
only that the image has been organized into two-dimen-
sional shapes. 
	 Pizlo focuses on discussion of the main concepts, tell-
ing the story of shape without interruption. Appendixes 
provide the basic mathematical and computational infor-
mation necessary for a technical understanding of the argu-
ment. References point the way to more in-depth reading 
in geometry and computational vision.

Zygmunt Pizlo is Professor of Psychological Sciences 
and Electrical and Computer Engineering (by courtesy) at 
Purdue University. 
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The uniqueness of shape as a perceptual property lies in 
the fact that it is both complex and structured. Shapes are 
perceived veridically—perceived as they really are in the 
physical world, regardless of the orientation from which 
they are viewed. The constancy of the shape percept is 
the sine qua non of shape perception; you are not actually 
studying shape if constancy cannot be achieved with the 
stimulus you are using. Shape is the only perceptual attri-
bute of an object that allows unambiguous identification. 
In this first book devoted exclusively to the perception of 
shape by humans and machines, Zygmunt Pizlo describes 
how we perceive shapes and how to design machines that 
can see shapes as we do. He reviews the long history of 
the subject, allowing the reader to understand why it has 
taken so long to understand shape perception, and offers 
a new theory of shape.
	 Until recently, shape was treated in combination with 
such other perceptual properties as depth, motion, speed, 
and color. This resulted in apparently contradictory find-
ings, which made a coherent theoretical treatment of shape 
impossible. Pizlo argues that once shape is understood 
to be unique among visual attributes and the perceptual 
mechanisms underlying shape are seen to be different from 
other perceptual mechanisms, the research on shape be-
comes coherent and experimental findings no longer seem 
to contradict each other. A single theory of shape percep-
tion is thus possible, and Pizlo offers a theoretical treatment 
that explains how a three-dimensional shape percept is 
produced from a two-dimensional retinal image, assuming  
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“This very accessible book is a must-read for those interested in issues of object percep-
tion, that is, our ordinary, but highly mystifying, continual visual transformations of 2D 
retinal images into, mostly unambiguous, 3D perceptions of objects. Pizlo carefully traces 
two centuries of ideas about how these transformations might be done, describes the ex-
periments thought at first to support the theory, and then experiments establishing that 
something is amiss. Having laid doubt on all theories, he ends with his own new, original 
theory based on figure-ground separation and shape constancy and reports supporting 
experiments. An important work.”

—R. Duncan Luce, Distinguished Research Professor of Cognitive Science,  
University of California, Irvine, and National Medal of Science Recipient, 2003

“Pizlo’s book makes a convincing case that the perception of shape is in a different category 
from other topics in the research field of visual perception such as color or motion. His 
insightful and thorough analysis of previous research on both human and machine vision 
and his innovative ideas come at an opportune moment. This book is likely to inspire 
many original studies of shape perception that will advance our knowledge of how we 
perceive the external world.”

—David Regan, Department of Psychology, York University, and Recipient,  
Queen Elizabeth II Medal, 2002

“Zygmunt Pizlo, an original and highly productive scientist, gives us an engaging and valu-
able book, with numerous virtues, arguing that the question of how we perceive 3D shape is 
the most important and difficult problem for both perceptual psychology and the science 
of machine vision. His approach (a new simplicity theory) requires and invites much more 
research, but he believes it will survive and conquer the central problem faced by psycholo-
gists and machine vision scientists. If he is right, the prospects for the next century in both 
fields are exciting.”

—Julian Hochberg, Centennial Professor Emeritus, Columbia University
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Preface

This book is the very fi rst devoted exclusively to the perception of shape 

by human beings and machines. This claim will surely be surprising to 

many, perhaps most, readers, but it is true nonetheless. Why is this the 

fi rst such book? I know of only one good reason. Namely, the fact that 

shape is a unique perceptual property was not appreciated, and until it 

was, it was not apparent that shape should be treated separately from all 

other perceptual properties, such as depth, motion, speed, and color. Shape 

is special because it is both complex and structured. These two character-

istics are responsible for the fact that shapes are perceived veridically, that 

is, perceived as they really are “out there.” The failure to appreciate the 

unique status of shape in visual perception led to methodological errors 

when attempts were made to study shape, arguably the most important 

perceptual property of many objects. These errors resulted in a large con-

fl icting literature that made it impossible to develop a coherent theoretical 

treatment of this unique perceptual property. Even a good working defi ni-

tion of shape was wanting. What got me interested in trying to understand 

this unique, but poorly defi ned, property of objects?

My interest began when I was working on an engineering application, 

a doctoral project in electrical engineering that involved formulating sta-

tistical methods for pattern recognition. Pattern recognition was known 

to be an important tool for detecting anomalies in the manufacture of 

integrated circuits. The task of an engineer on a production line is like the 

task of a medical doctor; both have to diagnose the presence and the nature 

of a problem based on the pattern of data provided by “signs.” I realized 

shortly after beginning to work on this problem that it was very diffi cult 

to write a pattern recognition algorithm “smart” enough to accomplish 

what an engineer did very easily just by looking at histograms and scatter 
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plots. It became obvious to me that before one could make computers 

discriminate one pattern from another, one might have to understand how 

humans manage to do this so well. This epiphany came over me on the 

night before I defended my fi rst doctoral dissertation. My interest in study-

ing human shape perception started during the early morning hours of 

that memorable day as I tried to anticipate issues likely to come up at my 

defense.

Studying pattern and shape perception requires more than a cursory 

knowledge of geometry, both Euclidean and projective. It also requires the 

ability to apply this knowledge to a perspective projection from a three-

dimensional (3D) space to a two-dimensional (2D) image. I had a reason-

able background in electrical engineering, but it did not include projective 

geometry. I had to learn it from scratch. It took both time and effort, but 

it paid off. At the time I did not realize that this was unusual. It never 

occurred to me that anyone would try to study shape, the topic that served 

for my second doctoral degree, without knowing geometry quite well.

My formal study of human shape perception was done in the Sensori-

Neural and Perceptual Processes Program (SNAPP) of the Psychology 

Department at the University of Maryland at College Park where Robert 

M. Steinman served as my doctoral advisor. My dissertation also benefi ted 

a great deal from interactions with several members of the Center for 

Automation Research and Computer Science at this institution. My inde-

pendent study of projective geometry was greatly facilitated by numerous 

discussions with Isaac Weiss. Realize that I was starting from scratch. I was 

analyzing known properties of geometrical optics simultaneously with 

learning about groups, transformations, and invariants. Here, my limited 

formal background in geometry led me to stumble onto some new aspects 

of projective geometry that had not been explored before. I was encour-

aged to pursue this path by Azriel Rosenfeld, my second doctoral mentor, 

who was affi liated with SNAPP. Azriel Rosenfeld, who was well-known for 

his many contributions to machine vision, was a mathematician by train-

ing. He was always interested in exploring the limits of mathematical 

knowledge and of mathematical formalisms, and he, Isaac Weiss, and I 

published some of our insights about a new type of perspective invariants 

that grew out of my dissertation. After mastering what I needed to under-

stand in projective geometry, and after developing the new geometrical 

tools needed for a model of the perspective projection in the human eye, 
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I realized that I should also learn regularization theory with elements of 

the calculus of variations. Learning this part of mathematics was facilitated 

by interactions with Yannis Aloimonos, who was among the fi rst to apply 

this formalism in computer vision. He asked me, now almost 20 years ago, 

whether regularization theory is the right formalism for understanding 

human vision. I answered then that I was not sure. My answer now is “Yes” 

for reasons made abundantly clear in this book. My interactions and learn-

ing experiences during my graduate education at the University of Mary-

land at College Park were not limited to geometry and regularization 

theory. From Azriel Rosenfeld I learned about pyramid models of fi gure–

ground organization, and I learned about computational applications of 

Biederman’s and Pentland’s theories of shape from Sven Dickinson. Both 

fi gure prominently in my treatment of shape presented in this book. Now 

that the reader knows the circuitous route that led me to study human 

shape perception, I will explain why I decided to write this book.

The primary motivation for writing it grew out of my teaching obliga-

tions. When I began to teach, I tried to present the topic called “shape 

perception” as if it were a traditional topic within the specialty called 

“perception.” As such, shape perception, like other topics such as color 

perception, should be taught on the basis of the accumulation of special-

ized knowledge. Clearly, the history of a topic in a scientifi c specialty, such 

as shape perception, should be more than a collection of names, theories, 

and experimental results. The history of the topic should reveal progress 

in our understanding of the relevant phenomena. I found it impossible to 

demonstrate the accumulation of knowledge in the area called “shape 

perception.” The existing literature did not allow a coherent story, and I 

decided to try to fi gure out what was going on. Knowing this was impor-

tant for doing productive research, as well as for teaching. How do you 

decide to take the next step toward understanding shape when where the 

last step left you was unclear? Recognizing that shape is a special perceptual 

property did the trick. It made both teaching and productive research pos-

sible. This book describes how much we currently understand about shape 

and how we came to reach the point that we have reached. It is a long 

story with many twists and turns. I found it an exciting adventure and 

hope that the reader experiences it this way, too.

By trying to maintain the focus of my presentation, I deliberately left 

out material that ordinarily would have been included if I were writing a 
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comprehensive review of visual perception, rather than a book on the 

specialized topic called “shape perception.” Specifi cally, I did not include 

a treatment of the neuroanatomy or neurophysiology of shape perception. 

Little is known about shape at this level of analysis because we are only 

now in a position to begin to ask appropriate questions. The emphasis of 

the book is on understanding perceptual mechanisms, rather than on brain 

localization. For example, the currently available knowledge of neuro-

physiology cannot inform us about which “cost function” is being mini-

mized when a 3D shape percept is produced. I also did not include a large 

body of evidence on the perception of 2D patterns and 3D scenes that is 

only tangentially relevant to our understanding of the perception of 3D 

shapes.

The text concentrates on the discussion of the main concepts; technical 

material has been reduced to a minimum. This made it possible to tell the 

“story of shape” without interruption. A full understanding of the material 

contained in this book, however, requires understanding the underlying 

technical details. The appendices provide the basic mathematical and com-

putational information that should be suffi cient for the reader to achieve 

a technical understanding of the infrastructure that provided the basis for 

my treatment of shape. The references to sources contained in these appen-

dices can also serve as a starting point for more in-depth readings in 

geometry and computational vision, readings that I hope will encourage 

individuals to undertake additional work on this unique perceptual prop-

erty. Much remains to be done.

I had six goals when I began writing this book, namely, I set out to (i) 

critically review all prior research on shape; (ii) remove apparent contradic-

tions among experimental results; (iii) compare several theories, computa-

tional and noncomputational, to each other, as well as to dozens of 

psychophysical results; (iv) present a new theory of shape; (v) show that 

this new theory is consistent with all prior and new results on shape per-

ception; and (vi) set the stage for meaningful future research on shape. My 

choice of these particular goals and the degree to which I have been suc-

cessful in reaching each of them can only be evaluated by reading the 

book. Obviously, my success with each goal is less important than my 

success in (i) encouraging the reader to think deeply about the nature and 

signifi cance of shape perception and (ii) stimulating productive research 

on this fundamental perceptual problem.
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The new theory presented in this book shows how a 3D shape percept 

is produced from a 2D retinal image, assuming only that the image has 

been organized into 2D shapes. One can argue that this new theory is able 

to solve the most diffi cult aspect of 3D shape perception. What remains 

to be done is to explain how the 2D shapes on the retina are organized. 

The process that accomplishes this, called “fi gure–ground organization” by 

the Gestalt psychologists, is not dealt with in great detail in this book, 

simply because not much is known about it at this writing. It is likely, 

however, that now that I have called attention to the importance of 

this critical organizing process in shape perception, it will be easier to 

(i) expand our understanding of how it works and (ii) formulate plausible 

computational models of the mechanisms that allow human beings to 

perceive the shapes of objects veridically.

I will conclude this preface by acknowledging individuals who contrib-

uted to this book and to the research that made it possible, beginning with 

the contributions of my students: Monika Salach-Golyska, Michael Schees-

sele, Moses Chan, Adam Stevenson, and Kirk Loubier worked with me on 

shape perception and fi gure–ground organization; Yunfeng Li designed and 

conducted recent psychophysical experiments on a number of aspects of 

shape and helped me formulate and test the current computational model; 

and he, along with Emil Stefanov and Jack Saalweachter, helped prepare 

the graphical material used in this book.

I also acknowledge the contributions of the late Julie Epelboim, who was 

a valuable colleague at the University of Maryland, where she served as a 

subject in my work on pyramid models and perspective invariants. My son, 

Filip Pizlo, contributed to a number of aspects of my shape research. 

He helped write programs for our psychophysical experiments and was 

instrumental in designing demos illustrating many of the key concepts. 

Interactions with my colleagues, Charles Bouman, Edward Delp, Sven 

Dickinson, Gregory Francis, Christoph Hoffmann, Walter Kropatsch, 

Longin Jan Latecki, Robert Nowack, Voicu Popescu, and Karthik Ramani 

contributed to my understanding of inverse problems, regularization 

theory, shape perception, geometrical modeling, and fi gure–ground orga-

nization. I also acknowledge the suggestion and encouragement to write a 

book like this that I received from George Sperling and Misha Pavel after 

a talk on the history of shape research that I gave at the 25th Annual 

Interdisciplinary Conference at Jackson Hole in 2000. None of these indi-
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viduals are responsible for any imperfections, errors, or omissions present 

in this book.

I acknowledge support from the National Science Foundation, National 

Institutes of Health, the Air Force Offi ce of Scientifi c Research, and the 

Department of Energy for my research and for writing this book. I thank 

Barbara Murphy, Kate Blakinger, Meagan Stacey, and Katherine Almeida at 

MIT Press for editorial assistance.

Finally, I thank my family for their understanding and support while my 

mind was bent out of shape by concentrating excessively on this unique 

perceptual property.
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1 Early Theories of Shape and the First Experiments on 

Shape Constancy

1.1 Shape Is Special

This book is concerned with the perception of shape. “Perception” can be 

defi ned simply—namely, as becoming aware of the external world through 

the action of the senses. “Shape,” unlike perception, cannot be defi ned in 

such simple terms, and much of this book is devoted to explaining why 

this is the case, how it came to pass, and how we have fi nally reached a 

point where we can discuss and study shape in a way that captures the 

signifi cance of this critical property of objects. When we refer to the 

“shape” of an object, we mean those geometrical characteristics of a 

specifi c three-dimensional (3D) object that make it possible to perceive the 

object veridically from many different viewing directions, that is, to per-

ceive it as it actually is in the world “out there.” Understanding how 

the human visual system accomplishes this is essential for understanding 

the mechanisms underlying shape perception. Understanding this is 

also essential if we want to build machines that can see shapes as 

humans do.

Understanding shape perception is of fundamental importance. Why? 

Shape is fundamental because it provides human beings with accurate 

information about objects “out there.” Accurate information about the 

nature of objects “out there” is essential for effective interactions with 

them. An object’s shape is a unique perceptual property of the object in the 

sense that it is the only perceptual property that has suffi cient complexity 

to allow an object to be identifi ed. Furthermore, shape’s high degree of 

complexity makes it quite different from all other perceptual properties. 

For example, color varies along only three dimensions: hue, brightness, 

and saturation. Many objects “out there” will have the same color. Other 
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perceptual properties are even simpler: An object’s size and weight can vary 

only along a single dimension, and many objects will have the same size 

or weight. Shape is unlike all of these properties because it is much more 

complex. An object’s shape can be described along a large number of 

dimensions. Imagine how many points on the contour of a circle would 

have to be moved to transform the circle into the outline of a human 

silhouette or how many points on the outline of the silhouette would have 

to be moved to change its outline into a circle. When two shapes are very 

different, as they are in fi gure 1.1, the position of almost all points along 

their contours would have to be changed to change the shape of one to 

the shape of the other. The circle and the inscribed silhouette of a human 

being are about as different as any two shapes can be. All of the points 

except those where the human silhouette touches the circle (the tips of 

the fi ngers and the soles of the feet) would have to be moved to change 

one to the other. Theoretically, the number of points along an outline is 

infi nite, so the number of dimensions characterizing an arbitrary shape is, 

theoretically, infi nitely large. Fortunately, in the world of living things like 

ourselves, one need not deal with an infi nite number of dimensions because 

Figure 1.1
A human silhouette and a circumscribed circle (after Leonardo DaVinci).
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the human being’s sensory systems are constrained. Even in the fovea, 

where the highest density of cells in the retina is found, there are only 

about 400 receptor cells per millimeter (Polyak, 1957). Thus, when a cir-

cular shape with a diameter of 1 deg of visual angle is projected on the 

fovea, only 300 or 400 receptors would receive information about the 

circle’s contour. It is clear, however, that despite such constraints, suffi cient 

information would remain to disambiguate all objects human beings 

have encountered within the environment in which they evolved and are 

likely to encounter in the future. Once this is appreciated, it becomes clear 

that what we call “shape” has considerable evolutionary signifi cance 

because the function of very many objects is conveyed primarily by their 

shape.

Naturally occurring objects tend to fall into similarly shaped groups, 

and this makes it convenient to deal with them as members of families of 

similar shapes. Most apples look alike, and most cars look alike. Note that 

when you view your car from a new angle, its image on your retina 

changes, but it is perceived as the same car. This fact defi nes what is called 

“shape constancy.” Formally, “shape constancy” refers to the fact that the 

percept of the shape of a given object remains constant despite changes 

in the shape of the object’s retinal image. The shape of the retinal image 

changes when the viewing orientation changes.1 Shape constancy is a 

fundamental perceptual phenomenon, and much of this book is devoted 

to explaining conditions under which shape constancy can be reliably 

achieved and the mechanisms underlying this accomplishment. Shape 

constancy has profound signifi cance because the perceived shape of a 

given object is veridical (the way it is “out there”) despite the fact that its 

shape on the retina, the plane in which it stimulates our visual receptors, 

has changed. These considerations apply to many shape families. Figure 

1.2 shows two views of the same scene, each taken from a different view-

point. It is easy to recognize all of the individual objects in each view. 

Determining which contours and which regions of an image correspond 

to a single object is called “fi gure–ground organization.” This terminology 

and its role in shape constancy was introduced by the Gestalt psycho-

logists. It will be discussed later when their contributions are described. 

Interestingly, both fi gure–ground organization and shape constancy can 

be achieved when only the contours of objects are visible, as can be seen 

in fi gure 1.3. Surface details and structure are not needed to recognize a 
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Figure 1.2
Two views of an indoor scene illustrating two fundamental perceptual phenomena. 

“Figure–ground organization” is illustrated by the fact that it is easy to determine 

which regions and contours in the image correspond to individual objects. Note, 

also, that the contour in the image belongs to the region representing the object. 

“Shape constancy” is illustrated by the fact that it is easy to recognize the shapes of 

objects regardless of the viewing direction (photo by D. Black).
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variety of individual objects. Retinal shape, alone, is suffi cient for shape 

recognition and shape constancy.

Note, however, that two shape families, ellipses and triangles, are quite 

different, and, as you will see, failure to appreciate this difference can make 

a lot of trouble. Ellipses and triangles are very much simpler than all other 

shapes. They do not offer the degree of complexity required by the visual 

system to achieve shape constancy. A shape selected from the family of 

ellipses requires only one parameter, its aspect ratio (the ratio of the lengths 

Figure 1.3
Line drawing version of the previous fi gure (prepared by D. Black).
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of the long and short axis), for a unique identifi cation of a particular 

ellipse. Changing the magnitude of the two axes, while keeping their ratio 

constant, changes only the size of an ellipse, not its shape. The family of 

triangular shapes requires only two parameters (triangular shape is uniquely 

specifi ed by two angles because the three angles in a triangle always sum 

to 180 deg). Note that the number of parameters needed to describe shape 

within these two families (ellipses and triangles) is small, similar in number 

to the parameters required to describe color, size, and weight. Much was 

made above about how a high degree of complexity makes shape special 

in that it can provide a basis for the accurate identifi cation of objects. 

Clearly, using ellipses and triangles to study shape might present a problem 

because their shapes are characterized by only one or two parameters. It 

has. It held the fi eld back for more than half a century (1931–1991).

Why do ellipses and triangles present problems? They present problems 

because the 3D world is represented in only two dimensions on the retina. 

The Bishop Berkeley (1709) emphasized that a perspective transformation 

from the world to the retina reduces the amount of information available 

for the identifi cation of both objects and depth. Note that this loss affects 

ellipses and triangles profoundly. Any ellipse “out there” will, at various 

orientations, be able to produce any ellipse on the retina. This fact is illus-

trated in fi gure 1.4a. Here two ellipses with different shapes are shown 

at the top, and their retinal images are shown at the bottom. The retinal 

images have identical shapes because the taller ellipse was slanted more. 

Similarly, any triangle “out there” can produce any triangle on the retina. 

Note that these are the only two families of shapes that confound the shape 

itself with the viewing orientation. They do this because a perspective 

transformation from 3D to two dimensions (2D) changes the shape of a 

2D (fl at or planar) shape with only two degrees of freedom (see appendix 

A, section A.1). It follows that if the shape itself is characterized by only 

one or two parameters (as ellipses and triangles are), the information about 

their shape is completely lost during their projection to the retina 

and shape constancy may become diffi cult, even impossible, to achieve. 

However, if the shape of a fi gure is characterized by more than two param-

eters, perspective projection does not eliminate all of the shape informa-

tion, and shape constancy can almost always be achieved. This is true for 

any family of shapes, other than ellipses and triangles. The simplest family 

in which constancy can be achieved reliably is the family of rectangles. In 
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Figure 1.4
(a) Ellipses with different shapes (top) can produce identical retinal images (bottom). 

The ellipse on the top left was slanted around the horizontal axis more than the 

ellipse on the top right. As a result, their retinal images (bottom) are identical. 

(b) Rectangles with different shapes cannot produce identical retinal images. The 

rectangle on the top right was slanted around the horizontal axis more than the 

rectangle on the top left. As a result, the heights of their retinal images (bottom) 

are identical, but their shapes are not. Specifi cally, the angles in the two retinal 

images are different. If the slant of the rectangle on the top right were equal to that 

of the rectangle on the top left, the angles in the retinal images would be identical, 

but the heights would be different. This means that the shapes of the retinal images 

would be different, as well.

(a)

(b)



8 Chapter 1

fi gure 1.4b, two rectangles with different shapes are shown at the top, and 

their retinal images are shown at the bottom. The taller rectangle had to 

be slanted more than the shorter one, to produce images with the same 

heights, but despite the fact that the heights of the retinal images are the 

same, the angles are not. In fact, two rectangles with different shapes 

can never produce identical retinal images. More generally, if two fi gures 

or objects have different shapes, they are very unlikely to produce identical 

retinal images, as long as the fi gures are not ellipses or triangles. It follows 

that understanding shape constancy cannot be based on experiments in 

which ellipses or triangles were used. This fact, which was overlooked until 

very recently, has led to a lot of confusion in the literature on shape 

perception. Note that this confusion might have been avoided because a 

formal treatment of the rules for making perspective projections (rules that 

reveal the confound of shape and viewing orientation) had been used by 

artists since the beginning of the fi fteenth century (see Kemp, 1990), and 

the mathematics of projective geometry had been worked out quite com-

pletely by the end of the nineteenth century (Klein, 1939). Why was this 

confound ignored until recently by those who studied shape perception? 

The answer lies in the fact that the people who made this mistake did not 

come to their studies of shape from art or mathematics. They came from 

a quite different tradition, a tradition that will be described next.

1.2 Explaining Visual Constancies with a “Taking into Account” Principle

Formal research on shape did not start until the beginning of the twentieth 

century, after the Gestalt Revolution had been launched. By that time, the 

perception of other important properties of objects such as color, size, 

lightness, and motion had been studied intensively and very successfully 

for almost 100 years. For each of these properties a perceptual “constancy” 

had been defi ned: The percept of a surface’s lightness and color, of an 

object’s size, and of its speed, had been shown to remain approximately 

constant despite changes in its retinal image. These changes of the retinal 

image could be brought about by changes in the spectrum and intensity 

of the illuminating light, and by changes of the viewing distance. The 

conceptual framework and research questions adopted for the study of 

shape constancy were based on these successful studies of other perceptual 

constancies. However, generalizing existing knowledge and borrowing an 
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experimental methodology from simple perceptual properties such as 

color and size to shape, which is a complex multidimensional property, 

was unwarranted, and dangerous as well. Could this mistake have been 

avoided? Perhaps. When the formal study of shape started with Thouless’ 

(1931a, b) experiments, existing experimental results had already suggested 

that the mechanisms underlying shape perception were likely to be differ-

ent from those underlying size, speed, and lightness, but many students 

of shape perception mistakenly assumed that shape is like all other visual 

properties. This encouraged them to try to confi rm, rather than to question, 

their theory of shape constancy, which made use of other perceptual 

properties, when they began to do experiments on shape perception. Their 

commitment to this assumption caused them to ignore some important 

aspects of their results. Assuming that shape was like other perceptual 

properties prevented them from appreciating what was actually going 

on in their experiments. Had they considered the possibility that shape is 

fundamentally different from the simpler perceptual properties, they prob-

ably would have noticed important, unusual patterns in their data.

The conceptual framework for Thouless’ (1931a, b) study of shape can 

be traced back a long way. His approach was derived from philosophical 

discussions of epistemological problems reaching back to Alhazen (1083) 

in the eleventh century. Highlights of these discussions will be presented 

here because they will allow the reader to appreciate why Thouless and 

many other modern researchers adopted the particular type of explanation 

of the perceptual constancies they did. They adopted “taking into account” 

explanations of lightness, color, and size and expected to be able to extend 

this approach to their studies of shape constancy as well. Traditionally, all 

of these perceptual constancies were explained by “taking into account” 

contextual information present in the viewing conditions. For example, 

size constancy was “explained” by taking viewing distance into account. 

Lightness constancy was explained by taking cues to illumination into 

account, and so forth. Contextual information was critical because the 

retinal image was ambiguous.

The recorded history of the perceptual constancies began long ago with 

Alhazen (1083), whose book was the fi rst work known to the author to 

raise the problem of shape constancy. Alhazen, who lived in the second 

half of the tenth and the fi rst half of the eleventh centuries, is generally 

viewed as representing a bridge between the science of the ancient Greek 
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philosophers and the precursors of modern science following the European 

Renaissance. Alhazen made many fundamental contributions to the study 

of vision. Unfortunately, most were either overlooked during the develop-

ment of modern science in Europe, which took place between the seven-

teenth and twentieth centuries, or are not mentioned in contemporary 

reviews of the history of the subject (Sabra, 1989, 1994; Howard, 1996). To 

illustrate, Alhazen performed the fi rst systematic observations of after-

images (Alhazen, 1083, p. 51). He also reported the dependence of visual 

acuity on luminance (p. 54). In addition, he described mixing colors 

(pp. 144–5) with a precursor of Maxwell’s top. He also described color 

constancy (pp. 141–2), shape constancy (p. 279), and position constancy 

(pp. 193–4). He conjectured that what came to be called “unconscious 

inference” in the nineteenth century explained all of these important 

perceptual phenomena (p. 136). He also discussed the perceived size/per-

ceived distance relationship and its role in size constancy (p. 177). Alhazen 

even described what we now call “Panum’s fusional area” in his discussion 

of binocular vision (p. 240).2 Alhazen did not perform systematic experi-

ments to verify his claims, but he described many important perceptual 

phenomena and recognized the operation of several perceptual mecha-

nisms. Most subsequent writers seldom credited his contributions.

In Europe, the thirteenth century marks the revival of philosophy and 

the beginnings of what came to be called “science” in Europe. This revival 

was facilitated by the founding of the fi rst European universities in Bologna, 

Paris, and Oxford in eleventh and twelfth centuries and a number of others 

soon after. Philosophers and mathematicians, such as Grosseteste, Bacon, 

and Peckham in England, Witelo in Poland, and Aquinas and Bonaventure 

in Italy, stimulated interest in natural sciences by translating old works 

from Arabic into Latin, as well as contributing new ideas (Hamlyn, 1961; 

Howard & Rogers, 1995). However, modern philosophy and the scientifi c 

study of perception did not start until the seventeenth century when 

Descartes (1596–1650) came on the scene. Descartes contributed to several 

areas of knowledge. In philosophy, he offered a dualistic, interactionist 

interpretation of the mind–body problem and a nativistic view of the 

origin of our knowledge about the external world (time, space, and motion). 

In mathematics, he founded analytic geometry. In physiology, he intro-

duced the concept of refl ex action and distinguished what came to be 

called “sensory and motor mechanisms” in the nervous system. Only 
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his contributions to the psychology of visual perception will be dis-

cussed here.

Descartes distinguished the mental faculties called “perception” (be-

coming aware), “cognition” (knowing and understanding), and “conation” 

(willing). The shapes of objects are, according to Descartes, perceived intui-

tively in an essentially passive act. The rules of geometrical optics are also 

intuited. Descartes (1637) published his views on spatial vision in 

Discourse on Method, Optics, Geometry, and Meteorology. In this book, 

Descartes discussed the problem presented by the inversion of the 

retinal image produced by the eyes’ lens, cues to depth, and size and shape 

constancy. For these constancies he, like Alhazen, offered a “taking into 

account” explanation, the explanation that will dominate virtually all 

thinking about perceptual constancies in the nineteenth and twentieth 

centuries. His treatment of “taking into account” goes as follows: It begins 

with a discussion of Kepler’s (1604) book Comments on Witelo, in which 

the rules of image formation predicted that the retinal image was inverted. 

Kepler’s prediction was verifi ed empirically by Scheiner in 1625 and by 

Descartes in 1637. It raises a problem, namely, we perceive an object as 

“right side up” despite the fact that its retinal image is “upside down.” 

Descartes analyzed this problem by using an analogy from tactual percep-

tion. When a blind man holds a stick in each hand, and when he knows 

that the sticks form an X, the man not only has knowledge of the positions 

of his hands but he also can infer knowledge of the positions of the ends 

of the sticks. Once he knows that the sticks are crossed, he knows that the 

tip of the stick on the right is on the left side of his body and that the tip 

of the stick on the left is on the right side (see fi gure 1.5). According to 

Descartes, having such knowledge (the rules of geometry) a priori is critical 

for solving this problem. It allows the blind man to draw the correct infer-

ence about the spatial position of the ends of the sticks. Thus, for example, 

while keeping the two sticks crossed, if he touches an object with a stick 

that he holds in his right hand, he would naturally know that the object 

is on the left. Here, the perception of left and right in physical space is not 

determined by the positions of the left and right parts of the body (hands 

in this example). Thus, it was not surprising to Descartes that the mind 

perceives up versus down, as well as right versus left, in the physical world 

correctly, despite the fact that the retinal image is inverted. This visual 

example is clearly analogous to the example of the blind man holding 
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sticks because the visual rays intersect within the eye before they hit the 

retina. However, note that Descartes adopted a view that perception of the 

location of an object “out there” involves inferences or thinking. The ques-

tion remains how the visual system knows that the visual rays intersect 

before they hit the retina without reading Kepler’s book. For Descartes, this 

did not present a problem because he considered such knowledge to be 

innate.

Descartes went on to describe ocular vergence as a cue to distance. Again, 

he used an analogy of a blind man who, with two sticks, can judge the 

distance of an object by triangulation. The man does this by means of a 

“natural geometry” made possible by the fact that he knows the distance 

between his hands and the angles each stick makes with the line connect-

ing his hands. In the case of visual triangulation, the distance between the 

hands is analogous to the distance between the two eyes, and the angles 

between the sticks are analogous to the angles formed by the line of sight 

of each eye with the line connecting the two eyes. Specifi cally, the length 

of one side in a triangle, together with sizes of two angles, allow solving 

the triangle, including the computation of its height, which in this case 

Figure 1.5
A blind man using sticks can correctly judge left and right “out there” despite the 

fact that left “out there” is actually sensed by his right hand (after Descartes, 

1637).
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corresponds to the viewing distance. Descartes goes on to give another 

example of how the blind man, who represents the visual system, can solve 

the triangulation problem in the case of motion parallax, that is, when an 

observer moves relative to some object. Note that in both cases, Descartes, 

like Alhazen, proposed that these problems were solved by unconscious 

thought processes.

Locke (1690), along with Hobbes (1651), is credited with founding British 

empiricism. Locke formulated an alternative view of perception, namely, 

he, in contrast to Descartes, conjectured that all knowledge is derived from 

experience. He completely rejected Descartes’ assumption of innate ideas. 

He held that a human being’s mind begins as a “tabula rasa” (a blank page), 

and experience with recurring sensations leads to the learning of simple 

ideas, which are then elaborated into complex ideas by additional associa-

tions. For Locke, perceptions of such basic things as shape and motion 

were complex ideas. Locke claimed that the rules of association, described 

by Aristotle, provide the mechanisms underlying perception. For Locke, 

unlike Descartes, perceptual constancies have to be learned.

Molyneux (1692), a friend of Locke, shared his rejection of innate ideas. 

He supported this claim by posing the following problem. Assume that a 

person born blind learned to identify and discriminate among objects 

by the sense of touch. In particular, assume that the person can correctly 

identify a sphere and a cube. Now suppose that the blind person is made 

to see. Will the person be able to tell which object is a sphere and which 

is a cube using vision alone, without touching the objects? Molyneux 

claimed that the person will not be able to identify these objects. The 

reason, according to Molyneux, is that the blind person did not have a 

chance to learn how to see. Molyneux’s thought experiment was to receive 

a lot of attention in 1960s when von Senden’s (1932/1960) book on the 

vision of newly sighted patients came under critical review (Zuckerman & 

Rock, 1957).

Berkeley, in his A New Theory of Vision, published in 1709, elaborated 

Locke’s and Molyneux’s empiricism. For Berkeley, vision was always un-

certain because it, like hearing, sensed things at a distance. The shapes and 

sizes of objects had to be learned by comparing visual sensations to touch 

sensations, which provided a direct and, therefore, reliable source of 

information. Only tactual perception, along with the sensations from the 

muscles that moved the hands during tactual exploration, can provide 
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direct information about the environment. He illustrates this by pointing 

out that the perspective projection from the 3D environment to the 2D 

retina does not preserve information about depth: A point on the retina 

could be an image of any of the infi nitely many points along the line 

emanating from the point on the retina and proceeding to the object. A 

newborn human being has no way of judging distances given visually. In 

essence, according to Berkeley, the visual perception of distance is learned 

by forming sensorimotor associations. Specifi cally, when an observer looks 

at an object binocularly, the line of sight of each eye is directed toward 

the object, forming an angle called “vergence.” The observer is aware of 

the angle by feeling the state of his eye muscles, and when the observer 

walks toward the object, the angle changes and the sensations associated 

with change are noticed. The relation between the sensations from the eye 

muscles and the number of steps required to reach the object is learned, 

stored, and used later by means of what we would call today a “look-up 

table” to provide the mechanism underlying the perception of distance. 

Similarly, haptics (movements, positions, and orientations of the hands) 

associated with manipulating objects can provide a basis for creating look-

up tables for the shapes of different objects and for the orientation of sur-

faces. In other words, the individual need not solve geometrical problems 

to “take into account” environmental characteristics once appropriate 

look-up tables have been established by associative learning. Berkeley’s 

suggestion has become the standard way of formulating “taking into 

account” explanations by empiricists ever since his day.

1.3 Helmholtz’ Infl uence When the Modern Era Began

The next important development appeared about 150 years later when 

Helmholtz published his Treatise on Physiological Optics (1867/2000), in 

which he takes on these problems at what is generally accepted as the 

beginning of the modern scientifi c era: He addressed the question of how 

sensations produced by stimulation of the retina lead to perceptions of 3D 

space. Helmholtz’ approach, like Berkeley’s, was empiristic. He supported 

his teacher’s, Johannes Müller’s, claims about case histories of persons who 

were born blind and whose vision was restored by surgery (Helmholtz, 

1867/2000, volume 3, pp. 220–7). Such persons, who did not have any 

prior visual experience, were said to be unable to discriminate among 
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shapes and spatial relations. Helmholtz confi rmed these claims and con-

cluded that these patients, like newborn babies, had to learn how to see. 

He suggested that learning how to see was accomplished by making repeti-

tive eye movements along contours of shapes, an idea that was to be used 

almost a century later by Hebb (1949).

How did Helmholtz apply his empiristic views to the perceptual con-

stancies? According to Helmholtz, visual perception is derived from 

“unconscious conclusions” about the external world. These conclusions 

are reached by means of associations of sensations and memory traces. For 

example, we come to learn to appreciate the locations of objects in space 

in the following way:

When those nervous mechanisms whose terminals lie on the right-hand portions 

of the retinas of the two eyes have been stimulated, our usual experience, repeated 

a million times all through life, has been that a luminous object was over there in 

front of us on our left. We had to lift the hand toward the left to hide the light or 

to grasp the luminous object; or we had to move toward the left to get closer to it. 

Thus while in these cases no particular conscious conclusion may be present, yet 

the essential and original offi ce of such a conclusion has been performed, and the 

result of it has been attained; simply, of course, by the unconscious process of asso-

ciation of ideas going on in the dark background of our memory. (Helmholtz, 

1867/2000, volume 3, p. 26, translated by Southall)

The concept of “unconscious conclusion” is perhaps the critical concept 

in Helmholtz’ theory of perception.3 Binocular depth perception can 

provide another example of how it was used by Helmholtz. Namely, each 

point in the environment produces a retinal image in the observer’s left 

and right eye. Assume that the observer’s visual system knows accurately 

and precisely the orientation and position of one eye relative to the other. 

In such a case, the 3D position of the physical point can be computed as 

an intersection of the visual rays emanating from the retinal points (volume 

3, p. 155). This should remind the reader of Descartes’ explanation described 

above. The difference between Helmholtz’ and Descartes’ formulation was 

that Helmholtz does not subscribe to Descartes’ notion that the human 

being has an innate understanding of geometry. Instead, he adopts Berke-

ley’s approach in which a look-up table is established between sensations 

and their signifi cance “out there.”

Now, let us examine Helmholtz’ views on shape perception. They are 

probably best expressed in the following paragraph from his “Review of 

the Theories” section of his Treatise:
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an idea of an individual object  .  .  .  includes all the possible single aggregates of sensa-

tion which can be produced by this object when we view it on different sides and 

touch it or examine it in other ways. This is the actual, the real content of any such 

idea of a defi nite object. It has no other; and on the assumption of the data above 

mentioned, this content can undoubtedly be obtained by experience. The only 

psychic activity required for this purpose is the regularly recurrent association 

between two ideas which have often been connected before. The oftener this asso-

ciation recurs, the more fi rm and obligatory it becomes. (volume 3, pp. 533–4).

Thus, according to Helmholtz, the memory of a 3D shape (its mental 

representation) involves a collection of 2D images of the shape (plus 

tactual sensations) obtained from different viewing directions. Subsequent 

recognition of the shape involves matching the current view with the 

stored views (volume 3, p. 23). There is very little additional discussion of 

shape perception in Helmholtz’ three-volume Treatise, at most a paragraph 

or two.

Now that we have an idea of the prevailing views when the modern 

study of shape perception began, we can turn to a discussion of the fi rst 

experimental study of shape perception. It was performed in a period in 

which Helmholtz’ ideas were taken very seriously.

1.4 Thouless’ Misleading Experiments

Thouless’ two papers, published in 1931, were the most infl uential, albeit 

misleading, contributions in the history of shape constancy (Thouless, 

1931a, b). These papers are cited in all textbooks of perception known to 

the author. The signifi cance of these papers stems from the fact that Thou-

less concluded, and was widely believed to have demonstrated, that shape 

constancy involves “taking slant into account” (“slant” is defi ned as the 

angle between the frontal plane and the plane containing the test fi gure). 

He actually did not do this. This claim requires a detailed description 

of Thouless’ papers. Once this is done, Thouless’ “contribution” will be 

evaluated.

In his fi rst experiment, Thouless used two fi gures, a circle and a square, 

and tested the accuracy of shape perception of each fi gure when the fi gure 

was presented at a slant (Thouless, 1931a). One should expect different 

outcomes with these two shapes. Remember that the family of ellipses to 

which the circle belongs (a circle is an ellipse with aspect ratio of one), 

is completely characterized by only one parameter. You must also keep in 
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mind that the family of perspective projections changes the shape of a 

fi gure with two degrees of freedom. It follows that in the case of ellipses 

(one of the two stimuli used by Thouless), the retinal image completely 

confounds the shape of the fi gure with its viewing orientation. That is, 

any ellipse “out there” can produce any ellipse on the retina (fi gure 1.4a). 

Squares, which are in the family of “quadrilaterals,” are very different. They 

are characterized by four parameters (ratio of lengths of two sides, plus 

three angles). As a result, even though the retinal image of a rectangle is 

affected by slant, its image does not confound the shape of a rectangle 

with its slant (fi gure 1.4b). Clearly, ellipses and rectangles should lead to 

very different results in a shape constancy experiment.

The test fi gure (a square or a circle) was put on a table. The subject viewed 

the fi gure binocularly and was asked to draw its shape. If the percept of 

the slanted fi gure were veridical, the reproduced and the presented shapes 

would have been identical. In particular, their aspect ratios would be the 

same. The aspect ratios produced were greater than the retinal aspect ratio, 

but lower than the physical aspect ratio. Thus, perfect shape constancy 

was not obtained with either fi gure, but shape constancy was less accurate 

(larger systematic error) and less reliable (more variable across trials) with 

the circle than with the square. The fact that shape constancy was not 

perfect was to be expected—similar results had already been obtained in 

size, lightness, and color constancy experiments. What was not expected 

was the difference in the amount of constancy between the circle and the 

square. This result cannot be easily explained by the “taking slant into 

account” theory because in this theory, the perceived slant and, hence, the 

degree of shape constancy do not depend on the shape itself. Unfortu-

nately, instead of studying this unexpected and important result, that is, 

the difference between the amount of shape constancy observed with a 

circle and a square, Thouless concentrated on the less interesting and 

already well-known result, which was the fact that shape constancy was 

not perfect with either shape.

In his second paper (Thouless, 1931b), Thouless performed additional 

experiments to try to explain the failure of shape constancy he observed. 

This time he used only ellipses, the family of stimuli that, because of its 

simplicity, is most likely to support the “taking into account” principle. In 

the fi rst experiment, he tested the effect of reducing cues to depth on the 

accuracy of shape perception. Accuracy was evaluated by varying the aspect 
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ratio of the ellipse (recall that the aspect ratio of an ellipse is the only 

parameter characterizing its shape). Three viewing conditions were used: 

(i) binocular, (ii) binocular through a pseudoscope (a pseudoscope reverses 

the sign of binocular disparities), and (iii) monocular. The results were as 

follows: Monocular perception of a slanted ellipse was slightly less accurate 

than binocular perception. Similarly, binocular (direct) viewing led to 

somewhat more accurate perception than binocular viewing through a 

pseudoscope. Based on these results, Thouless concluded (p. 4) that

(i) phenomenal regression in the perception of shapes (i.e., shape con-

stancy) is, at least in a large part, determined by the actual presence of cues 

to slant (i.e., cues that determine the perceptions of the relative positions 

of the near and far edges of the ellipse);

(ii) when cues to slant are partially eliminated, shape constancy is 

reduced.

Thouless considered next which factor (familiarity or availability of depth 

cues) was responsible for the fact that constancy was not eliminated com-

pletely by the partial elimination of cues to slant. He considered the fol-

lowing two possibilities: (i) Either the subject was able to use the remaining 

cues to slant, or (ii) the subject relied on the memory of the actual object 

(fi gure).

To decide between these two possibilities, Thouless performed an experi-

ment in which the subject viewed a circle under three slants, producing 

three different ellipses on the retina. Three viewing conditions were used: 

(i) binocular with the knowledge that the stimulus shape was a circle, (ii) 

monocular with the knowledge of the stimulus’ shape, and (iii) monocular 

without the knowledge of the stimulus’ shape. Thouless tried to remove 

all depth cues (except, of course, for binocular disparity, in the case of 

binocular viewing). In binocular viewing, the perceived aspect ratio was 

slightly greater than the retinal aspect ratio. In the two monocular condi-

tions, however, the perceived aspect ratio was equal to the retinal aspect 

ratio. That is, shape constancy completely failed in monocular viewing. 

This result led Thouless to the following conclusions (p. 7):

(iii) Shape constancy is not dependent on the subject’s previous knowl-

edge of the actual shape;

(iv) shape constancy depends only on the presence of cues to slant;



Early Theories of Shape and the First Experiments on Shape Constancy 19

(v) in the presence of cues to slant, the percept is equivalent neither to 

the retinal image nor to the actual shape of the fi gure but is a compromise 

between them.

These fi ve conclusions can be generalized as follows: Cues to slant are both 

necessary and suffi cient for (approximate) shape constancy. This statement has 

been commonly accepted by perceptionists as the explanation of shape 

constancy. It is widely cited in introductory psychology and perception 

texts. There is, however, a fundamental methodological fl aw in Thouless’ 

experiments. Recognizing this fl aw drastically changes the conclusions 

that can be drawn legitimately from Thouless’ results.

Thouless used the simplest family of shapes (ellipses), and as has been 

pointed out repeatedly above, the shape of an ellipse is completely char-

acterized by a single parameter, its aspect ratio. It is also important to 

remember that a perspective projection of an ellipse is also an ellipse. Fur-

thermore, a perspective projection of any 2D shape on the retina affects 

the shape with two degrees of freedom for a given retinal position and size 

(see appendix A, section A.1). From these three facts, it follows that any 

ellipse can produce any other ellipse at any given place on the retina. The family 

of triangles, which is characterized by only two parameters, is the only 

other family of shapes for which this statement is true. This statement 

is not true for any other family of 2D (or 3D) shapes, including a rela-

tively simple family like quadrilaterals, which is characterized by four 

parameters.

What methodological implication follows from using ellipses to study 

shape constancy? The answer is simple. Ellipses must not be used to study 

shape constancy. The best way to understand this claim is to begin by assum-

ing that shape constancy is a problem that has to be solved by the visual 

system. Consider fi rst the case of a 2D fi gure slanted in 3D space (the case 

of a 3D object will be discussed below). A given 2D fi gure can produce 

a large number of different retinal images when the fi gure is presented 

with different slants. To solve the shape constancy problem, the observer 

must recognize that these different retinal images can be produced 

by the same fi gure. There is a complementary problem. It is called the 

“shape ambiguity” problem. In this problem, two or more 2D fi gures, 

having different shapes and presented at different slants, produce identical 

retinal images. The observer’s problem is to try to recognize which fi gure 
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produced a given image. Figure 1.4 illustrates that in the case of ellipses, 

but not in the case of rectangles (quadrilaterals), shape constancy is con-

founded with shape ambiguity. It is clear that the only way one can solve 

the shape ambiguity problem is by taking the slant of the fi gure into 

account. In other words, if ellipses are used as stimuli, one is forced to 

employ a “taking into account” mechanism.4 Clearly, Thouless’ subjects 

had no choice but to “take slant into account,” so it is not surprising that 

Thouless was able to conclude that this was necessary, but note that he 

did not realize that his subjects had to solve the shape ambiguity problem, 

not the shape constancy problem. Once this critical distinction is under-

stood the question is whether his conclusions about the importance 

of slant generalize to shape constancy when the confound with shape 

ambiguity is removed by using appropriate stimuli. This issue was neither 

appreciated nor addressed by Thouless. It is worth noting that shape ambi-

guity, unlike shape constancy, is probably very rare in everyday life because 

the shapes of many objects are quite different from each other. To the 

extent that this is true, it seems unlikely that two (or more) different 

objects, which are not elliptical or triangular, will give rise to identical 

retinal images. More than a decade would pass after Thouless published 

his study before a shape experiment would be published that did not 

confound shape ambiguity with shape constancy. More than half a century 

would pass before attention would be called to the problems inherent in 

Thouless’ infl uential, but misleading, experiments. Most of the intervening 

experiments on shape contained Thouless’ methodological fl aw. They 

tested shape ambiguity rather than shape constancy. All of these studies 

used either ellipses as stimuli (e.g., Leibowitz & Bourne, 1956; Meneghini 

& Leibowitz, 1967; Leibowitz, Wilcox, & Post, 1978), triangles as stimuli 

(e.g., Gottheil & Bitterman, 1951; Beck & Gibson, 1955; Epstein, Bontrager, 

& Park, 1962; Wallach & Moore, 1962), or trapezoids, chosen in such a 

way that they were perspectively equivalent (Beck & Gibson, 1955; Kaiser, 

1967). Not surprisingly, all of these studies confi rmed Thouless’ result 

that cues to slant are necessary and suffi cient for solving the shape 

ambiguity problem. These authors, like Thouless, thought, erroneously, 

that their results were relevant to the phenomenon of shape constancy. 

They were not.

Shape ambiguity can lead to problems in experiments not only 

with planar (2D) but also with solid (3D) stimuli (see chapter 4). In fact, 
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confusing shape ambiguity with shape constancy when 3D stimuli are used 

leads to a further, even more serious problem. Specifi cally, once shape 

ambiguity is erroneously assumed to be the same phenomenon as shape 

constancy, it becomes possible for a researcher to completely change the 

defi nition of shape constancy. This actually happened. Recall that shape 

ambiguity is observed when two or more objects having different shapes 

produce the same retinal shape. Obviously, this is not shape constancy. 

“Shape constancy” refers to the fact that the percept of the shape of a given 

object is constant despite changes in the shape of the object’s retinal image, 

caused by changing the viewing direction (see endnote 1). In order to solve 

the shape ambiguity problem, the visual system must make use of informa-

tion other than the retinal shape, as the retinal shape is useless because it 

is the same for all objects. It provides no useful information whatsoever. 

Shape constancy is different from shape ambiguity because retinal shape 

is suffi cient to solve the constancy problem. Nothing else is needed. Shape 

ambiguity is completely different. Retinal shape cannot be used to solve 

the ambiguity problem, so it is not surprising that concentrating on per-

forming shape ambiguity experiments encouraged studying the effi cacy of 

depth cues, context, and familiarity on the percept of the shape of 3D 

surfaces. The authors of these experiments mistakenly thought that they 

were studying shape constancy. They were not. These authors thought that 

they could study shape constancy by trying to fi nd out whether perceived 

shape was constant when they varied illumination, texture, binocular dis-

parity, context, or familiarity (e.g., Johnston, 1991; Doorschot et al., 2001; 

Nefs et al., 2005; Scarfe & Hibbard, 2006). However, this approach, keeping 

viewing direction and thus the retinal shape unchanged while varying other 

properties of the visual stimulus, has nothing to do with shape constancy. 

This mistake shows that these authors did not realize that they were chang-

ing the conventional defi nition of “shape constancy.” It should not be 

surprising, then, that the results of all of these experiments are not relevant 

to the study of the well-established phenomenon called “shape constancy.” 

Studying shape constancy requires manipulating the viewing direction, 

which changes the shape of the test stimuli on the retina. One cannot 

claim to be studying shape or shape constancy when the viewing direction 

and the retinal shape of the stimuli are kept constant. Shape ambiguity 

experiments, in which the viewing direction and the retinal shape of the 

stimuli are kept constant, like those listed above, can only demonstrate 
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the degree to which depth cues and context provide support for using a 

“taking slant into account” explanation of a subject’s behavior in a shape 

ambiguity experiment. They have no signifi cance, whatsoever, for under-

standing shape constancy. Unfortunately, this fact is still not generally 

appreciated, resulting in considerable confusion in the shape literature. 

Failure to appreciate the constancy–ambiguity distinction has been one 

of the major millstones on the road to making progress in the study of 

shape.

1.5 Stavrianos’ (1945) Doctoral Dissertation Was the First Experiment 

to Show that Subjects Need Not Take Slant into Account to Achieve 

Shape Constancy

Stavrianos did her dissertation under Woodworth’s direction. For most of 

his career, Woodworth had subscribed to the operation of a “taking into 

account” mechanism (Woodworth, 1938). When Stavrianos published her 

dissertation, both experimental results and existing theories implied that 

the perception of a shape is related to the perception of its orientation. 

Details of the proposed mechanisms differed among researchers, but it was 

widely held that there was a relationship between the perceived shape and 

the orientation of an object. Recall that Thouless (1931a, b) claimed that 

the percept of the shape of an object depends on the perception of 

the object’s orientation (its slant). Others (Eissler and Klimpfi nger—see 

Stavrianos, 1945) also subscribed to this view, but these authors empha-

sized that the observer does not have conscious access to the slant of the 

object. In other words, its orientation is automatically registered and used 

in determining the perception of shape, but its orientation is not “per-

ceived.” This emphasis is closely related to Helmholtz’ use of the idea of 

an unconscious conclusion to “explain” a number of perceptual constan-

cies. One implication of this kind of explanation is that there may be no 

correlation between the perceived shape and the perceived orientation of 

an object. Koffka (1935), however, claimed that these two properties of a 

percept must be correlated: “if two equal retinal shapes give rise to two 

different perceived shapes, they will at the same time produce the impres-

sion that these two shapes are differently oriented” (p. 229). Evidence was 

available to support Koffka’s claim, for example, experiments on size 

perception showed that cues that affect perceived distance also affect 
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perceived size (e.g., Holway & Boring, 1941). Stavrianos assumed, as Koffka 

had, that a similar relation would exist between the perceived shape of an 

object and cues to its slant. She did not know whether to expect an exact, 

as opposed to an approximate, relation or whether the observer would 

have conscious access to the percept of slant. Stavrianos designed three 

experiments to answer these questions. Her subjects were required to make 

explicit judgments about both the shape and the slant of an object (she 

used the term “tilt” and “inclination” for what we call “slant”). Her study, 

specifi cally her Experiment 1, provides a fundamental contribution to our 

understanding of shape perception, a contribution that has been largely 

neglected. A relatively detailed description of Stavrianos’ watershed experi-

ment will be provided next. This experiment should have been more 

infl uential than it proved to be.

Stavrianos managed to avoid several methodological problems that were 

inherent in Thouless’ experiments. Even though there is good reason to 

believe that she did not have a full grasp of the differences between the 

designs of Thouless’ and her own experiments (see her discussion of 

her and Thouless’ experiments), she was a much more thorough and sys-

tematic experimenter. These admirable traits proved to be critical. On each 

trial, the subject was presented with a standard rectangle and two com-

parison rectangles. The comparison rectangles were used to adjust slant 

and shape to that of the standard rectangle. Specifi cally, the slant-variable 

rectangle had a constant shape, but its slant could vary. The shape-variable 

rectangle, on the other hand, was always presented in the frontal plane 

(slant zero), but its shape could vary. The slant of the standard rectangle 

changed randomly from trial to trial. This rectangle was presented under 

three “reduction” conditions. Each provided a different number of depth 

cues. The viewing conditions were (i) normal binocular, (ii) binocular with 

reduction tubes, and (iii) monocular with a reduction tube. Stavrianos 

expected, based on preliminary experiments, that reducing cues to depth 

would substantially harm the accuracy of slant perception. The main ques-

tion was whether the accuracy of shape perception would deteriorate 

correspondingly. The subject was asked to adjust fi rst the slant of the slant-

variable rectangle and then the aspect ratio of the shape-variable rectangle. 

By using this order, Stavrianos was trying to facilitate the process of “shape 

perception by taking slant into account,” as would be the case if such a 

process actually operated in human perception. The adjustments of the 
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slant-variable and shape-variable rectangles were done under normal bin-

ocular viewing. The subjects were asked to adjust the shape-variable rect-

angle so that it represented the “best bet” as to the actual shape of 

the standard rectangle. She adopted this instruction from Brunswik 

(1944), who reported that such an “object-directed” attitude leads to the 

most reliable and accurate results in perceptual constancy experiments.

Stavrianos’ Experiment 1, unlike Thouless’, did not confound shape 

constancy with shape ambiguity. That is, her stimuli, rectangles with 

different shapes, could not produce identical retinal images. This claim 

follows from the known fact that a single-perspective image of a rectangle, 

obtained by a calibrated camera (i.e., a camera with known focal length), 

is suffi cient to uniquely reconstruct this rectangle (Perkins & Cooper, 1980, 

p. 113; Haralick & Shapiro, 1993, volume 2, pp. 80–1). Once this is known, 

it follows that in Stavrianos’ experiment the shape ambiguity problem did 

not exist. This geometrical fact has a very important implication: It means 

that in Stavrianos’ experiment, the information about the orientation of the 

standard rectangle was not needed to match the rectangle’s shape accurately; 

the retinal shape of the rectangle was suffi cient to solve the shape constancy 

problem.5

Note that if Stavrianos had allowed her subjects to adjust more than one 

parameter of the shape-variable stimulus (as others did—e.g., Kaiser, 1967), 

she would have introduced the shape ambiguity problem into the experi-

ment and cues to the orientation of shape would have become critical. 

This follows from the trivial fact that a given retinal image (say, a trapezoid) 

can be produced by infi nitely many different quadrilaterals. Interestingly, 

it is exactly this aspect of Stavrianos’ experiment, that is, eliminating shape 

ambiguity, that was criticized by others. Gottheil and Bitterman (1951) said 

that this was a methodological fl aw when, in fact, it represented a funda-

mental improvement over all prior and many subsequent experiments.

Stavrianos fi rst computed correlation coeffi cients for the relation between 

the observed error in slant and the error in shape, for each subject and 

each of the twenty-four experimental conditions used. She found that “no 

close relation between the deviations for [slant] and for shape is observable 

for the separate pairs of judgments” (p. 50). She suggested that the relations 

may have been weak because, within a single reduction condition, the 

range of errors was not very large. This led her to analyze the accuracy and 
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variability of slant and shape judgments as a function of her three reduc-

tion conditions.

The effect of the reduction condition on the mean of slant and shape 

judgments is shown in her fi gures 5 and 6 (pp. 52–3). To avoid the con-

founding effect of day-to-day variability, Stavrianos plotted only means 

from judgments where a given slant was presented to the subject for all 

three reduction conditions on the same day. Stavrianos found that reduc-

ing cues to depth led to a systematic deterioration in the accuracy of the 

slant judgments. All differences in the average adjusted slant between the 

two extreme reduction conditions (normal binocular minus monocular) 

were positive and substantially larger than the standard errors, indicating 

that these differences were statistically signifi cant. The direction of the 

deterioration in accuracy of slant perception was exactly as expected, that 

is, reducing depth cues led to a greater underestimation of slant.6 Now, if 

the percept of shape was based on information about slant, as prior theo-

ries and experiments implied, reducing cues to depth should have led to 

a systematic deterioration of the accuracy of shape judgments. Specifi cally, 

the subjects would have been expected to produce smaller aspect ratios in 

monocular viewing than in normal binocular viewing. This did not happen. 

The effect of the reduction conditions on the accuracy of shape judgments 

was small and not systematic.

Next, consider the effect of reducing cues to depth on the variability 

(precision) of slant and shape judgments. These results are presented in 

her fi gures 11 and 12 (pp. 69 and 70), which show that reducing cues 

to depth led to poorer precision (higher standard deviations) of the slant 

judgments. Again, this deterioration of slant perception was not accompa-

nied by a corresponding deterioration of shape perception.

These results on the effect of reducing cues to depth on the accuracy 

and precision of slant and shape perception are the main contribution of 

Stavrianos. They clearly show that perceived shape is not systematically related 

to perceived slant. This result contradicts both theories of shape perception 

popular at that time.

Finally, Stavrianos checked whether there is any similarity between the 

effect of slant on systematic errors in slant judgments and the effect of 

slant on systematic errors in shape judgments. She found some similarity 

only in the most extreme case in which viewing was monocular with a 
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reduction tube. She conjectured that shape is one of several cues to slant 

(p. 65).7 When other cues are missing, as was presumably the case in 

monocular viewing, shape remained the only cue. If slant is perceived by 

taking shape into account, a correlation between shape and slant judg-

ments is expected. It was found. This important observation has been 

overlooked by all perceptionists until recently (Pizlo, 1994).

To summarize, Stavrianos, in her main experiment, showed that shape 

constancy does not involve cues to the depth or to the orientation of the 

fi gure presented. This result contradicts any theory in which shape con-

stancy depends on context, including all theories of shape perception that 

claim that perceived shape is based on “taking slant into account.” It also 

contradicts Koffka’s claim of an invariant relation between perceived shape 

and perceived slant. These important implications of Stavrianos’ results 

were overlooked by many perceptionists, including Stavrianos herself (see 

Hochberg, 1972, for one of very few exceptions). Thouless’ results on the 

perception of ellipses were widely, perhaps even universally, considered 

to have established the fact that shape constancy requires depth cues. 

Stavrianos’ results clearly contradicted the established wisdom about the 

relation of shape and slant. However, note that there was actually no con-

tradiction because Thouless had actually studied shape ambiguity, showing 

the trivial fact that information about depth is critical for disambiguating 

shapes under his conditions. Stavrianos, on the other hand, actually studied 

shape constancy, showing that information about depth is not important for 

veridicality. Stavrianos’ failure to draw appropriate conclusions from her 

results, and her failure to reject existing shape theories, could be, at least in 

part, related to the absence of an alternative plausible theory at the time. 

But at least one thing is clear—namely, that Stavrianos did not understand 

the nature of the differences between her and Thouless’ experiments. This 

limitation is not as disturbing as one might think because even if she had 

understood this difference and presented it clearly, progress in the study of 

shape perception would probably not have been possible in her day.

What alternative theories of shape were available in this period? The 

philosopher Cassirer (1938) and the mathematicians Courant and Robbins 

(1941) were the fi rst to conjecture that the perception of shapes from 

perspective images can be explained by projective invariants (see sections 

A.2–3).8 Nothing in her published work suggests that Stavrianos was aware 

of the idea of geometrical invariants. However, even if she had been, this, 
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in itself, would probably not have led her to propose a new theory of shape 

constancy because projective (or any other conventional) invariants cannot 

account for her results. In projective geometry, all rectangles (and in fact 

all quadrilaterals) are equivalent. It follows that if shape perception were 

based on projective invariants, all rectangles would have been perceptually 

equivalent and, thus, Stavrianos, like Thouless, would have ended up 

studying shape ambiguity, rather than constancy. In short, her results 

would have been identical to Thouless’! They were very different.9 In order 

to explain Stavrianos’ results in terms of geometrical invariants, a new class 

of invariants had to be discovered. These invariants, called “perspective 

invariants,” were fi rst formulated by Pizlo and Rosenfeld (1990, 1992; see 

section C.9). They can account for existing and new results on shape con-

stancy of 2D fi gures (Pizlo, 1994). Perspective invariants belong to a more 

general class of model-based invariants that can be applied to other cases 

of transformations, which do not form groups (Weinshall, 1993; Rothwell 

et al., 1993; Pizlo & Loubier, 2000). Thus, Stavrianos was about fi fty years 

ahead of her time. This probably explains why her experiment did not 

have the infl uence it deserved.

1.6 Contributions of Gestalt Psychology to Shape Perception 

(1912–1945)

A great deal of progress toward understanding shape perception has been 

made since the late 1960s. This progress derived, in large part, from the 

contributions of the Gestalt psychologists after their work had been in-

corporated into the Cognitive Revolution. Their main contribution was 

providing compelling evidence that the perception of shape is produced 

automatically from the relations among the elements present in the retinal 

image. They did this by applying what they called the “Laws of Perceptual 

Organization” (Wertheimer, 1923). The most important of these laws of 

organization was called “fi gure–ground organization.” It refers to the fact 

that closed contours establish special closed regions in the percept that 

correspond to objects in the visual scene. These regions, which were called 

“fi gures,” are perceived as lying in front of the “background.” N.B. that 

contours always belong to the objects (fi gures), never to the background. 

Thus, objects have shapes; backgrounds do not. Figure–ground organiza-

tion is illustrated in fi gures 1.2 and 1.3. Clearly, it is easy to see individual 
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objects. They are not confounded with each other or with the background. 

Furthermore, fi gure–ground organization is as obvious in the line drawings 

as in the photographs. Also, note that not only individual objects are seen. 

The 3D spatial relations within and among the objects are seen, as well. 

Realize that the 2D image present on your retina when you view fi gures 

1.2 and 1.3 is suffi cient to establish veridical 3D percepts of this natural 

scene. Thus, once the contours of objects are identifi ed in the image, their 

shapes can be described and then used to solve the shape constancy 

problem. It will be shown later that the percept of a 3D shape is produced 

by applying invariants and constraints to the 2D retinal shape. This means 

that the percept of a 3D shape can be produced only after the contours of 

the fi gures have been established. This is why fi gure–ground organization 

is so critical. If the fi gure–ground organization process fails, invariants and 

constraints cannot be applied and shape constancy must fail. This is arguably 

the most fundamental characteristic of human shape perception. It will be 

discussed in considerable detail in this book. Unfortunately, the Gestalt 

psychologists did not elaborate on the relation between shape perception 

and fi gure–ground organization. This oversight probably explains why 

they did not do much to advance the study of shape perception.

The Gestalt psychologists also offered support for their claim that the 

Laws of Perceptual Organization are innate by showing that one need not 

learn to perceive such fundamental properties as motion, lightness, or 

shape. Note that shape, unlike other stimulus properties, is a “Gestalt 

quality” and, as such, does not depend on the nature of the elements pro-

ducing it. In fact, the perception of shape, because it is an emergent per-

ceptual property, is arguably the best way to illustrate the uniqueness 

of the Gestalt contribution to the study of perception. However, Gestalt 

psychologists, as everyone else at the time, did not appreciate that shape, 

unlike other perceptual characteristics, has a high degree of complexity. 

This property permits different shapes to be discriminated easily. Instead 

of exploring the ways in which shape is special, they concentrated on 

relational characteristics within the percept, for example, they studied 

perceived size as a function of perceived distance, and perceived shape as 

a function of perceived slant. This emphasis on “higher order” variables 

prevented the Gestalt psychologists from noticing the fundamental prob-

lems with Thouless’ experiments, an oversight that, in turn, prevented 

them from rejecting Thouless’ “taking slant into account” explanation of 
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shape constancy. Had they appreciated this problem, they might have tried 

to develop a theory of shape perception based on existing knowledge of 

projective geometry. Despite this failure, the Gestalt psychologists did pave 

the way for an explanation of shape perception. Appreciating how they 

did this requires more than a fl eeting discussion of the origin and nature 

of the Gestalt approach to perception.

The main idea of Gestalt psychology was anticipated by the philosopher 

Christian von Ehrenfels (1890), who introduced the terminology, as well 

as the concept, called Gestaltqualität (form quality). He pointed out that as 

soon as there are three elements in the visual fi eld that do not fall on a 

line, a Gestalt quality emerges, namely, the shape we call “a triangle.” The 

nature, size, or orientation of the three elements does not matter. Once 

there are three noncollinear elements, a triangle is perceived. If there are 

four elements, a quadrilateral will be perceived, and so forth. Von Ehrenfels 

not only pointed this out, and gave this phenomenon the name that was 

adopted by his students, the Gestalt psychologists, but he also introduced 

the use of the term “transposition” into the study of perception. This term 

refers to the fact that a Gestalt quality, such as a triangle, remains when 

the elements producing it are replaced with other elements or when 

the elements are translated or rotated. Thus, the properties of the ele-

ments composing a shape are not important; only relations among the 

elements are.

The Gestalt school of perception emphasized these relations and called 

them “confi gurations.” This is in stark contrast to the Associationists’ 

approach to shape perception. The Associationists emphasized the impor-

tance of mental elements they called “sensations.” They claimed that 

the shapes of objects, revealed by the relations among elements, had to be 

learned by manipulating objects while they were viewed. This claim was 

at the center of the Gestalt psychologists’ attack on the Associationists 

represented by Helmholtz’ student Wilhelm Wundt and his English-

speaking student Edward Bradford Titchener, who led the Associationist 

approach in Europe and in America when Max Wertheimer launched the 

Gestalt Revolution in 1912 (see Heidbreder, 1933, for a good description 

of these “schools of psychology” and their controversies). Koffka, one of 

the three founding “fathers” of the Gestalt Revolution called the Associa-

tionists’ rejection of the possibility of relations (interactions) among ele-

ments in the retinal image the “constancy hypothesis.” In his words, this 
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hypothesis “implies that all locally stimulated excitations run their course 

without regard to other excitations” (Koffka, 1935, pp. 96–7).10

Gestalt psychologists contributed another idea that occupies a prominent 

place in contemporary research on shape perception, specifi cally, they 

placed emphasis on the importance of simplicity in determining the nature 

of a given percept. Their simplicity principle is analogous to what is called 

“a minimum principle” in physics. They embodied their simplicity prin-

ciple in their Law of Prägnanz (Prägnanz in German means “succinctness, 

conciseness, or terseness”). Koffka (1935, p. 110) described this law as 

follows: “perceptual organization is always as good as the prevailing conditions 

allow,” where good means regular, symmetrical, or simple. An example 

illustrating the operation of this simplicity principle is shown in fi gure 1.6. 

Here, at least two different interpretations are possible. One is a pair of verti-

cal lines with a symmetrical fi gure between them. The other is a superposi-

tion of the letters M and W. The letters are superimposed in such a way that 

parts of the M and parts of the W form longer, continuous lines and a closed 

form. Despite our familiarity with the letters M and W, and indeed, despite 

our knowledge that this interpretation is possible, it is much easier and 

more natural to see two longer lines and a closed fi gure between them than 

the letters M and W (after Koffka, 1935, p. 155). The “good fi gure” prevails. 

The Gestalt psychologists called the perceptual organizing principles respon-

sible for this result “good continuation” and “closure.”

Figure 1.6
It is not easy to see the letters M and W. Good continuation and symmetry lead to 

a different (simpler) perceptual organization (after Koffka, 1935).



Early Theories of Shape and the First Experiments on Shape Constancy 31

The Gestalt psychologists also introduced a number of other ideas that 

infl uenced subsequent theories of shape perception in more indirect 

ways, for example, Blum’s (1973) symmetry axes and “grassfi re” model, 

Grossberg’s (Grossberg & Mingolla, 1985) neural network model, and 

Ginsburg’s (1986) spatial fi lter model. All of these approaches derive from 

simple assumptions about relationships between the nature of the percept 

and its underlying physiological cause. The Gestalt psychologists took this 

on very early in the development of their theory. Their interest is embodied 

in what they called “psychophysiological isomorphism.” For example, if 

one perceives an object as moving, one could claim, as Wertheimer (1912) 

did, that the underlying brain process consists of moving excitation within 

the brain tissue.11 Gestalt psychologists claimed that the relations between 

the percept and its physiological correlate were topological, not metric. 

That is, only neighborhood relations are preserved; the distances between 

elements are not. Gestalt psychologists embodied their isomorphism prin-

ciple in an electrical brain currents model. Specifi cally, a minimum state 

of the brain currents was supposed to provide a physiological explanation 

of the simplicity principle responsible for perceptual organization (Köhler, 

1920). Köhler, who was the third founding father of Gestalt psychology, 

made extensive use of the simplicity principle in developing the concept 

of psychophysiological isomorphism. He had a background not only in 

psychology but also in physics and mathematics. He was quite familiar 

with the use of a minimum principle, the kind of principle that allowed 

elegant formulations of laws in physics (Lanczos, 1970). For example, the 

Fermat principle, according to which light travels along the path that 

minimizes the time of travel,12 allows derivation of the laws of refl ection 

and refraction in optics. Another example is Kirchhoff’s laws for electrical 

circuits, that is, given a circuit with a voltage source and resistors, the cur-

rents in the branches of the circuit will be such that the total amount of 

heat generated in the resistors is minimal. According to Köhler, similar 

simplicity mechanisms were likely to apply in perception. For Köhler, the 

steady state of electrical brain currents was a plausible physiological coun-

terpart (a cause) of perceptual simplicity (Köhler, 1920). Köhler’s claims, 

which may seem far-fetched to many today, fi tted in well with the zeitgeist 

of his time. We are now sure that electrical brain currents do not pro-

vide a plausible physiological model of perception as Köhler proposed, 

but in his day, such speculations were quite reasonable.13 The Gestalt 
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psychologists’ insistence on the importance of inherited, built-in, percep-

tual organizing principles and on simplicity constraining the nature of 

perceptual organization continue to be important. Next, we will consider 

how their simplicity principle fared following its introduction.

1.6.1 The Role of Simplicity in the Perception of Shape

If we accept the claim that the simplicity principle is critical in determining 

the percept, it becomes important to know what we mean by “simplicity.” 

It is one thing to state that a given percept is simple, after the percept has 

been observed, and quite another to predict what the percept will be like 

before it occurs. A precise formulation of simplicity was not available until 

information theory was formulated by Shannon in 1948. Until then, 

attempts to provide a Gestalt-inspired theory of shape perception were 

doomed to fail despite the fact that the Gestalt emphasis on inbuilt 

automatic perceptual organizing processes had promise. Their attempts to 

develop a theory of shape perception will be illustrated by describing how 

Koffka dealt with the fundamental question about shape fi rst posed by 

Wertheimer in 1923.

1.6.1.1 Why Do Things Look as They Do Koffka’s (1935) approach to 

perception, in general, and to shape perception, in particular, begins by 

raising this question (p. 75). He discusses two commonsensical answers: (i) 

Things look as they do because they are what they are, and (ii) things look 

as they do because their retinal images are what they are. Neither answer 

is accepted by Koffka, who turns next to the answer proposed by the Asso-

ciationists, who held that the nature of the percept is determined by an 

unconscious conclusion in which learning and associations play the crucial 

role. Koffka does not accept this empiristic answer on the grounds that it 

does not offer an adequate explanation of the fact that human and animal 

infants, who have had very little time for learning, demonstrate many 

perceptual constancies.

Koffka’s “true answer” to his question “Why do things look as they do?” 

is that things look as they do because this is the simplest interpretation 

of their retinal image (p. 98). Koffka’s answer begs the question because he 

could not provide a formal operational defi nition of simplicity. This forced 

him to speculate about the physiological basis of simplicity. He did this by 

invoking what the Gestalt psychologists called “fi eld forces.” These forces 
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were associated with the electrical activities of the brain. The brain fi eld, 

according to Koffka, involves the operation of two forces, one internal and 

one external. The external force is produced by the proximal stimulus 

(the retinal image). The internal force is produced by the brain’s tendency 

toward simple percepts. Each force is represented by electrical brain cur-

rents whose steady state (the minimum state) is the physiological correlate 

of the percept. The two forces interact. If both forces act in the same direc-

tion, as would presumably be the case when the retinal image is simple—

for example, a circle—the percept is stable. When the two forces are in 

strong confl ict, as would be the case when the retinal image is an irregular 

shape, the percept should be unstable (Koffka, 1935, pp. 138–9). For Gestalt 

psychologists, the circle was special. It was the simplest, most regular 

shape. It was the simplest 2D shape because the given surface area was 

enclosed by the minimal-length, therefore simplest, contour. In other 

words, the circle is the most “compact” 2D fi gure, because a contour of a 

given length encloses the maximal area. This property of “compactness” 

will take on considerable signifi cance later when we move to consideration 

of 3D shapes, where a sphere will become the simplest fi gure. An example 

of a simplicity principle operating in three dimensions can be illustrated 

by a soap bubble: A soap bubble will always take on a spherical shape 

because a sphere requires the minimum amount of energy to maintain its 

integrity. Note that it is diffi cult to demonstrate the operation of a simplic-

ity (minimum) principle with 2D shapes, the case most often discussed 

by Koffka (1935). Koffka, and others who were sympathetic to Gestalt 

ideas, had little success when they tried to demonstrate the operation of 

a minimum principle by measuring absolute thresholds of 2D shapes. It is 

much easier to demonstrate the application of a minimum principle with 

3D shapes. This is how it can be done.

1.6.1.2 Perception of 3D Shape from 2D Images Koffka’s treatment of the 

perception of 3D shapes from 2D images begins with the following statement: 

“three-dimensional shapes are matters of organization in the same way as 

two-dimensional ones, depending on the same kind of laws” (p. 161). What 

Koffka is saying is that 3D percepts, like 2D percepts, derive from built-in auto-

matic organizing processes. They do not depend on learning. The 3D percept, like 

the 2D percept, refl ects the operation of a simplicity principle. He supports this 

claim with a discussion of Kopfermann’s (1930) and Schriever’s (1925) 
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experiments. They studied 2D representations of solid objects whose per-

cepts were “simpler” when they were viewed as 3D objects.

Kopfermann used a set of orthographic projections of a cube. The sub-

jects were shown line drawings like those in fi gure 1.7. The four fi gures are 

different with respect to regularity or simplicity as measured by topological 

and metric properties. Specifi cally, these fi gures differ with respect to the 

number of points of intersection of the lines contained in each fi gure, as 

well as with respect to the lengths of their line segments and the sizes of 

their angles. The subjects in Kopfermann’s (1930) study were asked whether 

they saw a 2D (planar) fi gure or a 3D (solid) object. The fi gures in (c) and 

(d) usually led to the percept of a planar (fl at) fi gure, identical with the 

fi gure itself. The fi gures in (a) and (b), on the other hand, usually led to 

the percept of a cube.14 These observations allowed her to conclude that 

the percept is equivalent to the 2D projection when this projection is 

simple as in (c) and (d). However, when the 2D projection is more complex, 

as in (a) and (b), the “simpler” 3D object is seen. In fact, the percept pro-

duced by (a) or (b) corresponds to a cube, the most symmetrical 3D object 

consistent with these fi gures’ retinal images. This fi ts nicely with Koffka 

and his Gestalt colleagues’ conjectures about the important role of simplic-

ity in shape perception. Note also that, as Koffka pointed out, the percept 

in fi gure 1.7a corresponds to a 3D regular (simple) fi gure despite a powerful 

confl icting cue (external force), namely, binocular disparity, which should 

tell the observer that the stimulus is actually fl at (Koffka, 1935, p. 161).

A related experiment was performed by Schriever in 1925 (see Koffka, 

1935, pp. 274–5). He used a meaningless 3D object (fi gure 1.8) com-

posed of three connected bars located in different depth planes. He then 

(a) (b) (c) (d)

Figure 1.7
Kopfermann’s stimuli (from Kopfermann, 1930, p. 298, fi gure 1—with kind permis-

sion of Springer Science and Business Media).
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introduced a confl ict between binocular disparity and perceptual organiza-

tion of the meaningless 3D object’s retinal image. He did this by photo-

graphing the object from slightly different viewing directions and then 

using a stereoscope to reverse the bar’s order in depth by presenting the left 

image to the right eye and the right image to the left eye. If the binocular 

percept of this 3D meaningless object were determined by binocular dispar-

ity, the subject should have perceived the parts of the object with their order 

in depth reversed. Instead, the subject perceived the depth order given by 

the available monocular perceptual grouping principles, namely, good con-

tinuation and occlusion. Binocular disparity had little, if any, effect. This is 

a nice example of the way Gestalt psychologists determined the relative 

importance of various cues and rules of perceptual organization. Here, good 

continuation (internal force) was found to be more important than binocu-

lar disparity (external force). Another way of stating Schriever’s result is to 

say that the perceived 3D shape had more to do with the 2D shape on the retina 

than with the depth relations indicated by binocular disparity.

The Gestalt psychologists did not say much more about the perception 

of 3D shape produced by 2D retinal images than described above. This is 

unfortunate because the relation between a percept of a 3D object and its 

2D retinal image is critical, especially when the role of a simplicity prin-

ciple in shape perception is considered. Once the 2D shape on the retina 

is established through the operation of fi gure–ground organization, the 

simplicity principle is involved in producing the 3D shape percept. The 

simplicity principle is not needed to simplify the percept of the 2D retinal 

shape. It follows that invocation of a simplicity principle is not (i) needed 

or (ii) productive when one confi nes discussion to the perception of 2D 

Figure 1.8
Schriever’s stimulus (after Koffka, Principles of Gestalt psychology, Harcourt Brace 

1935, fi gure 82, p. 274—with kind permission of the publisher).
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(planar) shapes, which are abstractions. N.B., there are no 2D objects, no 

matter how thin. Unfortunately, this canon has not been and is not widely 

appreciated, an oversight that has led to a great many pointless experi-

ments, controversies, and erroneous conclusions. Its neglect has been as 

big an obstacle to the development of an adequate theory of shape as 

Thouless’ naiveté with respect to the projective properties of triangles and 

ellipses proved to be in the study of shape constancy.

1.6.1.3 Studies of Shape Thresholds The interest in shape thresholds 

was initiated by Goethe, who reported that an afterimage of a square 

becomes more and more circular with the passage of time (Koffka, 1935, 

p. 143). Koffka made note of this and went on to claim that internal forces, 

which bias a percept toward simplicity, compete with external forces pro-

duced by the square because it is not as simple as the “simplest form,” that 

is, a circle. In other words, the afterimage of the square weakens over time 

and the resulting percept becomes more distorted in the direction of 

greater simplicity. It comes to be perceived more and more like the simpler, 

“best,” fi gure, the circle.

Gestalt psychologists used several methods to test the confl ict between 

internal and external forces by using (i) short exposure times, (ii) low 

contrast stimuli, (iii) small targets, and (iv) afterimages. These methods 

were believed to provide a means of studying how competition between 

internal and external forces determined the percept. In other words, these 

methods allowed them to study the relative importance of the simplicity 

principle vis-à-vis properties of the retinal image.

Studying weak external forces lends itself naturally to the measurement 

of both detection and identifi cation thresholds. The main prediction of 

the Gestalt theory was that simple shapes would be easier to detect and 

identify than complex shapes. This line of research led to a large number 

of studies published over the span of more than four decades, beginning 

in the early 1920s. The interested reader should consult reviews by 

Hochberg (1972, pp. 443–4), who was involved in this research himself, 

and also Zusne (1970, pp. 265–9, 304–7), who was not. The results are, at 

best, inconclusive: (i) Decreasing the “strength” of the stimulus does not 

necessarily lead to simpler percepts, (ii) the luminance threshold for detect-

ing shapes does not depend systematically on the nature of the shape itself, 

and (iii) complex shapes do not necessarily require longer exposure 
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duration for successful shape identifi cation. Today, no one studies shape 

thresholds. This is not because the questions leading to these experiments 

have been answered, but because these experiments have not been produc-

tive. These experiments were based on an implausible assumption, namely, 

that the percept arises from a confl ict between simplicity constraints and 

properties of the retinal image. This kind of psychodynamical approach 

has fallen out of favor. We now make a quite different assumption, namely, 

that the simplicity principle is incorporated in perceptual mechanisms in order 

to make up for information lost due to (i) the projection from the distal to 

the proximal stimulus and (ii) the presence of noise in the visual system. This 

assumption leads to different kinds of experiments than those performed 

by the Gestalt psychologists (see section 4.3).

To summarize, the Gestalt psychologists’ preference for studying 2D 

shapes, as well as their commitment to their physiological model of 

Prägnanz, did not produce useful results on shape perception beyond the 

work of Kopfermann and Schriever. The Gestalt psychologists, as well as 

everyone else until recently, simply did not appreciate the fact that the 

only way to study the role of simplicity in shape perception is to use 3D 

objects (or 2D images of 3D objects). Stimuli with only two dimensions 

are too impoverished to reveal how simplicity constraints can compensate 

for information lost in the projection from distal to proximal stimulus. 

Gestalt psychologists were on the right track in emphasizing the role of 

simplicity in perception, but they failed to provide a formal defi nition of 

what they meant by “simplicity.” Obviously, they cannot be faulted for 

failing to do so because information theory, the theory which deals with 

the concept of simplicity, was not formulated until 1948 (Shannon, 1948). 

A revival of the Gestalt approach took place in the early 1950s. This revival 

was stimulated by the formulation of information theory and by the shift 

of emphasis from research with 2D shapes to research with 3D shapes. 

Once these were in place, it became possible to make major advances in 

the study of perception and cognition. These changes led to what had been 

called the “Cognitive Revolution.”





2 The Cognitive Revolution Leads to Neo-Gestaltism and 

Neo-Empiricism

Progress in science and technology made during World War II contributed 

a lot to what has been called the “Cognitive Revolution” (Neisser, 1967; 

Gardner, 1987). The formulation of the theory and design of computers 

led the way (Turing, 1936; von Neuman, 1951). Computers allowed the 

manipulation of both numbers and symbols. This opened up the possibil-

ity of writing computer programs that could perform such important 

human tasks as pattern recognition, the coding and decoding of messages, 

game playing, and problem solving (Feigenbaum & Feldman, 1963; Minsky, 

1968). Another element that contributed signifi cantly to the Cognitive 

Revolution was called “cybernetics” (Wiener, 1948). Cybernetics provided 

unifi ed treatments of (i) engineering systems that make use of negative 

feedback (Craik, 1943; Mayr, 1970; Bennett, 1979, 1993), (ii) biological 

systems designed to achieve homeostasis (Cannon, 1932; Ashby, 1940), 

and (iii) ecological systems based on prey–predator relations (Lotka, 1925), 

as well as (iv) purposive goal-directed behavior of both human beings and 

animals (Münsterberg, 1914; Warren, 1916; Tolman, 1932; Hull, 1930, 

1937).1 Wiener, the founder of cybernetics, actually went so far as to say 

that cybernetics is the branch of engineering that deals with designing 

“teleological systems” (Rosenblueth, Wiener, & Bigelow, 1943). Once 

cybernetics is described in this way, one might be led to claim that cyber-

netics demystifi es the philosophical concept called “teleology” by showing 

that the concept of a “fi nal cause” is actually acceptable in science and 

engineering after all. This claim goes much too far. “Final causes” still do 

not have a place in science and probably never will. Making a claim like 

this requires changing the meaning of the word “teleology.” In philosophy, 

“teleology” means that the present can be affected by the future. In 
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cybernetics, it means that the present can be affected by a model (represen-

tation or expectation) of the future, not by the future itself.

The third element that contributed to the Cognitive Revolution was the 

formulation of information theory (Shannon, 1948). Information theory 

grew out of several disciplines, namely, statistics, communication, and 

control engineering (Cherry, 1978). The fourth element was neuroscience, 

which studies the anatomy and physiology of the nervous system, particu-

larly of the brain (Talbot & Marshall, 1941; McCulloch & Pitts, 1943; 

Kuffl er, 1953; Hubel & Wiesel, 1962). Neuroscience played an important 

role in the Cognitive Revolution, often overshadowing the importance of 

the other three elements (Jeffress, 1951; Hebb, 1949). However, the contri-

bution of neuroscience to our understanding of human shape perception 

has been rather modest. The other three elements have been much more 

important to date.

In psychology, the beginnings of the Cognitive Revolution were closely 

related to the fi rst and third elements, that is, the development of com-

puter science and the formulation of information theory. Specifi cally, psy-

chologists began to count “bits of information” contained in linguistic 

messages (Shannon, 1948; Miller & Selfridge, 1950; Miller, 1951), in sen-

sorimotor channels (Hick, 1952; Fitts, 1954), in short-term memory (Miller, 

1956), and in the perception of patterns (Attneave, 1954, 1959). It was 

hardly counterintuitive that messages and patterns that were simpler and 

had greater redundancy would be easier to code, respond to, memorize, 

and recognize. No one was surprised when this proved to be the case. It 

quickly became apparent that information theory offered the possibility 

for a precise quantitative formulation of the Gestalt Law of Prägnanz (e.g., 

Attneave, 1954). This development inspired what will be called the “neo-

Gestalt” movement. This movement was led by Julian Hochberg, Fred 

Attneave, David Perkins, and Hans Wallach. Their most important contri-

butions will be described next.

2.1 Hochberg’s Attempts to Defi ne Simplicity Quantitatively

2.1.1 The Role of the Simplicity Principle in Determining Whether a 

Shape Will Be Perceived in Two or in Three Dimensions

An infl uential paper by Hochberg and McAlister (1953) started a series of 

studies aimed at defi ning the Gestalt simplicity principle operationally. 
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These authors began by replicating Kopfermann’s experiment, published 

in German in 1930 and described by Koffka in 1935, with 2D stimuli that 

were perceived as “simpler” when they were perceived as 3D objects. They 

improved the methodology and interpreted their results using the lan-

guage, but not the formalisms, of information theory. The 2D stimuli they 

used are shown in fi gure 2.1. Each of the four stimuli can lead either to a 

2D percept analogous to the drawing itself or to a 3D percept, namely, a 

cube.2 The complexity of the 3D interpretation was the same for all four 

stimuli because only one 3D interpretation was perceived, namely, a cube. 

However, the complexity of the 2D interpretation was different for each 

of the four stimuli shown in this fi gure. Hochberg and McAlister proposed 

that the “complexity” of a stimulus should be measured by the amount of 

information that is needed to describe the stimulus. This led them to a 

reformulation of Kopfermann’s claim about the relation between the sim-

plicity of an interpretation and the likelihood of a given percept. Hochberg 

and McAlister’s hypothesis was that “the less the amount of information 

needed to defi ne a given [perceptual] organization,  .  .  .  the more likely that 

the fi gure will be  .  .  .  perceived [as 2D or 3D]” (p. 361). Hochberg and 

McAlister proposed three geometrical features that can be used to measure 

the complexity of a fi gure, namely, the number of (i) line segments, (ii) 

angles, and (iii) points of intersection (junctions). For example, stimulus 

(c) in fi gure 2.1 has thirteen line segments, twenty angles, and eight junc-

tion points.3 According to the authors’ classifi cation, (a) and (b) are equally 

complex, (c) is simpler, and (d) is the simplest. Therefore, (d) should be 

perceived as a 2D pattern, whereas (a) and (b) should be perceived as 

a cube.

(a) (b) (c) (d)

Figure 2.1
Stimuli used by Hochberg and McAlister (1953). Stimulus (d) is simple when per-

ceived as a 2D fi gure. Stimulus (a) is complex when perceived as a 2D fi gure but 

simple when perceived as a “cube” (from Hochberg & McAlister, 1953).
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Hochberg and McAlister (1953) estimated the likelihood of perceiving a 

2D versus a 3D interpretation as follows: The subject viewed each fi gure 

for 100 seconds. During this period, thirty-three tones were presented at 

random intervals. The subject was asked to report the interpretation (2D 

or 3D) perceived when each tone was heard. The frequency of 2D inter-

pretations was computed. Eighty subjects were tested with each of the four 

stimuli. The relative frequencies of 2D interpretations based on all eighty 

subjects were as follows: 1.3%, 0.7%, 49% and 60% for stimuli (a), (b), (c), 

and (d), respectively, confi rming, the authors’ prediction.

These results are consistent with the authors’ hypothesis that simpler 

interpretations, that is, the interpretations that require less information, 

are preferred perceptually. Note that Hochberg and McAlister (1953) 

did not actually compute the amount of information quantitatively by 

counting bits. Instead, they used quantitative measures that correspond 

intuitively, rather than formally, to the amount of information. For 

example, according to Hochberg and McAlister, a quadrilateral is more 

complex (requires more information to describe) than a triangle. No one 

would question this classifi cation, but it is important to realize that count-

ing angles is not equivalent to counting bits. Could Hochberg and McAli-

ster have improved their “theory” by actually using the number of bits 

required to describe a fi gure as a measure of complexity of the fi gure’s 

shape? I doubt it. There were a number of attempts to do this (e.g., Leeu-

wenberg, 1971), but none of them were successful. Specifi cally, each theory 

could “explain” the percepts for only a very limited set of stimuli. The 

main reason for these failures was that these theories were based on an 

implausible assumption, namely, that the goal of the visual system is to 

produce simple percepts. It is more reasonable to assume that the goal of 

the visual system is to produce veridical percepts. Constraints, such as sim-

plicity, are tools that can be used to achieve this goal. The change of 

emphasis from the simplicity to the veridicality of the percept did not take 

place until the machine vision community entered the fi eld in the 

1970s.

In a follow-up study, Hochberg and Brooks (1960) set out to determine 

whether the simplicity principle applies to a wider range of objects (poly-

hedra) and whether it can predict the results of new psychophysical experi-

ments rather than simply account for data already collected. In their fi rst 

experiment, line drawings of nine polyhedra were used. For each polyhe-
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dron, they constructed four or fi ve fi gures, each fi gure representing a dif-

ferent view of the same object. The views produced by a given polyhedron 

formed what the authors called a “family,” corresponding to a given poly-

hedron (fi gure 2.2 shows three such families). Four hundred thirty naive 

subjects were asked to rate the apparent tridimensionality of each fi gure 

using a graphical scale ranging from 0 to 10. The authors considered sev-

enteen features that could be related to the complexity of a 2D fi gure, like 

the number of angles, the number of junction points, and so forth. Then, 

they computed correlations between all pairs of features, as well as the 

fi gure’s perceived tridimensionality. They factor analyzed the resulting cor-

relation matrix and chose three features that accounted for a large propor-

tion of the variance in their results. These features were (i) total number 

of interior angles, (ii) total number of continuous line segments (i.e., ignor-

ing intersections), and (iii) total number of different angles divided by the 

total number of angles. Then, they computed a regression model describ-

ing the effect of these three features on the degree of tridimensionality 

perceived.

Figure 2.2
Three “families” of shapes (J, K, and M) used by Hochberg and Brooks (1960). (From 

American Journal of Psychology. Copyright 1960 by the Board of Trustees of the Uni-

versity of Illinois. Used with permission of the University of Illinois Press and of the 

authors.)
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In their second experiment, Hochberg and Brooks (1960) tested how well 

this regression model could predict perceived tridimensionality with line 

drawings produced by new polyhedra. The correlation between the sub-

jects’ ratings and the predictions of their regression model was very high, 

.98, clearly allowing them to claim that their model had high predictive 

power. Finally, the authors verifi ed the generality of their results with a 

different scaling method. They used the paired-comparison method to 

rank order the apparent tridimensionality of the fi gures. The rank order 

obtained agreed closely with the order derived from the magnitude estima-

tion procedure used in the second experiment. This strongly suggested that 

the high correlations between human judgments and model predictions 

are not restricted to a single psychophysical method.

2.1.2 The Role of Learning in Shape Perception

Having established that monocular shape perception, specifi cally the per-

ception of shapes of 3D objects from their 2D images, involves a simplicity 

principle, Hochberg and Brooks (1962) went on to fi nd out whether learn-

ing plays an important role in shape perception. The Gestalt psychologists, 

who emphasized the role of simplicity in perception, were nativists. Accord-

ing to them, the rules of perceptual organization were innate. It seemed 

that if one wanted to show that nativism cannot be the full story, and that 

learning after birth is needed to form perceptual mechanisms, the percep-

tion of objects from pictures would be the best place to start. The reason 

is simple. There were not very many pictures of objects in the natural 

environment during the early evolution of human beings. Pictures have 

become common only in relatively recent human history, probably not 

extending back much more than 50,000 years. It seems unlikely that the 

perceptual ability to see and recognize 3D scenes from 2D pictures and line 

drawings has had suffi cient time to establish itself in our genes. Obviously, 

if one were able to demonstrate the absence of a need for learning in rec-

ognizing 3D objects in 2D pictures, one would have made quite a strong 

argument in favor of the nativistic position.

The fact that pictures of 3D scenes are devoid of many useful depth cues, 

such as binocular disparity, motion parallax, accommodation, and ver-

gence cues, all of which are present when we view 3D scenes, suggested to 

some (e.g., Gibson, 1950) that experiments involving pictures could never 

reveal how the visual system operates in natural, ecologically valid situa-
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tions. Those who believed this argued that pictures should not be used to 

study perception because results obtained in experiments with pictures 

(such as Hochberg and McAlister’s, 1953) would not generalize to ecologi-

cally valid, full-cue conditions. Specifi cally, according to Gibson, no a 

priori rules of organization are needed when real 3D scenes are viewed. 

Perceptual rules of organization become important only when impover-

ished stimuli, such as pictures, are used (Gibson, 1950, p. 196). Gibson’s 

claim provided a second reason motivating Hochberg and Brooks’ (1962) 

study.

A newly born baby boy served as the subject in this experiment. As his 

language skills were developing during his fi rst two years, he was exposed 

to many common objects and toys and taught the names of these objects, 

but he was prevented from seeing 2D representations of such objects to 

the extent this was possible. He was not allowed to see either movies or 

still pictures. Hochberg and Brooks expected that the child would be able 

to recognize familiar objects and be able to name them. The experimental 

question was whether the child could also name the objects when pre-

sented with pictures of these objects. The training phase of the experiment 

lasted for only nineteen months because by this time the child could no 

longer be prevented from seeing pictures without interfering with his 

normal development and with normal family life. The second phase of the 

experiment consisted of two tests. Twenty-one pictures were used in the 

fi rst test. Photographs of objects and line drawings of these objects were 

included in the test. The child’s responses were tape-recorded as these 

stimuli were presented one at a time. After this fi rst test, the child was 

exposed to many picture books in order to facilitate “perceptual learning.” 

A second test with nineteen new pictures of objects was administered after 

a month of such perceptual learning.

The child had almost no diffi culty in naming familiar objects from pic-

tures in both the fi rst and second test. This result clearly shows that a single 

2D image of a particular 3D object had produced a 3D percept in the boy’s 

mind. Furthermore, this percept must have been very similar (possibly 

even identical) to the percept resulting from viewing the actual 3D object. 

Note that performance on the fi rst test was as good as performance on the 

second test. These results strongly suggest that perceiving 3D objects from 

2D pictures is innate and that this perceptual ability involves the same mecha-

nisms as perceiving real 3D objects. Finally, now that we know that perceiving 
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3D objects from 2D images does involve a priori simplicity constraints, it 

becomes possible to claim that the simplicity constraints that are used to per-

ceive 3D objects are used to perceive 3D objects from 2D pictures, as well. Once 

this is appreciated it becomes clear that Gibson’s claim was unwarranted. 

Theories of perception based on studies of the perception of 3D objects 

from 2D pictures are actually quite relevant for studying the perception of 

real objects.

2.2 Attneave’s Experiment on 3D Shape

Attneave (1959) pointed out that the Cognitive Revolution raised two new 

important questions, namely, (i) what was the maximum transmission rate 

and (ii) how much information can be transmitted through sensory and 

motor communication channels (p. 43). These questions do not actually 

apply to the perception of 3D shapes. Transmitting information through 

a communication channel deals primarily with a one-to-one mapping, 

while the perception of 3D shapes deals with a one-to-many mapping from 

the 2D proximal stimulus to the 3D percept. Attneave’s early research 

concentrated on 2D stimuli and their corresponding 2D percepts (Attneave, 

1954, 1959). By doing this, he was able to apply the communication 

framework to his theory of perception. Note, however, that this approach 

could not work with the kind of 2D stimuli that produce a 3D percept, for 

example, the kind of stimuli used in Hochberg and McAlister’s (1953) 

study. In 1959, Attneave apparently underestimated the signifi cance of 

Hochberg and McAlister’s contribution. It took him ten years before he 

switched his emphasis from the perception of 2D shapes to the perception 

of 3D shapes (Attneave & Frost, 1969).

Hochberg and his associates had demonstrated that the simplicity of the 

retinal image determines whether the percept will be 2D or 3D. This 

showed that there was a relation between the simplicity and the topologi-

cal properties of the percept. Attneave and Frost (1969) took the next step 

by demonstrating that the simplicity of the object and its retinal image 

determine the Euclidean properties of the 3D percept, such as the orienta-

tion of the edges of a polyhedron. Their subjects simultaneously viewed a 

line drawing of a polyhedron monocularly and a rod in 3D binocularly. 

They were asked to adjust the orientation of the rod so that it matched 

the perceived orientation of the edges of the polyhedron. Three different 
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images were used: (i) an orthographic image of a rectangular parallelepiped 

(a parallelepiped is a 3D prism whose faces are all parallelograms; a rect-

angular parallelepiped is a parallelepiped whose trihedral angles are all 

right angles), (ii) an orthographic image of a cube, and (iii) a perspective 

image of a cube (fi gure 2.3). The perspective image was computed assuming 

that the line of sight was orthogonal to the picture plane at the vertex of 

the Y junction of the line drawing, and that the viewing distance was 

47 cm, the distance from which the subjects actually viewed the pictures.

Now, consider the logic behind Attneave and Frost’s experiment. If the 

visual system maximizes the simplicity of the 3D perceptual interpretation, 

a perspective image of a cube will lead to the percept of a cube because a 

cube is the simplest 3D interpretation of the image of a cube. Furthermore, 

it is reasonable to expect that the perceived cube will have the same 3D 

orientation as the cube that was used to compute the perspective image. 

The orientation of a cube can be “measured” by the orientations of the 

edges of the cube relative to the frontal plane. Thus, it seems plausible that 

the perceived orientation of a cube can be measured by measuring the 

perceived orientation of its edges. The authors derived a formula that 

determines the orientation of the edges of a cube from the image of 

the cube. They limited their analysis of these geometrical relations to the 

three edges forming a Y junction. Consider fi gure 2.4 and the 3D orienta-

tion f1 of edge L1 (whose image is l1) relative to the frontal plane. This 

(a) (b) (c)

Figure 2.3
Stimuli used by Attneave and Frost (1969): (a) is an orthographic image of a rectan-

gular parallelepiped, (b) is an orthographic image of a cube, and (c) is a perspective 

image of a cube (with kind permission of the Psychonomic Society Publications).
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angle can be computed from the following formula (Attneave & Frost’s 

equation 13):

sin
tan tan

.φ
α β

1
1( ) =
⋅

 (2.1)

Note that this formula applies not only to an orthographic but also to a 

perspective image of the Y junction of a cube, as long as the line connect-

ing the center of projection and the vertex of this junction is orthogonal 

to the image plane.

How could this equation (2.1) be used to test the role of simplicity in 

shape perception? The authors’ reasoning was as follows. If the subject 

perceives a cube, the subject’s judgments of f1 should conform to equation 

(2.1). Now, look at fi gure 2.3b, which was produced by an orthographic 

projection of a cube. In a perspective projection, the edges of a cube that 

are farther from the observer project to shorter line segments. This is illus-

trated in fi gure 2.3c, which is a valid perspective image of a cube. The other 

two images, (a) and (b), cannot be produced by a cube in a perspective 

projection and, thus, do not allow for such a perceptual interpretation. 

The authors adopted (apparently after Hochberg & McAlister, 1953) a 

qualitative model, in which there are only two possible interpretations: a 

cube (the 3D interpretation) and a fl at fi gure identical to the line drawing 

presented. In all three fi gures (fi gure 2.3a–c), the Y junction is consistent 

with a cube interpretation. In both (b) and (c), but not in (a), the projected 

π2 α
γ

β

π1

π3
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�2

Figure 2.4
Orthographic image of a cube. Angles α, β, and γ satisfy Perkins’ law, that is, all 

three are obtuse in this orthographic image.
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lengths of the Y junction are consistent with a cube interpretation. Finally, 

in (c), but not in (a) or (b), the remaining angles of the fi gure, as well as 

the lengths of the remaining edges, are consistent with a cube interpreta-

tion. Attneave and Frost assumed that the two different interpretations (3D 

and 2D) confl ict with each other and that the confl ict results in a combi-

nation (fusion) of the two interpretations.4 Thus, the subject’s judgment 

should be closest to that predicted by equation (2.1) in case (c), and farthest 

from that prediction in case (a). This is indeed what happened. The slope 

of the regression line for the relation between the perceived f (dependent 

variable) and computed f, was 0.34, 0.59, and 0.63 for images (a), (b), and 

(c), respectively.

Now, consider theoretical issues that follow directly from Attneave and 

Frost’s (1969) study. First, consider the relation between the perceived shape 

and the perceived 3D orientation (slant), the issue discussed at length 

earlier. Attneave and Frost used 2D line drawings. Therefore, the stimulus 

itself did not provide any conventional cues to the slant of the edges or 

faces, like shading, texture, motion, or binocular disparity. In fact, the edges 

and faces were perceived as having 3D orientations only because they were 

perceived as part of a 3D object. Clearly, in the case of line drawings, the 

percept of a 3D shape cannot be based on the percept of the 3D orientations 

of its edges or faces. The particular 3D percept is obtained by the application 

of a simplicity principle to the 3D shape. For example, the percept produced 

by images such as fi gure 2.3c can be obtained by making all angles equal 

(here equal to 90 deg) or by choosing a 3D object with the maximal volume 

for a given surface area (i.e., maximal compactness). The percept of the 3D 

orientations of the edges and faces of the 3D object does not precede, but 

rather is preceded by, the percept of the object’s shape. In other words, the 

shape is perceived before its edges are perceived. Prior theorists studying 

shape constancy concentrated exclusively on a “shape from slant” explana-

tion, but as was shown in chapter 1, another explanation, namely, “slant 

from shape,” is more likely to be appropriate. Attneave and Frost’s (1969) 

experiment provided converging evidence for such an explanation.

2.3 Perkins’ Contribution: Emphasis Shifts from Simplicity to Veridicality

Perkins’ experiments were stimulated by the work of the “Transactional 

psychologists,” who emphasized the importance of Ames’ distorted room 
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(Ittelson, 1968; Kilpatrick, 1961). Perkins was the fi rst to appreciate the 

relation between the work of Ames’ group and the work of the Gestalt and 

neo-Gestalt psychologists (Kopfermann, 1930; Hochberg and McAlister, 

1953; Attneave and Frost, 1969). By bringing these two traditions together, 

Perkins made a good case for the suggestion that simplicity and likelihood 

principles are conceptually closely related in the sense that “good form is 

a good bet” (Perkins, 1976; see also Mach, 1906, who made this suggestion 

earlier). Perkins was also the fi rst to show that shape constraints can predict 

the 3D shape percept. Recall that Hochberg and McAlister (1953) were only 

able to explain the role of constraints in determining whether the percept 

would be 2D or 3D. Attneave and Frost (1969) were only able to explain 

(to some degree) the role of constraints in the perceived 3D orientations 

of the edges of an object. Perkins took the next step by bringing together 

constraints and the 3D shape percept. Perkins, by doing this, anticipated 

the way 3D shape perception is studied and modeled today. An additional 

important aspect of Perkins’ work was his insistence on understanding the 

geometrical relation between the distal and proximal stimulus. Under-

standing this relation is often (one might even say, always) critical for 

interpreting the results of a psychophysical experiment on shape 

perception.

2.3.1 Rectangular versus Nonrectangular Parallelepipeds

In his fi rst study, Perkins (1972) tested subjects’ ability to identify rectan-

gular and nonrectangular boxes (parallelepipeds) from orthographic images 

of boxes. As pointed out earlier, when the retinal image is produced by a 

rectangular box, the observer perceives a rectangular box (a box that has 

multiple symmetries). This suggested to Perkins that the visual system 

imposes constraints such as rectangularity when interpreting retinal 

images. His main question was whether the rectangularity constraint is 

imposed on the 3D interpretation only when the retinal image, and the 

rules of perspective projection, allow for such an interpretation. In other 

words, would the observer perceive a rectangular box even when a rectan-

gular box could not produce a perspective image equivalent to the retinal 

image given? Gestalt psychologists claimed that the percept is only as good 

as the prevailing conditions allow (in this case, the shape of the 2D retinal 

image). This claim suggested that when the rectangular interpretation is 

not consistent with the retinal image, it will not look like a rectangular 
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box. Perkins’ experiment corroborated this suggestion. Specifi cally, Perkins 

showed that human observers reliably identifi ed rectangular and nonrect-

angular parallelepipeds from their orthographic images. This experiment 

showed two things. First, it showed that the human visual system does use 

constraints in 3D shape perception. This result was not new. Second, it 

showed that the visual system “knows” the rules of perspective projection. 

This result was anticipated by Kaiser (1967) in his experiment with trape-

zoids, but Kaiser did not point this out because he was more interested in 

the correlation between shape and slant judgments than in verifying 

whether the human visual system is a “natural geometer.”

Now consider the criterion that the visual system could have used to 

solve Perkins’ task. By using this criterion, the visual system can “decide” 

whether a rectangular interpretation is possible before the actual 3D shape 

reconstruction is performed. If a rectangular interpretation is not possible 

for a given 2D shape on the retina, the rectangularity constraint does not 

have to be used. In other words, the visual system might “choose” which 

constraints will be applied depending on the content of the retinal image. 

Assume that an image of a cube is formed according to an orthographic 

projection (see fi gure 2.4). As pointed out above, when the line connecting 

the center of projection with the vertex of the Y junction of the cube is 

orthogonal to the image plane, the transformation of the angles at the 

vertex is the same under orthographic and perspective projection. There-

fore, equations derived for an orthographic projection will generalize to a 

perspective projection. Perkins stated that if the trihedral angle is a right 

(90 deg) angle, all three angles in the image are obtuse (except for degener-

ate cases when one or two angles are exactly 90 deg—see fi gure 2.5a). 

Perkins did not provide a derivation of this rule, but the derivation is useful 

for the reader, because only then can the reader see the generality of the 

fi nal formula or criterion (see appendix B.1). With three edges emanating 

from a common vertex of a right trihedral angle, either all three have the 

same direction (away from or toward the observer) or two of them have 

the same direction. It follows that in the image of a right trihedral angle, 

either all three angles are obtuse or one is obtuse and two are acute. The 

line drawing in fi gure 2.4 satisfi es this criterion, but the line drawing in 

fi gure 2.5b does not. The reader will probably agree that fi gure 2.4, but not 

2.5b, looks like a rectangular box. The rule derived in appendix B.1 is a 

somewhat more general version of Perkins’ rule. It applies to any junction 
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of three edges in the orthographic image of a cube. The original Perkins’ 

rule was restricted to the Y junction in the center of fi gure 2.4.

Perkins’ rule allows discriminating between images of rectangular and 

nonrectangular boxes only when the boxes are parallelepipeds (i.e., they 

have three pairs of parallel faces). If a box is not a parallelepiped, then 

Perkins’ rule is not suffi cient. Consider fi gure 2.6. This box does not look 

like a rectangular box, and indeed, it is not an image of a rectangular box 

under orthographic (or perspective) projection even though, according to 

(a) (b)

Figure 2.5
Applications of Perkins’ law: (a) Degenerate case where two angles are equal to 

90 deg. (b) An orthographic image of a nonrectangular parallelepiped. This parallel-

epiped has been obtained by stretching a cube along a diagonal of the base by a 

factor of three.

Figure 2.6
An orthographic image of a nonparallelepiped. Note that Perkins’s rule is satisfi ed, 

but the percept does not correspond to a rectangular parallelepiped, and not even 

to a parallelepiped.
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Perkins’ rule, this box would be classifi ed as rectangular.5 This means that 

Perkins’ rule itself cannot account for the perceptual classifi cation of images 

of rectangular versus nonrectangular boxes. This rule must be supple-

mented with a criterion as to whether the given image could be a projec-

tion of a parallelepiped. If we assume that an orthographic projection was 

used, then the images of edges that are parallel in the 3D space must be 

parallel in the image. It follows that an orthographic image of a parallel-

epiped must have three sets of parallel edges. Figure 2.6 violates this crite-

rion. An explanation of how this rule generalizes to a perspective image is 

given in appendix B (section B.2).

To summarize, the fact that a subject perceives a rectangular box when 

the retinal image could have been produced by a rectangular box, but does 

not perceive a rectangular box when it could not have been produced by 

a rectangular box, implies that the visual system

(i) applies a rectangularity constraint (or some other, similar constraint, 

like the minimum variance of angles or maximal compactness of the 

object),

(ii) knows the rules of perspective projection, and

(iii) knows the geometry of its eyeball.

Perkins’ results provided support for the fi rst conclusion and partial 

support for the second. More exactly, Perkins showed that the human 

visual system knows the rules of orthographic projection. The more general 

statement about perspective projection follows from examples presented 

above, and it has been tested experimentally in other studies (e.g., Kaiser, 

1967).

Perkins suggested that the rectangularity constraint is similar to the 

Gestalt psychologists’ simplicity principle. This puts Perkins in the neo-

Gestaltists’ rather than in the Transactionalists’ camp; Transactionalists 

emphasized the role of experience and of visual–motor coordination. They 

were not nativists (see below).

A natural question arises as to whether the perceptual mechanism 

involved in viewing pictures (specifi cally, discriminating between rectan-

gular and nonrectangular boxes in pictures) is different from the mecha-

nism used when actual 3D scenes are viewed. Hochberg and Brooks’ (1962) 

study with a young child suggested that there is one common mechanism. 

A similar conclusion follows from Perkins and Cooper’s (1980) study with 
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groups of children whose mean age was 3, 4.5, and 6 years. These 

three groups were tested in the task Perkins (1972) had used with adults. 

Even the youngest group of children could do this task, and their perfor-

mance was similar to the performance of the college students tested by 

Perkins (1972). No important differences in performance were observed 

across the age groups. Perkins and Cooper’s evidence provides strong 

support for the conjecture that the perception of 3D objects from 2D pic-

tures involves the same perceptual mechanism as the perception of the 

objects themselves.

2.3.2 Reconstruction of Novel Shapes

In his next study, Perkins (1976) generalized the results from his initial 

study (Perkins, 1972). He examined subjects’ ability to reconstruct the 

shape of an unfamiliar (novel) polyhedron from a single orthographic 

picture. According to Perkins, if constraints are to be useful in everyday 

life, they must be a priori, rather than learned, because this would make 

them applicable to a wide range of objects, including completely novel 

objects. In this new study, Perkins anticipated modern research on 3D 

shape perception by (i) emphasizing the role of a priori constraints in 3D 

shape perception and (ii) showing that constraints alone, without the 

contribution of depth cues, may be suffi cient for veridical 3D shape 

percept.

The pictures of the polyhedra that were used by Perkins allowed the 

application of rectangularity, symmetry, and planarity constraints. In fact, 

when a rectangularity constraint was applied to one of the trihedral angles 

of a polyhedron (in addition to the planarity constraint being applied to 

all faces the polyhedron), the shape of the entire polyhedron was specifi ed 

uniquely. In his previous experiments, Perkins had already demonstrated 

that subjects apply a rectangularity constraint when the rectangular inter-

pretation is consistent with the retinal image. The new study examined 

whether subjects perceptually reconstruct the shape of the polyhedron 

based on the retinal image and the rectangularity constraint. If they do, 

they should be able to make accurate judgments about this shape. This 

study was similar to Attneave and Frost’s (1969). The main difference is 

that Attneave and Frost tested the role of regularities (simplicity) in the 

perception of slant from shape, whereas Perkins (1976) tested the role of 

regularities in the perception of shape itself.
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Subjects were presented with an image of a polyhedron and were asked 

to estimate the sizes of two angles of the perceived polyhedron. In general, 

three “regular” interpretations were possible: (i) The fi rst of the two angles 

was right (90°), (ii) the second angle was right, or (iii) both angles were 

equal (the object was symmetrical). For some images, only one or even 

none of the regular interpretations were possible. Eight subjects were 

tested. Each subject was shown pictures of seven polyhedra. Each picture 

was shown in eight different orientations.

As in Perkins’ previous experiments, the subjects’ judgments refl ected a 

systematic application of rectangularity and symmetry constraints to the 

perceptual interpretation. Furthermore, after the constraint was applied to 

the perceptual interpretation of one of the angles, the subject judged the 

other angle accurately. That is, the perceived angle was equal (on average) 

to the angle in a polyhedron reconstructed from the subject’s retinal image 

by applying planarity, symmetry, and rectangularity constraints. These 

results provide strong support for Perkins’ suggestion that the constraint 

of rectangularity and symmetry were the kind of Gestalt-like regularities 

that operate in visual perception. Perkins, however, went beyond the 

traditional Gestalt thinking. Gestalt psychologists “justifi ed” the use of 

the simplicity principle by invoking a physiological “cause” in the form of 

electrical brain currents. Perkins adopted the functional attitude more 

characteristic of a cognitive psychologist. He claimed that the visual system 

uses constraints because they allow achieving a veridical percept. He 

believed that this was true in everyday life, as well as in the case of the 

impoverished viewing conditions he used in his laboratory. Perkins himself, 

however, did not provide any experimental evidence for this claim. He 

never examined realistic viewing conditions in which effective depth cues 

were available. It would take more than twenty years before such experi-

ments were performed (Pizlo & Stevenson, 1999; Pizlo, Li, & Chan, 2005; 

Chan et al., 2006).

It is worth pointing out a particularly important implication of Perkins’ 

results. It has been shown in psychophysical experiments that the slant of 

a plane and the slant of an edge are systematically underestimated regard-

less of how many effective depth cues are given to the subject (Attneave 

& Frost, 1969; Perrone, 1980, 1982). However, at the same time, subjects 

have the ability to interpret images of rectangular boxes as rectangular 

boxes (Perkins, 1972) and to judge angles of polyhedra accurately (Perkins, 
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1976). These results clearly imply that shape is not perceived by taking slant 

into account, as many students of perception claimed. If slants of edges and 

faces were taken into account, a rectangular box would not look rectangu-

lar and the angles of a polyhedron would have been systematically mis-

judged. Neither outcome has ever been reported. This is yet another line 

of evidence against the Associationists’ (or Marr’s) explanation of shape 

perception. The percept of a 3D shape is not built from elements, that is, piece-

wise percepts of slants of edges and faces. It is much more likely that the slants 

of edges and faces are perceptually derived from the percept of shape, as 

well as from other cues. Recall that we reached an identical conclusion 

from Stavrianos’ (1945) results, as well as from Attneave and Frost’s (1969) 

results.

2.4 Wallach’s Kinetic Depth Effect Refl ects a Shift from Nativism to 

Empiricism

Wallach was included in this section on the contribution of the neo-Gestalt 

researchers because he received his doctoral training with Köhler, one of 

the three founding fathers of Gestalt psychology. His research interests 

after 1950, however, were not directed toward illustrating the role of a 

simplicity principle in visual perception. He concentrated on the role of 

(i) higher order stimulus variables, (ii) depth cues, and (iii) past experience 

in determining the percept. Thus, Wallach’s later research represented a 

shift away from the Gestalt tradition toward a modern version of empiri-

cism. Wallach was especially interested in designing new types of experi-

ments and exploring new phenomena, interests that would challenge 

existing theories of perceptual mechanisms. Wallach never formulated a 

general theory of perception, but the collection of his published papers on 

a broad variety of topics was impressive enough to warrant their publica-

tion in book form (Wallach, 1976). Below, I will confi ne discussion to his 

papers on the kinetic depth effect (KDE; Wallach & O’Connell, 1953; 

Wallach et al., 1953) because these are particularly relevant to Wallach’s 

empiristic approach to shape perception. This work stimulated consider-

able research in computational vision (e.g., Ullman, 1979; Hildreth, 1984). 

Wallach and O’Connell (1953) begin by making the following claim:

Unfortunately, it appears that no one has succeeded in formulating rules of sponta-

neous organization adequate to predict which pattern of retinal stimulation will 
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lead to perceived fl at fi gures and which one will produce three-dimensional forms. 

We have made a vain attempt of our own and have become convinced that the 

three-dimensional forms perceived in perspective drawings, photographs, etc. are 

indeed in a matter of previous experience. (pp. 205–6)

By referring to “rules of spontaneous organization,” the authors meant 

the operation of the Gestalt simplicity principle. Their statement is a clear 

rejection of the simplicity principle as a plausible perceptual mechanism 

for shape. We now know that simplicity is involved at least in perception 

of structured solid shapes. This means that Wallach and O’Connell’s study 

was based on an inappropriate assumption. Despite this error, they made 

an important contribution to our knowledge of depth and shape percep-

tion by discovering what they called the KDE. They showed that in the 

absence of other cues, motion can lead to the three-dimensional percept 

of an object. Their major claim, however, that the percept of this 3D shape 

is determined primarily, or even exclusively, by past experience, seems to 

be false.

Consider now details of the experiments presented in their two papers. 

In order to eliminate all depth cues other than motion, the subject viewed 

the shadow of an object rather than the object itself. The object was placed 

behind a rear-projection screen. Clearly, conventional cues such as binocu-

lar disparity, vergence, and accommodation could not provide an observer 

with any useful information about the shape of the object. If anything, 

the cues available provided their observers with information suggesting 

that the distal stimulus was 2D rather than 3D. In the fi rst experiment, 

they used a solid (opaque) object, so only the occluding contours (outside 

edges) of the object were visible on the screen. The shadow of a stationary 

solid 3D object does not look like an object. It looks like a 2D fi gure. 

However, when the object rotates around an axis orthogonal to the line 

of sight, its moving shadow leads to the percept of the 3D object. Wallach 

and O’Connell called this phenomenon the KDE.

The authors did not present any theory of the KDE. That is, they did not 

explain how the visual system achieves the 3D percept from the motion 

of a changing 2D shadow on the retina. The fi rst explanation of the KDE 

was presented by Ullman (1979). Ullman showed that under quite general 

assumptions, the motion on the retina determines at most one solution 

equivalent to a rotating rigid object.6 Ullman’s theory can account for most 

of the results reported by Wallach and O’Connell.
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In their second experiment, Wallach and O’Connell (1953) used two wire 

objects. Their motivation for using wire objects was as follows. In everyday 

life, a given contour of an object is visible from a wide range of viewing 

directions. However, when the shadow of an object is presented to the 

observer, a given contour is perceived only for a narrow range of viewing 

directions, namely, when this contour happens to be an occluding contour. 

Using wire objects eliminated this problem, which meant that the wire 

objects approximated more closely viewing conditions in everyday life 

than did the solid objects used in their fi rst experiment. The fi rst wire 

object was a parallelogram containing one diagonal. The parallelogram was 

bent along this diagonal so that the two parts (triangles) formed an angle 

of 110 deg. The second wire object was a helix. It was a polygonal line 

consisting of three straight-line segments. When the object was stationary, 

the shadow led to a 2D rather than 3D percept. When the object rotated, 

the observer was likely to see a 3D object. Each subject was shown one 

of the objects rotating for 10 seconds. Presentations were repeated until 

the subject produced a “clear report.” Most of the fi fty subjects tested 

achieved the 3D percept, sooner or later. For sixteen of the subjects, the 

authors recorded whether they achieved the 3D percept after the fi rst 10-

second presentation. Eleven reported a 3D percept with the “parallelo-

gram,” but only four reported a 3D percept with the helix. The low rate of 

subjects’ reporting 3D percepts with the helix suggests that the visual 

system has diffi culty reconstructing the object from a moving shadow 

when the object is unstructured.7

In the next several experiments, Wallach and his coworkers studied the 

robustness of the KDE and reported that when the shadow expands and 

contracts in only one direction, the KDE is absent. Such conditions are 

present when a rectangle rotates around one of its sides, and this side is 

orthogonal to the line of sight. When the visible contours of the object 

are curved and do not have distinctive points, the KDE is weak or absent 

altogether. Finally, when only angles, but not distances, change in the 

shadow, the KDE is absent again. Such conditions are present when the 

shadow of a Y junction forming a trihedral angle is shown through an 

aperture in such a way that the endpoints are not visible. Once again, the 

authors did not provide any explanation of these failures to produce 

the KDE. One possible explanation is based on the fact that in these cases, 

the information available on the retina is simply not suffi cient for a unique 
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reconstruction (Ullman, 1979). Next, Wallach and O’Connell (1953) 

showed that stimuli that do not ordinarily produce the KDE may be able 

to produce the KDE if the presentation of the initially ineffective stimulus 

is preceded by another stimulus, a stimulus that produces a reliable KDE.

The last experiment of interest in Wallach and O’Connell’s (1953) study 

was a test of the veridicality of the percept produced by moving shadows 

of the bent wire parallelogram used in their second experiment. Subjects 

were asked to identify the wire shape that had produced the moving 

shadow. Four comparison parallelograms were used with the angle between 

the two planar parts being equal to 95, 110, 125, and 140 deg (the test 

parallelogram had an angle of 110 deg). Thirty subjects were tested with 

the four comparison stimuli. More than half of their choices were correct. 

These results indicate that the KDE can produce a rather reliable perception 

of shape.

Wallach, O’Connell, and Neisser (1953) went on to examine the role 

memory might play in establishing a 3D percept. The three stimuli and 

procedure used in Wallach and O’Connell’s (1953) study were used in this 

study. The authors fi rst demonstrated that the frequency with which the 

subject saw the shadow as a 3D object, when the object was stationary, 

was substantially increased if the stationary presentation was preceded by 

a moving exposure of this object. The authors then showed that this result 

does not generalize across objects: A moving exposure of one object does 

not increase the frequency of seeing another object as 3D when it was tested 

with a stationary presentation. These results show clearly that when there 

is perceptual learning of 3D shapes, learning is not taking place at the level 

of the perceptual mechanisms. Learning is limited to memorizing the 

shapes of individual objects. Wallach et al. (1953) claimed that the KDE is 

fundamental, providing a monocular mechanism for learning to perceive 

3D shapes as one moves about in the environment. However, more recent 

studies by Slater and Morrison (1985) on the perception of shapes in 

newborn infants suggest otherwise.

To summarize, perception of 3D shape involves a one-to-many mapping 

between the retina and the percept: This mapping represents the recon-

struction of the third dimension (depth). Therefore, any theory of 3D 

shape perception must explain how the 3D rather than the 2D interpreta-

tion is produced from a 2D image. Reconstructing a 3D shape from a 2D 

image cannot rely exclusively on removing redundancy from the image, a 
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concern of many over many years (e.g., “stripping the sensory messages 

of their redundancy,” Attneave, 1954, p. 189; Barlow, 1961, p. 223; “squeez-

ing out regularities,” van der Helm, 2000, p. 787). It is clear that recon-

structing 3D shape from its 2D image must rely on adding information to 

the 2D image, not on simplifying it!

In short, we perceive the 3D world as 3D, rather than as 2D, not because the 

3D interpretation is simpler, which it may very well be, at least on some occa-

sions, but because it is a smart thing to do. This claim spells out the main 

difference between the Gestalt and the cognitive approach to perception.

2.5 Empiricism Revisited

Progress in understanding shape perception achieved during the fi rst 

half of the twentieth century, which was stimulated almost exclusively by 

the Gestalt psychologists, was based on introducing the concept of a priori 

rules of perceptual organization. The Gestalt psychologists not only intro-

duced these a priori rules into the study of perception but also provided 

many powerful illustrations of how these rules impose constraints on the 

family of possible perceptual interpretations. The Cognitive Revolution 

during the 1950s and 1960s contributed to understanding shape percep-

tion by showing that the Gestalt rules of perceptual organization could, in 

principle, be formulated in the language of information theory in ways 

that might even play a critical role in achieving veridical percepts. The 

work done in this period, however, was not based on formalisms included 

in information theory, so understanding shape did not progress very far, 

and in fact, it is not entirely clear that even if researchers had tried these 

formalisms, they would have succeeded (Luce, 2003). The line of research 

based on the concept of a simplicity principle was interrupted for a couple 

of decades by attempts to revive the empiristic approach to shape percep-

tion, the approach that was started by Locke, developed by Berkeley, and 

championed at the beginning of the modern era by Helmholtz.

Empiricism in this period added some novel elements. First, neuro-

science became a prominent component of cognitive psychology, encour-

aging the development of neural network models. Second, the Gestalt 

psychologists’ emphasis upon automatic, a priori perceptual processing left 

little or no room for the infl uence of high-level processes such as memory, 

learning, motivation, and social interaction. Psychologists interested in a 
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role for higher processes in perception felt neglected and sought to intro-

duce a “New Look” into the study of perception, including shape. The 

development of neural neo-empiricism was led by Hebb (1949). The New 

Look in perception was led by Bruner and Goodman (1947).

Hebb (1949), in a widely cited book, proposed an empiristic, neurally 

based, motor-learning theory of 2D shape perception as an alternative to 

the nativistic theory of the Gestalt psychologists. He realized that trying 

to revive empiricism in the period following the success of Gestalt psychol-

ogy required assuming at least one innate perceptual accomplishment on 

the basis of which the organism could learn to perceive shapes. He called 

this innate perceptual accomplishment “primitive unity.” Primitive unity 

corresponded to the percept of a discriminable region whose brightness 

was different from the rest of the visual fi eld (a smudge). This smudge was 

functionally analogous to the fi gure–ground organization of the Gestalt 

psychologists, except for a critical difference, namely, Hebb’s primitive 

unity did not have a contour and thus had no shape. Prolonged and 

repeated fi xations on discontinuities produced by edges and corners in 

the visual fi eld led to the formation of brain circuits Hebb called “cell-

assemblies.” These were the physiological correlates of the perception of 

edges and corners. Once these perceptual elements were established, they 

were integrated to produce a percept of shape. The percept of shape, as 

well as the presence of edges and corners, was learned. Shapes were learned 

by making repetitive eye movements along the contours. Specifi cally, the 

percept of a 2D shape resulted from learning sequences of (i) percepts of 

corners of fi gures and (ii) eye movements that took the line of sight from 

one corner to another. On the physiological level, learning was assumed 

to involve changing the strength of synaptic connections among neurons. 

After a sequence of percepts and eye movements (called a “phase sequence”) 

is established, the percept of shape can be produced without actually 

moving the eye, but merely by being ready to do so. Hebb is often given 

credit for the fi rst formulation of “connectionism,” a branch of computa-

tional neuroscience popular during the last twenty years (Rumelhart & 

McClelland, 1986). His emphasis on learning at the neural level had a 

lasting impact. It is now referred to as the “Hebbian learning rule.” The 

perceptual–motor part of his theory of shape did not survive.8

Bruner and Goodman (1947), reacting to a different aspect of the success 

of Gestalt psychology, introduced what they called the “New Look” 
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approach to perception. The Gestalt psychologists emphasized what we 

would now call the “bottom-up” aspects of perceptual processing. The 

observer is passive; his or her innate organizing processes automatically 

impose structure on the retinal image of the visual world. The observer’s 

personal characteristics did not enter into the information received. The 

New Lookers, on the other hand, emphasized “top-down” processing: 

the role of an individual’s needs, values, and expectations in the way the 

retinal image would be processed by the brain. Bruner described this as 

“going beyond the information given” (Bruner, 1957; Bruner, Goodnow, 

& Austin, 1956). The support for the New Look was obtained in experi-

ments demonstrating what has been called “perceptual defense,” in which 

tachistoscopic presentations of taboo words produced longer response 

times than presentation of ordinary words. Bruner also demonstrated what 

he believed to be a role of personal values in size perception, supporting 

this claim with experiments that showed that poor children overestimated 

the size of a quarter, whereas rich children did not. Bruner also claimed 

that the perceived shapes of simple ambiguous drawings refl ected the 

needs of the subjects. He supported this by showing that hungry subjects 

described seeing more food objects than did subjects who were not hungry. 

This kind of research produced a fl urry of activity for a decade. All of these 

effects were ultimately shown to be artifacts. They could be explained 

by simpler mechanisms, namely, “response availability” and “response 

suppression.” Simply put, everyone perceives these ambiguous stimuli the 

same way but describes them differently, depending on their backgrounds, 

needs, and expectations.

There was another development in this neo-empiristic period, which 

also failed to produce lasting effects. It called attention to the role of past 

experience, primarily in size and depth perception. This approach was 

taken by the Transactionalists, who were led by Adalbert Ames, Jr. The 

concept of “transaction” was introduced to convey the idea that percep-

tion cannot be analyzed in isolation, independent of the prior experience 

of the observer, of his or her current goals, as well as of the consequences 

of actions taken to achieve these goals, such as looking around, bringing 

an object nearer, changing its orientation, and so forth. Ames, the founder 

of the Transactional School, started his school by introducing, in the late 

1930s, powerful demonstrations illustrating the role of familiarity in 

determining what is perceived (Cantril, 1960). One of the best known 
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involved a set of unconnected rods and a parallelogram, arranged in such 

a way that from one viewing direction these elements produced an image 

of a chair in the observer’s eye. From this, and only from this, viewing 

direction, a monocular observer saw a chair, rather than the actual hap-

hazard 3D arrangement of parts of a chair (fi gure 2.7—after Kilpatrick, 

1961, p. 38). The Transactionalists’ explanation of this phenomenon says 

that when we look at real chairs, tables, boxes, and rooms, we perceive 

them as rectangular, even though nonrectangular interpretations are pos-

sible, because in the past, we had seen only rectangular chairs, tables, 

boxes, and rooms. In other words, we know that rectangular objects are 

likely to be encountered in our environment, and this is what we see 

whenever such interpretations are consistent with the retinal image. 

Clearly, the Transactionalists attributed to experience and a likelihood 

principle what the Gestalt psychologists attributed to innate rules involv-

ing a simplicity principle. Transactionalists made numerous attempts to 

demonstrate the role of learning in shape perception, by using distorted 

objects and rooms, but they provided very limited, if any, evidence for 

this position. Their experiments were analogous to those of Stratton 

(1896) and Ivo Kohler (1962), who introduced distortions by having sub-

jects view the world through prisms or inverting goggles. All these experi-

ments showed that subjects can learn how to behave in the presence 

of a distorted environment, but they did not come to confuse them 

with normal environments even after they learned to perform quite 

Figure 2.7
Ames chair demonstration (after Kilpatrick, 1961). These images were produced 

using 3D graphics software (3DS Max/Autodesk) rather than physical materials.
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complicated visually guided behaviors within them (Linden et al., 1999). 

Signifi cant learning effects on perception seem to be limited to depth, 

size, and direction. Perception of shape has never been shown to be 

affected by learning.

The role of learning in perception was also championed by Rock (1977, 

1983), who is often classifi ed as an empiricist. Rock’s work is important 

because he is credited for reviving Helmhotz’ (1910) concept of uncon-

scious inference in perception. Rock popularized the notion of unconscious 

inference, ascribing it to Helmholtz, but, whereas Helmholtz assumed that 

the visual system memorizes individual objects and then uses these memo-

ries in subsequent perceptions, Rock assumed that the visual system is 

“smart” and uses rules of geometrical optics and principles of logic as well 

as probability calculus. This shift of emphasis from associative learning to 

unconscious thinking is illustrated by the title of Rock’s (1983) book: The 

Logic of Perception.9

Rock, unlike Helmholtz, downplayed the importance of associative 

learning and emphasized cognitive processes. This is not surprising because 

during his education and early career he was infl uenced by Gestalt psy-

chologists. His doctoral mentor was Hans Wallach. However, as he contin-

ued to develop his perception models, he found it necessary to use simple 

learning models along with more cognitive mechanisms (Rock, 1983). It 

seems that Rock’s shift toward empiricism was stimulated by his emphasis 

on the veridicality of the percept. He did not see why an intelligent system 

should try to emphasize the simplicity of perceptual representation when 

the task is actually to produce veridical percepts (Rock, 1983, p. 164). It 

is easy to see that simplicity might be an innate principle, whereas the 

bias toward veridicality is more likely to be related to our experiences and 

interactions within the environment. By shifting from a Gestalt way of 

thinking to a Helmholtzian way of thinking, Rock lost the benefi ts inher-

ent in the Gestalt concept of perceptual organization. Once he made this 

shift, he thought that the accuracy of a percept depended more on visual 

cues than on perceptual organization once both experience and learning 

played an important role in perception. What was obvious to Gestalt 

psychologists, as well as to Transactional psychologists, was not obvious 

to Rock. His assumption that perceptual organization is not needed made 

Rock’s theory similar to Gibson’s, although Gibson did not think that 

visual perception involved any computation or reasoning as Rock did. 
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Clearly, Rock’s theory represents an unusual combination of elements 

taken from several, often confl icting approaches.

Rock’s interest in shape started with 2D shapes (Rock, 1973, 1983). We 

already knew that the perception of the shapes of 2D line drawings, such 

as a square, does not involve simplicity constraints (see chapter 1). There-

fore, it is not surprising that Rock did not see any use for a simplicity 

principle in the case of 2D shapes. In his table 1–1 (Rock, 1983, p. 18), 

Rock states that perceiving the shape of an object is tantamount to describ-

ing its shape. No reconstruction is needed. For example, a square and a 

diamond are perceptually different only in where the “top” is assigned. 

This difference does not require invoking any simplicity principle. After 

characterizing the perception of 2D shape as a process of description, Rock 

moved on to the case of 3D shapes and stated, without much justifi cation, 

the following:

What has been said about two dimensions can easily be extended to the third. Thus 

it seems probable that few if any entirely new principles need be invoked to deal 

with object-form perception in daily life. Presumably the shape of each face of an 

object is described as a two-dimensional structure and depth relations are incorpo-

rated into the overall description insofar as they yield spatial relationships about 

the structure of the object. (p. 87)

The reader will soon see that despite large differences between their 

theoretical positions, both Rock and Gibson fell victim to the same problem: 

They underestimated the inherent computational diffi culty of reconstruct-

ing 3D spatial relations. Gibson claimed that we see 3D space directly, and 

Rock claimed that the observer’s task was simply to describe 3D space. 

Neither of them actually tried to verify these claims in computer simula-

tions. Had they done so, they would have undoubtedly realized that con-

straints are critical.

To test his ideas about the perception of 3D shapes, Rock performed a 

sequence of experiments using unstructured wire objects like the one 

shown in fi gure 2.8 (Rock, DiVita, & Barbeito, 1981; Rock & DiVita, 1987; 

Rock, Wheeler, & Tudor, 1989). These experiments stimulated others to 

study 3D shape perception. These wire objects were viewed binocularly 

from a distance between 0.5 and 1.25 m (different viewing distances were 

used in different studies). The subject was shown an object from two dif-

ferent viewing directions (45 or 90 deg apart) and was asked to recognize 

the object based on its shape. This was, in effect, a shape constancy 
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experiment, using unfamiliar, meaningless, unstructured objects. The main 

reason Rock used wire objects was to avoid self-occlusion. With ordinary 

opaque objects, we can see only one half of the object’s surface. Rock 

expected that binocular viewing from a fairly close distance would allow 

the subject to use depth cues to perceive the wire object’s entire 3D shape. 

Rock assumed that the simplicity principle is not important in 3D shape 

perception, so from his point of view the simplicity of his stimuli should 

not matter. The design of Rock’s experiments was obviously based on his 

theoretical approach.

The main result of Rock’s three studies with wire fi gures was that shape 

constancy failed completely! Unfamiliar, unstructured 3D wire objects, 

rotated in depth by 45–90 deg, could not be recognized as the same object 

viewed from a different viewpoint. Rock wrote as follows: “Since the fi gures 

are seen under conditions of adequate depth information, there is no 

(a) (b)

(c)

Figure 2.8
Three views of a wire object used by Rock, DiVita, and Barbeito (1981, from Rock, 

1983, p. 88—with kind permission of Sylvia Rock).
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diffi culty in recovering the internal spatial relations that characterize the 

object’s shape. Bearing in mind that no part of the fi gure is hidden, the 

shape should be described in the same way regardless of the observer’s 

vantage point” (Rock, 1983, p. 88). The fact that the percept was dramati-

cally affected by changing the observer’s vantage point encouraged 

Rock to conclude that 3D shapes are only represented perceptually in the 

viewer-centered coordinate system. The viewer-centered description of an 

object involves depths and orientations of edges and surfaces relative to 

the observer, but not relational properties characterizing shape. As you will 

see, Rock’s thinking seems to have been infl uenced by Marr’s 2.5D sketch 

(see chapter 3 for Marr’s theory). If it was, considering the wide differences 

in their backgrounds and training, Marr had clearly captured the zeitgeist 

of the period.

In 1989, Rock began to have some doubts about whether his subjects 

had been able to perceive the wire objects in depth veridically. They had 

to be able to do this in order to form a viewer-centered 3D description of 

the objects. This concern led to a new experiment with his 3D wire objects 

in which depth perception was tested directly (Rock et al., 1989). In one 

condition, subjects were asked to judge the ratio of width to depth and 

the ratio of height to depth of his 3D wire objects. Rock et al. (1989) found 

that the aspect ratios (averaged across eight subjects) were very close to the 

actual aspect ratios, encouraging them to conclude that depth had been 

perceived veridically. From Rock’s point of view, this meant that the failure 

to demonstrate shape constancy could not be attributed to an unreliable 

perception of depth or to the inability to form a viewer-centered represen-

tation of the 3D wire objects. This led Rock et al. to conclude that the 

human visual system does not form an object-centered representation of 

shapes (pp. 203–204). In other words, we don’t perceive 3D shapes as 

shapes, but only as a collection of surface orientations and depths. Note, 

however, that it is more likely that the real reason Rock et al. failed to 

obtain shape constancy was their use of very unnatural, unstructured 

stimuli. The shape of such wire objects is not well specifi ed because they 

do not have suffi cient surfaces and volume. In effect, the shape of such 

objects does not fall within the large class of objects where simplicity 

constraints can operate. We will see later why these constraints are essen-

tial for the veridical perception of 3D shapes, that is, for achieving shape 

constancy.
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We see in Rock’s work another example of how the willingness to use 

“taking into account” explanations for the perception of shape can lead 

one astray. Both Rock and Thouless studied variables (depth and 3D 

orientation) that they believed were directly related to shape constancy 

through a “taking into account” explanation. They did not study shape 

itself. Thouless used ellipses. This was a problem because an ellipse is not 

suffi ciently complex—its shape is characterized by only one parameter that 

can be arbitrarily changed in the perspective projection to the retina. As a 

result, the retinal images of his ellipses did not provide enough informa-

tion, and shape constancy failed. Rock used unstructured 3D wire objects. 

This was a problem because there is no defi nition of “simplicity” that, 

when applied to the retinal image of such a 3D wire object, could allow 

the reconstruction of a unique 3D object. Note that shape constancy depends 

critically on the operation of a simplicity principle, and the shape perceived 

cannot be constant (the same) unless the percept is unique. The retinal image 

of a 3D wire object simply does not provide enough information for the 

percept to be unique, so shape constancy failed with Rock’s wire objects 

just as it did with Thouless’ ellipses.

To summarize, the main conceptual contribution of neo-empiricism was 

the reformulation of Helmholtzian empiricism in the language of cognitive 

psychology. Once this was done, the visual system no longer solved con-

stancy problems by using “look-up tables” as claimed by Berkeley and 

Helmholtz. Instead, constancy problems are solved actively by logical 

processing. Adopting this approach makes the modern view very similar 

to Descartes’ except in one respect. According to Descartes, the human 

observer was a “natural geometer,” whose knowledge of geometry was 

innate. According to the neo-empiricists, the human observer must learn 

the rules of geometry. So far, contemporary neo-empiricists have not pro-

vided evidence to demonstrate that the rules are learned. They did, however, 

contribute by emphasizing the importance of (i) studying the perception 

of the shapes of 3D objects and (ii) veridicality in shape perception. Both 

of these contributions will fi gure prominently in the development of 

machine vision.

There were other, somewhat tangential, developments during this period. 

Particularly notable was one introduced by Gregory (1968), who provided 

a particularly striking example to illustrate the diffi culties facing traditional 
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explanations of the cognitive psychologists, who were looking for a 

universal rule that could explain the percept of a 3D object from the 

object’s retinal image. Neo-Gestaltists, such as Hochberg and McAlister 

(1953) and Leeuwenberg (1971), were trying to formulate a simplicity 

principle using the formalism of information theory, whereas neo-empiri-

cists were trying to formulate a likelihood principle using probability 

theory (e.g., Brunswik, 1956; Kilpatrick, 1961; Rock, 1983). Gregory pro-

vided a challenge to these two approaches that suggested that neither was 

likely to succeed. He used Penrose and Penrose’s (1958) “impossible trian-

gle” shown in fi gure 2.9. This looks like a 3D object, but clearly a physical 

object that actually looked like this could not be constructed. If this is not 

obvious, look closely at the individual corners of this “triangular object.” 

It is clear that the perceptual interpretation of any two corners of this tri-

angle is inconsistent with the interpretation of the third. Note, however, 

that the fact we see an “impossible object” in fi gure 2.9 does not prove 

that there is no physical object that could actually produce a picture like 

this. Gregory (1968) showed that there is such a physical object. It is shown 

in fi gure 2.10. Why is Gregory’s object a problem? The percept of an impos-

sible object is a problem for the neo-empiristic explanation because we see 

an object that we have never seen before. How can an impossible 3D object 

be more likely than a possible object? This “impossible” percept also pres-

Figure 2.9
This fi gure, taken from Gregory (The intelligent eye, 1970, with permission of The 

McGraw-Hill companies and of the author), shows an object with a triangular shape. 

However, on close examination, it is clear that a physical object like this could not 

actually be assembled. Each of the three corners look three-dimensional, but the 

three corners shown in this fi gure cannot form a 3D object like this.
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ents a problem for the neo-Gestalt approach because no defi nition of sim-

plicity is available according to which an impossible 3D interpretation is 

simpler than a possible interpretation, and simpler than its 2D image, 

itself. Gregory’s demonstration suggests that neither a simplicity nor a 

likelihood principle can predict what would be seen. Either principle will 

have to be modifi ed to deal with individual parts of the image separately 

(Hochberg, 1978). Furthermore, these operations most surely will have to 

be preceded by some operation that establishes that the object is a “closed” 

triangle, which, in itself, requires the operation of a simplicity or likelihood 

Figure 2.10
Three views taken from different viewing directions of the object shown in fi gure 

2.9. Here, it can be seen on the bottom right. Gregory used this fi gure to illustrate 

that Penrose and Penrose’s (1958) object could actually be assembled but it did 

not have a closed triangular shape when viewed from the viewpoint illustrated on 

the bottom right (from Gregory, The intelligent eye, 1970, with permission of The 

McGraw-Hill companies and of the author).
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principle. Thus, individuals working within either the nativistic or empiris-

tic tradition were faced with the task of formulating a computational 

model of the underlying perceptual mechanisms. Explaining perceived 

shape cannot be done simply by providing a defi nition of simplicity. 

Instead, one has to specify the computations and the order in which they 

should be performed. Both of these issues will fi gure prominently in the 

development of machine vision.
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As we have just seen, simply trying to refi ne and perfect defi nitions of 

simplicity will not make it possible to explain how shape constancy is 

achieved. The goal (or purpose) of shape constancy is not to produce 

simple percepts, as the Gestalt psychologists and those they infl uenced 

proposed, because constancy is needed and achieved with quite complex 

shapes. Ecologically signifi cant shapes are by no means always simple. The 

goal (or purpose) of shape constancy, as Perkins and those he infl uenced 

proposed, was to produce veridical percepts. Once this is appreciated, it is 

clear that a useful defi nition of “simplicity” in the case of shape should be 

based on testing computational models of shape constancy. By the 1970s 

the formulation of such models was being attempted both by psychologists 

who were trying to understand biological vision systems and by engineers 

who were trying to design machines with visual abilities. Only the contri-

butions of the machine vision community will be discussed in this 

chapter.1

Selfridge and Neisser (1960), a computer scientist and a psychologist, 

respectively, were among the fi rst to tackle a machine vision problem, 

namely, character recognition. Solving this problem would have practical 

implications. It would allow machines to process checks. Selfridge and 

Neisser showed that it is possible to program a computer to recognize 

letters with a familiar font by means of template matching. However, it 

was almost impossible to do this with an unfamiliar font or with handwrit-

ing whose font is idiosyncratic. Recognition was better when features of 

letters, rather than conventional letters, were used. However, even when 

computer programs could recognize isolated conventional letters, they 

could not recognize groups of letters such as words, phrases, and sentences. 
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In fact, this task, which every human reader does easily, can still not be 

done well by machines.

Observations in sensory neurophysiology made during the 1950s, spe-

cifi cally lateral inhibition in limulus optic nerve (Hartline & Ratliff, 1957), 

center-surround organization in the cat’s retina (Kuffl er, 1953), and Lett-

vin’s specialized feature detectors in the frog’s retina (Lettvin et al., 1951), 

suggested that simple sensory phenomena like these are probably based 

on simple mechanisms that can be modeled with simple transistor net-

works (Pitts & McCulloch, 1947; McCulloch & Pitts, 1943; Rosenblatt, 

1962). It was hoped that simulation of simple neural circuits, like these, 

could be scaled up to allow explanation of much more complex perceptual 

accomplishments such as shape perception and even problem solving. 

This hope was only partially realized. Namely, it led to computer programs 

that could recognize very simple properties of 2D patterns, but by 1969, 

Minsky and Pappert pointed out that this endeavor was fundamentally 

limited. It cannot be scaled up to the level of 3D shapes because 3D shapes 

are complex. Shapes, both 3D and 2D, require very many parameters, so 

no simple feature detector can accomplish the task of shape description or 

recognition (see the discussion associated with fi gure 1.1). Minsky and 

Pappert’s (1969) book was extremely infl uential. It discouraged further 

development of overly simplistic neural networks for a couple of decades. 

By the mid-1980s, “neural networks,” embellished with new learning 

mechanisms, such as the “generalized delta rule,” made an enthusiastic 

comeback. This comeback bore the name “parallel distributed processing” 

(Rumelhart & McClelland, 1986). Unfortunately, progress in this area has 

not brought us any closer to understanding 3D shape perception as many 

were convinced it would when it was introduced.

Meanwhile, another group of engineers started working on a set of prob-

lems related to the interpretation of 3D scenes and shapes. This work was 

motivated by robotic applications, such as fi nding and picking up manu-

facturing parts and manipulating tools on production lines. This approach 

is often referred to as “robot vision.” It was successful because the variety 

of objects that had to be found, picked up, and manipulated was restricted. 

Roberts (1965) pioneered this approach when he developed a matching 

algorithm for recognizing a 3D shape, represented by a set of points, from 

its camera (single-perspective) image. This method, however, could only 

be applied to simple 3D polyhedral objects. Roberts himself tested his 
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algorithm with only three polyhedra: a cube, a wedge, and a hexagonal 

prism.

Roberts was primarily interested in having a robot recognize a simple 3D 

object from a set of familiar objects whose models were stored in the robot’s 

database. His main contribution was to address the issue of 3D shapes 

when others who were interested in machine vision were only dealing with 

2D shapes, such as alphanumeric characters. The problem of recognizing 

a 3D shape from its perspective image is directly related to what is known 

in the psychological literature as “shape constancy.”2 Recall that “shape 

constancy” refers to the fact that the percept of the shape of a given object 

remains the same despite changes in the object’s retinal image caused by 

changes in the viewing direction. Roberts, by using 3D objects, avoided 

problems inherent in earlier research on shape constancy. Recall, simple 

2D shapes, such as ellipses, did not allow Thouless to actually study, much 

less to solve, the problem of shape constancy. Roberts’ contribution was 

signifi cant because it is not trivial to solve the shape constancy problem 

in the case of complex 3D shapes. Roberts paved the way for doing this 

by using projective geometry. Consider the nature of this problem. Perspec-

tive projection is a nonlinear transformation (see appendix C, section C.2, 

for equations defi ning a 3D to 2D perspective projection). As a result, 

matching a 3D shape with a 2D image involves nonlinear equations that 

are diffi cult to solve analytically. Roberts realized that this problem can be 

greatly simplifi ed when “homogeneous” rather than Euclidean coordinates 

are used (appendix C, section C.3).3 Roberts’ (1965) use of linear equations 

was clever because it allowed him to handle the perspective projection by 

means of matrix algebra.

One aspect of Roberts’ method is worth highlighting. By using homoge-

neous coordinates, he effectively changed the problem of recognizing 3D 

shapes as represented by ratios of Euclidean distances to the problem of 

recognizing shapes as represented by their projective structure.4 Figure 3.1 

illustrates the difference between Euclidean (a) and projective (b) structures. 

Figure 3.1a shows an image of a cube. In this case, the reader will perceive 

a cube providing the viewing distance is several times larger than the size 

of the image. In contrast, fi gure 3.1b shows an image of a 3D projective 

transformation of a cube. The reader will not perceive this shape as a cube: 

(a) and (b) are perceived as different shapes. However, for Roberts’ algo-

rithm, (a) and (b) are perceived as the same shape. Clearly, Roberts’ method 
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is different from the method used by the human visual system, in the sense 

that it can “recognize” shapes despite considerable distortions. Humans do 

not. They see a shape and its projective transformation as very different 

shapes.

Shortly after Roberts published his seminal work, a series of papers 

appeared providing methods for machine interpretation of line drawings 

of objects. Whereas Roberts was interested in identifying and discriminat-

ing individual objects, this new work emphasized understanding a complex 

3D scene composed of complex objects, such as polyhedra. Note that once 

we speak of an object in a complex scene, fi gure–ground organization 

looms large: One has to identify which of the contours belong to the object 

and which to the background. From the point of view of a human observer, 

it is a trivial problem, and the resulting percept is almost always veridical. 

From the engineering point of view, fi gure–ground organization is extremely 

diffi cult, so it is not surprising that progress was slow.

Guzman (1968) began by describing a method for decomposing an 

image into regions corresponding to individual objects. He used images of 

polyhedral objects and showed that the individual objects can be identifi ed 

(a) (b)

Figure 3.1
(a) An image of a cube. When the reader views this image from a large viewing dis-

tance, the retinal image is a valid perspective projection of a cube and the viewer 

perceives a cube, that is, a rectangular box whose edges all have identical lengths. 

(b) An image of a projective transformation of a cube. Projective transformation 

changes size as well as shape. Here we are only concerned with shape, not size. A 

projective transformation of a cube does not have right angles, and its edges have 

different lengths. The human observer does not perceive (b) as a cube. However, 

when Roberts’ method using homogeneous coordinates is applied to these drawings, 

both (a) and (b) will “look” like cubes, that is, a rectangular box with equal sides 

(after Pizlo & Scheessele, 1998).
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despite partial occlusions in the image. This result is quite interesting 

because it shows that fi gure–ground organization may be tractable, as long 

as the “fi gures” are images of 3D objects. Most, if not all, of the previous 

research on human fi gure–ground organization used 2D, “toy” stimuli, 

rather than realistic images of solid objects. Note that there is a hint here 

that solving the 3D shape constancy problem may be easier than solving 

a 2D shape constancy problem—a hint, however, that was not noticed by 

those who studied the shape constancy problem with simple 2D fi gures. 

Clowes (1971) and Huffman (1971) extended Guzman’s work by formulat-

ing criteria that allowed classifying edges and trihedral vertices of corners 

into convex and concave. Waltz (1972) added constraints to this classifi ca-

tion by using information about shading. In fact, Waltz’ method was 

usually able to produce a unique (and accurate) interpretation of line draw-

ings of polyhedra. It is important to point out that interpretation of a line 

drawing as representing 3D objects involves solving two related problems. 

The fi rst is determining which parts of the image represent individual 

objects and parts of the objects (fi gure–ground organization), and the 

second is providing a 3D representation of the objects. The latter cannot 

be done without the former. In other words, fi gure–ground organization 

must precede 3D representation.

All these early papers concentrated on qualitative aspects of shape (e.g., 

deciding between convex and concave corners). As a result, a polyhedron 

could often be reconstructed, but the sizes of the angles of the polyhedron 

remained unknown. Recall, however, that Roberts’ recognition method did 

not allow recognizing angles, either, because it involved recognizing pro-

jective, not Euclidean, structure. Interestingly, there is a close similarity 

between the results produced by Roberts’ recognition method and the 

reconstruction of polyhedra from a single image.5

Mackworth (1973) and later Kanade (1981) improved the reconstruction 

methods by adding quantitative constraints that restricted the family of 

possible polyhedra. For example, if a face of the polyhedron is symmetrical, 

then the family of possible orientations of the polygon characterized by 

slant and tilt is represented by only one free parameter (Kanade, 1981). 

This line of research culminated in Sugihara’s (1986) work. Sugihara for-

mulated the necessary and suffi cient conditions for a line drawing to 

represent a physically realizable (possible vs. impossible) polyhedron. Sug-

ihara’s work was the starting point for two different lines of research that 
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are directly related to human shape perception. One line of research 

involved what is called “model-based invariants” for shape recognition, 

and the other involved what is called “optimization-based reconstruction 

of shapes.” In both, the visual system is assumed to apply some operations 

to a 2D shape on the retina in order to provide a percept of a 3D shape. 

It follows that fi gure–ground organization must be performed fi rst in order 

to fi nd the 2D shapes on the retina. Clearly, fi gure–ground organization 

and shape recognition and reconstruction are two closely related aspects 

of the perception of 3D objects. This was appreciated, and both were 

treated as such by researchers of that period. Unfortunately, Sugihara’s 

approach emerged at a time when a major innovator came on the scene, 

an innovator who took a novel approach to shape perception that pushed 

Sugihara’s approach into the background for many years.

The innovator was David Marr (1982). He was the fi rst to explicitly 

address the issue of computational modeling of the entire human visual 

system rather than concentrating on simple, but tractable problems of 

reconstructing and recognizing simple objects. By turning the attention of 

both the human and machine vision communities to human vision, Marr, 

in fact, addressed the “big problem” of formulating a computational theory 

of a general-purpose vision system. By that he meant a system that can 

work with real images (as opposed to line drawings) and can be applied to 

a wide range of objects, not only polyhedra. This emphasis represented 

breaking with traditional approaches in both human vision and machine 

vision. Marr was the fi rst to capitalize on the observation that interpreting 

real images of natural scenes is much harder than interpreting synthetic 

images of toy scenes. However, once real images, rather than line drawings, 

are of interest, the computational complexity of the problem requires the 

use of computers—analytical treatment is usually not possible. Further-

more, Marr realized that simulations are particularly important because 

they dramatically restrict the family of possible theories of human vision. 

If a computational model does not lead to reliable reconstruction of a 3D 

visual scene, it cannot be useful as a model of human vision. The human 

visual system is highly effective, as well as very reliable, when it is used to 

interpret real images of natural scenes. Marr’s formulation of visual percep-

tion was revolutionary. It contained so many insightful ideas that his 

approach was adopted by almost all researchers interested in space and 

shape perception during the last twenty years of the twentieth century. 
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Marr’s approach was so infl uential that it is usually referred to as “Marr’s 

paradigm.” Marr deserves special credit because he encouraged vision sci-

entists with diverse backgrounds to take an interest in solving the “big 

problem” he raised, namely, formulating a computational theory for inter-

preting real images of natural scenes. He, and those he attracted, failed to 

do this, but their efforts provided new insights into the problem of shape 

perception that were elaborated by those he infl uenced. The strengths and 

weaknesses of Marr’s approach will be discussed next.

3.1 Marr’s Computational Vision

Marr’s paradigm can be best characterized by discussing some of his 

assumptions: namely,

(i) space and shape perception are the most important issues in vision,

(ii) visual perception involves information processing,

(iii) the perception of 3D shape is based on perception of surface 

orientation,

(iv) the representation and recognition of 3D shapes involves 3D models, 

and

(v) it is possible to develop a new theory of human shape perception 

without concurrent psychophysical experiments to test its plausibility and/

or without making the new theory consistent with existing psychophysical 

data obtained from human observers.

3.1.1 Space and Shape Perception

Marr began by asking about the purpose of vision. Evidence from patients 

who suffered localized and specifi c brain damage suggested to him that 

shape and space can be reconstructed on the basis of visual information 

alone. The meaning, familiarity, or importance of the objects contained 

within the space are not needed (Marr, 1982, pp. 34–46). Here, Marr is 

refl ecting the Zeitgeist in neuroscience, which was emphasizing the “mod-

ularity” of brain functions in his day. Neuroscientists were very busy 

demonstrating that different specialized regions within the brain were 

responsible for performing different functions. Marr then added the claim 

that shape and space perception are the most important visual properties. 

Other properties such as color, texture, or motion are secondary (p. 36). 



80 Chapter 3

Marr did not justify his claim about the relative importance of shape except 

for saying that once we understand shape perception, it will be easy to add 

the other properties. His book, which he titled Vision, concentrated almost 

exclusively on the perception of shape and space.

3.1.2 Visual Perception Involves Information Processing

Marr introduces this discussion by describing the main fl aw inherent in 

Gibson’s approach. According to Gibson’s approach, called “direct percep-

tion,” accurate perceptions of space and shape are based on invariants that 

reside in the environment and can be effortlessly “picked up” by the 

observer. Specifi cally, the visual system, according to Gibson, does not have 

to compute anything in order to produce a veridical representation of 3D 

shape, as long as the viewer is allowed to use both eyes and to move about 

freely. Simply put, Gibson was engaged in wishful thinking. He grossly 

underestimated the diffi culty of reconstructing 3D visual space. The source 

of this diffi culty, of course, derives from the well-known fact that the visual 

system obtains information about the 3D world from 2D representations 

on the retinas. The retinal image is a perspective transformation of the 3D 

scene and, therefore, does not allow “direct” measurement of Euclidean 

properties of the scene such as shape. The visual system can use invariants 

of a perspective transformation, but these invariants (projective) do not 

uniquely specify a 3D shape, as illustrated in fi gure 3.1 (see appendix C, 

section C.1b, for classifi cation of invariants that are relevant to shape per-

ception). Both parts of fi gure 3.1 represent the same shape from the point 

of view of projective geometry, but these two fi gures are perceived as 

having different shapes. Projective invariants can be useful in discriminat-

ing very different shapes but cannot be used in reconstructing novel 

shapes. However, even if invariants are used to discriminate shapes, invari-

ants have to be computed, not just “picked up.” They are not simply lying 

around in the environment. To be sure, Gibson deserves credit for insisting 

that an adequate study of human vision must involve 3D scenes and 

shapes because in his day, the commonly adopted approach was rooted in 

Fechnerian psychophysics (Fechner, 1860). In Fechnerian psychophysics, 

the percept of the natural environment is constructed from simple ele-

ments such as sensations of brightness, color, and contrast. Fechner, and 

all who followed in his tradition, did not even begin to deal with the per-

ception of real objects in natural environments. Thus, Gibson’s emphasis 
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on the importance of studying perception of 3D scenes was valuable, but 

his “theory” of 3D perception was not. It was Marr who realized that 3D 

space and shape perception is a diffi cult computational problem that must 

be attacked as such.

3.1.3 Perception of 3D Shape Is Based on Perception of Surface 

Orientation

The perceptual representation of surface orientation and distance relative 

to the viewer was central in Marr’s computational theory of shape. Marr 

called this representation a 2.5D sketch. The label, “2.5D,” rather than 3D, 

derives from the fact that we usually “see” only one half of an opaque 3D 

object (transparent objects are relatively rare in most natural environ-

ments). As a result, our retina does not provide direct information about 

whole 3D objects. It does, however, contain some depth information in 

addition to the 2D retinal positions of various features of the objects. This 

partial information about depth is represented by the “.5” in Marr’s “2.5D” 

label. Marr explains the signifi cance and nature of the 2.5D sketch in his 

table 1.1 (Marr, 1982, p. 37) where it can be seen that the 2.5D sketch 

precedes the stage at which a 3D shape is represented. This means that in 

Marr’s theory, shape is perceived by “taking orientation (or slant) into 

account,” the same kind of misguided explanation that has dominated 

thinking about the perception of shape for centuries. N.B. that by introduc-

ing his 2.5D representation, Marr was able to ignore the importance of 

fi gure–ground organization, which provides the contour used to establish 

the 2D shape of the object’s representation in the retinal image. By doing 

this, Marr assumed that fi gure–ground organization was not necessary for 

providing the percept of the 3D shape of an object. In his words, “most 

early visual processes extract information about the visible surfaces directly, 

without particular regard to whether they happen to be part of a horse, or 

a man, or a tree” (Marr, 1982, p. 272). How could he get away with this 

so long after the Gestalt psychologists had revolutionized perception by 

demonstrating the importance of fi gure–ground organization? Julesz (1960) 

had prepared the way by using random-dot stereograms in which fi gure–

ground organization cannot be performed because the random-dot images 

do not provide any information about the contours of any objects. In the 

absence of any contours, 3D surfaces were perceived by applying binocular 

disparity directly to individual points and features of the retinal images. 
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Once depth and orientation of each part of the surface are computed, a 

3D shape is perceived and segregated from its background.

Here we see that Marr, like Gibson, simplifi ed the perceptual processing 

involved in 3D shape perception. Neither Marr nor Gibson believed that 

they needed Gestalt rules of perceptual organization in their theories, and 

each assumed that the 3D representation characterized by surfaces of 

objects is produced very early in perceptual processing. The difference is 

that Marr knew that computations are required to arrive at 3D representa-

tions, but Gibson thought that they were not. In Marr’s theory, 3D shape 

is derived from the orientation of edges and surfaces. As a result, shape is 

treated the same way as all other spatial properties of the environment. 

For example, the shape of a box is treated in Marr’s theory the same way 

as a set of six rectangles or as a set of twelve edges in 3D. Consider fi gure 

3.2. Figure 3.2a is a Necker cube, an image of a wire cube. Figure 3.2b is 

an image of a polygonal line connecting the vertices of a cube (fi gure 3.2a) 

in a haphazard order. These two fi gures look quite different, and a success-

ful theory of shape is likely to treat these fi gures very differently. However, 

Marr’s theory does not. Both (a) and (b) are treated the same way. Marr 

begins by using depth cues such as binocular disparity or motion parallax 

to compute the 3D orientations of the edges in both fi gures. The result of 

(a) (b)

Figure 3.2
(a) A Necker cube. (b) An image of a polygonal line produced by connecting the 

vertices of the cube in a haphazard order. Note that (a) is more likely to be perceived 

as a 3D object than (b). Furthermore, “Necker-cube” depth reversal is easily observed 

in (a), but not in (b). Finally, the cube in (a) will show shape constancy, that is, it 

will be seen as a cube regardless of the direction from which it is viewed.
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this computation is what he called a “2.5D” sketch. Once the 2.5D sketch 

is computed, the 3D shapes of these two objects are represented in the 

viewer-centered coordinate system. The next, and fi nal, step in Marr’s 

theory changes the frame of reference, from viewer-centered to object-

centered. In Marr’s theory, the representations of these two objects are 

equally good despite the fact that one is perceived as having shape and 

the other is not. Clearly, the Necker cube (a) is different in a number of 

ways from the unstructured wire object (b). Specifi cally, the differences are 

(i) shape constancy is achieved in (a), but not in (b), when binocular dis-

parity or other depth cues are available (Rock & DiVita, 1987; Pizlo & 

Stevenson, 1999; Pizlo et al., 2005); (ii) a 3D object is perceived in (a), but 

not in (b), when depth cues are not available; and (iii) a reversal of depth 

is easily observed in (a), but not in (b). These differences are related to the 

fundamental fact that the image in (a) has shape properties emerging from 

the operation of fi gure–ground organization, but the image in (b) does not. 

Figure 3.3 shows that the same applies when the Necker cube is distorted. 

Figure 3.4 shows that it still applies even when the object is much more 

complex.6

In the next fi gure, fi gure 3.5, the difference between the two objects has 

been reduced considerably. How was this done? Symmetry was introduced. 

Symmetry made the polygonal line begin to look like the shape of a real 

(a) (b)

Figure 3.3
(a) An image of a nonrectangular box. (b) An image of a polygonal line produced 

by connecting the vertices of the box in a haphazard order. Note that (a) is more 

likely to be perceived as a 3D object than (b). Furthermore, “Necker-cube type” of 

depth reversal is easily observed in (a), but not in (b). Finally, the box in (a) will 

show shape constancy, that is, it will be seen as (approximately) the same box 

regardless of the direction from which it is viewed.
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(a) (b)

Figure 3.4
A complex object (a) and a wire object (b). The wire connects the vertices of the 

object in (b) in a random order.

(a) (b)

Figure 3.5
(a) A Necker cube. (b) An image of a polygonal line produced by connecting the 

vertices of the cube in an order that makes it easier to form groups of vertices that 

correspond to individual faces and that encompass a volume. Now, both (a) and (b) 

are perceived as 3D objects, and both lead to “Necker-cube” depth reversal.

object. It begins to resemble a Marcel Breuer dining chair. This polygonal 

line can be made even more like this chair by changing the order in which 

the points are connected. This is shown in fi gure 3.6. The polygonal line 

in fi gure 3.6b looks quite a bit like a 3D object. It is even capable of depth 

reversal. So, what emerges when we consider these fi gures (fi gures 3.2–3.6)? 

This series proceeded by introducing the properties that facilitate the 

operation of fi gure–ground organization, the Gestalt grouping principle, 

which is responsible for creating shapes that represent objects separated 
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from their background. It is this perceptual organizing principle that is 

critical for making it possible for a simple line drawing to look like a 3D 

shape that has volume and surfaces. The 3D geometrical features of the 

object, such as the orientations of its surfaces, which are represented in 

Marr’s 2.5D sketch, are less important than the fi gure–ground organizing 

principles that operate in the 2D representation of a scene (its retinal 

image). Marr ignored fi gure-ground organization for two reasons. First, no 

one knew how to model it. Second, Julesz had demonstrated with his 

random-dot stereograms that a 3D percept can be produced by contourless 

images. However, fi gures 3.2–3.6 clearly show that Marr’s approach, which 

produces 3D shape from a 2.5D sketch, contains a fatal fl aw. Namely, Marr’s 

approach will not be able to model human vision in real scenes without 

incorporating the fi gure–ground organizing principle. Figure–ground orga-

nization cannot be ignored.

Once one recognizes the critical role of fi gure–ground organization, a 2D 

property, the only property available in the retinal representation of the 

3D world, a question arises about the relation between the shape of a 2D 

representation and the shape of a 3D object. Namely, what kind of infor-

mation is available for the visual nervous system to use to create a 3D 

percept? Only two kinds of information are available: specifi cally, a contour, 

and the region enclosed by the contour. Both are used by the visual system 

to reconstruct the surface and volume of the 3D percept. Once these 

(a) (b)

Figure 3.6
(a) An image of a nonrectangular box. (b) An image of a polygonal line produced 

by connecting the vertices of the box in an order that makes it easier to form groups 

of vertices that correspond to individual faces and that encompass a volume. Both 

(a) and (b) are perceived as 3D objects, and both lead to “Necker-cube” depth 

reversal.
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sources of information are identifi ed, the next question becomes how 

much information is provided by the shape of a 3D object on the retina. 

Shape, unlike all other visual properties, such as brightness, speed, or size, 

is very special. Shape is complex, and this complexity is almost never 

eliminated by perspective projection. This means that the shape of a 2D 

retinal image, as represented by its contour, usually contains a lot of infor-

mation, in most cases, enough to permit the visual system to reconstruct 

a veridical 3D shape percept.

3.1.4 Representation and Recognition of 3D Shapes Involves 3D Models

The fi nal stage in Marr’s theory is forming a 3D model of a 3D shape 

after the 2.5D sketch is derived from the retinal image by using depth 

cues. The main difference between Marr’s 3D model and his 2.5D 

sketch is that the 3D model uses an object-centered representation, 

which does not depend on the observer’s viewpoint, whereas the 

2.5D sketch uses a viewer-centered representation, which does. Marr 

correctly pointed out that recognition of 3D shape from an arbitrary 

viewing direction (i.e., shape constancy) must involve an object-centered 

representation. Marr also spelled out three aspects that characterized 

his 3D model. The fi rst is the coordinate system used to represent the 

3D shape. If a given 3D shape is to be recognized as the same regardless 

of the viewing direction, the shape should be expressed in a coordinate 

system based on some distinctive features such as the elongation and 

symmetry of the object (Rock, 1973; Palmer, 1985, 1999). Marr’s second 

aspect is a set of primitives. Here, Marr proposes surface-based features, 

which are directly derived from a 2.5D sketch, as well as volumetric 

features. Volumetric features may be very simple, such as small cubes, 

or as complex as parts of objects, such as an animal’s limbs. Note that, 

according to Marr’s theory, volumetric features come in very late in visual 

processing. They come after 3D surfaces are described in the object-

centered coordinate system. One can say that in Marr’s theory, the percept 

deals with surfaces, but it does not deal with volumes. Volumes, in 

Marr’s theory, reside in the observer’s memory, where models of 3D shapes 

are stored.

Marr’s third aspect is the spatial organization of these primitives. Marr 

argues that the organization should be “modular,” representing the hier-

archical relation of the entire 3D object to its parts. For example, a human 
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body consists of several parts such as limbs, a torso, and a head. Each limb 

has two main components, lower and upper, connected by a joint (e.g., 

an elbow). The lower part (a forearm) has, in turn two parts, and so on 

(see Marr’s fi gure 5.3).

In the next chapter, the reader will see how Marr’s ideas were developed 

by Biederman (1987) in his recognition-by-components theory. Despite 

several common features, there are several important differences between 

Marr’s and Biederman’s approaches. Marr derived the 3D model of shape 

from a 2.5D sketch without fi gure–ground organization, whereas Bieder-

man derived the 3D shape from features characterizing the retinal 

2D shape after fi gure–ground organization has been accomplished. 

Marr’s theory relies heavily on depth cues and makes minimal use of a 

simplicity principle (“depth cues,” as used in this treatment, refers to visual 

information that can be used to compute spatially local properties of sur-

faces, such as distances from the observer, relative distances along the 

depth direction, and 3D orientations). Biederman’s theory relies heavily 

on a simplicity principle and makes no use of depth cues. Marr treated 

shape as a higher order variable derived from depth, whereas Biederman 

assigned a unique status to shape. Marr’s 3D model clearly was a precursor 

of modern theories of shape, but other features of Marr’s theory, notably 

his emphasis on the 2.5D sketch and his neglect of fi gure–ground organiza-

tion, did not allow him, or his followers, to take the next step, namely, 

to reconstruct 3D shape from the 2D retinal representation of the 3D 

object.

3.1.5 Marr’s Failure to Emphasize Psychophysical Experiments with 

Human Observers

Marr was a theoretical neuroscientist by training, and his interest in vision 

was motivated by the remarkable achievements of biological systems, such 

as the human visual system. Marr, despite his appreciation of these achieve-

ments, clearly had a bias when it came to evaluating the relative impor-

tance of psychophysical vis-à-vis simulation results. He was willing to refer 

to existing psychophysical data to illustrate some of his claims and to 

justify some of the assumptions upon which he built his theories, but he 

stopped there. He did not perform new psychophysical experiments with 

human observers, the kind of experiments that were actually essential for 

testing his theories directly. According to Whitman Richards, Marr’s 
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collaborator, Marr’s initial intention was to conduct psychophysical experi-

ments concurrently with developing computational models of vision: “We 

realized [in 1976] that the ‘three levels’ of understanding could also be 

recast as a scientifi c protocol for attacking a vision problem: Step 1: propose 

a computational theory; Step 2: write an algorithm embodying the theory; 

Step 3: check out its (biological) merit with psychophysics (or neurophysi-

ology)” (Richards, 1990, p. 2). This protocol was applied in the late 1970s 

to stereopsis. However, “unfortunately, over the course of the years, as the 

problems became harder, the enforcement of the 1–2–3 method became 

lax, and often we did not get closure when studying a problem” (Richards, 

1990, p. 3). It is possible, perhaps even likely, that Marr would have per-

formed all of the necessary psychophysical experiments had he lived 

longer. His untimely death at the young age of thirty-fi ve interrupted his 

highly creative work. He had only worked on vision for about ten years, 

not nearly enough time to “enforce the 1–2–3 method” in more than a 

handful of cases. Marr began by concentrating on developing computa-

tional models, the area in which his main talents lay. He might have 

accomplished much less than he did if he had tried to do psychophysical 

experiments with human observers at the same time.

The results of a number of psychophysical experiments on shape percep-

tion were available when Marr began his work in the 1970s, but computa-

tional models of shape perception were not, so it is not surprising that 

Marr, who emphasized the need for using computational models in vision, 

began by trying to remedy this imbalance by concentrating on developing 

computational models without engaging in concurrent psychophysical 

experimentation. Marr’s failure to do concurrent psychophysical experi-

ments proved to be a serious fl aw. It doomed his approach because Marr’s 

paradigm was built on a very strong, but unwarranted, assumption about 

the relation between 3D surfaces and 3D shapes. Namely, he assumed that 

perceiving 3D surfaces was necessary for the perception of 3D shape. No 

matter how obvious this assumption appeared to be to Marr and his associ-

ates, it should have been tested in psychophysical experiments before 

being used to build computational models of shape perception. This should 

have been clear at the time because psychophysical results published by 

the neo-Gestaltists during the 1960s and 1970s had already suggested that 

this assumption was unwarranted (see chapter 2).
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Why was a psychophysical experiment to test the primacy assumption 

about 3D surfaces critical when Marr began to formulate his theory of 

shape? It was critical because once it is assumed that the percept of surfaces 

is necessary for the percept of shape, it becomes obvious that shape must 

be based on the perception of depth because the perception of 3D surfaces 

is derived from depth cues. Recall that “depth cues” refers to the visual 

information that can be used to compute the spatially local properties of 

surfaces, namely, the distances from the observer, relative distances along 

the depth direction, and 3D orientations. However, as the reader already 

knows from the discussion in section 3.1.3, 3D surfaces can be perceived 

in the absence of depth cues. By way of a reminder, it is obvious that the 

surfaces and edges of a Necker cube are perceived as 3D only because they 

are surfaces and edges of a 3D shape percept, a percept that is derived from 

the operation of a simplicity principle. It is not derived from depth cues. 

One way to contrast this Necker cube example with Marr’s theory is to 

realize that in this example, 3D surfaces are produced from the volume of 

an object, not the other way around. It follows that 3D surfaces can have 

a dual role in vision: They can be derived from spatially local depth cues (as 

they are with unstructured, irregular objects, such as ragged rocks, pota-

toes, tree branches, and wire objects) or from the perceived 3D shape (as 

they are with structured objects, such as a Necker cube, human-made 

objects, and animals). To put it differently, a 3D shape can serve as a cue 

to 3D surface, but not the other way around. Marr overlooked this fact. 

Once the dual role of surfaces is recognized as a theoretical possibility, it 

immediately becomes clear that the shape perceived may not be predict-

able from the perceived surfaces. If the perceived shape cannot be predicted 

from the perceived surfaces, Marr’s theory must be rejected. This is not 

diffi cult to test, so it is remarkable that this experiment was not performed 

during the 30 years that followed the introduction of Marr’s computational 

theory of shape perception. Suitable experiments were performed only very 

recently by the present author and his colleagues (Li & Pizlo, 2006; Pizlo 

et al., 2006). They clearly showed that the perceived 3D shape cannot be 

predicted from the perceived 3D surfaces of the shape (see chapter 4 for 

details). Marr would have known that a completely different theory was 

needed if this psychophysical experiment had been performed 30 

years earlier. Had this been done, the vision community might have 
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concentrated on exploring the uniqueness of shape, rather than on trying 

to fi nd weaknesses in the approach of those few, such as Biederman, who 

studied shape outside of the context of depth and surface perception.

3.1.6 The Relative Importance of Shape Regularities and Cues to Depth

Consider objects that have some regularities, such as symmetries. From the 

computational point of view, a vision system may proceed in two ways. 

The fi rst is to reconstruct the 3D shape by using the symmetries that are 

present in the object. This is the approach taken by this author. The second 

is to reconstruct the 3D shape from depth cues. This was Marr’s approach. 

Note that this approach ends up reconstructing symmetries of the object 

from depth cues. This is clearly a roundabout method. Why ignore symme-

try, and other regularities, when they are “there”? Depth cues are never perfectly 

reliable, so the reconstruction with depth cues will be less accurate than recon-

struction without them. It follows that the human visual system would do 

well by using the fi rst approach. It does. The remaining question is how 

many objects “out there” have regularities. This is an open question that 

should be answered by a “statistical survey of ecological stimulus represen-

tativeness,” as advocated by Brunswik (1956, chapters 8–10). It seems to 

me that most, if not all, objects that have functional signifi cance to us 

actually have regularities, such as symmetries. If this is the case, then the 

theory of shape perception proposed in this book applies to human shape 

perception in our everyday life.

Now that we understand the uniqueness of shape and the importance 

of fi gure–ground organization in producing a 3D percept of shape, it is 

obvious that Marr’s 2.5D sketch is not the best level at which to start to 

model human shape perception. Unfortunately, the pervasive infl uence of 

Marr’s approach postponed serious consideration of fi gure–ground organi-

zation until recently. Why was Marr’s approach so infl uential? Marr’s 

approach was introduced shortly after Julesz (1960) made a big impression 

on the vision science community with his random-dot stereograms. Julesz’ 

stereograms made it possible to see 3D surfaces and 3D shapes without 

contours in the retinal image. This fact, of course, does not rule out the 

importance of contours in shape perception. After all, once the stereograms 

are fused and the 3D surfaces perceived, the image contours can be inferred 

and used to produce the 3D shape percept. In other words, there is no 

reason why binocular disparity might not serve as a cue to contours, the 
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same way shading, texture, and motion do (Regan, 2000; Knill, 2001). Is 

this the mechanism the visual system normally uses, or is it an exception 

to its normal mode of action? It is diffi cult to answer this question directly 

at our stage of knowledge, but it seems likely to be an exception if only 

because random-dot stereograms could have exerted very little evolution-

ary pressure in our environment. Shapes derived from Julesz’ stereograms 

were probably not perceived by anyone before 1960.

3.2 Reconstruction of 3D Shape from Shading, Texture, Binocular 

Disparity, Motion, and Multiple Views

At about the same time Marr’s (1982) book appeared, a set of computa-

tional vision papers was published as volume 17 of Artifi cial Intelligence 

(1981; this volume is also available as a book edited by Brady, 1981). These 

papers illustrate how the geometry of surfaces described in the 2.5D sketch 

can be reconstructed from different types of visual cues. This work used a 

variety of visual cues, including shading, motion, texture, and binocular 

disparity, together with assumptions about the surfaces and objects to 

be reconstructed. The most prominent assumptions (constraints) were 

smoothness of the reconstructed surface and rigidity of the reconstructed 

point set. Working within Marr’s paradigm, these studies did not include 

fi gure–ground organization. Without fi gure–ground organization, retinal 

shape is not available, which means that shape invariants and shape con-

straints have no place. In this case, the only way to produce 3D shapes is 

to reconstruct the visible surfaces as Marr proposed and then “take their 

orientation into account” to produce 3D shapes. If shape invariants and 

shape constraints were allowed to operate, the 3D shape itself could be 

recognized or reconstructed. Both could be accomplished without “taking 

the orientation of the surfaces into account.” Thus, allowing fi gure–ground 

organization increases the number of options; takes advantage of the 

special virtue inherent in shape, namely, complexity; and provides a model 

that can actually create a 3D percept from a 2D image. Figure–ground 

organization was not incorporated in this large body of work, so only three 

papers from this set, those most relevant to shape, will be described here 

because it was clear that a signifi cant advance in our understanding of 

shape perception could not emerge from this approach. The three were 

included primarily to give the reader a feel for what was going on at this 
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stage of development of our current knowledge about shape, not because 

they were important to its development.

The fi rst paper in this set analyzed the use of texture (Witkin, 1981). 

Witkin gave credit to Gibson (1950) for pointing out the importance of 

texture and texture gradients, but he also indicated that Gibson underes-

timated the diffi culty in using texture in the case of real images. Gibson 

hoped that there is a simple quantity that can be used to characterize a 

texture gradient, a quantity that could give a direct measure of the surface 

slant and tilt at each point of the surface. In the case of realistic images, 

there is no such quantity because texture is never perfectly regular. Once 

there is variability in the geometrical properties of texture, one must use 

statistical methods, such as maximum likelihood, to estimate the surface 

geometry on the basis of data sampled from many parts of the surface.

The second paper in this series analyzed surface contours (Stevens, 1981). 

Using results from differential geometry, Stevens analyzed properties of 

geodesics and of lines of curvature (see Hilbert & Cohn-Vossen, 1952, and 

Koenderink, 1995, for excellent reviews of the differential geometry of 

surfaces). Stevens pointed out that for cylindrical surfaces, the lines of 

curvatures are both planar curves and geodesics. If we can assume that 

image contours are planar geodesics, we can (under some additional 

assumptions) reconstruct the geometry of the surface (Stevens, 1981, 1986). 

Despite the fact that surfaces of natural objects are never exactly cylindri-

cal, they are close enough to cylindrical to make Stevens’ method useful.

Finally, the paper by Barrow and Tenenbaum (1981) analyzed the role 

of both visual cues and a simplicity principle in explaining the percept 

of visible surfaces. These authors used smoothness, planarity, and the 

minimum variance of angles constraints to reconstruct shapes of polyhe-

dral objects. It is worth pointing out that their explanation of the percept 

of polyhedra did not fi t within Marr’s paradigm because the minimum 

variance of angles constraint can only be applied to an organized fi gure 

(the retinal shape of a fi gure). Barrow and Tennebaum’s approach was 

subsequently used by Marill (1991) and Leclerc and Fischler (1992) in their 

computer graphics algorithms, as well as by the present author (Pizlo, 

2001) in his model of shape perception formulated within the framework 

of inverse problems.

A number of other studies on shape and space perception appeared in 

this period. They used constraints, but not those requiring fi gure–ground 
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organization. These studies include reconstruction of 2D and 3D motion 

with the application of smoothness constraints (e.g., Hildreth, 1984); 

reconstruction of surfaces from shading (Horn, 1975, 1977; Ikeuchi & 

Horn, 1981), again with the use of a smoothness constraint applied to 

surfaces; and computation of structure (shape) from motion with the use 

of a rigidity constraint (Ullman, 1979; Longuet-Higgins, 1981). These two 

studies on what is called “structure from motion” have been especially 

infl uential in the study of shape perception.

The fi rst, and more infl uential of the two, was Ullman’s (1979), who 

developed a computational model to explain the KDE described by Wallach 

and O’Connell (1953). Recall that Wallach and O’Connell demonstrated 

that viewing the shadow of a 3D rotating rigid object can give rise to the 

percept of a 3D rotating rigid object. Furthermore, they described condi-

tions in which the percept of a 3D rigid object could not be obtained. They 

stopped short of providing a theory of the KDE. Ullman picked up this 

problem and developed an algorithm for reconstructing a 3D object from 

a sequence of 2D images. He assumed an orthographic projection from the 

3D scene to the 2D image (an orthographic projection is an approximation 

to perspective projection; it assumes that the projecting lines are orthogo-

nal to the image plane). Ullman further assumed that the correspondences 

of points across images were known. Based on these assumptions, Ullman 

showed that given three views of four non-coplanar points rotating in a 

rigid fashion in 3D space, it is possible to compute the depth of each point 

(its relative distance to the image). This is Ullman’s well-known “structure 

from motion theorem.” Note that Ullman’s algorithm, by assigning depths 

to retinal points, provides a 2.5D sketch. The shape of the retinal image is 

not required, so fi gure–ground organization is irrelevant. Ullman’s 3D 

“shape,” represented by the points in 3D, is established after their depths 

are computed. Ullman’s approach raises a couple of questions. Mathemati-

cally, his algorithm works, but this by itself does not mean (i) that it can 

be used to reconstruct the shapes of real objects in real environments or 

(ii) that it describes how the human visual system produces the 3D percept 

of shape. The fi rst question arises because of the fact that there is always 

noise in real images of the 3D environment. Ullman’s reconstruction 

method does not work reliably in the presence of noise because the recon-

struction result is computationally unstable. This, by itself, implies that it 

cannot be used as a model of how humans acquire shape information from 
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motion. There are also other problems. First, the human observer’s ability 

to see 3D shape based on motion depends critically on the nature of the 

objects. Specifi cally, when human observers are asked to discriminate 

shapes of 3D objects based on motion, they can do it very well, but only 

when structured objects are used, not when 3D polygonal lines are used 

(Pizlo & Stevenson, 1999). There is nothing in Ullman’s algorithm that can 

account for this difference. Furthermore, rigid objects that can be recon-

structed by Ullman’s algorithm may or may not be perceived as rigid by 

human observers (Pizlo & Salach-Golyska, 1995). Conversely, objects that 

are nonrigid, and are interpreted as such by Ullman’s algorithm, may actu-

ally be perceived as rigid by human observers (Pizlo, Li, & Francis, 2005). 

These differences between Ullman’s algorithm and the percepts of human 

observers can be eliminated if fi gure–ground organization is used before 

the 3D shape is reconstructed.

The second infl uential study on structure from motion was done by 

Longuet-Higgins (1981). He formulated a mathematical method for recon-

structing 3D spatial positions of points from perspective images taken by 

two calibrated cameras (see appendix C, section C.2, for a defi nition of 

perspective projection).7 When two cameras view a 3D scene simultane-

ously, the conditions emulate those of a “binocular observer.” If only one 

camera is used, and it takes two images, each from a different viewing 

direction, the conditions emulate those used to study the KDE. Mathemati-

cally, these two cases are equivalent. However, perceptually, they may not 

be equivalent because the position and orientation of one eye relative to 

another is not arbitrary in a binocular observer. Furthermore, analyzing 

two images obtained sequentially requires the use of memory, whereas 

analyzing two images obtained simultaneously does not. Longuet-Higgins 

did not make any assumptions about the relative positions of the two 

cameras, so his algorithm can be treated as a structure-from-motion algo-

rithm, although Longuet-Higgins speculated that his algorithm could be 

used as a model of binocular vision, as well. Longuet-Higgins’ method is 

analogous to that of Ullman in that it reconstructs depths of points from 

motion information. Figure–ground organization is not used. Longuet-

Higgins showed that images of eight points can be used to compute eight 

parameters in an “essential matrix” representing the relation between 

image points in two perspective views.8 Note that only six of those eight 

parameters are independent. These independent parameters correspond to 
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the six degrees of freedom of a rigid body in 3D. After the fundamental 

matrix is computed, the 3D rotation and translation between the two 

cameras is reconstructed. This allows the computation of 3D Euclidean 

coordinates of the points. Longuet-Higgins’ algorithm is similar to 

Ullman’s. They both provide a mathematical solution to the structure-

from-motion problem. The algorithms are, however, quite different. Ull-

man’s algorithm requires three images and uses an orthographic 

approximation to perspective projection. Longuet-Higgins’ algorithm 

requires only two images, and it uses perspective projection. Despite these 

differences, these two algorithms suffer from exactly the same problems: 

inability to deal effectively with visual noise and to predict the percepts of 

human observers. It seems likely that these algorithms have the same 

problems because of the same reason. Namely, they do not make use of 

fi gure–ground organization.

To summarize, computational methods formulated within Marr’s para-

digm did not lead to models of human shape perception. They also did 

not solve this problem for machine vision because of their inability to deal 

with real images. Clearly, Marr’s decision to substitute the 2.5D sketch for 

fi gure–ground organization was a dead end. Once the limitations of Marr’s 

approach became clear, two new classes of methods were introduced in the 

middle and late 1980s. The fi rst group was based on invariants of projective 

transformation. The second group was based on the formalism called 

“inverse problems.” Both were quite promising, although neither led to 

the solution of Marr’s “big problem” of formulating a computational 

theory of a general-purpose vision system.

3.3 Recognition of Shape Based on Invariants

Many think that Gibson introduced the idea that shape and space percep-

tion involves “invariants” because he spoke about “invariants” throughout 

his career (Gibson, 1950, 1966, 1979). However, few realize that for Gibson, 

“invariants” was only a slogan. He provided no mathematical treatment 

of what he meant by “invariants,” and he frequently misused the collo-

quial term (see appendix C, section C.5, for a review of groups of transfor-

mations and their invariants). Furthermore, Gibson’s claims about which 

properties of the 3D environment are, or are not, “invariant” when they 

are represented on the retina have been shown to be incorrect (e.g., see 
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Witkin’s, 1981, discussion of texture gradients; Hay’s, 1966, discussion of 

shape from motion of 2D fi gures; and Ullman’s, 1980, discussion of shape 

from motion of 3D objects). Gibson probably derived his lifelong commit-

ment to “invariants” from his recognition of the fact that shape constancy 

is of fundamental importance. It allows human beings to perceive 3D 

objects veridically. Gibson felt that it was particularly important to empha-

size veridicality because many of his contemporaries devoted all of their 

efforts to studying illusions, failures of veridicality. Gibson’s contribution 

to shape perception, however, did not go beyond this. He did not provide 

a theory of either shape or space perception. Note that he was not in a 

position to do this even if he had wanted to because he believed that the 

veridical reconstruction of Euclidean properties can be done by using pro-

jective invariants. Mathematically, this makes no sense, whatsoever. Projec-

tive invariants cannot be used to reconstruct Euclidean properties (see 

appendix C, section C.6, for a review of projective invariants and their use 

in machine vision applications).

What, if anything, did Gibson’s emphasis on “invariants” contribute to 

perception? His emphasis did contribute, but the contribution was much 

less general than he and his students realized. Consider fi rst where he did 

make an important contribution. Gibson’s idea of “direct perception,” 

based on invariants, works in auditory perception. A melody (a distal 

stimulus) can be specifi ed by ratios of frequencies of tones (the tune) and 

by ratios of time intervals (the rhythm). Gibson correctly pointed out that 

both ratios are preserved in the proximal stimulus (Gibson, 1966, chapter 

5). This means that a melody is constant at three levels: in the distal stimu-

lus, in the proximal stimulus, and in the percept. In other words, a melody 

is invariant in its transformation from distal to proximal stimulus, allowing 

the auditory system to perceive the melody “directly” (to “pick it up”—

Gibson, 1966, p. 89). Only a few simple computations are required. Thus, 

“direct” perception is possible in audition, but not in vision, particularly 

not in the perception of 3D shapes. With 3D shapes, no ratios are preserved 

in the proximal stimulus. The 3D distal stimulus is projected to a 2D retinal 

image. In order to perceive shapes veridically (to achieve shape constancy), 

the visual system must reconstruct the 3D shape. It cannot simply “pick 

it up.”

Now that we know that invariants do not apply to vision in the way 

Gibson claimed, we turn to an additional problem in his approach. Gibson 
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also confused the colloquial and mathematical meanings of the term 

“invariant.” It is easy to confuse the two because mathematical invariants, 

superfi cially, look as though they could provide a natural basis for explain-

ing shape constancy. Note that shape constancy is a “perceptual invariant” 

in the sense that the perceived shape remains constant (“invariant”), despite 

changes in the retinal shape. However, a problem arises when you consider 

what a mathematician means when he or she says “invariant.” In mathe-

matics, a given feature is invariant when it is not changed by a given trans-

formation. For example, shape is invariant under rigid motions (translations 

and rotations), but it is not invariant when projected on the retina.9 The 

projection of an object to its retinal image changes its shape, but in percep-

tion, the perceived shape of an object is said to be “invariant” despite 

changes of its shape on the retina. Thus, the statement that “shape is a 

perceptual invariant” leads to confusion, unless the defi nition of “shape” 

or the defi nition of “invariant” (or both) are changed. Clearly, we must 

begin with unambiguous defi nitions of the terms “invariant” and “shape” 

before we can discuss how “invariants” can be used in models of shape 

perception. However, even before we defi ne “invariants” and “shape,” we 

have to clarify what we mean by “models” and “theories” that have been, 

and/or could be, used to “explain” the perception of shape.

3.3.1 Models, Theories, and Plausible Explanations

The meanings of the terms “theory,” “model,” and “explanation” changed 

throughout the period when progress was being made in the study of shape 

perception. The ways in which these terms were used in the past, and how 

they are used now, have to be appreciated before one can understand why 

some of what were called “theories” and “explanations” dozens of years 

ago do not meet contemporary standards. Not everyone appreciates the 

importance of these changes of meanings even today. Failure to do so can 

lead to disagreements and confusion about what constitutes progress in 

the study of shape and what does not (what will be called “milestones” 

and “millstones” at the end of this book). The meanings of such important 

terms as “theory,” “model,” and “explanation” have varied a lot during 

the last 100 years. The standards for what it means to formulate a theory, 

to model, or to explain something improved during the twentieth century, 

particularly since the end of World War II. The standards have improved 

in the sense that these terms are now based on relatively precise, 
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unambiguous formalisms. These improvements have made it clear why 

earlier uses of these terms proved to be, by contemporary standards, 

unfruitful. For example, one of the main reasons why Gibson’s approach 

did not lead to a plausible theory of shape perception is that Gibson’s 

“theorizing” never went beyond the stage of potentially interesting ideas. 

Gibson, writing in the second half of the twentieth century understood 

terms such as “theory” and “explanation” the same way psychologists had 

understood them for at least a half century before he published. Today, 

what Gibson and his contemporaries called a “theory” would be called a 

“hypothesis,” at best. What do we expect the terms “theory” and “explana-

tion” to mean today?

A “theory” of a natural phenomenon, such as shape perception, should 

lead to an “explanation” of the phenomenon. There is no universally 

accepted defi nition of what is meant by an “explanation” that can be 

applied in all fi elds of science (Braithwaite, 1955; Nagel, 1961). However, 

in shape perception, it is quite widely accepted that a plausible “explana-

tion” should provide a description of how the information available on 

the retina is used by the human being’s visual system to produce a veridical 

percept of shape. In other words, what I will call a “plausible” explanation 

is one that describes the computational mechanisms involved in producing 

a veridical percept of shape. This plausible explanation will take the form 

of a “computational model.” It will be “plausible” because it produces the 

same result as the visual system, namely, it reconstructs the 3D shape from 

its 2D retinal representation. It “perceives shape” as it is perceived by a 

human observer, and it does this with a wide variety of realistic images, 

images that contain occlusions and visual noise that are prominent fea-

tures of natural scenes. I am describing my approach to “explanation” 

because alternative approaches such as describing a relationship or correla-

tion between some stimulus and the response to it, the kind of “black-box 

explanations” favored by behaviorists and connectionists in the past, will 

not do today. For example, it is not suffi cient to “explain” shape perception 

by claiming that the observer has learned to associate shading, texture, 

and/or motion with memory traces of a retinal image and consequent 

actions, as Hebb (1949) in the middle of the twentieth century. and other 

later-day empiricists have done (see section 2.5). A satisfying, plausible, 

contemporary “explanation” would be based on a computational model 

of the processes underlying the perception of shape, rather than on verbal 
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models like Gibson’s or connectionist models based on what is now called 

a “Hebbian rule.” Hebb’s (1949) “model,” of course, like most others of the 

period, was only verbal. It hypothesized that repetitions of fi xation posi-

tions during scanning eye movements among various features in the visual 

array (mainly corners) lead to establishment of what was called a “phase 

sequence.” This was Hebb’s name for the neural engram that “represented” 

a particular “shape” in the brain. These engrams, the memories of senso-

rimotor learning, allowed a human observer to recognize a particular 

feature pattern as a particular shape when it was present in the visual array. 

The connectionist modelers, when they developed mathematical models 

to handle perceptual as well as other kinds of learning, chose to honor 

Hebb, rather than James (1890) or Dewey (1896) by referring to “Hebb’s 

rule.” “Hebb’s rule” could just as aptly be called “Dewey’s rule.”

Developing a computational model that can simulate the mechanisms 

responsible for some perceptual property has been accepted as the “gold 

standard” since the 1970s when Marr and his group introduced this 

approach in the fi eld of vision. Marr made it clear that a computational 

model is critical. Without it, a theory may have a number of hidden 

assumptions, assumptions that the theory’s author may not appreciate. 

Only after a theory (verbal or mathematical) is reformulated as a computational 

model, which can be tested in simulations using realistic stimuli, will it be pos-

sible to decide whether the particular computational theory can explain shape 

constancy. In other words, a computational theory can describe what has 

been computed, and these computations, which are based on the 2D 

retinal image in the observer’s eye, should lead to the veridical perception 

of the shape of the 3D object that produced this 2D image on the observer’s 

retina. If a computational model of shape perception does not lead to shape 

constancy, it cannot be a plausible description of the perceptual mechanisms 

underlying shape perception because human observers are known to achieve shape 

constancy under naturalistic as well as under many impoverished stimulating 

conditions.

The arguments presented above are based on the observation that there 

is an intrinsic relationship between the property called “shape” and shape 

constancy. Namely, shape constancy is the sine qua non of shape. To put 

it in everyday parlance, shape is not perceived if shape constancy fails. 

Note that this almost never happens in everyday life. It follows that it is 

not meaningful to talk about shape and shape perception without including, even 
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emphasizing, shape constancy. This point is essential. It is commonly agreed 

that “shape” refers to those geometrical properties of objects that are inde-

pendent of the object’s orientation relative to the observer (Marr, 1982). It 

follows that the only way one can be sure that one is studying shape per-

ception, as opposed to the perception of depth, shading, motion, natural 

scenes, and so forth, is to study shape constancy—that is, to study the 

observer’s ability to perceive shapes veridically despite changes in the 

viewing orientation of the object relative to the observer. Testing the effect 

of viewing distance, illumination conditions, surface texture, binocular 

disparity, and so forth, on the perception of objects does not, in itself, 

address the perception of shape or shape constancy. The manipulation of 

such variables falls into the literature supporting “taking into account” 

explanations of shape perception, a literature that has led nowhere to date. 

There are no stimulus properties that can be attributed to shape beyond those 

that can be demonstrated in shape constancy experiments. This statement is of 

fundamental importance. It was used by this author to choose the material 

that would be included in this book. Only those experiments and theories 

that contribute to our understanding of shape constancy have been dis-

cussed in detail. Others have only been mentioned or left out entirely.

Achieving shape constancy is computationally very diffi cult. At present, 

there is no machine vision system that can solve this task as well as a 

human observer does. Note, however, that there have been a number of 

theories and models in the human literature claiming to have explained 

shape constancy. Had these models been plausible, they could have been 

used to produce a machine vision system that worked as well as the human 

visual system, a system that achieves shape constancy easily. Existing 

machine vision systems are not plausible because they cannot achieve 

shape constancy. It follows that computational modeling gives the scientist 

interested in shape perception a distinct advantage because using compu-

tational models, tested with realistic simulations, eliminates the diffi culties 

inherent in choosing a plausible theory by using Popper’s (1979) falsifi ca-

tion criterion or by using something akin to Occam’s razor for “model 

selection” (Pitt, Myung, & Zhang, 2002), the only techniques available 

before computational modeling was introduced into visual science.

We turn next to explaining which invariants can, and which invariants 

cannot, be used in models of shape perception now that we (i) know how 

the term “invariants” came to be employed; (ii) have considered the history 
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of changing meanings of such basic terms as “theory,” model,” and “expla-

nation” during the last century; and (iii) have explained the author’s 

reasons for preferring computational models over other approaches to the 

study of shape perception.

3.3.2 Projective Invariants Cannot Explain Shape Constancy

First, consider how a mathematician applies invariants to shape constancy. 

As pointed out just above, shape is not invariant in the projection to the 

retinal image. Specifi cally, ratios of distances, as well as angles, change. 

What does not change, however, is a cross ratio of areas. This cross ratio 

is called a “projective invariant.” Thus, the statement “Shape is a percep-

tual invariant” is understood by a mathematician as implying that shape 

is characterized by projective invariants. You will see that this approach, 

despite its precision and elegance, cannot lead to a satisfactory explanation 

of shape constancy. In fact, you will see that if the visual system itself had 

adopted such an approach, our ability to perceive the visual world veridi-

cally would be quite limited, much more than it actually is. There is an 

additional problem. Namely, projective invariants can only be applied to 

2D shapes. They cannot be used to explain 3D shape constancy.10 The sig-

nifi cance of this limitation, which has only been appreciated recently, will 

be discussed, in detail, after limitations inherent in using projective invari-

ants are explained.

Projective invariants have received considerable attention in machine 

vision since 1988, when Weiss published a paper applying projective 

invariants to shape recognition. The application of projective invariants to 

four simple shapes is illustrated in fi gure 3.7. A pentagon, (a), and its two 
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Figure 3.7
Pentagons (a), (b), and (c) are projectively equivalent and are characterized by the 

following cross ratios: (0.80, 0.32). The pentagon in (d) is projectively different from 

the other two. Its cross ratios are (1.75, 0.68).
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projective images, (b) and (c), are shown (recall that a projective transfor-

mation is a product of two or more perspective transformations (see appen-

dix C, section C.7, for a discussion of differences between perspective and 

projective transformations). The projective invariant used consists of two 

cross ratios of corresponding areas of triangles (see appendix A, section A.3, 

for defi nitions of these invariants). The values of the two cross ratios are 

identical for the three pentagons, which means that each is a projective 

transformation of any of the other two.

These three fi gures are projectively the same, but they do not “look” the 

same. The reader surely agrees. The shapes in fi gure 3.7a and 3.7b look 

similar—(b) looks like a slanted (a)—but the shapes in (a) and (c) look dif-

ferent. Remember that, projectively, all three are the same. Furthermore, the 

shape in fi gure 3.7d is projectively different from (a), but it looks similar 

to it. Clearly, projective invariants cannot explain either shape similarity 

or shape constancy.11 An even clearer illustration of the limitations of 

projective invariants is provided by quadrilaterals. Specifi cally, according 

to projective invariants, there is only one convex quadrilateral (Pizlo, Rosen-

feld, & Weiss, 1997a)! In other words, all convex quadrilaterals, like those 

in fi gure 3.8, are projectively the same. They should be perceived as having 

the same shape. Are they?

Figure 3.8
Several convex quadrilaterals. They are projectively but not perceptually 

equivalent.
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This limitation of projective invariants has often been overlooked or 

considered unimportant. How could something so striking have been 

considered to be unimportant? Consider several shapes that are actually 

projectively different, like the three polygons in fi gure 3.9. Polygons like 

these never produce identical retinal images. Recall that projective invari-

ants are also invariants of a perspective projection to the retina because a 

perspective projection is a special case of a projective transformation (see 

appendix C, section C.7). It follows that applying projective invariants to 

retinal images, rather than to shapes themselves, as was done in fi gure 3.7, 

could make it possible for the visual system to discriminate these three 

pentagons. This possibility is why one could overlook the limitations of 

projective invariants. However, note that the human visual system does 

not work this way. It can discriminate not only shapes that are projectively 

different, like those in fi gure 3.9, but also some shapes that are projectively 

identical, like those in fi gure 3.8. Put simply, if projective invariants were 

used by the visual system, we would not be able to distinguish a pizza box 

from a shoe box, so, despite the elegance and precision inherent in using 

projective invariants, this approach is not nearly as good as the visual 

system we have. Other kinds of invariants are required. What might they 

be? The next two sections describe examples of new invariants that seem 

to be moving us in the right direction.12

3.3.3 An Explanation of Shape Constancy Requires New Invariants

These new invariants derive from an appreciation of the fact that perspective 

projection plays an important role in shape constancy. They were 
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Figure 3.9
Three polygons that are projectively different. Projective invariants can be used to 

recognize these polygons from their perspective images. Their values are (a) 2.83, 

1.65; (b) 0.83, 1.04; (c) 0.33, –1.00.
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formulated to explain Stavrianos’ (1945) results on shape constancy with 

2D shapes oriented arbitrarily in 3D space (see chapter 1). Prior to the for-

mulation of perspective invariants, Stavrianos’ results were mysterious. They 

only made sense when the role of perspective projection in shape con-

stancy was appreciated. The problem the visual system needs to solve when 

this question is asked is illustrated in fi gure 3.10. When viewed from a 

normal reading distance, with the line of sight orthogonal to (at a right 

angle with respect to) the plane of the fi gure, the retinal image of (b) is a 

perspective image of a slanted (a). The viewing distance and viewing direc-

(a)

(b)

(c)

Figure 3.10
When the observer views the polygon (b) from a distance fi ve times larger than the 

size of (b), with the line of sight orthogonal to the fi gure and with the fi xation point 

at the center, the retinal image of (b) is a valid image of a slanted polygon (a), and 

it looks like a slanted (a). The polygon (c) is a projective image of (a), and it does 

not look like a slanted (a) (from Pizlo & Salach-Golyska, 1995).
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tion are important now. They were not important earlier, because this is 

the fi rst time we are talking about perspective projection and its consequences 

on the retina (see appendix C, section C.8, for a detailed discussion of a 

geometrical model of image formation). If the viewing distance was much 

shorter than normal, or if the line of sight was not orthogonal to the plane 

of the fi gure, the retinal image of (b) would not be a perspective image of 

a slanted (a). Instead, it would be a projective image of (a). Under such 

viewing conditions, (b) may not look like a slanted (a). However, when the 

reader looks at (b) from a normal viewing distance, with the line of sight 

orthogonal to the plane of the fi gure, (b) does look like a slanted (a), which 

means that shape constancy has been achieved. Invariants are needed to 

account for these two different percepts. Once such invariants are in place, 

they will be able to account for the fact that the retinal image of (c), when 

(c) is viewed from a normal reading distance, is not a perspective image of 

a slanted (a), and it is not perceived as such. In fact, (c) is a projective 

image of a slanted (a). One does not expect shape constancy under such 

conditions so it is not surprising that it is not observed. Clearly, with per-

spective images, shape constancy can be achieved, implying that perspec-

tive invariants are involved. Recall that projective invariants cannot be 

effective here. When projective invariants are used, all three fi gures, (a), 

(b), and (c), are the same despite the way they look to us. These new invari-

ants, called “perspective invariants,” were introduced by Pizlo and Rosen-

feld (1992) and tested in psychophysical experiments by Pizlo (1994) and 

Pizlo and Salach-Golyska (1995).13 Invariants of a 2D perspectivity are 

explained in appendix C, section C.9.1.

The next section discusses shape constancy for solid objects. In this 

section another new type of invariant, as well as a new defi nition of shape, 

will be introduced.

3.3.4 Shape Constancy for Solid Objects—New Invariants and a New 

Defi nition of Shape

The fi rst clear statement that projective invariants cannot be applied to 

recognition of a 3D shape from a single 2D image was presented by Burns 

et al. (1990). This limitation is directly related to the fact that a transforma-

tion from a 3D scene to a 2D retina is a many-to-one transformation. We 

now know, however, from the work of Sugihara (1986) and others (described 

in the beginning of this chapter) that a single 2D image makes it possible 
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to discriminate among many 3D objects, as long as one is able to restrict 

the class of objects of interest. Consider the two polyhedral objects in 

fi gure 3.11. The reader surely agrees that (a) and (b) look different. And 

indeed, (a) and (b) are images of two different 3D objects. Sugihara’s 

method for polyhedra can be used to verify this statement. The fact that 

a single 2D image allows one to discriminate two 3D objects, as shown in 

fi gure 3.11, implies that 2D images contain some useful “invariant” proper-

ties. Observations like this led Rothwell et al. (1993) to formulate a new 

class of invariants called “model-based invariants” for polyhedral objects. 

Rothwell (1995) extended this work by formulating projective model-based 

invariants for rotationally symmetrical objects with smooth surfaces 

(“solids of revolution”). Details of these methods are presented in appendix 

C, section C.10. Here, only a brief treatment of model-based invariants for 

polyhedra will be provided.

Rothwell considered polyhedra where all vertices were trihedral, like 

those in fi gure 3.11. That is, each vertex was an intersection of three planar 

faces. By using homogeneous coordinates (the method fi rst used by Roberts, 

1965), Rothwell was able to describe the (i) relations among the faces of a 

given polyhedron, (ii) perspective projection of the polyhedron made with 

an uncalibrated camera, and (iii) contours in the image, using linear equa-

tions. He then eliminated the unknown parameters, obtaining new model-

based projective invariants. They are called “model-based” because they 

can be applied only to a restricted family of 3D shapes, in this case, poly-

(a) (b)

Figure 3.11
The objects in (a) and (b) are projectively different, and they can be discriminated 

by Rothwell’s (1995) model-based invariants (produced using 3DS Max/Autodesk).
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hedra. Much was made above of the fact that projective invariants are 

insensitive to projective transformations of an object. The same problem 

arises here with 3D projective invariants that we encountered with 2D 

projective invariants. 3D shapes that look different to us will be treated as 

the same when projective invariants are used.14

3.4 Poggio’s Elaboration of Marr’s Approach: The Role of Constraints in 

Visual Perception

It should be obvious to the reader by now that the main diffi culty in 

achieving veridical perception of 3D shapes stems from the fact that the 

retinal image is 2D. The visual system has to fi nd a way of either recon-

structing the missing depth information or solving the 3D problem without 

making use of information about depth. The fi rst approach was adopted 

by Marr (1982), who introduced and emphasized the importance of what 

he called a “2.5D representation” in which depth is represented, albeit not 

completely (see sections 3.1 and 3.2). In the second approach, depth was 

ignored by those who used “invariants” to recognize shapes. We have seen 

that recognition based on projective invariants fell far short of what the 

human visual system can actually do. Perspective invariants provide a 

much better explanation of human shape recognition, but they cannot 

explain the perception of unfamiliar 3D shapes. Poggio, Torre, and Koch 

(1985) built on Marr’s approach, which was designed to deal not only with 

familiar but also with unfamiliar 3D shapes (i) by emphasizing the impor-

tance of the 2.5D representation, which contains information about depth, 

and (ii) by assigning importance to the role of a priori constraints in pro-

ducing the 2.5D sketch.

Poggio et al. (1985) began by pointing out that some of the assumptions, 

such as the rigidity of an object or the smoothness of a surface, that Marr 

incorporated in his computational model are not merely tools or tricks 

invoked to make the reconstruction of depth easier. Instead, they are criti-

cal elements in a formalism called “regularization theory” (Tikhonov & 

Arsenin, 1977). Regularization theory provides the means for solving 

“inverse problems” in science and engineering. Problems like these begin 

with recognizing that they can be solved in two “directions”: one called 

“forward” or “direct” and the other called “inverse.” Solving a “forward” 

problem is accomplished by predicting data from a model. Solving an 
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“inverse” problem is accomplished by developing a model on the basis of 

data. For a simple example of how this can be applied, consider a physical 

law, for example, Newton’s second law of motion. The law says that when 

a force F acts on a mass m, it results in acceleration, a, of the object: a = F/m. 

Computation of a from this formula, based on values of F and m, represents 

solving a “forward” problem. Inferring the law itself from the values of a, 

m, and F represents solving an “inverse” problem. The distinction being 

made is analogous to the difference between deductive and inductive rea-

soning. Forward problems are usually easy to solve. Inverse problems are 

usually diffi cult. Specifi cally, they are “ill posed,” that is, (i) no solution 

exists, (ii) more than one solution exists, or (iii) the solution may change 

arbitrarily in the presence of small changes of the data. Furthermore, the 

solution may be unstable in the presence of noise in the data. In this last 

case, a problem is called “ill conditioned.” According to regularization 

theory, a unique and stable solution of an inverse problem can be produced 

by imposing “a priori constraints” on the family of possible solutions.

Note that in practice, scientists and engineers are rarely actually asked 

to solve “forward problems.” Forward problems are always “solved” by the 

physical systems themselves, not by the scientists or engineers who collect 

the data about the systems’ operation. These scientists and engineers are 

usually asked to solve “inverse” problems associated with the operation of 

these physical systems. In other words, they infer the models from the data 

they collected. Note, however, that there is always more than one model 

that can account for the collected data.15 In other words, “inverse prob-

lems” are usually ill posed and ill conditioned.

Poggio et al. (1985) pointed out that this approach also applies to visual 

perception. A typical “forward” problem could be producing a 2D retinal 

image (data) of a 3D object (model). This is accomplished simply by using 

the established rules of geometrical optics. The “inverse” of this problem 

requires inferring a veridical percept of a 3D object from its 2D retinal 

image. This, like all inverse problems, is ill posed. For example, the image 

in fi gure 3.5a could be produced by more than one 3D object, but we 

usually perceive only one, a cube. This percept can be “predicted” by 

imposing “a priori constraints” on the family of possible interpretations—

for example, by assuming that the visual system chooses a 3D shape whose 

contours are planar, and which is “simple” in the sense of having as many 

symmetries as possible.
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Henceforth, a priori constraints will have a special specifi c meaning. 

They represent what the visual system “knows” or “assumes” about the 3D 

objects “out there.” Note that these constraints are assumed to be built 

into the nature of the perceiving organism, which has been dealing suc-

cessfully with objects “out there” throughout its evolutionary history. 

Objects “out there” are not arbitrary collections of points and features in 

3D space. Instead, they possess the following permanent characteristics. 

Objects are always spatially cohesive: An object comes in one piece, rather 

than in more than one. They are opaque: The back part of an object is not 

seen. Opaqueness presents a potential problem because not all features of 

the object are seen. Opaqueness, however, simplifi es fi gure–ground orga-

nization (see fi gure 3.12). Next, objects “out there” are always 3D; they 

have volume. This means that visual data, such as binocular disparity, are 

not needed to know that an object has some depth. Many objects, includ-

ing humans and animals, are symmetrical. Objects also tend to be piece-

wise rigid. Their parts are rigid but often capable of moving relative to each 

other.

The importance of a priori constraints such as “good fi gure” and “sim-

plicity” in visual perception was emphasized by the Gestalt psychologists 

(see chapter 1). The Gestalt psychologists made much of the fact that a 

circle was the simplest of all possible 2D fi gures because its contour enclosed 

the largest possible surface area.16 It was also aesthetically pleasing because 

a circle is the most symmetrical of all possible 2D shapes. Note that sim-

plicity of a circle can be captured by a single measure called “compactness,” 

which is the ratio of the surface area A to the square of its perimeter P. 

Figure 3.12
A transparent polyhedron is more diffi cult to see than an opaque one.
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This ratio is maximal for a circle. For the 3D case involving a sphere, Gestalt 

psychologists even offered a physical model, a soap bubble. Here, a sphere 

is the simplest 3D shape because for a given surface area S, its volume V 

is maximal (Koffka, 1935, p. 107). The soap bubble “determines” this shape 

automatically by means of surface tension. However, very few of these 

Gestalt concepts can be described so simply. In particular, neither Gestalt 

psychologists themselves nor their successors during the Cognitive Revolu-

tion succeeded in showing how the simplicity principle can be applied to 

objects other than cubes or spheres. Regularization theory can provide a 

systematic method for doing it.

The application of regularization theory is illustrated on a simple example 

shown in fi gure 3.13. Figure 3.13a shows a circle. We see a continuous line 

with a perfectly symmetrical (simple) shape despite the fact that there are 

a relatively small number of visual receptors in a given area and they are 

not arranged regularly. Figure 3.13b and 3.13c illustrate how the visual 

data would actually look when an observer is presented with a circle. 

Clearly, the percept is much more like the distal stimulus, a circle, than its 

retinal image (a set of discrete points). How is this accomplished? Assume 

fi rst that the visual system “knows” that fi gure 3.13c was produced by the 

simplest shape, a circle. In such a case, visual reconstruction of the circle 

calls for nothing more than a regression analysis. Specifi cally, the task 

would be to fi nd the diameter and the coordinates of the center of a circle 

that provides the best least-squares fi t to the retinal data points. However, 

if the visual system does not “know” that the retinal image was produced 

by a circle, the analysis must be more sophisticated than a regression. There 

(a) (b) (c)

Figure 3.13
Distal stimulus—a circle (a). Due to the discrete nature of retinal sampling, the visual 

system receives the visual data in a form like that in (b) or even (c).
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is good reason to assume that the visual system “regularizes” this problem 

by doing two things: (i) looking for a “closed” curve that is “smooth” 

everywhere and (ii) fi tting the data points well (think about the Gestalt 

perceptual organizing principles called “closure” and “good continuation” 

here). Obviously, the two requirements, namely, fi tting data and, at the 

same time, producing a simple percept, may confl ict with each other. This 

confl ict must be resolved by deciding the relative importance that should 

be given to simplicity and fi tting data. Regularization theory provides a 

method for resolving this confl ict. In regularization theory, this is done by 

using what is called a “cost function,” which is the weighted combination 

of the two requirements (see appendix C, section C.12, for mathematical 

details and appendix C, section C.13, for probabilistic formulation of regu-

larization). Here, the veridical percept, that is, perceiving a continuous, 

closed circular curve, corresponds to fi nding the unique minimum of the 

cost function.

Regularization theory works even better with 3D shapes. The role of the 

simplicity principle in the perception of 3D shapes did not receive much 

attention from the original Gestalt psychologists but was studied system-

atically by those who revived the Gestalt approach during the Cognitive 

Revolution between 1950 and 1980. These cognitive psychologists showed 

that simplicity played a role in determining (i) whether a line drawing is 

perceived as a 2D or 3D shape (Hochberg & McAlister, 1953), (ii) the veridi-

cality of the perception of the 3D orientations of the edges of a box 

(Attneave & Frost, 1969), and (iii) the veridicality of the perception of 

simple 3D shapes (Perkins, 1972, 1976). They were not, however, able to 

provide a general defi nition of what they meant by “simplicity” or to 

include this concept in some kind of a computational model. Poggio 

et al.’s (1985) approach makes it possible, but they confi ned their work to 

developing Marr’s 2.5D model (appendix C, section C.14, gives three exam-

ples). They did not do any work on shape itself. The application of the 

inverse problems framework to the study of shape will be presented in the 

last section of chapter 4 and in chapter 5.

3.5 The Role of Figure–Ground Organization

The same year Poggio et al. (1985) published their paper on the application 

of regularization theory in vision there was another development that tried 
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to remedy problems inherent in Marr’s paradigm. This time, rather than 

trying to modify Marr’s use of a 2.5D sketch, the emphasis was put on the 

role of fi gure–ground organization, the fundamental aspect of human 

vision that was left out of Marr’s theory. This new development started 

with Lowe (1985), who used three rules of perceptual organization in 3D 

shape recognition. He tried to solve the 3D shape recognition problem, as 

defi ned by Roberts (1965), but with two modifi cations. First, Lowe devel-

oped an algorithm that was able to recognize smooth objects, not only 

polyhedra. Second, Lowe used a perspective, rather than projective trans-

formation. Lowe’s algorithm started with fi nding and grouping edges by 

using proximity, collinearity, and parallelism. After contours representing 

a single object were grouped, they were used to perform shape matching. 

Lowe’s algorithm only worked for a small set of predefi ned objects. Its 

scope was quite limited, but the book in which he described his research 

led to a series of papers on machine implementation of Gestalt rules of 

perceptual organization. Some of them concentrated on the grouping 

principles themselves (Guy & Medioni, 1996; Alter & Basri, 1998). Others 

tried to relate grouping to subsequent shape reconstruction and recogni-

tion (Malik & Maydan, 1989; Kim & Nevatia, 1999). This interest led to a 

series of workshops on perceptual organization in computer vision (e.g., 

Boyer & Sarkar, 2000) as well as special issues of computer vision journals 

(e.g., Boyer & Sarkar, 1999). Very little progress was made, however, because 

fi gure–ground organization is a diffi cult computational problem. Solving 

it is equivalent to fi nding a global minimum of a cost function. Global 

optimization is computationally intractable. It is known, however, that the 

human visual system establishes fi gure–ground organization reliably, 

quickly, and accurately. This achievement encouraged both machine and 

human vision scientists to try explain how this could be done. The fact 

that the human visual system can do it so well suggested that this global 

optimization task can be solved (approximately) without performing global 

search. The class of algorithms that can do this is called “pyramid algo-

rithms.” Despite their potential, to date, pyramid algorithms have been 

applied primarily to perceptual grouping problems not directly related to 

3D shape reconstruction (Jolion & Rosenfeld, 1994; Jolion & Kropatsch, 

1998).

This effort within the machine vision community was of special impor-

tance because it encouraged developing computational models of fi gure–
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ground organization. It also revived interest in fi gure–ground organization 

within the human vision community. These developments contributed 

importantly to developing a new paradigm for studying reconstruction of 

3D shape. This work made it clear that a priori constraints are critical in 

achieving fi gure–ground organization. The realization that a priori con-

straints were needed to handle fi gure–ground organization called attention 

to the fact that they will surely also be needed to reconstruct the 3D shape 

of an object from its 2D image on the retina.

To summarize, the machine vision community did not solve the “big 

problem” of shape perception. Most members of this community, follow-

ing Marr’s (1982) lead, assumed that solving the problem inherent in the 

2.5D sketch would, in itself, take care of shape. One way of thinking of 

this is to realize that these workers were committed to a “taking slant into 

account” explanation of this unique perceptual property. Despite this 

unfortunate commitment, the machine vision community did accomplish 

a number of things that prepared the way for progress. First, the machine 

vision community provided both a mathematical and a computational 

treatment of the geometry involved in image formation in both calibrated 

and uncalibrated cameras. Specifi cally, they formulated, and proved, the 

necessary and suffi cient conditions for the uniqueness of the image-

understanding problem. Second, the machine vision community intro-

duced the concepts of, and provided formalisms for, (i) new types of 

invariants (perspective and model-based) and (ii) solution of inverse prob-

lems. Finally, this community took an active role in reviving the Gestalt 

ideas related to fi gure–ground organization. This community, however, did 

not take these tools as far as it could have, probably because it did not 

appreciate the uniqueness of shape in visual perception. They, like all of 

their predecessors, dealt with shape as a derivative (or secondary) rather 

than as a primary perceptual feature.





4 Formalisms Enter into the Study of Shape Perception

Research on human shape perception during the last twenty-fi ve years was 

“shaped” to a large degree by concepts and formalisms provided by the 

machine vision community. Psychophysical research during this period 

was dominated by Marr’s paradigm. The neo-Gestalt approach to shape, 

adopted after the Cognitive Revolution, was largely abandoned during this 

period. Marr’s paradigm dominated psychophysical research because it was 

timely. It coincided with the invention and perfection of computer graph-

ics software and hardware, including virtual reality systems. It encouraged 

researchers to study the role of depth cues (texture, shading, motion, and 

binocular disparity) in shape perception because individual depth cues 

could be easily manipulated. Furthermore, these computer-generated 

stimuli were more realistic, a development that satisfi ed the expectations 

of those who were trained in either the Gibsonian or the Brunswikian tra-

dition (Gibson, 1950, 1966; Brunswik, 1956). Recall that Gibson and Marr, 

two of the most infl uential people in vision research between 1950 and 

1980, despite many differences, agreed on (i) the importance of the surfaces 

of objects and (ii) the irrelevance of fi gure–ground organization in shape 

perception. This consensus left students of human shape perception with 

little alternative but to study surfaces. Gibson died in 1979 and Marr in 

1980, but each of them left many very active followers who tried to elabo-

rate the theories of their mentors. Others, who were not members of these 

cliques, felt that they had to test various elements of these two approaches. 

This also contributed to their popularity. There were only a handful of 

researchers who did not study the perception of surfaces during this period. 

These researchers (e.g., Shepard, Biederman, Farah) did recognize the 

unique status of shape and began to explore the implications of this impor-

tant fact.
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This chapter describes representative work of both groups following 

Marr’s death. It describes work emerging directly from Marr’s paradigm and 

also work by those who tried to overcome some of the problems with 

Marr’s paradigm that had become apparent by that time.

4.1 Marr’s Infl uence

Marr’s paradigm, particularly his concept of the 2.5D sketch, raised a 

number of questions that could be tested in psychophysical research. The 

two most important experimental questions were the following: (i) Can 

information about the orientation of surfaces be used to perceive 3D 

shapes, and (ii) can information about depth be used to perceive 3D 

shapes? The main conclusion that can be drawn from all of these experi-

ments is that the perceptual representation available in the 2.5D sketch is 

substantially less reliable than the perceptual representation of the 3D 

shape itself. This conclusion should encourage the reader to seriously con-

sider accepting the author’s claim that Marr’s 2.5D sketch cannot be used 

to explain shape perception (a claim that will be supported in detail 

later).

4.1.1 Can Information about the Orientation of Surfaces Be Used to 

Perceive 3D Shapes?

Koenderink and his colleagues performed a systematic series of studies of 

the perception of 3D surfaces. Representative papers include Koenderink, 

van Doorn, and Kappers (1992, 1994, 1995, 1996); Koenderink and van 

Doorn (1995); Koenderink et al. (1997); and Todd et al. (1996).

This series of experiments examined how well humans perceive the 3D 

orientations of surfaces. These orientations, when expressed in the coordi-

nate system of the observer, constitute Marr’s 2.5D sketch. The surfaces in 

these experiments were viewed either monocularly or binocularly, in the 

presence or absence of other depth cues, such as shading and texture. The 

subject adjusted the aspect ratio and the 2D orientation of a probe so that 

it was perceived as “lying” on the 3D surface. This probe was used to 

measure the perceived slant and tilt of the surface at a particular point. 

The experimenter used these judgments of local orientations to reconstruct 

the surface after collecting surface orientation judgments at many points 
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on the surface. The reconstructed surface was assumed to represent the 

perceived 3D shape of this surface.

One of the main results reported by Koenderink and his colleagues was 

that there was considerable variability across their subjects, as well as across 

their viewing conditions. For each individual subject, tilt was judged quite 

reliably, but slant was not (Koenderink, van Doorn, & Kappers, 1992). The 

fact that slant judgments are not reliable was not really news. Stavrianos 

(1945) had already demonstrated this fact using planar (2D) fi gures, and 

her results had been replicated in many other studies (e.g., Perrone, 1980; 

Stevens, 1983). The fact that tilt judgments are fairly reliable was news (see 

Stevens, 1983, who observed this fi rst). Both of these results provide a test 

of Marr’s theory of shape. According to Marr’s theory, perception of shape 

cannot be more reliable than the perception of its 3D orientation because 

in Marr’s theory, shape is perceived “by taking slant into account.” We 

have known that “taking into account” explanations of shape do not work. 

This had been shown by Stavrianos (1945) (see chapter 1). Stavrianos 

showed that reducing the availability of depth cues harmed judgments 

about slant, but not about the shape of a planar fi gure. Stavrianos’ result 

was extended by Pizlo (1994), who showed that the slanted 2D shape was 

perceived reliably when slant was varied unpredictably from trial to trial, 

but not when tilt was varied unpredictably from trial to trial. If Marr’s 

theory is accepted, then, in light of Koenderink et al.’s results, unpredict-

able tilt should harm perceived shape less than unpredictable slant because 

tilt is easier to estimate in the visual stimulus. The fact that unpredictable 

tilt harms perceived shape more than unpredictable slant strongly suggests 

that the perception of surfaces uses different mechanisms than are used 

for the perception of shapes. This conclusion runs counter to Marr’s 

theory.

Recently, Li and Pizlo (2006) performed a much-needed direct test of 

Marr’s theory of shape. An observer was shown a line drawing of a box 

(parallelepiped) and was asked to make judgments of the 3D orientations 

of three visible surfaces, as well as of their shapes. Using Marr’s terminology, 

judgments about the orientations of surfaces involve a viewer-centered 

coordinate system and judgments about the shapes of faces involve an 

object-centered coordinate system. Note that an image of a parallelepi-

ped almost always leads to the percept of a parallelepiped because a 
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symmetry constraint operates with this kind of shape. Li and Pizlo (2006) 

used Koenderink et al.’s (1992) elliptical probe to measure the perception of 

the 3D orientations of the faces of the box. The shape judgments were 

obtained by asking the observer to adjust the aspect ratio and the angle of 

each of the three visible faces. For example, when a line drawing was per-

ceived as a cube, the observer adjusted the shape of each of the three faces 

to be a square. Each of these two types of judgments can be used to recon-

struct a 3D shape. The main question was whether these two types of judg-

ments, viewer-centered and object-centered, led to the same 3D reconstructed 

object. They did not. According to Marr, they should. This result implies 

that the perceived 3D shape is not derived from the perceived orientations 

of surfaces. Later, it will be shown that the perceived 3D shape is derived 

from the application of shape constraints to the 2D shape on the retina.

The interest in surfaces inspired by Marr (1982) continues to fi gure 

prominently in psychophysical experiments. Todd and Norman (2003) 

extended the work of Koenderink and his colleagues from judgments about 

the 3D orientation of a surface relative to the observer to judgments about 

the 3D orientation of one surface relative to another. In effect, they tested 

how well a human observer can judge 3D spatial properties within an 

object-centered coordinate system, the coordinate system used to represent 

3D shape in Marr’s theory. In their fi rst experiment, the observers were 

presented with two textured planes forming a dihedral angle (a corner), 

and the task was to adjust this angle so that it was perceived as a right 

(90 deg) angle. Binocular disparity was the only cue that was available to 

see the angle. Note that the two planes were presented in isolation. There 

was no 3D object. In other words, the authors tested the “perception of 

shape” by using a single feature, an angle, in the absence of any shape, itself. 

According to Marr’s theory, but only according to Marr’s theory, this is an 

appropriate thing to do. The observers found this task to be very unnatural 

and diffi cult. Variability across the observers was large, and their judgments 

showed large systematic errors. These results should have been expected 

because it was known that the percept of the 3D orientation of a single 

surface is quite unreliable. It follows that the percept of a more complex 

feature, namely, the 3D orientation of one surface relative to another, 

should be even more unreliable. The situation is different when a shape is 

present when the observer judges an angle between surfaces. Perkins (1972) 

showed this using a very similar task. Perkins’ observers were shown line 
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drawings of boxes, similar to those used by Li and Pizlo (2006). The 

observer’s task was to judge whether an angle formed by three planes was 

a right angle (see chapter 2). Performance was very accurate and reliable.

4.1.2 Can Information about Depth Be Used to Perceive 3D Shapes?

A related set of studies, rooted in Marr’s paradigm, addressed the issue of 

the role of binocular disparity in 3D shape perception. Binocular disparity 

is one of the most, if not the most effective depth cue. Julesz (1960) had 

demonstrated that binocular disparity, in the absence of any contours, was 

suffi cient to allow the observer to judge 3D spatial relations among points 

and features. This demonstration was potentially important because it sug-

gested that 3D geometrical space might be mapped directly to 3D perceptual 

space. If it could be, there might not be any need to deal with 2D shapes 

in the perspective images on the retinas. If 2D retinal shapes are not neces-

sary, both depth and shape could be perceived veridically from binocular 

disparity alone.

4.1.2.1 Can Binocular Disparity, by Itself, Yield Veridical Shape 

Perception? Mathematically, binocular disparity is suffi cient to compute 

positions of points and features in 3D space (Longuet-Higgins, 1981). 

Practically, it is not because in the case of real images of real scenes, even 

tiny errors in measuring the retinal positions of points and features will 

lead to large errors in the reconstruction of depth. McKee, Levi, and Bowne 

(1990) and Norman et al. (1996) asked subjects to make judgments about 

3D distances when binocular disparity was the main, or even the only, cue 

carrying the 3D information. They found that observers’ judgments about 

distances in 3D space are very inaccurate.

How about binocular judgments of shape? Johnston (1991) used random-

dot stereograms ostensibly to test the role of binocular disparity in shape 

perception. The observer was shown a cylinder with the line of sight paral-

lel to its cross section. The task was to judge whether the cross section was 

a circle or an ellipse. All aspects of the stimulus were held constant except 

depth. Johnston found that the shape was not perceived veridically. At 

small viewing distances, the elliptical cylinder looked too deep; at large 

viewing distances, it did not look deep enough. The reader should keep in 

mind that Johnston’s experiment deals with depth perception, not with 

shape perception, because she used ellipses, the family of shapes that
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 precludes studying shape constancy because it only has one parameter 

(see discussion of Thouless’ experiments in chapter 1).

Johnston’s (1991) experiment was replicated a number of times. Some-

times elliptical cylinders were used, but other objects, such as cones, sine 

wave surfaces, and pyramids, were used as well (e.g., Tittle et al., 1995; 

Durgin et al., 1995; Glennerster, Rogers, & Bradshaw, 1996; Bradshaw, 

Parton, & Glennerster, 2000; Todd & Norman, 2003). What was common 

in all these studies was that depth was the only property used to discrimi-

nate among the stimuli. As a result, all of these experiments are relevant 

only to depth perception. They are not relevant to shape perception. How 

could experiments like these be changed so as to make it possible to use 

them to fi nd out something about shape? There are two general guidelines: 

(i) Use structured objects, whose shapes are characterized by more than 

one or two parameters, and (ii) use more than one viewing orientation of 

the objects relative to the observer. The second guideline is especially 

important because it is the only way to study shape constancy. Remember 

that shape is important primarily because of constancy. It gives objects 

their identity and potential usefulness. If you want to study shape, rather 

than some other visual property, you can fi nd out whether you are actually 

studying shape by including a condition designed to estimate the amount 

of shape constancy achieved with the particular stimuli you chose to 

use. All you need to do is to remember to present your stimuli from 

more than a single viewpoint. Put simply, the best way (certainly the 

sensible way) to study shape is to study shape constancy and to do this 

with families of shapes with suffi cient complexity to allow constancy to 

manifest itself. Prototypical examples of experiments that followed these 

guidelines are Stavrianos (1945), Shepard and Metzler (1971), Biederman 

and Gerhardstein (1993), and Pizlo and Stevenson (1999). Figure 4.1 shows 

the kinds of stimuli that should be used in such experiments. Two sym-

metrical objects are shown. The only difference between them is that one 

is thicker than the other. It is easy to see that these two shapes are different 

even though binocular disparity information is entirely absent. Further-

more, each of these simple, meaningless objects is easy to recognize from 

any viewing direction. Depth information is not needed here because 

depth is reconstructed from regularities of the objects themselves such as 

symmetry (Kontsevich, 2002; Vetter & Poggio, 2002; Pizlo, Li, & Steinman, 

2006).
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4.1.2.2 Can Binocular Disparity Contribute to Shape Perception? We 

have seen that binocular disparity in itself cannot lead to veridical shape 

perception. Can it contribute when other sources of shape information are 

available?

Several reports have shown that binocular perception of shape is strongly 

affected by what are called “monocular perspective cues” (Stevens & 

Brookes, 1988; Stevens, Lees, & Brookes, 1991; van Ee, van Dam, & 

Erkelens, 2002; Papathomas, 2002). In textbook examples, a monocular per-

spective cue is usually illustrated by the fact that two or more parallel lines 

“out there” produce converging lines in a perspective image. More gener-

ally, one speaks of a monocular perspective cue when symmetrical shapes 

“out there” produce images with distorted symmetry. Figure 4.2 shows an 

example. The distorted symmetry in the 2D perspective image illustrated 

in this fi gure provides useful information about the 3D orientation of the 

object “out there” as well as useful information about the shape of the 3D 

object itself. Once perspective cues are available, what is the relative poten-

tial contribution of binocular disparity?

This was tested by Pizlo, Li, and Francis (2005), who put perspective cues 

in confl ict with binocular disparity. Their main experiment was performed 

with the stereoscopic images shown in fi gure 4.3. Both pairs, when fused, 

lead to the perception of a cube. The stimuli in (b) are identical to those 

in (a) except that the three edges forming the Y junction have been 

removed. In the experiment, the images viewed by the left eye were 

Figure 4.1
These two images could not be produced by the same 3D shape, and they are per-

ceived as different shapes (produced using 3DS Max/Autodesk).
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Figure 4.2
Illustration of a monocular perspective cue. This is an image of a mirror-symmetrical 

object. The image itself is not symmetrical. Its symmetry is distorted.

(a)

(b)

Figure 4.3
Stimuli used by Pizlo, Li, and Francis (2005).

stationary, but those viewed by the right eye were not. The cube viewed 

by the right eye oscillated around the vertical axis (see http://viper.psych

.purdue.edu/pizlo_cubes/). When only the right eye was open, a rigid oscil-

lating cube was perceived for both (a) and (b). When both eyes were open, 

the observer fused the moving and the stationary cubes. According to 

conventional binocular theory (Julesz, 1971; Regan, 2000), the observer 

should see a nonrigid cube whose corner at the Y junction moves toward 

and away from the eye (left) with the stationary cube. This percept was 

observed in (b), but not in (a). In (a), the observer perceived a rigid cube 

oscillating from left to right. These results show two important things: (i) 

The visual system fi rst establishes fi gure–ground organization, that is, it 
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establishes which contours and regions in the image represent a single 3D 

object; and (ii) once fi gure–ground organization has been established, 

binocular disparity comes into play, but only to determine the spatial rela-

tions across different objects—here, between the dot and the outline in 

(b)—not among parts within a single object—here, among the corners of 

the cube in (a).1 The percept in (a) is determined exclusively by perspective 

cues; binocular disparity is ignored entirely.

This left the question of whether information from multiple cues, such 

as shading, texture, motion, and binocular disparity, is used to perceive a 

3D shape. Prior studies on the perception of 3D surfaces showed that using 

information from multiple depth cues is benefi cial (e.g., Schrater, & Kersten, 

2000; Bülthoff, 1991; Hillis et al., 2004; Landy et al., 1995; Knill & 

Saunders, 2003; Backus et al., 1999; Doorschot, Kappers, & Koenderink, 

2001; Bülthoff & Mallot, 1988). Can information from multiple cues be 

used to perceive 3D shapes? Li and Pizlo (2005) examined this directly in 

a shape constancy experiment with complex polyhedral shapes (see fi gure 

4.4). They found that 3D shape is perceived reliably even when only the 

edges of polyhedra are shown; adding shading and texture contributes 

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4
Stimuli in Li and Pizlo’s (2005) experiment. The objects in that experiment were 

rendered with various combinations of the following cues: shading, texture, edges, 

and binocular disparity. The binocular disparity cue is not illustrated here.
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little, if anything. Adding binocular disparity does improve performance. 

However, binocular performance is not very good, unless monocular per-

formance is very good, as well. This means that if simplicity constraints, 

such as symmetry, cannot produce a good 3D shape percept from a single 

2D image, binocular disparity contributes nothing! These results strongly 

suggest that the perceptual mechanisms involved in the binocular percep-

tion of 3D shapes are very similar, if not identical, to those involved in 

the perception of 3D shapes from a single 2D image. This is illustrated in 

fi gure 4.5, where two stereoscopic pairs of images are shown. The pair on 

the top has zero binocular disparity and no shading or texture, and the 

pair on the bottom has all three depth cues. When fused, the two objects 

are perceived as having the same 3D shape, although the depth of the one 

in the bottom is greater (more vivid). Clearly, the perception of depth 

seems to play a secondary role, at best, in the perception of shape. This is 

as it should be. In a world in which questions such as “What is that over 

there?” and “Where is it?” are commonplace, the perception of shape, 

depth, and direction would be best served by having three relatively inde-

pendent mechanisms. All of the available evidence to date points to the 

fact that depth, direction, and shape function independently.

(a)

(b)

Figure 4.5
Stereoscopic stimuli (crossed fusion): (a) edges and no disparity; (b) edges, shading, 

texture, and binocular disparity (viewing distance twelve times larger than the dis-

tance between the stimuli within a pair).
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4.2 If Depth Does Not Contribute to the 3D Shape Percept, What Does? 

(Poggio’s Infl uence)

How is the three-dimensionality of a shape percept produced from a 2D 

retinal image? How is the 3D shape percept produced, if not by taking 

depth into account? There must be another mechanism. Poggio, Torre, and 

Koch (1985) prepared the way for answering this question when they 

introduced the inverse problem and regularization theory into vision 

science (see chapter 3). It is assumed in this framework that the visual 

system uses a priori information about the objects “out there” to constrain 

the family of possible 3D percepts. This approach provides a way to produce 

a unique as well as a veridical 3D percept. A substantial number of papers 

providing mathematical and computational tools to describe the joint 

effect of the 2D retinal image and a priori constraints have been published 

since Poggio et al.’s infl uential paper (e.g., Clark & Yuille, 1990; Knill & 

Richards, 1996; Kersten, Mamassian, & Yuille, 2004). As indicated in 

chapter 3, Poggio, and those he infl uenced, were concerned with the per-

ception of the third dimension in the 2.5D sketch. As a result, the a priori 

constraints they used were designed to produce 3D surfaces, not 3D shapes. 

Furthermore, their concern was directed primarily toward formulating 

computational models rather than toward verifying their models 

with psychophysical tests. There were only a handful of studies that actu-

ally tested these models. The three most recent studies, namely, Knill 

(1992), Saunders and Knill (2001), and Mamassian and Landy (1998), will 

be described next.

Knill (1992) tested the role of a geodesic constraint. This constraint says 

that the curvature of a surface’s contours represents the curvature of the 

surface itself (Hilbert & Cohn-Vossen, 1952). This constraint reduces the 

family of possible 3D surfaces and, under some additional assumptions, 

allows a unique reconstruction of the surface (Stevens, 1981, 1986). Knill 

presented the observer with a 3D corrugated surface produced by shading 

and a superimposed patch. The contours of the patch were either straight-

line segments, which are geodesics on a planar surface, or wavy lines that 

were geodesics of the corrugated surface. If a geodesic constraint is involved 

in the perception of 3D surfaces, the observer should be able to classify 

the patches into two categories: Either a patch is a planar transparent patch 

“fl oating” in front of the surface or it is a part of the surface itself. The 
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observers were able to classify the patches in this manner. In his second 

experiment, Knill showed that observers were able to perceive 3D surfaces 

even when the surface contours were not exactly geodesic lines. In other 

words, the visual system is robust in the sense that it can reconstruct the 

surface even when the assumption about the geodesic lines is not satisfi ed 

exactly. In a more recent paper, Saunders and Knill (2001) tested the role 

of a symmetry constraint in binocular perception of the 3D orientation of 

planar (2D) shapes and showed that this constraint systematically affects 

monocular and binocular percepts. When binocular disparity confl icted 

with the symmetry constraint, these two were combined to produce the 

3D percept.

Finally, consider Mamassian and Landy’s (1998) report of a study in 

which the observers were presented with two curves forming an X and 

were asked to classify the contours as being either elliptical (egg-shaped) 

or hyperbolic (saddle-shaped). The subject’s responses were then explained 

by a Bayesian model, which used three constraints: (i) The surfaces are 

convex, (ii) they are viewed from above, and (iii) the surface contours are 

lines of curvature that are geodesic lines.

To summarize, during the last 20 years, a growing body of evidence sug-

gested that constraints could play a role in perception of 3D surfaces. This 

work, however, did not go beyond Marr’s paradigm. It did not deal with 

the perception of 3D shapes. It only dealt with surfaces. This work, however, 

did set the stage for studying the role of constraints in the perception of 

3D shapes.

4.3 The Uniqueness of Shape Is Finally Recognized

4.3.1 Mental Rotation of 3D Shapes

Shepard and Metzler’s (1971) research initiated the modern interest in the 

3D perceptual representation of objects (see Shepard & Cooper, 1982, for 

a review of research that became suffi ciently popular for it to be called a 

cottage industry). Shepard and Metzler made their contribution to shape 

perception indirectly. They were primarily interested in higher level cogni-

tive processes, rather than the perception of 3D objects from 2D images. 

They worked in parallel with Marr and were not infl uenced by his com-

mitment to the 2.5D sketch. They were well aware of the contributions of 

the neo-Gestalt psychologists who were studying perception of 3D objects 
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from 2D images (Hochberg & McAlister, 1953; Attneave & Frost, 1969; 

Perkins, 1972), so it is not surprising that they used perspective 2D draw-

ings of structured 3D objects to test their subjects’ ability to rotate objects 

mentally. They were under no pressure to worry about the basis on which 

their 2D images could produce compelling 3D percepts. They also saw no 

reason for using depth cues, as individuals infl uenced by Marr felt com-

pelled to include in their experiments. The effectiveness of their 2D stimuli 

in producing vivid 3D shape percepts, and the notoriety of their result, 

called attention to the possibility of using stimuli like theirs for research 

on the perception of shape itself. An example of their stimuli is shown in 

fi gure 4.6. Each object consisted of three or four rectangular bars forming 

two or three Ls. The subject was shown two such objects, each having a 

different 3D orientation, and was asked to judge whether the objects were 

identical, except for their orientations. When the objects were not identi-

cal, one of the Ls in one object was a mirror image of the corresponding 

L in the other object. In this case, one of the objects could not be trans-

formed into the other by rigid motion. Shepard and Metzler wanted to 

fi nd out whether the subjects rotated the objects mentally when they did 

this task. They assumed that mental rotation would take time, and the 

amount of time it took would be proportional to the angle required to 

rotate one object to match the orientation of the other. The subjects’ reac-

tion times varied systematically, allowing the authors to conclude that 

their subjects were actually rotating the perceived 3D representations of 

objects mentally. This experiment, which was designed to study higher 

Figure 4.6
An example of the objects used by Shepard and Metzler (1971) (From Shepard & 

Cooper, 1982, MIT Press).
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mental processes, is also important for the study of shape perception. The 

fact that a 3D shape can be rotated mentally, which simulates the condi-

tions where an observer walks around an object, or the object is rotated in 

front of the observer, is analogous to the conditions present in shape con-

stancy experiments. Shepard and Metzler’s (1971) 2D stimuli produced a 

“veridical 3D percept” of an object “out there” that had no features other 

than its shape to reveal its identity! The fact that a 2D image could produce 

a 3D percept of shape and that this percept is not affected by the viewing 

orientation paved the way for Biederman’s (1985) recognition-by-

components theory of shape perception.

4.3.2 Shape Recognition by Components

4.3.2.1 Biederman’s (1985) Theory Biederman’s theory quickly became 

the center of attention in both the human and machine vision communi-

ties. Biederman, unlike most others interested in shape, was unusual 

because he was familiar with all of the important milestones in the history 

of shape perception in both communities. He reviewed all of the important 

work in his seminal paper and made a serious attempt to synthesize all of 

the existing knowledge about shape available in 1985. Biederman attempted 

to (i) explain the perception of arbitrary 3D shapes; (ii) account for errors 

and reaction times observed during both recognition and reconstruction 

experiments on 3D shape; (iii) provide suffi cient technical details to make 

it possible to implement his theory with computer simulations, as well as 

to test it in psychophysical experiments with human subjects; and (iv) 

relate the perception of 3D shapes to other fundamental aspects of vision, 

such as fi gure–ground organization and the Gestalt simplicity principle.

Biederman called his theory of shape reconstruction “recognition-by-

components” (RBC), an acronym that captured the essence of his underly-

ing idea. According to Biederman, an arbitrary 3D shape can be represented 

as an arrangement of several simple parts he called “geons.” Geons resem-

ble boxes, cones, spheres, and cylinders. In RBC theory, objects differ with 

respect to the particular geons that make them up and how they are 

arranged. Biederman himself considered his theory as analogous to spoken 

language, primarily because both are composed of a limited number of 

simple elements, phonemes for language and geons for shape. The analogy 

between shape and language perception had been around for more than a 
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decade (Hoffman & Richards, 1984; Huffman, 1971; Minsky, 1975), but 

Biederman was the fi rst to formulate, and test, a theory of human shape 

perception based on it.

Biederman, unlike Marr and Gibson, assumed that fi gure–ground orga-

nization is critical in 3D shape perception. Specifi cally, he postulated that 

the retinal (or camera) image has suffi cient information to allow identifi ca-

tion (recognition) of geons. For example, a retinal image of a cube is quite 

different from a retinal image of a circular cone. One should be able to 

recognize 3D parts of an arbitrary object by identifying straight and curved 

lines, groups of parallel lines and curves, and patterns of mirror symmetry, 

as well as junctions of contours. It follows that 3D shape can be recognized 

on the basis of the information contained in the 2D shape of its retinal 

image.

Biederman emphasized the fact that the recognition of 3D shape depends 

on the recognition of the geons making it up and their 3D spatial arrange-

ment. With this emphasis, Biederman effectively adopted an “atomistic” 

position by claiming that the whole shape is produced by adding up its 

parts. Many 3D objects have parts, so it is not surprising that many objects 

can be recognized by recognizing their parts. This does not mean, however, 

that the perceived 3D shape of an object is the sum of the perceived shapes 

of its parts. The 3D shapes of the parts, as well as the 3D shape of the object, 

could be just as easily recognized from their 2D shapes by applying simplic-

ity constraints. For example, if a 3D object, which is composed of several 

parts, is symmetrical, its 2D retinal image will be approximately symmetri-

cal. By using a symmetry constraint, the 3D shape can be derived without 

recognizing any of its parts. Note that when Biederman adopted his “atom-

istic” position, which he claimed was rooted in the Gestalt simplicity 

principle, he actually had developed a theory that would have been anath-

ema to the Gestalt psychologists because it violated one of their funda-

mental assumptions, namely, von Ehrenfel’s canon that the “Gestaltqualität 

[form quality or shape] is different from the sum of its parts.” What encour-

aged Biederman to adopt an “atomistic” approach to shape perception? 

Biederman knew that one of the main obstacles in making machines “see” 

was their inability to recognize partially occluded objects in natural envi-

ronments. Humans, unlike machines, do this very well. Biederman assumed 

that humans’ ability to recognize partially occluded objects derives from 

humans’ ability to recognize parts of objects, which are not occluded. 
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Although this assumption seems reasonable, it does not justify ignoring 

the shape of the entire 3D object. In real images of real scenes, the infor-

mation about a single isolated part of an object is often less reliable than 

the information about the whole shape. One should do better by using all 

the information available than by using only part of it. Biederman’s theory 

inspired a good deal of research by a number of people, despite the obvious 

shortcomings just described. It was the fi rst theory to directly address the 

important problem of how the percept of a 3D shape is derived from the 

2D shape of its retinal image. Both reasons warrant discussing Biederman’s 

RBC theory in some depth.

Biederman proposed that as few as thirty-six geons would be suffi cient 

to model the universe of 3D shapes. This number was derived, somewhat 

arbitrarily, by considering all possible combinations of basic geometric 

features, such as junctions, symmetries, and curvatures of parts of contours 

that could be used to characterize the larger class of objects, known as 

“generalized cones” (also known as “generalized cylinders” or “sweeps”). 

Biederman’s contribution consisted of dramatically reducing the set of 

infi nitely many generalized cones that were described by Binford (1971). 

Binford (1971) himself was not concerned with restricting the number of 

3D shapes that would be used (Biederman’s requirement) but rather with 

restricting the number of parameters required to represent infi nitely many 

smooth 3D shapes for machine vision applications. In 1971, when Binford 

published, the machine vision community only knew how to handle 

polyhedra, so Binford made a very useful contribution. If computational 

models of vision were to be general models, they had to be able to deal 

with more than polyhedra. Dealing with arbitrarily smooth surfaces 

requires many parameters. In the extreme case, the number of parameters 

would be infi nitely large, as large as the number of points on a surface. 

Binford’s generalized cones offered a way to simplify the representation of 

smooth surfaces. Binford’s approach showed how a fairly small set of 

parameters could be used to generate and represent a quite large family of 

3D parts. Figure 4.7 shows several examples of generalized cones used in 

machine vision applications.2

There is an additional advantage of using RBC theory. If parts of a 

complex object can be recognized from any viewing direction, shape con-

stancy may be easy to achieve. It follows that determining the extent to 

which shape constancy is achieved is a natural way to test RBC theory. 
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Shape constancy experiments before Biederman used mostly simple 2D 

shapes that were geometrically, rather than qualitatively, different from 

one another (e.g., ellipses with different aspect ratios). They mainly asked 

questions about the viewing conditions under which shape constancy fails. 

Biederman changed all that by using solid objects composed of qualita-

tively different parts. In this kind of experiment, humans could, and did, 

achieve shape constancy reliably. Reaction times were short, and they did 

not depend on the 3D orientation of the object, suggesting that mental 

rotation was not involved. Finally, the proportion of correct judgments 

was high, even with exposure durations as short as 100 ms (Biederman, 

1987; Biederman & Gerhardstein, 1993). Such fi ne performance can be 

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.7
Examples of generalized cones. The shape of the cross section is constant in each, 

and the eccentricity angle is 90 deg. The axis is straight in (a), (c), and (g). The axis 

is curved and planar in (b), (e), and (h) (produced using 3DS Max/Autodesk).
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explained by assuming that only qualitative features of shapes were utilized 

in his shape constancy experiments. The reliable analysis of quantitative 

features would require considerably more time.3

To summarize, Biederman’s (1985) RBC theory forced visionists to change 

the way they thought about 3D shape perception, but the theory itself did 

not lead to computational models that could be applied to real images of 

real objects. No one to date has succeeded in providing an algorithm for 

fi nding geons in real images. Biederman assumed that this task would not 

be diffi cult. He may have been infl uenced by Gibson and thought that 

geons can be “picked up” from the 2D image directly, and that they would 

“pop out” like the special features in one of Treisman and Gelade’s (1980) 

displays. They did not, so it is now commonly acknowledged that the 

visual system must perform an effective fi gure–ground organization, one 

that identifi es the contour representing (belonging to) the image of a par-

ticular 3D shape. Biederman was aware of the importance of fi gure–ground 

organization, but he kept its role to a minimum in his theory. This was a 

mistake. The importance of fi gure–ground organization can not be minimal 

in a successful computational model of shape.

4.3.2.2 Pentland’s (1986) Component Theory of Shape Perception Pent-

land (1986) published a very similar theory at about the same time as Bie-

derman (Biederman’s paper was submitted in July 1985, Pentland’s in 

August 1985). Both Biederman and Pentland were stimulated by the com-

putational research on generalized cones as candidates for modeling parts 

of complex objects (Binford, 1971; Marr & Nishihara, 1978; Marr, 1982). 

They both decided to restrict the family of shape parts by using symmetry, 

but their parts were different. Biederman’s parts were generalized cones, 

while Pentland’s were superquadrics.

Pentland proposed a set of fi fty-six superquadrics, which were simple 3D 

shapes, such as boxes, spheres, cylinders, and cones. These shapes were 

characterized by a small set of parameters. By using parameterized shapes, 

he was able to produce infi nitely many 3D shapes belonging to the fi fty-six 

families. As a result, the parts used by Pentland were able to describe more 

closely real 3D shapes than Biederman could with his geons. However, 

Pentland did not go beyond the stage of describing the parts of objects. 

Biederman used the parts not only to describe but also to recognize shapes 

from their parts. Dickinson built on both, by (i) elaborating Biederman’s 
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theory and (ii) incorporating Pentland’s emphasis on parametric modeling 

with the use of superquadrics.

4.3.2.3 Dickinson’s Elaboration of Biederman’s and Pentland’s Theories 

Biederman’s (1985) paper had an immediate impact on the computer 

vision community. However, all attempts to develop computational models 

for geon reconstruction and recognition based on Biederman’s RBC theory 

led to systems that were geon specifi c (e.g., Bergevin & Levine, 1992a, b, 

1993; Jacot-Descombes & Pun, 1992; Munck-Fairwood, 1991; Munck-Fair-

wood & Barreau, 1991; Du & Munck-Fairwood 1993, 1995; Eklundh & 

Olofsson, 1992; Hummel et al., 1988; Raja & Jain, 1992, 1994; Wu & 

Levine, 1994; Borges & Fisher, 1997). These models failed to become a 

commonly accepted approach in computer vision for two reasons 

(Dickinson, Bergevin, Biederman, Eklundh, Jain, Munck-Fairwood & Pent-

land, 1997): (i) Many saw Biederman’s choice of qualitative shape proper-

ties defi ning geons as arbitrary; a different choice of qualitative properties 

would yield a different set of shape parts, for which the geon reconstruc-

tion algorithms would be unsuitable; and (ii) the proposed reconstruction 

models had only been demonstrated on idealized scenes, where salient 

contours mapped directly to defi nitive geon features. In other words, the 

use of these models was restricted to cases where fi gure–ground organiza-

tion had already been established.

Dickinson, Pentland, and Rosenfeld addressed the fi rst problem by devel-

oping a more general framework for reconstructing 3D parts that did not 

depend on geons as the modeling primitives (Dickinson, Pentland, & 

Rosenfeld, 1990, 1992a, b; Dickinson, Metaxas, & Pentland, 1997). They 

proposed an object modeling/recognition framework that used 2D views 

to model a fi nite set of 3D parts. Unlike traditional aspect graph approaches 

of the period, which modeled entire objects and where the number of 

aspects grew both with object complexity and with the number of parts, 

this framework’s database of views was fi xed, and dependent only on the 

size of the part “vocabulary” (e.g., Koenderink & van Doorn, 1979; Ikeuchi 

& Kanade, 1988; Chakravarty & Freeman, 1982; Kriegman & Ponce, 1990; 

Plantinga & Dyer, 1990; Sallam & Bowyer, 1991; Shimshoni & Ponce, 1993; 

Stewman & Bowyer, 1990; Eggert et al., 1993; Eggert & Bowyer, 1990). The 

part-based views were organized into an aspect hierarchy, consisting 

of topological collections of regions, the component regions, and the 
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component contours of regions. This hierarchy represented the main fea-

tures of fi gure–ground organization. Shape parts were considered indepen-

dent during part reconstruction, and the reconstructed volumes were 

combined to form a viewpoint-invariant representation (qualitative 3D 

part confi guration) that could serve for fast shape recognition.

The second problem, 3D shape reconstruction from real images of real 

objects, has remained elusive. The part-based approach led to correct rec-

ognitions only in the case of simple images, representing a single 3D object 

composed of a few parts, like that in fi gure 4.8a (Dickinson et al., 1992b). 

This problem emerged because real images do not allow unambiguous 
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(a) (b) (c)

Figure 4.8
(a) Image of a lamp; (b) reconstructed parts of the object by means of Dickinson 

et al.’s (1992b) OPTICA system. Regions 0 and 1 were correctly grouped into a part-

based aspect representing the canonical view of a truncated cone volume; region 2 

was not grouped with other regions but was correctly interpreted as an occluded, 

cylindrical volumetric part; and regions 3, 4, and 5 were correctly grouped into a 

rectangular volumetric block. Although other interpretations of these regions were 

computed by the system—for example, region 1 as an ellipsoid volume occluding 

the top of the truncated cone or region 2 as a bent cylindrical part—such interpreta-

tions were assigned lower probabilities. (c) Lamp reconstructed by means of fi tting 

deformable superquadrics to the recovered qualitative shapes shown in (b). The 

qualitative identities of the parts and their orientations, along with a specifi cation 

of which contours should be used to identify the parts, all provide strong constraints 

on the fi tting process (with kind permission of the author and the publisher).
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recognition of parts. In an effort to work with more realistic objects, the 

machine vision community steadily migrated toward multiple-view models, 

in which a 3D shape was represented by a large number of 2D images. 

Attempts to reconstruct 3D parts from an image are now uncommon. 

Today’s systems focus on 2D confi gurations of local, image-based features 

rather than on 3D confi gurations of shape-based volumetric features.

An approach to 3D shape recognition, based on Pentland’s superquad-

rics, was somewhat more successful. Reconstruction of 3D shapes from 

image contours is inherently unconstrained, but Dickinson and Metaxas 

(1994) were able to partially overcome this problem by using qualitative 

shape models to identify parts and then using the part’s identity and the 

2D image contours to constrain the fi tting of a deformable 3D superquadric 

to the image data. An illustration of such a reconstruction in the case of 

a simple 3D object is shown in fi gure 4.8c. One interesting aspect of Dick-

inson and Metaxas’ shape reconstruction process was that the fi tting 

process was sequential. The parameters of the superquadric were estimated 

one at a time, leading to a succession of simple optimization problems. 

The ordering of the parameters in this process was specifi ed manually. 

Developing an automatic ordering remains an interesting research 

problem.

To summarize, the theories of Biederman (1985), Pentland (1986), and 

Dickinson and his colleagues stimulated research in machine vision by 

putting emphasis on those aspects of 3D shape that make it special, clearly 

different from other spatial properties such as depth or size. They did this 

by (i) incorporating simplicity by choosing a small number of simple 3D 

shapes to recognize and reconstruct natural objects, (ii) ignoring the 2.5D 

sketch, and (iii) using 3D representations of 3D shapes. Note that simplicity 

was used in these theories as an implicit constraint. That is, these theories 

assumed that objects have simple shapes. It will be argued in the next 

chapter that simplicity should be used as an explicit constraint. Note also 

that shape constancy became an important consideration in all of these 

theories, clearly an important step forward.

4.3.3 Viewpoint Dependence in Shape Perception

Realize that when Biederman showed that human beings demonstrate 

considerable shape constancy, he did this with 2D line drawings of 3D 

objects. This was a major event in our understanding of shape perception 
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because it showed that shape constancy did not require taking depth or 

slant into account, the belief that had held back research in this area for 

a very long time. Marr (1982), who had been so infl uential in vision 

science, also recognized that human beings showed shape constancy, but 

he ascribed this critical accomplishment to taking depth and slant into 

account. This, of course, put Biederman in confl ict with Marr (1982), 

whose position was generally accepted in both human and machine vision 

communities. As one might expect, Marr’s followers, when faced with this 

diffi culty, tried to show that Biederman’s results depended on his particular 

choices of stimuli and that they would not generalize to other stimuli. 

They only partially succeeded. In particular, they tried to show that the 

human ability to recognize the shape of a 3D object depends on the ori-

entation of the object relative to the observer. They generated psychophysi-

cal data showing that both the proportion of correct responses and reaction 

time were strongly affected by the viewing orientation of the 3D object 

relative to the observer. They called this kind of dependence “viewpoint 

dependence.” Note, however, that viewpoint dependence is not necessarily 

inconsistent with Biederman’s theory. Biederman thought that his RBC 

theory must lead to viewpoint independence because the representation of 

3D geons is viewpoint independent, but a viewpoint-independent representa-

tion of 3D shape does not imply viewpoint-independent performance. In other 

words, computation of invariants need not itself be invariant (Pizlo, 1994; 

Wagemans et al., 1996; Stankiewicz, 2002). By insisting that performance 

must be viewpoint independent, Biederman unnecessarily opened his 

theory to this criticism, and as one might expect, Marr’s champions took 

advantage of Biederman’s mistake. The reader should realize that the only 

way to verify whether the RBC theory predicts viewpoint-independent 

performance is to implement the theory in the form of a computational 

model and test it with real images. This has not been done, yet. Had such 

computational tests been performed, it is very likely that performance 

would have been viewpoint dependent simply because viewing direction 

affects the ease with which a shape can be reconstructed.

To summarize, the diffi culties associated with formulating theories of 

shape perception that used Biederman’s parts or Marr’s 2.5D sketch led 

researchers to formulate a new approach that would not suffer from the 

weaknesses inherent in both. These researchers began by examining a 

feature common to both theories, namely, the emphasis on the three-
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dimensionality of the percept. They wondered whether removing the 

assumption that the percept of a 3D object is also 3D would produce a 

better theory of human shape perception. This new kind of theory claimed, 

as Helmholtz had 150 years earlier, that the perception of 3D shapes is 

based on memorizing a large number of 2D views. The modern formula-

tion of this empiristic theory was motivated, at least to some extent, by 

the psychophysical results on viewpoint dependence. It seemed natural to 

claim that if shape perception is viewpoint dependent, the perceptual 

representation of shape itself is based on a number of different 2D views. 

Tarr was among the fi rst to study the viewpoint dependence systematically. 

He started with a theory in which 3D shape is represented by multiple views, 

each view being equivalent to a 2.5D representation. Shape constancy in 

this theory was achieved by means of mental rotation of these 3D shapes 

(Tarr & Pinker, 1991). Tarr went on to adopt a theory developed by Poggio 

and Edelman (1990), according to which multiple views refer primarily (or 

exclusively) to 2D, rather than 2.5D, images. In this theory, shape con-

stancy is achieved by evaluating the similarity among these 2D images 

rather than by rotating 3D shapes mentally (Tarr et al., 1997, 1998; Hayward 

& Tarr, 1997). In these experiments, viewpoint dependence was found to 

be especially strong when unstructured objects, such as polygonal lines, 

were used. In fact, the multiple view theory of Poggio and Edelman (1990) 

was developed to account for human performance with such stimuli. This 

theory obtained additional support from experiments that included other 

unstructured objects such as spheres with multiples spikes radiating from 

their surfaces (Edelman & Bülthoff, 1992; Bülthoff & Edelman, 1992). 

Edelman and Bülthoff, like Rock and DiVita (1987), failed to obtain shape 

constancy with these objects. The failure to achieve shape constancy with 

these unstructured stimuli was to be expected because 2D images of unstruc-

tured stimuli do not convey any useful information about their 3D shape. 

Some “shape constancy” can be obtained with such unstructured stimuli, 

but only after observers have been given an extended opportunity to 

memorize the 2D views.

Can anything else about shape constancy be learned by using unstruc-

tured objects as stimuli? Farah, Rochlin, and Klein (1994) performed a 

series of experiments showing that wire objects are useful, but only when 

they are studied together with other objects that do lead to shape con-

stancy. They used two classes of stimuli. One consisted of wire objects, 
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whose contours were closed. They did not include a visible surface. The 

other class of objects had identical contours, but they also had a visible 

surface. These objects looked like natural potato chips. The subject was 

shown two objects from one or the other class and was asked to decide 

whether they had identical shapes. The orientation of the objects relative 

to the observer was varied, so their retinal images were usually different. 

If shape constancy was achieved, the subject would be able to identify 

identical objects regardless of their orientation. Farah et al. (1994) found 

that performance with wire-only objects was very poor. Performance with 

“potato chips” was much better. They suggested that the “regularity” and 

“redundancy” of the surfaces, concepts very close to “simplicity” and 

“symmetry,” might have been the critical factor. They did not develop this 

idea, but it is worth keeping it in mind because it will be shown later that 

a new simplicity principle, containing symmetry and two additional con-

straints, is the critical element in shape perception.

Wire objects were also used by Liu, Knill, and Kersten (1995) and Liu 

and Kersten (1998). Like Farah et al. (1994), they used wire objects, but 

not to demonstrate the limits of shape constancy. They used them to 

demonstrate the role of simplicity (symmetry and planarity) in 3D shape 

constancy. Specifi cally, they used four types of objects. Some were sym-

metrical and planar, and others were not. The subject was fi rst familiarized 

with eleven views of each object and then tested with either familiar 

(learned) views of these objects or with a novel, randomly generated view. 

Performance in shape identifi cation, with both familiar and novel views, 

was best for stimuli that were symmetrical and planar.

Next, the authors applied an “ideal observer” analysis to their data 

(Kersten, 1990; Tjan & Legge, 1998). An ideal observer analysis computes 

the performance of a hypothetical observer who does not have any limita-

tions arising from the ways the human visual system represents, stores, 

and analyzes the stimuli. In other words, an ideal observer generates the 

best possible performance given the particular type of input. The authors 

formulated three types of ideal observers. The fi rst (called 2D Euclidean) 

assumed that the visual data are represented in the visual system by 2D 

images. No 3D representation was used. Shape recognition was performed 

by comparing a given 2D image to the set of stored (memorized) 2D images 

of objects. To make this “ideal” insensitive to rotations around the line of 

sight, identifi cation performance was based on many 2D orientations of 
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the test image (Liu et al., 1995). This “ideal” represents a class of multiple-

views models of shape like Poggio and Edelman’s (1990). The second 

“ideal” (called 2D affi ne) was identical to the fi rst, except that it was invari-

ant not only to 2D rotations but also to 2D affi ne transformations. Finally, 

the third “ideal” (called 3D) assumed that there are 3D models of shapes 

in the observer’s memory and recognition is performed by verifying 

whether a given 2D image could have been produced by any of the memo-

rized 3D models. This “ideal” represents a class of models for 3D shape 

recognition like those of Basri and Ullman (1993), Lowe (1985), and Pizlo 

and Loubier (2000).

Liu and his colleagues showed, as expected, that human performance 

was lower than that of the “3D ideal.” This was expected because the 3D 

ideal used 3D representation of shapes but, unlike human observers, did 

not have any “perceptual” or “memory” noise. They showed next that 

human performance with novel views of symmetrical and planar stimuli 

was higher than the 2D Euclidean ideal observer’s. This result implies that 

multiple-views models (such as Poggio & Edelman’s, 1990) are not good 

models of human shape perception. Finally, performance of the 2D affi ne 

ideal observer was higher than the humans’, but human performance was 

relatively higher on novel views than on familiar (learned) views. These 

results, taken together, especially those involving the 2D ideals, clearly 

show that the human visual system uses 3D representations of 3D shapes 

(see Stankiewicz, 2002, for a similar conclusion based on different 

stimuli).

It follows from the studies of Farah et al. (1994) and of Liu and his col-

leagues that unstructured objects can be used in shape constancy studies, 

but only as a control condition, when the role of simplicity in 3D shape 

perception is under study.

4.3.4 The Role of Shape Constraints in Shape Constancy

The experiments that will be described next were based on the assumption 

that perceived 3D shape depends on the operation of a priori constraints. 

An alternative basis for achieving shape constancy is needed now that we 

know that neither the perception of depth nor the memorization of images 

of objects can do the job. Only a priori constraints can do the job. When 

this fact became apparent, two types of spatial constraints were available, 

one of which was local, the other global. Poggio et al. (1985) and those 
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infl uenced by them, used the following local constraints: smoothness of 

surfaces and contours, convexity of a surface, and local straightness of 

surface contours. These constraints are spatially “local” in the sense that 

they operate on only a small part of a surface at a time. Such constraints 

proved to be useful only in reconstructing surfaces, not 3D shapes. Bieder-

man (1985), Pentland (1986), Dickinson et al. (1992a, b), and Dickinson 

and Metaxas (1994) used spatially global constraints, such as symmetry of 

an object (henceforth, spatially global constraints will be called “shape 

constraints”). These authors used them without making use of the formal-

ism provided by regularization theory. Once they did not use regularization 

theory, they had to assume that shapes of real objects can be represented 

by a small number of simple components. This assumption was too restric-

tive in the sense that it led to a working model that could only be used 

with objects that had simple components. Pizlo and his colleagues (Pizlo, 

Li, & Chan, 2005; Chan et al., 2006), working within regularization theory, 

were able to provide a model that could deal, at least in principle, with a 

greater variety of objects.

Pizlo and colleagues published results of a series of studies that tested 

the operation of several shape constraints in a shape constancy experi-

ment. They used images of complex, unfamiliar polyhedral objects. These 

objects were designed in such a way that recognition of their shapes could 

not be based on identifying simple parts. Examples of stimuli used by Pizlo, 

Li, and Chan (2005) are shown in fi gure 4.9, and additional examples can 

be seen at http://viper.psych.purdue.edu/shapedemo. Each of these stimuli 

was produced from sixteen points, the vertices of a polyhedron. Only four 

of these were actually polyhedral objects (a, d, e, and f). Stimulus (b) shows 

only the sixteen points, and (c) shows these points connected in a random 

order to form a 3D polygonal line. The four types of polyhedral objects 

had different degrees of simplicity. Their simplicity (in decreasing order) 

was (a) a symmetrical polyhedron with planar contours, (d) a symmetrical 

polyhedron with some contours being nonplanar, (e) an asymmetrical 

polyhedron with planar contours, and (f) an asymmetrical polyhedron 

with nonplanar contours. Note that (d) and (e) are likely to have the same 

degree of simplicity because (d) is symmetrical but nonplanar, and (e) is 

asymmetrical but planar. Keep in mind that all six stimuli had a similar 

underlying 3D structure; they all are based on sixteen vertices of a poly-

hedron. They differed only with respect to whether the points were con-
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nected, whether the object was mirror symmetrical, and whether its 

contours were planar. The stimuli in fi gure 4.9 were graded with respect to 

simplicity, stimulus (a) allowing the application of several shape con-

straints, but stimulus (c) allowing none. If shape constraints are necessary 

for shape constancy, performance in (a) should be the best and in (c) the 

worst. On each trial, the subject was shown two objects sequentially from 

different viewing directions, and the task was to decide whether the 3D 

shape of the two objects was identical. When the shape of the second 

object was different, the object was generated randomly. The subject was 

tested with all types of stimuli twice. Viewing was always binocular, but 

in one replication the images in the two eyes were identical, and in the 

other the images were disparate. As a result, binocular disparity could 

contribute to the three-dimensionality of the percept only in sessions 

where the images were disparate. There were a total of twelve sessions, one 

session per stimulus type and viewing condition.

Results of a naive subject are shown in fi gure 4.10. Results of the other 

two subjects, who knew the purpose of this experiment, were very 

similar. The graph shows the signal detection index of discriminability, d′ 
(Macmillan & Creelman, 2005).4 Higher values of d′ represent better 

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.9
Stereoscopic images of stimuli in Pizlo, Li, and Chan’s (2005) experiment.
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Figure 4.10
Results of one subject (B.Z.) in Pizlo, Li, and Chan’s (2005) experiment.

performance. Performance was directly related to the availability of shape 

constraints: It was best for stimuli (a) and worst (close to chance) for stimuli 

(c) and (f). This was expected because when the object is structured, it 

allows for the application of constraints, and reconstruction can be per-

formed. Otherwise, when the object is unstructured, reconstruction fails, 

as it did with the 3D polygonal line shown in (c), and with the nonplanar 

asymmetrical object in (f). Note also that when binocular disparity was 

available, performance was better than when it was not available. This 

difference was moderate, but statistically signifi cant. What is important, 

however, is that perception of shape with binocular disparity is not reliable 

unless the perception of shape is reliable without binocular disparity (i.e., 

the same 2D stimulus is presented to both eyes). This can be clearly seen 

in (c), the polygonal line stimulus, as well as in (f), the nonplanar asym-

metrical polyhedron. Once shape constraints could not produce a 3D 

shape percept from a single 2D image, binocular disparity contributed 

nothing to the perception of shape. These results strongly suggest that the 

perceptual mechanisms involved in the binocular perception of 3D shapes 

are very similar, if not identical, to those involved in the perception of 3D 
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shapes from a single 2D image. In both, the 3D shape percept is produced 

by shape constraints.

The effect of shape constraints on shape constancy was tested in two 

additional studies with a wider range of stimuli (Chan et al., 2006), as well 

as with rotating 3D objects viewed monocularly (Pizlo & Stevenson, 1999). 

The results from these studies provided additional support for the role of 

shape constraints.

Pizlo, Li, and Chan (2005) and Chan et al. (2006) used the results of 

their experiments to develop a new model of 3D shape reconstruction. In 

this model, three shape constraints were used: planarity of contours, sym-

metry of the object, and minimum variance of angles (see section 4.4.1 for 

details of the model). Two of these constraints had been used before by 

Marill (1991) and Leclerc and Fischler (1992). Pizlo and his colleagues 

added the mirror symmetry constraint. Their model applies these three 

constraints to a single 2D retinal image to reconstruct a 3D shape. Once 

the 3D shape is reconstructed, the 2D image from the other camera (eye) 

can be used to correct the 3D shape. Chan et al. tested this model in simu-

lation experiments with synthetic images, as well as with real images of a 

real 3D object (fi gure 4.11 shows an example). They also tested one of the 

standard models of shape from binocular disparity, in which shape con-

straints were not used. The accuracy of shape reconstruction produced by 

the new model was substantially higher than the accuracy of shape recon-

struction based on binocular disparity alone. Furthermore, monocular per-

formance of the new model was correlated with both monocular and 

binocular performance of the subjects in the shape constancy experiments. 

(a) (b)

Figure 4.11
(a) An image of a 3D object. (b) An image of a reconstructed object (from Chan et 

al., 2006).
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Binocular performance of the model, on the other hand, was not correlated 

with human performance. These results provide additional support for the 

claim that binocular and monocular mechanisms of shape perception are 

similar, if not identical. They both depend critically on shape constraints. 

The role of binocular disparity is secondary, at best.

To summarize, psychophysical research on shape perception during the 

last twenty-fi ve years prepared the way for a new paradigm. It became clear 

that the percept of a 3D shape is not derived from the percept of depth. 

The information about depth, which is missing from the 2D retinal image, 

is made up by a priori constraints. A priori constraints are much more 

important in shape perception than in the perception of surface color, 

orientation, or motion because shape is much more complex as well as 

more structured than other perceptual attributes. In this, shape is 

unique.



5 A New Paradigm for Studying Shape Perception

The earlier chapters (i) organized a very large proportion of the existing 

knowledge about shape, (ii) called attention to and reconciled contradic-

tions within this literature, and (iii) summarized psychophysical results, 

obtained with a wide variety of methodologies, more or less supporting a 

number of theories that varied widely with respect to their formalism. 

These chapters provided a number of conclusions about fundamental prop-

erties of shape perception that allow the introduction of a new paradigm 

for studying shape perception. This new paradigm begins by assuming that 

producing a 3D shape percept from a 2D perspective image(s) is computa-

tionally diffi cult and depends, critically, on the operation of a simplicity 

principle. Stated formally, shape perception should be treated as an ill-

posed inverse problem whose solution requires using a priori constraints. 

In the new approach, the emphasis shifts from studying the role and inter-

action of depth cues to the nature and operation of constraints. Visual 

processing of shape begins with fi gure–ground organization. This estab-

lishes 2D shapes in the retinal image. Three-dimensional shapes are recon-

structed from these 2D shapes.

5.1 Main Steps in Reconstructing 3D Shape from Its 2D Retinal 

Representation

Now that we know what has to be done, how can we do it? How can we 

reconstruct the 3D shapes from the 2D representation that we have on our 

retina? The fi rst thing is to establish fi gure–ground organization within the 

2D retinal image.
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5.1.1 Establishing Figure–Ground Organization

Consider the 2D images in fi gures 1.2 and 1.3. These images illustrate the 

fact that fi gure–ground organization is as automatic and effective in line 

drawings as in photographs of the real objects used to produce the line 

drawings. These fi gures also show that objects are defi ned by the contours 

that give them shapes. Note that the objects are perceptually segregated 

from each other and from their background. Once fi gure–ground organiza-

tion is established, it provides the observer with additional information. 

The third dimension is explicitly represented as soon as fi gure–ground 

organization takes place. The Gestalt psychologists pointed this out when 

they insisted that the contour belongs to the fi gure—it defi nes the object, 

which is perceived as being in front of the background. Note that once the 

object is perceived in front, it is being perceived as residing in a 3D space. 

However, with the impoverished stimuli the Gestalt psychologists used to 

make these points about fi gure–ground organization, the extent of the 

implied third dimension was marginal, at best. However, in real scenes, 

like those shown in fi gure 1.3, where there is more than one object present 

in the visual fi eld, and where the objects themselves are structured, estab-

lishing fi gure–ground organization results in many more than two depth 

planes. We have known about the importance of fi gure–ground organiza-

tion for about 100 years, since the Gestalt Revolution. Despite the fact that 

its importance has been known for a very long time, we are far from a full 

understanding of this phenomenon. We know that Gestalt grouping prin-

ciples are important in shape perception, but there is no model that allows 

one to predict how 3D shape will be perceived in a variety of stimulating 

conditions. There have been a number of attempts in the machine vision 

community to do this, but there has been only limited success to date. The 

most promising approach will be described next.

Nevatia (2000) showed how this might be done. He took a photograph 

of a 3D scene, containing a number of common objects (fi gure 5.1a). His 

algorithm begins by fi nding pixels corresponding to gradients of intensity 

(this step is not shown in the fi gure). The next step is to group pixels into 

individual straight or curved line segments by using continuity and prox-

imity constraints. This step is shown in (b). Note that this image is decep-

tive. The reader, looking at this image, can easily see the individual objects. 

This image looks a lot like fi gure 1.3. However, at this stage of the analysis, 
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(a) Intensity image (b) Line segments from (a)

(c) Selected axes of symmetry (d) Segmented objects

Figure 5.1
Figure–ground organization using symmetry constraint (from Nevatia, 2000, fi gure 

1.3, p. 180—with kind permission of the author and Springer Science and Business 

Media).
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the algorithm does not know anything about the objects in the image. You 

do, but the algorithm does not. It only knows about individual lines that 

might represent the contours of objects. The third step, shown in (c), uses 

a symmetry constraint. It fi nds symmetrical groups of contours. They are 

represented by axes of symmetry marked by heavy lines. Symmetry, used 

in conjunction with a closure constraint, made it possible for Nevatia to 

represent individual objects, separated from the background and from each 

other. This is shown in (d). Clearly, the human visual system does a better 

job, but Nevatia’s algorithm seems to be at least a promising fi rst step in 

approximating what humans do so easily and accurately.

Why was symmetry so effective in establishing fi gure–ground organiza-

tion? Symmetry is a common property of a wide variety of objects, ranging 

from bilaterally symmetrical bipeds like ourselves, and throughout the 

animal kingdom, to plants and trees, as well as to many inanimate objects 

(e.g., Thompson, 1942; Blum, 1973; Kanade & Kender, 1983).1 All living 

creatures have been confronted by signifi cant symmetrical objects through-

out their evolution. If symmetry is both ubiquitous and informative, one 

should not be surprised to fi nd symmetry providing a signifi cant way to 

recognize or reconstruct objects “out there.” Once so many different things 

“out there” tend to be symmetrical, many of their retinal images will be 

at least approximately symmetrical (Kanade & Kender, 1983; Jacobs, 2000). 

Furthermore, there is no good reason to expect that the contours of differ-

ent, unrelated objects in the same visual fi eld will form, by accident, very 

many approximately symmetrical confi gurations in the retinal image.

It must be emphasized, however, that fi gure–ground organization is far 

from being fully understood. There are, at present, no computational 

methods that can produce accurate fi gure–ground organization with real 

images of real scenes with anywhere near the accuracy of the human visual 

system. Nevatia’s work does show that symmetry offers promise for estab-

lishing the fi gure–ground organization of the retinal image, but further 

elaborations are clearly necessary. Several suggestions for future research 

(human and machine) are listed below:

Human vision

(i) Study fi gure–ground organization in the context of 3D shape 

perception,

(ii) use realistic images of complex scenes, and

(iii) characterize the role of symmetry and mechanisms for detecting it.
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Machine vision

(i) Use realistic images of complex scenes,

(ii) use images of unfamiliar objects, and

(iii) formulate models for effi cient detection of symmetries in the 2D 

image.

Symmetry, once detected in the 2D image, is critical in reconstructing 

the 3D shape percept. However, any given 2D retinal image could be pro-

duced by very different 3D shapes. For this reason, the family of possible 

3D percepts must be restricted before shape constraints such as symmetry 

are applied to produce the 3D shape percept.

5.1.2 Restricting the Family of Possible 3D Percepts

Once fi gure–ground organization has taken place, the question arises about 

how to transform the 2D image into a 3D percept. Constraints are needed. 

What is the nature of these constraints? One of the most important 

constraints—probably the most important constraint—for restricting the 

family of 3D percepts is called “planarity.” Consider the example in fi gure 

5.2. This polyhedral object was chosen because it is novel. It does not 

resemble anything you are likely to have seen before, so your percept of 

its shape could not have been affected by familiarity. Three perspective 

images are shown. All three are perceived as the same object despite its 

novelty. Note that this object is perceived as being composed of several 

faces located in different planes. The corners of the individual faces are 

perceived as coplanar. Coplanarity allows the visual system to perceive the 

object as having the same shape when viewed from different viewing direc-

tions (to demonstrate shape constancy). The importance of a planarity 

constraint for achieving shape constancy derives from the following two 

geometrical considerations. First, any perspective image of an object 

Figure 5.2
A polyhedral object seen from three different viewing directions.
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consisting of planar faces permits a 3D reconstruction of an object with 

planar faces. Second, it is highly unlikely that a 3D object with faces that 

are clearly nonplanar will produce a perspective image that permits the 

reconstructed 3D object to have planar faces.2 Figure 5.3 shows an image 

of an object whose contours are nonplanar. This image does not permit 

the reconstructed 3D object to have planar faces, and it is diffi cult to fi nd 

an orientation of this object, relative to a camera, that would permit a 

planar interpretation.

Planarity is potentially important not only in the case of polyhedral 

objects, but also with objects that have smooth surfaces. Consider the 

examples in fi gure 5.4. This fi gure shows eight objects (generalized cones) 

whose shapes look very different (see chapter 4 for a brief discussion of 

generalized cones). Some of them are polyhedral, and others are not. Not 

only do these objects look different, but each can be recognized from most 

viewing directions. In other words, it is easy to achieve shape constancy 

with these kinds of shapes. Depth cues are not needed. The shapes of the 

objects can be veridically reconstructed from their symmetry. The use of 

symmetry in reconstructing 3D shapes will be discussed below. At this 

point it is important to realize that the planarity of some contours, as well 

as planarity of the axes of these generalized cones, substantially restricts 

the family of 3D shapes that are possible interpretations of a given 2D 

image. The reader will remember from the discussion of 2D perspective 

invariants presented in chapter 3 that the family of inverse perspective 

Figure 5.3
An image of a polyhedron whose contours are not planar.
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projections of a given 2D shape on the retina is characterized by only two 

parameters, and the size of this family does not depend on whether the 

shape is polygonal or smoothly curved. In the case of simple 3D polyhedra, 

the family of inverse perspective projections is characterized by only three 

parameters.3 Clearly, if it can be assumed that some contours are planar in 

the 3D shape, the family of possible 3D shapes will be small. Once the 

family is small, it will be easy to apply shape constraints and reconstruct 

the unique 3D shape percept. This will increase the likelihood of the shape 

percept’s being veridical.

The shape of each object in fi gure 5.4 can be described by a combination 

of only a few characteristics: the shape of the base (cross section)—smoothly 

curved versus a polygon; the shape of the axis—straight versus curved; and 

the size of the cross section—constant versus changing. Note that these 

characteristics can be determined based on a single 2D image of the 3D 

object. This is why fi gure–ground organization is so important. It has to 

be emphasized, however, that the examples in fi gure 5.4 are used only to 

illustrate the main concept. The family of possible 3D shape interpretations 

Polygonal base Smoothly curved base

Axis straight 

Axis curved 

Constant size Changing size Constant size Changing size       

Figure 5.4
Examples of eight families of generalized cones (produced using 3DS Max/

Autodesk).
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is not necessarily larger when the shape of the cross section is not constant 

and the angle between the cross section and the axis is not a right angle, 

as long as there are a suffi cient number of planar contours. An example of 

such an object was shown in fi gure 5.2. This polyhedron is a generalized 

cone. It is substantially more complex than any of the cones in fi gure 5.4, 

but the family of inverse perspective projections produced by this image 

is characterized by only three parameters. The fact that only three param-

eters are needed results from the planarity constraint itself. Note that the 

object in fi gure 5.2 is symmetrical. More precisely, this object is bilaterally 

symmetrical. Interestingly, symmetry is a stronger 3D constraint than pla-

narity. Namely, the family of symmetrical inverse perspective projections 

produced by this image is characterized by only one parameter (Vetter & 

Poggio, 2002; Li & Pizlo, 2007).4 It follows that symmetry not only can be 

used to solve the fi gure–ground organization problem (see the previous 

section) and to establish a veridical shape percept (see the next section) 

but can also be used in the intermediate stage to restrict the family of pos-

sible 3D interpretations of a given 2D representation.

Note that the new paradigm for shape perception is quite different from 

the approach introduced by Biederman (1985). Biederman, using thirty-six 

“shape components,” attempted to recognize shapes of real 3D objects. In 

the new paradigm, a 3D shape “out there” is reconstructed from its 2D 

retinal image. This reconstruction is accomplished by determining the 

family of inverse perspective projections of the object’s 2D retinal shape, 

and by determining the 3D shape that minimizes a cost function, imple-

menting a simplicity principle.

Now that the planarity constraint has been shown to be useful, one can 

ask whether it is ecologically valid. Said differently, could the planarity 

constraint be important in the perception of real objects in real environ-

ments, the goal set by Marr (1982)? It probably is for the following 

reasons:

(i) Many human-made objects are polyhedral, and for such objects, planar-

ity of contours is trivially satisfi ed (e.g., tables, chairs, and buildings are 

fi ne examples of polyhedral objects with planar faces and coplanar 

corners).

(ii) Natural objects, such as animals and plants, are not like chairs. They 

do not have perfectly planar contours. However, at least some of their 

contours are approximately planar as indicated by Stevens (1981, 1986). 
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Stevens showed that if a surface can be approximated by a cylindrical 

surface (an assumption that is obviously true for human and animal limbs, 

as well as torsos), the lines of curvature are planar geodesics.

(iii) Any object with mirror symmetry has points and features that form 

planar confi gurations. This is because mirror symmetry of a quadruple of 

points implies the planarity of these points. Similarly, if a surface is locally 

symmetrical, then the symmetry line is locally planar (Weiss, 1988b).

(iv) Many 3D shapes, such as generalized cones, of the kind used by 

Biederman (1985) and Marr (1982), as well as Pentland’s (1986) superqua-

drics, that were used in the past to model real objects, have symmetry 

axes, which themselves are planar curves or even straight lines.

(v) Developable surfaces that can be used to model surfaces of many 

objects can be characterized by straight lines that are geodesic lines.

In all these cases, a planarity constraint can be applied. It will consider-

ably reduce the degrees of freedom in the family of inverse perspective 

projections.5

5.1.3 Achieving a Veridical Shape Percept

Now that we have seen that the planarity constraint is important in the 

perception of real objects in real environments, that is, it is ecologically 

valid, we can consider the third and fi nal step in reconstructing a 3D shape 

from its 2D retinal image. Producing a 3D shape percept from a 2D retinal 

shape is accomplished by “adding volume” to the 2D shape. Note that 

adding volume to a 2D shape to produce a 3D shape percept must be con-

strained because there are, in principle, infi nitely many possible 3D per-

cepts of shapes for any given 2D retinal image, and only one of these 

possible percepts is veridical. We also already know that symmetry can play 

an important role in fi gure–ground organization and in restricting the 

family of possible 3D interpretations of a 2D image. It continues to be 

important when volume is added because the 2D image will always be less 

symmetrical than the 3D shape that produced it. The argument for the role of 

a symmetry constraint in shape constancy is analogous to the argument 

described for the role of planarity in shape constancy. Namely, any perspec-

tive image of a symmetrical object permits a 3D reconstruction of a sym-

metrical object. At the same time, it is highly unlikely that a 3D asymmetrical 

object will produce a perspective image that permits the 3D reconstructed 

object to be symmetrical. Thus, applying a symmetry constraint is likely 
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to lead to a veridical percept. However, as the reader will see, symmetry, 

in itself, is not suffi cient for the veridical perception of shape.

Consider the example shown in fi gure 5.5. Both (a) and (b) are perceived 

as 3D shapes, but only one of them is symmetrical—so, if the symmetry 

constraint is responsible for the percept in (a), what is responsible for the 

percept in (b)? It cannot be symmetry. It is probably limitations, such as 

this, of the symmetry constraint that encouraged Marill (1991) and Leclerc 

and Fischler (1992) to use alternatives to symmetry. They used a minimum-

variance-of-angles constraint to reconstruct 3D polyhedral shapes (Marill 

used minimum variance of angles only, whereas Leclerc and Fischler used 

a planarity constraint, as well). Minimum variance of angles produced 

reconstructions that were somewhat similar to what a human observer 

perceives when shown a single image of a polyhedron. However, the 

minimum-variance-of-angles constraint is very limited. It can only be used 

with polyhedra. Most natural objects are not polyhedra. A more general 

constraint is needed. Before this can be done, another limitation of sym-

metry will be described because an effective constraint must deal with this 

additional limitation, as well.

Consider the examples in fi gure 5.6. The objects in (a) and (b) are per-

ceived as rectangular boxes having identical 3D shapes. These 3D shapes 

have three planes of mirror symmetry. One might expect that it would be 

easy for a machine vision system to reconstruct these shapes by using a 

symmetry constraint. This is not the case with respect to (a) because (a) is 

not actually an image of a perfectly symmetrical rectangular box. It is an 

image of a box that is slightly asymmetrical. Note that the surface facing 

(a) (b)

Figure 5.5
(a) An image of a cube. (b) An image of a box that is not exactly a cube (after Kanizsa, 

1979).
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the observer is a rectangle in the image. If it is a rectangle, the other two 

faces of the box would not both be visible from the observer’s point of 

view. A human being confronted with this 2D image has no problem per-

ceiving this box as a rectangular box. Using this 2D image, however, to 

reconstruct this 3D box cannot be accomplished by using a symmetry con-

straint. The 2D shape of the surface facing the observer is wrong. If a sym-

metry constraint is applied to (a), the result would be an infi nitely long 

rectangular rod, whose long axis would be almost parallel to the line of 

sight. However, if the image of the surface facing the observer is not a 

perfect rectangle, as shown in (b), a rectangular box can be produced by 

applying a symmetry constraint. The bottom line here is that the symmetry 

constraint, when applied to two very similar retinal images, may recon-

struct very different 3D shapes (reconstruction is computationally unsta-

ble). Thus, symmetry cannot be suffi cient for solving the inverse problem 

of 3D shape reconstruction. One has to use at least one additional con-

straint to remove uncertainty in the 3D reconstruction (formally, to stabi-

lize the solution of an ill-conditioned inverse problem). This problem can 

be solved by adding a compactness constraint. Note that a compactness 

constraint can be used with any object, not only with symmetrical or poly-

hedral objects.

The 3D compactness of an object is defi ned as V2/S3, where V is the 

volume and S is the total surface area.6 Compactness of 3D shapes and of 

2D shapes has been used in machine vision applications (see Bribiesca, 

2000, and Ballard & Brown, 1982), but mainly as a tool for shape descrip-

tion, not for reconstruction.7 When both compactness and symmetry are 

(a) (b)

Figure 5.6
Both images are perceived as identical boxes, but only (b) is geometrically consistent 

with such an interpretation. Application of the symmetry constraint to (a) would 

produce an infi nitely long rectangular rod. Reconstruction agrees with the percept 

when both the symmetry and compactness constraints are used.
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used in a cost function, and the cost function is applied to the images in 

fi gure 5.6, the reconstructed 3D shape is what the human observer per-

ceives, namely, two similar rectangular boxes.

To summarize, in the new approach advocated here, 3D shape recon-

struction relies on three main shape constraints: symmetry, planarity, and 

compactness. These three constraints become the essential element of a 

“new simplicity principle,” according to which the perceived shape corre-

sponds to the minimum of a cost function that represents the interaction 

between a 2D shape on the retina (produced by a 3D shape “out there”) 

and a priori constraints applied to the 3D shape percept. Note that this new 

simplicity principle is used because it leads to accurate 3D reconstructions, not 

because objects “out there” are simple.

5.2 How the New Simplicity Principle Is Applied

The new simplicity principle permits reconstruction of a 3D shape from 

the available 2D image by using regularization theory. This is done by 

defi ning a cost function, whose minimum determines the perceived 3D 

shape. This cost function is the sum of two components, representing 

retinal information and shape constraints. It is analogous to the cost func-

tion that Poggio et al. (1985) used to reconstruct 3D surfaces. Recall that 

reconstructing surfaces involved applying spatially local constraints to the 

information provided by depth cues. In the new paradigm, reconstructing 

3D shape involves applying spatially global (shape) constraints to the 3D 

retinal shape. The role of depth cues is secondary, at best. The fi rst com-

ponent of the cost function evaluates the degree of inconsistency between 

the reconstructed 3D shape and its 2D retinal image. For example, if the 

retinal image of a cube gave rise to the percept of a cube, consistency would 

be perfect. The consistency between the 3D percept and the 2D retinal 

image will never be perfect because there will always be some uncertainty 

associated with fi gure–ground organization. For example, in fi gure 5.6a, 

the reader perceives an elongated rectangular box. This percept is not 

consistent with the 2D image shown in this fi gure. The visual system can 

tolerate some inconsistencies between a percept and the available 2D 

retinal image. It tolerates this inconsistency in order to preserve the sym-

metry and compactness of the 3D shape percept. In the examples that will 

be given below, this term is ignored to simplify the presentation.
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The second component of the cost function evaluates how well the a 

priori constraints are satisfi ed in the 3D shape percept constructed from 

the 2D image. In the new paradigm, this second component is responsible 

for making the 3D shape percept as symmetrical and as compact as 

possible.

Once both components of the cost function are specifi ed, one is ready 

to use it to reconstruct 3D shapes. The reconstructed 3D shape is the shape 

that minimizes the cost function.

The rectangular box in fi gure 5.6b will be used to illustrate how a 3D 

shape can be reconstructed from its 2D image by using a symmetry con-

straint. The application of compactness will be illustrated later. Assume 

that fi gure–ground organization has already been performed, and the three 

closed contours representing the three visible faces have been identifi ed in 

this 2D image. Furthermore, assume that a family of inverse perspective 

projections has been correctly determined by using the planarity con-

straint. In this case, the family is characterized by three parameters (see 

the discussion of fi gure C.11). Because only three faces are visible, the 

reconstruction of the 3D shape, obviously, can involve only these three 

faces. The reader should recognize that this aspect of the new reconstruc-

tion method resembles Marr’s (1982) 2.5D sketch because his sketch rep-

resented only visible surfaces. However, this resemblance is superfi cial. 

There are two important differences between the new approach and Marr’s 

approach. First, Marr reconstructs the visible surfaces from depth cues. The 

new approach does not use depth cues. Second, Marr represents the visible 

surfaces in the coordinate system of the viewer. The new approach repre-

sents the visible surfaces in the coordinate system of the object, the box 

in this case.

The next step in the reconstruction of the 3D shape from this 2D image 

is to apply a symmetry constraint. A rectangular box has several symme-

tries. The parallel faces have identical shapes, each face is a symmetrical 

2D shape, and angles between all pairs of edges are right angles (90 deg). 

The departure of an object from symmetry in the polyhedral family, which 

contains this rectangular box, can be measured by how much the angles 

differ from right angles. In the 2D image shown in fi gure 5.6b, none of 

the angles are right angles. Six are acute, and six are obtuse. The same is 

true of every 3D object (except the rectangular box) in the polyhedral 

family, which can produce the 2D image shown in fi gure 5.6b. In all of 
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these objects, some angles are acute and others obtuse. A rectangular box, 

however, is the only member of the polyhedral family where all angles are 

right angles. This means that this box represents the minimum of a cost 

function, measuring the departure from symmetry. It follows that identify-

ing the minimum of the cost function will allow reconstruction of the 3D 

rectangular box from the 2D shape shown in fi gure 5.6b.8

Once the shape of the visible part of the box is reconstructed, the invis-

ible, back part of the box can also be “reconstructed” by applying a sym-

metry constraint. It is suffi cient to assume that the three invisible faces are 

symmetrical to the three visible faces. Interestingly, the invisible faces can 

also be reconstructed by using the planarity constraint. Sugihara (1986) 

pointed out that the 3D position of the invisible corner of a box is uniquely 

determined by the positions of the seven visible corners in fi gure 5.6b, 

once the planarity constraint is applied to the invisible faces. Clearly, the 

entire 3D shape of the object represented by the 2D image in fi gure 5.6b 

can be reconstructed without the need to use any 3D shape models stored 

in the memory, as Marr had claimed.9

Would the reconstructed shape be the same when the object is seen from 

different viewing directions? Would shape constancy be achieved? Figure 

5.7 shows 2D images of the 3D rectangular box shown in fi gure 5.6b. When 

the cost function measuring departure from symmetry is applied to all of 

these 2D images, and when the 3D shape minimizing the cost function is 

identifi ed, this 3D shape turns out to be the same for all of these different-

looking 2D images. In other words, shape constancy would be achieved.

Symmetry and planarity constraints are suffi cient in the case described 

just above in which fi gure–ground organization was assumed to be perfect. 

Once this assumption is not made, as would be required in the case of real 

Figure 5.7
Three different views of the object from 5.6b.
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images of real objects in real environments, an additional constraint is 

required for reconstruction. This issue was mentioned briefl y in section 

5.1.3 and illustrated in fi gure 5.6a. By way of reminder, symmetry and 

planarity can reconstruct polyhedra as long as symmetrical reconstructions 

are within the family of inverse perspective projections of a given 2D 

retinal shape. We also know that any uncertainty about fi gure–ground 

organization introduces errors that may preclude accurate reconstructions 

due to the instability of the reconstruction result. This problem can be 

overcome by introducing a compactness constraint. Compactness is defi ned 

as the volume squared, divided by the surface area, cubed (see above). 

When a cost function includes the compactness constraint, the boxes 

reconstructed from each of the two images in fi gure 5.6 are very similar to 

each other. This agrees with the percept. Shape constancy is achieved 

despite the less-than-perfect 2D retinal shape.10

Compactness and symmetry constraints also lead to accurate recon-

structions with randomly generated symmetrical polyhedra, such as those 

shown in fi gures 4.4 and 5.2 (Pizlo, Li, & Steinman, 2006; Li & Pizlo, 2007). 

We generated several thousand synthetic wire objects. For each object, one 

2D orthographic image was computed for a randomly chosen 3D orienta-

tion of the object. From each 2D image, we reconstructed a 3D object using 

symmetry and compactness constraints. Specifi cally, we computed a sym-

metrical object with maximal compactness. As pointed out by Vetter and 

Poggio (2002), a single 2D orthographic image of an object with one plane 

of symmetry is consistent with infi nitely many 3D symmetrical objects (in 

other words, the problem is ill posed). This family of objects is character-

ized by one parameter, whose value cannot be determined from an image. 

The image does not contain enough information to produce a unique, let 

alone a veridical, reconstruction. The value of this parameter must be 

derived from a priori constraints. In our algorithm it is obtained by maxi-

mizing the compactness of the symmetrical object. The reconstructions 

were accurate or almost accurate for most objects and for most viewing 

orientations. When large errors occurred, the errors were quantitative, not 

qualitative. Specifi cally, the reconstructed object was wider or narrower 

than the original object, but the overall shape was very similar. Further-

more, it is worth noting that in the small number of cases in which the 

reconstruction was not accurate, the reconstruction tended to agree with 

the shape the observers perceived.11
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This test was repeated with opaque objects. An opaque symmetrical 

polyhedron can be reconstructed when (i) at least three non-coplanar pairs 

of symmetrical vertices are visible and (ii) at least one vertex of the remain-

ing symmetrical pairs is visible. Sixty percent of our randomly generated 

images of polyhedra satisfi ed these requirements (these images may be 

what Palmer et al., 1981, called “canonical views”). With 2D images satisfy-

ing the two requirements described just above, the entire 3D object can be 

reconstructed. The reconstruction is not confi ned to its front, visible part. 

The “back,” hidden part of the object is reconstructed simply by applying 

symmetry and planarity constraints. It is important to note that the recon-

structions of opaque objects were as accurate as the reconstruction of the 

transparent “wire” objects. Specifi cally, for more than 90% of cases, the 

error in the reconstructed depth was smaller than 20%, and the maximal 

error in the reconstructed depth did not exceed 50%. Once again, the errors 

that were observed were quantitative, not qualitative. All of these results 

have important implications for the role of depth cues in shape perception, 

in general, and for the role of cue combination, in particular, an issue dis-

cussed in detail in chapter 4. If the use of a simplicity principle suffi ces to 

explain shape constancy, depth cues may, and probably should, be left 

entirely out of the reconstruction because they are more likely to interfere 

with than contribute to the veridicality of the shape percept.

Next, the effectiveness of the application of this cost function will be 

illustrated with a well-known example from Shepard (1981). In the top 

portion of fi gure 5.8, 2D images of two different boxes are shown. These 

2D images are perceived as having been produced by objects with different 

3D shapes. What makes this example special is the fact that the 2D images 

of the top faces of the boxes have identical shapes (one is oriented verti-

cally in the image and the other horizontally). This is not a coincidence 

because the viewing orientations and the 3D shapes of the two different 

boxes were chosen in such a way that the top faces of their 2D images were 

identical. The reader, who surely will doubt this, should apply a ruler and 

a protractor to these 2D images or, even better, trace one of the two top 

faces and superimpose it on the other. Clearly, these two parallelograms 

are not perceived as having identical shapes, despite the fact that the 

shapes of their 2D images are identical. This example shows that we cannot 

see our retinal images, a point frequently made by the Gestalt psycholo-

gists. These 2D images represent two different 3D objects (i.e., there is no 
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object that could produce these 2D images when viewed from different 

viewing directions), and we see these objects as different (the 3D shape 

percept is veridical, not illusory). When the new approach is used to recon-

struct the 3D objects from these 2D images, the cost function predicts what 

you actually see (the cost function was the same as in the previous 

example—see note 10). Different views of these two 3D objects are shown 

in fi gure 5.8c and 5.8d. Here, there is no surprise because from these 

viewing directions, the faces in front are no longer the same shapes in their 

2D images. Once this is appreciated, two things stand out. First, one should 

not be surprised. Second, the new simplicity principle works very well.

Next, consider how well the new simplicity principle works with real 

objects whose shapes are more complex than the boxes Shepard used. 

(a) (b)

(c) (d)

Figure 5.8
(a) and (b) are perceived as different 3D objects. In particular, the top faces are per-

ceived as different 2D shapes, even though these two parallelograms are identical 

on the 2D image (from Shepard, 1981—with kind permission of Lawrence Erlbaum 

Associates). (c) and (d) are different views of the 3D objects shown in (a) and 

(b) when the objects were reconstructed using symmetry and compactness 

constraints.
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Compactness is easy to compute for boxes. But how about more complex 

objects such as the human body, or objects that do not have volume? Look 

at the 3D object, a chair, shown in fi gure 5.9a. This object has little volume. 

In such cases one may compute compactness for a box circumscribed on 

the chair (fi gure 5.9d). Note that it should be possible to specify the 2D 

image of this box because the chair and its parts are symmetrical. In other 

words, the box defi nes a natural, object-centered frame of reference for the 

chair (Marr, 1982; Palmer, 1985, 1999). Once this box is defi ned, one can 

apply the cost function to the box rather than to the chair. Figures 5.9b 

and 5.9c show two views of the chair reconstructed from the image in (a) 

when the cost function was computed in this way. Clearly, the reconstruc-

tion agrees quite well with the percept produced by looking at (a), and it 

agrees with the 3D shape of the chair that was used to produce (a). A similar 

(a) (b) (c)

(d)

Figure 5.9
(a) An image of a chair. (b) and (c) Two views of the reconstructed chair. (d) A rect-

angular box used in the 3D reconstruction (from turbosquid.com).
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result was obtained for a 3D object depicting a man. The image used for 

reconstruction is shown in fi gure 5.10a, and two views of the reconstructed 

object are shown in (b) and (c).

It has to be pointed out that these two examples involving complex 

objects were used to illustrate only one step in the 3D shape reconstruc-

tion. Namely, they illustrated that the minimum of a cost function 

involving two shape constraints applied to a circumscribed 3D box corre-

sponds to the perceived 3D shape of the inscribed complex object. This 

step, applying shape constraints, was discussed in section 5.1.3. The other 

two steps, fi gure–ground organization and determining the restricted 

family of inverse perspective projections (sections 5.1.1–5.1.2) were not 

applied to these examples. As a result, in these two examples, the cost 

function was actually applied to different 3D transformations of the 3D 

chair and the 3D man rather than to their 2D images (the family consisted 

of 3D affi ne transformations of the circumscribed box and of the complex 

objects that are consistent with the given 2D image). Obviously, the fi rst 

two steps, establishing fi gure–ground organization and determining the 

restricted family of possible 3D shape percepts, are not trivial. Future 

research must address not only these three steps individually but also the 

(a) (b) (c)

Figure 5.10
(a) An image of a man. (b) and (c) Two views of the reconstructed man (from 

turbosquid.com).
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quality of the shape constancy achieved by the complete reconstruction 

model (see fi gure 5.11).

A fi nal note: Many complex objects, such as animals and humans, 

consist of parts, such as torsos, arms, and legs, and the individual parts 

can move independently (the entire object is only piecewise rigid). A 

number of attempts to deal with complex objects like these have been 

made in the past with limited success. The best known was that of Bieder-

man (1987), who dealt explicitly with shapes of parts of objects, not with 

the shapes of entire objects. He recognized the potential importance of the 

Gestalt-like simplicity principle but applied it locally rather than globally. 

In his words,

Recognition-By-Components posits a specifi c role for these organizational phenom-

ena in pattern recognition  .  .  .  the Gestalt principles, particularly those promoting 

Prägnanz (Good Figure), serve to determine the individual geons, rather than the 

complete object. A complete object, such as a chair, can be highly complex and 

asymmetrical, but the components will be simple volumes.  .  .  .  If the components 

can be recovered and object perception is based on the components, then the object 

will be recognizable. (1987, p. 126)

Simplicity was used in his approach only by limiting the number of simple 

components. He used a symmetry constraint only at the level of the parts, 

not at the level of the object. However, natural objects are more often than 

not symmetrical, and they have a natural frame of reference determined by 

3D 
shape 
out 
there

Perspective

projection 2D 
image 
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retina
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Figure 5.11
The steps involved in shape constancy.
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such features as symmetry, elongation, and gravity (Rock, 1973; Marr, 1982; 

Palmer, 1985, 1999). These aspects of complex shapes may allow the 

reconstruction of 3D shapes independent of the shapes of the parts. 

A giraffe is likely to look like a giraffe, even if it has horse’s legs. Once 

the 3D shape is reconstructed, its parts and their 3D relations can be 

specifi ed quantitatively by using methods like those presented by Pelillo, 

Siddiqi, and Zucker (1999), Siddiqi et al. (1999), Sebastian, Klein, and Kimia 

(2004), and Ioffe and Forsyth (2001). This means that one should be 

able to recognize a 3D shape regardless of the particular orientation of its 

parts, relative to one another. For example, in the case of a human body, 

when posture changes, the 3D shape of the body and the shapes of its parts 

can be reconstructed independent of one another. This allows recognition 

that it is still a human body. In other words, shape constancy would be 

achieved.

To summarize, a great deal is known about human shape perception. 

However, we are far from having a complete understanding of the percep-

tual mechanisms involved. That this is true follows trivially from the fact 

that there is no machine vision system whose performance comes close to 

the performance of human observers. It is possible to assemble a machine 

vision system that produces unreliable performance and demonstrates illu-

sions that mimic illusions like those produced by the human visual system, 

but much more work is needed to fi nd out how the human visual system 

achieves shape constancy, not how it fails. This effort is most likely 

to require collaborations between the human and machine vision 

communities.

It was unclear how much more work would be needed to formulate a 

“complete theory” of shape perception when the fi rst draft of this book 

was completed. Progress made within the last several months has made it 

obvious that the approach described in this book was proceeding in the 

right direction. The idea of “infl ating” the 2D shape to produce a 3D shape 

by using the new simplicity principle worked very much better than had 

been anticipated (see the previous section). The success of the new simplic-

ity principle in reconstructing 3D shape from a 2D image meant that the 

new theory of shape perception, which is summarized in the next section, 

is much closer to a “complete” theory than could have been anticipated 

only a few months ago. The new theory will be summarized by contrasting 

it with the main prior attempts to “explain” shape perception.
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5.3 Summary of the New Theory

The new theory provides a plausible explanation of how shape constancy 

is achieved in human vision. This new theory of shape constancy is also 

a theory of shape perception because shape constancy is the sine qua non 

of shape. To put it in everyday language, there is nothing about shape 

perception that cannot be demonstrated in a shape constancy experiment. 

This claim, which runs contrary to common wisdom, has been developed, 

explained, and justifi ed throughout this book. Its main argument can be 

summarized as follows. Shape has nothing to do with the viewpoint of an 

observer because the shape of an object is intrinsic to the object. It follows 

that the only way to be sure that one is studying shape, rather than depth 

or the orientation of surfaces, is to study shape constancy. Depth and the 

orientation of surfaces depend on viewpoint. Shape does not.

Depth and the 3D orientation of surfaces were emphasized in Marr’s 

theory, a theory that provided the most widely accepted explanation of 

shape constancy since its introduction in 1976. In Marr’s theory, 3D shape 

was derived from the 3D orientations of surfaces. Using conventional ter-

minology, shape constancy was achieved by “taking context into account,” 

the same explanation that has been used to explain all other constancies, 

but in all constancies other than shape, context was critical because the 

retinal image was always ambiguous. Shape is different from all other per-

ceptual properties because shape is complex. It is easy to see that shape’s 

complexity prevents shape ambiguity. Namely, shapes of different objects 

are very unlikely to produce identical retinal images. In other words, shape 

ambiguity is very rare, so shape constancy, unlike size, depth, position, light-

ness, color, or speed constancy, can be achieved without making any use of 

context. This makes shape unique. The new theory of shape perception 

presented in this book is built on this important fact.

Complexity, with its resulting uniqueness, has not played a role in any 

prior theory of shape perception. Marr did not use it, nor did Gibson. Bie-

derman recognized that shape is unique, but he emphasized the simplicity 

of shapes, not their complexity. The 3D percept of shape in Biederman’s 

theory depends critically on the shapes of his “geons’ ” being simple. Com-

plexity, in Biederman’s theory, only plays a role at a later stage when 

objects are recognized.
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Another way to contrast Marr’s theory with the theory described for the 

fi rst time in this book is to look at the relation between surfaces and 

volume in both theories. In Marr’s theory, surfaces are computed fi rst. 

Volume comes in later. In the new theory described here, volume is estab-

lished fi rst, and the surfaces around it result from computations of the 

shape’s “maximal volume.” In the new theory, unlike in Marr’s and in 

almost all other shape theories, the three-dimensionality of the percept is 

not derived from depth cues. Instead, the three-dimensionality of the 

shape perceived is assumed by the visual system. This assumption, which 

is based on a priori knowledge of the environment, seems to be intuitively 

obvious. It can be thought of as an instantiation of the Law of Prägnanz 

introduced by the Gestalt psychologists. Why should the visual system waste 

computational resources in order to determine that a 2D retinal image was pro-

duced by a solid object when all 2D images in the evolutionary history of our 

species have been produced by solid 3D objects!

Most objects important to humans allow a great deal of shape constancy 

to be achieved. There are exceptions, however, where we know that con-

stancy is likely to fail, even when the object is complex. These failures raise 

two questions, namely, what are these objects like and what is the signifi -

cance of the failure to achieve shape constancy when they are present in 

the environment? Shape constancy is likely to fail with unstructured 

objects such as a ragged rock, a crumpled newspaper, a potato, or a casually 

folded piece of fabric. It is certain that an observer can perceive the surfaces 

of such objects despite the fact that he or she cannot perceive their shapes. 

We know that the shapes of such unstructured objects cannot be perceived 

because shape constancy fails when they are used in constancy experiments 

(see chapter 4). Recall that when constancy fails, it fails because no unam-

biguous shape is available to the observer. Why should there be any ambi-

guity left after shape constraints are applied to the 2D images of such 3D 

objects? Ambiguity remains because in the case of unstructured 3D objects 

like these, shape constraints may be ineffective. They may be ineffective 

simply because there will be infi nitely many possible solutions when one 

tries to fi nd the most symmetrical and most compact 3D shape possible 

with the 2D images that objects like these produce on the retina (see 

chapter 4). In such cases, the surfaces of a 3D object are perceived, but its 

shape is not. Note that in the new theory, unlike in Marr’s, surfaces are 
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not closely tied to shape. Surfaces are perceived by taking depth cues into 

account, whereas shapes are perceived as a result of the operation of “shape 

priors.” It should not be surprising that when shape constancy fails, objects 

are perceived and recognized by using information about their surfaces. Is 

the absence of shape likely to cause problems in identifying such unstruc-

tured objects? The answer is probably “no” because there is no unique 

shape that can characterize any unstructured object like those described 

above. Some of these objects (fabric or newspaper) are nonrigid, and their 

shapes can change arbitrarily. In the case of others, shape is not informa-

tive at all because there is no 3D shape shared by all potatoes or by all 

rocks. Clearly, shape constancy seems to fail only with objects whose 

shapes cannot be used to identify them or to discriminate one from 

another.

Is this new theory of shape likely to lead to a complete explanation of 

shape constancy? There is considerable reason for optimism. The simula-

tion experiment on the reconstruction of random polyhedral shapes, 

reported by Pizlo et al. (2006) and Li and Pizlo (2007) and described in the 

previous section, strongly suggests that symmetry and compactness con-

straints are suffi cient for veridical reconstructions of the shapes of struc-

tured objects. The strength of this experiment lies in the fact that it used 

randomly chosen unfamiliar objects. Using unfamiliar objects is critical for 

testing shape constancy in both humans and machines because if you use 

a familiar object, such as your car, one can argue that you see its shape 

veridically because you have seen it many times from many viewing direc-

tions. A weakness of the Pizlo et al. experiment, however, is that the ran-

domly chosen stimuli are “unnatural.” This raises a signifi cant question, 

namely, how likely is it that the results of a shape constancy experiment 

with such “unnatural” objects will generalize to the shapes of natural 

objects, such as the bodies of animals or fruits? There are two good reasons 

for optimism.

First, if our “unnatural” stimuli were processed by different visual mecha-

nisms than processed natural stimuli, it seems unlikely that the “unnatu-

ral” stimuli used in the Pizlo et al. experiment would have demonstrated 

near perfect shape constancy. Nearly perfect shape constancy can be dem-

onstrated with natural objects in everyday life as well, as in the laboratory. 

Parsimony alone seems a suffi cient reason to accept the assumption that 

the visual mechanisms used to process both “unnatural” and natural 
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stimuli are at least very similar, perhaps even identical. Second, natural 

objects such as the bodies of animals and fruits are nearly symmetrical. 

Furthermore, they tend to be “maximally compact.” It was shown (above) 

that symmetry alone can drastically reduce the family of possible 3D inter-

pretations of a 2D image to, at most, a few degrees of freedom. This is 

completely analogous to how the “unnatural” randomly chosen polyhe-

dra, used by Pizlo et al., were reconstructed by application of the new 

theory. It is true that application of symmetry constraints is relatively easy 

when distinctive points are provided, as they were with the polyhedral 

objects used in the Pizlo et al. experiment. However, symmetry constraints 

can also be applied to natural objects having fewer distinctive points. 

Unfortunately, at present, computational geometry is not suffi ciently 

developed to allow us to do these computations effi ciently, if at all. But 

this defi ciency is not the fi rst, nor the last, example of the fact that there 

is more to visual (perceptual) geometry than can be found in existing 

textbooks on machine vision.

Now that we have seen that (i) the three-dimensionality of the percept 

does not have to be derived from retinal images, but can simply be assumed, 

and (ii) a veridical 3D shape percept can be produced simply by the appli-

cation of symmetry and compactness constraints, it becomes clear that the 

most diffi cult aspect of 3D shape reconstruction has been explained. 

It follows from these considerations that it should be possible to make 

machine vision systems that perform as well as, perhaps even better than, 

humans perform in shape perception tasks. Recall that fi gure–ground orga-

nization establishes the contours and regions in the 2D retinal image that 

represent individual 3D objects “out there” (see section 5.1.1). In the new 

theory of shape constancy, fi gure–ground organization is followed by an 

intermediate stage during which the parametric family of 3D inverse per-

spective projections is established (see section 5.1.2). Working out the 

details of these two stages is diffi cult, but work is under way and progress 

is being made as this is being written. Now that the goal of these two stages 

can be stated clearly, namely, providing appropriate input for the shape 

priors to operate, formulating a plausible model may be relatively easy. 

Keep in mind that up to now the important role that fi gure–ground orga-

nization must play in shape perception was not appreciated. Now that its 

role can be stated clearly and now that we have developed a very effective 

simplicity principle, it should be possible to move rapidly toward our goal 
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of understanding how human beings perceive naturalistic shapes veridi-

cally in realistic environments. It even should be possible to make a 

machine that can do this too.

The best way to appreciate where we are is to summarize how we got 

here. This will be done by summarizing what it took to achieve our current 

understanding of shape perception by tracing the obstacles that had to be 

overcome (millstones) and the signposts signifying success (milestones) 

on the road to understanding shape.

5.4 Millstones and Milestones Encountered on the Road to 

Understanding Shape

5.4.1 The “Taking Slant into Account” Explanation of Shape Constancy 

during the Heyday of Empiricism (1083–1912)

The fi rst explanation of shape constancy was assumed to be the same as 

the explanation of other constancies, namely, constancy was explained by 

taking into account the context in which the critical feature of the stimulus 

appeared. For example, in the perception of 2D shapes, the slant of the 

shape’s surface provided the context. This explanation was especially 

favored by the empiricists, which means that it was accepted by most 

people interested in shape perception before 1912 when the Gestalt Revo-

lution began. The “taking slant into account” explanation was one of the 

main millstones impeding progress toward developing an understanding 

of shape constancy. Note that understanding shape constancy is essential 

for understanding shape itself.

At the end of the nineteenth century, Helmholtz proposed an alternative 

explanation that did not make use of slant. For Helmholtz, the perception 

of shape was based on memorizing a large number of 2D views of a given 

object. The mechanism described by Helmholtz made use of an “uncon-

scious conclusion.” The observer “inferred” the shape of the object from 

its retinal image and the memory of previously seen images of the same 

or similar objects. This nineteenth-century theory resembles a contempo-

rary look-up table type of explanation, in which associations between 

retinal stimuli and 3D percepts are established by learning. Although it did 

not receive much attention when it was fi rst presented, Helmholtz’ look-up 

table theory was often used (usually without attribution to him) in the 

1990s as a model for machine vision (Poggio & Edelman, 1990), as well as 
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for a theory of human shape perception (e.g., Edelman & Bülthoff, 

1992).

5.4.2 Thouless’ (1931a,b) Experiments, Ostensibly on Shape Constancy, 

Actually Studied Shape Ambiguity

Unfortunately, this fi rst attempt to study shape constancy in psychophysi-

cal experiments used ellipses as stimuli. This family of shapes is character-

ized by only one parameter (its aspect ratio). Ellipses are not suffi ciently 

complex to be used as stimuli to study shape (the family of triangles is also 

unsuitable). Perspective projection changes 2D shapes with two degrees of 

freedom, which means that Thouless actually studied shape ambiguity, not 

shape constancy. His results pertain to depth, not to shape, perception. 

Thouless did establish that depth cues improve the perception of a slanted 

ellipse. This result, which was subsequently replicated with triangles, does 

not generalize to any other 2D shape. Thouless has been, repeatedly and 

mistakenly, credited for establishing that shape is perceived by “taking slant 

into account.” Had Thouless been correct, the “taking into account” prin-

ciple could have been used to “explain” all perceptual constancies. He was 

wrong, however. Shape is special because it is complex and requires its own 

theory. The shape ambiguity/shape constancy confound introduced by 

Thouless (1931a,b) resurfaced twice in the 1990s—fi rst, when shape con-

stancy was studied with unstructured stimuli such as polygonal lines (e.g., 

Rock & DiVita, 1987), and then again in binocular experiments on the per-

ception of the depth of simple 3D objects (e.g., Johnston, 1991).

5.4.3 The Gestalt Psychologists Make Progress by Introducing a 

Simplicity Principle and Figure–Ground Organization (1912–1935)

The fi rst breakthrough in studying shape came with the Gestalt psycholo-

gists, who emphasized that the percept cannot be explained by analyzing 

the content of the retinal image. They claimed that the perception of shape 

requires the operation of a simplicity principle. According to this principle, 

the shape most likely to be perceived is the simplest possible interpretation 

of the retinal shape produced by a 3D object “out there.” It would take 

more than half a century and many arguments and controversies involving 

individuals working in the Gestalt and Empiristic traditions before this 

view was accepted and a computationally useful version of this critical 

principle was formulated.
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A 3D shape percept cannot be produced until its 2D shape on the retina 

is established. Establishing 2D retinal shapes is called “fi gure–ground orga-

nization.” Calling attention to the importance of fi gure–ground organi-

zation is the second critical contribution of the Gestalt psychologists. 

Figure–ground organization and the underlying simplicity principle have 

been studied extensively, but the role of this principle in 3D shape percep-

tion was greatly underestimated until recently. Additional work on fi gure–

ground organization is needed before we can make effective use of this 

critical initial stage in models of human and machine visual systems. The 

human visual system organizes the 2D retinal image into fi gures (the 2D 

shapes of objects) and backgrounds much faster and much better than any 

machine system devised to date. In fact, there is currently no machine 

vision system that can do it at all when realistic images are used. Under-

standing the former should make appreciable improvements of the latter 

possible.

5.4.4 Stavrianos (1945) Publishes an Experiment that Actually 

Demonstrates Shape Constancy

Stavrianos used rectangles to study shape constancy. This is the simplest 

family of shapes that avoids shape ambiguity because four parameters are 

required to characterize the shape of a rectangle. Ellipses and triangles are 

not suffi ciently complex for shape constancy to be achieved because they 

have too few parameters. Stavrianos showed that shape constancy can be 

obtained and that achieving it does not involve making use of cues to 

depth. This was the fi rst legitimate experiment on shape constancy, but its 

signifi cance went unnoticed for a very long time. The shape constancy 

achieved without depth cues in Stavrianos’ experiment can be explained 

by the use of perspective invariants.

5.4.5 Studying Shape Thresholds and Shape Illusions Adds Little 

(1920–1970)

A simplicity principle can be used to make up for information lost in the 

perspective projection from a 3D scene to the 2D retina. This fact means 

that the role of a simplicity principle that can do this is best studied with 

3D shapes. A simplicity principle is not needed for the perception of a 2D 

shape. A simplicity principle is needed to establish fi gure–ground organiza-

tion, the process that produces 2D shapes on the retina, but, when the 
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shape percept is 2D, no information is missing. Gestalt psychologists, and 

those they infl uenced, tried to demonstrate the operation of a simplicity 

principle by (i) studying the confl ict between the simplicity principle and 

the retinal image and (ii) studying interactions between shapes and the 

contexts that produced a new class of illusions called “fi gural aftereffects” 

(Köhler & Wallach, 1944). Clearly, a simplicity principle is needed to 

understand shape perception. However, it is important to keep in mind 

that this simplicity principle is used by the visual system to add informa-

tion lost during the transformation from 3D to 2D, not to compete with 

the 2D image. Thus, devoting effort to studying 2D shape thresholds and 

shape illusions was a blind alley. It added little, if anything, to our under-

standing of either shape perception or shape constancy.

5.4.6 Cognitive Psychologists (1953–1976) Make Progress by 

Shifting from the Study of 2D Shapes to the Study of 3D Shapes 

and by Shifting Their Interest from Simplicity to Veridicality

Formulation of information theory was one of the main factors leading to 

the Cognitive Revolution. Information could now be measured, and the 

complexity of messages could be quantifi ed. If one conceptualizes shape 

as a message, its simplicity could be measured. The interest in information 

theory stimulated new research on shape despite the fact that the analogy 

between shapes and messages is far-fetched. Fortunately, interest at this 

time shifted from 2D to 3D shapes. When the main function of shape 

becomes allowing the identifi cation of an object, 3D shapes become inter-

esting; 2D shapes are not interesting in the real world because real objects 

are always 3D. From this point on, research on shape perception focused 

on 3D shapes. By the end of this period, it was widely recognized that the 

visual system uses a simplicity principle to produce veridical percepts. 

Percepts are of no use to the observer if they are not veridical. Recognizing 

this represented appreciable progress toward developing an understanding 

of shape constancy, as well as of shape itself.

5.4.7 Progress Is Inhibited When Empiricism Is Revisited (1947–1983)

The Cognitive Revolution was stimulated by increased interest in neurosci-

ence as well as by the introduction of information theory. The progress in 

electronic instrumentation achieved during World War II, had an immedi-

ate effect on neuroscience, leading to systematic study of the architecture 
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of the visual system. The conceptual background for this work was pro-

vided by Hebb in his infl uential book published in 1949. He provided a 

neo-empiristic theory of visual perception in which all visual percepts, 

even those as elementary as the percept of a line segment, were learned. 

The learning mechanism proposed by Hebb was borrowed from Pavlov’s 

conditioning theory. For a number of reasons, neural neo-empiricism con-

tributed little, if anything, to our understanding of shape.

Other neo-empiricists in this period concentrated on the role of cogni-

tive factors in perception, with a special emphasis on learning and think-

ing. They took the Gestalt simplicity principle and reformulated it as a 

likelihood principle. The main fi gure in the neo-empiristic camp, Rock, 

gradually drifted away from the likelihood principle toward the traditional 

empiristic position represented by the “taking into account” explanation 

of shape constancy. The main difference between Rock and his empiristic 

predecessors was that Rock assumed that shape constancy involves think-

ing, not just stimulus–response relations. Neglecting both simplicity and 

likelihood principles, and emphasizing learning and thinking, was a “giant 

step” backwards.

5.4.8 Progress Is Made by Using Computational Models in Machine 

Vision (1965–1982)

By around 1970, the study of human vision had reached an impasse. There 

were several very different and confl icting theoretical approaches, called 

“direct perception,” “unconscious inference,” “neo-Gestalt,” and “percep-

tual learning.” It was not clear how one was to choose among them. An 

answer came from the machine vision community. All in the human vision 

community at that time assumed that producing a 3D shape percept is 

fairly easy, but how this was done differed among the various approaches. 

It was commonly accepted in this period that explaining veridical percep-

tion was easier than explaining illusions (e.g., Braunstein, 1976, p. 174), 

so many in the vision community concentrated on studying illusions. This 

concentration on illusions was only put to rest when the machine vision 

community tried to simulate the operation of veridical perceptual mecha-

nisms on a computer. By the early 1970s it had become clear that explain-

ing veridical perception is actually extremely diffi cult, far harder than 

simulating human illusions. It is so diffi cult that without the “existence 

proof” provided by the success of the biological vision systems, the machine 
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vision community would surely have agreed that the goal of creating a 

general purpose vision system, which perceived veridically, was well beyond 

reach.

5.4.9 The Unfortunate Neglect of Figure–Ground Organization 

(1950–1985)

Two infl uential contributors, Gibson and Marr, claimed that there was 

no need to include the perceptual organizing principle the Gestalt 

psychologists called “fi gure–ground organization” in their theories of 3D 

shape and space perception. Their reasons were quite different. Gibson 

claimed that a priori rules of perceptual organization are not needed 

because veridical visual perception is simple (Gibson, 1950, p. 196). 

Marr ruled out fi gure–ground organization because it was too diffi cult to 

implement in a computational model. The consensus achieved by these 

two infl uential, but clearly not like-minded, scientists, kept the study 

of fi gure–ground organization separate from the study of 3D shape 

perception.

5.4.10 Gibson’s Putative “Direct” Perception (1950–1979)

Gibson, despite being impressed with the importance of veridicality and 

ecological validity in visual perception, adopted a Fechnerian position in 

which the percept requires only sensory coding. No additional higher level 

processing is needed. Thus, according to Gibson, a simplicity principle is 

not needed, learning is not needed, and computations are not needed. We 

just see things as they really are. Gibson’s commitment to naive realism 

had a lasting effect in the human vision community despite the fact that 

it must have been obvious by the late 1970s that this approach could not 

explain shape perception, nor many other perceptual accomplishments. 

Gibson did appreciate the fact that veridical perception is important and 

illusory perception is not. However, his failure to appreciate the fact that 

the veridical perception of shape is a computational problem routinely 

solved by the visual system kept him, from contributing anything of merit 

to shape perception. The next step was taken by others. Gibson’s idea, 

called “direct perception,” is equivalent to treating perception as a forward 

(direct) problem. The fact that perception is an inverse problem was only 

explained by Poggio et al. (1985) after Gibson died. This shift in emphasis 

opened the way for progress.
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5.4.11 Marr’s Paradigm: The “Taking Slant into Account” Principle 

Revisited (1982–  .  .  .)

Marr offered a 2.5D sketch as a substitute for fi gure–ground organization. 

Shape was important for Marr, but surfaces were even more important. 

Marr wore his mathematical hat when he formulated his theory. Once one 

realizes that the “curvature,” a derivative of the orientation of a surface, 

can be used to describe the surface’s shape, it seems to follow naturally 

that the visual system should derive shape from orientation. Marr did not 

appreciate how diffi cult it would be to reconstruct surfaces. At the same 

time, he failed to recognize the uniqueness of shape. Marr’s approach was 

almost surely motivated by Julesz’s introduction of random-dot stereo-

grams with which 3D shapes could be perceived without providing any 

shapes in the stimuli. Julesz made an important contribution when he 

showed that binocular disparity itself, in the absence of any other cues, 

can produce the percept of depth relations. However, there is a long way 

to go from generating shapes with random-dot stereograms to understand-

ing or reconstructing the shapes of natural objects from their 2D images. 

Note that random-dot stereograms are not common in our natural envi-

ronment, so there is no reason to expect that the primary mechanism of 

3D shape perception is the one that begins with computing binocular dis-

parities rather than 2D shapes on the retina. Breaking visual camoufl age, 

a visual ability similar to fusing random-dot stereograms, may be impor-

tant, even critical, for predatory animals or for the military reading aerial 

photographs, but not for ordinary human observers in everyday life. If 

disparity were to be essential for perceiving shape in everyday life, any of 

our ancestors who lost an eye would have been at a great disadvantage. 

Humans now, and most likely then, manage very well with a single eye. 

There seems to be little reason to afford binocularity, disparity, and random-

dot stereograms a critical role in natural shape perception.

5.4.12 Marr’s Neglect of Psychophysical Experimentation

Marr strongly infl uenced the vision and cognitive science communities 

when he introduced his three-level approach to the analysis of a biological 

system. The fi rst level in his approach is the development of a computa-

tional theory, which specifi es what is to be computed and why it should 

be computed. His second level specifi es how these computations are to be 

performed. This is called the “algorithmic” level. His third level describes 
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neuroanatomical and neurophysiological implementations of the algo-

rithm. The second level can be tested in psychophysical experiments. The 

third level can be tested in neuroanatomical and neurophysiological exper-

iments. But how did Marr propose to test his fi rst “computational” level? 

Marr never explicitly stated whether or how a computational theory should 

or could be tested experimentally. Perhaps he was planning to test it after 

the other two levels had been examined in some detail, or perhaps he 

believed that his computational theory of shape in which surfaces are 

reconstructed (the what part) in order to see objects (the why part) is self-

evident. It seems rather unusual that empirical verifi cation of an important 

claim like this was not high on Marr’s list, a fact that is not without con-

sequences for the scope and power of Marr’s theory of shape perception. 

All of the efforts of Marr and his group were devoted to formulating algo-

rithms of what they called “shape from X” (where X represented a depth 

cue such as disparity, motion, shading, or texture). These algorithms should 

have been called “surface from X” rather than “shape from X.” Some effort 

did go into psychophysical tests of individual algorithms (e.g., algorithms 

for binocular stereopsis), but no effort went into testing the computational 

theory itself. Marr probably simply ran out of time because of his untimely 

death. The absence of such tests held back, one could even say misdirected, 

the study of shape for thirty years.

5.4.13 Important Steps, but in the Wrong Direction: Projective 

Invariants and a Model Based on an Uncalibrated Camera (1988–1995)

Once the idea of “invariants” appeared in the vision literature (thanks to 

Gibson, who used the term frequently but inconsistently and often incor-

rectly), the machine vision community explored what and how much can 

be done with “invariants.” Projective invariants were the only invariants 

that could be applied to perspective images that were known in mathemat-

ics at the time. Using projective invariants is based on the assumption that 

the human eye is an uncalibrated camera. This assumption is not correct. 

The human eye is a calibrated camera: Its focal length and the position 

of the fovea are “known” to the human visual system. As a result, projec-

tive invariants cannot be used to model human vision. Specifi cally, shapes 

that “look” identical to projective invariants may look very different to a 

human observer. Using the terminology of signal detectability, projective 

invariants produce higher false-alarm rates in a shape recognition task. Put 
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differently, projective invariants would make shape ambiguity an impor-

tant problem, perhaps even as important as shape constancy. The reader 

should realize by now that this would be undesirable, to say the least. 

Progress clearly required appreciating the fundamental limitations of pro-

jective invariants. An appreciation of these limitations led to the develop-

ment of a new kind of invariants, called “perspective invariants,” and to 

the acceptance of the “calibrated camera” as the appropriate model of the 

human eye.

5.4.14 Progress Produced by Introducing Perspective Invariants 

and a Calibrated Camera Model (1990–  .  .  .)

A calibrated camera is the appropriate model for the human eye. In par-

ticular, the visual system “knows” both its focal length and the position 

of the fovea. Such a camera is able to use all the information present on 

the retina. This model is mathematically less convenient than the model 

provided by an uncalibrated camera, but it is unquestionably the appropri-

ate model to use to study human vision. The properties of a calibrated 

camera model had actually been in practical use for a long time, but their 

implications for projective geometry had never been made explicit. Once 

they were made explicit, it became clear that conventional mathematical 

invariants (projective and affi ne) do not provide a complete description of 

the geometry of perspective projection in the human eye (Pizlo & Rosen-

feld, 1990, 1992; Pizlo, Rosenfeld, & Weiss, 1997a, b). The formulation of 

new invariants, called “perspective invariants,” was very important. It (i) 

provided a long-overdue explanation of Stavrianos’ (1945) results on shape 

constancy with 2D fi gures, (ii) paved the way for the formulation of model-

based invariants, (iii) called attention to the importance of the complexity 

of shape and the lack of relevance of depth cues, and (iv) set the stage for 

formulating a plausible model of shape constancy with 3D shapes.

5.4.15 The New Paradigm of Inverse Problems (1985–  .  .  .)

Introducing the paradigm of inverse problems and regularization theory 

was a turning point in the history of perception. This paradigm changed 

the way perception, in general, and shape perception, in particular, has 

been studied and modeled. In this paradigm, perception is a diffi cult 

inverse problem that cannot be solved without a priori constraints. A priori 

constraints are at least as important as traditional visual cues. This new 
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paradigm revived Gestalt ideas one more time. Recall that it was the Gestalt 

psychologists who emphasized that the retinal image is not suffi cient to 

explain the percept and who fi rst introduced the concept of a priori sim-

plicity constraints. The translation of these vague ideas into formal com-

putational models was triggered by the introduction of the paradigm 

of inverse problems to vision science (Poggio et al., 1985). Currently, all 

serious efforts in mathematical and computational modeling of vision 

involve regularization or Bayesian models. When the new paradigm was 

introduced, it was considered to be an extension of Marr’s paradigm. This, 

by itself, was a millstone, but, considering all of the implications that fol-

lowed from its introduction, the inverse problem paradigm deserves to be 

classifi ed as one of the most important milestones, leading to the develop-

ment of an understanding of shape perception.

5.4.16 The Role of Depth Cues in Shape Perception: The “Taking Slant 

into Account” Principle Emerges One More Time (1987–  .  .  .)

The popularity of Marr’s 2.5D sketch was responsible for the way most 

human vision has been studied for many years. Marr assumed that the 

depth and orientation of surfaces were the key to understanding shape 

perception. However, depth and orientation judgments are very unreliable. 

This made it plausible to assume that shape perception would be unreli-

able, too. This proved to be the case, but only (i) when impoverished, 

unstructured stimuli are used and/or (ii) when the viewing orientation of 

the object relative to the observer is severely restricted. Each of these 

choices has fatal consequences for the study of shape. The use of unstruc-

tured stimuli was motivated by attempts to study the relation between 

shape and depth uncontaminated by regularities of objects, such as their 

symmetry. But leaving out all of the regularities that natural objects have 

naturally resulted in leaving shape completely out of the stimuli used in 

putative studies of shape! The second choice, restricting the viewing ori-

entation, was motivated by attempts to study, as directly as possible, the 

relation between Marr’s 2.5D sketch (the 3D percept in a viewer-centered 

representation) and the shape (the 3D percept in an object-centered rep-

resentation). But, if only one viewing orientation is used, shape constancy 

cannot be studied, and shape constancy is the best (perhaps the only) basis 

upon which one can be sure that one is studying shape rather than some 

other property of the test stimuli. Also, if only one viewing orientation is 



180 Chapter 5

used, one learns little about how shapes of objects are recognized in every-

day life. In everyday life, objects are seen from different viewing directions 

because the human observer often changes his or her position relative to 

the environment, to say nothing of the fact that many signifi cant objects 

in natural environments change their orientation with respect to the 

human observer.

5.4.17 Memorizing 2D Images of Objects in Order to Recognize 3D 

Shapes: Empiricism Revisited (1990–  .  .  .)

The fact that the percept of a 3D shape is itself 3D has not been questioned 

for a long time. However, the diffi culty inherent in developing a compu-

tational model that could recognize at least some shapes from real images 

encouraged some researchers to ignore 3D perceptual representation alto-

gether and to study the perception of 3D shape by providing extensive 

training with 2D images of 3D objects. The idea that 3D shapes could be 

recognized by memorizing a series of 2D representations originated with 

Helmholtz (1867/2000). The machine vision community gave it new cred-

ibility in the 1990s, more than 100 years after it had been proposed by 

Helmholtz. This multiple-views theory is analogous to Gibson’s, despite 

many differences between the two. Both are wrong for a similar reason. 

Gibson assumed that the 3D world maps directly to the 3D percept. Propo-

nents of the multiple-views theory assume that the 2D retina maps directly 

to the 2D percept. Gibson left out the retina, while the 2D multiple-views 

theorists left out the third dimension from the percept. Both theories 

treated perception as a direct (forward) problem rather than as the inverse 

problem it is now known to be.

5.4.18 The Importance of Figure–Ground Organization Is Finally 

Recognized (1985–  .  .  .)

Those few individuals who did not confi ne themselves to Marr’s 2.5D 

sketch after its introduction in 1976 explored the role of fi gure–ground 

organization. Progress was extremely slow because this problem is very 

diffi cult. Establishing 2D shapes in a noisy image of a cluttered naturalistic 

environment is challenging. There has been continuous progress in under-

standing this problem and appreciating its diffi culty within the machine 

vision community since the middle of the 1980s. Progress started with 

models of 3D shape recognition, in which the establishment of a fast and 
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effi cient percept of the shapes of 3D objects was assumed to be based on 

perceptual grouping’s leading to contours and shapes in the image (Bieder-

man, 1985; Lowe, 1985). This early computational work showed, once 

again, that this problem was very diffi cult and that “smarter” methods for 

establishing 2D shapes were needed. Today, very few would dare to doubt 

that fi gure–ground organization plays a critical role as the fi rst step to 

establishing a 3D shape percept. Specifi cally, fi gure–ground organization is 

critical because it establishes 2D shape on the retina and prepares the way 

for 3D shape reconstruction by means of shape constraints. Once it is rec-

ognized that Marr’s 2.5D sketch was adopted to substitute for understand-

ing fi gure–ground organization, it should be easier to remove the 2.5D 

sketch from theories of shape now that fi gure–ground organization is back 

in the picture.

5.4.19 The Uniqueness of Shape Is Finally Recognized (1985–  .  .  .)

The fact that shape is unique was recognized by the human vision com-

munity only twenty years ago. Once the uniqueness of shape had been 

recognized, the human vision community began to (i) study shape con-

stancy with complex stimuli whose shape had more than one or two 

parameters and (ii) determine the experimental conditions required for 

shape constancy to be achieved reliably. It became clear very quickly that 

3D shapes can be, and are, perceived veridically. They can be perceived as 

one and the same shape from many viewing directions. Attempts to treat 

shape as a unique perceptual property were few and far between, and they 

were immediately faced with fi erce opposition. There were two main 

reasons motivating this opposition. First, many human vision researchers 

insisted on confusing shape constancy with shape ambiguity. The former 

requires shape to be special; the latter does not. Second, all attempts to 

formulate a working computational model that used a 3D representation 

of shape failed, whereas some limited success was achieved by models that 

used a 2D shape representation. Progress in machine vision is evaluated 

by comparing one’s own algorithm to the algorithms of one’s predecessors; 

it is not based on whether any of the algorithms actually work (see appen-

dix C, section C.1a). Despite these failures, appreciation of the fact that 

shape constancy is of fundamental importance and that shape is special, 

taken in conjunction with progress in understanding fi gure–ground orga-

nization and the acceptance of inverse problems theory, paved the way for 
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a new paradigm. There was only one element missing, namely, the concept 

of shape constraints.

5.4.20 Recent Misguided Attempts to Change the Conventional, 

Meaningful Defi nition of Shape Constancy (1990–  .  .  .)

The most recent conceptual millstone was an attempt to change the con-

ventional, unambiguous defi nition of shape constancy to a defi nition that 

leads to experiments that have nothing to do with shape. Conventionally, 

“shape constancy” refers to the fact that the percept of the shape of a given 

object remains constant despite changes in the shape of the object’s retinal 

image. Said slightly differently, the retinal image changes when the orien-

tation of the object relative to the observer changes, but the perceived 

shape of the object does not change; it remains constant. Suppose you 

conduct an experiment in which neither the retinal shape nor the percept 

of the shape changes. Does this kind of experiment have anything to do 

with what is conventionally called “shape constancy”? How about an 

experiment in which the retinal shape does not change but the perceived 

shape does? Can this experiment be interpreted as a failure of shape con-

stancy? A number of contemporary researchers have answered “yes” to 

both questions (e.g., Doorschot et al., 2001; Nefs et al., 2005; Scarfe & 

Hibbard, 2006). Doing this, of course, completely changes the conven-

tional meaning of shape constancy. Accepting this change would be going 

back to the confusion that led to Thouless’ misleading experiment pub-

lished in 1931. Shape constancy cannot present itself when the retinal 

shape does not change, regardless of whether or not the perceived shape 

changes. If the retinal shape is not changed in the experiment, shape 

ambiguity, not shape constancy, is being studied. Thouless (1934) claimed 

that shape constancy is not a reliable perceptual phenomenon and even 

proposed that it should not be studied when he failed to observe constancy 

in an experiment that used stimuli with an insuffi cient number of param-

eters to allow constancy to manifest itself. Recently, a number of investiga-

tors, including those cited above, have proposed treating shape constancy 

and shape ambiguity as one and the same phenomenon. This is not a good 

idea either. We will be much better off concentrating on explaining 

shape constancy rather than denying its existence. We should also avoid 

confounding shape constancy with shape ambiguity. Shape constancy 

and shape ambiguity are different phenomena in several ways, namely, 
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(i) shape constancy, unlike shape ambiguity, is common in everyday life; 

(ii) retinal shape, fi gure–ground organization, and a priori shape con-

straints are critical in shape constancy, but not in shape ambiguity; and 

(iii) cues to depth and to orientations of surfaces, context, and familiarity 

are critical in shape ambiguity, but not in shape constancy.

5.4.21 The Role of Shape Constraints in Reconstructing 3D Shapes 

(1991–  .  .  .)

The concept of shape constraints had been emerging slowly. By shape 

constraints we mean an a priori simplicity principle involving spatially 

global aspects of 3D objects, such as symmetry or compactness. The concept 

of shape constraints appeared for the fi rst time with Gestalt psychologists, 

who did not use this term (Kopfermann, 1930). It was elaborated by neo-

Gestalt psychologists in the 1950s, 1960s and 1970s. It was then used by 

the computer graphics community to provide informal models of the 

human 3D shape percept (Marill, 1991; Leclerc & Fischler, 1992). Shape 

constraints were also used in models of shape recognition (Biederman, 

1985; Pentland, 1986; Dickinson et al., 1992a). The role of shape con-

straints in shape constancy could not be fully appreciated, however, before 

the importance of fi gure–ground organization was recognized. This required 

rejecting Marr’s 2.5D sketch. Also, shape constraints could not lead to 

plausible models of shape constancy before the introduction of the formal-

ism of inverse problems. However, note that this formalism had to be 

applied to shape, not to surfaces as Marr and his followers had done. All 

of these considerations only became clear a decade ago (Pizlo & Stevenson, 

1999; Pizlo, 2001). Since they became clear, a growing number of psycho-

physical and simulation experiments have provided strong support for the 

new paradigm, in which shape constraints have played a critical role in 

the reconstruction of 3D shape.

In conclusion, progress toward understanding shape was made whenever 

it was recognized that the perceptual property called “shape” was unique. 

The main concepts that led to this progress, fi gure–ground organization 

and the simplicity principle, were formulated long ago by the Gestalt psy-

chologists. It took more than seventy years before these ideas were imple-

mented by the machine vision community in the form of computational 

models. Clearly, the contributions of the machine vision community were 

critical, but only when this community became aware of, and took 
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seriously, what had been worked out and what was known in the human 

vision community. All attempts to understand shape outside of the context 

provided by psychophysical results on shape constancy led investigators 

astray. Keeping this in mind as our research proceeds should, in time, allow 

us (i) to understand how the human visual system achieves shape con-

stancy with real objects in natural scenes and (ii) to make a machine visual 

system that works as well as our own.

Considerable progress has been made in developing this new theory of 

shape perception since the manuscript was sent to the publisher in the 

Spring of 2007. Specifi cally, a computational model has been developed 

that can recover the 3D shape of a symmetrical polyhedron from one of 

its 2D images. An additional shape constraint has been incorporated into 

this model. This new constraint minimizes the total surface area of the 

recovered shape. It has never been used before in 3D shape recovery. Using 

a weighted combination of the maximum compactness and minimum 

surface constraints recovers 3D shapes more accurately than using either 

alone. Furthermore, these recovered shapes are very similar to the shapes 

perceived by human observers presented with the same 2D stimuli. We 

also now know that the shape recovered by the model is quite stable in 

the presence of image noise and that the recovery can be performed from 

most viewing directions. The family of shapes that can be recovered 

includes all polyhedral objects with mirror symmetry, as well as many 

other symmetrical objects in which characteristic points can be identifi ed. 

Demonstrations illustrating the success of this elaborated new model are 

available on the author’s website (http://viper.psych.purdue.edu/~pizlo/). 

A detailed formal treatment of the model is also available there.



Appendix A: 2D Perspective and Projective Transformation 

A.1 Perspective Projection Representing Retinal Image Formation of 2D 

Figures

This section is based on the material published in Pizlo and Rosenfeld 

(1992). A perspective projection between two planes is defi ned by six 

parameters. The position and orientation of one of these planes (the image 

plane) can be fi xed without loss of generality. Let the equation of this plane 

be Z = f. This means that the image plane is orthogonal to the Z-axis and 

its distance from the origin of the XYZ coordinate system is f. This plane 

will be called the “image plane.” The position and orientation of the 

second plane (called the “object plane”) relative to the image plane is 

specifi ed by three parameters. Its 3D orientation is represented by slant 

and tilt. Slant (s) is the angle between vectors normal to these two planes, 

and it is in the range between 0 and 90 deg. Since the Z-axis is the normal 

to the image plane, it follows that slant is the angle between the Z-axis 

and the normal to the object plane. Tilt (t) is the angle between an ortho-

graphic projection on the XY plane of the normal to the object plane and 

the X-axis. Tilt is in the range between 0 and 360 deg. Use of slant and tilt 

is not the only way to characterize the orientation of the object plane, but 

it seems that the visual system uses this parameterization (Stevens, 1983). 

It is worth pointing out that this parameterization is somewhat counter-

intuitive. The reader should not be discouraged when he or she fi rst tries 

to understand it. Understanding perspective projection is essential for 

understanding shape perception, so making a special effort to understand 

this parameterization is worthwhile. Figure A.1 illustrates this parameter-

ization. One way to understand the meaning of tilt and slant is to realize 

that tilt specifi es the orientation of the axis of rotation of the object 

plane relative to the image plane (tilt is orthogonal to this axis) and slant 
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specifi es how much the object plane is rotated away from the image plane. 

The position of the object plane is specifi ed by the distance C of the inter-

section of the object plane with the Z-axis from the origin of the coordi-

nate system. Finally, the 3D position of the center of projection V is 

specifi ed by three parameters, namely its 3D coordinates. Here, V is assumed 

to coincide with the origin of the coordinate system. A perspective mapping 

between the two planes (image and object) is established by the lines going 

through the center of the projection.

In the human eye, the nodal point is the center of the perspective pro-

jection and the retina corresponds to the image plane. Obviously, the 

retina is not planar (fl at). However, from the point of view of the informa-

tion obtained by the visual system, the shape of the retina is not important, 

as long as the visual system “knows” the shape of the retinal surface. The 

reasoning underlying this claim goes as follows. Assume that the image 

plane is tangent to the retina at the center of the fovea. It is obvious that 

the visual rays, that is, the lines going through the nodal point in the eye, 

establish a one-to-one mapping between the retina and the image plane. 

This means that even though the actual images on the spherical retina are 

different from the corresponding images on the image plane, they provide 

the same amount of information because one can always compute one 

image from another, as long as the shape of the retinal surface is known. 

From now on, we will assume that the retina is represented by the image 

plane. In the human eye and in any camera, the center of projection is 

located between the object and its image. Since the Z-axis is usually 

assumed to point toward the object, it follows that f is negative. It is not 

τ = 0 deg τ = 45 deg τ = 90 deg

Figure A.1
Tilt is the direction of slant (from Pizlo, 1994).
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uncommon, however, to use a positive f in computations. Physically, this 

does not make sense because a camera with the image plane in front of 

the lens would not produce any image. Mathematically, however, the only 

effect of changing the sign of f is that the retinal image is right side up, 

rather than upside down. This corresponds to changing the sign of both 

x and y coordinates in the image. This is just one of many examples where 

mathematical convenience does not have any physical interpretation. In 

this particular case, this does not cause any problems, but in some other 

cases, using mathematical convenience has caused problems in attempts 

to study shape (see chapter 3).

Next, we need to specify the coordinate systems on the image plane and 

on the object plane. Let the x-axis on the image plane be parallel to the 

X-axis, and similarly, let the y-axis on the image plane be parallel to the 

Y-axis. Finally, let the point (0,0,f) be the center of this coordinate system. 

The choice of the coordinate system x′y′ on the object plane is a little tricky. 

Pizlo and Rosenfeld (1992) used a coordinate system for the object plane, 

which led to simple formulas, but whose graphical interpretation was not 

simple. Here we will do the converse. Let the point (0,0,C) be the center 

of the coordinate system on the object plane. As a result, the origin of the 

coordinate system on the object plane is projected to the origin on the 

image plane. We defi ne the coordinate system on the object plane when 

slant is zero (in such a case, tilt is undefi ned). Let x′ be parallel to x and y′ 
parallel to y. The object plane with its coordinate system x′y′ for an arbi-

trary slant and tilt is produced by rotating this plane around the line that 

goes through the origin and is orthogonal to the tilt direction by an angle 

equal to slant. The perspective projection from the object plane to the 

image plane is specifi ed by the following formulas:

x* = x′ cos t + y′ sin t,

y* = − x′ sin t + y′ cos t. 
(A.1)
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It can be seen that the distance f between the center of projection and 

the image plane is a multiplicative factor in perspective projection. By 

changing it, the size but not the shape on the image plane changes. The 
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distance C between the object plane and the center of projection, however, 

has a nonlinear effect on the image. Increasing C changes both size and 

shape on the image plane. This means that for a given fi gure on the object 

plane, its retinal shape changes with 3df: s, t, and C. However, if the retinal 

size is fi xed, the retinal shape can change with only 2df: s and t. It can 

also be seen that if the size of fi gure on the object plane is changed by the 

same factor as the viewing distance C, the image remains the same. This 

will be clear when we write equations for inverse perspective projection.

It can be shown that the set of perspective projections is not a group 

(see chapter 3 for a defi nition of a group of transformations). Specifi cally, 

a composition of two perspective projections (i.e., a perspective projection 

followed by another perspective projection) is not, in the general case, a 

perspective projection. Instead, it is a projective transformation. This can 

be verifi ed by applying equations (A.1–A.2) twice and verifying that the 

resulting equations have more terms in the numerators and in the denomi-

nator. These equations take the form described in section A.2.

Equations (A.1) and (A.2) can be used as a computer graphics tool 

because they allow one to compute perspective images of planar fi gures. 

For example, if one wants to run a psychophysical experiment on percep-

tion of planar fi gures that are slanted in 3D, then the images can be com-

puted using equations (A.1) and (A.2) and displayed on a computer monitor. 

The computer monitor should be orthogonal to the subject’s line of sight. 

The distance between the subject’s eye and the computer monitor should 

be represented in equation (A.2) by f, and f should be positive. Note that 

f must be expressed in the same units as the image on the computer 

monitor. This means that the computer monitor must be calibrated by 

measuring how many pixels correspond to 1 cm. Then, one takes the fi gure 

whose image is to be computed and decides about slant, tilt, and distance 

C. For simplicity, C may be equal to f. Again, the fi gure itself and the dis-

tance C must be expressed in the same units as f and the image on the 

computer monitor. Figure A.2 shows two examples. Figure A.2b is a per-

spective image of (a) with slant 60 deg and tilt 30 deg when the viewing 

distance was fairly large. Figure A.2c is a perspective image of (a) with slant 

55 deg and tilt 180 deg when the viewing distance was fairly small. Despite 

(or perhaps because of) the simplicity of equations (A.1) and (A.2), they 

are not readily available in textbooks.
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Note that a “perspective projection” between two planes, which refers 

to a one-to-one mapping between points of the planes, can be specifi ed 

without coordinate systems on the planes. However, in order to write down 

equations representing the relations between the object and the image 

planes, coordinate systems have to be chosen.

It is instructive to write equations for an inverse perspective projection, 

that is, for a projection from the image plane to the object plane. This can 

be done by expressing x′y′ as a function of xy:

x C
x y

f x y

y C
x y

*
/

*

= +
− −

= − +

( cos sin ) cos
tan cos tan sin

,

sin co

τ τ σ
σ τ σ τ

τ ss
tan cos tan sin

.
τ

σ τ σ τf x y− −

 (A.3)

x′ = x* cos t − y* sin t,

y′ = x* sin t + y* cos t. 
(A.4)

Equations (A.3) and (A.4) are useful when the task of the interpretation 

of the retinal image is considered. In a sense, one can say that the human 

visual system uses these equations. Note that the viewing distance C does 

not affect the shape of the fi gure “out there.” Because the distance f is fi xed 

in the human eye, it is clear that shape perception involves only two 

degrees of freedom: slant and tilt. Equation (A.3) is particularly important 

because it will be used in chapter 3 to derive invariants of perspective 

projection.

(a) (b) (c)

Figure A.2
(b) is a perspective image of (a) with slant 60 and tilt 30 deg for a large viewing dis-

tance (E = 2 deg). (c) is a perspective image of (a) with slant 70 and tilt 180 deg for 

a small viewing distance (E = 30 deg).
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A.2 Projective Transformation of a Plane

2D projective transformation between xy and x′y′ planes is specifi ed by the 

following equations:

′ = + +
+ +

′ = + +
+ +

x
ax by c
gx hy i

y
dx ey f
gx hy i

,

.
 (A.5)

Note that the denominators in the two equations are identical. There are 

a total of nine parameters, but only eight are independent. At least one 

of the following three must not be equal to zero: g, h, or i. We can then 

divide the numerators and denominators by this parameter, without 

changing the ratio.

Since a 2D projective transformation has 8df, the projective transforma-

tion is uniquely defi ned by a transformation of four points, no three of 

which are collinear. And conversely, any quadruple of points can be pro-

jectively transformed to any other quadruple of points (no three of which 

are collinear). This means that all stimuli (rectangles) in Stavrianos’ experi-

ment, as well as their perspective images (trapezoids), were projectively 

equivalent. In other words, in 2D projective space, there is only one 

quadrilateral.

It is easy to show that the mapping (A.5) represents a group of transfor-

mations. Note that equation (A.2) has the form of equation (A.5) except 

that some terms are missing. It follows that a 2D projective transformation 

is more general than a 2D perspective projection. In both, perspective 

projection and projective transformation, straight lines are mapped to 

straight lines.

A.3 2D Projective Invariants

It is known that every group of transformations has its corresponding 

invariants. In the case of 2D projectivity, the invariant is represented by a 

pair of cross ratios. Take fi ve points, A, B, C, D, and E, no three of which 

are collinear (the invariant cannot be computed when only four points are 

given, which means that projective invariants cannot be applied to Stavri-

anos’ stimuli). We can compute areas of triangles represented by any triplet 

of points. We then compute a ratio of ratios of areas as follows:
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The cross ratios in equation (A.6) are derived from determinants of points, 

which means that the areas of triangles can be either positive or negative 

depending on whether the points ijk form a clockwise or a counterclock-

wise cycle. After any 2D projective transformation of a plane, as defi ned 

by (A.5), the pair of values (I1, I2) remains unchanged for any fi ve points, 

no three of which are collinear. And conversely, if a 2D transformation of 

fi ve points leaves the values (I1, I2) unchanged, it means that these fi ve 

points are projectively equivalent (Rothwell, 1995). This means that the 

pair of values (A.6) allows a unique recognition of fi gures under 2D pro-

jective transformations. Consider a simple example. Take a set of N 

projectively different pentagons that were seen in the past. They can be 

“remembered” by storing for each of them a pair of values (A.6). Then, a 

projective (or a perspective) image of one of the pentagons is presented. 

Assuming that the correspondence of the fi ve vertices is known, we can 

compute (I1, I2) for this image (a projective transformation of a pentagon 

is a pentagon). This pair of values will uniquely determine which (if any) 

of the N pentagons stored in the memory is presented. This means that 

the invariant (A.6) can be used to recognize projectively different penta-

gons (or more generally, n-gons, n > 4). If Stavrianos used pentagons, rather 

than quadrilaterals, in her shape constancy experiment, her results might 

have been consistent with projective invariants. By using quadrilaterals 

(rectangles), she “rejected” a theory based on projective invariants. Stavri-

anos was not aware of this.
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B.1 Derivation of Perkins’ Law

Take the angle γ in fi gure 2.4. This angle is an image of an angle γ0, which 

is assumed here to be equal to 90 deg. Let LP2(xL2
, yL2

, zL2
) and LP3(xL3

, yL3
, zL3

) 

be legs of γ0. Let the z-axis coincide with the visual axis. Let lP2(xL2
, yL2

) and 

lP3(xL3
, yL3

) be the orthographic projections of LP2 and LP3 on the image plane 

(x and y coordinates of L are equal to the corresponding coordinates of its 

orthographic projection l). The following relations hold:

LP2 · LP3 = L2L3 cos (90°) = 0 = xL2 
xL3

 + yL2 
yL3

 + zL2
zL3

, (B.1)

lP2 · lP3 = l2l3 cos g = xL2
xL3

 + yL2
yL3

. (B.2)

From the two relations, we obtain:

l2l3 cos g + zL2
zL3

 = 0. (B.3)

And, from this we obtain:
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Equation (B.4) is equivalent to equation (1) in Perkins and Cooper (1980). 

Without restricting generality, we can assume that 0 ≤ γ ≤ 180. It follows 

that the left-hand side of equation (B.4) is negative when γ is acute and 

positive when γ is obtuse. The denominator on the right-hand side of 

equation (B.4) is always nonnegative (it is zero only in degenerate cases). 

The numerator on the right-hand side is positive (γ is obtuse) when zL2
 and 

zL3
 have the same sign. This happens when both LP2 and LP3 point away from 

or both point toward the observer. With three edges emanating from a 

common vertex of a right trihedral angle, either all three have the same 

direction (away from or toward the observer) or two of them have the same 
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direction. It follows that in the image of a right trihedral angle, either all 

three angles are obtuse or one is obtuse and two are acute. The line drawing 

in fi gure 2.4 satisfi es this criterion, whereas that in fi gure 2.5b does not.

B.2 Perkins’ Rule under Perspective Projection

In a perspective image of a parallelepiped, at least one set of four edges, 

which are parallel in 3D space, are not parallel in the image. However, the 

lines containing images of all these edges must intersect at a single point, 

called a “vanishing point,” if the box is a parallelepiped. In the case of 

fi gure B.1a, images of each of the three sets of four edges intersect at a 

V1

V3

V2

a b

Figure B.1
(a) A perspective picture of a cube. When the reader keeps this fi gure at a distance 

equal to the size of the picture, the retinal image is also a perspective picture of a 

cube. Images of edges that are parallel in 3D are on straight lines that intersect at a 

single (vanishing) point (V1, V2, and V3). The percept corresponds (approximately) 

to a cube when the face containing the left-most corner is perceived in front. The 

other, depth-reversed interpretation is very different from a cube. (b) A perspective 

picture of a box that is not a cube, not even a parallelepiped. This can be verifi ed 

by drawing straight lines through the images of the four “vertical” edges of the box. 

These four lines do not intersect at a single point.
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point, but this is not true with one set in fi gure B.1b. This means that these 

four edges are not parallel in 3D space, and thus, the object that produced 

this fi gure is not a parallelepiped. It is not, therefore, a rectangular paral-

lelepiped, either.

However, adding this criterion for determining whether a perspective 

image was produced by a parallelepiped is still not strong enough. It is not 

strong enough because this rule applies to any perspective image, that is, 

any image obtained by an eye with an arbitrary focal distance and an 

arbitrary position of the principal point (fovea). However, in the human 

eye, the focal distance and the position of the fovea are not free parameters; 

they are constant. This means that some perspective images of 3D scenes 

cannot be obtained on an actual human retina (Pizlo, 1994; Pizlo et al., 

1997a, b; Pizlo & Scheessele, 1998). This is illustrated in fi gure B.2 which 

is a perspective picture of a cube but does not look like a cube. When the 

observer fi xates at the center of the picture shown in fi gure B.2 and when 

the picture is orthogonal to the line of sight, the retinal image within the 

eye is identical to this picture except for its size. The point, here, is that 

this retinal image is not a valid projection of a cube, even though it is a 

perspective image of a cube. This retinal image could have been produced 

by a cube if the human eyeball had a different focal distance, that is, it 

had a different diameter, and if the fovea was not near the center of the 

retina. The fact that this fi gure does not look like a cube suggests that the 

human visual system “knows” the intrinsic geometrical parameters of its 

eye, such as its focal distance and foveal position. A combination of knowl-

edge of the geometry of the eyeball and knowledge of the rules of perspec-

tive projection is suffi cient for rejecting a parallelepiped interpretation 

when this interpretation is not consistent with the retinal image. Pizlo and 

Loubier (2000) formulated a criterion for deciding whether a given retinal 

image is a valid projection of a given 3D object. Their criterion can be 

applied to any 3D object, not only to a parallelepiped.

Figure B.2

A perspective image of a cube that does not look like a cube. The cube was in the 

far periphery of the camera that took this picture (after Pizlo & Scheessele, 1998).





Appendix C: Projective Geometry in Computational Models

C.1a Methodological Differences between Human and Machine Vision

Human Vision Machine Vision

The goal is to learn how the mind 

works.

The goal is to build machines.

Progress in the fi eld is evaluated by 

comparing the ingenuity of 

researchers to the ingenuity of 

nature.

Progress in the fi eld is evaluated by 

comparing the ingenuity of researchers 

to the ingenuity of other researchers.

Researchers study a system that 

works, but they do not understand 

how (yet).

Researchers understand the systems they 

have built, but the systems do not work 

(yet).

A theory of the system is formulated 

after making thousands of 

observations of the system’s 

performance.

A theory of the system must be 

formulated before even a single 

observation of the system’s performance 

can be made.

The fi eld provides lots of results but 

few theories.

The fi eld provides lots of theories but 

few results.

Researchers often concentrate on one 

detail of the system.

Researchers usually work on large parts 

of the entire system.

This table is included to make it easy for the reader to understand why 

machine vision has not played a larger role in research on human vision 

to date. However, more importantly, understanding the limitations implied 

by these differences should make it easier for researchers in both fi elds to 

understand each other.
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C.1b Types of Geometrical Invariants Relevant to Shape Constancy

Projective invariants properties (a ratio of ratios of distances or of surface 

areas) that are not changed by a perspective projection or any sequence of 

perspective projections of a 2D shape (Klein, 1939).

Affi ne invariants properties (a ratio of distances of parallel line segments 

or of areas) that are not changed by a parallel projection. Affi ne invariants 

can also be used in the case of a perspective projection or any sequence of 

perspective projections of a 2D shape as long as the angular size of the 

projected shape is small.

Perspective invariants properties (ratios of distances in a ψ function repre-

sentation) that are not changed by a perspective projection of a given 

2D shape onto the image in the eye or in a calibrated camera (Pizlo & 

Rosenfeld, 1992).

Model-based projective invariants properties (a ratio of ratios of distances 

or of volumes) that are not changed by a perspective projection or any 

sequence of perspective projections of a limited class of 3D objects, namely, 

polyhedra or cylinders of revolution (Rothwell, 1995).

C.2 Perspective Projection from 3D Space to a 2D Image

Consider the XYZ coordinate system, whose origin coincides with the 

center of projection of the camera (nodal point of the eye). Let the image 

plane of the camera (surface of the retina) coincide with the plane Z = f 

and the origin of the camera coordinate system xy (center of the fovea) 

coincide with the point (0,0,f).1 Finally, let the axes x and y be parallel to 

the axes X and Y, correspondingly. A perspective (retinal) image of an 

object point V(X,Y,Z) can be computed as follows:

x f X
Z

y f Y
Z

=

=

,

.
 (C.1)

These equations are rather simple, compared to the equations for a 2D to 

2D perspective projection described in chapter 1. This is because equations 

(C.1) use one global coordinate system related to the camera, whereas 

equations (A.1–A.2) use two separate coordinate systems. If an object point 

is known in a coordinate system X′Y′Z′, which is different than the coor-
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dinate system XYZ by a rotation R and translation T, then before equations 

(C.1) are applied, one has to express the coordinates of the point in the 

camera coordinate system. Let V′ = [X′,Y′,Z′]t be a column vector represent-

ing a point V in the object’s coordinate system, V = [X,Y,Z]t be a column 

vector representing the point in the camera coordinate system, R be a 3 × 

3 matrix and T be a 3 × 1 column vector [t1,t2,t3]t. Then,

V = R(V′ − T ). (C.2)

The rotation matrix R has nine parameters, but only three of them are 

independent. These three parameters correspond to the three degrees of 

freedom for a rigid rotation in a 3D space. In other words, the elements rij 

of matrix R cannot be arbitrary numbers. Instead, they have to satisfy the 

following six constraints:

r11
2 + r12

2 + r13
2 + 1, r11r21 + r12r22 + r13r23 = 0,

r21
2 + r22

2 + r23
2 + 1, r11r31 + r12r32 + r13r33 = 0, (C.3)

r31
2 + r32

2 + r33
2 + 1, r21r31 + r22r32 + r23r33 = 0.

In addition, the determinant of R must be equal to 1, not −1. A matrix that 

satisfi es relations (C.3) is called an “orthonormal matrix,” whose row 

vectors have length equal to one (i.e., they are normalized) and whose dot 

products are zero (i.e., they are orthogonal). Relations (C.3) could also be 

written for columns of a rotation matrix.

C.3 Homogeneous Coordinates for 3D to 2D Perspective Projection

The relations (C.1) in the previous section, representing a perspective pro-

jection, are nonlinear and thus cannot be represented as a matrix equation. 

This fact complicates mathematical treatment and makes it more diffi cult 

to use in machine vision applications. These relations can be rewritten 

by using homogeneous coordinates. Euclidean coordinates X,Y,Z can be 

rewritten as homogeneous coordinates as follows: X* = WX, Y* = WY, Z* 

= WZ, W* = W (here, W can be set to 1, without restricting generality). It 

is easy to get Euclidean coordinates from homogeneous ones:

X X
W

Y Y
W

Z Z
W

=

=

=

*
*

*
*

*
*

,

,

.

 (C.4)
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Similarly, we can introduce homogeneous coordinates on the image plane: 

x* = wx, y* = wy, w* = w (here, w cannot be set to an arbitrary value; instead, 

w is computed). Equation (C.1) can now be written in a matrix form. Let 

v = [x*,y*,w*]t, V = [X*,Y*,Z*,W*]t. Let A be a 3 × 4 matrix. Then,

v = AV, (C.5a)

where

A
f

=
⎡

⎣
⎢

⎤

⎦
⎥

1 0 0 0
0 1 0 0
0 0 1 0/

.  (C.5b)

The matrix equation (C.5a) represents three ordinary linear equations that 

are equivalent to the two nonlinear equations (C.1). To see the equiva-

lence, we compute x from x* and y from y*:

x x
w

X
Z f

f X
Z

y
y
w

Y
Z f

f Y
Z

= = =

= = =

*
*

*
*/

*
*

*
*/

,

.
 (C.6)

The main advantage of using homogeneous coordinates is that all trans-

formations such as rigid motions and perspective projection can be done 

using matrix algebra, which corresponds to solving a set of linear equa-

tions, and then, at the end, the Euclidean coordinates on the image are 

easy to obtain by taking ratios x*/w* and y*/w*.

Once a perspective projection is expressed by a matrix equation, we can 

now combine transformations (C.1) and (C.2) (Mundy & Zisserman, 1992, 

chapter 23):

x

y

w f

r r r R T
r r r

*

*

* /

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

− ⋅1 0 0 0
0 1 0 0
0 0 1 0

11 12 13 1

21 22 223 2

31 32 33 3

11 1

0 0 0 1 1

− ⋅
− ⋅

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

′
′
′

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=

R T
r r r R T

X
Y
Z

r r

*
*
*

22 13 1

21 22 23 2

31 32 33 3

r R T
r r r R T

r f r f r f R T f

X
Y− ⋅

− ⋅
− ⋅

⎡

⎣
⎢

⎤

⎦
⎥

′
′

/ / / /

*
*
′′

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥Z *

1
,

 (C.7a)

where

R1 · T = r11t1 + r12t2 + r13t3,

R2 · T = r21t1 + r22t2 + r23t3, (C.7b)

R3 · T = r31t1 + r32t2 + r33t3.

As already pointed out, equation (C.7a) is just another way to write equa-

tions (C.1–C.2). Given a camera with its coordinate system, an object rep-
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resented in its own coordinate system, and the relation between the two 

coordinate systems, the formula (C.7a) allows the computation of a per-

spective image. The formula (C.7a) can be written in a more general way 

as v = PV′, where P is a 3 × 4 matrix:

x

y

w

p p p p
p p p p
p p p p

*

*

*

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦

11 12 13 14

21 22 23 24

31 32 33 34

⎥⎥

′
′
′

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

X
Y
Z

*
*
*

1

.  (C.8)

If the matrix equation (C.8) is used to solve a problem involving perspective 

projection, then elements of matrix P are treated as independent. This cor-

responds to the case where the camera is not calibrated and its geometry is 

not known. As a result, perspective projection is represented by twelve 

parameters, from which eleven are independent (only eleven, not twelve, 

are independent because all elements of P can be divided by this element 

pkl that is not zero; as a result, all elements of v on the left hand side of (C.8) 

will also be divided by pkl without affecting the Euclidean coordinates (x,y) 

of v). This is the approach that Roberts (1965) took in his paper (see the 

introduction in chapter 3). Note that if elements of P are assumed to be 

unknown, then this matrix can always be postmultiplied by any 4 × 4 

matrix without changing the result. Such multiplication corresponds to an 

arbitrary 3D projective transformation. This means that using homoge-

neous coordinates will not allow reconstructing Euclidean properties of an 

object, but only its projective properties. In particular, a 3D projectivity is 

characterized by 15df. 3D shape is not changed by a rigid motion (3D rota-

tion and translation) that is characterized by 6df, or by size scaling (1df). It 

follows that a 3D projective transformation can change shape with 8df, and 

the recognition system such as Roberts’ will not be able to discriminate 

among those shapes. In other words, his method is subject to substantial 

shape ambiguity. This is the price one pays for the mathematical conve-

nience of using linear equations. The human visual system does not do this. 

It uses the nonlinear equations and keeps shape ambiguity to a minimum.

Finally, a brief remark. Since equations (C.7) and (C.8) involve homoge-

neous coordinates, it is commonplace to call the transformation repre-

sented by these equations a “projective 3D to 2D transformation.” This is 

misleading. As indicated more than once, a projective transformation is a 

one-to-one transformation. If a transformation is not a one-to-one mapping, 

it is not a group. Therefore, a 3D to 2D transformation is not a projectivity. 

For example, a set of non-coplanar points in 3D is always mapped to a set 
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of coplanar points on a 2D image. However, coplanarity is a projective 

invariant. Because coplanarity is not preserved, this transformation is not 

a projectivity.

C.4 Calibrated versus Uncalibrated Cameras

In a calibrated camera, the geometry of the camera is known. This geome-

try is characterized by a distance f between the center of projection and 

the image plane, the coordinates of the principal point (xo,yo), that is a 

point of intersection of a line emanating from the center of projection and 

orthogonal to the image plane (usually xo = yo = 0), size of a sensor repre-

sented by scale factors (αx,αy) (usually αx = αy = 1), and a skew s of the 

sensor (usually s = 0). In order to explicitly represent all those parameters, 

the matrix A from equation (C.5b) representing a perspective projection 

takes the form (Hartley & Zisserman, 2003)

A
s x

y
f

x o

y o=
⎡

⎣
⎢

⎤

⎦
⎥

α
α

0
0 0
0 0 1 0/

.  (C.9)

If a camera is not calibrated, some or all of these parameters are unknown, 

and then a perspective projection is represented by a formula (C.8). And 

conversely, if homogeneous coordinates are used and a camera is repre-

sented by eleven independent parameters, as in equation (C.8), then the 

camera is treated as uncalibrated.

Existing psychophysical evidence shows that the human eye is a cali-

brated camera. In other words, the visual system “knows” the geometry of 

the eyeball and uses this information in achieving shape constancy. If the 

eye were an uncalibrated camera, we would perceive shapes in fi gure 3.10a 

and 3.10c as identical. That is, when an uncalibrated camera is used, all 

projectively equivalent shapes “look” the same. The fact that we achieve 

shape constancy in the case of perspective, but not projective transforma-

tions of shapes, shows that our eye is a calibrated camera.

C.5 Transformations and Invariants

Invariants have been known in mathematics for a long time. An “invari-

ant” refers to a feature that does not change under some set of transforma-

tions (Klein, 1939). In geometry, invariants have received special status as 

explained by Felix Klein in an inaugural talk when he accepted a position 
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at the University of Erlangen in 1872. Klein stated that the study of geom-

etry should be organized around the concept of groups of transformations 

and their invariants (since then this claim has been called an “Erlanger 

Programm”). A set of transformations is called a “group” when it satisfi es 

four axioms. A set of translations on a plane will be used to introduce these 

axioms. Translations form a group because, fi rst, there is a zero translation 

(called an “identity” translation); second, for each translation, there is 

always another translation, called an “inverse,” so if one of these transla-

tions is followed by the other, the result (called a “product” or “composi-

tion”) is an identity translation; third, a composition of any two translations 

is a translation (a property called “closure”); and fourth, in a sequence of 

three translations performed one after another, the fi nal result does not 

depend on whether (i) the composition of the fi rst two is followed by the 

third or (ii) the fi rst is followed by the composition of the last two (a 

property called “associativity”).

There are several main groups of geometrical transformations: namely, 

rigid motion, similarity (both called Euclidean groups), affi ne, projectivity, 

and topology. Some of those groups are of interest in shape perception 

either because they can be used to describe shape (similarity group) or 

because they are relevant in the context of image formation in the human 

eye (affi ne and projective). Once a good mathematical treatment of both 

is at hand, one can formulate a theory of perception of shapes based on 

the information present in retinal images.

“Rigid motion” refers to translations and rotations (see fi gure C.1). 2D 

rigid motion (rigid motion on a plane) corresponds to a rotation by an 

angle ϕ and translation by a vector (tx,ty):

x′ = x cos j − y sin j + tx,

y′ = x sin j + y cos j + ty. 
(C.10)

Rigid motion is characterized by 3df. Euclidean distance is invariant 

under rigid motion. Obviously, moving an object or a fi gure around in a 

rigid fashion does not change any distances within the object.

If, in addition to rigid motion, one allows uniform-size scaling, a similar-

ity group is formed (fi gure C.2). 2D similarity group is represented by the 

following formulas:

x′ = k(x cos j − y sin j + tx),

y′ = k(x sin j + y cos j + ty). 
(C.11)
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Similarity transformation is characterized by 4df. Here, distance is no 

longer invariant, but the size of an angle and the ratio of distances are 

invariant. It is important to note that the similarity group is usually used 

to defi ne shape. That is, shape has usually been defi ned as those geometri-

cal aspects of an object or a fi gure that do not change under the similarity 

group of transformations. This defi nition is too narrow because some 

objects would be classifi ed as having the same shape, even though one 

cannot be obtained by a similarity transformation of the other. An example 

would be a table in which one drills a small hole. The hole, which is a 

nontopological transformation, cannot be undone by a rigid motion plus 

size scaling.

Figure C.1
2D Euclidean transformation (rigid motion).

Figure C.2
2D similarity transformation.
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Consider next the affi ne group. This is the smallest group that is relevant 

to the process of image formation in the human eye. The affi ne group is 

obtained when one allows a uniform stretch of an object or a fi gure in an 

arbitrary direction, in addition to rigid motion and size scaling (fi gure C.3). 

2D affi ne group is represented by the following formulas:

x′ = ax + by + c,

y′ = dx + ey + f. 
(C.12)

A direction in a plane requires one parameter (an angle), and the magni-

tude of stretch requires another. It follows that a 2D affi ne transformation 

has 6df as is clear from equation (C.12). Distances and angles are not invari-

ant anymore, but the ratio of lengths of two parallel line segments is an 

affi ne invariant. Another 2D affi ne invariant is the ratio of areas of two 

corresponding regions specifi ed by four points on a plane. In a 3D affi ne 

transformation, the corresponding invariant is defi ned as a ratio of two 

volumes specifi ed by fi ve points. In the context of image formation in the 

eye or a camera, a 2D affi ne group is more relevant than a 3D affi ne group. 

A 2D affi ne transformation can be used as an approximation of a projection 

of planar fi gures to the retinal or camera image. This approximation is 

good when the projecting lines are approximately parallel. This happens 

when the size of a planar fi gure is small as compared to the viewing dis-

tance. It follows that affi ne invariants could provide an explanation of 

shape constancy in the case of small fi gures. For large fi gures, however, a 

parallel projection is not a good approximation to a perspective projection, 

which means that affi ne invariants cannot provide a full explanation of 

Figure C.3
2D affi ne transformation.
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human shape perception. A 3D affi ne group is relevant when a parallel 

projection of a 3D space to two images is considered (e.g., Koenderink & 

van Doorn, 1991).

When perspective projections are allowed, one obtains a projective group 

(fi gure C.4). Perspective projections are of special interest here because they 

describe the formation of the retinal image. In particular, a projective 

transformation is a composition (product) of two or more perspective 

projections. And conversely, any projective transformation can be repre-

sented by a product of at most two perspective projections (relation 

between perspective and projective transformation is presented in section 

C.7). Formulas for a 2D projectivity are presented in appendix A, section 

A.2. Using homogeneous coordinates x*,y*,w* and x′*,y′*,w′*, a 2D projec-

tivity is represented by the following matrix equation:

′
′
′

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

x
y
w

a b c
d e f
g h i

x
y
w

*
*
*

*
*
*

.  (C.13)

Euclidean coordinates on each plane are obtained by taking ratios: x = x*/

w*, y = y*/w*, x′ = x′*/w′*, y′ = y′*/w′*. By taking these ratios, it is easy to 

verify the equivalence of equations (C.13) and (A.5).

Finally, consider the group of topological transformations. The topologi-

cal group includes all continuous transformations. Topological transforma-

tions of a plane are usually illustrated by a rubber sheath that can be 

stretched arbitrarily without tearing or cutting it. The topological group 

has only a few invariants. For example, two intersecting lines remain 

intersecting after a topological transformation.

Figure C.4
2D projective transformation.
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The fi ve groups described above form a hierarchy with rigid motion 

being smallest (least general) and topology being largest (most general). 

Topology has the fewest invariants, and rigid motion has the most invari-

ants. A property that is preserved in a larger group is also preserved in a 

smaller group.

C.6 Projective Invariants in Machine Vision

Duda and Hart (1973) were the fi rst to discuss projective invariants in the 

context of computer vision. Their book, which provides a brief tutorial 

about projective invariants, includes a couple of simple examples. However, 

with the exception of this book, the machine vision community did not 

pay attention to projective invariants until 1988. That year, Isaac Weiss 

published his fi rst paper on this important topic (Weiss, 1988a). He indi-

cated which invariants can be applied to point sets and which to smooth 

curves. Invariants that can be applied to point sets are easier to use, and, 

therefore, they received more attention (see Weiss, 1993, for a review). 

Note that point sets are directly related to polygons. Figure 3.7 in section 

3.3.2 illustrated the application of the cross ratio of four areas to a simple 

polygon. This example also illustrated limitations of projective invariants 

as an explanation of shape constancy. Specifi cally, the visual system can 

deal effectively with a perspective transformation, including small distor-

tions of a perspective transformation, but not with an arbitrary projective 

transformation.

Using cross ratios of four areas in order to verify projective equivalence 

is fairly easy, as long as the areas are polygons because polygons have dis-

tinctive points for which the correspondence is easy to establish. In the 

case of smoothly curved fi gures that do not have distinctive points, one 

has to use differential or integral projective invariants (Weiss, 1988a, 1993; 

Mundy & Zisserman, 1992). From these two types of invariants, integral 

invariants (such as moments) are useless with images of real scenes because 

in the presence of occlusions such invariants cannot be computed (Roth-

well, 1995). Differential invariants also have their problems because they 

are very sensitive to noise in the camera image. One way to avoid problems 

inherent in integral and differential invariants in the case of smooth curves 

is to identify characteristic points such as “concavity entrance” (Lamdan, 

Schwartz, & Wolfson, 1988; Rothwell, 1995), which then can be used to 
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compute cross ratios, or to represent the entire curve in an invariant 

(canonical) form.

Invariants may be applied to a part of an object (or a fi gure), but they 

must not include points or features that do not belong to the object of 

interest. Otherwise, the value of the invariant will be incorrect. It follows 

that the application of invariants must be preceded by establishing fi gure–

ground organization.

Despite the fact that the formulation of projective geometry and projec-

tive invariants was motivated by the properties of perspective projection, 

they cannot be applied to the most interesting case of perception of 3D 

objects for the simple reason that the perspective transformation from 

a 3D space to a 2D image is not a group. A projective transformation is 

only possible between spaces of identical dimensions: between two lines, 

between two planes, or between two 3D spaces. However, no projective 

transformation exists between a 3D space and a plane because this is not 

a one-to-one mapping. It follows that group axioms are violated: There is 

no identity transformation, there is no unique inverse, and the composi-

tion (product) does not exist. These violations of group axioms must have 

been obvious to mathematicians, but the fi rst publication describing the 

implications of these violations appeared only in 1990 (Burns et al., 1990). 

Burns et al. stated and proved that there is no general case invariant for 

the 3D to 2D projection. By general case, it was meant the case of an arbi-

trary set of points in 3D with no restriction on the type of 3D structures 

or their 3D orientation. The gist of the proof involves a sequence of sets 

of points in 3D such that each pair of sets from this sequence is different 

from one another with respect to one point only. Since it is always possible 

to fi nd a center of projection such that two different points in 3D map to 

the same point on a 2D image, it follows that these two sets are equivalent 

under 3D to 2D mapping. For N points, one simply needs N sets of points 

to show that any set of N points is equivalent to any other set of N points 

under 3D to 2D projection. Therefore, if there is an invariant of such a 

mapping, it would be a trivial one because its value would be identical for 

all sets of N points. It follows that conventional invariants cannot be 

applied to arbitrary 3D objects, but only to planar or approximately planar 

fi gures.

However, even if one is willing to work with planar fi gures, projective 

invariants may not accomplish what one expects. Projective invariants are 



Projective Geometry in Computational Models 209

quite sensitive to visual noise (Astrom, 1995). This implies that even 

though a projective invariant can be computed, its value may be diffi cult 

to interpret. This is the reason why affi ne invariants received more atten-

tion than projective invariants (Mundy & Zisserman, 1992; Mundy et al., 

1993). But affi ne invariants can only be applied to cases where affi ne 

transformation is a good approximation to a perspective transformation. 

Such cases involve fi gures whose size is small compared to the viewing 

distance or, more generally, cases in which the range in depth of the 

slanted fi gure is small relative to the viewing distance.

An interesting alternative is to work with perspective projection itself, 

despite the fact that perspective transformations do not form a group. 

Perspective projection is important for at least two reasons: First, it is a 

better model of retinal image formation, and second, it provides the 

maximal number of constraints for a vision geometry. It will be shown 

that the perspective model leads to powerful methods for shape reconstruc-

tion and recognition, involving model-based invariants and a priori con-

straints. These aspects of shape perception dominate the second half of 

this book. Next, the details of the perspective model will be described.

C.7 Projectivity versus Perspectivity

We already know that 2D perspectivity differs from 2D projectivity in that 

some terms are absent in the formulas for the former (appendix A, sections 

A.1–A.2). Let’s examine the relation between perspectivity and projectivity 

for the 1D case. The following equations represent a perspectivity (C.14a) 

and a projectivity (C.14b) in 1D:

′ =
+

x ax
cx d

,  (C.14a)

′ = +
+

x ax b
cx d

.  (C.14b)

Perspectivity has fewer degrees of freedom. In equation (C.14a), where the 

origin of x is mapped onto the origin of x′, there are only three parameters, 

two of which are independent. Projectivity (equation C.14b) has four 

parameters, three of which are independent. It should be clear by looking 

at these equations that a 1D projectivity corresponds to a perspectivity 

followed by a translation (see fi gure C.5). In general, a 1D projectivity can 

be produced by applying 1D perspectivity more than once. A product of 
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two different perspectivities, one between line L1 and L2 and another 

between L2 and L3, is itself a perspectivity between L1 and L3 if all three 

lines intersect at a common point P that maps onto itself. This is illustrated 

in fi gure C.6. A proof of this statement follows from two facts: (i) A 1D 

projectivity is uniquely defi ned by a projection of three points, and 

(ii) two different projecting lines, representing the projection of the non-

intersection points, always intersect or are parallel. The intersection point 

of these two projecting lines (this point may lie at infi nity) is the center 

of perspective projection. The third projecting line, which maps P onto 

itself, can have an arbitrary orientation and, in particular, can also go 

through this center of perspective projection. Thus, the projectivity between 

L1 and L3 is a perspective projection.

By analogy, a 2D projectivity (projectivity between two planes) is a 2D 

perspectivity followed by a 2D translation and 2D rotation, and a product 

(a) (b)

Figure C.5
Perspectivity versus projectivity between lines. In (a), the projecting lines intersect 

at a single point, which is the center of perspective projection. In (b), the points on 

one line were translated. Now, the projecting lines do not intersect at a single point. 

This means that the mapping in (b) is not a perspective projection, although it is a 

projectivity.
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of two perspectivities is itself a perspectivity if the three planes involved 

in this product intersect at a common line that maps onto itself. This 

implies that any projective transformation of a planar fi gure can be pro-

duced on a camera image, but the position, size, and orientation of the 

image may not conform to the rules of perspective projection. Consider 

an example. Figure C.7 shows three polygons. When the polygon in (b) is 

viewed from a distance fi ve times larger than the size of the fi gure, it looks 

like a slanted (a). However, (c) does not look like a slanted (a) even though 

(c) is a perspective image of (a). The image in (c) was produced by placing 

the camera very close to the fi gure, with its visual axis away from the fi gure. 

Thus, in order for (c) to produce a valid perspective image of (a) in the 

observer’s eye, the observer would have to fi xate at the cross at a viewing 

distance equal to six tenths of the distance between the cross and the 

center of the polygon in (c).2 This example illustrates several important 

things. First, the visual system “knows” the difference between a perspec-

tive projection and a projective transformation. This makes sense because 

L1 L2 L3

Figure C.6
Product of a perspectivity between L1 and L2, and between L2 and L3, is also a per-

spectivity between L1 and L3 (after Pizlo, 1994).
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when one is viewing actual scenes, the retinal image in the observer’s eye 

is not an arbitrary projective image. It is always a perspective image. 

Second, the visual system knows the positions of the fovea and the focal 

point. If it didn’t, then we wouldn’t be able to tell the difference between 

fi gure C.7b and C.7c. Recall that these aspects of projective geometry were 

briefl y discussed in chapter 2 in the context of Perkins’ contributions. His 

results made it possible to conclude that the visual system knows the 

geometry of the eyeball, as well as the rules of perspective projection. 

Finally, and most importantly, the example in fi gure C.7 shows that under-

standing the geometry of image formation is useful in understanding shape 

perception. We will, therefore, explore the geometry of image formation 

in some more detail in the subsequent sections.

Because perspective projection is not a group, it does not have its own 

invariants. Invariants of a perspective projection are also invariants of the 

smallest group generated by perspective projections, which is the projec-

tive group. However, we already know that projective invariants cannot 

explain shape constancy (e.g., fi gures 3.10 and C.7). We can conclude that 

human shape constancy involves invariants of transformations that are 

outside the Erlanger Programm. Before these invariants are described, a 

model of image formation has to be discussed.

(a) (b) (c)

Figure C.7
Perspective images of a polygon in (a). The plane of the fi gure should be orthogonal 

to the line of sight. When (b) is viewed from a distance that is fi ve times larger than 

the diameter of the fi gure, the retinal image of (b) is a perspective image of a slanted 

(a) with tilt 80 deg and slant 70 deg. The retinal image of (c) is a perspective image 

of a slanted (a) when the reader fi xates at the cross from a distance equal to six 

tenths of the distance between the center of the polygon and the fi xation cross 

(practical suggestion: project (c) on a large screen). Otherwise, the retinal image of 

(c) is a projective image of (a).
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C.8 Model of Image Formation

A perspective image in the human eye or camera is formed by light rays. 

In an optically uniform medium, such as air, light rays are straight lines. 

If we don’t count optical distortions in the human eye, the light rays 

intersect at a single point called the “nodal point,” and this point is the 

center of perspective projection. This is why geometrical perspective is used 

as a model of image formation. Note, however, that light is propagated in 

one direction at a time, and this fact has several implications for image 

formation in the human eye or a camera, even though these implications 

do not apply to geometrical perspective. One such implication is that the 

object and its image are always on opposite sides of the center of perspec-

tive projection. This, in turn, implies that if an infi nitely large plane “out 

there” is considered an object, only one half of this plane will produce an 

image (Pizlo, Rosenfeld, & Weiss, 1997a, b). Next, the order of three points 

on the line is preserved in optical perspective, and convexity of a fi gure is 

preserved, as well. None of these properties exist in geometrical perspective 

projection or in a projective geometry.

Next, in the human eye, the center of projection is fi xed relative to the 

retina. Specifi cally, the distance to the center of projection from the retina 

(approximately equal to the focal distance) is constant. Furthermore, the 

point of intersection (the center of fovea) of the retina with the line ema-

nating from the center of projection and orthogonal to the retina is fi xed 

in the retinal coordinate system. Neither the focal distance nor the fovea 

is fi xed in an uncalibrated camera, which is used as a model of projective 

transformation. Fixing the focal distance does not make sense in projective 

geometry because Euclidean distance does not exist in this geometry. Pro-

jective geometry cannot use properties from more specifi c geometries. 

Doing so would result in the group structure of geometry being destroyed. 

And this is the main point here: Image formation in the human eye in 

particular, and spatial vision in general, does not conform to the formalism 

of group theory.

A model that represents all important aspects of image formation in the 

human eye and a camera was described by Pizlo, Rosenfeld, and Weiss 

(1997a) and was called a “fi xed center directional perspective” (FCDP). In 

the case of planar fi gures, FCDP is represented by equations given in appen-

dix A, section A.1. For a given position, orientation, and size of the retinal 
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image, FCDP can change a 2D shape with 2df corresponding to slant and 

tilt. By allowing the retinal position, orientation, and size to change, one 

can reproduce all 2D projective transformations of shape (more specifi cally, 

those projective transformations that do not involve points behind the 

retina). Recall that 2D projectivity can change a shape with 4df. This fact 

leads to a common misconception about the relation between 2D projec-

tivity and image formation in the human eye. The fact that all 2D projec-

tive transformations of a shape can be reproduced on the retina does not 

imply that all 2D projective transformations of a fi gure can be reproduced 

on the retina. The reason is that image formation in the human eye has 

fewer degrees of freedom than 2D projectivity. This means that although 

all four-dimensional transformations of a 2D shape can be produced on 

the retina, the resulting retinal images cannot have arbitrary sizes, orienta-

tions, and positions. Size, orientation, and position are not free parameters 

in image formation.

FCDP was used for years in the photogrammetry literature, and later on 

in computer vision (see Haralick & Shapiro, 1993, for a review). The 

methods that use FCDP were developed in order to determine which aspects 

of 3D scenes can be computed from real camera images. The case of visual 

reconstruction from two or more camera images was discussed in section 

3.2. Here, we will concentrate on the case of a single image. The fi rst invari-

ants of FCDP for the case of a single image of a planar fi gure were formulated 

in 1990 (Pizlo & Rosenfeld, 1990, 1992) and then tested in psychophysical 

experiments (Pizlo, 1994). These invariants, which are precursors of model-

based invariants for 3D objects, allow one to recognize a 2D shape from a 

single retinal image (see the next section). Specifi cally, these invariants allow 

one to recognize similarity structure of a 2D fi gure, characterized by angles and 

ratios of distances, despite projective distortions of the fi gure that are present in 

the retinal image. Recall that projective distortions change angles and ratios 

of distances. This is a very important result. Recognition of similarity prop-

erties based on images in which these properties have been changed projec-

tively is not possible in conventional geometry that is based on group 

structure. In conventional geometry, once a given feature is changed by a 

transformation, it cannot be reconstructed or recognized because more 

general groups do not have access to properties from less general ones. Rec-

ognition of properties of a smaller group despite distortions produced by 

transformations from a larger group is possible only if these transformations 
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themselves do not form a group. To be precise, under some conditions, 

which were referred to in chapter 1 as “shape ambiguity,” application of 

invariants of FCDP leads to failure of shape recognition. But so does human 

shape recognition as shown by Thouless (1931a, b). Such failures are prob-

ably not critical for the case of shape perception in everyday life because 

shape ambiguity happens very rarely (with a probability of zero).3

C.9 Invariants of Perspective Projection

First, invariants of 2D to 2D perspective projection are presented, and then 

invariants of 3D to 2D perspective projection are presented.

C.9.1 2D Invariants

Consider the task of recognizing a planar shape S from a single-perspective 

image I(S) obtained with a tilt tI, slant sI, and viewing distance CI (see 

appendix A, section A.1) using a calibrated camera. This task is called 

“shape constancy” (see chapter 1). It can be solved, at least in principle, 

by performing a search through all slants, tilts, and viewing distances. 

Specifi cally, we can take S and compute its perspective images for all triplets 

of values t, s, and C. We then compare all these images to I(S) and check 

whether any of them are identical to I(S). If such an image can be found, 

one can conclude that I(S) has been produced by S (i.e., S has been recog-

nized based on I(S)). Otherwise, the image I(S) could not have been pro-

duced by S. One can simplify the search if inverse perspective images of 

I(S) are computed because an inverse perspective projection with a cali-

brated camera affects a planar shape with only two, not three degrees of 

freedom, slant, and tilt. Thus, we take I(S) and compute its inverse perspec-

tive images for all pairs of values t and s. We then compare these images 

to S and check whether any of them are identical to S.

Assume that tilt t is known but slant s is not known. Pizlo and Rosenfeld 

(1992) showed that the search for slant can be eliminated by using perspec-

tive invariants. Consider the Y function, which characterizes a contour of 

a 2D fi gure. The Y function is a standard tool in computer vision (see 

Ballard & Brown, 1982). To plot this function, one starts at a point on the 

contour and plots the orientation of the tangent line at this point. Then, 

one moves along the contour and plots the orientation of the tangent as 

a function of the distance from the starting point. An example is shown 
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in fi gure C.8. If we apply inverse perspective transformations with tilt 

t and with several slants si to a planar shape, the corresponding Y 

functions will form a family that has two important characteristics: (i) The 

corresponding points of the functions are approximately collinear 

(see fi gure C.8), and (ii) for any pair of the Y functions, Yj and Yk, repre-

senting the inverse perspective images of a given retinal shape with slants 

sj and sk, a ratio of distances between the corresponding points of the 

functions is approximately constant and equal for all points around the 

contour:
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where Y0 characterizes the perspective image whose shape is to be 

recognized.

How can those two invariant properties be used in solving the shape 

constancy task? Let A be a perspective image whose shape is to be recog-

nized, and B a reference fi gure whose shape is known. Specifi cally, we 

assume that YB is known when B was in the frontal plane (slant zero). It 

is hypothesized that the fi gure A was obtained by slanting B with a known 

tilt tB and unknown slant sB. We begin with constructing YA and then 

computing an inverse perspective projection of A with tilt tB and slant sC. 

Slant sC may be arbitrary, although the approximation works well when 

this slant is between 60 and 70 deg. We then construct YC. Shape A is a 
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Figure C.8
A planar shape (a), its perspective image (b), and the corresponding y functions 

(from Pizlo & Salach-Golyska, 1995).
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valid perspective image of B if and only if YA, YB, and YC satisfy the two 

properties (i) and (ii). Specifi cally, in criterion (C.15), we put Y0 = YA, Yj = 

YB, and Yk = YC. If the criterion (C.15) is satisfi ed for all (or most) points 

on the contour, one can conclude that A is an image of B and the unknown 

slant sB can be estimated from the constant in (C.15).

If tilt tB is unknown, then one has to try several tilts (see Pizlo & Rosen-

feld, 1992). The search for tilt can be simplifi ed by using affi ne invariants. 

Recall that 2D affi ne transformation can be used as an approximation to 

perspective projection. Even if the approximation is not perfect, the least 

squares estimators can be obtained and then an estimate of tilt can be 

derived from these estimates. Affi ne transformation is identical for tilts t 

and t + 180 deg, which means that two values of tilt would have to be tried 

after the tilt is estimated from affi ne approximation. One could try to apply 

other methods to eliminate the search for tilt entirely, but this may not be 

justifi ed from a perceptual point of view. Specifi cally, Pizlo (1994) showed 

that uncertainty about tilt harms shape constancy performance, which 

suggests that the human visual system does perform some search for the 

tilt value.

C.9.2 3D Invariants

The question posed by Pizlo and Loubier (2000) was how to modify Roberts’ 

recognition method so that it can be applied to the case of a calibrated 

camera. The key observation made by Pizlo and Loubier was that the crite-

rion for the alignment of an object with its retinal image is computationally 

simpler when object points are compared to projecting planes, rather than 

lines. Planes in 3D have simpler parametric representations than lines. As a 

result, a squared distance of a point from a plane is a quadratic function of 

the unknown parameters representing the position and orientation of the 

3D object relative to the camera. It follows that the best alignment of the 

object with the image, represented by the sum of squared distances of the 

object points from the corresponding projecting planes, has a closed form 

solution. More exactly, the closed form solution can be obtained only when 

one allows an arbitrary 3D affi ne transformation of the object, not just a 3D 

rigid motion. Once the parameters of the 3D affi ne transformation are esti-

mated, it can be verifi ed whether this transformation satisfi es (approxi-

mately) constraints represented by the rigid motion (the 3 × 3 matrix must 

be orthonormal, with a positive determinant—see equation C.3).
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These 3D perspective invariants have been tested in simulations. 

However, they have not been tested yet as a model of human shape 

constancy.

C.10 3D Model-Based Projective Invariants

Rothwell (1995) described model-based invariants for several classes of 

objects. Consider solids of revolution fi rst. All intersections of a rotationally 

symmetrical object with planes orthogonal to its axis of symmetry are 

circles. A simple example of a solid of revolution is a circular cylinder. A 

perspective image of a solid of revolution is a symmetrical fi gure (with 

mirror symmetry) only in a special case when the line of sight intersects the 

axis of symmetry (fi gure C.9a). This fact follows from the symmetry of the 

object and symmetry of perspective projection itself. Under such viewing 

conditions, it is easy to fi nd the symmetry axis of the image, as well as fea-

tures of the image that are mirror symmetrical, such as external and internal 

bitangent lines (Rothwell, 1995, p. 198). Bitangent lines are straight lines 

that are tangent to the contours of the image at two points. Because of sym-

metry of the image, corresponding bitangent lines are mirror symmetrical, 

and so they intersect at points on the symmetry axis. These points can be 

used to compute a conventional cross ratio of four collinear points, which 

(a) (b)

Figure C.9
An image of a solid of revolution when the line of sight intersected the axis of sym-

metry (a) and when the line of sight was away from the axis of symmetry (b). A 

pair of bitangent lines are shown. Image (b) is a 2D projective transformation of 

image (a) (produced using 3DS Max/Autodesk).
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is a projective invariant. Now, when the line of sight does not intersect the 

axis of symmetry of the solid of revolution, then the perspective image is 

no longer symmetrical (fi gure C.9b). However, it is easy to see that this 

image is a 2D projective transformation of the image produced when the 

line of sight does intersect the axis of symmetry of the object (Kanatani, 

1988). Since straight lines and tangent points are projective invariants, it 

follows that bitangent lines still intersect at the image of the axis of sym-

metry of the object and the cross ratio computed from these points is invari-

ant in any perspective image of a given solid of revolution.

When an object is bilaterally symmetrical (i.e., it has mirror symmetry), 

then another method is used. A perspective image of a symmetrical object 

can be treated as two perspective images of an asymmetrical object (i.e., 

of one half of the object). Then, any of the standard algorithms for recon-

structing an object from two perspective images can be applied to the two 

parts of the image representing the two halves of the symmetrical object.4 

If the camera is calibrated, Longuet-Higgins’ (1981) algorithm (or any of 

its variants) can be used for reconstructing a Euclidean structure of the 

object. If the camera is uncalibrated, a projective structure of the object 

can be computed (see Rothwell, 1995, for a review). If the image is a result 

of a parallel, rather than perspective, projection, then an affi ne structure 

can be computed by using Koenderink and van Doorn’s (1991) method.

Next, consider model-based invariants for polyhedra. It is important to 

point out right away that these invariants can be applied only to those 

polyhedra whose projective structure can be reconstructed by the method 

introduced by Sugihara (1986) and described in the beginning of chapter 

3. Thus, model-based projective invariants do not provide a tighter speci-

fi cation of the family of objects, compared to Sugihara’s method. In fact, 

since Rothwell’s method is designed to compute 3D projective invariants, 

the family of shapes is larger than when a direct reconstruction is per-

formed with a calibrated camera. In a sense, model-based projective invari-

ants are even more qualitative than Sugihara’s reconstruction method. 

Rothwell considered polyhedra where all vertices were trihedral. That is, 

each vertex was an intersection of three planar faces. This restriction has 

been used quite commonly in machine vision literature, although it is not 

clear how well this restriction is satisfi ed by real objects. Figure C.10 shows 

a polyhedron that does not look unnatural but has several vertices that 
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violate the trihedral assumption. By using homogeneous coordinates, 

Rothwell was able to write all relations describing faces of the polyhedron, 

perspective projection for uncalibrated camera, and vertices in the image 

using linear equations. It is then easy to eliminate unknown parameters 

and form invariants (Rothwell, 1995, pp. 200–5). Again, 3D projective 

invariants are insensitive to 3D projective transformation, which has 15df. 

3D rigid motions (translations and rotations) and overall size scaling, 

which do not change 3D shape, are characterized by only 7df. It follows 

that 3D projective invariants are insensitive to changes of shape with 8df. 

This means that quite different shapes may be confused by a method based 

on projective invariants. A calibrated camera specifi es a shape of a polyhe-

dron up to a subset of 3D projective transformations with only 3df, as 

demonstrated by Sugihara (see also section C.11 in this appendix). This 

subset is quite small, and it contains only those 3D shapes that are per-

spectively, not projectively, equivalent. It follows that 3D projective invari-

ants provide less information about shape than the shape reconstruction 

method described by Sugihara (1986).

C.11 Perspective Reconstruction of Polyhedra

Consider a perspective image of a hexahedron with quadrilateral faces. In 

particular, assume that all eight vertices and all twelve edges are shown in 

the image, as if the object were transparent (hidden points are not removed 

from the image). For simplicity of this analysis, but without restricting 

generality, assume that this hexahedron has the shape of a cube (fi gure 

Figure C.10
A polyhedron where not all vertices are trihedral.
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C.11). We want to establish the number of degrees of freedom with which 

the shape of the object “out there” could be changed so that (i) its image 

will still be identical with the given image and (ii) the object itself will be 

a polyhedron (planar faces stay planar). Constraint (i) is enforced by allow-

ing each of the eight vertices to move along the projecting lines that 

emanate from the center of projection of the perspective camera (the pro-

jecting lines are not shown in fi gure C.11). This means that there are at 

most 8df. Since multiplying the 3D Euclidean coordinates of all vertices by 

the same number changes the size but not the shape of the object, the 

position of one vertex (say vertex 1) can be fi xed at an arbitrary point on 

its projecting line without restricting generality. Vertices 2 and 3 can be 

moved arbitrarily along their projecting lines. This gives 2df. Vertex 4 is 

not independent because it must satisfy the planarity of the contour 1,2,3,4 

and is obtained as an intersection of plane 1,2,3 and the projecting line of 

vertex 4. Vertex 5 can be moved arbitrarily on its projecting line. This 

increases the number of degrees of freedom to three. It is easy to check 

that the remaining vertices, 6, 7, and 8, are not independent. Vertex 6 is 

obtained as an intersection of plane 1,2,5 and the projecting line of vertex 

6. Next, vertex 7 is obtained as an intersection of plane 2,3,6 and the pro-

jecting line of vertex 7, and vertex 8 is obtained as an intersection of plane 

5,6,7 and the projecting line of vertex 8. Thus, when reconstructing a 

hexahedron having quadrilateral faces from its single-perspective image 

1
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8

Figure C.11
The shape of a hexahedron like the one shown can be changed with 3df without 

changing its perspective image.
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using a calibrated camera, the family of possible shapes is characterized by 

three parameters. This result is analogous to the result presented by Sugi-

hara (1986). For more complex polyhedra, the number of degrees of 

freedom may be greater. However, the complexity of the object is not the 

primary factor. For example, in the case of the polyhedron in fi gure C.10, 

which is more complex than a cube, the number of degrees of freedom is 

only three, the same as for a cube.

Next, we will arrive at the three-parameter family of shape transforma-

tions by trying all 3D projective transformations of an object that leave 

the object’s perspective image intact (Chan et al., 2006). Note that this 

family cannot be larger than the family established in the previous 

paragraph, because 3D projective transformations preserve coplanarity of 

points. Using the notation from section C.3 in this appendix, the 3D to 

2D perspective projection can be represented by the following equation:
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The left-hand side represents the image point using homogeneous coordi-

nates, and the column vector on the right-hand side represents an object 

point using homogeneous coordinates. The matrix on the right-hand side 

represents a perspective projection by a calibrated camera. A 3D projective 

transformation is represented by a 4 × 4 matrix K. Now, we want to pro-

jectively transform an object point so that its image stays the same. This 

is equivalent to the following:
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The left-hand sides in (C.16) and (C.17) are assumed to be equal because 

the retinal image does not change. Hence, the right-hand sides are equal:
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From (C.18) it follows that
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Hence,
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It is easy to see that (C.20) is satisfi ed when K has the following form:
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It follows from (C.21) that there are only 4df with which a 3D object can 

be projectively transformed without changing its perspective image. It is 

easy to see that k44 changes the size of a 3D object only and can be set to 

one. Thus, there are only 3df with which the shape of a 3D object can be 

projectively changed without changing its perspective image. This agrees 

with Sugihara’s (1986) analysis for parallel projection of simple polyhedra 

(theorem 5.2, p. 95). It follows, that when the family of the reconstructed 

polyhedron is characterized by only 3df (like in the case of hexahedrons 

with quadrilateral faces), this family is a subset of all 3D projective trans-

formations. This shows (again) that the model-based invariants of Rothwell 

(1995) do not provide a more restricted family of shapes than Sugihara’s 

(1986) method. In fact, the converse is true because model-based projective 

invariants provide a family of 3D shapes that are not necessarily consistent 

with a given perspective image.

C.12 Regularization Solution to a Circle Problem

Let Y represent the data as obtained by visual receptors (fi gure 3.13c) and 

X the reconstructed (perceived) curve. Let ||Yi − X|| be the shortest distance 

between a given data point and the curve, and k(s) the curvature of X 

at a point specifi ed by an arc length s (Hilbert & Cohn-Vossen, 1952). 

The reconstructed curve is the one that minimizes the following cost 

function:

E(X) = ||Y − X||2 + l||dk/ds||2. (C.22)

The fi rst term on the right-hand side represents the sum of squared dis-

tances of points from the reconstructed curve, and the second term repre-

sents an integral of the squared fi rst derivative of curvature along the entire 

contour of the curve. The fi rst derivative of curvature, dk/ds, is zero when 
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the curvature is constant. It follows that the cost function (C.22) favors 

curves that are as circular (or as straight) as possible. When  l is close to 

zero, then the reconstructed curve will go through all data points. When  

l goes to infi nity, the reconstructed curve will be circular.

It has been argued that better results are obtained when compactness, 

rather than smoothness, is used as a constraint (Brady & Yuille, 1983):5

E(X) = ||Y − X||2 + l(P2/A). (C.23)

In equation (C.23), A is a surface area enclosed by X and P is a total length 

(perimeter) of X. Minimizing P2/A (or maximizing A/P2) represents the classi-

cal isoperimetric problem (Polya & Szego, 1951). From all closed curves, a 

circle has a maximal area for a given perimeter or, conversely, has a minimal 

perimeter for a given area. Compactness involves the square of a perimeter, 

so that the ratio is not affected by changing the overall size of a fi gure. To 

illustrate the relation between 2D shape and its compactness, fi gure C.12 

shows several planar fi gures along with the value of the compactness (A/P2).

C.13 Bayesian Formulation of a Regularization Problem

If the visual noise on the retina is represented by a likelihood function 

p(Y|X), and a priori knowledge of the family of possible solutions is repre-

0.0796 0.0754 0.0624 0.0481

0.04

0.01

Figure C.12
Circularity index for several different fi gures with various degrees of regularity.
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sented by probability distribution p(X), then the visual data and a priori 

constraints can be combined by means of Bayes’ rule (Knill & Richards, 

1996):

p(X|Y) = p(Y|X)p(X)/p(Y). (C.24)

Visual reconstruction of an object X can be obtained by fi nding X that 

maximizes p(X|Y) (such an X is called a “maximum a posteriori” estimate). 

The denominator on the right-hand side in equation (C.24) is a constant 

and can be ignored in fi nding the maximum. If we take a negative log of 

both sides of (C.24), and ignore the denominator, we obtain

−log[p(X|Y)] = −log[p(Y|X)] − log[p(X)]. (C.25)

Since a logarithmic function is monotonic, maximizing the posterior in 

(C.24) leads to the same solution as minimizing the left-hand-side in 

(C.25). Note that equation (C.25) has the same form as equations (C.22) 

and (C.23). This observation leads to a more general statement that regu-

larization and Bayesian methods are mathematically equivalent (Poggio 

et al., 1985). This equivalence can most clearly be seen if a regularization 

problem is expressed in the language of information theory. If we know 

the probabilities in equation (C.25), then we can fi nd (at least in principle) 

an optimal description language that leads to the shortest expected length 

of the description of reconstructed objects (Leclerc, 1989; Chater, 1996; Li 

& Vitanyi, 1997). If the logarithms in equation (C.25) have the base of 2, 

the left-hand side is the length of a description of a given object. In this 

formalism, called “minimum description length,” the reconstructed object 

is the one that has the shortest (most economical) description in a given 

language. Clearly, probabilities are used here to defi ne simplicity. It follows 

that the controversy between simplicity and likelihood principles may be 

more diffi cult to resolve than originally thought (Hatfi eld & Epstein, 1985; 

Chater, 1996).

C.14 Examples of Application of Regularization Theory to 2.5D Sketch

First, consider reconstruction of 3D surface from depth measurements. 

Assume that the visual system has measurements of depth at a fi nite 

number of points on a continuous surface f(x,y). These measurements are 

represented by a function d(x,y), and they could be produced by binocular 

disparity, motion parallax, or other depth cues. The task is to reconstruct 
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the surface f(x,y). There are infi nitely many different surfaces that can 

approximate a set of points in 3D. In order to obtain a unique surface, 

smoothness of the surface is used as a regularizing constraint. The recon-

structed surface f is the one that minimizes the following cost function 

(Poggio et al., 1985; Grimson, 1982):

[( ) ( )] .f d f f f dxdyxx xy yy− + + +∫ 2 2 2 22λ  (C.26)

In equation (C.26) the smooth surface is the one whose second partial 

derivatives are close to zero everywhere. The cost function (C.26) for the 

case of a surface in 3D resembles the cost function (C.22) for the case of a 

contour in 2D. In both cases, smoothness is a constraint and this constraint 

is spatially local. Recall that for contours in 2D, a global constraint was 

proposed in the form of compactness (equation C.23), which seems to lead 

to equally good (or even better) reconstructions. There is no reason why 

reconstructing surfaces and shapes in 3D should not use an analogous 

constraint, expressed as the ratio of volume squared to total surface area 

cubed: V2/S3 (one should use the volume squared and surface area cubed 

to make this ratio size invariant). This constraint is called “3D compact-

ness,” and its role in modeling human shape perception is discussed in 

some detail in chapter 5.

Next, consider the problem of reconstructing 3D surface from shading 

(Ikeuchi & Horn, 1981). Assuming that the refl ectance properties of the 

surface (e.g., that the surface is Lambertian) are known at least approxi-

mately, and that the position of the light source is known, Ikeuchi and 

Horn showed how the 2.5D sketch for a surface can be computed by using 

smoothness constraint. In this application, the 2.5D sketch is represented 

by surface orientations relative to the viewer. Surface orientation for a 

number of points in the image is computed by comparing the brightness 

distribution E(x,y) in the image to the predicted brightness R(x,y), which 

is a function of the surface orientation f(x,y) and g(x,y) at each point, as 

well as the position of the light source. The functions f and g represent the 

surface normal in stereographic projection. The inverse problem of recon-

structing f and g is solved by fi nding the minimum of the following cost 

function:

[( ( , ) ( , )) ( )] .E x y R f g f f g g dxdyx y x y− + + + +∫ 2 2 2 2 2λ  (C.27)

The smoothness constraint is expressed in equation (C.27) by the integral 

of squared derivatives of the surface gradients.
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Finally, consider the reconstruction of the 2.5D sketch from binocular 

disparity. In this case, the 2.5D sketch corresponds to the function d(x,y), 

which represents a continuous distribution of binocular disparity over a 

smooth surface. Let L(x,y) and R(x,y) be the brightness distribution on the 

left and right retina, correspondingly. When the vergence angle is close to 

zero, and there is no noise in the visual signal, L(x,y) = R(x + d(x,y),y). This 

means that the corresponding points in the two retinas are shifted 

horizontally by d. To partially eliminate the effect of noise, which is 

always present in real images, the two retinal images are convolved with 

a Gaussian fi lter G. To emphasize the role of contours in the reconstruction, 

Laplacians of the brightness distributions are compared, rather than the 

brightness distributions themselves. The smoothness of the surface is rep-

resented by the requirement that the gradient of disparity be close to zero 

everywhere. The function d(x,y) is reconstructed as a minimum of the fol-

lowing cost function (Poggio et al., 1985):

{[ ( ( , ) ( ( , ), ))] ( ) } .∇ − + + ∇∫ 2 2 2G L x y R x d x y y d dxdy* λ  (C.28)

These three examples nicely illustrate the application of regularization 

methods in solving inverse problems of reconstructing 3D surfaces.





Appendix D: Shape Constraints in Reconstruction of 

Polyhedra

D.1 Chan, Stevenson, Li, and Pizlo’s (2006) Model

The main part of the model is a reconstruction of a 3D shape H based on 

one retinal image I (see fi gure D.1 for a schematic illustration of the 

viewing geometry). A single 2D image determines infi nitely many possible 

3D shapes. In order to choose one, several constraints are used. The new 

model is an extension of Leclerc and Fischler’s (1992) algorithm. In their 

algorithm, the 3D shape of a polyhedron was obtained from a single ortho-

graphic image by taking the individual points of the 2D image and 

“moving” them along the lines orthogonal to the image plane. As a result, 

any 3D object produced by this algorithm is consistent with the given 

image under orthographic projection. From the infi nite set of such objects, 

the algorithm chose the one that minimized some complexity measure 

represented by a cost function. This function had two components: the 

magnitude of the overall departure of reconstructed faces from planarity 

and the variance of all interior angles.

In the new model, a perspective rather than orthographic projection was 

used (a calibrated camera was assumed). The cost function included also 

the magnitude of the departure of the reconstructed object from a mirror 

symmetry. The cost function had the following form:

Emono(H) = g [VA(H) + DS(H)] + (1 − g )DP(H), (D.1)

where VA(H) is the variance of all interior angles, DP(H) is a measure of 

departure from planarity for all faces of H, DS(H) is a measure of departure 

from mirror symmetry of H, and g is a scalar that ranges from 0 to 1.

It is assumed in the model that the plane of symmetry is known. More 

exactly, it is assumed that it is known which angles are the symmetrical 
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ones. The departure from mirror symmetry is computed as the sum of the 

squared differences between the corresponding angles over all pairs of 

angles in the polyhedron. The departure from planarity was measured by 

using a property of polygons, according to which the sum of all interior 

angles in an n-gon is equal to (n − 2) · 180 deg. When a convex polygon is 

not planar, the sum of interior angles is smaller. Thus, the following expres-

sion is a measure of the departure from planarity of a convex n-gon (Leclerc 

& Fischler, 1992):

DP n j
j

= − ⋅ −⎡
⎣⎢

⎤
⎦⎥∑( ) .2 180

2

α  (D.2)

In equation (D.1), the term DP(H) is the sum of the departure from planar-

ity over all contours. Note that all three constraints are commensurate, 

that is, all use (deg)2 as a unit. The role of DS(H) and DP(H) in equation 

(D.1) is self-explanatory. The role of the variance of angles is less obvious. 

This term can be interpreted as a weak measure of symmetry of a polyhe-

dron. This term was used for the fi rst time by Marill (1991). He showed 

that minimum variance of angles by itself led to good reconstructions. 

3-D Object
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Figure D.1
A schematic diagram of Chan et al.’s shape reconstruction algorithm (from Pizlo, Li 

& Chan, 2005).
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Leclerc and Fischler (1992) pointed out that this term is important in pro-

ducing a volume of the reconstructed object. They added planarity con-

straint to improve the reconstructions.

Following Leclerc and Fischler (1992), a continuation method was used 

(Witkin et al., 1987; Leclerc, 1989) to minimize Emono(H). This method 

involves a sequence of descent steps applied to Emono(H) in which g is 

decreased in each step. The algorithm starts with g ≈ 1. This means that 

the fi rst step is strongly infl uenced by the VA(H) and DS(H) terms, which 

give the initial shape (volume) of H. As g decreases, DP(H) becomes the 

dominant factor, which enforces planarity of the faces. It is not desirable 

to emphasize planarity in the beginning of the reconstruction process. 

Note that the image itself is planar and thus represents a local minimum 

of the cost function (D.1). To “escape” from this minimum, planarity con-

straint is assigned a small weight in the beginning of the reconstruction. 

Note that planarity was used as an explicit constraint in the cost function. 

This was done so that the model could be applied to all polyhedral stimuli 

from the shape constancy experiments of Pizlo and his colleagues. Recall 

that some polyhedra had all contours planar, while others did not. Because 

each polyhedron had sixteen vertices, shape reconstruction involved 

fi fteen independent parameters (sixteen points minus one). If planarity 

were used as an assumption, there would have been only three indepen-

dent parameters.

In order to evaluate the role of the second image I′, the model applied 

a correction to the reconstructed 3D shape H. This was done by projecting 

H to the plane of the second image and evaluating dissimilarity between 

this projected image and I′. The dissimilarity SHI(I′,H) involves the sum of 

squared differences between the angles of I′ and the corresponding angles 

of H projected on the second camera image (see Chan et al., 2006, for 

details). The following cost function was used:

Ebino(H) = SHI(I′,H) + l[VA(H) + DS(H)]. (D.3)

The model was tested with randomly generated polyhedra whose exam-

ples are shown in fi gure 4.9a and 4.9d–f. The model was not tested with 

stimuli (b) and (c) because in the case of these stimuli shape constraints 

cannot be applied. For example, the symmetry and planarity constraints 

cannot be applied to the polygonal line stimulus, and the application 

of the minimum variance of angles does not lead to a unique solution 

(see section D.2). Reconstructions of this model were compared to the 
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reconstructions produced by an algorithm that reconstructs a 3D shape 

from binocular disparity, only, without any constraints.

There were three main results. First, monocular reconstructions of the 

new model were substantially better than binocular reconstructions of an 

algorithm that does not use any constraints. This result shows that shape 

constraints are more important in shape reconstruction than binocular 

disparity. Second, reliability of monocular reconstructions of the new 

model was correlated with human monocular and binocular performance. 

Specifi cally, the model’s reconstructions were best for stimuli illustrated in 

fi gure 4.9a, second best for (e), then for (d) and worst for (f). Finally, reli-

ability of binocular reconstructions of the new model did not correlate 

with human performance.

D.2 3D Shape Ambiguity When Constraints Are Used

What are the circumstances in which shape constraints may fail to produce 

a unique 3D shape? The issue of a uniqueness of perceptual interpretation 

was discussed in chapters 1 and 4 under the label of “shape ambiguity.” 

When ellipses or triangles are used in a shape constancy experiment, the 

differences among the shapes within each of the two families are “not 

visible” from the point of view of the retinal image. As a result, the observer 

cannot discriminate among the shapes if only one 2D image is available. 

More generally, if the only difference among the stimuli is the depth of 

the stimulus, a single 2D image is not suffi cient to discriminate among the 

stimuli. When more than one image is available, as in the case of a binocu-

lar observer, discrimination is possible in principle but is very unreliable 

in practice. How does this concept of shape ambiguity generalize to the 

case of shape reconstruction with the use of constraints? The main purpose 

of using constraints is to remove ambiguity related to depth. However, 

there is no constraint that can guarantee unambiguous interpretation with 

an arbitrary stimulus.

Consider the minimum-variance-of-angles constraint that was used in 

several studies, including that of Chan et al. (2006) (see the previous 

section). In the case of polyhedra, the minimum variance of angles leads 

to a unique solution (or at least to a fi nite number of solutions).1 This is 

related to the fact that one cannot change the shape or 3D orientation of 

one face of a polyhedron without changing the shapes or orientations of 
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other faces. The faces overconstrain one another. In other words, the 

shapes of the faces provide redundant information about the shape of the 

polyhedron. However, in the case of polygonal lines, such redundancy is 

absent. One can change one angle in the polygonal line without changing 

other angles. As a result, the minimum variance of angles leads to infi nitely 

many solutions and, therefore, is not effective as a tool in solving an ill-

posed inverse problem. Shape ambiguity arises and precludes studying 

shape constancy, the same way as using ellipses by Thouless and using 

elliptical cylinders by Johnston (1991) precluded them from studying 

shape constancy.

In the case of objects with smooth surfaces, variance of angles cannot 

be computed. But other shape properties can, like compactness (recall that 

compactness is defi ned as V2/S3, where V is the volume and S the surface 

area of the object). Consider the amoeba objects used by Edelman and 

Bülthoff (1992). The amoeba object is a sphere with a number of “spikes” 

around the surface of the sphere. Clearly, shifting one spike along the 

surface has no effect on the positions or sizes of other spikes. This is analo-

gous to changing one angle in the polygonal line object without affecting 

angles in other parts of a polygonal line. At the same time, changing the 

position of one spike will not change such global shape measures as com-

pactness: The total volume stays the same, as does the total surface area. 

It follows that the amoeba objects are also likely to lead to shape 

ambiguity.

In order to study shape constancy unconfounded with shape ambiguity, 

one has to understand not only the geometry of perspective projection but 

also the nature of shape constraints that are used by the visual system. The 

problem is, however, that we do not really know what these constraints 

are. This may explain, at least partially, why the progress in studying shape 

perception was slow: In order to design the right experiment on shape, one has 

to know the nature of shape constraints one is trying to discover in that experi-

ment! Some of the most infl uential students of vision recognized this 

problem. For example, Brunswik (1956) and Gibson (1979) strongly empha-

sized the ecological validity of experimental stimuli. It is quite possible 

that objects in our natural environment never lead to shape ambiguity. If 

this were true, it would explain why shape constancy is the rule in our 

everyday life, and failures of shape constancy, including shape illusions, 

are exceedingly rare.





Notes

Chapter 1

1. This is a commonly accepted defi nition of “shape constancy.” The reader can 

fi nd it in textbooks of perception (e.g., Palmer, 1999; Levine, 2000; Schiffman, 2001) 

and in books on perceptual constancy (Epstein, 1977; Walsh & Kulikowski, 1998), 

as well as in classical sources such as Koffka (1935), Gibson (1950), Arnheim (1969), 

Zusne (1970), or Pastore (1971).

2. It seems unlikely that all of these ideas and observations were fi rst made by 

Alhazen. Many, perhaps even most, may have been common knowledge among 

physicians before Alhazen passed them down in his book that survived the late 

Middle Ages.

3. Boring (1929, 1950) and others preferred the term “unconscious inference” or 

even “unconscious reasoning” (rather than “unconscious conclusion”) as his pre-

ferred translation of unbewusster Schluss. The dictionary translation of Schluss is as 

an “end” or “conclusion.” Conversely, “conclusion” is translated as Schluss. “Infer-

ence” seems to be a permissible translation of Schluss, but it does not seem to be as 

good as “conclusion.” “Reasoning” does not seem right at all. My preference is to 

use “conclusion.” Obviously, it does not really matter which expression we use, as 

long as we know the nature of the mechanisms Helmholtz’ used in his theory. It is 

worthwhile, however, to keep in mind that such terms as “inference,” “reasoning,” 

“mental representation,” and “information processing” were introduced into psy-

chological models of perceptual processes after the Cognitive Revolution (Bruner 

et al., 1956; Miller et al., 1960; Epstein, 1973; Marr, 1982; Rock, 1983). With this in 

mind, it is clear that the theory presented in the paragraph quoted refers to some-

thing like Pavlovian conditioning, or Hebbian learning, more than reasoning or 

inference.

4. The same would be true if triangles were used. The shape of triangles is character-

ized by two parameters, and they lead to exactly the same problems as ellipses, 

whose shape is characterized by one parameter.



5. In Experiment 3, Stavrianos used smaller rectangles. By doing this, she effectively 

introduced shape ambiguity because small rectangles are approximately equivalent 

under perspective projection. It follows that her Experiment 3 did not study shape 

constancy but rather shape ambiguity.

6. These results indicate that subjects can, in fact, consciously judge the magnitude 

of slant. This confl icts with unconscious conclusion or inference theories in which 

slant (or experience related to it) is unconsciously taken into account in perception 

of shape, as claimed by Helmholtz (1867/2000) and Rock (1983). If the subjects did 

not have conscious access to the information about slant, slant judgments would 

be equally poor across the reduction conditions. These judgments, however, were 

more precise and accurate in the presence of depth cues than in their absence as 

one would expect.

7. Note that this conjecture runs in exactly the opposite direction to that of the 

traditional view of “taking into account,” according to which slant is taken into 

account in determining the perceived shape. Stavrianos’ point is that shape could 

be taken into account in determining the perceived slant.

8. This conjecture, which was “picked-up” by Gibson, provided him with stimula-

tion throughout his entire career (Gibson, 1950, 1966, 1979).

9. Comparison of shape ambiguity to shape constancy with planar fi gures has been 

replicated more recently by the present author, confi rming all claims derived from 

Thouless’ and Stavrianos’ experiments (Pizlo, 1994; Pizlo & Salach-Golyska, 1995; 

Pizlo & Scheessele, 1998).

10. The constancy hypothesis is completely unrelated to the phenomenon called 

“perceptual constancy.”

11. See Steinman, Pizlo, and Pizlo (2000) for a recent presentation and discussion 

of Wertheimer’s 1912 contribution.

12. It is worth pointing out that sometimes the path of light maximizes time. 

Therefore, it is better to talk about the principle of stationary, rather than minimum, 

time.

13. In chapter 3 it will be shown, however, how the “minimum principle,” when 

used as a constraint within a regularization theory, can be used to formulate modern 

computational models of perceptual mechanisms. In particular, Poggio et al. (1985) 

showed that at least some perceptual mechanisms can be modeled by electrical cir-

cuits, where the percept is “explained” by the state of the circuit corresponding to 

the minimum amount of heat generated in resistors.

14. This experiment was replicated by Hochberg and McAlister (1953). They used 

better methodology, and their results were put in the framework of information 

theory (see chapter 2).

236 Notes to pp. 24–34



Chapter 2

1. Tolman would have been offended by having his name listed along with Hugo 

Münsterberg’s because he considered Münsterberg’s writings about purposive behav-

ior to be unscientifi c. It is worth pointing out, however, that Münsterberg’s under-

standing of the relation between determinism and purposive actions (see his chapter 

21, pp. 285–296) was very close to the modern treatment of this relation as held by 

Wiener and his colleagues (Rosenblueth, Wiener, & Bigelow, 1943).

2. First, note that fi gure 2.1a is not exactly consistent with a cube interpretation. 

Instead, it is consistent with a rectangular box, whose faces are not all identical. 

Second, note that there are infi nitely many 2D and 3D interpretations correspond-

ing to each drawing. The set of these interpretations contains planar fi gures with 

various slants and tilts as well as polyhedral and nonpolyhedral objects. In fact, a 

given 2D image can be produced by a set of unrelated points in three dimensions, 

rather than a set of lines or quadrilaterals. It so happens that when a 2D image on 

the retina can be produced by a cube, the observer perceives a cube, rather than any 

of the other 2D or 3D possible interpretations. Hochberg and McAlister did not 

discuss the simplicity rule (criterion) responsible for this perceptual choice. The fi rst 

formulation of such a rule was put forth by Perkins (1972, 1976) and was subse-

quently elaborated by Sinha and Adelson (1992), Leclerc and Fischler (1992), and 

Marill (1991). The most recent version was provided by Pizlo, Li, and Chan (2005), 

Chan et al. (2006), and Li and Pizlo (2006).

3. Hochberg and McAlister, in their table 1, reported the number of angles minus 

one, rather than the number of angles itself. Also note a typo in this table. For fi gure 

(c), their table indicates, incorrectly, 17 junction points. This typo was corrected in 

the later reprint of this paper in Beardslee and Wertheimer (1958).

4. Koffka’s (1935) ideas about the confl ict of internal and external forces in percep-

tion apparently infl uenced Attneave and Frost’s thinking. Later, it will be shown 

that the percept is not a result of confl ict between the retinal image and simplicity. 

Instead, simplicity is needed to obtain a veridical, 3D percept from a 2D retinal 

image.

5. Note that the Y junction in fi gure 2.6 may be perceived as a right trihedral angle, 

and indeed, the junction itself could be a projection of such an angle.

6. In the case of an orthographic projection, when a solution exists, there is a 

complementary solution corresponding to a depth reversal.

7. Interestingly, it was just such unstructured objects that Rock and DiVita (1987) 

and Edelman and Bülthoff (1992) used for studies in which they demonstrated a 

failure of shape constancy. Note that their decision to use unstructured wire objects 

to study shape constancy was analogous to the use of ellipses and triangles by 

Thouless (1931a, b) in his studies.
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8. Hebb’s motor theory of shape perception was subsequently elaborated by Festinger 

(Festinger et al., 1967; Festinger, 1971; but see also Miller & Festinger, 1977) and by 

Stark (e.g., Noton & Stark, 1971). All modern motor theories are very closely related 

to Lotze’s (1852) theory of local signs, in which he tried to explain the ability of 

the visual system to judge relative positions on the retina, and to Helmholtz’ 

(1867/2000) elaboration of Lotze’s theory to the case of orientation and curvature 

of retinal lines. Motor theories of shape perception have never been applied to 3D 

shapes, nor is it clear that they could be. For this reason, this line of research was 

left out of this book.

9. Gregory (1970, 1980) held a similar position to that of Rock. Gregory viewed the 

visual system as a “scientist” who is solving problems by formulating hypotheses 

and testing them. Testing perceptual hypotheses might involve interaction with the 

environment. In this way, Gregory’s theory made a provision for the role of experi-

ence in visual perception.

Chapter 3

1. Machine vision (also called “robot” or “computer” vision) is relevant for under-

standing human vision and vice versa. Both communities, made up primarily of 

engineers and psychologists, respectively, are trying to develop a theory of visual 

perception. Psychologists are seeking a theory of biological (human) vision, whereas 

engineers are seeking a theory of artifi cial vision. Despite the obvious similarity of 

the overall goal of both lines of research, interaction between these two communi-

ties has never been strong. The main reason seems to derive from the very different 

methodology used in human and machine vision research. Psychologists and engi-

neers go about their work quite differently; engineers do simulations, while psy-

chologists perform psychophysical experiments. The main differences between these 

very different approaches to vision, as well as their strengths and limitations, are 

tabulated in appendix C.1a (after Pizlo, Rosenfeld, & Weiss, 1995).

2. Roberts credits Gibson (1950) for inspiring his work—in particular, for shifting 

attention from 2D fi gures to 3D objects and for suggesting that projective geometry 

might be useful for addressing the issue of shape constancy.

3. Homogeneous coordinates allow one to handle the numerators and the denomi-

nator separately in a perspective projection. In particular, since all equations in a 

perspective projection involve the same denominator, a “spurious” dimension is 

introduced that represents this denominator. The remaining dimensions represent 

the numerators. As a result, a perspective projection from a 3D scene to the 2D 

image can be represented by a set of linear equations, in which the 3D Euclidean 

coordinates describing the objects “out there” are replaced by 4D homogeneous 

coordinates, and similarly, the 2D Euclidean coordinates on the retina are replaced 

by 3D homogeneous coordinates.
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4. This corresponds to the distinction between a calibrated and an uncalibrated 

camera. In a calibrated camera, the geometry of the camera, including the focal 

distance, is known, and as a result, Euclidean structure can be recognized (Pizlo & 

Loubier, 2000). In an uncalibrated camera, the geometry of the camera is not known, 

and as a result, Euclidean structure is not accessible. The case of an uncalibrated 

camera received a lot of attention in the computer vision community (e.g., Faugeras, 

1993), but it has no application in human vision—see appendix C, section C.4.

5. This similarity is related to the fact that colinearity and coplanarity, the features 

used explicitly in the reconstruction methods of Waltz and others, are actually pro-

jective invariants. It follows that when a polyhedron is reconstructed from a single 

image, the reconstruction often leads to a family of polyhedra that are projectively 

equivalent. Specifi cally, the family of reconstructed polyhedra is larger than the 

family of projectively equivalent shapes when the polyhedron has a complex shape 

(e.g., when there are vertices produced by four or more faces). However, for simple 

polyhedra, such as hexahedrons, or for parts of a complex polyhedron, the family 

of reconstructed polyhedra consists of objects that are projectively equivalent. This 

is related to the fact that for simple polyhedra, planarity of faces is the only con-

straint that defi nes 3D projective transformations. This can be illustrated in the case 

of a hexahedron with quadrilateral faces (such as a cube or parallelepiped), where 

planarity of faces (including coplanarity of quadruples of points on diagonals) is the 

only constraint that generates the family of projectively equivalent objects (M. Brill, 

personal communication). The relation between reconstruction of a 3D shape from 

a single image and a group of 3D projective transformations provided the basis for 

formulating model-based projective invariants for 3D shapes and will be discussed 

in some more detail in section 3.3).

6. Problems with using Marr’s 2.5D sketch as the basis for shape perception arise 

not only when edges are used but also when surfaces are used, although it is not as 

easy to provide compelling illustrations. It is known that perceived 3D slants of 

planar surfaces are systematically underestimated (see Perrone, 1980, 1982, for a 

review). If the perceived shape of an object were derived from the percept of the 

object’s surfaces, one would expect systematic errors in judging 3D shapes of objects. 

Look at fi gure 2.4. When the 3D orientation of the planes π1, π2, and π3 are under-

estimated, the trihedral angle formed by these planes should not be perceived as a 

right angle. But it is. Specifi cally, Perkins showed no systematic errors either in per-

ception of right trihedral angles (1972) or in perception of arbitrary angles of regular 

polyhedra (1976). Perceived shape of a polyhedron is more accurate than perceived 

orientations of surfaces and edges (see chapter 4, where a direct psychophysical test 

is described). It follows that 3D shape is not derived from 2.5D representation. In 

perception of 3D shapes, regularity of the shape is more important than information 

about depth and 3D orientation of surfaces and edges.

7. When the cameras are uncalibrated, the 3D projective, but not Euclidean, struc-

ture can be computed (Hartley & Zisserman, 2003).
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8. A unique solution requires only six points. When seven or more points are avail-

able, the computations are easier than in the case of six points (Tsai & Huang, 

1984).

9. The fact that shape is not affected by rigid motion is an example of von Ehrenfels’ 

transposition principle (see chapter 1). It follows that mathematical (conventional) 

invariants provide an explanation of the transposition principle. Note, however, 

that shape constancy does not simply follow from the transposition principle, a fact 

overlooked by almost everyone, including Gibson (1966), Boring (1942), and Zusne 

(1970).

10. This statement applies only to the perception of 3D shape from a single 2D 

image. If two or more 2D images are available, 3D projective invariants can be 

computed (Faugeras, 1993). In other words, a transformation from a 3D space to 

two camera images, when the cameras are uncalibrated, can be treated as a 3D pro-

jectivity. When two calibrated cameras are used, this transformation can be treated 

as a similarity transformation of a 3D space (Longuet-Higgins, 1981).

11. It seems likely that the problems that arise when projective invariants are used 

to explain shape constancy did not become obvious until recently because of the 

persistent prevalence of “taking slant into account” explanations (see chapter 1).

12. Despite some initial enthusiasm (for a review, see Mundy & Zisserman, 1992; 

Mundy et al., 1993), it became obvious that projective invariants have fundamental 

limitations not only as an explanation of human shape perception but also as a tool 

in engineering applications (see appendix C, section C.6, for a review of the use of 

projective invariants in machine vision).

13. When the range in depth of a slanted fi gure is small as compared to the viewing 

distance, perspective projection can be approximated by a 2D affi ne transformation. 

In such a case, affi ne invariants can be used as an approximation of perspective 

invariants. The relevance of affi ne invariants under such conditions was demon-

strated by Wagemans et al. (2000).

14. Pizlo and Loubier (2000) were able to formulate a 3D perspective model-based 

invariant (appendix C, section C.9.2, provides a brief treatment). This perspective 

invariant does not suffer from this problem. However, it can only be applied to one 

object at a time, instead of to the entire class of objects. Specifi cally, this invariant 

provides an answer to the question of whether a given perspective image was pro-

duced by a given 3D object. The potential value of using this 3D perspective invari-

ant for the study of human shape constancy has not been tested yet.

15. Hume (1739) was probably the fi rst philosopher to have realized the nature of 

this problem. He insisted that the causality relation in physics cannot be perceptually 

observed. It can only be postulated (inferred), but empirical data will never be able 

to prove a causal relation in natural phenomena. A standard way to alleviate Hume’s 
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problem is to use a simplicity principle (Occam’s razor). The framework of inverse 

problems in visual perception, the Prägnanz principle of Gestalt psychologists, and 

the Occam’s razor principle in natural sciences are different names for the same 

solution of the problem posed by Hume.

16. This property of a circle is represented by an isoperimetric inequality (Polya & 

Szego, 1951).

Chapter 4

1. The fact that binocular disparity is used across objects (i.e., across spatial discon-

tinuities), but not within objects, invalidates theories of binocular visual space, such 

as Luneburg’s (1947). In Luneburg’s theory there is one global geometrical model 

describing perceived 3D spatial relations regardless of the stimuli and the task. In 

his theory, the same perceptual distortions must be observed across objects as within 

them.

2. Marr (1977) proposed the following four characteristics to describe generalized 

cones: (i) shape of a cross section, (ii) shape of the axis, (iii) axial scaling function, 

and (iv) eccentricity angle. For example, the circular cylinder (fi gure 4.7c) has a cir-

cular cross section, its axis is straight, the size of its cross section is constant, and 

the cross section of this shape is orthogonal to its axis. A circular cone (fi gure 4.7a) 

is different from a circular cylinder in that the size of the cross section is not con-

stant. Realize that Marr’s defi nition of generalized cones can be generalized even 

further. For example, the cross section may vary not only with respect to its size but 

also with respect to shape. Furthermore, the eccentricity angle does not have to be 

kept constant. With such generalizations, however, the family of generalized cones 

becomes very large—so large that it is not clear that it can be used in machine (or 

human) shape recognition systems (see, e.g., Koenderink, 1995, for a criticism of 

limitations inherent in the concept of generalized cones).

3. Watt (1987) showed that the Weber fraction in line-length discrimination, when 

the lines are presented in a frontal plane, is about 10% when exposure duration is 

100 ms. In order to achieve very reliable discrimination in the line-length experi-

ment (Weber fraction of 2%–3%), exposure duration has to be about 1 second or 

more.

4. The effect of experimental conditions on performance was the same when overall 

proportion of correct responses was used as a dependent variable.

Chapter 5

1. D’Arcy Thompson (1942) remarked, “symmetry is highly characteristic of organic 

forms, and is rarely absent in living things—save in such few cases as Amoeba” 

(p. 357).
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2. This argument is analogous to the one presented by Bennett, Hoffman, and 

Prakash (1989, 1991) in their “observer mechanics” theory. The main difference is 

that they used constraints in the form of assumptions, like the rigidity assumption 

in Ullman’s (1979) theory. Here, constraints are used explicitly as an element of a 

regularization model.

3. It was shown in appendix C.11 that when a planarity constraint is applied to an 

image of a simple polyhedron, there are only three degrees of freedom characterizing 

the 3D shape of this polyhedron. The same is true with shapes like geons that were 

used by Biederman (1985), as well as with other generalized cones and superquad-

rics. Examples of computational methods that illustrate how simple generalized 

cones and superquadrics are reconstructed can be found in Chakravarty (1979), 

Malik and Maydan (1989), Dickinson and Metaxas (1994), Ulupinar and Nevatia 

(1995), and Zerroug and Nevatia (1996, 1999).

4. This statement actually applies to an orthographic projection. A perspective 

image of a symmetrical object uniquely determines the object. However, in the 

presence of visual noise, a reconstruction is likely to be unstable. Thus, additional 

constraints are needed for reconstruction when either projection is used.

5. It seems likely that with natural objects, planarity is subordinate to symmetry. 

Objects and structures that have planar contours but no symmetry are not common 

in nature. Even artifi cial objects are almost always symmetric, simply because 

mechanical stability, in the presence of gravity, requires symmetry.

6. Quite a lot is known in geometry about compactness. It was studied quite exten-

sively as an element of isoperimetric inequalities (Polya & Szego, 1951). Isoperimet-

ric inequalities analysis is a treatment of geometrical and physical properties of 

objects, such as their shapes, symmetries, and rigidity. This kind of analysis has 

established that symmetry and convexity of an object, as well as smoothness of its 

surface, lead to greater compactness.

7. The only prior application of compactness in shape reconstruction was the use 

of a 2D compactness constraint that was applied to a slanted circle (Brady & Yuille, 

1983), or to other slanted fi gures that were cross sections of generalized cylinders 

(Dickinson & Metaxas, 1994; Ulupinar & Nevatia, 1995), described in chapter 3. 

Sinha (1995) also used the term “compactness” when he presented his new con-

straint. However, his “compactness” constraint was completely different from the 

constraint used in this book. He used a constraint that biased the faces of polyhedra 

towards small slants, relative to the camera. This constraint would be more appro-

priately called a “depth constraint,” not a compactness constraint. The use of the 

term “compactness” in this book is completely different. It is novel because it refers 

to 3D compactness.

8. There are, actually, two objects in which the angles are all 90 deg angles. One is 

a box viewed from outside, and the other is a box viewed from inside (convex vs. 
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concave). Note that only one of these two interpretations is seen by the observer. 

The visual system uses an assumption (constraint) that objects are always seen from 

outside (Mamassian & Landy, 1998).

9. The examples presented here use an orthographic projection as an approximation 

to a perspective projection. This approximation, however, does not restrict the 

generality of these examples.

10. In this example, departure from symmetry, DS, was measured by the mean 

squared difference between the angles of the object and the 90 deg angle (the angles 

were expressed in degrees). The cost function was as follows: E = DS − V2/S3.

11. When a perspective image of a bilaterally symmetrical object is given, the object 

can, in principle, be reconstructed uniquely by applying Longuet-Higgins’ (1981) 

algorithm (see chapter 3). However, such a reconstruction will be unstable, so it 

cannot be veridical. One has to use additional constraints, such as compactness, to 

stabilize the result from this kind of reconstruction.

Appendix C

1. It is assumed here, for simplicity, that the surface of the retina is planar, even 

though it is actually spherical. This assumption does not restrict the generality of 

the derivation because one can always transform mathematically a spherical image 

to a planar one, and vice versa.

2. If you get too close, you will not be able to accommodate and the shape will be 

blurred. To overcome the accommodation problem, the reader can project a copy 

of this image on a large screen and look at it from a distance at which the image 

occupies a large part of the visual fi eld.

3. In order to make statements about the probability of events, one would have to 

make assumptions about the probability distributions over objects and viewing ori-

entations. In our case, however, fairly weak assumptions would be needed such as 

that most viewing orientations are observed with a probability greater than zero.

4. Interestingly, the method for objects with bilateral symmetry cannot be applied 

to solids of revolution. When the line of sight intersects the axis of symmetry of a 

solid of revolution, the two symmetrical halves of the image are, by defi nition, 

identical, except for mirror symmetry. Therefore, they are completely redundant 

and cannot be used to perform a reconstruction from two views. As pointed out 

earlier, any other perspective image of a solid of revolution is a 2D projective trans-

formation of the symmetrical image, and therefore the redundancy problem applies 

to it, as well.

5. Brady and Yuille (1983) used this constraint in the context of reconstructing 

slanted fi gures, rather than interpolating retinal images, as described here. The same 
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constraint was used by Ulupinar and Nevatia (1995) and Dickinson and Metaxas 

(1994) in reconstructing generalized cones.

Appendix D

1. Usually, there are two solutions corresponding to the depth reversal. In the 

general case, however, it is diffi cult to establish the number of minima of the vari-

ance of angles in a polyhedron. Based on computational experiments, it seems that 

in the case of simple polyhedra, there are only two minima.
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