
Bioinformatics
for Evolutionary
Biologists

Bernhard Haubold
Angelika Börsch-Haubold

A Problems Approach

Bioinformatics for Evolutionary Biologists

Bernhard Haubold • Angelika Börsch-Haubold

Bioinformatics
for Evolutionary Biologists

A Problems Approach

123

Bernhard Haubold
Department of Evolutionary Genetics
Max-Planck-Institute for Evolutionary
Biology

Plön, Schleswig-Holstein
Germany

Angelika Börsch-Haubold
Plön, Schleswig-Holstein
Germany

ISBN 978-3-319-67394-3 ISBN 978-3-319-67395-0 (eBook)
https://doi.org/10.1007/978-3-319-67395-0

Library of Congress Control Number: 2017955660

© Springer International Publishing AG 2017, corrected publication 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this

publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Evolutionary biologists have two types of ancestors: naturalists such as Charles

Darwin (1809–1892) and theoreticians such as Ronald A. Fisher (1890–1962). The

intellectual descendants of these two scientists have traditionally formed quite

separate tribes. However, the distinction between naturalists and theoreticians is

rapidly fading these days: Many naturalists spend most of their time in front of

computers analyzing their data, and quite a few theoreticians are starting to collect

their own data. The reason for this coalescence between theory and experiment is

that two hitherto expensive technologies have become so cheap, they are now

essentially free: computing and sequencing. Computing became affordable in the

early 1980s with the advent of the PC. More recently, next generation sequencing

has allowed everyone to sequence the genomes of their favorite organisms.

However, analyzing this data remains difficult.

The difficulties are twofold: conceptual, which method should I use, and prac-

tical, how do I carry out a certain computation. The aim of this book is to help the

reader overcome both difficulties. We do this by posing a series of problems. These

come in two forms, paper and pencil problems, and computer problems. Our choice

of concepts is centered on the analysis of sequences in an evolutionary context. The

aim here is to give the reader a look under the hood of the programs applied in the

computer problems. The computer problems are solved in the same environment

used for decades by scientists, the UNIX command line, also known as the shell.

This is available on all three major desktop operating systems, Windows, Linux,

and OS-X. Like any skill worth learning, using the shell takes practice. The

computer problems are designed to give the reader plenty of opportunity for that.

In Chap. 1, we introduce the command line. After explaining how to get started,

we deal with plain text files, which serve as input and output of most UNIX

operations. Many of these operations are themselves text files containing commands

to be executed on some input. Such command files are called scripts, and their

treatment concludes Chap. 1.

In Chap. 2, the newly acquired UNIX skills are used to explore a central concept

in Bioinformatics: sequence alignment. A sequence alignment represents an evo-

lutionary hypothesis about which residues have a recent common ancestor. This is

v

determined using optimal alignment methods that extract the best out of a very large

number of possible alignments. However, this optimal approach consumes a lot of

time and memory.

The computation of exact matches, the topic of Chap. 3, is less resource

intensive than the computation of alignments. Taken by themselves, exact matches

are also less useful than alignments, because exact matches cannot take into account

mutations. Nevertheless, exact matching is central to many of the most popular

methods for inexact matching. We begin with methods for exact matching in time

proportional to the length of the sequence investigated. Then we concentrate on

methods for exact matching in time independent of the text length. This is achieved

by indexing the input sequence through the construction of suffix trees and suffix

arrays.

In Chap. 4, we show how to combine alignment with exact matching to obtain

very fast programs. The most famous example of these is BLAST, which is rou-

tinely used to find similarities between sequences. Up to now we have only looked

at pairwise alignment. At the end of Chap. 4, we generalize this to multiple

sequence alignment.

In Chap. 5, multiple sequence alignments are used to construct phylogenies.

These are hypotheses about the evolution of a set of species. If we zoom in from

evolution between species to evolution within a particular species, we enter the field

of population genetics, the topic of Chap. 6. Here, we concentrate on modeling

evolution by following the descent of a sample of genes back in time to their most

recent common ancestor. These lines of descent form a tree known as the coales-

cent, the topic of much of modern population genetics.

We conclude in Chap. 7 by introducing two miscellaneous topics: statistics and

relational databases. Both would deserve books in their own right, and we restrict

ourselves to showing how they fit in with the UNIX command line.

Our course is sequence-centric, because sequence data permeates modern biol-

ogy. In addition, these data have attracted a rich set of computer methods for data

analysis and modeling. The sequences we analyze can be downloaded from the

companion website for this book:

http://guanine.evolbio.mpg.de/problemsBook/

To these sequences, we apply generic tools provided by the UNIX environment,

published bioinformatics software, and programs written for this course. The latter

are designed to allow readers to analyze a particular computational method. The

programs are also available from the companion site.

At the back of the book, we give complete solutions to all the problems. The

solutions are an integral part of the course. We recommend you attempt each

problem in the order in which they are posed. If you find a solution, compare it to

ours. If you cannot find a solution, read ours and try again. If our solution is unclear

or you have a better one, please drop us a line at

vi Preface

http://guanine.evolbio.mpg.de/problemsBook/

problemsbook@evolbio.mpg.de

The tongue-in-cheek Algorithm 1 summarizes these recommendations.

This book has been in the works since 2003 when BH started teaching

Bioinformatics at the University of Applied Sciences, Weihenstephan. We thank all

the students who gave us feedback on this material as it evolved over the years. We

would also like to thank a few individuals who contributed in more specific ways to

the gestation of this book: Mike Travisano (University of Minnesota) gave us

encouragement at a critical time. Nicola Gaedeke and Peter Pfaffelhuber (University

of Freiburg) commented on an early draft, and our students Linda Krause, Xiangyi

Li, Katharina Dannenberg, and Lina Urban read large parts of the manuscript in one

of the many guises it has taken over the years. We are grateful to all of them.

Plön, Germany Bernhard Haubold

July 2017 Angelika Börsch-Haubold

Algorithm 1 Using the Solutions

1: while problem unsolved do

2: solve problem

3: read solution

4: if solution unclear or your solution is better than ours then

5: drop us a line

6: end if

7: end while

Preface vii

The original version of the book backmatter was

revised: For detailed information please see

Erratum. The erratum to this chapter is available

at https://doi.org/10.1007/978-3-319-67395-0_9

ix

Contents

1 The UNIX Command Line . 1

1.1 Getting Started . 2

1.2 Files . 7

1.3 Scripts . 13

1.3.1 Bash . 14

1.3.2 Sed . 16

1.3.3 AWK . 17

2 Constructing and Applying Optimal Alignments 23

2.1 Sequence Evolution and Alignment . 23

2.2 Amino Acid Substitution Matrices . 25

2.2.1 Genetic Code . 26

2.2.2 PAM Matrices . 30

2.3 The Number of Possible Alignments . 32

2.4 Dot Plots . 34

2.5 Optimal Alignment . 37

2.5.1 From Dot Plot to Alignment . 38

2.5.2 Global Alignment . 39

2.5.3 Local Alignment . 42

2.6 Applications of Optimal Alignment . 42

2.6.1 Homology Detection . 43

2.6.2 Dating the Duplication of Adh . 44

3 Exact Matching . 47

3.1 Keyword Trees . 47

3.2 Suffix Trees . 54

3.3 Suffix Arrrays . 57

3.4 Text Compression . 62

3.4.1 Move to Front (MTF) . 65

3.4.2 Measuring Compressibility: The Lempel–Ziv

Decomposition . 65

xi

4 Fast Alignment . 69

4.1 Alignment with k Errors . 69

4.2 Fast Local Alignment . 72

4.2.1 Simple BLAST . 73

4.2.2 Modern BLAST . 75

4.3 Shotgun Sequencing . 78

4.4 Fast Global Alignment . 82

4.5 Read Mapping . 86

4.6 Clustering Protein Sequences . 88

4.7 Position-Specific Iterated BLAST . 92

4.8 Multiple Sequence Alignment . 94

4.8.1 Query-Anchored Alignment . 96

4.8.2 Progressive Alignment . 96

5 Evolution Between Species: Phylogeny . 101

5.1 Trees of Life . 101

5.2 Rooted Phylogeny . 106

5.3 Unrooted Phylogeny . 108

6 Evolution Within Populations . 113

6.1 Descent from One or Two Parents . 113

6.1.1 Bi-Parental Genealogy . 113

6.1.2 Uni-Parental Genealogy . 115

6.2 The Coalescent . 120

7 Additional Topics . 127

7.1 Statistics . 127

7.1.1 The Significance of Single Experiments 128

7.1.2 The Significance of Multiple Experiments 128

7.1.3 Mouse Transcriptome Data . 130

7.2 Relational Databases . 131

7.2.1 Mouse Expression Data . 132

7.2.2 SQL Queries . 135

7.2.3 Java . 136

7.2.4 ENSEMBL . 137

8 Answers and Appendix: Unix Guide . 139

8.1 Answers . 139

8.2 Appendix: UNIX Guide . 292

8.2.1 File Editing . 292

8.2.2 Working with Files . 293

8.2.3 Entering Commands Interactively 293

8.2.4 Combining Commands: Pipes . 295

8.2.5 Redirecting Output . 295

8.2.6 Shell Scripts . 297

xii Contents

8.2.7 Directories . 298

8.2.8 Filters . 299

8.2.9 Regular Expressions . 306

Erratum to: Bioinformatics for Evolutionary Biologists E1

References . 309

Index . 313

Contents xiii

Chapter 1

The UNIX Command Line

Almost all commercial software published today comes with lush graphical user

interfaces that allow users to work and play by touching and mousing. This is great

for things like deleting a file by dragging it into a trash can, renaming a file by clicking

on its name, editing text by mouse selection, and so on. However, in modern biology

data may consist of dozens of files containing millions of sequencing reads, which

makes it routinely necessary to do things like check the three billion nucleotides of

the human genome for the occurrence of a particular motif, or compute averages from

thousands of expression values distributed across dozens of files. Such operations are

hard to perform using click-driven programs. This is because graphical user interfaces

are excellent for carrying out the tasks their creators deem important, such as deleting

a file by dragging and dropping it into a virtual trash bin, moving a file by dragging

and dropping it between virtual folders, or opening a file by double-clicking on it.

However, graphical user interfaces lack the universality that makes learning about

computers so fascinating. Computers are universal machines in the sense that they

can perform any precisely specified operation. All that is necessary is an interface

that lets the user communicate every possible operation, not just a finite set, however

large it may be.

To illustrate the importance of being able to communicate an infinite number

of possible operations, think of the communication system we all know best, our

language. Take any sentence that comes to mind and search the World Wide Web

with it. Unless you were quoting from memory, chances are, your sentence is unique.

This is because we do not parrot sentences we have heard, but use rules to construct

new ones. The rules leave us free to think about what we want to say while saying

it. Moreover, the words we use have a curiously vague relationship to what they

mean. If someone says: “John is my friend.”, the word “friend” neither looks nor

sounds like a friend. Nevertheless, we know immediately what that word signifies.

Taking our cue from language, we expect all powerful communication systems to

be characterized by a set of rules and an arbitrary mapping between words and their

meaning. Communicating effectively with a computer is no different.

© Springer International Publishing AG 2017

B. Haubold and A. Börsch-Haubold, Bioinformatics

for Evolutionary Biologists, https://doi.org/10.1007/978-3-319-67395-0_1

1

2 1 The UNIX Command Line

The UNIX command line, also known as the shell, is the de facto standard method

for text-based, rather than graphics-based, computer communication. It has been

around since the late 1960s and has proved flexible enough to adapt rather than go

extinct like so many other programs over the years. In fact, it is available on all three

major operating systems, and its behavior is governed by a standard, the POSIX

standard. This means that once you have mastered the UNIX shell on one type of

computer, you have mastered it on all. If you have never used it, now would be a

good time to start by working through the chapters in this part. Even if you have

used it before, we recommend you work through this material to make the most of

the subsequent sections. For future reference, the Appendix contains a summary of

commands and techniques for working on the command line.

1.1 Getting Started

This section is for everyone who has never used the UNIX command line, or shell,

before. There are various versions of the shell to choose from, but on personal com-

puters bash is the default. We explain how to create and destroy directories and files

under the shell, list the contents of directories, access the history of past commands,

and help with typing. Fluency in typing is particularly important in a text-based sys-

tem like the shell, and we encourage readers to spend time on practicing the basic

key combinations. The chapter closes with a description of the manual system. We

assume you are sitting in front of a computer with an open terminal displaying a

blinking cursor like this:

jdoe@unixbox:$ i

New Concepts

Name Comment

* wildcard to match any substring

autocompletion makes typing easier

UNIX operating system

command line text-based interface to UNIX

New Programs

Name Source Help

cd system man cd
ls system man ls
man system man man
mkdir system man mkdir
rmdir system man rmdir
rm system man rm
touch system man touch

1.1 Getting Started 3

Problem 1 Create a directory for this course by typing

mkdir BiProblems

followed by the Enter key. List the contents of your current directory to make sure

BiProblems has been created.

ls

Notice that we write the names of directories in upper case to distinguish them from

file names, which we start in lower case. This is merely a convention, others prefer

to use lower case throughout. However, UNIX is case sensitive, so BiProblems,

biProblems, and biproblems would be three distinct names. Notice also that

we visualize word boundaries by case changes. Again, this is only a convention,

known as “camel case”. Change into BiProblems

cd BiProblems

and list its contents

ls

It is empty. Create two more directories, TestDir1 and TestDir2, and use ls
to check they exist.

Problem 2 To minimize typos, the command line supports autocompletion. Change

again into TestDir1, but this time type only

cd T

followed by Tab. This completes the unambiguous part of the name, TestDir. To

get the two possible completions, press Tab again. Type 1, once more followed by

Tab, to ensure correct typing. This technique of mixing typing and tabbing is very

effective when using the shell. But it does take some getting used to. Practice it by

changing out of the current directory

cd ..

and into it again. What happens if you enter

cd

without the trailing dots?

Problem 3 Use rmdir to remove the test directories. Then practice creating and

removing these directories a few times. What happens if you enter

rmdir TestDir*

Problem 4 Recreate the directory TestDir1 and change into it. Then create a file

touch testFile

4 1 The UNIX Command Line

and check it exists

ls

Remove the file

rm testFile

Recreate the file, then go to the parent directory. What happens if you now apply

rmdir to TestDir1?

Problem 5 Recreate TestDir1 and enter it. Create two test files, testFile1
and testFile2. How would you remove both with one command?

Problem 6 File a is renamed b by

mv a b

Create file a,

touch a

then try renaming it. Can you guess what mv might stand for?

Problem 7 Commands are often repeated. To avoid repeated typing, the command

line remembers a list of previous commands. You can walk this list up and down by

using the arrow keys ↑ and ↓. Try this. What happens when you enter the command

history

Problem 8 By now you have probably noticed that the cursor cannot be positioned

by clicking the mouse. This leaves the arrow keys as the navigation tools of first

choice. However, the cursor is also responsive to more powerful key strokes; for

example, when you press the Ctrl followed by a, while still keeping Ctrl pressed,

the cursor jumps to the beginning of the line. We write this as

C-a

Similarly,

C-e

moves the cursor to the end of the line. Type

You cannot tune a mouse but you can tuna fish

and practice jumping to the beginning and the end of the line a few times. What

happens if you enter this nonsense as a command?

1.1 Getting Started 5

Table 1.1 List of key combinations for navigating and editing the bash command line

Keystrokes Explanation

C-e Position cursor at end of line

C-a Position cursor at beginning of line

C-w Delete word to the left of cursor

C-y Insert deleted text

C-b Move cursor back to one position

C-f Move cursor forward by one position

C-d Delete character left of cursor

M-b Jump back by one word

M-f Jump forward by one word

M-d Delete word to the right of cursor

Problem 9 Table 1.1 lists the most useful key combinations for navigating thebash.

Apart from the combinations based on the Ctrl key, there are also combinations

based on the so-called Meta key, M. By default this is mapped to Esc. It may also

be mapped to Alt, which makes it to easier to reach.

Moving the cursor using key combinations is a bit awkward at first, but once

you have mastered these shortcuts, using the command line becomes much easier.

Experiment with each of the key combinations in Table 1.1. What happens if you

keep pressing a combination, say C-f?

Problem 10 If you need help with a command, or would like to learn more about

its options, access the corresponding section of the manual by typing, for example

man ls

Navigate the page with the arrow keys, and press q to quit. It is often useful to know

which file in a directory was modified most recently. Read man ls to find out how

files can be listed by modification time.

Problem 11 Find out more about how to navigate the man pages by again typing

man ls

and then activate the help function by pressing h. How would you look for the pattern

time in a man page?

Problem 12 A very useful feature of the shell is that the output of a program can

be used as input for another. For example in

ls | wc

the program wc reads as its input the output from ls. This construction is called a

“pipe” or “pipeline”. Can you interpret the result of your first pipeline? How would

you count the number of files in your directory?

6 1 The UNIX Command Line

Problem 13 How would you find out more about pipelines under the bash?

Problem 14 The bash is a programming environment and can be used as a simple

calculator. To add two numbers, type, for example,

((x=1+1)); echo $x

where echo prints the value of x to the screen. What happens if you leave out the

double brackets?

Problem 15 If you like a more verbose output, enter

((x=1+1)); echo "The result is $x"

What happens if the double quotes are replaced by a single quotes?

Problem 16 Our simple calculation can also be expressed as

let x=1+1; echo $x

What happens if you leave out the let?

Problem 17 The bash can also multiply

let y=2*5; echo $y

and compute power of

let y=2**5; echo $y

What is 210?

Problem 18 Subtraction also works as expected

let y=10-2; echo $y

What is 10 − 20 according to the bash?

Problem 19 Division is denoted by

let y=10/2; echo $y

What is 10/3?

Problem 20 Floating point calculations on the command line can only be carried

out using additional tools. One of these is the basic calculator, bc. Enter

bc -l

to start it, and to exit quit. In bc nx is expressed as nˆx. What is the number of

distinct oligonucleotides of length 10? Can you guesstimate the result?

Problem 21 As usual for UNIX programs, the basic calculator can also be used as

part of a pipeline:

echo 10/3 | bc -l

What happens if you drop the -l option?

1.2 Files 7

/

bin etc home usr var tmp

user1 user2

Bin BiProblems Software

Data UnixFiles DrawGenes

Fig. 1.1 The UNIX file system, slightly abridged. System directories are gray, home directories

blue, and directories generated by users pink

1.2 Files

Files are kept inside directories, which may contain further directories. This hierarchy

of directories forms a tree, and Fig. 1.1 shows an example containing the essential

features of a typical UNIX file system. Its top node is the root, denoted /. The gray

part of the tree is “given” and can only be changed by the system administrator,

for example, when installing new software. The blue directories are called “home

directories”. Every user has one and can change it by adding new directories, which

are depicted in pink. This separation between files accessible only to the administrator

and files accessible to the user means that users need not worry about accidentally

damaging the system—they cannot change the sensitive files. Our bioinformatics

course forms a sub tree of the directory tree rooted on BiProblems, which you

have already created. In the following section we learn to navigate the file system,

and to manipulate individual files.

New Concepts

Name Comment

PATH directories searched for file name

directories contain files and directories

file permissions read, write, execute

file system all directories

files contain text (usually)

8 1 The UNIX Command Line

New Programs

Name Source Help

apt system man apt
brew system man brew
cat system man cat
chmod system man chmod
cut system man cut
drawGenes book website drawGenes -h
emacs package manager man emacs
find system man find
gnuplot system man gnuplot
grep system man grep
head system man head
make system man make
tail system man tail
tar system man tar
which system man which

Problem 22 Use ls to list the contents of the root directory. How many files and

directories does it contain?

Problem 23 Change into the course directory BiProblems and list all files it

contains. Use man ls to find out how to really list all files. Can you explain what

you see?

Problem 24 Download the example data from the book website

http://guanine.evolbio.mpg.de/problemsBook/

copy it into your current directory, and unpack it

cp ˜/Downloads/data.tgz . tar -xvzf data.tgz

This generates the directory Data. How many files does it contain?

Problem 25 It is often convenient to list all files that contain a certain substring in

their name. For example, all files with the extension fasta:

ls *.fasta

How many FASTA files are contained in the Data directory?

Problem 26 Make a directory for this session and change into it:

mkdir UnixFiles
cd UnixFiles

The file mgGenes.txt contains a list of all genes in the bacterium Mycoplasma

genitalium. Copy mgGenes.txt from Data into the current directory. How many

genes does M. genitalium have?

1.2 Files 9

Problem 27 The command

cat mgGenes.txt

prints the contents of mgGenes.txt to the screen. What does cat -n do? Use it

to re-count the entries in mgGenes.txt.

Problem 28 We often need to look at the beginning and the end of a file. This is

done using the commands head and tail. Apply these to mgGenes.txt; can

you make head or tail of what you see?

Problem 29 From our quick glance at the head and tail of mgGenes.txt, it looks

as though genes at the beginning of the list are on the forward strand, genes at the

end on the reverse. Since the list is ordered according to starting position rather than

strand, this is intriguing. Do genes on the forward and reverse strand form separate

blocks along the genome? To find out, use the program grep, which extracts lines

from files matching a pattern, for example,

grep MG_12 mgGenes.txt

Use this and wc to count the genes on the forward strand and on the reverse strand.

Do the counts add up to the total number of genes? If not, can you think of why?

Problem 30 To investigate whether one of the gene symbols contains the extra “-”,

we cut out the symbol column:

cut -f 5 mgGenes.txt

Which genes contain in their names “-”, and which strand are they located on?

Problem 31 We are still trying to find out whether genes on the plus and minus

strands form separate blocks along the M. genitalium genome. To exclude unex-

pected characters contained in the gene names, we cut out the first four columns of

mgGenes.txt and extract the genes on the two strands. For subsequent analysis,

we save the results by redirecting them to files using

grep pattern mgGenes.txt > pattern.txt

Save the genes on the forward strand in the file plus.txt and the genes on the

reverse strand in the file minus.txt. Check again that the gene counts add up. Do

the genes on the plus strand form a block along the genome (hint: use head -n)?

Problem 32 Redirection also works in reverse. Can you find out how to apply <?

Problem 33 Next, we need to use an editor. Our editor of choice is called emacs.

If emacs is not installed on your system, please install it now. On many versions of

Linux, including Ubuntu, this can be done using the cycle

10 1 The UNIX Command Line

sudo apt-get update # update package database
apt-cache search emacs # find suitable package
sudo apt-get install emacs # install package

On OSX you might use

brew install emacs

if the homebrew package manager is installed. What does the sudo in the apt-

commands above stand for?

Problem 34 To avoid the problem with the gene name containing a “-”, we

can open mgGenes.txt in emacs and remove the offending hyphen. Open

mgGenes.txt:

emacs mgGenes.txt &

This opens a new window running emacs. What happens if you leave out the amper-

sand (&)?

Problem 35 Save mgGenes.txt to mgGenes2.txt and replace the “-” in

rpmG-2 and polC-2 by underscore, “_”. Use diff to check the differences

between mgGenes.txt and mgGenes2.txt.

Problem 36 Use head and tail to directly extract lines 56 and 288 from files

mgGenes.txt and mgGenes2.txt.

Problem 37 Many of the commands for navigating the bash listed in Table 1.1

have the same function in emacs. What are the exception(s)?

Problem 38 emacs is a powerful editor with a rather weak GUI. We recommend

you take some time to learn the most important keyboard shortcuts, which are sum-

marized in Table 1 of the Appendix. In addition, we recommend you work through

the emacs tutorial, which is invoked by C-h t. What is the command for exiting

emacs?

Problem 39 Apart from programs like emacs, which are supplied through public

software repositories, there are a number of programs written specifically for this

course. These are supplied as source files accessible through the book website. As a

first example, download the program drawGenes. It is a good idea to keep source

packages in the same place, so make a directory Software in your home directory

and copy the source package of drawGenes into it. Then unpack it (c.f. Problem 24),

change into the new directory and compile the code by typing make. This generates

the program drawGenes. Again, programs are best kept in one place, so make the

directory ˜/Bin and copy drawGenes into it. Return to your current directory.

What happens when you try executing drawGenes?

1.2 Files 11

Problem 40 To make the system aware of the new directory for executables,˜/Bin,

we need to change the set of directories in which the system looks for executables

when it receives a command like ls. This set of directories is defined in the bash
variable PATH. To alter PATH, open ˜/.bashrc in emacs and add the line

export PATH=˜/Bin:$PATH

at the end. Then return to your current working directory and load the new PATH

information

source ˜/.bashrc

The first thing to do now is to test the old PATH is still working by trying to execute

ls. If this fails, PATH needs to be reset. On Linux this is done by entering

source /etc/environment

on OSX by entering

source /etc/profile

Then try again to change PATH in .bashrc. Once this has worked, test that

drawGenes is executable from within your working directory

drawGenes -h

This might seem like a long-winded method for installing programs. The good news

is that .bashrc is always loaded when a new terminal is opened, so source only

needs to be executed if .bashrc is changed during a terminal session. The next

program installed manually just needs to be copied into ˜/Bin to become available

to you everywhere. The command which locates an executable file; try for example

which drawGenes

Where is ls located on your system?

Problem 41 Apart from programs, we can also search for files using, for example

find ˜/ -name "*.txt"

which looks for all files with the extension txt, starting in the home directory. How

would you look up the location of .bashrc?

Problem 42 The program drawGenes converts gene coordinates like

100 400 +
600 1500 -

12 1 The UNIX Command Line

to figures like

 0 200 400 600 800 1000 1200 1400 1600

Create a new file called exampleGenes.txt in emacs and copy the gene coordi-

nates. Then reproduce the above figure using drawGenes together with gnuplot.

Hint: Check the usage of drawGenes by typing

drawGenes -h

Problem 43 The commands of gnuplot can be abbreviated to the first few unique

characters. What is the shortest version of your gnuplot command for plotting the

M. genitalium genes?

Problem 44 Gnuplot is a powerful tool with many options, which are summarized

in a reference card posted on our book website. For example, the command

set xlabel "Label"

labels the x-axis. Use it to label the x-axis of our example plot with “Position (bp)”.

Problem 45 Draw the genes of M. genitalium. Is the bias in their distribution

between the strands visible?

Problem 46 When dealing with longer commands like the one for drawing the genes

in M. genitalium (Problem 45), it is often more convenient to edit them in a separate

file, which can then be executed by the bash. Such files are called “scripts”. Copy

the solution to Problem 45 into the file drawGenes.sh and run it

bash drawGenes.sh

What happens if you try to execute drawGenes.sh directly by typing

./drawGenes.sh

Problem 47 There are three kinds of file permissions: read, write, and execute. To

inspect them, execute the long version of ls:

ls -l
total52
-rw-rw-r-- 1 haubold haubold 83 Mar 3 15:15 drawGenes.sh
-rw-rw-r-- 1 haubold haubold 13284 Mar 3 15:15 mgGenes.txt
-rw-rw-r-- 1 haubold haubold 13284 Mar 3 15:15 mgGenes2.txt
-rw-rw-r-- 1 haubold haubold 5157 Mar 3 15:15 minus.txt
-rw-rw-r-- 1 haubold haubold 6762 Mar 3 15:15 plus.txt

1.2 Files 13

This shows the total size of the files in kilobytes, followed by information about

individual files in eight columns:

1. File type and permissions: The first character is the file type; the two most impor-

tant file types are ordinary file (-), and directory (d). The next nine characters

are divided into three blocks of the three permissions already mentioned: read

(r), write (w), and execute (x). Permissions not granted are shown as hyphens.

The first three permissions concern the user, that is you, the second the group,

and the third the world, which is everybody.

2. Number of links; for files this is usually one, but directories may contain a greater

number of links.

3. User name.

4. Group name.

5. File size in characters.

6. Date on which the file was last altered.

7. Time when the file was last altered.

8. File name.

We can make drawGenes.sh executable:

chmod +x drawGenes.sh

Check the result

ls -l drawGenes.sh
-rwxrwxr-x 1 haubold haubold 83 Mar 3 15:15 drawGenes.sh

Now you can run

./drawGenes.sh

What happens if you drop ./ from this command?

Problem 48 To include scripts located in the current directory in the PATH, open

˜/.bashrc and change the line

export PATH=˜/Bin:$PATH

to

export PATH=.:˜/Bin:$PATH

How is the bash made aware of this change? Can you now directly execute

drawGenes.sh?

1.3 Scripts

In Problem 46 we wrote our first script,drawGenes.sh, to help draw the 525 genes

of Mycoplasma genitalium. Scripts are used extensively in bioinformatics. Through-

out this book, we use three kinds of scripts: bash, sed, and AWK. Bash scripts are

14 1 The UNIX Command Line

used to drive other programs. Sed scripts automate text editing, for example remov-

ing stray hyphens from gene names. Finally, AWK is a programming language for

manipulating text files like mgGenes.txt. It is carefully described in a book by

the authors of the language, Alfred Aho, Peter Weinberger, and Brian Kernighan,

hence the name AWK [4].

New Concepts

Name Comment

array table in computer programs

hash array indexed by strings

shell script file containing commands

stream editor in contrast to an interactive editor

New Programs

Name Source Help

awk system man awk
sed system man sed
seq system man seq
uniq system man uniq

1.3.1 Bash

Problem 49 Start this session by changing into the directory BiProblems. Then

make a new directory, UnixScripts, and change into it. As we already saw in

Problem 46, commands that work directly on the command line can usually be

included in a bash script and then executed. The command we start off with is

echo Hello World!

Enter this on the command line. If we wanted to separate the two words by three

blanks, we might try

echo Hello World!

but this has the same effect as the original command. Try using single quotes to get

the desired effect.

Problem 50 Scripts overcome the limitations of the command line as an editing

environment. Write a script hello.sh containing

echo 'Hello World!'

A command can be repeated using a loop like

for((i=1; i<=10; i=i+1)) # i=1,2,...,10
do

echo 'Hello World!'
done

1.3 Scripts 15

where everything behind a hashtag is ignored and can be used for commenting. We

can also write this script on a single line:

for((i=1; i<=10; i=i+1)); do echo 'Hello World!'; done

Run this code. What happens if you replace echo by echo -n?

Problem 51 An alternative way of looping in bash is

for i in $(seq 10)
do

echo 'Hello World!'
done

Modify this loop such that it prints the numbers from 1 to 10 (hint: take a look at

Problem 14).

Problem 52 Write the numbers from 1 to 10 on the same line.

Problem 53 We said that commands on the command line and in scripts are inter-

changeable. Execute

echo 5

on the command line. Find out by looking at the man page how to count in steps of

two, or backwards.

Problem 54 We have already seen that the genes in M. genitalium are not distributed

equally between the forward and the reverse strands along the genome. A simple way

of visualizing this is to show the number of genes on one of the strands as a function

of the number of genes surveyed. For this, copy first mgGenes.txt from Data to

your current directory

cp ../Data/mgGenes.txt .

Then the command

cut -f 4 mgGenes.txt | head -n 100 | grep + | wc -l

counts the number of genes on the plus strand among the first 100 genes. Write a

script that counts the number of genes on the plus strand among the first 1, 2, ..., 525

genes and save the script as countGenes.sh.

Problem 55 Edit your script such that it prints the number of genes on the plus

strand as a function of the number of genes investigated. Then plot that function

using gnuplot.

Problem 56 Loops in shell scripts can be nested. Edit countGenes.sh such that

it prints the counts for the plus and the minus strands. Separate the two data sets by

a blank line. Then plot the two functions in the same graph.

16 1 The UNIX Command Line

1.3.2 Sed

Problem 57 Instead of using an interactive editor like emacs to replace -2 by _2
in Problem 35, we could have used the stream editor sed:

sed 's/-2/_2/' mgGenes.txt

A construction like s/a/b/ is a small program: Substitute (s) some expression a
by some expression b. Carry out the replacement of -2 by _2, and save the result in

mgGenes3.txt. Use diff to check the new file is identical to your manual edit

in mgGenes2.txt.

Problem 58 Next, we investigate how many genes have proper names. We start by

cutting out the names in the fifth column, but still need to delete the blank lines:

cut -f 5 mgGenes.txt | sed '/^$/d'

where the sed command means, delete (d) a line whenever the start of a line (ˆ)

is followed directly by its end ($). How many of the 525 genes have a name rather

than just an accession number?

Problem 59 Apart from substituting (s) and deleting (d), sed can print (p) partic-

ular lines, for example,

sed -n '56p' mgGenes3.txt

The option -n causes sed to not print non-matching lines. What happens if you

leave out the -n? Find out by comparing the sed result to mgGenes3.txt using

diff.

Problem 60 Sed can also output a range of lines:

sed -n 'x,yp'

where x is the starting line, y the end. Write a sed script that replaces head and

check your result with diff.

Problem 61 In Problem 30 we used grep to find the gene names containing a

hyphen (“-”). Use sed to carry out the same search.

Problem 62 What is the range of gene positions in M. genitalium? The entries in

mgGenes3.txt happen to be sorted, and we could rely on that; but let us make

sure and sort all start and end positions ourselves. First, we write all positions in a

single column by replacing TAB by newline:

cut -f 2,3 mgGenes3.txt | sed 's/\t/\n/'

In case your version of sed does not allow this substitution, try the equivalent tr
command

cut -f 2,3 mgGenes3.txt | tr '\t' '\n'

1.3 Scripts 17

Next, sort the positions using sort. The default mode of sort is alphabetical. Find

out how to sort the positions numerically to discover the smallest and the largest

position.

Problem 63 What would happen if by accident you sorted the gene positions alpha-

betically?

Problem 64 Check that the genes in mgGenes3.txt are sorted by start position.

Problem 65 Next we ask, whether any of the genes in M. genitalium overlap. Here

is a hypothetical pair of overlapping genes:

G1 1000 2000 +
G2 1990 3000 +

Does the genome of M. genitalium contain such configurations?

Problem 66 Several sed commands can be applied to the same input. For exam-

ple, we might want to remove empty lines from the gene symbols and remove all

underscores:

cut -f 5 mgGenes3.txt | sed '/^$/d;s/_//';

Instead of writing the sed commands on the command line, they can be written in

a file, say filter.sed, and executed as

sed -f filter.sed

where filter.sed is

/^$/d # delete empty lines
s/_// # remove underscores

Gyrases are an important family of genes involved in the maintenance of DNA

topology. How many gyrases does the genome of M. genitalium contain? User

filter.sed in your answer.

1.3.3 AWK

Problem 67 A typical AWK program looks like this:

awk '{print $2}' mgGenes3.txt

Try out the code above; which column does it print? Print the last column.

Problem 68 It is not necessary to provide an input file. For example, enter

awk '{print "You entered: " $0}'

18 1 The UNIX Command Line

The program now waits for input and prints whatever is entered, which is referred to

as $0. In AWK—like on the shell—two strings are concatenated simply by writing

them next to each other. To exit, press C-c C-c. Write an AWK program that prints

the sum of two numbers entered interactively by the user.

Problem 69 The general structure of an AWK program is

pattern {action}
pattern {action}
...

Without a pattern, all input lines are matched. A pattern might be

$4˜/[+]/

to match lines where the fourth column contains a plus. Write an AWK program that

prints only the genes on the plus strand; then write a variant that prints only the genes

on the minus strand.

Problem 70 What happens if you leave out the action block in your previous com-

mand?

Problem 71 Recall that drawGenes converts input like

100 400 +

to a box above the zero line

100 0
100 1
400 1
400 0

and input like

600 1500 -

to a box below the zero line

600 0
600 -1
1500 -1
1500 0

which we can then plot as

Check this by comparing the output from

cut -f 2-4 mgGenes3.txt | head

1.3 Scripts 19

to the output from

cut -f 2-4 mgGenes3.txt | drawGenes | head

Write an AWK program to carry out this transformation. Save it indrawGenes.awk
and run it

awk -f drawGenes.awk mgGenes3.txt |
gnuplot -p pipe.gp

where pipe.gp contains

unset ytics
set xlabel "Position (bp)"
plot[][-10:10] "< cat " title "" with lines

Problem 72 Use AWK and sort to find the lengths and accession numbers of the

longest and shortest genes in M. genitalium.

Problem 73 This program counts the lines in mgGenes3.txt:

awk '{c = c + 1}END{print "Lines: " c}' mgGenes3.txt

Notice the END pattern, which precedes a block executed once after all the lines in

a file have been dealt with. A shorter way of expressing the line count is

awk '{c += 1}END{print "Lines: " c}' mgGenes3.txt

And since we are just adding 1 at every step, we can write even more succinctly

awk '{c++}END{print "Lines: " c}' mgGenes3.txt

Compute the average length of genes in M. genitalium.

Problem 74 We can save the lengths of all genes in the array len and then print

them

{
l = $3-$2+1
len[n++] = l

}END {
for(i=0; i<n; i++)

print len[i]
}

An array can be thought of as a table with indexed entries; in the case of len the

table looks like this:

20 1 The UNIX Command Line

index value

0 1143

1 933

2 1953

. . .

524 810

The variance of values xi is defined as

s2 =

∑n
i=1(xi − x)2

n − 1
,

where x is their average. Modify the array-code above to determine the variance of

gene lengths. Check your result using the program var, which is available from the

book site. If there is a discrepancy between your result and var, try using printf
instead of print:

printf "Var: %e\n", v

where %e is the “engineering” format used by var.

Problem 75 We have already seen that genes are not distributed uniformly between

the forward and reverse strand along the M. genitalium genome and that the variance

of their lengths is huge. Our next question is, are gene lengths also distributed nonuni-

formly along the M. genitalium genome? To investigate, again save the lengths in an

array and then plot the cumulative length as a function of gene rank. Normalize the

cumulative length such that it lies between 0 and 1 and plot it together with the value

expected if gene lengths are distributed uniformly along the genome.

Problem 76 The program uniq finds unique entries in an alphabetically sorted

list. Use sort and uniq to determine the number of unique gene names in

mgGenes3.txt. Is any name repeated? Hint: Recall from Problem 58 how to

remove empty lines.

Problem 77 Use sort and uniq to find the number of distinct gene lengths in M.

genitalium.

Problem 78 The option -c switches uniq into counting mode. To find the most

frequent gene lengths, numerically sort the output of uniq -c. What are the five

most frequent gene lengths? Hint: Reverse-sort the output using the -r option of

sort.

Problem 79 Here is an AWK version of uniq -c:

{
count[$1]++

}END {
for(a in count)

print count[a], a
}

1.3 Scripts 21

In contrast to uniq, this program works on unsorted and sorted input. Consider the

construct count[$1]++. Since $1 can be any string, not just a number, it is called

a key rather than an index. And since consecutive index numbers are characteristic

of arrays, count is called a hash instead of an array. The for in construct goes

through all the keys of a hash. Notice also the comma in the print command for

delineating two strings. Copy the AWK version of uniq -c into uniqC.awk and

make sure it generates the same output as uniq -c (Problem 78). This is best done

by removing the leading blanks in the output from uniq -c with

sed 's/ *//'

which means, substitute (s) one or more (*) blanks by nothing.

Problem 80 Use uniqC.awk to plot the count of gene lengths as a function of

length.

Problem 81 To complement the END pattern, there is also a BEGIN pattern, which

opens a block executed before any input lines are dealt with. This makes it possible

to write “ordinary” programs, which are executed once. If, for example, we would

like to generate a random DNA sequence in the program ranSeq.awk, we could

write:

BEGIN{
print ">RandomSequence"
srand(seed)
s[0] = "A"
s[1] = "T"
s[2] = "C"
s[3] = "G"
for(i=0; i<10; i++){

j = int(rand() * 4)
printf("%s", s[j])

}
printf("\n")

}

and execute

awk -v seed=$RANDOM -f ranSeq.awk

The output is in FASTA format, which means that each sequence gets a header line,

which starts with >, followed by the sequence data on one or more lines. Notice the

-v option, which allows variables in the program to be set on the command line.

Write a version of ranSeq.awk which takes as input not only the seed for the

random number generator, but also the sequence length. Note that the -v option

needs to be repeated for every variable set on the command line.

Chapter 2

Constructing and Applying Optimal
Alignments

2.1 Sequence Evolution and Alignment

DNA sequences evolve through mutations, insertions, and deletions of single nucleotides

or small groups of nucleotides. We begin with a few paper and pencil exer-

cises demonstrating the relationship between the evolutionary history of two DNA

sequences and their alignment. This is followed by the computation of alignments.

New Concepts

Name Comment

global alignment homology across all residues

pairwise alignment comparing homologous positions

sequence evolution change over time

New Program

Name Source Help

gal book website gal -h

Problem 82 Consider a short example sequence, S = ACCGT, which is passed from

parent to child to grand-child, and so on. If replication were perfect, nothing would

ever change. However, we only need to look at the biodiversity around us to remind

ourselves that mutations do occur. Say, the G at position 4 in our example sequence

changes into a C. Now the ancestral sequence has split into two versions, or alleles,

which we can visualize as

© Springer International Publishing AG 2017

B. Haubold and A. Börsch-Haubold, Bioinformatics

for Evolutionary Biologists, https://doi.org/10.1007/978-3-319-67395-0_2

23

24 2 Constructing and Applying Optimal Alignments

ACCGT

ACCCTACCGT

G4 → C4

An alignment summarizes this scenario by writing nucleotides with a common ances-

tor on top of each other as follows:

ACCGT
ACCCT

Such nucleotides are called “homologous”. Place a further mutation, an insertion,

and a deletion along the lines of descent above. Write down the resultant sequences

and their alignment.

Problem 83 With few exceptions, we can only sample contemporary sequences,

while ancestral sequences remain unknown. Given two contemporary sequences,

S1 = ACCGT and S2 = ATGT, we wish to infer their evolutionary history by aligning

them. One possible alignment is

ACCGT
ATGT-

The following is an evolutionary scenario compatible with that alignment:

ACGG

ACCGT ATGT

C2 → T2

G4 → T4

G3 → C3

-5 → T5

Draw an alternative evolutionary scenario leading to S1 and S2.

Problem 84 Consider again the two contemporary DNA sequences S1 = ACCGT
and S2 = ATGT and write down five possible alignments. For each alignment note

the minimal number of evolutionary events separating the two sequences since diver-

gence from their hypothetical last common ancestor. A gap of length l is counted as

l events. Here is an example:

ACCGT
ATGT-

2.1 Sequence Evolution and Alignment 25

There are three mismatches and one gap, hence four events.

Problem 85 To formalize the counting of evolutionary events, alignments are scored

according to a score scheme, for example: match = 1, mismatch = −3, and gap,

g = go + l × ge,

where go = −5 denotes gap opening, l the gap length and ge = −2 gap extension.

Use this scheme to score your solutions to Problem 84.

Problem 86 Our gap score scheme implies that a newly opened gap is immediately

extended by at least one step. How would you express the alternative view where

gap opening itself leads to a gap?

Problem 87 Alignments are usually calculated with a computer. Go to the direc-

tory BiProblems and make the directory FirstAlignments. Change into it

and print the example sequences S1 = ACCGT and S2 = ATGT in FASTA format

(Problem 81) onto the command line. Find out what echo -e does and use it. What

happens if you leave out the -e? Save the files in seq1.fasta and seq2.fasta.

Problem 88 Download gal from the course website and install it as explained in

Problem 39. Check the usage of gal by typing

gal -h

Then use gal to align S1 and S2. Which gap scoring scheme is implemented by

gal? Can you construct an alternative alignment with the same score?

Problem 89 Instead of playing with toy sequences, we now align two real sequences

contained in hbb1.fasta and hbb2.fasta. Copy these files from Data to your

current directory. What do these sequences encode? Align them using gal. Where

do they differ?

Problem 90 Find the position of the mismatch; use the -l option of gal to make

this easier.

Problem 91 Recall thathbb2.fasta is a partial CDS, which means it can be trans-

lated in frame starting at position 1. Does the single nucleotide difference between

seq1.fasta and seq2.fasta lead to an amino acid change?

2.2 Amino Acid Substitution Matrices

DNA sequences are usually scored using a simple scheme involving only matches,

mismatches, and gaps. However, pairs of amino acids all get their own score, which

is summarized in substitution matrices such as the one shown in Fig. 2.1. There are

two reasons for this: The structure of the genetic code and the diverse chemistry of

http://dx.doi.org/10.1007/978-3-319-67395-0_1
http://dx.doi.org/10.1007/978-3-319-67395-0_1

26 2 Constructing and Applying Optimal Alignments

A R N D C Q E G H I L K M F P S T W Y V

A 5 -4 -2 -1 -4 -2 -1 0 -4 -2 -4 -4 -3 -6 0 1 1 -9 -5 -1

R -4 8 -3 -6 -5 0 -5 -6 0 -3 -6 2 -2 -7 -2 -1 -4 0 -7 -5

N -2 -3 6 3 -7 -1 0 -1 1 -3 -5 0 -5 -6 -3 1 0 -6 -3 -5

D -1 -6 3 6 -9 0 3 -1 -1 -5 -8 -2 -7 -10 -4 -1 -2 -10 -7 -5

C -4 -5 -7 -9 9 -9 -9 -6 -5 -4 -10 -9 -9 -8 -5 -1 -5 -11 -2 -4

Q -2 0 -1 0 -9 7 2 -4 2 -5 -3 -1 -2 -9 -1 -3 -3 -8 -8 -4

E -1 -5 0 3 -9 2 6 -2 -2 -4 -6 -2 -4 -9 -3 -2 -3 -11 -6 -4

G 0 -6 -1 -1 -6 -4 -2 6 -6 -6 -7 -5 -6 -7 -3 0 -3 -10 -9 -3

H -4 0 1 -1 -5 2 -2 -6 8 -6 -4 -3 -6 -4 -2 -3 -4 -5 -1 -4

I -2 -3 -3 -5 -4 -5 -4 -6 -6 7 1 -4 1 0 -5 -4 -1 -9 -4 3

L -4 -6 -5 -8 -10 -3 -6 -7 -4 1 6 -5 2 -1 -5 -6 -4 -4 -4 0

K -4 2 0 -2 -9 -1 -2 -5 -3 -4 -5 6 0 -9 -4 -2 -1 -7 -7 -6

M -3 -2 -5 -7 -9 -2 -4 -6 -6 1 2 0 10 -2 -5 -3 -2 -8 -7 0

F -6 -7 -6 -10 -8 -9 -9 -7 -4 0 -1 -9 -2 8 -7 -4 -6 -2 4 -5

P 0 -2 -3 -4 -5 -1 -3 -3 -2 -5 -5 -4 -5 -7 7 0 -2 -9 -9 -3

S 1 -1 1 -1 -1 -3 -2 0 -3 -4 -6 -2 -3 -4 0 5 2 -3 -5 -3

T 1 -4 0 -2 -5 -3 -3 -3 -4 -1 -4 -1 -2 -6 -2 2 6 -8 -4 -1

W -9 0 -6 -10 -11 -8 -11 -10 -5 -9 -4 -7 -8 -2 -9 -3 -8 13 -3 -10

Y -5 -7 -3 -7 -2 -8 -6 -9 -1 -4 -4 -7 -7 4 -9 -5 -4 -3 9 -5

V -1 -5 -5 -5 -4 -4 -4 -3 -4 3 0 -6 0 -5 -3 -3 -1 -10 -5 6

Fig. 2.1 PAM70 amino acid score matrix; match scores are shown in red

the encoded amino acids. According to the code, pairs of amino acids are separated

by one, two, or three mutations. As to chemical diversity, the canonical amino acids

also vary with respect to shape, polarity, charge, and hydropathy. In this chapter

we explore how the genetic code and the chemistry of the encoded amino acids are

incorporated into matrices such as Fig. 2.1 for scoring protein sequence alignments.

New Concepts

Name Comment

conservation of pairs of amino acids amino acids differ in evol. rate

matrix multiplication simulate evolution

robustness of genetic code has evolved

New Programs

Name Source Help

genCode book website genCode -h
histogram book website histogram -h
pamLog book website pamLog -h
pamNormalize book website pamNormalize -h
pamPower book website pamPower -h

2.2.1 Genetic Code

Problem 92 Our exploration of the genetic code follows a classic publication from

the early 1990s [22]. Figure 2.2 shows the genetic code. There are 43 = 64 codons

2.2 Amino Acid Substitution Matrices 27

T C A G

T Phe/F Ser/S Tyr/Y Cys/C T

Phe/F Ser/S Tyr/Y Cys/C C

Leu/L Ser/S Ter/* Ter/* A

Leu/L Ser/S Ter/* Trp/W G

C Leu/L Pro/P His/H Arg/R T

Leu/L Pro/P His/H Arg/R C

Leu/L Pro/P Gln/Q Arg/R A

Leu/L Pro/P Gln/Q Arg/R G

A Ile/I Thr/T Asn/N Ser/S T

Ile/I Thr/T Asn/N Ser/S C

Ile/I Thr/T Lys/K Arg/R A

Met/M Thr/T Lys/K Arg/R G

G Val/V Ala/A Asp/D Gly/G T

Val/V Ala/A Asp/D Gly/G C

Val/V Ala/A Glu/E Gly/G A

Val/V Ala/A Glu/E Gly/G G

4 5 6 7 8 9 10 11 12 13 14

Fig. 2.2 The genetic code with three-letter and single-letter amino acid designations, and color

coding according to amino acid polarity

in total, of which three are stop codons. How long is the average open reading frame

that starts with a start codon and ends with a stop codon?

Problem 93 The program simOrf.awk prints the lengths of open reading frames,

ORFs in random DNA sequences. It can be run as

awk -v seed=$RANDOM -v n=10000 -f simOrf.awk

where seed is the seed for the random number generator and n the number of

iterations. Test the predicted ORF length from Problem 92 using simOrf.awk.

Problem 94 Use histogram and gnuplot to plot the distribution of 1000 ran-

dom ORF lengths.

Problem 95 The amino acids in Fig. 2.2 are color coded according to polarity. What

are the two most polar amino acids?

Problem 96 How many mutations are necessary to get from phenylalanine (Phe)

to leucine (Leu)? From Phe to tryptophane (Trp)? From Phe to glutamate (Glu)?

Problem 97 Figure 2.3 shows the side chains of all 20 amino acids. Among the many

respects in which they differ, polarity is the most important [22]. For example, the

28 2 Constructing and Applying Optimal Alignments

NH
2

N

HN

H

H
2

O

N

O

OH SH

H
2

N

O O

OH

Alanine, A Arginine, R Asparagine, N Aspartate, D Cysteine, C Glutamine, Q Glutamate, E

N

NH

NH
2

S

Glycine, G Histidine, H Isoleucine, I Leucine, L Lysine, K Methionine, M Phenylalanine, F

OH OH

NH

OH

Proline, P Serine, S Threonine, T Tryptophane, W Tyrosine, Y Valine, V

Fig. 2.3 The side chains of the 20 amino acids specified by the genetic code again color-coded by

polarity. Glycine is merely bound to a hydrogen atom, the dot

aliphatic side chain of leucine has a much lower polarity than the side chain of glu-

tamate, which is negatively charged at physiological pH. The file polarity.dat
contains polarity values for all amino acids. Make the directory AminoAcidMat
for this section, change into it and copy polarity.dat from Data. What is the

most polar amino acid? The least polar?

Problem 98 The genetic code maps 64 codons to 20 amino acids. What is the largest

number of codons encoding the same amino acid? The smallest?

Problem 99 A single nucleotide change in a codon can either leave the amino acid

unchanged or not. Mutations that do not affect the encoded amino acid are called

synonymous, non-synonymous their opposite. It is well known that mutations at the

third codon position are often synonymous. Are there any synonymous mutations at

the first two positions?

Problem 100 How many different genetic codes are there, if we leave the arrange-

ment of codons unchanged and simply shuffle the 20 amino acids among them? If

you are unsure, consider how many different arrangements there are for two books

on a shelf, 3, 4, and so on.

Problem 101 Figure 2.4 shows the polarities of the 20 amino acids specified by

the genetic code. Let us focus on phenylalanine, F, which is encoded by TT[TC].

2.2 Amino Acid Substitution Matrices 29

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C

I

L

FW

M

Y

V P

T

A S G HQ R N

K

E D

Polarity

Fig. 2.4 Amino acid polarity, taken from [22]

Through the three possible single base mutations at the first position it can be turned

into leucine (L), isoleucine (I), or valine (V). The polarity values of these four mutant

amino acids are close to that of F (Fig. 2.4). Which amino acids can be reached

through single base mutations at the second and third positions?

Problem 102 It seems as if there is a correlation between distances in codon space

and distances in polarity space. To further explore this impression, the mean squared

change in polarity is computed over all single base changes at every codon of the

natural code. This quantity is called MS0. Then the amino acids are shuffled between

the codons and MS0 is computed again. This computation is carried out bygenCode.

If you run

genCode polarity.dat

The program carries out the shuffling 104 times. If it finds a better code than the

natural code, it prints it out. At the end of the run there is a little table of MS0 values

like

ms0
nc 5.19
m(rc) 9.39

where nc refers to the natural code and m(rc) to the mean of random codes. The

-p option prints all MS0 values, not just those better than the MS0 = 5.19 of the

natural code. Locate 5.19 in that distribution. Is the natural code typical among the

random codes?

Problem 103 In default mode genCode prints a random code if its MS0 is less

than that of the natural code. Run the program a few times with default parameters.

What is roughly the proportion of random codes that are more polarity-robust than

the natural code?

Problem 104 We can rephrase our search for better random codes as a null hypothe-

sis: “The natural code is not mutation-optimized”. What is the error probability when

rejecting this null hypothesis? Use genCode with more than the default number of

iterations to arrive at a robust answer.

30 2 Constructing and Applying Optimal Alignments

Problem 105 Apart from polarity, amino acids differ also according to hydropa-

thy, molecular volume, and isoelectric point. These quantities are stored in the files

hydropathy.dat, volume.dat, and charge.dat. Is the genetic code opti-

mized with respect to them, too?

2.2.2 PAM Matrices

The PAM matrices are the oldest amino acid substitution matrices still in use today.

PAM stands for Percent Accepted Mutations [14]. This is the number of mutations

per one hundred amino acids, as opposed to the percent difference between two

amino acid sequences. The percent difference cannot grow beyond 100%, while the

number of mutations that hit a certain stretch of sequence has no upper bound. A

different way to think about PAM, is as a unit of evolutionary time: the time until

one percent of the amino acids in a sequence have mutated, which is roughly three

million years [24, p. 19]. This time dimension also suggests why we need different

substitution matrices: In the limit of 0 PAM, all homologous amino acids are identical.

So any mismatch would indicate a nonhomologous match and should carry a very

low score. As time passes, the probability increases that two different amino acids

are in fact homologous. Accordingly, a mismatch should carry a greater score than

at PAM 0. To see how this insight leads to substitution matrices, we compute PAM

matrices from scratch.

Problem 106 For the subsequent computations change into BiProblems, create

the new directory PamComputation and change into it. Copy pam1.txt from

Data into your working directory. Look at pam1.txt by typing

cat pam1.txt

It contains the mutation probabilities for all 20 amino acids after 1 PAM has elapsed.

The entry Mi j indicates the probability that the amino acid in column j has mutated

into the amino acid in row i . What is the mutation probability of alanine to serine?

Serine to alanine?

Problem 107 The main diagonal of pam1.txt contains the probabilities of no

change. For example, the probability that an alanine has not changed after 1 PAM

is 0.9867. Next, we investigate the probability of drawing any two identical amino

acids. For this we need to know for each amino acid the probability of finding it

in a sequence. Let us pretend for now all amino acids have the same frequency, so

the probability of finding a particular one is 1/20. Then the probability of finding

a pair of alanines is 1/20 × 0.9867, the probability of finding a pair of arginines

1/20 × 0.9913, and so on. What is the percent difference between homologous pro-

tein sequences after 1 PAM has elapsed?

Problem 108 Use the program pamPower to multiply pam1.txt n times with

itself to generate Mn . This matrix multiplication simulates protein evolution for n

2.2 Amino Acid Substitution Matrices 31

PAM units of time. Do this for n = 1, 10, 100, 1000. In the case of M1000, what do

you notice as you read along the rows of the matrix, compared to M10 and M100?

Problem 109 Compute Mn for n = 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 and com-

pute the percent difference between homologous amino acids each time. Plot this

percent difference as a function of PAM.

Problem 110 Copy the file aa.txt into your working directory and print it to

screen (cat). It contains amino acid frequencies in the same order in which the

amino acids are listed in the fist row. What is the most frequent amino acid? The

least frequent?

Problem 111 Compare the columns of M1000 with the amino acid frequencies in

aa.txt. What do you observe?

Problem 112 Let us calculate a particular PAM matrix, say PAM70. We first

compute the corresponding probability matrix using pamPower. The output of

pamPower then needs to be “normalized” through division by the amino acid fre-

quencies in aa.txt. This is done using the output of pamPower as the input to

pamNormalize.

Problem 113 Use pamLog to calculate the final PAM70 matrix. Save this in

pam70sm.txt (the sm stands for “substitution matrix”). Then calculate by hand

the score of the following alignment using your PAM70:

ATLSE
SNLSD

Problem 114 Extract by hand all mismatched pairs of amino acids in PAM70 that

have a score greater than zero. Look up the side chains of these amino acids in

Fig. 2.3. What do you notice?

Problem 115 Use your PAM70 matrix together with gal to revisit Problem 89,

where we aligned the RNA-sequences encoding hemoglobin stored inhbb1.fasta
and hbb2.fasta on the DNA level. Now we align it on the protein level. Use

transeq to translatehbb1.fasta andhbb2.fasta in all three forward reading

frames to identify the correct frame. Like all EMBOSS-tools, transeq can read

from stdin when executed with the -filter flag:

transeq -filter < hbb1.fasta

Save the resulting protein sequences in hbb1prot.fasta and hbb2prot.
fasta, and align them. Can you spot the non-synonymous mutation?

Problem 116 What happens to the conservation of pairs of amino acids if we let

the evolutionary distance between two protein sequences go toward infinity by com-

puting PAM1000, PAM2000, and PAM3000? What is the most conserved amino

acid?

32 2 Constructing and Applying Optimal Alignments

Problem 117 What happens to the alignment of hbb1prot.fasta and

hbb2prot.fasta if you use pam1000sm.txt, pam2000sm.txt, or

pam3000sm.txt?

Problem 118 In Problem 107 we used 1/20 to approximate the amino acid fre-

quencies. The program percentDiff.awk incorporates the exact amino acid

frequencies in aa.txt. Run it like

pamPower -n 70 pam1.txt | tail -n +2 | awk -f
percentDiff.awk

In Problem 109 we iterated the approximate %-difference computation using the

script pamPower.sh. Copy the original script to pamPower2.sh and extend it

to compare the two results. Plot both sets of results in one graph.

2.3 The Number of Possible Alignments

When looking for the best alignment, we might be tempted to construct all alignments

and pick the one with the highest score. But before doing that, let us compute the

number of alignments that can be formed between two sequences. Our calculation

starts from the fact that every alignment ends in one of three ways as follows:

R
R

,
-
R

, or
R
-

where R stands for residue and might be an amino acid or a nucleotide. The first end

implies that the remainders of both sequences to be aligned are one residue shorter;

the other two ends imply that the remainder of one of the two sequences is one

residue shorter. Hence, we can write the number of possible alignments between two

sequences of lengths m and n as

f (m, n) = f (m − 1, n − 1) + f (m − 1, n) + f (m, n − 1). (2.1)

In this function, f is a function of itself. This type of function is called recursive.

As it stands, the recursion could go on for ever; but it is clear that sequences cannot

have lengths less than zero. Moreover, if either of the two sequences (or both) have

length zero, there is only one way to align them, for example

AATG

No other arrangement is possible, as columns of gaps are not allowed. We can sum-

marize these observations as a set of three equations:

f (x, 0) = f (0, y) = f (0, 0) = 1, (2.2)

2.3 The Number of Possible Alignments 33

which are called boundary conditions. In this section, we investigate two different

approaches—one slow, the other fast—to evaluate Eq. (2.1).

New Concepts

Name Comment

recursive function a function of itself

top-down solution “naïve” solution of recursive function

bottom-up solution better solution of recursive function

New Program

Name Source Help

numAl book website numAl -h

Problem 119 Compute the number of possible alignments between two sequences

of lengths two and three by directly solving Eq. (2.1). Draw a tree in which each term

on the left of that equation is linked to the three terms on its right as follows:

f (2, 3)

f (1, 3)

?

?

?

f (1, 2)

?

?

?

f (2, 2)

?

?

?

Problem 120 This direct approach to solving Eq. (2.1) is also called the top-down

solution, as it proceeds from the most complex, “top”, component of the problem

down to its less complex parts. This leads to repeated computation of component

terms. To avoid this, we can work our way up from the boundary condition. For this

bottom-up solution, we need a matrix containing each possible term f (i, j). For the

example sequences of lengths 2 and 3 this is

0 1 2 3

0

1

2

34 2 Constructing and Applying Optimal Alignments

where every entry f (i, j) is the number of possible alignments between two

sequences of lengths i and j . Compute f (3, 2), by filling in this matrix, starting

with the boundary conditions in Eq. (2.2) and then applying Eq. (2.1). For exam-

ple, f (1, 1) is found by adding its three neighboring entries, f (1, 1) = f (0, 1) +

f (0, 0) + f (1, 0).

Problem 121 Write down all possible global alignments between the sequences

S1 = AGT and S2 = AC.

Problem 122 Use the program numAl to compute the number of possible global

alignments between two sequences of lengths 106.

Problem 123 Create the directory NumberOfAlignments and change into it.

Write a shell script, numAl.sh, that drives numAl to compute the number of

alignments between sequence pairs with equal lengths 1, 2, ..., 106. Plot the number

of alignments as a function of sequence length. Use the command

set logscale y

in your gnuplot script.

Problem 124 Save numAl.sh to numAl2.sh to compute the number of possible

alignments using the top-down solution. What do you observe? Hint: Remember that

computations can be stopped using C-c C-c.

Problem 125 Plot the run time of the top-down solution with lengths 1, ..., 14. To

make the log-transformation in gnuplot possible, filter out all zero run times.

Problem 126 Determine the linear function describing the graph you drew in Prob-

lem 125 and use this to calculate the number of years necessary to determine the

number of possible alignments between two sequences of length 106 using the top-

down solution.

2.4 Dot Plots

Dot plots provide a simple but effective method of sequence comparison [19]: Write

two sequences along the two dimensions of a rectangle and place a dot wherever

they are identical. When comparing a sequence to itself, this yields the main diagonal

shown in Fig. 2.5. In our example, there are also two off-diagonals due to the repetition

of TAT. In this section, we use dot plots to investigate the alcohol dehydrogenase

locus in two species of the fruit fly, Drosophila.

2.4 Dot Plots 35

A T A T T A C T A T

A

T

A

T

T

A

C

T

A

T

Fig. 2.5 Dot plot with matches of length three or more shown as lines

New Concepts

Name Comment

dot plot simple sequence comparison

gene duplication evolutionary mechanism

orthology result of speciation

paralogy result of gene duplication

New Programs

Name Source Help

cchar book website cchar -h
dotPlotFilter.awk book website dotPlotFilter.awk -v h=1
randomizeSeq book website randomizeSeq -h
repeater book website repeater -h

Problem 127 Draw by hand a dot plot comparing S = ACGTACGT to itself. Connect

the dots along diagonals by lines. Can you explain the pattern?

Problem 128 Create a new working directory, DotPlot, and copy

dmAdhAdhdup.fasta and dgAdhAdhdup.fasta into it. Which genes do

these sequences encode, and which organisms are they taken from? Also, use cchar
to count the nucleotides in each sequence.

Problem 129 In the following problems, we construct a pipeline for drawing a dot

plot to compare dmAdhAdhdup.fasta and dgAdhAdhdup.fasta. How many

cells will the dot plot contain?

Problem 130 Since dot plots display repeats between two sequences, we use our

program repeater for finding repeats:

cat *.fasta | repeater

By default repeater returns the longest repeat. What is the longest repeat between

dmAdhAdhdup.fasta and dgAdhAdhdup.fasta?

Problem 131 Use our program randomizeSeq to randomize the two example

sequences. How long is the longest repeat now? Repeat the randomization a few

times. Is it likely that the true longest repeat has occurred by chance?

36 2 Constructing and Applying Optimal Alignments

Adhdm Adh-dupdm

Adhdg Adh-dupdg

Fig. 2.6 All genes are characterized by homology (box); the solid lines connect pairs further

characterized by orthology, the dashed lines pairs characterized by paralogy pairs by dashed lines

Problem 132 We now turn our attention to all repeats of some minimum length.

When plotting these, we need to know the order in which the two sequences reach

repeater. Hence we replace the *.fasta in our pipeline by

cat dmAdhAdhdup.fasta dgAdhAdhdup.fasta |
repeater -m 12 |
head -n 2

to get one example repeat of minimum length 12:

#len|strId:pos_1|...|strId:pos_n|seq
13|f2:3096|f1:3129|AAAATAGATAAAT

This output means that a repeat of length 13 has been found at position 3096 in

sequence #2 (D. guanche) and at position 3129 in sequence #1 (D. melanogaster); the

sequence of the repeat is AAAATAGATAAAT. To convert this output of repeater
to dot plot coordinates, pipe it through the AWK program dotPlotFilter.awk.

The usage of this program is explained in the header of the script.

Problem 133 Plot the output from dotPlotFilter.awk with various repeat

lengths, upto 12; what do you observe?

Problem 134 We denote the four alcohol dehydrogenases we are dealing with by

Adhdm, Adh-dupdm, Adhdg, and Adh-dupdg, where dm and dg refers to D. melanogaster

and D. guanche, respectively. All four of them have a primeval Adh-sequence as their

common ancestor, so they are covered by homology and often referred to as homol-

ogous. The genes that have diverged as a result of the duplication event are charac-

terized by paralogy and often called paralogous. Genes that differ as a result of the

divergence between D. melanogaster and D. guanche are characterized by orthology

and usually called orthologous. Figure 2.6 depicts these classes of evolutionary rela-

tionships. Are the paralogous pairs or the orthologous pairs more similar? In other

words, which of the two types of pairs has a more recent last common ancestor?

Problem 135 Draw by hand a cartoon phylogeny of the four Adh genes Adhdm,

Adh-dupdm, Adhdg, and Adh-dupdg (Fig. 2.6). Mark the times of duplication and spe-

ciation.

2.4 Dot Plots 37

Problem 136 Look again at the dot plots from Problem 133. Can you spot the

location of Adh and Adh-dup? Is the gene duplication visible in this plot?

Problem 137 One of the two species contains an insertion in the Adh-region. Can

you spot it on the dot plot? Which species is affected?

Problem 138 To better understand our dot plot, we need to know the exon coordi-

nates of Adh and Adh-dup. These are contained in the Genbank files

dmAdhAdhdup.gb and dgAdhAdhdup.gb. Genbank files contain not only the

sequence information but also annotations like exon positions. Look up the coordi-

nates of the protein coding sequences (CDS) for the two genes Adh and Adh-dup.

Problem 139 Add the exons within the CDS of D. melanogaster as little boxes

along the x-axis to our graph from Problem 133 (repeater -m 12). For example,

an interval like 2021–2119 would become the coordinates (2012, 0), (2012, 150),

(2119, 150), and (2119, 0). To achieve this, first write a pipeline to convert the CDS

coordinates into a list of start and end positions, one pair per line, and save the output

as cdsDm.txt. Then write boxesX.awk that takes as input cdsDm.txt and

returns box-coordinates. Draw the box-coordinates together with the dot plot. Did

the insertion affect an exon or an intron?

Problem 140 To further investigate the location of the insertion with respect to

introns/exons, we draw lines across the graph to indicate the insertion. Lines are

drawn in gnuplot as arrows without heads as follows:

set arrow from x1,y1 to x2,y2 nohead

Use this syntax to draw lines along the borders of the insertion in D. melanogaster

across the graph. Since this adds more code to an already lengthy gnuplot com-

mand, save it in the script cdsDm.gp and use it

gnuplot -p cdsDm.gp

Problem 141 Write the script boxesY.awk for adding the exons of D. guanche

along the y-axis, in addition to the exons of D. melanogaster. Then add horizontal

and vertical lines along the CDS borders to see where they intersect with the lines of

the dot plot. Summarize the gnuplot commands in the script adhCds.gp.

2.5 Optimal Alignment

Alignment algorithms are designed to reflect the homology relationship between the

sequences analyzed. If the sequences are homologous across their entire lengths, a

global alignment [37] is computed as shown Fig. 2.7a. If, on the other hand, they

are homologous only locally, say just between coding exons, then they are analyzed

using local alignment [44] as depicted in Fig. 2.7b. Notice that a global alignment

between two sequences is simply one of very many possible local alignments between

them. So global alignment is the generalization of local alignment. As a result, local

38 2 Constructing and Applying Optimal Alignments

(a) (b)

Fig. 2.7 Global (a) and local (b) homology between pairs of sequences. Homologous regions are

shown in black and gray

alignment is used much more widely than global alignment. In this section, we move

from dot plots to global alignment and then on to local alignment. The methods

for global and local alignment are quite similar and are collectively referred to as

“optimal alignment” because they always return the best result under a given score

scheme.

New Concepts

Name Comment

optimal global alignment sequence comparison across full length

optimal local alignment localized sequence comparison

New Programs

Name Source Help

cutSeq book website cutSeq -h
less system man less
time system man time

2.5.1 From Dot Plot to Alignment

Problem 142 Draw by hand a dot plot for sequences S1 = TTCAGGGTCC and S2 =

TACAGTCC. Observe the convention that S1 is written along the top horizontal edge

and S2 along the left vertical edge. Connect the dots in diagonally neighboring cells

as follows:

A

A

C

C

Then write down a global alignment between S1 and S2 that maximizes the number

of matched nucleotides. Which cell in the dot plot corresponds to the last column of

the alignment?

Problem 143 How does the gap in the alignment appear in the dot plot?

2.5 Optimal Alignment 39

2.5.2 Global Alignment

Problem 144 To compute global alignments, we extend the bottom up method for

calculating the number of possible alignments and combine that with path-tracing in

dot plots. Here is an alignment matrix for S1 = ACT and S2 = AC:

- A C T
0 1 2 3

- 0

A 1

C 2

An entry F(i, j) in this matrix is located in row i and column j . Crucially, F(i, j)

is the score of the optimal alignment of the partial sequence S1[1.. j] and S2[1..i].

Which substrings of S1 and S2 does F(2, 1) refer to? Name position and bases.

Problem 145 To actually calculate the values of F(i, j), first define the score of

two sequences of length zero as zero,

- A C T
0 1 2 3

- 0 0

A 1

C 2

Next, we fill in the top row, F(0, j). To calculate F(0, 1), we extend the “Null”-

alignment in F(0, 0) by the first nucleotide from S1 and nothing, that is a gap, from

S2. Here we score a gap as −1. Hence we add −1 to the zero-score of the existing

alignment and enter: The arrow points to the alignment we extended to calculate

- A C T
0 1 2 3

- 0 0 ← −1

A 1

C 2

this entry. Fill in the remainder of the first row of the alignment matrix.

Problem 146 Fill in the first column of the alignment matrix.

Problem 147 To determine F(1, 1), go through the three possible extensions of an

alignment and choose the best: Insertion of a gap into S1 gives

← −1 − 1 = −2

40 2 Constructing and Applying Optimal Alignments

and similarly, insertion of a gap into S2 gives

↑ −1 + −1 = −2.

The remaining possibility is extending the alignment by a nucleotide from S1 and

S2. In our case this results in a match between two As. If we score match = 1, we

can write

տ 0 + 1 = 1.

This is the best result so far, and hence our matrix entry. We can summarize these

steps

F(i, j) = max

⎧

⎨

⎩

F(i − 1, j) + g

F(i − 1, j − 1) + score(S1[j], S2[i])

F(i, j − 1) + g

where g is the gap score; in our simplified algorithm we ignore gap opening, and

hence the gap score is just the extension score, g = ge. The boundary conditions for

this recursion are used to fill in the first row and column of the alignment matrix as

follows:
F(0, 0) = 0

F(0, j) = j × g

F(i, 0) = i × g

The only score still missing is the mismatch score, which we set to -1. Fill in the rest

of the alignment matrix.

Problem 148 Once we have filled in the alignment matrix, the entry in the bottom

right hand cell is the score of the best alignment possible given the score scheme.

However, we do not yet know the actual alignment, only its score. To construct the

corresponding alignment, follow the arrows from the lower right hand cell to the

upper left hand cell. This is called “traceback” and creates the alignment from right

to left as follows:

• տ: write the nucleotide from the horizontal sequence on top of the nucleotide

from the vertical sequence;

• ←: write the nucleotide from the horizontal sequence on top of a gap;

• ↑: write a gap on top of the nucleotide from the vertical sequence.

Problem 149 Figure 2.8 shows the dynamic programming matrix for the global

alignment of S1 = TTCAGGGTCC and S2 = TACAGTCC under the score scheme

• match = 1;

• mismatch = −1;

• gap, g = −1.

What is the score of the optimal alignment between S1 and S2?

2.5 Optimal Alignment 41

F(i, j) T T C A G G G T C C

0 1 2 3 4 5 6 7 8 9 10

0 0 ← -1 ← -2 ← -3 ← -4 ← -5 ← -6 ← -7 ← -8 ← -9 ←-10

T 1 ↑ -1 ← 1 ← ← 0 ← -1 ← -2 ← -3 ← -4 ← -5 ← ← -6 ← -7 ← -8

A 2 ↑ -2 ↑ 0 ← 0 ← ← -1 ← 0 ← -1 ← -2 ← -3 ← -4 ← -5 ← -6

C 3 ↑ -3 ↑ -1 ← ↑ -1 ← 1 ← 0 ← ← -1 ← ← -2 ← ← -3 ← ← -4 ← -3 ← ← -4

A 4 ↑ -4 ↑ -2 ← ↑ -2 ↑ 0 ← 2 ← 1 ← 0 ← -1 ← -2 ← -3 ← ← -4

G 5 ↑ -5 ↑ -3 ← ↑ -3 ↑ -1 ↑ 1 ← 3 ← ← 2 ← ← 1 ← 0 ← -1 ← -2

T 6 ↑ -6 ← ↑ -4 ← -2 ↑ -2 ↑ 0 ↑ 2 ← 2 ← ← 1 ← 2 ← 1 ← 0

C 7 ↑ -7 ↑ -5 ↑ -3 ← -1 ↑ -1 ↑ 1 ← ↑ 1 ← 1 ↑ 1 ← 3 ← ← 2

C 8 ↑ -8 ↑ -6 ↑ -4 ← ↑ -2 ← ↑ -2 ↑ 0 ← ↑ 0 ← ↑ 0 ← ↑ 0 ← ↑ 2 ← 4

Fig. 2.8 Dynamic programming matrix for aligning S1 = TTCAGGGTCC and S2 = TACAGTCC

Problem 150 When tracing back the path from the bottom right hand corner to the

top left hand corner of the global alignment matrix in Fig. 2.8, there are cells with

more than one arrow pointing back. In these cells the traceback path splits into two

cooptimal alignments. Write down all cooptimal alignments implied by this matrix.

What are their scores?

Problem 151 Make the directory OptimalAlignment. Change into it and con-

struct two sequence files in FASTA format, seq1.fasta and seq2.fasta, con-

taining S1 = TTCAGGGTCC and S2 = TACAGTCC. Then use the program gal to

compute a global alignment of S1 and S2 under the score scheme defined in Prob-

lem 149. Does the alignment change if you vary the match and mismatch parameters?

Problem 152 Recall that gaps are scored as

g = go + l × ge,

where go denotes gap opening, l gap length, and ge gap extension. Does the alignment

change if you vary the gap opening and gap extension parameters?

Problem 153 In Problem 137 we used a dot plot to detect a large insertion in the

Adh-dup of D. melanogaster when compared to D. guanche. Before we align Adh-

dup from the two fruit flies to investigate this further, which of the two aligned

sequences do you expect to contain a large gap?

Problem 154 Test the prediction made in Problem 153 by globally aligning

dmAdhAdhdup.fasta and dgAdhAdhdup.fasta. View the result by piping

it into the UNIX program less. You can navigate this using d for half a page down,

and u for half a page up. Can you spot the region containing the large gap in Adh-dup?

Press q to quit less. Look up the CDS coordinates in *.gb to determine which

exon or intron is affected by the insertion.

42 2 Constructing and Applying Optimal Alignments

2.5.3 Local Alignment

Problem 155 To get from global to local alignment, we change the algorithm, such

that the score of an alignment cannot become negative. So, the first row and column

are set to zero:

F(i, 0) = F(0, j) = 0

When filling in the remainder of the matrix, the maximum is formed as for the global

alignment, but with zero included:

F(i, j) = max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

F(i − 1, j) + g

F(i − 1, j − 1) + score(S1[j], S2[i])

F(i, j − 1) + g

0

Use these rules to compute by hand the local alignment matrix for S1 = TACGT and

S2 = GACGA if g = −1, match = 1, and mismatch = −1.

Problem 156 The traceback for a local alignment starts at the greatest entry in the

matrix and stops when the first zero is reached. Use this algorithm to determine the

optimal local alignment of S1 = TACGT and S2 = GACGA.

Problem 157 Use lal to compute the optimal local alignment between

dmAdhAdhdup.fasta and dgAdhAdhdup.fasta. Compare the coordinates

of the alignment to the CDS coordinates for D. melanogaster and D. guanche. What

do you observe?

Problem 158 When comparing two sequences, there is only one global alignment,

but there might be more than one local alignment (Fig. 2.7). Use lal to compute the

best two local alignments between our two Adh files. This takes much longer than

computing only the best local alignment. Use time to determine how much longer.

Can you guess why computing two optimal local alignments is slow?

Problem 159 Which part of the Adh/Adh-dup region does the second best local

alignment correspond to?

2.6 Applications of Optimal Alignment

Alignments are used whenever sequences are analyzed. Usually, the algorithms

employed are faster versions of the optimal algorithms we have seen so far. However,

in this section we survey two applications that demonstrate the potential usefulness

even of slow optimal alignment. The first application is homology detection, the

second dating the duplication of Adh.

2.6 Applications of Optimal Alignment 43

New Concepts

Name Comment

homology detection alignment compared to dot plot

divergence time time since two genes split

2.6.1 Homology Detection

Problem 160 We have seen in Problem 136 that the homology between the par-

alogues Adh and Adh-dup is too weak to appear in the dot plot. Can we instead

use global alignment to find a significant match between Adh and Adh-dup of D.

melanogaster? We begin by looking up the coding sequences of both genes as fol-

lows:

grep CDS dmAdhAdhdup.gb
CDS join(2021..2119,2185..2589,2660..2926)
CDS join(3226..3321,3748..4152,4204..4521)

And then cut out the genomic region containing the CDS as follows:

cutSeq -r 2021-2926 dmAdhAdhdup.fasta > dmAdhCds.fasta
cutSeq -r 3226-4521 dmAdhAdhdup.fasta > dmAdhdupCds.

fasta

Use gal to align dmAdhCds.fasta and dmAdhdupCds.fasta. What is

the score of this alignment?

Problem 161 The score just found is rather low. Would a random alignment have

a similar score? Use the program randomizeSeq to generate, say, ten scores for

random alignments between the Adh and Adh-dup:

randomizeSeq -n 10 dmAdhCds.fasta |
gal -i dmAdhdupCds.fasta |
grep Score

Use the program histogram to compute the distribution of 1000 random scores

and plot it with gnuplot. Is the observed score likely due to chance?

Problem 162 We have seen that alignment finds traces of homology where dot plot

does not. To make sure the alignment we found is reliable, let us try the converse: align

two unrelated sequences and test the significance of their score. Save the first and

last kb of dmAdhAdhdup.fasta into separate files, f1.fasta and f2.fasta.

Align them and test the significance of the score by repeatedly randomizing, say,

f2.fasta and realigning these randomized sequences with f1.fasta.

44 2 Constructing and Applying Optimal Alignments

Adhdm Adh-dupdm

Adhdg Adh-dupdg

K1 K2

K3

K4

K5

K6

Fig. 2.9 The four genes in the Adh/Adh-dup region of D. melanogaster and D. guanche, and their

pairwise substitution rates, K

2.6.2 Dating the Duplication of Adh

Problem 163 To date the Adh duplication, we calculate the six pairwise substitution

rates between Adh and Adhdup from D. melanogaster and D. guanche. Since the

speciation time for D. melanogaster and D. guanche is known to be approximately

32 million years [18], we can infer the duplication time by comparing the number of

substitutions since speciation with the number of substitutions since duplication. The

assumption we are making here is that the rate of substitution is constant throughout

evolution, which is known as the “Molecular Clock” assumption. Figure 2.9 shows

the four copies of Adh with the six substitution rates, K1, ..., K6 we wish to compute.

Which of the substitution rates refer to speciation, which to gene duplication?

Problem 164 We base our estimates on the longest exon of Adh and Adh-dup, exon

2. Its coordinates are

Organism Adh Adh-dup

D. melanogaster 2185–2589 3748–4152

D. guanche 2145–2549 3540–3944

Use cutSeq to extract these sequences and call them dmAdhE2.fasta,

dmAdhdupE2.fasta, and so on.

Problem 165 Align the Adh sequences from D. melanogaster and D. guanche and

write a pipeline to compute the number of matches from this. Hint: The AWK function

length(s) returns the length of string s.

Problem 166 The number of mismatches per site is called π . What is π between

D. melanogaster and D. guanche?

Problem 167 The number of substitutions per site, or substitution rate, K , is a

function of π [26]:

K = −
3

4
log

(

1 −
4

3
π

)

.

2.6 Applications of Optimal Alignment 45

Compute the substitution rate between Adh from D. melanogaster and D. guanche,

which is K1 in Fig. 2.9.

Problem 168 What is the number of substitutions per site between D. melanogaster

and D. guanche when estimated from exon 2 of Adh-dup (K2 in Fig. 2.9)?

Problem 169 Having estimated the substitution rate for the split between

D. melanogaster and D. guanche, we now estimate the substitution rate for the

duplication, Kdup. For this purpose, compute the raw number of matches M3, ..., M6

implied by the remaining four sequence comparisons. Use their average to compute

Kdup.

Problem 170 Given that the divergence time between D. melanogaster and D.

guanche is known to be approximately 32 million years [18], how old is the dupli-

cation of Adh? Base your estimate on the average between K1 and K2. Draw a

phylogeny with branch lengths proportional to the divergence times.

Chapter 3

Exact Matching

3.1 Keyword Trees

We often need to look up a short sequence, say P = ACA, in a longer sequence,

say T = CACAGACACAT. This is known as the exact matching problem: to find all

occurrences of a pattern P in a text T . For our example, the solution is illustrated

here: P T

123 12345678901
ACA CACAGACACAT

P starts in T at positions 2, 6, and 8.

The simplest method for solving the exact matching problem is to align the start

positions of P and T and to compare P[1] and T [1]. If there is a mismatch, move

P one position to the right and repeat, as shown in Fig. 3.1. In Step 1, a mismatch

denoted by0 is found when comparing P[1] and T [1]. As a consequence, P is moved

one step to the right and the matching resumed. This time all of P can be matched,

and so on, right through to step 9, where P[1] is mismatched with T [10] and the

algorithm stops, because P cannot be shifted further to the right. This is called the

naïve string matching algorithm.

The speed of string matching is proportional to the number of comparisons. By

counting all the zeros and ones in Fig. 3.1, we find that 16 comparisons were carried

out. However, consider P = AAA and T = AAAAAAAAAAAA. Now P matches at

every position in T leading to 10×3 = 30 comparisons. In fact, this is the worst case

with run time, which is proportional to the product of the pattern and text lengths.

Such proportionality is expressed using the big-O notation, which you can think of

as “order of”: O(|P|×|T |). This multiplicative run time can be avoided by realizing

that it is not necessary to restart matching at the first position of P every time: After

AAA has been found, the first two As have been matched already. In other words, the

suffix P[2..3] matches the prefix P[1..2]. So at the next step of the algorithm, only

P[3] should be compared to the current text position.

© Springer International Publishing AG 2017
B. Haubold and A. Börsch-Haubold, Bioinformatics

for Evolutionary Biologists, https://doi.org/10.1007/978-3-319-67395-0_3

47

48 3 Exact Matching

Step 1 2 3

T CACAGACACAT CACAGACACAT CACAGACACAT

P ACA ACA ACA

Match 0 111 0

Step 4 5 6

T CACAGACACAT CACAGACACAT CACAGACACAT

P ACA ACA ACA

Match 10 0 111

Step 7 8 9

T CACAGACACAT CACAGACACAT CACAGACACAT

P ACA ACA ACA

Match 0 111 0

Fig. 3.1 Naïve matching algorithm

Instead of searching for a single pattern, we might be looking for a whole set. Say

we are looking for P1 = AAA and P2 = AAT; whenever AA is found, P1 or P2 could

be detected in the next step. So we have made two observations for improving the

naïve approach: suffixes in P might match prefixes of P , and prefixes of multiple

patterns might match and hence ought to be summarized. Both of these observations

lead to the preprocessing of one or more patterns into a tree, a keyword tree [3]. This

guarantees an additive run time O(|P| + |T |) and makes set matching fast.

In this section, we begin by implementing the naïve string matching algorithm in

AWK. Then, we learn how to make it go faster.

New Concepts

Name Comment

keyword tree fast set matching
naïve string matching simple but fast in many situations
set matching matching multiple patterns

New Programs

Name Source Help

fold system man fold
gv package manager man gv
keywordMatcher book website keywordMatcher -h
latex package manager man latex
naiveMatcher book website naiveMatcher -h
revComp book website revComp -h
/usr/bin/time system man time

Problem 171 Begin as usual by creating a working directory,KeywordTrees, and

changing into it. To solve the string matching problem in AWK, we need to address a

string at specific positions. The AWK function split(s, a, fs) splits string s
into array a on field separator fs and returns the number of fields. Use it to write the

3.1 Keyword Trees 49

AWK program split.awk that takes an arbitrary, short text from the command

line using the syntax

awk -v t=CACAGACACAT -f split.awk

to assign a string to the variable t. The program then splits this string and iterates

over the resulting array to print each character.

Problem 172 Write the program naive.awk, which takes a pattern P and a text

T from the command line and prints out the starting positions of P in T . Use the

AWK command break for jumping out of a loop, e.g.,

for(i=1; i<=n; i++)
if (ta[i] == "X")

break

Test your program on T = CACAGACACAT and P = ACA.

Problem 173 To apply our program naive.awk to real sequences, we need to

read sequences from FASTA files. AWK can execute system commands like tail
and access the result by piping it through the AWK function getline:

BEGIN{
cmd = "tail -n +2 " file
while(cmd | getline)

t = t $1
print t

}

The function getline sets the AWK variables $1, $2, and so on as if the program

were reading from a file. This could be run as

awk -f readFasta.awk -v file=mgGenome.fasta

Write naive2.awk, which reads a sequence from file and a pattern in FASTA

format from stdin, and prints out the pattern’s start positions. Where does ACGTCG
occur in the genome of M. genitalium?

Problem 174 The program revComp computes the reverse complement of a

sequence. Compute the reverse complement of mgGenome.fasta. Does it contain

CGGCCT?

Problem 175 As we already said at the beginning, the naïve algorithm becomes

slow when confronted with a pattern that matches everywhere, our example was P =

AAA, T = AAAAAAAAAA. In that case, the run time is expected to be proportional

to the product of the lengths of P and T , O(|P| × |T |). To explore the behavior

of naive2.awk in this worst case, write a program that takes as input a sequence

length, n, from the command line and writes a FASTA header followed by a single

line of n As. Call the program monoNuc.awk. Run its output through the UNIX

program fold to wrap the As into lines of length 80, which is the default output of

fold.

50 3 Exact Matching

Problem 176 Use monoNuc.awk and the UNIX-program time to get a run time

for naive2.awk when applied to a text of 1 Mb and a pattern of 10 bp. What

happens if you double the pattern and the text length? You can avoid printing all

match positions to the screen by piping the output through tail.

Problem 177 Scripting languages like AWK tend to be slower than compiled lan-

guages like C. The program naiveMatcher is written in C and implements the

same algorithm as naive2.awk. What is the run time of naiveMatcher com-

pared to naive2.awk when searching for a 20-nucleotide pattern consisting of As

in 2mb.fasta?

Problem 178 Draw the run time of naiveMatcher as a function of the length

of the pattern consisting entirely of A when searching 2mb.fasta. Use pattern

lengths of 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, and 10000. Hint: Use

/usr/bin/time -p <command> 2>&1 | grep real

instead of plain time, to generate a table of run times ready for plotting. The com-

mand redirects the output of time from the error stream (2) to the standard output

stream (1) and hence into the pipeline.

Problem 179 The naïve matching algorithm outlined in Fig. 3.1 can also be illus-

trated in a different way. Figure 3.2a shows the pattern to be matched as a graph

consisting of nodes and edges depicted as arrows. Each node represents a state in

the matching procedure and each arrow a response to match or mismatch. Match is

illustrated by gray arrows, mismatch by orange arrows. The defining characteristic

of the naïve algorithm is that upon every failure, matching resumes at the beginning

of P; hence, all orange arrows in Fig. 3.2a point to the first node. However, a match

to P = ACA implies a match to the first character of P . Therefore, instead of re-

turning to the beginning of P , the algorithm only needs to compare the characters

from P[2] = C onward. This is illustrated in Fig. 3.2b. What are the failure links for

P = AAA?

(a) (b)

A
C

A

A
C

A

Fig. 3.2 A pattern to be matched shown as a graph. Gray arrows indicate matches, orange arrows
“failure links” that are followed upon mismatch. Naïve failure links (a) always return to the beginning
of the pattern. Better failure links (b) incorporate the fact that after the last A has been matched, the
first A has also been matched already

3.1 Keyword Trees 51

(a) (b) (c) (d) (e) (f)

T
T

T
A

T
T

→

T
T

T
A

T
T

→

T
T

T
A

T
T

→

T
T

T
A

T
T

→

T
T

T
A

T
T

→

T
T

T
A

T
T

Fig. 3.3 Systematic construction of failure links going from the initialization (a) through to the
fully preprocessed pattern (f)

Problem 180 To systematically construct failure links, we begin by stating that a

mismatch after the first match means: return to the beginning (Fig. 3.3a). After this

initialization step, we work our way from top to bottom by following failure links

until the earliest match to the character directly above the node to be connected. The

node we reach is the target of the next failure link. For example, in Fig. 3.3b we look

for a match to T; after following the existing failure link, we follow the match link

and have thus found the target for the failure link. Next, two existing failure links

are followed without a match, and hence the new failure link points to the start node

(Fig. 3.3c). Then, another failure followed by a match in Fig. 3.3d, and this pattern

is repeated in Fig. 3.3e. Finally, two failure links need to be followed before a match

is found leading to the completely preprocessed pattern in Fig. 3.3f. Construct the

failure links for P = ATATAT.

Problem 181 The program keywordMatcher looks for exact matches after pre-

processing the pattern with failure links. Its name comes from the fact that the pre-

processed pattern in Fig. 3.2 is called a “keyword tree”. What is the run time of

keywordMatcherwhen searching for a string of 20 A in 2mb.fasta? Compare

your result to the corresponding run time of naiveMatcher.

Problem 182 Apply keywordMatcher to the same increasingly long pattern-

s used in Problem 178 and plot the results in the same graph as the times for

naiveMatcher.

Problem 183 Compare the run times of naiveMatcher andkeywordMatcher
when searching a random sequence of length 20, say

52 3 Exact Matching

P = TTTAACCTCCGGCGGAGTTT

in random sequences of lengths 1, 2, 5, 10, 20, 50, 100 Mb (ranseq). Plot the results

in a single graph.

Problem 184 Keyword trees were originally developed for set matching [3] and

the program keywordMatcher can search for many patterns simultaneously. Say,

we wish to look for five patterns (keywords): P1 = ACG, P2 = AC, P3 = ACT,

P4 = CGA, and P5 = C. Notice that P2 is contained in P1 and P3, P5 in all others,

and P1 and P3 have the matching prefix AC. To make searching efficient, matching

prefixes are summarized as common paths in the keyword tree. Its construction is

shown in Fig. 3.4. The patterns are sequentially fitted into a growing tree structure.

The first partial tree for P1 = ACG in Fig. 3.4b should look familiar from our graphs

for single patterns, except for the label on the end node indicating the pattern just

matched.

Repeat the keyword tree construction using paper and pencil. Then, initialize the

failure link construction as in Fig. 3.4f and enter the five missing failure links.

Problem 185 Keyword trees can be drawn automatically using the -t option of

keywordMatcher, for example,

keywordMatcher -t kt.tex -p ACA mgGenome.fasta > /dev/
null

(a)

(d)

(b)

(e)

(c)

(f)

A

C

G

1

−→

A

C

G

1

2 −→

A

C

G
T

1

2

3

−→

A

C

G
T

C

G

A

1

2

3 4

−→

A

C

G
T

C

G

A

1

2

3 4

5
−→

A

C

G
T

C

G

A

1

2

3 4

5

Fig. 3.4 Sequential construction of a keyword tree for the five patterns P1 = ACG, P2 = AC,
P3 = ACT, P4 = CGA, and P5 = C

3.1 Keyword Trees 53

writes the tree for ACA to the file kt.tex and discards the output by writing it to

the null device. The file kt.tex contains code in the typesetting language LATEX

[28, 30]. To view this, apply the program latex to the wrapper file for kt.tex,

ktWrapper.tex. Like kt.tex, it is generated automatically and contains LATEX

commands. If you have never used LATEX, take a look at ktWrapper.tex. Com-

mands start with a backslash character. For example, the line

\input{kt.tex}

imports the keyword tree contained in the file kt.tex. Apart from commands, you

can also enter ordinary text in a LATEX document (try this). Like many programming

languages, LATEX needs to be compiled to generate the desired output, a neatly typeset

page:

latex ktWrapper.tex

This generates the file ktWrapper.dvi, which is then converted to the postscript

file ktWrapper.ps

dvips ktWrapper.dvi

ready for viewing:

gv ktWrapper.ps &

Automatically generate the keyword tree for our five example patterns P1 = ACG,

P2 = AC, P3 = ACT, P4 = CGA, and P5 = C. Also, what happens if you delete the

line

\date{}

in ktWrapper.tex and run LATEX again?

Problem 186 Use the keyword tree just constructed to trace with pencil and paper

the search for P1–P5 in T = ACGC. The rule is, whenever a labeled node is reached,

the corresponding pattern has been found. However, that rule is not sufficient for

finding all patterns. Can you see where it fails, and how this might be fixed?

Problem 187 Write down the output set next to each node on our example keyword

tree. Each output set contains at least the current label but perhaps also additional

elements.

54 3 Exact Matching

3.2 Suffix Trees

Think of your favorite book, say the first volume of Harry Potter. How would you

find every passage that contains the word “Voldemort”? You could scan every page.

But there are many repeated words and a few repeated phrases that you would scan

again and again. So, would not it be useful if you could compress the book such that

every repeat is only listed once together with its occurrences? An index is such a

compressed version of a book. Novels usually do not have one but textbooks usually

do. However, even the most detailed index does not contain every word, because

readers do not need to look up insignificant words like “and”. Still, sometimes it is

desirable to have an index of every possible word.

A suffix tree of a text is an index that references not only every word but every

possible substring [21]. Consider as text ADAM. To construct the corresponding suffix

tree, start by drawing a root and a leaf node connected by an edge (Fig. 3.5a). Label

the edge with the first suffix, ADAM, and the label with 1 to indicate the end of the first

suffix (Fig. 3.5b). Next, take the suffix starting at position 2, DAM, and fit it into the

tree starting from the root. Since its first character, D, already mismatches the first A
of ADAM, create a new branch and label it as before (Fig. 3.5c). The third suffix, AM,

can be fitted one step into the tree before a mismatch occurs; apart from a leaf, this

also creates an internal node (Fig. 3.5d). The last suffix, M, again branches directly

off the root (Fig. 3.5e).

(a) (b)

(d) (e)

(c)

1

→

A
D
A
M

1

→

A
D
A
M

D
A
M

1 2

→

D
A
M

A
M

D
A
M

1 3

2

→

D
A
M

A
M

D
A
M M

1 3

2 4

Fig. 3.5 Construction of the suffix tree that indexes ADAM. The root is shown in brown, leaves in
green, and the single internal node in black

3.2 Suffix Trees 55

If you now look for the occurrence of A in ADAM, start searching at the root of the

suffix tree. The leaf labels below the match, in this case 1 and 3, indicate the positions

of A in ADAM. This means that—like a book index—a suffix tree enables us to look

up a word in time proportional to the length of the pattern. But unlike a book index,

a suffix tree references all possible words, or substrings, of a text. Surprisingly, a

suffix tree not only provides a perfect index but it can also be computed efficiently,

as we explain in this section.

New Concepts

Name Comment

longest repeat found using suffix tree
shortest unique substring becomes repeat when trimmed on the right
suffix tree text index

New Program

Name Source Help

shustring book website shustring -h

Problem 188 As we saw in Fig. 3.5, a suffix starts somewhere in a sequence and

ends at its end. Consider the sequence S = ACCCG and write down its suffixes.

Problem 189 Write down the suffix tree for S by following the procedure illustrated

in Fig. 3.5.

Problem 190 Use the suffix tree constructed in Problem 189 to search for CC in S

by matching from the root as explained for Fig. 3.5.

Problem 191 Suppose our sequence mutates at its last position from a G to an A,

such that now S = ACCCA. Write down the suffix tree for this sequence. What do

you observe?

Problem 192 Write down the suffix tree for S = ACCCA$.

Problem 193 The concatenated strings along the path leading from the root of the

suffix tree to a node is called the node’s “path label”. The length of this path label is

the node’s “string depth”. Add string depths to the internal nodes of the suffix tree

constructed in Problem 189.

Problem 194 Every path label that leads to an internal node is a repeated string.

Use the suffix tree with string depths constructed in Problem 193 to find the longest

repeat in S.

Problem 195 Make the directory SuffixTrees, change into it, and copy the

genome of M. genitalium contained in mgGenome.fasta from Data to your

current directory. The program repeater computes a suffix tree of the input

sequence to find longest repeats. How long is the longest repeat in the genome

of M. genitalium?

56 3 Exact Matching

Problem 196 Next, we compute the length of the longest repeat expected in a ran-

dom version of the M. genitalium genome. We begin by calculating the probability

of a match between two random nucleotides. Since there are four possibilities of

obtaining a match, AA, CC, TT, and GG, the probability of randomly drawing two

identical nucleotides from a sequence in which each nucleotide has frequency 1/4

is 1/16 × 4 = 1/4. However, in real sequences, the nucleotides usually do not occur

with equal frequencies. Use the program cchar to compute the nucleotide compo-

sition of M. genitalium (mgGenome.fasta). What is the probability of drawing

AA when picking two random nucleotides from the genome of M. genitalium?

Problem 197 Write a pipeline to calculate the probability of drawing two identical

nucleotides from the genome of M. genitalium.

Problem 198 To get from the match probability, Pm, to the expected length of the

longest repeat in the genome of M. genitalium, consider a toy dot plot with three

matches, two of length 1 and one of length 2:

A A C C

T
T
A
A

The probability of drawing a dot is Pm. The probability of drawing a diagonal of

length l, and hence a match of length l, is P l
m. The expected number of such diagonals

is their probability times the number of cells in the dot plot. When comparing two

sequences of length L , this is (L − l)2, which is approximately L2. Hence, the

expected number of l-mer matches, ne, is

ne = P l
m × L2.

Since we are looking for the longest such match, we set ne = 1. What is the expected

length of the longest repeat in the genome of M. genitalium? How does this compare

to the observed longest repeat?

Problem 199 To check the expected match length computed in Problem 198, ran-

domize the sequence of M. genitalium using the program randomizeSeq and

compute the longest repeat in that randomized version. Do this a few times and

compare your results to the expectation.

Problem 200 Most books come without an index. One reason for this is that making

an index is a lot of work. We have already seen that repeater is quick when applied

to the genome of M. genitalium. However, with just half a megabase, this genome is

very small compared to, say, ours with 3.2 gigabases. So the question is, how time-

consuming is suffix tree construction in general? Consider the “naïve” construction

3.2 Suffix Trees 57

method depicted in Fig. 3.5. How does its run time scale as a function of sequence

length? Approach this question by first constructing a suffix tree for a sequence

consisting of only one type of nucleotide, for example, AAAA.

Problem 201 The program repeater uses a more efficient algorithm than the

naïve construction in Fig. 3.5. To investigate how the more sophisticated algorithm

scales with sequence length, use the program ranseq to simulate sequences of 1,

2, 5, 10, and 20 Mb. Apply repeater to them, measure its run time with time,

and plot it. What is the run time of repeater?

Problem 202 Repeat the resource analysis of repeater, but instead of time, mea-

sure memory using commands like

ranseq -l 1000000 | /usr/bin/time -f "%M kb" repeater

on Linux or

ranseq -l 1000000 | /usr/bin/time -l repeater

on Mac OS X.

3.3 Suffix Arrrays

The nodes of suffix trees consume a lot of computer memory. This becomes a problem

when computing suffix trees for very long sequences such as mammalian genomes

with their billions of nucleotides. Hence, a space-saving alternative to suffix trees

has been developed, which consists solely of the sorted array of suffixes [36].

Problem 203 To compute a suffix array, we again begin by writing down every

suffix of the input sequence. But this time we automate the procedure. Save our

sequence S = ACCCA$ in the file s.fasta. Then, copy the program

!/^>/{
s = s $1; # read the input sequence

}END{
L = length(s);
for(i=1; i<=L; i++)

print i "\t" substr(s, i);
}

into the file suf.awk and use it to generate the suffixes of S and their starting

positions. Next, sort the suffixes alphabetically. Finally, number the lines in your

output. Compare your result to the suffix array shown in Fig. 3.6a.

58 3 Exact Matching

(a) (b)

i sa suf

1 6 $

2 5 A$

3 1 ACCCA$

4 4 CA$

5 3 CCA$

6 2 CCCA$

$ A

C

6 $
C
C
C
A
$

5 1
A
$ C

4 A
$

C
A
$

3 2

Fig. 3.6 Suffix array (a) and corresponding suffix tree (b) of ACCCA$

New Concepts

Name Comment

enhanced suffix array suffix array plus lcp array
inverse suffix array suffixes in textual order
lcp array lengths of longest common prefixes in a suffix array
lcp interval tree suffix tree from enhanced suffix array
suffix array sorted list of suffixes

Problem 204 Figure 3.6b shows the suffix tree for the sequence ACCCA$, which

should look familiar from Chap. 3.2. It is closely related to the suffix array next to it.

Take the internal node with path label A. The leaves connected to that node refer to

suffixes 5 and 1. These are neighbors in the suffix array, where they occupy entries

sa[2] = 5 and sa[3] = 1. We denote this interval sa[2..3]. Write down the suffix

array intervals that correspond to the two remaining internal nodes and the root.

Problem 205 To make the close relationship between suffix array and suffix tree

more explicit, we add to our suffix array the array cp for “common prefix”, where

cp[i] is the longest common prefix between sa[i] and sa[i −1]. For example, suf[6] in

Fig. 3.6a is CCCA$, and suf[5] = CCA$; since these two suffixes have the common

prefix CC, cp[6] = CC. Add cp to the suffix array and mark the prefixes in the suffix

tree. The first suffix in sa cannot be compared to another suffix; hence, it is “not

defined”, nd.

Problem 206 To reconstruct the suffix tree from its suffix array, we need the lengths

of the common prefixes, rather than the prefixes themselves. Add the lcp array to the

suffix array, where lcp[i] is the length of cp[i].

Problem 207 The distinct entries in the lcp array computed in Problem 206, 0, 1,

and 2, correspond to the string depths in the suffix tree in Fig. 3.6. Our aim is still to

reconstruct that tree by traversing the suffix array enhanced by the lcp array. For this

purpose, we first extend the lcp array by a “stop” entry, -1, as shown in Fig. 3.7a. In

addition, we write next to the lcp array an empty table with the three distinct string

3.3 Suffix Arrrays 59

(a) (b)

index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0 index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0

(c) (d)

index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0 index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0

Fig. 3.7 The enhanced suffix array with an auxiliary table for reconstructing the corresponding
suffix tree

depths 2, 1, and 0 as headers. Now we traverse the lcp array to find the intervals in

the sa array that corresponds to the suffix tree. Starting from the top, check at each

position the relationship between the current entry in the lcp-array, lcp[i] and the

next entry, lcp[i + 1]:

• If lcp[i] < lcp[i + 1], open one or more intervals. The number of intervals to

open is lcp[i +1]− lcp[i]. The string depths of the opened intervals are the values

between lcp[i] + 1 and lcp[i + 1]. In our example, lcp[1] = −1 and lcp[2] = 0;

since lcp[1] < lcp[2], we open 0 −−1 = 1 interval with string depth −1+1 = 0.

To denote this, we draw the gray line in Fig. 3.7b. Similarly, in the next step, we

observe lcp[2] < lcp[3] and open another lcp interval, as shown by the red line in

Fig. 3.7c.

• If lcp[i] > lcp[i + 1], close one or more intervals where the string depth is greater

than lcp[i + 1] and has occurred in the interval to be closed. In our example, we

observe in Fig. 3.7d that lcp[3] > lcp[4]. Since the string depth of the red, but

not of the gray interval, is greater than lcp[4], and it occurs in the interval under

consideration, the red interval gets closed, while the gray interval remains open.

Find the remaining lcp intervals.

Problem 208 Convert the nested structure of the lcp intervals in Problem 207 to a

tree, the lcp interval tree [38, p. 85ff]. Each node has the format ℓ − [i.. j], where ℓ

is the string depth, i is the start index, and j is the end index.

60 3 Exact Matching

Problem 209 Let us study the relationship between enhanced suffix array and suffix

tree with a longer example sequence, S = GTAAACTATT. Write down its enhanced

suffix array, the nested lcp intervals, and the suffix tree.

Problem 210 As we have seen, lcp arrays allow the conversion of suffix arrays

to suffix trees. The efficient computation of lcp arrays is therefore central to the

application of suffix trees. In the following couple of problems, we learn how to do

this. The crucial insight is that the lcp value for a suffix S[i..] forms a lower bound

of the lcp value of the suffix one step to the right, S[i + 1..]. Consider, for example,

the sequence ACCCACG. Its first suffix matches AC at position 5; from this, we can

conclude that its second suffix matches at least the C at position 6 from the previous

match. In other words, if ℓ is the length of the common prefix of S[i..], then ℓ − 1

is the lower bound of the lcp for S[i + 1..]. The emphasis here is on lower bound;

in our example, the CC at the beginning of the second suffix match is the CC at

the beginning of the third. To use this lower bound insight, we need to traverse the

suffix array in the same order in which the suffixes appear in the input sequence. The

mapping between sa and S is called the inverse suffix array, isa, which is defined as

isa[sa[i]] = i.

Add the isa to the suffix array of ACCCA$. This is most effective when done to the

left of the index i .

Problem 211 Write the program isa.awk that takes as input the sorted output

from suf.awk and adds the isa as another column.

Problem 212 Algorithm 2 shows how to compute the lcp values in linear time [27].

The inverse suffix array, isa, is computed in lines 1–2, which should look familiar

from Problem 211. Implement this algorithm in a program esa.awk that takes as

input the sorted output of suf.awk and prints the enhanced suffix array, that is, sa

and lcp. Hint: The AWK function

substr(s, p, n)

returns the substring of s that starts at p and is n characters long.

Problem 213 Now, we apply our program to real sequences. What is the longest

repeat sequence in Adh/Adh-dup of Drosophila guanche (dgAdhAdhdup.fasta)?

Problem 214 What is the longest repeat sequence in Adh/Adh-dup of Drosophila

melanogaster (dmAdhAdhdup.fasta)?

Problem 215 By typing

cat dmAdhAdhdup.fasta dgAdhAdhdup.fasta > dmDgAdhAdhdup
.fasta

the two alcohol dehydrogenases we just investigated can be written into the same file.

What is the longest repeat in the concatenated sequences? Its length will be greater

than that of the repeats within the individual sequences. Can you think of why?

3.3 Suffix Arrrays 61

Algorithm 2 Algorithm for computing the lengths of common prefixes [27]

Require: S {input sequence}
Require: n {length of S}
Require: sa {suffix array}
Ensure: lcp {array of lengths of longest common prefixes}
1: for i ← 1 to n do

2: isa[sa[i]] ← i {construct inverse sa}
3: end for

4: lcp[1] ← −1 {initialize lcp}
5: ℓ ← 0
6: for i ← 1 to n do

7: j ← isa[i]
8: if j > 1 then

9: k ← sa[j − 1]{S[k..] is left-neighbor of S[i..] in sa}
10: while S[k + ℓ] = S[i + ℓ] do

11: ℓ ← ℓ + 1
12: end while

13: lcp[j] ← ℓ

14: ℓ ← max(ℓ − 1, 0) {ℓ cannot become negative}
15: end if

16: end for

Problem 216 In a suffix tree, repeats are path labels ending above internal nodes. If

instead we look at the path labels of leaves, we find unique sequences. For example,

CCC in Fig. 3.6 is unique, as it is found on the edge connected to leaf 2. The extension

of this motif to CCCA does not change its property of uniqueness as we are still on

the path to leaf 2. Hence, when talking about unique motifs, we are particularly

interested in shortest motifs, which we call shortest unique substrings, or shustrings.

By traversing all leaves, the shustrings starting at every position in a sequence can

be determined: At each leaf, extend its parent’s path label by a single nucleotide.

Write down the shustrings for each position in ACCCA. What is the length of the

shortest shustring(s)? What might be the use of finding such shortest shustrings in

real sequences?

Problem 217 Instead of using the suffix tree of ACCCA, we can also use the lcp

array to look up the shustring lengths at every position. How is this done?

Problem 218 The program shustring implements the search for shustrings

based on suffix arrays. What is the length of the shortest unique substrings in the

genome of M. genitalium?

Problem 219 By default, shustring only searches the forward strand. Does the

result change when the reverse strand is included?

Problem 220 Instead of looking for the globally shortest shustrings, you can also

look for shustrings of a certain minimal (-m) or maximal (-M) length. This re-

quires the local option, which is invoked for a particular sequence; in our case, there

62 3 Exact Matching

is only one sequence to choose from, so anything that matches the header line in

mgGenome.fasta will do the trick, for example

-l .

because in a regular expression a dot matches anything. How many shustrings of

length ≤ 7 are contained in the genome of M. genitalium?

3.4 Text Compression

Compressed Starting Sequence Sorted Compressed

A4C2T5C2 ↔ AAAACCTTTTTCC → AAAACCCCTTTTT ↔ A4C4T5

Fig. 3.8 Compressing sequences

The ability to compress data underlies many powerful programs ranging from mp3

players to read mappers in Bioinformatics. Given the starting sequence in Fig. 3.8, it

can be compressed by counting repeated nucleotides and writing them as, for exam-

ple, A4. This kind of compression is easy to reverse, though only effective if there are

long runs of identical nucleotides. Sorting the sequence would maximize such runs,

which would lead to the greatest compression. However, sorting is irreversible. The

Burrows–Wheeler transform was devised to reversibly increase the runs of identical

symbols in any type of data [12]. We begin by transforming the word “Mississippi”:

123456789111
123456789012
mississippi$

It consists of eleven characters plus a sentinel at the end. The first step in the transform

is to write down all the rotations of the word

1 mississippi$
2 ississippi$m
3 ssissippi$mi
4 sissippi$mis
5 issippi$miss
6 ssippi$missi
7 sippi$missis
8 ippi$mississ
9 ppi$mississi

10 pi$mississip
11 i$mississipp
12 $mississippi

Next, the rotations are sorted:

3.4 Text Compression 63

String Rotations Sorted Rotations Transformed String

mississippi$ $mississippi
ississippi$m i$mississipp
ssissippi$mi ippi$mississ
sissippi$mis issippi$miss
issippi$miss ississippi$m

mississippi$ ssippi$missi mississippi$ ipssm$pissii
sippi$missis pi$mississip
ippi$mississ ppi$mississi
ppi$mississi sippi$missis
pi$mississip sissippi$mis
i$mississipp ssippi$missi
$mississippi ssissippi$mi

The first column of the sorted rotations consists of the characters in Mississippi

in alphabetical order. As we have already observed, this cannot be decoded to the

original word. But intriguingly, the last column can, and this is our transform.

How is this transform reversed, that is, decoded? We start by sorting the transform

to give us the first column of the sorted rotations, column F in Fig. 3.9a, while the

transform is in column L . Then we label each character in F and L with its count,

so the first i is labeled i1, the second i2, etc. (Fig. 3.9b). Finally, we look for the

sentinel in L , jump across to F , and have found the first character of the original

string, m1, in our example (Fig. 3.9c). Next, we look up m1 in L , and jump across to

F to find our second character, i4, and so on until this traceback yields the original

“mississippi$”. In this section we explore the effect of BWT and how it can be used

to compress sequences.

New Concepts

Name Comment

Burrows–Wheeler transform Reversible sorting
Compressibility Opposite of complexity
Lempel–Ziv decomposition Measure sequence complexity
Move to front Reduce sequence complexity

New Programs

Name Source Help

bwt Book website bwt -h
bzip2 System man bzip2
du System man du
gzip System man gzip
lzd Book website lzd -h
mtf Book website mtf -h

Problem 221 Write down the Burrows–Wheeler transform of the sequence TACTA
on a piece of paper. Create the directory Bwt and change into it. Check your manual

transform using the program bwt.

64 3 Exact Matching

(a) (b) (c)

F L

$ i

i p

i s

i s

i m

m $

p p

p i

s s

s s

s i

s i

F L

$1 i1

i1 p1

i2 s1

i3 s2

i4 m1

m1 $1

p1 p2

p2 i2

s1 s3

s2 s4

s3 i3

s4 i4

F L

$1 i1

i1 p1

i2 s1

i3 s2

i4 m1

m1 $1

p1 p2

p2 i2

s1 s3

s2 s4

s3 i3

s4 i4

Fig. 3.9 Decoding the Burrows–Wheeler transform: write down the first (F) and last (L) columns
of the rotations a; count characters b; trace back c, showing the first two steps

Problem 222 To observe the effect of BWT on natural language, we next transform

Shakespeare’s Hamlet, which is contained in hamlet.fasta. Begin by looking

at the file to convince yourself that it contains the bard’s words, albeit in a slightly

unorthodox format:

less hamlet.fasta

When you press d, less moves down by half a page, u does the opposite, and q
lets you quit. One advantage of less is that text can be piped into it. For example,

the BWT of Hamlet is

bwt hamlet.fasta | cat -n | less

Take a look at the first couple of pages. What do you observe?

Problem 223 Decode by hand the BWT CCCT$G. Check the result using bwt.

Problem 224 We have seen that decoding a BWT is relatively simple, but encoding

is tedious due to the rotation step. However, by using a suffix array we can avoid the ro-

tations. To see how this works, return to our original example, T = mississippi$
and write down its suffix array using the program suf.awk from Problem 203. No-

tice that up to the sentinel rotations and suffixes are identical. Can you think of a

method for finding the BWT by traversing the sa?

Problem 225 Construct the suffix array of T = TACTA$ and use it to infer the

BWT of T . Check your result using bwt.

3.4 Text Compression 65

3.4.1 Move to Front (MTF)

To make the BWT more compressible, we can apply the move to front (MTF) proce-

dure [2]. This works by noting the position in the alphabet of a given character. So to

encode the nucleotide sequence S = GTTT, we use as alphabet the four nucleotides:

0 1 2 3

A C G T

Characters are encoded by their position in the alphabet and this position can change

after each encoding step: The first G in S is encoded as 2; in the next iteration, the G
is moved to the front of the alphabet

0 1 2 3

G A C T

and the T is a 3. Now the T is moved to the front

0 1 2 3

T G A C

The remaining two T are encoded as 0, yielding 2, 3, 0, 0. To decode this, we reverse

the procedure. Start with ACGT; the first 2 stands for G, rearrange alphabet to GACT;

the 3 stands for T, rearrange alphabet to TGAC; the two zeros stand for T, and we

have GTTT back. The crucial idea of MTF is that repeats of any nucleotide lead to

runs of zeros, which can then be compressed.

Problem 226 Use MTF to manually encode T = GTTAG. Check the result using

mtf.

Problem 227 Let 1,0,1,3,3 be the result of MTF on the alphabet ACGT. Decode the

original string.

3.4.2 Measuring Compressibility: The Lempel–Ziv

Decomposition

In order to measure the effect of BWT and MTF, we need to quantify the extent to

which a transform can be compressed, compared to the original sequence. One way

to do this is to look for matching regions or “factors” within the input sequence. The

fewer such match factors can be found, the more compressible the sequence is. Take

for example the sequence S = CCCG; at every position i in S we ask, how long is

the longest match that appears somewhere to the left of i? The first position has no

left neighbor, so the rule for no match is invoked: S[i] becomes a factor, C, and we

move to the next position S[i + 1]. This matches the first position up to the forth,

so our second factor is CC. The last position, S[4] = G, again has no match, so S is

decomposed into the three factors

66 3 Exact Matching

C.CC.G

This decomposition is called the Lempel–Ziv decomposition [32] and is widely used

in compression programs, for example in gzip.

Problem 228 Calculate by hand the Lempel–Ziv decomposition of TACTA. Check

your result using the program lzd.

Problem 229 Calculate by hand the Lempel–Ziv decomposition of the maximally

redundant sequence AAAAA. Again use lzd to check your result.

Problem 230 Instead of directly measuring compressibility, it is often simpler to

measure its opposite, which is complexity. Highly complex sequences cannot be

compressed much, and vice versa. We define as complexity the number of Lempel–

Ziv factors divided by sequence length:

C =
number of LZ factors

|S|
.

What are the complexities of the example sequences in Problems 228 and 229?

Problem 231 What are the theoretical limits of C?

Problem 232 In practice, the largest value C can take is the number of LZ factors

per nucleotide in a random sequence. Use ranseq to generate random sequences

of lengths 1, 2, 5, and 10 kb, and measure C . Plot C as a function of sequence length.

Is the maximum of C constant with respect to sequence length?

Problem 233 Next, we compute C for the genome of M. genitalium to observe

the effect of the Burrows–Wheeler transform, BWT, and move to front, MTF, on

complexity. Fill in the table below:

Operation Number of Factors C

None
BWT
BWT | MTF
MTF
MTF | BWT

Which combination gives the largest reduction in C?

3.4 Text Compression 67

Problem 234 We return to compression, the opposite of complexity. Two examples

of popular compression programs are gzip and bzip2. The “zip” in these pro-

gram names refers to Lempel–Ziv, the “b” in bzip2 to BWT. Measure the size of

mgGemone.fasta by using the program du for disk usage:

du -h mgGenome.fasta

Then compute the size of the compressed genome after it has undergone randomiza-

tion, BWT, and MTF. Summarize your results in the following table:

Operation gzip bzip2
Nothing
randomizeSeq
BWT
BWT | MTF

Chapter 4

Fast Alignment

4.1 Alignment with k Errors

Exact matching is fast and uses little memory, while filling in alignment matrices

is slow and memory consuming. Of these two central resources, time and memory,

memory is often the more limiting: it is usually possible to wait a bit longer for a

computation to finish, while a computation that does not fit into memory cannot even

start. However, waiting for a calculation to complete is also undesirable, not least

because computations that finish “instantaneously” can become part of larger, new

applications. Useful programs are efficient.

The central insight for speeding up alignment is that the vast majority of cells in

an alignment matrix are nowhere near an optimal path. But how can the “promising”

parts of an alignment matrix be identified? The answer is, cheap exact matching. The

k-error alignment method makes direct use of this idea [8]: Say we are looking for

a short query sequence, Q, in a long subject sequence, S, and Q contains a single

error. This could be an insertion, a deletion, or a mismatch; in the example shown in

Fig. 4.1a it is a deletion, marked by a ∆.

If Q is divided into two fragments, a and b, the error is either located in segment

a, as in Fig. 4.1a, or b, but not in both. Next, the algorithm searches for a and b in

S and finds b (Fig. 4.1b). This match anchors the alignment matrix, which occupies

(|Q| + 1)2 cells rather than (|Q| × |S|) (Fig. 4.1c).

Put more generally, k-error alignment begins by choosing an upper limit for the

number of errors the final alignment may contain, k. Then Q is divided into k + 1

fragments of equal length, each of which is searched exactly in S. Whenever a match

is found, an alignment matrix is constructed with dimension O((|Q| + k)2), which

is filled in by dynamic programming to check whether it contains a k-error match

between Q and S.

As k grows, the fragment size decreases. Short fragments can match random

positions in the subject making the checking phase potentially more time consuming

than filling in the full alignment matrix. However, for small k the method works well

in practice as we shall see in this section.

© Springer International Publishing AG 2017

B. Haubold and A. Börsch-Haubold, Bioinformatics

for Evolutionary Biologists, https://doi.org/10.1007/978-3-319-67395-0_4

69

70 4 Fast Alignment

(a)

S

Q
a b

∆

(b)

S

Q
a b

∆

b

(c)

S

Q
a b

∆

Q

Fig. 4.1 The k-error alignment method comprises three steps: Division of the query into k + 1

contiguous fragments (a); exact search for the fragments (b), and checking whether or not a k-error

alignment has been found by filling in the dynamic programming matrix anchored by the exact

match (c)

New Concept

Name Comment

k-error alignment speed up alignment by exact matching

New Programs

Name Source Help

kerror book website kerror -h
mutator book website mutator -h

Problem 235 Create a new directory for this section, KerrorAlignment, and

change into it. Copy the sequence of dmAdhAdhdup.fasta, cut out positions

2301-2400, and save the resulting sequence fragment in dmAdhFrag.fasta.

Check the correct region was cut out by matching the fragment back onto

dmAdhAdhdup.fasta using keywordMatcher.

Problem 236 Mutate position 10 in dmAdhFrag.fasta using the program

mutator and save the mutated sequence in dmAdhFrag2.fasta. Check the

mutation appeared at the expected position using gal. Then compare the mutated

fragment to the original full sequence to confirm the mutated fragment does not

match exactly any more (keywordMatcher), but the inexact match remained in-

tact (lal).

Problem 237 The program kerror implements k-error matching. Use it to locate

the error-free fragment in the original full sequence. Then search for the mutated

fragment. Print out the fragments into which the mutated query is divided (-L) and

convince yourself only one of them has an exact match in S.

4.1 Alignment with k Errors 71

Problem 238 We have already seen global and local alignments. What type of align-

ment is generated by kerror?

Problem 239 Next, we try to locate the Adh/Adh-dup locus in the genome of

Drosophila melanogaster. The genome of D. melanogaster consists of three au-

tosomes, two sex chromosomes, and the mitochondrial genome. Their sequences are

located in the following files:

Chromosome Type File

Left arm of chromosome 2 Autosome dmChr2L.fasta
Right arm of chromosome 2 Autosome dmChr2R.fasta
Left arm of chromosome 3 Autosome dmChr3L.fasta
Right arm of chromosome 3 Autosome dmChr3R.fasta
Chromosome 4 Autosome dmChr4.fasta
Mitochondrial genome Mitochondrial dmChrMt.fasta
X chromosome Sex chromosome dmChrX.fasta
Y chromosome Sex chromosome dmChrY.fasta

Copy the genome files to your working directory and determine the length of each

of these DNA sequences (cchar). How long is the genome of D. melanogaster

in total?

Problem 240 The file hamlet.fasta contains Shakespeare’s Hamlet in FASTA

format. Copy it to your working directory and take a look at it (less) to find the open-

ing sentence (Who’s there?). How much longer is the genome of D. melanogaster

than the tragedy?

Problem 241 Given that the genome files of D. melanogaster are large, we can save

disk space by deleting them from our working directory

rm dmChr*.fasta

and creating the corresponding symbolic links:

ln -s ../Data/dmChr*.fasta .

Does the link have the same content as the original file (diff)? What is the size of

a link compared to that of the original file (ls -l)?

Problem 242 Find Adh/Adh-dup in the genome of D. melanogaster using kerror.

For this purpose, write a script that goes over the chromosomes and sets the number

of errors

k = 1, 2, 5, 10, 20, 50, 100, 200, 500.

Where is Adh/Adh-dup located, and how many errors does the final alignment con-

tain?

Problem 243 What is the number of errors per site at the Adh/Adh-dup locus?

72 4 Fast Alignment

Problem 244 Take another look at the Adh/Adh-dup alignment returned bykerror.

Where are most of the errors located?

Problem 245 Instead of calculating the number of errors per site from a global/local

alignment, calculate the number of mismatches per site from a local/local alignment.

For this purpose, cut out the target region on chromosome 2 L and aligning it to

dmAdhAdhdup.fasta using lal.

Problem 246 Repeat the kerror search for Adh/Adh-dup with the minimum k

possible. Observe the run time printed by the program. How is this distributed be-

tween exact matching and checking through dynamic programming?

Problem 247 Align dmGenomic.fasta with its homologue from D. guanche

using gal. What would k need to be for locating the D. guanche Adh/Adh-dup in

the D. melanogaster genome? Is that feasible?

4.2 Fast Local Alignment

Homology between sequences is best determined locally: Even if homology were,

in fact, global—or global/local as in k-error alignment—a local alignment would

detect these configurations if they maximized the score. As we have seen for k-error

alignment, local alignment is sped up by mixing exact and inexact matching. The

first step in both methods, is therefore, to divide the query into shorter segments

that are to be matched exactly. However, instead of using contiguous segments of

variable length as in k-error alignment, in local alignment the segments, which are

usually called “words”, overlap and have a fixed length, say 11 bp (Fig. 4.2a). These

words are then searched for in the subject sequence, which typically consists of

an entire database of sequences (Fig. 4.2b). Wherever a hit is found, it is extended

to the left and right until the score cannot be improved any further (Fig. 4.2c). In

other words, the sketched algorithm returns ungapped local alignments. This was

implemented in the first version of BLAST from 1990 [6]. Modern versions return

gapped alignments [7], but as we shall see below, the ungapped algorithm is already

quite effective.

Apart from its clever algorithm, BLAST is fast, because it incorporates a formula

for calculating the significance of an alignment. The alternative to using the for-

mula would be to compute P-values from simulations. As we show in this section,

calculating P-values by simulation is much slower than by formula. Moreover, an

important lesson to take away from this set of Problems is that small adjustments in

parameters can have large effects on the alignments returned.

4.2 Fast Local Alignment 73

(a)
Q

(b)
Q

S

(c)

S

Fig. 4.2 BLAST algorithm. Preprocess the query sequence, Q, into overlapping words (a); search

the words in the subject, S, (b); extend matches until the score cannot be improved any further (c)

New Concepts

Name Comment

fast local alignment ungapped or gapped version

ungapped alignment alignment without dynamic programming

New Programs

Name Source Help

blastn book website blastn -h
sblast book website sblast -h

4.2.1 Simple BLAST

Problem 248 Create the directory FastLocalAlignment and change into it.

Copy or link dmAdhAdhdup.fasta into your working directory. Cut out

positions 3101-3200 from dmAdhAdhdup.fasta, save the fragment in

dmAdhFrag.fasta, and align it to the original sequence using sblast. Out-

put the word list generated by sblast. How many words does it contain? How long

are these words?

Problem 249 Our query has length 100. What happens if it contains ten equally

spaced mutations, for example at positions 1, 12,..., 100? Check your answer by

writing a script that drivesmutator to repeatedly mutate the fragment at the desired

positions. Make sure the script is applied to a copy of the original fragment called,

say, dmAdhFrag2.fasta, rather than to the original.

Problem 250 The word length applied by sblast can be set by the user. What

is the range of values compatible with finding the mutated fragment

dmAdhFrag2.fasta?

74 4 Fast Alignment

Problem 251 Fast alignment algorithms like BLAST are called “heuristic” in con-

trast to the “optimal”, but slow, algorithms based on the dynamic programming. Can

lal, which implements an optimal algorithm, align dmAdhFrag2.fasta?

Problem 252 Natural mutations are randomly distributed rather than equally spaced.

Use mutator with mutation rates of 1, 2, 5, 10, 20, and 50 % to generate mutated

versions of dmAdhFrag.fasta and search for them in dmAdhAdhdup.fasta
with sblast. Iterate 100 times per mutation rate and plot the number of alignments

found as a function of mutation rate. Make sure that only one alignment is counted

per run. Hint: grep -A 1 includes the line after the match in the output.

Problem 253 Repeat the mutation analysis, only this time set thesblast threshold

for acceptance of an alignment from its default value of 50 to 25 (-t). Plot the results

for both thresholds in a single graph.

Problem 254 Use sblast to find the best local alignment between

dmAdhAdhdup.fasta and dgAdhAdhdup.fasta. Then use lal to find the

optimal local alignment. The programs sblast and lal use the same score

scheme—which one finds the better alignment?

Problem 255 By default, sblast extends an alignment for up to 20 steps without

improving the score before it gives up. What happens if you increase that number to

40 (-s) and rerun the the comparison between D. melanogaster and D. guanche?

Problem 256 Write a script called driveSblastDm.sh to drive the compar-

ison between dmAdhAdhdup.fasta and all chromosomes of D. melanogaster

using sblast. Hint: There is a special notation for iterating over all command line

arguments; to test this, write the script example.sh

for a in $@
do

echo ${a}
done

and run it as

bash example.sh *

What is the interval occupied by Adh/Adh-dup?

Problem 257 Use time to compare the run time of sblast and kerror when

searching for dmAdhAdhdup.fasta in dmChr2L.fasta. Can you explain the

run time difference between sblast and kerror?

Problem 258 Recall from Problem 247 that kerror could not locate

dgAdhAdhdup.fasta in the genome of D. melanogaster. Try again withsblast.

What are the coordinates of the homologous region?

4.2 Fast Local Alignment 75

4.2.2 Modern BLAST

Problem 259 Align the artificially mutated sequence dmAdhFrag2.fasta to

dmAdhAdhdup.fasta using blastn with default parameters. Do you get a hit?

What happens if you adjust the word size option (-word_size)?

Problem 260 What is the default word size of blastn? To answer this question,

again start from the exact match in dmAdhFrag.fasta, copy it to

dmAdhFrag2.fasta, and mutate it using mutate.sh. But this time vary the step

length between mutations until you find the smallest step length that gives a hit. To

make this more convenient, copy mutate.sh to mutate2.sh and change its first

line from

for i in $(seq 1 11 100)

to

for i in $(seq 1 $1 100)

The$1 refers to the first argument on the command line, which meansmutate2.sh
can now be run as, say,

bash mutate2.sh 50

where 50 is the distance between mutations. In addition, insert

cp dmAdhFrag.fasta dmAdhFrag2.fasta

as the first line of mutate2.sh. To minimize the number of trials, we use a method

called “binary search”: Start with the smallest word size, 1, which gives no hit, and

the largest, 100, which does. This establishes that the sought word length lies in

the interval (1, 100). The trick is now, to repeatedly halve this interval. If the new

midpoint results in a match, it becomes the right border of the interval to be halved

next; conversely, if the new midpoint results in no match, it becomes the left border.

Problem 261 By default, blastn is run in a low-sensitivity mode called

“megablast”. This can be switched to a high-sensitivity mode by using

-task blastn

Repeat the binary search from before to find the default -word_size in this mode.

Problem 262 Compare the sensitivity of blastn in megablast and blastn mode by

plotting the % alignments detected as a function of mutation rate, as in Problem 252.

Again, start from the exact match in dmAdhFrag.fasta and mutate it using

mutator. Use the tabular output format for this, -outfmt 7.

Problem 263 Regenerate dmAdhFrag2.fasta with mutation distance 11:

bash mutate2.sh 11

76 4 Fast Alignment

Table 4.1 Default score schemes of the local alignment programs used in this section

Parameter sblast blastn lal

Match 1 2 1

Mismatch −3 −3 −3

Gap opening na −5 −5

Gap extension na −2 −2

and run blastn in blastn mode and with appropriate word size like in Problem 259:

blastn -task blastn -word_size 10 -query dmAdhFrag2.
fasta -subjectdmAdhAdhdup.fasta

to get the score line

Score = 141 bits (156), Expect = 8e-38

of which the simplest statistic is the raw score in round brackets, 156. It is computed

using the score scheme printed at the end of the BLAST output:

Matrix: blastn matrix 2 -3
Gap Penalties: Existence: 5, Extension: 2

Under the conventions we have used so far, this means match is 2, mismatch −3,

gap opening −5, and gap extension −2. Apart from the match score, these values

are identical to those used by lal. This is shown in Table 4.1, which summarizes

the score schemes for sblast, blastn, and lal. Repeat the blastn run with

lal adjusted such that it returns the same raw score as blastn.

Problem 264 The score line begins with the bit score. This is intended to be more

independent of the score scheme than the raw score. What happens to these two

scores when you set match to 1 instead of the default 2 (-reward)?

Problem 265 Use blastn to align the Adh/Adh-dup region from D. melanogaster

and D. guanche. Can lal find a better alignment under the same score scheme?

Problem 266 The amount of searching blastn does is determined among other

things by the heuristic parameter -xdrop_gap_final. Its default is 100, higher

valuesgenerally lead toamore thoroughsearch.Try tofindan-xdrop_gap_final
value that returns the same alignment as lal.

Problem 267 We have tuned the parameter -xdrop_gap_final to get the same

alignment aslal. Is it theoretically possible to find a better alignment with blastn,

for example, by setting a different value for -xdrop_gap_final, without chang-

ing the score scheme?

Problem 268 Cut out the interval 3101–3200 from the D. guanche Adh/Adh-dup and

save it in dgAdhFrag.fasta. Align the fragment with dmAdhAdhdup.fasta
using blastn. Compare the blastn result with that obtained by lal -A 2. If

the two results disagree, try reducing the -word_size from its default value of 11

to make the results agree.

4.2 Fast Local Alignment 77

Problem 269 The score line of our current BLAST command is

Score = 24.7 bits (26), Expect = 0.015

We have so far explored the bit score and the raw score. The Expect value means

that 0.015 alignments between shuffled versions of the query and the subject are

expected to have a score of 24.7 or greater. This value is called the expectation value

or E-value. It is related to the significance from statistics through

P = 1 − e−E ,

which implies P ≤ E . What is P given E = 0.015?

Problem 270 The probability of finding an alignment with score, S, greater or equal

to some given score, x , is [6]

P(S ≥ x) = 1 − e−y,

where y = K se−λx , s is the “effective” search space, K a correction factor, and λ

incorporates the score matrix. These three parameters are quoted in the footer of the

blastn output. Use their “gapped” version to compute P(S ≥ x) for our alignment.

Problem 271 To further explore the E-value computed by blastn, and hence the

significance of the alignment, we test the null hypothesis that the observed score is

due to chance through simulation rather than relying on the theory used by blastn.

For this purpose, we compute the distribution of scores between random versions

of dmAdhAdhdup.fasta and the original dgAdhFrag.fasta. Use lal with

blastn parameters. Start with a small number of iterations until the simulation

works, then carry out a long run with 1000 iterations and store the scores. How long

does this take?

Problem 272 Write an AWK script called count.awk to compute the frequency

of each distinct score. Plot this frequency as a function of the score.

Problem 273 The significance of the original score of 26, that is, its P-value,

is the frequency, with which scores ≥ 26 appear among the random scores in

simPval.dat. What is the simulated P-value of the original score? Compare

your simulated result to the theoretical P-value implied by the BLAST output.

Problem 274 As a final step in our exploration of alignment statistics, we compare

the theoretical score distribution to that generated by simulation in Problem 272. The

probability of observing a score S is

P(S) = λew, (4.1)

where w = (µ − S)λ − e(µ−S)λ and µ = ln(K s)/λ. The program gnuplot allows

the definition of variables and functions, which can then be plotted; for example:

78 4 Fast Alignment

a=10
f(x)=a*x
plot f(x)

Use this feature to overlay the histogram from Problem 272 with the theoretical curve

given by Eq. (4.1).

Problem 275 Write a script called blast.sh to search dmAdhAdhdup.fasta
across all chromosomes of D. melanogaster. To minimize spurious results, use a

minimum E-value of 10−20 by setting

-evalue 1e-20

Reduce clutter by switching to tabular format (-outfmt 7). How long does the

search take?

Problem 276 Searches can be sped up by turning the subject sequences into a

BLAST database:

cat dmChr*.fasta |
makeblastdb -dbtype nucl -title dmDb -out dmDb

How long does this take? What is the run time for searchingdmAdhAdhdup.fasta
in the database?

Problem 277 What happens to the run time when using the default megablast mode

and the database? Does the mode affect the result?

Problem 278 Repeat the search with dgAdhAdhdup.fasta. Again compare the

results obtained in blastn and megablast mode.

4.3 Shotgun Sequencing

The quest for ever faster alignment methods is driven by the ease with which genomes

can be sequenced these days. When sequencing a DNA molecule, biologists initially

need to know the sequence of about 20 nucleotides. This allows them to synthesize

an oligonucleotide complementary to the known sequence. The oligo is then used

to start, or prime, a sequencing reaction. Any such reaction reveals the identity of at

most a few hundred nucleotides. A naïve way to sequence longer molecules would,

therefore, be to obtain the first sequencing result, design a new primer to the 3’ end

of the sequence just determined, and repeat the cycle of sequencing and primer de-

sign. However, this sequential walking along a chromosome is slow. It is much more

efficient to parallelize the procedure: Fragment a large number of copies of the tem-

plate molecule through, for example, sonication. Then insert the random fragments

into a piece of DNA with known sequence. The sequencing reaction can now be

primed using always the same oligos complementary to the known flanking DNA.

This “shotgun sequencing” was invented by the English biochemist Fred Sanger in

4.3 Shotgun Sequencing 79

1982 [43] and yields random sequences, or reads, which need to be assembled into

the template sequence. Assembly is carried out by programs that look for overlaps

between a potentially very large number of reads.

In the following section, we start with optimal overlap alignments and end with a

fast method for assembling the genome of Mycoplasma genitalium from simulated

shotgun reads.

New Concepts

Name Comment

overlap alignment sequence assembly

shotgun sequencing rapid sequencing method

New Programs

Name Source Help

oal book website oal -h
sequencer book website sequencer -h
velvetg book website velvetg
velveth book website velveth

Problem 279 The two sequences, S1 = ACCGTTC and S2 = GTTCAGTA overlap.

Write down their alignment to show this.

Problem 280 Create the directoryShotgun, change into it and write S1 and S2 into

the FASTA files s1.fasta and s2.fasta, respectively. Then use the program

oal to compute the overlap alignment between S1 and S2.

Problem 281 Sequencing reads can originate from the forward or the reverse tem-

plate strand. How many comparisons are necessary between two sequences to find

the best overlap if you take strand into account?

Problem 282 The files f1.fasta, f2.fasta, and f3.fasta each contain a

fragment of the M. genitalium genome. Copy them from the Data directory to your

working directory. Think of these fragments as sequencing reads from a shotgun

experiment. To find the overlaps between them, we need to compare each fragment

to the forward and reverse strand of the other two fragments. If we denote the forward

and reverse strands of the i-th fragment as f f
i and f r

i , the following combinations of

fragments need to be checked:

80 4 Fast Alignment

f f
1 f r

1 f f
2 f r

2 f f
3 f r

3

f f
1 • • • •

f r
1

f f
2 • •

f r
2

f f
3

f r
3

Think of the names along the first column as query, the names along the first

row as subject. Write down the score for each comparison. What are the two most

substantial overlaps and what does this say about the relationship between the three

fragments? Hint: A read can be reverse complemented using revComp. Also, start

by creating files with names like f1f.fasta and f1r.fasta.

Problem 283 Look at the overlap alignments of the two most substantial overlaps

just discovered. Draw by hand a figure with alignment coordinates to show how the

reads overlap. Then calculate the length of the genomic sequence from which the

reads were taken.

Problem 284 Every sequencing project starts with the isolation of the template

DNA molecule. We simulate this step by generating a random sequence. To give us

an idea of how long a realistic genome might be, use cchar to compute the length of

the genome of M. genitalium contained in the file mgGenome.fasta. Also, what

is the fraction of G and C nucleotides in M. genitalium, that is, its GC content?

Problem 285 Use ranseq to generate a random genome with the same length and

GC content as M. genitalium, and store it in ranGenome.fasta. To obtain exactly

the same genome as we did, initialize the random number generator in ranseqwith

35. Check your result with cchar.

Problem 286 What is the difference between ranseq and randomizeSeq?

Problem 287 A shotgun sequencing experiment yields a—usually large—number

of random reads comprising a total of s nucleotides. Such an experiment is character-

ized by the coverage, c = s/L , where L is the length of the molecule sequenced. How

many bases would you get if the sequencing facility at your institution sequenced

ranGenome.fasta to a coverage of 10?

Problem 288 We now study the relationship between the coverage, c, and the prob-

ability of sequencing a particular nucleotide. If we picture “sequencing” as randomly

drawing a single nucleotide from the genome, the probability of getting a particular

one is 1/L and the probability of not getting it is 1 − 1/L . The probability of not

sequencing a nucleotide in s trials is

P0 =
(

1 −
1

L

)s

.

4.3 Shotgun Sequencing 81

To simplify this, we first rewrite

(

1 −
1

L

)s

= es ln(1− 1
L
),

and use the approximation ln(1 + x) ≈ x to get

P0 ≈ e−s/L = e−c.

How many nucleotides are expected to be left unsequencedif the random genome is

shotgunned to a coverage of 10?

Problem 289 What is the theoretical coverage necessary to achieve a combined gap

length of 1?

Problem 290 What is the theoretical coverage necessary to achieve a combined gap

length of 0?

Problem 291 Use sequencer to sequence your random genome to the coverage

that would yield an expected gap length of 1. Store the reads in reads.fasta.

How many reads did you generate? How many nucleotides?

Problem 292 We use velvet for assembly. Velvet first “hashes” the reads,

which means indexing overlapping read fragments of some length. These fragments

are then used as seeds for inexact matches between reads. Use velveth to hash the

short reads to a length of 21 and Assem as the name of your assembly directory.

Problem 293 Assemble the hashed reads using velvetg. The only option you

need to set at this stage is the expected coverage, -exp_cov. velvetg assembles

the reads into contiguous sequences, or contigs. How many contigs do you get and

how many nucleotides do they comprise?

Problem 294 So far we have simulated sequencing projects by picking random

reads. In real sequencing projects, random fragments of mean length, say, 500 bp are

picked and sequenced from both sides. This approach is called paired-end sequenc-

ing. The information about read pairing is passed on to the assembly program. Repeat

the sequencing experiment, but this time generate paired-end reads in sequencer
and use the corresponding option in velveth. In velvetg set the “insert length”,

that is, the length of the fragment sequenced from both ends, to 500. How many

contigs and nucleotides do you get?

Problem 295 You have sequenced with the default error rate of 0.1%, which means

the sequencer mis-calls one in 1000 nucleotides. What happens if you eliminate

errors altogether?

Problem 296 Increase the error rate to 1%. How many contigs and nucleotides do

you get?

82 4 Fast Alignment

Problem 297 Sequence and assemble the genome of M. genitalium. Generate

single-end reads in sequencer with default error and the coverage for an ex-

pected gap length of 1 calculated in Problem 289. How many nucleotides do you get

in how many contigs?

Problem 298 So far, we have assessed the quality of alignments only by counting

the contigs and the nucleotides they contain. However, a popular measure of assembly

quality is the N50. This is related to the median contig length, which in turn is similar

to the mean contig length. So before, we define the N50, we remind ourselves of

median and mean. Consider five toy contigs with lengths L = {2, 2, 3, 4, 5}. What

is the median and the mean contig length?

Problem 299 The N50 is the length of the shortest contig contained in the set of

longest contigs that comprise at least 50% of assembled nucleotides. What is the N50

of our toy contigs, L ?

Problem 300 On its last output line, velvetg also prints the N50 (n50), because

the larger the N50, the better the assembly. What is the N50 of the assembly you have

just computed?

Problem 301 We now write a pipeline to compute the N50 for the set of contigs

assembled in the previous Problem. First, we write a pipeline for extracting and

sorting the contig lengths. It should, executed from left to right,

• report the length of each contig (cchar -s);

• extract the lines that contain the contig length (grep);

• print only the contig length (awk);

• sort the lengths in descending order (sort).

What is the median contig length (tail & head)?

Problem 302 Now we are in a position to write an AWK program for computing

the N50 from ordered contig lengths. Call this program n50.awk; it

• stores the lengths of all contigs;

• extracts the total length of all contigs;

• sums the contig lengths, and once that sum is greater than half the total length,

prints the current contig length. Use a while loop for this step.

Problem 303 Repeat the sequencing and assembly with paired-end reads and com-

pute the N50. Save this final assembly to mgAssembly.fasta.

4.4 Fast Global Alignment

In Sect. 4.3 we assessed the quality of our genome assembly using such metrics as

the number of contigs, the number of bases assembled, and the N50. However, the

4.4 Fast Global Alignment 83

ultimate quality check is to align the assembly and the template. Since these two

data sets comprise over 500 kb, the corresponding alignment matrix would be huge.

Instead, we can apply fast, “heuristic” alignment methods that are based on a clever

mix of exact matching and optimal alignment. In this section, we use the package

MUMmer [15, 29] for fast global alignment. Specifically, we assess the assembly of

the M. genitalium genome and to compare two strains of Escherichia coli. The core

program in the MUMmer package, mummer, is based on a suffix tree. In Sect. 3.2

the suffix tree was constructed from a single sequence. This can be generalized to

an arbitrary number of sequences by adding the suffixes of them all. However, we

now need to keep track of where a suffix came from and hence label the leaves with

a pair of numbers: (string, suffix). For example, Fig. 4.3a shows the suffix tree for

ADAM already familiar from Fig. 3.5. We first add a sentinel character (Fig. 4.3b) and

then augment the leaf labels by information on string of origin (Fig. 4.3c). Finally,

we insert the suffixes of DAD (Fig. 4.3d). A leaf can now have more than one label;

for example (1, 5) and (2, 4) for the sentinal suffix, $. In this section, we first learn

how generalized suffix trees can be used to find repeats between genomes. Then, we

use MUMmer to compare bacterial genomes.

1 2 3 4 5

S1 A D A M $

S2 D A D $

(a) (b)

1 3

2 4

D
A
M

A
M

D
A
M M

$ A D
A
M
$
M$

5

D
A
M
$

M
$

1 3

2 4

→

(c) (d)

$ A D
A
M
$
M$

1, 5

D
A
M
$

M
$

1, 1 1, 3

1, 2 1, 4

$ A

D M$

1,5

2,4

D M
$

$ AM
$

2, 2 1, 1

1, 3

$
A

2, 3

D
$ M
$

2, 1 1, 2

1, 4

Fig. 4.3 Construction of the generalized suffix tree for ADAM and DAD. (a):ADAM alone; (b):ADAM
plus sentinel ($); (c): ADAM$with leaf labels of the form (sequence, suffix); (d): ADAM$ and DAD$
in one suffix tree

http://dx.doi.org/10.1007/978-3-319-67395-0_3
http://dx.doi.org/10.1007/978-3-319-67395-0_3

84 4 Fast Alignment

New Concept

Name Comment

generalized suffix tree suffix tree for ≥ 1 sequences

New Programs

Name Source Help

drawStrees book website drawStrees -h
mummer book website mummer -h
nucmer book website nucmer -h
show-snps book website show-snps -h

Problem 304 Draw by hand the generalized suffix tree of S1 = AAGCG and S2 =
AGT.

Problem 305 Use the program drawStrees to draw the generalized suffix tree of

S1 and S2. drawStrees generates a LATEX file as output. Convert this to a viewable

postscript file as described in Problem 185.

Make sure that in the FASTA input for drawStrees the second sequence is termi-

nated by a carriage return.

Problem 306 Label by hand each internal node in your suffix tree with the length

of the path label, the string depth. By searching for the node with the greatest string

depth you can find the longest repeat in the input data. What is the longest repeat

between S1 and S2?

Problem 307 Determine the length and composition of the assembly in

mgAssembly.fasta generated in Problem 303 and compare this to the length

of the original genome.

Problem 308 Before we compare mgAssembly.fasta to mgGenome.fasta,

we carry out a few simple experiments with mummer to help interpret its output. Use

ranseq to generate a random 1 kb sequence and save it in s1.fasta. Then use

cutSeq to cut the first and last 100 bp from s1.fasta, splice them together, and

save the resulting single 200 bp sequence to s2.fasta. Compare s1.fasta and

s2.fasta using mummer. Can you interpret the output?

Problem 309 In its simplest form, the output of mummer is a dot plot, albeit a

very efficiently computed dot plot. Use the program mum2plot.awk to convert

the mummer output to gnuplot input.

mummer s1.fasta s2.fasta | awk -f mum2plot.awk |
gnuplot ...

In the resulting plot, which sequence is written along the x-axis, which along the

y-axis?

http://dx.doi.org/10.1007/978-3-319-67395-0_1

4.4 Fast Global Alignment 85

Problem 310 Reverse-complement s2.fasta using revComp, save it to

s3.fasta, and align it again tos1.fasta; only this time we require that mummer
returns matches on both the forward and reverse strand (-b) and that these matches

are reported relative to the original sequence, rather than the reverse complement

(-c). Plot the result as before.

Problem 311 As a final preparatory step, write the contents of s2.fasta and

s3.fasta to s4.fasta and compare it to s1.fasta. Before carrying out the

computation, make a sketch of the plot you expect so see.

Problem 312 When comparing the output of mgAssembly.fasta to

mgGenome.fasta, it is easier to interpret the plot if the assembly consists of

a single sequence. To concatenate the contigs into a single sequence, first create a

new file with a FASTA header

echo '>Assembly' > mgAssemblyS.fasta

Then append the contigs with their headers removed:

sed '/^>/d' mgAssembly.fasta >> mgAssemblyS.fasta

Compare mgGenome.fasta as reference to mgAssemblyS.fasta as query

using mummer. As before, it should compute matches on both the forward and the

reverse strand, and report all query positions with respect to its forward strand. Hint:

mummer -help.

Problem 313 Our next goal is to compare the genomes of two assembled E. coli

strains contained in ecoliK12.fasta and ecoliO157H7.fasta. How long

are these two genomes?

Problem 314 Use mummer to draw the dot plot for K12 and O15H7 with K12 as

reference. What do you notice about the two sequences?

Problem 315 Alignments are used to compare sequences at nucleotide resolution,

something that cannot be done with dot plots. Resolution at the nucleotide level can,

in turn, be used to estimate the number of mutations, or single nucleotide polymor-

phisms (SNPs), that separate two genomes. The program nucmer, which is part of

the mummer package, aligns genomes ready for SNP discovery by show-snps:

nucmer -p nucmer ecoliK12.fasta ecoliO157H7.fasta
show-snps nucmer.delta > nucmer.snps

What is the number of SNPs per nucleotide between K12 and O157H7?

Problem 316 Given that the mutation rate in E. coli is 2.2 × 10−10 per genera-

tion [31], what is the divergence time between K12 and O157H7 in generations?

Problem 317 The doubling times of E. coli range from 30 to 90 min [39]. What is

the corresponding range in years to the most recent common ancestor for K12 and

O157H7?

86 4 Fast Alignment

4.5 Read Mapping

Sequencing reads are among the most common data in Molecular Biology. We have

already seen one typical application of sequencing, shotgun sequencing, where reads

are assembled into the template sequence. In contrast to this de novo sequencing, re-

sequencing is carried out in organisms with established reference genome sequences.

In this situations, reads are mapped to the reference, often for discovering genetic

variants. In this section, we explore the time requirements of read mapping, and how

read alignments can be manipulated.

New Concept

Name Comment

read mapping variant discovery

New Programs

Name Source Help

bwa book website bwa
samtools book website samtools

Problem 318 Create the directory ReadMapping for this session and change into

it. Use the program sequencer to simulate the sequencing of dmChr2L.fasta
with default parameters, except for coverage, which should be 15 instead of 1. In

addition, you can synchronize your results with ours by using 10 as the seed for the

random number generator (-s). Save the reads in reads.fasta. How many reads

were generated (grep)? Do they represent the desired coverage (cchar)?

Problem 319 The program sequencer picks a fragment of mean length 500 bp

with standard deviation
√

500 ≈ 22.4 (seesequencer -h). From such a fragment

it generates a read of length 100 bp. Modern sequencers produce reads of identical

lengths and hence, the standard deviation of read length is zero by default. However,

occasionallysequencer produces a read shorter than the default length. How many

of these do you find in your data set? Can you explain how they might occur?

Problem 320 Map the reads using the BLAST-mode blastn-short for mapping short

reads (-task). But before mapping all reads, write a script for measuring the run

times when mapping 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000 reads. How long

would it take to map all reads?

Problem 321 The program bwa is a read mapper based on the Burrows–Wheeler

transform, hence the name [33]. It works on an index of the reference sequence,

which is computed with the command

bwa index -p dmChr2L dmChr2L.fasta

How long does index computation take? The program reports the main computational

steps. Do you recognize any of the operations being described?

4.5 Read Mapping 87

Table 4.2 Mandatory fields in SAM file

Col. Meaning

1 Query

2 Comment flag; 0: none, 4: unmapped, 16: reverse-complement

3 Subject

4 Position

5 Mapping quality

6 Match string; M: match, D: deletion, I: insertion, S: soft clipping from read

7 Name of read mate

8 Position of read mate

9 Template length

10 Read sequence

11 Base quality

Problem 322 Like with BLAST in Problem 320, align 1, 2, 5, 10, 20, 50, 100, 200,

500, and 1000 reads and redirect the output to the null device. But unlike the BLAST

run, these are thousands, which requires changing the assignment to x in line 4 of

runBlast.sh. Call the new script runBwa.sh. Plot the run times and estimate

how long it would take to align all reads.

Problem 323 Align all reads and save the result in reads.sam. How long does

this take? Compare the observed run time to the estimate from Problem 322.

Problem 324 Take a look at reads.sam (head). Lines starting with @ are header

lines. The body of the file contains eleven mandatory columns, which are listed

in Table 4.2. Column 6 contains a description of the alignment like 100M, which

means 100 matches, in other words, an exact match. Find such an exact match

and use keywordMatcher to locate it in dmChr2L.fasta. How are reverse-

complemented reads represented in reads.sam?

Problem 325 The first things we might want to do with a SAM file is to look at the

alignments. This is done using the program samtools. To prepare reads.sam
for viewing, convert it first to its binary format and sort it:

samtools view -b reads.sam | samtools sort > reads.bam

These commands can be sped up by assigning more than one thread to each process

(-@). Next, the BAM file is indexed

samtools index reads.bam

and can be viewed

samtools tview –reference dmChr2L.fasta reads.bam

Can you explain the commas and dots you see?

88 4 Fast Alignment

170 721

2061

3441
2239

2538

3067

4680

4681

3389

Fig. 4.4 Example of a protein family defined by BLAST hits. Nodes represent proteins, edges are

either reciprocal hits of the form query ↔ subject, or unidirectional hits between query → subject

Problem 326 The help menu of tview is switched on by pressing “?”. What is the

command for visiting a particular position in the alignment?

Problem 327 Positions in an alignment are denoted by

sequenceName:position

The names of the template sequences mapped to are listed in the header of a

SAM/BAM file:

samtools view -H reads.bam

where SN in the output refers to “sequence name”. Go to position 2000. Given a

position annotation like

2001
ATTC

which digit refers to the actual position?

4.6 Clustering Protein Sequences

In this section, we use protein BLAST to find out whether the genome of M. geni-

talium contains sets of genes with similar function. We do this by searching for sets

of genes with similar sequences and assume tacitly that sequence similarity implies

similar function. Such sets of similar genes are called “gene families”. Gene families

arise in the course of evolution by gene duplication [35], as seen with Adh/Adh-dup

in Drosophila. A gene family might look like the graph in Fig. 4.4, where the nodes

represent proteins and the edges BLAST hits, i.e., the arrows pointing from query to

subject.

4.6 Clustering Protein Sequences 89

In homologous pairs, either of the two proteins involved can serve as query/subject.

If there is a hit with both labelings, it is called “reciprocal” and is denoted as query ↔
subject. Otherwise we just have a hit in one direction, query → subject. Reciprocal

hits are the norm. The one exception in Fig. 4.4 is the pair 721 → 2239, where the

comparison is only significant if 721 is query, not if 2239 is query.

Gene families are common in the large genomes of, for example, mammals.

The human genome encodes approximately 23,000 genes of which hundreds belong

to several families of olfactory receptors [11], a reflection of the importance of

the sense of smell in terrestrial mammals. However, M. genitalium has one of the

smallest genomes of any free living organism with less than 500 protein-coding

genes. The question we investigate in this section, is therefore, whether the genome

of M. genitalium is too small to accommodate gene families.

New Concept

Name Comment

protein family set of proteins with similar sequences and functions

New Programs

Name Source Help

blast2dot.awk book website blast2dot.awk -v h=1
blastp book website blastp -help
circo (GraphViz) package manager man circo
getSeq book website getSeq -h
neato (GraphViz) package manager man neato
ranDot.awk book website ranDot.awk -v h=1

Problem 328 How many edges could in theory be drawn between the nodes (pro-

teins) in Fig. 4.4? What proportion of these is actually found?

Problem 329 Make a directory for this session,

FastLocalAlignmentProt

change into it, and link the file mgProteome.fasta, which contains all proteins

of M. genitalium. How many proteins are there?

Problem 330 In order to find protein families in M. genitalium, we shall carry

out an all-against-all comparison of the proteins. How many comparisons does this

comprise? Test your prediction by producing five identical DNA sequences using

ranseqwith the same seed for the random number generator, and running blastn
on that toy data set.

Problem 331 Carry out an “all-against-all” comparison on mgProteome.fasta
with E = 10−5. Save the result in tabular format in the file mgProteome.blast.

Since we are only interested in the closest homologue of each sequence, restrict the

output to at most one hit per query:

90 4 Fast Alignment

-max_hsps 1

How long does it take blastp to carry out the approximately 230,000 comparisons

(time)? Take a look at the BLAST result.

Problem 332 Convert mgProteome.fasta to the BLAST database

mgProteome (makeblastdb). How long does this take? How long does the all-

against-all comparison take using the database? Again, save the result in

mgProteome.blast.

Problem 333 Every accession in mgProteome.blast has the redundant prefix

lcl|. Use sed to remove it. Hint: Save the result of sed to a temporary file, say

tmp, before replacing the original with the edited version.

Problem 334 What happens if the input file of a command is also the output, without

saving to an intermediary file? For example

sed expr mgProteome.blast > mgProteome.blast

Try this, but only after making a backup copy of mgProteome.blast first.

Problem 335 Look at the first ten lines of mgProteome.blast. Can you find a

protein with at least one homologue in the proteome (other than itself)? Use grep
on mgProteome.fasta to discover the function of the first such protein in the

list and of its homologue.

Problem 336 How many lines are contained in mgProteome.blast? Is it sen-

sible to analyze this file manually to find protein families?

Problem 337 What is the protein with the largest number of homologues in the

proteome of M. genitalium (sort, uniq -c)?

Problem 338 Write a pipeline that prints out the list of unique MG-numbers of the

proteins linked to MG_410 by BLAST hits. Save the names of this protein family in

protFam.txt.

Problem 339 The program neato is used for visualizing large graphs. We plan to

use it for visualizing the network of BLAST hits in the proteome of M. genitalium.

Neato takes input written in the dot language. Here is an example:

graph G {
a -- b
b -- c
c -- a

}

If this is contained in example1.dot, neato calculates the layout and visualizes

it

neato -T x11 example1.dot

4.6 Clustering Protein Sequences 91

If the x11-terminal is not available on your system, try generating postscript output

neato -T ps example1.dot > example1.ps

which can then be viewed

gv example1.ps &

to give

a b

c

Write a file example2.dot that specifies the following graph:

1 2

3

5

4

Problem 340 To represent reciprocal and unidirectional BLAST hits, use

a -- b [dir=both] # reciprocal hit
c -- d [dir=forward] # unidirectional hit

which sets the edge attribute dir, the default value of which is none. Write the dot

code for

2

1

5

3

4

Problem 341 Use the program ranDot.awk to draw a random graph with ten

nodes, directed edges, and an edge probability of 0.5:

awk -f ranDot.awk -v n=10 -v p=0.5 -v dir=1 > ranDot.
dot

92 4 Fast Alignment

What is the expected number of edges in this random graph? Compute the observed

number of edges, counting reciprocal edges double. Compare the expected number

of edges to that observed.

Problem 342 VisualizeranDot.dotusingneato. Then visualize it with the pro-

gram circo, which has the same syntax as neato and is also part of the Graphviz

package. Which graph do you prefer?

Problem 343 We now convert the hits in mgProteome.blast to dot code:

awk -f blast2dot.awk mgProteome.blast |
sed 's/MG_//g' > mgProteome.dot

Notice the sed command for removing MG_ to save space when drawing the nodes.

Choose between neato and circo to draw the graph. What is the size of the largest

protein family? Compare it toprotFam.txt, and if there are any differences, write

the new version of the protein family to protFam2.txt.

Problem 344 By default, blast2dot.awk only includes proteins with at least

one BLAST hit in the output. To include proteins without homologues, repeat the

computation of dot code including the “singletons”

awk -f blast2dot.awk -v singletons=1 mgProteome.blast|
sed's/MG_//g' > mgProteome2.dot

What proportion of the proteome are singletons?

Problem 345 What is the function of the members of the extended protein family?

Find out by looking up the annotations contained in their FASTA headers usinggrep
with extended regular expression syntax, which allows OR. For example,

grep -E '(a|b)'

reports lines matchinga or b. Hint: Use protFam2.txt to automatically construct

the list of alternative matches.

Problem 346 To learn more about the protein family just obtained, we search a

database of protein motifs and annotations. Prosite is one such database. It consists

of two files,prosite.dat andprosite.doc. The fileprosite.dat contains

motifs, prosite.doc annotations. Search prosite.doc for our gene family.

What is its function?

Problem 347 Why should a bacterium possess multiple ABC transporters?

4.7 Position-Specific Iterated BLAST

For all the alignments computed so far, we used the same score scheme at every

position; any mutation between, say, a proline and a histidine had the same score,

4.7 Position-Specific Iterated BLAST 93

regardless of whether it occurred in an active site, a transmembrane helix, or an

extracellular loop. An alternative to the traditional position-invariant score matrices

such as PAM70 and BLOSUM62, are position-specific score matrices; here is an

example:

A R N D C Q E G H I L K M F P S T W Y V
1 M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
2 E -1 0 0 1 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
3 K -1 2 0 -1 -3 1 1 -1 -1 -3 -2 4 -1 -3 -1 0 -1 -3 -2 -2

...
329 N -2 0 6 1 -3 0 0 0 1 -3 -4 0 -2 -3 -2 1 0 -4 -2 -3

At every position the query amino acid is listed next to the 20 possible scores. Such

a matrix has the advantage of reflecting the local variation in mutation probabili-

ties. Its disadvantage is that every query/subject combination requires a new score

matrix. Therefore, position-dependent score matrices cannot be precomputed; they

need to be constructed on the fly through iteration. In the first iteration, a conven-

tional score matrix is used to find the closest homologues of the query, which are

converted to an initial position-dependent score matrix. This is applied in the second

round of sequence comparison. Since searches based on position-dependent score

matrices are usually more sensitive than traditional searches, the second iteration

often uncovers new homologues. These are used to revise the score matrix before

repeating the search. The cycle of searching and matrix revision continues until no

new sequences are found. The BLAST program psiblast, for Position-Specific

Iterated BLAST [7], implements such an iterative search. In this section, we use it

to search for further members of the ABC transporter gene family in the proteome

of M. genitalium.

New Concept

Name Comment

position-specific iterated BLAST more sensitive than regular BLAST

New Program

Name Source Help

psiblast book website psiblast -h

Problem 348 The program psiblast takes as input a query sequence and a

database in BLAST format. Set up the directory PsiBlast for this session. Then

convert mgProteome.fasta to the BLAST database mgProteome. We previ-

ously found that MG_410, together with MG_180 and MG_179, has the largest

number of BLAST hits in the proteome of M. genitalium. So save MG_410 to

mg_410.fasta and take it as the starting sequence for our initial psiblast
run. Leave all options unchanged except for the output format, which should be tab-

ular. Save the output in mg_410.psi. How many distinct hits have an E-value less

than 10−5?

94 4 Fast Alignment

Problem 349 Repeat the comparison of mg_410.fasta to the full proteome with

blastp. Save the result in mg_410.bp and compare it to mg_410.psi. Can you

find any differences?

Problem 350 Rerun psiblast iteratively until convergence by using

-num_iterations 0

Save the output in mg_410b.psi. How many rounds doespsiblast go through?

How many distinct proteins have an E-value of 10−5 or smaller in the last round?

Save the corresponding proteins in psiBlastList.txt. Hint: Each round starts

with the best hit, MG_410 to itself.

Problem 351 The list of ABC transporter proteins extracted from the graph of
BLAST hits in M. genitalium comprised 18 sequences and was recorded in
protFam2.txt:

MG_014 MG_015 MG_042 MG_065 MG_079 MG_080 MG_119 MG_179 MG_180
MG_187 MG_290 MG_303 MG_304 MG_410 MG_421 MG_467 MG_526 MG_390

What are the extra three proteins just identified?

Problem 352 What are the annotations in mgProteome.fasta of the extra pro-

teins just found?

Problem 353 Next, we investigate the position-specific score matrix used by

psiblast. To generate it, rerun psiblast and save the score matrix in

psiBlast.mat using

-out_ascii_pssm psiBlast.mat

Which part of psiBlast.mat contains the position-specific score matrix? How

many lines does this matrix consist of? Compare the length of the matrix to the length

of MG_410.

Problem 354 Scores for a particular amino acid can vary widely along a protein

sequence. To illustrate this, first identify the most frequent amino acid in MG_410

(cchar). Then use AWK to extract the scores for each position occupied by that

amino acid from psiBlast.mat. What is the range of its match scores? Compare

that to the corresponding match score in BLOSUM62.

4.8 Multiple Sequence Alignment

Up to now we have looked only at alignments between two sequences. But one often

needs to align more than two sequences. To do this optimally for n sequences, an

n-dimensional dynamic programming matrix is needed. Figure 4.5 illustrates such

multidimensional matrices starting from zero dimensions, a mere dot in Fig. 4.5a.

By doubling this dot and drawing a connecting edge, a one-dimensional matrix is

4.8 Multiple Sequence Alignment 95

(a) (b) (c) (d) (e)

S1

S1

S2

S1

S2

S3

S1

S2

S3

S4

Fig. 4.5 Building multidimensional dynamic programming matrices for optimal multiple sequence

alignment. The number of dimensions ranges from zero (a) to four (e) and corresponds to the number

of sequences, Si , that can be written along its edges and hence aligned. Sequences are indicated by

colored arrows labeled Si . They all start at the same node. The red arc indicates the trace-back

generated, which can accommodate a single sequence, S1, written from left to right

as indicated by the arrow in Fig. 4.5b. In the next doubling step we get the familiar

two-dimensional matrix for aligning two sequences, S1 and S2, in Fig. 4.5c. The trace-

back is indicated by the red arc. Repeat the doubling to get a cube for aligning three

sequences (Fig. 4.5d). This can be repeated to create the four-dimensional hyper-cube

in Fig. 4.5e.

Clearly, the space and time required for aligning by dynamic programming is

multiplicative in the lengths of the input sequences. As a result, there are only few

programs implementing optimal multiple sequence alignment [20, 34]. In practice,

“shortcuts”, or “heuristics”, are taken. The most important of these is to reduce a

multiple sequence alignment to a set of pairwise comparisons. In this section, we use

two versions of this heuristics, query-anchored alignment, and progressive alignment

to analyze sets of hemoglobin sequences.

New Concepts

Name Comment

optimal multiple sequence alignment generalize optimal pairwise alignment

progressive multiple sequence alignment heuristic multiple sequence alignment method

query-anchored alignment heuristic multiple sequence alignment method

New Programs

Name Source Help

clustalw or clustal2 book website clustal[w2] -help
fasta2tab.awk book website fasta2tab.awk -v h=1
shuffle.awk book website shuffle.awk -v h=1

96 4 Fast Alignment

4.8.1 Query-Anchored Alignment

Problem 355 Set up the directory Msa for this session and obtain the following

four hemoglobin sequences from Uniprot/Swissprot collection of curated protein

sequences. This is contained in uniprot_sprot.fasta, from where individual

sequences can be extracted using getSeq:

Accession Protein

HBA_HUMAN Human α-hemoglobin

HBA_HORSE Horse α-hemoglobin

HBB_HUMAN Human β-hemoglobin

HBB_HORSE Horse β-hemoglobin

Save the sequences in files called hbaHuman.fasta, hbaHorse.fasta, etc.

Problem 356 The program blastp has an output format for anchoring all subject

sequences to the query.

-outfmt 2

Use this with human α-hemoglobin as query and the other three as subject. Begin

by constructing a file containing the subject sequences. The output contains amino

acids printed like this

\
|
G

Can you guess what this means?

Problem 357 Repeat the query-anchored alignment, only this time use human β-

hemoglobin as the subject.

4.8.2 Progressive Alignment

Problem 358 Query-anchored alignments have the disadvantage that they depend

on the query. The progressive alignment algorithm, which is the most widely used

method for computing multiple sequence alignments, avoids this. Given a set of

sequences (Fig. 4.6a), progressive alignment starts by computing their pairwise

alignments and hence distances (Fig. 4.6b). The distances are summarized as a tree

(Fig. 4.6c), which groups the pair with the smallest distance first. At each internal

node in the tree two clusters are joined. The tree is traversed from the leaves toward

the root, and at the first internal node encountered the sequences of the corresponding

leaves, A and D, are aligned (Fig. 4.6d). At the next internal node up, the pair B, C

is aligned (Fig. 4.6e). At the root, finally, the two pairwise alignments generated so

4.8 Multiple Sequence Alignment 97

far, (A, D) and (B, C), are each treated as a unit and aligned with each other in the

final pairwise alignment (Fig. 4.6f). In this way, as the algorithm progresses toward

the root, only pairwise alignment problems need to be solved, which greatly sim-

plifies the task of aligning multiple sequences. The disadvantage of this procedure

is that any gaps introduced early in the algorithm cannot be changed later. This is

why the tree is traversed from the leaves up rather than from the root down; the most

similar sequences are aligned first, and their alignments contain the fewest of those

irrevocable gaps.

We now recapitulate these steps using our four example sequences. To begin

with, compute the
(

4

2

)

= 6 pairwise scores using gal together with the BLOSUM62

matrix. To convert a given score, si j , to a distance, di j , let sm be the maximum

score; then we compute the distance by dividing by the maximum and taking the

complement:

di j = 1 − si j/sm.

Problem 359 From the distance matrix, construct the order of clustering in the form

of a guide tree as shown in Fig. 4.6b.

Problem 360 The hemoglobin proteins are homologs. In previous sections about

Adh and its duplicate Adh-dup in Drosophila, we distinguished between two types of

homologs: Orthologs, which have diverged through speciation, and paralogs, which

have diverged through gene duplication. Classify our example genes into paralogs

and homologs.

Problem 361 Save the four hemoglobin sequences in hemoglobin.fasta and

align them using clustalw. Take a look at hemoglobin.dnd, which contains

the guide tree in text format. To understand the relationship between a tree as text

and a tree as graph, consider the guide tree in Fig. 4.6c. Its textual representation is

(b)(a) (c)

D

C

B

A

→

A B C D

A 0 6 6 2

B 6 0 4 6

C 6 4 0 6

D 2 6 6 0

→

A D B C
Leaf

Internal Node

Root

(d) (e) (f)

D

A

→ B

C

→ B

C

D

A

Fig. 4.6 Alignment of multiple sequences as progressive pairwise alignment along a guide tree:

Four sequences (a) are aligned pairwise and their distances stored in a matrix (b), which is sum-

marized as tree (c); traversal of this tree from the leaves to the root guides the alignment (d–f)

98 4 Fast Alignment

((A:0.5,D:0.5):1,(B:1,C:1):0.5);

This notation means

Token Explanation

(cluster opened, draw a node that is either the root or an internal node

A leaf with label A

:0.5 distance to parent node is 0.5

, separate nodes

) cluster closed

; end of tree description

The program clustalw uses unrooted guide trees. Without a root our example tree

would be denoted as

((A:0.5,D:0.5):1.5,(B:1,C:1));

and look like this

A

D

B

C

Draw by hand the guide tree produced by clustalw.

Problem 362 Take a look at the alignment in hemoglobin.aln. How many gaps

does it contain, and during which phase of the algorithm was each of them introduced?

Problem 363 Let us examine the N-terminus of the alignment:

HBB_HORSE -VQLS
HBB_HUMAN MVHLT
HBA_HORSE -MVLS
HBA_HUMAN -MVLS

This contains one monomorphic site, L. However, the following arrangement of gaps

gives two monomorphic sites, L and V:

HBB_HORSE -VQLS
HBB_HUMAN MVHLT
HBA_HORSE MV-LS
HBA_HUMAN MV-LS

4.8 Multiple Sequence Alignment 99

Should not it be better than the first alignment? This depends on the treatment of gap-

opening. By default, clustalw scores the opening of end gaps as zero. Consider

the two sequences S1 = AT G and S2 = AG. If gap opening is scored the same at

every position, the optimal alignment should be

ATG
A-G

What does the clustalw alignment of these two sequences look like?

Problem 364 The gap-opening penalty of clustalw is set using

-GAPOPEN=x

Can you find a value for x that is compatible with the alternative N-terminal align-

ment:

HBB_HORSE -VQLS...
HBB_HUMAN MVHLT...
HBA_HORSE MV-LS...
HBA_HUMAN MV-LS...

Apply this to the hemoglobin sample.

Problem 365 To investigate the run time of clustalw, apply it to a single pair of

random sequences of lengths 100, 200, 500, 1000, 2000, 5000, 10000, and 200000

bp. Plot the run times as a function of sequence length. How does the run time scale

with sequence length?

Problem 366 Repeat the run time analysis, except this time vary the number of

sequences aligned rather than their lengths. Generate 2, 5, 10, 20, 50, 100 random

sequences of length 1 kb and measure the run times of clustalw. How does the

run time scale with sample size?

Problem 367 Extract a random sample of 100 hemoglobin sequences from Uni-

prot/Swissprot (uniprot_sprot.fasta). For this, get the sequences with

getSeq and convert them to tabular format by piping them through fasta2tab
.awk. Shuffle the sequences using shuffle.awk to get an unbiased sample, then

convert them back to FASTA format (tr and fold). How long does clustalw
take to analyze this sample of 100 sequences? Repeat the time measurement with

200 random hemoglobin sequences.

Problem 368 How many hemoglobin sequences are contained in Uniprot? Estimate

the time it would take to align all of them with clustalw.

Problem 369 Test your run time prediction.

Chapter 5

Evolution Between Species: Phylogeny

5.1 Trees of Life

In 1834 Charles Darwin (1809–1882) wrote in his notebook “I think”—but instead

of finishing the sentence, he drew a phylogeny. When he published his thinking in

1859, The Origin of Species contained a single figure: a phylogeny. We already saw

in Sect. 4.8 that phylogenies in the form of guide trees are useful for computing mul-

tiple sequence alignments. But beyond clever computing, phylogenetic trees embody

biologists’ thinking. In this section, we describe how to write, visualize, and traverse

trees such as that shown in Fig. 5.1.

New Concepts

Name Comment

inorder traversal similar to preorder traversal

Newick tree format standard tree notation

postorder traversal similar to inorder traversal

preorder traversal method of visiting each node of a tree once

recursive structure trees are recursive structures

New Programs

Name Source Help

genTree book website genTree -h

new2view book website new2view -h

traverseTree book website traverseTree -h

Problem 370 Begin by making the directory TreesOfLife and change into it.

Here is a simple phylogeny:

human chimp

gorilla

© Springer International Publishing AG 2017

B. Haubold and A. Börsch-Haubold, Bioinformatics

for Evolutionary Biologists, https://doi.org/10.1007/978-3-319-67395-0_5

101

http://dx.doi.org/10.1007/978-3-319-67395-0_4

102 5 Evolution Between Species: Phylogeny

0.008

T33
T34
T24
T10
T21
T11
T25
T1
T17
T35
T6
T2
T13
T20
T18
T8
T22
T16
T14
T30
T31
T32
T29
T3
T4
T27
T12
T7
T26
T28
T15
T23
T5
T19
T9

Fig. 5.1 A random tree of 35 taxa

Its textual representation is

((human:1,chimp:1):1,gorilla:1);

This notation is called the Newick format after “Newick’s Lobster House” in New

Hampshire, where the American Biologist Joe Felsenstein and a few colleagues

adopted it on June 26, 1986. Translate the following tree to Newick and save it in

first.tree.

A B C D

Problem 371 The advantage of a standard tree notation is that programmers can

write visualization software based on it. Usenew2view to visualizefirst.tree.

Problem 372 The Newick format does not require branch lengths. Write

first.tree without branch lengths, and save it as second.tree. How does

new2view render branches without lengths?

Problem 373 In a Newick tree, any node can be either labeled or unlabeled. Remove

the leaf labels from second.tree and label its root as “root”. Save the result in

third.tree.

5.1 Trees of Life 103

Problem 374 Return to the tree with labeled leaves in second.tree. What hap-

pens when the labels within the pairs A, B, and C, D are switched? Does this change

the biological interpretation of the tree? Save this tree as fourth.tree.

Problem 375 Use new2view to look at unrooted versions of all four trees gener-

ated so far. What is the difference to the rooted layout?

Problem 376 In biology, we often talk about “unrooted” trees, even though this is an

oxymoron for computer scientists and mathematicians. To get a clearer understanding

of what biologists mean when they refer to unrooted trees, save the code of the four

trees in fourTreesU.tree. Then unroot them manually by editing each one such

that their “root” has three children instead of the usual two. Use new2view to look

at the unrooted trees in default layout and in rooted layout.

Problem 377 The bracket notation emphasizes that trees consist of subtrees, for

example,

(((,),),(,));

It is a bit difficult to imagine what this tree looks like, but we can again use

new2view, and this time label all nodes with their internal identifier by using

the -l option

0.5

1

3
2

5

4

7

9
8

6

The subtree rooted on node 6 consists of subtrees rooted on nodes 8 and 4, and so on.

This “recursive” structure leads to a method for traversing a tree, where the function

traverse calls itself:

traverse(node)

visit(node)

traverse(leftChild(node))

traverse(rightChild(node))

When we apply this procedure to node 6 in our tree, the nodes are visited in the order:

6, 4, 2, 1, 3, 5, 8, 7, and 9. Since the root is always visited first, then each one of the

child nodes in turn, the procedure is called preorder traversal. In what order are the

nodes of Fig. 5.2 visited during preorder traversal?

104 5 Evolution Between Species: Phylogeny

0.5

1

3

5

4

7

9

8

6

2

Fig. 5.2 A tree with all nodes labeled

Problem 378 Instead of preorder, a tree can also be traversed inorder by first visiting

the left child, then the root in the middle, and finally the right child:

traverse(node)

traverse(leftChild(node))

visit(node)

traverse(rightChild(node))

In what order does this algorithm visit nodes when applied to the root of Fig. 5.2?

Problem 379 Finally, the root can be visited last, which is called postorder traversal:

traverse(node)

traverse(leftChild(node))

traverse(rightChild(node))

visit(node)

In what order does this algorithm visit nodes when applied to the root of Fig. 5.2?

Problem 380 Instead of traversing the tree in Fig. 5.2 by hand, write its topology

without any labels into the file traverse.tree and use traverseTree to

traverse it in the three possible modes. Can you see why they are also called depth

first traversals?

Problem 381 Sometimes it is useful to quickly generate a tree, for example to test

software that draws trees. The program genTree generates random phylogenies.

By default, the branches of these trees have lengths proportional to the number of

mutations along the branches. Run genTree with default options and visualize

its output. The branches in the tree do not all end at the same vertical line, which

indicates the present. Can you think of a reason for this heterogeneity in the positions

of the leaves?

Problem 382 Generate two random phylogenies without mutations. How do they

differ?

5.1 Trees of Life 105

Problem 383 There are n×(n−1)×...×2 = n!, that is, n-factorial, ways of ordering

n objects. Write an AWK program for computing n! as a function of n = 1, 2, ..., 100

and plot the result to get an idea of the number of possible phylogenies.

Problem 384 There are many trees that correspond to the same ordering of leaves.

The number of phylogenies with n leaves is, therefore, probably larger than n!.

Exactly how large, can be computed based on the following consideration [17, p.

20ff]: Two taxa are connected by a single rooted tree:

A B

e1 e2

e3

The third taxon, C can be added to any of the three edges e1, e2, and e3, giving three

trees:

A B C

e1 e2

e3

e4

e5

A C B

e1 e2

e3

e4

e5

B C A

e1 e2

e3

e4

e5

The fourth taxon can be added to any one of the five edges e1, e2, ..., e5, yielding

3 × 5 = 15 rooted trees. In general, the number of rooted, bifurcating trees for n

taxa is

3 × 5 × ... × (2n − 3).

Write the program numTrees.awk to compute the number of rooted phylogenies

as a function of n. Plot the result for n = 2, 3, ..., 100 and compare it to n!.

Problem 385 Generate another random tree with no mutations, but this time display

branch lengths that are proportional to the speciation time.

Problem 386 When reconstructing phylogenies, biologists often talk about a molec-

ular clock. Under the molecular clock model, mutations occur with constant rate

along all branches of a phylogeny. Trees generated by genTree have this property.

But in contrast to the clocks of everyday life, the molecular clock is stochastic. To

emphasize the difference, compare two random trees with default mutations, one with

branch lengths proportional to mutations (molecular clock), the other with branch

lengths proportional to time (usual clock). Use the same seed for the random number

generator to make the trees comparable.

106 5 Evolution Between Species: Phylogeny

5.2 Rooted Phylogeny

How can we calculate phylogenies from data rather than just simulate them? To

construct a rooted phylogeny, start from a distance matrix like that shown in the

top panel of Fig. 5.3a. Cluster the most similar organisms, A and B, such that the

distance between A and its parent is half that between A and B (Fig. 5.3a, bottom

panel). Then recompute the distance matrix with the new cluster, (A, B). Distances

between groups of taxa are the average of the distances between the members of

the groups. For example, the distance between C and (A, B) is (4 + 4)/2 = 4.

This averaging of distances gives the method its name: “Unweighted Pair-Group

Method using an Arithmetic average,” or UPGMA [17, 46]. The most similar pair

of taxa is chosen from the new matrix and clustered again (Fig. 5.3b). The cycle of

matrix adjustment and clustering is repeated one more time to yield the final rooted

phylogeny (Fig. 5.3c).

New Concept

Name Comment

Unweighted Pair-Group Method using an Arithmetic average clustering method

New Programs

Name Source Help

andi book website -h

clustDist book website clustDist -h

dnaDist book website dnaDist -h

gd book website gd -h

lscpu system man lscpu

(a) (b) (c)

A B C D

A -

B 2 -

C 4 4 -

D 6 6 6 -

(A,B) C D

(A,B) -

C 4 -

D 6 6 -

(A,B,C) D

(A,B,C) -

D 6 -

→ →

A B

1 1

A B C

1

1 1

2

A B C D

1

1

1 1

2

3

Fig. 5.3 Construction of a rooted phylogeny in three steps (a–c) using the “Unweighted Pair-Group

Method using an Arithmetic average,” UPGMA

5.2 Rooted Phylogeny 107

Problem 387 Use UPGMA, paper, and pencil to draw the phylogeny implied by

the distance matrix

A B C D

A -

B 6 -

C 2 6 -

D 6 4 6 -

Problem 388 There might be discrepancies between a UPGMA tree and the dis-

tances from which it was constructed. Perfect agreement is also known as “ultra-

metricity.” Ultrametric distances fulfill the criterion that for three distances between

taxa A, B, C we can find a labeling such that dA,B ≤ dA,C = dB,C . This “three point

criterion” ensures that all leaves fall on a horizontal line, the present:

A B C

An ultrametric tree implies not only a molecular clock, but also that this stochas-

tic clock behaves like a conventional clock. These strong assumptions underlie the

simplicity of UPGMA. Are the distances in Problem 387 ultrametric?

Problem 389 Let’s construct a phylogeny from some real sequence data. The file

hominidae.fasta contains the extant genera of the Hominidae, also known as

“great apes”.

Problem 390 Look up the trivial names of these organisms in the taxonomy database

on the NCBI website at

http://www.ncbi.nlm.nih.gov/taxonomy

Problem 391 We now recapitulate in detail how to get from sequence data to a tree.

The sequences in hominidae.fasta are already aligned. Use gd, getSeq, and

cutSeq to extract the first ten polymorphic positions in the alignment. From this,

count by hand the pairwise differences between these taxa.

Problem 392 Use UPGMA, pencil, and paper to construct the phylogeny from the

distances. Write the final tree in Newick format. Then enter the distances in the file

test.dist using the format

4

name1 d_11 d_12 d_13 d_14

name2 d_21 d_22 d_23 d_24

name3 d_31 d_32 d_33 d_34

name4 d_41 d_42 d_43 d_44

Apply clustDist to check the intermediate matrices and final tree. Visualize the

tree with new2view.

108 5 Evolution Between Species: Phylogeny

Problem 393 Use the program dnaDist to compute the pairwise distances from

hominidae.fasta. Are the distances ultrametric?

Problem 394 Use clustDistwith UPGMA to compute the Hominidae phyloge-

ny from hominidae.dist. Pipe the result through new2view to visualize the

tree.

Problem 395 Next, we compute the phylogeny of primates from their mitochondrial

genome sequences. How many sequences are contained in primates.fasta and

what is the range of their lengths?

Problem 396 The program andi [23] can quickly compute distances between

genomes. Use andi to compute the pairwise distances between the primate mi-

tochondria. Andi is a “multi-threaded” program, which means it can use more than

one CPU at a time to carry out its computation. To find out the number of threads

available, enter

lscpu

and look for the line starting

CPU(s):

Say, there are eight CPUs, then run the mitochondria computation with 1, 2, 4, and

8 threads and use the program time to measure the run time; for two threads this

would be

time andi -t 2 primates.fasta

Problem 397 Cluster the distances using UPGMA and visualize the primate phy-

logeny with new2view. Do you get the same branching order for human, chimp,

gorilla, and orangutan as with the Hominidae data set used in Problem 392?

5.3 Unrooted Phylogeny

All groups of organisms have a common ancestor, which means that all real phylo-

genies are rooted. The UPGMA algorithm we used in Sect. 5.2 is popular because it

generates rooted phylogenies. The underlying assumption that the mutation rate ticks

like a real clock along all branches fits the intuition that the leaves of a phylogeny

should all be located in the present time. However, the mutation rates might vary

along branches as shown in Fig. 5.4a. If we apply UPGMA to the distance matrix

in Fig. 5.4b, B and C are clustered first, giving us the wrong tree. In this section,

we look at the neighbor-joining algorithm [42], which overcomes this limitation of

UPGMA and recovers the correct tree at the cost of losing the root node (Fig. 5.4c).

However, we can reintroduce the root by placing it in the middle between the two

most divergent taxa [16], a procedure known as “midpoint rooting”.

5.3 Unrooted Phylogeny 109

(a) (b) (c)

A

B C

D

1 1

4

1 1

4

A B C D

A - 5 7 10

B 5 - 4 7

C 7 4 - 5

D 10 7 5 -

A

B C

D

2

4

1 1

4

Fig. 5.4 Tree with varying mutation rates (a) and the corresponding distance matrix (b). By re-

moving the root node from (a) we get (c)

New Concepts

Name Comment

midpoint rooting place root in the middle between most distant leaves

neighbor joining method clustering method for distance data

New Program

Name Comment Help

retree book website menu-driven

Problem 398 Trees with varying mutation rates along their branches like in Fig. 5.4a

result in distances that are called additive. Of the six distances among organisms

A, B, C , and D, four cross the root of the tree, dAC , dAD , dBC , and dB D . These

can be divided in two groups of two, the sums of which are identical, dAC + dB D =

dAD+dBC . These sums are always larger than the sum of the remaining two distances,

dAB and dC D . This yields the “four point criterion” for additive distances:

dAC + dB D = dAD + dBC ≥ dAB + dC D.

Check manually that the distances in Fig. 5.4b are additive.

Problem 399 List three taxa from Fig. 5.4a whose distances contradict the three

point criterion of ultrametricity. This posits that given a tree, any triplet of leaves can

be labeled such that

dAB ≤ dAC = dBC .

Problem 400 To trace the neighbor-joining algorithm, note down the top triangle

of the distance matrix in Fig. 5.4b:

110 5 Evolution Between Species: Phylogeny

A B C D ri

A - 5 7 10

B - 4 7

C - 5

D -

The last column, ri , is reserved for the row sums. Compute by hand the values of ri ,

remembering that the distance matrix is symmetrical.

Problem 401 In the next step of neighbor-joining we compute for each pair of

taxa, i, j , the difference between its distance, di j , and the normalized sum of the

corresponding row sums, ri , r j :

Si j = di j −
ri + r j

n − 2
,

where n is the number of taxa. Compute the Si j -values by hand and write them in

the lower triangle of the distance matrix.

Problem 402 Instead of clustering the pair of taxa with the smallest distance as in

UPGMA, neighbor-joining clusters the taxa with the smallest Si j . If the new cluster

is called c, the distances between c and some other cluster, k, is

dkc = (dik + d jk − di j)/2.

The other distances are unchanged. Cluster one of the two pairs with the smallest Si j

and adjust the distance matrix accordingly.

Problem 403 We still need to know the lengths of the branches connecting the new

cluster c and leaves i and j :

dic =
(n − 2)di j + ri − r j

2(n − 2)
,

and

d jc =
(n − 2)di j + r j − ri

2(n − 2)
.

Compute (by hand) the branch lengths for the new cluster.

Problem 404 To summarize, the neighbor-joining algorithm consists of four steps;

given distances di j ,

• compute

ri =
∑

j

di j ,

5.3 Unrooted Phylogeny 111

• compute

Si j = di j − (ri + r j)/(n − 2),

• cluster pair of taxa with smallest Si j in node c with

dkc = (dik + d jk − di j)/2,

• calculate branch lengths

dic =
(n − 2)di j + ri − r j

2(n − 2)

d jc =
(n − 2)di j + r j − ri

2(n − 2)

This procedure is repeated until there are only three clusters left, i, j, k, which is

the stage we have reached in our example. These are joined to the pseudo-root r , by

branches with the following lengths

dri = (di j + dik − d jk)/2

dr j = (d j i + d jk − dik)/2

drk = (dki + dk j − di j)/2

What are the lengths of the last three branches added to our example tree?

Problem 405 Create the directoryNeighborJoining for this session and change

into it. Enter our example distances (Fig. 5.4) in file test.dist and use

clustDist to automatically trace the steps just completed by hand. Save the tree

as testU.tree and draw it using new2view.

Problem 406 Root the example tree by placing the root in the middle of the longest

path from one leaf to another. Write down the midpoint-rooted phylogeny in Newick

format and save it to testR.tree. Then draw it with new2view.

Problem 407 Use the PHYLIP program retree to midpoint-root our unrooted

example tree from Problem 405, which was saved as testU.tree. Save the final

tree in rooted form. Does retree return the same result as the manual midpoint

rooting?

Problem 408 Use andi together with clustDist to compute the neighbor join-

ing tree of the mitochondrial genomes in primates.fasta. Midpoint-root this

version of the primate phylogeny and compare it to the UPGMA tree (Problem 396).

Can you spot any differences?

Chapter 6

Evolution Within Populations

6.1 Descent from One or Two Parents

Every one of us has two parents, four grandparents, eight great-grandparents, and so

on. Figure 6.1 shows a random ancestry for a single individual in a population of seven

individuals. The individuals are diploid, hence the two dots indicating two genes,

and there are two sexes, ellipses, and boxes. As we shall see that the rapid growth

of the number of ancestors has the curious effect that it is easy to have a famous

forbear—but difficult to not share him with everybody [13, 41]. In contrast, each

gene has a single ancestor, if we ignore recombination for now. Using simulations,

we learn that in the uni-parental genealogies of genes it takes much longer to find

common ancestors than in the bi-parental genealogies of individuals.

New Concepts

Name Comment

bi-parental genealogy the genealogy of people

uni-parental genealogy the genealogy of genes

Wright–Fisher model model of evolution within populations

New Programs

Name Source Help

drawGenealogy book website drawGenealogy -h

drawWrightFisher book website drawWrightFisher -h

6.1.1 Bi-Parental Genealogy

Problem 409 Write down the number of ancestors as a function of the number of

generations back in time. How many ancestors do you have 30 generations back?

Problem 410 Trace the ancestry of individual i4 in Fig. 6.1. Walk back in time from

b0 to b3 and count the ancestors of i4 in each generation. What do you observe?

© Springer International Publishing AG 2017

B. Haubold and A. Börsch-Haubold, Bioinformatics

for Evolutionary Biologists, https://doi.org/10.1007/978-3-319-67395-0_6

113

114 6 Evolution Within Populations

g1 b6

g2 b5

g3 b4

g4 b3

g5 b2

g6 b1

g7 b0

i1 i2 i3 i4 i5 i6 i7

Present

Past

Fig. 6.1 Simulation of the ancestors of a single individual. Ellipses and boxes indicate two sexes,

the dots two genes. gi stands for generation i , b j for j generations back

g1 b6

g2 b5

g3 b4

g4 b3

g5 b2

g6 b1

g7 b0

i1 i2 i3 i4 i5 i6 i7

Present

Past

Fig. 6.2 Same as Fig. 6.1 but with all lines of descent included for moving forward in time

6.1 Descent from One or Two Parents 115

Problem 411 Figure 6.2 shows the same simulation as Fig. 6.1, but this time all

lines of descent are included, not only those leading to i4. So we can walk from any

individual forward in time to visit all its descendants. By doing this, can you explain

the color coding of black, blue, and red individuals?

Problem 412 Create the directory Descent and change into it. Figures 6.1 and 6.2

were drawn using the program drawGenealogy, which generates LATEX output.

Use it to simulate new random family histories using options similar to the above Fig-

ures. Typeset and display the figures using the commands latex, dvips, and gv.

Problem 413 drawGenealogy also has a non-graphical mode. Use it to deter-

mine the number of generations until the first universal ancestor appears for pop-

ulations of sizes 10, 20, 50, 100, 200, 500, and 1000. Compute averages over 100

iterations every time and plot the result. Compare your results to the expectation of

log2(N), where N is the population size [13]. This can be specified in gnuplot by

f(x) = log(x) / log(2)

plot f(x)

Problem 414 Use drawGenealogy to determine the average number of genera-

tions until all present-day individuals have identical ancestors. Compare your results

to the expectation of 1.77 × log2(N) [13].

6.1.2 Uni-Parental Genealogy

Problem 415 In contrast to individuals, who have two parents, genes only have

one. Figure 6.3 shows the third version of Fig. 6.1, where the lines of descent are

restricted to those of the two genes in individual i4. What can you say about the

common ancestor of those two genes? How does this compare to the ancestry of

individuals?

Problem 416 Populations are often modeled as consisting of genes without ref-

erence to individuals or gender. This abstract model of a population is called the

Wright–Fisher model in honor of two founding figures of population genetics, Ronald

A. Fisher (1890–1962) and Sewall Wright (1889–1988). Figure 6.4 shows two gen-

erations in the evolution of a Wright–Fisher population. To get from one generation

to the next, ancestors are simply picked at random, as indicated by the arrows. To

see how this works, extend Fig. 6.4 for one generation by manually drawing another

set of eight genes in g3. To determine the ancestor of the first gene, use

awk -v seed = $RANDOM 'BEGIN {srand(seed); print int(

rand() * 8 + 1)}'

and draw the appropriate arrow. Then repeat for the remaining genes.

116 6 Evolution Within Populations

g1 b6

g2 b5

g3 b4

g4 b3

g5 b2

g6 b1

g7 b0

i1 i2 i3 i4 i5 i6 i7

Present

Past

Fig. 6.3 Tracing the genes of individual i4

g1

g2

1 2 3 4 5 6 7 8

Fig. 6.4 Two generations of a population size 8 under the Wright–Fisher model

(a) (b)

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

1 2 3 4 5 6 7 8 9 10 1 2 34 5 67 8 9 10

Present

Past

Fig. 6.5 Tangled (a) and untangled (b) versions of the same Wright–Fisher simulation

6.1 Descent from One or Two Parents 117

b0

b1

Fig. 6.6 Two generations of a population under the Wright–Fisher model consisting of eight genes

Problem 417 Figure 6.5a depicts ten generations of a Wright–Fisher population

consisting of ten genes. With all the crisscrossing ancestral lines connecting the

genes between generations, it is a bit hard to see what is going on. It is possible

to untangle the lines of descent such that no two lines cross. Figure 6.5b shows the

untangled version of Fig. 6.5a. This makes it much simpler to trace ancestry back in

time. Does Fig. 6.5 contain a common ancestor of all genes?

Problem 418 Use the program drawWrightFisher to simulate Wright–Fisher

populations in LATEX. With a population size of ten, how often do you observe a

common ancestor for the entire population within ten generations back? Use -a for

ancestor tracing, -t for wrapping the LATEX code, and carry out, say, ten trials.

Problem 419 When going one generation back in time, the number of lineages that

eventually end up in the common ancestor either stays the same, or decreases. For

example, in Fig. 6.6 that number goes from originally eight in b0 to five in b1. You can

think of each gene (dot) in Fig. 6.6 as randomly picking its ancestor in the preceding

generation. Occasionally two genes pick the same ancestor. What is the probability

of this occurring?

Problem 420 If two genes pick an identical ancestor, their lineages fuse and the

number of ancestral lineages is reduced by one. To simulate such “ancestor events”,

we first generate N random integers between 0 and N − 1:

BEGIN{

seed the random number generator

srand(seed)

for(i=0; i<N; i++)

print int(rand()*N)

}

Copy this code in the file trace1.awk, and when running it, pass the value of N ,

and a unique seed for the random number generator:

awk -f trace1.awk -v seed=$RANDOM -v N=10

Use sort, unique, and wc to count the number of ancestral lineages remaining

after going back one generation. Repeat this a couple of times. Do you ever observe

ten lineages remaining?

118 6 Evolution Within Populations

b0

b1

b2

Fig. 6.7 The Wright–Fisher population of Fig. 6.6 traced back one more generation

Problem 421 We saw in Problem 419 that the probability of two genes having the

same ancestor in the previous generation is 1/N . So the probability of two genes not

having a common ancestor is 1 − 1/N . The probability of three genes not having

the same ancestor is

(

1 −
1

N

)(

1 −
2

N

)

and hence the probability of N genes not having the same ancestor is

Pn =

(

1 −
1

N

)(

1 −
2

N

)

...

(

1 −
N − 1

N

)

. (6.1)

What is Pn for N = 10? Check your result through simulation.

Problem 422 Figure 6.7 shows two steps back in time rather than just the single

one in Fig. 6.6. If we wish to simulate this second step, we need to distinguish the

population size from the number of lineages that end up in the present, or ancestral

lineages. We have already seen that after the first generation the number of ancestral

lineages is usually smaller than the population size. We now wish to simulate the

effect of going back one step when starting from an arbitrary number of ancestral

lineages, n, given the population size, N . Here is an edited version of trace1.awk

for doing this:

BEGIN{

srand(seed)

initialize the population

for(i=0; i<N; i++)

pop[i] = 0

sample with replacement

for(i=0; i<n; i++){

j = int(rand()*N)

pop[j] = 1

}

count the number of lineages

nn = 0;

for(i=0; i<N; i++)

nn += pop[i]

print nn

}

6.1 Descent from One or Two Parents 119

Save your version astrace2.awk and run it a few times. How often do you observe

a reduction in n if you start with N = 100 and n = 10?

Problem 423 To calculate the probability of an ancestor event when considering a

small number of n lineages in a large population of N genes, we can modify Eq. 6.1

to get

Pn =

(

1 −
1

N

) (

1 −
2

N

)

...

(

1 −
n − 1

N

)

.

Since N is large, we can ignore terms with N−2 or smaller to get

Pn ≈ 1 −
1

N
−

2

N
− ... −

n − 1

N
.

The complement of this is the probability of an ancestor event

Pa =
1 + 2 + . . . + n − 1

N
=

n(n − 1)

2N
.

What is the probability of observing an ancestor event if N = 1000 and n = 10?

Check your result through simulation.

Problem 424 Finally, we would like to trace the lineages back to their common

ancestor. As we have just seen, once the number of ancestral lineages is much smaller

than the population size, any further reduction in lineages takes many generations

on average. To simulate exactly how many, wrap the code in trace2.awk in a

while loop that repeats until the number of lineages is 1; in other words, until the

most recent common ancestor of n genes has been reached.

BEGIN{

srand(seed)

g = 0 # number of generations

while(n > 1){

g++

for(i=0; i<N; i++)

pop[i] = 0

for(i=0; i<n; i++){

j = int(rand()*N)

pop[j] = 1

}

nn = 0 # new n

for(i=0; i<N; i++)

nn += pop[i]

if(nn < n)

print g "\t" nn

n = nn

}

}

120 6 Evolution Within Populations

Save this as trace3.awk and plot the number of lineages as a function of the

number of generations for N = 100 and n = 100.

Problem 425 Run trace3.awk a couple of times. What happens to the time to the

most recent common ancestor as you switch between the two most extreme values

for n possible, n = 2 and n = N?

Problem 426 The expected time to the most recent common ancestor is [49, p. 76]

E{TMRCA} = 2N

(

1 −
1

n

)

. (6.2)

What is the expected TMRCA for n = 2 and n → ∞?

Problem 427 Simulate the average TMRCA from 100 replicates for n = 2, 5, 10, 20 with N =

100 by writing the script simTmrca.sh to drive trace3.awk. Compare your

results to the theoretical expectation in Eq. 6.2.

6.2 The Coalescent

Figure 6.8a shows a population of ten genes evolving for ten generations under the

Wright–Fisher model. Investigations of real genes are usually restricted to small

samples, say the three genes marked in blue. By untangling the lines of descent,

we can see in Fig. 6.8b that these three genes are connected by a tree. If we just

concentrate on this tree, we can further reduce it to the nodes where two lines of

descent collide as we move from the present into the past. A different way of looking

at such a collision is to say that two lines of descent merge or “coalesce” into one.

(a) (b) (c)

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

1 2 3 4 5 6 7 8 9 10 1 23 4 5 67 8910

Present

Past

3 4 9

Fig. 6.8 A population under the Wright–Fisher (a), its untangled version (b), and the coalescent

for three of its lineages (c)

6.2 The Coalescent 121

The collection of such coalescence events is depicted in Fig. 6.8c and is called the

“coalescent”. It describes the descent of a sample of genes evolving under the Wright–

Fisher model from the preset to the most recent common ancestor. As we shall see,

the coalescent is a tool for simulating the evolution of genes.

New Concepts

Name Comment

coalescent genealogy of gene sample under Wright–Fisher model

Watterson’s equation mutations as a function of population and sample size

New Programs

Name Source Help

coalescent.awk book website coalescent.awk -v h=1

ms book website ms

rpois.awk book website rpois.awk -v h=1

watterson book website watterson -h

tabix book website man tabix

Problem 428 Coalescents are random trees or genealogies. To construct a coales-

cent, we represent it as an array

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

where nodes 1–4 refer to leaves (green) and nodes 5–7 to inner nodes (black). Draw

an example tree with these nodes. What is the sample size, n, for this coalescent?

Problem 429 All nodes of a coalescent are annotated with times. The leaves get

times 0:

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

Time 0 0 0 0

To compute the times of the inner nodes, we divide the coalescent into intervals Ti ,

where i is the number of lines of descent in the tree during that time (Fig. 6.9). Where

would T1 be in this graph, and why is it not shown?

Problem 430 To compute Ti , start from the probability of a coalescence event

derived in Probelm 423:

Pa =
n(n − 1)

2N
.

122 6 Evolution Within Populations

T4

T3

T2

Fig. 6.9 Coalescent with time intervals Ti . These denote the regions of the tree consisting of i lines

of descent

This means the time to the next coalescent event is an exponentially distributed

random variable with mean 1/Pa . Since we only know the sample size n and not the

population size N , we measure time in units of 2N generations and compute T4

awk -v s = $RANDOM 'BEGIN {srand(s); i = 4; r = -2*

log(1-rand())/i/(i-1);print r}'

Use this code to compute Ti for i = 4, 3, 2, and fill in the coalescence times in the

above table. What is the time to the most recent common ancestor in your coalescent?

Problem 431 We can automate the computation of coalescence times

BEGIN{

srand(seed)

t=0

for(i=n;i>=2;i--){

t -= 2*log(1-rand())/i/(i-1)

print i, t

}

}

Copy this code into the file genCoalTimes.awk and then run it

awk -v seed=$RANDOM -v n=10 -f genCoalTimes.awk

Wrap this code in a script to determine the average time to the most recent common

ancestor (TMRCA) from 100 iterations with n = 2 and n = 1000.

Problem 432 Having learned how to assign times to nodes, we next learn how to

construct a random tree from them—the coalescent. This requires shuffling a set of

nodes. Consider the five nodes 1, 2, 3, 4, 5; after shuffling, they might have the order

4, 5, 1, 2, 3. The way to achieve this for n nodes in node array a is as follows:

1. Pick a random number r between 1 and n.

6.2 The Coalescent 123

2. Swap the a[r] and a[n].

3. Reduce n by 1.

4. Repeat.

This technique is also known as sampling without replacement. It depends on dis-

tinguishing between the value of an index, i , and the value of an array, a, at that

position, a[i]. Shuffle 1, 2, 3, 4, 5 using the random indexes 1, 3, 1, 2.

Problem 433 To construct a coalescent, we need to apply the shuffling procedure

to the array of leaves and internal nodes. For this, we add three auxiliary rows to our

table so we can overwrite node labels:

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

Child1

Child2

Time 0 0 0 0

We begin with the first internal node, 5, and pick a random child among the four

leaves:

awk -v s = $RANDOM 'BEGIN{srand(s); print int

(rand()*4+1)}'

Say, this is 1; so the fist child of 5 is 1 and we replace node 1 by the leftmost leaf in

this round, 4:

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

4

Child1 1

Child2

Time 0 0 0 0

We draw another random number, but this time only the first three leaves are candi-

dates

awk -v s = $RANDOM 'BEGIN{srand(s); print int

(rand()*3+1)}'

124 6 Evolution Within Populations

Say that is 2; then the second child of 5 is 2. In addition, 2 is replaced by 5:

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

4 5

Child1 1

Child2 2

Time 0 0 0 0

So in each round the first child of node v is replaced by the leftmost leaf available

in that round, and the second child is replaced by v. Algorithm 3 summarizes these

steps. Finish the tree construction.

Algorithm 3 Generate coalescent

Require: n {sample size}

Require: tree {array of n leaves followed by n − 1 internal nodes}

Ensure: Tree topology

1: for i ← n to 2 do

2: p ← i × ran() + 1 {1 ≤ p ≤ i}

3: tree[2 × n − i].child1 ← tree[p]

4: tree[p] ← tree[i − 1] {Replace child by the rightmost entry in the “leafy” part of tree}

5: p ← (i − 1) × ran() + 1 {1 ≤ p ≤ i − 1}

6: tree[2 × n − i].child2 ← tree[p]

7: tree[p] ← tree[2 × n − i] {Replace child by parent}

8: end for

Problem 434 Sketch the coalescent just constructed.

Problem 435 Picking children can be automated:

BEGIN{

srand(seed)

print "# Pa\tC1\tC2"

for(i=n; i>=2; i--){

child1 = int(rand()*i+1)

child2 = int(rand()*(i-1)+1)

print 2*n-i+1 "\t" child1 "\t" child2

}

}

Save this code in the program pickChildren.awk and use it together with

genCoalTimes.awk to generate a coalescent for n = 4.

Problem 436 At this stage, we have coalescence times and a branching order. To

achieve biological relevance, we still need mutations. They are generated as Poisson-

distributed random variables for each branch with expectation

λ = tθ/2,

6.2 The Coalescent 125

where t is the branch length and θ = 4Nµ, where µ is the number of mutations per

generation per site. Use the program rpois.awk to generate the random variable,

for example

awk -f rpois.awk -v lambda=0.8

As our coalescent has six branches, six mutation counts need to be generated. Com-

pare the total number of mutations on the coalescent with the corresponding expec-

tation according to Watterson’s equation [50]

E{S} = θ

n−1
∑

i=1

1

i
,

where E{S} is the expected number of segregating sites. This equation is implemented

in the program watterson.

Problem 437 Use the programcoalescent.awk to simulate two haplotype sam-

ples of size 4 with θ = 10. Can you interpret the output?

Problem 438 The program coalescent.awk can also print the coalescent tree

underlying the simulation of SNPs. Run it for single sample, extract the coalescent

with grep, and visualize it with new2view. Repeat a few times to get a visual

impression of the coalescent. What is the meaning of the scale?

Problem 439 The program ms is often used for real coalescent simulations [25].

Use it to generate two samples of size 4 with θ = 10, for example,

ms 4 2 -t 10

ms 4 2 -t 10

60977 30522 51696

//

segsites: 6

positions: 0.0675 0.1627 0.2495 0.2952 0.3512 0.4482

010111

101000

010111

010111

//

segsites: 12

positions: 0.1269 0.2146 0.3704...

000001000010

000001000010

111110111101

000000000000

126 6 Evolution Within Populations

Row by row this output means:

• Row 1: Repetition of the command

• Row 2: Initialization of the random number generator

• Row 4: Start of the first sample

• Row 5: Number of segregating sites (mutations): 6

• Row 6: Positions of the mutations along the interval (0, 1)

• Rows 7–10: Haplotypes; 0 indicates ancestral state, 1 mutant

Use ms to simulate 104 samples of size 4 with θ = 10. Use grep and AWK to

estimate the average number of mutations. Compare this to the expectation value.

Problem 440 Let us say we observe a single mutation in a sample of four aligned

DNA sequences, far fewer mutations than the number expected with θ = 10. How

significant is the deviation between observation and expectation?

Mouse Genome

Problem 441 Next, we investigate single nucleotide polymorphism (SNP) data in

mice. We concentrate on chromosome 19, the smallest mouse chromosome, which

was sampled from 17 mice. To query the SNPs in the first 5 Mb of chromosome 19,

enter

tabix http://guanine.evolbio.mpg.de/problemsBook/chr19.

mgp.vcf.gz 19:1-5000000

What is the location of the first and the last SNP on chromosome 19?

Problem 442 Count the SNPs located between the first and the last SNP (wc -l),

and infer from this the number of SNPs per nucleotide. What is θ per nucloetide?

(Remember, 17 mice were sequenced.)

Problem 443 Count the SNPs in mice between position 5,189,001 and 5,190,000.

How many SNPs are expected for this interval? Is the deviation between theory and

observation significant?

Chapter 7

Additional Topics

7.1 Statistics

Compared to other branches of mathematics, statistics is a young discipline. Take

Student’s t-test, which assesses the hypothesis that two small samples are drawn from

the same population. It was published just a century ago by William S. Gosset (1876–

1937), who used “Student” as a pseudonym for his work in statistics [45]. Gosset

trained as a chemist and worked all his life in the management of the Guinness brew-

ery, first in Dublin and later in London. A central aim of the company leadership at

the time was to make brewing “scientific”. This required above all experimentation

on such things as the effect of the resin content of hops on beer quality. However, once

the relevant measurements had been made, a structured approach to their interpreta-

tion was also needed; how large a difference in hop resin content made a significant

difference to the lifetime of stout? Today we call the investigation of such questions

“statistics” and Gosset was one of its pioneers. Rather than the resin content of hops,

we take as our example an investigation of the effect of fatty food on gene expression

in mice [10].

New Concepts

Name Comment

false discovery rate false-positive rate among rejected hypotheses

gene ontology functional categories for all genes

mouse transcriptome all transcripts of the mouse genome

type I error (false-positive rate) reject true null hypothesis

type II error (false-negative rate) don’t reject false null hypothesis

New Programs

Name Source Help

simNorm book website simNorm -h
testMeans book website testMeans -h

© Springer International Publishing AG 2017

B. Haubold and A. Börsch-Haubold, Bioinformatics

for Evolutionary Biologists, https://doi.org/10.1007/978-3-319-67395-0_7

127

128 7 Additional Topics

7.1.1 The Significance of Single Experiments

Problem 444 Eight mice were given standard food, and are called sample A. Eight

mice were given fatty food, sample B. RNA was extracted from liver and quantified

on hybridization chips. The files all_a.txt and all_b.txt contain the results

for experiments A and B, respectively. We start by investigating a single gene, Plin5.

Use grep to extract its expression levels and save them in files plin5_a.txt and

plin5_b.txt.

Problem 445 Compute the average expression values of Plin5 in both experiments.

Problem 446 Next we investigate the difference between the two averages using

the program testMeans with default parameters. Is the difference between the

estimated means significant?

Problem 447 The default method for calculating significance in testMeans uses

a formula from Gosset’s original work. However, this is based on the assumption that

the two samples compared were drawn from a normal distribution. As this assumption

may not hold, testMeans also provides a Monte Carlo test for computing P-

values. Like gambling at the Monte Carlo Casino in Monaco, a Monte Carlo method

in statistics is based on chance: Consider two samples, S1 and S2, and their means, m1

and m2. Then calculate the difference between the two means: ∆0 = |m1 − m2|. Now

shuffle the elements of S1 and S2 between the sets and repeat the computation of their

means and the difference between them. Repeat this n times to get ∆1,∆2, ...∆n .

The significance of the difference between the two samples is the frequency with

a ∆i ≥ ∆0, i = 1, 2, ..., n. One implication of this method is that P cannot fall

below 1/n; in other words, the theoretical minimum of P depends on the number of

shufflings we carry out. For this reason the user of testMeans can vary n. Compare

the P-value obtained by testMeans using Monte Carlo and the P-value obtained

using the default method.

Before comparing all the genes in experiments A and B, we investigate the statis-

tics of multiple tests using simulated data.

7.1.2 The Significance of Multiple Experiments

Problem 448 The program simNorm generates samples drawn from a normal dis-

tribution. Use the program to generate 100 samples of size 8 with mean 12. Save the

results in the file experiment1.txt. Repeat the simulation and save the results

in experiment2.txt. Look at the first rows of the two files (head): They con-

tain the values for sample 1, S1, followed by the values for sample 2, S2, and so

on. We can interpret these samples as control/experiment for genes S1, S2, and so

on. What is the number of false-positive results, the false-positive rate, if α = 0.05

(testMeans)?

7.1 Statistics 129

0.001

0.01

0.1

1

1 10 100 1000 10000

1
−

(1
−

α
)m

Number of Tests (m)

α = 0.05

α = 0.01

α = 0.001

Fig. 7.1 A different view of the false-positive rate: The probability of obtaining at least one false-

positive result as a function of the number of hypothesis tests

Problem 449 Repeat the estimation of the false-positive rate for 104 experiments.

Problem 450 As illustrated in Fig. 7.1, the more tests we carry out, the greater

the probability that we obtain at least one false-positive. What is the probability of

obtaining at least one false-positive with α = 0.05 when carrying out 100 tests?

Problem 451 In statistics the false-positive rate is also known as the type I error.

So far we set this to α = 0.05 per experiment. However, we can also regard the 104

experiments as a single unit. Then we need to divide the original α by the number of

tests carried out to assess the null hypothesis that the ensemble contains no sample

with a significant difference. This division of α by the number of hypothesis tests

is called the Bonferroni correction. What is the false-positive rate if we analyze our

104 experiments using the Bonferroni correction?

Problem 452 Now we simulate samples with different means. Run 104 experiments

with µ = 6 and σ = 2.5 and save them in experiment1.txt. Repeat the simu-

lation with µ = 8 and σ = 2.5, and save the result in experiment2.txt. What

is the false-negative rate, β, if we leave α = 0.05?

Problem 453 Repeat the simulation of samples with different means. Like before,

run 104 experiments withµ = 6 andσ = 2.5 and save them inexperiment1.txt.

For the second simulation, use µ = 12 and σ = 2.5, and save the result in

experiment2.txt. What is the false-negative rate this time?

Problem 454 Repeat the simulation of exeriment2.txt with µ = 12 and the

larger standard deviation σ = 3.5. How does β change?

130 7 Additional Topics

Problem 455 Analyzeexperiment1.txt and experiment2.txt again, but

this time use Bonferroni correction [40]. What is the false-negative rate, also known

as type II error, now?

Problem 456 In genomics, we are often not primarily interested in eliminating the

type I error, as this can lead to a large type II error. Hence the concept of false discovery

rate, fdr, has been developed. The fdr is the fraction of false-positive results among

the rejected hypotheses, rather than among all hypotheses. In order to set the fdr

to some level δ, the original P-values are sorted P1 ≤ P2 ≤ ... ≤ Pm ; then Pj is

significant if Pj ≤ δ j/m. This method is due to Benjamini–Hochberg [9] and hence

also known as the Benjamini–Hochberg correction. Repeat the analysis using this

correction. What is the type II error now?

Problem 457 Simulate two sets of 104 experiments with identical meansµ1 = µ2 =

6 and standard deviations σ1 = σ2 = 2.5. Analyze the results using the Benjamini–

Hochberg correction. How large is the type I error?

Problem 458 Our ability to detect an effect in an experiment depends on two quanti-

ties: effect size and sample size. To investigate sample size, simulate again 104 pairs

of experiments with µ1 = 6, σ1 = 2.5 and µ2 = 12, σ2 = 3.5 for sample sizes of

n = 2, 5, 10, 20, 50. Analyze the results using the Benjamini–Hochberg correction

and plot the type II error, β, as a function of sample size, n.

Problem 459 Repeat the sample size simulation with a smaller effect size: µ1 =

6, σ1 = 2.5, and µ2 = 7, σ2 = 2.5. Since the effect size is small, carry out the simula-

tion for a larger range of sample sizes: n = 2, 5, 10, 20, 50, 100, 200, 500. What sam-

ple size is necessary to drive β below 0.05? Hint: Plot a horizontal line in gnuplot
using the syntax

f(x)=0.05
plot ..., f(x) t "" w l

7.1.3 Mouse Transcriptome Data

Problem 460 The files all_a.txt and all_b.txt contain the data for all the

mouse transcriptome probes assayed in experiments A and B. How many probes

were investigated (wc -l)? Some genes were assayed more than once. How many

distinct genes were assayed (cut, sort, uniq, wc -l)?

Problem 461 Analyze the data and filter them using the Benjamini–Hochberg cor-

rection with the relatively permissive threshold of δ = 0.1. Save the genes deemed

significant in the file genes.txt. How many distinct genes does it contain?

Problem 462 To finish our analysis of mouse transcriptome data, we investigate

whether the genes in ingenes.txt are enriched for a particular function. Biological

functions are codified gene ontologies (GO), which are hierarchical, for example

genes involved in eye development are a subset of genes involved in development.

Figure 7.2 shows the result of the GO analysis for our genes. Look for the highest

node in the graph that is significant (red). Can you relate it to the underlying study?

7.2 Relational Databases 131

biological_process

biological
regulation

cellular
component

organization
or

biogenesis

cellular
process

regulation
of

biological
process

metabolic
process

102 genes
adjP=3.00e-04

cellular
component
biogenesis
29 genes

adjP=4.00e-04

cellular
component

organization

cellular
component
organization

or
biogenesis

at
cellular

level

regulation
of

cellular
process

cellular
metabolic

process
89 genes

adjP=4.00e-04

regulation
of

metabolic
process

primary
metabolic

process
93 genes

adjP=1.00e-04

single-organism
metabolic

process

cellular
component
assembly
29 genes

adjP=2.00e-04

cellular
component

organization
at

cellular
level

regulation
of

cellular
metabolic
process

55 genes
adjP=4.00e-04

phosphorus
metabolic
process

regulation
of

primary
metabolic

process
55 genes

adjP=3.00e-04

organic
substance
metabolic

process
93 genes

adjP=4.00e-04

cellular
component
assembly

at
cellular

level
22 genes

adjP=4.00e-04

phosphate-containing
compound
metabolic

process

regulation
of

phosphorus
metabolic
process

26 genes
adjP=1.00e-04

regulation
of

phosphate
metabolic

process
26 genes

adjP=1.00e-04

Fig. 7.2 Result of enrichment analysis using the gene ontology (GO) [47]. Computed using

www.webgestalt.org

7.2 Relational Databases

In the late 1960s, the British mathematician Edgar F. Codd (1923–2003) proposed

a new model for storing and accessing data. This model, called the relational data

model, has become the standard way of dealing with large data sets. Originally used

mainly in government and business, relational databases are now also ubiquitous in

genomics. In this section we learn how to construct and query relational databases.

There are a number of software systems available for doing this and they all

implement the query language SQL. However, there are differences, and the most

important distinction is between systems with a client–server structure and those

without. Systems with a client–server structure, such as Oracle, Mysql, and Post-

gresql, are usually centered on a server hosting one or more databases (Fig. 7.3).

A potentially large number of clients connects via the internet to this server. As an

example, we introduce and query the ENSEMBL database in this section. It contains

genome data on vertebrates and is hosted on a public server under Mysql [5].

www.webgestalt.org

132 7 Additional Topics

Server
DB1, DB2,...

c1

c2
c3

c4

c5

c6

c7
c8

c9

c10

Fig. 7.3 A database server hosting several databases connected to ten clients

Server-client systems are powerful and correspondingly challenging to construct

and administer, as opposed to mere querying. Fortunately, there are also simpler

systems, where the database is just a local file. As an example for this kind of system

we experiment with the Sqlite database.

New Concepts

Name Comment

database client program for accessing a database

database server program for hosting a database

ENSEMBL collection of vertebrate genome databases

Java higher level programming language

relational databases collections of data in tabular format

SQL programming language for querying databases

New Programs

Name Source Help

javac/java package manager man java
mysql package manager man mysql
sqlite3 package manager man sqlite3

7.2.1 Mouse Expression Data

Problem 463 The files fatty_food.txt and normal_food.txt contain a

subset of the mouse transcriptome data we already used in Chap. 7.1. Figure 7.4

shows an Entity-relation (ER) model of the database we wish to construct. Boxes

are entities, ellipses attributes, and the diamond denotes a relationship. It’s a one-

to-one relationship, where each entry in fatty_food has a corresponding entry in

normal_food. The underlined attribute is a unique primary key. Here is the code

for constructing table normal_food

7.2 Relational Databases 133

normal_food

M1

M2

M3M4

M5

M6
M7

M8

F-N

1

fatty_food

M1

M2
M3

M4
M5

M6

M7

M8

1
Sym

Sym

Fig. 7.4 Entity-relation (ER) model for mouseExpressDb

create table normal_food(
Sym varchar(18),
M1 float,
M2 float,
M3 float,
M4 float,
M5 float,
M6 float,
M7 float,
M8 float,
primary key(Sym)

);

Create the directory RelationalDb, and copy the data files into it. Write the code

for constructing table normal_food into the the file normal_food.sql, and

then write the corresponding file fatty_food.sql.

Problem 464 There is still one element of the ER-diagram in Fig. 7.4 missing from

our SQL-code, the relationship. This is modeled by a foreign key, which is declared

as

foreign key(x) references some_table(y)

where attribute x refers to attribute y in some_table. We wish to model the fact

that for every entry in fatty_food there is also an entry in normal_food,

but not necessarily vice versa. Add code for the corresponding foreign key to

fatty_food.sql.

134 7 Additional Topics

Problem 465 Next, we construct the actual database mouseExpress.db using

sqlite3. The following commands should get you there:

• Log on to a database: sqlite3 dbname; if dbname does not yet exist, it is

created

• Switch on foreign keys: PRAGMA foreign_keys = ON;
• Read in a file containing SQL commands: .read <foo.sql>
• Show existing tables: .tables
• We use tabs to delineate columns instead of the default |: .separator "\t"

• Import data contained in file table.txt into table table: .import
table.txt table

• Show all attributes of the first ten entries in a table: select * from table
limit 10;

• Quit sqlite: .quit

Problem 466 Instead of adding many rows to a table using .import, we can add

individual rows using the insert command:

insert into normal_food
values ('toy_gene1', 1.0, 2.0, 3.0, 4.0, 5.0, 6.0,

7.0, 8.0);

Notice the semi-colon that closes every SQL command. Unless an SQL command

is closed, sqlite prints the prompt

...>

indicating that it awaits further input. This will also occur if, for example, the single

quote surrounding toy_gene is not closed again. If you are stuck with ...> and

cannot get back to sqlite>, check to see what is keeping the command open. In

most cases it will be a missing semi-colon. To retrieve the entry we just generated,

enter

select * from normal_food where sym like 'toy_gene1';

Delete our toy entry

delete from normal_food where sym like 'toy_gene1';

and check the result

select * from normal_food where sym like 'toy_gene1';

Enter the following data to normal_food:

sym m1 m2 m3 m4 m5 m6 m7 m8

toy_gene2 17.1 9.5 27.7 6.5 24.1 30.2 30.6 14.3

and delete them again.

7.2 Relational Databases 135

Problem 467 What happens if we make a second entry for an existing sym like

Plin5?

Problem 468 What happens if we try to enter ’

sym m1 m2 m3 m4 m5 m6 m7 m8

toy_gene3 3.4 8.0 4.4 26.7 8.6 26.6 4.8 20.5

into fatty_food?

7.2.2 SQL Queries

Problem 469 Recall form the database construction in Problem 465 that instead of

entering commands interactively, they can also be read from files using .read. To

experiment with this feature, write the four commands constructed in Problem 466

into the fileinsert.sql and enter them with.read. What happens if theinsert
command contains one value too many or too few?

Problem 470 Use the SQL-command count to determine the number of entries

in normal_food and fatty_food.

Problem 471 We need one expression value per gene, the average ofm1,m2, ...,m8.

Construct a table with two columns, sym and the average expression; restrict the

output to the first three genes.

Problem 472 Which gene has the largest average expression value in

normal_food (max)? The smallest (min)? What is the average over the per gene

average expression values (avg)?

Problem 473 Repeat these computations for fatty_food, that is, which genes

have the largest and smallest average expression value? And what is the grand average

expression value in fatty_food?

Problem 474 Next we compare normal_food and fatty_food. For this we

need to join the two tables. Look at the first ten entries of the joined table:

select * from normal_food join fatty_food using (sym)
limit 10;

Convert the join into a table with three columns: sym, the per gene average of

normal_food, and the per gene average of fatty_food. Save the command in

the file join.sql. Hint: In order to refer to attribute M1 from table normal_food
as opposed to fatty_food, use the dot-notation as in

select normal_food.m1, fatty_food.m1
from ...

136 7 Additional Topics

Problem 475 Our next aim is to compute the fold change between two average

expression values. It is not straight forward to do this in SQL. So we leave sqlite
(.quit) and enter on the command line

sqlite3 mouseExpress.db < join.sql |
tr '|' '\t' |
head

Problem 476 Instead of regenerating the joined table using join.sql and piping

the result through tr, save this data in avg.txt for future reference.

7.2.3 Java

Problem 477 SQL is often embedded in a host language. Here is an example in

Java for our database:

import java.sql.*;
public class MouseExpressDb{

public static void main(String args[]){
String query = "select * from normal_food join

fatty_food using(sym)";
try{

Class.forName("org.sqlite.JDBC");
Connection c = DriverManager.getConnection

("jdbc:sqlite:mouseExpress.db");
Statement stmt = c.createStatement();
ResultSet rs = stmt.executeQuery(query);
while(rs.next())

// Access column #1
System.out.println(rs.getString(1));

}catch(Exception e){
System.err.println(e.getClass().getName() +

": " + e.getMessage());
System.exit(0);

}
}

}

Type this code into the file MouseExpressDb.java and compile it with

javac MouseExpressDb.java

and run the program

java -cp sqlite-jdbc-3.15.1.jar:. MouseExpressDb | head

7.2 Relational Databases 137

where the jar file contains the JDBC-driver for sqlite3, which can be down-

loaded from the book web site. Next, copy MouseExpressDb.java to

MouseExpressDb2.java and edit the code to search for the gene with the great-

est difference between normal and fatty food.

7.2.4 ENSEMBL

Problem 478 To get a list of all databases hosted on the public ENSEMBL server,

enter

mysql -h ensembldb.ensembl.org -u anonymous -e "show
databases"

How many databases make up ENSEMBL?

Problem 479 We are interested in the databases for mouse (Mus musculus) and

among those the core databases in particular. What is the version number of the

latest core database for mouse?

Problem 480 The command

mysql -h ensembldb.ensembl.org -u anonymous -D
someDatabase -e "show tables"

lists the tables of a particular database. How many tables make up the latest mouse

core database?

Problem 481 To find out the attributes of a particular table, use

mysql ... -e "describe someTable"

Which attributes make up seq_region?

Problem 482 The following code returns the lengths of all mouse chromosomes

for a in $(seq 19) X Y
do

mysql ... -e "select name,length from seq_region
where coord_system_id = 3 and name = '$a'" |

tail -n +2
done

What is the total length of the mouse genome?

Problem 483 What are the attributes of table exon?

Problem 484 Which fraction of the mouse genome is covered by exons?

138 7 Additional Topics

Problem 485 Exons contained in all splice variants of a particular transcript are

called “constitutive”. Which fraction of the mouse genome is covered by constitutive

exons?

Problem 486 Table xref contains the attribute display_label, which corre-

sponds to the gene names we used in the expression analysis (sym). For each gene,

xref also contains a description of its function. What is the function of the

gene we found in Problem 475 with the greatest fold change in expressions?

Problem 487 Important entities in ENSEMBL such as genes or transcripts are

labeled with a stable_id. A stable_id can, for example, be entered on the

ENSEMBL web site (www.ensembl.org) to quickly and unambiguously look

up information on a particular gene. We search for the stable_id that corre-

sponds to Hsd3b5 by joining gene and xref via gene.display_xref_id
and xref.xref_id. What is the gene.stable_id of Hsd3b5?

Problem 488 Every gene has at least one, but possibly more, transcripts. They

are listed in table transcript, which is connected to gene via the attribute

gene_id. How many transcripts are known for Hsd3b5?

Chapter 8

Answers and Appendix: Unix Guide

8.1 Answers

Answer 1 You can either repeat mkdir

mkdir TestDir1
mkdir TestDir2

or write more succinctly

mkdir TestDir1 TestDir2

followed by

ls

Answer 2 The command

cd

changes to your “home directory”. Try the command pwd to “print which directory” you

are in.

Answer 3 The star, or “wildcard”, matches any completion of TestDir. So

rmdir TestDir*

deletes TestDir1 and TestDir2.

Answer 4 This causes the error message

rmdir: failed to remove TestDir1: Directory not empty

You can now either go into TestDir1 and delete its contents or apply the “recursive”

version of rm

rm -r TestDir1

Answer 5 Recall the wildcard character introduced in Problem 3:

rm *

The original version of the backmatter was revised: For detailed information please see Erratum.

The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-67395-0_9

© Springer International Publishing AG 2017

B. Haubold and A. Börsch-Haubold, Bioinformatics

for Evolutionary Biologists, https://doi.org/10.1007/978-3-319-67395-0_8

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-67395-0_8&domain=pdf
https://doi.org/10.1007/978-3-319-67395-0_9

140 8 Answers and Appendix: Unix Guide

Answer 6 Rename file a

mv a b

The command mv stands for “move”. By moving a file from one name to another, it is

renamed. To get more feedback on the action of mv, you can use -v to switch on its verbose

mode.

Answer 7 The command history lists all previous commands, with history as the

last one.

Answer 8 The shell prints

>

and waits for further input until the single quote in “can’t” is closed. Alternatively, the

command can be terminated using C-c twice. This is a very useful command for getting out

of trouble.

Answer 9 The command goes into auto-repeat mode.

Answer 10 The command ls -t lists the files modified most recently first.

Answer 11 The help page contains a section on searching explaining that

/pattern

generates a search, and the next match can be found by pressing n.

Answer 12 Wc returns three numbers, the number of lines, words, and bytes in the input.

In this case, the number of lines is identical to the number of words and both are equal to

the number of files in the current directory.

Answer 13 Look up the bash man page

man bash

and search for pipe

/pipe

which gets you to the right place.

Answer 14 The command

x=1+1; echo $x

performs no addition, but simply returns the string 1+1.

Answer 15 The command

((x=1+1)); echo 'The result is $x'

prints the literal string rather than interpolating the variable $x as done with double quotes.

Answer 16 As with the double brackets, if let is dropped, x is assigned 1+1 as a string

rather than as a calculation:

x=1+1; echo $x
1+1

8.1 Answers 141

Answer 17

let y=2**10; echo $y
1024

For mental arithmetic, it is useful to remember, 210 ≈ 103.

Answer 18

let y=10-20; echo $y
-10

So, negative numbers work, too.

Answer 19

let y=10/3; echo $y
3

because the bash only computes with integers.

Answer 20

4ˆ10
1048576

Alternatively, you could have estimated in your head

410 = 220 =
(

210
)2

≈
(

103
)2

= 106.

Answer 21

echo 10/3 | bc
3

In other words, without -l, the default integer mode of bc is switched on.

Answer 22 List the contents of the root directory

ls /

Count the files and directories listed

ls / | wc -l

Answer 23 Change into BiProblems

cd BiProblems

List all files

ls -a
. ..

This means the directory is empty. Nevertheless, there are two directories we can refer to.

The first is denoted by one dot, which stands for the current directory, and the second by two

dots, the parent directory in the tree.

142 8 Answers and Appendix: Unix Guide

Answer 24 Use

ls Data/ | wc -l

Answer 25 Count the number of FASTA files in Data:

ls Data/*.fasta | wc -l

Answer 26 Copy

cp ../Data/mgGenes.txt .

check

ls

and count the genes

wc -l mgGenes.txt
525 mgGenes.txt

Answer 27 The command cat -n adds numbers to the printed lines. For re-counting, we

type

cat -n mgGenes.txt

and look at the last line of the output

525 MG_470 579224 580033 -

Answer 28 List the first ten lines:

head mgGenes.txt
MG_001 686 1828 + dnaN
MG_002 1828 2760 +
MG_003 2845 4797 + gyrB
MG_004 4812 7322 + gyrA
MG_005 7294 8547 + serS
MG_006 8551 9183 + tmk
MG_007 9156 9920 +
MG_008 9923 11251 +
MG_009 11251 12039 +
MG_010 12068 12724 +

List the last ten lines:

tail mgGenes.txt
MG_462 566186 567640 - gltX
MG_463 567627 568406 -
MG_464 568399 569556 -
MG_465 569528 569914 - rnpA
MG_466 569883 570029 - rpL34
MG_467 570055 570990 -
MG_468 570994 576345 -
MG_526 576351 577205 -
MG_469 577268 578581 -
MG_470 579224 580033 -

8.1 Answers 143

There are five columns: a key, start and end positions, the strand, and the gene symbol, if

available.

Answer 29

grep + mgGenes.txt | wc -l
299
grep - mgGenes.txt | wc -l
227

The total number of genes (Problem 26) is 525, while 299+227 = 526. One gene is counted

twice, presumably because its name contains a “-”.

Answer 30

cut -f 5 mgGenes.txt | grep -
rpmG-2
polC-2

Find the strand of rpmG

grep rpmG mgGenes.txt
MG_473 64367 64513 - rpmG-2
MG_325 408793 408954 - rpmG

and of polC

grep polC mgGenes.txt
MG_031 32359 36714 - polC
MG_261 315701 318325 + polC-2

So it was polC-2 which resulted in the extra count for a gene on the minus strand.

Answer 31 Extract the genes

cut -f 1-4 mgGenes.txt | grep - > minus.txt
cut -f 1-4 mgGenes.txt | grep + > plus.txt

Check results

wc -l minus.txt
226 minus.txt

wc -l plus.txt
299 plus.txt

which add up to 525 genes. The simplest method to see that the genes on the plus strand do

not form a homogeneous block is to enter

head -n 20 mgGenes.txt

which shows five genes on the minus strand. We can further quantify the mixing of genes

between both strands: If the genes on the plus strand did form a homogeneous block, the

first 299 genes in mgGenes.txt would all be on the plus strand. So we look at the first

299 genes in mgGenes.txt and count how many of them are on the plus strand:

144 8 Answers and Appendix: Unix Guide

head -n 299 mgGenes.txt | grep + | wc -l
246

Hence, there are only 299 − 246 = 53 genes on the minus strand among the first 246 genes

on the plus strand.

Answer 32 Leftward redirection (<) writes the contents of a file to the standard input stream,

stdin, from where it can be read by any tool, for example, grep:

grep + < mgGenes.txt

Answer 33

man sudo

explains that sudo switches into sys-admin mode.

Answer 34 Without the ampersand, the command line freezes until the child window

running emacs is closed again.

Answer 35 Saving to mgGenes2.txt can be done in emacs via the menu. Search-

ing for polC-2 can also be done using the menu. Now check the difference between

mgGenes.txt and mgGenes2.txt:

diff mgGenes.txt mgGenes2.txt
56c56
< MG_473 64367 64513 - rpmG-2

> MG_473 64367 64513 - rpmG_2
288c288
< MG_261 315701 318325 + polC-2

> MG_261 315701 318325 + polC_2

This means line 56 of mgGenes.txt was changed (c) into line 56 of mgGenes2.txt
and similarly for line 288.

Answer 36 Extract, for example, line 56 of mgGenes.txt:

head -n 56 mgGenes.txt | tail -n 1

Answer 37 The one exception is C-w, which deletes the word to the left of the cursor in

bash, but deletes a selected region in emacs.

Answer 38 Exit emacs with

C-x C-c

Notice the file mgGenes2.txt, which is a backup file created by emacswhen you worked

on mgGenes2.txt. You can ignore it for now, but if in some later emacs session some-

thing disastrous happens to the original file, you can always go to the backup.

Answer 39 The command is not found:

drawGenes
drawGenes: command not found

8.1 Answers 145

Answer 40 On Ubuntu, we get

which ls
/bin/ls

Answer 41

find ˜/ -name ".bashrc"

Answer 42 Draw the figure with

drawGenes exampleGenes.txt |
gnuplot -p -e 'unset ytics; plot[][-10:10] "< cat" title ""

with lines'

If gnuplot is not installed on your system, you need to install it at this point. Notice also

that we have distributed the commands of the pipeline over two lines to make them easier to

read. You can enter them either all on the same line or on separate lines as shown.

Answer 43 The shortest version we found was

drawGenes exampleGenes.txt |
gnuplot -p -e 'uns yti; p[][-10:10] "< cat" t "" w l'

Answer 44 The command set xlabel can be abbreviated to se xl:

drawGenes exampleGenes.txt |
gnuplot -p -e 'se xl "Position (bp)"; uns yti; p[][-10:10]

"< cat" t "" w l'

Answer 45 Draw the genes:

cut -f 2-4 mgGenes.txt |
drawGenes |
gnuplot -p -e 'se xl "Position (bp)"; unset ytics; plot

[][-10:10] "<cat " t "" w l'

to get

0 100000 200000 300000 400000 500000 600000

Position (bp)

On the 5’-half of the genome, the genes are predominantly on the forward strand, on the

3’-half predominantly on the reverse strand.

Answer 46

./drawGenes.sh
bash: ./drawGenes.sh: Permission denied

146 8 Answers and Appendix: Unix Guide

Answer 47

drawGenes.sh
drawGenes.sh: No such file or directory

Answer 48 As before, we reset the environment

source ˜/.bashrc

and should then be able to execute drawGenes.sh.

Answer 49 The preliminaries were

cd # change into the home directory
cd BiProblems
mkdir UnixScripts
cd UnixScripts

As to “Hello World!”,

echo 'Hello World!'

or

echo Hello' 'World!

Answer 50 When executing

for((i=1; i<=10; i++)); do echo -n 'Hello World!'; done

the newline usually added by echo is omitted. This is useful for printing more than one

item on the same line.

Answer 51

for i in $(seq 10)
do

echo $i
done

Answer 52

for i in $(seq 10)
do

echo -n $i ' '
done

Note the blank in single quotes at the end of the echo command to separate the numbers.

This might also have been surrounded by double quotes. However, recall from Problem 15

that interpolation of variable values only works inside double quotes:

for i in $(seq 10)
do

echo -n "$i "
done

8.1 Answers 147

Answer 53 The command

man seq

tells us how to count in steps of two

seq 0 2 10

or backward

seq 10 -2 0

Answer 54

for i in $(seq 525)
do

cut -f 4 mgGenes.txt |
head -n $i |
grep + |
wc -l

done

Answer 55 All that is missing is a command for printing the number of genes analyzed:

for i in $(seq 525)
do

echo -n $i ' ' # print number of genes analyzed
cut -f 4 mgGenes.txt |

head -n $i |
grep + |
wc -l
done

execute this

bash countGenes.sh |
gnuplot -p -e 'se xl "NumGenes"; se yl "NumPlus"; p "< cat "

t "" w l'

to get the number of M. genitalium genes on the plus strand as a function of the number of

genes.

148 8 Answers and Appendix: Unix Guide

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

N
u
m

P
lu

s

NumGenes

Answer 56 The script is

for strand in + -
do

for i in $(seq 525)
do

echo -n $i ' '
cut -f 4 mgGenes.txt|
head -n $i |
grep $strand |
wc -l

done
echo ' '

done

Notice the command

echo ' '

in the penultimate line, which separates the two data sets by a blank line. Run this

bash countGenes.sh |
gnuplot -p -e 'se xl "NumGenes"; se yl "NumPlus"; p "< cat "

t "" w l'

to get

8.1 Answers 149

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

N
u
m

P
lu

s

NumGenes

The blank line in the data set causes gnuplot to draw a second graph in the same plot

window, which is useful for getting a first impression of the data. However, it does not use

two plot symbols for distinguishing between the + and the - data. We learn how to do this

later when we have gained more experience with gnuplot.

Answer 57 Carry out the substitution:

sed 's/-2/_2/' mgGenes.txt > mgGenes3.txt

and check its result

diff mgGenes2.txt mgGenes3.txt

No differences should be found.

Answer 58

cut -f 5 mgGenes.txt | sed '/ˆ$/d' | wc -l
219

Answer 59 Save the edited file in a new file name

sed '56p' mgGenes3.txt > mgGenes4.txt

and compare the two files

diff mgGenes3.txt mgGenes4.txt
56a57
> MG_473 64367 64513 - rpmG_2

To find out what this means, look at the two lines mentioned, 56 and 57, in both files:

sed -n '56p' mgGenes3.txt
MG_473 64367 64513 - rpmG_2
sed -n '57p' mgGenes3.txt
MG_474 64527 64910 -

150 8 Answers and Appendix: Unix Guide

and

sed -n '56p' mgGenes4.txt
MG_473 64367 64513 - rpmG_2
sed -n '57p' mgGenes4.txt
MG_473 64367 64513 - rpmG_2

In other words, line 56 in mgGenes4.txt was appended to form line 57, which was

summarized by diff as 56a57.

Answer 60

sed -n '1,10p' mgGenes3.txt > t1.txt
head mgGenes3.txt > t2.txt
diff t1.txt t2.txt

Answer 61 The original command was

cut -f 5 mgGenes3.txt | grep -

Its sed version is

cut -f 5 mgGenes3.txt | sed -n '/-/p'

Answer 62 Smallest position:

cut -f 2,3 mgGenes3.txt | sed 's/\t/\n/' | sort -n | head -n
1

Largest position:

cut -f 2,3 mgGenes3.txt | sed 's/\t/\n/' | sort -n | tail -n
1

Answer 63 By accidentally omitting -n from sort, the smallest gene position would

seem to be

cut -f 2,3 mgGenes3.txt | sed 's/\t/\n/' | sort | head -n 1
102454

Answer 64 Cut out the gene positions as given:

cut -f 2,3 mgGenes3.txt > t1.txt

Cut out the gene positions and sort them:

cut -f 2,3 mgGenes3.txt | sort -n > t2.txt

Check that the two files are identical

diff t1.txt t2.txt

8.1 Answers 151

Answer 65 Overlapping genes induce a list of positions that is not strictly ascending; in

our example, this is

1000
2000
1990
3000

To find out whether any genes overlap in M. genitalium, we need to compare the sorted and

the unsorted list of positions:

cut -f 2,3 mgGenes3.txt | sed 's/\t/\n/' | sort -n > t1.txt
cut -f 2,3 mgGenes3.txt | sed 's/\t/\n/' > t2.txt
diff t1.txt t2.txt

This returns a long list of differences. Overlapping genes appear to be quite common in M.

genitalium.

Answer 66 There are many ways to count the gyrases; one example is to remove all other

genes:

cut -f 5 mgGenes3.txt | sed -n -f filter.sed
gyrB
gyrA

where filter.sed contains a single line:

/gyr/p # print gyrases

Answer 67

awk '{print $5}' mgGenes3.txt

Notice that the code inside the curly brackets is executed for every input line.

Answer 68 Enter

awk '{print "Sum: " $1 + $2}'

Then enter two numbers separated by a blank to get their sum. Press C-c twice to get out

of this infinite loop.

Answer 69 Print genes on the plus strand

awk '$4˜/[+]/{print}' mgGenes3.txt

and on the minus strand

awk '$4˜/[-]/{print}' mgGenes3.txt

Notice that without argument, print prints the entire input line, which is equivalent to

print $0

Answer 70 Without the action block, each matching line is printed, for example

awk '$4˜/[-]/' mgGenes3.txt

152 8 Answers and Appendix: Unix Guide

Answer 71 Use

awk -f drawGenes.awk mgGenes3.txt |
gnuplot -p pipe.gp

where drawGenes.awk is

$4-/[+]/{
x = 1

}
$4-/[-]/{

x = -1
}
{

print $2 "\t" 0
print $2 "\t" x
print $3 "\t" x
print $3 "\t" 0

}

to get the familiar plot of M. genitalium genes:

0 100000 200000 300000 400000 500000 600000

Position (bp)

Answer 72 Find the shortest gene:

awk '{print $1 "\t" $3-$2+1}' mgGenes3.txt | sort -k 2 -n |
head

MG_479 74
MG_489 74
MG_493 74
MG_496 74
MG_499 74
MG_495 75
MG_501 75
MG_502 75
MG_504 75
MG_512 75

So there are five genes of length 74. Find the longest gene:

awk '{print $1 "\t" $3-$2+1}' mgGenes3.txt | sort -k 2 -n |
tail

MG_309 3678
MG_338 3813
MG_340 3879
MG_064 3996
MG_341 4173
MG_191 4335

8.1 Answers 153

MG_031 4356
MG_386 4851
MG_468 5352
MG_218 5418

There is a single gene of length 5418. Notice the option “-k 2” directing sort to use

entries in the second column as sort keys.

Answer 73

awk '{s += $3-$2+1; c++}END{print "Avg: " s/c}' mgGenes3.txt
Avg: 1029.42

If, by any chance, you wrote = instead of +=, the program prints the length of the last gene

divided by 525, approximately 1.54.

Answer 74 The program to compute the variance:

{
l = $3 - $2 + 1 # length
len[n++] = l # store

}END{
for(i=0; i<n; i++) # mean

m += len[i]
m /= n
for(i=0; i<n; i++) { # variance

x = m - len[i]
s += x * x

}
printf "Var: %e\n", s / (n - 1)

}

Notice that the mean for loop has no curly brackets, while the variance for loop does. A

for loop with a single line as action block needs no curly brackets, though they would not

cause an error either. An action block consisting of more than one line needs to be delineated

by curly brackets. This rule equally applies to if. When run on the gene lengths of M.

genitalium, var.awk produces

awk -f var.awk mgGenes3.txt
Var: 6.623986e+05

The program var calculates the same, very large, variance:

awk '{print $3-$2+1}' mgGenes3.txt | var
#mean var
1.029423e+03 6.623986e+05

Answer 75 Here is the program.

{
l = $3-$2+1
len[n++] = l
sum += l

}END{

154 8 Answers and Appendix: Unix Guide

for(i=0; i<n; i++){ # observed
s += len[i] / sum
print i "\t" s

}
print ""
for(i=0; i<n; i++) # expected

print i "\t" i/n
}

Piping its result through

gnuplot -p -e 'set xlabel "Rank"; set ylabel "Cumulative
Length"; plot

"< cat " title "" wi li'

gives

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
u
m

u
la

ti
v
e
 L

e
n
g
th

Rank

So there is no systematic bias with respect to gene length along the genome.

Answer 76 The number of names used

cut -f 5 mgGenes3.txt | sed '/ˆ$/d' | wc -l
219

is equal to the number of unique names:

cut -f 5 mgGenes3.txt | sed '/ˆ$/d' | sort | uniq | wc -l
219

So all names are unique.

Answer 77

awk '{print $3-$2+1}' mgGenes3.txt | sort | uniq | wc -l
365

Answer 78

awk '{print $3-$2+1}' mgGenes3.txt | sort | uniq -c | sort -
n -r | head -n 5
9 77
7 76
6 75
5 74
4 936

8.1 Answers 155

Answer 79 Generate the output with uniq -c

awk '{print $3-$2+1}' mgGenes3.txt |
sort |
uniq -c |
sed 's/ˆ *//' |
sort > t1.txt

The second sort is necessary to achieve sorting according to the count printed by uniq.

Now reproduce this result with uniqC.awk

awk '{print $3-$2+1} ' mgGenes3.txt |
awk -f uniqC.awk |
sort > t2.txt

Check the two files are identical

diff t1.txt t2.txt

Answer 80

awk '{print $3-$2+1} ' mgGenes3.txt |
awk -f uniqC.awk |
awk '{print $2 "\t" $1}' |
sort -n |
gnuplot -p -e 'set xlabel "Length"; set ylabel "Count"; plot

"< cat" title "" wi li'

gives

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1000 2000 3000 4000 5000 6000

C
o
u
n
t

Length

Answer 81 Replace the 10 in the for loop by seqLen

BEGIN{
print ">Random_Sequence"
srand(seed)
s[0] = "A"; s[1] = "T"; s[2] = "C"; s[3] = "G"
for(i=0; i<seqLen; i++){

j = int(rand() * 4)
printf("%s", s[j])

}
printf("\n")

}

156 8 Answers and Appendix: Unix Guide

and run

awk -v seed=$RANDOM -v seqLen=30 -f ranSeq.awk

Answer 82 Here is one possible answer:

ACCGT

TCCAATGCTA

M: G4 → C4M: C2 → T2

I: -6 → A6 D: C3 → -3

where M is the mutation, I is the insertion, and D is the deletion. You might have been tempted

to mark the deletion event as a gap in the final sequence, but remember that sequences exist

as gapless molecules. The three types of evolutionary events marked in the above graph,

mutation, inversion, and deletion, only become visible by sequence comparison, that is, in

an alignment:

ATCGTA
AC-CT-

Answer 83 Here is one solution out of many:

ATCTT

TGTATGCCA

C3 → G3

T5 → -5

T2 → C2

T4 → G4

Answer 84 Here are five possible answers, you might well have found others:

ACCGT
-ATGT
Events = 3

ACCGT-
-A-TGT
Events = 6

ACCGT
A-TGT
Events = 2

ACCGT
AT-GT
Events = 2

ACCGT-
AT–GT
Events = 5

8.1 Answers 157

Answer 85 The re-scored results look like this:

ACCGT
-ATGT
Events = 3

Score = −11

ACCGT-
-A-TGT
Events = 6

Score = −30

ACCGT
A-TGT
Events = 2

Score = −7

ACCGT
AT-GT
Events = 2

Score = −7

ACCGT-
AT–GT
Events = 5

Score = −21

Answer 86 This is expressed by

g = go + (l − 1) × ge.

Answer 87 Read man echo to learn that -e enables the interpretation of “unprintable”

characters such as a newline:

echo -e '>Seq1\nACCGT'
>Seq1
ACCGT

And saved:

echo -e '>Seq1\nACCGT' > seq1.fasta

Without -e:

echo '>Seq1\nACCGT'
>Seq1\nACCGT

Answer 88 The command

gal -i seq1.fasta -j seq2.fasta

returns

Query: 1 ACCGT 5
| ||

Sbjct: 1 A-TGT 4

with a score of -7. Since by default gap opening (go) is -5 and gap extension (ge) is -2, the

gap scoring scheme is

g = go + l × ge.

Another alignment with the same score is

Query: 1 ACCGT 5
| ||

Sbjct: 1 A-TGT 4

Answer 89 Copy hbb1.fasta and hbb2.fasta

cp ../Data/hbb1.fasta .
cp ../Data/hbb2.fasta .

158 8 Answers and Appendix: Unix Guide

Note the dot at the end of the command, which means copy into the current directory. Look

up the function of hbb1.fasta

head -n 1 hbb1.fasta
>gi|28302128|ref|NM_000518.4| Homo sapiens hemoglobin, beta

(HBB), mRNA

and of hbb2.fasta

head -n 1 hbb2.fasta
>gi|6003531|gb|AF181832.1|AF181832 Homo sapiens hemoglobin

beta subunit variant (HBB) mRNA, partial cds

So the first sequence is the mRNA of human beta hemoglobin, and the second a partial

coding sequence (CDS) of the same protein. Run gal

gal -i hbb1.fasta -j hbb2.fasta

to find these two DNA sequences differ by large gaps at the 5’ and 3’ ends, and a single

mismatch in between.

Answer 90 Running gal with default options shows that the mismatch is close to position

400. So rerunning gal with -l 100 lets you conveniently find that the mutation is in

position 397 in hbb1.fasta and 290 in hbb2.fasta.

Answer 91 The mutation is in position 290 of hbb2.fasta, which is translated in frame.

The position of the mutation within the codon can thus be found as the remainder when

dividing the position by 3, the modulo operation, 290 mod 3 = 2. Hence, the mutation

affects the two codons

GCC
GAC

which encode alanine and aspartate. The mutation is non-synonymous.

Answer 92 The probability of finding a stop codon in a random sequence is 3/64, so given

a start codon, the expected distance to the next stop codons is 64/3 ≈ 21 amino acids. This

is the expected length of open reading frames in random DNA sequences.

Answer 93 Compute the average ORF length:

awk -v seed=$RANDOM -v n=10000 -f simOrf.awk |
awk '{s+=$1;c++}END{print s/c}'
21.0919

This is close to the expectation of 21.

Answer 94

awk -v seed=$RANDOM -v n=1000 -f simOrf.awk |
histogram |
gnuplot -p orf.gp

whereorf.gp is

set xlabel "Length"
set ylabel "Frequency"
plot "< cat" title "" with lines

8.1 Answers 159

to get

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200 250

F
re

q
u
e
n
c
y

Length

Answer 95 The two most polar amino acids are aspartate and glutamate.

Answer 96 Phe→Leu: 1; Phe→Trp: 2; Phe→Glu: 3.

Answer 97 Set up the session:

mkdir AminoAcidMat
cd AminoAcidMat
cp ../Data/polarity.dat .

Find the least polar amino acid:

sed '/#/d' polarity.dat | sort -k 2 -n | head -n 1
Cys 4.8

The most polar:

sed '/#/d' polarity.dat | sort -k 2 -n | tail -n 1
Asp 13.0

Answer 98 Smallest: 1, M and W; largest: 6, L, S, and R.

Answer 99 There are two examples at the first codon position: TTA and TTG encode L,

and so do CTA/CTG. There are no synonymous mutations at the second codon position.

Answer 100 The number of possible arrangements for n books on a shelf is n factorial

n(n − 1)(n − 2)...2 = n!

Compute

awk 'BEGIN{p = 1; for(i=2;i<=20;i++)p *= i; printf("%e\n", p
)}'

2.432902e+18

to find n! ≈ 2.4 × 1018.

160 8 Answers and Appendix: Unix Guide

Answer 101 The three possible changes at the second position yield serine (S), tyrosine (Y),

and cysteine (C). Changes at the third position again yield leucine (L). With the exception

of serine, these mutant amino acids also have a similar polarity as phenylalanine.

Answer 102 Execute

genCode -p polarity.dat |
cut -f 2 |
histogram |
gnuplot -p ms0.gp

where ms0.gp is

set ylabel "Frequency"
set xlabel "MS_0"
set arrow from 5.19,0.02 to 5.19,0
plot "< cat" title "" with lines

This gives

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 5 6 7 8 9 10 11 12 13 14 15 16

F
re

q
u
e
n
c
y

MS0

The arrow indicates the MS0 value of the natural code, 5.19, which is quite untypical

when compared to the MS0 values from random codes. Notice that this is the result of a

simulation—yours is bound to differ slightly.

Answer 103 We got between 0 and 2 better codes. Since genCode goes through 104

random codes, the proportion of better codes is about 10−4.

Answer 104 Run genCode with, say, 106 iterations

genCode -n 1000000 polarity.dat | grep ms0: | wc -l
117

When rejecting the null hypothesis that the natural code is not mutation-optimized, the error

probability is P = 117 × 10−6 ≈ 1.2 × 10−4, so we reject and conclude that the code is

indeed significantly optimized with respect to polarity.

8.1 Answers 161

Answer 105 Run commands like

genCode -n 1000000 hydropathy.dat | grep ms0: | wc -l

to find

Attribute P

Polarity 1.2 × 10−4

Hydropathy 7.8 × 10−3

Volume 0.11

Charge 0.56

Answer 106 A→S: 0.0028; S→A: 0.0035.

Answer 107

tail -n 20 pam1.txt | awk '{c++; s+=$(c+1)*0.05}END{print
(1-s)*100}'

0.977

In other words, there is approximately a one percent probability of finding a mismatched

amino acid, as would be expected for 1 PAM.

Answer 108 Compute M100

pamPower -n 100 pam1.txt

to get (edited for legibility)

A R N D C Q E G H I L K M F P S T W Y V

A .32 .03 .07 .07 .03 .05 .08 .10 .03 .05 .03 .03 .04 .02 .11 .13 .13 .01 .02 .08

R .01 .44 .02 .01 .01 .05 .01 .01 .05 .02 .01 .09 .03 .01 .03 .03 .02 .05 .00 .01

N .03 .02 .21 .10 .01 .03 .05 .03 .07 .02 .01 .05 .01 .01 .02 .06 .04 .01 .02 .01

D .04 .01 .11 .31 .00 .05 .16 .04 .04 .01 .01 .03 .01 .00 .02 .04 .03 .00 .01 .01

C .01 .01 .01 .00 .77 .00 .00 .00 .01 .01 .00 .00 .01 .00 .00 .02 .01 .00 .02 .01

Q .02 .04 .03 .04 .00 .32 .09 .01 .09 .01 .02 .03 .02 .00 .03 .02 .02 .00 .00 .01

E .05 .01 .06 .17 .00 .12 .32 .03 .03 .02 .01 .03 .01 .00 .03 .03 .03 .00 .01 .02

G .11 .02 .07 .07 .02 .03 .06 .55 .02 .02 .01 .03 .02 .01 .04 .10 .05 .00 .01 .04

H .01 .04 .06 .03 .01 .08 .02 .01 .43 .01 .01 .02 .01 .01 .02 .01 .01 .01 .02 .01

I .02 .01 .02 .01 .01 .01 .01 .01 .01 .32 .05 .01 .06 .04 .01 .01 .03 .00 .01 .12

L .03 .02 .02 .01 .00 .04 .01 .01 .03 .12 .61 .02 .21 .09 .02 .02 .03 .03 .03 .10

K .03 .18 .10 .05 .01 .07 .05 .02 .04 .03 .02 .51 .09 .01 .03 .05 .06 .01 .01 .02

M .01 .01 .00 .00 .00 .01 .00 .00 .00 .02 .04 .02 .29 .01 .00 .01 .01 .00 .00 .02

F .01 .01 .01 .00 .00 .00 .00 .01 .02 .04 .04 .00 .03 .60 .00 .01 .01 .02 .17 .01

P .06 .03 .02 .02 .01 .04 .03 .02 .03 .01 .02 .02 .01 .01 .49 .06 .04 .00 .00 .02

S .10 .05 .10 .05 .05 .04 .05 .08 .03 .03 .01 .05 .03 .02 .08 .25 .12 .03 .02 .03

T .09 .03 .06 .04 .02 .03 .03 .03 .02 .05 .02 .05 .04 .01 .04 .10 .31 .01 .02 .05

W .00 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00 .00 .79 .01 .00

Y .01 .00 .01 .00 .02 .00 .01 .00 .02 .01 .01 .00 .01 .13 .00 .01 .01 .02 .59 .01

V .06 .02 .02 .02 .02 .02 .02 .02 .02 .21 .07 .02 .09 .02 .03 .03 .06 .00 .02 .42

162 8 Answers and Appendix: Unix Guide

Compute M1000

pamPower -n 1000 pam1.txt

to get

A R N D C Q E G H I L K M F P S T W Y V

A .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .07 .08 .09

R .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .05 .04 .04

N .04

D .05 .05 .05 .05 .04 .05 .05 .05 .05 .05 .05 .05 .05 .04 .05 .05 .05 .04 .04 .05

C .03 .03 .03 .03 .09 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .02 .03 .03

Q .04 .04 .04 .04 .03 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .03 .03 .04

E .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .04 .04 .05

G .09 .09 .09 .10 .09 .09 .10 .10 .09 .09 .09 .10 .09 .08 .10 .09 .10 .07 .08 .09

H .03

I .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .03 .04 .04

L .09 .08 .08 .08 .08 .08 .08 .08 .08 .09 .10 .09 .09 .10 .09 .08 .09 .09 .09 .09

K .08 .09 .09 .09 .07 .09 .09 .08 .08 .08 .08 .09 .08 .08 .09 .08 .09 .08 .07 .08

M .02 .01 .02 .01 .01 .02 .01 .01 .01 .02 .02 .02 .02 .02 .02 .02 .02 .01 .02 .02

F .04 .04 .04 .04 .04 .04 .04 .04 .04 .05 .05 .04 .05 .07 .04 .04 .04 .05 .07 .04

P .06 .05 .06 .06 .05 .06 .06 .06 .05 .05 .05 .06 .05 .05 .06 .06 .06 .05 .05 .05

S .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .06 .06 .07

T .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .05 .05 .06

W .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .10 .01 .01

Y .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .05 .03 .03 .03 .04 .05 .03

V .06 .06 .06 .06 .06 .06 .06 .06 .06 .07 .07 .07 .07 .07 .07 .06 .07 .06 .06 .07

which has much more uniform values within a row than M100.

Answer 109 Here is the computation:

for a in 1 2 5 10 20 50 100 200 500 1000
do

echo -n $a ' '
pamPower -n $a pam1.txt |
tail -n +2 |
awk '{s+=$(NR+1)}END{print (1-s/20)*100}'

done

Visualize the result

bash pamPower.sh |
gnuplot -p pamPower.gp

where pamPower.gp is

set xlabel "PAM"
set ylabel "%-Difference"
plot "< cat" title "" with lines

to get

8.1 Answers 163

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

%
-D

if
fe

re
n
c
e

PAM

Answer 110 To make it easier to connect the sorted frequencies with amino acids, we

printed the amino acids in front of the frequencies:

awk -f labelFreq.awk aa.txt | sort -k 2 -n

where labelFreq.awk is

/ˆ#/{
Store amino acid designations
for(i=2; i<=21; i++)

aa[i-1] = $i
}
!/ˆ#/{

c++ # Count lines
print aa[c] "\t" $1

}

This tells us that the least frequent amino acid is tryptophane (W), the most frequent glycine

(G).

Answer 111 The amino acid frequencies

A R N D C Q E G H I L K M F P S T W Y V

.09 .04 .04 .05 .03 .04 .05 .09 .03 .04 .09 .08 .01 .04 .05 .07 .06 .01 .03 .07

are similar to the columns in M1000. In other words, after 1000 PAM of evolutionary time,

homologous proteins contain pairs of amino acids at frequencies similar to the frequencies

in random sequence pairs.

Answer 112 Here is the pipeline:

pamPower -n 70 pam1.txt |
pamNormalize -a aa.txt

Observe that normalization makes the matrix symmetrical, which is what we need when

scoring pairwise alignments, where we cannot tell the direction of change.

164 8 Answers and Appendix: Unix Guide

Answer 113 Here is the final pipeline

pamPower -n 70 pam1.txt |
pamNormalize -a aa.txt |
pamLog > pam70sm.txt

This pipeline generates the following matrix (typeset to improve readability):

A R N D C Q E G H I L K M F P S T W Y V
A 5 -4 -1 -1 -4 -2 -1 0 -4 -2 -4 -4 -3 -5 0 1 1 -9 -5 -1

R -4 8 -3 -6 -5 0 -5 -6 0 -3 -6 2 -2 -6 -2 -1 -4 0 -8 -5

N -1 -3 6 3 -7 -1 0 -1 1 -3 -5 0 -5 -5 -3 1 0 -7 -3 -4

D -1 -6 3 6 -9 0 3 -1 -2 -5 -8 -2 -7 -9 -4 -1 -2 -11 -7 -5

C -4 -5 -7 -9 9 -9 -9 -7 -5 -4 -10 -9 -6 -8 -6 -1 -4 -11 -2 -4

Q -2 0 -1 0 -9 7 2 -4 2 -5 -3 -1 -2 -8 -1 -3 -3 -9 -8 -4

E -1 -5 0 3 -9 2 6 -2 -2 -4 -6 -2 -5 -9 -3 -2 -3 -11 -6 -4

G 0 -6 -1 -1 -7 -4 -2 6 -6 -6 -7 -5 -7 -6 -3 0 -3 -10 -9 -3

H -4 0 1 -2 -5 2 -2 -6 8 -6 -4 -3 -6 -3 -2 -3 -4 -6 -1 -5

I -2 -3 -3 -5 -4 -5 -4 -6 -6 7 0 -4 1 -1 -5 -4 -1 -10 -4 3

L -4 -6 -5 -8 -10 -3 -6 -7 -4 0 6 -5 2 -1 -4 -6 -4 -6 -4 0

K -4 2 0 -2 -9 -1 -2 -5 -3 -4 -5 6 0 -9 -4 -2 -1 -7 -8 -5

M -3 -2 -5 -7 -6 -2 -5 -7 -6 1 2 0 10 -2 -5 -3 -2 -9 -7 0

F -5 -6 -5 -9 -8 -8 -9 -6 -3 -1 -1 -9 -2 8 -7 -4 -5 -2 4 -5

P 0 -2 -3 -4 -6 -1 -3 -3 -2 -5 -4 -4 -5 -7 7 0 -2 -9 -9 -4

S 1 -1 1 -1 -1 -3 -2 0 -3 -4 -6 -2 -3 -4 0 5 2 -3 -5 -3

T 1 -4 0 -2 -4 -3 -3 -3 -4 -1 -4 -1 -2 -5 -2 2 6 -8 -5 -1

W -9 0 -7 -11 -11 -9 -11 -10 -6 -10 -6 -7 -9 -2 -9 -3 -8 13 -2 -11

Y -5 -8 -3 -7 -2 -8 -6 -9 -1 -4 -4 -8 -7 4 -9 -5 -5 -2 9 -5

V -1 -5 -4 -5 -4 -4 -4 -3 -5 3 0 -5 0 -5 -4 -3 -1 -11 -5 6

The score of the alignment is accordingly 1 + 0 + 6 + 5 + 3 = 15.

Answer 114 There are 14 pairs of mismatched amino acids with a positive score:

Amino acid pair Score

1 AS 1

2 AT 1

3 RK 2

4 ND 3

5 NH 1

6 NS 1

7 DE 3

8 QE 2

9 QH 2

10 IM 1

11 IV 3

12 LM 2

13 FY 4

14 ST 2

Such residue pairs tend to have similar structures and polarities. Phenylalanine (F) and

tyrosine (Y) have the largest positive score. Both amino acids have similar shapes (Fig. 2.3)

and polarities (Fig. 2.4).

Answer 115 The correct reading frame contains a long stretch of amino acids without stop

codons (*):

transeq -frame 3 -filter < hbb1.fasta > hbb1prot.fasta
transeq -frame 1 -filter < hbb2.fasta > hbb2prot.fasta

http://dx.doi.org/10.1007/978-3-319-67395-0_2
http://dx.doi.org/10.1007/978-3-319-67395-0_2

8.1 Answers 165

Align the sequences

gal -i hbb1prot.fasta -j hbb2prot.fasta -p -m pam70sm.txt

to get

Query: >NM_000518.4_3 Homo sapiens hemoglobin, beta (HBB),
mRNA

Length: 208
Subject: >AF181832_1 Homo sapiens hemoglobin beta subunit

variant (HBB) mRNA, partial cds
Length: 163

Score: 964.0

Q: 1 ICF*HNCVH*QPQTDTMVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFE 58
NVDEVGGEALGRLLVVYPWTQRFFE

S: 1 -----------------------------------NVDEVGGEALGRLLVVYPWTQRFFE 25

Q: 59 SFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENF 118
SFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENF

S: 26 SFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENF 85

Q: 119 RLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH*ARFLAVQFLLKVPLFP 177
RLLGNVLVCVL HHFGKEFTPPVQAAYQKVVAGVANALAHKYH*ARFLAVQFLLKVPLFP

S: 86 RLLGNVLVCVLDHHFGKEFTPPVQAAYQKVVAGVANALAHKYH*ARFLAVQFLLKVPLFP 144

Q: 178 KSNY*TGGYYEGP*ASGFCLIKNIYFHC 203
KSNY*TGGYYEGP*ASG

S: 145 KSNY*TGGYYEGP*ASG----------X 160
//

The row between query and subject indicates the match state: the residue for an exact match

and a blank for a mismatch with a score of zero or less. The alanin (A) at position 130 in

the query is mismatched with the aspartate (D) at position 97 in the subject, as we had seen

before.

Answer 116 As the PAM number goes toward infinity, the scores for homologous pairs of

amino acids all become 0. The last pair of amino acids with a score > 0 is tryptophan/trypto-

phan in PAM2000, which means this is the most conserved, or most slowly evolving, amino

acid.

pamPower -n 1000 pam1.txt |
pamNormalize -a aa.txt |
pamLog

166 8 Answers and Appendix: Unix Guide

A R N D C Q E G H I L K M F P S T W Y V
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
R 0
N 0
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
C 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
Q 0
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
H 0
I 0
L 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
K 0
M 0
F 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 1 1 0
P 0
S 0
T 0
W -1 0 0 -1 -1 0 -1 -1 0 0 0 0 0 1 0 0 0 7 1 -1
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2 0
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

pamPower -n 2000 pam1.txt |
pamNormalize -a aa.txt |
pamLog

A R N D C Q E G H I L K M F P S T W Y V
A 0
R 0
N 0
D 0
C 0
Q 0
E 0
G 0
H 0
I 0
L 0
K 0
M 0
F 0
P 0
S 0
T 0
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
Y 0
V 0

pamPower -n 3000 pam1.txt |
pamNormalize -a aa.txt |
pamLog

8.1 Answers 167

A R N D C Q E G H I L K M F P S T W Y V
A 0
R 0
N 0
D 0
C 0
Q 0
E 0
G 0
H 0
I 0
L 0
K 0
M 0
F 0
P 0
S 0
T 0
W 0
Y 0
V 0

Answer 117 With pam1000sm.txt, the C-terminal end of the alignment is changed;

the rest of the alignment remains the same. However, with pam2000sm.txt and

pam3000sm.txt, the alignment consists almost entirely of mismatches. Homologous

positions cannot be distinguished from random matches using these score matrices.

Answer 118 We can type

bash pamPower2.sh | gnuplot -p pamPower.gp

where pamPower2.sh is

for f in approx percentDiff
do

for a in 1 2 5 10 20 50 100 200 500 1000
do

echo -n $a ' '
pamPower -n $a pam1.txt |

tail -n +2 |
awk -f ${f}.awk

done
echo ' '

done

and approx.awk is essentially the AWK code from Problem 107:

{
c++
s += $(c+1) * 0.05

}END{
print (1-s) * 100

}

168 8 Answers and Appendix: Unix Guide

The gnuplot-script pamPower.gp is unchanged—which illustrates the usefulness of

storing more complex plot commands in a file. The final plot shows that the approximation

is very similar to the exact computation:

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

%
-D

if
fe

re
n
c
e

PAM

Answer 119 Here is the desired tree:

f (2, 3)

f (1, 3)

f (0, 3)

f (0, 2)

f (1, 2)

f (0, 2)

f (0, 1)

f (1, 1)

f (0, 1)

f (0, 0)

f (1, 0)f (1, 2)

f (0, 2)

f (0, 1)

f (1, 1)

f (0, 1)

f (0, 0)

f (1, 0)

f (2, 2)

f (1, 2)

f (0, 2)

f (0, 1)

f (1, 1)

f (0, 1)

f (0, 0)

f (1, 0)

f (1, 1)

f (0, 1)

f (0, 0)

f (1, 0)

f (2, 1)

f (1, 1)

f (0, 1)

f (0, 0)

f (1, 0)f (1, 0)

f (2, 0)

The end result is the number of leaves in that tree, that is nodes without descendants. There

are 25 leaves and hence 25 possible global alignments between two sequences of lengths 2

and 3.

8.1 Answers 169

Answer 120

0 1 2 3

0

1

2

→

0 1 2 3

0 1 1 1 1

1 1

2 1

→

0 1 2 3

0 1 1 1 1

1 1 3

2 1

→

0 1 2 3

0 1 1 1 1

1 1 3 5

2 1

→→

0 1 2 3

0 1 1 1 1

1 1 3 5 7

2 1 5 13 25

This time we obtain 25 much quicker.

Answer 121 The first thing to realize is that no global alignment of S1 and S2 can be

shorter than the longer sequence, that is 3, or longer than the sum of their lengths, that is, 5.

This means that, say, S1 can only occur with 0, 1, or 2 gaps. We can write down the longer

sequence with 0 gaps and then construct all sequences with 1 gap, and again from these the

sequences with 2 gaps. For the latter, we need to watch out for repeats, which are shown in

gray:

AGT

-AGT

--AGT
-A-GT
-AG-T
-AGT-

A-GT

-A-GT
A--GT
A-G-T
A-GT-

AG-T

-AG-T
A-G-T
AG--T
AG-T-

AGT-

-AGT-
A-GT-
AG-T-
AGT--

From these, we can construct all 25 alignments:

AGT AGT AGT -AGT -AGT
AC- A-C -AC AC-- A-C-
-AGT A-GT A-GT A-GT AG-T
A--C -AC- -A-C AC-- -AC-
AG-T AG-T AGT- AGT- AGT-
A-C- --AC --AC -A-C A–C
--AGT -A-GT -AG-T -AGT- A--GT
AC--- A-C-- A--C- A---C -AC-
A-G-T A-GT- AG--T AG-T- AGT--
-A-C- -A--C --AC- --A-C ---AC

Answer 122 The command

numAl -m 106 -n 106

tells us there are 7.8 × 1079 possible alignments. This is also approximately the number of

atoms in the observable universe spcitewik:obs.

170 8 Answers and Appendix: Unix Guide

Answer 123 Run

bash numAl.sh |
awk '{print ++c, $3}' |
gnuplot -p -e 'set xl "Length (bp)"; set yl "Number of

Alignments"; set log y; p "< cat" t "" w l'

where numAl.sh is

for a in $(seq 106)
do

numAl -m $a -n $a
done

to get

 1

 1x10
10

 1x10
20

 1x10
30

 1x10
40

 1x10
50

 1x10
60

 1x10
70

 1x10
80

 0 20 40 60 80 100 120

N
u
m

b
e
r

o
f
A

lig
n
m

e
n
ts

Length (bp)

Answer 124 Run

bash numAl2.sh

where numAl2.sh is

for a in $(seq 106)
do

numAl -t -m $a -n $a
done

to observe that the computations quickly become very slow. We gave up at length 14.

Answer 125 To make subsequent manipulations more convenient, first write the run times

to a file

for a in $(seq 14); do numAl -t -m $a -n $a; done > times.
txt

8.1 Answers 171

Then filter out the times greater than zero and plot them:

cat times.txt |
awk '{if($6>0)print ++c, $6}' |
gnuplot -p -e 'set xl "Length (bp)"; set yl "Time (s)"; set

log y; p "< cat" t "" w l'

to get

 0.01

 0.1

 1

 10

 100

 9 10 11 12 13 14

T
im

e
 (

s
)

Length (bp)

Answer 126 Linear functions are described by

f (x) = ax + b.

The slope of the straight line, a, is found by considering, for example, the run times for

sequences lengths 13 and 14, which were 2.25 s and 11.33 s in our case. Take logarithms

awk 'BEGIN{print log(2.25)/log(10)}'
0.352183
awk 'BEGIN{print log(11.33)/log(10)}'
1.05423

to get a = 1.05 − 0.35 = 0.70 and b = 1.05 − 14 × 0.7 = −8.75. So our run time is

100.7×106−8.75 = 1065.45

seconds or
1065.45

60 × 60 × 24 × 365.25
≈ 8.9 × 1057

years. This dwarfs the 1010 years the universe has existed. Choosing the appropriate algorithm

can make an enormous difference.

172 8 Answers and Appendix: Unix Guide

Answer 127
Here is our dot plot:

A C G T A C G T

A

C

G

T

A

C

G

T

The matches off the main diagonal indicate duplications.

Answer 128 The fist two lines of dmAdhAdhdup.fasta are

head -n 2 dmAdhAdhdup.fasta
>DMADH X78384.1 D.melanogaster Adh and Adh-dup genes.
TGTATTTTCCAATTAGGTGATAGAACTTGTGTGCACACACACATATAGTTCTATATCAAC

So dmAdhAdhdup.fasta contains the genes Adh and its duplication Adh-dup from D.

melanogaster. The first two lines of dgAdhAdhdup.fasta are

head -n 2 dgAdhAdhdup.fasta
>DGADHDUP X60113.1 D.guanche Adh and Adh-dup genes for

alcohol dehydrogenase.
TCTAGATTGCATCACTCGTGCCGCCCTACGTTGTGAAGCACCACGCCCTGGACCCCGTTT

Correspondingly, dgAdhAdhdup.fasta contains the D. guanche versions of Adh and

Adh-dup. Now count the nucleotides:

cchar dmAdhAdhdup.fasta
Total number of input characters: 4761
Char Count Fraction
A 1417 0.297627
C 1007 0.211510
G 989 0.207729
T 1348 0.283134

and

cchar dgAdhAdhdup.fasta
Total number of input characters: 4433
Char Count Fraction
A 1279 0.288518
C 998 0.225130
G 936 0.211144
T 1220 0.275209

8.1 Answers 173

In summary,

File Genes Organism Length (bp)

dmAdhAdhdup.fasta Adh &Adh-dup D. melanogaster 4761

dgAdhAdhdup.fasta Adh & Adh-dup D. guanche 4433

Answer 129 The two sequences are 4761 and 4433 bp long, and the corresponding dot plot

would therefore contain 4761 × 4433 = 21, 105, 513 cells. This is quite a large number. We

therefore need an approach that is more efficient than checking each cell and placing a dot

for every match.

Answer 130 Run

#len|strId:pos_1|...|strId:pos_n|seq
37|f2:3292|f1:3287|AGCAAGGTTCTCATGACCAAGAATATAGCGGTGAGTG

The longest repeat has length 37.

Answer 131 When running

cat *.fasta | randomizeSeq | repeater

a couple of times, we commonly find repeats with lengths 11 to 14. Since these lengths are

not even close to the naturally occurring longest repeat of 37, it is extremely unlikely that

this repeat has occurred by chance.

Answer 132 The raw result is

cat dmAdhAdhdup.fasta dgAdhAdhdup.fasta |
repeater -m 12 |
head -n 3
#len|strId:pos_1|...|strId:pos_n|seq
13|f2:3096|f1:3129|AAAATAGATAAAT
12|f2:3371|f1:3389|AAACTAATTAAG

This is converted by dotPlotFilter.awk to

cat dmAdhAdhdup.fasta dgAdhAdhdup.fasta |
repeater -m 12 |
head -n 3 |
awk -f dotPlotFilter.awk
3129 3096
3141 3108

3389 3371
3400 3382

For a given repeat, dotPlotFilter.awk prints the x- and y-coordinates of the start and

end of the repeat separated by blank lines.

Answer 133 Commands like

cat dmAdhAdhdup.fasta dgAdhAdhdup.fasta |
repeater -m 12 |
awk -f dotPlotFilter.awk |
gnuplot -p -e 'set xl "D. melanogaster"; set yl "D. guanche

"; p "< cat" t "" w l'

174 8 Answers and Appendix: Unix Guide

give results like
Repeat Length ≥ 6 Repeat Length ≥ 8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
.

g
u

a
n

c
h

e

D. melanogaster

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
.

g
u

a
n

c
h

e

D. melanogaster

Repeat Length ≥ 10 Repeat Length ≥ 12

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
.
g

u
a

n
c
h

e

D. melanogaster

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

D
.
g

u
a

n
c
h

e

D. melanogaster

The repeat length determines the density of the plot.

Answer 134 Since the paralogs are contained in both species, the duplication must predate

the speciation event. Accordingly, the orthologs have a more recent last common ancestor

than the paralogs.

Answer 135 A cartoon phylogeny would look like this:

Adhdm

Adhdg

Adh-dupdm

Adh-dupdg

Time

Duplication Speciation

The branch lengths are unknown, but the branch order is known, and hence the relative order

of gene divergence due to duplication and speciation.

Answer 136 The homology between the orthologous pairs of genes is clearly visible along

the main diagonal of the plot. However, there are no significant off-diagonal repeats, and

hence the paralogous relationships between the duplicated genes is so ancient as to have

become invisible in a dot plot.

Answer 137 The insertion, marked by an arrow below, causes a shift in the main diagonal

of homology:

8.1 Answers 175

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

D
.

g
u
a
n
c
h
e

D. melanogaster

There was an insertion into the D. melanogaster sequence.

Answer 138 The coordinates for D. melanogaster are found by typing

grep CDS dmAdhAdhdup.gb

and for D. guanche by entering

grep CDS dgAdhAdhdup.gb

to get

Organism Adh Adh-dup

D. melanogaster 2021..2119,2185..2589,2660..2926 3226..3321,3748..4152,4204..4521

D. guanche 1984..2076,2145..2549,2613..2879 3221..3316,3540..3944,4007..4345

Answer 139 There are many ways of converting the CDS coordinates recorded in the

genbank file to a set of intervals. Our version is

grep CDS dmAdhAdhdup.gb |
sed -f cds.sed |
awk -f break.awk > cdsDm.txt

where cds.sed is

s/.*(// # remove everything up to opening bracket
s/)// # remove closing bracket
s/\.\./ /g # substitute blanks for pairs of dots
s/,/ /g # substitute blanks for commas

and break.awk is

{
printf "%s\t%s\n%s\t%s\n%s\t%s\n", $1, $2, $3, $4, $5, $6

}

176 8 Answers and Appendix: Unix Guide

Next, write the dot plot data to file:

cat dmAdhAdhdup.fasta dgAdhAdhdup.fasta |
repeater -m 12 |
awk -f dotPlotFilter.awk > dotPlot.dat

Append the exon coordinates:

awk -f boxesX.awk cdsDm.txt >> dotPlot.dat

where boxesX.awk is

BEGIN{
h = 150 # height

}{
s = $1 # start
e = $2 # end
printf("%d\t%d\n%d\t%d\n%d\t%d\n%d\t%d\n", s, 0, s, h, e
, h, e, 0)

}

and cdsDm.txt contains the CDS coordinates of D. melanogaster:

2021 2119
2185 2589
2660 2926
3226 3321
3748 4152
4204 4521

Now plot the result:

cat dotPlot.dat |
gnuplot -p -e 'set xl "D. melanogaster"; set yl "D. guanche

"; p "< cat" t "" w l'

to get

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
.

g
u
a
n
c
h
e

D. melanogaster

It seems the insertion affected only an intron.

8.1 Answers 177

Answer 140 Draw the plot as

gnuplot -p cdsDm.gp

where cdsDm.gp is

set xlabel "D. melanogaster"
set ylabel "D. guanche"
set arrow from 3400,0 to 3400,4500 nohead
set arrow from 3740,0 to 3740,4500 nohead
plot "dotPlot.dat" title "" with lines

We plotted directly from the data file dotPlot.dat; alternatively, it could have been read

from the standard input. However, in a script it is usually more convenient to read from a file

containing the input data. By drawing vertical lines along the gap borders, we can clearly

see that the insertion affected an intron:

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
.

g
u
a
n
c
h
e

D. melanogaster

Answer 141 Generate the exon coordinates for D. guanche:

grep CDS dgAdhAdhdup.gb |
sed -f cds.sed |
awk -f break.awk > cdsDg.txt

Add an empty line to the data file

echo >> dotPlot.dat

Add the exons for D. guanche:

awk -f boxesY.awk cdsDg.txt >> dotPlot.dat

178 8 Answers and Appendix: Unix Guide

where boxesY.awk is

BEGIN{
h = 150 # height

}{
s = $1 # start
e = $2 # end
printf("%d\t%d\n%d\t%d\n%d\t%d\n%d\t%d\n", 0, s, h, s, h,

e, 0, e)
}

Now plot the data

gnuplot -p adhCds.gp

where the gnuplot script adhCds.gp is

set termoption dash
reset
set xlabel "D. melanogaster"
set ylabel "D. guanche"
D. m. CDS
set arrow from 2021,0 to 2021,4500 nohead lt 2
set arrow from 2926,0 to 2926,4500 nohead
set arrow from 3226,0 to 3226,4500 nohead
set arrow from 4521,0 to 4521,4500 nohead
D. g. CDS
set arrow from 0,1984 to 5000,1984 nohead
set arrow from 0,2879 to 5000,2879 nohead
set arrow from 0,3221 to 5000,3221 nohead
set arrow from 0,4345 to 5000,4345 nohead
plot
plot "dotPlot.dat" title "" with lines

to get the CDS of Adh and Adh-dup for D. melanogaster and D. guanche:

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
.

g
u
a
n
c
h
e

D. melanogaster

8.1 Answers 179

Answer 142 Here is the dot plot:

T

T

T

T C

C

C

C

A

A

A

G

G

G G T C C

There are three possible global alignments with the maximum number of matches:

TTCAGGGTCC TTCAGGGTCC TTCAGGGTCC
TACA--GTCC TACA-G-TCC TACAG--TCC

The last column of these alignments corresponds the bottom right corner of the dot plot

matrix.

Answer 143 An alignment gap corresponds to a shift in a match diagonal.

Answer 144 F(2, 1) refers to S1[1..1] = A and S2[1..2] = AC.

Answer 145

- A C T
0 1 2 3

- 0 0 ← −1 ← −2 ← −3

A 1

C 2

Answer 146

- A C T
0 1 2 3

- 0 0 ← −1 ← −2 ← −3

A 1 ↑ −1

C 2 ↑ −2

Answer 147

- A C T
0 1 2 3

- 0 0 ← −1 ← −2 ← −3

A 1 ↑ −1 տ 1 ← 0 ← −1

C 2 ↑ −2 ↑ 0 տ 2 ← 1

Answer 148 The traceback returns

ACT
AC-

This has score 1, as expected from the entry in the lower right-hand cell of the alignment

matrix.

180 8 Answers and Appendix: Unix Guide

Answer 149 In a global alignment, the bottom right-hand cell of the alignment matrix

contains the score of the optimal alignment between S1 and S2; in our case, this is 4.

Answer 150 There are three cooptimal alignments implied by the global alignment matrix:

TTCAGGGTCC
| || ||||
TACA--GTCC

TTCAGGGTCC
| || | |||
TACA-G-TCC

TTCAGGGTCC
| ||| |||
TACAG--TCC

all of which have score 4, the entry in the cell from where the traceback started.

Answer 151 Construct directory and change into it:

mkdir OptimalAlignment
cd OptimalAlignment

Run gal with the desired score scheme:

gal -i seq1.fasta -j seq2.fasta -O 0 -E -1 -I -1

Query: >seq1
Length: 10

Subject: >seq2
Length: 8

Score: 4.0
Strand: Plus / Plus

Query: 1 TTCAGGGTCC 10
| || ||||

Sbjct: 1 TACA--GTCC 8

This can be changed; for example, if the mismatch score is ≤ −3 and all other parameters

are left unchanged, the optimal alignment becomes

TT-CAGGGTCC
| || ||||

-TACA--GTCC

Answer 152 Again, the answer is yes, but only for gap score schemes lacking biological

plausibility: For example, we might reward gaps by setting the gap extension parameter to

1. In other words, the score increases rather than decreases when gaps are inserted. The

alignment then becomes

gal -E 1 -i s1.fasta -j s2.fasta
TTCAGGGT-----CC

| ||
-------TACAGTCC

8.1 Answers 181

Answer 153 The Adh-dup from D. guanche should contain a large gap, which corresponds

to an insertion in D. melanogaster.

Answer 154 Enter

gal -i dmAdhAdhdup.fasta -j dgAdhAdhdup.fasta | less

and find that between positions 3426 and 3531 in D. guanche there are large gaps. Now look

up the CDS coordinates for D. guanche

grep CDS dgAdhAdhdup.gb
CDS join(1984..2076,2145..2549,2613..2879)
CDS join(3221..3316,3540..3944,4007..4345)

The first CDS refers to Adh, the second to Adh-dup. The intron between the first and the

second exon of Adh-dup has coordinates 3317–3539, which corresponds to the gapped region.

Therefore, the gap is located in the first intron of the D. guanche Adh-dup.

Answer 155 First initialize, the fill in the local alignment matrix:

Initialize Fill in

- T A C G T
0 1 2 3 4 5

- 0 0 0 0 0 0 0

G 1 0

A 2 0

C 3 0

G 4 0

A 5 0

- T A C G T
0 1 2 3 4 5

- 0 0 0 0 0 0 0

G 1 0 0 0 0 տ 1 0

A 2 0 0 տ 1 0 0 0

C 3 0 0 0 տ 2 ← 1 0

G 4 0 0 0 ↑ 1 տ 3 ← 2

A 5 0 0 տ 1 0 ↑ 2 տ 2

Answer 156 The traceback looks like this:

- T A C G T
0 1 2 3 4 5

- 0 0 0 0 0 0 0

G 1 0 0 0 0 տ 1 0

A 2 0 0 տ 1 0 0 0

C 3 0 0 0 տ 2 ← 1 0

G 4 0 0 0 ↑ 1 տ 3 ← 2

A 5 0 0 տ 1 0 ↑ 2 տ 2

The resulting alignment is

ACG
ACG

Its score is 3, the entry in the cell from which the traceback started.

Answer 157 The command

lal -i dmAdhAdhdup.fasta -j dgAdhAdhdup.fasta

returns

182 8 Answers and Appendix: Unix Guide

Query: >DMADH X78384.1 D.MELANOGASTER ADH AND ADH

-DUP GENES.

Length: 4761

Hit: 2182 - 2594

Subject: >DGADHDUP X60113.1 D.guanche Adh and Adh-

dup genes for alcohol dehydrogenase.

Length: 4433

Hit: 2142 - 2554

Score: 217.0

Strand: Plus / Plus

Query: 2182 TAGAACCTGGTGATCCTCGACCGCATTGAGAACCCGGCTGCCATTGCCGAGCTGAAGGCA 2241

||||||||||| ||||| || |||||||| || || |||||||||||||| |||||||||

Sbjct: 2142 TAGAACCTGGTCATCCTGGATCGCATTGACAATCCAGCTGCCATTGCCGAACTGAAGGCA 2201

Query: 2242 ATCAATCCAAAGGTGACCGTCACCTTCTACCCCTATGATGTGACCGTGCCCATTGCCGAG 2301

||||||| ||||||||||||||||||||||| ||||||||||| || || | || |||

Sbjct: 2202 GTCAATCCCAAGGTGACCGTCACCTTCTACCCTTATGATGTGACTGTACCTGTCGCAGAG 2261

Query: 2302 ACCACCAAGCTGCTGAAGACCATCTTCGCCCAGCTGAAGACCGTCGATGTCCTGATCAAC 2361

|||||||| || |||||||||||||| |||||| | |||||| ||||||||||||| |||

Sbjct: 2262 ACCACCAAACTCCTGAAGACCATCTTTGCCCAGATCAAGACCATCGATGTCCTGATAAAC 2321

Query: 2362 GGAGCTGGTATCCTGGACGATCACCAGATCGAGCGCACCATTGCCGTCAACTACACTGGC 2421

|| ||||| ||||| |||||||| ||||| ||||| || |||||||| ||||||||||||

Sbjct: 2322 GGTGCTGGCATCCTCGACGATCATCAGATTGAGCGTACTATTGCCGTTAACTACACTGGC 2381

Query: 2422 CTGGTCAACACCACGACGGCCATTCTGGACTTCTGGGACAAGCGCAAGGGCGGTCCCGGT 2481

|||||||||||||| || ||||||||||| ||||||||||||||||||||||| || |||

Sbjct: 2382 CTGGTCAACACCACCACAGCCATTCTGGATTTCTGGGACAAGCGCAAGGGCGGCCCAGGT 2441

Query: 2482 GGTATCATCTGCAACATTGGATCCGTCACTGGATTCAATGCCATCTACCAGGTGCCCGTC 2541

|| ||||| ||||||||||| ||||| || || || |||||||||||||||||||||||

Sbjct: 2442 GGCATCATTTGCAACATTGGCTCCGTTACCGGTTTTAATGCCATCTACCAGGTGCCCGTT 2501

Query: 2542 TACTCCGGCACCAAGGCCGCCGTGGTCAACTTCACCAGCTCCCTGGCGGTAAG 2594

||||| |||| |||||| || ||||| ||||||||||||||||||||||||||

Sbjct: 2502 TACTCTGGCAGCAAGGCGGCGGTGGTAAACTTCACCAGCTCCCTGGCGGTAAG 2554

Hence, the coordinates of the best local alignment are as follows:

Organism Local alignment

D. melanogaster 2182–2594

D. guanche 2142–2554

As before, we look up the coordinates of the CDS for Adh and Adh-dup in D. melanogaster

grep CDS dmAdhAdhdup.gb
CDS join(2021..2119,2185..2589,2660..2926)
CDS join(3226..3321,3748..4152,4204..4521)

and similarly for D. guanche

8.1 Answers 183

grep CDS dgAdhAdhdup.gb
CDS join(1984..2076,2145..2549,2613..2879)
CDS join(3221..3316,3540..3944,4007..4345)

to find that the best alignment corresponds to the second exon of Adh.

Answer 158 Compute a single alignment:

time lal -i dmAdhAdhdup.fasta -j dgAdhAdhdup.fasta

This takes approximately 2.8 s, while computing two optimal local alignments

time lal -n 2 -i dmAdhAdhdup.fasta -j dgAdhAdhdup.fasta

takes approximately 22.5 s, eight times longer. The reason for this is that the top local

alignment is surrounded by many cells with high scores. But the paths starting from these

cells all intersect the optimal local alignment. It is therefore hard for the algorithm to find

the starting point of the next best distinct alignment.

Answer 159 The coordinates of the second best alignment are as follows:

Organism Local alignment

D. melanogaster 3829–4162

D. guanche 3621–3954

As before, look up the CDS coordinates

grep CDS *.gb

to find that the second best alignment corresponds to exon 2 of Adh-dup.

Answer 160 The score of the alignment is

gal -i dmAdhCds.fasta -j dmAdhdupCds.fasta |
grep Score
Score: -1631.0

Answer 161 Compute the scores from random alignments

randomizeSeq -n 1000 dmAdhCds.fasta |
gal -i dmAdhdupCds.fasta |
grep Score |
awk '{print $2}' > scores.dat

Plot the scores

histogram scores.dat | gnuplot -p scores.gp

where scores.gp is

set arrow from -1631,0.01 to -1631,0 # observed
set xl "Score"
set yl "Frequency"
plot[-1800:-1600][] "< cat" title "" with lines

184 8 Answers and Appendix: Unix Guide

to get

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-1800 -1750 -1700 -1650 -1600

F
re

q
u
e
n
c
y

Score

It is highly unlikely that the observed score (arrow) occurs between shuffled, nonhomologous

versions of the input sequences.

Answer 162 First, remind yourself of the length of dmAdhAdhdup.fasta usingcchar:

cchar dmAdhAdhdup.fasta
Total number of input characters: 4761

Cut out the first and last kb:

cutSeq -r 1-1000 dmAdhAdhdup.fasta > f1.fasta
cutSeq -r 3762-4761 dmAdhAdhdup.fasta > f2.fasta

Compute the original score

gal -i f1.fasta -j f2.fasta | grep Score
Score: -1385.0

Compute the random scores:

randomizeSeq -n 1000 f2.fasta |
gal -i f1.fasta |
grep Score |
awk '{print $2}' > scoresR.dat

Plot the random scores

histogram scoresR.dat | gnuplot -p scoresR.gp

where scoresR.gp is

set arrow from -1385,0.01 to -1385,0 # observed
set xl "Score"
set yl "Frequency"
plot[][] "< cat" title "" with lines

8.1 Answers 185

to get

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

-1440 -1420 -1400 -1380 -1360 -1340 -1320 -1300 -1280

F
re

q
u
e
n
c
y

Score

As expected, the score between the two arbitrary DNA segments (arrow) is not different

from random. In other words, only scores to the right of the distribution of random scores

are indicative of homology.

Answer 163 The substitution rates K1 and K2 are between orthologs, and thus refer to the

split between D. melanogaster and D. guanche. The other four are between paralogs and

refer to the Adh duplication.

Answer 164 Extract exon 2 from Adh and Adh-dup of D. melanogaster:

cutSeq -r 2185-2589 dmAdhAdhdup.fasta > dmAdhE2.fasta
cutSeq -r 3748-4152 dmAdhAdhdup.fasta > dmAdhdupE2.fasta

Repeat for D. guanche:

cutSeq -r 2145-2549 dgAdhAdhdup.fasta > dgAdhE2.fasta
cutSeq -r 3540-3944 dgAdhAdhdup.fasta > dgAdhdupE2.fasta

Answer 165

gal -i dmAdhE2.fasta -j dgAdhE2.fasta |
sed -n '/|/p' |
sed 's/ //g' |
awk '{s+=length($1)}END{print s}'
356

Answer 166 Exon 2 is 405 bp long and there were 356 matches. So the number of mis-

matches per site is

π = (405 − 356)/405 ≈ 0.12.

Answer 167 Convert 0.12 mismatches per site to the number of substitutions per site:

K1 = −
3

4
log

(

1 −
4

3
× 0.12

)

≈ 0.13.

186 8 Answers and Appendix: Unix Guide

Answer 168 Compute the number of matches

gal -i dmAdhdupE2.fasta -j dgAdhdupE2.fasta |
sed -n '/|/p' |
sed 's/ //g' | awk '{s+=length($1)}END{print s}'
324

So the number of mismatches per site is

π2 = (405 − 324)/405 ≈ 0.2,

and

K2 = −
3

4
log

(

1 −
4

3
π2

)

≈ 0.23.

Answer 169 To compute M3, we use the same commands as before:

gal -i dmAdhE2.fasta -j dmAdhdupE2.fasta |
sed -n '/|/p' |
sed 's/ //g' |
awk '{s+=length($1)}END{print s}'

We get

Comparison Matches

M3 : Adhdm / Adh-dupdm 228

M4 : Adh-dupdg / Adhdg 224

M5 : Adhdm / Adh-dupdg 235

M6 : Adh-dupdm / Adhdg 226

That is, on average there are Mdup = (228 + 224 + 235 + 226)/4 = 228.25 matches. The

number of mismatches per site is thus πdup = (405−228.25)/405 ≈ 0.436 and Kdup ≈ 0.65.

Answer 170 The average between K1 and K2 is (0.13+0.23)/2 = 0.18. A rough estimate

of the age of duplication is

0.65/0.18 × 32 ≈ 116

million years. When drawn as a tree, these divergence times look like this:

0.32

Adh-dupdm

Adh-dupdg

Adhdm

Adhdg

Answer 171 Take care of the preliminaries

mkdir KeywordTrees
cd KeywordTrees

8.1 Answers 187

and write the program split.awk:

BEGIN{
n = split(t, ta, "")
for(i=1; i<=n; i++)

print ta[i]
}

Answer 172 Run

awk -v t=CACAGACACAT -v p=ACA -f naive.awk

where naive.awk is

BEGIN{
n = split(t, ta, "")
m = split(p, pa, "")
for(i=1; i<=n-m; i++){

for(j=1; j<=m; j++){
if(ta[i+j-1] != pa[j])
break

}
if(j == m + 1)

print i
}

}

Answer 173 Run

echo -e '>Seq\nACGTCG' |
awk -f naive2.awk -v file=mgGenome.fasta
122599

where naive2.awk is

BEGIN{
cmd = "tail -n +2 " file
while(cmd | getline)

t = t $1
}
!/ˆ>/{

p = p $1
}
END{

n = split(t, ta, "")
m = split(p, pa, "")
for(i=1; i<=n-m; i++){

for(j=1; j<=m; j++){
if(ta[i+j-1] != pa[j])

break
}
if(j == m + 1)

print i
}

}

188 8 Answers and Appendix: Unix Guide

Answer 174 Reverse complement the sequence:

revComp mgGenome.fasta > mgGenomeR.fasta

and run

echo -e '>Seq\nCGGCCT' |
awk -f naive2.awk -v file=mgGenomeR.fasta
270306

to find one copy of the motif on the reverse strand.

Answer 175 Run

awk -f monoNuc.awk -v n=100 | fold

where monoNuc.awk is

BEGIN{
print ">Mononuc"
for(i=0; i<n; i++)

printf("A")
printf("\n")

}

Answer 176 Generate the text files

awk -f monoNuc.awk -v n=1000000 | fold > 1mb.fasta
awk -f monoNuc.awk -v n=2000000 | fold > 2mb.fasta

Measure the run times

awk -f monoNuc.awk -v n=10 |
time awk -f naive2.awk -v file=1mb.fasta | tail

awk -f monoNuc.awk -v n=20 |
time awk -f naive2.awk -v file=2mb.fasta | tail

where we got 2.65 s and 9.56 s, respectively. This roughly 3.6-fold increase in run time is

somewhat smaller than the expected 2 × 2 = 4-fold increase.

Answer 177 The command

time naiveMatcher -p AAAAAAAAAAAAAAAAAAAA 2mb.fasta | tail

takes 0.282 s, compared to 9.56 s for the AWK script. This is a 34-fold speedup obtained

just by switching from AWK to C.

Answer 178 Run

bash runNaive.sh > runNaive.dat

where runNaive.sh is

for a in 10 20 50 100 200 500 1000 2000 5000 10000
do

echo -n ${a} ' '
awk -f monoNuc.awk -v n=${a} |

fold > pattern.fasta

8.1 Answers 189

/usr/bin/time -p naiveMatcher -P pattern.fasta 2mb.fasta
2>&1 |

grep real |
sed 's/real //'

done

and plot

gnuplot -p plot1.gp

where plot1.gp contains

set xlabel "Pattern Length (kb)"
set ylabel "Time (s)"
plot "runNaive.dat" using ($1/1000):2 title "" with lines

to get

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

s
)

Pattern Length (kb)

In the artificial situation of an alphabet consisting of just a single character, the run time of

naiveMatcher is linear in the pattern length.

Answer 179

A
A

A

190 8 Answers and Appendix: Unix Guide

Answer 180

T
A

T
A

T
A

→

T
A

T
A

T
A

→

T
A

T
A

T
A

→

T
A

T
A

T
A

→
T

A
T

A
T

A
→

T
A

T
A

T
A

Answer 181 The command

/usr/bin/time -p keywordMatcher -p AAAAAAAAAAAAAAAAAAAA 2mb.
fasta 2>&1 |

grep real

runs in 0.40 s. This is actually slower than the naïve version, which took 0.26 s:

/usr/bin/time -p naiveMatcher -p AAAAAAAAAAAAAAAAAAAA 2mb.
fasta 2>&1 |

grep real

Answer 182 Execute

bash runKeyword.sh > runKeyword.dat

where runKeyword.sh is almost identical to runNaive.sh, only the line

/usr/bin/time -p naiveMatcher -P pattern.fasta 2mb.fasta 2>&1 |

is replaced by

/usr/bin/time -p keywordMatcher -f pattern.fasta 2mb.fasta 2>&1|

Plot runKeyword.dat together with runNaive.dat using

gnuplot -p plot2.gp

where plot2.gp is

set xlabel "Pattern Length (kb)"
set ylabel "Time (s)"
plot "runNaive.dat" using ($1/1000):2 title "naiveMatcher"

with lines,\
"runKeyword.dat" using ($1/1000):2 title "keywordMatcher"

with lines

8.1 Answers 191

to get

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

s
)

Pattern Length (kb)

naiveMatcher
keywordMatcher

The run time of keywordMatcher is independent of the pattern length, while that of

naiveMatcher is proportional to the pattern length. Notice that this observation only applies

to our extreme case, where pattern and text consist of a single type of nucleotide.

Answer 183 We first measure the run times of naiveMatcher:

bash runNaiveLen.sh > runNaiveLen.dat

where runNaiveLen.sh is

for a in 1 2 5 10 20 50 100
do

echo -n ${a} ' '
ranseq -l ${a}000000 > tmp.fasta
/usr/bin/time -p naiveMatcher -p TTTAACCTCCGGCGGAGTTT

tmp.fasta 2>&1 |
grep real |
sed 's/real //'

done

Likewise, we execute

bash runKeywordLen.sh > runKeywordLen.dat

where runKeywordLen.sh is

for a in 1 2 5 10 20 50 100
do

echo -n ${a} ' '
ranseq -l ${a}000000 > tmp.fasta
/usr/bin/time -p keywordMatcher -p TTTAACCTCCGGCGGAGTTT

tmp.fasta 2>&1 |
grep real |
sed 's/real //'

done

192 8 Answers and Appendix: Unix Guide

The two result files are plotted

gnuplot -p plot3.gp

where plot3.gp is

set xlabel "Text Length (Mb)"
set ylabel "Time (s)"
set key top center
plot "runNaiveLen.dat" title "naiveMatcher" with lines,\
"runKeywordLen.dat" title "keywordMatcher" with lines

to get

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s
)

Text Length (Mb)

naiveMatcher
keywordMatcher

With random sequences, where on average only a small portion of the prefix is checked

before a mismatch is found, the simple naïve method beats the more complex method based

on pattern preprocessing.

Answer 184 Here is the keyword tree with all failure links included:

A

C

G
T

C

G

A

1

2

3 4

5

Answer 185 You could enter, for example,

keywordMatcher -t kt.tex -p 'ACG|AC|ACT|CGA|C' 2mb.fasta >
/dev/null

followed by

latex ktWrapper.tex; dvips ktWrapper.dvi

8.1 Answers 193

and

gv ktWrapper.ps &

to get

GT
C

A
G

A

C
13

2

4

5

This is not quite as nicely laid out as the manually generated keyword tree, but it does the job.

Deleting \date{} results in an automatically generated date produced by \maketitle.

Answer 186 Walking into the tree recovers a match to P2 = AC, followed by a match

to P1 = ACG. Then, follow the mismatch link twice to find P5 = C. However, the first

occurrence of C is missed that way. To prevent this, the matches at a particular point in the

tree are not restricted to the pattern that may end at that point, but to any pattern that can be

reached via the failure links. In practice, the preprocessing of a keyword tree includes a step

where for every node the failure links are followed, resulting in an output set consisting of

the node labels encountered along the way. Each output set may contain zero, one, or several

patterns.

Answer 187 For most nodes of our keyword tree, the output set simply consists of the node

label; the exception is node 2, where the output set now also includes P5:

Answer 188

S[1..] ACCCG
S[2..] CCCG
S[3..] CCG
S[4..] CG
S[5..] G

Answer 189 Here is our first suffix tree:

ACCCG C

G

1

C G

C
G G

2 3

4

5

194 8 Answers and Appendix: Unix Guide

Answer 190 Start at the root and walk into the tree until CC has been matched. Then, look

up the leaf labels of the subtree rooted on the node connected to the edge on which the

search ended. These labels indicate the starting positions of CC in S, positions 3 and 2 in

our example.

Answer 191 The last suffix, S[5..] = A, does not generate a mismatch and hence no leaf

in the suffix tree. This always happens when a suffix is a prefix of another suffix, like in our

example where S[5..] = A is a prefix of the suffix S[1..] = ACCCA. To guarantee that each

suffix generates a mismatch and hence a leaf when it is threaded into the tree, a so-called

sentinel character is added at the end of S: S = ACCCA$. This sentinel character, denoted

by $, is not a nucleotide and hence cannot occur anywhere in the sequence.

Answer 192

1 2 3 4 5 6

A C C C A $

$ A

C

6 $
C
C
C
A
$

5 1

A
$ C

4 A
$

C
A
$

3 2

Answer 193 The string depths are marked in red:

0ACCCG C

G

1
1C G

2C
G G

2 3

4

5

Answer 194 Look for the node with the greatest string depth. Its path label is the longest

repeat in S, which is CC in our case.

Answer 195 Assuming your current directory is BiProblems, make the new directory,

change into it, and copy the genome file:

mkdir SuffixTrees
cd SuffixTrees
cp ../Data/mgGenome.fasta .

8.1 Answers 195

Then execute

repeater -i mgGenome.fasta
#len|strId:pos_1|...|strId:pos_n|seq
243|389491|390403|TTTTTCAGCAGTTGGTTG...

to find that the genome of M. genitalium contains a repeat of 243 bp that occurs at positions

389,491 and 390,403.

Answer 196

Total number of input characters: 580076
Char Count Fraction
A 200544 0.345720
C 91515 0.157764
G 92306 0.159127
T 195711 0.337389

The probability of drawing AA is 0.352 ≈ 0.12.

Answer 197

cchar mgGenome.fasta |
sed '/ˆ#/d' |
awk '{s+=$3ˆ2}END{printf "P_m = %f\n", s}'
P_m = 0.283565

Answer 198 We need to solve

1 = P l
m × L2

for l. By rearranging and taking logarithms, we get

l =
log(1/L2)

log(Pm)
.

By substituting Pm = 0.284 and L = 580, 076, we find l ≈ 21.1. This is much shorter than

the observed longest repeat of length 243.

Answer 199 Our basic computation is

randomizeSeq mgGenome.fasta | repeater

which returns values like 23, 19, 21, 20, 19, 20, 21, 19, and so on. From 100 iterations, we

found an average maximum length of 20.1, which is close to the expected 21.1, but still

significantly smaller. One reason for this might be that in our model all starting points in the

matrix are independent of each other, which is a simplification.

196 8 Answers and Appendix: Unix Guide

Answer 200 The suffix tree for AAAA looks like this:

$

A

5

$

A

4

$

A

3

$ A$

2 1

During its construction, each suffix needed to be threaded from its beginning to its end into

the intermediate tree. This means that for a sequence of length n,

n − 1 + n − 2... + 1 = n(n − 1)/2

character comparisons are needed. The run time of naïve suffix tree construction is therefore

proportional to n(n − 1)/2, which scales as n2 or O(n2). This is similar to the run time of

optimal alignment, that is, too slow for genomics.

Answer 201 Use commands like

ranseq -l 1000000 | time repeater

Collect the results in time.dat and plot them using

gnuplot -p stTime.gp

where stTime.gp is

set xlabel "Sequence Length (Mb)"
set ylabel "Run Time (s)"
plot "time.dat" title "" with lines

to get

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16 18 20

R
u
n
 T

im
e
 (

s
)

Sequence Length (Mb)

8.1 Answers 197

For sequences of length n, the run time of repeater is O(n). This linear run time behavior

is optimal in the sense that it cannot be improved upon. The algorithm implemented in

repeater was devised in 1995 [48] and is described in detail in a classic textbook of

bioinformatics [21].

Answer 202 Say, memory.dat contains the memory measurements. Then

gnuplot -p stMemory.gp

where stMemory.gp is

set xlabel "Sequence Length (Mb)"
set ylabel "Memory (MB)"
plot "memory.dat" title "" with lines

returns

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20

M
e
m

o
ry

 (
M

B
)

Sequence Length (Mb)

Like time, memory consumption is linear in sequence length. With almost 2.5 GB for 20

Mb of sequence, it is quite large, though.

Answer 203 The command

awk -f suf.awk s.fasta | sort -k 2 | cat -n

gives the same suffix array as in Fig. 3.6a, minus the header.

Answer 204 The root corresponds to sa[1..6], the node with path label C to sa[4..6], and

the node with path label CC to sa[5..6].

Answer 205 Here are the common prefixes:

index sa suf cp

1 6 $ nd

2 5 A$ -
3 1 ACCCA$ A
4 4 CA$ -
5 3 CCA$ C
6 2 CCCA$ CC

http://dx.doi.org/10.1007/978-3-319-67395-0_3

198 8 Answers and Appendix: Unix Guide

The color codes for the common prefixes are repeated in the suffix tree:

$ A

C

6 $
C
C
C
A
$

5 1

A
$ C

4 A
$

C
A
$

3 2

All three edges leading to an inner node of the suffix tree are labeled by a common prefix,

because a suffix tree essentially summarizes the common prefixes of all suffixes.

Answer 206

index sa suf cp lcp

1 6 $ nd -1

2 5 A$ - 0

3 1 ACCCA$ A 1

4 4 CA$ - 0

5 3 CCA$ C 1

6 2 CCCA$ CC 2

As the first entry in cp is undefined (there is no suffix “above” it), we give it a length less

than the smallest entry in the lcp array; by convention −1 is used.

Answer 207 The remaining lcp intervals are as follows:

(e) (f) (g)

index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0

cc

index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0

cc

index sa lcp

1 6 -1

2 5 0

3 1 1

4 4 0

5 3 1

6 2 2

7 – -1

2 1 0

Answer 208

0 − [1..6]

1 − [2..3] 1 − [4..6]

2 − [5..6]

8.1 Answers 199

This lcp interval tree is the suffix tree in Fig. 3.6 stripped of its leaves.

Answer 209 On the left is the lcp interval tree, on the right the suffix tree.

i suf sa lcp

1 $ 11 -1

2 AAACTATT$ 3 0

3 AACTATT$ 4 2

4 ACTATT$ 5 1

5 ATT$ 8 1

6 CTATT$ 6 0

7 GTAAACTATT$ 1 0

8 T$ 10 0

9 TAAACTATT$ 2 1

10 TATT$ 7 2

11 TT$ 9 1

12 — — -1

$ A

C
T
A
T
T
$

G
T
A
A
A
C
T
A
T
T
$

T

11

A

C
T
A
T
T
$

T
T
$

A
C
T
A
T
T
$

C
T
A
T
T
$

3 4

5 8

6 1

$ A T
$

10

A
A
C
T
A
T
T
$

T
T
$

2 7

9

Answer 210

isa i C sa suf cp lcp

3 1 6 $ - -1

6 2 5 A$ - 0

5 3 1 ACCCA$ A 1

4 4 4 CA$ - 0

2 5 3 CCA$ C 1

1 6 2 CCCA$ CC 2

By following the arrows, convince yourself that sa[isa[1]] = 1, sa[isa[2]] = 2, and so on.

Thus by traversing the inverse suffix array isa, the suffixes in the alphabetically sorted suffix

array sa are visited in original order.

Answer 211

{
n = n + 1 # position in the suffix array
sa[n] = $1 # save the suffix array entries
suf[n] = $2 # save the suffixes
isa[sa[n]] = n # construct inverse suffix array

}END{
printf "# i\tsa\tisa\tsuf\n" # print the output table
for(i=1; i<=n; i++)

printf "%d\t%d\t%d\t%s\n", i, sa[i], isa[i], suf[i]
}

Run it

200 8 Answers and Appendix: Unix Guide

awk -f suf.awk s.fasta | sort -k 2 | awk -f isa.awk
i sa isa suf
1 6 3 $
2 5 6 A$
3 1 5 ACCCA$
4 4 4 CA$
5 3 2 CCA$
6 2 1 CCCA$

Answer 212

{
n++ # position in the suffix array
sa[n] = $1 # save the suffix array
suf[n] = $2 # save the suffixes
if(sa[n] == 1) # find the input sequence

s = $2
}END{

compute the isa
for(i=1; i<=n; i++)

isa[sa[i]] = i
compute the lcp-array
lcp[1] = -1
L = 0
for(i=1; i<=n; i++){

j = isa[i]
if(j > 1){

k = sa[j-1]
while(substr(s, i+L, 1) == substr(s, k+L, 1))

L++
lcp[j] = L
if(L > 1)

L = L - 1
else

L = 0
}

}
print the output table
printf "# i\tsa\tlcp\tsuf\n"
for(i=1; i<=n; i++)

printf "%d\t%d\t%d\t%s\n", i, sa[i], lcp[i], suf[i]
}

This can be run as

awk -f suf.awk s.fasta | sort -k 2 | awk -f esa.awk
i sa lcp suf
1 6 -1 $
2 5 0 A$
3 1 1 ACCCA$
4 4 0 CA$
5 3 1 CCA$
6 2 2 CCCA$

8.1 Answers 201

Answer 213

awk -f suf.awk dgAdhAdhdup.fasta |
sort -k 2 |
awk -f esa.awk |
sed '/ˆ#/d' |
sort -k 3 -n -r |
head -n 1
3325 988 12 TACATTACATTA...

The longest repeat has length 12, and it is found at positions 988 and 3325.

Answer 214

awk -f suf.awk dmAdhAdhdup.fasta |
sort -k 2 |
awk -f esa.awk |
sed '/ˆ#/d' |
sort -k 3 -n -r |
head -n 1
3890 3908 16 TCGATGTCCTGATCAA...

The longest repeat has length 16, and it is found at positions 3890 and 3908.

Answer 215

awk -f suf.awk dmDgAdhAdhdup.fasta |
sort -k 2 |
awk -f esa.awk |
sed '/ˆ#/d' |
sort -k 3 -n -r |
head -n 1
1592 8048 37

AGCAAGGTTCTCATGACCAAGAATATAGCGGTGAGTG...

The longest repeat for the concatenated sequences must be at least as long as the longer of

the two repeats seen in the individual sequences, that is, it has to be at least 16 bp long.

However, the two dehydrogenase sequences were taken from two Drosophila species; the

relatedness between these species means there is much more sequence similarity between

than within the alcohol sequences, leading to the much longer repeat of 37 bp.

Answer 216

Position Shustring

1 AC
2 CCC
3 CCA
4 CA
5 nonexistent

The shortest shustrings are AC and CA with length 2. In the context of real sequences,

shustrings could be used for the design of PCR primers, or in DNA-based identification of

pathogens.

202 8 Answers and Appendix: Unix Guide

Answer 217 The enhanced suffix array for ACCCA is shown in the Solution to Prob-

lem 206—or you could generate it using suf.awk and esa.awk. To find the shustring for

a given position, i , look at lcp[i] and the following entry, lcp[i + 1]. Whichever is greater

is the length of the longest repeat starting at sa[i]. This value plus one gives the shustring

length at sa[i].

Answer 218

shustring -i mgGenome.fasta
#>gi|84626123|gb|L43967.2| Mycoplasma genitalium G37,

complete genome 580076 35 6
#num pos len seq
1 11911 6 CGAGGC
2 37969 6 GAGACG
3 60188 6 TCGGAC
...

So there are 35 unique motifs of length 6.

Answer 219 Including the reverse strand gives

shustring -r -i mgGenome.fasta
#>gi|84626123|gb|L43967.2| Mycoplasma genitalium G37,

complete genome 580076 2 6
#num pos len seq
1 174222 6 GACGGC
2 567107 6 GCCGGG

In other words, of the 35 shustrings found on the forward strand, 33 also occurred on the

reverse strand, leaving only two shustrings of length 6 when scanning the whole genome.

Answer 220

shustring -l . -M 7 -r -i mgGenome.fasta |
head -n 1
#>L43967 L43967.1 Mycoplasma genitalium G37 complete genome.

580074 254 6<=l<=7

So there 254 shustrings ≤ 7 bp long.

Answer 221

Rotations Sort

TACTA$
ACTA$T
CTA$TA
TA$TAC
A$TACT
$TACTA

$TACTA
A$TACT
ACTA$T
CTA$TA
TA$TAC
TACTA$

The BWT is the last column of the sorted rotations:

ATTAC$

8.1 Answers 203

Make the directory for this session and change into it

mkdir Bwt
cd Bwt

Check the transform

bwt seq.fasta

where seq.fasta contains

>Seq
TACTA

Answer 222 We find long runs of identical letters, for example

...

115 LLNNNNNN

116 NNNNNNNNNNNRHH

117 HH

118 HH

119 HH

120 HH

121 HH

122 HRRRRRRRRRRMMMMMMMRR

...

Answer 223 The BWT is the last column of the sorted rotations. For decoding, we also

need the first column of the rotation, which we obtain by sorting the transform:

Sort fill Count fill Reconstruct

F L

$ C
C C
C C
C T
G $
T G

F L

$1 C1

C1 C2

C2 C3

C3 T1

G1 $1

T1 G1

F L

$1 C1

C1 C2

C2 C3

C3 T1

G1 $1

T1 G1

For the decoding, we trace back from $1 in L to $1 in F and note the nucleotides in F

along that path, which returns GTCCC. To check this result, enter

bwt -d bwt.fasta

where bwt.fasta contains CCCT$G.

Answer 224 The key insight is that the last character in the rotation is just to the left of

the start of a suffix. Hence, the BWT of a string is found by looking up T [sa[i] − 1] for

i = 1, 2, The only exception comes when sa[i] is 1: The character to the left of T [1] by

definition is the sentinel.

204 8 Answers and Appendix: Unix Guide

Answer 225 We write down our text with indexes:

1 2 3 4 5 6

T A C T A $

Then we construct its suffix array:

i sa suf

1 6 $
2 5 A$
3 2 ACTA$
4 3 CTA$
5 4 TA$
6 1 TACTA$

Finally, write down T [sa[i]−1] for i = 1, ..., 6 to get bwt(T) = ATTAC$. Check the result

bwt seq.fasta
ATTAC$

where seq.fasta contains TACTA.

Answer 226

0 1 2 3

Encoding A C G T
2 G A C T
2,3 T G A C
2,3,0 T G A C
2,3,0,2 A T G C
2,3,0,2,2 G A T C

So the solution is 2,3,0,2,2. To check, enter

mtf mtf.fasta

where mtf.fasta contains GTTAG.

Answer 227

0 1 2 3

Decoding A C G T
C C A G T
CC C A G T
CCA A C G T
CCAT T A C G
CCATG G T A C

So the solution is CCATG.

8.1 Answers 205

Answer 228 The decomposition is

T.A.C.TA

which we can verify using

lzd seq.fasta
T.A.C.TA

Answer 229 This microsatellite decomposes into two factors:

A.AAAA

In fact, all sequences of a single kind of nucleotide decompose into just two factors, regardless

of their length.

Answer 230 The sequence TACTA contains 4 LZ factors, and hence its complexity is

4/5 = 0.8, while AAAA decomposes into two factors, so its complexity is 2/5 = 0.4.

Answer 231 The smallest number of factors is 2, and hence C ≥ 2/|S|. The largest number

of factors is equal to the sequence length, so

2/|S| ≤ C ≤ 1.

Answer 232 We carry out the computations

for a in 1 2 5 10; do ranseq -l ${a}000 | lzd -n; done
n n/site
247 0.246753
n n/site
441 0.22039
n n/site
964 0.192761
n n/site
1751 0.175082

to get

0 2 4 6 8 10
0.16

0.18

0.20

0.22

0.24

0.26

Sequence Length (kb)

C

We see that the maximum complexity, C , depends on the sequence length. So we can only

sensibly compare C between sequences of the same length.

206 8 Answers and Appendix: Unix Guide

Answer 233 We use commands like

bwt mgGenome.fasta | lzd -n

to get

Operation Number of Factors C

None 60049 0.104

BWT 62688 0.108

BWT | MTF 45408 0.060

MTF 63495 0.109

MTF | BWT 65261 0.113

There is only one combination that results in any complexity reduction, BWT followed by

MTF.

Answer 234 Measure the size of the original file

du -h mgGenome.fasta
576K

Then, measure the sizes of the transformed and compressed files to get

Operation gzip bzip2
nothing 172 160

randomizeSeq 176 164

BWT 176 164

BWT | MTF 124 116

As before, the combination of BWT and MTF leads to the greatest compressibility.

Answer 235 We begin as usual by creating a working directory:

mkdir KerrorAlignment
cd KerrorAlignment

Then copy the sequence

cp ../Data/dmAdhAdhdup.fasta .

and cut out the desired region

cutSeq -r 2301-2400 dmAdhAdhdup.fasta > dmAdhFrag.fasta

Check the result by confirming it matches its original position:

keywordMatcher -f dmAdhFrag.fasta dmAdhAdhdup.fasta
>DMADH X78384.1 ... :2301

Answer 236 Mutate the sequence:

mutator -p 10 dmAdhFrag.fasta > dmAdhFrag2.fasta

Check the mutation:

gal -i dmAdhFrag.fasta -j dmAdhFrag2.fasta

8.1 Answers 207

Confirm the exact match is gone:

keywordMatcher -f dmAdhFrag2.fasta dmAdhAdhdup.fasta

However,

lal -i dmAdhFrag2.fasta -j dmAdhAdhdup.fasta

works as expected.

Answer 237 Locate the error-free copy

kerror -i dmAdhFrag.fasta -j dmAdhAdhdup.fasta

and the mutated copy with the fragments printed

kerror -L -i dmAdhFrag2.fasta -j dmAdhAdhdup.fasta

Now search for the fragments; the first one is not found,

keywordMatcher -p
GACCACCAACCTGCTGAAGACCATCTTCGCCCAGCTGAAGACCGTCGATG
dmAdhAdhdup.fasta

but the second one is

keywordMatcher -p
TCCTGATCAACGGAGCTGGTATCCTGGACGATCACCAGATCGAGCGCACC
dmAdhAdhdup.fasta

Answer 238 The alignment produced by kerror is global in the query and local in the

subject. Such “glocal” alignments are used to align sequencing reads to genomes.

Answer 239 Copy the chromosome files

cp ../Data/dmChr*.fasta .

Then list their sizes:

cchar -s dmChr*.fasta | grep 'ˆ>'

to get

>NT_033779.5 Drosophila melanogaster chromosome 2L 23513712
>NT_033778.4 Drosophila melanogaster chromosome 2R 25286936
>NT_037436.4 Drosophila melanogaster chromosome 3L 28110227
>NT_033777.3 Drosophila melanogaster chromosome 3R 32079331
>NC_004353.4 Drosophila melanogaster chromosome 4 1348131
>NC_024511.2 Drosophila melanogaster mitochondrion, complete

genome 19524
>NC_004354.4 Drosophila melanogaster chromosome X 23542271
>NC_024512.1 Drosophila melanogaster chromosome Y 3667352

Compute the complete genome length:

208 8 Answers and Appendix: Unix Guide

cchar -s dmChr*.fasta |
grep 'ˆ>' |
cut -f 2 |
awk '{s+=$1}END{print s}'
137567484

The genome is approximately 138 Mb long.

Answer 240 Copy Hamlet

cp ../Data/hamlet.fasta .

and take a look at it

less hamlet.fasta

before counting its characters

cchar hamlet.fasta | head -n 1
Total number of input characters: 136033

This means that the genome of D. melanogaster is approximately 1000 times longer than

the text of Hamlet.

Answer 241 Compare the links and the original files using commands like

diff dmChr2L.fasta ../Data/dmChr2L.fasta

to find that content-wise they are identical. However, their sizes are vastly different: The

command ls -l returns entries like

ls -l
lrwxrwxrwx 1 haubold haubold 27 Apr 17 16:01 dmChr2L.fasta

-> ../Data/dmChr2L.fasta

which indicates the target of the symbolic link, ->, and its size, 27 bytes. The original file,

on the other hand, is almost a million times larger:

ls -l ../Data/dmChr2L.fasta
-rw-rw-r-- 1 haubold haubold 23807685 Apr 15 09:59

../Data/dmChr2L.fasta

Answer 242 Run a script like

for k in 1 2 5 10 20 50 100 200 500
do

echo $k
for a in 2L 2R 3L 3R 4 X Y Mt
do

kerror -k $k -i dmAdhAdhdup.fasta -j dmChr${a}.fasta
done

done

It prints an alignment where Adh/Adh-dup is located on the left arm of chromosome 2 at

positions 14,614,315–14,619,086; the alignment contains 161 errors, which is a surprisingly

large number given that both sequences were sampled from the same species.

8.1 Answers 209

Answer 243 The number of errors per site is

π =
161

14, 619, 086 − 14, 614, 315 + 1
≈ 3.4%.

Answer 244 Most errors are located toward the end of the alignment.

Answer 245 Cut out the Adh/Adh-dup locus:

cutSeq -r 14614315-14619086 dmChr2L.fasta > dmGenomic.fasta

Align the sequences

lal -i dmGenomic.fasta -j dmAdhAdhdup.fasta > aln.lal

This matches positions 1–4597 in the query and 1–4589 in the subject. Count the matches

grep '|' aln.lal | # Extract match lines
sed 's/ *//g' | # Remove blanks
awk '{s+=length($1)}END{print s}' # Count match symbols
4541

This means that the mismatches per site is

π =
4589 − 4541

4589
≈ 1%.

Answer 246 The command

kerror -k 161 -i dmAdhAdhdup.fasta -j dmChr2L.fasta

gives as time measurements on our computer

Total time: 3.42s
Data manipulation: 0.14s
Matching: 0.49s
Checking: 2.80s

This means that matching the k + 1 = 162 fragments is five times faster than checking

whether or not they are part of a full alignment.

Answer 247 The Adh/Adh-dup region is already contained in dmGenomic.fasta. Align

it to the D. guanche version:

gal -i dgAdhAdhdup.fasta -j dmGenomic.fasta > aln.gal

Count the matches

grep '|' aln.gal |
sed 's/ *//g' |
awk '{s+=length($1)}END{print s}'
2960

Since dmGenomic.fasta is 4772 bp long, kerror needs to be run with k = 4772 −
2960 = 1812. In other words, dgAdhAdhdup.fasta, which is 4433 bp long, is divided

into fragments of length 4433/(1812+1) ≈ 2.45. Since matches of this length are ubiquitous,

the checking phase would take a very long time and make the search unfeasible in practice.

210 8 Answers and Appendix: Unix Guide

Answer 248 Create the directory for this session, change into it, and copy the input se-

quence:

mkdir FastLocalAlignment
cd FastLocalAlignment
cp ../Data/dmAdhAdhdup.fasta .

Cut out the fragment:

cutSeq -r 3101-3200 dmAdhAdhdup.fasta > dmAdhFrag.fasta

Align it to the original sequence:

sblast -i dmAdhFrag.fasta -j dmAdhAdhdup.fasta
reading input data...done
step1: generating word list from query...done
step2: searching for exact matches of words in subject...done
step3: extending exact matches...done
qs qe ss se score
1 100 3101 3200 100.0

The result is exactly at the expected position. Repeat the alignment with the word list printed

out:

sblast -L -i dmAdhFrag.fasta -j dmAdhAdhdup.fasta

There are 90 words, each 11 bp long.

Answer 249 Copy the fragment

cp dmAdhFrag.fasta dmAdhFrag2.fasta

Mutate it

bash mutate.sh

where mutate.sh is

for i in $(seq 1 11 100)
do

mutator -p ${i} dmAdhFrag2.fasta > tmp
mv tmp dmAdhFrag2.fasta

done

Then align it using sblast:

sblast -i dmAdhFrag2.fasta -j dmAdhAdhdup.fasta

where no hit is found. This is because there is no word without a mismatch and hence no

starting point for the extension step (Fig. 4.2c).

http://dx.doi.org/10.1007/978-3-319-67395-0_4

8.1 Answers 211

Answer 250 Any word length less than 11 will return an alignment, for example,

sblast -w 10 -i dmAdhFrag2.fasta -j dmAdhAdhdup.fasta

Answer 251 The command

lal -i dmAdhFrag2.fasta -j dmAdhAdhdup.fasta

returns the expected alignment. In other words, lal is more sensitive than sblast with

default parameters.

Answer 252 Run

bash sensitivitySblast.sh > sensitivity1.dat
gnuplot -p sensitivity1.gp

where sensitivitySblast.sh is

for m in 0.01 0.02 0.05 0.1 0.2 0.5
do

echo -n ${m} ' '
for a in $(seq 100)
do

mutator -m ${m} dmAdhFrag.fasta > dmAdhFrag3.fasta
sblast -i dmAdhFrag3.fasta -j dmAdhAdhdup.fasta

done |
grep -A 1 qs | sed '/ˆ#/d;/ˆ-/d' | wc -l

done

Instead of the line

grep -A 1 qs | sed '/ˆ#/d;/ˆ-/d' | wc -l

you might have used

grep -v ˆ# | wc -l

which is simpler and gives almost the same result. However, the more complex filter ensures

that no more than one result is counted per sblast run. Compare the two solutions without

wc -l to see the difference. The gnuplot script sensitivity1.gp contains

set logscale x
set xlabel "Mutation Rate"
set ylabel "% Alignments Found"
plot "sensitivity1.dat" title "" with lines

The resulting plot is

212 8 Answers and Appendix: Unix Guide

 0

 20

 40

 60

 80

 100

 0.01 0.1 1

%
 A

lig
n
m

e
n
ts

 F
o
u
n
d

Mutation Rate

There is a sharp drop in sensitivity for queries mutated at more than 20% of their positions.

Answer 253 In sensitivitySblast.sh change the line

sblast -i dmAdhFrag3.fasta -j dmAdhAdhdup.fasta

to

sblast -t 25 -i dmAdhFrag3.fasta -j dmAdhAdhdup.fasta

Save the simulation results in sensitivity2.dat and plot

gnuplot -p sensitivity2.gp

 0

 20

 40

 60

 80

 100

 0.01 0.1 1

%
 A

lig
n
m

e
n
ts

 F
o
u
n
d

Mutation Rate

t=50
t=25

8.1 Answers 213

where sensitivity2.gp is

set xlabel "Mutation Rate"
set ylabel "% Alignments Found"
set logscale x
plot "sensitivity1.dat" title "t=50" with lines,\
"sensitivity2.dat" title "t=25" with lines

to see that the sensitivity of sblast is increased if the minimum score is halved from

50 to 25.

Answer 254

sblast -i dmAdhAdhdup.fasta -j dgAdhAdhdup.fasta |
sed '/ˆ#/d' |
sort -k 5 -n -r
2299 2594 2259 2554 164.0
3865 4028 3657 3820 76.0
3225 3328 3220 3323 68.0
2182 2285 2142 2245 64.0

The optimal local alignment is found by

lal -i dmAdhAdhdup.fasta -j dgAdhAdhdup.fasta

It has a score of 217, which is much larger than the score of the best alignment found by

sblast (164).

Answer 255 The command we are looking for is

sblast -s 40 -i dmAdhAdhdup.fasta -j dgAdhAdhdup.fasta
reading input data...done
step1: generating word list from query...done
step2: searching for exact matches of words in subject...done
step3: extending exact matches...done
qs qe ss se score
3829 4028 3621 3820 80.0
3225 3328 3220 3323 68.0
2182 2594 2142 2554 217.0

Now the best alignment has the same coordinates and the same score as the best alignment

returned by lal. Heuristics like the extension parameter can influence the result.

Answer 256 Run

bash driveSblastDm.sh dmChr*.fasta

where driveSblastDm.sh contains

for a in $@
do

echo Searching ${a}
sblast -i dmAdhAdhdup.fasta -j $a |

sed '/ˆ#/d'
done

214 8 Answers and Appendix: Unix Guide

to see—as we have already done with kerror—that in D. melanogaster the Adh/Adh-dup

region is located on the left arm of chromosome 2. To find the exact interval, run

bash driveSblastDm.sh dmChr*.fasta |
grep ˆ[0-9] |
sort -n -k 3

to locate Adh/Adh-dup in the interval 14,614,315–14,619,393.

Answer 257

time kerror -k 161 -i dmAdhAdhdup.fasta -j dmChr2L.fasta

takes 3.79 s, while

time sblast -i dmAdhAdhdup.fasta -j dmChr2L.fasta

takes only 1.37 s. The program sblast is faster than kerror, because kerror uses

dynamic programming for finding the alignment (Fig. 4.1), while sblast uses the simpler

extension strategy (Fig. 4.2). Apart from speed, sblast has the advantage that there is no

need for guessing a suitable number of errors, k.

Answer 258 Run

sblast -i dgAdhAdhdup.fasta -j dmChr2L.fasta |
grep ˆ[0-9] |
sort -n -k 3

to find homology in the interval 14,616,500–14,618,356. This shows that even ungapped

alignment can be a highly effective tool: it is faster and more sensitive than kerror.

Answer 259 The command

blastn -query dmAdhFrag2.fasta -subject dmAdhAdhdup.fasta

returns no hit. However, with the appropriate -word_size the expected hit is found, plus

three more of low significance:

blastn -query dmAdhFrag2.fasta -subject dmAdhAdhdup.fasta -
word_size 10

Answer 260 Our manual binary search resulted in the following left and right borders

(l & r), where the middle, m = (l + r)/2:

Step l r m

1 1 100 51

2 1 51 26

3 26 51 39

4 26 39 33

5 26 33 30

5 26 30 28

6 28 30 29

Since we got a hit with a distance of 29 between mutations, but not with a distance of 28,

the default value of -word_size is 28.

http://dx.doi.org/10.1007/978-3-319-67395-0_4
http://dx.doi.org/10.1007/978-3-319-67395-0_4

8.1 Answers 215

Answer 261 Here are the steps of the binary search:

Step l r m

1 1 100 51

2 1 51 26

3 1 26 14

4 1 14 8

5 8 14 11

5 11 14 13

6 11 13 12

Since we got a hit with a distance of 12 between mutations, but not with a distance of 11,

the default -word_size is now 11.

Answer 262 To explore the sensitivity in blastn mode, we simulate

bash sensitivityBlastn.sh > sensitivityN.dat

where sensitivityBlastn.sh is

for m in 0.01 0.02 0.05 0.1 0.2 0.5
do

echo -n ${m} ' '
for i in $(seq 100)
do

mutator -m ${m} dmAdhFrag.fasta > dmAdhFrag3.fasta
blastn -outfmt 7 -task blastn -query dmAdhFrag3.

fasta -subject dmAdhAdhdup.fasta
done |

grep -A 1 hits | sed '/ˆ#/d;/ˆ-/d' | wc -l
done

For the megablast mode, just leave out

-task blastn

from the blastn command and run

bash sensitivityMega.sh > sensitivityM.dat

Plot the two result sets

gnuplot -p sensitivity3.gp

where sensitivity3.gp is

set xlabel "Mutation Rate"
set ylabel "% Alignments Found"
set logscale x
set key bottom left
plot "sensitivityM.dat" title "megablast" with lines,\
"sensitivityN.dat" title "blastn" with lines

216 8 Answers and Appendix: Unix Guide

We moved the key from the top right to the bottom left—otherwise it would intersect the

graph in our printout; the blastn mode is much more sensitive than the megablast mode.

 0

 20

 40

 60

 80

 100

 0.01 0.1 1

%
 A

lig
n
m

e
n
ts

 F
o
u
n
d

Mutation Rate

megablast
blastn

Answer 263 All that needs to be changed is the match score in lal:

lal -A 2 -i dmAdhFrag2.fasta -j dmAdhAdhdup.fasta

This returns the same alignment as blastn with the same score of 156.

Answer 264 The command

blastn -reward 1 -task blastn -query dmAdhFrag2.fasta
-subject dmAdhAdhdup.fasta

returns the match line

Score = 131 bits (66), Expect = 1e-34

in which the bit score has changed only from previously 141 to 131, but the raw score has

been more than halved from 156 to 66.

Answer 265 The best alignment with the BLAST command

blastn -task blastn -subject dmAdhAdhdup.fasta -query
dgAdhAdhdup.fasta

has a raw score of 842. In contrast, the best alignment with lal,

lal -A 2 -i dmAdhAdhdup.fasta -j dgAdhAdhdup.fasta

has the much higher score of 1088.

Answer 266 A bit of trial and error gave 333 as the smallest xdrop value compatible with

the alignment returned by lal:

blastn -task blastn -query dmAdhAdhdup.fasta -subject
dgAdhAdhdup.fasta -xdrop_gap_final 333

8.1 Answers 217

Answer 267 Blastn cannot be used to find a better alignment than lal. Remember,

optimal alignment methods are guaranteed to return the best result given a score scheme.

Answer 268 Cut out the desired region

cutSeq -r 3101-3200 dgAdhAdhdup.fasta > dgAdhFrag.fasta

blastn -task blastn -query dgAdhFrag.fasta -subject
dmAdhAdhdup.fasta

gives an alignment with raw score 22. However, the corresponding lal command

lal -A 2 -i dgAdhFrag.fasta -j dmAdhAdhdup.fasta

gives a better alignment with score 26. With a bit of trial and error, we found 7 is the largest

word size compatible with the optimal alignment:

blastn -word_size 7 -task blastn -query dgAdhFrag.fasta
-subject dmAdhAdhdup.fasta

Answer 269
P = 1 − e−0.015 ≈ 0.015,

which illustrates that P ≤ E , and also that for small values of E the two statistics are quite

similar. Beware, however, P is a probability and hence bounded by 0 and 1, while E is an

expectation value with lower bound 0 but no obvious upper bound.

Answer 270 The desired parameters are as follows:

Name Value

s 413076

λ 0.625

K 0.410

We can use AWK to calculate

BEGIN{
s = 413076
l = 0.625
K = 0.41
x = 26
y = K*s*exp(-l*x)
print 1-exp(-y)

}

and get P ≈ 0.015, which is exactly the value implied by the E-value returned.

218 8 Answers and Appendix: Unix Guide

Answer 271 The script

time bash simPval.sh > simPval.dat

where simPval.sh contains

for a in $(seq 1000)
do

randomizeSeq dmAdhAdhdup.fasta | # randomize subject
lal -A 2 -i dgAdhFrag.fasta | # alignment
grep 'ˆSc' | # extract score line
sed 's/Score: *//' # extract score

done

takes 98 s to execute. So if we decided to run the simulation for 104 iterations, we would

have to wait approximately 17 min.

Answer 272 Count the results

awk -f count.awk simPval.dat

where count.awk is

{
arr[$1]++
c++

}END{
for(a in arr)

print a "\t" arr[a]/c
}

and plot them

awk -f count.awk simPval.dat |
sort -n |
gnuplot -p simPval1.gp

where simPval1.gp is

set xlabel "Score"
set ylabel "Frequency(Score)"
set arrow from 26,0.05 to 26,0.03
plot "< cat" title "" with lines

to get the distribution of random scores

8.1 Answers 219

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 16 18 20 22 24 26 28 30 32

F
re

q
u
e
n
c
y
(S

c
o
re

)

Score

where the arrow points to the observed score.

Answer 273 The P value is

awk '{if($1>=26)s++;c++}END{print s/c}' simPval.dat
0.022

Your result is bound to differ slightly. However, the simulated P value should always be at

least similar to the theoretical P = 0.015.

Answer 274 Plot

awk -f count.awk simPval.dat |
sort -n |
gnuplot -p simPval2.gp

where simPval2.gp is

s=413076
l=0.625
K=0.410
mu=log(K*s)/l
f(x)=l*exp((mu-x)*l-exp((mu-x)*l))
set xlabel "Score"
set ylabel "P(Score)"
set arrow from 26,0.05 to 26,0.03
plot "< cat" title "simulated" with lines,\
f(x) title "theoretical" with lines

to get

220 8 Answers and Appendix: Unix Guide

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 16 18 20 22 24 26 28 30 32

P
(S

c
o
re

)

Score

simulated
theoretical

Again, the arrow points to the observed score. Notice that we now interpret the frequency of a score

as its probability, and hence the label P(Score) along the y-axis. The significance of the observed

score of 26 (its P-value) is the proportion of random scores ≥ 26 obtained either from the theoretical

or the simulated curve. Since the two curves agree well, and the simulations are time-consuming,

calculating the E-value directly is by far the better option.

Answer 275 The search

time bash blast.sh dmChr*.fasta

where blast.sh is

for a in $@
do

echo $a
blastn -task blastn -query dmAdhAdhdup.fasta -subject $a

-evalue 1e-20 -outfmt 7
done

takes approximately 5 s and returns two alignments covering positions 14,614,315–14,618,911

and 14,619,298–14,619,405.

Answer 276 Database construction takes approximately 2 s. The search based on this

database

time blastn -task blastn -outfmt 7 -query dmAdhAdhdup.fasta
-db dmDb -evalue 1e-20

takes 0.7 s. So the combined run time of database construction plus search is 2.7 s, which is

less than the 5 s it took to search the subject files in plain FASTA format.

Answer 277 The run

time blastn -outfmt 7 -query dmAdhAdhdup.fasta -db dmDb
-evalue 1e-20

8.1 Answers 221

takes 0.15 s, so it is approximately five times faster than the blastn mode. The two alignments

found have the same start and end coordinates as those found in blastn mode. This is because

we are carrying out a sequence comparison within a species, that is, between very similar

sequences, for which megablast is optimized. However, the alignments themselves do differ

slightly; for example, in the first alignment we found:

Parameter blastn megablast

alignment length 4601 4603

mismatches 44 39

gap opens 10 15

bit score 7997 8155

Answer 278 Now the results do differ. In blastn mode, we get three alignments with a

combined length of 169 + 173 + 37 = 379 bp. The 169 bp alignment is the left-most hit,

starting at position 14,616,354; the 173 bp alignment is the right-most hit, ending at position

14,618,839. Taken together, these three alignments cover the 2485 bp interval 14,616,354–

14,618,839. In contrast, the megablast mode returns a single alignment of length 134 located

at 14,617,517–14,617,650. Notice also the difference in E-values: In blastn mode, these are

0, 3 × 10−159, and 10−37; in megablast mode, the single alignment has E = 3 × 10−33.

Answer 279 Here is the overlap between the two example sequences:

ACCGTTC----
---GTTCAGTA

Answer 280 Create the directory, change into it, and generate the sequence files:

mkdir Shotgun
cd Shotgun
echo -e '>S1\nACCGTTC' > s1.fasta
echo -e '>S2\nGTTCAGTA' > s2.fasta

Now compute the overlap alignment

oal -i s1.fasta -j s2.fasta

Query: >s1
Length: 7

Subject: >s2
Length: 8

Score: 4.0
Strand: Plus / Plus

Query: 1 ACCGTTC---- 7
||||

Sbjct: 1 ---GTTCAGTA 8
//

222 8 Answers and Appendix: Unix Guide

Answer 281 You might be tempted to think that four comparisons are necessary: for-

ward/forward, forward/reverse, reverse/forward, and reverse/reverse. But forward/forward

is equivalent to reverse/reverse and forward/reverse is equivalent to reverse/forward, so only

two comparisons are necessary.

Answer 282 Create the forward files

for a in $(seq 3); do cp f${a}.fasta f${a}f.fasta; done

Create the reverse files

for a in $(seq 3); do revComp f${a}.fasta > f${a}r.fasta; done

Then carry out the comparisons like

oal -i f1f.fasta -j f2f.fasta | grep Score

to find the following scores

f f
1 f r

1 f f
2 f r

2 f f
3 f r

3

f f
1 2 16 0 30

f r
1

f f
2 1 0

f r
2

f f
3

f r
3

The two most substantial overlaps are between f1 and f2, and between f1 and f3. This means

f1 bridges f2 and f3.

Answer 283 There are several ways of solving this, here is ours: Begin with f1f.fasta
and f2r.fasta and get an overlap alignment like this

f f
1

f r
2

41 231

604

where 41 is the last overlapping position in f r
2 . Then, comparef1f.fasta andf3r.fasta,

and add the next overlap, where 197 is the first overlapping position in f r
3 :

f f
1

f r
2

41 231

604

f r
3

197

Now we can calculate the length of the underlying genomic region as

196 + 604 + 190 = 1000.

The reads were drawn from a 1 kb fragment.

8.1 Answers 223

Answer 284 Compute the genome size of M. genitalium:

cchar mgGenome.fasta

Total number of input characters: 580076
Char Count Fraction
A 200544 0.345720
C 91515 0.157764
G 92306 0.159127
T 195711 0.337389

The genome size of M. genitalium is 580076 and its GC content 0.157764 + 0.159127 ≈
0.317.

Answer 285 Generate a random genome:

ranseq -s 35 -l 580076 -g 0.317 > ranGenome.fasta

and check the result:

cchar ranGenome.fasta
Total number of input characters: 580076
Char Count Fraction
A 197692 0.340804
C 91711 0.158102
G 92097 0.158767
T 198576 0.342328

Answer 286 The program randomizeSeq shuffles an existing sequence, which keeps

its composition unchanged. In contrast, ranseq generates a new sequence, the composi-

tion of which is bound to vary between runs. You can verify this by piping repeated runs

of randomizeSeq through cchar to find that the result is always the same, while the

composition of each run on ranseq differs slightly (unless you fix the seed for the random

number generator, of course).

Answer 287
10 × 580076 = 5, 800, 760

Answer 288 We need the probability that a nucleotide is not sequenced times the length of

the template:

580076 × e−10 ≈ 26.

That is, the expected combined length of all gaps in the assembly is 26.

Answer 289 By solving

L × e−c = 1

for c we find

c = − ln

(

1

L

)

.

In our case, the theoretical coverage c ≈ 13.3.

Answer 290 Again, we write for the desired coverage

c = − ln

(

0

L

)

,

224 8 Answers and Appendix: Unix Guide

but since ln(0) = −∞, c = ∞ in this case. In other words, a combined gap length of 0

cannot be achieved. That is one reason why shotgun sequencing projects usually end with a

few gaps that need to be closed by other laboratory methods.

Answer 291 Run sequencer:

sequencer -s 35 -c 13.3 ranGenome.fasta > reads.fasta

Again, we set a seed (-s) for the random number generator of sequencer to be able to

exactly reproduce our result. The number of reads we have just generated is

grep -c 'ˆ>' reads.fasta

77161

and the number of nucleotides

cchar reads.fasta

Total number of input characters: 7715050
Char Count Fraction
A 2633810 0.341386
C 1223688 0.158611
G 1223629 0.158603
T 2633923 0.341401

Answer 292 Run the hashing program velveth:

velveth Assem/ 21 -short -fasta reads.fasta

Answer 293 First run the assembly on the hashed reads stored in the directory Assem:

velvetg Assem/ -exp_cov 13.3

Then count the contigs

grep -c 'ˆ>' Assem/contigs.fa

105

Ideally, we would get a single contig, but ending up with multiple contigs is the usual outcome

of shotgun sequencing. Next, we count the nucleotides in the contigs:

cchar Assem/contigs.fa

Total number of input characters: 583465
Char Count Fraction
A 198953 0.340985
C 92269 0.158140
G 92672 0.158830
T 199567 0.342038
c 1 0.000002
g 1 0.000002
t 2 0.000003

8.1 Answers 225

We get an assembly that is 583, 465−580, 076 = 3, 389 nucleotides longer than the template,

the length of which would of course be unknown in a real sequencing experiment. Four of

those nucleotides are set in lower case to indicate inferior quality.

Answer 294

sequencer -P -s 35 -c 13.3 ranGenome.fasta > reads.fasta
velveth Assem/ 21 -shortPaired -fasta reads.fasta
velvetg Assem/ -exp_cov 13.3 -ins_length 500
grep -c 'ˆ>' Assem/contigs.fa
69
cchar Assem/contigs.fa
582931
Char Count Fraction
A 198520 0.340555
C 92144 0.158070
G 92533 0.158737
N 236 0.000405
T 199454 0.342157
a 17 0.000029
c 13 0.000022
g 5 0.000009
t 9 0.000015

Paired-end sequencing gives fewer contigs than single-end sequencing even when applied

to our idealized random genome. The best possible outcome would be to get a single contig

that is identical to the input sequence.

Answer 295 Eliminate the sequencing error

sequencer -E 0 -P -s 35 -c 13.3 ranGenome.fasta > reads.fasta
velveth Assem/ 21 -shortPaired -fasta reads.fasta
velvetg Assem/ -exp_cov 13.3 -ins_length 500
grep -c 'ˆ>' Assem/contigs.fa
1
cchar Assem/contigs.fa
Total number of input characters: 580135
Char Count Fraction
A 198554 0.342255
C 92092 0.158742
G 91706 0.158077
N 109 0.000188
T 197672 0.340734
a 1 0.000002
t 1 0.000002

Without errors, we get a single contig with very few unknown nucleotides.

Answer 296 Simulate with 1% error:

sequencer -E 0.01 -P -s 35 -c 13.3 ranGenome.fasta > reads.
fasta

velveth Assem/ 21 -shortPaired -fasta reads.fasta
velvetg Assem/ -exp_cov 13.3 -ins_length 500
grep -c 'ˆ>' Assem/contigs.fa

226 8 Answers and Appendix: Unix Guide

457
cchar Assem/contigs.fa
Total number of input characters: 607802
Char Count Fraction
A 207343 0.341136
C 96454 0.158693
G 96029 0.157994
N 1361 0.002239
T 206519 0.339780
a 31 0.000051
c 15 0.000025
g 19 0.000031
t 31 0.000051

This time there are 457 contigs. Notice also the many (607, 802 − 580, 076 = 27, 726)

superfluous nucleotides in our assembly.

Answer 297 To in silico shotgun sequence the genome of M. genitalium and assemble it,

run

sequencer -s 35 -c 13.3 mgGenome.fasta > reads.fasta
velveth Assem/ 21 -short -fasta reads.fasta
velvetg Assem/ -exp_cov 13.3
grep -c 'ˆ>' Assem/contigs.fa
344
cchar Assem/contigs.fa
Total number of input characters: 573437
Char Count Fraction
A 197561 0.344521
C 89775 0.156556
G 91005 0.158701
N 10 0.000017
T 195030 0.340107
a 21 0.000037
c 10 0.000017
g 8 0.000014
t 17 0.000030

There are 344 contigs.

Answer 298 The midpoint, or median, of {2, 2, 3, 4, 5} is 3; the mean is (2 + 2 + 3 + 4 +
5)/5 = 16/5 = 3.2.

Answer 299 The total contig length is 2 + 2 + 3 + 4 + 5 = 16. Now walk along L from

right to left, until the cumulative length covered is at least 8; the element reached then is the

N50, in our case 4. The connection to the median is as follows: Rewrite L as L
′ such that

each element x is repeated x times:

L
′ = {2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5}

The N50 of L is the median of L
′, that is, the average of the 8-th and the 9-th element of

L
′, which is 4, as expected.

8.1 Answers 227

Answer 300 The last line of velvetg output is

Final graph has 866 nodes and n50 of 25857, max 73815, total
570552, using 77021/77157 reads

that is, N50 = 25857.

Answer 301 The reverse-sorted contigs are generated using

cchar -s Assem/contigs.fa |
grep 'ˆ>' |
awk '{print $2}' |
sort -r -n

The median contig length is found by extending the pipeline to look up the midpoint of these

sorted lengths:

head -n 172 |
tail -n 1
47

This is quite different from N50 = 25857 and illustrates that the relationship between median

and N50 is indirect, as explained in the Answer to Problem 299.

Answer 302 The program n50.awk is

{
s[n++] = $1
c += $1

}
END{

while(sum < c/2)
sum += s[i++]

print "N_50: " s[i-1]
}

The complete pipeline now looks like this:

cchar -s Assem/contigs.fa |
grep '^>' |
awk '{print $2}' |
sort -r -n |
awk -f n50.awk
N_50: 25877

Our N50 differs from that returned by velvetg by 25877 − 25857 = 20 nucleotides. We

do not know why that is the case, but notice that the length quoted in the header of a contig

is 20 less than the length of the actual contig:

cchar -s Assem/contigs.fa |
head -n 1

>NODE_1_length_18331_cov_10.140527: 18351

228 8 Answers and Appendix: Unix Guide

Answer 303

sequencer -P -s 35 -c 13.3 mgGenome.fasta > reads.fasta
velveth Assem/ 21 -shortPaired -fasta reads.fasta
velvetg Assem/ -exp_cov 13.3 -ins_length 500
cchar -s Assem/contigs.fa |
grep '^>' |
awk '{print $2}' |
sort -r -n |
awk -f n50.awk
N_50: 81536

Paired-end sequencing results in much longer contigs (81536) compared to single-end reads

(25857). Do not forget to save this assembly

cp Assem/contigs.fa mgAssembly.fasta

Answer 304 Here is our generalized suffix tree:

1 2 3 4 5 6

S1 A A G C G $
S2 A G T $

$ A

C
G
$ G T$

1 , 6
2 , 4

A
G
C
G
$

G

1 , 1

C
G
$

T
$

1 , 2 2 , 1

1 , 4 $

C
G
$

T
$

1 , 5 1 , 3 2 , 2

2 , 3

Answer 305 Suppose the sequence data is contained in st.fasta. Generate the corre-

sponding generalized suffix tree:

drawStrees -i st.fasta -o st
latex st_fig.tex
dvips st_fig.dvi -o
gv st_fig.ps &

The result was already shown in the solution to Problem 304.

Answer 306 Mark the string depths (that of the root is always 0):

1 2 3 4 5 6

S1 A A G C G $
S2 A G T $

http://dx.doi.org/10.1007/978-3-319-67395-0_4

8.1 Answers 229

0

$ A

C
G
$ G T$

1 , 6

2 , 4

A
G
C
G
$

G

1 , 1

C
G
$

T
$

1 , 2 2 , 1

1 , 4 $

C
G
$

T
$

1 , 5 1 , 3 2 , 2

2 , 3

1

2

1

So the longest repeat in the input sequences is AG, which also happens to be the longest repeat

between S1 and S2.

Answer 307

• Length of assembly:

cchar mgAssembly.fasta

Total number of input characters: 577555
Char Count Fraction
A 198323 0.343384
C 89287 0.154595
G 91923 0.159159
N 2774 0.004803
T 194480 0.336730
a 223 0.000386
c 184 0.000319
g 145 0.000251
t 216 0.000374

• Length of original sequence:

cchar mgGenome.fasta

Total number of input characters: 580076
Char Count Fraction
A 200544 0.345720
C 91515 0.157764
G 92306 0.159127
T 195711 0.337389

The assembly is 2521 nucleotides shorter than the input genome. It also contains 2774

unknown nucleotides (N) and 223 + 184 + 145 + 216 = 768 low-quality nucleotides shown

in lower case.

230 8 Answers and Appendix: Unix Guide

Answer 308 Generate the starting sequence

ranseq -l 1000 > s1.fasta

Cut out the first and last 100 bp

cutSeq -s -r 1-100,901-1000 s1.fasta > s2.fasta

Run mummer

mummer s1.fasta s2.fasta | sed '/ˆ#/d'
...
> Rand_1;

1 1 100
900 100 101

Apart from the messages generated by mummer, the output consists of two lines with en-

tries of the form (x, y, length). Notice that the second hit was extended by one nucleotide;

however, solutions will differ as ranseq generates a new sequence every time it is run.

Answer 309 Align and plot

mummer s1.fasta s2.fasta |
awk -f mum2plot.awk |
gnuplot -p mum.gp

where mum.gp is

set xlabel "s1"
set ylabel "s2"
plot "< cat" title "" with lines

to get

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500 600 700 800 900 1000

s
2

s1

8.1 Answers 231

So the sequence in the first file—called reference file in the mummer interface—is written

along the x-axis, the sequence in the second file—called query file—is written along the

y-axis.

Answer 310 Reverse complement s2.fasta

revComp s2.fasta > s3.fasta

and pipe the results of mummer into a plot

mummer -b -c s1.fasta s3.fasta |
awk -f mum2plot.awk |
gnuplot -p mum.gp

and plot the mummer result

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500 600 700 800 900 1000

s
2

s1

Answer 311 Concatenate s2.fasta and s3.fasta:

cat s2.fasta s3.fasta > s4.fasta

Compare the sequences

mummer -b -c s1.fasta s4.fasta |
awk -f mum2plot.awk |
gnuplot -p mum.gp

232 8 Answers and Appendix: Unix Guide

to get

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500 600 700 800 900 1000

s
2

s1

Answer 312 The pipeline

mummer -c -b mgGenome.fasta mgAssemblyS.fasta |
awk -f mum2plot.awk |
gnuplot -p mg.gp

where mg.gp is

set xlabel "M. genitalium Reference (kb)"
set ylabel "M. genitalium Assembly (kb)"
plot "< cat" using ($1/1000):($2/1000) title "" with lines

gives

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

M
.
g
e
n
it
a
liu

m
 A

s
s
e
m

b
ly

 (
k
b
)

M. genitalium Reference (kb)

Since we are comparing a known template to its assembly from simulated reads, one might

have expected the assembly to be approximately identical to the template. This would have

resulted in one line along the main diagonal of the dot plot matrix. However, due to the

8.1 Answers 233

stochastic nature of shotgun sequencing experiments, all we can expect is that the assembly

covers most of the template, which is in fact what we observe. Notice also the transformation

of the coordinates to kb, which was achieved with the gnuplot command

using ($1/1000):($2/1000)

Answer 313 Use the command cchar to find

Strain Genome length

K12 4,639,675

O157H7 5,528,445

So the genomes of two strains from the same bacterial “species” can differ by 5.5/4.6×100 ≈
20% in length and hence in gene content.

Answer 314 The pipeline

mummer -c -b ecoliK12.fasta ecoliO157H7.fasta |
awk -f mum2plot.awk |
gnuplot -p eco.gp

where eco.gp is

set xlabel "E. coli K12 (Mb)"
set ylabel "E. coli O157H7 (Mb)"
plot "< cat" using ($1/1000000):($2/1000000) title "" with

lines

gives

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
.
c
o
li

O
1
5
7
H

7
 (

M
b
)

E. coli K12 (Mb)

This dot plot shows a large inversion around 1.5 Mb in K12 and 2 Mb in O157H7.

Answer 315 We count the SNPs by counting the entries in the SNP table:

tail -n +6 nucmer.snps | wc -l
86321

234 8 Answers and Appendix: Unix Guide

The genome length of K12 is 4,639,675 bp, so the number of pairwise differences per site is

π =
86, 321

4, 639, 675
≈ 0.019

Answer 316 To compute the divergence time in generations, notice that the pairwise mis-

matches, π , have accumulated along two diverging lines of descent. Hence, the sought

number of generations is

g =
0.019/2

2.2 × 10−10
≈ 43.2 × 106

Answer 317 The lower bound is

g × 30

60 × 24 × 365.25
≈ 2463 years,

the upper
g × 90

60 × 24 × 365.25
≈ 7389 years.

Answer 318 Sequence the template

sequencer -s 10 -c 15 dmChr2L.fasta > reads.fasta

Count the reads

grep -c '>' reads.fasta
3527065

Count the nucleotides sequenced

cchar reads.fasta
Total number of input characters: 352705721

and the template length

cchar dmChr2L.fasta
Total number of input characters: 23513712

Now calculate the exact coverage

bc -l
352705721 / 23513712
15.00000174366344199503

This is very close to the expected coverage of 15.

Answer 319 Count the reads shorter than 100 bp:

sed '/ˆ>/d' reads.fasta |
awk '{if(length($1) < 100)print}' |
wc -l
12

Reads shorter than 100 bp are typically sampled from the edges of the template.

8.1 Answers 235

Answer 320 Run

bash runBlast.sh > blastTimes.dat

where runBlast.sh is

for a in 1 2 5 10 20 50 100 200 500 1000
do

echo -n $a
((x=$a*2))
head -n ${x} reads.fasta |
/usr/bin/time -p blastn -task blastn-short -subject

dmChr2L.fasta 2>&1 |
grep real |
sed 's/real//'

done

Plot blastTimes.dat

gnuplot -p blastTimes.gp

where blastTimes.gp is

set pointsize 2
set xlabel "Number of Reads"
set ylabel "Run Time (s)"
plot "blastTimes.dat" t "" w linespoints

This gives the run time of blastn in read mapping mode as a function of the number of

reads:

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700 800 900 1000

R
u
n
 T

im
e
 (

s
)

Number of Reads

The plot looks linear, so we can extrapolate to estimate the time needed to map all reads:

bc -l
3527065 / 1000 * 63.53 / 3600 / 24
2.59345416030092592592

In other words, approximately 2 days and 14 h would be needed to align the reads using

BLAST in its short-read mode.

236 8 Answers and Appendix: Unix Guide

Answer 321 Indexing

bwa index -p dmChr2L dmChr2L.fasta

takes approximately 12 s to complete. The program reports computing the Burrows–Wheeler

Transform (BWT) and the suffix array (SA) of the input sequence.

Answer 322 Run the command

bash runBwa.sh > bwaTimes.dat

where runBwa.sh is

for a in 1 2 5 10 20 50 100 200 500 1000
do

echo -n $a
((x=$a*2*1000))
head -n ${x} reads.fasta > tmpReads.fasta
/usr/bin/time -p bwa mem dmChr2L tmpReads.fasta 2>&1 |

grep 'ˆreal' |
sed 's/real//'

done
rm tmpReads.fasta

Plot bwaTimes.dat

gnuplot -p bwaTimes.gp

where bwaTimes.gp is

set pointsize 2
set xlabel "Number of Reads (x 1000)"
set ylabel "Run Time (s)"
plot "bwaTimes.dat" t "" w linespoints

to get

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800 900 1000

R
u
n
 T

im
e
 (

s
)

Number of Reads (x 1000)

8.1 Answers 237

Again, the run time is linear in the number of reads, only roughly a thousand times faster

than BLAST. Estimate the time required for mapping all reads

bc -l
3527065 / 1000000 * 48.274 / 60
2.83775893016666666666

to find that all reads should be mapped in approximately 2 m 50 s.

Answer 323 The command

time bwa mem dmChr2L reads.fasta > reads.sam

takes 3 m 6 s, a bit more than the estimated 2:50.

Answer 324 Commands like

keywordMatcher -p TGCC... dmChr2L.fasta
>NT_033779.5 Drosophila melanogaster chromosome 2L TGCC...:
12300064

show reads.sam lists every read in its forward orientation.

Answer 325 A read in the forward direction is denoted by dots, in the reverse direction by

commas.

Answer 326 Pressing g opens a dialog for entering a position.

Answer 327 To get to the position, press g and enter

NT_033779.5:2000

As to position annotations, their first digits point to the actual position in the sequence. If

you should ever be confused about this, look at the first position:

1
C

Answer 328 There are 10 proteins and

(

10

2

)

= 45

protein pairs, each characterized by up to two edges, so the number of possible edges is 90.

Of these 25, that is 25/90 ≈ 28%, actually exist.

Answer 329 Set up the session

mkdir FastLocalAlignmentProt
cd FastLocalAlignmentProt
ln -s ../Data/mgProteome.fasta

Count the proteins:

grep -c 'ˆ>' mgProteome.fasta
476

The genome of M. genitalium encodes 476 proteins.

238 8 Answers and Appendix: Unix Guide

Answer 330 An all-against-all comparison is like filling in a square matrix, where query

sequences are written along the first column and subject sequences along the top row:

S1 S2 S3 S4 S5

S1

S2

S3

S4

S5

Every empty cell in that matrix corresponds to a comparison, so there should be 52 = 25

comparisons between our five example sequences, and 4762 = 226, 576 comparisons be-

tween the proteins of M. genitalium. To test this prediction, generate five identical sequences

for a in $(seq 5); do ranseq -s 13 >> testSeq.fasta; done

Run the all-against-all search and count the comparisons

blastn -query testSeq.fasta -subject testSeq.fasta |
grep -c 'Score = '
25

The result is as predicted.

Answer 331

time blastp -max_hsps 1 -outfmt 6 -query mgProteome.fasta
-subject mgProteome.fasta -evalue 1e-5 > mgProteome.blast

This takes 3.5 s. Look at the result:

head -n 2 mgProteome.blast

lcl|MG_002 lcl|MG_002 100.000 310 0 0 1 310 1 310 0.0 626

lcl|MG_002 lcl|MG_200 41.667 60 33 1 4 61 9 68 8.90e-09 50.4

Answer 332 Constructing the database,

time makeblastdb -in mgProteome.fasta -dbtype prot -out
mgProteome

takes 0.02 s. Running the comparisons,

time blastp -max_hsps 1 -outfmt 6 -query mgProteome.fasta
-db mgProteome -evalue 1e-5 > mgProteome.blast

takes 3.3 s, about the same as without the database. So, in this case, a precomputed database

has no significant effect on the speed of blastp.

Answer 333 Carry out the edit and save the result to tmp:

sed 's/lcl|//g' mgProteome.blast > tmp

Make sure the substitution worked

head tmp

8.1 Answers 239

Replace the original

mv tmp mgProteome.blast

Answer 334 Generate the backup

cp mgProteome.blast backup.blast

and try

sed 's/MG_//g' mgProteome.blast > mgProteome.blast

The resulting file is empty. Do not forget to regenerate the original:

mv backup.blast mgProteome.blast

Answer 335 Print the first ten lines of output

head mgProteome.blast

to get the tabular BLAST result

q. s. % id. al. len. mism. gaps q. start q. end s. start s. end eval. score

002 002 100.000 310 0 0 1 310 1 310 0.0 626

002 200 41.667 60 33 1 4 61 9 68 8.90e-09 50.4

002 019 37.879 66 33 1 4 61 9 74 2.34e-08 48.9

003 003 100.000 650 0 0 1 650 1 650 0.0 1344

003 203 45.426 645 329 9 10 647 5 633 0.0 543

004 004 100.000 836 0 0 1 836 1 836 0.0 1699

004 204 34.366 678 423 10 32 702 20 682 2.11e-125 390

005 005 100.000 417 0 0 1 417 1 417 0.0 851

006 006 100.000 210 0 0 1 210 1 210 1.52e-159 434

007 007 100.000 254 0 0 1 254 1 254 0.0 509

where we have removed the MG_ in front of each accession to make the table fit the page.

The first nonself pair is MG_002 and MG_200. Look at the header of MG_002

grep MG_002 mgProteome.fasta
>lcl|MG_002 DnaJ domain protein

and of MG_200

grep MG_200 mgProteome.fasta
>lcl|MG_200 DnaJ domain protein

to find they are both DnaJ domain proteins. These belong to the group of molecular chaper-

ones involved in protein folding and cellular stress response.

Answer 336

wc -l mgProteome.blast
836 mgProteome.blast

Reading a table containing 836 entries might become rather tedious...

240 8 Answers and Appendix: Unix Guide

Answer 337 The pipeline we are looking for is

cut -f 1 mgProteome.blast |
sort |
uniq -c |
sort -n -r |
head

which gives

17 MG_410
17 MG_180
17 MG_179
16 MG_526
16 MG_467
16 MG_303
16 MG_290
16 MG_187
16 MG_065
16 MG_042

In other words, MG_410, MG_180, and MG_179 each have 17 hits in the proteome. Since

one of these is a self-hit, they all have at least 16 homologues.

Answer 338 Extract the seventeen proteins linked to MG_410:

grep MG_410 mgProteome.blast | # Extract hits to MG_410
cut -f 2 | # Cut subject column
sort |
uniq > protFam.txt

and write the protein family to one line

tr '\n' ' ' < protFam.txt

to get

MG_014 MG_015 MG_042 MG_065 MG_079 MG_080 MG_119 MG_179 MG_180
MG_187 MG_290 MG_303 MG_304 MG_410 MG_421 MG_467 MG_526

The conversion from single column to single row makes printing easier.

Answer 339 Execute

neato -T x11 example2.dot

where example2.dot is

graph G {
1 -- 2
2 -- 3
2 -- 5
4 -- 5

}

to get the graphic depicted in the problem.

8.1 Answers 241

Answer 340 Here is the dot code for specifying the figure:

graph G {
2 -- 1 [dir=forward]
2 -- 5 [dir=forward]
3 -- 4 [dir=forward]
4 -- 1 [dir=both]
5 -- 1 [dir=forward]
5 -- 3 [dir=forward]

}

Answer 341 The expected number of edges is the maximal number of edges times the edge

probability:

10 × 9 × 0.5 = 45.

Take a look at the output file

cat ranDot.dot
graph G {

1 -- 3 [dir=forward]
1 -- 5 [dir=forward]
1 -- 6 [dir=both]
1 -- 7 [dir=both]

...

We can thus compute the number of observed edges by filtering for the two types of edges,

“forward” and “both”, and counting “both” twice, “forward” once:

awk '/both/{s+=2}/forward/{s++}END{print s}' ranDot.dot
43

Your result may well differ from ours, but it should also be close to the expectation (45).

Answer 342 First apply neato

neato -T x11 ranDot.dot

to get

1

3

5

6

7

9

10

4
8

2

This is rather messy. Try circo

circo -T x11 ranDot.dot

242 8 Answers and Appendix: Unix Guide

to get

1

3

5

6

7

9

10

48

2

which is a nicer layout for a highly connected graph such as ours.

Answer 343 M. genitalium contains one highly connected protein family. It is much better

resolved by circo than neato; hence, we used

circo -T x11 mgProteome.dot

to get

002

019

200 386

003 203

004 204

008

329 387

442

010 250

014

015
042

065

079

080

119

179

180

187

290

304

410

467

526

303

390

421

021

266

334

345

024 384

025 060 517

032 096

036

113

136

048 297 064 468

067

068

395

089

138

142

451

133 452 139 423

172 324

181 302185 260

190 371

191 192

209 370

225 226

241 242

261 031

263 265

293 385

307

309

338

308 425

310

327

344

312

326 450 399 401

414 525

432 443439 440

The protein family at the center contains the seventeen proteins already in protFam.txt
plus MG_390. To record this, write

8.1 Answers 243

cp protFam.txt protFam2.txt
echo 'MG_390' >> protFam2.txt

where protFam2.txt is now

tr '\n' ' ' < protFam2.txt
MG_014 MG_015 MG_042 MG_065 MG_079 MG_080 MG_119 MG_179 MG_180
MG_187 MG_290 MG_303 MG_304 MG_410 MG_421 MG_467 MG_526 MG_390

Answer 344 Calculate the new layout

circo -T x11 mgProteome2.dot

to get

002

019

200 386

003 203

004 204

008

329 387

442

010 250

014

015
042

065

079

080

119

179

180

187

290

304

410

467

526

303

390

421

021

266

334

345

024 384

025 060 517

032 096

036

113

136

048 297

064 468

067

068

395

089

138

142

451

133 452

139 423

172 324 181 302

185 260

190 371

191 192 209 370

225 226241 242

261 031

263 265

293 385

307

309

338

308 425

310

327

344

312

326 450

399 401 414 525

432 443

439 440

480

481

441

400

482

402

444

403

170

445404

171

130

446

405

447

406 173

132

448

407

174

408 175 134 409 176 135

177178137521522

524

291

292

251

210

252

211294253212295254

213

296

255

214

256 215 298 257 216 299 258

217

259

218

219 330

331

372

373

332

374

375

376 335 061 020 377 336 062

378

337

063

022

379

023339066026027

069

028

029

491411
453412494454455140

456

100

182 141 457 101 498 183 458 417

102

184

143

459

418

103

144

419

104

186

145

105

146

106 188

147

107

189

148

108

149 109 220 262 221 222 264

223

224

267268227269228

229

380381

340

382

341

300

383

342

301

343

070

071

030

346

072

305388347073306389

348 074 033 349 075 034 076 035 077

078

037

038

039

460

461

462

463

422

464 465

424

150

466

151

110

426

152

111

427

194

153

112

469

428

195 154 429 196 155 114 197

156

115198157116158

117

159

118270

271

230

272

505

231

273232274233275234

276 235 277 236 278 237 279 238 239

391

350392

351

393

311

352

394

353

313

354

396

081

314

040

355

397

082

315

041 356

001

398

083

316

357

084

317

043

358

085 318 044 359 086 319 045

087

046

005

088

047006007049009

470

430

431

473

433

474434

160

435

120

476

161

121

477

162437122478163438

123 164 124 165 166 125 167 126 168 127

169

128

129280281

240

282

515

283

516

201

284

202

285 244

286

245

287

246

205

247

206

289

248

207

249

208

360

361

320

362

321

363

322

364 090 323 365 091 050 366

092

325

051

367

093052011368094

053

012

369095

328

054

013

055

097

056

098

057

099058059018

Compute the number of singletons:

awk 'NF==1{if(length($1)==3)c++}END{print c}' mgProteome2.dot
374

That is, 374/476 × 100 ≈ 78.6% of the proteome consists of singletons, given E ≤ 10−5.

Answer 345 Construct the list of alternatives matches

tr '\n' '|' < protFam2.txt

and then copy and paste them into the command

grep -E '(MG_014|MG_015|...|MG_390)' mgProteome.fasta

244 8 Answers and Appendix: Unix Guide

to get

>lcl|MG_014 ABC transporter, ATP-binding

>lcl|MG_015 ABC transporter, ATP-binding

>lcl|MG_042 spermidine

>lcl|MG_065 ABC transporter, ATP-binding protein

>lcl|MG_079 oligopeptide ABC transporter, ATP-binding protein

>lcl|MG_080 oligopeptide ABC transporter, ATP-binding protein

>lcl|MG_119 ABC transporter, ATP-binding protein

>lcl|MG_179 metal ion ABC transporter, ATP-binding protein, putative

>lcl|MG_180 metal ion ABC transporter ATP-binding protein, putative

>lcl|MG_187 ABC transporter, ATP-binding protein

>lcl|MG_290 phosphonate ABC transporter, ATP-binding protein, putative

>lcl|MG_303 metal ion ABC transporter, ATP-binding protein, putative

>lcl|MG_304 metal ion ABC transporter, ATP-binding protein, putative

>lcl|MG_390 ABC transporter, ATP-binding

>lcl|MG_410 phosphate ABC transporter, ATP-binding protein

>lcl|MG_421 excinuclease ABC, A subunit

>lcl|MG_467 ABC transporter, ATP-binding protein

>lcl|MG_526 ABC transporter, ATP-binding protein

Most of these are annotated as ABC transporters, so our protein family consists of ABC

transporters.

Answer 346 Open prosite.doc in emacs or less and search for ABC transporter.

Here is an edited version of the relevant entry:

{PDOC00185}
{PS00211; ABC_TRANSPORTER_1}
{PS50893; ABC_TRANSPORTER_2}
{BEGIN}

* ATP-binding cassette, ABC transporter-type, signature and profile *

ABC transporters belong to the ATP-Binding Cassette (ABC) superfamily
which uses the hydrolysis of ATP to energize diverse biological systems.
ABC transporters are minimally constituted of two conserved regions:
a highly conserved ATP binding cassette (ABC) and a less conserved
transmembrane domain (TMD). These regions can be found on the same
protein or on two different ones. Most ABC transporters function as a
dimer and therefore are constituted of four domains, two ABC modules and
two TMDs [1].

ABC transporters are involved in the export or import of a wide variety
of substrates ranging from small ions to macromolecules. The major
function of ABC import systems is to provide essential nutrients to
bacteria. They are found only in prokaryotes and their four constitutive
domains are usually encoded by independent polypeptides (two ABC
proteins and two TMD proteins). Prokaryotic importers require additional
extracytoplasmic binding proteins (one or more per systems) for function.
In contrast, export systems are involved in the extrusion of noxious
substances, the export of extracellular toxins and the targeting of
membrane components. They are found in all living organisms and in
general the TMD is fused to the ABC module in a variety of combinations.
Some eukaryotic exporters encode the four domains on the same
polypeptide chain [2,3].
...
{END}

8.1 Answers 245

Answer 347 A lot of energy-consuming transfer of various molecules across the bacterial

cell membrane is conducted via ABC transport proteins.

Answer 348 Set up the working directory

mkdir PsiBlast
cd PsiBlast
ln ../Data/mgProteome.fasta

Convert the proteome of M. genitalium to a BLAST database

makeblastdb -dbtype prot -in mgProteome.fasta -out mgProteome

Get the sequence of protein M_410

getSeq -s 410 mgProteome.fasta > mg_410.fasta

and compare it to the proteome using psiblast:

psiblast -query mg_410.fasta -db mgProteome -outfmt 6 >
mg_410.psi

The syntax should look familiar from our previous work with blastn and blastp. Count

the number of unique hits with E ≤ 10−5:

awk '{if($11<=10ˆ-5)print $1 "\t" $2}' mg_410.psi |
tr '\t' '\n' |
sort |
uniq |
wc -l
17

We found 17 members of this protein family.

Answer 349 Run blastp:

blastp -query mg_410.fasta -db mgProteome -outfmt 6 > mg_410.bp

Visual inspection of mg_410.psi and mg_410.bp shows that they are at least highly

similar. To confirm identity, use

diff mg_410.psi mg_410.bp

Answer 350 Run psiblast iteratively

psiblast -num_iterations 0 -query mg_410.fasta -db mgProteome
-outfmt 6 > mg_410b.psi

To count the number of rounds, look for the number of comparisons with MG_410 as query

and subject

246 8 Answers and Appendix: Unix Guide

awk '{if($1˜/410/ && $2˜/410/)c++}END{print c}' mg_410b.psi
4

Now find the row numbers where each round starts

awk '{if($1˜/410/ && $2˜/410/)print NR}' mg_410b.psi
1
49
104
155

Finally, count the number of distinct hits with E ≤ 10−5 from line 155 onward:

tail -n +155 mg_410b.psi | # Print line >= 155
grep MG | # Filter out footer
awk '{if($11<=10ˆ-5)print $1 "\n" $2}' | # Check E-value
sort |
uniq |
wc -l
21

Answer 351 Get protFam2.txt:

cp ../FastLocalAlignmentProt/protFam2.txt .

and look for the differences between the lists

diff psiBlastList.txt protFam2.txt
7,8d6
< MG_107
< MG_110
14d11
< MG_298
17d13
< MG_390
21a18
> MG_390

Three extra proteins MG_107, MG_110, and MG_298 were found by psiblast, while

MG_390 is contained in both lists, but at different positions.

Answer 352 Use grepwith extended notation to extract the header lines of the three extra

proteins:

grep -E '(MG_107|MG_110|MG_298)' mgProteome.fasta
>lcl|MG_107 guanylate kinase
>lcl|MG_110 ribosome small subunit-dependent GTPase A
>lcl|MG_298 chromosome segregation protein SMC

These annotations are not in any obvious way connected to “ABC transporter”. However,

the kinase binds ATP, the GTPase A binds GTP, which is similar to ATP, and SMC proteins

belong to the ATPases. That is to say, ATP binding is the common feature of the 21 proteins

we have identified.

8.1 Answers 247

Answer 353 Run psiblast

psiblast -out_ascii_pssm psiBlast.mat -num_iterations 0 \
-query mg_410.fasta -db mgProteome -outfmt 6 > mg_410b.psi

The position-specific score matrix is contained in the first 20 columns labeled A for alanine

through V for valine. It consists of 329 rows, one for each amino acid in MG_410.

Answer 354 Identify the most frequent amino acid

cchar mg_410.fasta |
sed '/ˆ#/d' |
sort -k 2 -n -r |
head -n 1
I 41 0.124620

Extract all positions occupied by isoleucine:

awk 'NR==3 || $2=="I"{print}' psiBlast.mat

which returns the position-specific score information

A R N D C Q E G H I L K M F P S T W Y V ...
5 I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 1 -3 1 0 -3 -2 -1 -3 -1 2 ...

19 I -1 -1 -1 0 -2 0 3 -3 -1 2 0 -1 0 -1 -2 -1 -1 -3 -2 1 ...
30 I -2 -3 -4 -4 -1 -3 -3 -4 -3 3 4 -3 2 0 -3 -3 -1 -2 -1 2 ...
...

The match score is the score for isoleucine (I); to find its range, extend the previous command

awk 'NR==3 || $2=="I"{print}' psiBlast.mat |
tail -n +2 |
awk '{print $12}' |
sort |
uniq |
tr '\n' ' '
0 1 2 3 4 5

The match score for isoleucine ranges between 0 and 5. The corresponding BLOSUM62

score is 4.

Answer 355 The first three accessions need to be extended to achieve uniqueness:

getSeq -s 'HBA_HUMAN H' uniprot_sprot.fasta > hbaHuman.fasta
getSeq -s 'HBA_HORSE H' uniprot_sprot.fasta > hbaHorse.fasta
getSeq -s 'HBB_HUMAN H' uniprot_sprot.fasta > hbbHuman.fasta
getSeq -s HBB_HORSE uniprot_sprot.fasta > hbbHorse.fasta

Alternatively, getSeq could have been applied twice, for example

getSeq -s HBA_HUMAN uniprot_sprot.fasta | getSeq -s Hem

Answer 356 Construct the file containing the subject sequences:

cat hbbHuman.fasta hbaHorse.fasta hbbHorse.fasta >
subject.fasta

248 8 Answers and Appendix: Unix Guide

Then run blastp

blastp -query hbaHuman.fasta -subject subject.fasta -outfmt 2

to get the slightly edited query-anchored alignment

Q_1 1 MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG 60
S_2 1 MVLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHG 60
S_1 4 LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFDLSMGNPKVKAHG 65

\ \
| |
G TPDAV

S_3 3 LSGEEKAAVLALWDKVNEE--EVGGEALGRLLVVYPWTQRFFDSFDLSNGNPKVKAHG 64
\ \
| |
G PGAVM

Q_1 61 KKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTP 120
S_2 61 KKVGDALTLAVGHLDDLPGALSNLSDLHAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTP 120
S_1 66 KKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTP 125
S_3 65 KKVLHSFGEGVHHLDNLKGTFAALSELHCDKLHVDPENFRLLGNVLVVVLARHFGKDFTP 124

Q_1 121 AVHASLDKFLASVSTVLTSKYR 142
S_2 121 AVHASLDKFLSSVSTVLTSKYR 142
S_1 126 PVQAAYQKVVAGVANALAHKY 146
S_3 125 ELQASYQKVVAGVANALAHKY 145

The amino acids printed below

\
|

in Subjects S_1 and S_3 are insertions.

Answer 357 Construct another set of subject sequences:

cat hbaHuman.fasta hbaHorse.fasta hbbHorse.fasta >
subject2.fasta

and run blastp

blastp -query hbbHuman.fasta -subject subject2.fasta -outfmt 2

to get the query-anchored alignment

Q_1 2 VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 61
S_3 1 VQLSGEEKAAVLALWDKVNEEEVGGEALGRLLVVYPWTQRFFDSFGDLSNPGAVMGNPKV 60
S_1 3 LSPADKTNVKAAWGKVHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-----HGSAQV 56

\
|

GA
S_2 3 LSAADKTNVKAAWSKVHAGEYGAEALERMFLGFPTTKTYFPHF-DLS-----HGSAQV 56

\
|

GG

Q_1 62 KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 121
S_3 61 KAHGKKVLHSFGEGVHHLDNLKGTFAALSELHCDKLHVDPENFRLLGNVLVVVLARHFGK 120
S_1 57 KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA 116
S_2 57 KAHGKKVGDALTLAVGHLDDLPGALSNLSDLHAHKLRVDPVNFKLLSHCLLSTLAVHLPN 116

Q_1 122 EFTPPVQAAYQKVVAGVANALAHKYH 147
S_3 121 DFTPELQASYQKVVAGVANALAHKYH 146
S_1 117 EFTPAVHASLDKFLASVSTVLTSKY 141
S_2 117 DFTPAVHASLDKFLSSVSTVLTSKY 141

8.1 Answers 249

Now, there is one insertion of two amino acids, GA into HBA_HUMAN and GG into

HBA_HORSE.

Answer 358 Use commands like

gal -p -i hbaHuman.fasta -j hbaHorse.fasta -m BLOSUM62 |
grep Score

to get

HBA_HUMAN HBA_HORSE HBB_HUMAN HBB_HORSE

HBA_HUMAN — 648 282 268

HBA_HORSE 0.00 — 264 266

HBB_HUMAN 0.56 0.59 — 633

HBB_HORSE 0.59 0.59 0.02 —

where scores are in the top triangle and distances in the bottom triangle.

Answer 359 The most similar sequences, HBA from human and horse, are clustered first,

followed by the HBBs; finally, the two groups are merged to give the following guide tree:

HBA HUMAN HBA HORSE HBB HUMAN HBB HORSE

Answer 360 The pairs α/α and β/β are orthologs marked by solid lines, the α/β pairs are

paralogs marked by dotted lines:

human α-hemoglobin horse α-hemoglobin

human β -hemoglobin horse β -hemoglobin

250 8 Answers and Appendix: Unix Guide

Answer 361 Run clustalw

clustalw hemoglobin.fasta

A slightly edited version of the guide tree in hemoglobin.dnd looks like this

(
(
HBA_HORSE:0.06,
HBA_HUMAN:0.06)
:0.4,
HBB_HORSE:0.08,
HBB_HUMAN:0.08);

Its graphical representation is

HBA HORSE

H
B

A
H

U
M

A
N

HBB HORSE

H
B

B
H

U
M

A
N

Answer 362 There are four gaps. The left-most has two origins,

-V
MV

was introduced when aligning the two β-hemoglobins, while

-M
-M

was introduced when the α- and β-pairs were aligned. The other three gaps each affect a

pair of sequences, so they must have been introduced when the α- and β-pairs were aligned.

Answer 363 The clustalw alignment generates an end gap:

S1 ATG
S2 -AG

*

Answer 364 Values ≤ 5 give the alternative gap pattern, for example,

clustalw hemoglobin.fasta -GAPOPEN=5

8.1 Answers 251

Answer 365 Run the command

bash simTimes1.sh > simTimes1.dat

where simTimes1.sh is

for a in 100 200 500 1000 2000 5000 10000 20000
do

echo -n ${a} ' '
ranseq -n 2 -l ${a} > test.fasta
/usr/bin/time -p clustalw test.fasta 2>&1 |

grep real |
sed 's/real //'

done
rm test.fasta

to collect the times. Plot them

gnuplot -p simTimes1.gp

where simTimes1.gp is

set xlabel "Sequence Length (kb)"
set ylabel "Time (s)"
plot "simTimes1.dat" using ($1/1000):2 title "" with

linespoints

to get the run time of clustalw as a function of sequence length:

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

s
)

Sequence Length (kb)

As the sequence length is doubled, the run time is roughly quadrupled.

252 8 Answers and Appendix: Unix Guide

Answer 366 Run

bash simTimes2.sh > simTimes2.dat

to collect run times, where simTimes2.sh is

for a in 2 5 10 20 50 100
do

echo -n ${a} ' '
ranseq -n ${a} -l 1000 > test.fasta
/usr/bin/time -p clustalw test.fasta 2>&1 |

grep real |
sed 's/real //'

done

Plot them

gnuplot -p simTimes2.gp

where simTimes2.gp is

set xlabel "Number of Sequences"
set ylabel "Time (s)"
plot "simTimes2.dat" title "" with linespoints

to get

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s
)

Number of Sequences

Again, as the number of sequences doubles, the run time roughly quadruples.

Answer 367 Get the sample

getSeq -s Hemoglobin uniprot_sprot.fasta |
awk -f fasta2tab.awk |
awk -f shuffle.awk |
head -n 100 |
tr '\t' '\n' |
fold > hb100.fasta

8.1 Answers 253

Make sure 100 sequences were obtained

grep -c 'ˆ>' hb100.fasta
100

Measure the run time of clustalw

/usr/bin/time -p clustalw hb100.fasta 2>&1 |
grep real

which takes 2.30 s. Aligning 200 hemoglobin sequences takes 8.92 s, roughly four times

longer.

Answer 368 There are

getSeq -s Hemoglobin uniprot_sprot.fasta | grep -c 'ˆ>'
833

hemoglobin sequences in UniProt. Aligning all of them with clustalw would roughly

take 2.3 × 43 = 147s.

Answer 369 Get the hemoglobin sequence:

getSeq -s Hemoglobin uniprot_sprot.fasta > hemoglobinAll.fasta

Count them, just to make sure:

grep -c 'ˆ>' hemoglobinAll.fasta
833

Align them

time clustalw hemoglobinAll.fasta > /dev/null

which takes 150.1 s. This is close to the predicted run time of 147 s.

Answer 370 Set up the session:

mkdir TreesOfLife
cd TreesOfLife

Without a scale bar the absolute branch lengths are meaningless, but since the branches all

look the same, we can write

((A:1,B:1):1,(C:1,D:1):1);

Answer 371 The command

new2view first.tree

yields
0.5

A

B

C

D

254 8 Answers and Appendix: Unix Guide

Your scaling might differ from ours—this can be adjusted with the -d and -s options. More-

over, the tree is now drawn from left to right rather than top to bottom. Left to right is often

used when drawing phylogenies, as this makes it easier to place the taxon labels. However,

when talking about the children of a node, we shall continue to refer to the right and the left

child, rather than the top and the bottom child.

Answer 372 second.tree contains

((A,B),(C,D));

which looks identical to the tree with unit branch lengths—but that is just the drawing

convention adopted by new2view:

0.5

A

B

C

D

Answer 373 The Newick tree is now

((,),(,))root;

and looks like

0.5

root

Answer 374 In Newick notation, we have

((B,A),(D,C));

which is rendered with switched leaf labels compared to second.tree:

0.5

B

A

D

C

However, in phylogenies only the branching pattern matters, and hence a phylogeny remains

unchanged by rotating branches around nodes.

8.1 Answers 255

Answer 375 Visualizing all tree files at once using

new2view -u *.tree

yields

first second third fourth

0.5

A

B

C

D

0.5

A

B

C

D

0.5

root

0.5

B

A

D

C

An unrooted tree does not have a unique starting point. It still has direction, though, going

from internal to leaf nodes. The unrooted layout is also known as “radial”.

Answer 376 Save the four trees

cat first.tree second.tree third.tree fourth.tree >
fourTreesU.tree

edit them to obtain

(A:1,B:1,(C:1,D:1):1);
(A,B,(C,D));
(,,(,))root;
(B,A,(D,C));

and draw them

new2view fourTreesU.tree

to get the expected radial layout—notice the root position in the third tree. This radial layout

is the standard representation of unrooted trees in biology.

fourththirdsecondfirst

0.5

A

B

C

D

0.5

A

B

C

D

0.5

root

0.5

B

A

D

C

When enforcing the rooted layout

new2view -r fourTreesU.tree

256 8 Answers and Appendix: Unix Guide

we see the trifurcating root:
fourththirdsecondfirst

0.5

A

B

C

D
0.5

A

B

C

D
0.5

root

0.5

B

A

D

C

Answer 377 The preorder sequence is 2, 1, 6, 4, 3, 5, 8, 7, and 9.

Answer 378 The inorder sequence is 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Answer 379 The postorder sequence is 1, 3, 5, 4, 7, 9, 8, 6, and 2.

Answer 380 The commands for inorder, preorder, and postorder traversal are

traverseTree -t inorder traverse.tree
traverseTree -t preorder traverse.tree
traverseTree -t postorder traverse.tree

where traverse.tree contains

(,((,),(,)));

All three methods are centered on visiting child nodes rather than neighbor nodes. Hence,

the name “depth first” traversal.

Answer 381 The command

genTree | new2view

gives, for example

20

T5

T7

T8

T2

T9

T3

T1

T4

T10

T6

Your tree is bound to differ, but its leaves will also not be perfectly lined up. The leaves

are labeled T1,..., Tn for taxon 1,...,n. With default settings, genTree produces branch

8.1 Answers 257

lengths proportional to the number of mutations along a given branch. Since this is a random

variable, branches rarely end at the same point along the horizontal axis. This interpretation

of branch lengths as mutations seems to conflict with our intuition that time is marked along

the x-axis: present on the right, past on the left. The conflict is resolved when we realize that

the number of mutations is drawn from a Poisson distribution with mean proportional to the

time that has elapsed between a given node and its parent. If we knew the time, the leaves

would all align.

Answer 382 Repeat

genTree -t 0 | new2view

twice to get, for example

T9
T6

T4

T8

T10
T5

T1

T3

T7
T2

T2
T7
T6

T10
T8

T4

T1
T5

T9
T3

The trees differ in the order of taxa.

Answer 383 Compute n! as a function of n:

awk -f factorial.awk -v n=100 > factorial.dat

where factorial.awk is

BEGIN{
if(!n) # n set via -v?

n = 100
f = 1
for(i=1; i<=n; i++){

f *= i
print i, f

}
}

Plot the results

gnuplot -p plot.gp

where plot.gp is

set xlabel "n"
set ylabel "n!"
set logscale y
plot[][] "factorial.dat" t "" w l

258 8 Answers and Appendix: Unix Guide

to get

 1

 1x10
20

 1x10
40

 1x10
60

 1x10
80

 1x10
100

 1x10
120

 1x10
140

 1x10
160

 0 10 20 30 40 50 60 70 80 90 100

n
!

n

This gives a first impression of how the number of phylogenies scale with n.

Answer 384 Compute the number of trees

awk -f numTrees.awk -v n=100 > numTrees.dat

where numTrees.awk is

BEGIN{
if(!n) # n set via -v?

n = 100
f = 1
if(n>0)

print 1, f
if(n>1)

print 2, f
for(i=3; i<=n; i++){

f = 1
for(j=3; j<=(2*i-3); j+=2)

f *= j
print i, f

}
}

Plot the result together with n!

gnuplot -p plot2.gp

where plot2.gp is

set xlabel "n"
set logscale y
plot[][] "numTrees.dat" t "Number of Trees" w l,\
"factorial.dat" t "n!" w l

8.1 Answers 259

to get the exact number of phylogenies as a function of sample size, n, compared to the

estimation via n!. The factorial estimation is roughly 20 orders of magnitude too small when

n = 100:

 1

 1x10
20

 1x10
40

 1x10
60

 1x10
80

 1x10
100

 1x10
120

 1x10
140

 1x10
160

 1x10
180

 1x10
200

 0 10 20 30 40 50 60 70 80 90 100

n

Number of Trees
n!

Answer 385 Use the command

genTree -s -t 0 | new2view

to get something similar to

T7
T1
T4
T6
T5
T2
T3
T8
T9
T10

This time all the leaves line up because rather than representing mutations, the branches go

back to the simulated times of species divergence.

Answer 386 Use, for example,

genTree -s -S 13

and

genTree -S 13

to get

260 8 Answers and Appendix: Unix Guide

Standard Clock Molecular Clock

T10
T3
T7
T8
T5
T6
T4
T9
T2
T1

T10
T3
T7

T8
T5
T6
T4
T9

T2
T1

This illustrates that the molecular clock is a stochastic clock that behaves only approximately

like its standard version.

Answer 387 Here is the corresponding trace of the UPGMA algorithm:

A B C D

A -
B 6 -

C 2 6 -

D 6 4 6 -

(A,C) B D

(A,C) -

B 6 -
D 6 4 -

(A,C) (B,D)
(A,C) -

(B,D) 6 -

A C

1 1

A C B D

1 1

2 2

A C B D

2

1

1 1

2 2

Answer 388 The distances

• fulfill the three point criterion,

• fit the UPGMA tree,

• and, by implication, for n taxa there are no more than n −1 distinct entries in the distance

matrix;

in other words, they are ultrametric.

Answer 389 Get the headers of the Hominidae sequences:

grep 'ˆ>' hominidae.fasta

>Pongo
>Gorilla
>Homo
>Pan

8.1 Answers 261

Answer 390 Here are the full scientific names and the trivial names of the Hominidae in

hominidae.fasta:

Name in File Full Name Trivial Name

Homo Homo sapiens human

Pan Pan troglodytes/paniscus chimp

Gorilla Gorilla gorilla gorilla

Pongo Pongo pygmaeus orangutan

Answer 391 Extract the first ten polymorphic positions:

gd -P hominidae.fasta | # get polymorphisms
getSeq -c -s Pos | # exclude positions
cutSeq -r 1-10

>Homo 1..10
GTCATTCACC
>Pan 1..10
ATTATCCACC
>Gorilla 1..10
GTTGTTTATC
>Pongo 1..10
ACCACCCGTT

to compute the distance matrix

Homo Pan Gorilla Pongo

Homo -

Pan 3 -

Gorilla 4 5 -

Pongo 7 6 9 -

Answer 392 The file test.dist should look like this:

cat test.dist

4
Ho 0 3 4 7
Pa 3 0 5 6
Go 4 5 0 9
Po 7 6 9 0

We cluster the taxa in test.dist by tracing the UPGMA algorithm:

262 8 Answers and Appendix: Unix Guide

clustDist -u -m test.dist
****** Round 1 ******
Ho 0 3.00 4.00 7.00
Pa 3.00 0 5.00 6.00
Go 4.00 5.00 0 9.00
Po 7.00 6.00 9.00 0
****** Round 2 ******
Go 0 9.00 4.50
Po 9.00 0 6.50
Ho,Pa 4.50 6.50 0
****** Round 3 ******
Po 0 7.75
Go,Ho,Pa 7.75 0
(Po:3.875,(Go:2.250,(Ho:1.500,Pa:1.500):0.750):1.625);

To visualize the tree, run

clustDist -u test.dist | new2view -d 3 -s 0.7

where -d 3 restricts the smallest dimension of the tree to 3 cm, and -s 0.7 sets the length

of the scale bar, to get

0.7

Po

Go

Ho

Pa

Answer 393 Compute the distances

dnaDist hominidae.fasta > hominidae.dist

and print them to the screen:

cat hominidae.dist
4
Homo 0.000000 0.093798 0.111717 0.180872
Pan 0.093798 0.000000 0.113013 0.192322
Gorilla 0.111717 0.113013 0.000000 0.188008
Pongo 0.180872 0.192322 0.188008 0.000000

Since this matrix has more than three distinct entries, the distances are not ultrametric.

Answer 394 The command

clustDist -u hominidae.dist |
new2view

8.1 Answers 263

gives the Hominidae phylogeny

0.03

Pongo

Gorilla

Homo

Pan

Answer 395 Count the primate taxa contained in primates.fasta

grep -c 'ˆ>' primates.fasta
27

Compute the sequence lengths of their mitochondrial genomes and sort them

cchar -s primates.fasta |
grep 'ˆ>' |
sort -k 2

to find they range between 15467 and 17036 bp.

Answer 396 Our measurements of the “real” time were as follows:

Threads Time (s)

1 2.087

2 1.093

4 0.611

8 0.407

Your exact measurements are bound to differ slightly from ours, but the trend should be

similar. If a lot of computing is going on while you are making these measurements, eight

threads would not result in as much speedup as we observed when making these runs on an

otherwise idle machine.

Answer 397 Cluster the distances and draw the primate phylogeny:

andi -t 8 primates.fasta |
clustDist -u |
new2view -d 12

264 8 Answers and Appendix: Unix Guide

which gives

0.008

C variega

H lar

P pygmaeu

P pygmaeu

G gorilla

H sapiens

P paniscu

P troglod

C sabaeus

C pygeryt

C aethiop

C tantalu

P hamadry

M mulatta

M sylvanu

C guereza

P badius

S entellu

P nemaeus

N larvatu

P roxella

P melalop

T obscuru

N coucang

L catta

C albifro

T bancanu

The branching order for the Hominidae in bold is the same as with the small data set.

Answer 398 By plugging the distances into the equation describing the four point criterion,

we get

7 + 7 = 10 + 4 ≥ 5 + 5,

which is true.

Answer 399 In Fig. 5.4a, we have dAB = 5, dAC = 7, and dBC = 4. Since these are three

distinct numbers, the three point criterion does not hold.

http://dx.doi.org/10.1007/978-3-319-67395-0_5

8.1 Answers 265

Answer 400 Our trace of neighbor-joining begins with the row sums:

A B C D ri

A - 5 7 10 22

B - 4 7 16

C - 5 16

D - 22

Answer 401

A B C D ri

A - 5 7 10 22

B -14 - 4 7 16

C -12 -12 - 5 16

D -12 -12 -14 - 22

Answer 402

C D (A, B)

C - 5 3

D - 6

(A, B) -

Answer 403
dA(AB) = (2 × 5 + 22 − 16)/4 = 4,

and

dB(AB) = (2 × 5 + 16 − 22)/4 = 1.

Answer 404

drC = (5 + 3 − 6)/2 = 1

dr D = (5 + 6 − 3)/2 = 4

dr(AB) = (3 + 6 − 5)/2 = 2

Answer 405 Set up the session

mkdir NeighborJoining
cd NeighborJoining

266 8 Answers and Appendix: Unix Guide

First, trace the clustering procedure

clustDist -m test.dist
****** Round 1 ******
A 0 5.00 7.00 10.00 22.00
B 0.00 0 4.00 7.00 16.00
C 0.00 0.00 0 5.00 16.00
D 0.00 0.00 0.00 0 22.00
****** Round 2 ******
C 0 5.00 3.00
D 5.00 0 6.00
A,B 3.00 6.00 0
(C:1.000000,D:4.000000,(A:4.000000,B:1.000000):2.000000);

Then save the unrooted tree

clustDist test.dist > testU.tree

and draw it

new2view testU.tree

to get

1

C

D

A

B

Answer 406 Execute

new2view -d 3 testR.tree

where testR.tree is the midpoint-rooted phylogeny

((C:1,D:4):1,(A:4,B:1):1);

8.1 Answers 267

to get

0.9

C

D

A

B

Answer 407 Use testU.tree as input to retree. This is started by entering

phylip retree

or just

retree

depending on your setup. Then follow the menu. PHYLIP writes the new tree to the file

outtree. After quitting PHYLIP, execute

new2view -d 3 outtree

where outtree is

cat outtree
((A:4.0,B:1.0):1.0,(C:1.0,D:4.0):1.0);

to get

0.9

A

B

C

D

which has the same topology as the result computed by hand.

Answer 408 Compute the neighbor-joining tree

andi -t 8 primates.fasta |
clustDist > primates.tree

and carry out midpoint rooting

phylip retree

before drawing the primate phylogeny

268 8 Answers and Appendix: Unix Guide

new2view outtree

to get

0.02

L catta

C variega

N coucang

C albifro

T bancanu

C sabaeus

C pygeryt

C aethiop

C tantalu

P hamadry

M mulatta

M sylvanu

C guereza

P badius

S entellu

P melalop

P roxella

N larvatu

P nemaeus

T obscuru

H lar

P pygmaeu

P pygmaeu

G gorilla

H sapiens

P paniscu

P troglod

This is quite similar to the primate phylogeny recovered with UPGMA, though there are

differences in the branching order. Most of these are in the clade shown in bold, where

branch lengths are short. If branches are short, clustering is based on little information and

hence subject to reinterpretation by different algorithms.

Answer 409 The number of ancestors, a, as a function of the number of generations, g, in

a bi-parental genealogy is

a = 2g .

Therefore, the (theoretical) number of ancestors 30 generations back is

230 =
(

210
)3

≈
(

103
)3

= 109.

This is much larger than the human population at that time: If a generation is 25 years, 30

generations take us back to 1267. The world population at that time was approximately 400

million; it took until the early nineteenth century for the human population to exceed 109.

8.1 Answers 269

Answer 410 We expect individual i4 to have eight great grandparents in generation b3,

which is impossible with population size 7. So in small populations there is more sharing of

ancestors than in large populations.

Answer 411 Blue individuals have left no descendants in the present. Red individuals are

ancestors of all extant individuals. In contrast to these universal ancestors, black individuals

have left some descendants in the present. Notice that as you go back in time, partial ancestors

go extinct leaving only universal ancestors and non-ancestors [41]. From the point of view of

the present, this means that eventually we all have the same ancestors. So next time someone

tells you she is a descendant of X, who lived a long time ago, you know there are only two

possibilities: Either this is true, then it is true for everyone, or, alas, it is false.

Answer 412 Set up the directory

mkdir Descent
cd Descent

Run the simulation using

drawGenealogy -D 0 -i 4 -p 7 -C -g 7 -t testFig.tex

Typeset the figure and view it

latex testFig
dvips testFig -o -q
gv testFig.ps &

Answer 413 Simulate the times to the most recent universal ancestor

bash firstUnivAnc.sh > firstUnivAnc.dat

where firstUnivAnc.sh is

for a in 10 20 50 100 200 500 1000
do

echo -n $a ' '
for b in $(seq 100);
do

drawGenealogy -g 50 -c -p $a
done |

grep comm |
awk '{s+=$8;c++}END{print s/c}'

done

Plot the simulation results

gnuplot -p plot1.gp

where plot1.gp is

set xlabel "Population Size"
set ylabel "Generations"
set pointsize 2
set log x
set key top center
f(x) = log(x) / log(2)
plot [][] "firstUnivAnc.dat" title "observed" w linesp,\
f(x) title "expected" wi li

270 8 Answers and Appendix: Unix Guide

The resulting graph shows the number of generations until the appearance of the first uni-

versal ancestor as a function of population size.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 10 100 1000

G
e
n
e
ra

ti
o
n
s

Population Size

observed
expected

The expectation fits the simulation quite well.

Answer 414 Compute times until all present-day individuals have identical ancestors:

bash allUnivAnc.sh > allUnivAnc.dat

where allUnivAnc.sh is

for a in 10 20 50 100 200 500 1000
do

echo -n $a ' '
for b in $(seq 100);
do

drawGenealogy -g 50 -c -p $a
done |

grep iden |
awk '{s+=$5;c++}END{print s/c}'

done

Plot the simulation together with the expectation

gnuplot -p plot2.gp

where plot2.gp is

set xlabel "Population Size"
set ylabel "Generations"
set pointsize 2
set log x
f(x) = 1.77 * log(x) / log(2)
plot [][] "allUnivAnc.dat" title "observed" wi linespoints,\
f(x) title "expected" wi li

to get the number of generations until all present-day individuals have identical ancestors as

a function of population size.

8.1 Answers 271

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 10 100 1000

G
e
n
e
ra

ti
o
n
s

Population Size

observed
expected

In this case, the expectation is distinct from the simulation, but at least similar.

Answer 415 The common ancestor of the two genes in i4 lies beyond b6. So in this uni-

parental genealogy of genes, it takes much longer to reach the first common ancestors of

genes than in the bi-parental genealogy of individuals.

Answer 416 Our extension of the Wright–Fisher model in Figure 6.4 looked like this; yours

is bound to look different:

g1

g2

g3

1 2 3 4 5 6 7 8

Answer 417 Yes, the Wright–Fisher simulation contains common ancestors, the most recent

of which is marked in red:

21 34 5 67 8 9 10

Present

Past

http://dx.doi.org/10.1007/978-3-319-67395-0_6

272 8 Answers and Appendix: Unix Guide

Answer 418 The commands

drawWrightFisher -p 10 -t wrapWf.tex -a -1
latex wrapWf
dvips wrapWf -o -q

generate Wright–Fisher simulations like

delgnatnUdelgnaT
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

1 2 3 4 5 6 7 8 9 10 213 4 56 7 8 910

Present

Past

Among ten iterations, we found four instances with a time to the most recent common

ancestor of ten generations or less.

Answer 419 The probability of two genes picking a common ancestor is 1/N × 1/N =
1/N 2. Since there are N opportunities for picking the same ancestor (each gene has one

ancestor), the probability of any two genes picking the same ancestor is 1/N .

Answer 420 In ten iterations of

awk -f trace1.awk -v seed=$RANDOM -v N=10 |
sort |
uniq |
wc -l

we found no instance where all ten lineages remained.

Answer 421 Compute Pn for N = 10:

BEGIN{
n = 10
pn = 1
for(i=1; i<n; i++)

pn *= 1 - i / n
print pn

}

which returns Pn ≈ 4 × 10−4. So we carried out 104 iterations of the simulation in Prob-

lem 420

http://dx.doi.org/10.1007/978-3-319-67395-0_6

8.1 Answers 273

for a in $(seq 10000)
do

awk -f trace1.awk -v seed=$RANDOM -v N=10 |
sort |
uniq |
wc -l

done |
awk 'BEGIN{c=0}{if($1==10)c++}END{print c}'

and found Pn = 2 × 10−4, which is close to the expected value.

Answer 422 We ran

awk -f trace2.awk -v seed=$RANDOM -v N=100 -v n=10

ten times and found three occasions where the number of lineages was reduced, that is, genes

had picked common ancestors.

Answer 423 Pa = 90/2000 = 0.045. The simulation might look like this

for a in $(seq 1000)
do

awk -f trace2.awk -v seed=$RANDOM -v N=1000 -v n=10
done |

awk '{if($1 < 10)s++;c++}END{print s/c}'

which gave us Pa = 0.048, quite close to expected probability of an ancestor event.

Answer 424 Generate the number of lineages per generation

awk -f trace3.awk -v N=100 -v n=100 > trace3.dat

Plot the results

gnuplot -p plot3.gp

where plot3.gp is

set xlabel "Generations"
set ylabel "Lineages"
plot [][] "trace3.dat" t "" w l

274 8 Answers and Appendix: Unix Guide

to get

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45 50

L
in

e
a
g
e
s

Generations

Answer 425 Commands like

awk -f trace3.awk -v seed=$RANDOM -v N=100 -v n=100

give widely varying times to the most recent common ancestor. Still, one might expect that

it takes much longer for 100 lineages to find their common ancestor than for two. However,

for individual runs of the simulation, times obtained with n = 2 are often quite similar as

those with n = 100.

Answer 426 n = 2: N generations; n → ∞: 2N generations, that is to say, the expected

time to the most recent common ancestor, E{TMRCA}, varies by no more than a factor of

2.

Answer 427 Run

bash simTmrca.sh > simTmrca.dat

where simTmrca.sh is

for i in 2 5 10 20
do

echo -n ${i} ' '
for j in $(seq 100)
do

awk -f trace3.awk -v seed=$RANDOM -v N=100 -v n=$i |
tail -n 1

done |
awk '{s+=$1;c++}END{print s/c}'

done

and plot the result

plot -p plot4.gp

where plot4.gp is

8.1 Answers 275

set xlabel "Sample Size, n"
set ylabel "Average(T_{MRCA})"
f(x) = 2*100*(1-1/x)
set pointsize 2
set key top left
plot [][] "simTmrca.dat" t "Simulation" w linespoints,\
f(x) t "Expectation" w l

to get

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
(T

M
R

C
A
)

Sample Size, n

Simulation
Expectation

The simulated average time to the most recent common ancestor is quite similar to its ex-

pectation.

Answer 428 On the left is a example coalescent with all nodes labeled. It has four leaves,

so it describes the genealogy of a sample of n = 4 genes:

1 3 4 2

5

6

7

blabla1 3 4 2

By convention, only leaves are labeled in a coalescent, as shown on the right.

Answer 429 T1 would begin with the most recent common ancestor, the root of the coa-

lescent, and go on forever. It is not shown, because the coalescent is bounded by the most

recent common ancestor.

Answer 430 By running this code with i=4, i=3, and i=2, we got T4 = 0.10, T3 =
0.03, T2 = 0.29; so the coalescence times were as follows:

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

Time 0.00 0.00 0.00 0.00 0.10 0.13 0.42

276 8 Answers and Appendix: Unix Guide

Time to the most recent common ancestor is the time of the root node, 0.42×2N generations.

Answer 431 Code like

for a in $(seq 100)
do

awk -v seed=$RANDOM -f genCoalTimes.awk -v n=1000 |
tail -n 1

done |
awk '{s+=$2;c++}END{print s/c}'

gave average times to the most recent common ancestor of TMRCA = 0.90 for n = 2

and TMRCA = 1.98 for n = 1000. Recall from Problem 426 that when measured in 2N

generations, we expect

TMRCA =
(

1 −
1

n

)

.

Answer 432 Here is a step-by-step depiction of shuffling, or put more formally, sampling

without replacement; the values to be swapped are shown in bold. A particular position in

the array might be picked repeatedly.

r = 1, n = 5 r = 3, n = 4 r = 1, n = 3 r = 2, n = 2 Result

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

5 2 3 4 1

1 2 3 4 5

5 2 4 3 1

1 2 3 4 5

4 2 5 3 1

1 2 3 4 5

4 2 5 3 1

Answer 433 When continuing the construction of the coalescent, for parent 6 we got as

first child indexes 1 and 1. So the first child of node 6 is the node at position 1, which is 4.

Then, node 3 is placed at position 1, and is thus drawn as the second child of 6. Finally, the

node at position 1 is replaced by node 6:

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

4 5

3

6

Child1 1 4

Child2 2 3

Time 0 0 0 0

This leaves only two children for 7, 5, and 6; so the final topology is as follows:

7

5 6

1 2 4 3

8.1 Answers 277

Answer 434 Solutions are bound to differ; ours is

1 2 4 30.00

0.10

0.13

0.42

Answer 435 For a coalescent of sample size 4, the children of three internal nodes need to

be picked:

awk -v seed=$RANDOM -v n=4 -f pickChildren.awk
Pa C1 C2
5 1 2
6 1 2
7 1 1

So we can fill in our table:

Index 1 2 3 4 5 6 7

Node 1 2 3 4 5 6 7

4 5

3 6

6

Child1 1 4 3

Child2 2 5 6

Time 0.00 0.00 0.00 0.00 0.16 0.20 0.23

This gives the tree

1 2 4 30.00

0.16

0.20

0.23

Answer 436 We label the branches on our coalescent and then draw the mutations:

1 2 4 30.00

0.16

0.20

0.23

b1 b2

b4

b6
b3

b5

invisibilium

Branch Length Mutations

b1 0.16 0

b2 0.16 1

b3 0.04 0

b4 0.20 0

b5 0.03 0

b6 0.23 3

278 8 Answers and Appendix: Unix Guide

Our tree has a total of four mutations. This is far fewer than the corresponding expectation

value:

watterson -n 4 -t 10
S = 18.333333

Answer 437 Here is an example run to generate two samples:

awk -f coalescent.awk -v seed=$RANDOM -v theta=10 -v
sampleSize=4 -v numSamples=2

S= 28
S= 9

S is the number of mutations (segregating sites) found in a simulated sample.

Answer 438 The command

awk -f coalescent.awk -v seed=$RANDOM -v theta=10 -v
sampleSize=4 -v numSamples=1 -v printTree=1 |

grep T |
new2view

returns, for example

(c)(b)(a)

0.3

T1

T4

T3

T2

0.4

T1

T2

T4

T3

0.4

T3

T4

T1

T2

The coalescent time is measured in units of 2N generations. Accordingly, in coalescent (a)

the scale refers to 0.3 × 2N generations in a haploid population.

Answer 439 Our coalescent simulation looks like this:

ms 4 10000 -t 10 |
grep 'ˆs' |
awk '{s+=$2;c++}END{print s/c}'

18.32

The expectation was already computed in Problem 436, 18.33; this is very close to the

simulated value.

Answer 440

ms 4 10000 -t 10 |
grep 'ˆs' |
awk '{if($2<=1)s++;c++}END{print "P="s/c}'

http://dx.doi.org/10.1007/978-3-319-67395-0_6

8.1 Answers 279

P=0.0102

Our test of the Wright–Fisher model rejects the null hypothesis with an error probability of

just 1%. So the difference between observation and expectation is significant if we apply the

common threshold of α = 0.05.

Answer 441 First position:

tabix http://guanine.evolbio.mpg.de/problemsBook/chr19.mgp.
vcf.gz 19:1-5000000 |

head -n 1

19 3078554

Last position:

tabix http://guanine.evolbio.mpg.de/problemsBook/chr19.mgp.
vcf.gz 19:50000000-70000000 |

tail -n 1

19 61331223

Answer 442

tabix http://guanine.evolbio.mpg.de/problemsBook/chr19.mgp.
vcf.gz 19:3078554-61331223 |

wc -l

1617408

That is, there are
1, 617, 408

61, 331, 223 − 30, 78, 554 + 1
≈ 0.0278

SNPs per position. 17 mice have 34 chromosomes; we can compute the corresponding

harmonic number
∑33

i=1 1/ i using

watterson -t 1 -n 34

S = 4.088798

So the per nucleotide population mutation rate

θ =
0.0278

4.0888
= 0.0068.

Answer 443 Count SNPs on mouse chromosome 19:

tabix http://guanine.evolbio.mpg.de/problemsBook/chr19.mgp.
vcf.gz 19:5,189,001-5,190,000 |

wc -l

40

We get the θ for 1 kb from the per nucleotide value of 0.0068 and compute the expected

number of SNPs:

280 8 Answers and Appendix: Unix Guide

watterson -t 6.8 -n 34

S = 27.803828

Significance

ms 34 10000 -t 6.8 |
grep '^s' |
awk '{c++;if($2>=40)s++}END{print "P="s/c}'

P=0.1227

So the difference between theory and observation is not significant and we do not reject the

null hypothesis, the Wright–Fisher model.

Answer 444 We search for Plin5 in both data sets:

grep Plin5 all_a.txt > plin5_a.txt
grep Plin5 all_b.txt > plin5_b.txt

Answer 445 This can be solved in various ways, including mental arithmetic, here is our

solution:

awk '{for(i=2;i<=NF;i++){s+=$i;c++}}END{print s/c}' plin5_a.txt
11.9303

and

awk '{for(i=2;i<=NF;i++){s+=$i;c++}}END{print s/c}' plin5_b.txt
12.947

Answer 446 We run the program

testMeans plin5_a.txt plin5_b.txt
Plin5 1.193e+01 1.295e+01 7.871e-03

The first two numbers are the averages we already computed, the third number is the P-

value, that is, the error probability when rejecting the null hypothesis that the difference

between the two samples is negligible. If we use the customary cutoff value of α = 0.05,

the difference is significant.

Answer 447 We aimed for very high precision and ran the Monte Carlo test with 106

iterations:

testMeans -t m -i 1000000 plin5_a.txt plin5_b.txt
Plin5 1.193e+01 1.295e+01 7.934e-03

This still varies between different runs, but it is quite close to the 7.871 × 10−3 computed

previously.

Answer 448 We simulate the data

simNorm -m 12 -i 100 > experiment1.txt
simNorm -m 12 -i 100 > experiment2.txt

8.1 Answers 281

Then we compute the P values and count the cases where P ≤ 0.05:

testMeans experiment1.txt experiment2.txt |
awk '{if($4<=0.05)print}' |
wc -l
6

In this case, the observed false-positive rate is 6/100 = 0.06. This is close to the expected

α = 0.05, but is bound to vary between runs.

Answer 449 We ran

simNorm -m 12 -i 10000 > experiment1.txt
simNorm -m 12 -i 10000 > experiment2.txt
testMeans experiment1.txt experiment2.txt |
awk '{if($4<=0.05)print}' | wc -l
462

So the observed false-positive rate is 462/10000 = 0.0462, which again is close to the

expected 0.05.

Answer 450 We compute

1 − (1 − 0.05)100 = 0.994;
that is to say, there is a 99.4% chance of getting at least one false-positive when carrying out

100 hypothesis tests with α = 0.05.

Answer 451 We use the same computation of the false-positive rate as before, except that

this time we divide α by 104:

testMeans experiment1.txt experiment2.txt |
awk '{if($4<=0.05/10000)print}' |
wc -l
0

In other words, after Bonferroni correction, we found not a single false-positive result, the

type I error was all but eliminated (again, your result may differ slightly). We know that all

samples were drawn from the same population, so this is the correct result.

Answer 452 Simulate the data

simNorm -m 6 -d 2.5 -i 10000 > experiment1.txt
simNorm -m 8 -d 2.5 -i 10000 > experiment2.txt

and determine the frequency with which the null hypothesis is not rejected:

testMeans experiment1.txt experiment2.txt |
awk '{if($4>0.05)print}' |
wc -l
6866

Since the samples were drawn from populations with different µ, every acceptance of the

null hypothesis is a false-negative result: β = 6866/10000 ≈ 0.68. In other words, the

false-negative rate is large if the difference in means, also called the “effect size”, is small.

282 8 Answers and Appendix: Unix Guide

Answer 453 Simulate the data

simNorm -m 6 -d 2.5 -i 10000 > experiment1.txt
simNorm -m 12 -d 2.5 -i 10000 > experiment2.txt

and again determine the frequency with which the null hypothesis is not rejected:

testMeans experiment1.txt experiment2.txt |
awk '{if($4 > 0.05)s++;c++}END{print "beta=" s/c}'
beta=0.0074

This means the false-negative rate drops dramatically when the effect size is increased.

Answer 454 Simulate the data

simNorm -m 6 -d 2.5 -i 10000 > experiment1.txt
simNorm -m 12 -d 3.5 -i 10000 > experiment2.txt

and compute the false-negative rate:

testMeans experiment1.txt experiment2.txt |
awk '{if($4 > 0.05)s++;c++}END{print "beta=" s/c}'
beta=0.0489

Answer 455 Apply the corrected α:

testMeans experiment1.txt experiment2.txt |
awk '{if($4 > 0.05/10000)s++;c++}END{print "beta=" s/c}'
beta=0.9811

This means, the Bonferroni correction leads to a large type II error rate and thereby obscures

almost entirely the true difference between the two sets of experiments.

Answer 456 As before we count the nonsignificant P values:

testMeans experiment1.txt experiment2.txt |
sort -g -k 4 |
awk '{if($4>c*0.05/10000)s++; c++}END{print "beta=" s/c}'
beta=0.0536

Here, the β is very close to δ = 0.05, as it should be.

Answer 457 Simulate the data

simNorm -i 10000 -m 6 -d 2.5 > experiment1.txt
simNorm -i 10000 -m 6 -d 2.5 > experiment2.txt

and analyze them as before

testMeans experiment1.txt experiment2.txt |
cut -f 4 |
sort -g |
awk 'BEGIN{m=10000;d=0.05}{if($1<=NR*d/m)print $1}' |
wc -l
0

The type I error seems to have been removed as thoroughly as with the Bonferroni correction,

but without the concomitant increase in type II error.

8.1 Answers 283

Answer 458 To test the effect of sample size, you could execute

bash sim.sh |
gnuplot -p plot.gp

where sim.sh is

for a in 2 5 10 20 50 100 200 500
do

echo -n $a ' '
simNorm -i 10000 -m 6 -d 2.5 -n $a > experiment1.txt
simNorm -i 10000 -m 7 -d 2.5 -n $a > experiment2.txt
testMeans experiment1.txt experiment2.txt |
cut -f 4 |
sort -g |
awk '{if($1<=NR*0.05/10000)c++}END{print 1-c/10000}'

done

and plot.gp

set xlabel "Sample Size (n)"
set ylabel "Type II Error (beta)"
plot "< cat" t "" w l

to get

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

T
y
p
e
 I
I
E

rr
o
r

(b
e
ta

)

Sample Size (n)

The type II error decreases dramatically with increasing sample size. We say the power of

the test grows. However, increasing the sample size beyond 20 does not improve its power

substantially any more.

Answer 459 To obtain the type II error as a function of sample size, execute

bash sim2.sh |
gnuplot -p plot2.gp

where sim2.sh is

284 8 Answers and Appendix: Unix Guide

for a in 2 5 10 20 50 100 200 500
do

echo -n $a ' '
simNorm -i 10000 -m 6 -d 2.5 -n $a > experiment1.txt
simNorm -i 10000 -m 7 -d 2.5 -n $a > experiment2.txt
testMeans experiment1.txt experiment2.txt |
cut -f 4 |
sort -g |
awk '{if($1<=NR*0.05/10000)c++}END{print 1-c/10000}'

done

and plot2.gp

set xlabel "Sample Size (n)"
set ylabel "Type II Error (beta)"
f(x)=0.05
plot "< cat" t "" w l, f(x) t "" w l

to get

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

T
y
p
e
 I
I
E

rr
o
r

(b
e
ta

)

Sample Size (n)

A sample size of n ≈ 200 is now needed to obtain β < 0.05.

Answer 460 The number of experiments is the number of rows in all_a.txt or

all_b.txt:

wc -l all_a.txt
25789 all_a.txt

The number of distinct genes is

cut -f 1 all_a.txt | sort | uniq | wc -l
14779

8.1 Answers 285

Answer 461

testMeans all_a.txt all_b.txt |
sort -k 4 -g |
awk 'BEGIN{m=25789;d=0.1}{if($4<=NR*d/m)print}' |
cut -f 1 |
sort |
uniq > genes.txt

The file genes.txt contains 209 distinct gene identifiers.

Answer 462 The highest red node is “Metabolic Process”. The underlying study is con-

cerned with the effect of fatty food on mice. Apparently, a change in food leads to a change

in metabolism, which makes sense.

Answer 463 Do not forget to construct the new directory RelationalDb to keep your

work on relational databases separate from the rest. The file fatty_food.sql contains

create table fatty_food(
Sym varchar(18),
M1 float,
M2 float,
M3 float,
M4 float,
M5 float,
M6 float,
M7 float,
M8 float,
primary key(Sym)

);

Notice that capital and lower case letters are not distinguished in SQL.

Answer 464 The file fatty_food.sql now contains

create table fatty_food(
Sym varchar(18),
M1 float,
M2 float,
M3 float,
M4 float,
M5 float,
M6 float,
M7 float,
M8 float,
primary key(Sym),
foreign key (Sym) references normal_food(Sym)

);

Answer 465 The following commands construct the database

sqlite3 mouseExpress.db
.read normal_food.sql
.read fatty_food.sql
.separator "\t"

286 8 Answers and Appendix: Unix Guide

.import normal_food.txt normal_food

.import fatty_food.txt fatty_food

Notice that normal_food needs to be filled before fatty_food; otherwise, the foreign

key constraint is violated.

Answer 466 Here is the required combination of insert, select, and delete com-

mands:

insert into normal_food
values('toy_gene2',17.1, 9.5, 27.7, 6.5, 24.1, 30.2,
30.6, 14.3);
select * from normal_food where sym like 'toy_gene2';
delete from normal_food where sym like 'toy_gene2';
select * from normal_food where sym like 'toy_gene2';

Answer 467 If we enter

insert into normal_food
values('Plin5',17.1, 9.5, 27.7, 6.5, 24.1, 30.2,
30.6, 14.3);
insert into fatty_food
values('Plin5',17.1, 9.5, 27.7, 6.5, 24.1, 30.2,
30.6, 14.3);

we get the error messages

Error: near line 1: UNIQUE constraint failed: normal_food.sym
Error: near line 4: UNIQUE constraint failed: fatty_food.sym

Answer 468 We type

insert into fatty_food
values ('toy_gene3',3.4, 8.0, 4.4, 26.7, 8.6, 26.6, 4.8, 20.5);

and get the error message

FOREIGN KEY constraint failed

as there is no entry for toy_gene3 in normal_food. If you do not get this error, you

probably did not enter

PRAGMA foreign_keys = ON;

in this database session.

Answer 469 We write

.read insert.sql

where insert.sql contains the same commands we entered interactively, and so we get

the same result.

To enter one value too may or too few, we can use

8.1 Answers 287

-- Insert too few values
insert into normal_food
values('toy_gene3',17.1, 9.5, 27.7, 6.5, 24.1, 30.2, 30.6);
-- Insert too many values
insert into normal_food
values('toy_gene3',17.1, 9.5, 27.7, 6.5, 24.1, 30.2, 30.6,

14.3, 16.7);

to trigger the error messages

Error: near line 2: table normal_food has 9 columns but 8
values were supplied

Error: near line 6: table normal_food has 9 columns but 10
values were supplied

Notice that comments are marked by -- in SQL.

Answer 470 Counting in SQL:

select count(*) from normal_food;
14779
select count(*) from fatty_food;
14779

Answer 471

select sym, (m1+m2+m3+m4+m5+m6+m7+m8)/8 from normal_food
limit 3;

Nppa 6.37625
Gm12689 6.791625
Hvcn1 6.951

Answer 472 Compute the maximum

select sym, max((m1+m2+m3+m4+m5+m6+m7+m8)/8) from normal_food;
Pigt 19.068

the minimum

select sym, min((m1+m2+m3+m4+m5+m6+m7+m8)/8) from normal_food;
Trpv3 5.817125

and, finally, the average

select avg((m1+m2+m3+m4+m5+m6+m7+m8)/8) from normal_food;
8.49976156201365

Answer 473 Compute the maximum

select sym, max((m1+m2+m3+m4+m5+m6+m7+m8)/8) from fatty_food;
Pigt 19.068

the minimum

select sym, min((m1+m2+m3+m4+m5+m6+m7+m8)/8) from fatty_food;
Trpv3 5.823

288 8 Answers and Appendix: Unix Guide

and the average

select avg((m1+m2+m3+m4+m5+m6+m7+m8)/8) from fatty_food;
8.50960544522628

Answer 474

select normal_food.sym,
(normal_food.m1 + normal_food.m2 +
normal_food.m3 + normal_food.m4 +
normal_food.m5 + normal_food.m6 +
normal_food.m7 + normal_food.m8) / 8,
(fatty_food.m1 + fatty_food.m2 +
fatty_food.m3 + fatty_food.m4 +
fatty_food.m5 + fatty_food.m6 +
fatty_food.m7 + fatty_food.m8) / 8

from normal_food join fatty_food using (sym);

During construction of this command, you might have restricted its output by adding

limit 10

at the end. However, for the next Problem we need the full output, so make sure join.sql
is saved as shown above.

Answer 475

sqlite3 mouseExpress.db < join.sql |
tr '|' '\t' |
awk -f fc.awk
Hsd3b5 1.3583

Write the AWK program fc.awk to find the gene with the largest fold change. where

fc.awk contains

BEGIN{
max = -1

}
{

if($2 > $3 && $3 > 0)
fc = $2 / $3

else if($2 > 0)
fc = $3 / $2

else
fc = -1

if(fc > max){
max = fc
sym = $1

}
}
END {

print sym, max
}

8.1 Answers 289

Answer 476

sqlite3 mouseExpress.db < join.sql | tr '|' '\t' > avg.txt

Answer 477 Here is our solution:

import java.sql.*;
public class MouseExpressDb2{

public static void main(String args[]){
String query = "select * from normal_food join

fatty_food using(sym)";
double fc, a1, a2, max;
String name = null;
try{

Class.forName("org.sqlite.JDBC");
Connection c = DriverManager.getConnection("jdbc:

sqlite:mouseExpress.db");
Statement stmt = c.createStatement();
ResultSet rs = stmt.executeQuery(query);
max = -1;
while(rs.next()){

a1 = a2 = 0.0;
for(int i=2;i<=9;i++){

a1 += rs.getFloat(i);
a2 += rs.getFloat(i+8);

}
a1 /= 8;
a2 /= 8;
if(a1 > a2 && a2 > 0)

fc = a1 / a2;
else if(a1 > 0)

fc = a2 / a1;
else

fc = -1;
if(fc > max){

max = fc;
name = rs.getString(1); // Access column #1,

i.e.sym, a string
}

}
System.out.printf("%s\t%.3f\n", name, max);

}catch(Exception e){
System.err.println(e.getClass().getName() + ": "

+ e.getMessage());
System.exit(0);

}
}

}

When we run this, we get the same result as with fc.awk

java -cp sqlite-jdbc-3.15.1.jar:. MouseExpressDb2
Hsd3b5 2.675

290 8 Answers and Appendix: Unix Guide

Answer 478 At the time of writing ENSEMBL consisted of

mysql -h ensembldb.ensembl.org -u anonymous -e "show databases" |

tail -n +2 |

wc -l

6346

Answer 479 At the time of writing the latest mouse core database in ENSEMBL was

mysql -h ensembldb.ensembl.org -u anonymous -e "show databases" |

grep mus_musculus_core |

tail -n 1

mus_musculus_core_88_38

Answer 480

mysql -h ensembldb.ensembl.org -u anonymous -D
mus_musculus_core_88_38 -e "show tables" |

tail -n +2 |
wc -l
73

Answer 481 Enter

mysql ... -e "describe seq_region"

To get

+-----------------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-----------------+------------------+------+-----+---------+----------------+

| seq_region_id | int(10) unsigned | NO | PRI | NULL | auto_increment |

| name | varchar(255) | NO | MUL | NULL | |

| coord_system_id | int(10) unsigned | NO | MUL | NULL | |

| length | int(10) unsigned | NO | | NULL | |

+-----------------+------------------+------+-----+---------+----------------+

In mysql, “attributes” are called “Field”, and hence the first column of this table is the one

most relevant for us.

Answer 482 We pipe the command given in the problem through

awk '{s+=$2}END{print s}'

to get a genome length of 2,725,521,370 bp.

8.1 Answers 291

Answer 483 The command

mysql ... -e "describe exon"

gives

+-------------------+----------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------------------+----------------------+------+-----+---------+----------------+

| exon_id | int(10) unsigned | NO | PRI | NULL | auto_increment |

| seq_region_id | int(10) unsigned | NO | MUL | NULL | |

| seq_region_start | int(10) unsigned | NO | | NULL | |

| seq_region_end | int(10) unsigned | NO | | NULL | |

| seq_region_strand | tinyint(2) | NO | | NULL | |

| phase | tinyint(2) | NO | | NULL | |

| end_phase | tinyint(2) | NO | | NULL | |

| is_current | tinyint(1) | NO | | 1 | |

| is_constitutive | tinyint(1) | NO | | 0 | |

| stable_id | varchar(128) | YES | MUL | NULL | |

| version | smallint(5) unsigned | YES | | NULL | |

| created_date | datetime | YES | | NULL | |

| modified_date | datetime | YES | | NULL | |

+-------------------+----------------------+------+-----+---------+----------------+

where again the first column contains the information we are looking for.

Answer 484 Compute the number of nucleotides contained in exons:

mysql ... -e "select sum(seq_region_end - seq_region_start + 1)
from exon"

+--+
| sum(seq_region_end - seq_region_start + 1) |
+--+
| 168950237 |
+--+

Then, divide this number by the total genome length

168, 950, 237

2, 725, 521, 370
× 100 ≈ 6.2%

6.2 % of the mouse genome is covered by exons.

Answer 485 For this, we need the attribute is_constitutive:

mysql ... -e "select sum(seq_region_end - seq_region_start + 1)
from exon where is_constitutive=1"

+--+
| sum(seq_region_end - seq_region_start + 1) |
+--+
| 38483186 |
+--+

Hence, 38, 483, 186/2, 725, 521, 370 × 100 ≈ 1.4% of the mouse genome is covered by

constitutive exons.

292 8 Answers and Appendix: Unix Guide

Answer 486 We use

select display_label, description
from xref
where display_label like 'Hsd3b5'

to learn that Hsd3b5 is a hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-

isomerase 5.

Answer 487 To find the stable_id of Hsd3b5, we can use

select display_label, gene.stable_id
from xref join gene on display_xref_id = xref_id
where display_label like 'Hsd3b5'

and get the gene ENSMUSG00000038092. All mouse genes have a stable_id of the

form ENSMUSG...

Answer 488 Join the gene and transcript tables via gene_id and filter for ENS-

MUSG00000038092:

select gene.stable_id, transcript.stable_id
from gene join transcript using(gene_id) where

gene.stable_id like 'ENSMUSG00000038092'

which gives ENSMUST00000044094, that is one transcript. All mouse transcripts have a

stable_id of the form ENSMUST... You might have been tempted to join the two

tables via stable_id, which is another attribute common to gene and transcript.

However, the stable_ids in gene have the format ENSMUSG..., while we already saw

that the stable_ids of transcripts are ENSMUST... Connecting the two tables is thus

only possible via gene_id.

8.2 Appendix: UNIX Guide

This is a brief summary of the most essential UNIX commands. It is meant to be

read next to a computer running the UNIX operating system, so that readers can

experiment. For further reading, we recommend the system’s online documentation

and [1].

8.2.1 File Editing

Of the many text editors available for UNIX systems, we recommend emacs, as

it comes with a standard graphical user interface for casual use. At the same time,

it is a powerful and versatile tool used by many IT professionals. As a result, it is

available on many systems. It is started by typing

emacs &

8.2 Appendix: UNIX Guide 293

This opens a window with standard menus running emacs. A new file is opened by

clicking on the corresponding icon. It is then edited using standard keyboard input

and mouse moves. In addition, emacs comes with a rich set of keyboard shortcuts,

called “key bindings”, making its use much more efficient than with these traditional

techniques. Table 8.1 lists the key bindings we use regularly in our own work. The

table also illustrates the principle of creating different versions of commands through

alternate use of the control key and the meta key. Commands referring to sentences

only work if a full stop is followed by at least two blanks. Two of these key combi-

nations are special: C-x and M-x. C-x is a prefix for other key combinations, and

we have listed the ones we find most useful in Table 8.2. M-x is also a prefix for

further commands, but these are called by extended names like calendar rather

than one or two characters. Again, Table 8.2 lists our favorites. The full list of key

bindings can be accessed by C-h b. The best place to start using the key bindings

is the “Emacs Tutorial” opened by C-h t.

8.2.2 Working with Files

The many things we need to do with text files on a regular basis include viewing

them, measuring their size, finding patterns in them, and so on. Table 8.3 lists some

of the commands to carry out these routine tasks. It is a good idea to learn at least

some of them by heart, as they are used constantly when working with the UNIX

command line.

UNIX commands tend to come with numerous options. These are documented in

the manual pages, which are accessed using the program man; for example,

man ls

This invokes a text viewer responsive to some of the same key bindings for cursor

movement as emacs, e.g., C-v to scroll down and M-v to scroll up. Inside man, h
invokes help and q quits.

8.2.3 Entering Commands Interactively

Any command entered at a command prompt is interpreted by a piece of software

called the “shell”, which runs inside a terminal window. There are different kinds of

shells and the command

echo $SHELL

returns the active shell. The following description applies to the bash shell. If it is

not already running, it can be started by entering

bash

294 8 Answers and Appendix: Unix Guide

Table 8.1 Paired emacs key bindings (shortcuts)

Key Binding Key Binding

C-a Move to beginning of line M-a Move to beginning of sentence

C-b Move backward one character M-b Move backward one word

C-d Delete character M-d Delete word to the right

— — M-BACKSP Delete word to the left

C-e Move to end of line M-e Move to end of sentence

C-f Forward one character M-f Forward one word

C-g Keyboard quit — —

C-h Help M-h Mark paragraph

C-k Delete line M-k Delete sentence

C-l Center buffer on current line M-l Lower case word

C-n Next line — —

C-p Previous line — —

— — M-q Layout paragraph

C-r Search backward M-r Move to top/bottom of window

C-s Search forward — —

C-t Transpose characters M-t Transpose words

— — M-u Upper case word

C-v Scroll up M-v Scroll down

C-w Delete selection M-w Copy selection

C-x Command prefix (Table 8.2) M-x Execute extended command

(Table 8.2)

C-y Paste — —

C-z Suspend frame M-z Delete to character

C-_ Undo — —

C-SPC Set mark — —

C-+ Increase font size — —

C– Decrease font size — —

— — M-< Move to beginning of buffer

— — M-> Move to end of buffer

The command line completes prefixes of commands and file names in response to

pressing TAB once if the prefix is unique. Otherwise, by pressing TAB a second time,

the list of possible completions is presented. The most effective way of interacting

with the command line is to let the autocompletion do as much work as possible

by carefully mixing typing and tabbing. With a little practice this becomes second

nature.

Like man, the shell is responsive to the same basic key bindings as emacs, which

is an added benefit from learning them.

8.2 Appendix: UNIX Guide 295

Table 8.2 A selection of frequently used composite commands in emacs

Key Binding

C-x b Switch buffer

C-x k Kill buffer

C-x o Switch to other buffer

C-x C-c Quit

C-x C-f Find file

C-x C-s Save buffer

C-x C-w Write file

C-M-\ Indent region

M-x g Go to line

M-x help Start help menu

M-x shell Run shell in emacs buffer

M-x count-words Count lines, words, and characters

M-x rename-buffer Rename the current buffer

M-x calendar Start calendar

8.2.4 Combining Commands: Pipes

UNIX commands such as those listed in Table 8.3 can be combined into programs by

using the output from one command as the input for another. To do this, individual

commands are combined via pipes denoted by a vertical line, “|”. For example, to

count the number of files,

ls | wc -l

where the output of ls is the input of wc.

The shell can also expand file names. Hence,

ls *.txt | wc -l

returns the number of files in the working directory that end in .txt.

8.2.5 Redirecting Output

By default, the result of a command is printed to the screen standard output stream

called stdout. This usually corresponds to the screen. Output can be redirected to a

file by writing, for example,

ls > tmp

which creates the file tmp (check using ls) and writes the results of the command

ls into it (check using cat tmp). The simple redirection command, >, overwrites

296 8 Answers and Appendix: Unix Guide

Table 8.3 Commands for working with files

Command Explanation

cat Print (conCATenate) to screen

-n Print numbered lines

-b Print non-blank lines

-s Squeeze blank lines

cp file1 file2 Copy file1 to file2, overwrite old file2 if it exists

cp file1 file2 toDir Copy file1 and file2 to directory toDir

cut -f n Cut the nth field

diff fromFile toFile Find differences between fromFile and toFile

grep pattern Print lines matching pattern

-v Print lines not matching

-A n Print matching lines and n lines after

-B n Print matching lines and n lines before

head filename Print first 10 lines of file

-n n Print first n lines

join file1 file2 Join two sorted files on 1st column

less Pager for viewing text

ls List names of all files in current directory

-l Long listing for more information

-r List in reverse order

-t List in time order, most recent first

-u List by time last used

mv file1 file2 Move file1 to file2, overwrite old file2 if it exists

rm filenames Remove named files, irrevocably

-r Remove recursively directories and their contents

rmdir directory Remove named directory

sort Sort files alphabetically by line

-n Sort numerically

-k n Sort by column n

-r Reverse sort

-R Randomize

tac Reverse lines of named files

tail Print last 10 lines of file

-n Print last n lines

+n n Start printing file at line n

uniq filenames Filter out repeated lines in sorted input

-c Count repeated lines

-d Print duplicated lines

-u Print unique lines

wc Count lines, words, and characters

-l Count lines

-L Return length of the longest line

8.2 Appendix: UNIX Guide 297

the original content of the target file. The variant >> appends to whatever is already

in the file:

ls >> tmp

The redirection can also go the other way:

cat < tmp

This writes the contents of tmp to the standard input, from where they can be read

by cat.

8.2.6 Shell Scripts

Any command entered on the command line can also be submitted to the system

from a text file called a “shell script”. Suppose the file ls.sh contains a single line,

ls

This can be executed by passing it to the bash:

bash ls.sh

Alternatively, ls.sh can be made executable

chmod +x ls.sh

and then run

./ls.sh

Shell scripts can contain do loops and conditional statements. Say, a set

of sequence files with names of the form fileName.txt need changing to

fileName.fasta. This script generates ten example files:

for f in 1 2 3 4 5 6 7 8 9 10
do

echo '>s'${f} > s${f}.txt
echo 'ACCGT' >> s${f}.txt

done

The variable f takes the values of the list to the right of in. The value of f is

referenced by writing it in curly brackets and prefixing it with $. The command

echo prints its argument. These files are in fasta format, a header line starting with

> followed by one or more lines of sequence data.

Instead of explicitly specifying a sequence of numbers, seq can be used:

for f in $(seq 10)

298 8 Answers and Appendix: Unix Guide

To change the file extensions from .txt to .fasta, we construct the script

rename.sh, which allows us to write

bash rename.sh *.txt

where rename.sh is

for f in $@
do

mv ${f} ${f%txt}fasta
done

Notice the for-construct:

for f in $@

which loops over every argument on the command line, in our case all files ending

with .txt. Further, in the construct

${f%txt}fasta

the suffix txt of the file name is deleted with the % operator and then replaced by

fasta.

8.2.7 Directories

Directories may contain files and other directories. The UNIX file system is thus

hierarchical and can be depicted as a tree of directories. Figure 8.1 shows a portion

of this tree. There are three special types of directories:

1. Root directory: The most basic directory situated at the root of the file system

(Fig. 8.1). Its name is /
2. Home directory: The directory accessed after logging in. It is the only directory

in which a user can create files and directories.

3. Working directory: The directory a user is currently working in.

The full name of a directory such as

/home/tom

is known as its path. A forward slash (/) can therefore either refer to the root directory

or function as a delimiter of directory names. A variation of the name of the root

directory, ˜/, refers to the user’s home directory. Table 8.4 summarizes the essential

commands for working with directories.

8.2 Appendix: UNIX Guide 299

Fig. 8.1 A sample of the directories that make up a typical UNIX file system

Table 8.4 Commands for working with UNIX directories

Command Explanation

pwd Print working directory

cd Return to home directory

cd directoryname Change to the named directory

cd .. Move up one level in the file system

mkdir directoryname Make the named directory

rmdir directoryname Remove the named directory

Fig. 8.2 Sample data contained in the file data.dat

8.2.8 Filters

Programs for filtering textual data are the bread and butter of practical bioinformatics.

The following sections introduce four of the most popular filters: grep, tr, sed,

and awk. All three make use of a common notation for specifying patterns in strings.

Such patterns are called “regular expressions”. We give examples of them when

dealing with the individual filters and explain them in more detail afterward.

grep

Consider the data shown in Fig. 8.2, and say we wanted to extract all lines matching

11. The command

300 8 Answers and Appendix: Unix Guide

man ls

where data.dat contains the listing in Fig. 8.2 would return

b 11
e 11

With -v the lines not matching are printed:

grep -v 11 data.dat
a 10
c 12
d 15

Grep can also be used to search for more complex patterns specified as regular

expressions. For example, [25] matches “2” or “5”:

grep [25] data.dat
c 12
d 15

tr

The program tr is used to translate or delete characters. For example, the command

tr -d '\n' < data.dat

removes all line breaks. Notice that unlike many UNIX tools, tr does not take file

names as arguments. Hence, the < notation for reading from data.dat. Alterna-

tively, we could have written

cat data.dat | tr -d '\n'

To “translate” tabulators into newlines, we enter

tr '\t' '\n' < data.dat

Or to convert the line labels to upper case, we can write

tr a-z A-Z < data.dat

where a-z is a character range indicating any lower case letter. Number ranges are

coded similarly, which would allow us to express numbers as characters:

tr 0-9 a-z < data.dat

A biologically more relevant translation would be to encode A or G as purine (R) and

C or T as pyrimidine (Y):

echo ACGT | tr AG R | tr CT Y

8.2 Appendix: UNIX Guide 301

sed

Emacs is an interactive editor. In contrast, sed is a noninteractive, “stream” editor.

Perhaps, its simplest operation is to delete a single line, say the second line:

sed '2d' data.dat

Instead of deleting the second line, it can be printed

sed '2p' data.dat

By default sed applies its pattern to every line it encounters and prints all other lines

unchanged. So in the previous example, the line

b 11

was printed twice. The option -n restricts the output to the matching lines:

sed -n '2p' data.dat

It is also possible to print line ranges:

sed -n '2,4p' data.dat

A replacement for head would be

sed -n '1,10p' data.dat

Like directories in paths, regular expressions are delineated by pairs of /

sed '/b/p' data.dat

So

sed -n '/b/p' data.dat

is an alternative to

grep b data.dat

The complement version of grep,

grep -v b data.dat

becomes in sed

sed '/b/d' data.dat

Apart from the print and delete operations, which in practice are often dealt with

using grep, sed can carry out substitutions, which are beyond the capabilities of

grep; for example,

sed 's/1/9/' data.dat

substitutes the first occurrence of a “1” by a “9” in each line. The global version of

this command replaces all occurrences of “1” by “9”,

sed 's/1/9/g' data.dat

302 8 Answers and Appendix: Unix Guide

The regular expression first encountered with grep, [25], which specifies 2 or 5,

can also be used in a substitution

sed 's/[25]/X/g' data.dat

AWK

AWK mixes a programming language with the line- and pattern-based paradigm of

grep and sed. The following exposition is adapted from the original description

of the language by its authors [4, Appendix A]. An AWK program is executed as

awk 'program' <file>

or

awk -f program.awk <file>

Each program has the structure

pattern {action}

The pattern is evaluated for each input line and if true, the statements in the

action block are executed. Table 8.5 lists the most common patterns. Expressions

and regular expressions can be combined with the logical operators && (and), ||
(or), and ! (not). Actions are specified through sequences of statements, some of

which are listed in Table 8.6.

Statements are separated by newlines or semicolons; lines starting with # are

comments. The most common input and output functions are listed in Table 8.7. One

of these, printf, produces formatted output. Formatting is done via the format

conversion commands listed in Table 8.8. Apart from printf, which prints to the

screen (stdout), these are also recognized by sprintf, which prints to a string.

AWK has a number of built-in variables (Table 8.9). Of these, NF, the number of

fields is particularly useful, as it allows traversal of all fields in a line, as in

for(i=1; i<=NF; i++)
print $i

Table 8.5 Patterns in AWK

Pattern Meaning

BEGIN True before any input lines are processed

END True after all input lines have been processed

Expression Any expression in the AWK language

/regular expression/ True if matched

Pattern, pattern Pattern range; true if in range

8.2 Appendix: UNIX Guide 303

Table 8.6 AWK actions

Action Meaning

delete array element Delete specific entry from an array

exit Terminate program

if(expression) statement [else statement] Conditional execution

input–output statement See Table 8.7

for(expression; expression; expression) state-

ment

Repeat a fixed number of times

for(variable in variable) statement Iterate over the keys of a hash

while(expression) statement Execute while true

{statement} Statements are grouped by curly brackets

Table 8.7 Input and output in AWK

Action Meaning

close(fileOrPipe) Close file or pipe

command | getline Pipe into getline

print Print current line

printf fmt, expr-list Print formatted output

system(cmd) Send cmd to the shell for execution

Table 8.8 Formatting for printf and sprintf

Command Meaning

%c Character

%d Decimal number

%e Engineering convention, [-]d.dddddde[-+]dd

%f Floating point number, [-]d.dddddd

%g General: %d, %f, or %e, whichever is shorter

%s String

Table 8.9 AWK built-in variables

Variable Meaning

ARGC Number of arguments on command line

ARGV Array of arguments on command line, ARGV[0..ARGC-1]

FILENAME Name of current input file

FS Field separator

NF Number of fields in current line

NR Number of records (= lines)

304 8 Answers and Appendix: Unix Guide

Table 8.10 AWK string manipulation functions; s and t : strings, r : regular expression, i and n:

integers

Function Meaning

gsub(r, s, t) Globally substitute r by s in t

index(s, t) Return first starting position of t in s or 0 for no match

length(s) Return length of s

match(s, r) Return first starting position of r in s or 0 for no match

split(s, a, f) Split s on f into fields saved in a, return number of fields; if f is

omitted, use FS

sprintf(fmt, expr-list) Return expr-list as a string formatted according to fmt

sub(r, s, t) Like gsub, except that only first occurrence of r in t is replaced by

s

substr(s, i, n) Return n-char substring starting at i ; if n is omitted, return suffix

starting at i

Table 8.11 The arithmetic functions of AWK

Function Meaning

cos(x) cos(x)

exp(x) ex

int(x) Truncate x to integer

log(x) Natural logarithm

rand() Random number, r, 0 ≤ r < 1

sin(x) sin(x)

sqrt(x)
√

x

srand(x) Seed the random number generator with x ; otherwise, x = current second

AWK is designed for manipulating strings and Table 8.10 lists its built-in string

functions. Of these, sprintf has already been mentioned as allowing formatting.

AWK provides a selection of arithmetic functions, which are listed in Table 8.11.

Expressions are combined using the operators in Table 8.12. Perhaps, the most

obscure—but in practice very useful—is string concatenation, which takes no explicit

operator. For example, the code

a = "bio" # assignment
b = "informatics" # assignment
c = a b # concatenation & assignment
print c

would print bioinformatics.

To conclude this brief exposition of AWK, we give a few examples. Consider

again our sample data in Fig. 8.2. Print the second column:

awk '{printf "%d\n", $2 }' data.dat

8.2 Appendix: UNIX Guide 305

Table 8.12 AWK operators

Operators Meaning

= += -= *= /= %= ˆ= Assignment

?: Conditional expression

|| OR

&& AND

in Key in hash

˜ !˜ Regular expression match and its negation

< <= > >= != == Comparisons

String concatenation without explicit operator

+ - Addition, subtraction

* /% Multiplication, division, modulo

! NOT

ˆ To the power of

++ – Increment, decrement, can be used in prefix

and postfix notation

$ field (column)

which replicates the command

cut -f 2 data.dat

However, in contrast to cut, AWK can also manipulate the input data. For instance,

it can sum over the entries in the second column:

awk '{s += $2}END{printf "sum: %d\n", s}' data.dat

And their average is computed as

awk '{c++; s += $2}END{printf "avg: %g\n", s/c}' data.dat

AWK arrays behave like hash tables with strings or numbers as keys. In order to

compute the occurrence of distinct numbers in the second column of the input data

file, write

awk '{s[$2]++}END{for(a in s)printf "%d\t%d\n", a, s[a]}'
data.dat

As a final example, consider

awk '/[25]/{print}' data.dat

as a replacement for our first example of a regular expression in grep,

grep [25] data.dat

Like the rest of UNIX, awk is described in its man pages. In addition, we have

learned the language from the introduction by its authors, which is a model of clarity

and usefulness [4].

306 8 Answers and Appendix: Unix Guide

8.2.9 Regular Expressions

The expression [25] we just used is an example of a regular expression, a notation

for sets of strings; in this case, the set comprises the members “2” and “5”. Another

example is the dot (.), which matches any character, and hence refers to the set of

all strings length one. As a rule, everything is text in UNIX, and as a consequence,

regular expressions are used in many UNIX programs, not just the three examples

we saw above, grep, sed, and AWK, but also in emacs and the shell. Knowing

about regular expressions is thus very useful when working on UNIX systems.

There are three variants of regular expressions: regular, extended, and PERL (an-

other programming language). In the following, we refer to the extended syntax,

which is invoked by the -E switch in grep and the -r switch in sed. AWK regular

expressions are by default of the extended kind. The sections “REGULAR EXPRES-

SIONS” in the man page for grep and “Regular Expressions” in the AWK man
page contain more detail.

Character Classes

Character classes are written in square brackets. For example, [ab] matches either

an a or a b. The complement of a character class is[ˆab], which matches anything

but a or b. Some character classes are used so frequently; there is a standardized

notation for referring to them. We list six such classes in Table 8.13. To find out how,

say, the character class “digit” works, try

sed 's/[[:digit:]]/x/g' data.dat

Quantifiers

There are four different types of quantifiers in regular expressions (Table 8.14). They

are all known as greedy, which means they maximize the number of matches. For

Table 8.13 Regular expression character classes

Class Meaning Code

[:alpha:] Letters [A-Za-z]

[:digit:] Digits [0-9]

[:space:] Whitespace characters [t n r f v]

[:cntrl:] Control characters —

[:graph:] Graphic characters [ˆ[:cntrl:]]

[:print:] Printing characters [[:graph]]

8.2 Appendix: UNIX Guide 307

Table 8.14 Quantifiers in regular expressions

Number of matches (x) Expression

x ≥ 0 *

x ≥ 1 +

m ≤ x ≤ n {m,n}

m ≤ x {m,}

Table 8.15 Anchors in regular expressions

Expression Explanation

\ b Word boundary

ˆ Beginning of line (except when used inside a character class)

$ End of line

example, the expression .* would match the entire line of text rather than stopping

at the beginning of the line upon encountering the first “match”.

Anchors

Anchors allow a position within a string to be referenced, and Table 8.15 lists the

three most important ones.

Backreferences

Assigning values to variables is one of the most important operations in tradi-

tional programming languages. In regular expressions, backreferences provide an

analogous mechanism, of which there are two kinds, depending on where the refer-

encing is done:

• Inside regular expressions: \n, where 1 ≤ n ≤ ∞;

• Outside of regular expressions: $n, where 1 ≤ n ≤ ∞.

For example, to substitute any pair of identical digits by just a single occurrence of

that digit, sed could be used:

sed -E 's/([0-9])(\1)/\1/g' data.dat

426995_1_En_8_Chapter.toc

Erratum to: Bioinformatics

for Evolutionary Biologists

Erratum to:

B. Haubold and A. Börsch-Haubold,

Bioinformatics for Evolutionary Biologists,

https://doi.org/10.1007/978-3-319-67395-0

The “Answers” and “Appendix: Unix Guide” have been reissued as last chapter of

the book. Both the sections were previously listed as backmatter. No content within

the chapter has been changed.

The updated online version of this book can be found at
https://doi.org/10.1007/978-3-319-67395-0

© Springer International Publishing AG 2018

B. Haubold and A. Börsch-Haubold, Bioinformatics

for Evolutionary Biologists, https://doi.org/10.1007/978-3-319-67395-0_9

E1

http://dx.doi.org/10.1007/978-3-319-67395-0
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-67395-0_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-67395-0_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-67395-0_9&domain=pdf
http://dx.doi.org/10.1007/978-3-319-67395-0

References

1. Abrahams, P.W., Larson, B.R.: UNIX for the Impatient, 2nd edn. Addison-Wesley (1996)

2. Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows-Wheeler Transform:: Data Compression,

Suffix Arrays, and Pattern Matching. Springer (2008)

3. Aho, A., Corasick, M.: Efficient string matching: an aid to bibliographic search. Commun.

ACM 18, 333–340 (1975)

4. Aho, A.V., Kernighan, B.W., Weinberger, P.J.: The AWK Programming Language. Addison-

Wesley, Reading, MA (1988)

5. Aken, B.L., Achuthan, P., Akanni, W., Amode, M.R., Bernsdorff, F., Bhai, J., Billis, K.,

Carvalho-Silva, D., Cummins, C., Clapham, P., Gil, L., Girn, C.G., Gordon, L., Hourlier,

T., Hunt, S.E., Janacek, S.H., Juettemann, T., Keenan, S., Laird, M.R., Lavidas, I., Maurel, T.,

McLaren, W., Moore, B., Murphy, D.N., Nag, R., Newman, V., Nuhn, M., Ong, C.K., Parker,

A., Patricio, M., Riat, H.S., Sheppard, D., Sparrow, H., Taylor, K., Thormann, A., Vullo, A.,

Walts, B., Wilder, S.P., Zadissa, A., Kostadima, M., Martin, F.J., Muffato, M., Perry, E., Ruffi-

er, M., Staines, D.M., Trevanion, S.J., Cunningham, F., Yates, A., Zerbino, D.R., Flicek, P.:

Ensembl 2017. Nucl. Acids Res. 45(D1), D635 (2017)

6. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search

tool. J. Mol. Biol. 215, 403–410 (1990)

7. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.:

Gapped blast and psi-blast: a new generation of protein database search programs. Nucl. Acids

Res. 25, 3389–3402 (1997)

8. Baeza-Yates, R.A., Perleberg, C.H.: Fast and practical approximate string matching. Proceed-

ings 3rd Symposium on Combinatorial Pattern Matching. Springer Lecture Notes in Computer

Science, vol. 644, pp. 185–192. Springer, New York (1992)

9. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful

approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995)

10. Börsch-Haubold, A.G., Montero, I., Konrad, K., Haubold, B.: Genome-wide quantitative anal-

ysis of histone H3 lysine 4 trimethylation in wild house mouse liver: environmental change

causes epigenetic plasticity. PlosOne 9, e97,568 (2014)

11. Buck, L., Axel, R.: A novel multigene family may encode odorant receptors: a molecular basis

for odor recognition. Cell 65, 175–187 (1991)

12. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Technical

Report 124, Digital Equipment Corporation, Palo Alto, California (1994)

13. Chang, J.T.: Recent common ancestors of all present-day individuals. Adv. Appl. Probab. 31,

1002–1026 (1999)

14. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in proteins.

In: M.O. Dayhoff (ed.) Atlas of Protein Sequence and Structure, vol. 5/suppl.3, pp. 345–352.

National Biomedical Research Foundation, Washington DC (1978)

© Springer International Publishing AG 2017

B. Haubold and A. Börsch-Haubold, Bioinformatics

for Evolutionary Biologists, https://doi.org/10.1007/978-3-319-67395-0

309

310 References

15. Delcher, A.L., Kasti, S., Fleischmann, R.D., Peterson, J., White, O., Salzberg, S.L.: Alignment

of whole genomes. Nucl. Acids Res. 27, 2369–2376 (1999)

16. Farris, J.S.: Estimating phylogenetic trees from distance matrices. Am. Nat. 106, 645–668

(1972)

17. Felsenstein, J.: Inferring Phylogenies. Sinauer, Sunderland (2004)

18. Gau, J., Watabe, H., Aotsuka, T., Pang, J., Zhang, Y.: Molecular phylogeny of the Drosophila

obscura species group, with emphasis on the old world species. BMC Molecular. Evol. Biol.

7, 87 (2007)

19. Gibbs, A.J., McIntyre, G.A.: The diagram, a method for comparing sequences; its use with

amino acid and nucleotide sequences. Eur. J. Biochem. 16, 1–11 (1970)

20. Gupta, S.K., Kececioglu, J.D., Schäffer, A.A.: Improving the practical space and time efficiency

of the shortest-path approach to sum-of-pairs multiple sequence alignment. J. Comput. Biol.

2, 459–472 (1995)

21. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-

tional Biology. Cambridge University Press, Cambridge (1997)

22. Haig, D., Hurst, L.D.: A quantitative measure of error minimization in the genetic code. J. Mol.

Evol. 33, 412–417 (1991)

23. Haubold, B., Klötzl, F., Pfaffelhuber, P.: andi: Fast and accurate estimation of evolutionary

distances between closely related genomes. Bioinformatics 31, 1169–75 (2015)

24. Haubold, B., Wiehe, T.: Introduction to Computational Biology: An Evolutionary Approach.

Birkhäuser, Basel (2006)

25. Hudson, R.R.: Generating samples under a Wright-Fisher neutral model of genetic variation.

Bioinformatics 18, 337–338 (2002)

26. Jukes, T.H., Cantor, C.R.: Evolution of protein molecules. In: Munro, H.N. (ed.) Mammalian

Protein Metabolism, vol. 3, pp. 21–132. Academic Press, New York (1969)

27. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-prefix

computation in suffix arrays and its applications. LNCS 2089, 181–192 (2001)

28. Knuth, D.E.: The TEXbook. Addison-Wesley, Reading, Massachusetts (1994)

29. Kurtz, S., Phillippy, A., Delcher, A., Smoot, M., Shumway, M., Antonescu, C., Salzberg, S.:

Versatile and open software for comparing large genomes. Genome Biol. 5(2), R12 (2004)

30. Lamport, L.: A Document Preparation System: LATEX, 2nd edn. Addison-Wesley, Boston

(1994)

31. Lee, H., Popodi, E., Tang, H., Foster, P.L.: Rate and molecular spectrum of spontaneous mu-

tations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc.

Natl. Acad. Sci. USA 109, E2774–83 (2012)

32. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEE Trans. Inf. Theory IT-22, 75–81

(1976)

33. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler transform.

Bioinformatics 25, 1754–1760 (2009)

34. Lipman, D.J., Altschul, S.F., Kececioglu, J.D.: A tool for multiple sequence alignment. Proc.

Natl. Acad. Sci. USA 86, 4412–4415 (1989)

35. Lynch, M.: The Origins of Genome Architecture. Sinauer, Sunderland (2007)

36. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches. SIAM J.

Comput. 22, 935–948 (1993)

37. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in

the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970)

38. Ohlebusch, E.: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and

Phylogenetic Reconstruction. Enno Ohlebusch, Ulm (2013)

39. Plank, L.D., Harvey, J.D.: Generation time statistics of Escherichia coli B measured by syn-

chronous culture techniques. J. Gen. Microbiol. 115, 69–77 (1979)

40. Rice, W.R.: Analyzing tables of statistical tests. Evolution 43, 223–225 (1989)

41. Rohde, D.L.T., Olson, S., Chang, J.T.: Modelling the recent common ancestry of all living

humans. Nature 431, 562–566 (2004)

References 311

42. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylgenetic

trees. Mol. Biol. Evol. 4, 406–425 (1987)

43. Sanger, F., Coulson, A.R., Hong, G.F., Hill, D.F., Petersen, G.B.: Nucleotide sequence of

bacteriophage λ DNA. J. Mol. Biol. 162, 729–773 (1982)

44. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol.

147, 195–197 (1981)

45. Student: The probable error of a mean. Biometrica 6, 1–25 (1908)

46. Swofford, D.L., Olsen, G.J., Waddell, P.J., Hillis, D.M.: Phylogenetic inference. In: Hillis,

D.M., Craig, M., Marble, B.K. (eds.) Molecular Systematics, 2nd edn, pp. 407–514. Sinauer,

Sunderland (1996)

47. The Gene Ontology consortium: Gene ontology: tool for the unification of biology. Nature

Genetics 25, 25–29 (2000)

48. Ukkonen, E.: On-line construction of suffix-trees. Algorithmica 14, 249–260 (1995)

49. Wakeley, J.: Coalescent Theory: An Introduction. Roberts & Company, Colorado (2009)

50. Watterson, G.A.: On the number of segregating sites in genetical models without recombination.

Theor. Popul. Biol. 7, 256–276 (1975)

51. Wikipedia: Observable universe (2016). http://en.wikipedia.org/wiki/Observable_universe

http://en.wikipedia.org/wiki/Observable_universe

Index

Symbols

<, 9, 295

>, 9, 90, 297

>&, 50

>>, 176, 295

*, 2

&, 10

|, 297

A

ABC transporters, 92–94, 244, 245

Adh/Adh-dup, 36, 37, 41, 43, 72, 76, 97, 172,

174, 175, 177, 181

age of duplication, 44–45, 186

Alcohol dehydrogenase, 36, 60

Alignment, 24

and dot plot, 38, 179

compare score schemes, 75

dynamic programming, 40, 214

fast global, 83–85, 228–234

fast local, 72–78, 210–221

gap score, 25, 40, 41, 180

global, 23, 38–41, 43, 179, 180

global/local, 72

glocal, 207

heuristic, 74, 83, 95

k-error, 69–72, 206–209

local, 38, 42, 179, 181–183

match score, 40

mismatch score, 40

multiple, see separate entry

number of alignments, 32–34, 168–171

optimal, 38–42, 74, 179–183

overlap, 79, 80, 221, 222

pairwise, 23

random, 43, 183, 184

score, 25, 31, 43, 183, 184

score scheme, 74

ungapped, 73, 210

Alleles, 23

α-hemoglobin, 96

Amino acids, 25–32

conservation of pairs, 26

distances, 27, 29

frequencies, 32

mismatched, 31, 161, 164

most frequent, 31

polarity, 27, 28

side chains, 27, 28

Amino acids conservation of pairs, 31

Ancestors, 113

andi, 106, 108

apt, 8, 9

Array, see awk

awk, 14, 17–21, 48, 49, 60, 151–155, 302–

306

action block, 18

actions, 302

arithmetic functions, 304

array, 19

BEGIN, 21

built-in variables, 303

END, 19

for loop, 19

formatting for printf, 303

hash, 21

input/output, 303

operators, 304, 305

patterns, 18, 302

print column, 17

string manipulation, 304

© Springer International Publishing AG 2017

B. Haubold and A. Börsch-Haubold, Bioinformatics

for Evolutionary Biologists, https://doi.org/10.1007/978-3-319-67395-0

313

314 Index

B

bash, 2, 6, 14, 211, 297

as calculator, 6

autocompletion, 2, 3

.bashrc, 11

cursor moves, 5

loops, 14, 15, 74, 297

scripts, 14, 297

text replacement, 298

bc, 235

Benjamini–Hochberg correction, 130

β-hemoglobin, 96

Big-O notation, 47

Binary search, 75, 214, 215

BLAST, 72, 88, 90

algorithm, 73

all-against-all, 89, 238

blastn mode, 75, 78, 215

blastn-short mode, 86, 235

database, 78

E-value, 77, 78, 220

extension strategy, 214

megablast mode, 75, 78, 215

position-specific iterated, 93, 245–247

reciprocal hits, 88

run time, 235

score, 76

score distribution, 77, 218

sensitivity, 75, 212, 213, 215, 216

significance, 77, 220

simple, 73–74

tabular result, 239

word list, 73

word size, 75

blast2dot.awk, 89

blastn, 73, 75–77, 214, 216, 238

blastp, 89, 90, 248

Bonferroni correction, 130

Book website , vi

brew, 8, 10

Burrows–Wheeler transform, 86

bwa, 86, 87, 236, 237

BWT, 63, 66, 206

bwt, 63, 64, 206

bzip2, 63, 67

C

cat, 8, 9, 31, 296

cchar, 35, 207

cd, 2, 3, 299

Chaperones, 239

chmod, 8, 13

clustal2, see clustalw

circo, 89, 92, 241, 243

clustalw, 95, 97, 98, 251

clustDist, 106, 107, 111

Coalescent, 121–126, 275–280

algorithm, 124

coalescence event, 121

construction, 121, 123, 276

mutations, 124, 277

population size, 122

print tree, 125

sample size, 122

segregating sites, 125

simulations, 125, 126, 278

time intervals, 122

time to the most recent common ancestor,

122, 276

coalescent.awk, 121, 125

Codd, E. F., 131

Coding sequence (CDS), 158, 178

Codon, 158

Command line, 2

Complexity, 66, 205

Compressibility, 63, 66

Contig, 81, 82, 224

cp, 296, 299

cut, 8, 9, 296

cutSeq, 38, 206, 209

D

Darwin, C., 101

Database client, 132

Database server, 132

Deletion, 24, 156

de novo sequencing, 86

D. guanche, 36

diff, 71, 149, 296

Directories, 7, 11, 290

Distance matrix, 96, 109, 261

Divergence time, 43, 45

D. melanogaster, 36, 71, 172

dnaDist, 106

Dot plot, 34–38, 172–178

and alignment, 38, 179

duplication, 172

repeat length, 36, 174

size, 35

dotPlotFilter.awk, 35, 36

drawGenealogy, 113, 115

drawGenes, 8, 10

drawStrees, 84

drawWrightFisher, 113, 117

Index 315

du, 63, 206

dvips, 53

E

echo, 6, 25

E. coli, 83, 85

divergence time, 234

emacs, 8, 9, 293

Enhanced suffix array, 58

ENSEMBL, 131, 132, 137–138, 290–292

Entity-relation model, 132, 133

Exact matching problem, 47

Example data, 8

F

Factorial, 159

False discovery rate, 127, 130

False-negative rate, 127, 129, 130, 281, 282

False-positive rate, 127–129, 281

FASTA format, 21

fasta2tab.awk, 95, 99

File permissions, 7, 12

Files, 293

File system, 7, 299

find, 8, 11

Fisher, R. A., 115

fold, 48, 49, 188

G

gal, 23, 25, 41, 70, 72, 180, 206, 209

gd, 106, 107, 261

GenBank, 37

genCode, 26, 29, 160

Genealogy, 113, 115, 116, 270

bi-parental, 113–115, 268–271

uni-parental, 113, 115, 271

universal ancestors, 115, 270

Gene duplication, 35, 88

Gene families, 88

Gene ontology, 127, 130, 131

Genetic code, 26–28

Genome assembly, 79, 81, 82, 84, 224, 226

genTree, 101, 104, 256

getSeq, 89, 96

gnuplot, 8, 12, 27, 34, 145, 211, 215

Gosset, W. S., 127

Graphical user interfaces, 1

Great apes, 107

grep, 8, 9, 16, 296, 300

gv, 48, 53

Gyrase, 17

gzip, 63, 66, 67

H

Hamlet, 64, 71

Hash, 14

head, 8, 9, 296

Hemoglobin, 99

histogram, 26, 27

history, 4

Hominidae, 107, 108, 260, 261, 263

Homology, 23, 36, 43, 72

Hyper-cube, 95

I

Insertion, 24, 156, 248

Interactive editor, see emacs

Inverse suffix array, 58

J

Java, 132, 136

java, 136

javac, 136

JDBC, 137

join, 296

K

kerror, 70–72, 74, 207, 209

k-error alignment, 70

keywordMatcher, 48, 51, 190–192, 206,

207

Keyword tree, 48–53, 186–193

failure links, 50–52, 192

L

lal, 42, 72, 74, 76, 207, 209, 211, 216

latex, 48, 53, 115

Lempel–Ziv decomposition, 63, 66

less, 38, 64, 71, 296

ln, 71

Longest repeat, 55, 56, 60, 84, 201

ls, 2, 3, 296

lscpu, 106, 108

lzd, 63

M

make, 8, 10

makeblastdb, 90

man, 2, 5

316 Index

Match probability, 56

Matrix multiplication, 26, 30

Mean, 82, 221

Median, 82, 221, 222

M. genitalium, 8, 9, 15, 19, 55, 79, 80, 82,

90, 145, 148, 151–153, 242

Midpoint rooting, 109

Mismatches per site, 44, 185

Mitochondrial genomes, 108, 263

mkdir, 2, 3, 299

Molecular clock, 44, 105, 260

Monte Carlo test, 128, 280

Mouse genome, 126, 279

Mouse transcriptome, 127, 130, 132

Move to front, see MTF

mRNA, 158

ms, 121, 125

MTF, 63, 65, 66, 206

mtf, 63, 65

Multi-threading, 108

Multiple sequence alignment, 94–99, 247–

253

dynamic programming, 96

gaps, 98, 99, 250

guide tree, 97, 98, 249

multidimensional matrices, 94

optimal, 94, 95

polymorphisms, 107, 261

progressive, 95–99, 249–253

query-anchored, 95–96, 247–249

MUMmer, 83

mummer, 83–85, 230–231

plot, 84, 85, 230, 231, 233

mum2plot.awk, 84, 225

Mutation, 24, 156

mutator, 70, 73, 75, 206

mv, 4, 296

mysql, 290

N

N50, 82, 226, 227

naiveMatcher, 48, 50, 51, 188–191

Naïve string matching, 47–49

neato, 89, 90, 92, 240, 241

new2view, 101, 102, 107, 253

Non-synonymous mutation, 28, 31

nucmer, 84, 85

numAl, 34

O

oal, 79, 221

Open reading frame, 27, 158

Orthology, 35, 36

P

pamLog, 26, 31

pamNormalize, 26, 31

pamPower, 26, 30, 31

Paralogy, 35, 36, 43

PATH, 7

PATH, 11, 13

Pattern preprocessing, 51

percentDiff.awk, 32

PHYLIP, 111, 267

Phylogen

midpoint rooting, 267

Phylogeny, 101–111, 253–268

branch lengths, 104, 105, 256

four point criterion, 109, 264

leaf labels, 103, 254

midpoint rooting, 108, 266

mutation rates, 109

neighbor-joining, 108–111, 264–268

Newick format, 101, 102, 111

number of phylogenies, 105, 258, 259

primates, 111, 267, 268

radial layout, 255

random, 104, 256

root, 102, 254

rooted, 106–108, 260–264

three point criterion, 107, 109

traversal, see tree

ultrametric distances, 107–109, 260, 262

unrooted, 103, 108–111, 264–268

UPGMA, 106–108, 260–264

Pipe (|), 5, 295

Plin5, 128

Population size, 115

POSIX standard, 2

Prefix, 47, 52

Primates, 108, 263

Protein family, 88–90, 92, 240, 242, 245

Protein sequences, 30, 31, 163

psiblast, 93, 94, 245, 247

pwd, 299

R

Random DNA sequence, 21, 80

Random graph, 91

randomizeSeq, 35, 56, 67, 80, 173, 206,

223

Random number generator, 105

ranDot.awk, 89, 91

ranseq, 52, 57, 80, 84, 223

Index 317

Read mapping, 86, 235

Recursive function, 32–34, 168

bottom-up solution, 33

top-down solution, 33, 34

Redirection, 297

Regular expressions, 306, 307

Relational databases, 131–138, 285–292

repeater, 35, 57, 173, 196

Re-sequencing, 86

retree, 111, 267

revComp, 48, 49, 188, 231

rm, 2, 4, 296

rmdir, 2–4, 296, 299

rpois.awk, 121

Run time, 48, 74

S

SAM file, 87, 88

Sampling without replacement, 123, 276

samtools, 86–88

Sanger, F., 78

sblast, 73, 74, 76, 211, 213

Scripts, 12

sed, 14, 16, 17, 37, 175, 301–302

seq, 14, 15, 297

Sequence evolution, 23

sequencer, 79, 81, 86, 224, 234

Sequencing reads, 79

Set matching, 48, 52

Shell, see bash

Shell script, see bash

Shortest unique substring, 55, 61

Shotgun sequencing, 78–82, 221–228

coverage, 80, 81, 223

error rate, 81, 225

paired-end, 81

unsequenced nucleotides, 81, 223

show-snps, 84, 85

shuffle.awk, 95

shustring, 55, 61, 202

simNorm, 127

simOrf.awk, 27

Single Nucleotide Polymorphisms (SNPs),

85, 126, 279

Singleton proteins, 92, 243

sort, 17, 149, 288

source, 11, 146

SQL, 132, 135–136, 286–289

avg, 135

count, 135, 287

delete, 134, 286

host language, 136

insert, 134, 135, 286

join, 135

limit, 135

max, 135

min, 135

select, 134, 286

sqlite3, 134, 137, 285

Statistical significance

effect size, and, 130

multiple experiments, 128–130, 280–

285

sample size, 283

sample size, and, 130

single experiments, 128, 280

Statistics

sample size, 283

Stream editor, 14

Student’s t-test, 127

Substitution matrices, 25–32, 158–167

BLOSUM62, 94

PAM, 30–32

Substitution rate, 44, 185

sudo, 10

Suffix, 47

Suffix array, 57–61, 64, 197–202

common prefix, 58, 197

enhanced, 59, 60

inverse, 60, 199

lcp array, 58, 60, 61, 198

lcp interval, 59, 60, 198

lcp interval tree, 58, 199

suffix tree, and, 59

Suffix tree, 54–58, 60, 61, 83, 193–196, 198,

199

construction, 54, 57

generalized, 83, 84, 228

searching, 55

string depth, 84

Symbolic links, 71

Synonymous mutation, 28

T

tabix, 126

tac, 296

tail, 8, 9, 296

tar, 8

testMeans, 127, 128

Text compression, 62–67, 202–206

The Origin of Species, 101

time, 38, 48, 50, 74, 108

touch, 2, 3

tr, 16, 300

318 Index

traverseTree, 101, 104, 256

Tree

notation, 98, 102, 103

recursive structure, 101, 103

traversal, 101, 103, 104, 256

Tree:traversal, 104, 256

Type I error, 127, 129, 130, 281, 282

Type II error, 127, 130, 282, 283

U

Uniprot/Swissprot, 96, 99

uniq, 14, 20, 296

Universal ancestors, 115, 269

UNIX, 2, 7, 292–307

V

var, 20

Variance, 20

velveth/velvetg, 79, 81, 224

W

watterson, 121, 125

Watterson’s equation, 121, 125

wc, 5, 160, 296

which, 8, 11

World population, 268

Wright–Fisher model, 113, 115–118, 120,

126, 271, 280

ancestor event, 119, 273

common ancestors, 117–119, 271–273

lineages per generation, 120, 273

most recent common ancestor, 119

simulations, 116, 117, 271, 272

test of, 126, 279

time to the most recent common ancestor,

120, 274, 275

Wright, S., 115

	Preface
	Contents
	1 The UNIX Command Line
	1.1 Getting Started
	1.2 Files
	1.3 Scripts
	1.3.1 Bash
	1.3.2 Sed
	1.3.3 AWK

	2 Constructing and Applying Optimal Alignments
	2.1 Sequence Evolution and Alignment
	2.2 Amino Acid Substitution Matrices
	2.2.1 Genetic Code
	2.2.2 PAM Matrices

	2.3 The Number of Possible Alignments
	2.4 Dot Plots
	2.5 Optimal Alignment
	2.5.1 From Dot Plot to Alignment
	2.5.2 Global Alignment
	2.5.3 Local Alignment

	2.6 Applications of Optimal Alignment
	2.6.1 Homology Detection
	2.6.2 Dating the Duplication of Adh

	3 Exact Matching
	3.1 Keyword Trees
	3.2 Suffix Trees
	3.3 Suffix Arrrays
	3.4 Text Compression
	3.4.1 Move to Front (MTF)
	3.4.2 Measuring Compressibility: The Lempel–Ziv Decomposition

	4 Fast Alignment
	4.1 Alignment with k Errors
	4.2 Fast Local Alignment
	4.2.1 Simple BLAST
	4.2.2 Modern BLAST

	4.3 Shotgun Sequencing
	4.4 Fast Global Alignment
	4.5 Read Mapping
	4.6 Clustering Protein Sequences
	4.7 Position-Specific Iterated BLAST
	4.8 Multiple Sequence Alignment
	4.8.1 Query-Anchored Alignment
	4.8.2 Progressive Alignment

	5 Evolution Between Species: Phylogeny
	5.1 Trees of Life
	5.2 Rooted Phylogeny
	5.3 Unrooted Phylogeny

	6 Evolution Within Populations
	6.1 Descent from One or Two Parents
	6.1.1 Bi-Parental Genealogy
	6.1.2 Uni-Parental Genealogy

	6.2 The Coalescent

	7 Additional Topics
	7.1 Statistics
	7.1.1 The Significance of Single Experiments
	7.1.2 The Significance of Multiple Experiments
	7.1.3 Mouse Transcriptome Data

	7.2 Relational Databases
	7.2.1 Mouse Expression Data
	7.2.2 SQL Queries
	7.2.3 Java
	7.2.4 ENSEMBL

	8 Answers and Appendix: Unix Guide
	8.1 Answers
	8.2 Appendix: UNIX Guide
	8.2.1 File Editing
	8.2.2 Working with Files
	8.2.3 Entering Commands Interactively
	8.2.4 Combining Commands: Pipes
	8.2.5 Redirecting Output
	8.2.6 Shell Scripts
	8.2.7 Directories
	8.2.8 Filters
	8.2.9 Regular Expressions

	9 Erratum to: Bioinformatics for Evolutionary Biologists
	Erratum to: B. Haubold and A. Börsch-Haubold, Bioinformatics for Evolutionary Biologists, https://doi.org/10.1007/978-3-319-67395-0

	References
	

	Index

