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Abstract 

Recent  efforts by several  researchers  around the world to combine fractal geometry with electromagnetic theory have led to a 
plethora of new and innovative antenna designs.  In ttlis report, we provide a comprehensive overview of recent developments 
in t h e  rapidly growing field of fractal antenna engineering. Fractal antenna engineering research h a s  been primarily focused in 
two a r e a s :  t he  first deals  with the analysis and design of fractal antenna elements,  and the second  concerns the  application of 
fractal concepts  to the design of antenna arrays.  Frilctals have no characteristic size, a n d  are generally composed  of many 
copies  of themselves  at different scales .  T h e s e  uniqile properties of fractals have  b e e n  exploited in order to develop a new 
class of antenna-element designs that are multi-band and/or compact in size. On the other  hand,  fractal arrays are a subse t  of 
thinned arrays, and have been shown to p o s s e s s  several highly desirable properties, including multi-band performance. low 
sidelobe levels, and the ability to develop rapid beamforming algorithms based on the  recursive nature  of fractals. Fractal 
e l emen t s  a n d  arrays are also ideal candidates  for use in reconfigurable systems.  Finally, we will provide a brief summary  of 
recent  work in the  related area of fractal frequency-selective surfaces.  

Keywords: Fractals; electrodynamics; antennas; antenna theory; antenna arrays; frequency selective surfaces;  multi-band 
an tennas ;  log periodic antennas; miniature antennas; antenna radiation patterns 

1. Introduction the development of fractal geometry came largely from an in-depth 
study of the paltems of nature. For instance. fractals have been 
successfully used to model such complex natural objects as galax- 
ies, cloud boundaries, mountain ranges, coastlines, snowflakes, 
trees, leaves, ferns, and much more. Since the pioneering work of 
Mandelbrot and others. a wide variety of avolications for fractals 

here has been an ever-growing demand, in both the military as 
well as the commercial sectors, for antenna designs that pos- T 

sess the following highly desirable attributes: 

1. Compact size 
2. Low profile 
3. Conformal 
4. Multi-hand or broadband 

.. 
continue to be found in many branches of science and engineering. 
One such area isfractal electrodynamics 15-1 I], in which fractal 
geometry is combined with electromagnetic theory for the purpose 
of investigating a new class of radiation, propagation, and scatter- 
ing problems. One of the most promising areas of fractal-electro- 
dynamics research is in its application to antenna theory and 
design, There are a variety of approaches that have been developed over 

the years, which can be utilized to achieve one or more of these 
design objectives. For instance, an excellent overview of .various 
useful techniques for designing compact (i.e., miniature) antennas 
may be found in [I] and 121. Moreover, a number ofapproaches for 
designing multi-band (primarily, dual-hand) antennas have been 
summarized in [3]. Recently, the possibility of developing a.ntenna 
designs that exploit in some way the properties of fractals to 
achieve these goals, at least in part, has attracted a lot of attention. 

The termfrucrul, which means broken or irregular f r a p e n t s ,  
was originally coined by Mandelbrot [4] to describe a family of 
complex shapes that possess an inherent self-similarity c,r self- 
affinity in their geometrical structure. The original inspiration for 

Traditional approaches to the analysis and design of antenna 
systems have their foundation in Euclidean geometry. There has 
been a considerable amount of recent interest, however, io the pos- 
sibility of developing new types of antennas that employ fractal 
rather than Euclidean geometric concepts in their design. We refer 
to this new and rapidly growing field of research as fractal 
antenna engineering. Because fractal geometry is an extension of 
classical geometry, its recent introduction provides engineers with 
the unprecedented opportunity to explore a virtually limitless 
number of previously unavailable configurations for possible use 
in the development of new and innovative antenna designs. There 
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are primarily two active areas of research in fractal antenna engi- 
neering. These include: I.) the study of fractal-shaped antenna 
elements, and 2.) the use of fractals in the design of antenna arrays. 
The purpose of this article is to provide an overview of recent 
developments in the theory and design of fractal antenna elements, 
as well as fractal antenna arrays. The related area of fractal fre- 
quency-selective surfaces will also be considered in this article. 

We note that there are a number of patents on fractal antenna 
designs that have been filed and awarded in recent years. The pur- 
pose of this article, however, is to present an overview of letters 
and papers published in technical joumals that deal with the sub- 
ject of fractal antenna engineering. Therefore, the contents of spe- 
cific patents will not be discussed here. The interested reader is 
encouraged to search the various patent databases for this infor- 
mation. 

2. Some Useful Geometries for 
Fractal Antenna Engineering 

This section will present a brief overview of some of the 
more common fractal geometries that have been found to he useful 
in developing new and innovative designs for antennas. The first 
fractal that will he considered is the popular Sierpinski gasket [12]. 
The first few stages in the construction of the Sierpinski gasket are 
shown in Figure 1. The procedure for geometrically constructing 
this fractal begins with an equilateral triangle contained in the 
plane, as illustrated in Stage 0 of Figure 1. The next step in the 
construction process (see Stage 1 of Figure 1)  is to remove the 
central triangle with verticcs that are located at the midpoints of 

Stage 0 

A 
Stage 2 

Stage 1 

~ Stage 3 

Figure 1. Several stages in the construction of a Sierpinski gas- 
ket fractal. 

Stage 0 Stage 1 

Stage 2 Stage 3 
Figure 2. The first few stages in the construction of a Koch,  
snowflake. 

T 
x 

Figure 3. A Stage 4 ternary fractal tree. 

the sides of the original triangle, shown in  Stage 0. This process is 
then repeated for the three remaining triangles, as illustrated in 
Stage 2 of Figure I .  The next two stages (i.e., Stages 3 and 4) in 
the construction of the Sierpinski gasket are also shown in Fig- 
ure 1. The Sierpinski-gasket fractal is generated by carrying out 
this iterative process an infinite number of times. It is easy to see 
from this definition that the Sierpinski gasket is an example of a 
self-similar fractal. From an antenna engineering point of view, a 
useful interpretation of Figure I is that the black triangular areas 
represent a metallic conductor, whereas the white triangular areas 
represent regions where metal has been removed. 
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Another popular fractal is known as the Koch snowflake 
[ 121. This fractal also starts out as a solid equilateral triangle in the 
plane, as illustrated in Stage 0 of Figure 2. However, unlike the 
Sierpinski gasket, which was formed by systematically removing 
smaller and smaller triangles from the original structure, the Koch 
snowflake is constructed by adding smaller and smaller triangles to 
the structure in an iterative fashion. This process is clearly repre- 
sented in Figure 2, where the first few stages in the geoinetrical 
construction o f a  Koch snowflake are shown. 

A number of structures based on purely deterministic or ran- 
dom fractal trees have also proven to be extremely useful in  devel- 
oping new design methodologies for antennas and frequency- 
selective surfaces. An example of a deterministic temary (three- 
branch) fractal tree is shown in Figure 3. This particular ternary- 
tree structure is closely related to the Sierpinski gasket shown in 
Figure 1. In fact, the ternary-tree geometry illustrated in Figure 3 
can be interpreted as a wire cquivalent model of the Stage4 
Sierpinski gasket shown in Figure 1. 

The space-filling properties of the Hilbert curve and related 
curves make them attractive candidates for use in the dcsign of 
fractal antennas. The first four steps in the construction of the 
Hilbert curve are shown in Figure4 [12]. The Hilbert curve is an 
example of a space-filling fractal curve that is self-avoiding (i.e., 
has no  intersection points). 

Some of the more common fractal geometries that have 
found applications in antenna engineering are depicted in Figure 5 .  
The Koch snowflakes and islands have been primarily lused to 

Stage 0 Stage 1 

Stage 2 Stage 3 
Figure 4. The first few stages in the construction of a Hilbert 
curve. 

w 
Figure Sa. Some common fractal geometries found in antenna 
applications: Koch snowtlakes/islands. These are  used in 
miniaturized loop antennas and miniaturized patch antennas. 

5 Y 
A 

Figure 5b. Some common fractal geometries found in antenna 
applications: Koch curves and fractal trees, used in miniatur- 
ized dipole antennas. 

Figure Sc. Some common fractal geometries found in antenna 
applications: Sierpinski gaskets and carpets, used in multi- 
band antennas. 

develop new designs for miniaturized-loop as well as microstrip- 
patch antennas. New designs for miniaturized dipole antennas have 
also been developed based on a variety of Koch curves and fractal 
trees. Finally, the self-similar structure of Sierpinski gaskets and 
carpets has been exploited to develop multi-band antenna ele- 
ments. 

3. iterated Function Systems: 

The Language of Fractals 

Iterated function systems (IFS) represent an extremely versa- 
tile method for convenicntly generating a wide variety of useful 
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fractal structures [12, 131. These iterated function systems are 
based on the application of a series of affine transformations, w, 
defined by 

or, equivalently, bq 

w(,r,y) = (ax + by + e, cx + dy + f'), (2) 

where a, b, c, d,  e,  and f are real numbers. Hence, the affine trans- 
formation, w, is represented by six parameters 

(3) 

such that a, b, c, and d control rotation and scaling, while e and f 
control linear translation. 

Now suppose we consider w,, w2, ..., wN as a set of affine 
linear transformations, and let A be the initial geometry Then a 
new geometry, produced by applying the set of transformations to 
the original geometry, A ,  and collecting the results from 
>vi ( A ) ,  wz ( A ) ,  .", w," ( A ) ,  can be represented by 

N 

W ( A ) = U w , ( A ) ,  (4) 
,,=I 

where W is known as the Hutchinson operator 1121. A fractal 
geometry can be obtained by repeatedly applying W to the previ- 
ous geometry. For example, if the set 4 represents the initial 
geometry, then we will have 

AI = W ( 4 ) ,  A2 = W ( A , ) ,  '". A k i l  = W ( A k ) .  ( 5 )  

An iterated function system generates a sequence that converges to 
a final image, &, in such a way that 

Figure 6. The standard Koch curve as an  iterated function system (IFS). 

Iteration 1 Iteration 2 Iteration 3 

Iteration 4 
Figure 7. The first four stages in the construction of the standard Koch curve via a n  iterated function system (IFS) approach. 
The trrlnsformation is applied for each iteration to achieve higher levels of fractaliultion. 

IEEE Antenoas a n d  Propagation Magazine. Vol. 45, NO. I ,  Febiuaty 2003 41 



W ( & ) = & .  (6) 

This image is called the attractor of the iterated function system, 
and represents a "fixed point" of W. 

Figure 6 illustrates the iterated function system procedure for 
generating the well-known Koch fractal curve. In this case, the 
initial set, A,, is the line interval of unit length, i.e., 

A, = { x : x  ~[0,1]) .  Four affine linear transformations are then 

applied to A,, as indicated in Figure ti. Next, the results of these 
four linear transformations are combined together to form the first 
iteration of the Koch curve, denoted by A , .  The second iteration of 
the Koch cuwe, A>, msy then be obtained by applying the same 
four affine transformations to A, .  Higher-order version:; of the 
Koch cuwe are generated by simply repeating the iterative process 
until the desired resolution is achieved. The first four iterations of 
the Koch curve are shown in Figure 7. We note that these curves 
would converge to the actual Koch fractal, represented by &, as 
the number of iterations approaches infinity 

Iterated function systems have proven to he a very powerful 
design tool for fractal antenna engineers. This is primarily because 
they provide a general framework for the description, classifica- 
tion, and manipulation of fractals [ 131. In order to further illustrate 
this important point, the iterated function system code fix such 
diverse objects as a Sierpinski gasket and a fractal tree haie been 
provided in Figure 8 and Figure 9, respectively [12]. 

I 

a b c d ; e  f 

0.500 0.000 0.000 0.500 I 0.000 01.000 
I 

0.500 0.000 0.000 0.500 0.500 01.000 

0.500 0.000 0.000 0.500 i 0.000 0.500 
I 

Figure 8. The iterated function system code for a Sierpinski 
gasket. 

a b c ci l e  f 

0.195 -0.488 0.344 0.443 

0.462 0.414 -0.252 0.361 

-0.058 -0.07 0.453 -0.111 

-0.035 0.07 -0.469 -0.022 

-0.637 0.0 0.0 0.501 

I 

I 
10.4431 0.2452 

10.2511 0.5692 

10.5976 0.0969 

10.4884 0.5069 

1 0.8562 0.2513 

I 

I 

I 

Figure 9. The iterated function system code for a fractal tree. 

4. Fractal Antenna Elements 

4.1 Early Work on Fractal Loop, Dipole, 
and Monopole Antennas 

Apparently, the earliest published reference to use the terms 
fraclal radiators and fractal anfennas to denote fractal-shaped 
antenna elements appeared in May, 1994 [14]. Prior to this, the 
terminology had been introduced publicly during an invited IEEE 
seminar held at Bucknell University in November, 1993 [IS]. The 
application of fractal geometry to the design of wire antenna ele- 
ments was first reported in a series of articles by Cohen [16-19]. 
These articles introduce the notion offrarlalizing the geometry of 
a standard dipole or loop antenna. This is accomplished by system- 
atically bending the wire in a fractal way, so that the overall arc 
length remains the same, hut the size is correspondingly reduced 
with the addition of each successive iteration. It has been demon- 
strated that this approach, if implemented properly, can lead to 
efficient miniaturized antenna designs. For instance, the radiation 
characteristics of Minkowski dipoles and Minkowski loops were 
originally investigated in [16-191. Properties of the Koch fractal 
monopole were later considered in [20, 21 1. It was shown that the 
electrical performance of Koch fractal monopoles is superior to 
that of conventional straight-wire monopoles, especially when 
operated in the small-antenna frequency regime. A fast approxi- 
mation technique for evaluating the radiation characteristics of the 
Koch fractal dipole was presented in [22]. Monopole configura- 
tions with fractal top-loads have also been considered in 123, 241, 
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Figure loa. Variations of the Sierpinski gasket and related 
multi-hand monopole antennas: a multi-triangular monopole 

Figure lob. Variations of the Sierpinski gasket and related 
multi-band monopole antennas: a standard Sierpinski mono- 
polewith a = 6 0 " a n d  6 = 2 .  

Figure 10c. Variations of the Sierpinski gasket and related 
multi-band monopole antennas: a Sierpinski monopole with 
a = 9 0 " a n d  6 = 2 .  a=60" and 6=1.5. 

Figure 10d. Variations of the Sierpinski gasket and related 
multi-band monopole antennas: a Sierpinski monopole with 

Figure 10e. Variations of the Sierpinski gasket and related 
multi-band monopole antennas: a mud-3 Sierpinski monopole. 

Figure 10f. Variations of the Sierpinski gasket and related 
multi-band monopole antennas: a mod-5 Sierpinski monopole. 
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80 cm 

Figure I l a .  A five-iteration Sierpinski monopole, showing the 
dimensions 1111. 

f (GHz) 

Figure l l b .  The input reflection coefficient, Tin,  relative to 
SOR (a); the input resistance, R,, (b); and the input reactance 
A',, (e) of a the five-iteration Sierpinski monopole of Fig- 
ure  l l a  [Il l .  The experimental data a re  the solid cnrves, an 
FDTD calculation is the dashed curves, and DOTIG4 was used 
to compute the dashed-dotted curves. 

44 it 

as an alternative technique for achieving size miniaturization. 
Finally, the effects of various types of symmetries on the perform- 
ance of Koch dipole antennas were studied by Cohen [25 ,  261. 

4.2 Research on 
Sierpinski Gasket Antennas 

A multi-band fractal monopole antenna, based on the 
Sierpinski gasket, was first introduced by Puente et al. [27, 281. 
The original Sierpinski monopole antenna is illustrated in Fig- 
ure lob. In this case, the antenna geometry is in the form of a clas- 
sical Sierpinski gasket, with a flare angle of a = 60" and a self- 
similarity scale factor o f  6 = 2 .  The dimensions for a prototype 
Sierpinski gasket monopole are given in Figure I I .  Figure 11 also 
contains plots of simulated and measured values of the input 
reflection coefficient versus frequency for the antenna, along with 
the associated curves for input resistance and reactance. A scheme 
for modifying the spacing between the hands of the Sierpinski 
monopole was subsequently presented in [29], and later summa- 
rized in [ I  I]. Figure IOd shows an example of a Sierpinski mono- 
pole antenna with a flare angle of a = 60" and a self-similarity 
scale factor of 6 = 1.5.  It was demonstrated in [29] that the posi- 
tions of the multiple hands may be controlled by proper adjustment 
of the scale factor used to generate the Sierpinski antenna. The 
transient response of the multi-band Sierpinski monopole was 
investigated in [30]. This was accomplished by using a Method of 
Moments technique to solve the time-domain electric-field integral 
equation via a marching-on-in-time procedure. Linear parametric 
modeling techniques were also applied, in order to considerably 
reduce computation time. The dependence of the radiation charac- 
teristics of the Sierpinski monopole on flare angle was documented 
in [31]. Figure IOc shows an example of a Sierpinski monopole 
with a flare angle of a = 90" and a self-similarity scale factor of 
S = 2. Further investigations conceming enhancing the perform- 
ance of Sierpinski-gasket monopoles through perturbations in their 
geometry were reported in [32 ] .  It was found that a variation in the 
flare angle of the antenna translatzd into a shift of the operating 
hands, as well as into a change in the input impedance and radia- 
tion patterns. Fast iterative network models that are useful for pre- 
dicting the performance of Sierpinski fractal antennas were devel- 
oped in [33-351. The predicted self-similar surface-cunent distri- 
bution on a Sierpinski monopole antenna was verified in [36, 371 
by using infra-red thermograms. Breden and Langley [38] pre- 
sented measurements of input impedance and radiation patterns for 
several printed fractal antennas, including Koch and Sierpinski 
monopoles. 

4.3 Research on Fractal Tree Antennas 

The multi-hand characteristics of a deterministic fractal tree 
structure were considered in [39]. On the other hand, the multi- 
band properties of random fractal tree-like antennas, created by an 
electrochemical deposition process, were investigated by Puente et 
al. [40]. It was found that these fractal tree antennas have a muiti- 
band behavior with a denser hand distribution than the Sierpinski 
antenna. The multi-hand and wide-hand properties of printed frac- 
tal branched antennas were studied in [41]. Werner et al. [42] con- 
sidered the multi-band electromagnetic properties of thin-wire 
structures based on a temary-tree fractal geometry. In particular, 
the impedance behavior of a tri-band ternary fractal tree was stud- 
ied by carrying out a numerically rigorous Method of Moments 
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A 

U 
Figure 17. A contour plot showing the self-similar fractal 
structure of the far-field radiation pattern of a multi-band 
Weierstrass planar array, with P = 5 and y = 0.5. 

b 

I 

C 

- a 
D1 

E 

\-/ 
Figure 18. A schematic representation for a recursively gener- 
ated thinned hexagonal array. The first four stages of growth 
are indicated by the blue (Stage l), red (Stagel), green 
(Stage 3), and orange (Stage 4) arrays respectively. The six- 
element generating sub-array is shown in the upper-right-hand 
corner, where the elements are located at  the vertices of the 
hex ago n . 

Theta = 0. Phi = 90 

Frequency x do 

Figure 23a. A tri-band FSS design based on the crossbar frac- 
tal tree structure shown in Figure 22. 
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4.5 Variations of Sierpinski Gasket 
Antennas and the Hilbert Curve Antenna 

Dual-band designs, based on a variation of the Sierpinski 
fractal monopole, were presented in [50] and [ 5 1 ] .  Specific appli- 
cations of these designs to emerging GSM and DECT technologies 
were discussed. The multi-hand properties of fractal monopoles 
based on the generalized family of mod-p Sierpinski gaskets were 
recently investigated by Castany et al. [52]. The advantage of this 
approach is that it provides a high degree of flexibility in choosing 
the number of bands and the associated hand spacings for a candi- 
date antenna design. Examples of a mod-3 and a mod-5 Sierpinski 
monopole are shown in Figure 10e and Figure IOf, respectively. A 
novel configuration of a shorted fractal Sierpinski gasket antenna 
was presented and discussed in [53]. Figure IOa shows a multi- 
triangular monopole antenna, which is a variation of the Parany 
antenna, originally considered in [54]. These multi-triangular 
antennas have been shown to exhibit multi-hand properties with 
respect to input impedance and radiation pattems, even though 
their geometty is not strictly fractal. In particular, the properties of 
the Parany antenna are very similar to those of the Sierpinski 
antenna shown in Figure 1Oh. An approach for designing short 
dual-hand multi-triangular monopole antennas was reported in 
[55 ] .  This approach has the highly-desirahle feature of a hand ratio 
of less that two between the first and second hands. 

The space-filling properties of the Hilbert curve were investi- 
gated in [56] and [57] as an effective method for designing com- 
pact resonant antennas. The effect of the feed-point location on the 
input impedance of a Hilbert cume antenna was studied in [ 5 8 ] .  It 

Figure 12. A photograph of a prototype tri-band teruairy frac- 
tal tree antenna. 

analysis of the structure. The unique multi-band propelties of the 
antenna were confirmed by comparing the results of the numerical 
simulations with actual measurements. A photograph of thl: proto- 
type tri-hand ternary fractal tree antenna, which was con:;tructed 
and measured, is shown in Figure 12. The space-filling properties 
of two-dimensional and three-dimensional fractal trees were sug- 
gested by Gianvittorio and Rahmat-Samii [43, 441 as good candi- 
dates for application to the design of miniaturized antennas. It was 
shown that a reduction in the resonant frequency of a standard 
dipole can be achieved by end-loading it with two-dimensional or 
three-dimensional tree-like fractal stmctures. This decrease in 
resonant frequency was shown to asymptotically approach a limit 
as the number of iterations are increased. Ways to improve 
antenna-miniaturization techniques were discussed in [45], 
employing fractal tree geometries as end-loads by increasing the 
density of branches (i.e., by using trees with a higher fractal 
dimension). 

4.4 Fractal Volume Antennas 

The concept of a fractal volume antenna was introduced in 
[46], and was demonstrated as a means of increasing the degrees of 
design freedom for planar fractal antennas, at the expense of some 
small increase in antenna thickness. Some examples of fractal vol- 
ume antennas were presented, including a triangular Sierpinski 
carpet monopole, and a square Sierpinski carpet microstrip 
antenna. A novel design for a wide-band fractal monopole antenna 
that used stacked square and diamond Sierpinski carpe1.s was 
introduced in [47]. The design was shown to essentially achieve a 
good input impedance match throughout a 1-20 GHz pass band. 
Other examples of fractal volume antennas include the stacked 
Sierpinski monopole, considered in [48], and the stacked 
Sierpinski microstrip patch, considered in [49]. The latter approach 
made use of small parasitically coupled fractal patch elements, in 
order to increase the bandwidth compared to a single active fractal 
patch antenna. 

where a,,, b,,, c,,, d,,, e,,,fn are the 
parameters to be selected by the GA. 

Figure 13. The generator and associated iterated function sys- 
tem (IFS) code for fractal dipole antennas of arbitrary shape. 
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Figure 14. Some examples of genetically engineered fractal 
dipole antennas. 

was shown that while a center-fed Hilbert curve antenna may 
result in a very small radiation resistance: a properly chosen off- 
center feed point can always provide a 50R match, regardless of 
the stage of growth. 

4.6 Research on Fractal Patch Antennas 

Borja and Romeu [59] proposed a design methodology for a 
multi-band Sierpinski microstrip patch antenna. A technique was 
introduced to improve the multi-band behavior of the radiation 
pattems by suppressing the effects of high-order modes. Finally, 
high-directivity modes in a Koch-island fractal patch antenna were 
studied in [60, 611. It was shown that a patch antenna with a Koch 
fractal boundary exhibits localized modes at a certain frequency 
above the fundamental mode, which can lead to broadside direc- 
tive patterns. Localized modes were also observed in a waveguide 
having Koch fractal boundaries [62]. 

Some additional applications of fractal concepts to the (design 
of microstrip-patch antennas were considered in [63-67:1. For 
instance, [63] introduced a modified Sierpinski-gasket patch 
antenna for multi-band applications. A design technique for bowtie 
microstrip-patch antennas, based on the Sierpinski-gasket fractal, 
was presented in [64]. A computationally efficient Method of 
Moments formulation was developed in [65 ] ,  specifically far the 
analysis of Sierpinski fractal patch antennas. The radiation char- 
acteristics of Koch-island fractal microstrip-patch antennas were 
investigated in [66]. Still other configurations for miniaturized 
fractal patch antennas were reported by Gianvittorio and Rahmat- 
Samii [67]. 

48 IC1 

4.7 Combination of Genetic Algorithms 
with Iterated Function Systems 

A powerful design-optimization technique for fractal anten- 
nas has been developed by combining genetic algorithms (GA) 
with iterated function systems (IFS). This GAiIFS technique was 
succcssfully used as a design synthesis tool for miniature multi- 
band fractal antenna elements [68-701. The fractal antenna element 
geometries considered in [68-701 were created via an IFS approach 
by employing an appropriate set of affine transformations, similar 
to those used in the formulation of the standard Koch curve shown 
in Figure 6 and Figure 7. The general shape of the generating 
antcnna, along with the appropriate set of affine transformations 
that constitutes the IFS, are indicated in Figure 13. Figure 14 
shows three different examples of genetically engineered Stage 2 
fractal dipole antennas. The GNIFS technique introduced in [68- 
701 is capable of simultaneously optimizing the fractal antenna 
geometry, the locations of parallel LC reactive loads on the 
antenna, and the corresponding component values of thesc loads. 

L o a d 2  ' 

I_ 'cm ----I 
Load 1: 
Load 2: 

C1= 3.0 pF L 1 =  2.7 nH 
CL = 3.3 pF L2 = 3.3 nH 

VSWR 1.33 at f=1225MHz 
VSWR: 1.10 at f=1575MHz 

Figure 15a. A genetically engineered miniature dual-band frac- 
tal dipole antenna element with parallel LC loads. 

Figure 15b. A photograph of the dual-band fractal dipole 
antenna in Figure 15a. 
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Figure 21a. A plot showing the magnitude of the impedance 
matrix for Stage 1 of the triadic Cantor linear fractal array. 
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Figure 21h. A plot showing the magnitude of the impedance 
matrix for Stage 2 of the triadic Cantor linear fractal array. 
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Figure 21c. A plot showing the magnitude of the impedance 
matrix for Stage 3 of the triadic Cantor linear fractal array. 
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Figure Zld. A plot showing the magnitude of the impedance 
matrix for Stage 4 of the triadic Cantor linear fractal array. 
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Figure 21e. A plot showing the magnitude of the impedance 
matrix for Stage 5 of the triadic Cantor linear fractal array. 
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Figure 21f. A plot showing the magnitude of the impedance 
matrix for Stage 6 of the triadic Cantor linear fractal array. 
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Figure 16a. A dual-hand direct-write fractal dipole antenna 
with a direct-write passive LC load on Kapton. 

^_-- 

Figure 16h. The measured frequency response (i.e., SI, versus 
frequency) of the antenna in Figure 16a is shown via a net- 
work-analyzer screen trace. The  vertical axis is 10 d B  per  divi- 
sion with 0 d B  as  the reference. 

The “fractalization” of the wire antenna allows it to be miniatur- 
ized, while the reactive loads are used to achieve multi-hand 
behavior. An example of an optimized multi-band fractal antenna 
is shown in Figure 15. The objective in this case was to design a 
miniature dual-band antenna that had a VSWR below 2 1  at 
fi =IS75 GHz and f2 =1.225GHz. The geometry of thc opti- 
mized fractal antenna, together with the required load locations 
and component values, are provided in Figure 15. A photograph 
showing a prototype of the fractal antenna is also included in Fig- 
ure 15. The sensitivity of the radiation characteristics of the 
genetically engineered miniature multi-band fractal dipole anten- 
nas to load component values was considered in [71]. As a conse- 
quence of this study, several new optimization approaches were 
developed, which resulted in antenna designs with considerably 
reduced load sensitivity. A direct-write process for fabricating 
miniature reactively loaded fractal dipole antennas was introduced 
in [72]. The direct-write approach was compared to a traditional 
hoard-routed counterpart, incorporating soldered commercial com- 
ponents. A photograph of a miniature loaded dual-band fractal 
dipole antenna that was direct-written on Kapton is shown in Fig- 
ure 16. A plot of the measured SI, versus frequency for the 
antenna is also shown in Figure 16 (sec the screen trace on the 
network analyzer). The measured data clearly show the dual-band 
behavior of the fractal antenna. 

5. Fractal Arrays 

5.1 Deterministic and 
Random Fractal Arrays 

The term fracral anrenno arrays was originally coined by 
Kim and Jaggard in 1986 [73] to denote a geometrical arrangement 
of antenna elements that is fractal. Properties of random fractals 
were first used in [731 to develop a design methodology for quasi- 
random arrays. In other words, random fractals were used to gen- 
erate array configurations that were somewhere between com- 
pletely ordered (i.e., periodic) and completely disordered (i.e., ran- 
dom). The main advantage of this technique is that it yields sparse 
arrays that possess relatively low sidelobes (a feature typically 
associated with periodic arrays, but not random arrays), and which 
are also robust (a feature typically associated with random arrays, 
but not periodic arrays). The time-harmonic and time-dependent 
radiation produced by deterministic fractal arrays in the form of 
Paskal-Sierpinski gaskets was first studied by Lakhtakia et al. [74]. 
In particular, the radiation characteristics were examined for 
Paskal-Sierpinski arrays, comprised of Hertzian dipole sources 
located at each of the gasket nodes. A family of nonuniform arrays, 
known as Weierstrass arrays, was first introduced in 1751. These 
arrays have the property that their element spacings and current 
distributions are self-scalable and can be generated in a recursive 
fashion. Synthesis techniques for fractal radiation patterns were 
developed in [76, 771, based on the self-scalability property char- 
acteristic of discrete linear Weierstrass arrays, and the more gen- 
eral class of discrete linear Fourier-Weierstrass arrays. A fractal 
radiation-pattern synthesis technique for continuous line sources 
was also presented in [76]. The synthesis techniques developed for 
linear Weierstrass arrays were later extended to include concentric- 
ring arrays by Liang et al. [78]. 

5.2 Multi-Band Fractal Arrays 

A design methodology for multi-band Weierstrass fractal 
arrays was introduced in [79, 801. The application of fractal con- 
cepts to the design of multi-band Koch arrays, as well as multi- 
band and low-sidelobe Cantor arrays, were discussed in [XI, 541. A 
simplified Koch multi-band array, using windowing and quantiza- 
tion techniques, was presented in [82]. Finally, it was recently 
shown, in 183-851, that the Weierstrass-type and the Koch-type of 
multi-band arrays, previously considered independently in [79, 801 
and [XI, 541, respectively, are actually special cases of a more gen- 
eral unified family of self-scalable multi-band arrays. A contour 
plot of the far-field radiation pattern produced by a multi-band 
Weierstrass planar array is included in Figure 17. 

5.3 Cantor, Sierpinski Carpet, 
and Related Arrays 

Other properties of Cantor fractal linear arrays have been 
studied more recently in [ I O ,  86, 871. The radiation characteristics 
of planar concentric-ring Cantor arrays were investigated in [88- 
901. These arrays were constructed using polyadic Cantor bars, 
which are described by their similarity fractal dimension, number 
of gaps, and lacunarity parameter. Planar fractal array configura- 
tions, based on Sierpinski carpets, were also considered in [ I O ,  86, 
871. The fact that Sierpinski carpet and related arrays can be gen- 
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erated recursively (i.e., via successive stages of growth starting 
from a simple generating array) has been exploited in order to 
develop rapid algorithms for use in efficient radiation-pattem 
computations and adaptive beamfonning, especially for arrays 
with multiple stages of growth that contain a relatively large num- 
ber of elements [I 0, 1 I ,  91, 921. An example of a thinned hexago- 
nal array, formed by this recursive procedure, is shown in Fig- 
ure 18. The generating sub-array in this case is the hexagonal array 
depicted in the upper-right-hand corner of Figure 18. The array 
elements are located at the vertices of the hexagon. The first four 
stages of growth are indicated bythe blue (Stage I), red (Stage 2), 
green (Stage 3), and orange (Stage 4) arrays, respectively. Contour 
plots of the corresponding radiation pattems for each of these four 
arrays are illustrated in Figure 19. The Cantor linear and 
Sierpinski-carpet planar fractal arrays were also shown to be 
examples of deterministically thinned arrays [ I O ,  86, 871. An effi- 
cient recursive procedure was developcd in 1931 for calculating the 
driving-point impedance of linear and planar fractal arrays. For 
example, the first four stages in the growth o f a  triadic Cantor lin- 
ear array of half-wave dipoles are shown in Figure 20. There are a 
total of N p  = 2'uniformly excited dipole elements at each stage 
of growth, P. Plots of the impedance matrix of the Cantor array for 
thc first SIX stages of growth are presented in Figure21. These 
illustrations clearly portray the self-similar fractal structure of the 
impedance matrix. Finally, a method for generating sum and dif- 
ference patterns. which makes use of Sierpinski carpet fractal 
subarrays, was outlined in 1941. 

5.4 IFS Arrays and Compact Arrays 

An iterated function system (IFS) approach for the design of 
fractal arrays was proposed by Baharav [Y5]. The use of IFS pro- 
vides a very flexible design tool, which enables a wide variety of 
fractal array configurations, with many degrees of freedom, to he 
easily generated. A method for array sidclobe reduction by small 
position offsets of fractal elements was investigated in 1961. It was 
shown that because of their compact size and reduced coupling. the 
use of fractal antenna elements allows more freedom to accommo- 
date position adjustments in phased arrays, which can lead to a 
suppression of undesirable sidelobes or grating lobes. The advan- 
tages of reduced mutual coupling and tighter packing, which can 
be achieved by using fractal elements in otherwise conventional 

Figure 20. The first four stages in the process of generating a 
triadic Cantor linear array of hnlf-wave dipoles. The dark gray 
dipoles represent physical elements, while the light gray 
dipoles a re  virtual elements. 

Stage4 Stage-2 Stage-3 

Figure 22. The design of a tri-band FSS using fractal elements: ' 
The first three stages in the construction of a crossbar fractal 
tree. 

arrays, have also been investigated by Gianvittorio and Rahmat- 
Samii [97]. A genetic-algorithm approach for optimizing fractal 
dipole antenna arrays for compact size and improved driving-point : 
impedance performance over scan angle was presented in [98]. The 
technique introduces fractal dipoles as array elements, and uses a 
genetic algorithm to optimize the shape of each individual fractal 
element (for self-impedance control), as well as the spacing 
between these elements (for mutual-impedance control). A useful ' 

method for interpolating the input impedance of fractal dipole 
antennas via a genetic-algorithm-trained neural network (called 
IFS-GA-NN) was presented in 1991. One ofthe main advantages of 
this IFS-GA-NN approach is that it is more computationally effi- 
cient than a direct Method of Moments analysis technique. For 
example, the method could be used in conjunction with genetic 
algorithms to more efficiently optimize arrays of fractal dipole 
elements, such as those considered in 1981. 

5.5 Diffraction from Fractal Screens 
and Apertures 

Lakhtakia et al. [I001 demonstrated that the diffracted field 
of a self-similar fracfal screen also exhibits self-similarity, This 
finding was based on results obtained using a particular example of 
a fractal screen constructed from a Sierpinski carpet. Diffraction 
from Sierpinski carpet apertures has also been considered in [9], 
I l l ] ,  [ lo l l ,  and [102]. The related problems of diffraction by 
fractally serrated apertures and Cantor targets have been investi- 
gated in [ 103- I I I]. 

6. Fractal Frequency-Selective Surfaces 

Fractals were originally proposed for use in the design of fre- 
quency-selective surfaces (FSSes) by Parker and Sheikh [ I  121. 
This application makes usc of the space-filling properties of cer- 
tain fractals, such as the Minkowski loop and the Hilbert curve, in 
order to reduce the overall size of the unit cells that constitute an 
FSS. A dual-band fractal FSS design, based on a two-iteration 
Sierpinski gasket dipole, was first demonstrated in [113-115]. It 
was shown that the fractal FSS reported in [ I  13-1 151 exhibits two 
stop-bands with attenuation in excess of 30 dB. Another possible 
approach that uses fractal tree configurations for realizing multi- 
band FSS designs was first suggested in [42]. A particular example 
was considered by Werner and Lee [116, 1171, where a tri-band 
FSS was designed using Stage 3 crossbar fractal tree elements. The 
first three stages in the construction of a crossbar fractal tree are 
illustrated in Figure 22. Figure 23 shows four adjacent cells of a 
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tri-band FSS. In this case, the individual elements or cells of this 
FSS are made up of Stage 3 crossbar fractal trees, which provide 
the required tri-band behavior. The transmission coefficient as a 
function of frequency is plotted in Figure 23 for a Stage I ,  Stage 2, 
and Stage.3 crossbar fractal FSS. The stop-band attenuations of 
this fractal FSS were found to be in the neighborhood of 30 dB. 
This particular fractaf FSS design approach also has the advantage 
of yielding the same response to either TE- or TM-mode excita- 
tion. Another noteworthy feature of this design technique is that 
the separation of bands can be controlled by choosing the appro- 
priate scaling used in the fractal crossbar screen elemenis. More 
recently, various other self-similar geometries have been (explored 
for their potential use in the design of dual-band and dual- 
polarized FSSes [ I  181. 

7. Bent-Wire Antennas 

There has been some recent work to suggest that some ran- 
dom fractal or non-fractal bent-wire antennas may, in sonie cases, 
offer performance improvements compared to wires that have 
strictly deterministic fractal geometries. For instance, a compari- 
son o f  the radiation characteristics of deterministic fractal :and non- 
fractal (or random fractal) loop antennas was made in [ I  1’31. From 
this comparison, it was concluded that while the loop gec’metry is 
one factor in determining the antenna performance, it is not as sig- 
nificant as its overall physical area and total wire length in the 
loop. In [IZO], the performance of Koch fractal and other t’ent-wire 
monopoles as electrically small antennas was analyzed and com- 
pared. It was found that the simpler, less compressed t,ent-wire 
geometries of the meander line and normal-mode helix exhibit 
similar or improved performance when compared to that of a Koch 
fractal monopole. Finally, a methodology has been developed in 
[I211 that employs a genetic algorithm to evolve a class of minia- 
ture multi-band antennas, called stochastic antennas, which offer 
optimal performance characteristics. This method is more: general 
than the approach outlined in [68, 691, since it is not restricted to 
fractal geometries, and there arc no reactive loads required to 
achieve the desired multi-band performance. The main disadvan- 
tage of the method is the fact that the optimization procedure is 
much less efficient than the genetic-algorithm approach based on 
fractal antenna geometries generated via an IFS. 

8. Conclusions 

Applications of fractal geometry are becoming increasingly 
widespread in the fields of science and engineering. This article 
presented a comprehensive overvicw of the research area we call 
fractal antenna engineering. Included among the topics ccinsidered 
were I.) design methodologies for fractal antenna elernenis, 2.) 
application of fractals to the design of antenna arrays, and 3.) fre- 
quency-selective surfaces with fractal screen elements. Thr field of 
fractal antenna engineering is still in the relatively early stages of 
development, with the anticipation of many more irmvative 
advancements to come over the months and years ahead. 
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