
In telecommunications, DSP is used in applications such as echo cancellation, ADPCM transcoders
and video conferencing. In biomedical engineering, DSP techniques have been developed for patient
monitoring, EEG brain signal mapping, ECG analysis and the storage and enhancement of X-ray
images.

We also use DSP technologies in our daily life. Digital mobile phone and DVD player are two
examples. The digital mobile phone involves, among other complicated signal processing tasks, con-
verting the voice signal into digital data and performing data compression. It must also perform data
de-compression and convert the digital data into the voice signal. The key element of a DVD player is
the decoder that decodes the digital audio and video data encoded according to the MPEG-2 standard.

1.0.4 Notations and representations

A discrete signal is denoted x[n] where nis an interger. This a general representation. When n repre-
sents a specific number, then x[n] is the value of the signal at location n. A discrete signal is sometimes
called a sequence or a vector. For example, a data sequence is given by

x[n] =

{
cos(π

3 n), n = 0,1, ...9
0, n < 0 and n > 9

We can also represent signal by its numerical values

x[n] = {1,0.5,−0.5,−1,−0.5,0.5,1,0.5,−0.5,−1}
1This part is still being written.
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Figure 1: A matlab plot of the cosine signal.

In this case it is important to indicate the location where n = 0. This is an important reference point.
I will use an up-arrow to point to that signal value. When the signal is represented in this way, it is
assumed that signal values at unspecified locations are zero. We make this assumption throughtout
this unit. We can also visualize the signal in Matlab by using the following codes:

n = 0 : 9;
x = cos( pi * n / 3 );
figure;
stem( n, x );
title(’ x = cos(\pin/3) ’ ); % \pi is π

The figure is shown in fig. 1below.
Therefore, a discrete signal can be represented by using an equation, by specifically listing signal

values and by using a figure.

1.0.5 Examples

A simple linear filter is the moving average filter that is defined as:

y[n] =
1
3

1

∑
k=−1

x[n− k]

where x[n] and y[n] represents the input and the output signals of the filter (system) at index n. A
simple nonlinear filter is the median filter that is defined as:

y[n] = med{x[n−1],x[n],x[n+1]}

where the output signal y[n] is the median value of the three input samples. For example, if x[n−1] = 7,
x[n] = 2, x[n+1] = 11, then y[n] = med{7,2,11}= 2.

If a data sequence, u[n] = {0,0,0,0,0,5,5,5,5,5}, is corrupted by noise and the resulting noisy
data sequence is given by x[n] = {0,7,0,0,0,10,5,5,−3,5}. We can apply the above two filters to the
noisy signal to see if they can remove the noise. Figure 2 shows A plot of the original signal, the noisy
signal and the results of the two simple filters.

We can also apply these two filters to digital images. Results are shown in Figure 3. We can see
that the median filter is useful for filtering out impulse noise.

The moving average filter is a useful filter for a number of noise filtering applications. For ex-
ample, a cosine signal, given by u[n] = cos(2πω0 +0.1π), is corrupted by Gaussian noise. The noisy

8



1 2 3 4 5 6 7 8 9 10
0

2

4

6

1 2 3 4 5 6 7 8 9 10
−5

0

5

10

1 2 3 4 5 6 7 8 9 10
0

5

10

1 2 3 4 5 6 7 8 9 10
0

2

4

6

original signal 

noisy signal 

moving average filter output 

median filter output 

Figure 2: A plot of the original signal, the noisy signal and the results of the two simple filters.

Figure 3: From left to right, top to bottom, the original image, the noisy image, output of a median
filter, output of a moving average filter.

9



0 20 40 60 80 100
−1

−0.5

0

0.5

1

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

2

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

2

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

original
signal 

noisy
signal 

N=1 N=10 

Figure 4: The outputs of the moving average filter with N=1 (bottom left) N=10 (bottom right)

signal is x[n] = u[n]+r[n], where r[n] represents the noise signal. We can use the moving average filter
to remove the noise. A generalized form of the filter is

y[n] =
1

2N +1

N

∑
k=−N

x[n− k]

where N controls the number of samples involves in the averaging operation. Figure 4 shows two
cases with N = 1 and N = 10, respectively.

1.1 Text book and reference books

The text book for this subject is:
J. H. McClellan, R. W. Schafer and M. A. Yoder, DSP First A Multimedia Approach, Prentice-Hall,

1998
There are many good books on DSP. The following is a list of a few of them

• R. D. Strum and S. E. Kirk, First Principles of Discrete Systems and Digital Signal Processing,
Addison Wesley, 1988

• A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing, Prentice-Hall, 1989

• S. K. Mitra, Digital Signal Processing A Computer Based Approach, McGraw Hill, 1998

• J. G. Proakis and D. G. Manolakis, Digital Signal Processing Principles, Algorithms and Ap-
plications, 3rd ed., Prentice-Hall, 1996

1.2 How to study

To pass the subject, you must do all assignments and laboratory exercises. They are designed to
reinforce your understanding of the basic concepts and techniques of DSP. They are also directly
related to the exam questions. The CDROM bundled with the text book contains many interesting
demonstrations and exercises. You should go through some of them (at least those suggested by the
lecturer). At the end of each lecture, there are a few simple self-test questions to remind you the major
concepts or techniques introduced in the lecture. You should also go through those questions. Finally,
there is an old Chinese proverb:

10



I hear, I forget
I see, I remember
I do, I understand

1.3 Self-test Exercises

A limitation of the simple moving average filter is that in order to calculate the “current output” at
index n, “future” input samples are used (from index n to n+N).

• Modify the filter such that only the past and current input samples are used.

• The moving average filter can also be implemented in a recursive form: y[n] = ay[n− 1] +
b(x[n]− x[n−N]). Determine the two constants a and b.

• Compare the number of operations required for both implementations.

Answer:

• y[n] = 1
N ∑

0
k=N−1 x[n− k]

• Ny[n−1] = ∑
0
k=N−1 x[n− k−1], N(y[n]− y[n−1]) = x[n]− x[n−N], a = 1, b = 1

N

• Direct implementation: (N-1) addition and one multiplication. Recursive implementation: 2
addition, one multiplication.
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Figure 5: The time-shifting of a signal

2 A review of cosine signals and complex numbers

This lecture is a review of cosine signals and complex numbers and is based on Chapter 2 of the text
book. It is assumed that you have a basic knowledge of trigonometric functions. This lecture is thus
focused on the concepts and a number of Matlab commands that are related to signal processing.

2.1 Cosine signals

A cosine signal is defined as:
x(t) = Acos(Ω0t +φ)

where A is called the amplitude, Ω0 is called the radian frequency2 and φ the phase shift. The cosine
signal oscillates between +A and -A. Its radian frequency is related to the cyclic frequency:

Ω0 = 2π f0

which determines how fast it oscillates. The period of the signal is T0 = 1
f0

. For example, when the
frequency is 10 kHz, its radian frequency is 20,000π rad/sec and the period is T0 = 0.1 ms. Note that
this cosine signal is an analog signal. Its frequency can go very high. Later on we will see that for a
discrete cosine signal, its highest frequency is π.

The phase shift is related to the time-shift of a signal. Let s(t) represent a signal. Then s(t− t0)
represents a time-shifted version of the original signal. When t0 > 0, the signal is delayed in time
(shifted to the right). When t0 < 0 , the signal is advanced in time (shifted to the left).

It is easy to determine the relationship between the time-shift and the phase shift of a cosine signal
x(t) = cos(Ωot). A time-shifted signal is

x(t− τ) = cos(Ω0(t− τ)) = cos(Ω0t−Ω0τ)

Therefore the phase shift is: φ = −Ω0τ. Another interpretation is that given the phase shift, the time
delay is:

τ =− φ

Ω0
=− φ

2π f0

Note that if the phase shift caused by the time shift is greater than 2π, then it must be converted to the
principal value between −π and π.

A discrete cosine signal can be generated by evaluating the analog cosine signal at a discrete set
of times, tn = nTs, where n is an integer, Ts is called the sampling period. By sampling, we obtain a
sequence of data:

x[n] = x(nTs) = cos(2π f0nTs +φ)

The index n represents the order of the data samples. Unless we know Ts, the time between any two
samples, for example, between x[n−1] and x[n+3] is unknown.

2We use Ω to represent the radian frequency of an analog signal and ω to represent that of a discrete time signal. This
notation is different from that used in the text book.
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Figure 6: Discrete cosine signal, sampling period = 0.005 sec. Top: using the plot command. Bottom:
using the stem command. Note that when we use the stem command, we plot the signal against the
location index n.

In Matlab, a sequence of data is usually stored as a row or a column vector. Several related or
unrelated data sequences can be stored in a matrix. The following Matlab code shows you how to
generate and plot cosine signals:

n = -7 : 5 ; %index
Ts = 0.005; %sampling period
tn = n * Ts ;
xn = 20 * cos ( 80 * pi * tn + 0.4*pi); % f0 = 40, φ = 0.4π

subplot ( 211 ) %put more than one signal in on figure
plot ( tn , xn ) %plot the signal against time
subplot ( 212 )
stem( n, xn ) %it is different from plot

2.2 Complex numbers

There are two representations for complex numbers.

• Rectangular form: z = x+ jy

• Polar form: z = re jθ

where x, y, r and θ are real numbers and j =
√
−1. These two representations are related by:

r =
√

x2 + y2

and
θ = arctan(

y
x
)

A geometric view is shown in Figure 7.
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Figure 7: A geometric view of a complex number.

addition z1 + z2 = (x1 + x2)+ j(y1 + y2)
multiplication z1z2 = r1r2e j(θ1+θ2)

conjugate z∗ = re− jθ = x− jy
power zn = rne jnθ

roots of unity zN = 1, zn = e j2πn/N , n = 0,1, ...,N−1
unit circle |z|= 1

Euler’s formula is also very useful for manipulating complex numbers:

e jθ = cosθ+ j sinθ

For example, it is easy to see that:

cosθ =
e jθ + e− jθ

2
and

sinθ =
e jθ− e− jθ

2 j

The following is a list of operational rules for complex numbers.
From Fig. 7, we can see that a complex number corresponds to a point in the 2-D space using x and

y as the coordinates. Remember the y-axis has a unit j =
√
−1. A complex number also represents a

vector that points from the origin (0,0) to the point (x,y). The length of the vector is r which is always
greater than or equal to zero. The angle is θ. If r is fixed, say r = 1, then the vector is determined by
the angle. Two complex numbers, denoted by z1 = re jθ1 and z2 = re jθ2 are the same if θ1 = 2kπ+θ2
for k = 0,1,2, ....

Here is the geometric interpretation. If we modify a vector z2 by only adding θ0 to its angle, then
resulting vector is rotated from its orginal position to a new position where the angle is θ0 +θ1. Now
if θ0 = 2π, then there will be an anti-clockwise full circle rotation. The new vector is in the same
position as the original vector. You can imagine that θ0 = 2kπ corresponds k-times of such rotations.
Hence, we can regard θ1 and θ2 as the same. We will come back to this point when we discuss the
concept of a frequency for a discrete signal.

Taking this geometrical view also helps us to understand better about the multiplication of two
vectors. It has two effects: the length of one is scaled by that of the other and the angle is rotated.
What can you say about the unit circle? Well, it is simply formed by rotating a vector z = 1 from θ = 0
to 2π. Therefore, any point at the unit circle satisfies |z|= 1. An equivalent representation is z = e− jθ

for θ = 0 to 2π. (The circle has a riduis of a unit, thus it is called a unit-circle). Later on we will see
that the unit circle plays a very important role in signal processing.
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Addition, subtraction and division of two complex numbers have interesting geometric interpreta-
tions.

In DSP, we are interested in the frequency response of a filter. The frequency response, de-
noted by H(ω), is the Fourier transform of the impulse response, denoted by h[n]. The frequency
response is usually a function of the complex variable e jω. As such, it can be represented as H(ω) =
|H(ω)|e j∠H(ω), where the amplitude response is |H(ω)| and the phase response is ∠H(ω). For the
amplitude response, it can be calculated as follows

|H(ω)|2 = H(ω)H∗(ω)

where H∗(ω) is the complex conjugate of H(ω). For example, if we have H(ω) = 1− e− jω, then
H∗(ω) = 1− e jω and

|H(ω)|2 = H(ω)H∗(ω)
= 2(1− cos(ω))

2.3 Self-test Exercises

• Determine and plot the roots of the equation: z6 = 1.

• Determine the amplitude and phase for the complex number z = 1+ e− j2ω0

Answer:

• zn = e jnπ/3, n = 0,1, ...,5.

• z = 2e− jω0 e jω0+e− jω0

2 = 2cosω0e− jω0
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3 Matlab

This lecture is based on Appendix B of the text book, where you can find more examples.

3.1 Matrix operations

A good way to learn to program in Matlab is to use it. Matlab provides a very useful on-line help
system. When you are unsure about a command, just type help3 command_name. The basic variable
type in Matlab is a matrix. A signal such as digital audio is stored as a vector. A digital image is
stored as matrix. Elements of a matrix should be separated by a space and different rows separated by
a semicolon. An element or part of a matrix can be accessed by giving the row and column index. The
following is a segment of a Matlab code that illustrates how to create and manipulate a matrix.

% comments % comments starts with a “%“
t = 0 : 0.001 : 1; % create a row vector of 1001 elements whose

%values ranges from 0 to 1
y = cos ( 2 * pi * 50 * t); %create another row vector of a cosine signal

%sampled at 1000 Hz.
x = rand ( 1 , length ( t ) ); %rand is a command that generates random numbers.
yn = y + 0.5 * x ; %we add noise to the cosine signal.
plot ( y ( 1 : 100 ) , ’ r ’ ) %we want to look at the first 100 samples

%ploted in red color
hold on %next plot will be in the same figure
plot ( yn ( 1 : 100 ) , ’ y ’ )
figure ( 2 ) %want to plot in a new figure
plot ( y ( 1 : 4 : 1000 ) ) %we are only interested in samples indexed 1,5,9,...etc
z = [ y ; yn ]; %creat a matrix of size 2 x 1001.

%don’t forget to put a “; “at the end !
z ( 2 , 33 ) %what is the value of the element at (2,33)
whos %similar to “dir“ in DOS
M = [ 1 2 3 ; 4 5 6 ; 7 8 9 ]; % a new (3 x 3)matrix
E = M’ ; F = inv ( M ); %transpose and inverse
F = M .* E; %element-wise multiplication
G = M * F; %matrix multiplication
H = abs( F ) > 3 ; %an element of H is 1 if the absolute

% value of the respective element in F > 3

So you can see some of the data processing features of Matlab. For example, to implement the last
operation, a threshold operation on each element of a matrix, with other high level languages such as
C, you would need to use two for-loops. But in Matlab, it is just a command line.

Actually, Matlab is optimized for such “vectorized” operation. A vectorized operation such as this
last operation runs in most case faster (or a lot more faster in some cases) than using the for-loop.
Therefore, you should avoid using for-loops in Matlab. Here is one more example that shows the
vectorized operation. The task is to calculate the entropy of an information source that contains N
symbols:

E =−
N

∑
n=1

p[n] log2(p[n])

where p[n] is the probability of the nth symbol. The Matlab code is:

3A Matlab command is shown in typewriter font.
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%define the probability pn first
pn = [ 0.1 0.2 0.05 0.05 0.3 0.3 ];
E = -sum ( pn .* log2 ( pn ) )

Matlab also provides program flow functionality such as if statements, while loops and for
loops.

3.2 File input and output

Reading a data file into a matrix (vector) or writing the data to a file are similar to what you would do
in the C language. The following is a list of commands: fopen, fread, fwrite, fscanf,
fprintf. There are two other commands which are very handy for loading data from or save vari-
able(s) to a file: load, save.

For example, a data file named “speech.dat” contains raw digital speech data sampled at 11 kHz
and quantized at 8 bits/sample. You can use the following Matlab code to load the data into a Matlab
variable:

a = fopen ( ’speech.dat’, ’r’) %returns -1 if failed
b = fread ( a , ’uchar’); %the data is stored as unsigned char
sound ( b, 11000 ) %can you hear the sound ?

3.3 Matlab script and function

You can edit and save your Matlab code into a text file by using a text editor. The file extension must
be .m and the script can be run by simply typing the file name. You can also write your own Matlab
function. The file name must be the same as the function name, and it must be with an extension .m .
The following is an example. The function, called threshold, takes a vector or a matrix and a value as
the input and produces a vector or a matrix as the output. This function is saved as a text file named
threshold.m .

function y = threshold(x, t)
%threshold y = x>=t ;
%usage:
% y = threshold(x, t)
%where:
% y = output
% x = input
% t = threshold
y = ( x >= t ) ; %note >= is one operation, no space in between

3.4 Self-test Exercises

• Generate a discrete random signal of 500 samples. Break the signal into 5 segments of equal
length, ie, the first segment is with data sample from index 1 to 100, etc. Plot these segments
in the same figure. Calculate the mean square value of each segment. The mean square value is
defined as: 1

N ΣN
n=1x2[n]. You can use commands: mean, subplot, rand.

• Write a Matlab function to calculate the mean square value of a vector or a matrix.
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4 Signal and system representation in the time domain

We will spend two lectures on this section. In the first lecture, we will discuss three topics:

• the representation of a discrete time signal by the unit sample sequence,

• the frequency of a discrete complex exponential signal, and

• some properties of a discrete time system.

In the second lecture, we will cover another three topics:

• the LTI system,

• unit sample response and convolution, and

• linear constant-coefficient difference equation.

4.1 Discrete time signal

A discrete time signal (we will call it a signal later on if no confusion arises) is a function of an
independent variable that is an integer. For example, the signal given by:

x[n] = cos(2π f0nTs +φ), −∞ < n < ∞

defines a cosine signal where the index is n. If the signal is of finite duration (or with finite number of
samples), then we can use the representation such as

x[n] = {10, 1, 5,−9}

In this case, unless the zero position of the sample is indicated, we assume that the first sample is
x[0] = 10 (n = 0).

A signal can be shifted (delayed or advanced). For example, when the signal is delayed by one
sample, it is represented as y1[n] = x[n−1] = {0, 10, 1, 5,−9}. Note that in this case, the first sample
of the signal becomes y1[0] = x[0−1] = x[−1] = 0. Here we assume that x[−1] = 0 because it is not
specified in the original signal. In fact, through out this semester we will use the assumption that if a
signal sample is not specified then it is assumed zero value.

Similarly, an advance of the signal by one sample is represented as: y2[n] = x[n+1]. It is important
to note that in this case, we have y2[−1] = x[−1+1] = x[0] = 10,y2[0] = 1, y2[1] = 5, and y2[2] =−9.

Here is another example. We define a new signal as y3[n] = x[−n]. We have y3[0] = x[0] = 10,
y3[1] = x[−1] = 0, y3[−1] = x[1] = 1,y3[−2] = x[2] = 5 and y3[−3] = x[3] = −9. A graphical repre-
sentation of this signal together with other examples are shown in Figure 8. Here is a question for you.
Can you determine the signal4 given by y4[n] = x[1−n]?

A unit sample sequence is defined as:

δ[n] =
{

0, n 6= 0
1, n = 0

The unit sample sequence, like the impulse signal in analog signal processing, plays an important role
in the representation and analysis of signals and linear time invariant systems. For signal representa-
tion, we consider a simple case where a signal has only two data samples: x[0] = 3, x[1] = 7. It can
easily be seen that this signal can be represented as:

x[n] = 3δ[n]+7δ[n−1]
4ANSWER: y[0] = x[1], y4[1] = x[0], y4[−1] = x[2], y4[−2] = x[3]. It is a delay by one sample version of the signal given

by y3[n] = x[−n].
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Figure 8: A plot of four signals, top left x[n], top right x[n− 2], bottom left x[n + 2], bottom right
x[−n].

because according to the definition of the unit sample sequence, we have

x[0] = 3δ[0]+7δ[−1] = 3∗1+7∗0 = 3

In general, a discrete signal can be represented as a linear combination of unit sample sequences:

x[n] =
∞

∑
m=−∞

x[m]δ[n−m]

Note that x[m] inside the summation represents a data sample at location (index) m and δ[n−m] is a
delayed version of the unit sample sequence. It is delayed by m samples such that the only non-zero
sample is at index m. For the above example, we have:

x[n] = Σ
1
m=0x[m]δ[n−m]

Another useful data sequence is the unit step sequence:

u[n] =
{

0, n < 0
1, n≥ 0

4.2 Frequency and periodic signal

In this section, we discuss the concept of frequency for the discrete complex exponential signals which
are closely related to discrete cosine or sine signals. The discrete complex exponential signal is defined
as:

x[n] = Ae j(ωn+φ) = Acos(ωn+φ)+ jAsin(ωn+φ)

where the quantities A, ω and φ are called the amplitude, frequency and phase-shift, respectively.
An important property of the discrete complex exponential signal is that when its frequency adds
2kπ the signal remains the same. This can be seen by considering a new signal x1[n] with frequency
ω1 = ω+2kπ:

x1[n] = Ae j(ω1n+φ) = Ae j(ωn+φ)e j(2knπ) = x[n]
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since
e j(2knπ) = cos(2knπ)+ j sin(2knπ) = 1

Therefore, we only need to consider frequency in the interval of 0≤ ω < 2π for the discrete complex
exponential signal. This is different from analog signals, where a very high frequency is possible.

Next we take a look at the cosine signal

x[n] = cos(ωn+φ)

If we make a new cosine signal, denoted by x1[n], with the same phase shift and the frequency ω1 =
ω + 2kπ, where k is an integer. We can easily see that x[n] = x1[n], the two signals are exactly the
same. This implies that the two frequencies are indistinguishable. What is the interpretation of a high
frequency and a low frequency for the discrete time signal?

Since frequency is used to indicate the rate of oscillation, a higher frequency means faster os-
cillation. When the frequency is zero, there is no oscillation at all. So the lowest frequency is zero
(ω = 2kπ). This can be verified by:

x[n] = cos(2knπ+φ) = cosφ = constant.

What is the fastest oscillation for a cosine signal? From Figure 9, which shows cosine signals with
different frequencies, we can see that π (or π + 2kπ) is the highest frequency. This is because when
the frequency gradually increases from 0 to π, the oscillation becomes faster. You can imagine (show
it with Matlab, see self-test exercise) that as the frequency gradually increases from π to 2π, the
oscillation becomes slower. In fact, let us consider the cosine signal x[n] = cos(ωn) and let ω = π+ω0
(0 < ω0 ≤ π). We can rewrite it as ω = 2π− (π−ω0) = 2π−ω1 where ω1 = π−ω0. Therefore

x[n] = cos(ωn)
= cos((π+ω0)n)
= cos(2πn− (π−ω0)n)
= cos((π−ω0)n)
= cos(ω1n)

As such, we can say the two frequencies ω and ω1 are the same. When ω is increased from π to 2π,
ω0 is increased from 0 to π, and ω1 is decreased from π to zero. Therefore, the highest frequency is π

and the lowest frequency is 0.
One student asked me the following question: I can understand the development of the idea using

the cosine signal, but what would be the conclusion if we use a sine signal? This is a good question.
Actually, using the cosine signal is a way to illustrate different speeds of oscillation relating to different
settings of ω. It is intuitively understandable that the fastest oscillation is represented by the signal
x[n] = {1,−1,1,−1,1,−1, ...} which is the same as the cosine signal cos(πn). However, when we use
a sine signal, x[n] = sin(ωn), the fastest oscillation we can get is by setting ω = π/2. This results in
a signal {0,1,0,−1,0,1,0,−1, ...} which is clearly not oscillating as fast as cos(πn). We will have a
deeper understanding of this issue after we discuss the sampling theorem.

Another issue is related to periodic signals. In the continuous case, a cosine signal, denoted by
x(t) = cos(Ωt +φ), is always a periodic signal with a period of 2π/Ω. Is this true in the discrete case
? Let us define a discrete periodic signal as:

x[n] = x[n+N]

where N is an integer and is called the period of the signal. To see if a discrete cosine signal x[n] =
cos(ωn+φ) is periodic, we perform the following operation (replacing n by n = N) :

cos(ω(n+N)+φ) = cos(ωn+φ+ωN)
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Figure 9: Plots of cos(ωn). Top left ω = 0 . Top right ω = π/8 . Bottom left ω = π/4. Bottom right
ω = π.

If the signal is indeed a periodic signal, then it requires that:

ωN = 2kπ

where k is an integer. The smallest integer value of N satisfying this condition is called the fundamental
period of the signal. Therefore, for a cosine signal to be a periodic signal with a period N, its frequency
must be:

ω =
2k
N

π

where k = 0, 1, ..., N−1. So there is a set of N different frequencies (ωk) that satisfies the condition.
In other words, for a given period N, there are only N different frequencies given by the above equation
such that the cosine signal is periodic. Therefore, cosine signals or a complex exponential signals are
not necessarily periodic with a period of 2π/ω, and depending on the value of the frequency, they may
not be periodic at all.

For example, when N = 4, the frequencies are: ω0 = 0, ω1 = π/2, ω2 = π, ω3 = 3π/2. You can
verify that a cosine signal with one of these frequencies is indeed a periodic signal with a period of 4.
When ω = π/7, the smallest non-zero value of N that satisfies the condition is 14. This corresponds
to k = 1.

On the other hand, when ω = 1, we can easily see that the corresponding cosine signal is not
periodic at all, because there is no such integer value of N that satisfies

cos(ω(n+N)+φ) = cos(n+N +φ) = cos(n+φ)

Since the index n is dimensionless, the unit of the frequency is radians. However, if n is designated
a unit of samples, then the unit for the frequency is radians/sample. If, just as in the analog case, we
define ω = 2π f , then f is the frequency in cycles/sample. For example, a periodic cosine signal with a
frequency of ω = π/5 corresponds to f = 1/10 cycles/sample. This means that for every 10 samples,
the signal repeats itself. In other words, the fundamental period is N = 1/ f = 10.

Summary
The lowest and highest frequency of a discrete signal is 0 and π. A discrete cosine is not necessarily

a periodic signal. It is periodic with a period of N only when its frequency satisfies ω = 2k
N π for

k = 0, 1, ..., N−1.
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4.3 Discrete time system

A discrete time system is defined mathematically as a transformation or an operator that maps an input
signal x[n] into an output signal y[n]:

y[n] = H{x[n]}

An ideal delay system produces an output which is a delayed version of the input

y[n] = x[n−N]

The moving average filter and the median filter are other examples of a system.
A system is memoryless if the output y[n] at index n only depends on the input x[n] at the same

index. For example, the moving average filter and the median filter are said to have memory, because
the output depends on the input sample x[n] as well as other input samples. The system given by:

y[n] = ax[n]+b

is memoryless.
A system is causal if for every choice of n0 the output sequence value at index n = n0 depends

only on the input sequence value for n ≤ n0. This implies that if the sequence value at index n0 is
regarded as the “current” value, then the current output value depends only on the past and current
input sequence values. For example, the following moving average filter is non-causal, because the
current output depends on the “future” input value x[n+1].

y[n] =
1
3
(x[n−1]+ x[n]+ x[n+1])

However, we can change it into causal in this way:

y[n] =
1
3
(x[n−2]+ x[n−1]+ x[n])

In this case, the current output y[n] only depends on the past input (x[n−2],x[n−1]) and the current
input x[n]5.

A system is stable in the bounded-input bounded-output (BIBO) sense, if and only if every
bounded input signal produces a bounded output signal. A bounded signal is defined as:

|x[n]|< ∞ f or all n

For example, the unit step signal u[n] is bounded. If it is used as an input to a system defined as:

y[n] =
n

∑
k=−∞

u[k] =
{

0, n < 0
n+1, n≥ 0

then we can easily see that the output signal is unbounded. Thus the system is unstable.

5Please note that there may be a confusion due to the notation that we use to represent the signal. The term x[n−3] has
two meanings: (1) if it appears in an equation like y[n] = x[n− 3], then it means a delayed version of the WHOLE signal,
(2) if it appears in an equation like y[n] = 1

3 (x[n−3]+ x[n−1]+ x[n]), then it means the value of the signal sample at index
(n−3).
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Η
x1[n] y1[n]=H{x1[n]}

y2[n]=H{x2[n]}

Η

ax1[n]+bx2[n] ay1[n]+by2[n]

x2[n]

Figure 10: A linear system

4.4 Linear time-invariant system

A system is linear if its outputs for two signals are

y1[n] = H{x1[n]}

and
y2[n] = H{x2[n]}

then for an input which is a linear combination of these two signals:

x[n] = ax1[n]+bx1[2]

its output is
y[n] = H{x[n]}

= H{ax1[n]}+H{bx2[n]}
= ay1[n]+by2[n]

This is shown in Figure 10. In other words, for a linear system, a linear combination of the input
signals results in a linear combination of the respective outputs.

For example, suppose the output signals of a linear system for two input signals x1[n] and x2[n] are
y1[n] = {1, 2, 3} and y2[n] = {0, 4, 5, 6}, respectively. Then for a new input signal

x[n] = 5x1[n]−3x2[n]

the system output is
y[n] = 5y1[n]−3y2[n] = {5,−2, 0,−18}

We can generalize this case to a combination of N input signals. If the input signal is given by:

x[n] =
N

∑
k=1

akxk[n]

then the output of a linear system is:

y[n] =
N

∑
k=1

akyk[n]

where yk[n] is the output signal for the the input signal xk[n]. You can verify that the median filter
described in Section 1.0.4 is not a linear system.
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A time invariant system is one for which a time shift of the input signal causes a corresponding
shift in the output signal. For example, if the output is y[n] for an input x[n], then the output for
a delayed input x1[n] = x[n−m] (delayed by m samples) is y1[n] = y[n−m]. As an example, we
consider a system with the input-output relationship: y[n] = nx[n]. Is it time invariant? The response
of the system to a delayed signal x[n− k] is y1[n] = nx[n− k]. However, a delayed output y[n− k] is
due to (n−k)x[n−k]. Therefore, the system is time variant since y1[n] 6= y[n−k]. Following the same
procedure, we can determine that the system y[n] = x[−n] is also a time variant system.

A linear time-invariant (LTI) system satisfies both requirements. Let us take a look at another
example. A system is defined by

y[n] = x[n]+ x[n−1]

Is this an LTI system? To test if it is time-invariant, we use a new signal as the input x1[n] = x[n−m] ,
where m is an constant integer. The output is

y1[n] = x1[n]+ x1[n−1] = x[n−m]+ x[n−m−1]

On the other hand, we can easily see that

y[n−m] = x[n−m]+ x[n−m−1]

Therefore, we have verified that y1[n] = y[n−m]. The system is time-invariant.
To test if the system is linear, we use a combination of two input signals

x3[n] = ax1[n]+bx2[n]

as the input, the output is

y3[n] = x3[n]+ x3[n−1]
= a(x1[n]+ x1[n−1])+b(x2[n]+ x2[n−1])

We can easily see that
y3[n] = ay1[n]+by2[n]

Therefore, the system is linear. So this is an LTI system.
Let us study another interesting example. We want to determine if the system given by: y[n] =

ax[n]+b is an LTI system. Here we assune both a and b are constants. From the definition of an LTI
system, we first test if the system is shift invariant. Suppose we have an input signal x1[n] = x[n− k]
where k is a constant and is an integer. Then we have y1[n] = ax1[n] + b = ax[n− k] + b = y[n− k].
Therefore the system is shift invariant. To test if the system is linear, we use two input signals x1[n]
and x2[n] to make a new input signal x3[n] = αx1[n]+βx2[n]. We call the corresponding outputs y1[n],
y2[n] and y3[n], respectively. If the system is indeed linear, then y3[n] = αy1[n] + βy2[n]. You can
show that this condition is satisfied only when b = 0. Thus, the system is a linear system when b = 0.
Otherwise, it is not linear system.

4.5 Convolution and unit sample response of an LTI system

4.5.1 Convulution

Let us consider the following simple problem. Suppose the system y[n] = H{x[n]} is an LTI system
and the output for an input x1[n] = δ[n] is y1[n] = 2δ[n]+4δ[n−1] = {2,4}. What is the output of the
system for the given input x[n] = δ[n]+2δ[n−1] = {1,2}? We can write the input as

x[n] = δ[n]+2δ[n−1]
= x1[n]+2x1[n−1]
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Because the system is LTI, the output is given by

y[n] = y1[n]+2y1[n−1]
= 2δ[n]+4δ[n−1]+2y1[n−1]
= 2δ[n]+4δ[n−1]+2(2δ[n−1]+4δ[n−2])
= 2δ[n]+8δ[n−1]+8δ[n−2])

We now study a general case for an LTI system. If the input signal is a unit sample sequence δ[n],
the output is called the unit sample response h[n] and is represented in the following general form

h[n] = H{δ[n]}

What is the output for the input xm[n] = amδ[n−m] where m is an integer and am is a scaling factor?
Because the system is LTI, the output denoted ym[n] is given by

ym[n] = H{amδ[n−m]}
= amH{δ[n−m]}
= amh[n−m]

Once we know the unit sample response h[n], can we determine the output signal for an arbitrary input
signal? In other words, can the unit sample response uniquely specify a system? For an LTI system
the answer is YES.

To establish the input-output relationship, we use the signal representation

x[n] =
∞

∑
m=−∞

x[m]δ[n−m]

An interpretation for this representation is that an arbitrary signal x[n] is now presented as a linear
combination of many unit sample sequences with different delays. In terms of our previous example,
we can write x[n] = ∑

∞
m=−∞ xm[n] where xm[n] = amδ[n−m] and am = x[m]. Here is a potentially

confusing point. In the equation am = x[m], the term x[m] is used to represent the value of the signal
x[n] at a particular location index m. It is a number but is not referred to the whole signal! With this
interpretation and the properties of an LTI system, we can determine the system output

y[n] = H{x[n]}
= H

{
∑

∞
m=−∞ x[m]δ[n−m]

}
= ∑

∞
m=−∞ x[m]H {δ[n−m]}

= ∑
∞
m=−∞ x[m]h[n−m]

Therefore, once h[n] is known, the output can be calculated by the convolution operation

y[n] = x[n]∗h[n] =
∞

∑
m=−∞

x[m]h[n−m]

For example, if you want to calculate a particular output sample at index, say n = 3, then you use

y[3] =
∞

∑
m=−∞

x[m]h[3−m]

This is a multiplication-and-sum operation, where corresponding samples of the two sequences, x[m]
and h[3−m], are multiplied then summed together. To understand how to perform convolution, you
need to understand the sequence denoted by h[3−m]. This sequence can be regarded as being gener-
ated by first folding h[n] about n = 0 (h[−m]), then shifting it to the left by three samples.
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The following two examples shows you how to perform the convolution operation. In the first
example, we would like to find the input-output relationship of an LTI system given the unit sample
response: h[0] = 1, h[1] = 2, and h[2] = 1. In this case, m can only take one of the three values: m = n,
m = n−1 and m = n−2. Therefore the convolution can be performed as

y[n] =
n

∑
m=n−2

x[m]h[n−m] = h[0]x[n]+h[1]x[n−1]+h[2]x[n−2]

In the second example, we would like to perform the convolution operation for the two sequences
given by

x[n] = δ[n]+2δ[n−1]

and
h[n] = δ[n+1]−δ[n−1]

unit sample reponse is: h[−1] = 1, h[0] = 0 and h[1] = −1, the index m can only take three values:
m = n−1, m = n and m = n+1. Therefore, the system output is given by

y[n] =
n+1

∑
m=n−1

x[m]h[n−m] = h[1]x[n−1]+h[0]x[n]+h[−1]x[n+1] = x[n+1]− x[n−1]

Now we caluclate the output for this particular input x[n] = δ[n]+2δ[n−1] as follows

y[n] = x[n+1]− x[n−1]
= δ[n+1]+2δ[n]− (δ[n−1]+2δ[n−2])
= δ[n+1]+2δ[n]−δ[n−1]−2δ[n−2]

Using the definition of δ[n], we can easily calculate the following
y[−2] = δ[−2+1]+2δ[−2]−δ[−2−1]−2δ[−2−2] = 0
y[−1] = δ[−1+1]+2δ[−1]−δ[−1−1]−2δ[−1−2] = 1
y[0] = δ[0+1]+2δ[0]−δ[0−1]−2δ[0−2] = 2
y[1] = δ[1+1]+2δ[1]−δ[1−1]−2δ[1−2] =−1
y[2] = δ[2+1]+2δ[2]−δ[2−1]−2δ[2−2] =−2
y[3] = δ[3+1]+2δ[3]−δ[3−1]−2δ[3−2] = 0
...

Of course, we can calculate the convolution operation to determine the output. The folding and
shifting of h[n] is shown in the following table. In this table, empty cells indicate zero-value for both
sequences.

m -2 -1 0 1 2 3
x[m] 1 2
h[m] 1 0 -1

h[-m] (n = 0 ), y[0] = 2 -1 0 1
h[-1-m] (n = -1 ), y[-1] = 1 -1 0 1
h[1-m] ( n = 1 ), y[1] = -1 -1 0 1
h[2-m] ( n = 2 ), y[2] = -2 -1 0 1

In Matlab, you use the command conv(x,h) to perform the convolution operation.
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x[n] y[n] h[n] y[n]
h[n] x[n]

Figure 11: The two systems are equivalent.

y[n]

x[n]

+
x[n] y[n]y[n]

h1[n]

h2[n]

h1[n]+ h2[n]

Figure 12: The two systems are equivalent.

4.5.2 Properties of the convultion operation

• The convolution operation is commutative:

y[n] = x[n]∗h[n] = h[n]∗ x[n] =
∞

∑
m=−∞

h[m]x[n−m]

This means that you can regard h[n] as the signal and x[n] as the unit sample response. For a
cascade system where the output of the first system serves as the input to the second system

y[n] = (x[n]∗h1[n])∗h2[n]

the order of processing can be interchanged

• The convolution operation is also distributive

y[n] = x[n]∗ (h1[n]+h2[n]) = x[n]∗h1[n]+ x[n]∗h2[n]

This means a parallel connection of two LTI systems is equivalent to another system of which
unit sample response is the sum of the two respective systems.

4.5.3 Stability and causuality

Using the unit sample response, it is easy to test if an LTI system is stable and causal. A stable system
must satisfy the condition:

∞

∑
m=−∞

|h[m]|< ∞

A causal system must satisfy the condition:

h[n] = 0, f or n < 0

This condition is easy to understand if we consider a simple system for which h[−1] = 1, h[0] = 1 and
h[1] = 1. The input-output relationship is:

y[n] = ∑
1
m=−1 x[m]h[n−m]

= x[n−1]+ x[n]+ x[n+1]
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So we see that this is a non-causal system because the current output sample depends on the “future”
input sample x[n+1].

4.5.4 Summary

In summary, the output of an LTI system is determined by the convolution of the input and the unit
sample response. The convolution operation is both commutative and distributive. The stability and
the causality of an LTI system can be determined from its unit sample response.

4.6 Linear constant-coefficient difference equations and LTI systems

An important subclass of LTI systems can be characterized by an Nth-order linear constant-coefficient
difference equation:

N

∑
k=0

aky[n− k] =
M

∑
m=0

bkx[n−m]

For it to represent an LTI and causal system, it must satisfy the initial-rest condition, which states that:
if

x[n] = 0 f or n < n0

then
y[n] = 0 f or n < n0

We have used the difference equation representation for LTI systems in the above examples. Here is
one more example:

y[n] = y[n−1]+
1
N

(x[n]− x[n−N])

This is a moving average filter in its recursive form (see self-test exercise in Section 1). Its equivalent
implementation is

y[n] =
1
N

N

∑
m=1

x[n]

The difference equation representation is useful as it directly reveals the input-output relationship of a
system.

4.7 Self-test Exercises

• A signal is given by x[n] = {1, 3, 5}. Define a new signal y[n] = x[n−2]. Write an equation that
expresses y[n] in terms of δ[n]. Answer: y[n] = δ[n−2]+3δ[n−1]+5δ[n]

• Plot a cosine signal to show that when the frequency gradually increases from π to 2π, the
oscillation becomes slower.

• A system is given by y[n] = x[n]+ x[n− 1]. Is this a causal, stable and LTI system ? Answer:
Yes

• The unit sample response is given by h[0] = 1 , h[1] =−2 , h[2] = 1. Determine the difference
equation representation of the system. Answer: y[n] = x[n]−2x[n−1]+ x[n−2]

• An LTI system is given by: h[0] = 1 , h[1] =−2 , h[2] = 1. Calculate the system output for the
input x[n] = {1, 3, 5, 7}. Answer:{1 1 0 0 -9 7}

• Assume x[n] = {1, 2, 3, 4 ,5}, h1[n] = {1, 1} and h2[n] = {1,−2, 1}. Calculate: (1) x[n]∗h1[n],
(2) x[n]∗h1[n]∗h2[n], and (3) h1[n]∗ x[n]∗h2[n]. Use Matlab to verify your results. Answer (1)
{1 3 5 7 9 5} (2) {1 1 0 0 0 -6 -1 5 } (3) same as (2)
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5 Signal and system representation in the frequency domain

5.1 Introduction

We will spend two lectures on the following topics

• the Fourier series of discrete time periodic signals

• the Fourier transform of discrete-time aperiodic signals

• properties of the Fourier transform

• the frequency domain representation of the LTI system

If you are not familiar with the frequency domain representation of signals and systems, you should
read Chapter 3 of the text book.

A basic idea of the frequency domain representation is that a signal can be represented as a linear
combination of cosine signals (or complex exponentials)

x(t) = A0 +∑
N
k=1 Ak cos(2π fkt +φk)

= X0 +∑
N
k=1 ℜe

{
Xke j2π fkt

}
= X0 + 1

2 ∑
N
k=1

{
Xke j2π fkt +X∗k e− j2π fkt

}
where Xk = Ake jφk is a complex number that represents the amplitude and phase of the kth cosine
signal with frequency fk. X∗k represents the complex conjugate of Xk. Now you see where the negative
frequency comes from. Once we know the set of pairs {Xk, fk}, we can generate the signal. With the
frequency domain representation, we have another representation which is easier to handle than its
original form x(t) that could be very complicated.

5.2 The Fourier series of discrete time period signals

A periodic signal, x[n] = x[n+N] where N is the period, can be represented by the discrete time Fourier
series (DTFS):

x[n] =
N−1

∑
k=0

cke j 2π

N kn

the coefficient ck is given by

ck =
1
N

N−1

∑
n=0

x[n]e− j 2π

N kn

Using the DTFS, a periodic signal is represented by a linear combination of the complex exponential
signals e jωkn, where the frequency is

ωk =
2π

N
k

There are N frequency components (complex exponential signals), their frequencies range from

ω0 = 0

to
ωN−1 =

2π

N
(N−1)

The quantity ck represents the “amount” of a particular frequency component that the periodic signal
contains. For example, a periodic signal with N = 3 is given by: x[0] = 1, x[1] = 2 and x[2] = 2. The
DTFS representation is:

x[n] =
5
3
− 1

3

{
e j 2π

3 n + e j 4π

3 n
}
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Figure 13: The Fourier representation of a periodic signal x[n] = {1,2} with a period of 2. Only two
periods of the signal and its frequency components are shown in this figure. Top: the DC component.
Middle: the high frequency component. Bottom: the original signal. We can see easily that the
original signal can be represented as a summation of the two frequency components.

where6 c0 = 5
3 , c1 = c2 =−1

3 . We can verify that:

x[0] =
5
3
− 1

3

{
e j 2π

3 0 + e j 4π

3 n
}

=
5
3
− 2

3
= 1

Therefore, the periodic signal can be regarded as being generated by a combination of three complex
exponential signals whose frequencies are 0, 2π/3 and 4π/3, respectively. These complex exponential
signals are usually referred to as the frequency components of the original signal.

Here is another example. Suppose a periodic signal is given by x[n] = {1,2}. The Fourier series
coefficients are c0 = 3

2 and c1 =−1
2 . The signal is represented by

x[n] = c0 + c1e− jnπ

which is a combination of two signals: a DC signal represented by c0 and a high frequency signal
(with a frequency π) represented by c1e− jnπ. In other words, we can decompose the signal into two
frequency components. This is shown in figure 13.

5.3 The Fourier transform of discrete-time aperiodic signals

In general, a signal is aperiodic. There are two solutions. If the signal is time-limited, we can make a
periodic signal by repeating the signal. So we can use the DTFS. On the other hand, we can use the
Fourier transform:

X(ω) =
∞

∑
n=−∞

x[n]e− jωn

where
x[n] =

1
2π

∫
π

−π

X(ω)e jωndω

6c1 = 1
3

{
x[0]+ x[1]e− j 2

3 π + x[2]e− j 4
3 π

}
=− 1

3
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Figure 14: The amplitude (top) and phase (bottom) of the spectrum. Note that both are periodic
functions of ω and the amplitude is an even function while the phase is an odd function.

For example, the Fourier transform of an aperiodic signal given by:

x[n] = δ[n]+2δ[n−1]+2δ[n−2]

is

X(ω) =
2

∑
n=0

x[n]e− jωn = 1+2
{

e− jω + e− j2ω
}

Tthe amplitude and phase7 of X(ω) is shown in Figure 14. Note that a simple aperiodic signal is now
transformed into a continuous complex function

X(ω) = XR(ω)+ jXI(ω)

where XR(ω) and XI(ω) are the real and imaginary part of X(ω). X(ω) is called the spectrum of the
signal. It is a periodic function of the frequency variable ω with a fundamental period of 2π

X(ω) = X(ω+2π) = X(ω+2kπ)

The amplitude and the phase of the spectrum is given by:

|X(ω)|=
√

X2
R(ω)+X2

I (ω)

and

∠X(ω) = arctan
(

XI(ω)
XR(ω)

)
We can easily see that the amplitude is an even function while the phase is an odd function.

5.4 Properties of the Fourier transform

The Fourier transform has some useful properties. In the following we use the notation to represent
the Fourier transform pair

x[n]←→ X(ω)

7In the text book, this is represented as X(e jω)
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ax[n]+by[n] aX(ω)+bY (ω) linearity

x[n−n0] e− jωn0X(ω) delay

e jω0nx[n] X(ω−ω0) modulation

x[−n] X(−ω) folding

y[n] = x[n]∗h[n] Y (ω) = X(ω)H(ω) convolution

y[n] = x1[n]x2[n] Y (ω) = 1
2π

∫
π

−π

X1(θ)X2(ω−θ)dθ multiplication

∑
∞
n=−∞ x2[n] 1

2π

∫
π

−π

|X(θ)|2dθ Parseval’s theorem

∑
∞
n=−∞ x[n]y[n] 1

2π

∫
π

−π

X(θ)Y ∗(θ)dθ

Here are two examples that illustrate how to use these properties. In the first example, we consider
a pure delay system given by

y[n] = x[n−3]

The Fourier transform of the output signal is:

Y (ω) = e− j3ωX(ω) = |X(ω)|e j(∠X(ω)−3ω)

Therefore, a time delay corresponds to a linear phase-shift. In the second example, we consider
performing the convolution operation in the frequency domain. The convolution of two signals given
by: x1{1, 1} and x2{1,−1}8 is

y[n] = x1[n]∗ x2[n] = δ[n]−δ[n−2]

In the frequency domain, we have:

X1(ω) = 1+ e− jω

and
X2(ω) = 1− e− jω

Therefore we have
Y (ω) = X1(ω)X2(ω) = 1− e− j2ω

Compared this result with the definition of the Fourier transform, we see that

y[n] = δ[n]+δ[n−2]

8This means x1[0] = 1, x1[1] = 1 and x2[0] = 1, x2[1] =−1.
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5.5 The frequency domain representation of the LTI system

The frequency domain

The convolution property of the Fourier transform suggests another way to represent the LTI system.
In the frequency domain, where the signal and the unit sample response are represented by their
respective Fourier transform X(ω) and H(ω), the Fourier transform of the output Y (ω) is given by:

Y (ω) = X(ω)H(ω)

Since H(ω) is the Fourier transform of h[n], it is a complex function whose amplitude is an even
function and its phase is an odd function. It is also a periodic function with a fundamental period of
2π. Therefore, we only need to consider the frequency in range of [0, π]. The quantity H(ω) is called
the frequency response of the LTI system. We know that, as in the time domain case, once we know
the frequency response, we can determine the output of the system for any input signal.

To see the implication of the frequency domain representation, let us consider the input-output
relationship of an LTI system, with an complex exponential input signal:

x[n] = Ae jω0n

The output (in the time domain) is given by

y[n] = ∑x[m]h[n−m]
= ∑h[m]x[n−m]
= A∑h[m]e jω0(n−m)

= Ae jω0n
∑h[m]e− jω0m

= Ae jω0nH(ω)|ω=ω0

= Ae jω0nH(ω0)

where the notation H(ω)|ω=ω0 represents the frequency response evaluated at a particular frequency.
The above calculation shows that the output signal is modified in two ways: the amplitude and the
phase. However, the frequency remains the same. The amplitude of the output signal is A|H(ω0)|, and
the phase is (assume A is a real number) ∠H(ω0). Therefore, the output signal is:

y[n] = A|H(ω0)|e j(ω0+∠H(ω0))

Here is an example. Suppose the impulse response of an LTI system is h[n] = {1,1}. The fre-
quency response is H(ω) = 1 + e− jω. The amplitude response is |H(ω)| = 2|cos(ω/2)| and the
phase response is ∠H(ω) = −ω/2. As such, we can write H(ω) = |H(ω)|e j∠H(ω). Let us first
consider the output for the input signal x[n] = cos(ω0n). To use our previous results, we can write
x[n] = (e jω0n + e− jω0n)/2 = x1[n] + x2[n], where x1[n] = 1

2 e jω0n and x2[n] = 1
2 e− jω0n. Therefore the

output of the system is

y[n] = y1[n]+ y2[n]

=
1
2
|H(ω0)|e j(ω0n+∠H(ω0)) +A|H(−ω0)|e j(ω0n+∠H(−ω0))

=
1
2
|H(ω0)|e j(ω0n+∠H(ω0)) +A|H(ω0)|e− j(ω0n+∠H(ω0))

=
1
2
|H(ω0)|(e j(ω0n+∠H(ω0)) + e− j(ω0n+∠H(ω0)))

= |H(ω0)|cos(ω0n+∠H(ω0))

In this example, we have shown that this simple LTI system modifies the input signal in two ways.
It changes the amplitude of the signal and adds a phase angle to the signal. The amount of changes
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Figure 15: Top: the frequency response (amplitude response) of a low pass filter. Bottom: the same
plot in log-scale

is related to the frequency of the signal and frequency response of the system. For example, when
ω0 = π

4 , we have
y[n] = 2cos(π/8)cos(πn/4−π/8).

Here is a question for you, what is the output signal if the input signal is x[n] = cos(πn)? Answer:
y[n] = 0. You can verify your result by using convolution: y[n] = x[n] ∗ h[n] = cos(πn)+ cos(π(n−
1)) = 0. Here is another question for you, what is the output signal is the input signal is given by
x[n] = cos(πn/3)+0.5cos(πn/4).

What is a filter ?

The word filter is a key word in digital signal processing. We usually call an LTI system a filter. This
is because

• As a result of the Fourier transform, a discrete time signal can be regarded as a linear combina-
tion of discrete exponential signals (or cosine signals or frequency components) with different
amplitude, frequency and phase.

• An LTI system (a filter) only changes the amplitude and phase of a discrete exponential signal

• By properly designing the frequency response of the LTI system, the amplitude and phase of
each frequency component of the input signal are modified. Thus, the input signal is filtered.

For example, to attenuate the high frequency components of a signal, we would use a low pass filter
which has a unit gain for low frequency components and a smaller gain for high frequency compo-
nents. In other words, the frequency response of the filter should be similar to Figure 15. We note that
the horizontal axis represents the frequency and the vertical axis represents the gain. So this figure
shows the system’s gain versus the frequency. For example, the gain for a input frequency component
whose frequency is ω0 = 0.5π is 0.1. This means that the amplitude of the respective output signal
will be scaled down by a factor of 0.1. In this figure, we only plot the frequency response (or precisely,
the amplitude response) in the frequency range [0, π]. Figure 16 shows a combination of two cosine
signals:

x[n] = cos(0.1πn)+ cos(0.5πn)
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Figure 16: An illustration of a low pass filter. From top to bottom: cos(0.1πn), cos(0.5πn),
cos(0.1πn)+ cos(0.5πn) and the filtering result.

and the result of the previous low pass filter. We can see that the amplitude of the high frequency
component becomes about 0.1 after the low pass filter and the amplitude of the low frequency compo-
nent is almost unchanged. Therefore, the filtering result looks almost the same as the low frequency
component In the same way, we can now define a high pass filter, a band pass filter and a band stop
filter.

The frequency response characterizes a filter’s function. For example, the first-difference system
is given by:

y[n] = x[n]− x[n−1]

To determine its frequency response, we take the Fourier transform on both side of the equation:

Y (ω) = X(ω)− e− jωX(ω)

Therefore we have

H(ω) =
Y (ω)
X(ω)

= 1− e− jω

and
|H(ω)|= 2|sin(ω/2)|

Figure 17 shows its magnitude response. We can see that this is a high pass filter. The DC component
of a signal will be “nulled” by the filter.

As another example, we consider the frequency response of a moving average filter given by

y[n] =
1
N

N−1

∑
k=0

x[n− k]
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Figure 17: The magnitude response of the first difference system
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Figure 18: The magnitude response of a moving average filter (N=5)

Its frequency response is given by

H(ω) =
1
N

N−1

∑
k=0

e− jωk =
(

sin(ωN/2)
Nsin(ω/2)

)
e− jω(N−1)/2

The magnitude response is

|H(ω)|= 1
N

N−1

∑
k=0

e− jωk =
∣∣∣∣sin(ωN/2)
Nsin(ω/2)

∣∣∣∣
This is shown in Figure 18. Next, we consider the frequency response of an LTI system (a Butterworth
high pass filter) given by

y[n] = 0.1311x[n]−0.2622x[n−1]+0.1311x[n−2]−0.7478y[n−1]−0.2722y[n−2]

Its frequency response is

H(ω) =
0.1311−0.2622e− jω +0.1311e− j2ω

1+0.7478e− jω +0.2722e− j2ω

The magnitude response is shown in Figure 19

5.6 Self-test exercises

• Determine the Fourier transform of a signal x[n] = {1, 2, 1}. Plot its amplitude and phase re-
sponse. Verify that the amplitude response is an even function. Why do we only need to con-
sider the frequency response in the frequency range [0, π]? Answer: X(ω] = 1+e− jω +e− j2ω =
e− jω(e jω + e− jω +2) = e− jω(2cosω+2)

• Another signal is defined as y[n] = x[n−2]. Determine its time domain and frequency domain
representations in terms of those of x[n]. Answer: y[n] = {0, 0, 1, 2, 1}. Y (ω) = e− j2ωX(ω)
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Figure 19: The magnitude response of a Butterworth high pass filter.

• An LTI system is given by: y[n] = x[n−1]−2x[n−2]+x[n−3]. Find its unit sample response,
frequency response. Is this a high pass filter? Answer: h[n] = δ[n− 1]− 2δ[n− 2] + δ[n− 3].
H(ω) = e− jω(1−2e− jω + e− j2ω). It is a high pass filter.

• Use the Fourier transform to perform the convolution x[n] ∗ h[n], where x[n] = {1, 2, 1} and
h[n] = {1,−1}. Answer: X(ω) = 1+2e− jω + e− j2ω, H(ω) = 1− e− jω

• Go through the demos in Chapter 6 of the text book.
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6 Problem class-1

We will summarize what we have done so far and briefly discuss problems in Assignment 1
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x2(t)

x1(t)

Figure 20: The same discrete signal could be a result of sampling two different analog signals.

7 Sampling and aliasing

This lecture is based on Chapter 4 of the text book.

7.1 Time domain representation

Sampling

Sampling is an essential step in the discrete time processing of analog signals. It is represented by the
following equation

x[n] = x[nTs] = x(t)|t=nTs

where x[n] is a short-hand notation for x[nTs] and x(t) is the analog signal. It is easy to see that given
the analog signal and the sampling period Ts, we can obtain a unique discrete signal.

However, the discrete signal does not carry explicit information about the sampling period. The in-
dex n only represents the order of the samples, for example, the next sample of x[n−1] is x[n]. A more
important problem is that even the sampling period is specified, a discrete signal could correspond to
many different analog signals. This is shown in Figure 20 .

Therefore, we need to study the condition that a discrete signal uniquely represents the original
analog signal. Let us study the Fourier series representation of an analog signal:

x(t) = A0 +
N

∑
k=1

Ak cos(Ωkt +φk)

where Ωk = 2π fk. When we sample this signal with a sampling period Ts, the resulting discrete signal
is

x[n] = A0 +∑
N
k=1 Ak cos(ΩknTs +φk)

= A0 +∑
N
k=1 Ak cos(ωkn+φk)

where ωk = ΩkTs. Here we have an important relationship between the frequency of an analog cosine
signal and that of a discrete cosine signal:

ω = ΩTs =
2π f

fs
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Figure 21: A 200 Hz cosine signal is sampled at 2000 Hz and 4000 Hz respectively. The corresponding
frequencies are π/5 (top) and π/10 (bottom).

The quantity ω is called the discrete time radian frequency (we will call it discrete frequency or just
frequency later on) and it is dimensionless. For example, an analog cosine signal with a frequency
of 4 kHz will be converted to a discrete signal with the discrete time radian frequency of π/4 when
it is sampled at fs = 32 kHz. If we increase the sampling frequency to fs = 128 kHz, the resulting
discrete time radian frequency will be π/16. We note that a higher sampling frequency results in a
lower discrete time radian frequency and that there are more samples in one period of the signal. A
200 Hz cosine signal is sampled at 2000 Hz and 4000 Hz respectively. The corresponding frequencies
are π/5 and π/10, respectively. These two discrete signals are shown in Figure 21. If the discrete
cosine signal is a periodic signal, then its fundamental period is

N =
2π

ω

For example, the fundamental periods of these two signal are 10 and 20.
From the above discussion, it is evident that we only have to investigate the condition that a

sampled cosine signal uniquely represent the original analog cosine signal. Next we take a look at the
relationship among the three quantities: the discrete frequency ω0, the frequency of the signal f0, and
the sampling frequency fs

Aliasing and folding

We already know that

ω0 =
2π f0

fs

In addition ω0 is not distinguishable from ω0 + 2kπ when k is an integer. This is because cos[(ω0 +
2kπ)n] = cos(ω0n + 2knπ) = cos(ω0n). In the following discussion, we assume the sampling fre-
quency is fixed. Basically, we can regard the sampling process for an analog cosine signal as a map-
ping from f0 to ω0. Because the discrete cosine signal is a periodic function of the variable ω with a
fundamental period of 2π, we only have to discuss three cases:

• ω0 ≤ π

• π < ω0 ≤ 2π

• 2π < ω0 ≤ 3π

40



In the first case, we have f0 ≤ fs
2 and ω0 is a linear function of f0. This is a one to one mapping from

f0 to ω0. In other words, there is no other analog cosine signal (with a different frequency in the range
of [0, fs/2] ) that would lead to this discrete signal. Therefore, the discrete cosine signal uniquely
represents the original signal.

In the second case, we have fs
2 < f0 ≤ fs. Let us define a new signal with a frequency f1 such that

f0 = fs− f1

and
f1 ≤

fs

2
We can easily see that

ω0 =
2π f0

fs
=

2π( fs− f1)
fs

= 2π− 2π f1

fs
= 2π−ω1

In this case, the cosine signal cos(ω0n) is indistinguishable from the other cosine signal cos(ω1n).
Why? Because cos[(2π−ω0)n] = cos(2nπ−ω0n) = cos(ω0n). Therefore, we do not know if the
discrete cosine signal is due to a signal, given by

x0(t) = cos(2π f0t−φ)

or is due to another one, given by
x1(t) = cos(2π f1t +φ)

Because when sampled using the same frequency fs, we have

x0[n] = cos(ω0n−φ)

and
x1[n] = cos(ω1n+φ)

You can easily see that x0[n] = x1[n]. This is called folding, where the two frequencies f0 and f1 are
mirror images with respect to fs/2. Actually, ω0 is linearly decreased from π to 0 when f0 is increased
from fs/2 to fs.

In the third case, fs < f0 ≤ 3
2 fs. As in the second case, let us define a new signal with a frequency

f2 such that
f0 = fs + f2

and
f2 ≤

fs

2
Then, we have

ω0 =
2π f0

fs
=

2π( fs + f2)
fs

= 2π+
2π f2

fs
= 2π+ω2

Again, we see that the signal cos(ω0n) is indistinguishable from another signal cos(ω2n). Therefore,
in this third case we do not know if the discrete cosine signal is due to a signal, denoted by

x0(t) = cos(2π f0t +φ)

or is due to another one, denoted by

x2(t) = cos(2π f2t +φ)
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Figure 22: The aliasing and folding as a result of sampling the cosine signal. Three cosine signals
with frequencies of f0, f1 and f2 lead to the same discrete-time cosine signal with a frequency of π/2.
f1 is called the folded frequency, because f1 = fs− f0. f2 is called the aliased frequency, because
f2 = fs + f0.

Because when sampled using the same frequency, we have

x0[n] = cos(ω0n+φ)

and
x2[n] = cos(ω2n+φ)

You can easily see that x0[n] = x2[n]. The frequency f0 is called the aliased frequency of f2. ω0 is
linearly increased from 0 to π when f0 is increased from fs to 3

2 fs.
Figure 22 illustrates aliasing and folding as a result of sampling the cosine signal. In this figure,

we can see that there are other aliasing and folding frequencies located at:

f aliasing
k = k fs + f0

and

f f olding
k = k fs− f0

where k is an integer.
Let us take a look at one example. Suppose a signal is given by the formula

x[n] = cos(0.2πn−π/7)

and that it was obtained by sampling a continuous-time signal at a sampling rate of fs = 1000 sam-
ples/sec. We will determine two different continuous-time signals x1(t) and x2(t) such that x[n] =
x1[nT ] = x2[nT ]. Both signals should have a frequency less than 1000 Hz.

From the above discussions, we know that the frequency of x1(t) should be in the non-aliasing
region and the frequency of x2(t) should be is in the folding region. The frequency for the first signal
is given by

2π f1

fs
= ω = 0.2π

We have f1 = 100 Hz. The frequency for the second signal is the folded frequency of f1

f2 = fs− f1 = 900Hz

Therefore, the signals are given by

x1(t) = cos(2π f1t−π/7)
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and
x2(t) = cos(2π f2t +π/7)

To verify these results, we sample these two signals with a sampling frequency of 1000 Hz. We obtain

x1[nT ] = cos(2π f1nT −π/7) = cos(0.2πn−π/7)

and

x2[nT ] = cos(2π f2nT +π/7)
= cos(2π

1000−100
1000 n+π/7)

= cos(2πn− (0.2πn−π/7))
= cos(0.2πn−π/7)

The aliasing and folding frequency can be easily demonstrated by using Matlab. For a 200 Hz
cosine signal and a sampling frequency of 1000 Hz, the folding frequency is

k fs− f0 = 1000k−200

and the aliasing frequency is
k fs + f0 = 1000k +200

where k is a positive integer. When k = 1, these two frequencies are 800 Hz and 1200 Hz respectively.
The following is a segment of Matlab code that is used to plot the three discrete cosine signal

i = 0 : 1/1000 : 1; %fs = 1000 Hz, take samples between 0 - 1 second
f1 = 200 ;
s1 = cos ( 2 * pi * f1 * i ) ;
f2 = 800 ;
s2 = cos (2 * pi *f2 * i );
f3 = 1200 ;
s3 = cos (2 *pi *f3 * i );
subplot ( 311 ); stem ( s1 ( 1 : 50 ))
subplot ( 312 ); stem ( s2 ( 1 : 50 ))
subplot ( 313 ); stem ( s3 ( 1 : 50 ))

The results are shown in fig. 23. Following this example, let us consider this problem: what would
happen if sample the following analog signal with the sampling frequency fs = 1000Hz?

x(t) = cos(2π f1t)+ cos(2π f2t)+ cos(2π f3t)

The resulting discrete time signal, as you can see from figure 23, should be

x[n] = 3cos(ω1n)

Where have the two other frequency components gone? Because they are the folding ( f2) and aliasing
( f3) frequency of f1, in the discrete domain they are identical.

To summarize we have demonstrated the following key points for a fixed sampling frequency fs

and a cosine signal x(t) = cos(2π f t).

• When f ≤ fs
2 , the resulting discrete signal x[n] = cos(ωn) (ω = 2π f

fs
) is a unique representation

of x(t).

• When fs
2 < f ≤ fs, we can write f = fs− f0 (for f0 ≤ fs

2 ) the resulting discrete signal x[n] =
cos(ωn) = cos(ω0n) (ω0 = 2π f0

fs
). f0 is the folding frequency. In other words, when the fre-

quency f is in this range, the resulting discrete signal will be the same as that due to sampling
the signal x0(t) = cos(2π f0t).
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Figure 23: The three figures are results of sampling three cosine signals with frequencies 200Hz, 800
Hz and 1200Hz, respectly. The sampleing frequency is 1000Hz. We can see that the resulting discrere
signals are exact the same.
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• When fs < f ≤ 2
3 fs, we can write f = fs + f0 (for f0 ≤ fs

2 ) the resulting discrete signal x[n] =
cos(ωn) = cos(ω0n) (ω0 = 2π f0

fs
). f0 is the aliasing frequency. In other words, when the fre-

quency f is in this range, the resulting discrete signal will be the same as that due to sampling
the signal x0(t) = cos(2π f0t).

Here is an example to illustrate these points. Suppose we have a signal

x(t) = cos(2π f1t)+ cos(2π f2t)+ cos(2π f3t)

with f1 = 200Hz, f2 = 700Hz and f3 = 1400Hz. Suppose we sample this signal with a sampling
frequency fs = 1000Hz. According to the above three points, we have three frequency components.
The fisrt is with ω1 = 2π f1/ fs = 2π/5. The second is with the folding frequency for f2 is 300 Hz
(700=1000-300) and ω2 = 2π×300/1000 = 3π/5 and the third is with the aliasing frequency for f3
is 400Hz (1400=1000+400) and ω3 = 2π×400/1000 = 4π/5. So the discrete time signal we have is

x[n] = cos(2πn/5)+ cos(3πn/5)+ cos(4πn/5)

If we are given this signal and the sampling frequency fs, then we may say that the corresponding
analog signal has three frequency components with f1 = ω1 fs/(2π) = 200Hz, f2 = ω2 fs/(2π) =
300Hz and f3 = ω3 fs/(2π) = 400Hz. Note that f2 is the folding and f3 is the aliasing frequency.

The sampling theorem

We have seen that if the sampling frequency is properly chosen such that the resulting discrete fre-
quency satisfies: ω0 ≤ π, then the discrete cosine signal uniquely represents the original signal. This
requires that fs ≥ 2 f0. For an arbitrary signal x(t), if we choose a sampling frequency high enough
such that neither aliasing nor folding happens to the highest frequency component of the signal, then
there will be no aliasing or folding for other frequency components. The resulting discrete signal
uniquely represents the original signal. Denoting the highest frequency of an analog signal as fmax,
the sampling theorem states that:

fs ≥ 2 fmax

For example, the bandwidth of human voice is usually regarded as about 4 kHz. The sampling fre-
quency must be at least 8 kHz.

7.2 Frequency domain representation

A detailed mathematical derivation of the frequency domain representation of the sampling operation
is beyond the scope of this lecture. Interested students should refer to one of the reference books for
more information. Here, we only give a graphical explanation. Our starting point is that the sampling
operation maps f to ω. This is shown in Figure 24.

Figure 25 shows the spectrum of the original analog signal and three versions of the corresponding
discrete signals sampled at different frequencies. It is easy to understand that the spectrum of the
discrete signal is related to the spectrum of the original analog signal in that there are multiple copies
of the spectrum, each centered9 at 2kπ fs, where k is an integer. We make two observations from this
figure. Firstly, we observe that if the sampling frequency is less than half of the highest frequency,
then there will be overlap of the copies of the spectrum. The smallest sampling frequency that we can
use to avoid the spectrum overlapping is 2 fmax. This is required by the sampling theorem. Secondly,
we observe that we can reconstruct the original signal by applying a low pass filter to the discrete
signal to retain the center copy and eliminate other copies of the spectrum. In an extreme case where

9If you want to convert this to the discrete domain, then each spectrum copy is centered at 2kπ(= 2kπ fs/ fs).
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Figure 24: The mapping from f to ω. When fs ≥ 2 f0 , there is no aliasing. The frequency range [0, f0]
is mapped to [0, π].
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low pass filter
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ω)X  (s ω)X (s

Figure 25: The frequency domain representation of the sampling operation. Note that these figures
show the spectrum in the continuous case, where Ωs = 2π fs. Top left: spectrum of the analog signal
with the highest frequency denoted fmax . Top right: sample signal spectrum, fs > 2 fmax . Bottom left:
f s = 2 fmax . Bottom right: fs = fmax
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Ωs = 2Ωmax, the cut-off frequency is Ωc = Ωs/2. This corresponds to 2π fs/2 = π/Ts. In other cases
where Ωs > 2Ωmax, the cut-off frequency can be selected from the frequency range

Ωmax < Ωc < (Ωs−Ωmax)

7.3 Discrete-to-continuous conversion

If we take the inverse Fourier transform of the frequency response of an ideal low pass filter where the
cut-off frequency is assumed π/Ts, then we have the impulse response of the filter:

h(t) =
sin(πt/Ts)

πt/Ts

Therefore, the reconstructed signal is

x(t) =
∞

∑
n=−∞

x[n]
sin[π(t−nTs)/Ts]

π(t−nTs)/Ts

From this equation, we can easily verify that

x[n] = x(t)|t=nTs

A general formula for converting a discrete signal into an analog signal is given by:

x(t) =
∞

∑
n=−∞

x[n]p(t−nTs)

where the function p is the interpolation function which fills the gaps between samples. In the previous
case, the interpolation function is a sinc-function. Other interpolation functions, such as a square pulse,
a triangular pulse and a linear function can be used. These functions do not usually lead to a perfect
reconstruction to the original signal. Here are two examples using the square pulse and the linear
interpolation function to reconstruct the cosine signal.

7.4 Self-test exercises

• A cosine signal is given by: x(t) = cos(2π f t) where f = 1000Hz. Plot the sampled signal
with the sampling frequency fs = 200 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz and 8000 Hz.
Determine the corresponding discrete frequencies. Answer: ω =0, 0, 0, π, π/2, π/4.

• If the sampling frequency is 8000 Hz, assuming no aliasing and folding, what is the cut-off
frequency for the ideal low pass filter to reconstruct the original signal ? Answer 2π×4000 Hz

• Run through demonstrations in Chapter 4.
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Figure 26: The signal x[n] =−anu[−n−1]

8 z-Transform

This section covers a little bit more than Chapter 7 of the text book. In particular, we will discuss the
region of convergence and the inverse z-transform.

8.1 Definition and properties

The z-transform X(z) of a sequence x[n] is defined as:

X(z) =
∞

∑
n=−∞

x[n]z−n

Note for a finite duration sequence:

X(z) =
N−1

∑
n=0

x[n]z−n

For example, the z-transform of the sequence x[n] = {1, 2, 1} is

X(z) = x(0)z−0 + x(1)z−1 + x(2)z−2 = 1+2z−1 + z−2

The z-transform of the unit sample sequence x[n] = δ[n] and y[n] = δ[n−n0] are

X(z) =
∞

∑
n=−∞

δ[n]z−n = δ[0]z−0 = 1

and

Y (z) =
∞

∑
n=−∞

y[n]z−n = δ[n0]z−n0 = z−n0

These examples are used to show how to perform the z-transform for simple signals. However, more
careful calculations are required for other signals. For example, the z-transform of the signal shown
in Figure 26 x[n] =−anu[−n−1] (where u[n] is the unit step signal) is

X(z) = ∑
∞
n=−∞ x[n]z−n

= −∑
−1
n=−∞ anz−n

= 1−∑
∞
n=0(a

−1z)n
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If |a−1z|< 1 or equivalently, |z|< |a|, then

X(z) = 1− 1
1−a−1z

=
1

1−az−1

You see that a signal of infinite duration is now represented by a formula in the z-transform domain.
Here is another example, the z-transform of a signal given by: x[n] = anu[n] is

X(z) = ∑
∞
n=−∞ x[n]z−n

= ∑
∞
n=0 anz−n

= ∑
∞
n=0(az−1)n

If |az−1|< 1 or equivalent, |z|> |a|, then

X(z) =
1

1−az−1

An interesting point to note is that in these two examples, although the two signals are different, their
z-transforms are the same, except that the conditions are different. We will take a look at this point
later on.

The z-transform has some useful properties that are listed below

Linearity ax1[n]+bx2[n] aX1(z)+bX2(z)

Time shifting x[n−n0] z−n0X(z)

Time reversal x[−n] X(1/z)

Convolution x[n]∗h[n] X [z]H[z]

Multiplication by zn
0x[n] X(z/z0)

an exponential sequence
Modulation e jnπx[n] = (−1)nx[n] X(−z)

An important point to note is that for an LTI system, the convolution in the time domain is equiv-
alent to the multiplication in the z-domain. This is similar to the Fourier transform. The Fourier is
indeed closely related to the z-transform. For example, we can perform the convolution of two sig-
nals, denoted by x1[n] = {1221} and x2[n] = {1 − 21} by using the z-transform. Performing the
z-transform on both signals we have

X1(z) = 1+2z−1 +2z−2 + z−3

and

X2(z) = 1−2z−1 + z−2

Therefore
X1(z)X2(z) = 1− z−2− z−3 + z−5

The result of the convolution is thus x1[n]∗ x2[n] = {10 −1 −101}. As another example, we take a
look at the system function (the z-transform of the impulse response) of the a filter, denoted by H1(z),
expressed in terms of another filter H0(z) as

H1(z) = (−z)−NH0(−z−1)
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Assume h0[n] = {h0 h1 h2 h3}= {1221}(N = 3), determine the impulse response of the filter given by
H1(z). To solve this problem, we determine H0(−z−1) first. Since

H0(z) = 1+2z−1 +2z−2 + z−3

then

H0(−z−1) = 1−2z+2z2− z3

Therefore, we have

H1(z) = (−z)−3(1−2z+2z2− z3) = 1−2z−1 +2z−2− z−3

The impulse response is h1[n] = {1 − 22 − 1}. Actually, H0(−z−1) corresponds to two operations:
time reversal indicated by z−1 and changing the sign of the odd indexed coefficients indicated by the
negative sign. Then z−N is a delay operation to make it a causal filter.

8.2 The z-transform and the Fourier transform

To see their relationship, we note that
z = re jω

Therefore, the z-transform can be re-written as

X(z) =
∞

∑
n=−∞

x[n]r−ne− jnω

When r = 1, the above equation defines the Fourier transform. In other words, when we evaluate the
z-transform on the unit circle, we obtain the Fourier transform:

X(ω) = X(z)|z=e jω

This is because the unit circle is defined as |z|= 1 (refer to Section 2 on complex numbers).
The interpretation of variable ω is that it is the angle between a vector that points to a point on the

unit circle and the real axis of the complex z-plane. You can refer to Figure 7. With this interpretation,
we can see that ω = 0 corresponds to z = 1 and ω = π corresponds to z =−1. Therefore, interpreting
the Fourier transform as the z-transform evaluation on the unit circle corresponds conceptually to
wrapping the linear frequency axis around the unit circle. The inherent periodicity property of the
frequency ω is captured naturally since a change of an angle by 2π in the z-plane corresponds to
traversing the unit circle once and returning to exactly the same location.

There is an interesting demonstration in the CDROM (in section 8, a demo called Z to Freq).

8.3 The z-transform as an operator

The time delay property of the z-transform can be used as an operator. For example, a system given
by: y[n] = x[n]− x[n−1] can be written as

y[n] = (1− z−1)x[n] = x[n]− z−1x[n] = x[n]− x[n−1]

Here we have taken the interpretation that z−1x[n] = x[n−1]. In other words, we regard z−k as a delay
operator that causes a signal to delay by k samples. Figure 27 shows two equivalent block diagrams
that show the implementation of a system.
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Figure 27: Two equivalent block diagrams that show the implementation of y[n] = x[n] + x[n− 1] +
x[n−2]

8.4 Region of convergence

We have seen in Section 8.1 that for sequences of finite duration, the z-transform always exists. How-
ever, for sequences of infinite duration, the summation (the z-transform) converges for only the set
of values of z. This is called the Region of convergence (ROC). The condition for the z-transform to
converge is stated as

∞

∑
n=−∞

|x[n]r−n|< ∞

Two signals, their z-transforms and ROCs are listed below

Signal z-transform ROC
x[n] = anu[n] X(z) = 1

1−az−1 |z|> |a|

x[n] =−anu[−n−1] X(z) = 1
1−az−1 |z|< |a|

We can see that the two different signals have the same z-transform with different ROCs. There-
fore, the z-transform together with the ROC uniquely specifies a signal. Figure 28 shows the ROCs.

Let us consider the ROC of a z-transform: X(z) = 1 + 2z−1 + 2z−2 + z−3. Its ROC is the whole
z-plane, excluding the origin where z = 0. As another example, we want to determine the z-transform
of a signal

x[n] = (
1
2
)nu[n]+ (−1

3
)nu[n]

According to the above table and using the linearity property, we obtain

X(z) =
1

1− 1
2 z−1

+
1

1+ 1
3 z−1

=
1

1− 1
2 z−1

+
1

1− (−1
3)z−1

where the ROC for the first term is |z|> 1/2 and the ROC for the second term is |z|> |−1/3|= 1/3.
The ROC that satisfies both conditions is |z|> 1/2.

In general, the problem of finding the ROC is equivalent to determining the values of r, such that

|X(z)| ≤
∞

∑
n=−∞

|x[n]z−n|=
∞

∑
n=−∞

|x[n]r−ne− jωn|=
∞

∑
n=−∞

|x[n]r−n|< ∞

Note that we can decompose our signal into two parts:

x[n] = x1[n]+ x2[n]
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Figure 28: The ROCs

where

x1[n] =
{

x[−n], n > 0
0, n≤ 0

and

x2[n] =
{

x[n], n≥ 0
0, n > 0

With these notations, we have10

∑
∞
n=−∞ |x[n]r−n|= ∑

−1
n=−∞ |x[n]r−n|+∑

∞
n=0 |x[n]r−n|

= ∑
∞
n=1 |x1[n]rn|+∑

∞
n=0 |x2[n]r−n|

We can easily see that the ROC for the signal x1[n] is |z|< r1, while that for x2[n] is |z|> r2, where r1
and r2 are two positive constants that depend on the signal. If r1 > r2, then the ROC is r1 < |z| < r2.
This is a ring shape region in the z-plane. Otherwise, if r1 < r2, the z-transform does not exist for the
signal.

In summary, the ROC provides useful information about the signal.

• If the signal is of finite duration, then its ROC is the whole z-plane except z = 0 or z = ∞

• If the signal is a left-sided sequence, i.e., a sequence that is zero for n < N < ∞ (N is a positive
integer), then its ROC is within the region of a circle, except z = 0.

• If the signal is a right-sided sequence, i.e., a sequence that is zero for n > N > −∞ (N is a
positive integer), then its ROC is outside a circle.

• If the signal is a two-sided sequence, then its ROC is within a ring-shaped region.

10Note, if we let m =−n, then ∑
−1
n=−∞ |x[n]r−n|= ∑

∞
m=1 |x[−m]rm|= ∑

∞
n=1 |x1[n]rn|
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8.5 The Inverse z-transform

Performing the inverse z-transform is relatively simple in some cases, but it may be quite a complicated
task in other cases. In this subject, we only discuss how to use the z-transform table and a number of
its properties to perform the inverse transform.

Here are a few examples that show you how to determine the inverse transform

• X(z) = z2 + z−3−0.5z−6. Answer: x[n] = δ[n+2]+δ[n−3]−0.5δ[n−6]

• X(z) = z−1

1− 1
4 z−1 , |z|> 1/4. Answer: X(z) = z−1

1− 1
4 z−1 = z−1 1

1− 1
4 z−1 , x[n] = (1

4)n−1u[n−1].

• X(z)= 1
(1−az−1)(1−z−1) , |a|< 1, |z|> 1. Answer: X(z)= 1

1−a

(
1

1−z−1 − a
1−az−1

)
, x[n] = 1

1−a

(
u[n]−an+1u[n]

)
The z-transform of a sequence, denoted by

H(z) = ∑
M
k=0 bkz−k

∑
N
l=0 alz−l

where N > M can be expressed as

H(z) =
N

∑
k=1

Ak

1− pkz−1

where pk is its kth pole and
Ak = H(z)(1− pkz−1)|z=pk

The inverse z-transform is given by (assuming the ROC of |z|> max(|pk|) )

h[n] =
N

∑
k=1

Ak pn
ku[n]

For example, a causal and stable filter is described by the difference equation

y[n] = y[n−1]− y[n−2]+2x[n]+2x[n−1]

Its system function is
H(z) = 2(1+z−1)

1−z−1+z−2

= 2p∗1
1−p1z−1 + 2p1

1−p∗1z−1

where p1 = e jπ/3. The impulse response is obtained by taking the inverse z-transform

h[n] = 2e− jπ/3e jnπ/3u[n]+2e jπ/3e− jnπ/3u[n]
= 4cos(2π

6 (n−1))u[n]

8.6 Self-test exercises

• Go through the demonstrations in Chapter 7 of the text book

• Use the ZT to calculate the convolution: x[n]∗h[n], where x[n] = {1, 0, 2, 3} and h[n] = {1,−1,−1, 1}

• Use an example to show the ZT is a linear transform

• Derive the convolution property

• Use an example to show the time delay property of the ZT
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• A system is a cascade of two causal LTI systems: h1[n] = {1, 2, 1} and h2[n] = {1,−2, 1}.
Determine the system function, the frequency response and the unit sample response of the
system.

• Determine the inverse z-transform for the following:

H(z) = z2 +3z−2− z−4

H(z) =
0.5z−2

1−0.2z−1 , |z|> 0.2

H(z) =
1+0.5z−2

1−0.2z−1 , |z|> 0.2

Answers

• Y [z] = X [z]H[z] = (1 + 2z−2 + 3z−3)(1− z−1 + z−2− z−3). Perform the inverse z-transform to
determine y[n]

• Assume x1[n] = {1, 2} and x2[n] = {1, 0, 2}, we make a new signal x[n] = ax1[n]+bx2[n], you
can show that X(z) = aX1(z)+bX2(z)

• The system function is the z-transform of the unit sample response. In this case, the overall
response is h[n] = h1[n]∗h2[n]. So H(z) = H1(z)H2(z). H(ω) = H(z)|z=e jω

• H(z) = z2 +3z−2− z−4, h[n] = δ[n+2]+3δ[n−2]−δ[n−4]

• H(z) = 0.5z−2

1−0.2z−1 , |z|> 0.2, h[n] = 0.5(0.2)n−2u[n−2]

• H(z) = 1+0.5z−2

1−0.2z−1 , |z|> 0.2, h[n] = 0.2nu[n]+0.5(0.2)n−2u[n−2]
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9 Implementation of FIR and IIR filters

9.1 Finite impulse response (FIR) filter

An FIR filter is usually represented by a linear constant coefficient difference equation

y[n] =
M

∑
m=0

bmx[n−m]

where the parameter M is called the order of the filter. For example, a half-band low pass filter is given
by

y[n] =
10

∑
m=0

bmx[n−m]

where the filter coefficients are given by

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0.005 0 -0.042 0 0.289 0.497 0.289 0 -0.042 0 0.005

The impulse response (unit sample response) of the filter is obtained by using the signal δ[n] as
the input:

h[n] = 0.005δ[n]−0.042δ[n−2]+0.289δ[n−4]+0.497δ[n−5]+0.289δ[n−6]−0.042δ[n−8]+0.005δ[n−10]

This can also be represented as:

h[n] = {0.005, 0,−0.042, 0, 0.289, 0.497, 0.289, 0,−0.042, 0, 0.005}

We also know that an LTI system can be represented by the convolution

y[n] =
10

∑
m=0

h[m]x[n−m]

You can easily verify that
h[m] = bm

Therefore, given the unit sample response of the FIR filter, you can directly write down the difference
equation.

In the frequency domain, an FIR filter is characterized by its system function or its frequency
response, defined as

H(z) =
M

∑
m=0

h[m]z−m

and

H(ω) =
M

∑
m=0

h[m]e− jmω

The time domain and frequency domain representations of the above half-band filter are shown in
Figure 29. The following Matlab codes are used to produce these results

b = fir1 (10, 0.5); %design an fir filter
subplot ( 211 ); stem ( 0:10, b ); grid
subplot ( 212 ); plot ( 0 : pi/128 : pi*127/128, abs (freqz ( b, 1, 128 )));
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Figure 29: Top: a plot of h[n]. Bottom: the amplitude response of the half-band filter
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Figure 30: The amplitude response of an FIR filter h[n]={1, 0, 2, 0, 1}

Here is one more example. The unit sample response of the filter is: h[n] = {1, 0, 2, 0, 1}. The
difference equation is

y[n] = x[n]+2x[n−2]+ x[n−4]

Its frequency response and system function are

H(ω) = 1+2e− j2ω + e− j4ω

= (1+ e− j2ω)2

= e− j2ω

(
2 e jω+e− jω

2

)2

= 4cos2(ω)e− j2ω

and
H(z) = 1+2z−2 + z−4

The amplitude response is
|H(ω)|=

∣∣4cos2(ω)e− j2ω
∣∣ = 4cos2

ω

This is shown in Figure 30. Note that this filter is neither a low pass nor a high pass filter. It passes the
low frequency and high frequency components and attenuates those components whose frequencies
are close to π/2. What is the output for an input signal x[n] = cos(0.5n)+ cos(π

2 n) ?
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9.2 Infinite impulse response (IIR) filter11

An IIR filter is usually represented by a linear constant coefficient difference equation

y[n] =
N

∑
k=1

aky[n− k]+
M

∑
m=0

bmx[n−m]

This equation represents an LTI system, only when the initial rest condition is satisfied. The impulse
response is obtained when we use the unit sample sequence as the input. For example, we consider
the simplest IIR filter given by:

y[n] = a1y[n−1]+b0x[n]

Its impulse response is
h[n] = a1h[n−1]+b0δ[n]

The following table shows how to recursively calculate the impulse response.

n n < 0 0 1 2 3 4
δ[n] 0 1 0 0 0 0

h[n−1] 0 0 b0 b0a1 b0a2
1 b0a3

1
h[n] 0 b0 b0a1 b0a2

1 b0a3
1 b0a4

1

From this table, we can see that for an input signal such as δ[n] with only one non-zero data
sample, the output of the filter is an infinite-length sequence:

h[n] =
{

b0an
1, n≥ 0

0, n < 0

Therefore, convolution is not a practical way to calculate the output of an IIR filter. In most cases, we
use the difference equation. Let us take a look at another example. The IIR filter is given by

y[n] =
1
2

y[n−1]+
1
2

x[n]

and the input is x[n] = δ[n]+δ[n−1]. We can use our previous results by using a1 = 1/2 and b0 = 1/2.
The output is given by

y[n] = h[n]+h[n−1]
= 1

2(1
2)n + 1

2(1
2)n−1

= 1.5×0.5n−1

You can also use the difference equation to obtain the same result. Note that in both examples, we
have assumed the initial rest condition.

In the frequency domain, an IIR filter is characterized by its system function, defined as

H(z) =
Y (z)
X(z)

= ∑
M
m=0 bmz−m

1−∑
N
k=1 akz−k

Note that in deriving the above equation, we have used an equivalent representation

y[n] =
N

∑
k=1

aky[n− k]+
M

∑
m=0

bmx[n−m]

11An IIR filter can be motivated from a feedback system point of view. It can be motivated from a computational point of
view. Its different from FIR filters in a number of aspects. I will leave these to the next major revision.
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For example, the system function of an IIR filter

y[n] = 2y[n−1]+3y[n−2]+4x[n−1]+5x[n−2]

can be calculated by taking the z-transform of the both side of the equation as

Y (z) = 2z−1Y (z)+3z−2Y (z)+4z−1X(z)+5z−2X(z)

H(z) =
Y (z)
X(z)

=
4z−1 +5z−2

1−2z−1−3z−2

Matlab provides the functionality to perform the filtering process and to evaluate the frequency
response: filter(b, a, x) and freqz(b, a, N), where a and b are two vectors that store the fil-
ter coefficients, x represents the signal to be processed and N the number of points to evaluate the
frequency response from 0 to π. For an FIR filter, a = 1. For an IIR filter b = [b0, b1, ... , bM] and
a = [1, a1, a2, ... , aN ]. You must be careful when forming the vector a. In the previous example, the
vector is a = [1,−2,−3], it is NOT a = [1, 2, 3]. To avoid this problem, before forming the vector,
you can re-arrange the difference equation so that all the output terms are on the left hand side and all
the input terms are on the right hand side. To plot the amplitude response, you can use the following
Matlab code:

b = [045] ;

a = [1 −2 −3] ;

n = 0 : pi / 128 : 127 * pi / 128 %plot from 0 to pi, step size =pi/128

r = freqz ( b , a , 128 ) ; % frequency response, with 128
%points between 0 and pi

plot ( n, abs ( r ) ); %plot the amplitude

semilogy ( n , abs ( r ) ) %plot with log (base 10) scale

Figure 31 shows both types of plots.

9.3 Implementations

There are three basic operations involved in implementing an LTI system: addition, multiplication and
unit delay. A block diagram and a signal flow graph for an FIR filter

y[n] = 0.7x[n]+0.3x[n−1]

are shown in Figure 32.
The implementation of an IIR filter can be shown in the same way. As an example, we consider a

second order difference equation

y[n] = b0x[n]+a1y[n−1]+a2y[n−2]

The corresponding system function is

H(z) =
b0

1−a1z−1−a2z−2
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Figure 31: Amplitude response. Bottom plot in log scale
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Figure 32: The block diagram (top) and the signal flow graph (bottom) for an FIR filter
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Figure 34: Direct form-I implementation scheme for a second order IIR filter

The block diagram and the signal flow graph are show in Figure 33. A general second order IIR filter
is represented by the the difference equation

y[n] = b0x[n]+b1x[n−1]+b2x[n−2]+a1y[n−1]+a2y[n−2]

Its system function is

H(z) =
b0 +b1z−1 +b2z−2

1−a1z−1−a2z−2 =
B(z)
A(z)

Figure 34 shows its implementation.
The output of the filter can be calculated in two steps:

Y [z] =
B(z)
A(z)

= B(z)
(

1
A(z)

X(z)
)

Let
W (z) =

1
A(z)

X(z)

The system can be regarded as a cascaded of two sub-systems: one with a system function of 1
A(z) and

the other with B(z). In the time domain, this system corresponds to two difference equations

w[n] = x[n]+a1w[n−1]+a2w[n−2]
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Figure 35: The direct form-II implementation scheme. Top: the two-step implementation. Bottom:
the delay units merged together.

and
y[n] = b0w[n]+b1w[n−1]+b2w[n−2]

These two equations suggest another implementation of an IIR filter, which is called the direct form-
II implementation. Compared to direct form-I, it requires smaller number of delay units. Figure 35
shows the above implementation scheme.

9.4 Structures for discrete-time systems12

9.4.1 Basic filter structures

H(z) = b0 +b1z−1

H(z) =
1

1−a1z−1

H(z) =
b0 +b1z−1

1−az−1

H(z) =
(1−b1z−1)(1−b2z−1)
(1−a1z−1)(1−a2z−1)

12This section is still being written. Not required for ELE32DSP, 2001
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H(z) =
b0 +b1z−1 +b2z−2

1−a1z−1−a2z−2

9.4.2 Structure of FIR filters

For causal FIR systems, the system function is:

H(z) =
M

∑
k=0

h(k)z−k

The structure, which is shown below, is called the transversal filter structure. By properly factorization
of the above system function, we have

H(z) =
M

∑
k=0

h(k)z−k =
Ms

∏
k=1

(
b0k +b1kz−1 +b2kz−2)

9.4.3 Structure of IIR filters

A general IIR system has a system function

H(z) =

M
∑

k=0
bkz−k

1−
N
∑

k=1
akz−k

This can be implemented by the direct form I or II. When all coefficients in the above system function
are real, then it can be expressed as:

H(z) = A
∏

M1
k=1(1−gkz−1)∏

M2
k=1(b0k +b1kz−1 +b2kz−1)

∏
N1
k=1(1− ckz−1)∏

N2
k=1(1−a1kz−1 +a2kz−1)

Using this factorization, the IIR system can be implemented by a cascade of the basic structures. We
can also express the system function in the following way:

H(z) =
M1

∑
k=0

ckz−k +
N1

∑
k=1

e0k + e1kz−1

1−a1kz−1−a2kz−2

Using this factorization, the IIR system can be implemented with the basic structures discussed in
section 9.4.1 in a parallel form.

9.5 Self-test exercises

• Draw two implementations for an FIR filter

y[n] = 0.1x[n]+0.25x[n−1]+0.3x[n−2]+0.25x[n−3]+0.1x[n−4]

• Draw both direct form-I and II implementations for the following IIR filters

y[n] = y[n−1]+0.5y[n−2]+ x[n]+2x[n−1]

y[n] = y[n−1]− x[n]+2x[n−1]−2x[n−2]

• Determine the system function of the above three filters
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Figure 36: pole-zero plot of H(z) = 1−2z−1 + z−2. This figure is produced by using a Matlab com-
mand, zplane ( [1 -2 1] , [1 0 0] ).

10 LTI system analysis in the frequency domain

10.1 FIR filters

10.1.1 Zeros and poles

We use a simple example to illustrate the concept of zeros and poles. Consider an FIR filter given by
the difference equation

y[n] = x[n]−2x[n−1]+ x[n−2]

Its system function is

H(z) = 1−2z−1 + z−2 =
(z−1)2

z2

Therefore, the system function has two zeros

z0 = z1 = 1

and two poles
p0 = p1 = 0

It is useful to display the zeros and poles as points in the complex z-plane. In Matlab, you can use
the function zplane to generate the pole-zero plot. Figure 36 shows the pole-zero plot of the above
system function, where a circle corresponds to a zero and a cross corresponds to a pole. The number
beside the circle or the cross indicates the number of zeros and poles at the location. It is very easy to
verify that

H(z0) = H(z1) = 0

and
H(p0) = H(p1) = ∞

10.1.2 FIR filters and zeros

Zeros and system function

One important property of zeros is that they are sufficient to determine an FIR system function except
for a constant multiplier. In general, a system function can be factorized as

H(z) =
N−1

∑
n=0

bnz−n = A
N−1

∏
n=0

z− zn

z
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Figure 37: The pole-zero plot of a system.

where A is a constant and zn is the nth zero of the system function. Therefore, if all zeros of a system
function are known, then the system function can be determined to within a scaling constant. For
example, a system is given by the pole-zero plot shown in Figure 37. It has three zeros at z0 = 1,
z1 = e jπ/3 and z2 = e− jπ/3. Its system function can be expressed as (assuming the scaling constant
A = 1)

H(z) = z−1
z

z−e jπ/3

z
z−e− jπ/3

z

= z3−2z2+2z−1
z3

= 1−2z−1 +2z−2− z−3

From the system function, we know that in the time domain the system is represented by

y[n] = x[n]−2x[n−1]+2x[n−2]− x[n−3]

We can easily verify that another system given by

y[n] =
1
2
(x[n]−2x[n−1]+2x[n−2]− x[n−3])

has exactly the same zeros and poles as the previous one.

Zeros and nulling filters

Another important property of zeros is that if the zeros lie on the unit circle, such as those shown in
Figures 36 and 37, then certain sinusoidal signals are removed or nulled by the filter. This property is
useful in designing an FIR filter to remove sinusoidal interference, such as the 50 Hz signal from the
power line. This property is a direct result of the relationship between the frequency response and the
system function

H(ω) = H(z)|z=e jω

When the system function has a zero on the unit circle, denoted by zk = e jωk , the corresponding
magnitude of the frequency response at the frequency ωk is also zero

H(ωk) = H(zk) = 0
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For example, when the input signal is given by

x[n] = e jnπ/3

the output signal for the above system is given by13

y[n] = x[n]−2x[n−1]+2x[n−2]− x[n−3]
= e jnπ/3−2e j(n−1)π/3 +2e j(n−2)π/3− e j(n−3)π/3

= e jnπ/3(1−2e− jπ/3 +2e− j2π/3− e− jπ)
= 0

Therefore, y[n] = 0. So we see that a zero, denoted by zk = e jωk , can remove a complex exponential
signal

x[n] = Ae jnωk

Because a cosine signal can be expressed as

cos(ωkn) =
1
2
(e jωkn + e− jωkn)

to remove this cosine signal, we can use a cascade of two filters, one with a zero zk and and the other
with a zero z∗k (the conjugate of zk). Therefore, the system function is given by

H(z) = z−zk
z

z−z∗k
z

= 1−2cos(ωk)z−1 + z−2

In the time domain, the difference equation is given by

y[n] = x[n]−2cos(ωk)x[n−1]+ x[n−2]

You can verify that when the input is x[n] = Acos(ωkn), the output of this system is zero.

Pole-zero plot and frequency response

The frequency response of a filter can be obtained by evaluating the system function on the unit circle.
Basically, a pole will “push-up” the frequency response and a zero will “pull it down”. If a zero is on
the unit circle, then it will force the the frequency response to be zero at the corresponding frequency.
Figure 38 shows the pole-zero plot of a 9-point running average filter and its magnitude response.
From this figure, we can see the relationship between the locations of zeros in the pole-zero plot and
the shape of the magnitude response. We can also identify the filter as a low pass filter by inspecting
the pole-zero plot. The pass band is between 2π/9 and 0. In the same way, we can identify a high pass
or a band pass filter. For example, Figure 37 represents a high pass filter. The pass band is between
π/3 and π.

10.1.3 Linear phase filters

In many applications, it is necessary to ensure that there is no phase distortion of the frequency com-
ponents of the input signal. In an ideal case, it requires a zero-phase characteristic for the digital filter.
However, it is impossible to design a causal FIR filter with zero phase. A linear-phase characteristic
represents a pure delay, so a linear-phase FIR filter is desirable in many applications.

13It can be shown that
1−2e− jπ/3 +2e− j2π/3− e− jπ = 0
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Figure 38: Top: pole-zero plot. Bottom: magnitude response
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A special class of FIR filter, denoted by

y[n] =
M

∑
k=0

bkx[n− k]

is the linear phase filter satisfying the condition

bk = bM−k

for k = 0, 1, ..., M. It can be proved that the frequency response of this filter is given by

H(ω) = R(ω)e− jωM/2

where R(ω) is a real valued function given by

R(ω) =


bM/2 +∑

M−2
2

k=0 2bk cos((M
2 − k)ω), M iseven

∑

M−1
2

k=0 2bk cos((M
2 − k)ω), M isodd

So the frequency response is a real valued amplitude function times a linear phase factor e− jωM/2

which corresponds to a delay of M/2 samples. For a discussion of how to interpret a delay of non-
integer value, you can refer to page 192-194 of the text book.

If the signal is of finite length and real time processing is not required, then it is possible to have a
filtering process with zero-phase. The process involves the following steps

1. y[n] = h[n]∗ x[n]⇐⇒ Y (z) = H(z)X(z),

2. u[n] = y[−n]⇐⇒U(z) = Y (1/z) = H(1/z)X(1/z)

3. w[n] = u[n]∗h[n]⇐⇒W (z) = U(z)H(z) = H(z)H(1/z)X(1/z)

4. d[n] = w[−n]⇐⇒ D(z) = H(1/z)H(z)X(z)

In the above steps, we have introduced three internal variables y[n], u[n] and w[n] and used both time
domain and z-transform domain representations. The final output is d[n]. We can see that it is a
filtering output with zero-phase by converting the z-transform representation to the Fourier transform
representation

D(ω) = H∗(ω)H(ω)X(ω) = |H(ω)|2X(ω)

In Matlab, you can use the function called filtfilt to perform the above operations.

10.2 IIR filters

10.2.1 Zeros and poles

An IIR filter is represented in the time domain as

y[n] =
M

∑
k=0

bkx[n− k]+
N

∑
l=1

aly[n− l]

Its system function is given by

H(z) = ∑
M
k=0 bkz−k

1−∑
N
l=1 alz−l

=
B(z)
A(z)
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Figure 39: The pole-zero plot of an IIR filter
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Figure 40: The magnitude response of an IIR filter

Zeros and poles satisfy the condition A(z) = 0 and B(z) = 0, respectively. For example, the system
function

H(z) =
2

1−0.5z−1

has a zero z = 0 and a pole p = 0.5. The system function

H(z) =
2+2z−1

1− z−1 + z−2

has two zeros z0 = 0 and z1 =−1 and two poles p0 = e−iπ/3 and p1 = e jπ/3 . As in the FIR filter case,
we can plot the pole-zero plot using the zplane command in Matlab. Figure 39 shows the pole-zero
plot for the last system function.

We can also look for connections between zeros and poles and the shape of the frequency response.
We use the fact that a pole pushes the frequency response up and a zero pulls it down. For the pole-
zero plot shown in Figure 39, we know that the filter is a band pass filter with a center frequency at
π/3, this is because the zero (z1) pull it down at frequency π. The magnitude response of this filter is
shown in Figure 40.

Here is an example of how to calculate the amplitude response from the locations of zeros and
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poles. We can write

H(z) =
2+2z−1

1− z−1 + z−2

= 2
z+1

z2− z+1

= 2
(z− z0)(z− z1)
(z− p0)(z− p1)

Since H(ω) = H(z)|z=e jω , we have the following

H(ω) = 2
(e jω− z0)(e jω− z1)
(e jω− p0)(e jω− p1)

and

|H(ω)|= 2
|(e jω− z0)||(e jω− z1)|
|(e jω− p0)||(e jω− p1)|

What does the term |(e jω− z0)| mean? It is the length of the vector that points from the point e jω to
the point z0. Figure 41 illustrates this interpretation.

−jw

x

x

oq

w

p =e

p1=e

z0=0

z1=−pi

−jpi/3

jpi/3

l 1

l 2

l 3

l 4

0

e

Figure 41: Using the locations of zeros and poles to calculate the amplitude
response.

With this interpretation, we can simplify our notation and use l1(ω) = |(e jω−z0)|, l2(ω) = |(e jω−
z1)|, l3(ω) = |(e jω− p0)|,l4(ω) = |(e jω− p1)|. As such, we have

|H(ω)|= 2
l1(ω)l2(ω)
l3(ω)l4(ω)
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Figure 42: The pole-zero plot and the frequency response of an IIR filter

When we calculate |H(ω)| by going through the unit circle once (this is the same as 0 ≤ ω < 2π

or −π ≤ ω < π), we have the amplitude response. Now let us calculate the amplitude response for
the frequency of π and π/3. You can easily see that since l2(π) = 0, |H(π)| = 0. Since l3(π/3) = 0,
|H(π/3)| → ∞.

As another example, we take a look at a filter given by

y[n] =
1
2

y[n]− 1
3

y[n−1]− x[n]+3x[n−1]−2x[n−2]

Its system function is

H(z) =
−1+3z−1−2z−2

1− 1
2 z−1 + 1

3 z−2

The pole-zero plot and the magnitude response is shown in Figure 42. From this figure, you can see
the connection between the pole-zero plot and the magnitude response.

10.2.2 Stability condition

A causal IIR filter with initial rest conditions is stable if the poles of its system function lie strictly
inside the unit circle. We use a simple example to illustrate this condition. We consider an IIR filter
given by

y[n] = b0x[n]+a1y[n−1]
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Figure 43: Pole-zero plot and impulse response. Left panel a1 = 0.5, right panel a1 = 1.2.

where a1 and b0 are non-zero real numbers. Its system function is

H(z) =
b0

1−a1z−1 =
b0z

z−a1

There is a zero z0 = 0 and pole p0 = a1. The impulse response of this filter can be obtained by taking
the inverse z-transform

h[n] = b0an
1u[n]

Here we assume |z|> |a1|. If this filter is stable, then it must satisfy the condition

∑ |h[n]|< ∞

This condition is satisfied only when |a1|< 1. In other words, when the pole is inside the unit circle,
the filter is stable. Figure 43 shows two cases where a1 = 0.5 and a1 = 1.2. In both cases, we set
b0 = 1. We can see that when the pole is inside the unit circle (left panel), the values of the samples of
impulse response are decreasing. When the pole is outside the unit circle, the values of the samples of
the impulse response are increasing. Further more, a causal and stable IIR filter requires that the ROC
be outside the outermost poles and have all poles inside the unit circle.

10.2.3 Unit sample response

The unit sample response is also related to the locations of poles and zeros. In the CDROM there is
a very interesting demonstration using a function called pez. We will take a look at the following
cases
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Figure 44: A stable low pass filter.

• A single pole with a zero

• Double poles

• Other configurations of poles and zeros

In the first two cases, we will examine the effects of the locations of poles (inside, on and outside the
unit circle). In this demonstration, we can also see that as in the case of an FIR filter, the locations of
poles and zeros are also related to the shape of the frequency response. We use a single pole with a
zero as an example and plot its pole-zero plot, amplitude response and impulse response. These are
shown in figures 44 to47. You can make a number of observations from these figures and see how the
three domains of representations of an LTI system are related.

We have already shown that when all poles are inside the unit circle, the filter is stable. What
happens when they are on the unit circle? In section 8.5, we studied the IIR filter given by

y[n] = y[n−1]− y[n−2]2+ x[n]+2x[n−1]

The impulse response of the filter is

h[n] = 4cos(
2π

6
(n−1))u[n]

This equation shows that the filter is actually a digital oscillator when the input is an impulse. The
pole-zero plot of this filter is shown in Figure 48. There are two poles (located at ±π/3) on the unit
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Figure 45: A stable high pass filter.
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Figure 46: The pole is on the unit circle. The impulse response is a cosine signal with a frequency of
π. Can you change the frequency to other values, say π/5? You need a two-pole filter, why?
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Figure 47: This is an unstable filter. The pole is outside the unit circle. The absolute values of the
impulse response increases with the index n.
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pi/3 

Figure 48: The pole-zero plot for an IIR filter. There are two poles (located at±π/3) on the unit circle.
The impulse response of this filter is a discrete cosine signal with a frequency of π/3.
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Figure 49: The pole-zero plot of an IIR filter There are two poles (located at ±π/2) on the unit circle.
The impulse response of this filter is a discrete cosine signal with a frequency of π/2.

circle. The impulse response of this filter is a discrete cosine signal with a frequency of π/3. As
another example, the impulse response of an IIR filter given by

y[n] =−y[n−2]+ x[n]

is
h[n] = cos(

π

2
n)u[n]

The pole-zero plot of its system function is shown in Figure 49.

10.2.4 Inverse filters

Deconvolution techniques have many applications. For example, in signal transmission the distortion
due to an imperfect channel can be modelled as

y[n] = x[n]∗h[n]+ r[n]

where x[n], h[n], r[n] and y[n] represent the original signal, the impulse response of the channel, the
additive noise and the received signal, respectively. If the noise power is relatively low and can be
omitted, then we would like to recover the original signal from y[n]. More specifically, we want to
design a filter to process the received signal such that the output is as close to the original as possible.
Such a filter, denoted by h1[n], is a deconvolution filter

v[n] = h1[n]∗ y[n] = h1[n]∗h[n]∗ x[n]+h1[n]∗ r[n]

In an ideal case, we require v[n] = x[n−nd ] where nd represents a pure delay by nd samples. If noise
is not considered and the delay is assumed zero, then it requires that

h1[n]∗h[n] = δ[n]

or in the z-transform domain
H1(z) =

1
H(z)

The zeros of H(z) become the poles of H1(z). Depending on the locations of poles (or the zeros of
H(z) ), the inverse filter may not be stable. For example, the channel effect is modelled as

y[n] = x[n]− 5
6

x[n−1]+
1
6

x[n−2]
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The system function of the inverse filter is given by

H1(z) =
1

1− 5
6 z−1 + 1

6 z−2
=

1
(1− 1

2 z−1)(1− 1
3 z−1)

This system function has two poles (both inside the unit circle) so that the inverse filter is stable and
is given by

v[n] = y[n]+
5
6

v[n−1]− 1
6

v[n−2]

To obtain its impulse response, the ROC must be |z|> 0.5. The system function can be expanded to

H1(z) =
3

1− 1
2 z−1

− 2
1− 1

3 z−1

Therefore the impulse response is given by

h1[n] = 3(
1
2
)nu[n]−2(

1
3
)nu[n]

10.3 Self-test exercises

• Design an FIR filter to remove the 50 Hz sinusoidal interference in a data processing system
with a sampling frequency of 1 kHz. Plot the magnitude response to verify you result. Answer:
the corresponding digital frequency for the sinusoidal signal is ω = π/10. cos(0.1π) = 0.9511.
The filter is given by y[n] = x[n]−1.9021x[n−1]+ x[n−2]

• An FIR filter is given by

y[n] = x[n]−2x[n−1]+2x[n−2]− x[n−3]

Determine the frequency of a cosine signal that will be “nulled” by this filter. Answer: x[n] =
cos(nπ/3)

• Use the method described in Section 8.5 to determine the impulse response of the filter

y[n] =−y[n−2]+ x[n]

• An IIR filter is given by

H(z) =
1+0.8z−1

1−0.9z−1

Is this filter stable ? Determine its magnitude response |H(ω)|2. Plot the pole-zero plot of the
system function and determine if this is a low pass or a high pass filter based on the locations
of poles and zeros. Determine two different impulse responses that correspond to this system
function
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11 Problem class-2 A review of signal and system representation meth-
ods

11.1 Signal representation

• In the time domain:
x(n) = x(n)∗δ(n) = ∑x(m)δ(n−m)

• In the Fourier transform domain:

X(ω) = ∑x(n)e− jωn

• In the z-transform domain:
X(z) = ∑x(n)z−n

11.2 LTI system representation

• Impulse response: h(n)

• In the time domain (convolution):

y(n) = x(n)∗h(n) = ∑x(m)h(n−m)

• In the Fourier transform domain :

Y (ω) = X(ω)H(ω), H(ω) =
Y (ω)
X(ω)

• H(ω) is called the frequency response of the filter

• In the z-transform domain:

Y (z) = X(z)H(z), H(z) =
Y (z)
X(z)

• H(z) is called the system function. The z transform together with its ROC uniquely specifies a
filter. when performing the inverse z transform, the ROC must be considered.

• The relationship between the Fourier transform and the z-transform is:

H(ω) = H(z)|z=e jω

• Poles and zeros are related to the frequency response. We can design a filter by properly placing
zeros and poles in the z-plane.

• For a stable filter, all poles must be inside the unit circle

• An FIR filter is determined by its zeros and a scaling constant
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11.3 Sampling and reconstruction of analog signals

• Sampling is a process to convert an analog signal into a discrete signal with the sampling interval
Ts or the sampling frequency fs.

• The relationship between the analog frequency and the corresponding digital frequency is given
by:

ω = ΩTs = Ω/ fs

• The minimum sampling frequency (the Nyquist frequency) is:

fs ≥ 2 fmax

• A low pass filter is used to reconstruct the analog signal from the digital form. The cutoff
frequency of the low pass filter should satisfy:

Ωmax < Ωc < (Ωs−Ωmax)

where Ωmax is the maximum frequency of the signal, Ωs = 2π fs and Ωc = 2π fc is cutoff fre-
quency of the filter.
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12 FIR filter design

12.1 Design of FIR filters using windows

To design a filter, the desired filter characteristics are usually specified in the frequency domain in
terms of the magnitude and phase response. A digital filter can be either an FIR or an IIR filter. The
designer’s task is then to determine the type of the filter and the filter coefficients. In this section, we
discuss using the window method to determine the coefficients of an FIR filter of which the frequency
response is an approximation to the desired frequency response. Other methods, such as frequency
sampling and optimal FIR filter design, will not be discussed.

The task of designing an FIR filter can be described as: given the desired frequency response,
denoted by Hd(ω), determine the filter coefficients h[n] such that the resulting frequency response,
denoted by H(ω) is a good approximation of Hd(ω).

Usually, Hd(ω) is defined as piece-wise constant with discontinuity at the boundaries between
bands. As a result, the corresponding unit sample response is non-causal and is of infinite length. For
example, an ideal low pass filter is given by

|Hd(ω)|=
{

1, 0≤ ω≤ ωc

0, ωc < ω≤ π

We assume a linear phase response (∠Hd(ω) =−mω). To simplify the analysis, this phase character-
istic is neglected temporarily by assuming zero delay (m = 0). The unit sample response is determined
by

hd [n] = 1
2π

∫
π

−π
Hd(ω)e jωndω

= 1
2π

∫
ωc
−ωc

H(ω)e jωndω

= 1
2π

∫
ωc
−ωc

e jωndω

= 1
πn sin(nωc), n = 0, ±1, ±2, ...

Therefore, the unit sample response of an ideal low pass filter is of infinite length and is non-causal.
To make it an FIR filter, we can truncate it to a length of 2N +1 by using

h[n] =
{

hd [n], |n| ≤ N
0, |n|> N

There are two implications for this process. The first implication is that truncation in this way can be
regarded as multiplication of hd [n] by a window function, denoted by w[n]

h[n] = hd [n]w[n]

where

w[n] =
{

1, |n| ≤ N
0, |n|> N

The second implication is that the resulting frequency response is no longer the same as the ideal
one. It is actually a convolution of Hd(ω) with W (ω) which is the Fourier transform of the window
function w[n]. This is a direct result of the property of the Fourier transform which states that the
multiplication of two sequences in the time domain corresponds to the convolution of their respective
Fourier transform in the frequency domain. Figure 50 shows the Fourier transform of the window
function as well as the result of the convolution.

We can see from Figure 50 that the “distortions” in the resulting frequency response are
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Figure 50: The actual frequency response is a result of the convolution of the Fourier transform of the
window function and the ideal frequency response.

• a smooth transition between the pass band and the stop band, which is largely due to the width
of the main lobe of the Fourier transform of the window function, and

• the ripples in both pass band and stop band which are due to the main lobe and the side lobes.

Since our task is to design a filter such that its frequency response is a good approximation to the
desired one, we must optimize the window function. In an ideal case, the Fourier transform of the
window function should be an impulse. This is not possible, because it requires that the window be
of infinite length. Generally, a longer window leads to a longer unit sample response and a better
approximation to the desired frequency response. Figure 51 shows the Fourier transform of a rectan-
gular window of different lengths as well as the resulting frequency response of the half band filter.
We can see from this figure that as the length of the window increases, the width of main lobe and the
magnitude of the side lobes decrease. The resulting frequency response better approximates the ideal
one.

A practical requirement is that we should choose a window function such that its Fourier trans-
form has a very narrow main lobe and a very small side lobe magnitude. However, these are usually
conflicting requirements for a fixed window length. For example, by tapering the window smoothly
to zero at each end, the magnitude of the side lobes becomes smaller at the cost of a wider main lobe.
There is a trade-off between the width of the main lobe and magnitude of the side lobes. Figure 52
shows a number of window functions and their Fourier transforms.

So what is a good window function? We can see from Figure 52 that if a sharp transition between
the pass band and the stop band is desired, then for a given filter length the rectangular window is most
suitable as its main lobe is the narrowest among other window functions. However, it should be noted
that the magnitude of its side lobes is also the largest.

12.2 Low pass filter design

We have shown that the unit sample response of an ideal low pass filter with a cut off frequency of ωc

is given by:

hd [n] =
1

πn
sin(nωc), n = 0, ±1, ±2, ...

It is truncated by using a window function and is made causal by shifting to the right hand side.
For example, assume the cutoff frequency of an ideal low pass filter is π/4 and a rectangular

window (21 coefficients) is used. Then the filter coefficients are given in the following table
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Figure 51: Left panel: the Fourier transform of Hamming window with N=10, 50 and 100. Right
panel: the frequency response of an FIR filter (cutoff frequency ωc = 0.4π) designed using the Ham-
ming window with N=10, 50, 100.
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Figure 52: This figure shows the different characteristics of window functions and the FIR filters
designed using thes window functions. Left panel: the Fourier transform of three window functions
(top to bottom) Hamming, boxcar and Blackman. Right penal: the amplitute response of the FIR
filters designed using these window functions.
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Figure 54: Magnitude relationship between a low pass filter and a high pass filter.

n 0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10
h[n] .25 .225 .159 .075 0 -.045 -.053 -.032 0 .025 .032

To make this filter causal, the unit sample response is shifted to the right side by 10 samples:

h(n) =
1

π(n−10)
sin((n−10)ωc), 0≤ n≤ 20, ...

The shifting introduces delay in the system. Figure 53 shows the unit sample response before and after
shifting.

12.3 High pass filter

A high pass filter can be easily designed using a low pass filter. Recall that if the frequency response
of a low pass filter is shifted by π, then a high pass filter with cutoff frequency of π−ωc is obtained.
This is illustrated in Figure 54.

Therefore, an ideal high pass filter can be specified in terms of a low pass filter

HH(ω) = HL(ω−π)

84



Here we use the subscripts H and L to represent the high pass and low pass filter, respectively. Ac-
cording to the definition, we have

HH(ω) =
∞

∑
n=−∞

hH(n)e− jωn

and

HL(ω) =
∞

∑
n=−∞

hL(n)e− jωn

then

HH(ω) = HL(ω−π)
= ∑

∞
n=−∞ hL(n)e− j(ω−π)n

= ∑
∞
n=−∞ hL(n)e jπne− jωn

Therefore, we have established the relationship between the low pass and high pass filters in the time
domain

hH(n) = hL(n)e jnπ = (−1)nhL(n)

To design a high pass filter with a cut off frequency of 0.7π, we can design a low pass filter with a
cut off frequency of π− 0.7π = 0.3π. Then use the the above relationship to obtain the unit sample
response.

12.4 Band pass and band stop filters design

The band pass and band stop filters can be designed using a similar method. The design methods are
summarized in the following

band pass filter hBP[n] = 2cos(nω0)hL[n],

ωu−ωl = 2ωc

ωu+ωl
2 = ω0

band stop filter hBS[0] = 1−hBP[0]

hBS[n] =−hBP[n], n 6= 0

ωu−ωl = 2ωc

ωu+ωl
2 = ω0

Figure 55 shows the magnitude responses for both type of filters. To design a band pass filter
based on the above method is simple. For example, a 11th order digital filter is required to meet the
following specifications: sampling frequency 10 kHz, pass band 1kHz to 2 kHz. We need to convert
the specification into the discrete radian frequency by using

ω = Ω/ fs = 2π f / fs
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Figure 55: The magnitude response. Top : band pass filter, bottom: band stop filter

Therefore, we have
ωu = 2π×2/10 = 0.4π

and
ωl = 2π×1/10 = 0.2π

The corresponding cut off frequency of the low pass filter is

ωc =
ωu−ωl

2
= 0.1π

and the center frequency of the pass band is

ω0 =
ωu +ωl

2
= 0.3π

Therefore, the unit sample response of the band pass filter is given by

hBP[n] = 2cos(nω0)hL[n] = 2cos(0.3πn)hL[n]

where
hL[n] =

1
πn

sin(nωc) =
1

πn
sin(0.1πn), n = 0, ±1, ±2, ...,±5

To make this filter a causal filter, the unit sample response must be shifted to the right hand side by 5
samples

h[n] = hBP[n−5]

12.5 Self-test exercises

• You can use a Matlab command fir1 to design FIR filters. Type help fir1 to see how to
use it. Design an 11th order low pass filter with cut off frequency of 0.5π by using the window
method described in section 12.2 and by using the command fir1. Compare the unit sample
response and the frequency response for both methods.

• How do you convert the above low pass filter into a high pass filter with a cutoff frequency of
0.5π?

• A 7th order digital filter is required to meet the following specifications: sampling frequency
40 kHz, stop band from 4kHz to 8 kHz. Design a causal digital band stop filter to meet these
requirements. Plot the magnitude response to verify your design. (hint: refer to the example in
section 12.4)
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13 IIR filter design

This section is divided into three parts: analog prototype filters, IIR filter design using the bi-linear
transform, and IIR filter design using Matlab.

13.1 Analog Prototype Filters

13.1.1 Laplace transform

The one-sided Laplace transform of a continuous function is defined as:

X(s) = L[x(t)] =
∫

∞

0
x(t)e−stdt

where s is a complex variable that is independent of t. The transfer function for a continuous system
is defined as:

H(s) =
Y (s)
X(s)

The frequency response is given by substituting s = jΩ into the transfer function.

H(Ω) = H(s)
∣∣s= jΩ

13.1.2 Butterworth low pass prototype design

The frequency response of a Butterworth low pass filter is:

|H(Ω)|2 =
1

1+ ε2 (Ω/Ωc)
2N

where ε is the parameter that controls the ripple (usually ε=1 ), Ωc is the cutoff frequency and N is
the order of the filter. The Butterworth filter is maximally-flat and it passes through -3dB at the cut-off
frequency.

When the cut off frequency is 1, the filter is called the prototype (since filters with different cut off
frequency can be easily obtained from the prototype by a scaling in the frequency domain).

|H(Ω)|2 =
1

1+Ω2N

The only parameter is the order of the filter. It is usually determined by the specification of the signal
processing system, ie, the attenuation at a given frequency Ωa . For example, if an attenuation of M
dB is required, then

M = 10log10 |H(Ωa)|2 = 10log10
1

1+Ω2N
a

and

N =
log10

(
10−

M
10 −1

)
2log10 Ωa

87



13.1.3 Chebyshev low pass prototype filter design

A class of filters are called equal-ripple filters. The Chebyshev filter has equal-ripple in the pass
band, the inverse Chebyshev filter has equal-ripple in the stop band. By allowing ripples in the filter
frequency response, a sharper transition from pass band to stop band than that of the Butterworth filter
can be achieved.

The Chebyshev low pass prototype is defined as:

|H(Ω)|2 =
1

1+ ε2C2
N (Ω)

where CN (Ω) is the N-th order Chebyshev polynomial It can be defined by the recursion function

CN+1(Ω) = 2ΩCN(Ω)−CN−1(Ω)

where

C0(Ω) = 1

and
C1(Ω) = Ω

The prototype ripple bandwidth is from 0 ≤ Ω ≤ 1 . In 0 ≤ Ω ≤ 1, there are N maximum and
minimum points. The ripple amplitude in dB is given by

rdB =−10log10(
1

1+ ε2 ) = 10log10(1+ ε
2)

The -3dB cutoff frequency is greater than 1.
To design a Chebyshev filter, two parameters need to be determined. The desired ripple is set by

ε and the order N is found by knowing a desired half-power or -3dB frequency and/or the required
stop band characteristics. This is usually done by consulting a filter design handbook (using tables or
monograms)

13.1.4 Elliptic low pass prototype design

An elliptic filter has an equal-ripple response in both its pass band and its stop band. This leads to
even sharper cut off characteristics than the Chebyshev filters. An elliptic filter is defined as:

|H(Ω)|2 =
1

1+ ε2Z2
N (Ω)

where ZN(Ω) is a Chebyshev rational function determined from the specified ripple characteristics.
An elliptic filter has three parameters (which can be defined in different ways). One set of parameters
are the order N, the acceptable pass band ripple and the acceptable stop band gain.

The magnitude responses for 4th-order digital IIR filters (Butterworth, Chebyshev-I and elliptic
filter) are shown in Figure 56.

13.2 IIR Filter Design Using Bilinear Transform

Because the design methods for analog filters are well established, it is useful to study how to covert
an analog filter into a digital filter. One of the most effective way is by means of a bilinear transform:

s =
z−1
z+1
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Figure 56: Magnitude response of Butterworth filter (top), Chebyshev-I filter (middle) and elliptic
filter (bottom)
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Figure 57: The magnitude response of a second order digital Butterworth filter designed using bilinear
transform.

The transfer function of an analog filter H(s) is converted to that of a digital filter with the transfer
function

H
(

z−1
z+1

)
For example, the transfer function of the second order Butterworth prototype filter and its correspond-
ing digital filter are:

H(s) =
1

1+
√

2s+ s2

and

H(z) =
1

1+
√

2 z−1
z+1 +

( z−1
z+1

)2 = 0.293
1+2z−1 + z−2

1+0.172z−2

The frequency response of this digital filter is shown in Figure 57.
It can be shown that using the bilinear transform, the right/left half of the s-plane is mapped to the

exterior/interior of the unit circle of the z-plane, and the entire imaginary axis of the s-plane is mapped
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to the unit circle in the z-plane. Therefore, a stable analog filter (the poles of which must be in the
left-half of the s-plane) is converted to a stable digital filter (the poles of which must be inside the unit
circle).

How does the system function of H(s) relate to that of H(z)? The frequency responses of the
analog and the digital filter can be calculated by

H(Ω) = H(s)|s= jΩ

and
H(ω) = H(z)|z=e jω

Therefore the bilinear transform corresponds to the following relationship in frequency:

jΩ =
e jω−1
e jω +1

The above equation is equivalent to
Ω = tan

(
ω

2

)
One can easily see that the range of the discrete radian frequency [0, π] is mapped to the analog
frequency range [0, ∞) . Therefore, the bilinear transform corresponds to a nonlinear compression of
the analog frequency range to the discrete radian frequency range.

In general, the design of a digital IIR filter using the bilinear transform involves the following
steps

1. Determine the filter specification (such as the cutoff frequency) according to a problem

2. Prewarp the discrete radian frequencies using the above equation. This step converts the discrete
radian frequencies into the analog frequencies.

3. Design an analog filter based on the analog frequencies specified in step 2.

4. Use the bilinear transform to determined the transfer function of the digital filter.

13.3 IIR filter design using Matlab

13.3.1 Filter specifications and types

You need a filter for a specific application. There are different applications, so there are different
ways to specify a filter. A loose specification might ask for a filter to remove the noise above 30 Hz
with a 100 Hz sampling frequency. A more rigorous specification might call for a specific amount
of pass band ripple, stop band attenuation, or transition width. A very precise specification could
ask to achieve the performance goals with the minimum filter order, or it could call for an arbitrary
magnitude shape, or it might require an FIR filter.

In the following, we will specify a filter by four parameters: the pass band ripple, the stop band
attenuation, the pass band edge frequency and the stop band edge frequency. This is illustrated in
Figure 58. Note that although in this figure, a low pass filter is used, these four parameters are also
applicable to high pass filters and band pass filters where the pass band and stop band frequencies are
two-element vectors.

There are three types of IIR filters. The Butterworth filter has a maximally flat frequency response
which passes through -3 dB at the cut-off frequency. For the same filter order, the Chebyshev filter
has a sharper transition between the pass band and the stop band than the Butterworth filter. The
Chebyshev type-I filter has ripples in the pass band, while type-II has ripples in the stop band. For the
same filter order, the elliptic filter has even sharper transition than the Chebyshev filter. It has ripples

90



R

Wp Ws

s

pass band ripple

stop band ripple

pass band edge frequency

stop band edge frequency

Rp

Figure 58: The specification of an IIR filter.

at both pass band and stop band. So there is a trade-off between the computational complexity (order
of the filter) and the frequency response.

Here is an example14 of the 4 types of IIR filters with ωp = 0.2, ωs = 0.3, Rp = 1 and Rs = 40. The
amplitude responses are roughly the same, when we ignor the effects of ripples. However, the order
of these filters are not the same, Butterworth 12, Chebyshev I and II 6, and elliptic 4. In other words,
to have roughly the same amplitude response, the elliptic filter is most computational efficient among
the filters. This is at the costs of having ripples in both the pass band and stop band. The butterorth
filter, on the other hand, is most computationally demanding. It has the advantage of being max-flat,
i.e., no ripples. The computational requirement for the Chebyshev typy I and II filters is between the
elliptic and butterworth filters. What will happen if we use the same order for the filter types? Fig. 61
shows the amplitude repsonses of using N = 4. We can clearly see that the elliptic filter has the fastest

14Here is the matlab code.
wp=0.2; ws=0.3; rp=1; rs=40;
[bN,bw] = buttord(wp,ws,rp,rs);
[c1N,c1w] = cheb1ord(wp,ws,rp,rs);
[c2N,c2w] = cheb2ord(wp,ws,rp,rs);
[eN,ew] = ellipord(wp,ws,rp,rs);
[bb,ba]=butter(bN,bw);
[c1b,c1a]=cheby1(c1N,rp,c1w);
[c2b,c2a]=cheby2(c2N,rs,c2w);
[eb,ea]=ellip(eN,rp,rs,ew);
[bH,W]=freqz(bb,ba,10000);
[c1H,W]=freqz(c1b,c1a,10000);
[c2H,W]=freqz(c2b,c2a,10000);
[eH,W]=freqz(eb,ea,10000);
subplot(421);plot(W/pi,abs(bH))
subplot(422);plot(W/pi,20*log10(abs(bH)))
subplot(423);plot(W/pi,abs(c1H))
subplot(424);plot(W/pi,20*log10(abs(c1H)))
subplot(425);plot(W/pi,abs(c2H))
subplot(426);plot(W/pi,20*log10(abs(c2H)))
subplot(427);plot(W/pi,abs(eH))
subplot(428);plot(W/pi,20*log10(abs(eH)))
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Figure 59: Four types of IIR filters with the same filter specifications.
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Figure 60: Four types of IIR filters with the same filter specifications and same order N = 4.
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change from pass band to stop band, while the Butterworth has the slowest changes.

13.3.2 Design procedures

Once the filter is specified, the design of the filter involves

1. Choose the type of the filter that best fits the application.

2. Determine the order of the filter by using the following Matlab functions. Note that the fre-
quency specifications must be normalized discrete radian frequency in the range [0, 1], which
corresponds to [0,π]. If the filter is a band pass or band stop filter, then the frequency specifica-
tions are two-element vectors.

Butterworth filter [N, ωn] = buttord(ωp, ωs, Rp, Rs)
Chebyshev I filter [N, ωn] = cheb1ord(ωp, ωs, Rp, Rs)
Chebyshev II filter [N, ωn] = cheb2ord(ωp, ωs, Rp, Rs)

Elliptic filter [N, ωn] = ellipord(ωp, ωs, Rp, Rs)

3. Determine the filter coefficients. In Matlab, the filter coefficients are stored in two vectors called
b and a.

H(z) =
B(z)
A(z)

=
b(1)+b(2)z−1 + ...+b(n+1)z−n

1+a(2)z−1 + ...+a(n+1)z−n

To design a low pass filter, you use:

Butterworth filter [b, a] = butter(N,ωn)
Chebyshev I filter [b, a] = cheby1(N,Rp,ωn)
Chebyshev II filter [b, a] = cheby2(N,Rs,ωn)

Elliptic filter [b, a] = ellip(N,Rp,Rsωn)

4. Test your design. You may plot the frequency response of the filter to see if it matches the
specification. A more important task is to see the quantization effect of the filter coefficients.

13.3.3 Design examples

Example 1

A second order IIR digital filter is required to implement the same processing function of an analog
high pass filter with a cut off frequency of 2 rad/sec. Assume the sampling interval T = 0.2 second and
a pass band ripple of 3 dB.

To design this digital filter, we convert the filter specification into the normalized discrete radian
frequency by using

ωc =
ΩcT

π
= 0.1247

The filter coefficients are then calculated by using

[b, a] = cheby1(2, 3, 0.1247, ′high′);

And the system function is given by

H(z) =
0.5697−1.1394z−1 +0.5687z−2

1−1.516z−1 +0.7028z−2
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Example 2

The signal is sampled at 1000 samples/sec. Design a 10th-order band pass digital Butterworth filter
with a pass band from 100 to 200 Hz. As in example 1, we first convert the filter specification to
normalized discrete radian frequency by using

ωc =
ΩcTs

π
=

2π fc

π fs
=

2 fc

fs

The filter coefficients are then calculated by using

[b, a] = butter(5, [100, 200]/500);

Note that in the above Matlab function [b, a] = butter(n, w), when the cut off frequency is a two-
element vector, it will produce a filter with an order of 2n.

Example 3

Design a Chebyshev type-I filter with the following specifications

• 1 dB ripple in the range 600-900 Hz

• the sampling frequency is 3000 Hz

• Max. gain is -40 dB in the frequency ranges 0≤ f ≤ 200 Hz and f ≥ 1300 Hz

We can see that this is a band pass filter. We need to determine the filter specification first

wp = [600, 900]/1500
ws = [200, 1300]/1500
Rp = 1
Rs = 40; %not -40
[n, w] = cheb1ord(wp, ws, Rp ,Rs)

The filter coefficients are obtained by using

[b, a] = cheby1(n, Rp, w);

The amplitude response15 is plotted in both linear scale (left) and log-scale (dB). Note that the unit
of the horizontal axis is now coverted to Hertz.

Example 4

Design a max-flat low pass filter with the following specification

• sampling frequency is 20 kHz

15Matlab code is here
wp = [600 900] / 1500;
ws = [200 1300] / 1500;
rp = 1;
rs = 40;
[n, w] = cheb1ord(wp, ws, rp, rs);
[b, a] = cheby1(n, rp, w);
subplot(121); plot(1500*W/pi, abs(H));
subplot(122); plot(1500*W/pi, 20*log10(abs(H)))

95



0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500
−250

−200

−150

−100

−50

0

Figure 61: Amplitude response of the Chebyshev type I filter in linear scale and log scale (dB).

• -3 dB gain at cut off frequency 2 kHz

• max. gain of -10 dB at frequency 4 kHz

According to the filter requirements, we use a Butterworth filter and follow exactly the same procedure
as example 3 to design the filter. This is shown in the following

wp = 2/10;
ws = 4/10;
Rp = 3;
Rs = 10; %not -10
[n, w] = buttord(wp, ws, Rp ,Rs);
[b, a] = butter(n, w);

13.4 Self-test exercises

• Go through all filter design examples in this section.

• For a sampling frequency of 400 Hz, what is the minimum order for an elliptic filter that you
can use to separate the 80 Hz cosine signal from its mixture with a 50 Hz cosine signal.
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14 Applications of DSP16

14.1 Audio signal processing

14.1.1 Reverberation effects

14.1.2 Equalizers

14.1.3 Digital FM stereo generation

14.2 Number representations in digital signal processors

14.2.1 Fix point representation

The simplest representation is to use a format: sign+value. In this section, this format is referred to
as the signed-binary format. For example, the number (-10 ) can be represented as: 10001010, where
the MSB is the sign bit and the rest bits represent the value. In this case, 1 is used to represent the
negative sign and 0 is used to represent the positive sign.

Fix point DSP devices use a format called the two’s complement, where a positive number is
represented in exactly the same as the above example. The negative number, however, is represented
in a different format. The procedure to convert a negative number from the signed-binary format to
the two’s complement format involves three simple steps:

• change the sign bit to zero,

• invert every bit, and

• add 1. An example: -10 = 10001010, its two’s complement representation is 11110110.

One advantage of two’s complement format is that one adder is required for both positive and negative
numbers. Another advantage is that if the final result is known to be within the processor’s number
range, then an intermediate overflow can be ignored as the final correct result will be produced. A
16-bit integer in two’s complement format can vary between +32767 and -32768. This is known as
the 16.0 format for the Analog Devices DSP processor ADSP 219x/2191. The value of the number is
calculated as: x = (−215)a15 +∑

14
i=0 ai2i

In DSP, it is also common to represent numbers as fractions. The reason for this is that when
multiplying fractions (e.g. 0.99× 0.98) the result will be always less than one and there is never an
overflow. For a fix point processor this is obvious an advantage. The TMS320c5x processor uses a
format call Q15 which is show below:

−20 2−1 2−2 2−15

a0 a1 a2 a15

The Q15 format is also known as the 1.15 format for the Analog Devices DSP processor 219x/2191,
which supports both formats: 1.15 and 16.0. The user must specify which format is being used by
setting a bit in the MSTAT register.

Using the Q15 format, the number, x = (−1)a0 +∑
15
i=1 ai2−i , varies from -1 to 0.99996948242188.

Addition and subtraction are exactly the same as for binary integers. The multiplications of two Q15
numbers results in a Q30 number which is also a fraction. It has 30 fractional bits, 2 sign bits and
no integer bits. To store the result as a Q15 number, a left shift of one bit is performed to eliminate
the extract sign bit and the resulting left-most 16 bits are stored. An interesting property of the two’s

16This section is still being written.
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complement format is that for a negative number, if you add a “1” in front of the MSB, the value of the
number remains the same. For example, -4 = 1100 (-8+4) = 11100 (-16+8+4) = 111100 (-32+16+8+4).

Let us use a few simple examples to illustrate the addition and mutilication of numbers in two’s
complement format. To simplify our example, we will use 4.0 format which can represent an integer
ranging from -8 (1000) to 7 (0111).

Example 1

3 - 4 = 0011 + 1100 = 1111 = -1

Example 2

In this example, we have to left shift one bit to get rid of the extra sign bit to get the correct result.
5 - 4 = 0101 + 1100 = 10001 = 0001 = 1

Example 3

3× (−4) = 0011×1100 = 1110100 =−12. The actual calculation is shown below

Example 4

(−3)× (−4) = 1101×1100 = 0001100 = 12

Using a fixed point DSP processor such as ADSP 219x, if both operands are in 1.15 format, the
multiplication of these two numbers results in 2.30 format (2 sign bits and 30 fractional bits). The
processor can automatically left shift one bit to get rid of the extra sign bit and the result is a 1.31
format which is then truncated to 1.15 format.

14.2.2 Floating point representation

The industry standard floating-point number format is defined by IEEE Standard 754.1985. However,
the TI’s TMS320C3x and TMS320C4x devices use a special form of floating point representation for
internal calculations. The reason for the difference is that using the TI’s format the hardware multiplier
is easier to design and smaller (therefore cheaper). Conversion between these two formats can be
achieved by either using a single instruction in TMS320c4x or using an external conversion ASIC
(application specific integrated circuit). In either case the overhead for conversion is not significant
when compared to overall algorithm execution time.

The IEEE 754 floating point format is 32 bits long and is shown below:

31 30 23 22 0
s EXPONENT(E) FRACTION(F)

MSB LSB MSB LSB

The interpretation of the format is as following:

• If E = 255 and F 6= 0, then x = NaN.

• If E = 255 and F = 0, then x = (−1)s∞.

• If 0 < E < 255 and F 6= 0, then x = (−1)s2E−127(1.F).

• If E = 0 and F 6= 0, then x = (−1)s2−126(0.M).
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• If E = 0 and F = 0, then x = 0.

The TMS320 format is also 32 bits long and is shown below:

EXPONENT(E) s FRACTION(F)
31 24 23 22 0

The interpretation is: x = {(−2)s +(.F)}2E

14.3 Quantization effects of filter coefficients

Filter coefficients designed by softwares such as Matlab are usually represented by floating point
numbers. To implement an FIR filter in a fix point processor such as TMS320c50, the filter coefficients
must be quantized. The simplest way is to multiply them with a scaling factor. This is shown in the
following equation:

cq(i) = f loor (c(i)2n)

where cq(i) and c(i) are the original and quantized coefficient, respectively, n is the number of bits for
the quantization. Note that if max(c(i)) > 1, then it may be necessary to scale the filter coefficients.
Scaling can be avoided by simple trick described at the end of this section.

Quantization introduces distortions to the desired frequency response. The following Matlab codes
are used to show the effect of quantization.

f=fir1(20,0.3); %design a 21-tap FIR filter, with cut-off frequency of 0.3
f5=floor(f*2^5); %quantize them to 5-bit
f8=floor(f*2^8); %quantize them to 8-bit
f10=floor(f*2^10); %quantize them to 10-bit
f12=floor(f*2^12); %quantize them to 12-bit
semilogy(abs(freqz(f5/sum(f5),1,100)));
hold on
semilogy(abs(freqz(f8/sum(f8),1,100)));
semilogy(abs(freqz(f10/sum(f10),1,100)));
semilogy(abs(freqz(f12/sum(f12),1,100)));

So we see that the performance of the filter changes a lot as the number of bits used to represent
the filter varies from 5 to 15. The quantization effect is more significant for an IIR than an FIR filter.
FIR filters are always stable, while quantization could turn a stable IIR filter into a unstable one since
the poles of the filter with quantized coefficients may be outside the unit circle. The following figure
shows the quantization effect of a 5th order Butterworth filter.
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Figure 62: Quantization effects
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Implementing an IIR filter in a fix point processor needs more careful efforts. For example to
implement an IIR filter described the difference equation:

y(n) = 3.125x(n)+1.17x(n−1)+0.9y(n)−2.11y(n−1)

one can rewrite the equation in the following way:

y(n) = 3x(n)+0.125x(n)+ x(n−1)+0.17x(n−1)+0.9y(n)−2y(n−1)−0.11y(n−1)

In this equation, variables multiplied by an integer can be implemented by addition. Those fractional
multiplication factors must be quantized.

14.4 Fix point digital signal processor-TMS320c5x

The aim of this section is to introduce the key elements in the implementation of a real time digital
filter in the TMS320C50 DSK. The operations of the instruction MACD is explained in detail. You
should have a better understanding of this lecture and the processor as well as its assembly language
after you have finished the laboratory session. More information about the processor and the DSK can
be found in the “TMS320C5x User’s Guide” and the “TMS320C5x DSP Starter Kit User’s Guide”

14.4.1 Addressing modes

The following is a brief description of two addressing modes used in the implementation of the FIR
filter.

Direct addressing

In the direct memory addressing mode, the instruction contain the lower 7-bit of the data memory
address (dma). The 7-bit dma is concatenated with the 9-bit of the data memory page pointer (DP)
in status register 0 to form the full 16-bit address. The DP bits can be loaded by using the LDP
instruction. It should be noted that the DP is not initialized by reset and , therefore, is undefined after
power on. It is critical that all programs initialized the DP in software.

Indirect addressing

The C50 processor has 8 16-bit auxiliary registers(AR0-AR7) that provide flexible and powerful in-
direct addressing. Any location in the 64K-word data memory space cane be accessed using a 16-bit
address contained in an AR. For example, to select a AR0 as the current AR and load it with the
address 0f00, you can use the following code :

MAR *, AR0
LAR AR0 #0f00

The following indirect-addressing symbols are used in the C5x assembly language instructions
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* no increment or decrement. content of the current AR is used as the dma
*+ content of the current AR is used as the dma,

after memory access, content of the current AR is increment by 1
*- content of the current AR is used as the dma,

after memory access, content of the current AR is decrement by 1

14.4.2 Implementing an FIR filter

An Nth order FIR filter is represented by the following equation:

y(n) =
N−1

∑
i=0

aix(n− i)

The real time implementation of this filter involves: (1) storing the coefficients in memory, (2) storing
N samples of the data in memory and (3) performing the multiplication-and-sum operations and up-
dating the data as the filtering operation finishes. For simplicity, we will use a 3rd order FIR filter to
illustrate the implementation. The filter coefficients are a0 = 1, a1 = 2, and a2 = 1. They are stored
in memory location starting from 0xf280. The three data samples are stored in in memory location
starting from 0xf380 and they initialized as zeros. The newest sample x(n) is always stored in the
location 0xf380. This is illustrated in the following figure:

↓x(n+1)
f280 a2 1 f380 x(n) 0
f281 a1 2 f381 x(n−1) 0
f282 a0 1 f382 x(n−2) 0

In this figure, the arrow indicates that when a new sample x(n + 1) is available the data memory
must be moved up by one sample so that the next filtering operation can be performed. The source
code for specifying the filter coefficients and initialization of data memory is shown below:

.ds 0f28 ;the address of coeff
coefftab .word 1 ;a2

.word 2 ;a1

.word 1 ;a0
.ds 0f38 ;the address of data

XN .word 0
.word 0

XNLAST .word 0

The implementation of the FIR filter is based on a powerful instruction called MACD. The source
code is listed blow.
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RECEIVE:
LDP #XN ;load DP register

CLRC INTM ;clear interup mode
LAMM DRR ;read a new sample from DRR
SACL XN ;store new sample to location XN

;start FIR
ZAP ;ACC=0,P=0
LAR ar0, #XNLAST ;load the address of XNLAST to ar0
MAR *,ar0 ;content of ar0 is used as data memory address
RPT #taps-1 ;repeat MACD until repeat counter=0

MACD #coefftab,*- ;multiplication and sum and data move
APAC ; ACC = ACC +P
SACH Output, 1 ;get rid of extra sign bit
LACC Output ;load output to ACC
SFL ;left shift ACC one bit
AND #0fffch ;get rid of last 2-bits for a 14-bit DAC

SAMM DXR ;send to output register
RETE ;return

After reading and storing the new data sample XN, the ACC and P register are set to zero, and
the address of the data memory is pointed to the last data sample. The execution of the the next two
instructions (RPT and MACD) is shown the following steps:

if(repeat_counter !=0 )
{

1. (ACC) = (ACC) + (shifted P register ); //the shift is defined by the PM status bit

2. (P register) =(coefftab) * (current data address); //the current coefficient is multiplied by the the
content of the data memory whose address is pointed to by the current AR

3. current data address = current data address -1; //point to next data

4. PFC = (PFC) + 1; //coefftab point to next coefficient

5. (current data address +1) = ( current data address ); //move the processed sample to next data
memory location

6. repeat counter =repeat counter -1

else
{perform the above steps 1, 2,3, 5}
The following figure shows the actual implementation using a 3rd order FIR filter. In the figure,

the symbol “#” represents the current data/coefficient.

step 1 step 2 step 3 step 4
#a2 x(n) a2 x(n) a2 #x(n) #a2 x(n+1)
a1 x(n−1) #a1 #x(n−1) a1 x(n−1) a1 x(n)
a0 #x(n−2) a0 x(n−2) #a0 x(n−1) a0 #x(n−1)

x(n−2) x(n−2) x(n−1)

103



14.4.3 The assembler source code

This section is taken from the TMS320C50 DSK User’s Guide.

15 Spectrum analysis

16 Problem class-3 23

17 Exam Tutorial 24

18 Appendix-I Past Assignment Questions
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Due Date 2 pm Monday

LA TROBE UNIVERSITY

DEPARTMENT OF ELECTRONIC ENGINEERING

ELE32DSP: DIGITAL SIGNAL PROCESSING

(Attach the underneath to the front of your assignment)
______________________________________________________________________

Name Student No.
Subject Digital Signal Processing Assignment
Lecturer Dr Dennis Deng

DECLARATION

I certify that the above assignment is my original work and that no part of
it has been copied or reproduced from any other person’s work without
acknowledgment.

Signed: Date:

1. A signal is given by x[-1] = 1, x[0] = 2, x[1] = 2, and x[2] = 1. Sketch the following signals and
represent them as a linear combination of δ[n] . (1.1) x[n], (1.2) x[3-n], (1.3) x[n-2].

2. Use the signal x[n] = cos(ωn) to show that the discrete radian frequency is in the range [0,2π].
Assume this signal is a periodic signal with a period of 7. Determine all possible distinctive
frequencies for this periodic signal.

3. A signal is given by x[0] = 1, x[1] = 2, x[2] = 2, and x[3] = 1. Perform the convolution operations
x[n] ∗ h[n] for the following unit sample responses. (3.1) h[0] = 1, h[1] = -1, (3.2) h[-1] = -1,
h[0] = 2, h[1] = -1, (3.3) h[0] = 1, h[1] = 0, h[2] = -2, h[3] = 0, h[4] =1.

4. The signal specified in question 3 is processed by a system which is a cascade of two sub-
systems specified by (3.1) and (3.2) respectively. Determine and sketch the output of the whole
system. Is this a causal system ?

5. An LTI system is given by y[n] = x[n]−2x[n−1]+x[n−2]. Determine the unit sample response
and frequency response of the system.

6. A system is given by y[n] = ax[n]+ b where a and b are two constants. Determine if this is an
LTI system
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Due Date 2 pm Monday

LA TROBE UNIVERSITY

DEPARTMENT OF ELECTRONIC ENGINEERING

ELE32DSP: DIGITAL SIGNAL PROCESSING

(Attach the underneath to the front of your assignment)
______________________________________________________________________

Name Student No.
Subject Digital Signal Processing Assignment
Lecturer Dr Dennis Deng

DECLARATION

I certify that the above assignment is my original work and that no part of
it has been copied or reproduced from any other person’s work without
acknowledgment.

Signed: Date:

1. (a) Find the frequency response of the LTI system whose input and output satisfy the difference
equation

y[n] = 0.5y[n−1]+ x[n]+2x[n−1]+ x[n−2]

(b) Write a difference equation that characterizes s system whose frequency response is

H(ω) =
1−0.5e− jω + e− j3ω

1+0.5e− jω +0.75e− j2ω

2. An LTI system is given by:

y[n] = x[n−1]−2x[n−2]+ x[n−3]

Find its unit sample response and frequency response. Is this a high pass filter ?

3. Use the Fourier transform to perform the convolution x[n] ∗ h[n], where x[n] = {1, 2, 1} and
h[n] = {1,−1}.

4. An LTI system is given by the difference equation

y[n] = x[n]−3x[n−1]+3x[n−2]+ x[n−3]

(a) Obtain an expression for the frequency response of this system. Hint:

(1−a)3 = 1−3a+3a2−a3
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(b) What is the output if the input is

x[n] = 10+4cos(0.5πn)

(c) What is the output if the input is
x[n] = δ[n]

(d) What is the output if the input is

x[n] = 10+4cos(0.5πn)+2δ[n−3]

5. Let x(t) = 7sin(11πt). In each of the following cases, the discrete time signal x[n] is obtained
by sampling x(t) at a frequency fs and the resultant x[n] can be written as

x[n] = Acos(2π f0n+φ)

So for each case below, determine the values of A, f0 and φ. In addition, state whether the
sampling theorem is satisfied. (a) fs = 5 Hz, (b) fs = 10 Hz (c) fs = 15 Hz

6. 2.3 The sequence, x[n] = cos(π

7 n), −∞ < n < ∞ , was obtained by sampling an analog signal
xc(t) = cos(Ωt), −∞ < t < ∞ , at a sampling rate of 2000 samples/second. What are the three
smallest possible values of Ω (Ω > 0) that could have resulted in the same discrete signal ?

7. The band width of an analog signals 8 kHz. This signal is processed by an analog low pass filter
whose cutoff frequency is 3 kHz. If this signal processing task is performed by a digital signal
processing system, determine the minimum sampling frequency and the corresponding cut off
frequency of the digital low pass filter.
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Due Date 2 pm Monday

LA TROBE UNIVERSITY

DEPARTMENT OF ELECTRONIC ENGINEERING

ELE32DSP: DIGITAL SIGNAL PROCESSING

(Attach the underneath to the front of your assignment)
______________________________________________________________________

Name Student No.
Subject Digital Signal Processing Assignment
Lecturer Dr Dennis Deng

DECLARATION

I certify that the above assignment is my original work and that no part of
it has been copied or reproduced from any other person’s work without
acknowledgment.

Signed: Date:

Question 1

Design a 9-tap FIR low pass filter with a rectangular window to separate two sinusoidal signals
whose frequencies are 500 Hz and 50 Hz, respectively.

• Determine the specification of the filter.

(4 marks)

• Write an expression for a seven term casual impulse response

(6 marks)

• How would you modify the filter coefficients to make it a high pass filter that can be used to
separate these two signals ?

(6 marks)
Question 2

Briefly describe the frequency response of the following types of IIR filters

• Butterworth filter

• Chebyshev filter

• Elliptic filter
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(9 marks)
The following questions are related to filter design using Matlab. Some useful Matlab functions

are semilogy, fir1, freqz and those listed in Section 13.3 of the lecture notes

Question 3

Design a low pass FIR whose cut off frequency is π/4.
(a) Determine the filter coefficients of a 25-tap filter using the following windows: rectangular,

Hamming and Bartlett window.
(9 marks)

(b) Plot the magnitude response of each filter
(9 marks)

(c) Compare the magnitude responses and identify their differences in terms of the transition be-
tween the pass band and the stop band and the ripples.
(7 marks)

Question 4

Determine the transfer function of a third order low pass Butterworth filter whose cutoff frequency
is π/4. Plot its amplitude response. If the same amplitude response is produced by an FIR filter,
estimate the order of that FIR filter by trying different order and plotting the corresponding amplitude
response.
(10 marks)

Question 5

Determine the transfer function of a Chebyshev type 1 filter with the following specifications:
(a) 1 dB ripple in the range 600-900 Hz (b) the sampling frequency is 3000Hz
(c) a maximum gain of -40 dB at frequency range [0,200] Hz and [1300,∞) Hz.
Draw a direct form-2 implementation of this filter.

(10 marks)
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LA TROBE UNIVERSITY

DEPARTMENT OF ELECTRONIC ENGINEERING

ELE32DSP: DIGITAL SIGNAL PROCESSING

(Attach the underneath to the front of your assignment)
______________________________________________________________________
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Lecturer Dr Dennis Deng

DECLARATION

I certify that the above assignment is my original work and that no part of
it has been copied or reproduced from any other person’s work without
acknowledgment.

Signed: Date:

Question 1

We want to use DSP to separate two sinusoidal signals whose frequencies are 500 Hz and 50 Hz,
respectively. Assume the sampling frequency is 4000Hz. You need to design a 7-tap FIR low pass
filter with a rectangular window.

(a) Determine the specification of the filter.
(b) Write an expression for a seven term casual impulse response
(c) How would you modify the filter coefficients to make it a high pass filter that can be used to

separate these two signals ?

(10 marks)

Question 2

We want to use DSP to implement the following signal processing task.
(a) 1 dB ripple in the range 600-900 Hz
(b) the sampling frequency is 3000Hz
(c) a maximum gain of -40 dB at frequency range [0,200] Hz and [1300,∞) Hz.
Determine the transfer function of a Chebyshev type-1 filter and raw a direct form-2 implementa-

tion of this filter.
(10 marks)
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Question 3

An LTI system is described by the difference equation

y[n] = 0.8y[n−1]−0.8x[n]+ x[n−1]

(a) Determine the system function H(z).
(b) Plot the poles and zeros in the z-plane and determine if the system is stable.
(c) Obtain the frequency response and show ???that |H(ω)|2 = 1 for all ω.

(15 marks)

Question 4

The pole-zero plot of an LTI system is shown in the following figure.
(a) Determine the system function.
(b) Determine the impulse response.

(15 marks)
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Figure 63: The pole-zero plot of an LTI system
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LA TROBE UNIVERSITY

DEPARTMENT OF ELECTRONIC ENGINEERING
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(Attach the underneath to the front of your assignment)
________________________________________________________

Name Student No.
Subject Digital Signal Processing Assignment
Lecturer Dr Dennis Deng

DECLARATION

I certify that the above assignment is my original work and that no part of
it has been copied or reproduced from any other person’s work without
acknowledgment.

Question 1

We want to use DSP to implement the following signal processing task.
(a) 1 dB ripple in the range 600-900 Hz
(b) the sampling frequency is 3000Hz
(c) a maximum gain of -40 dB at frequency range [0,200] Hz and [1300,∞) Hz.
Determine the corresponding specifications for the digital filter and use Matlab to design a Cheby-

shev type-1 filter. Express the filter using a difference equation and draw a direct form-II implemen-
tation of this filter.

(15 marks)
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Question 2

An LTI system is described by the difference equation

y[n] = 0.8y[n−1]−0.8x[n]+ x[n−1]

(a) Determine the system function H(z).
(b) Plot the poles and zeros in the z-plane and determine if the system is stable.
(c) Determine the frequency response H(ω) and show that |H(ω)|2 = 1 for all ω.

(15 marks)

Question 3

The pole-zero plot of an LTI system is shown in the following figure.
(a) Determine the system function.
(b) Determine the impulse response.

(15 marks)
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Figure 64: The pole-zero plot of an LTI system

Question 4

Match the frequency responses (A-E) with the correct pole-zero plots (PZ 1-6). Poles are denoted
by x and zeros by o.

(15 marks)
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LA TROBE UNIVERSITY

DEPARTMENT OF ELECTRONIC ENGINEERING

ELE31DSP: DIGITAL SIGNAL PROCESSING

(Attach the underneath to the front of your assignment)
______________________________________________________________________

Name Student No.
Subject Digital Signal Processing Assignment
Lecturer Dr Dennis Deng

DECLARATION

I certify that the above assignment is my original work and that no part of
it has been copied or reproduced from any other person’s work without
acknowledgment.

Signed: Date:

The following questions are related to window methods for FIR filter design which is cover in the
lecture notes, in section 8.2.2 of Proakis’ book, and in section 7.4 of Oppenheim’s book. Other DSP
books also cover this topic (but not DSP First). You need to use Matlab to do the simulation. Matlab
is available in the PC’s in the CAD lab.

1. Derive the impulse response for an ideal low pass filter and an ideal high pass filter whose
cut-off frequency is ωc. Briefly describe the window method for FIR filter design.

2 Based on your results in question 1, design an FIR filter approximating the ideal frequency
response

(a) Determine the filter coefficients of a 25-tap filter using a rectangular window
(b) Plot the magnitude response of the filter

Use Matlab function fir1 to design the same FIR filter
(c) Using the Hamming window
(d) Using the a Bartlett window
(e) Compare the magnitude responses and identify their differences.

Note: In Matlab function fir1, the highest frequency is 1. So the cutoff frequency of π/6 corre-
sponds to 1/6.

3. Based on your results in question 1, design an FIR filter approximating the ideal frequency
response

(a) Determine the filter coefficients of a 25-tap filter using a rectangular window
(b) Plot the magnitude response of the filter

4. An analog signal is given by s(t) = cos(10000t) .
(a) Determine the Nyquist sampling frequency for this signal and the expression for the corre-

sponding digital signal.
(b) If this analog signal is sampled with a period T=10−6 second, then the corresponding digital

signal is :
s(n) = cos(0.01n) . What is the digital frequency of this signal ? Assume that the signal is

corrupted by noise :
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x(n) = s(n)+ r(n) , where r(n) is the noise. In Matlab, this can be simulated by:
n=0:1023; %assume we have 1024 data
x=cos(0.01*n)+rand(size(n)); %create the noise corrupted signal
plot(x)
(c) Design a low pass filter to filter out noise. This can be easily done using Matlab commands

fir1 and filter. Use the help command to learn how to use these two commands. Justify the cut-off
frequency you use in the low pass filter. Using a Hamming window and a fixed cut-off frequency,
compare the filtering results by using filters of different length (4, 14, 24, 104).

A sample Matlab code to implement the filtering process is given below:
f=fir1(4,0.4); %design a 5-tap low pass filter, cutoff frequency=0.4
y=filter(f, 1, x); %filter the signal
plot(y) %plot the output
(d) Repeat part (c) using a rectangular window.
(e) Compare the results in parts (c) and (d). For the same window, what do you observe as the

length of the filter increases ? For the same filter length, which window produces a better filtering
result ? The above questions can be answered by plotting the magnitude of the frequency response of
different filters, ie, plot(abs(freqz(f,1,128))).

115
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0. The following questions are related to IIR filter design using Matlab. Matlab is available in the
PC’s in the CAD lab. Section 13.3 of the lecture notes provides a brief summary of all functions you
need. Use help function-name to learn how to use them.

1. Determine the transfer function of a third order low pass Butterworth filter whose cutoff fre-
quency is π/4. Plot its amplitude response. If the same amplitude response is produced by an FIR
filter, estimate the order of that FIR filter by trying different order and plotting the corresponding
amplitude response.

2 Determine the transfer function of a Chebyshev type 1 filter with the following specifications:
(a) 1 dB ripple in the range 600-900 Hz (b) the sampling frequency is 3000Hz
(c) a maximum gain of -40 dB at frequency range [0,200] Hz and [1300,∞) Hz.
Draw a direct form-2 implementation of this filter.
3. Determine the transfer function of a low pass elliptic filter with the following specifications:
(a) pass band ripple 0.5 dB (b) stop band gain -30 dB
(c) pass band ripple-edge frequency = 2 kHz
(d) stop band ripple-edge frequency = 2.5 kHz
Draw a direct form-2 implementation of this filter
4. Design a second order digital IIR filter to remove the cos5t component from the following

signal:

x(t) = 1+ cos t + cos5t

You should clearly specify the sampling frequency, the cutoff frequency and the type of the filter you
use. Suppose the filter coefficients are stored in b and a, and the sampling interval is T, then the
following Matlab code first generates a digitized signal then filters it:

n=0:1023; T=0.1; x=1+cos(T*n)+cos(5*T*n); y=filter(b,a,x); %sample only
Show your results by plotting the original and the filtered signals.
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19 Appendix-II Laboratory Instructions

A Discrete signals and systems

LA TROBE UNIVERSITY

DEPARTMENT OF ELECTRONIC ENGINEERING

ELE32DSP LABORATORY

Preliminary work

The following is a list of preliminary work associated with using Matlab.
You should go through the following exercises in your spare time before
the lab. You should be able to show your work upon request.

Defining and plotting signals

• It is an easy task to define a signal. For example, we can defined
h = [121];
n = 0 : 127;
s = sin(pi∗n/10);

• You can also form a new signal by using the following
s1 = [hs(1 : 40)zeros(1,10)ones(1,10)];
stem(s1)

• To visualize the signal, we can use the following
figure(1)
stem(h)
figure(2)
plot(n,s)

• If you want to have two figures in one “big” figure, you use the command hold on

figure(1);clf
subplot(211);stem(h);
subplot(212);plot(n,s);
figure(2);clf
subplot(121);stem(h);
subplot(122);plot(n,s);

Look at figure 1 and figure 2 carefully, you will see how to use the command subplot prop-
erly.

• To plot two signals in one figure, you use the command hold on
figure(3)
c = cos(pi∗n/10);
plot(n,c,’b’);
hold on
plot(n,s,’k’)
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• You should know how to use the functions: plot, subplot, stem, figure and clf.

The frequency response, amplitude and phase

• The frequency response of an LTI system with the finite impulse response of h[n] is calculated
by using the Maltab function freqz. It produces a complex valued vector.

h = [111];%define the impulse response
M = 128; %take 128 samples from 0 to π

[H,W] = freqz(h,1,M); %h is the impulse response, 1 for an FIR filter, M is the number of
samples
Ha = abs(H); %the amplitude
Hp = angle(H); %the phase
semilogy(W,Ha); %similar to plot, but use log-scale in the y-axis.
plot(W,Hp); %plot the phase response

Here H is a complex valued vector. The kth element of H, denoted H[k], is the frequency
response H(ω) evaluated at ωk = π

M (k−1), i.e., H[k] = H(ωk). The amplitude of the frequency
response at the particular frequency ωk is given by abs(H(k)) and the phase is angle(H(k)).
When k takes the value of 0,1,...,M, ωk takes the value of 0, π

M ,..., (M−1)
M π. A larger value of M

leads to a better approximation of H(ω) by the vector H.
The other vector W represents the frequency. For example, the kth element of W, denoted W [k],
is W [k] = ωk = π

M (k−1). You should use help freqz to learn more about the function.

• You should know how to use the function freqz and semilogy to visualize the frequency
response of an FIR filter.
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1. Introduction

In this lab you will use Matlab to study the frequency response of simple filters and to simulate an
image sharpening algorithm using convolution and the FFT. After this lab you should gain a deeper
understanding of certain important concepts such as convolution, frequency, amplitude and phase
response, and the Fourier transform. You should also learn numerical simulation techniques for system
analysis and implementation in the time domain and the frequency domain.

This lab is divided into three parts. The first part is designed for a review of some important
concepts. The second and third parts are designed for system analysis and implementation.

You should ask a tutor to verify what you have done as required in the verification sheet.

Lab Report

A lab report is due on Monday, Sept. 11, 2006. In the report, you should briefly comment on
what you have done and learned. You should also answer all questions.

2. A review of signals and systems

In this section, we assume that the first element of the unit sample response of a filter is in the zero
position, for example, given h0[n] = {1,−2, 1} we assume h0[0] = 1.

2.1 The unit sample response

Plot the amplitude and phase responses of the filter given by h0[n] using the following Matlab code

h0 = [ 1 -2 1];
H0 = freqz ( h0, 1, 128, ’whole’); %calculate freq response from 0 to 2π

plot ( abs ( H0 ) ) %amplitude
figure ( 2 )
plot ( angle ( H0 )) %phase

If you are not familiar with the above Matlab commands, you can use the "help" command, eg,
help freqz. Observe that the amplitude is an even function and the phase is an odd function.

• Explain why the frequency response is usually specified in the range [0, π] ?

2.2 A cascade of two filters

An LTI system consists of a cascade of two identical sub-systems (shown in the following figure)
specified by the difference equation

y[n] = x[n−1]+ x[n]+ x[n+1]
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input output
h0[n]h0[n]

h1[n]
input output

A cascade of two sub−system

The equivalent system

• Determine the unit sample response of the sub-system, denoted by h0[n] and the whole system,
denoted by h1[n]. Verify your results by using the convolution command: conv.

• Determine the system function of the system which is the z-transform of the impulse response.
You can skip this step if you do not know the z-transform.

• Plot the amplitude response of the system.

• Is this system a causal filter ? If not, what is the simplest way to make it causal ?

• Explain that in the frequency domain the relationship between the magnitude responses of the
whole system and sub-system is |H1(ω)|= |H2

0 (ω)|. You can verify this relationship in Matlab
by using: plot(abs(H1)-abs(H0.*H0)).

2.3 Adding a zero to the unit sample response

• Plot the amplitude and phase responses of the following three filters: h1=[1 1 1], h2=[0 1 1 1]
and h3=[1 1 1 0].

• Discuss the effects of adding a zero (or zeros) before (or after) the unit sample response. The
phase response of h3 should be the same as that of h1. To see the relationship between phase
response of h0 and that of h2, you can use the following Matlab code:

H1 = freqz (h1, 1, 128) ;
H2 = freqz (h2, 1, 128) ;
H3 = freqz (h3, 1, 128) ;
p1 = angle ( H1 );
p2 = angle ( H2 );
p3 = angle ( H3 ); %p3 should be the same as p1
p4 = unwrap ( p2 ); %use help to see what ’unwrap’ does
i = 0 : 127; p5 = p1 - i’*pi/128 % subtracting a phase angle ω from p1
plot ( p5 - p4 ) % shows the phase relationship between h1 and h2

• Note that according to the Fourier transform p2 = p1−ω. Derive this equation.
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Figure 65: The image processing filter.

2.4 Optional

Use the following example to study the range of the that the discrete radian frequency.

clear
n = 0 : 100;
x1 = cos ( 13 * n * pi / 3 );
x2=cos ( n * pi / 3 );
figure ( 1 )
clf
subplot ( 211 ); plot ( x1 )
subplot ( 212 ); plot ( x2 )

• What are the frequencies for both signals?

• A discrete sinusoidal signal is not necessary periodic. Generate and plot such a signal to show
that it is not periodic. (Hint: follow the above example to generate the signal).

3. System analysis

A simple and effective image sharpening filter is shown in Figure 1. In this filter, a is a constant.

• Assume the low pass filter (LPF) is fixed and its frequency response is denoted by H0(ω). Derive
the frequency response of this filter, denoted by H(ω), in terms of H0(ω).

• Assume the LPF is given by h0[n] = {1/3, 1/3, 1/3}, plot the amplitude response of H(ω) using
a = 0.1 and a = 3.

• Assume the LPF is h0[n] = {1/5, 1/5, 1/5, 1/5, 1/5}, plot the amplitude response of H(ω)
using a=0.1 and a=3. Study the difference in the amplitude response for these two different low
pass filters.

4. System implementation

Try the following Matlab code, which reads an image into an array and displays it.

y = imread ( ’ cameraman.tif ’ ) ; %read a (256*256) image into array y
clg %clear figure
colormap ( gray ( 256 ) ); %set the display to 256 graylevel
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image ( y ) %display image
y = double ( y ); % make it a double array required by conv
size(y) % the size of the image

4.1 Matlab script file

Matlab code can be saved as a .m-file, which can be used by simply calling the file name. In the
Matlab window, click on File/New/M-file. Type in the following Matlab code and save it as abc.m,
then in the Matlab command window type: abc. It is not important how you name the file. But you
can not name it by using a number. For example, naming the file as 2.3.m or 2.m is not allowed.

h0 = [ 1 1 1] / 3;
a = input ( ’ Input the sharpening factor, a>1 sharpening, a<1 blurring’);
%The following part implements the image sharpening filter in the time domain
for i = 1 : 256
z ( i , 1 : 256 ) = (1 + a) * conv (y ( i ,1 : 254 ) , h0) - a * y ( i , 1 : 256);
end

%The following part limits the output pixel value to the range [0, 255]
z =z.*( z >= 0 ) ;
z = z.*(z <= 255 ) +255 * (z > 255 );
figure ( 1 );
colormap ( gray ( 256 ) );
image ( z’ )

Using the above Matlab code, the image is processed line by line. It is important to note that the length
of the signal resulted from a convolution of two signals of M and N elements is N +M−1. Therefore,
to keep the processed image the same size as that of the original (in this case 256 pixels/line), a simple
way is to use part of the signal such that after the convolution the resulted signal has 256 pixels. That
is why we have the following: conv (y ( i ,1 : 254 ) , h0) in the Matlab code. For the ith line, we
take the first 254 pixels as the signal. Why use 254 pixels? Because h0 has 3 samples, the length
of the signal from convolution is 254+3-1=256. Therefore, if the length of h0 changes to 5, then we
only take 252 pixels. However, I should emphasize that this is NOT a very good way to deal with the
problem. A better way is to perform the convolution is take only the first 256 pixels of the result. The
Matlab code is as follows

for i = 1 : 256
tmp = conv (y ( i ,:) , h0);
tmp1 = tmp(1 : 256 ); %taking the first 256 pixels
z ( i , 1 : 256 ) = (1 + a) * tmp1 - a * y ( i , 1 : 256);
end

4.2 Image processing using convolution

Try two settings a = 0.1 and a = 3 to process the image and compare the input and output images.
Explain what you have observed using the results in section 3.1. Repeat this experiment by using h0=[
1 1 1 1 1]/5;

4.3 Image processing using the FFT

Convolution can also be implemented in the frequency domain using the fast Fourier transform (FFT).
The convolution part of the above m-file can be implemented as:
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h = [ h0 zeros ( 1, 253 ) ];
H0 = fft ( h ); %convert h to the frequency domain
for i = 1 : 256
Y = fft ( y ( i , 1 : 256 ) );
Z = ( ( 1 + a ) * H0 - a ) . * Y;
z ( i , 1 : 256 ) = real ( ifft ( Z ) );
end

Here we make another impulse response h by appending 253 zeros to h0. As you have seen in
section 2, appending zeros to the end of a signal does not change the signal. The reason for doing so is
because in the frequency domain we need to perform the multiplication operation of H0 and Y. They
must be of the same size.

Here is your task: modify your m-file by replacing the convolution part with the above FFT section.
Save it as a new m-file. Run this m-file. You should compare the results of this section with those of
section 4.2.

4.4 Noise filtering

Now let us add some noise to the image by using
y = imread (’ cameraman.tif ’ ) ;
y = y + floor ( k * randn ( 256 ) ) ;
where k is a constant that controls the amount of noise added to the image. Try k=10, 20, 30. By

displaying y, you can see that the quality of the image is degraded.
For k = 30, repeat experiments specified in section 3.1 by setting a = 0.1 and a = 3, respectively.

Which filter produces a better image ? An important lesson you can learn from this simple experiment
is that a low pass filter will filter out noise and blur the image, while a high frequency emphasis filter
will sharpen the image and make the noise more visible.
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Instructor Verification

Name

Student Number

Your laboratory work is divided into three parts. In each part, your work must be marked by the
demonstrator. The mark is from 1 (poor) to 5 (excellent).

Preliminary work

Signals and frequency response

Part 1. A review of signals and systems

2.1 The unit sample response
2.2 A cascade of two filters

2.3 Adding a zero to the unit sample response

Part 2. System analysis

System analysis

Part 3. System implementation

4.2 Image processing using convolution
4.3 Image processing using fft

4.4 Noise filtering
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B Applications of digital filters

LA TROBE UNIVERSITY

DEPARTMENT OF ELECTRONIC ENGINEERING

ELE31DSP LABORATORY

Preliminary work

Here are some simple preliminary work which should be finished before the laboratory class. You
should be able to show your results to a demonstrator upon request.

• To design an FIR filter and check the amplitude response, you can use the Matlab functions:
fir1 and freqz. Here is an example.

help fir1
h = fir1(12,0.3);
H = abs(freqz(h,1,128));
semilogy(H)

What is the order of the FIR filter? What is the cutoff frequency of filter? In Matlab the
frequency is normalized by π. Thus, if the frequency is 0.2π, then you should enter it in a par-
ticular filter design function as 0.2.
Design a bandpass filter with passband [0.2π, 0.5π]. You can vary the order of the filter to see
the effects. Check your design by plotting the amplitude response.

• To design an IIR filter (a Butterworth filter), you can use the Matlab function: butter. Here is an
example.
help butter
[B,A] = butter(2,0.3);%a second order Butterworth lowpass filter with cutoff freq. = 0.3π

H = abs(freqz(B,A,128));
semilogy(H)
Design a third order high pass Butterworth filter with cutoff frequency 0.8π and check its am-
plitude response.
Design a third order band stop Butterworth filter with cutoff frequency [0.5π, 0.8π] and check
its amplitude response.

• To perform the filtering operation, you can use the Matlab command filter. Here is am ex-
ample.
n = 1 : 1000;
s = cos(pi * n /100) + 0.5 * randn(1,1000);
plot(abs(fft(s))
w = 0.01;
[B,A] = butter(3,w);
y = filter(B,A,s);
figure
subplot(211);plot(s)
subplot(212);plot(y)
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You should study the spectrum of the noisy corrupted cosine signal and determine a reason-
able cutoff frequency. You should refer to section 6 for an interpretation of the spectrum using
the fft.

Note that if you are using an FIR filter then A = 1.

1. Introduction

In this laboratory you will investigate the use of digital filters to recover signals that have been cor-
rupted by noise and 50 Hz sinusoidal mains interference.

2. Signal corrupted by noise

Figure 1 shows a good ECG signal. This data was collected using a sampling rate of 1 kHz. This
signal is available in the Matlab file ecgsig.dat. It can be loaded into Matlab by using load ecgsig.dat,
it will then be available as th variable ecgsig. Try loading the ECG signal and plotting the data.

Unfortunately, when another set of ECG measurements were made, there was a problem in the dig-
ital data collection system, and the data was corrupted by high-frequency noise. This noise corrupted
ECG signal is shown in Figure 2.

3. Signals corrupted by mains interference

In another set of ECG measurements, the engineers who designed the digital data collection system
did not graduate from La Trobe. As a result the ECG data collected on this system was corrupted by
50 Hz interference from the power mains. The corrupted signal is shown in Figure 3.

4. Digital filters

There are two type of digital filters: finite impulse response (FIR) and infinite impulse response (IIR).
In the time domain, FIR and IIR filters are represented by difference equations:

FIR filter y(n) = ∑
N−1
i=0 bix(n− i)

IIR filter y(n) = ∑
N−1
i=0 bix(n− i)+∑

M−1
j=1 a jy(n− j)

where bi and a j are called the filter coefficients and N is the order of the FIR filter. The filter
coefficients are usually stored in two vectors in Matlab.

A filter is usually specified in the frequency domain. For example, a low pass filter is specified by
a cut-off frequency of ωc. Matlab provides a number of functions that you can used to design an FIR
or an IIR filter.
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Matlab function name Description
fir1 FIR filter design
butter IIR filter design, Butterworth response
cheby1 IIR filter design, Chebyshev I response
cheby2 IIR filter design, Chebyshev II response
ellip IIR filter design, elliptic response

Matlab also provides a function called filter to implement the filter. In this laboratory, you will
learn how to design FIR filters and Butterworth IIR filters to recover the ECG signal.

NOTE Due to a problem with Matlab, when you design an IIR bandstop filter with a very sharp
transition between pass band and stop band, the result may not be the same as what you specified.
You should try to design IIR filters with different orders and pick the one that is closest to your filter
specification. To do this, you may try the following:

[B, A] = butter(N,[w1,w2], ’stop’); %B and A are tow vectors
%that store the filter coefficients

plot(abs(freqz(B, A, 128))) %N is the order, w1 and w2
%are two cut-off frequencies

5. Your task

Your task is to use both FIR and IIR filters to remove the high frequency noise and the 50 Hz interfer-
ence from the ECG signals.

• To design your filter, you must look at the spectrum of the good ECG signal and the noisy ECG
signal. For example17, suppose the signal (with M data samples) is stored in a vector called s,
the spectrum can be obtained by using

S = f f t(s, N)

where N is the number of points between 0 to 2π. N is usually chosen to be a number of times
larger than M. You can plot the spectrum by using

plot(abs(S))

The horizontal axis represents the frequency, the vertical axis represents the magnitude. Note
|S| is a vector. The kth element of this vector is the magnitude of the spectrum at a frequency
ωk = 2πk/N. If the discrete signal is a result of sampling an analog signal, then this frequency18

corresponds to fk = k fs/N which is the frequency of the analog signal.

• You can use the Matlab function fft to calculate the spectrum and plot its amplitude. Based
on your interpretation of the plot, determine the filter specifications and design an FIR and an
IIR (Butterworth) filter to remove the noise.

• Repeat the above steps to design an FIR and an IIR (Butterworth) filter to remove the 50 Hz
interference.

17This is only a rough estimation of the spectrum. In ELE41ASP, we will have detailed discussion on this topic.
18ωk = 2π fk

fs
=⇒ fk = k fs/N
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• In both cases, compare the frequency response of these two filters and their order. Which one
requires less computational operations to implement ? You could also measure the time (use
Matlab function tic and toc) that is required for the filtering process. What is minimum order
for the FIR filter (IIR filter) to work reasonably well?

• In your lab book, you should clearly document your design method and justify the filter spec-
ifications. You should include relevant plots to support your justifications and to show your
results.
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Instructor Verification

Name

Student Number

Your laboratory work is divided into two parts. In each part, your work must be marked by the
demonstrator. The mark is from 1 (poor) to 5 (excellent).

Part 1. Filtering out high frequency noise

Interpretation of the spectrum
Justification of the digital filter

Results

Part 2. Filtering out 50Hz interference

Interpretation of the spectrum
Justification of the digital filter

Results
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C Sampling Frequency, Quantization Noise and Digital Filters

LA TROBE UNIVERSITY

DEPARTMENT OF ELECTRONIC ENGINEERING

ELE31DSP LABORATORY

1. Introduction

The sampling frequency and the quantization levels are two important issues in digital processing of
analog signals. The purpose of this laboratory is to investigate these issues. A further purpose is to
give you hands-on experience of using a digital signal processor.

The TMS320c50 DSP starter Kit (DSK) is used in the laboratory. The DSK has a fix point proces-
sor (c50), the A/D and D/A converters and other parts such as RAM, ROM and the RS232 port that
is used to communicate between the DSK and the host PC. The DSK also has an analog input and an
analog output. It is powered by 9v AC. A detailed description of the DSK can be found in its User’s
Guide.

An analog signal is converted to digital form through sampling and quantization. The digital signal
is processed by the processor according to the DSP program. The processed signal is then converted
into analog form.

2. Sampling

1. Connect the output of the signal generator to the input of the DSK.

2. In the DOS PROMPT, type OSCOPE to run the program which contains two parts. The DSK
part converts the input analog signal into digital and send it to the PC through the RS232. The
PC part is responsible for displaying the signal as well as responding to user commands such as
changing the time base of the display and the quantization level.

3. Set the frequency of the signal generator to 250 Hz and make sure that the PC scope has a time
base of 1 ms and a resolution of 8 bits. You should see on the PC an approximation of the same
signal that can be seen on the analog oscilloscope. The period of the sine wave should be 4
ms. The red lines indicate the samples received from the DSK’s ADC. A white line joins the
samples to give a rough approximation of the input signal.

4. You can determine the sampling frequency of the ADC by dividing the period of the sine wave
from the number of samples in one period. To count the samples, press PAUSE button on the
keyboard. This makes counting easier. Press ENTER to resume counting.

5. Increase the input frequency to 1 kHz. If the display looks cluttered, the time base of the PC
oscilloscope can be altered using the left and right cursor keys. The representation of the sine
wave is now much poorer since there are less samples to represent it. However, there is still
theoretically enough information to reconstruct the signal to its original form.

6. Turn the input frequency to 2.5 kHz. Draw the sampled sine wave. Is is still theoretically
possible to reconstruct the signal to its original form ?

7. Slowly increase the frequency from 2.5 kHz to 5 kHz. Explain what you observed.

8. Set the input frequency to 3.5 kHz. Measure the frequency of the signal appeared on the PC
screen and relate it to the sampling frequency and the frequency of the input signal.
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9. Explain what happens when the input frequency is set at 10 kHz, 20 kHz, 30 kHz, etc.

3. Quantization

1. Set the signal generator 250 Hz and a 5 v peak-to-peak output. Set the time base to 1 ms/div.
You should see a since wave. Press the 1 key. This sets the quantization level to 1 bit. The sine
wave becomes a square wave. Is the frequency of the square wave the same as that of the sine
wave ?

2. Set the quantization level to 2 bits by pressing the 2 key. How many levels do we have to
represent the input signal ? Draw the waveform for future reference.

3. Continue increasing the quantization levels up to the maximum of 8 bits. Draw the wave forms
for each quantization levels.

4. Digital Filters

4.1 How to run a real time digital filter in the DSK

1. You need to work out the specification of the filter, then design the filter, convert the filter
coefficients to suitable representation.

2. Use a text editor to edit your program.

3. The source file (file_name.asm) must be assembled to (file_name.dsk) by using the DOS com-
mand: dsk5a file_name.asm.

4. Note: the above three steps have been done. Two 85-tap FIR filter have been designed and
assembled. All filters have a sampling frequency of 10 kHz. The low pass and high pass filter
have a cut-off frequency of 2 kHz. They are: demo3_lp.dsk and demo3_hp.dsk.

5. Run the C50 debugger by using: dsk5d.

6. Type LD to load the file (file_name.dsk).

7. Press enter to select the non-fast mode.

8. Press enter again to return to the debugger display.

9. Type XG to run the program.

10. Press ESC to stop the DSP.

4.2 Experiment setup

1. Set the frequency of the signal generator to 50 Hz.

2. Connect the signal generator output to one trace of the scope and the input of the DSK. Connect
the output of the DSK to another trace of the scope.
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4.3 The low pass filter

1. Run the low pass filter. Observe both traces on the scope. Increase the frequency of the input
waveform slowly. Around 2 kHz, the output should begin to attenuate. The cut-off frequency is
at a point where the amplitude of the output waveform is about half that of the input waveform.
Change the frequency of the input signal from 50 Hz to 4.5 kHz, take amplitude readings of the
output signal at intervals of 250 Hz. Plot the frequency response of the filter.

4.4 The high pass filter

1. Repeat the same steps for the high pass filter. Plot the frequency response of the filter.
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20 Appendix-III Sample exam questions

1. Answer the following questions

1.1 Determine the convolution y(n) = x1(n)∗ x2(n) ,where

x1(n) = δ(n)+2δ(n−1)+δ(n−2)

and

x2(n) = δ(n−1)+δ(n)+δ(n+1)

.

(5 marks)

1.2 Determine the Z-transform of the following two signals

x(n) = δ(n)+2δ(n−1)+2δ(n−2)+δ(n−3)

and

y(n) = x(3−n)

(5 marks)

1.3 The output y(n) of a system is related with the input x(n) by the following equation

y(n) = ax(n)+b

where a and b are non-zero constants. Is this system an LTI system ?
(5 marks)

1.4 Determine the discrete time signal whose Fourier transform is

X(ω) =
1
3

e− jω +
2
3

e j2ω +1

(5 marks)

1.5 Determine if the following two LTI systems are stable:

y(n) = x(n)+ x(n−1)

and

y(n)+3y(n−1) = 2x(n)+ x(n−1)

(5 marks)

2. Answer the following questions

2.1 Briefly describe the frequency response of the following types of IIR filters

• Butterworth filter,

• Chebyshev filter, and

• Elliptic filter

(9 marks)
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2.2 Draw a block diagram of a general system which uses digital signal processing to process
continuous time signals.

(5 marks)

2.3 The sequence, x(n) = cos(π

7 n), −∞ < n < ∞ , was obtained by sampling an analog signal
xc(t) = cos(Ωt), −∞ < t < ∞ , at a sampling rate of 2000 samples/second. What are two possible
values of Ω that could have resulted in the same x(n) ?

(6 marks)

2.4 An analog signal whose band width is 8 kHz is processed by an analog low pass filter whose
cutoff frequency is 3 kHz. If this signal processing task is performed by a digital signal process-
ing system, determine the minimum sampling frequency and the corresponding cutoff frequency
of the digital low pass filter.

(5 marks)

3. Answer the following questions about the system whose system function is

H(z) =
1+0.8z−1

1−0.9z−1

3.1 Determine the poles and zeros of H(z). Is this filter a low pass filter or a high pass filter ?
Explain your answer in terms of the locations of the pole and zero.

(6 marks)

3.2 Determine the difference equation relating the input and output of this filter.

(2 marks)

3.3 Draw a direct form-I and a direct form-II implementation of this filter.

(6 marks)

3.4 Determine the impulse response of this filter. (Hint: the Z-transform of the signal anu(n),a <
1) is 1/(1−az−1) )

(6 marks)

3.5 Determine the filter output y(n) for the input signal x(n) = δ(n)+δ(n−1) .

(5 marks)

4. The following diagram depicts a cascade connection of two LTI systems

4.1 Suppose that system 1 and system 2 both have the same impulse response of the form h1(n) =
h2(n) = δ(n)+δ(n−1)+δ(n−2)+δ(n−3) Determine the system function H1(z) .

(3 marks)
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4.2 Determine the system function of the overall system and obtain a single difference equation
that relates y(n) with x(n) in the cascade system.

(7 marks)

4.3 Show that H1(z) can be expressed as the following.Plot the poles and zeros of this system
function. Draw a direct form-II implementation of this system function.

H1(z) =
1− z−4

1− z−1

(15 marks)
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